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Abstract 
 

The current work investigates the effect of warm forming process parameters on springback of AA3003 

brazing sheets, comprising a modified AA3003 core with a lower melting point AA4045 clad layer used to 

promote brazing. Three temper conditions were considered including O-, H22- and H24-temper.  

Two custom tooling sets were designed to form U-shaped channels, allowing forming temperature, blank 

holding force and lubricant type to be varied. The forming temperature range considered was from room 

temperature to 300°C. The formed specimen cross sections were measured and the net shape was 

evaluated in terms of the measured versus ideal sidewall angle.  

Tensile tests were conducted to characterize material behaviour for the range of temperature considered 

in the forming experiments. The results showed thermal softening and increased strain-rate sensitivity at 

elevated temperature in the O-, H22-, and H24-tempers, which results in lower forming stresses and thus 

lower springback. The room temperature strength is recovered after warm forming. Ductility increased 

significantly at elevated temperature; however, the harder temper conditions exhibited negative strain 

hardening for high temperatures at strains beyond the ultimate tensile strength. 

The experiments revealed that springback reduced steadily for all three tempers as the forming 

temperature was increased from room temperature to 250°C. The effect of temperature on springback 

was relatively small for the O-temper condition, but significant for the high-strength tempers. At a forming 

temperature of 250°C, the H22-and H24-tempers exhibited springback reduction of 95% and 92%, in terms 

of deviation from the ideal sidewall angle, relative to springback at room temperature, respectively.  

The stress-strain data was used to create a numerical model for predicting springback after U-channel 

forming. One challenge in developing constitutive model parameters for this work was the negative 

hardening response exhibited by the harder temper conditions at higher temperatures. This caused 

numerical instabilities, requiring the use of approximate fits to the material response.  

The sidewall angle deviation and flange angle were predicted after springback. The numerical models 

qualitatively captured the reduction in springback with increase in forming temperature, but quantitative 

differences in the predicted and measured extent of springback exist. Sensitivity analysis using the model 

showed that friction coefficient and constitutive fit had a large influence on predicted springback. Future 

studies should address the complex material response data at elevated temperature and develop a more 

detailed temperature- and strain-rate dependent constitutive model.  
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1.0 Introduction 

1.1 Use of Lightweight Metals in the Automotive Industry 

In recent years, strict legislative emission regulations have been imposed on auto makers to lower fuel 

consumption and improve efficiency. This is being done to address growing concerns regarding climate 

change. Some automakers are developing electric (Chevy Bolt, Tesla Model S) and hybrid-electric vehicles 

(Toyota Prius, Fisker Karma) to address this concern. The electric energy is stored in battery packs located 

on the vehicle. The battery packs must operate at uniform temperature. Otherwise, uneven temperature 

distribution can lead to unbalanced electrical charge in the modules and diminish performance and life 

span [1]. Automakers overcome this problem by integrating a cooling system inside the battery pack.  

Regardless of the fuel used to power the vehicle, the overall weight of the vehicle must be optimized for 

efficient consumption of energy. For each 100 kg reduction in the mass of a car, there is approximately 9 

grams less CO2 produced for each kilometer driven in a gasoline car [2]. Most importantly, the 

manufacturing process for fabricating light weight parts must be cost effective and meet present 

production volume standards. As a result, government and industry partners are investing heavily in 

advanced research programs to commercialize lightweight metals for automotive applications.  

The primary light-weight materials for future automotive applications are aluminum alloys. Aluminum has 

one-third the density of steel and offers excellent strength-to-weight ratio relative to steel, when alloyed 

with other elements. Aluminum is also attractive due to its very good corrosion resistance and brazeability 

[3]. These alloys have the potential to be used for structural components and sub-components that are 

part of the vehicle. However, aluminum alloys present unique challenges in production, exhibiting 

relatively low room temperature formability compared to that of steel and being prone to cracking and 

wrinkling when using conventional tooling [4]. Other materials that are also being considered for 

automotive lightweighting applications include fibre-reinforced composites, ultra-high strength steels and 

multi-material concepts [5]. To meet mass-market vehicle demands and achieve the required efficiency 

improvements in the current market environment, aluminum is the most attractive alternative to steel 

among auto-makers [5]. 

Effective measures are being taken to increase efficiency by implementing the use of aluminum, due to 

the growing competition among mature auto makers and new participants in the industry (ex. Tesla 

Motors, Faraday Future). Today, aluminum is used extensively in vehicles and its use is growing steadily. 
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Figure 1 shows the various applications in a passenger-vehicle, where aluminum is used in the fabrication 

of the components [2]. 

 

Figure 1: Applications of Aluminum in a passenger-vehicle. [2] 

One important application of aluminum alloys is in thermal management systems, including heat 

exchangers for engine and transmission cooling, and more recently, for battery cooling devices used in 

electric and hybrid vehicles. Aluminum is attractive for the manufacture of automotive heat exchangers 

due to its high thermal conductivity, good corrosion resistance and good brazeability [3].  

Electric/hybrid vehicles need a cooling apparatus specifically for the battery pack in order to prolong life 

of the battery cells and maintain performance. These battery cooling systems may consist of thin cooling 

plates stacked between the battery cells. The cooling plates are comprised of brazed stamped thin-gauge 

aluminum sheets with serpentine channels for coolant flow. Heat is conducted through the battery plates 

and dissipated by the coolant. The serpentine channels are optimized to maintain a uniform temperature 

across the face of the cells [6]. A schematic of a battery cooling plate is shown in Figure 2 [7]. 
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Figure 2: A schematic of a battery cooling plate [7]. 

Aluminum brazing sheets used for the fabrication of battery cooling plates are composite structures that 

consist of an AA3003-type core alloy laminated with a AA4045-type clad or filler metal. The brazing sheet 

may be cladded on one or both sides of the AA3003 core, as shown in Figure 3. During the battery cooler 

manufacturing process, the desired design features such as the cooling channels are stamped into the 

aluminum braze sheet. The stamped battery cooler component is subsequently assembled and brazed in 

a furnace. During aluminum brazing, which typically occurs between 575 – 600C, the lower melting point 

AA4045 clad material melts; and via a process of wetting and capillary action, metallurgically bonds the 

component assembly to form a brazed heat exchanger [8].  
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Figure 3: Different types of brazing sheet material [9]. 

The fabrication of thin battery plates made from very thin gauged aluminum braze sheets, posed new 

manufacturing challenges to the heat-exchanger manufacturer. Production yields are strongly dependent 

on the flatness between the 2 stamped components in contact to be brazed. Excessive springback in the 

stamped component results in poor contact between the mating plates, which in turn leads to poor braze 

joint formation and leaks in the brazed heat exchanger. Furthermore, some design features require higher 

levels of material forming which limits the use of the more desirable higher-strength and corrosion 

resistant, but lower formability, H-temper aluminum sheets; and/or may require the use of more 

expensive multi-stage progressive die systems. Hence, a new forming method that allows for forming of 

complex geometries while maintaining a consistent degree of flatness in thin gauge aluminum sheets with 

harder tempers is needed for the development of new battery cooling technologies [10]. 

This work is focused on aluminum alloy brazing sheet used to fabricate battery cooling plates for 

electric/electric-hybrid vehicles, in particular, the use of elevated temperature (warm) forming to limit 

springback and improve net shape after forming.  

1.2 Springback 

The formability of sheet metal is influenced by the design geometry (shape, curvature); choice of material 

(strength, ductility) and manufacturing technology (die alignment, lubricant, loading) [11]. These 

parameters are closely related and affect the outcome of the finished product [12]. Aluminum being 

lighter than steel, also has a lower strength and elastic modulus compare to conventional forming steels.  

Thus, conventional stamping methods used for stamping steels need to be adapted to successfully form 

aluminum sheets.  

Some drawbacks of forming aluminum are galling and springback. For aluminum brazing sheets, severe 

galling can have a negative impact on brazing performance. As a result, lubrication is a critical process 

parameter. Springback also plays a significant role in process design. It is a pivotal parameter that can 

determine the success of the product and process design. Springback is the dimensional deviation from 
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the ideal shape, which occurs after the forming loads are removed. It is caused by the recovery of elastic 

stresses present in the sheet material at the end of the forming operation. Figure 4 illustrates anglular 

deviation from an ideal bend angle to the resulting angle after springback [13]. 

 

Figure 4: Angular deviation from the ideal bending angle to the actual angle due to springback [13]. 

To compensate for springback, engineers can sometimes specify a bending angle that is greater than the 

required angle; in doing so the part deforms back to the desired shape. With this method, springback is 

controlled through tooling design. Another method of influencing springback is to change the material or 

the material thickness such that lower springback is obtained. Table 1 lists various material and process 

factors that influence springback [14].  

Table 1: Various geometric, process and material factors that influence springback [14]. 

Geometric Variables Process Variables Material Variables 

Curvature 

Blank Thickness 

Clearance (Die and Punch Gap) 

Binder Force  

Friction 

Lubrication 

 

Elastic Modulus 

Yield Strength 

Ultimate Tensile Strength 

Strain Hardening 

Poisson’s Ratio 

Anisotropy 
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The list of factors in Table 1 is by no means exhaustive. Springback behaviour could change for a range of 

other reasons such as humidity on the shop floor or how the material is stored and transported. Due to 

the large number of variables, controlling and predicting springback is extremely difficult. In a production 

environment, springback is compensated for based on the operator’s knowledge base or industry 

standard practice [14]. This involves repeated forming trials with different die geometries and constant 

tooling re-work. 

There are various computer programs that could be used to predict springback [15]. However, the models 

are extremely sensitive to the parameters specified by the user. In addition to a material model, 

information about frictional forces between the sheet material and tooling is also needed. Therefore, 

accurate prediction of springback behaviour is exceptionally challenging. It typically requires a parametric 

study where the hardening law, yield curve, mesh size, element type and other model parameters are 

varied and the resulting springback is evaluated [16].  

1.3 Warm Forming Process 

In the current project, warm forming was identified as promising route for limiting springback in aluminum 

while also improving formability. Warm forming is the process of forming sheet metal parts at elevated 

temperature but staying below the recrystallization temperature of the material. Figure 5 shows a 

schematic of a typical warm forming tooling set-up. It should be noted that the circular features in the 

figures are indicative of cartridge heaters which are commonly used as heating elements in warm forming 

tooling. For non-isothermal warm forming, the cooling of selected tooling components is done by running 

chilled water through the body of the part. 
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Figure 5: Typical warm forming tooling set-up. (a) Non-isothermal warm forming, (b) Isothermal warm forming. 

There are two types of warm forming process configurations. In isothermal warm forming process, all the 

tooling components and the blank are at the same temperature, while for non-isothermal forming, the 

binder, die are heated and the punch is cooled using running chilled water. Although both variations of 

warm forming process require special provisions to maintain temperature, non-isothermal forming is 

technically more challenging compared to isothermal forming. However, non-isothermal processes can 

potentially achieve deeper draw depths, for example, since the fracture prone region of a part can be 

cooled to maintain strength in that region pushing deformation away, while forming limit strain is 

enhanced in the heated, deforming regions. This allows for complex shapes to be formed in single action 

forming operations rather than having multiple forming stages [17].  
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Another benefit of forming aluminum at elevated temperature is lower levels of stresses in the material. 

As a result, forming can be done using lower press tonnage with reduced springback. Figure 6 illustrates 

the reduction in tensile stress in aluminum sheet and the influence on springback as result of temperature 

increase [18]. 

 

Figure 6: Influence of temperature on tensile stress and springback in aluminum sheets [18]. 

Aluminum alloys show an increase in elongation from 20% at room temperature up to 80% at 

temperatures near than 300°C [19]. This increase in formability at warm forming temperatures allows for 

greater part complexity and potentially increased usage of aluminum alloys in the automotive and 

aerospace market. The challenge with warm forming is the cost incurred to transition from a conventional 

cold stamping process. More complex tooling is needed and insulation must be added to prevent 

overheating of the press [20]. Cycle time will be greater for warm forming processes, depending on the 

blank heating method used, but some improvements may be realized for parts that require progressive 

die set-ups through reduction in the number of forming stages [21]. With warm forming, it is possible to 

form parts with a lower number of forming stages.  Therefore, the cost per unit for a warm forming 

process could be comparable to a cold forming process for high production volume [22]. The following 

section details some of the previous research done on warm forming and springback related studies. 

Previous studies with aluminum brazing sheets have shown an increase in formability at elevated 

temperatures. Bagheriasl (2012) conducted limiting dome height experiment on AA3003-O aluminum 

alloy brazing sheet and observed a 200% improvement in formability compared to room temperature 

[23]. Mckinley (2010) performed material characterization studies of aluminum brazing sheets. The flow 

stress decreased substantially at 250°C compared to room temperature and elongation at failure also 

increased significantly [24].   
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An improvement in formability due to warm forming has also been observed in other materials. Shehata 

et al. (1978) reported a five-fold increase in elongation for aluminum-magnesium alloys in uniaxial tensile 

tests. Additionally, flow stress was also shown to decrease with increasing temperature. Warm-punch 

experiments were also conducted where an increase in cup height was evident at elevated test 

temperatures [25]. Li et al. (2004) measured an increase in forming limit strains of AA5754, AA5182, and 

AA6111-T4 at a forming temperature of 250°C [26].  

Hui et al. (2011) investigated warm forming behaviour of high-strength AA7075 aluminum alloys. Tensile 

test results showed that for temperatures above 140°C, the yield and ultimate tensile strength decreased 

with increasing temperature. An important characteristic of this material is the high-strength temper 

which should be preserved post-forming. Heat treated samples showed permanent loss in strength for 

temperatures above 220°C [27]. This suggests that temperature for warm forming has an upper limit, if 

higher-strength temper properties are to be retained in the formed component. 

Material behaviour at warm forming conditions has also been captured in numerical models. Kurukuri et 

al. (2009) developed a temperature and strain-rate sensitive material model that could accurately 

describe the flow stress of aluminum-magnesium alloys at elevated temperature. This model was used to 

simulate warm deep drawing of cylinder cups [28].  

1.4 Springback After Forming at Room and Elevated Temperatures 

In recent years, considerable progress has been made in understanding springback at room temperature. 

Li et al. (2001) simulated draw/bend experiments with high strength low alloy (HSLA) steel and 6022-T4 

aluminum to study effects of various process and numerical parameters on the resulting Springback.  The 

magnitude of the tensile force in the sheet during draw bending was found to have a significant effect on 

springback. The tensile force can be varied through the application of back force or by increasing the 

friction coefficient between the blank and tooling surfaces. Moreover, the numerical models showed high 

sensitivity to the number of through-thickness integration points, mesh density, and type of elements. 

Figure 7 shows the effect of number of integration points through the thickness on simulated springback. 

The springback model required at minimum 21 integration points for reasonable accuracy [29]. 
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Figure 7: Measured springback with increasing number of through-thickness integration points [29]. 

Livatyali et al. studied springback after flanging operations for steel and aluminum. Aluminum was 

reported to exhibit higher springback due to its lower elastic modulus [30].  The effect of blank holding 

force on springback was also considered. The results showed that its effect on springback diminishes after 

a certain threshold value. 

Ling et al. studied the effect of process parameters such as die clearance, die radius, step height, and step 

distance on springback of AA2024-T3 after an L-bending operation [31]. They report that the die radius 

and clearance can be optimized to reduce springback. A die radius of 1t (1*thickness of the sheet) and a 

die clearance of 0.78t will result in the same springback as that of using a die clearance of 1t. The optimal 

combination depends on the material and sheet thickness. 

Very few studies, however, have studied springback under warm forming conditions. Grèze et al.  studied 

springback of AA5754-O split rings cut from cylindrical cups deep drawn at elevated temperatures [32]. 

The opening of the rings after forming for a range of temperatures is shown in Figure 8 [32]. The opening 

width for a specimen formed at room temperature was 64mm, whereas the specimen formed at 200°C 

resulted in an opening of just 21mm. They concluded that forming at higher temperatures results in a 

decrease of the stress gradient in the cup wall, thereby producing lower springback. 
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Figure 8: Opening of the rings for several temperatures in the range 25–250 °C [32]. 

Moon et al. investigated the effect of tool temperature on the reduction in springback of AA1050 

aluminum sheets [33]. In U-shape bending experiments, the authors measured 20% reduction in 

springback when using a non-isothermal tooling set-up with a hot die and cold punch, compared to 

conventional room temperature bending tests. Moreover, tensile tests were performed at temperatures 

ranging from -10 to 200°C. The results showed that the corresponding yield strength decreased from 135 

MPa to 40MPa, accounting for the lower springback observed after forming at warm temperature. 

Furthermore, Kim et al. reported a rapid increase in formability and decrease in springback of AZ31B 

magnesium alloy for temperatures up to 200 °C and very slowly afterwards [34]. For non-isothermal tests, 

the reduction in springback followed a linear trend with temperature. 

Takata applied the non-isothermal warm forming process to a square-punch drawing set-up [21]. The 

punch temperature was maintained at 25°C using chilled water and die temperature was maintained at 

250°C. They compared springback of the formed 5xxx series aluminum alloy samples with mild steel 

samples. The results are pictured in Figure 9. 
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Figure 9: Cold and wam hat-shaped parts of 5xxx series aluminum alloy and cold formed mild steel alloy [21]. 

An improvement in shape can be seen for aluminum alloys at higher temperature compared to cold 

forming. More importantly, the net shape of the aluminum sample after forming at 250°C is comparable 

to the steel sample that was cold formed [21]. 

Nguyen et al. created models to predict springback in V-bend samples at room and elevated temperatures 

using a modified Johnson-Cook hardening law [35]. The simulation results were in good agreement with 

the measured data. The predicted springback amounts for a range of temperatures are shown in Figure 

10 [35]. The models predict a gradual decrease in springback with increasing test temperature. 
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Figure 10: Deformed shape after springback in V-bend simulations [35]. 

1.5 Current Work 

There has been a considerable amount of prior research conducted on characterizing and predicting 

springback for room temperature sheet metal forming operations. The number of studies to-date 

considering springback after warm forming is rather limited. Furthermore, the author is unaware of 

previous studies on the springback after warm forming of AA3003 brazing sheet, the material commonly 

used in automotive heat exchanger applications.  

To address this shortfall in the literature, the primary objective of the current work was to experimentally 

evaluate the effect of temperature on the springback behavior of a clad aluminum alloy brazing sheet.  

The material considered was 0.2mm (0.008in.) thick, comprising of a modified AA3003 core with an 

AA4045 clad layer on one side. The majority of current heat exchangers are fabricated using fully annealed 

material; thus, annealed (O-temper) material was considered as a baseline. Strain hardened tempers are 

also of current interest due to their greater strength and corrosion resistance [3]; however, the higher 

strength of these materials generally results in higher levels of springback making it difficult to achieve 

accurate net shapes using such tempers. To examine the effect of material hardness, a range of initial 
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strain hardened tempers were considered, namely the H24- and H22-tempers, often referred to as “fully-

hard” and “half-hard” temper conditions, respectively. 

The springback experimental study was divided into two stages. The first stage was a benchmark study 

which involved a condensed test matrix and relatively simple tooling. Subsequently, a more 

comprehensive study was conducted which included additional process parameters and more complex 

tooling. U-channel forming experiments were performed at elevated temperatures after which the final 

geometry and nominal target geometry were compared to ascertain springback. The U-channel geometry 

was selected to represent what is seen in cooling channels of various automotive heat exchanger 

components.  

Also, presented herein are results from development of numerical models to predict springback 

behaviour. The results from a material characterization study were used to create a simplified 

constitutive model. This model was used to simulate forming and springback of U-bent parts under 

various process conditions.  

This research was performed as part of a larger Automotive Partnership Canada project undertaken by 

the University of Waterloo and Dana Canada Corporation, addressing the potential benefits of warm 

forming on aluminum heat exchanger components. 

The balance of this thesis is organized as follows. Chapter 2 provides results of tensile tests performed 

to characterize material behaviour at elevated temperature. Chapter 3 details test results that show the 

effect of forming temperature on springback, along with the effect of blank holding force and lubricant 

type. Chapter 4 focuses on development of numerical models to predict springback under various 

process conditions. Primary conclusions stemming from this research and recommendations for future 

work are given in Chapter 5.  
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2.0 Material Characterization Study 

The brazing sheet material consists of an AA3003 core and AA4045 clad layer on one side, that is coated 

with Dana Canada’s proprietary braze promotor. The nominal thickness of the sheet was 0.2 mm including 

the clad layers. Three temper conditions were examined in this study which included the O-, H22-, and 

H24-tempers. The O-temper is the fully annealed condition while the H-tempers are strain hardened and 

partially annealed, providing increased strength and hardness. Table 2 shows measured nominal sheet 

thickness and clad thickness of the aluminum brazing sheets at three different temper conditions [36].  

Table 2: Nominal values of overall sheet thickness and clad layer thickness for all three material temper conditions. 

 O-Temper H22-Temper H24-Temper 

Clad Thickness (µm) 26.79±1.72 21.50±1.63 22.10±1.86 

Overall Sheet Thickness (µm) 201.17±2.01 202.85±1.75 203.15±1.69 

2.1 Tensile Experiment Set-up 

Tensile tests were conducted to characterize material deformation behaviour at elevated temperatures 

for the three temper conditions. The tests were conducted on the Instron universal test machine located 

at the CanmetMATERIAL facility in Hamilton, Ontario. The grips and the specimen were encapsulated in 

an environmental chamber to regulate temperature of the specimen. The test set-up is shown in Figure 

11.  



16 
 

 

Figure 11: Experimental set-up for the tensile tests. 

An MTS biaxial video extensometer was used to measure strain in the specimen during testing. An LED 

light fixture was positioned behind the camera to increase lighting inside the chamber. The extensometer 

software tracked movement of distinctly marked areas on the specimen. Two points were required for 

tracking the axial strain and two points for the lateral strain in the specimen. The test geometry used is 

shown in Figure 12 [37]. Due to the thin nature of the brazing sheet material, the tensile specimens for 

this study were cut using an electrical discharge machining (EDM) process at the Canmet Facility as 

opposed to CNC machining. The EDM process produces specimens with a clean edge that did not require 

any rework or deburring. This is desirable since burrs may initiate edge cracking during the test. 

 

Figure 12: Tensile Test Geometry. Dimensions shown are in inches. 
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The temperature inside the chamber was measured using a thermocouple located near the grip area. 

Another thermocouple was located at the center of the specimen. The differential between the two was 

measured using a digital thermometer. It was determined that the grip region temperature was normally 

2°C lower than the temperature of the center of the specimen. The second thermocouple was then 

removed from the remainder of the test and grip area thermocouple was used to monitor the 

temperature of the sample, manually accounting for the offset. The tests were initiated once the 

temperature had stabilized to the test temperature. It took 10, 15 and 20 minutes to reach 150, 200, and 

250°C, respectively. Figure 13 shows the specimen mounted on the grips with the extensometer markers. 

 

Figure 13: Tensile test specimen mounted on the test fixture. 

The test parameters considered for this study were temperature (room temperature (RT), 150, 200, and 

250°C), strain rate (0.002, 0.02/s) and orientation of the specimen axis relative to the sheet direction 

(rolling (RD), transverse (TD) and diagonal direction (DD)). The values for each test parameter are listed in 

Table 3. Three repetitions were done for each test condition. The reported stress-strain response (Section 

2.2) is the average of the three measured curves. The transverse and diagonal direction were tested at 

four temperature conditions and at a strain rate of 0.02/s only.  
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Table 3: Test Matrix for the material characterization study. 

Material 
Temper 

Condition 

Sheet 
Orientation 

Strain Rate  
(/s) 

Temperature (°C) 

Room 
Temperature 

150 200 250 

O 

RD 
0.02 3 3 3 3 

0.002 3 3 3 3 

TD 0.02 3 3 3 3 

DD 0.02 3 3 3 3 

H22 

RD 
0.02 3 3 3 3 

0.002 3 3 3 3 

TD 0.02 3 3 3 3 

DD 0.02 3 3 3 3 

H24 

RD 
0.02 3 3 3 3 

0.002 3 3 3 3 

TD 0.02 3 3 3 3 

DD 0.02 3 3 3 3 

 

2.2 Results 

Engineering stress-strain values were calculated using the raw data generated by the machine software 

and video extensometer, at the end of each test. These values were translated into true stress-strain 

curves using the following formulae. The Young’s modulus was estimated from the elastic region of the 

engineering stress strain curve for each test. 

𝑇𝑟𝑢𝑒 𝑆𝑡𝑟𝑎𝑖𝑛:   𝜀 = ln (1 + 𝑒) 

𝑇𝑟𝑢𝑒 𝑆𝑡𝑟𝑒𝑠𝑠:   𝜎 = s ln (1 + e) 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑃𝑙𝑎𝑠𝑡𝑖𝑐 𝑆𝑡𝑟𝑎𝑖𝑛:   𝜀𝑝̅̅̅ = 𝜀 −
𝜎

𝐸
 

where s is the engineering stress, e is the engineering strain, and E is the measured Young’s modulus. 

2.2.1 Effect of Material Temper 

The H-temper material condition is strengthened by strain hardening and subsequently annealed to 

achieve the desired strength. Figure 14 shows the tensile test results at RT at 0.02/s strain rate in the 

rolling direction.  
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Figure 14: Flow stress comparison (RD) of O-, H22-, and H24-temper conditions tested at room temperature at 0.02/s. 

There is a noticeable difference in strength between the two H-tempers and the fully annealed conditions. 

H24-temper resulted in the highest strength relative to the H22- and O-temper conditions. The H-temper 

conditions also exhibited lower ductility compared to the fully annealed condition. Moreover, the O-

temper curves exhibited a greater degree of work hardening than the H22- and H24-tempers. 

2.2.2 Effect of Thermal Softening 

Figure 15, Figure 16 and Figure 17 show the thermal softening effect at elevated temperature test 

conditions, in the O-, H22- and H24-temper material, and at strain rate of 0.02/s. 
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Figure 15: Flow stress curves for the O-temper at RT, 150, 200, 250°C, at 0.02/s strain rate in RD. 

 
Figure 16: Flow stress curves for the H22-temper at RT, 150, 200, 250°C, at 0.02/s strain rate in RD. 
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Figure 17: Flow stress curves for the H24-temper at RT, 150, 200, 250°C, at 0.02/s strain rate in RD. 

All three temper conditions showed a reduction in strength and an increase in ductility, as the test 

temperature was increased. For the fully annealed condition (O-temper), positive work hardening was 

observed, whereas the degree of work hardening was lower in strain hardened tempers. The work 

hardening effect in the H-temper conditions was relatively low to begin with at room temperature and 

decreased further at higher test temperature. Furthermore, an increase in ductility was observed for all 

three tempers at higher temperature. 

2.2.3 Effect of Strain Rate 

Another parameter considered in the study was the strain rate at which the experiment was conducted. 

Two strain rates values were selected, which were 0.002/s and 0.02/s. In general, aluminum exhibits 

limited strain rate sensitivity at room temperature and shows positive rate sensitivity at elevated 

temperatures. The test results for O-, H22- and the H24-tempers are shown in Figure 18, Figure 19 and 

Figure 20, respectively. 
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Figure 18: Flow curves of O-temper at RT, 150, 200 and 250°C, comparing two strain rates (0.002 and 0.02/s) in RD. 

 

Figure 19: Flow curves of H22-temper at RT, 150, 200 and 250°C, comparing two strain rates (0.002 and 0.02/s) in RD. 
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Figure 20: Flow curves of H24-temper at RT, 150, 200 and 250°C, comparing two strain rates (0.002 and 0.02/s) in RD. 

At room temperature, there was little variation between the flow behaviour at the two strain rates. 

However, as the temperature was increased, all three material tempers exhibited a strong, positive strain 

rate sensitivity.  

2.2.4 Effect of Sheet Orientation 

Tensile tests were also conducted to assess the degree of anisotropy in the sheet material. Specimens 

were machined to orient the axial direction of the specimen in the rolling, transverse and diagonal 

directions. The corresponding results for the O-, H22- and H24-tempers are shown in Figure 21, Figure 22 

and Figure 23. 
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Figure 21: Flow stress curves of O-temper at RT, 150, 200 and 250°C at 0.02/s in rolling (RD), diagonal (45°), and transverse 
direction. 

 

Figure 22: Flow stress curves of H22-temper at RT, 150, 200 and 250°C at 0.02/s in rolling (RD), diagonal (45°), and transverse 
direction. 
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Figure 23: Flow stress curves of H24-temper at RT, 150, 200 and 250°C at 0.02/s in rolling (RD), diagonal (45°), and transverse 
direction. 

There was moderate variation in ductility between the three sheet directions. However, the hardening 

behaviour of diagonal and transverse directions was similar to hardening behaviour in the rolling 

direction, for all three tempers at RT, 150, 200, 250°C. 

Due to the limitations in the current set-up, strain values in the lateral direction could not be measured 

reliably. Hence, the R-values, which are measure of anisotropy in the sheet, were not determined in this 

material characterization study. The numerical models shown later assumes the material is isotropic. 

Nevertheless, future tensile experiments will be conducted using advanced strain measurement systems 

to obtain the lateral strain data and calculate precise R-values. 

2.3 Effect of Low Temperature Annealing 

One concern with warm forming was whether heating the higher temper material during warm forming 

temperature could result in permanent thermal softening of the material. In such a case, warm forming 

in would result in undesirable material properties after stamping. 

To study potential annealing effects, a study was conducted in which specimens of H22- and H24-tempers 

were heated to the required warm forming temperature, then air cooled, and subsequently tensile tested 

at room temperature. The results were then compared to a specimen that did not see elevated 
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temperature and was only tested at room temperature. The results of this study are shown in Figure 24 

and Figure 25. It should be noted that the curves shown are engineering stress-strain curves. 

 

Figure 24: Flow stress comparison of H22-temper tested at room temperature after heating at 200 and 250°C, 0.02/s strain 
rate in RD.  

 

Figure 25: Flow stress comparison of H24-temper tested at room temperature after heat-treated at 200 and 250°C, 0.02/s 
strain rate in RD. 

It is apparent from examination of the figures that there was no change in strength characteristics of both 

H22- and H24 temper specimens between the heat treated (at 200 and 250°C) specimen and the non-
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heat treated specimen; although the elongation of the thermally processed samples did increase 

somewhat. This result indicates that exposure to the warm forming thermal cycle did not permanently 

alter the inherent strength of the as-received sheet material. The available energy is thought not to be 

sufficient to promote recrystallization, particularly for such short durations, since the forming 

temperature is well below the annealing temperature [38]. 
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3.0 U-Bend Springback Experiments 

3.1 Background 

Various techniques have been employed to characterize springback behaviour of sheet material. For the 

current work, a U-shape geometry was selected because it was a close approximation to the battery plate 

channel geometry. The material experiences sufficient bending strain to produce measurable springback. 

Moreover, due to the symmetry of the geometry, the samples can be brazed afterwards to assess brazing 

performance. The biggest advantage of this geometry was that it allows for forming with a wide range of 

process parameters requiring small-scale tooling.  

The focus here is on springback behaviour of the sheet material as a function of forming temperature. 

Other parameters considered were material temper, lubrication and blank holding force. Two series of 

experiments were performed. Initially, a benchmark study was conducted using relatively simple tooling 

to discern whether springback was affected by forming temperature – these results are presented in 

Section 3.2. Subsequently, additional tooling components were fabricated for a more comprehensive 

study, which included additional process parameters such as the blank holding force – this second series 

of experiments is presented in Section 3.3. 

The forming of the U-shape parts for both experimental studies was done on the Instron testing machine 

in the High Pressure Lab at the University of Waterloo. The Instron machine allowed for precise movement 

of the punch relative to the die cavity. This was needed due to the small draw depth and the excessively 

thin sheet thickness. 

3.2 Benchmark Study 

3.2.1 Experimental Setup 

The objective of the benchmark study was to validate whether springback is reduced at elevated 

temperature using simple tooling components. Custom die components were designed which included 

forming dies, heating plates and cooling barriers to prevent overheating of the load cell. The die 

components were mounted on a standard four-post die set procured from Anchor Danly. The CAD 

assembly of the tooling configuration is shown in Figure 26. 
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Figure 26: Tooling set-up used for the benchmark springback study. (a) Assembly view, (b) Slotted holes in the heating block, 
(c) Slotted holes in the top die. 

The forming dies had slotted holes evenly spaced at the center lines. This was done to prevent 

misalignment of the two forming dies due to thermal expansion. To provide a source of heat, eight 200W 

cartridge heaters were inserted into a block located below the forming dies. This allowed for 

interchangeability of the forming dies while keeping the rest of the components the same. Each heating 

block had two thermocouples, one to control the temperature and one for sending feedback to the PID 

controllers.  

The test geometry comprised of a single U-shaped channel with a width of 14.3mm (0.56in.) and depth 

was 3.2mm (0.125in.). The bend radius was 0.8mm (0.03in.) at all bending regions. The test geometry is 

pictured in Figure 27.  
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Figure 27: Test geometry for the benchmark springback study. 

Rectangular blanks 101.6mm x 38.1mm (4in. x 1.5in.) were cut from the coils. A number of cut blanks had 

slight curvature, which was resolved by bending the blanks around a large radius. This defect was primarily 

in the O-temper coil. Blanks with excessive curvature were scraped. In the actual production process, the 

sheet is fed through a straightener to eliminate curvature before forming. 

The machine was manually jogged using the fine-motion handheld controller. To heat the blank, the top 

and bottom die were initially closed such that they were in contact with the blank surface. The dies were 

held at this position for 30 seconds to allow the blank to reach the test temperature through heating by 

conduction. Subsequently, the dies were displaced further to draw the sheet into the die cavity. To 

determine the length of heating period, the temperature of the blank was measured using two 

thermocouples attached to different locations on the blank, and a data acquisition unit was used to record 

the temperature over time.  The heating curve along with thermocouple location is shown in Figure 28. 
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Figure 28: Temperature vs. time curve showing the heating cycle for pre-heating the blank.  

The test parameters for the benchmark study included temperature and material temper. The test 

parameters and the values are listed in Table 4. Forge Ease Al278 mixed with alcohol, (hereafter referred 

to as “Fuchs lubricant”), was applied on all blank samples prior to forming. 

Table 4: Test parameters for the benchmark springback study. 

Material Temper 
Condition 

Temperature Lubricant 

O 
H22 
H24 

RT 
100 
200 
300 

Fuchs 

3.2.2 Results 

Springback angle was measured by analyzing images of the formed cross-sectional area, via an orthogonal 

camera setup. A jig was constructed to locate the formed samples centered beneath of the camera lens 

for repeatability. These images were imported into CAD software, where the sidewall angle deviation was 

measured. Figure 29 shows the procedure for measuring the angle.  
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(a) 

 

(b) 

Figure 29: Springback angle measurement procedure - O-temper sample formed at RT using Fuchs lubricant. (a) Bend radii 
and sidewall is outlined. (b) Angle is measured perpendicular to the line parallel the U-channel. 

The cross sectional profile was manually traced and a line as drawn connecting the center point of radii 

on the either side of the U-channel. Sidewall angle was measured between the sidewall line and the line 

orthogonal to the line connecting the center points of the two radii. This procedure was repeated for all 

the tested samples and average springback values for each of the three repetitions for each test condition 

were calculated.  

The springback behaviour of the O-, H22- and H24-temper at room temperature is shown in Figure 30.  
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Figure 30: Material Temper vs. springback angle at room temperature only. 

The H24-temper, the hardest of the three tempers, exhibited the highest springback, followed by the H22- 

and the O-tempers. As shown by the tensile test results in the previous section, the stresses in the strain 

hardened tempers are higher, thus resulting in greater springback. 

Figure 31 shows the effect of temperature on springback for all three tempers.  

 

Figure 31: Springback of three different tempers after forming plotted as function of temperature. 

A significant reduction in springback was observed for the H22- and H24 tempers by forming at elevated 

temperature. The results for the O-temper were somewhat suspect since there was an increase in 

0

2

4

6

8

10

12

O H22 H24

Sp
ri

n
gb

ac
k 

(D
e

gr
e

e
s)

Material Temper Condition

O

H22

H24

0

2

4

6

8

10

12

0 100 200 300

Sp
ri

n
gb

ac
k 

(D
e

gr
e

e
s)

Temperature (°C)



34 
 

springback at higher temperature. The die geometry for this series of experiments incorporated a sidewall 

angle of 90°, which resulted in the formed components being wedged into the die cavity. Some force was 

required to extract these components and, due to the highly soft condition of the O-temper, the applied 

force may have distorted the shape of the parts. Additionally, there was discoloring on the surface of the 

formed parts at 300°C due to the lubricant burning off. It was then decided to keep the maximum warm 

forming temperature at 250°C to avoid burning of the lubricant. The O-temper tests were repeated and 

similar results were observed, as shown in Figure 32. The resulting springback was higher at elevated 

temperature compared to the lower temperature. 

 

Figure 32: Comparison of new and old springback data for O temper with respect to temperature, die radius of 0.8mm. 

Similar to the tensile experiments, the effect of annealing prior to forming was also considered. Samples 

were heated to 300°C, cooled in air and subsequently formed at room temperature. The resulting 

springback from these heat-treated samples were compared to springback obtained from samples that 

were cold formed and warm formed. This was done to verify whether there was any permanent strength 

reduction as a consequence of elevated temperature. The results are shown in Figure 33. 
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Figure 33: Results from the annealing study comparing springback for warm formed, cold formed, and heat-treated only 
samples. 

As seen in the figure, warm forming was effective in reducing springback compared to the samples formed 

after heating and cooling, as well as the samples that were directly cold formed with no exposure to 

elevated temperature. Moreover, prior exposure to elevated temperature did not significantly affect the 

springback after cold forming. In warm forming process, the operative stresses are lower during forming 

resulting in lower springback. 

After noting the results of this benchmark study, a second set of experiments were performed which 

explored additional process parameters with more sophisticated tooling components. The results of this 

second study are presented in the following section. 

3.3 Refined U-shape Springback Study 

3.3.1 Experimental Set-up 

The objective of this study was to expand on the test matrix used in the benchmark study. The 

experiments were conducted with new custom designed die components that provided the ability to 

apply and vary binder force on the flanges of the blank during forming. Table 5 shows the test parameters 

and the corresponding values used in the study. 
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Table 5: Test parameters for the comprehensive springback study. 

Material Temper 
Condition 

Temperature 
(°C) 

Lubricant 
Blank Holding 

Force (N) 

O 
H22 
H24 

Room Temperature 
150 
200 
230 
240 
250 
260 

Fuchs 
Teflon (Spray) 

171 
1174 
2669 

 

Moreover, the test geometry was modified to resolve some of the issues encountered during the first set 

of experiments. The new test geometry is shown in Figure 34.  

 

Figure 34: Test geometry of the U-shape part used for the comprehensive study. 

A draft angle of 2.5° was added to the die sidewall to prevent the formed samples from being wedged 

into the die cavity. Additionally, the depth of the U-bend geometry was changed from 3.3mm (0.13in.) to 

6.35mm (0.25in.). This was done to increase the degree of springback for ease of measurement.  The blank 

size was the same as the one used for the first experimental series. 

An alternate lubrication scheme was also considered. Teflon sheets have been widely used in sheet metal 

forming tests to decrease frictional force between the blank surface and the tooling surfaces. However, 

the Teflon sheet thickness 0.08mm (0.003in.) was relatively large compared to the sheet thickness of 
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0.2mm (0.008in.). Teflon in the aerosol spray form, which was rated for use up to 260°C temperature, was 

procured for this experiment. 

The die components were mounted on the same four-pillar die set as used previously. The CAD model of 

the tooling assembly is shown in Figure 35. 

 

Figure 35: Tooling set-up used for the comprehensive springback study. 

In stamping processes, the application of a separate binder force is often facilitated by use of double-

action forming presses; one for actuating the binder plate and the second for the punch. For this 

experiment, the binder force was applied using four die compression springs allowing for the use of single-

action (Instron) machine. An alternative method considered was using gas springs but these were rejected 

for this experiment due to the high cost. The binder force was regulated by using springs of different 

stiffness constants. The stiffness constants selected for this experiment were 6.7, 46.2, and 105 N/mm, 

providing a low, medium and high blank holding force, respectively. These springs yielded a maximum 

blank holding force of 171.3, 1174, and 2669 N, respectively. 

To provide heat, the cartridge heaters used in the benchmark study were repurposed for this experiment. 

Four cartridge heaters were inserted into the binder plate and four were inserted into the new forming 

die. The punch had a separate cartridge heater which was connected to its own PID controller. The surface 
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temperature of the binder plate, the punch and the forming die was verified using a probe thermocouple 

and a digital thermometer.  

A custom automated program was created in the Instron MAX software which is typically used for cyclic 

tension-compression testing. The program was modified to run a single forming cycle over a specified 

time period. Each cycle is divided into four phases, as illustrated in Figure 36.  

 

Figure 36: Punch displacement per forming cycle with 30 seconds heating time, 5 seconds hold time and 0.65 mm/sec punch 
speed. 

In the first phase, the forming die, the binder and the punch are displaced such that the blank is in contact 

with the forming die. The dies remain at this height for 30 seconds, during which the blank is heated to 

the required temperature. The punch is then displaced further into the die cavity to form the U-channel. 

It is held at the bottom of the draw for one second and then the tools are retracted from the die cavity so 

the formed part can be removed.  An example of a formed component is shown in Figure 37. 

 

Figure 37: An example of a formed U-channel from the comprehensive springback study. 
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For this study, springback was characterized as the angle measured between the sidewall of the formed 

sample and the nominal die sidewall angle of 92.5 degrees. The springback measurement technique was 

the same as for the benchmark study. A typical image of an as-formed sample used for measurement is 

illustrated in Figure 38. 

 

Figure 38: Sample springback angle measurement of the sidewall angle. 

The reported springback angle in the following presentation of the experimental results was calculated 

as:  

𝑆𝑝𝑟𝑖𝑛𝑔𝑏𝑎𝑐𝑘 𝑎𝑛𝑔𝑙𝑒 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑛𝑔𝑙𝑒 − 92.5° 

3.3.2 Results  

The springback of the three temper conditions is compared in Figure 39. 
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Figure 39: Springback behaviour of H24-, H22- and O-temper at room temperature with spray Teflon and 171.3 N blank 
holder force. 

The H24-temper, which has the highest strength of the three tempers, exhibited the greatest springback 

compared to the intermediate strain-hardened temper (H22) and the fully annealed temper. The effect 

of temperature on springback of each of these tempers is shown in Figure 40. 

 

Figure 40: Springback behaviour of three tempers formed at elevated temperatures with Teflon and 171.3 N blank holder 
force. 
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All three tempers showed a trend in reduction of springback with increasing temperature. At 250°C all 

three tempers had comparable springback with H24 showing the highest reduction relative to room 

temperature springback. This reduction can also be seen in the images of H24 as-formed samples shown 

in Figure 41. The samples shown below were formed at room temperature, 150°C and 250°C using spray 

Teflon as lubricant and low blank holding force (BHF). 

 

Figure 41: Springback behaviour of H24 with increasing forming temperature using Teflon and 171.3 N blank holder force. 

In addition to temperature, the effect of blank holding force was also considered. The difference in 

springback with different blank holding pressure is shown in Figure 42. These values correspond to 

forming at room temperature with Teflon. A minor decrease in springback with increasing blank holder 

force was observed for all three tempers. 
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Figure 42: Springback comparison for all three tempers with low (171.3N) and high (1174N) blank holding force at RT. 

Figure 43 shows the plot of resulting springback using the two lubricants. Both lubrication conditions 

showed a decrease in springback. However, the variation in springback values was greater when Fuchs 

was used as a lubricant. This can be attributed to the nature of the application method used for the 

experiment. Fuchs lubricant was applied by hand using a brush. Although care was taken to apply the 

lubricant consistently, there will clearly be variation from blank to blank. In contrast, the Teflon was 

provided in spray canister and was easily applied to the blank. This method produced a relatively smooth 

lubricant layer on the blank.  An important aspect of the chosen lubricants is the residue left on the surface 

of the samples after forming. This is a concern because the residual layer may adversely affect the brazing 

performance. Figure 44 shows the blanks with Fuchs and Teflon lubricant. White flakes were clearly visible 

on the samples that were prepared with the Fuchs lubricant whereas the Teflon layer had smooth finish. 

To prevent large build-up of lubricant particles, the die surfaces were cleaned with a cloth in between 

forming of samples prepared with Fuchs lubricant. The dies were cleaned with ethanol before forming 

samples prepared with spray Teflon. The influence of these lubricants on brazeability is the focus of on-

going work. 
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Figure 43: Springback comparison between two lubricants, Fuchs and Teflon using 171.3N blank holder force. 

 

Figure 44: Surface of samples prepared with Fuchs (left) and Teflon (right) lubricant. 
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4.0 Numerical Models of U-shape Forming & Springback 

This section describes efforts to model the forming and springback behaviour of aluminum brazing sheet 

under warm conditions. The simulations were performed using the commercial finite element code LS-

Dyna software Version 971 revision 5.  

As seen in the gathered tensile experiment results, the mechanical behaviour of aluminum alloy sheet 

exhibits significant thermal softening and strain rate dependency at elevated temperatures. Therefore, a 

material model that accounts for temperature and strain-rate dependency is needed to accurately model 

the forming response. Another issue that arises is due to the negative sloping trend in the flow stress 

curves in the experimental data, which causes the LS-Dyna explicit dynamic solver to display convergence 

issues.  

To work around this issue, the material response was estimated using a Voce hardening law, which 

approximates the behaviour at elevated temperature with an assumption that the flow stress saturates 

after a certain plastic strain level [39]. The following sections show the results from fitting the Voce 

constitutive model to the measured tensile data and subsequent results from simulation of the U-channel 

forming and springback. The forming simulations assume isotropic sheet behaviour. Future work will 

consider development of a material model that better describes the mechanical behaviour, including 

anisotropic effects at elevated temperatures and the actual negative hardening behaviour at large strains 

at elevated temperature. For the models shown here, the Von Mises yield surface was used. 

4.1 Constitutive Equation & Fit 

 The original Voce hardening law does not take into account strain rate sensitivity. Therefore, a modified 

version of the Voce model was used (herein referred to as “Modified-Voce”), which includes a 

combination of a logarithmic and an exponential strain rate term [40]. The constitutive equation is as 

follows: 

Original Voce Model:  𝜎𝑣(𝜀𝑃) = [𝜎𝑠𝑎𝑡 + (𝜎𝑦 − 𝜎𝑠𝑎𝑡)𝑒
(−

𝜀𝑝

𝜀𝑟
)
]   

Modified Voce Model:  𝜎𝑣𝑚(𝜀𝑝, 𝜀̇) = 𝜎𝑣(𝜀𝑝) 𝑥(𝜀̇) 

Strain-Rate Term:  𝑥(𝜀̇) = [𝐴 ln(𝜀̇) + (1 + 𝜀̇)𝐵] 

Where,  𝜎𝑠𝑎𝑡 is the saturation stress, 𝜎𝑦 is the yield stress, 𝜀𝑟 is the relaxation strain, 𝜀𝑝 is the plastic strain, 

𝜀̇ is the strain rate A and B are strain rate parameters. 
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The experimental uniaxial stress-strain data was used to fit the constitutive parameters of the Modified 

Voce material model for each temper at room temperature, 150, 200, and 250°C. These parameter values 

for O-, H22-, and H24-temper are listed in Table 6, Table 7 and Table 8, respective. Non-linear regression 

analysis was performed using the statistical analysis software MYSTAT12. [41] 

Table 6: Modified Voce material model parameters for O-temper. 

 
Room 

Temperature 
150°C 200°C 250°C 

𝜎𝑠𝑎𝑡 (MPa) 175 138 115 83 

𝜎𝑦 (MPa) 58 65 65 50 

𝜀𝑟 0.059 0.075 0.065 0.15 

A 0.005 0.015 0.07 0.056 

B 0.4 5 4 10 

 

Table 7: Modified Voce material model parameters for H22-temper. 

 
Room 

Temperature 
150°C 200°C 250°C 

𝜎𝑠𝑎𝑡 (MPa) 183 143 116.75 85.75 

𝜎𝑦 (MPa) 150 135 116 85.15 

𝜀𝑟 0.04 0.043 0.008 0.107 

A 0.00001 0.008 0.015 0.002 

B 0.624 2.437 4 10.243 

 

Table 8: Modified Voce material model parameters for H24-temper. 

 
Room 

Temperature 
150°C 200°C 250°C 

𝜎𝑠𝑎𝑡 (MPa) 250 173.33 144 104 

𝜎𝑦 (MPa) 209.51 175 143.5 101.6 

𝜀𝑟 0.076 0.07 0.13 0.25 

A 0.003 0.007 0.018 0.006 

B 0.01 3.81 5.96 13.785 

 

The predicted tensile stress-strain response and experimental data are plotted in Figure 45 through 

Figure 50 for O-, H22- and H24-tempers at both strain rates. 
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Figure 45: Predicted flow curve response vs experimental data for O-Temper at room temperature, 150, 200, and 250°C, and 
at a strain rate of 0.02/s. 

 

Figure 46: Predicted flow curve response vs experimental data for O-Temper at room temperature, 150, 200, and 250°C, and 
at a strain rate of 0.002/s. 
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Figure 47: Predicted flow curve response vs experimental data for H22-Temper at room temperature, 150, 200, and 250°C, 
and at a strain rate of 0.02/s. 

 

Figure 48: Predicted flow curve response vs experimental data for H22-Temper at room temperature, 150, 200, and 250°C, 
and at a strain rate of 0.002/s. 
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Figure 49: Predicted flow curve response vs experimental data for H24-Temper at room temperature, 150, 200, and 250°C, 
and at a strain rate of 0.02/s. 

 

Figure 50: Predicted flow curve response vs experimental data for H24-Temper at room temperature, 150, 200, and 250°C, 
and at a strain rate of 0.002/s. 
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There was moderate agreement with the stress-strain response predicted by the Modified-Voce model 

and the experimental data. The variation between the model and experimental stress-strain was higher 

for strain-hardened tempers at temperatures greater than 200°C, since the Modified-Voce model does 

not admit the negative hardening behaviour observed in the experimental data. The maximum variation 

was 18% between the stress values at maximum strain, for the H24-temper at 250°C. The stress-strain 

response predicted by the Modified-Voce constitutive model was used in the forming simulations 

discussed in the subsequent sections. The strain rate in the model results exceeded the highest (0.02/s) 

strain rate used in characterization study. Therefore, the material model reverted to the higher strain-

rate data to predict material behaviour. The springback was simulated assuming an elastic material 

response after forming. 

4.2 Modelling of Forming and Springback 

This section presents details for implementation of the Modified-Voce constitutive model to simulate 

forming aluminum brazing sheets. The forming and springback simulations are divided into two separate 

models, where the output of the forming simulation serves as an input to the springback simulation. The 

output of the forming simulation is a ‘dynain’ file which contains the formed U-shape geometry and the 

associated stress state of the elements at the end of the simulation. 

4.2.1 Forming Model Set-up 

The forming model consists of four components, the die, punch, binder and the blank. The model 

geometry is illustrated in Figure 51. The geometry was extracted from the 3D CAD model of the tooling 

components used in the refined springback study. The forming simulations were conducted using the 

explicit dynamic method.  
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Figure 51: U-shape forming model geometry configuration. 

The mesh was created in Hypermesh. Four-node quad shell elements were used for all components. The 

Belytschko-Tsay element formulation was used for the shell elements [42]. Li et al (2002) reported that 

accurate springback analysis requires up to 51 through-thickness integration points but 15-25 points are 

sufficient [29]. However, the number also depends on the material model, forming process, friction 

coefficient, loading and geometry. The number of through-thickness integration points adopted for the 

blank was twenty-one. A Gauss integration scheme was used for all deformable shell elements. The 

tooling was treated as rigid. The mesh configuration of the forming model is shown in Figure 52. 
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Figure 52: U-shape model mesh configuration. 

The element size was 0.30 X 0.30mm for the blank and much of the tooling surfaces. The element size for 

the tooling near the radii was reduced to 0.30 X 0.16mm to fully capture the curvature. 

Surface to surface contact was specified between the interacting surfaces. The contact algorithm utilizes 

a penalty method which prevents nodes of the blank (slave) from penetrating the tooling (master) surface 

segments. This contact algorithm is called the “penalty method” [42]. 

Previous studies done at University of Waterloo reported a friction coefficient of 0.043 for surfaces 

lubricated with Teflon sheets [23]. This model uses the same friction coefficient and assumes that the 

coefficient remains constant at elevated temperature. Future work is planned to characterize change in 

friction coefficient at higher temperature for various warm forming lubricants.  

The binder and punch velocity was time-scaled to decrease run-time of the simulations. The punch and 

binder motion with respect to the simulation time is illustrated in Figure 53. 
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Figure 53: Binder and punch displacement curves for the U-channel forming model. 

Initially, the binder is activated to clamp the blank. A force of 42.8 N was applied to keep the binder in 

position during forming. Subsequently, the punch motion is activated to draw the blank in to the die 

cavity. The die was constrained in all degrees of freedom. Symmetry boundary conditions were applied to 

the edge nodes at the central plane of the blank. These boundary conditions are shown in Figure 54. The 

edge nodes at the YX-plane were constrained in translation motion in the Z-direction and rotational 

motion around the X- and Y-axes. The edge nodes at the YZ-plane were contained in the X-direction and 

rotational motion around the Y- and Z-axes. 

 

Figure 54: Symmetry boundary conditions specified for the blank. 
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The tooling components, which do not undergo permanent deformation were characterized as rigid. As 

mentioned before, the material behaviour for the blank was characterized by the stress-strain response 

predicted by the Modified-Voce model. The Piecewise Linear Plasticity material model (*MAT_024) was 

selected to model material response. Each temperature condition had its own unique material definition 

for all three material tempers. The material properties used for each temper at each test condition are 

tabulated in Table 9, Table 10, and Table 11. The yield stress values were calculated from the measured 

data from the material characterization study. 

Table 9: Material property values used in the O-temper material cards. 

 
Density 
(g/mm3) 

Poisson’s Ratio 
Yield Strength 

(MPa) 
Elastic Modulus 

(MPa) 

Room Temperature 

2.74E-3 0.33 

67 35700 

150°C 63 25000 

200°C 60 22500 

250°C 57 14000 

 

Table 10: Material property values used in the H22-temper material cards. 

 
Density 
(g/mm3) 

Poisson’s Ratio 
Yield Strength 

(MPa) 
Elastic Modulus 

(MPa) 

Room Temperature 

2.74E-3 0.33 

150 70500 

150°C 135 57700 

200°C 116 35000 

250°C 85 33500 

 

Table 11: Material property values used in the H24-temper material cards. 

 
Density 
(g/mm3) 

Poisson’s Ratio 
Yield Strength 

(MPa) 
Elastic Modulus 

(MPa) 

Room Temperature 

2.74E-3 0.33 

210 78000 

150°C 175 56500 

200°C 145 48900 

250°C 101 42500 
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4.2.2 Springback Model Set-up 

The springback simulations were performed using the static implicit time integration scheme in LS-Dyna 

to enforce static equilibrium and avoid dynamic oscillations commonly present in explicit dynamic time 

integration. Model information is passed between the forming model and the springback analysis via a 

“dynain” file generated at the end of forming simulations. This file contains deformed geometry (mesh) 

and predicted stress for each integration point within the blank that is used to initialize the springback 

analysis. For the springback analysis, the tooling mesh and contact boundary conditions were removed, 

mimicking removal of the part from the tooling after forming. The original symmetry boundary condition 

were still imposed on the blank. Boundary condition was added that constrained rigid body translation of 

the blank in all six global degrees of freedom. Figure 55 shows the boundary conditions added to the 

blank. The elastic material (*MAT_001) model was used to simulate the behaviour of the blank material 

using material properties mentioned in the previous section.  

 

 

Figure 55: Boundary conditions for the springback simulation. 

4.2.3 Forming Model Results 

Due to the number of simulations performed, only a representative set of results from the forming and 

springback models are shown. The springback simulation results are shown in Section 4.2.4.  
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Figure 57 through Figure 62 show contour plots of major and minor in-plane stress in the formed U-

channel part for the O-, H22-, and H24-tempers at room temperature and 250°C. The “outer” and “inner” 

shell surface refer to the outermost through-thickness integration points, as labelled in Figure 56. At 

“Bend 1” the stress on the outer surface are compressive while on the inner surface the stress is tensile. 

The opposite applied for “Bend 2”. 

 

Figure 56: Orientation of outer and inner shell surfaces of the blank indicating position of surface integration points. 

 

Figure 57: Contour plots of O-temper U-channel formed at room temperature (stress in MPa). (a) Major in-plane stress at the 
outer shell surface. (b) Major in-plane stress at the inner shell surface. (c) Minor in-plane stress at the outer shell surface. (d) 

Minor in-plane stress at the inner shell surface. 
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Figure 58: Contour plots of O-temper U-channel formed at 250°C (stress in MPa). (a) Major in-plane stress at the outer shell 
surface. (b) Major in-plane stress at the inner shell surface. (c) Minor in-plane stress at the outer shell surface. (d) Minor in-

plane stress at the inner shell surface. 

 

Figure 59: Contour plots of H22-temper U-channel formed at room temperature (stress in MPa). (a) Major in-plane stress at 
the outer shell surface. (b) Major in-plane stress at the inner shell surface. (c) Minor in-plane stress at the outer shell surface. 

(d) Minor in-plane stress at the inner shell surface. 
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Figure 60: Contour plots of H22-temper U-channel formed at 250°C (stress in MPa). (a) Major in-plane stress at the outer 
shell surface. (b) Major in-plane stress at the inner shell surface. (c) Minor in-plane stress at the outer shell surface. (d) Minor 

in-plane stress at the inner shell surface. 

 

Figure 61: Contour plots of H24-temper U-channel formed at room temperature (stress in MPa). (a) Major in-plane stress at 
the outer shell surface. (b) Major in-plane stress at the inner shell surface. (c) Minor in-plane stress at the outer shell surface. 

(d) Minor in-plane stress at the inner shell surface. 
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Figure 62: Contour plots of H24-temper U-channel formed at 250°C (stress in MPa). (a) Major in-plane stress at the outer 
shell surface. (b) Major in-plane stress at the inner shell surface. (c) Minor in-plane stress at the outer shell surface. (d) Minor 

in-plane stress at the inner shell surface. 

It can be seen in the contour plots that stress values in the formed samples for all three tempers is lower 

at 250°C, relative to the samples formed at room temperature. The effect of elevated temperature on 

forming stresses in the blank is further illustrated Figure 63. The plot contains maximum value for major 

in-plane stress on the inner surface for all three tempers at room temperature and 250°C. This value 

corresponds to the major in-plane stress in the Bend 1 region.  

 

Figure 63: Maximum major in-plane stress values at room temperature and 250°C for all three temper conditions. 
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The stress values were 49.1, 40.9, and 41.4% lower at 250°C compared to room temperature for the O-, 

H22-, and H24-tempers, respectively. Furthermore, the stress profiles were also analyzed along the flange 

and the bend region. The profiles are plotted in Figure 64 through Figure 66 for U-channel parts formed 

at room temperature and 250°C for O-, H22-, and H24-tempers. The profiles shown below are from a 

single path starting from flange edge to the center plane of the U-channel. 

 

Figure 64: Major and minor in-plane stress profiles for U-channels formed with O-temper at room temperature and 250°C. (a) 
Outer shell surface. (b) Inner shell surface. 

 

Figure 65: Major and minor in-plane stress profiles for U-channels formed with H22-temper at room temperature and 250°C. 
(a) Outer shell surface. (b) Inner shell surface. 
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Figure 66: Major and minor in-plane stress profiles for U-channels formed with H24-temper at room temperature and 250°C. 
(a) Outer shell surface. (b) Inner shell surface. 

The stress profiles show the transition between the tensile and compressive stresses on each surface at 

Bend 1, sidewall and Bend 2 regions. Also, the forming stresses are higher in the strain hardened tempers 

compared to the fully annealed condition for room temperature and warm forming temperature. 

However, the peak stress values are lower for 250°C compared to room temperature forming for all three 

temper conditions.  

4.2.4 Springback Model Results  

To compare springback behaviour as a function of forming conditions, the positional coordinates of nodes 

at the edge were extracted from the output and plotted. The predicted springback behaviour of each 

temper at room temperature and at 250°C are compared in Figure 67 and Figure 68, respectively. The 

label “REF” is the tooling profile or the ideal U-shape part that exhibit zero springback. 

 

Figure 67: Plot of predicted springback profiles for O-, H22- and H24-temper formed at room temperature. 
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Figure 68: Plot of predicted springback profiles for O-, H22- and H24-temper formed at 250°C. 

The predicted trend in springback behaviour of the O-, H22- and H24-tempers was similar to the 

experimental results. The predicted springback of the H24-temper was the highest, followed by the H22- 

and O-temper. The change in springback of behaviour with respect to increasing temperature as predicted 

by the model is shown in Figure 69 through Figure 71, for all three tempers.  

 

Figure 69: Predicted springback profiles for O-temper samples formed at room temperature, 150, 200 and 250°C. 

 

Figure 70: Predicted springback profiles for H22-temper samples formed at room temperature, 150, 200 and 250°C. 

 

Figure 71: Predicted springback profiles for H24-temper samples formed at room temperature, 150, 200 and 250°C. 

The relative trend in predicted springback profiles was similar to that of the experimental results for all 

three tempers. As the forming temperature increased, each temper exhibited lower springback. To 

compare predicted values with the experimental data, the predicted springback profiles were further 

analyzed to quantify reduction in geometric deviation due to springback with increased forming 
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temperature. The experiments only considered sidewall angle deviation but the other major geometric 

deviation is the change in flange angle. However, the improvement in flange angle deviation can be 

predicted using the model. The procedure for quantifying the sidewall angle and flange angle from the 

predicted springback profiles is illustrated in Figure 72. 

 

Figure 72: Schematic of extracting sidewall angle (θ-2.5°) and flange angle (β) from the predicted springback profiles. 

Figure 72 shows the points of interest on the U-channel profile that were measured from which the side 

wall angle and the flange angle can be determined. The following formulae outline how the values were 

calculated. 

Sidewall angle: 

𝑑𝑠 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

∆𝑦𝑠 = 𝑦2 − 𝑦1 

𝜃 = cos−1 (
∆𝑦𝑠

𝑑𝑠
)

180°

𝜋
− 2.5 

𝑆𝑖𝑑𝑒𝑤𝑎𝑙𝑙 𝑎𝑛𝑔𝑙𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  𝜃 − 2.5° 

Flange angle: 

𝑑𝑓 = √(𝑥4 − 𝑥3)2 + (𝑦4 − 𝑦3)2 
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∆𝑦𝑓 = 𝑦4 − 𝑦3 

𝐹𝑙𝑎𝑛𝑔𝑒 𝑎𝑛𝑔𝑙𝑒 𝛽 = sin−1 (
∆𝑦𝑓

𝑑𝑓
)

180°

𝜋
 

This analysis was performed for all outputs. The predicted sidewall angle deviation is compared with the 

experimental results in Figure 73. Figure 74 shows the predicted trend in flange angle. 

 

Figure 73: Predicted sidewall angle deviation of O-, H22- and H24-temper for samples formed at room temperature, 150, 200 
and 250°C. 
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Figure 74: Predicted flange angle of O-, H22- and H24-temper for samples formed at room temperature, 150, 200 and 250°C. 

The model predicts gradual improvement in springback behaviour with increasing forming temperature 

for all three material tempers. The sidewall angle deviation and flange angle decreased with increase in 

forming temperature. Also, the relative trend between the strain hardened tempers and the fully 

annealed condition was also as expected. The strain hardened tempers exhibited greater geometric 

deviation compared the fully annealed condition.  

However, the magnitude of the sidewall angle deviation was significantly different from what was 

measured in the springback study. There could be a few reasons for this discrepancy, which are discussed 

further in the following section. 

4.2.5 Discussion 

The model qualitatively captures an improvement in springback behaviour of aluminum brazing sheets. 

The discrepancy between the experimental and predicted sidewall angle deviation values could be 

attributed to a number of numerical parameters and model inputs. 

As mentioned before, in order to ascertain accurate springback behaviour, the model must consider all 

process steps that may affect residual stresses in the part. Although, this was an isothermal warm forming 

process, the current model neglects heat transfer to the surroundings in the forming model, which may 

not be representative of the actual temperature distribution in the components. Furthermore, the 
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constitutive fit of the modified-Voce model did not account for the reduction in strength seen in H-

tempers with increasing plastic strain at higher temperature. Therefore the model does not show the 

same degree of improvement in springback with temperature increase as seen in the experimental data, 

particularly for the strain-hardened tempers. To investigate this discrepancy, the constitutive fit was 

scaled to reduce the strength of the H-temper alloys at high effective plastic strain values, thereby partially 

capturing the strain softening effect. A scaling factor of 0.95 was applied to the 250°C stress-strain curves 

for the H22- and H24-temper materials. Figure 75 and Figure 76 illustrate the difference in the scaled and 

as originally fit material responses for H24- and H22-tempers at 250°C. The corresponding predicted 

sidewall angle deviations using the scaled constitutive fit are shown in Figure 77. 

 

Figure 75: Comparison of scaled constitutive fit with original and experimental values for H24-temper at 250°C. 
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Figure 76: Comparison of scaled constitutive fit with original and experimental values for H22-temper at 250°C. 

 

Figure 77: Sensitivity of the predicted Sensitivity of predicted sidewall angle deviation to the constitutive fit. 

At 95% lower modelled strength, the predicted sidewall angle deviation also decreased measurably for 

H22 and H24 tempers at a forming temperature of 250°C. Although the magnitude of the angle is small to 

begin with, the sensitivity of the predicted springback to constitutive fit is apparent in the results. 

Therefore, an appropriate material model is needed that considers thermal softening and strain rate 

dependency at elevated temperatures.  
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To further consider the sensitivity of the springback predictions to physical and numerical parameters, the 

effect of adopted friction coefficient was examined [29] [43]. The friction coefficient used in the 

simulations reported above was taken from published data for .08 mm thick Teflon film. The samples in 

the springback experiments were prepared using spray Teflon, which may exhibit different friction 

characteristics that are unknown at this point. Also, the adopted number of through-thickness integration 

points can also have an impact on the springback prediction, for example.  

The sensitivity of the model results to friction coefficient was evaluated. The plot shown in Figure 78 

illustrates the difference in predicted sidewall angle deviation when the friction coefficient is increased 

from 0.043 to 0.15 for all three material temper conditions formed at room temperature.  

 

Figure 78: Sensitivity of predicted sidewall angle deviation to the friction coefficient used in the forming model of O-, H22-, 
and H24-tempers at room temperature. 

The sidewall angle deviation was significantly lower for higher friction coefficient, demonstrating that the 

prediction of springback is highly sensitive to the adopted friction coefficient value. Higher friction 

increases the membrane component of stress during forming of the sheet, thereby reducing the operative 

moment and resulting springback [17]. To create a more accurate model, future work is suggested in the 

following section. 
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5.0 Discussion, Conclusion & Recommendations 

5.1 Discussion 

The tensile tests showed thermal softening and increased strain-rate sensitivity at elevated temperatures 

in the O-, H22-, and H24-tempers. The reduced flow stress at elevated temperature is not permanent, at 

least for forming up to 250°C, and the room temperature strength is recovered after warm forming.  

 

The springback experiment results showed that springback reduced steadily for all three tempers as the 

forming temperature was increased from room temperature to 250°C. The effect of temperature on 

springback was relatively low for the O-temper condition, but significant for the H22- and H24-tempers. 

The results indicate that with warm forming, the room temperature springback in H24-temper parts can 

be reduced to a magnitude comparable to forming O-temper material at room temperature.  This result 

can be observed in Figure 44. The principal advantages of warm forming are improved formability and 

lower springback which opens up opportunities for use of higher-strength tempers in current applications 

and the ability to form more complex geometries with the O-temper. The costs associated with increased 

tooling complexity to perform warm forming should be considered based on the application. 

5.2 Conclusion 

The following conclusions can be made based on the results of this research: 

 

1. Forming temperature exerts a dramatic influence on springback for the tempers considered. The 

reduction in springback for all tempers was in the range 91-95% when forming at 250°C versus 

room temperature. 

 

2. The H24-temper, the hardest of the three tempers, exhibited the highest springback, followed by 

the H22- and the O-tempers. At room temperature, the average sidewall angle deviation in H24-, 

H22- and O-temper was 17, 11, and 3°, respectively. While at 250°C, the average sidewall angle 

deviation was reduced down to 1.21, 0.50, and 0.29°, respectively. 

 

3. Limited springback reduction was observed with increased temperature for the O-temper 

condition (91%); however, the room temperature springback was already low to start with.  
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4. Springback behaviour did not change significantly with respect to type of lubricant used during 

forming. However, both lubricants used (Fuchs and Teflon spray) offer low (similar) friction 

coefficients whereas a higher friction level will likely result in lower springback, as predicted by 

the numerical models.  

 

5. Residual particles were clearly visible on samples after forming with the Fuchs lubricant. This 

residual layer may have a negative impact on brazeability performance. Similar issues may result 

from the Teflon spray. 

 

6. Tensile experiments were performed to characterize material behaviour at elevated 

temperatures. The results showed a thermal softening at warm forming temperatures, allowing 

for improved formability and lower springback, as observed in the springback studies. The room 

temperature strength is recovered after warm forming. 

 

7. Numerical models were created to simulate the warm forming and springback response of brazing 

sheet material. The Modified-Voce constitutive equation was used to model the material 

behaviour. The models predicted gradual decrease in springback with increasing temperature, in 

qualitative accord with the experiments; however, significant differences were observed between 

the predicted and measured springback. 

 

8. The sensitivity of the predicted springback to selected parameters in the numerical model was 

investigated. The model is highly sensitive to the constitutive fit and friction coefficient. 

5.3 Recommendations 

Recommendations for future work are as follows: 

 

1. Experiments should be performed considering actual battery cooler plate geometries to assess 

potential formability and springback improvements at warm forming temperatures. 

 

2.  For the numerical model, the material characterization study should be expanded to include 

additional strain rates, as well as use of advanced imaging systems to capture lateral strain for 

calculating plastic strain ratios (r-values).  



71 
 

 

3. A more complex material model which takes into account the observed negative hardening of the 

harder tempers at elevated temperatures should be considered to better predict material   

 

4.  A wider range of lubricants should be considered and the friction coefficient at elevated 

temperatures should be determined in order to verify the influence of lubricant selection (friction 

coefficient) on springback in the models. 

 

5. The effect of the warm forming lubricants considered in this study on brazeability should be 

assessed. 
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Appendix A – Tooling Detailed Drawings 
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Figure 79: Detailed drawings of the standard four-pillar die set used in the springback studies. 
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Figure 80: Detailed drawing of the heating block used in the benchmark study. 
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Figure 81: Detailed drawing of the cooling block used in the benchmark study. 
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Figure 82: Detailed drawing of the cooling block used in the benchmark study. 
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Figure 83: Detailed drawing of the mounting block used in the comprehensive springback study. 
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Figure 84: Detailed drawing of the die used in the comprehensive springback study. 
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Figure 85: Detailed drawing of the punch used in the comprehensive springback study. 
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Figure 86: Detailed drawing of the binder plate used in the comprehensive springback study. 
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Figure 87: Detailed drawing of the insulation block used in the comprehensive springback study. 


