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Abstract 

 

In this study, nano silver paste was used as die attach material with the aim of increasing reliability of 

joints in power modules in automotive applications. Prior to joining, nano silver paste was spread on the 

interface between silver coated copper substrates and dummy chips by screen printing method. 5 groups 

of samples were produced using three different joining techniques based on different combinations of 

ultrasonic force and persistent pressure in air and vacuum atmospheres. The bonding quality of the 

interface region was evaluated by microstructural examination and quasi-static shear tests. On the other 

hand, electrical properties of sintered nano silver particles within the joints were characterized through 

resistivity measurements. 

Sintered nano silver regions in all samples exhibited two types of porosity, namely, macro and micro 

porosity. Macro pores formed during the evaporation and removal of organics present in the starting 

paste, while micro pores were left in the structure because of insufficient sintering of silver nano powders. 

Although the sintered silver interface in samples produced using 5 MPa persistent pressure in air 

displayed a minimum amount of porosity, pores as large as 5 m in diameter were observed in joints 

produced in air by a preload of 0.01 MPa with or without ultrasonic force. In addition, vacuum sintering 

yielded relatively porous interfaces compared to samples manufactured in air even though the same 

compaction pressure was applied during sintering. Accordingly, in the samples produced either in air by 

the application of low preloads of 0.01 MPa or in vacuum at 5MPa, additional microcracks were formed, 

particularly in the interface region between silver coating and sintered nano silver particles.  

Stress-strain curves of the joints exhibited linear elastic, small strain hardening and fracture regions 

similar to wrought alloys. The strengths of the joints increased proportionally to the degree of sintering as 

expected. The shear strength reached to 32 MPa in samples sintered in air at 5 MPa constant pressure, 

whereas shear strength decreased to 4 MPa in highly porous joints produced by ultrasonic force and 

preloading with 0.01 MPa. All samples revealed shear-type dimples in the direction of mechanical testing 

indicating ductile behavior of joints. 

The electrical resistivity of the sintered nano silver layer showed the same trend as the mechanical 

properties. The weakest or most porous joint had the highest electrical resistivity of approximately 125.5 

μΩ-cm). On the other hand, the least porous silver joint, manufactured at 5 MPa constant pressure in air 
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exhibited the lowest electrical resistivity (7.8 μΩ-cm); however, it was five times higher than that of bulk 

silver. 

The results have presented that the nano silver paste is the most promising die attach material to replace 

conventional solder and conductive epoxies.  

Keywords: Die attach material, nano silver paste, sintering, shear strength, electrical resistivity 
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Chapter 1 

Introduction  

1.1 Background 

The widespread use of fossil fuels is responsible for the long-term environmental risk of climatic changes. 

The key contributor to global warming is the emission of carbon dioxide (CO2) that comes from many 

combustion sources. According to the Inventory of the United States Greenhouse Gas (GHG) Emissions 

and Sinks 1990–2013 report published by the United States Environmental Protection Agency (EPA), 

GHG emissions from transportation represented 27% of the total amount of US GHG emissions from 

end-use fossil fuel combustion in 2013. Passenger cars (42.7%), light-duty trucks (17%) and 

medium/heavy-duty vehicles (22.8%) were culpable for 82.5% of the CO2 emitted from all transportation 

sources [1]. The maximum allowable levels of tailpipe emissions from diesel engines have also becoming 

stricter under current legislation. In 1999, the European Union (EU) adopted Directive 1999/96/EC, 

which presented Euro III emission standards in 2000 and Euro IV/V standards in 2005/2008. In European 

countries, which have integrated the Euro V emission standard for vehicles, the Euro VI emission 

standard has been carried out since 2014. The Euro VI emission standard needs additional improvement 

step by step to reduce tailpipe emissions, particularly NOx, for heavy-duty and non-road engines [2]. 

Attempts to reduce harmful emissions of all types led to the conclusion that the problem may be solved 

by the production of electric vehicles, which use electric motors and require a high volume of high-

temperature power electronics. 

Power electronics convert electric power from one type to another using electronic devices, and  the 

power level may vary from mW to GW such as in small batteries and power plant applications, 

respectively [3]. 

Devices in power electronics can be grouped into four categories according to the type of their input 

and output power [3]: 

• AC/DC, a rectifier is an electrical device that converts alternating current (AC), which periodically 

reverses direction, to direct current (DC), which flows in only one direction. For example, standard outlet 

voltage is converted to 5V DC for smartphone charging. 
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• DC/AC, a power inverter changes direct current (DC) to alternating current (AC). For example, the 

DC of a battery pack of an electric vehicle (EV) is converted to the AC of the desired amplitude and 

frequency for driving an electric motor. 

• DC/DC, a DC-to-DC converter switches a source of direct current (DC) from one voltage level to 

another.  

• AC/AC, a solid-state AC-AC converter switches from an AC waveform to another AC waveform, 

where the output voltage and frequency can be set.  

In electric vehicles (EVs), a battery pack is utilized for energy storage and electric motors are used to 

transfer power to the wheels. Therefore, different parts of the system in automobiles require various types 

of converters. Firstly, to convert the DC power into AC power, an inverter is needed. It is possible to 

switch the speed and power of the electric motor with the inverter. Most of the electric systems in 

conventional internal combustion vehicles operate at 12 V or 24 V. In EVs, the voltage of the battery pack 

is generally greater than the voltage of the electric motors used to power the wheels. Therefore, DC/DC 

conversion is used to regulate the voltage levels to meet predetermined systems requests [3]–[5]. As 

electrical energy becomes more dominant in electrical vehicles such as hybrid-electric vehicles (HEVs), 

plug-in hybrid electric vehicles (PHEVs), fuel cell electric vehicles (FCEVs), and pure electric vehicles 

(EVs), the study of power electronics systems under harsh environmental conditions related to automotive 

applications is essential [6].  

In power electronics, a power semiconductor device is a semiconductor device used as a switch or 

rectifier. Semiconductor devices are used to alter the voltage and current [7] and they are classified as  

uncontrollable and controllable power semiconductors. Power diodes, and thyristors and transistors are 

the examples of uncontrollable and controllable semiconductors, respectively. Metal-Oxide-

Semiconductor Field-Effect Transistors (MOSFETs), Bipolar Junction Transistors (BJTs) and, Insulated 

Gate Bipolar Transistors (IGBTs) give complete control of  “on” and  “off” states [6]. 

Recently, IGBTs, as shown in Figure 1.1, have been largely used for power applications because of 

their working range of 300 V to over 6.5 kV [8] and high switching speed, on-state voltage drop and 

ruggedness [6]. Although precise control of power is possible with devices such as IGBTs, high operating 

temperatures limit the performance and reliability of such devices. Therefore, redesign of the device 

materials is needed especially in their interconnections capable of withstanding high temperatures without 

degrading electrical properties [9]. 

https://en.wikipedia.org/wiki/Direct_current
https://en.wikipedia.org/wiki/Alternating_current
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Figure 1.1 1200Amp., 3300V IGBT Module [10]. 

1.2 Motivation  

In a power electronics device, the power losses are created within the “on”- “off” state of the device. As 

the level of losses change between various operating conditions, the power device temperature will also 

change with time. The thermal energy, which is created during the “on”- “off” state, flows along the 

thermal path. Conventional IGBT modules, Figure 1.2, consist of a Si chip, direct copper bonded (DBC) 

substrate, copper or AlSiC heat sink and solder interconnections materials. Generated heat in such a 

module flows from chip to heat sink and dissipates into the air.  

 

Figure 1.2 Traditional IGBT Cross-Section showing various components with their CTEs [11]. 

Differences between the coefficients of thermal expansion (CTE) of material layers defined in IGBTs 

induce stress during thermal flow. In addition, the stress is created not only on different material layers, 

but also within the same type of material due to temperature differences along the thermal path [12]. 
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However, most of the thermal stress induced failure occurs within the interlayers which are used for 

connection of different material layers. Commonly used interconnection materials or die attach materials 

are conductive adhesives, and tin based and lead free solder alloys in power electronics. 

The maximum processing temperature of conductive adhesives is lower than 200 
O
C while it is below 

250 
0
C for tin based alloys [13]. The low melting point of these die attach materials is one of the main 

problems encountered during their usage at high temperatures above 200
o
C. When using them at high 

temperature, their intermetallic phases are high and as a result, their reliability may decrease. 

Additionally, using encapsulated materials increases the operating temperature, which reveals the 

mismatch of CTE. Thus, their reliability has an undesirable effect [14]. Due to the different elongation of 

layers, the repetitive stress changes cause fatigue of interconnection materials in IGBT modules. That 

creates crack initiation, crack elongation and failure.    

The interconnection material is one of the most problematic components in the IGBT modules. In this 

thesis, we focused on nano silver paste as a new generation interconnection material. The nano silver 

paste was investigated using fabrication processes in air and vacuum. To develop this new fabrication 

method, ultra-sonic force was used. Mechanical properties of nano silver paste were compared with the 

literature. Additionally, samples, which were fabricated with different joining techniques in air and 

vacuum were compared to each other. Electrical resistivity of the sintered nano silver layer was measured. 

Microstructure study was performed for each fabrication process. 
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Chapter 2  

Literature Review 

2.1 Literature Review  

2.1.1 IGBT for Automotive Applications and Trends  

Electric drive vehicles such as hybrid-electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), 

fuel cell electric vehicles (FCEV), and pure electric vehicles (EV) need power electronics for conversion 

of electric energy from the battery to the desired form. This energy can be used directly to power the 

wheels or to assist with the traditional combination engine system. In the past decade, increased 

popularity of HEVs and EVs has generated great attention related to power electronics and power 

semiconductors manufacturing technology. In electric drive systems of vehicles, power modules 

constitute approximately 40 % of the price of inverters and converters. In the next decade, the market of 

power modules for the automotive industry is expected to grow from $2 billion to $5 billion [15]. 

In EVs, power modules include various power semiconductor switches such as DC to DC converters, 

DC to AC inverters and insulated gate bipolar transistors (IGBTs). To meet an urgent request for 

automotive power modules, reliability standards are needed especially for those operating under harsh 

working environments including high operating temperature, high ambient temperature and mechanical 

vibration. Improvement of materials used in packaging of the power modules is one of the key aspects in 

increasing their reliability [15]. 

In the past few decades, chip technology has been developed to improve power modules. The market 

requests were satisfied with conventional design and joining technology. As a consequence, the cross 

sectional structure of power modules has had very limited improvements [16]. Nonetheless, these 

requirements have been changed recently due to: 

 The performance of power electronics mainly depends on packaging technology, 

 The automotive industry requires cost effective production and compactness, 

 New chip technologies are needed as wide band gap materials such as silicon carbide (SiC) or 

gallium nitride (GaN) are utilized as chip materials. 

Moreover, new packaging technologies and materials capable of withstanding junction temperatures 

above 200 
0
C are desired in addition to the aforementioned requirements [16]. 



 

  6 

The cross-section of the conventional power module packages shown in Figure 2.1 has developed over 

a few decades. Several improvements have been accomplished step by step to increase electrical 

performance and reliability, and to decrease the die size of such packages over the last 30 years. The 

reliability of packages is crucial, particularly in EVs, as 14 years average lifetime is expected for such 

automobiles [17]. During usage of an EV, the temperature fluctuations occurring in power electronic 

devices or power modules induces thermal stresses due to materials having different coefficients of 

thermal expansion (CTE) across the module, Figure 2.1, [16]. 

Currently, the traditional packaging techniques have not met some service requirements such as high 

operating temperature. Therefore, research on new interconnection materials and new joining techniques 

has gained attention. 

 

 

Figure 2.1 Cross-section of a conventional IGBT module [18]  

2.1.2 Die Attach Materials 

In microelectronic packaging, interconnection materials provide physical protection, mechanical support, 

electrical connection, and heat dissipation for semiconductor devices to fulfill a function in a specific 

condition [19]. Die attach material, which connects the die to the substrate and the substrate to the rest of 

the system, plays a key role to ensure that the whole system works consistently. Tin-based solder alloys 

such as leaded (63%Sn-37%Pb) and lead-free solder alloys (96.5%Sn-3%Ag-0.5%Cu), Table 2.1, and 

conductive adhesives are commonly accepted die attach materials. Since their fabrication parameters are 

below 300 
0
C and they are easily used, they are preferred as die attach materials [20]. Although rich lead 

solder alloys show high reliability in harsh working conditions, their use in microelectronic packaging is 

restricted according to hazardous substances directive 2002/95/EC [21]. However, the tin based solder 
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alloys and conductive adhesives suffer from low melting and/or dissociation temperatures when used in 

high temperature applications (>200 
0
C) such as automotive, gas and down-oil.   

Table 2.1 Commonly used solder materials properties [22], [23]. 

Properties Unit 
Eutectic Solder 

(63Sn-37Pb) 

96.5Sn-3.0Ag-0.5Cu 

Lead-Free Solder 

Density g/cm
3 

8.4 7.4 

Hardness 

(Vickers/Brinell) 
HV/HB 14 HV 15 HB 

Tensile Strength 

(Ultimate) 
MPa 52 49.6 

Modulus of Elasticity GPa 32 51 

Poisson’s Ratio - 0.38 0.36 

Shear Modulus GPa 12 

 

Melting Point 
o
C 183 220 

Thermal Conductivity W/(mK) 50.9 58 

CTE at room 

temperature 
μm /m

o
C 24.7 21.6 

Electrical Resistivity μΩ-cm 14.5 13.2 

Homologous 

Temperature 

According To 200 
o
C 

Operating 

Temperature 

- >100% 96% 
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The homologous temperature, the ratio of operation and melting temperatures in K scale, is important 

in terms of reliability and a material can be considered as stable when its homologous temperature 

percentage is below 40%. If the homologous temperature is between 40-60%, the material is operating in 

the creep region while a homologous temperature percentage above 60% is considered to be an unstable 

range for the material. Operating temperatures of approximately 200 
0
C correspond to the unstable region 

for solder materials which prevents their safe usage as a die attach material [12]. Other die attach 

materials such as conductive adhesives containing a high ratio of polymeric materials have lower 

electrical and thermal conductivities, and also lower melting points than solder materials. Therefore, in 

power modules, new die attach materials are needed with the following properties[14], [24], [25]:  

 Low coefficient of thermal expansion (CTE) between layers, 

 High electrical conductivity, 

 High thermal conductivity, 

 Excellent mechanical properties, 

 Excellent fatigue resistance, 

 Good corrosion resistance, 

 Good wettability and adhesion to the die and the substrate. 

In a vehicle’s engine, the operating temperature may increase up to 1000
o
C. To achieve more accurate 

control of the valve on-off timing, sensing of camshaft position and engine pressure is a way to alleviate 

the emission problem. Therefore, using sensors in automobiles has significantly increased the preciseness 

of measurements [26]. Currently, advanced vehicles have about a hundred sensors, measuring such things 

as engine speed, camshaft position, engine condition monitoring, and brake system [14]. Many of the 

automotive electronics components withstand high operating temperature such as brake system sensors 

(up to 300 
0
C), and combustion sensors (up to 1000 

0
C). To manage the electric current flow from battery 

pack to the electric motor, a power module is necessary equipment for this vehicle. [9]. The weakest point 

of all of these components is die attachment materials.  

One of the requirements of power electronics is the high operating temperature. The definition of high 

temperature, which can generally differ according to electronic applications, is the highest ambient 

temperature or a typical standard operating temperature. As high temperature, it may be chosen as 

ambient temperature if the junction temperature is lower than ambient. However, with high power 
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dissipation at some specific points and densely packaging design, self-heating should take into account 

because the junction temperature becomes the dominant heat source of system such as power modules 

[27]. Some applications, for example automotive, aircraft, and space exploration, need to withstand 

operating temperatures above 200
0
C for die attach materials [14]. 

Power modules have been recently improved due to innovations in materials, interconnections, and 

processing techniques [15]. In the automotive industry, the electrical performance of the power modules 

is mostly effected by the packaging technology of these devices [28].  The demand of the power modules 

is electrical, thermal, and reliability performance with compact design. There are some packaging 

problems for IGBT modules and one of the most important is interconnection [29]. 

As mentioned above, high power modules have been widely used under harsh operating conditions in 

the automotive industry. Figure 2.2 shows operating temperatures of different automotive systems [9]. 

The entire power module can fail completely because of high heat dissipation, which exceeds the 

acceptable levels of the devices. Furthermore, higher power density creates a very high junction 

temperature in the chip. It affects the device performance, plus it causes reduction of semiconductor life 

[30]. In IGBTs, static thermal flux is between 100 W/cm
2
 and 300 W/cm

2
 when used in automotive 

applications [31]. The ability to attach a chip with a large area is one of the most significant parts in 

power modules. Improving the lifetime of the device is possible when a good thermal conductive material 

as a die attach material is used.   

 

Figure 2.2 Automotive operating temperatures [5, 33]. 
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Some lead free solders such as AuSi, AuGe, and AuSn exhibit good reliability even in harsh 

environments. However, their high prices block their usage in power modules [30]. 

Currently, nano silver powder containing paste is reported as a superior die attach material in terms of 

electrical and thermal conductivity and mechanical properties [12], [25], [32]–[35]. The sintered silver 

paste has not only higher thermal and electrical conductivity but also higher tensile strength compared to 

commonly used solder alloys, Table 2.2. However, the most significant advantage of this paste is its 

relatively higher melting point which makes the connections reliable at higher temperatures. Accordingly, 

it compensates for all the weak points of packaging technology encountered due to the solder and 

conductive adhesive die attach materials.  
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Table 2.2 Comparison of sintered nano silver and traditional solder materials (Compiled from [12], [22], 

[23], [25], [32]–[35])  

Properties Unit 
Sintered 

Nano Silver
1
 

Eutectic Solder 

(63Sn-37Pb) 

96.5Sn-3.0Ag-0.5Cu 

Lead-Free Solder 

Density g/cm
3 

3.5 8.4 7.4 

Hardness 

(Vickers/Brinell) 
HV/HB - 14 HV 15 HB 

Tensile Strength 

(Ultimate) 
MPa 55 52 49.6 

Modulus of Elasticity GPa 10-30 32 51 

Poisson’s Ratio - 0.37 0.38 0.36 

Shear Modulus GPa 27.8 12 

 

Melting Point 
o
C 961 183 220 

Thermal Conductivity W/(mK) 240 50.9 58 

CTE at room temperature  μm /m
o
C 19.6 24.7 21.6 

Electrical Resistivity μΩ-cm 2.5-5 14.5 13.2 

Homologous Temperature 

percentage According to 

operating Temperature of 

200 
o
C 

- 38% >100% 96% 

                                                   
1 Sintered nano silver properties depend on its fabrication parameters.  
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2.1.3 Silver Joints 

Silver, like gold, is one of the precious metals. Silver is a 4d transition element, atomic number 47, 

atomic weight 107.87, and electron configuration [Kr]4d105s1. In the periodic table, silver is placed in 

period 5, group 11 (or IB). It is a soft and ductile material with face-centered cubic structure and melting 

point of 961.93° C, Table 2.3. It possesses the highest electrical and thermal conductivity of any element. 

Silver is generally utilized in electrical contacts and thermal conductors in the microelectronics industry 

as well as in photography, jewellery, silverware, coins, and medals [36].  

Table 2.3  Properties of bulk silver [35], [36]. 

Properties  Unit Silver (Ag) 

Density  g/cm
3
 10.491 

Hardness (Vickers) HV 25 

Tensile Strength (Ultimate) MPa 140 

Modulus of Elasticity  GPa 76 

Poisson’s Ratio - 0.37 

Shear Modulus  GPa 27.8 

Melting Point  
o
C 961.93 

Thermal Conductivity  W/(mK) 419 

CTE at room temperature  μm /m
o
C 19.6 

Electrical Resistivity  μΩ-cm 1.55 

 

In 1989, the service requirements of power modules could not be met by traditional joining techniques 

to bond substrates and chips together. Sintered silver joining has been developed by Schwarzbauer et al. 

[37] as a novel method. It is also known as a low temperature joining technique (LTJT), Figure 2.3. 

Diffusion bonding is the underlying reason for low temperature solid state joining. In the study of 
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Schwarzbauer et al.[37], the surface of substrate and chip were coated with a thin layer of Au or Ag. 

Finally, silver flakes were placed between these two layers as interconnection material and sintered at 

240
o
C with 40 MPa pressure. Recently, low temperature joining technique has been studied with different 

kinds of metallic nanoparticle pastes of Ag [12], [25], [32]–[35], Cu [38], Au [39], Ag-Al alloy [40], and, 

Ag-Cu alloy [41]. In Ag joining processes, nano silver paste containing silver powder (micron and/or 

nano size), organic solvent and binder is recently used as a die attach material.  Since silver paste has 

been introduced as a superior lead free die attach material by the European power electronic companies, 

LTJT using silver paste has gained great attention from academia and industry players. 

 

Figure 2.3 Low Temperature Joining Technique using silver powders  

2.1.4 Joining Processes Using Nano Silver Paste 

2.1.4.1 General 

Most silver joining is formed by utilizing powder metallurgy. Powder metallurgy is a process, which 

includes the fabrication, characterization and change of metal powders into valuable engineering 

materials. The process includes the use of fundamental laws of heat, work, and deformation of the 

powder. The shape, properties and structure of the powder are changed as a final material. Powder 

metallurgy starts with the preparatory production of a shaped article from finely divided powders either 

by hand or by utilizing mechanical compaction. The next step is a sintering process in a furnace to 

increase the strength of the component without losing the initial shape during molding [42]. 

When the powders are heated up to approximately half of their absolute melting temperature, the 

powder particles are bonded to each other. This phenomena is called sintering [43]. The sintering process 

is performed with or without pressure either in a liquid state or a solid state as in most of the silver-joints. 

Die  
Micro Ag Powder  

Substrate  

Heat 

Pressure   



 

  14 

Starting powders with various shapes, i.e. flake, angular, spherical, may be elemental or pre-alloyed 

powders. In solid state sintering, various stages and mass transport mechanisms have been utilized as 

shown in Figure 2.4. 

 

Figure 2.4 Solid State Sintering Stages [44] 

In the sintering process, to minimize the surface energy, the system attempts to decrease the surface 

area. Consequently, the particle is bonded to adjacent particles and the bonding turns into the neck. In the 

next stage, the pore structures become smooth and approximately cylindrical shaped. Decrease in surface 

area decreases the time required for sintering. In the final stage of solid state sintering, structural pores 

have almost vanished and the remaining pores are separated from each other. Based on the time and 

temperature of sintering, various mass transport mechanisms, illustrated in Figure 2.5, become operative 

which induces neck formation and densification in solid state sintering [42]. 
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Figure 2.5 Two classes of mass transport mechanisms encountered during sintering; Evaporation-

Condensation (E-C), Surface Diffusion (SD), Volume Diffusion (VD), Plastic Flow (PF), Grain Boundary 

Diffusion (GB) [44] 

As the particle size of the powders decrease, sintering and densification becomes easier due to 

increased surface area. Although most of the powder metallurgical processes make use of micro sized 

powders, recently the use of nano size powder has gained great attention. When particle size is reduced to 

nano scale dimensions, 1-100 nanometers, materials break the barrier of quantization of energy for the 

electrons in solids and their properties dramatically change and even exhibit new properties [45]. 

Sintered silver joint was firstly developed in the early 1990s using micro size silver flakes [37]. The 

method was basically a sintering technique in which the variables were chosen as temperature and 

pressure. At 250 
0
C, connection of parts was produced by compaction of flake shaped silver powders 

under the pressure of 9-40 MPa. In the middle of the 2000s, discovery of nano materials took this 

technique to the next level. The temperature of the process has stayed at the same level; however, the 

pressure in the “pressure assisted sintering” has been significantly decreased around 1-5 MPa when the 

nano particles of silver were used. In such processes, silver nano particles are supplied in the form of 

silver-paste containing a kind of binder and dispersant solution which acts as a binder and carries nano 

particles and controls the viscosity of the paste. The sintering mechanism of those silver pastes is also 

affected by the size of the silver particles inside the paste and the paste chemical formulation. In nano 

scale, the driving force for diffusion bonding of silver atoms is increased due to increased surface energy. 

A 26 nm silver nano particle surface area was reported 23 m
2
/g [46]. In sintering processes including nano 
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silver powders, neck size quickly grows until the neck size reaches 50% of the nano particle size before 

the sintering rate slows down [47].  

Power electronics and other applications which use silver-paste as a die attach material look for 

sintering processes at pressures and temperatures as low as possible within the shortest time possible. The 

use of nano silver powders partly meets the needs of sintering requirements in die attachments. However, 

researchers still investigate techniques which will reduce the sintering temperature, pressure and time in 

the joining process while avoiding degradation of strength of sintered silver joints. In addition, types of 

organics and their removal is another issue for silver-paste containing sintering processes. Organic 

solvents in silver pastes evaporate at around 100
o
C as a result of an endothermic process which can be 

detected with a differential scanning calorimetric and thermo gravimetric analysis to observe thermal 

events and their effects on sintered silver joining [48].  

Most of the studies use cyclohexanol, terpineol, ethylene glycol ether, or cyclohexanol–methanol 

mixture as organic solvents in silver-pastes to mix micron sized silver flakes [48]. Joining processes 

which make use of these pastes are achieved under 9 – 40 MPa pressure at 180 – 250 
0
C [37]. On the 

other hand, for nano sized silver particles, the paste consists of nano size silver particles which are less 

than 100 nm, solvents, dispersants and binder. Siow [50] gave a summary of solvents, dispersants and 

binders previously used by many researchers. Solvents were reported to be isobornyl cyclohexanol 

(IBCH), texanol, terpineol, butyl carbitol, toluene, xylene, ethanol, or phenol while ethyl cellulose, 

polyvinyl alcohol, polyvinyl butyral (PVB), or waxes were used as binders. Menhaden fish oils, 

poly(diallydimethyl ammonium chloride) (PDDA), polyacrylic acid (PAA), polystyrene sulfonate (PSS), 

triethylene glycol, methyloctylamine, dodecylamine, hexadecylamine, myristyl alcohol, 1-dodecanol, 1-

decanol stearic acid, oleic acid, palmitic acid, dodecanethiol are some examples of dispersants used in 

addition to solvents and binders. Although the pressure of the nano silver process decreases to 1 – 10 

MPa, the temperature of the process is higher, 200 – 300 
o
C, compared to micron size silver containing 

pastes. It is also possible to use silver paste for connection of joints without added pressure. In this case, 

organic components of the paste decrease from 15 % to 4% while the quantity of nano silver particles 

increases above 90% by weight. Usually during the sintering process, pressure is not needed because of 

the reactive nature of the paste. However, the die size determines the application of the pressure during 

sintering. When the die size is smaller, diffusion of oxygen and outgassing of solvent from the small 

sintering area becomes easier. Therefore, the shear strength of the pressureless sintered interface layer is 

as strong as those sintered under pressure assisted conditions. [48]. 
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2.1.4.2 Conventional Joining Methods using Sintered Silver Paste 

The performance of joining produced by using silver-paste is strongly dependent on the application 

procedure of the paste on the surface, removal of organics and sintering variables used in the process. For 

mounting of nano silver paste on substrate, the screen-printing method is widely used. For the purpose of 

evaporation of solvent and elimination of subsequent solvent related residual porosity, the paste 

containing structure is preheated to approximately 50–100 
o
C prior to sintering. After preheating 

treatment, dies are mounted onto the paste containing substrate. Then, the sandwich configuration 

containing die, nano silver paste and substrate, is heated to the predetermined sintering temperature. 

When the sintering temperature is reached, pressure is applied and all the sintering process is carried out 

under pressure assisted condition. The screen printing method of silver-paste and the commonly used 

temperature profile in the process are shown in Figure 2.7 screen printing method and Figure 2.7 sintering 

cycle used for silver-paste containing joints. 

 

Figure 2.6 Screen printing method 
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Figure 2.7 Sintering cycle used for silver-paste containing joints 

 

2.1.4.2.1 Processing Parameters in Nano Silver-paste Containing Joints 

Recently, nano silver paste has garnered great attention because of its superior success in die attachments. 

To bond semiconductor and substrate with silver-paste, several processing parameters should be 

considered to obtain strong bonds between die and the substrate. The shear strength is a primary 

evaluation tool to investigate the performance of nano silver joining. Pressure, sintering temperature, 

holding time, heating rate, substrate and chip metallization, and particle sizes have had an impact on 

bonding quality during fabrication. Appendix A gives a summary of studies carried out at various 

processing conditions using different silver based pastes and elementary silver powders. Commonly 

studied variables are the types of die attach materials and their sizes, coating of substrates and chips, 

sintering temperature, pressure and time, heating rate, test methods, and the shear strength of joining.  

2.1.4.2.1.1 Compaction Pressure   

During the sintering process, applied external pressure helps the sintering as it increases the available 

contact area for diffusion of atoms thereby, increasing the shear strength of silver-joints. Figure 2.8 

displays the effect of applied pressure during sintering on the shear strengths of joints in studies 

containing various die and substrate materials [49] (data compiled from [34], [50]–[53]). Increasing 

applied pressure improves bonding shear strength as expected since it yields better contact between nano 

silver particles and the substrate. Accordingly, the neck area between powder particles grows faster, and a 

high density nano silver sintered joining area with a less porous structure is obtained. Outgassing of 
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organic components, which burn out during sintering, leaves more joining area when external pressure is 

applied so that pressure assisted sintering has a higher density and shear strength.  

 

Figure 2.8 Pressure effect on shear strength of silver-containing joints[49]  

2.1.4.2.1.2 Sintering Temperature and Time  

Sintering temperature has a strong impact on bonding quality due to exponential dependence of 

diffusivity of atoms on temperature. Increasing sintering temperature generates an intense joining area by 

the mass transport of atoms via surface and/or bulk diffusion according to temperature used. To improve 

nano silver paste stability, large amounts of various organic materials are added. Therefore, burning of 

those organics also has an influence on sintering temperature and time, and resultant mechanical 

properties.  Accordingly, burning and complete removal of organics is crucial so as to allow diffusion of 

silver atoms within nano silver-particles. Usually a higher sintering temperature provides higher and 

complete evaporation thereby increasing the rate of sintering. As presented in Figure 2.9 [49], higher 

temperatures increase the resultant shear strength because of enhanced sintering which leaves less 

residual porosity in the structure (data compiled from [35], [53]–[56]) 
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Figure 2.9 Relationship between shear strength of nano silver bonding and sintering temperature [49].  

 

During sintering, longer sintering time increases neck size between nano particles and it helps depletion 

of organic materials inside the paste. As a result, shear strength is improved with longer sintering time 

and better adhesion is observed as shown in Figure 2.10 [49] (data compiled from [33], [53], [54] ). 

However, the effect of sintering time is not as significant as sintering temperature since diffusion 

distance, x, changes by the square root of time (x=2Dt, where D is diffusivity of atom interest and t is 

the time). 
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Figure 2.10 The relationship between shear strength of nano silver bonding and sintering time [49] 

2.1.4.2.1.3 Heating Rate  

The heating rate has an influence on the shear strength of joining with nano silver paste. Increasing the 

heating rate gives a better and denser sintering joining area. However, to evaporate organic materials in 

the paste, the heating rate ought to be slow enough to allow. Outgassing of solvents create voids over the 

bonding line thickness of nano silver paste. As a consequence, it reduces the shear strength and reliability 

of joining. The recommended heating rate for silver-paste is reported to be approximately 10-20 
o
C per 

minute [57]. 

2.1.4.2.1.5 Substrate and die surface condition  

Studies which make use of nano silver paste on bare substrate or die material, i.e. copper, have shown that 

the shear strength of bonding is weak because of oxidation [58], [59]. Nevertheless, nano silver paste has 

been successfully used to connect die and substrates coated with Au and/or Ag layers. In some cases, Au 

and Ag layers are found to be on Ni and Ti layers which are coated directly on substrate/die to act as a 

diffusion barrier layer. Among the coating layers utilized, Ag coating layer exhibits the best results in 

terms of better bonding/sintering properties with silver-paste mainly due to the same lattice structures. 

[57].  
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2.1.4.2.1.6 Particle Size  

Nano particle size inside the paste has an impact on the shear strength as much as sintering temperature 

and pressure. Figure 2.11 demonstrates the particle size effect on shear strength of various particle sizes 

(data compiled from [54], [60]). In reference [34], when nano particles are reduced from 100 nm to 10 

nm, the shear strength increased six times because of the high surface energy of nano particles. In 

addition, larger distributions of particle sizes and different particle shapes have better shear strength [57]. 

Another study reported that micro scale silver particles and nano silver particles are mixed with each 

other to obtain denser joints [61].   

 

Figure 2.11 Effect of particle size on shear strength of various die attachments [57] 

 

2.1.4.2.1.7 Sintering Atmosphere   

During sintering, organic materials are evaporated when temperature increases. Therefore, nano silver 

particles engage each other. The organic materials passivize these nano particles. Oxidation is necessary 

for burning out process organic materials inside the paste. Air atmosphere sintering has been reported to 

have better joining density and higher shear strength compared to a nitrogen environment [62].  
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2.1.4.3 Miscellaneous Fabrication Methods 

2.1.4.3.1 Cast Model Sintering 

Q. Lu and et al. [63] improved different sintering methods for fast sintering including silver-paste. A 

rapid current-assisted technology (CAST) was used to bond chip and substrate via nano-silver paste.  A 

schematic illustration of the CAST method is shown in Figure 2.12. Dummy chips and substrates were 

bonded to each other using nano silver paste when alternative current was applied to two electrodes. The 

current varied from 5.5 kA to 8.25 kA  and the applied time was from 500 to 1000 ms. The applied 

pressures was changed between 5 MPa to 10 MPa The shear strength varies from 17.8 to 86.5 when the ac 

was changed between 5.5 kA and 8.25 kA.   

 

Figure 2.12 A Rapid Current-Assisted Technology [63] 

2.1.4.3.2 IR Laser 

Lee and et al. studied [64] nano silver paste for LED (light-emitting diode) using a laser as the heat 

resource. In this method, IR laser, which had a power of 30W and 600 𝜇m laser beam diameter, was used 

to increase the temperature of the chip as shown in Figure 2.13. The sample was preheated at 230 
o
C for 

one minute and the sintering process was completed within 10 seconds at 400 
o
C. The measured shear 

strength was 8.9 MPa Although the chip area was large, and dimensions reached up to 1.5 mm X 1.5 mm, 

all the organic materials burnt out despite high preheating temperature. For this reason, the sintering 

succeeded even if the heating rate was high. 
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Figure 2.13 Laser Sintering Method [64] 

2.1.4.3.3 Ion-Activated Joining 

Nano materials are very active because of their high surface energy. The organic materials inside the 

paste act as a passive layer. When the temperature is increased, this layer is removed and the aggregation 

occurs between nano particles. This passive layer was removed at room temperature using a chemical 

solution which consists of NaCl, MgCl2, and CaCl2 [65]. This type of process is called ion activated 

joining, Figure 2.14 

 

Figure 2.14 Ion Activated Joining [65] 
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Chapter 3 

Methodology  

In this chapter, materials, manufacturing and characterization techniques utilized throughout the study 

were described in detail. Section 3.1 gives information about the properties of starting materials while 

Section 3.2 presents experimental variables and the set-up used during the joining of dummy chips to 

copper substrates via nano silver paste. Details of the studies including microstructural, mechanical and 

electrical characterization were given in Section 3.3  

3.1 Materials 

3.1.1 Substrates and Dummy Chips  

101 super conductive copper, also known as oxygen-free electronic (OFE) or oxygen-free high 

conductivity copper (OFHC), was chosen as substrate material as it has similar properties to Direct 

Bonding Copper (DBC) substrate commonly used in IGBTs. 25 mm X 3mm copper 101 flat bars, 

supplied by McMaster Carr, Aurora, OH had 99.99 % purity. 101 Copper is commonly used for electrical 

applications, for example, coaxial cables, terminal lugs, and high temperature and vacuum environments. 

Table 3.1 shows 101 copper material properties. 

 

 

 

 

 

 

 

 

 

 

 



 

  26 

Table 3.1 Properties of copper 101 used in the study [66].  

Properties Unit 101 Copper (Cu) 

Density g/cm
3
 8.94 

Hardness  HRB/HRF 45/85 

Tensile Strength (Ultimate) MPa 275 

Modulus of Elasticity GPa 115 

Poisson’s Ratio - 0.31 

Shear Modulus GPa 44 

Melting Point 
o 
C 1083 

Thermal Conductivity W/(mK) 391 

CTE at room temperature μm /m
 o
C 17 

Electrical Resistivity μΩ-cm 1.71 

 

Copper parts to be used in joining as substrate material and dummy chips were cut from copper 101 flat 

bars. Sixty copper substrates were machined to obtain a rectangular shape of 2.5 cm X 4 cm.The thickness 

was decreased to 3mm and a relatively flat surface was obtained after machining and using successive 

grinding steps by sandpapers (180, 240, 320, 400, 600, 800, and 1200). Copper was chosen as a dummy 

chip because silicon is a brittle material and it is reported that silicon specimen is destroyed during the 

shear strength test due to strong bonding [67]. Likewise, 60 dummy chips (4 mm X 4 mm) were prepared 

using the same sample preparations steps used for substrates. Next, the surfaces of each group of samples 

were cleaned with acetone and isopropyl alcohol. To coat copper substrates and dummy ships, a 

sputtering machine was used. Afterwards, they were coated with silver that was described in Section 

3.2.1. Images showing silver coated copper substrate (a) and dummy chips (c) and starting copper 

substrate (b) and dummy chips (d) (Figure 3.1). 



 

  27 

  

Figure 3.1 101 Images showing (a) silver coated copper substrates, (b) starting copper substrates, (c) 

silver coated dummy chip, (d) starting copper dummy chip. 

 

3.1.2 Quartz Dummy Chips  

Quartz has been chosen for electrical measurements of sintered silver because of its non-conductive 

properties. It contained 99.995 % silicon dioxide. Table 3.2 demonstrates properties of quartz.  

Table 3.2 The properties of quartz used in electrical property measurements [68]. 

Properties Unit Quartz 

Density g/cm
3
 2.65 

Dielectric Constant - 4.2 

Melting Point 
o
C 1470 

Thermal Conductivity W/(mK) 6.82 

CTE at room temperature μm /m
 o
C 8.10 

 

Before the application of silver paste, 20 quartz samples were cut from larger discs (thickness 

approximately 1.7 mm) to obtain 5 mm X 5 mm plates (Figure 3.2) and they were cleaned with acetone 

and isopropyl alcohol. 
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Figure 3.2 Quartz dummy chips used in electrical property measurements of sintered silver. 

 

 

3.1.3 Nano Silver Paste 

Nano silver paste was received in 25 g containers from NIHON SUPERIOR CO., LTD as shown in 

Figure 3.3. According to the data sheet given in Appendix B, the average particle size was approximately 

10 nm; however, chemical composition was unknown since the company did not share it because of 

privacy concerns. 

 

Figure 3.3 As received nano silver-paste.  

Scanning electron microscopy (SEM) examination of the starting paste, which was preheated prior to 

examination at 50
o
C for 10 mins for evaporation of volatiles, revealed mostly spherical nano-particles 

having diameters as large as 200 nm. 
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(a)         (b) 

Figure 3.4 SEM images showing morphology of silver nano powders in silver Paste SEM Images after 

preheating (a) 18000 X, (b) 52000 X 

Energy dispersive X-ray spectroscopy (EDX) examination was carried out on the group D setup 

sample. The result shows that all organic materials burnt out and only silver remained, in Figure 3.5. 

 

Figure 3.5 Energy dispersive X-ray spectroscopy (EDX) data from air test setup 
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3.2 Experimental Studies 

Figure 3.6 shows schematics of production steps. The starting material was copper. Firstly, substrate and 

dummy chip coated with silver. Secondly, nano silver paste was placed on substrate. Next, binders and 

organic materials removed with preheating process. The last step, sintering occurred with or without 

pressure.  

 

Figure 3.6 Production steps used in the current study 

3.2.1 Silver coating with Sputtering Technique 

To increase sinterability of nano silver particles to substrates and dummy chips, substrates and dummy 

chips were coated with a thin layer of silver. For this process, a ATC-Orion 5 UHV sputtering machine 

was used. The sample surfaces were cleared with Argon plasma for two mins, and then the coating 

process was started. The process took 30 minutes and the thickness of the layer was approximately 500 

nm.  

3.2.2 Application of Silver Paste 

After coating the surfaces of copper substrates and dummy chips, nano silver paste was applied on Ag-

coated surfaces using screen-printing method. Silk screen with 100- mesh (100 meshes in 1 cm
2
) was 

chosen since large mesh size allows the transfer of more materials to the printed surface. For mask screen 

printing, 3M scotch box sealing tape 311 was used and its thickness was 0.028 mm. Two layers of tape 

stuck together and a square opening is created at the center of the tape to manage silver paste layer with 

nano size thickness and 10 mm X 10 mm square to transfer nano silver paste. Substrate placed in a holder 

and screen-printing was successfully achieved as shown in Figure 3.7. 



 

  31 

 

Figure 3.7 Screen Printing Method used in the study (a) Schematics of  screen printing method, (b) silk 

mesh and silver paste at the center, (c) silver-coated copper substrate, (d) silver paste printed on substrate, 

(e) sandwich structure for joints after preheating. 

After placing nano silver paste on the substrate, the preheating process was applied to evaporate 

solvents in the silver-paste. A Corning PC-600D hot plate, which has a 25.4 x 25.4 cm Pyroceram top and 

digital temperature display, was used. Preheating temperature was 50 
o 

C for 10 minutes. During this 

process, the paste color changed from dark to light greenish.  

3.2.3 Joining process 

During the joining of two copper parts, namely, substrates and dummy chips, with nano silver paste, three 

different pressure-assisted fabrication methods were used to obtain five different groups of samples 

(Groups A, B, C, D and E). For the production of group A and B samples, a flip chip machine was used to 

apply ultrasonic force. On the other hand, a specially designed fixture was used in a vacuum and air 

environment for production of Group C and D samples. Joints in this group were preloaded using a 

metallic screw. For group E, a pneumatic system, capable of maintaining constant pressure, was used 

during fabrication in air. The details of the set-ups used for production will be given in the following 

sections. Table 3.3 represents the variables used during production of each group of samples. Production 

of each group was composed mainly of 3 stages, namely, preheating for evaporation of volatiles, sintering 

of silver nano particles and cooling down to room temperature. 
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Table 3.3 Variables used in the joining process of various groups using silver nano-paste. 

Test 

Group 

Sintering 

Atmosphere 

Pressure 

During 

Heating Stage 

(MPa)  

Pressure 

During 

Sintering 

(MPa) 

Additional Force 

and Condition  

Sintering Heat 

Treatment Cycle 

A Air  0.01 - -  Given in Figure 3.8 

B Air  0.01 - 
0.3 Watt ultrasonic 

force  
 Given in Figure 3.8 

C Vacuum 5 5 

Gradual pressure 

decrease during 

sintering 

Given in Figure 3.10 

D Air  5 5 

Gradual pressure 

decrease during 

sintering 

 Given in Figure 3.10 

E Air  5 5 
Constant pressure 

through the sintering 
Given in Figure 3.12 

3.2.3.1 Group A and B samples 

The dummy chip was placed onto dried nano silver paste after the preheating process was completed. 

Group A and B samples were produced using almost the same processing variables except for the 

ultrasonic force which was only used during Group A sample production. After preheating, an ultrasonic 

force at 0.3 W was applied using JFP Microtechnic DB 5 flip chip bonder. The flip chip bonder had a 10 

mm X 10 mm maximum die size holder with two CCD cameras and it was capable of applying 60-65 kHz 

horizontal ultrasonic force and 200 grams bonding load force. Therefore, a maximum load of 200 g was 

applied to both groups during heating to sintering temperature in air with a heating rate of 11.25
o
C, Figure 

3.8. Then, samples were sintered for 30 minutes at 275 
o
C for 30 mins after removal of the load. 

Subsequently, samples were cooled down to room temperature naturally. 
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Figure 3.8 Preheating and sintering cycles used for the production of Group A and B samples. 

3.2.3.2 Group C and D samples 

As presented in Table 3.3, Group C and D samples were produced in a vacuum and air atmosphere, 

respectively, using the fixture shown in Figure 3.9. The force was applied with a metallic screw prior to 

preheating and sintering only, and it could not be controlled and maintained constantly during each 

production step due to lack of a pressure controller in the design. Initially, the corresponding force for 

each turn of the screw was measured and calibrated with a load cell and then samples were preloaded at 5 

MPa.   
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Figure 3.9 Fixture used to apply pressure via screw during production of Group C and D samples. 

The specimens (Group C) were placed in a vacuum chamber after being preheated at 50
o
C for 10 

minutes. When the vacuum chamber reached 0.3 mbar, the heating stage was turned on and samples were 

heated to sintering temperature with a heating rate of 11.43 
o 
C /min. After the temperature reached 275 

± 5 
o 

C, sintering was conducted for 30 mins, Figure 3.10. Samples were taken out of the heating stage 

when they cooled down to room temperature. Similarly, Group D samples were produced using the same 

processing variables; however, sintering atmosphere was air instead of vacuum.      

 

Figure 3.10 Preheating and sintering cycles used for the production of Group C and D samples. 
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3.2.3.3 Group E samples 

The sandwich structure was mounted into a pneumatic system to apply pressure. The system consisted of 

a pressure regulator, a digital gauge, a compact flexible-mount air cylinder with 100 mm diameter piston, 

and high pressure air hose as shown in Figure 3.11. 

 

Figure 3.11 Constant Pressure Fixture 

To adjust the pressure during production, the digital gauge value was multiplied by the ratio between 

the piston area in air cylinder and dummy chip area. For example, if a dummy chip connection area is 16 

mm
2
, and the piston area is 7857.1429 mm

2
, the ratio between these areas is 491. To obtain 5 MPa 

pressure during production, the digital gauge value was adjusted to 0.01 MPa.  

After a preheating step as described previously, the samples were heated to sintering temperature, 275 

± 5 
o 

C, with a heating rate of 11
o
C/min and held at this temperature for 30 mins. After the sintering 

process was completed, the samples were cooled down to room temperature. During the whole sintering 

cycle (heating, holding and cooling), pressure was maintained almost constant automatically by the 

pneumatic system. Figure 3.12 shows the sintering cycle during the production of Group E samples.   

Compressed Air  

Pressure Regulator 

Digital Gauge 

Moving Table 

Fixed Table Heater  

Dummy Chip 

Substrate 

Pneumatic 

System 
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Figure 3.12 Preheating and sintering cycles used for the production of Group E samples. 

3.3 Characterization Studies 

In this section, the techniques used for structural and functional characterization of sintered nano silver 

joints were presented.  

3.3.1 Microstructural Examination 

For preparation of molded specimens, a hot thermo-setting phenolic resin was used. Mounted samples 

were obtained using the Labo Press at 200 
o 
C temperature and 50 kN pressure. The grinding process was 

used to remove the damaged or oxidized layer present on the surface. Firstly, a belt surface grinder 

machine was used to eliminate residual resin on the sample surface. Specimens were held tight and a low 

pressure was applied towards the sandpaper. During the grinding process, water was used for cooling and 

lubricating. Samples were rotated by 90
o
 for each grinding step to completely remove scratches formed in 

prior steps. The grinding was completed in six steps by using six different sand emery papers with 240, 

320, 400, 600, 800, and 1200 grit sizes.   

For examination of microstructure under an optic microscope and a scanning electron microscope 

(SEM), polishing was used to obtain a flat, defect-free surface. Specimens were polished with aluminum 

oxide solution (Al2O3) using a Buehler variable speed polishing wheel. Two different solutions were 
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used. They contained different aluminum oxide powders, which had average particle sizes of around 1 

and 0.5. 𝜇m. Polished surface of a specimen is shown in Figure 3.13. 

 

Figure 3.13 Surface of a sample cross-section after polishing.  

Ancansco Inverted Metallurgical optic microscope and high resolution LEO 1530 FE-scanning electron 

microscope (SEM) were performed for microstructural examination. SEM was capable of sub-nanometer 

resolution; -detectors: In-Lens, SE, and BSE -capable of up to 6" wafer -operational voltage 0.2-30kV -

low voltage for viewing non-conductive samples x/y/z axes motorized stage. Its rated resolution was 1.2 

nm at 20 kV..  

3.3.2 Mechanical Characterization 

The mechanical properties of joints were tested under shear force using an Instron 4465 500 kg tensile 

test machine at a cross head speed of 0.5 mm/min.  A specially designed fixture was used as shown in 

Figure 3.14 to create shear force upon application of tensile force 
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Figure 3.14 Mechanical characterization set-up used in the study. 

3.3.3 Thickness Measurement 

The sintered silver layer thickness was monitored by a Dektak 8 stylus profilometer. The Dektak 8 

characterizes film thickness, roughness, stress and defects on samples up to 200mm (8 inches) in length. 

The system has low-force tip technology, long-scanning capability and versatile data analysis software. 

The thickness of sample was measured electromechanically by moving a diamond-tipped stylus. It is 

computer-controlled and programmable [69].  

3.3.4 Electrical Characterization 

5 mm X 5 mm quartz dummy chips and 1 inch diameter quartz substrates having 1.7 mm thickness were 

used for resistivity measurement of sintered silver nano-particles. Quartz was preferred to hold the 

sintered particles because of its non-conductive and non-reactive properties in the sintering temperature 

range. After fabrication was completed, quartz plates could be separated from each other easily and a 

uniform sintered nano silver layer could be obtained for electrical measurements.     

Before the measurements, initially, nano silver paste was placed on glass substrate by screen-printing 

methods. The thickness of nano silver paste was as same as the thickness obtained in copper specimens. 
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Preheating was applied at 50
 o 

C for 10 minutes as with previous samples and the same sintering profile 

and pressure was applied for each test condition.  

After naturally cooling the samples down to room temperature, the quartz substrates and quartz dummy 

chips were separated from each other. During the separation process, sintered silver-paste layer was lifted 

up easily from one part and remained only on the other part, either on quartz substrate or on the quartz 

dummy chip. Then, the sintered nano silver layer’s sheet resistivity was measured using Resistivity Test 

Rig, Model B, A & M Fell LTD four probes device. The current was applied outside two probes and the 

voltage was measured internal two of these four probes. The sheet resistance was calculated from the 

measurement results using the following equation: 

 

 𝑅𝑠ℎ𝑒𝑒𝑡 = 𝐶𝑓

𝑉

𝐼
 (3.1) 

 

where Cf is a geometric correction factor, V is the measurement value of DC voltage across the inner 

two probes and I is the applied DC current passing through the outer of these four probes.  This correction 

factor depends on the sample size and probe spacing. For the sheet resistance measurement, since layer 

thickness of sample (t) was much smaller than spacing distance between the probes (s) (t<<s), the 

correction factor was assumed to be π/ln(2), which is around 4.5324 [70]. At least 10 different points 

were measured for each sample and the average value calculated as the sintered silver layer sheet 

resistance. The electrical resistivity of sintered layer was calculated by multiplying the layer thickness by 

the layer measured sheet resistivity (Equation 3.2).  

 

 𝜌 =  𝑡 . 𝑅𝑠ℎ𝑒𝑒𝑡 (3.2) 
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Chapter 4 

Results and Discussion   

In this chapter, firstly, microstructural examination of sintered silver joints manufactured via various 

processing routes was presented. Then, quasi-static mechanical responses of joints under shear loading 

were given in the following section. Moreover, microstructure and mechanical property relations are 

discussed, considering porosity and sintering necks in the aforementioned joints. Likewise, electrical 

properties, i.e. resistivity, of joints were compared and contrasted considering the microstructure 

developed after each joining process.   

4.1 Microstructural Examination  

Figure 4.1 displays the cross-sections of joints after using various joining processes for Group A-E 

samples presented in Table 3.3. The sintered joints exhibited mainly two different cross-sections, namely, 

non-uniform joints with micro porosity and continuously well-bonded porosity-free joints. Although the 

sintered porous silver interfaces in some joints (Groups A-C) were comparatively thicker, Figure 4.1 (a)-

(c), thinner sintered silver regions were observed in other samples (Groups D, E), Figure 4.1 (d), (e), 

indicating better sintering and a high degree of shrinkage.  

Group A  Group B  Group C  Group D  Group E  

     

Figure 4.1 Micrographs of cross-sections in various joints formed by different processes.  

Figure 4.2 presents the representative SEM micrographs of joint cross-sections with and without 

porosity and micro-cracks. Partial fracturing and residual porosity in the interfaces shown in optical 

micrographs (Figure 4.1) has been observed to occur especially in the layer separating silver coating from 

the sintered silver nanoparticle region, Figure 4.2 (a). Micro fracture at the interface indicates partial 

bonding between the layers probably due to a smaller available sintering surface for silver nanoparticles.  

The appearance of such defective interfaces was attributed to insufficient pressure applied during the 

heating and/or sintering stage. On the other hand, very good bonding was seen in the interface region 
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between copper, silver coating and sintered-silver nanoparticle regions in Group D and E samples, Figure 

4.2 (b).  

 

 

Figure 4.2 SEM micrographs showing representative cross-sections of samples containing micro-crack 

and porosity and porosity free samples, (a) Group A, (b) Group E.   

 

Microstructures shown in Figure 4.3 demonstrate the degree of sintering between nano silver particles 

for each test condition in sintered silver regions of the joints. Microstructural examinations revealed that 

the joining process at constant pressure in air resulted in the highest density and shrinkage with relatively 

high neck size ratio, X/D (X: neck size, D: particle diameter), while the bonding between silver nano 

particles was relatively loose especially in those joined without ultrasonic force (Group A). Similar 

sintering behavior was also observed in Group B and C samples produced using ultrasonic force and 

vacuum; however, they exhibited better sintering with less porosity compared to Group A. Although 

micro porosity left due to insufficient sintering was detected in all samples regardless of the joining 

technique, large residual macro pores were observed especially in Group A, B and C samples as shown 

with arrows in Figure 4.3 (a)-(c). 

The reason for the presence of residual macro and micro pores between silver nano particles is twofold. 

One of the possible reasons is the lack of sufficient pressure, which is needed to create the available 

surface for diffusion. It is known that higher interfacial area or higher numbers of contacts occurs 
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between the nano silver particles and between the nano particles and substrate material as well. Moreover, 

the pressure helps in the rearrangement of the nano silver particles to form higher packing density, align 

the grains and eliminate most of the macro pores in green compact [49]. Therefore, application of higher 

pressure and maintaining it constant throughout the sintering process is crucial in terms of obtaining high 

shrinkage and high density powder metallurgy products. Accordingly, residual porosity in Group C, D 

and E samples was relatively lower because of higher pressure applied, i.e. 5 MPa, Figure 4.3 (c)-(e). The 

quantity of porosity was even lower in Group E samples as the pressure was maintained constant during 

sintering. On the other hand, 5 MPa pressure applied in Group C and D was treated as a kind of preload 

since it is created via screws and it gradually decreased during sintering. 
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Figure 4.3 SEM micrographs of sintering surfaces of sintered nano-silver joints (a) and (f) Group A, (b) 

and (g) Group B, (c) and (h) Group C, (d) and (i) Group D, (e) and (j) Group E E 
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Sintering can be described as a mass transport process and the system tries to decrease surface energy 

by eliminating or decreasing the surface area. Between two particles, possible diffusion routes are 

illustrated in Figure 4.4 during sintering. Surface and lattice diffusion occur over route 1 and 2. Usually 

surface diffusion results in the formation of sintering necks without densification. On the other hand, 

grain boundary and through-lattice diffusion result in significant shrinkage and densification. These 

atomic diffusion events require different amounts of energy. During the initial sintering stage, surface 

diffusion is more dominant due to the requirement of low activation energy. For grain boundary diffusion, 

the required activation energy is lower than that of lattice diffusion but higher than that of surface 

diffusion. Therefore, through-lattice diffusion and grain boundary diffusion occur at relatively higher 

temperatures and result in significant densification [71]. For almost all the transport mechanisms, the 

surface condition of the powders, presence of organics, and the presence of pressure during sintering are 

important for increased mass transport. 

 

Figure 4.4 Demonstration of various atomic diffusion routes between two silver particles; route 1 is lattice 

diffusion, route 2 is surface diffusion, route 3 is through-lattice diffusion and route 4 is grain boundary 

diffusion [71].    

As well as the pressure, sintering atmosphere and sintering temperature and time is effective in 

enhancing the diffusion rate, thereby decreasing the residual porosity. Thus, in the current study, the 

second possible reason for residual porosity was considered to be sintering atmosphere. If sintering is 

carried out in vacuum, the degree of sintering is increased due to elimination of possible oxide layers on 

the particles, which act as a barrier for diffusion of host atoms. Moreover, trapped gas between the 

particles remaining in the final stage of solid state sintering, Figure 2.4, is eliminated in this way. 

However, the results of vacuum sintering in the current study were opposite to expectations and the 
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porosity was relatively higher. Since the silver paste contained some organic materials, which needed to 

burn out completely, vacuum atmosphere prevented its removal due to limited burn-out. Therefore, the 

sintering event was degraded due to depletion of the organic materials between the nano particles. When 

sintering occurred in vacuum, this removal of organic materials by oxidation through heating was not 

completed owing to the lack of oxygen. Accordingly, the possible organic material residue was 

considered to be the reason for insufficient sintering and it created micro porosity, Figure 4.3 (c). The air 

environment, on the other hand, during sintering allowed efficient burn-out of binders and organics, 

thereby inducing better densification in silver joints.  

In addition to utilized atmosphere, the magnitude and duration of the applied pressure also affect the 

removal of organics and binders. It helps excessive organics flow out of the powder pack prior to 

sintering and thus, decreases the severity of organics burn-out problems. Moreover, sufficient pressure 

prevents swelling of the compacts due to evolution of gases during burn out [49]. The effect of pressure 

on swelling and densification can be seen more clearly in Figure 4.5. Figure 4.5 (a) shows micro porosity 

with red dots in group A samples which experienced 0.01 MPa during the heating stage. Nano particles 

were sintered well in some regions only; while most of the regions were composed of voids created due to 

organics burn out. These voids prevented the contact and diffusion between silver nano particles 

themselves and the copper substrate. On the other hand, it is observed that the amount of porosity in 

sintered silver in group E was significantly reduced and the microstructure was more uniform, which had 

a positive influence on the properties of joints, Figure 4.5 (b), because of sufficient sintering pressure. 

 

   

Figure 4.5 SEM image showing the effect of pressure on organics related swelling in (a) Group A 

samples, (b) Group E samples. 



 

  46 

4.2 Mechanical Properties 

4.2.1 Stress-strain curves 

As mentioned in Chapter 2, the die-attach materials always face the stress induced due to a mismatch of 

CTE values of layers. Thus, production of joints capable of withstanding relatively higher stresses makes 

possible usage of them at elevated temperatures safe and without failure. In the current study, the 

mechanical properties of sintered nano silver joints in Group A-E samples produced by various 

techniques were characterized by quasi-static shear tests.  

Figure 4.6 shows the stress – strain curves of joints under shear loading. Samples exhibited stress – 

strain curves similar to wrought alloys having linearly elastic regions, strain hardening up to peak stress 

and fast fracture after a peak stress. Small strain hardening regions and sudden fracture after peak stress 

were common characteristic features of the material which indicated brittle-like behavior possibly due to 

oxidation and/or insufficient sintering.  The dominance of each elastic and plastic region was observed to 

be different in samples joined using different methods. Although group E samples showed relatively 

lower strain hardening, the remaining samples had comparatively higher strain hardening regions. The 

strengths of the joints were observed to be highest in Group E samples and it decreased in the following 

order: Group D, C, B, A. On the other hand, it was difficult to evaluate the elastic moduli of the joints due 

to lack of an extensometer during testing. Therefore, any relation between elastic moduli and joining 

technique could not be obtained although elastic moduli is highly affected from the porosity left due to 

partial sintering across the joint region. 
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Figure 4.6 The shear stress and strain curve for all test conditions  

4.2.2 Fracture Surfaces 

Examination of the fracture surfaces of joints, Figure 4.7, revealed both the type of fracturing and voids 

formed as a result of entrapped gases formed during organics removal. In contrast to stress-strain curves, 

a ductile type of fracture was observed in fracture surfaces due to the presence of dimples. Failure in the 

samples appeared by tearing of the sintering necks between the nano particles and fracture surfaces 

smeared in the direction of applied shear stress. As expected, fractured areas or previously sintered 

regions were higher for Group C, D, E samples manufactured by the application of higher pressure. On 

the other hand, relatively high density of large voids was observed in Group A and B  samples where the 

applied pressure during joining was lower. The fracture surface was similar to closed cell foams in which 

each cell is seperated with solid material. These porosities and voids formed during the burn-out of 

organic materials present in the starting silver paste. Gases which were burning by-products of organics 

possibly were not able to escape from the bonding area due to lack of persistent pressure during sintering. 

The porous structures of the joint connected with micro-voids during the shear loading.  
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The fracture in Group A and B samples propagated mainly through sintered nano silver particles and 

partially occurred in the interface between sintered nano silver particles and silver coated copper. 

Although plastic flow (white arrows in the figures) can be observed at all the SEM micrographs in Figure 

4.7 (f) and (g), the plastic deformation in the joint with and without ultrasonic force assisted is less 

evident and less uniform than that in the joints with the other groups. Thus, weak bonding was obtained. 

This observation is consistent with the measurement of the shear strength of the nano silver joint in group 

A and B as seen in stress-strain curves. When pressure was increased from 0.01 MPa to 5 MPa for group 

C, D and E samples the sintered or fracture area increased significantly, Figure 4.7 (h)-(j).   

Therefore, it can be concluded that the failure type of the samples was mainly dependent on the 

mechanical properties of the sintered nano silver layer. 
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Figure 4.7 SEM micrographs of fracture surface of sintered nano-silver joints (a) and (f) Group A, (b) and 

(g) Group B, (c) and (h) Group C, (d) and (i) Group D, (e) and (j) Group E 
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It may also be observed that a more apparent tearing ridge, at which each region is labeled with red 

dotted lines, and a larger plastic deformation, at which each region is labeled with an arrow, was apparent 

in the deformed samples under shear loading for group D and E in Figure 4.8 (a) and (b), respectively. It 

is not only indicative of a more uniform sintered silver layer, but also might be characterized as having a 

more ductile structure like other metal materials [72]. 

 

   

Figure 4.8 Microstructure of fracture section with tearing ridge mechanism and plastic flow for group D 

(a) and group E (b) 

4.2.3 Mechanical Properties 

There are various models proposed to define the dependence of mechanical properties of sintered parts 

and porosity parts. Among the empirical models, minimum solid area model has been utilized for 

indexing the mechanical properties of sintered parts. 

In the model, area (actually load carrying area which are the sintering necks) normal to the stress is 

considered influence on the transmission of stress through the sintered part. Therefore, well sintered parts 

with larger necks between nano particles are anticipated to have higher strength since localization of 

deformation appears contacts or necks. The relative mechanical properties of porous samples, such as 

stress (
*
/o), are related to the proportion of the total cross section normal area to the stress axis (A

*
/Ao) 

in the model [73]–[76]as given in Equation 4.1.  

 
𝜎∗

𝜎𝑜
=

𝐴∗

𝐴𝑜
 (4.1) 

 



 

  51 

where  and A stand for stress and area. On the other hand, superscript “*’’ and subscript “o’’ defines 

the sintered samples and bulk counterpart of the same material. The minimum solid area model is a 

simple estimation of the real sintered area (neck and cross-section area). It shows the sintered samples in 

loose or compacted condition. 

The calculated strength values of the sintered joints were observed to be consistent with the proposed 

MSA models such that Group A samples which had relatively less load carrying area or small sintering 

necks exhibited low strength while the stress transfer capacity of well sintered Group E joints was the 

highest. Figure 4.9 shows the average shear strength values of the samples which was calculated by 

testing at least 4 samples. 

The bonding strength for joints were similar and observed to change approximately 4.1 and 4.4 MPa, 

respectively, for Group A and B samples which produced using relatively low pressure. Even though 

sintering occurred between nano silver particles; there was no significant diffusion between silver coated 

substrates or silver coated dummy chips and nano silver particles as revealed by the fracture surface 

examination. Additionally, the presence of large voids in the fracture surface was the indication of 

insufficient sintering. Since the strength values in two groups were similar the effect of ultrasonic 

pressure could not be determined as the flip chip bonder machine was not capable of applying higher 

pressures. In this case, the ultrasonic force effect on bonding strength is not clear. On the other hand, the 

strength values were quite promising as the type and magnitude of the sintering pressure changes. The 

results were quite high when compared with just the ultrasonic force test condition as pressure increased 

to 5 MPa. The strength values increased by 2, 4 and 8 times for Group C, D and E samples, respectively, 

due to increased neck area. However, each group’s strength values were different due to different degrees 

of sintering.  

Group C joints performed in vacuum exhibited strengths around 9 MPa which was actually half of the 

strength of Group D joints (17 MPa). The reason for relatively lower strength in Group C was attributed 

to insufficient burning out of organics in the vacuum environment. On the other hand, the average 

bonding strength was found to be 32.3 MPa for the group which was even higher than that of the Group D 

sample. Although the test parameters were the same for both Group D and E samples processed in air, the 

application of pressure was different. The pneumatic press test fixture supplied the constant pressure over 

the entire processing in Group E samples; however, the pressure (applied by screws) gradually decreased 

and its effect was lost in Group D samples. During the sintering process, the layer thickness of nano silver 
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paste decreased due to disappearance of organic materials and engaging nano particles due to persistent 

pressure. The average shear strengths are presented in Figure 4.9 

 

Figure 4.9 The average shear strength of the joints processed in different conditions 

 

The comparison of the literature and the present study results are represented in Figure 4.10. The red 

square shape label shows current study results. At 5 MPa assisted pressure, the shear strength has been 

scattered between 30 MPa to 41 MPa in the literature depending on test conditions. It is difficult to 

evaluate this comparison because there are several parameters which affect the bonding quality. The 

closest test condition is the Gang Chen and et al. [51] study, which is marked by a red circle in the figure. 

They reported 39.1 MPa shear strength at 275 °C and 5 MPa assisted pressure for 10 minutes. 
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Figure 4.10 Comparison with the shear strengths dependent on pressure effect.   

4.3 Electrical Properties  

Electrical resistance means that the flow of current through a material faces resistance. Resistance 

depends on the chemical composition of materials, sample length, and cross-sectional area. The electrical 

resistivity and conductivity are material properties and their relationship is inversely proportional to each 

other. The sheet resistance is a thin film resistance over nominal uniform thickness. In this study, 

electrical resistivity was calculated for each test condition. Figure 4.11 shows the average electrical 

resistivity of the sintered nano silver layers, which were produced using various manufacturing processes.   

The completed sintering event and densification of the sintering region mainly impact the electrical 

properties of the sintered nano silver layer [71]. Group A, B, and C had very high resistivity, 125.5, 

109.3, and 119.1 μΩ.cm, respectively. Group D had relatedly lower resistivity, 17.9 μΩ.cm. The closest 

resistivity of the bulk silver (1.55 μΩ.cm) one was obtained in group E, 7.8 μΩ.cm. This significantly 

better performance is due mainly to the average neck size being the largest and complete burning out of 

organic materials, which keep separating the conductive nano particles. The results indicated that the 

resistivity was reduced and became closer to bulk silver resistivity value when nano particles engaged 

each other well in a continuous and conductive path.   
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Figure 4.11 Electrical resistivity for each test group 

Microstructural study reveals the relationship between sintered nano silver layer resistivity and neck 

growing. The main reason of reduction of resistivity is physical contact between particles. The 

microstructural differences between groups are presented in Figure 4.3 . The resistivity aspect of these 

microstructures is that nano silver particles were well-bonded to each other. Densifications of 

microstructures increase while resistivity of layers decreases. Grain size, porosity of structure and 

resistivity relationship have been defined as mathematical models in the literature [77], [78]. A large grain 

size and less porous structure have lower resistivity than small grain size and a more porous one. Assisted 

pressure created less porous structures and a well sintered region. 

Group A and B have very similar microstructure; consequently, their resistivity measurements 

confirmed this microstructural similarity. The sintering atmosphere was air, and organic materials were 

burnt out completely. However, the growing necks between particles were limited due to lack of sintering 

pressure. Less physical contact between particles is implied; thus, the resistivity of these samples is 

higher. Lack of oxygen atmosphere prevented the burning out of organic materials completely in vacuum. 

Less physical contact and higher resistivity for group C is indicated. Even though tests were held in air for 

group D and E, it is also apparent that the absolute resistivity is higher for group D compared with 
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constant pressure test conditions for group E due to improvement of nano particle connections with 

constant pressure.   

Based on the comparison of the measured results to the bulk resistivity of silver, a conclusion can be 

drawn that group E had a conductive path because of a well-sintered region and approached bulk silver 

resistivity. The results show that the resistivity reduced with densification of sintered layer and well-

sintered region which means more physical contact. The same result has been concluded regarding the 

microstructural examination.  

Figure 4.12 represents comparison of electrical resistivity between common used solders and Group E. 

The resistivity decreases using nano silver paste, however, sintered silver layer resistivity is still high 

according to bulk silver resistivity. 

 

Figure 4.12 Comparison of electrical resistivity between sintered nano silver layer (Group E), commonly 

used solders and bulk silver.   
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Chapter 5 

Conclusions and Outlook  

5.1 Conclusion 

In this thesis, die attach material was studied for power modules in automotive applications. The die 

attach material is one of the most common reliability issues for packaging. Nano silver paste was chosen 

as a die attach material and different fabrication methods were applied to bond chips and substrate to each 

other. Silver coated substrate and dummy chips were successfully bonded to each other using nano silver 

paste.  

Ultrasonic force effect on bonding was investigated. A weak bonding was obtained due to lack of 

assisted pressure.  

Sintering atmosphere effect was studied. The joining process was carried out in air and vacuum. The 

result reveals that air atmosphere clearly gives better bonding between the dummy chip and substrate in 

comparison with vacuum atmosphere due to lack of oxygen.  

Two different tests were carried out in air atmosphere. The only difference was the assisted pressure 

condition. This test concluded that assisted pressure has a strong impact on bonding quality. The constant 

pressure produced stronger bonding strength and less resistivity of the sintered nano silver layer than a 

gradually declining pressure.      

According to microstructural examination, mechanical and electrical characterizations, the conclusion 

can be drawn that sintering pressure and test atmosphere strongly influence the bonding quality. The 

sintering pressure helps to improve mechanical and electrical properties of nano silver paste not only 

because of an increase in contact surface for sintering, but also an improvement in outgassing of organic 

materials. Additionally, oxygen is needed to burn out organic materials. Air atmosphere aids the sintering 

event due to elimination of organic materials.      

5.2 Future Work 

In this study, the processing parameters, which are sintering temperature, sintering time, and assisted 

pressure, were kept constant. It might be useful to study the effects of these parameters on bonding for 

each test condition. While one parameter is changed such as temperature, the rest of the parameters are 

kept the same. This test might reveal which parameter is vital for bonding quality.  
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The ultrasonic force effect was studied. However, sintering pressure was 0.01 MPa and it was not 

enough to reveal the ultrasonic force impact on bonding due to lack of equipment. Further investigation is 

needed.  

Additionally, the reliability tests can be applied for each test condition. For microelectronic reliability, 

thermal cycling and power cycling tests are commonly used to reveal reliability of a given device under 

certain conditions. The most common standard tests are Jesd22-A104E and Jesd22-A122, which are 

published by JEDEC solid state technology association. These test conditions can be applied. After 

certain cycling, microstructural examination might give a better understanding of the nano silver joining 

reliability under our test conditions.            
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Appendix A 

Parameters of Some Studies  

Appendix A gives a summary of studies carried out at various processing conditions using different silver based pastes and elementary Silver 

powders. Commonly studied variables are the types of die attach materials and their sizes, coating of substrates and chips, sintering temperature, 

pressure and time, heating rate, test methods, and the shear strength of joining. 

 

Application 

Die attach 

material, 

thickness and 

size 

Test 

methods 

Electroplating  

material 

substrate 

Electroplating 

thickness 

substrate 

Electroplating 

material chip 

Electroplating 

thickness chip 

Sintering 

time 

Sintering 

pressure 

(MPa) 

Sintering 

temperature 

Heating 

rate 

The shear 

strength  

(ultimate shear 

stress) (MPa) 

References 

 

Power electronic 

Nano silver,  

75 micron 

before drying, 

>50nm 

Power 

cycling 
DBC, Ag 5 microns Si, Ag 5 microns 

60 

second 
5  275 

600 

K/min 
40.1  [79] 
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LED 

Nano silver,  

50 micron 

before drying 

and 15 micron 

after, - 

(>50nm) 

Clamp of 

micro 

tension-

torsional 

fatigue  

Lead frame, 

Ag/Ni 
- 

Si, Au back 

coating 
- 20 mins - 275 - 28.7  [19] 

Power electronic 

Nano silver, 

50 micron, 

(>50nm) 

Single lap 

shear joint, 

fatigue 

Cu,- - Cu,- - 30 mins - 280 - (28 ) [58] 

Power electronic 

Nano silver, 

before 60-80 

micron after 

30-40 micro, - 

(50nm) 

Power 

cycling 

DBA, Ni flash 

Au/Ag 
- 

AlSiCu/ Cr/ 

Ni/Ag  
- 

60 

second 
5  275 - - 

[80] 

DBC, Ni flash 

Au 
- AlSiCu  - 

60 

second 
5  275 - - 

DBC, Ni flash 

Au/Ag 
- 

AlSiCu/ Cr/ 

Ni/Ag  
- 

60 

second 
5  275 - - 

DBA, Ni flash 

Au 
- 

AlSiCu/ Cr/ 

Ni/Ag  
- 

60 

second 
5  275 - - 
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Power electronic 

Nano silver 

before 90 

after 50 

micro, 30 nm 

Fabrication 

and 

mechanical 

test  

Cu, Ag 10 microns Cu, Ag 10 microns  
600 - 10 

seconds 
5 - 1 225 - 275 - 30  55  [81] 

Microelectronic 

packing 

Nano silver 

50 micron, 

>50 nm 

Lab shear 

joint test 

mechanism  

Cu, -  - Cu, - - 30 mins - 280 - 

28 (at room 

temp.), 13.3 

(325) 

[59] 

Power electronic 

Nano silver, 

50 + 10 

micron, 

>50nmm 

Fabrication 

and 

electrical 

testing  

DBC, - - Al, Ag  - 3 mins 1 to 12  275 - 25   77  [82] 
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Electronic 

packing 

Nano silver,  

45 micron, 20 

nm (they 

produced) 

Fabrication 

and 

mechanical 

test  

Cu, Ni and Ag 
Ni 2 microns, 

5 microns Ag 
Cu, Ni and Ag 

Ni 2 microns, 

5 microns Ag 
20 mins - 

150 

5 K/min 

17 +- 5 

[83] 

200 25 +- 5 

Flexible 

electronic 

Nano silver , - 

, 40 nm 

Fabrication 

and 

mechanical 

test  

Cu, Ag   - Cu, Ag   - 30 mins 0-5  250 
20 

C/min 
15  50  [35] 

Power electronic 

Nano silver, 

before 50 +10 

micron  after 

20  micron, ( 

> 50nm) 

Fabrication 

and 

mechanical 

test  

DBC, Ag 
a few hundred 

nanometers 
Al, Ag 

a few hundred 

nanometers 

10-30 

mins 
0-3  275 

preheate

d  
11   53.8  [84] 
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Microelectronic 

packing 

Nano silver , - 

,70 nm 

Fabrication 

and 

mechanical 

test  

PCB, ENIG 

(Electroless 

Ni  

Immersed 

Gold) coated 

Cu pads 

- Si,- - 
30-60-90 

mins 
1-5-10  

170-200-

230  
- 0.2   0.8  [85] 

Power electronic 

Ag flake + 

nano silver, 

before 200 

microns,  - 

Fabrication 

and 

mechanical 

test  

Cu, Ti and Ag 

Ti 40 

nanometers, 

Ag 2 microns  

Cu, Ti and Ag 

Ti 40 

nanometers, 

Ag 2 microns  

30 mins 0.4  250 - 15  [61] 

Power  modules 

Nano silver, 

before 50 and 

100 micron 

after 25 and 

55 micron,  

20 nm 

Fabrication, 

mechanical 

test and 

thermal 

cycling  

DBC; Ag, Au 

or Cu 
- Si - 

45 secs - 

5 mins 
5-10  230 -250 - 

Cu Au  Ag [86] 

20 >25  >25  
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Power modules 

Nano silver, 

before 100 

micron, -

(20nm) 

Fabrication, 

mechanical 

test and 

thermal 

cycling  

DBC; Au, Ag, 

and Cu 
- Si  - - ~ 10  < 300 - 

Cu Ni/Au  Ag 

[87] 

36 35 36 

Microelectronic 

packing 

Nano Ag 

+Cu,  50 

micron, Ag-

40 nm and 

Cu-50 nm 

Fabrication, 

mechanical 

test and  

thermal 

aging  

Cu; Cu, Ag, 

Au 
0.5 microns  

Cu; Cu, Ag, 

Au 
0.5 microns  30 mins - 380 5 C/min 

Ag Cu Au 

[41] 

52.6 42 34.4 
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Appendix B 

Datasheet   

Nano silver paste datasheet was received from Nihon Superior CO., LTD.  
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