Web Tasking:

An Investigation of End User Interaction

for the Ideal Control Metaphor

Elizabeth Kittel

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2016

©Elizabeth Kittel 2016

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

[understand that my thesis may be made electronically available to the public.

ii

Abstract

Users are finding multiple ways to utilize web applications (apps) outside of their typical self-
contained purposes, resulting in an increasing need to connect apps together. This connectivity can
be achieved through web tasking: the integration of web services/apps to achieve a personal goal.
This research investigates the end user perspective, focused on comparing user interaction with web
tasking interfaces through various analytical and empirical studies. These studies were divided into
three distinct parts: i) Hierarchical Task Analysis (HTA) performed on existing web tasking interfaces
as a usability benchmark, ii) creation and evaluation of a new interactive prototype, WebTasker, and
iii) a full scale usability study with 16 participants evaluated four web tasking interfaces by
performing 4 high complexity tasks and 4 low complexity tasks on 4 different interfaces (32 distinct
tasks). A significant correlation was found between the number of keystrokes and mouse
clicks/scrolls and task completion time; suggesting that simple task input counts could be used as an
early usability predictor in web tasking interfaces. In addition, the HT A revealed several HF issues
such as freedom of user actions by examining task structures (e.g. linear path versus wide HTA
structure). The usability study showed that participants had poorer performance and found it more
difficult to create web tasks with higher complexity. A mental model examination of composing web
tasks found that participants preferred to enter task conditions first then actions.

Web tasking is a new area in Human Computer Interaction (HCI) research and this research
aimed to further develop web tasking interfaces to ultimately lead to an increase in user adoption of
web tasking. The design of a new web tasking interface, WebTasker, utilized a journey line metaphor
and proved to be successful in the usability study. It was recommended that it be further developed as
a viable web tasking interface. Further lines or research are recommended including refining study

tasks, dashboard development, and improvements to the WebTasker interface.

il

Acknowledgements

This work was supported by IBM’s Centre for Advanced Studies (CAS). I am grateful to
Joanna Ng (IBM) and Tinny Ng (IBM) for this unique opportunity to be a part of the web tasking
project and for their continuous support and inspiration. Thank you to my readers, Professor Carolyn
MacGregor and Professor Stacey Scott for their valuable comments. I would like to thank Kavita
Chepovetsky for her contribution to the creation of the prototype and help with the study. Thank you
to Murat Dikmen and Damla Kerestecioglu for assisting in administering the study. My thanks also
goes out to Anson Ho for his input and feedback to this thesis. Special thanks to all the members of

the Advanced Interface Design Lab (AIDL) for their friendship and our heart-to-hearts.
Thank you to my family for their love and encouragement throughout my program.

Finally, thank you to my supervisor, Professor Catherine Burns, for her advice, support, and

guidance over the entire duration of my stay at the University of Waterloo.

Elizabeth Kittel

March 2016

v

Table of Contents

AUTHOR'S DECLARATION ..ottt ettt sttt et be et sbe et et b e aesteeneens ii
AADSITACE ..ttt ettt ettt ettt bt e h b et e h et e bt e a e e bt eh e et bt e a e e bt e st et e ebe et e bt ent et e ene et e bt eneees il
ACKNOWIEAGEIMENLSecviiiiiiieiie ittt etes et e ettt e steessbessbeesse e teesseessaessseasseesseesseesssesssesssesnsenns iv
TADLE OF COMNLEIES ...ttt ettt ettt et e b e b e s bt e sb e e sat e e ateenbeesbeeebeesaeesaeeeabeenbeenbeenns v
LIST OF FIGUIES ..ttt et ettt e b e bt e s et e et e e abe e bt e sbeesaeeemteeabeenbeebeenaeas viii
| o) 21 o) (<SSO X
LSt Of ADDIEVIALIONS.....c.ueiiiietieitie ittt sttt et et e s bt e saee et e e bt enbe e beesbtesateeneeanteens xi
Chapter 1 INtrOAUCTION.cociiiiiiieciie ettt ettt e et e et e e e tee e st e e ebeeetbeessseeesssaesaseeensseessseennsns 1
| LY (075 Az 110§ USRI 2
1.2 TRESIS OVETVIEWeutieiieiieeiie ettt sttt et e bt e s bt e s ate et e e bt e bt e bt esbtesaeesateenbeebeesseesneesnseenseenseennes 2
Chapter 2 BaCKZIOUNG.........coouiiiiiiiieieeeese ettt ettt st e st st eete e beesbeesseeenteeabeenseenss 5
2.1 Related RESEAICHooiiiiiiiiiiee ettt ettt et et e sbe e st e et e et ebeees 5
2.1.1 End USEI PrOZIAMIMINGccueevvviereeieeieesieeseesreeseasseeseesseesseesssesssessseesseessessssesssessseessessssesens 5
2.1.2 MASKHUPS. ..cutteeiieiiieit ettt et e et et et e st esebeesbeesse e saessbessseasbeasseessaesseestsessseasseesseenseennes 6

2.2 Web browsing versus Web taskingccccvevierierciiirieiriesieseesee e ereeseesreeseeesenessessseesseesseesens 7
2.2.1 TASK @S @ SEIVICE ...eeuvieuietieiieieeti ettt ettt ettt et ettt et e bt et et e est et e sbeeneeseeneeneeaneenean 8

2.3 LIterature REVIEWccuieiiiiieieieeiiee sttt et ae et b et e b e s bt et e steeseeeeeneeneeseeenean 8
2.3.1 Keywords and APPrOachc.cccuieviieriieiieiieciicre et et esreesteeseeesaeesreeseesteesssessnesssesssessseesens 8
2.3.2 Literature Review RESUILSc.oooiiiiiiiiiiieee et 9
Chapter 3 Analytical Study of Web Tasking INterfacesccceevveveiirciieciiinienieciecie e 15
3.1 BACKGIOUNA ...c.vviiiiiiiicie ettt st e ettt e e s teestaeeebessbeessaesaessaessseasseesseessaesseensnenes 15

T R N £ s USSP 15

B2 IMEENOM. ... ettt et e e e e e te e e et e e e tae e abeeebaeetaeeeareeenns 15
B3 T SKS ettt ettt ettt et e et e e ta e e et e e e aaeeaabeeeabeeatbeeetaeeenbeeebaeeraeeereeenrs 15
B4 RESUILS ..ottt ettt ettt e ettt e et e e ta e e ete e e taeesabeeeseeesaseeeateeeaabaeeabaeeanbeeeataeetseeenreeenns 17
3.4.1 Hierarchy of FUNCHONScoociiiiieiiiiiesie ettt ettt st et e b e sane e 17
3.4.2 Task BreaKAOWIL....c..coouiiiiiiiiiiieee ettt sttt s b 24

3.5 Keystroke and Mouse ClICK COUNLScceerieriireiiieriieiieeieeie ettt eieeseeesteesetesseeseeseesseesnnenns 25
3.6 Conclusions and RecommEeNdations...........cccuererieriniriieniniereeteeee ettt 27
Chapter 4 A New Web Tasking Interface: WebTasker.........cccveviiriiieiiieiieiienieceecee e 28
4.1 Usability GUIACINESccvviiviiiiiieiiieieecieeeiteeite ettt ettt e steesbeebeebeesteestsessseesbeesseesseessaesssesssessses 29
4.2 PIOE STUAY veeuvveiieeerieiieieeitee et e ete ettt et e st e s ebeeebeebe e baestseesbeesbeassaassasssesssesssessseessaesaesssesssesssees 34

4.2.1 Pilot StUAY RESUILSviiiiiiiiiieiiecie ettt ettt et eveesteestr e s v e sveesveeveestaesrsesaseeaveenveens 34

4.3 Early web tasking concept ideas and prototypes.........cccueeuierieereerienienie e 39
4.4 Web Tasking Interface Prototype: WebTaskercoouviiiiiiiiiiiiinieieeeeeeeee 41
4.5 Other Design FACOTSciiiiiiiiiieieie ettt sttt et be e i e e 48
Chapter 5 Usability StUAYcoiuieiieieeee ettt ettt st ettt e b e s 50
5.1 PATtICIPANES.eeveieieieeie et eites e ete et et eteestaesttessseesseesseesseesssessseasseasseessaesssessseasseesseessessseenssennns 51
5.2 StMUIL aNA APPATALUS.veevieeierieiiiereeseereesteeteeteesteesseesstessseasseesseesseesssessseassessseessessseesssennns 51
5.3 EXperimental DESIZN........ccccveriiiiiiiieiieiesie sttt ettt sae st seesteestaesnseenseessaessaessaennneenns 52
5.3.1 Independent Variables............cccverieriiereiieciieiieieeee e see e ereereesteesteesssesssessseesseesseesseessnas 52
5.3.2 Dependent Variablesccverierieriieriieiieieeieeriee e saesresseeseesseesseesssesssesssasssessseesseesses 53
SA PTOCEAUIE ...ttt ettt ettt s bt e et et e st et e e bt e s e steest e beeneentesseeneenees 55
541 TAMINE ... vieiieiiesiieete st ete et et esteestesebeeseesseesseesseesssesssessseasseasseesseesseesssesssessseessensseeseessees 56
542 DEDIICTING ...veevvieiieciie ettt ettt ettt e bt e e e s tbessbeesbeesseesseesseessaessseesseasseesseesseeseas 56
5.5 ANALYSIS OF EITOTS ...oiiuiiiiiiiieiiecie sttt sttt et et esta e s b e e b e esbeestaessaessseesseessaessaesseenssensns 56
5.5.1 Typo SubMISSION EITOTceiiiiiiiiiiiiieiieeieeieet ettt ettt ettt st et aeesaeas 57
5.5.2 Selection of the WIONg Itcc.coiiiiiiiiieieieie e 57
5.5.3 Entry of Data in the Wrong SECHIOMNc.eecuieiiieriieiierieeie ettt 57
5.5.4 Severe Errors, TEAI......ccouvvieiiiiii ettt e e e e e e s e e eaaaaeeeeeessennnaes 57
5.5.5 TiME OUL EITOTS ...ceviiiiiiiiieie ettt ettt ettt ettt st et ete e st e e bt e saeeenteeateenbeenseeseenaeas 57
55060 OLNET ..ttt ettt ettt et e et e et et e te et e s e et e b e st e b e eteest e seeseenseeseensenns 57
5.6 ANalysis OF RESUILSciiiiiiiiiieiiece ettt ettt ettt st et ete et e sseeeneeenee 58
5.7 USAbIlItY RESUILS ..c..euiiiiiiiiiiiietetee ettt ettt ettt 58
ST L TETTT RESUILS ..ottt ettt ettt ettt ettt e et esesesessesteessenseeseensesseensanses 58
5.7.2 SCrIbDBIE RESUILS ..ottt sttt et ne e neas 61
5.7.3 ZAPIET RESUILS ..eoviiiiiiiiiicie ettt ettt s ta e e b e e b e esteesteesbeessaessbessbeesseesseesseesseas 64
5.7.4 WebTaSKer RESUILSc.eeiiiiiiieiieiee ettt 67
5.8 System Usability Scale and Overall Likert Ratings Resultsc.ccccvevveviiiiiieiienieniecieeen, 72
5.8.1 Correlation of SUS Scores and Likert Scale Ratings..........cccccevvvevienienienciierieieeeeeeenn. 73
5.8.2 Keystrokes and Mouse Clicks/Scroll Count Correlation to Task Time.........c..ccceeeveevennen. 75
5.9 Debrief Questionnaire RESUILSccviiiiiieciieieie ettt ettt eete et e e e eaee s 77
5.9.1 Question 1: Mental MOdELoooiuiiiiiiieiie e eee et eae e 77
5.9.2 Question 2: Features and FUNCHONSccocooiviiiiiiiie et 78
5.9.3 Question 3: Scheduling Featurecvecvieeiieiieniiiniecece e 83

5.9.4 Question 4: Favourite INterfaceccveiiiiiiiiiiiiiii e e 83

5.10 Usability Study SUMMATY.........coouiiiiiiiieiae ettt ettt sttt e b e saeeens 84
CRAPLET 6 DISCUSSIONccuvviiieiieiiiieiiieeieeeeteeertteesteeateeesebeeeseeessseesssesessseessseeasseesssesessseesssesessesessseeanes 86
6.1 Mental Models and User Performancecoceeueeiiiiienieiieeieeeeee ittt 87
6.2 TaSK DESCIIPLION. .. eecviiieiiieiie et e ciee et et e et e et e et e e st e e eabeesebeeebbeessseesaseeessseesssaeesssesssseeenses 87
6.3 TaSK COMPIEXILY ..veevierieiiesierieeiieieestestestesteeteesbeesteessaessseasseasseesseesseesssessseasseessensseesseesseenns 87
6.4 Correlation from Task TIimMINg.........cccueriiriereieiiieeiieseeseestesteereereereesseessaessseesseesseesseesseessneans 88
LT 33411718 (o) s SO RR S PRRS PR 89
6.5.1 Keystroke and Mouse Click/scrolls Count approachc.eccveeeeveereencieniiesneeneeseesnenns 89
6.5.2 Prototype lIMILAtIONS ...ccvvevevirvieiieiiesieestesteeteesie et esteesteesaeeseesseeseesseesssessseasseessassseessnenns 89
Chapter 7 FULUIE RESCATCHccuviiiiiciiciiciieiieste sttt ettt s e b e be e e e staestbessbeesbeesseessaesssessnenes 90
7.1 Future work on the usability StUAYccveviiiiiiciiiiicieeciecte ettt ereesreesene e 90
7.2 WEDTASKET AESIZNvievieiieiieeieeiieieetestesteste et e ebe e bt e staeseaeesbeasseessaessaesssesssessseasseessaesseensnnes 90
7.3 BEYON thiS STUAY ..ecvvievieiieiieiieeiieiteitesitesteste et eeteeteestaeseseeebeasseesseessaessaesssesssessseessaesssensenns 91
7.3.1 Design of dashbDOArdooouieiiiiiiiiee ettt 91
7.3.2 SECUTILY AN TIUSE....eetietiiiie ettt et ettt et e ettt e bt e sbeesatesateenteebeesseesnneens 92
7.3.3 Improvements to Current Scribble INterfaceoooveeiiiiiiiieiieieeee e 92
Chapter 8 CONCIUSIONeeutietieiieeiieee ettt ettt et e e et e st e et e bt et e e sbte s bt e sateenteenteenbeesseesneans 94
L2310 TT07ea 21 o) 1 OSSR 95
Appendix A Usability Study Material..........ccocorieriiiiiininiieeteeeeeee et 98
A.1 List of tasks used in usability StUAYccceeiiiiiieiieie e 98
A.2 Participant information letter, consent form, and briefing SCript..........ccccevveeriieriiieieenieneenne. 109
A.3 Demographics QUESTIONNAITEeecurertieriienieeieeie et eieesite st e sitesteeteesteesteesaeesnaesnseenseenseennes 113
A4 SUS QUESLIONNAITEveeeevieeeerieeieeeeteeeeteeeeteeeeteeeeteeeeeteeeeseeeeeseseeseeeeseeeeseseeseeeeseeesseeensesensseean 114
A.5 Debriefing QUESHIONNAITEccvecvvieriierrieriesreereereereereesseesseesraessseeseesseesseesssesssessseessessssesens 115
Appendix B StatistiCal ANALYSIS......ccccciiviieiierieriecre ettt esteeseesreereeseesseestaesraeseressneesseesseeens 116
Bl IFTTT RESUILS....eeieeieeeee ettt ettt et e s et esbe et e eeeneeneesneenean 116
B.2 SCribble RESUILScueeeieiieieeeiee ettt sttt ettt et e e e e neeeesneenean 118
B3 ZaPier RESUILSccuviieiiiiieiieieccie ettt te et te e s tae e tbeeabeesbeestaestsessaeesbeesbeensaenees 120
B.4 WebTaSKer RESUILScccueiuiiiieiiieeee ettt ettt e e et e e et eeesneeneas 122
BLS SUS SCOTE ...ttt sttt et et e bt e s bt e st e st e abe e b eees 124

vii

List of Figures

Figure 1: Thesis OULINE.ccuoouiiiiiiitieieee ettt ettt ettt et be et et e e e b enee e 4
Figure 2: Scratch screenshot Xample...........ooovieriiieiiiiieeee e 6
Figure 3: An Open Tasking Conceptual Model (Ng, 2015)......cccvivirrirriiiiiieieeneesee e e siee e 8
Figure 4: IFTTT screenshot €Xamplescoueeiiiiiiniieiieiieeie ettt et 12
Figure 5: Zapier screenshot €XamPIecoviiiiiiiiiiieieee ettt 13
Figure 6: Scribble screenshot eXamplecooouiiiiiiiiiiee e 14
Figure 7: Scribble High Complexity Task BreakdoWn.........ccccoooiiiieiiiniiniiiiiceeeeeeeee e 18
Figure 8: Scribble Low Complexity Task Breakdownccoocoeiieiiiiiiniiniiiieeeeeeeee 19
Figure 9: IFTTT High Complexity Task Breakdowncccoeeiieiiiiiiiiiniiiicceeeeeeeee e 20
Figure 10: IFTTT Low Complexity Task BreakdoWn..........ccceeviieiieiiieiiiiiiiiceeeeeeee e 21
Figure 11: Zapier High Complexity Task Breakdown..........ccccoecuieiiieiiiniiniiniiiceeeeeeeee e 22
Figure 12: Zapier Low Complexity Task Breakdownccccoecveiieiiiniiiiiiiiceeeeeeeeeee e 23
Figure 13: Web tasking keystrokes and mouse clicks and scrolls countcecceeceeeeerenceneneeeenne. 26
Figure 14: Design input t0 WebTasKercccviviiiiiiriieiieciece ettt 28
Figure 15: IFTTT Screenshot with html COAe.......c.ooiiiiiiiiiiiiiieeee e 35
Figure 16: IFTTT Screenshot with variable names displayedccccvevvevienieiiciieieeneereeseeere e 35
Figure 17: Zapier screenshot of input fleldscooiiiiiiiiiiiie e 36
Figure 18: Zapier screenshot Of fIlter USEeecierieieiiiiieee e 37
Figure 19: Node-RED SCT@ENSNOLccueiuieiiiieiieieeie ettt 39
Figure 20: WebTasker early prototype gear Metaphorcc.eeeveeevieiienieenieiie e e e esreesreeseneeene e 40
Figure 21: Incorrect web tasking mental model............coooeiiiiiiiiiiieee e 40
Figure 22: Correct web tasking mental modelcooeviiiiiiiiiiiniiiieeeeeeee e 41
Figure 23: WebTasker HOMEPAZEccceivuiiiiiiiieiieiieitere ettt sttt ettt 45
Figure 24: WebTasker Create New Task, Blank Journey Linecccccoevievininiininiininnncncneee, 45
Figure 25: WebTasker Example Web Task, populated journey lineccccooeevenenieninenncncnnnenne. 46
Figure 26: WebTasker EXample Add APD.....veeoieeiieriieieeieeie ettt sttt 46
Figure 27: WebTasker Example User Information Inputcccooiiiiiniiinninnninieeeceee, 47
Figure 28: WebTasker Example Complex Taskccoovverieriiriiiniieieeereese e 47
Figure 29: Interfaces (clockwise from top left) IFTTT, Zapier, Scribble, WebTasker........................ 52
Figure 30: SUS questionnaire screenshot eXample...........ooceririerininiieninieneneeeeeteeeeee e 54
Figure 31: Likert Scale Rating appended to SUS qUESIONNAITE.........c.eevveervrerreeieeieenreenieesreeeereeeneeens 55
Figure 32: IFTTT RESUILS ...ueeeieieiieeiee ettt ettt et ettt e te et ebe e st et e sseeneeneas 59

Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:

IFTTT Error FIEQUENCY ..eccviieiiieeiieeiieeeiteeiteeeteeeteeetteesveeetaeessseesnsaeessseesnsaeensseesssasennns 61
SCIIDDIE RESULLS ...ttt ettt et 62
Scribble Error FIEQUENCYcoouiiiiiiiiiiiiit ettt 64
ZAPIET RESUILS ..oeeviiiiiiiciie ettt ettt e et e e st e e tae e e beeetbeessbeeensaeessseaanes 65
ZaPIer EITOT FIEQUEINCYtiiuiieiieiieitie ittt ettt ettt ettt s b e st e e te e beesbeesaeeeas 67
WebTasker RESUILSoouiiiiiieei ettt 68
WebTasker Interaction Effect, computer programming experience and gender 70
WebTasker Interaction effect for computer programming experience, gender, and task time
.. 71
WebTasker Error FTEqUENCYcccuiiiiiiiieiieiteteeeeere ettt 72
Correlation between SUS Score and Overall LiKertccccovirieiiiiniiniieeceeeeeee 74
SUS SCOTE MEANS ..ottt ettt sttt e bt e sbte st ebe e b enee 75
Keystrokes correlation to task time..........ccvvecvieerieriierierieiie e e e eseeseesresreeereesseesseeseas 76
Mouse clicks and scrolls correlation to task timecccceeveveeeierieiieiereee e 77
Debrief Question 1 Mental Modelooouviiiiiiiiiiiiicceceee e 78
Debrief Question 2 Feature and Function IFTTT PoSIitivecccocovveieciieiiieciiecieecieene 79
Debrief Question 2 Feature and Function IFTTT Negative........cccooceerieriinieeieeniesieeeeee 79
Debrief Question 2 Feature and Function Scribble PoSitive..........cccveeeviieiiiiiciiiciieeieeas 80
Debrief Question 2 Feature and Function Scribble Negativeccccceveiiiiiiiieenienieeine 80
Debrief Question 2 Feature and Function Zapier POSItiVe...........ccoccveveeriiiiieeneenienieee 81
Debrief Question 2 Feature and Function Zapier Negativecccceveevieriieeieeneeneeeienne 81
Debrief Question 2 Feature and Function WebTasker Positive.........c.cccoceveieieenieniennnnne 82
Debrief Question 2 Feature and Function WebTasker Negativeccocceeeveevverieneennenne 82
Debrief Question 3 Scheduling Feature............c.cocvvevieviiniiiiieieeeeecee e 83
Debrief Question 4 Favourite INterfacecoovveeuiieiiiieiieiee e 84
Current linear model of WebTasKer..........ccoruiiiiiiiieeeee e 91
Potential parallel model of WebTasker.........c.cccuveviieviiiiiiiiiciieeceeeecee e 91

X

List of Tables

Table 1: How web browsing is different from web tasking (Ng and Lau, 2013)cccoocvvvvvrvirerieennenne 7
Table 2: Literature Review Search TeTMScooeviiiiiiiiieiieieeieeee et 9
Table 3: Web Tasking Interface Terminologyccoceerieiiiiiiiiiiiiieiee e 12
TabLE 41 HTA TaSKS...ceuieiiiiiie ettt ettt ettt b e s bt s it e eate e be e beesbeesaeesaeeenee 16
Table 5: Simple Heuristic Review of IFTTT, Zapier, and Scribble...........cccoocvveeeiiiiiieiiieeieeeieee 30
Table 6: WebTasker Design Attributes and Rationale.............ccocoeiieiieiiiniiniiiieeeeeeeeeeee 42
Table 7: Sample of tasks uSed N STUAYc..eeviiiiiiiiiee e 50
Table 8: Order of conditions Of STUAYccc.eeriieiiiiiieiee ettt 53
Table 9: Statistical Plan SUMMATYcoooiiiiiiiiiiieeeee ettt 55
Table 10: TFTTT RESUILS....ccuiiuieieiieieie ettt ettt ettt ettt ste s e esaebesseensesseeseenseeseensesseensenses 60
Table 11: IFTTT Results by Task CompleXitycccceerieriiriieriieieeieeterte st 60
Table 12: Scribble RESUILSeoiiiieiieieee ettt enee e 63
Table 13: Scribble Results by Task COMPIEXItY......cccveervrerieerierieriieiiereesieeseesreereereesseesseessnessnennns 63
Table 14: Zapier RESUILScc.iiciieieciiciiciteterte ettt ettt e vt eesteestaestaessbeesseesseesseesseesssensns 66
Table 15: Zapier Results by Task COMPIEXItY......ccuereviiriierierierieniieiiereeeeseeseeereereeseesreeseaeseneeens 66
Table 16: WebTasker RESUILSoo.iiiiiuiiiiieee ettt 69
Table 17: WebTasker Results by Task COmMPIEXItY......cccvevveeviierieirieiieniienienre e ereesreesreesreesenesenenens 69
Table 18: SUS Score and Overall Likert Rating Results by Interface.........ccccccoeevveviievienieniienieeennne, 73
Table 19: SUS Scores DesCriptive StAtISTICS......cviiviierierierresreereesreesiiesteesaessesseeseesseesseesseesssesssensns 74

List of Abbreviations

Apps Web applications

CAD Computer aided design
EID Ecological Interface Design
EUP End user programming
IFTTT IF This Than That (Note: this is a web service)
10T Internet of Things

P Internet protocol

IT Information Technology
HF Human Factors

HTA Hierarchical Task Analysis
PWT Personalized web tasking
SUS System Usability Scale

TaskaaS Task as a Service

X1

Chapter 1

Introduction

Users increasingly rely on web applications (apps) to complete a variety of everyday tasks that
used to be performed offline (Castafieda et al., 2013). Moreover, users are finding multiple ways to use
apps outside of their typical self-contained purposes, resulting in a need to connect apps together. As an
example imagine Sally, an avid app user, is trying to keep in shape by meeting her daily fitness step goal
being tracked by her new Fitbit device. She wants to immediately let her best friend know when she
achieves her daily step goal by emailing her. There is a missing link here, because there is no automatic
communication between her Fitbit and email app. Sally must complete some of these steps manually to
achieve this task. A solution to provide the link between apps is web tasking. A web task is defined as
the as the integration of web services, interactions, and sessions, from which the user benefits to achieve a
personal goal (Castaiieda et al., 2013). An integration across web services through apps that can be

achieved with a web tasking platform.

Web tasking platforms/programs are in its infancy, being utilized by ‘early adopters’. Early
adopters are people who are quick to make connections between clever innovations and their personal
needs, love getting an advantage over their peers or to be seen as leaders, and have a natural desire to be
trend setters (Rogers, 1962). Because web tasking is in its early stages, it is important to focus on the
human aspect, what the user will see and experience when using the technology, to help increase user
adoption. What makes a new technology spread is whether the product or service is being reinvented to
become easier, simpler, quicker, cheaper, and more advantageous (Moore, 1991). This thesis investigates
what makes up the ideal control metaphor in web tasking from the end users’ perspective. More
specifically, this thesis looks at current web tasking interfaces through a controlled experimental design

and proposes a new web tasking interface design based on human factors (HF) analyses.

Today the technology exists to provide users with constant connectivity to their apps. In 2012,
83% of Canadian households had access to the internet at home compared with 80% in 2010 (Statistics
Canada, 2012). Access to the internet indicates that these people have access to web apps; approximating
the consumer population that have access to apps. The statistics imply that apps are reaching a broader
population. Consumers using apps may find a need for additional functionality with their use.
Augmenting app functionality used to be in the control of software developers/programmers. With the
rise of web tasking, consumers now have the power to achieve programmable control over their apps.

Cloud provides a rich and efficient environment for software developers to develop, deploy, and run apps

for consumers; web tasking platforms contain intermediary parts to allow control to users enabling them

to construct their own tasks by using resources of their own choice from across the cloud (Ng, 2015).

As the user adoption of portable and wearable technologies such as smartphones, personal health
trackers, and smart watches increases — having an automated task service will become increasingly
attractive (Hoy, 2015). A recent study of the Internet of Things (IOT) defines it as, “a network of
networks of uniquely identifiable end points (or things) that communicate without human interaction
using IP connectivity — be it locally or globally,” (IDC, 2014, p.6). The main strength of the IOT idea is
the high impact it will have on several aspects of everyday-life and behavior of potential users, for
example, assisted living, e-health, enhanced learning are only a few instances of possible application
scenarios in which the new paradigm (Atzori, 2010). The phenomena of the IOT has caused everyday
objects to be continuously connected and integrated into the users’ life; making way for these web tasking

services to control or regulate end user tasks.

1.1 Motivation

The main driver for this research stemmed from user interaction with apps through web tasking.
Existing web tasking platforms have been developed with the goal to eliminate complexity of software
engineering such that average users can use their interface to create and control tasks for themselves.
Task as a Service (TaskaaS) (Ng, 2015) was introduced as a new paradigm that breaks entirely away from
the programming metaphor and does not require users to acquire any programming technical skill to

‘program’ their own tasks.

Very few studies exist on web tasking; none of which focus on ideal user interaction design. This
thesis aimed to contribute to ongoing research (Ng, 2015 and Castafieda et. al, 2014) in web tasking

focusing on the HF issues associated with web tasking interface use.

Several research questions have been asked by the researcher in an attempt to explore web
tasking from the end user’s perspective: How can users successfully engage in creating web tasks with
existing web tasking interfaces? Does having multiple conditions and/or actions in a web task affect user
performance in putting together a web task? What are some levels of task complexity? What can be used
as a predictor of performance (e.g. task completion times)? Will users with computer programming
experience perform better in some or all web tasking interfaces than those with none? This thesis aimed

at answering these questions.

1.2 Thesis Overview

This thesis is organized into eight chapters:

e Chapter 1, Introduction — presents the motivation and research questions of the thesis.

e Chapter 2, Background — presents background information in the field of web tasking.

o Chapter 3 to 5, Studies and Analyses — This research focused on comparing existing web

tasking platforms through an analytical study and an in-depth empirical study. It answered

several research questions that were divided into three distinct parts (Chapter 3, 4 and 5), as

seen in Figure 1.

O

Chapter 3: What are the current human factors issues with existing web tasking
platforms? Analytical HF analysis through Hierarchical Task Analysis (HTA)
(Annett and Stanton, 2000) was performed on three web tasking interfaces: IFTTT!,
Zapier?, and Scribble. This analysis can reveal issues such as the steps that need to
be done to complete a certain task and areas for potential human errors, and identify
interface element or convention improvements. However, the HTA cannot speak to
issues such as identifying the relationship between user actions and cognitive
processes (e.g. interaction mental models of web tasking).

Chapter 4: How do people perceive composing web tasks? What makes up the
ideal user control metaphor for web tasking? A literature review was conducted
about web tasking. A pilot usability study was conducted on existing web tasking
interfaces and the results were used as input into the researcher’s design of a unique
web tasking interface, called WebTasker. An interactive prototype of WebTasker
was created using Axure® software. In addition to the pilot study, a simple heuristic
review was implemented to generate recommendations of design features for a new
web tasking interface.

Chapter 5: How does the new design, WebTasker, compare to the existing web
tasking interfaces? A full scale usability study was conducted with 16 participants
evaluating four web tasking interfaces for approximately 2 hours per session. Each
participant performed 4 high complexity tasks and 4 low complexity tasks on 4
different interfaces (32 distinct tasks). Metrics to study end user interaction included:
task timings, errors, and ratings from a System Usability Scale (SUS) questionnaire

(Brooke, 1996).

U www.ifttt.com
2 www.zapier.com
3 www.axure.com

Chapter 4
How do people
perceive composing
web tasks? What
makes up the ideal
user control
metaphor for web
tasking?

Chapter 3
What are the current
Human Factors (HF)
issues with existing
web tasking
platforms?

Literature Review
Pilot usability study

Analytical Study, Hierarchical Task
Analysis (HTA)

-

Chapter 5
How does the new
design, WebTasker,

compare to the
existing web
tasking interfaces?

Conduct full scale user trial with new
interface.

Y

Use this information to create ‘ideal’ web
tasking interface.

Figure 1: Thesis Outline

presents them in terms of the research questions.

Chapter 6, Discussion — highlights the prominent findings from the studies and analyses and

Chapter 7, Future Research — presents recommendations for future work.

Chapter 8, Conclusions — discusses and summarizes significant findings.

Chapter 2
Background

This chapter provides an overview of relevant areas or research to understand web taking. It

describes the literature review method and results conducted as part of this thesis.

2.1 Related Research

There has been considerable work in empowering end users to be able to write their own
programs, and as a result, users are indeed doing so (Burnett et. al, 2006). Recent technology can enable
end users to be contributors rather than just consumers of information on the web. The trend is now
moving from content and personalization to functionality, in the direction of user-generated web services
(Costabile et. al, 2010). Two related areas of research to web tasking are end user programming (EUP)

and mashups.

2.1.1 End user programming

An EUP task is typically a consequence of a user’s perception of a lack of needed functionality
and this can only happen if the user is convinced that s/he fully understands the application as it is
presented by the user interface language (de Sousa et al., 2001). End user programming usually involves
some type of user scripting and can actually look like a programming language. Real-world examples of
end-user programming environments include (Prabhakararao et al., 2003):

e educational simulation builders,

e web authoring systems,

¢ multimedia authoring systems,

e c-mail filtering rule systems,

e CAD systems,

e and some spreadsheet functions.
Using such systems, end users create software that could be in forms of educational simulations or
dynamic e-business web applications (Burnett et. al, 2006).

Another example of EUP can be seen in the gaming domain. Many computer games are now
built with the intention that they will be modified by enthusiastic users (Robinson, 2009). Passionate
users of these games are actually participating in the design of the game; perhaps feeling a sense of

ownership in doing so.

Another form of EUP is visual programming. Scratch* was launched in 2007 by MIT as an
approach to programming that would appeal to people who hadn’t previously imagined themselves as
programmers — people of all ages, backgrounds, and interests (Resnick et. al, 2009). Scratch is a visual
programming tool to create interactive stories, games, animations, and simulations, that can be shared

online (Figure 2). Although using Scratch may appear more like playing a game, the control metaphor

here is programming.
& Scranch Project Ediios x Y ﬂ = ﬂ“_

- o hitps://scratch.mit.edu/projects/editar/7tip

L i
[.] Unitithad J- . Scripts

—-_ﬁ
[L L T T

o twards mou ponter

when chcked
o 1o = 0B v @

9o bo Mo el

L L Sl ofde) secs to w D) i @

Sprites New sprite: 4/ 4 BB
:
= e

[<<t v 10 @] a=q

a/da
Figure 2: Scratch screenshot example

EUP requires some knowledge of programming. In tasking, it does not require the user to have

any programming skills (Ng et. al, 2014).

2.1.2 Mashups

Mashup has been defined as a combination of pre-existing, integrated units of technology, glued
together to achieve new functionality, as opposed to creating that functionality from the scratch (Harmann
et. al, 2008). In theory, a mashup sounds like a solution that will meet user’s goals (in terms of tasking).
However, it was found that existing mashup tools are too technical for end-users and, as a consequence,
end-users are not able to: (i) understand what exactly they can do with the tool and (ii) how to do it

(Stefano et. al, 2014). Mashup tools with open APIs have been developed for users with some level of

4 www.scratch.mit.edu

programming skills but a majority of Web service users are not skilled or interested in such efforts

(Mattila et. al, 2011).

2.2 Web browsing versus web tasking

Whatever web or mobile app software developers do not provide, web users have to do for
themselves manually, such as doing their own work around, writing information from one site and typing
written down information into a hypermedia form of another site as a manual form of integration of the
web silos (Ng et. al, 2014). One may ask the question, how can distributed resources from siloed, disjoint
server systems be put in the hands of web users such that users can interact to perform tasks, to delegate
and automate tasks, without any programming requirement? (Ng et al., 2014). This can be achieved
through web tasking.

Ng and Lau (2013) outline the difference between web browsing and web tasking (see Table 1).
They used the web browsing paradigm as a starting point to develop a web tasking platform. That
platform is IBM’s Scribble. Scribble has found a way to fill the need to automate tasks on the web.
Scribble enables users to choose from resources from across the web for their tasks and then gives them

control to specify task intents, such that they are executed automatically (Ng et. al, 2014).

Table 1: How web browsing is different from web tasking (Ng and Lau, 2013)

Web Browsing

Web Tasking

Purpose

Information retrieval, search

Action, transaction, progress

towards users goals

Resource characteristics

Resources are read-only

Resources have operations and

behavior

Application state transition

Unpredictable prior execution

More predictable prior to

server side components

execution

Representation Resource state Action state or actionable
resource

Consequence Read only, no side effect on Update and write, side effects on

server side components

Usage characteristics

Ad hoc, transient, not intended

for repetition

Intentional, transactional,

possible for repetition

2.2.1 Task as a Service

Ng (2015) explored how the complexity of software engineering can be abstracted into simplified
controls that the average users can use to control task for themselves, independent of software engineers
and without any cognizance of software engineering. Task as a Service (TaskaaS) is presented in her
research and a tasking conceptual model was created (Figure 3). As Ng explained, tasking is a new
paradigm that breaks entirely away from the programming metaphor and does not require users to acquire

any programming technical skill.

End User Uses:

Tasking phor Flexible, odal, Multi-Channel
IT Contributes:
Tasking Resource Representation I

Open, Stand ntegﬂ”—able

Tasking Vendor Provides:

Tasking Platform

Figure 3: An Open Tasking Conceptual Model (Ng, 2015)

=

s, Clo
Public APIs

As seen in Figure 3, the bottom layer there is a ‘Tasking Platform’ provided by a tasking vendor
or service provider. The middle layer is a ‘Tasking Resource Representation’ which is a resource model
defined by the tasking vendor to prescribe how IT can take their entities from current Apps and transform
them into tasking resources for the tasking platform. The top layer is the ‘Tasking Control-Metaphor’,
which is the focus of this thesis. The control metaphor is the interface that users use compose web tasks.
In essence, users will use this metaphor to maneuver tasking resources (middle layer) from the tasking

platform to create their own personalized tasks without being aware of the software engineering behind it.

2.3 Literature Review

Keywords and terms related to web tasking were used to search three academic databases.

2.3.1 Keywords and Approach
The following databases were used for this literature review:

e Scopus

e ACM Digital Library

o [EEE Xplore Digital Library.
The keywords/terms in Table 2 were used in combination to search the databases identified above. If an
unmanageable number of hits resulted from a primary keyword/term search, then a secondary keyword

was added to focus the results. For example, ‘End user’ was entered in the search, then ‘tasking’.

Table 2: Literature Review Search Terms

Primary Key Words/Terms

Web tasking

End user

Task

IFTTT

Zapier

Internet of Things

Secondary Key Words/Terms

Tasking
Technology
Web

2.3.2 Literature Review Results

The initial search conducted was to define web tasking. The approach taken to answer, “what is
web tasking” has been broken down into a few components:
e who are the users,
e what is end user tasking,
e what are web tasks?
The subsequent sub-sections aimed to answer these questions to formulate a comprehensive answer to

what is web tasking.

2.3.2.1 Who is the end user?

The end user simply stated is the person who will use the product, system, or website. When
designing these products, systems, and websites, designers have to make an effort to get to know the user.
In the context of design, designers should not consider themselves users of their own product. In a study
from “The Management of End-User Computing: Status and Directions” end user computing was defined

as, “the adoption and use of information technology by personnel outside the information systems

department to DEVELOP software applications in support of organizational tasks,” (Branchau, 1993,

439). In other words, non-technical people completing technical tasks.

2.3.2.2 What is end user tasking?

The types of end user tasks range greatly in complexity. Traditional examples include
programming by demonstration such as via macro-recording, visual programming language, and
scripting. A common end user task example is transferring data across applications (i.e. copy and paste)
(Stolee et al., 2009). Some other examples include installation, setup, and customization of software and
applications.

End user tasking has evolved and changed in recent years due to phenomena of social networking
and new technology available (e.g. wearables and IOT). Everyday objects now have the capability to be
continuously connected and integrated into the end users’ life. This creates a new need to manage web

tasks and one way to control end user tasks is through web tasking.

2.3.2.3 What are web tasks?

The goal of any web tasking platform should be to automate eligible tasks without requiring any
formal programming by the user. A web task is defined as the as the integration of web services,
interactions and sessions, from which the user benefits to achieve a personal goal; if the user classifies the
task as complex, s/he must decompose it manually into smaller and simpler tasks logically sequenced
(Castaneda, et. al, 2013).

Castafieda, et al. (2014) clearly defines Personalized Web-Tasking (PWT) as the automation of
repetitive and mundane web interactions that, together with the exploitation of personal context (e.g.,
information from personal profiles, social relationships, and historical web interactions), seeks to
optimize user experiences by assisting people in the fulfillment of personal goals using internet
technologies.

Web tasks can be used across web applications such as: social media (Facebook, Instagram,
Twitter, etc.), email, weather, shopping, banking, stock market, and location based services. Web tasking
involves distributed resources that have behaviours and actions. Some of these actions are transactional
(i.e. information exchange) in their characteristics. It can be used in the healthcare domain, such as
monitoring tasks (e.g. blood pressure, blood sugar levels, and fitness measures). It can also be used from
businesses for ordering inventory, customer support, event management, marketing, sales, and project
management. Lastly, it can be used in IOT, for example in smart home monitoring. Below are specific
web tasking examples in a few domains:

e Tweet my Facebook status updates.

10

e When my mom’s blood pressure is high, text me.
e When inventory is running low, order X amount of stock from X supplier via email.
e When no one is home, turn the thermostat down to 20°C.

Castaneda et al. (2013) examined PWT by automating personal web tasks, driven by user needs,
matters of concerns, and personal context. As an important concern in PWT they examined task
simplification and characterized several challenges for task simplification. Task complexity measures are
required to determine whether a task is candidate to simplification. A set of attributes that are relevant to
the complexity measure of a task (Castaneda et al., 2013):

(1) Number of web interactions,

(2) Available knowledge about the task,

(3) Information available about previous simplifications,

(4) Number of inputs that can be inferred and number of inputs that require user’s intervention,

availability of resources including web services and context sources, and level of dynamics of the

relevant context information (i.e., whether the relevant context dimensions static (e.g., the user’s

birthday) or change frequently (e.g., the user’s location, preferences).

2.3.2.4 Current Tasking Platforms

There are several companies that provide services close to web tasking. Two prominent
commercially available ones are IFTTT and Zapier. These two platforms utilize a trigger-action
programming (i.e. the user must select a trigger that will cause an action to occur). These programs are
also referred to as “web automation” applications. They are triggered based on changes to other web

services (such as bank apps, email apps, and social media apps).

2.3.2.4.1 Terminology

Different terminology was used in each interface to describe the components of a web task. Table
3 is a summary of the terms for condition (what needs to be satisfied or met of which action is
dependent), action (what will be done when condition is met), and completed task (condition(s) and

action(s) put together) for each web tasking platform/interface examined in this thesis.

11

Table 3: Web Tasking Interface Terminology

Interface Term for Condition Term for Action Term for completed
Component Component task
IFTTT Trigger channel Action channel Recipe
Scribble Condition BOTBit Action BOTBiIt Scribble
Zapier Trigger app Action app Zap
WebTasker Condition Action Task

23242 1IFTTT

If This Then That (IFTTT?) is the best known automated task service where users can combine
more than 140 different ‘‘channels’” and “‘triggers’’ to create ‘‘recipes’’ that accomplish a specific task
(Hoy, 2015). Users can upload their recipes to share with the community, where the recipes are easily
searchable and categorized by theme (e.g. recipes for music lovers, for your garden, for parenting, for the
online shopper, for following the news, etc.). There is currently no fee for this service. IFTTT is also
quickly moving into the IOT arena as there are channels for the Nest thermostat, Fitbit health trackers,
and Hue lightbulbs have recently been added, allowing users to create rules that cross over into the
physical world (Hoy, 2015). IFTTT allows only one trigger and one action per recipe. A few examples

can be seen on their “dashboard” in Figure 4.

My Recipes
IF Do Published Faworites
IF Recipes run automatically in the background.

Figure 4: IFTTT screenshot examples

5 www.ifttt.com

12

2.3.2.4.3 Zapier

Zapier® focuses mostly on enterprise solutions. It offers users more than 300 apps that can be tied
together in many different ways; users can choose from categories of apps including project management,
help desk, and sales (Hoy, 2015). Zapier also uses trigger-action programming and a “recipe” in Zapier is
called a “Zap”. Zapier is free for up to five zaps and then offers tiered packages. Zapier allows only one

trigger and one action per zap. An example of what the Zapier interface is like is shown in Figure 5.

3 Editor - Zapie b3 n - a n
« [«] https://zapier.com/app/editor/506408% =
Zapier
1 Choose a trigger and action
Need inspiration? or
- ar N o
New Followes v send Email
AU TR o DO mm_]\
HAPCENS

28 Selecta ’ Twitter account

Figure 5: Zapier screenshot example

2.3.2.4.4 Scribble

Scribble by IBM is a web tasking platform that also uses trigger-action programming. Scribble
added a third dimension, schedules. Scribble is currently in beta version and has not yet been released to
the public. An example of the Scribble interface (as of Sept 2015) can be seen in Figure 6. The
researcher was granted special access to Scribble, as it is not commercially available. Scribble uses a
jigsaw puzzle control metaphor. Each piece of the jigsaw puzzle is colour coded to represent a
component of the task. Red represents an action, yellow represents a condition, and blue represents the
schedule. The action of the task is placed on an “action track” and conditions are stacked upon each

action piece.

¢ www.zapier.com

13

B3 1isKass % | B scribble x | cos x B -2Ea

C H taskasaservice.canlab.ibm.com:10080/ScribbleProject/apps/services/www/ScribbleApp/desktopbrowser/default/index.htr =

)(Scribble - My BOT D Taik to My Data ® My Profile
IBM Confidential

Select your jigsaw

Action

) ©

== "B
=1

- 2
s

2P
s

chedule

o,

Save and Submit

Figure 6: Scribble screenshot example

2.3.2.5 Technology Adoption

As Norman (1988) said, technology development happens when users want more functionality.
This is analogous to what is happening with apps. The use of single apps are no longer meeting users’
needs and a combination of use across apps (more functionality) is what would help achieve their goals.
The use of web tasking or web automation is in the early adopter phase. In particular, there are two
technology adoption factors (Robinson, 2009) that were noted by the researcher for the design of the new
web tasking interface:

o Compatibility with existing values and practices — Incompatibility with existing values or

practices will not be adopted.
e Simplicity and ease of use — The easier it is to use it more rapidly it will be adopted versus

innovations that require the user to develop new skills and understandings.

2.3.2.6 Tasks for Study

There is a tradeoff between a simple interface and increases with functionality — the more
functionality a product has, is usually proportional to an increase from a simple interface to a complex
one. The same principle applies to task complexity and learnability. The more complex a task is, usually
the more complicated the interface is. The same technology that simplifies life by providing more
functions in each device also complicates life by making the device harder to learn, harder to use

(Norman, 1988).

14

Chapter 3
Analytical Study of Web Tasking Interfaces

3.1 Background

In support of the experimental study and as input into the design of a new web tasking interface, it
was decided that the steps involved in the entry of a task could be identified using a hierarchical task
analysis (HTA) approach. HTA involves describing the activities under analysis in terms of a hierarchy
of goals, sub-goals, operations, and plans; with an end result of an exhaustive description of task activity
(Stanton, 2013).

Annett and Stanton (2000) describes HT A as a general program approach, helping analyst
understand the problem and the domain. In the past, HTA has been used for interface evaluation (Kirwan
and Ainsworth, 1992; Wilson and Corlett, 1995; Stanton, 1996; Shepherd, 2001). HTA has been put into

many different uses including interface evaluation, training, interface design, and work organization.

3.1.1 Aim

The aim of the HT A completed in this thesis was to evaluate the discrete steps and screens
required by each of the web tasking entry tasks required by each of the three web tasking interfaces
(IFTTT, Zapier, and Scribble). The goals of this study included:

e development of a hierarchy of actions/functions

e generalized structure (e.g. information or link available on a given page)

o identification of trigger and action entry structure and sequence

e the number of steps in a given task

e item selections needed to complete a given task, and

e interface components (buttons, drop down menus, graphics, and icons).

3.2 Method

The task hierarchies and structures were determined by the researcher. These results were then
converted into flow charts through Microsoft Visio Professional 2013 to show the generalized structures
of each web tasking interface. A general HTA was created for Scribble, IFTTT, and Zapier for two level

of complexity tasks.

3.3 Tasks

These tasks and complexity were defined as follows:

15

e High level complexity tasks

o Creating a web task (i.e. Scribble, Recipe, or Zap) from scratch without a template or

starting from a ‘published’ Scribble, Recipe, or Zap.

o Low level complexity tasks

o Involved selecting a previous Scribble, Recipe, or Zap either from a search or selecting it

from a category.

In this study, six task breakdown flows across three different web tasking interfaces were created

(Figure 7 to Figure 12). The first step in conducting an HTA is to clearly define the tasks under analysis

(Stanton, 2013). Table 4 shows the tasks used in the HTA. The tasks were representative of interactions

with web tasking platforms and many were given as example tasks provided by their creators (available

on their websites).

Table 4: HTA Tasks

IFTTT

High Complexity

Low Complexity

If a new step count is logged in Fitbit then send a new

email from Gmail.

Select: Tweet when you achieve your daily step
goal in Fitbit.

If iPad price changes at Best Buy then a post a tweet.

Select: If it's going to rain tomorrow, send me an
email from Gmail.

If a Facebook new status message is posted by you then

create a text post in Tumblr.

Select: Share new links you post on Facebook to
Twitter.

If the IBM stock price rises above $160, then send an

email to ekittel@uwaterloo.com from Gmail.

Select: If Google Stocks price drops, then tweet
stock is dropping.

Zapier

High Complexity

Low Complexity

When you post a new tweet post it to your Facebook

timeline.

Select: Send me an email monthly on a specific
day of the month.

Send an email via Gmail for new tweets from a
@UWHPFstudentgirl.

Select: Tweet new RSS feed item.

When you star an email in Gmail post it to your
Facebook timeline.

Select: Posts the Day 1 forecast from the Storm
Prediction Center to my Facebook page each
morning at 9 am.

If it's going to rain tomorrow, send me an email from

Gmail.

Select: Get an email for Zapier updates.

16

Scribble

High Complexity Low Complexity

If fit bit weight is met AND University of Waterloo GPA
is met, then buy me an iwatch from Best Buy and notify | Select: Find movies listings.
me. Set this Scribble to run every day.

If IBM stock is > $175 AND exchange rate is met then Select: Take the next bus to the airport if the
notify me. Set this scribble to run biweekly. weather is clear.

If my RBC bank account balance is less than $1000 then
notify me. Set this Scribble to run every Friday at 10:00 | Select: Buy twitter stock check.
a.m.

If my RBC bank account balance is less than $2000 then
buy an iPad from Best Buy. Set this Scribble to run on Select: Book a vacation.
the 28th day of every month.

3.4 Results
The results of the HTA study are presented the subsequent sections.

3.4.1 Hierarchy of Functions

The flow charts in Figure 7 to Figure 12 are organized in a hierarchy of tasks where each box
represents a task currently available to the user. Each level contains all of the items available to the user
at each point in the task. Each level can be considered as one step or screen needed to complete a desired
goal for the high level and low level entry tasks. The text in green indicates the action needed to complete
the step. For example, the user must <Click Enter button> or < Continue> to complete the step.
The HTA follows the hierarchy of functions necessary to complete both levels of complexity of the two
types of entry tasks (based on the tasks identified in Table 4). Other functions of the web tasking systems
are included where they are encountered (indicated in grey), however any functions not needed to
complete the tasks of interest are not broken down any further. Generic HTA structures for each program

are discussed in the Section 3.4.2.

17

Enter login information
<Click Login button>

Add Condition
<Click on condition
puzzle piece on right

hand menu>

:

Set Condition

—

v v v v
Create Scribble by Ul Create Scribble by Text s Scrlbbles_ oo .
L or Community Add Action
<Click icon> <Click icon> .
<Click icon>
| ry
v v
Set Schedule
(schedule piece there Set Action
by default) (one action puzzle
<Click schedule puzzle piece there by default)
piece>
| }
\ 2 L4

Execute later
<Click on radial circle>

Execute on demand
<Click on radial circle>

|
\J v

Select time
<Click on time (15
minute intervals) from
drop down calendar>

Select date
<Click on date from
drop down calendar>

Select repeat (optional)
<Click on check box>

1

Select frequency
<Click on daily, weekly,
bi-weekly, monthly, bi-

weekly from drop

down menuz>

|

Specify frequency
<Click on
corresponding drop
down menus>

[

v

Enter schedule
<Click on finish button>

Select action botbit
<Click action puzzle
piece>

7

Select by search
feature
<Keyboard>

Select by scrolling
<Scroll through list
(unknown order)>

¥

Enter additional action
information (botbit
dependant)
<Click on drop down
menu or keyboard>

l

Enter action botbit
<Click on finish button>

Save
(can click anytime)
<Click on save button>

(one action puzzle
piece there by default)

|

Select condition botbit
<Click action puzzle
piece>

v v

Select by scrolling
<Scroll through list
(unknown order)>

Select by search
feature
<Keyboard>

v

Enter additional
condition information
(botbit dependant)
<Click on drop down
menu or keyboard>

:

~ Enter condition botbit
<Click on finish button>

Add another Condition
(optional)

Save and submit
B <Click on save and
submit button>

Figure 7: Scribble High Complexity Task Breakdown

18

Enter login information
<Click Login button>

Create Scribble by Ul
<Click icon>

v v L
i Use Scribbles from
Create Sgrlb!:le by Text Community Add Action
<Click icon>
<Click icon>

v

Select Scribble

category Search Scribbles
<Click category <Click search icon>
heading>

}

Enter channel in search
field
<Keyboard>

o

Choose scribble
<Click on scribble>

Use Scribble
<Click on blue cloud

ico

Confirm to use Scribble
<Click on Yes>

l

Comment on a Scribble
<Click on yellow callout
icon>

l

Flag a Scribble
<Click on purple flag
icon>

Like a Scribble
<Click on red heart

n> icon>

—

Choose not to use
Scribble
<Click on No>

\]

Open scribble
<Click on Launch My
Scribble Board now>

4

View more scribbles
(“Draft scribble has
been created in your
scribble board.”)
<Click on OK>

Figure 8: Scribble Low Complexity Task Breakdown

19

Enter login information
<Click Sign in button>

v

v v

Create recipe
<Click My Recipes
menu option>

i

Create recipe
<Click Create recipe>

Search recipes
<Keyboard in search
field or click category>

v

Browse recipes (same
as Search recipes)
<Click browse menu
option>

Search by channel
<Click channel menu
optionl>

Create IF recipe
<Click Create recipe>

Create IF recipe
<Click Create recipe>

Set Condition
<Click “this” text>

“Choose Trigger
Channel (step 1 of 7)”

L
A\ v

Select by scrolling
<Scroll through list
(alphabetical order)>

Select by search
feature
<Keyboard>

L
v
Enter additional
Trigger Channell
information (channel
dependant)
<Click on Connect>

)

Enter channel login
information (if first
time using channel)
(webpage api)
<Keyboard>

v

Confirm
<Click on Continue to
Next Step>

Figure 9: IFTTT High Complexity Task Breakdown

Create DO recipe
<Click Create recipe>

!

Browse view published
recipes (same as
search recipes)
<Click published>

“Choose aTrigger (step
20f7)"
(Channel dependant)
<Click on trigger field>

v

“Complete Trigger
Fields (step 3 of 7)”
(Channel dependant)
<Click on trigger field>

v

Enter Trigger Fields
<Click on Create
Trigger>

View favorite recipes
<Click favorites>

Set Action
<Click “that” text>

“Choose Action
Channel (step 4 of 7)”

v

Select by search
feature
<Keyboard>

v

Select by scrolling
<Scroll through list
(alphabetical order)>

20

v

Enter additional Action
Channel information
(channel dependant)

<Click on Connect>

v

Enter channel login
information (if first
time using channel)
(webpage api)
<Keyboard>

v

Confirm
<Click on Continue to
Next Step>

“Choose an Action
(step 5 of 7)”
(Channel dependant)
<Click on action field>

v

“Complete Action
Fields (step 6 of 7)”
(Channel dependant)
<Click on action field>

v

Enter Trigger Fields
<Click on Create
Action>

v

“Create and connect
recipe (step 7 of 7)”
<Click on Create
Recipe>

Enter login information
<Click Sign in button>

I
v v 4 v
Create recipe Search recipes Browse rempes_(same Search by channel
‘ ‘) as Search recipes) ‘
<Click My Recipes <Keyboard in search ‘ <Click channel menu
:)) <Click browse menu)
menu option> field or click category> : optionl>
option>
L
v v
Enter channel in search i
. Choose recipe category
field <Click through scroll>
<Keyboard> s

— @

Enter recipe category
<Click on category
picture>

|
v

Choose recipe
<Click recipe>

v

Enter channel login
information (if first
time using channel)
(webpage api)
<Keyboard>

v

Add recipe
<Click Add>

Open recipe
<Click Done>

Figure 10: IFTTT Low Complexity Task Breakdown

21

Enter login information
<Click login button>

View Use Cases .
<Click on Use Cases Ve (R s
<Click on Popular Tab>

tab>

View My Zaps
<Click on My Zaps Tab>

L
v A2 v v v
Make a Zap! Search Zaps View Plans View Dashboard Search Zaps (same as
<Click Make a Zap <Click on Explore menu <Click on Plans menu <Click on Dashboard Explore menu option)
menu option> option> option> option> <Click on Explore tab>
[
v v
Set Trigger App Set Action App
Select Trigger App Select Action App
<Click drop down <Click drop down
menu arrow> menu arrow>

 A——

Select by scrolling
<Scroll through list

Select by search
(alphabetical order)>

feature
<Keyboard>

\—#]

Set Trigger

 —

Select by scrolling

Select by search
<Scroll through list

feature
<Keyboard>

\%

Enter Trigger
<Click on item in drop
down menu>

(alphabetical order)>

Select by scrolling
<Scroll through list

Select by search
(alphabetical order)>

feature
<Keyboard>

\f‘

Set Action

L A

Select by scrolling

Select by search
<Scroll through list

feature
<Keyboard> (alphabetical order)>

Enter Action
<Click onitem in drop
down menu>

}

Enter Trigger and
Action (go to next step)
<Click on Continue>

Enter trigger app login
information (if first
gl time using app)
(webpage api)
<Keyboard>

Enter additional trigger
app information (app
dependant)
<Click on drop down
menu or keyboard>
<Click on Continue>

v

Enter action app login
information (if first
time using app)
(webpage api)
<Keyboard>

Enter additional action
app information (app
dependant)
<Click on drop down
menu or keyboard>
<Click on Continue>

|

Test the Zap
<Click the button to
test your trigger and
get sample data>

|

Conduct test the Zap
<Click the test button>

|

Name and turn on Zap
<Keyboard>
<Click Turn Zap On
button>

22

Figure 11: Zapier High Complexity Task Breakdown

Enter login information
<Click login button>

1
¥ v ¥ ¥ v ¥ ¥ Y
Make a Zap! Search Zaps View Plans View Dashboard Search Zaps (same as View Use Cases View Popular za T e e
<Click Make a Zap <Click on Explore menu <Click on Plans menu <Click on Dashboard Explore menu option) <Click on Use Cases <Click on pF:) wlar ::k» ¥ 2aps
menu option> option> option> option> <Click on Explore tab> tab> P

<Click on My Zaps Tab>

Select by search
feature
<Keyboard>

!

Select by scrolling
through apps
<Scroll through list

(alphabetical order)>

Select app
<Click on app icon>

I

Confirm selection from
app X info page
<Click on Explore app X |

Select popular zap app
<Click onicon>

|
¥

Select popular zaps for
Xapp
<Click on app icon>

Recommended articles
and zaps for X app

}

on Zapier! button>

v

Select Zap
<Click on Use this Zap
button>

\
v

Enter additional action
app information (app
dependant)
<Click on drop down
menu or keyboard>

<Click on Continue>

i

Select Za
Read article P .
<Click on Use This
<Click on Read button>
button>

Enter trigger app login
information (if first
time using app)
(webpage api)
<Keyboard>

Enter additional trigger
app information (app
dependant)
<Click on drop down
menu or keyboard>
<Click on Continue>

|

Enter action app login
information (if first
time using app)
(webpage api)
<Keyboard>

[

.

Test the Zap
<Click the button to
test your trigger and

get sample data>

'

Conduct test the Zap
<Click the test button>

}

Name and turn on Zap
<Keyboard>
<Click Turn Zap On
button>

Figure 12: Zapier Low Complexity Task Breakdown

23

3.4.2 Task Breakdown

The aim of the HTA study was to evaluate the discrete steps and screens required by each of the
three action-trigger and web tasking entry tasks. The goals of this study included: development of a
hierarchy of functions and generalized structure of each, identification of trigger and action entry
structure and sequence/order, the number of steps in a given task, item selections needed to complete a
given task, interface components. The flow charts (Figure 7 to Figure 12) were created to aid in
accomplishing these goals. They revealed variable structures in depth and breadth, representing various
task sequences. The HTA provided detailed information needed to compare tasks as well as showing
differences between high and low complexity task levels based on the HTA structures. It was
hypothesized that HTA as a function of clicks and scrolls is a credible predictor of task time. This was
proven to be true statistically as shown in the results of the empirical study in Chapter 5. Unlike the
Keystroke Level Model (KLLM) method that uses a number of pre-defined operators to predict expert
error-free task execution times (Stanton, 2013), an elementary approach was taken in this study of

counting the clicks and scrolls without association these with an execution time.

3.4.2.1 Scribble

The HTA for Scribble showed that a user could set schedule, condition, or action in any order.
This was the only program that allows multiple conditions and actions in the HTA study. Having this
flexibility resulted in a wider and longer HTA structure. The wider breadth sequence as shown in Figure 7
indicated more freedom to choose sequence steps. Thereby showing that it was relatively easy to correct
mistakes or makes changes if user changes his/her mind. It was noted that the order of conditions and

actions in the icon scroll ‘list’ should be was not obvious (e.g. alphabetical).

3422IFTTT

The HTA for IFTTT revealed a linear sequence as seen in Figure 9 and Figure 10. The user must
enter condition first followed by an action. This program only permits one condition and one action per
web task. It was noted that channels were organized in alphabetical order for condition and action
selection. The interface of IFTTT is one long page (as opposed to separate pages per step). Users could
scroll up to view previous steps. They only present current information on screen (i.e. the current step the

user is on), and it was difficult to find the back button.

Unlike Scribble, all recipes run about every 15 minutes or sooner by default. There is no way to
program a schedule for your recipes. The HTA revealed that the layout encouraged using published
recipes, as this option is available on many pages (e.g. browse published recipes or favourites page) as

seen in Figure 9 and Figure 10.

24

3.4.2.3 Zapier

The HTA for Zapier showed that the user had the flexibility to select either trigger app or action
app first. As seen in the HTA flows Figure 11 and Figure 12 Zapier had the widest structure. This
interface presents many links/options on the homepage. It provides articles, use cases, and recommended
Zaps (based on app selection) information under Explore menu option, Use Cases tab, and Popular tab.
Zapier makes heavy use of dropdown menus. It was noted that it presents trigger/action choices in no
particular order (IFTTT uses graphical squares and user clicks on selection). The trigger and action are

seen on the same page/screen (like Scribble).

Similar to IFTTT, the task input sequence is one long page (can scroll up to view previous steps)
and only present current information on screen. There is no back button. User must scroll up to previous

step to correct or change previous selections.

Unlike Scribble, all zaps run about every 5 minutes by default. There is no way to program a
schedule for your zaps. A unique feature of Zapier is that it allowed testing with test data so the user
could elect to test the zap to ensure the task would execute.

The HTA revealed that the low level complexity task involved many steps. From the HTA it
could be seen that the low complexity task was similar to a high complexity task examining all the steps
involved.

It was also noted that the HT A revealed that the layout encouraged using published recipes, as

this option is available on many pages (e.g. view use cases, view popular zaps).

3.5 Keystroke and Mouse Click Counts

The number of keyboard keystrokes and mouse clicks were tracked for 4 high complexity and 4
low complexity tasks that were examined in the HTA, using Mousotron’ software. Tasks assumed each
app/BOTBIt has already been initialized (i.e. user information and permissions were granted).

There was an evident clustering of high complexity tasks and low complexity tasks. The high
complexity trials had notably greater number of both key presses and scrolls. From this observation, it
can be hypothesized that the high complexity tasks will take longer than the low complexity tasks. For
the high complexity tasks the number of key presses and scrolls were variable, implying that there would
be a higher standard deviation for the high complexity tasks than the lower complexity tasks. The results
of the usability study support this assertion, detailed in Section 5.8.2.

With IFTTT and Zapier there was the capability of using the search function to search for apps (i.e.
by entering the app name in the search field), or the user can scroll through the list of apps to find the

7 www.blacksunsoftware.com/mousotron.html

25

desired one. The results of the web tasking keystroke and mouse clicks and scroll were consolidated and
presented in Figure 13. It is evident from these results, that Zapier had the highest counts, IFTTT had the
lowest number of count, while the Scribble interface was in the middle. Interestingly, this count to some
extent matched the breadth and depth in the structures created in the HTA (i.e. Zapier was the widest,

Scribble was second widest, and IFTTT was narrowest).

Web Tasking
Typical Keystrokes and Clicks/Scrolling Count

100
90
80 -
70
60 o—

50 +
40
30 12
20 &
10 &

0 g T T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200 220 240

Number of Keystrokes
-

Number of Clicks and Scrolls

o Zapier High Complexity Search Method
4 Zapier High Complexity Scrolling Method
m [FTTT High Complexity Search

IFTTT High Complexity Scrolling
+ Scribble High Complexity Scrolling
H|FTTT Low Complexity Search Method

Scribble Low Complexity Scrolling

Figure 13: Web tasking keystrokes and mouse clicks and scrolls count

26

3.6 Conclusions and Recommendations

The HTA successfully showed the hierarchy of actions users must undergo to complete high and
low complexity tasks in several web tasking interfaces. It showed generalized structures of tasks and has
demonstrated that the task structures in HT As are telling of the complexity of tasks. The wider the
structure was (particularly in Zapier), the more options the user may have perhaps making the task more
difficult for a user. The results from the empirical study show this in Chapter 5. The narrower the HTA
structure, the more prescriptive a task is, thereby making it simpler to complete. The HTA showed the
selections needed to complete a given task and inherent inherently showing potential areas for human
error. The HTA was also a helpful tool in thoroughly investigating each interface and identifying
differences in interaction types at the task level. For example, Zapier uses drop down menus, and IFTTT
uses click and scroll selection of icons.

This study has shown that HTA was descriptive and showed differences in high and low
complexity task levels. In addition, as seen in the results of the Keystroke and Mouse Click and Scrolls
count, recording this count during an HTA can be a powerful preliminary tool in predicting performance
in a given web tasking interface. A variety of approaches, representing a considerable range of
complexity, exist to assess interface performance. HTA can be used as a simple tool to achieve the same
results. This is further investigated empirically in Chapter 5, where it was hypothesized that a simple sum
of task input requirements (counting keystrokes and mouse clicks and scrolls) would be closely related to

performance task time.

27

Chapter 4
A New Web Tasking Interface: WebTasker

Users seem to expect easy to use and easy to learn interfaces, especially when it comes to apps.
Consideration of users’ expectations or needs and different sources of input should go into a design of a
web tasking interface. The goal of creating WebTasker was to address HF issues in existing web tasking
interface and to model an easy to use and learn metaphor. There were several inputs into the researcher’s

design of WebTasker (see Figure 14).

Create a new web
tasking interface
design

Analytica Literature Usab

P <

study Review guideline

Figure 14: Design input to WebTasker

The information and findings collected from the HTA (analytical study) were used as a starting
point for the WebTasker design. Through conducting the HTA, the researcher became familiar with
current existing interfaces (i.e. what worked well, what she liked/didn’t like, and design attributes to
carry-over into a new design).

Scribble was the only program/interface that allowed multiple conditions and actions input for
composition of a web task. Scribble allowed entry of schedule, condition, or action in any order. Other
findings for Scribble included that it was easy to correct mistakes, it had a wide breadth sequence
(indicates more freedom to choose sequence steps), however having more choices made this interface
more prone to errors, and the order of conditions and action apps in the icon scroll ‘list’ should be in a
specific order (e.g. alphabetical).

IFTTT’s interface was simple and prescriptive, having a linear HTA structure. Entry of a
condition must be first, followed by an action. Channels were organized in alphabetical order for

condition and action selection. It was relatively difficult correct mistakes (i.e. find the back button).

28

All recipes run about every 15 minutes or sooner by default and there is no way to program a schedule for
your recipes. IFTTT’s interface layout seems to encourage using published recipes.

In the Zapier interface the user is presented with many links/options on the homepage. The user
can select either trigger app or action app first and it makes heavy use of drop down menus. The
dropdown menu interaction is not ideal when there are many items in a list to choose from. It was
relatively difficult to recover from mistakes, as there was no back button (user must scroll up to previous
step to correct or change previous selections). There is no schedule capability and by default zaps are run
every 5 minutes. Zapier had a unique optional test feature to allow users to test their zap with test data
provided by Zapier. A main finding from the HTA was that low complexity task involves many steps and
appeared more as a high complexity task based on the HTA structure. ~ The literature from Section 2.3
fed into the design as well. Along with some usability guidelines, specifically used in this thesis were
Nielsen’s Heuristics. After the completion of the heuristic review, a pilot study with a handful of

participants was conducted. The pilot study is described in detail in Section 4.2.

4.1 Usability Guidelines

Nielsen’s Heuristics (Nielson, 1994) were used as a guide to find usability problems in the current
user interface designs of the platforms. A Heuristic Evaluation is a well-known usability engineering
method for finding usability issues so that they can be attended to as part of an iterative design process.
Typically heuristic evaluation involves having a small set of evaluators examine the interface and judge
its compliance with recognized usability principles. In this study the researcher made usability
observations on each interface by performing the tasks used in the HTA in Table 4 and recorded them
against each heuristic and used a simple scoring system to evaluate the three existing web tasking
interfaces.

Scoring:

v+ =Acceptable or good: no usability issues against this principle were observed and this design

principle was incorporated well.

v' =Room for improvement: one or two minor usability issues were observed.

v'- =Needs attention: one or more major usability issues or three or more minor usability issues

were observed.

A summary of the results of this heuristic review are presented in Table 5, along with design

recommendations in the last column made by the researched based on this review.

29

Table 5: Simple Heuristic Review of IFTTT, Zapier, and Scribble

Nielsen’s Heuristic IFTTT Zapier Scribble Design Recommendation
for WebTasker
Visibility of system status | v+ v+ v- Incorporate task status in
The system should always -Step counter in flow and -Step counter in flow and -No indication if puzzle design (graphically if
keep users informed about task information entered is | task information entered is | piece information is possible).

what is going on, through
appropriate feedback within
reasonable time.

displayed.

displayed.

complete.

-No prompt or suggestion of
what information to enter
next (novice users need

this).
Match between system and | v/ v- v Use clear icons with
the real world -Search of recipes is based | -Makes heavy use of drop -Variable names appear as corresponding labels of

The system should speak the
users' language, with words,
phrases and concepts familiar
to the user, rather than
system-oriented terms.
Follow real-world
conventions, making
information appear in a
natural and logical order.

on channel names (not
recipe titles).

-Variable names appear as
programming language.

down menus with text
Versus icons.

-Variable names appear as
programming language.

programming language.
-BOTBIt is not an intuitive
term compared to “trigger
app” or “action app”.

-Use of dropdown was not
efficient for some items (e.g.
selecting time).

condition and action apps
(like IFTTT).

Avoid drop down menus,
where there are long lists.

Hide any code or variable
names that may be
confusing to the user.

User control and freedom
Users often choose system
functions by mistake and will
need a clearly marked
"emergency exit" to leave the
unwanted state without
having to go through an
extended dialogue. Support
undo and redo.

V-
-Difficult to find “back”
button

v

-There is no “back” button.

User must scroll up to
previous step to correct or

change previous selections.

v

-No “undo” or “redo”
functions.

Provide a way to easily edit
task components.

30

Nielsen’s Heuristic

IFTTT

Zapier

Scribble

Design Recommendation
for WebTasker

Consistency and v v v Use consistent conventions.
standards - Presents trigger/action -Order of conditions and
Users should not have to choices in dropdown menu | actions in the icon scroll
wonder whether different in no particular order. ‘list’ should be is not
words, situations, or actions obvious (e.g. alphabetical).
meant he same thing. Follow
platform conventions.
v v v Provide minimal ways users

Error prevention

Even better than good error
messages is a careful design
which prevents a problem
from occurring in the first
place. Either eliminate error-
prone conditions or check for
them and present users with a
confirmation option before
they commit to the action.

-Difficult to initially locate
“back” button.

-Using the Back browser
button will give a
navigation warning. If you
leave the page, current
recipe user is working on
will be lost.

-Offers testing with sample
data.

-Using the Back browser
button will give a
navigation warning. If you
leave the page, current
recipe user is working on
will be lost.

Easy to correct mistakes or
makes changes if user
changes his/her mind.

can click away from
composing a web task. Only
present necessary
information.

Recognition rather than
recall

Minimize the user's memory
load by making objects,
actions, and options visible.
The user should not have to
remember information from
one part of the dialogue to
another. Instructions for use
of the system should be
visible or easily retrievable
whenever appropriate.

v+

-Can scroll up to view
previous step.

-Captures full goal/task in
simple sentence If THIS
THEN THAT.

v

-Final task is not displayed
in final step of naming Zap
or on confirmation page.
-Captures goal/task in two
sentences “when this
happens”... “do this”.

v+

Display task composition on
one screen if possible (like
Scribble puzzle metaphor).

31

Nielsen’s Heuristic

IFTTT

Zapier

Scribble

Design Recommendation
for WebTasker

Flexibility and efficiency
of use

Accelerators -- unseen by the
novice user -- may often
speed up the interaction for
the expert user such that the
system can cater to both
inexperienced and
experienced users. Allow
users to tailor frequent
actions.

v
- Must enter condition first.

v
-Can set trigger or action
app in any order.

v

-Can set schedule, condition,
or action in any order.

- Only program that allows
multiple conditions and
actions.

Consider incorporating an
accelerator for complex task
(with more than one
condition and action).

Aesthetic and minimalist
design

Dialogues should not contain
information which is
irrelevant or rarely needed.
Every extra unit of

v+

-Captures full goal in simple
sentence If THIS THEN
THAT.

-Aesthetically pleasing use
of icons.

V.
-Too much information
presented to user on one

page.

v

-Wording in dialogues can
be more concise. E.g.
“Information needed for this
condition” and “Specify
conditions” may be

Aim for minimalist design
that is graphically pleasing
(like IFTTT).

information.in a dialogue redundant.
competes with the relevant
units of information and
diminishes their relative
visibility.
v v 4 Provide help link/button

Help users recognize,
diagnose, and recover
from errors

Error messages should be
expressed in plain language
(no codes), precisely indicate
the problem, and
constructively suggest a
solution.

from any point in composing
web tasks.

32

Nielsen’s Heuristic IFTTT Zapier Scribble Design Recommendation
for WebTasker
10 | Help and documentation Provide help link/button

Even though it is better if the
system can be used without
documentation, it may be
necessary to provide help and
documentation. Any such
information should be easy to
search, focused on the user's
task, list concrete steps to be
carried out, and not be too
large.

from any point in composing
web tasks.

33

4.2 Pilot Study

A pilot usability study with existing web tasking interfaces was conducted in August 2015.

The intent of the pilot study was to explore the research questions:
e How can users successfully engage in creating web tasks with existing interfaces?

e Does having multiple conditions and/or actions in a web task affect user performance

in putting together a web task?

There were four participants in total, two with basic programming experience, one with
expert programming experience, and one with no programming experience. Each participant was
given two tasks at each complexity level in three interfaces: IFTTT, Zapier, Scribble, and one task at
high complexity for Node-RED?. This is because Node-RED is not a web tasking platform. It was
evaluated as part of the pilot study to examine its viability as a web tasking platform and the
researcher was only able to produce one web task to test. Node-RED is a browser-based flow editor
that wires together flows using the wide range nodes, then flows can be deployed to the runtime.

There were 19 trials in total.

4.2.1 Pilot Study Results

The results of the pilot study were recorded qualitatively by the researcher by notetaking

through observation. Below is a summary for each interface.

4211 IFTTT

Participants enjoyed using IFTTT in general, as participants verbally reported this as they
used the IFTTT interface. All tasks completed under 5 minutes (most 2-3 mins). Three out of four
made comments regarding the fact you could see the html code, the one with no programming
experience said it looks confusing (e.g.
 and variable names in Figure 15 and variable names

shown in Figure 16.

Three of the participants noted that the search field does not accept “if this then that”
statements, but worked only for keywords or app names. Nevertheless, the participants were able to

use the search function successfully.

8 www.nodered.org

34

All participants verbally reported that IFTTT was aesthetically pleasing and makes good use
of'icons. Participants also reported that they liked that IFTTT offered recommendations for other

recipes, as the program offered them recipes they may not have searched for themselves.

[ecorve an omail 3§ S Track My Weight - 3 Dashbourd - apic % | 1 hust onw moeo ste;. % 1 Facebook 7 3% Mavigating The Za. % ' W Twiter x - olEN

L C A G https//iftitcom/recipes/188-receive-an-email-if-there-will-be-rain-in-your-area-tomaorrow

Qi .

-

Send me an email

Subject
B subj

TomormowsCondition tomomow!

[Body

<img src="
ConditionimageURL “></a=<br=

Tomorrow, TomomowsDate | there will be a low of
LowTempFahrenheit F{ LowTempCelsius C)and a

high of HighTempFahrenheit F

[HighTempCelsius Ci

via ForecastUrl

Figure 15: IFTTT Screenshot with html code

J" W Copate Rocipe - IFTTT x ‘ﬂ-rnb.xmund) #Mo;mzw

) 2 [P g § T PR T e+ (=] x|
4 = C A Q& https//iftitcom/myrecipes/personal/new =

Q| =

-

EJ Complete Action Fields

Post a tweet

£ Tweet text

Figure 16: IFTTT Screenshot with variable names displayed

35

4.2.1.2 Zapier

The pilot study results for Zapier were in line with the findings from the HTA. Participants
found that there was “too much” information and “too many” fields are displayed at one time (as seen
in the example in Figure 17). In the HTA, Zapier had the widest structure (Figure 11 and Figure 12),

demonstrating the amount of information shown to the user in one step or screen.

Figure 17: Zapier screenshot of input fields
36

In Figure 17, it is difficult to immediately see which fields are mandatory fields to be filled
out by the user. Mandatory fields should be grouped at the top or optional fields should be hidden
until prompted by the user.

Zapier offered some advanced capabilities where filters can be applied to some apps. The
“filters” were reported by the participants to be confusing and they were not able to tell what they

should be used. An example of the filter capability can be seen in Figure 18.

T — m o-sEm

- C # https.//zapier.com/app/editor/506406 =

'i UWHFstudent@gmail.com's Facebook account v Test this Account

4) Filter Y Twitter triggers

Only trigger a "My Tweet" from Twitter when...

Add filters based on other Twitter fields to only allow some items.

Custom Filters

+ Add OR Filter

Figure 18: Zapier screenshot of filter use

Half the participants found the search feature (to search published zaps) difficult to initially

find. One way to search is to click “explore” and users did not know this was the search.

Most high complexity tasks took over five minutes to complete. Some tasks took 10-15
minutes to complete. Participants found creating zaps from scratch (high complexity) easier than
searching for pre-made/published zaps. All participants found the search function difficult to use. In

general, participants felt there were too many steps involved to create a task in Zapier.

Among some of the other issues reported were that, there was no homepage to click on once
you visit your dashboard page; Zapier blog, video tutorial, and learning center buttons are displayed
in “explore” and seem out of context here; participants were unsure what the “test” function was. The
test function allows the user to test their zap with test data to ensure that the apps are responsive and

the task will be executable. Half of the participants tried it, the other half did not bother.

37

4.2.1.3 Scribble

It was observed during the pilot study that this interface seemed to have the most learning
involved, as the researcher observed participants struggling to put together a task. Participants had to
learn the puzzle piece metaphor, where they had to associate each puzzle piece colour with a part of
the web task (i.e. red piece for action, orange piece for condition, and blue piece for schedule). Tasks

took about 5 to10 minutes for high complexity (longer than IFTTT).

It was not apparent to participants that schedule, conditions, and actions could be entered in
any order. Half the participants users thought that you had to enter schedule first (since it is displayed
first on the “action track™). All participants tried to drag the condition piece instead of clicking to

add.

Scribble had the most observed errors (e.g. putting the wrong information in the wrong place;
putting the condition BOTbit in the action puzzle piece). It was reported by participants to the
terminology should be clear, for example “Execute Later” in schedule makes user think it will only be
done once later, but it can be recurring. Another example is “Notify someone” was not explicit

enough as if it notifying by email it should say email and not generally say “notify”.

The search task (low complexity) was easily done in Scribble, as there are currently a few

published Scribbles in the library and the search works on keywords.

4.2.1.4 Node-RED

Participants were asked to complete one task in Node-RED. The task was: if you get a new
tweet send an email. None of the participants were able to complete this task. The nodes were to be
connected then clicked into to complete the programming of the node to run. The best performance
observed was to drag and drop the twitter and email nodes, under the “social” category, shown in
Figure 19. Unlike the other web tasking interfaces in this pilot study, Node-RED was not a viable
interface without any training. The one expert programmer participant said this platform has potential
to be a good web tasking platform if packaged nicely (i.e. used templates and had no API

programming necessary).

From the pilot study results, Node-RED should not be utilized as a web tasking platform in its

current form.

38

Creating apps with Node- x |/ #% Node-RED : taskl.myblue. x Twitter / Authorize an ap; X = - ﬂ‘

« [| task1.mybluemix.net/red

@) Dashboard - IBM Bluemix x ' @

Node-RED
Q Sheet 1 info debug
json Node
Type e-mail in
LT D 20bf0b2f df4074
e » Properties

Repeatedly gets a single email from an IMAP

~ social
server and forwards on as a msg if not already
9 seen.
e-mail #waterloo email
The subject is loaded into msg.topic and
twitter msg.payload is the plain text body. If there is
text/html then that is returned in msg.html
e-mail msg.from and msg.date are also set if you
need them
twitter .
Additionally msg.header contains the complete
header cbject including fo, ec and other
v storage potentially useful properties
ab Uses the imap module.
moengos
Note: this node only gets the most recent single
ibm hdfs email from the inbox, so set the repeat (polling)
time appropriately.
ibm hdfs -

Figure 19: Node-RED screenshot

4.3 Early web tasking concept ideas and prototypes

As the researcher hypothesized that users’ would prefer composing a web task by entering the
condition first then the action, the early concepts for a new web tasking interface all revolved around
a cause and effect model. A cause and effect model usually consists of three attributes: (1) temporal
precedence, (2) whenever the cause happens, the effect must also occur, (3) no plausible alternative
explanations (Trochim, 2005). The initial idea for the prototype was to have a gear metaphor, as seen

in Figure 20.

39

When Do

Run on the 28th day of
every month

Activate Now

Figure 20: WebTasker early prototype gear metaphor

The conditions were placed on the left gear and the actions on the right gear with a
connecting gear in the centre to attach the two. The second iteration of the gear metaphor was going
to include more salient plus sign (to indicate to the user to add more conditions or actions), text in
middle gear to indicate next possible steps or instructions, text of condition and action statement, or
model a chain to connect gears instead of middle gear. However, there was a fundamental flaw in
this design. The gear model failed to be sufficient for a use case in Scribble where specific conditions
could be associated to a specific action (as per the stacking of condition pieces atop of the associated
action in the puzzle metaphor). The gear assumed that all conditions would cause all actions. The
incorrect and correct mental models are illustrated in Figure 21 and Figure 22, where C=condition

and A=action.

+ + = | A1 | +| A2

Figure 21: Incorrect web tasking mental model

40

Al A2

Figure 22: Correct web tasking mental model
After this realization, the gear metaphor was no longer pursued.

Other metaphors were then considered, such as chain link or bubble model where the action
in the center with conditions around them. There was one metaphor that was clear and easy to
interpret — the journey line or track and vehicle metaphor. The chain link metaphor was difficult to
visually distinguish conditions from conditions because the chain links were too similar another
coding method, (such as colour) would have to be introduced. In the bubble metaphor, it was difficult
to model the links between the specific conditions and affiliated actions when it came to having more

than one condition and action. The journey line design is explained in Section 4.4.

4.4 Web Tasking Interface Prototype: WebTasker

The role of prototyping in the software design process is to explore and evaluate the design.
It also gives the designer the opportunity to communicate ideas, and it can be a form of a “design
specification”. Prototypes can be used for early usability testing, and be changed many times before
the final design is achieved; thereby final systems can be developed much faster and cheaper
(Nielson, 1993). Input of the design through prototyping in conjunction with user testing is one of its
main roles in the software design process. In this thesis, the user testing with prototypes was used
with actual tasks. An interactive medium fidelity prototype of WebTasker was created using Axure
software.

The journey line metaphor was selected for the new web tasking interface, WebTasker.
Table 6 explains the design attributes or features of WebTasker and provides the rationale and
reference source to support the design. Figure 23 to Figure 28 show screenshots from the WebTasker
prototype. These figures are annotated with number bubbles that correspond to the design attributes

41

in Table 6 (note that these numbered bubbles were not on the actual prototype). Source names were

abbreviated in this table and include NH= Nielsen’s Heuristic, PS= Pilot Study, RI=Researcher’s

Idea, and HT A= Hierarchical Task Analysis. Figure 23 to Figure 28 are a small sample of the

screens/scenarios used in WebTasker, and is not to be interpreted as a comprehensive set of screens

used in the usability study.

Table 6: WebTasker Design Attributes and Rationale

homepage

homepage at all times

Prototype | Design Attribute Description/Design Source
Bubble # .

Rationale
1 Logo and link to Provide a link to the PS - Zapier had no link to

homepage, and users expected to
have this link.

NH3: User control and freedom.

2 Link to create new | Clear and salient link/button | NHS8: Aesthetic and minimalist
task to create a new task design.

3 Menu Keep terminology simple and | HTA — interfaces with wide
-My Dashboard do not provide too many structures were more difficult to
-Recommendations | choices use, so we minimized menu
-Settings items to four.

-Help HTA and PS — showed
interfaces encouraging use of
published tasks, a well-received
feature, so we included
“Recommendations”.

NH10- Help and documentation,
should be made easy to access.

4 Search Simple and salient PS- search was not salient

enough in Scribble or Zapier,
thus we made it big and left a lot
of white space around it to

increase salience.

42

Prototype | Design Attribute Description/Design Source

Rupblel Rationale

5 Recommended Provide recommendations as | PS -a well-received feature so
(published) Tasks a way to show users task we display some on the

examples homepage in addition to the link
always in the menu.

6 Car icon Should move to indicate task | RI— this does not necessarily

execution status (not working | need to be a car. It could be a
in current prototype) simple ball/circle symbol.
NH1: Visibility of system status

7 Journey Line Line will encounter condition | RI- inspired by cause and effect

first followed by action model
8 Add Condition link | Simple shape of a half RI
ellipse. May be analogous to
a bump in the road.

9 Add Action link Simple shape of triangle. RI — chose shape to be distinctly
May be analogous to a yield | different than condition
sign.

10 Set schedule link Simple calendar icon to set RI — Schedule is placed at the
schedule of running the task | end after user has decided on

condition and actions.

11 Add new set of Big plus sign RI - plus sign differs from half
condition(s) and ellipse and triangle to indicate
action(s) link adding a new set.

12 Field to enter task | Simple input field and save HTA- this task was necessary in
name or save and submit button. all tasks in all interfaces.

13 App icon Icon will be displayed in HTA- this was common in all

either the half ellipse
(condition) or triangle

(action) after user selects it.

tasks in all interfaces.

43

Prototype | Design Attribute Description/Design Source

LRl G Rationale

14 Summary in text The condition or action will | NH6: Recognition rather than
be in text below the journey | recall. Instead of just displaying
line and corresponding icon. | the icon, also provide the text at

all times for the user.

HTA — some interfaces did not
have this summary and it is a
useful feature.

15 Edit link In case user makes mistake, a | NH9: Help users recognize,
link to edit the information is | diagnose, and recover from
always available before errors
submission of the task.

16 Search apps Apps can be added by PS — users had difficultly
selecting from the list or by locating the search in Scribble
search. Search field should and Zapier.
be at the top and salient.

17 App icons and In addition to the icons PS — not all users recognize app

names (in condition | ensure names are there too. logos.
and action
selections)

18 User input fields Fields are app and task HTA and PS: avoid dropdowns
specific. for long list selections.

19 Delete app link Link provided to delete the NH9: Help users recognize,

app from condition or action

if user makes a mistake.

diagnose, and recover from

€Irors

44

G + Create New Task °

Q search tasks

Get a daily digest of

Share new links you Keep a record of every new products added to
post on Facebook to time you visit the gym any category on Best
Twitter

Buy

Figure 23: WebTasker Homepage

Add
action
Add condition M I

Task Name @

[Save ‘ | Save & Submit

Figure 24: WebTasker Create New Task, Blank Journey Line

45

— Add

action

i |
& @ @; Add condition

When FitBi When GPA is

weight is met ~ and met buy me a
iWatch from run every

da
edit @ edit Best Buy v
" edit
edit

Task Name

Sae | Save & Submit

Figure 25: WebTasker Example Web Task, populated journey line

Add Condition App

GPA

Facebaok

Figure 26: WebTasker Example Add App

46

Get FitBit Activity

Specty conditions:

Fraquancy of
condition check

Figure 27: WebTasker Example User Information Input

N 7 X 7 \ 7 ’
N Y B N
\, \ %
Add N/ N/ @ Add / N\ +)
condition / \\’ condition \\/ \\/; _/
When
my RBC Buy me a If my
balance movie number Notify Run Now
is greater ticket of steps Mom
than $25 is greater
than
5000
edit edit edit edit edit
Task Mame
| Save | Save & submit

Figure 28: WebTasker Example Complex Task

47

4.5 Other Design Factors

Web tasking interfaces should be developed with the goal to eliminate the complexity of
software engineering (i.e. programming), such that end users can utilize the interface to create and
control tasks for themselves. The competence and capability of users should always be considered
when designing products. The question of users’ capability is usually encountered and whether end
users are capable of programming applications or not, given that [some] do not have any training as
programmers (de Souza et al., 2001). WebTasker was designed with this in mind, to make the

programming aspect of composing a web task transparent to the user.

Another prevalent problem among end user tasking is the problem of representation of what
they are supposed to do to achieve the task versus what they perceive or interpret they have to do.
The sense-making process is based on the users’ pattern recognition capacity, on language
documentation, on computer literacy and cultural background, or a combination of all (de Sousa,
2001). Norman (1988) discusses affordances and the user’s model otherwise known as a mental or
cognitive model. The user’s mental model is developed through interaction with the system, thereby
allowing people to make predictions about how things will work. The design model (also known as
the conceptual model) is the model that the designer conveys to the user through the interface.

Norman (1988) explains that a good conceptual model is needed to:
o Allow users to predict the effects of their actions.
e Without one, users operate blindly.
e Users cannot fully appreciate why and what effects to expect.
e Users can manage when things go wrong.

The linear model utilized in WebTasker has a conceptual model that builds on a general audience

recognition and language capability.

Another aspect of design that was briefly explored in this thesis was end user’s risk tolerance.
Users will “code” or attempt to program when needed, to expand functionality or make tedious tasks
easier or quicker. This problem has to do with how much a user is willing to risk. An example is
outlined in a study where a search and replace task in a document was carried out (Blackwell, 2001).
The study found that, “Programming tasks require concentrated attentional effort, yet there is always

a risk that the program will not work as expected (even after testing), and that a manual approach to

48

the same task might have been a better investment” (Blackwell, 2001, p. 481). A web tasking
interface should be designed such that users feel confident in the tasks they are composing. Zapier
addressed this by having a test feature to test the zaps with test data provided by Zapier. WebTasker

could consider an optional test function for tasks in a future iteration.

49

Chapter 5
Usability Study

Eight of the common and representative tasks defined as part of the first phase in the HTA were
used as tasks for testing. The tasks were representative of interactions with web tasking platforms and
many were given as example tasks provided by their creators (available on their websites). Each task had
a complexity manipulation, where high and low complexity task conditions were tested. These tasks and

complexity manipulations were as follows:

e High level complexity tasks
o Creating a web task (i.e. Scribble, Recipe, or Zap) from scratch without a template or
starting from a ‘published’ Scribble, Recipe, or Zap.

e Low level complexity tasks

o Involved selecting a previous Scribble, Recipe, or Zap either from a search or selecting it
from a category.
Refer to Appendix A.1, for a comprehensive list of tasks and task steps used. Table 7 shows an example

of a high and low level complexity task for each interface.

Table 7: Sample of tasks used in study

Interface Example of high level complexity Example of low level complexity
task/ Create task task/search task
IFTTT If daily step goal is achieved in Fitbit, Find: If it’s going to rain tomorrow,
then send a new email from Gmail. send me an email from Gmail. Enter
email address “ekittel @uwaterloo.ca”
Scribble If fit bit step goal is met AND UW GPA | Find Take the next bus to the airport if
is met, then buy me an iPad from Best the weather is clear.
Buy; run this task every day.
Zapier When you star an email in Gmail post it | Find: Email for a User’s Twitter
to your Facebook timeline. Tweets, Get an email via Gmail for new
tweets from a specific user.
WebTasker | If my bank account balance is less than | Find: Notify me if Google Stock price
$1000 then notify me; run this task changes.
every Friday at 10:00 a.m.

50

5.1 Participants

Over the period of November 16 to 30, 2015, 16 people were recruited from the University of
Waterloo to participate in this study. The number of participants was selected in order to achieve a
balanced design. Seven males and nine females, ranging in age from 19 to 32 with a mean age of 22.5
years, participated. Half of the participants had computer programming experience and half of them did
not. Those with computer programming experience ranged in experience from novice to expert in a
variety of languages (e.g. MATLAB, C++, Java, etc.). Of the 16 people recruited, four of them had used
IFTTT before. This information was collected with a demographics questionnaire (see Appendix A.3)

All participants met the criteria of having some experience using web applications (for example,

email or weather apps).

The number of participants was selected in order to achieve a balanced design. For statistical
usability studies, at least 10 to 12 participants per condition are needed, however, this depends on the
desired reliability; standard statistical tests can be used to estimate the confidence intervals of test results
and thus indicate the reliability of the size of the effects (Nielsen, 1993). The number of participants in
this study yielded sufficient results to uncover the usability issues involved with each interface in the

study.

5.2 Stimuli and Apparatus

The study took place in a controlled HF laboratory at the University of Waterloo. The study tasks
were completed on a desktop computer with one 23 monitor with 1920x1080 screen resolution. The

keystrokes and mouse clicks and scrolls were recorded in each trial using Mousotron® software.

The web tasking interfaces of these four designs have a range of different functionality and
interaction styles — see Figure 29. Where interfaces have multiple interaction methods (e.g. scroll or

search method), the participant was allowed to choose the preferred method.

? www.blacksunsoftware.com/mousotron.html

51

Nt W% L ST T —— B-a
€ C A 8o = & € 6 &vmsmpeccor B

Create a Recipe

zapler

Choose Trigger Channel

20 ® = o o

Figure 29: Interfaces (clockwise from top left) IFTTT, Zapier, Scribble, WebTasker

5.3 Experimental Design
The experiment followed a balanced repeated measure design. All participants were tested using

all interfaces and completing all tasks at all complexity levels. Summary of the experimental design:
o 8 tasks (per interface) by
e 4 interfaces by
e 2 levels of complexity.

All factors are within-subject or repeated measures factors (because they represent repeated

measurements on the same participant). Each trial lasted approximately 2 hours.

5.3.1 Independent Variables
Independent variables manipulated under this experiment included the four web tasking interfaces
and two levels of task complexity (high and low). The order of presentation of the interfaces, order of

tasks, and gender were partially counterbalanced.

The order of conditions is shown in Table 8.

52

Table 8: Order of conditions of study

Trial Computer
orger Interface Order Task Order | Gender Prog Exp
1 IFTTT WebTasker | Scribble Zapier High | Low | Female Some
2 Zapier IFTTT WebTasker | Scribble High | Low | Male None
3 Scribble Zapier IFTTT WebTasker | High | Low | Female None
4 WebTasker | Scribble Zapier IFTTT High | Low Male Some
5 Zapier Scribble | WebTasker IFTTT Low | High | Female Some
6 IFTTT Zapier Scribble | WebTasker | Low | High | Male None
7 WebTasker IFTTT Zapier Scribble Low | High | Female None
8 Scribble | WebTasker IFTTT Zapier Low | High | Male Some
9 IFTTT WebTasker | Scribble Zapier Low | High | Male Some
10 Zapier IFTTT WebTasker | Scribble Low | High | Female None
11 Scribble Zapier IFTTT WebTasker | Low | High | Male None
12 WebTasker | Scribble Zapier IFTTT Low | High | Female Some
13 Zapier Scribble | WebTasker IFTTT High | Low | Male Some
14 IFTTT Zapier Scribble | WebTasker | High | Low | Female None
15 WebTasker IFTTT Zapier Scribble high | Low | Female None
16 Scribble | WebTasker IFTTT Zapier high | Low | Female Some

Under this design, participants completed 8 tasks (4 high and 4 low complexity) under one

interface before moving to the other interface.

Participant’s gender and programming experience were also independent variables.

5.3.2 Dependent Variables

The dependent variables of this experiment were be the following:

e Task Timing — the total amount of time to complete the task.

e Errors — a frequency count and classification of errors in task completion, such as incorrect menu

or app selections, input of information in wrong field, etc.

e Usability score — System Usability Scale (SUS) questionnaire composed of 10 statements that are
scored on a S5-point scale of strength of agreement. Final scores for the SUS can range from 0 to
100, where higher scores indicate better usability. Usability is measured along three dimensions:
effectiveness, efficiency, and satisfaction. SUS actually measures two factors, usability and
learnability (Lewis and Sauro, 2009). The 10 SUS statements are in Appendix A.4 SUS

Questionnaire. The SUS questionnaire was programmed in C# and presented to the user after

53

every interface using a laptop thereby capturing participants’ entries in real time. A screen shot

of the questionnaire is provided in Figure 30.

Question #1

[think that | would like to use this system frequently

Agree Disagree

O O O O O

Next

Figure 30: SUS questionnaire screenshot example

Overall Likert Scale Rating — this rating was added at the end of the SUS questionnaire. The
intent of this question is to provide a qualitative answer that can be used in conjunction with a
SUS score to better explain the overall experience when using the SUS to summarize a user
interface’s usability (Bangor et. al, 2008). It was also used to compare answers and comments
given.as part of the de-briefing (i.e. what is your favourite interface?). It used a 7-point scale

with qualitative descriptors (see Figure 31).

Table 9 shows the statistical plan summary.

54

Question #11

Overall | would rate the user-friendliness of this system as

Worst Imaginable Awful Poor oK Good Excellent Best Imaginable

O O O O O O O

Finish

Figure 31: Likert Scale rating appended to SUS questionnaire

Table 9: Statistical Plan Summary

Measure Method Analysis

Task Time Timing from timer on computer. Descriptive statistics comparison.

Parametric statistics comparing

tasks and complexity levels.

Errors Count & classification from Descriptive statistics

experimental trials.

Screen capture using software.

Usability Score SUS Questionnaire Descriptive statistics comparison.

Overall Likert Scale Rating Parametric statistics comparing

tasks across interfaces.

5.4 Procedure

The participants were given a study information letter and asked to sign a consent form. They were
then briefed individually on the nature of the test. Appendix A.2 shows the information letter, consent
form, and briefing script read to the participant. They were told that this is a web tasking project about
interface development and will be using a standardized briefing protocol and informed consent was
obtained. Participants were tested one at a time on the same computer and computer monitor. All trials

were recorded with screen capture software, Camtasia Studio!® software.

10 www.techsmith.com/camtasia.html

55

As part of the study briefing, a short demographics questionnaire (Appendix A.3) was then filled
out by the experimenter. Participants had a list of tasks in front of them (Appendix A.1), the

experimenter would provide the correct page at the right time for each trial.

Experimenters did not respond to any questions while participants were conducting their tasks, but
were allowed to interact with the participants between each interface to offer any answers regarding that

specific interface.

Testing was conducted by a team of two experimenters to ensure accurate protocol implementation

and data collection, including interface presentation, timing measurements, and error recording.

Each participant was paid $20/hour (pro-rated to the nearest half hour) for his/her participant in the
study. Most (13 out of 16) participants took 2 hours to complete the entire study and the remainder took

approximately 1.5 hours.

5.4.1 Timing
Experimental trials had a time limit of interacting with the web tasking interfaces. The high
complexity tasks had a time limit of 5 minutes and the low complexity tasks had time limit of 2 minutes.

These time limits were set based on preliminary findings with the pilot study.

5.4.2 Debriefing

Upon completion of the interface trial, each participant spent a few minutes to fill out a Systems
Usability Scale (SUS) Questionnaire (Appendix A.4). This was administered by the facilitator on the
computer. The participant had the opportunity to give any verbal feedback on the platforms and this was
recorded as qualitative data. The debriefing questionnaire is in Appendix A.5, and the results are

presented in Section 5.9.

5.5 Analysis of Errors

Errors were recorded and analyzed for each trial for each interface. Six categories of errors
emerged from these records: 1) Typo Submission, 2) Selection of the Item, 3) Entry of Data in the Wrong
Section, 4) Severe errors, redid 5) Time Out Errors 6) Other. These categories were developed to
facilitate the error analysis and were not mutually exclusive (i.e. several different types of errors could
occur in a single trial). The majority of individual trials were error free. The descriptions below detail

what was involved in each category of error.

56

5.5.1 Typo Submission Error

A typo was counted if the participant entered information required to complete a task with a
misspelling of a word or number occurred due to an addition, absence or reversal of the letters, digits, or
symbols. For example, for the task “if the IBM stock prices rises above $160, then send an email from
Gmail”, a typo submission error was counted if the participant typed in the “$” in the dollar amount field,
for the task “if the IBM stock prices rises above $160, then send an email from Gmail”, an typo
submission error was counted if the participant typed in the “$” in the dollar amount field, as the system

would not accept the data with the “$” symbol and would return an error.

5.5.2 Selection of the Wrong Item

Selection of the wrong menu item involved selecting the incorrect item by accident or as a
genuine mistake. For example, participants made this error were during selection adding an action piece

instead of a condition piece in the Scribble interface.

5.5.3 Entry of Data in the Wrong Section

Entry of data in the wrong section was chosen as a category for those occasions where
participants attempted to enter information in the wrong place. For example, entering condition

information in an action field.

5.5.4 Severe Errors, redid

Severe errors occurred when participants were not able to recover from their mistakes and had to
restart the trial. The severe errors occurred when a participant got lost on the interface or clicked away

from the desired page and had to return to the appropriate page (or homepage) to start the task again.

5.5.5 Time Out Errors

Each trial had a time limit for visually interacting with the interface for 5 minutes for high
complexity tasks and 2 minutes for low complexity tasks. When the trials were not completed within the
time limit, the trial was assigned the maximum value. These trials were not redone once the maximum
time limit was reached. Most of trials with a time out error were observed to have at least one other type

of error in addition to the time out error.

5.5.6 Other

This category was created for the rare errors that did not fit the other categories, so they have

been grouped together here. For example, if a user forgot to include some information to complete the

57

task (e.g. almost submitting the task but forgot to set the schedule) and did not time out or submit the task

with error, then remembered to add the information; this type of slip error was counted here.

5.6 Analysis of Results

Descriptive statistics and Analysis Of Variance (ANOVA) and post hoc tests for all task times in
each interface were performed using Statistica 64 software. The ANOV As compared tasks and
complexity levels. Tukey's HSD (honest significant difference) post-hoc tests were used because of its
statistical power and widely accepted use (Kromrey and La Rocca, 1995). Errors were also recorded and

were provided in a frequency count. Descriptive statistics were also calculated with Statistica 64.

5.7 Usability Results

ANOVAs were conducted to examine the experimental factors: gender (male vs. female),
computer programming experience (some vs. none), and task complexity (high vs. low). Where
significant effects were found with more than two levels, post-hoc Tukey’s tests were used to identify
differences between conditions. Box and whisker plots are provided for task timings that show the mean,
the “box” shows the standard error (the standard error of the mean is the theoretical standard deviation of
all sample means), and the “whiskers” show the standard deviation (measure of variation). Refer to
Appendix B for ANOVAs, and post hoc tests. Descriptive statistics results are presented in each

subsequent section.

5.7.1 IFTTT Results

The ability of the participant to successfully complete a task was determined by the task time. An
ANOVA analysis was conducted for differences in participants’ task time under different conditions
based on task and complexity. Figure 32, Table 10, and Table 11 show the results of the mean and
standard deviation of the task time (in minutes) for IFTTT. The mean for all high complexity tasks was
1.15 minutes and for low complexity it was 0.96 minutes. Significant factors were observed for task
times, F(7, 56)=3.14, p=0.007. No interaction effects were observed. No significant difference was

observed between genders. The post-hoc Tukey’s test revealed that there was:

e Generally no significant difference between low level and high level tasks, except in these

cases:
o HlandL2
o HlandL3

e No significant difference within the low complexity tasks (L1 to L.4)

58

o Significant difference between high complexity tasks H1 and H3 (slight learning effect).

As seen in Figure 32, there does not appear to be a discernable different between high and low level
complexity tasks. Therefore, a slight learning effect was observed, since H1 and H2 decreased and there
was a significant difference between H1 and H3. The mean for H2 (1.08 minutes) was less than the mean
for H1 (1.46 minutes). However, H4 yielded a higher task average task time than H2 and H3. This could
be attributed to the additional typing to enter information to complete this task (i.e. participants had to

type in a stock ticker symbol and an email address, where they did not have to do so in the other tasks).

IFTTT Results

5
4 L
2
g 3}
£
3
(0]
=
l_
5 2t
©
|_
') =
0 : . : : O Mean
L1 L2 L3 L4 HA1 H2 H3 H4 [] Mean+SE
ok T Mean+SD

Figure 32: IFTTT Results

59

Table 10: IFTTT Results

Descriptive Statistics (IFTTT)
Mean | Valid N | Median Mode | Minimu | Maximu | Std.Dev. |Variance
Variable m m
H1 1.46 16 1.33 1.25 0.88 2.57 0.45 0.21
H2 1.08 16 0.95 multiple 0.67 2.95 0.53 0.29
H3 0.85 16 0.81 multiple 0.58 1.30 0.20 0.04
H4 1.21 16 1.08 1.08 0.63 2.28 0.45 0.20
L1 0.99 16 0.93 2.00 0.30 2.00 0.59 0.35
L2 0.80 16 0.71 multiple 0.35 2.00 0.41 0.16
L3 0.91 16 0.59 42 0.22 2.00 0.71 0.50
L4 1.14 16 1.03 2.00 0.50 2.12 0.59 0.35
Table 11: IFTTT Results by Task Complexity
Aggregate Results
Descriptive Statistics (IFTTT)
Task Complexity Mean Valid N Median Minimum Maximum Std.Dev.
Variable
Task Time H 1.151823 64 1.041667 0.583333 2.950000 0.472573
Task Time L 0.958333 64 0.700000 0.216667 2.116667 0.584500

5.7.1.1 Error Results

Error frequencies were recorded for the 6 error categories. Figure 33 shows the error frequency

results. Relative to the other interfaces, IFTTT had the least number of errors overall. In general, more

errors occurred during the high complexity tasks. There were no time out errors for the high complexity

task but 8 timeouts in the low complexity. These errors were from three different participants, the main

reason being s/he was not aware of the search bar to complete the search task and conducted the search by

click exploration (e.g. clicking on different categories, recommendations, popular recipes, etc.).

60

IFTTT Error Frequency

Other

Time Out

Severe ermors, redid

Error Type

Entry of data in
wrong section

Selection of wrong item

Typo
0 5 10 15 20 25 30 35 40
Number of Errors
mLow Complexity mHigh Complexity

Figure 33: IFTTT Error Frequency

5.7.2 Scribble Results

Figure 34, Table 12, and Table 13 show the results of the mean and standard deviation of the task
time (in minutes) for Scribble. The mean for all high complexity tasks was 3.45 minutes and for low
complexity it was 0.41 minutes. The high complexity task, H2, had the greatest variability as indicated
by the larger standard deviation. Significant factors were observed for task times, F(7, 84) = 350.48,
p=0.00. No interaction effects were observed. No significant difference was observed between genders.

The post-hoc Tukey’s test revealed that there was:
o Significant difference between low level and high level tasks (i.e. high level tasks took longer)
e No significant difference within the low complexity tasks (L1 to L.4)
e Significant differences between all high complexity tasks (H1 to H4)
o Significant differences between H1 to H3 (i.e. evidence of learning effect).

As seen in Figure 34 there appears to be a learning effect as task time decreases between H1 to H3.

However, the task time for H4 increases, not continuing the learning trend. This was anticipated as the H4

61

task was to create a web task with one condition and associated action and another set of one condition
and associated action (in one web task). H1 and H3 either had one or two conditions and one related
action. H4 had more steps to carry out, in addition to the user learning to compose a web task that
consisted of multiple conditions and actions. H2 included to add a schedule component to the web task.

This may be why there is greater variability in this task, as users were learning how to set the schedule.

Scribble Results

m
[0]
=]
£ -
E 37
(0]
£
|_
X
7]
e 2}
1 L
P oh s
0 . . . : : : O Mean
L1 L2 L3 L4 H1 H2 H3 H4 [] Mean+SE
el T Mean+SD

Figure 34: Scribble Results

62

Table 12: Scribble Results

Descriptive Statistics (Scribble in Scribble data)
Mean | Valid | Median Minimum Maximum Std.Dev. Variance
Variable N
HA1 4.67 16 5.00 3.73 5.00 0.48 0.23
H2 3.97 16 3.99 1.85 5.00 0.87 0.76
H3 2.06 16 2.05 1.27 2.77 0.35 0.12
H4 3.10 16 2.98 2.50 3.75 0.40 0.16
L1 0.68 16 0.65 0.33 1.02 0.19 0.04
L2 0.33 16 0.27 0.17 0.77 0.19 0.04
L3 0.34 16 0.28 0.17 1.33 0.27 0.08
L4 0.28 16 0.28 0.17 0.42 0.07 0.00
Table 13: Scribble Results by Task Complexity
Aggregate Results
Descriptive Statistics (Scribble Data?)
Task Mean Valid M Median Minimum Maximum Std_Dev. Variance
Complexity
“ariable
Task Time H 345 6400 343 1.27 500 112 1.27
Task Time L 0.41 64.00 0.32 0.17 1.33 0.25 0.06

5.7.2.1 Error Results

Figure 35 shows the error frequency for Scribble. Scribble had the most errors overall, mostly in

the high complexity trials. This aligns with the results from the pilot study as described in Section

4.2.1.3. There was only one error (a typo) in the low complexity tasks. The most common error was

‘selection of the wrong item’ during the high complexity tasks. Initially, users did not know how to select

an action or condition piece and some observed learning took place. For example, many users did not

know they had to drag the condition piece to stack it on the action piece—which led to the user selecting

the action piece when the intention was to enter a condition. This was demonstrated in the second highest

error, the ‘entry of the data into the wrong section’. Scribble also had the highest number of time outs for

a high complexity task.

63

scribble Error Frequency

Other

Severe errors, redid

Error Type

Entry of data in
wrong section

Selection of wrong item

e O
=
I

Typo
]) 10 14 20 25 30 35 40
Number of Errors
m Low Complexity m High Complexity

Figure 35: Scribble Error Frequency

5.7.3 Zapier Results

Figure 36, Table 14, and Table 15 show the results of the mean and standard deviation of the task
time (in minutes) for Zapier. The mean for all high complexity tasks was 2.23 minutes and for low
complexity it was 1.51 minutes. The high complexity task, H2, had the greatest variability as indicated
by the larger standard deviation. Significant factors were observed for task times, F(7, 84)= 24.60,
p=0.00. No interaction effects were observed. No significant difference was observed between genders.

The post-hoc Tukey’s test revealed that there was:
e Significant difference between high complexity tasks
o H2 was significantly higher than all other tasks (i.e. H2 took the longest)

o tasks H3 and H4 took less time to complete than H1 and H2 (could be somewhat of a

learning effect)

e L4 was significantly different from L1, L2, and L3 (it had the lowest task time). The means of
low complexity tasks were high for L1, L2, and L4 with many participants maxing out their

time)

e L1 and L4 were significantly different than H2 and L4 was significantly different than H4

(keep in mind that low level tasks max out at 2 minutes).

It is speculated that H2 took the longest for two reasons. The main reason was the H2 task was the
only task in the entire study that had a slightly different wording, “Send an email with Gmail for new
tweets from @UWHFstudentgirl”; where the action was indicated before the condition. Interestingly
that this minor change caused a higher task time, perhaps indicating a higher cognitive load. The
second reason was that as there was more information entry required. Users had to enter a twitter ID

in addition to an email address.

The search task (low level complexity) in the Zapier interface was evidently difficult for
participants. Zapier only allows search by app name, for example, if users would type “tweet” in the
search bar, the twitter app would not appear. It is important to note that there were no significant
differences (despite the maximum time of low level tasks capped at 2 minutes) between L2 and L3 and

H3 and H4. This demonstrates that creating a task is just as “easy” as finding an existing task/zap.

Zapier Results

w

Task Time (minutes)

B+

0 : . . : O Mean
L1 L2 L3 L4 H1 H2 H3 H4 [] MeantSE

Task 1T MeanSD

Figure 36: Zapier Results

65

Table 14: Zapier Results

Descriptive Statistics (Zapier data)
Mean | Valid N Median Mode Minimum Maximum Std.Dev. Variance
Variable
H1 2.36 16 2.13 1.93 1.60 5.00 0.83 0.69
H2 3.40 16 3.10 multiple 1.77 5.00 1.02 1.05
H3 142 16 1.28 multiple 0.85 243 0.50 0.25
H4 1.84 16 1.79 no mode 1.10 2.75 0.44 0.19
L2 1.95 16 2.00 2.00 1.08 2.13 0.23 0.05
L1 1.45 16 1.57 2.00 0.63 2.00 0.58 0.33
L4 0.79 16 0.49 .33 0.32 2.00 0.65 0.42
L3 1.87 16 2.00 2.00 0.62 2.00 0.35 0.12
Table 15: Zapier Results by Task Complexity
Aggregate Results
Descriptive Statistics (Zapier data)
Task Valid N Mean | Minimum| Maximum | Std.Dev.
Variable Complexity
TaskTime (min) H 64 2.25 0.85 5 1.04
TaskTime (min) L 64 1.51 0.32 2 0.66

5.7.3.1 Error Results

Figure 37 shows the error frequency results for Zapier. Overall, Zapier had the second highest

number of errors. Zapier had the most number of errors for low complexity tasks (i.e. time out errors).

This is attributed to a limited search capability in the platform. It is only searchable by app name not zap

title, so if a user typed in a keyword it would only find the associated app if the keyword is contained in

the app name.

66

Zapier Error Frequency

Other

Time Out

Severe errors, redid

Entry of data in
wrong section

Error Type

Selection of wrong item

Typo
0 5 10 15 20 25 30 35 40
Number of Errors
B Low Complexity B High Complexity

Figure 37: Zapier Error Frequency

5.7.4 WebTasker Results

Figure 38, Table 16, and Table 17 show the results of the mean and standard deviation of the task
time (in minutes) for WebTasker. The mean for all high complexity tasks was 2.56 minutes and for low
complexity it was 0.28 minutes. Significant factors were observed for task times, F(7, 84)= 146.45,
p=0.00. An interaction effect was observed between computer programming experience and gender. The

post-hoc Tukey’s test revealed that there was:
e Significant differences between all high complexity tasks, except H1 and H2.

o Significant difference between H1, H2 and between H1 and H3 (task time the lowest for H3).

This shows some learning effect.
o Significant difference between H1 (taking the longest) and H4. H4 was a more complicated task.
e H4 was significantly lower than H1 and H2; and H4 was significantly higher than H3.
o Significant differences between all low level tasks and high level.

The results for the WebTasker high complexity tasks were similar to those seen for the Scribble

interface. As seen in Figure 38 there appears to be a learning effect as task time decreases between H1 to

67

H3. However, the task time for H4 increases, not continuing the learning trend. This was anticipated as
the H4 task was to create a web task with one condition and associated action and another set of one
condition and associated action (in one web task).

H1 and H3 either had one or two conditions and one related action. H4 had more steps to carry
out, in addition to the user learning to compose a web task that consisted of multiple conditions and

actions.

Significant differences between all low level tasks and high level. This was expected as the
search task in the WebTasker interface is not a true searchable platform. The search task is a mock-up of
what the ideal search results would yield, thereby making it easy to complete the task. The limitation of

the WebTasker prototype explains the low task times for L1 to L4.

WebTasker Results

m
£ [o] T
= 8
£
o £
£ -
g o]
|—
x 2t
»
©
|_
1 L
T o n B
0 : . : : O Mean
L1 L2 L3 L4 H1 H2 H3 H4 [] Mean+SE
el T Mean+SD

Figure 38: WebTasker Results

68

Table 16: WebTasker Results

Descriptive Statistics (WebTasker repeated measures in WebTasker data)
Mean Valid N | Median | Mode |Minimum | Maximum |Std.Dev.| Variance
Variable
H1 3.31 16 3.12| multiple 242 4.98 0.80 0.65
H2 3.05 16 2.92 2.92 2.27 4.80 0.64 0.41
H3 1.62 16 1.47 multiple 1.17 297 0.51 0.26
H4 2.27 16 2.03 multiple 1.57 5.00 0.83 0.69
L1 0.31 16 0.29 .38 0.18 0.50 0.09 0.01
L2 0.23 16 0.23 multiple 0.17 0.32 0.04 0.00
L3 0.27 16 0.28 .28 0.17 0.38 0.06 0.00
L4 0.29 16 0.29 multiple 0.17 0.47 0.08 0.01
Table 17: WebTasker Results by Task Complexity
Aggregate Results
Descriptive Statistics (WebTasker)
Task | Mean | Valid N | Median Mode Minimu | Maximu |Std.Dev.| Variance
Comple m m
Variable xity
TaskTime (min) H 2.56 64 2.50 multiple 1.17 5.00 0.96 0.93
TaskTime (min) L 028 64 0.27 .2833333 0.17 0.50 0.08 0.01

5.7.4.1 WebTasker Interaction Effects

Although factors (gender and programming experience) may not have significant effect when

examined individually, they may have a different effect when considered in combination. There was a

two-way interaction effect between computer programming experience and gender F(1, 12)=6.62,

p=0.024. The interaction plot in Figure 39 reveals some interesting findings. For the WebTasker interface

males with some computer programming experience took longer than males with no computer

programming experience. The opposite is true for females, those with some programming experience

were faster than those without. Furthermore, a slight 3-way interaction effect, F(7,84)=2.24, p=0.039, was

observed between computer programming experience, gender and task time (Figure 39).

69

Computer Prog Exp*Gender; LS Means
Current effect: F(1, 12)=6.6196, p=.02442
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals

2.0
1.5}
(0]
£
|_
« 107
%]
©
|_
0.5}
0.0 - . =% Gender
- none some S
= Gender
Computer Prog Exp male

Figure 39: WebTasker Interaction Effect, computer programming experience and gender

There was also a 3-way interaction effect found between task time, computer programming
experience, and gender for WebTasker (Figure 40). It appeared that males with computer programming
experience had generally longer task times than females with computer programming experience.
Females without computer programming experience had longer task times than males without computer
programming experience. It is speculated that the interaction effects were spurious, as WebTasker was
the only interface that had an interaction effect between gender and computer programming experience.
This interaction effect was not seen in other interfaces. Although this interaction effect is speculated to be
spurious, it could be partially attributed to the small sample size and disproportion of females to males

(sample size was 9 females and 7 males).

70

TASKTIME*Computer Prog Exp*Gender; LS Means
Current effect: F(7, 84)=2.2430, p=.03848
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals

5.0
45| _
40} — B
D
35|
30 B (
E 25/ 1t / | == TASKTIME
S H1
s 207 1 | =& TASKTIME
. B H2
157 11 | == TASKTIME
H3
107 17 { == TASKTIME
H4
L1
oo 17 1 =& TASKTIME
L2
0.5 - - | .
Gender: male Gender: male == IQSKTIME
female female —4— TASKTIME
Computer Prog Exp: none Computer Prog Exp: some L4

Figure 40: WebTasker Interaction effect for computer programming experience, gender, and task

time

5.7.4.2 Error Results

Figure 41 shows the error frequency for WebTasker. WebTasker had the highest number of
‘selection of wrong item’ error with a frequency of 36 (with Scribble second at a frequency of 34). Many
of the ‘selection of wrong item’ error in WebTasker can be attributed to repeat clicking of an item. Since
WebTasker is not a fully functioning prototype, users would often repeatedly click the same icon or link
and not receive any feedback (if was not the correct link to click for a specific step in the task). Each

repeated click on the same wrong item was counted as an individual error.

71

WebTasker Error Frequency

Other L

Time Out .

Severe errors, redid -

Entry of data in
wrong section

Error Type

Selection of wrong item

Typo
0 5 10 15 20 25 30 35 40
Number of Errors
B Low Complexity B High Complexity

Figure 41: WebTasker Error Frequency

5.8 System Usability Scale and Overall Likert Ratings Results

The tasks used in each interface used in this study were similar in context and composition;
however they were not the same tasks across interfaces. Due to this variance, statistically comparing task
times across interfaces would not yield comprehensive results. That is why the researcher decided to
implement a SUS questionnaire, as a measure that is comparable across interfaces. Participants rated the
usability of each interface with this standardized questionnaire. In addition to the SUS scores, a 7-point
likert rating was used as another comparable means. If the SUS scores correlated with the likert rating,

then this would increase the SUS scores’ validity.

Table 18 shows a summary of results of the SUS scores and overall likert ratings. IFTTT
received the highest mean SUS score (88.66), followed by WebTasker (85.47), then Scribble (63.13), and

Zapier (53.44). The same rank order was found for the overall likert scale rating.

A MANOVA analysis was conducted for differences in participants’ SUS scores under each
interface. Significant factors were observed for SUS scores F(6, 98)=5.28, p=0.00. No interaction
effects were observed. No significant difference was observed between genders. The Tukey’s post hoc

test revealed:

72

o Significant difference between the IFTTT and Scribble (IFTTT had the highest mean SUS

Score).

e Significant difference between IFTTT and Zapier.

e No significant difference between IFTTT and WebTasker.

e WebTasker and Scribble (WebTasker had the highest mean SUS Score)

o WebTasker and Zapier (Zapier had the lowest SUS Score).

Table 18: SUS Score and Overall Likert Rating Results by Interface

Aggregate Results

Descriptive Statistics (SUS questionnaire results)

Interface | Mean |Valid N| Median | Mode | Minimu | Maximum | Std.Dev.
Variable m
SUS Score IFTTT 88.66 16 93.75 100.00 50.00 100.00 13.88
Overall Likert Rating IFTTT 5.75 16 6.00 6.00 4.00 7.00 0.68
SUS Score Scribble 63.13 16 60.00 87.50 20.00 97.50 26.00
Overall Likert Rating Scribble 4.56 16 4.50 4.00 3.00 6.00 1.09
SUS Score WebTasker| 85.47 16 87.50 multiple, 62.50 100.00 10.69
Overall Likert Rating [WebTasker 5.56 16 6.00 6.00 4.00 7.00 0.73
SUS Score Zapier 53.44 16 4500 4250 15.00 85.00 21.73
Overall Likert Rating Zapier 4.13 16 4.00 4.00 1.00 6.00 1.31

5.8.1 Correlation of SUS Scores and Likert Scale Ratings

A correlation analysis was conducted on the SUS scores and overall likert scale ratings (Figure

42). There was as strong positive correlation between the two measures. This demonstrates the likert

scale ratings is supported by the SUS measure.

73

Scatterplot of Overall Likert Rating against SUS Score
SUS questionnaire results
Overall Likert Rating = 1.7457+0.0448%x; 0.95 Conf.Int.

Overall Likert Rating

10 20 30 40 50 60 70 80 90 100
SUS Score

Figure 42: Correlation between SUS Score and Overall Likert

It should be noted that during the debriefing interview, participants’ were asked to choose their
favourite interface (Question 4, Section Question 4: Favourite Interface). 56% of participants’ answers
matched their SUS score (the SUS score means are shown in Table 19 and Figure 43). However, of the
44% that did not match their debriefing answer, their second highest SUS score was the interface they

chose as their favourite, with a mean difference of 12.5.

Table 19: SUS Scores Descriptive Statistics

Interface Valid N Mean Minimum Maximum Standard
Deviation
IFTTT 16 88.66 50 100 13.88
Scribble 16 63.13 20 97.5 26.00
Zapier 16 53.44 15 85 21.74
WebTasker 16 85.47 62.5 100 10.69

74

Box Plot of SUS Score grouped by Interface

100

90' O

80

70

60 |

50

SUS Score
]

40 t

30

20

10 ¢

IFTTT Scribble WebTasker Zapier o Mean
Interface [1 Mean+SD

Figure 43: SUS Score Means

5.8.2 Keystrokes and Mouse Clicks/Scroll Count Correlation to Task Time

The keystrokes and mouse clicks and scrolls were recorded in each trial using Mousotron
software. In order to validate the connection between the number of key presses and scrolls to the results
obtained from the Usability Study (task times), statistical correlation analysis was conducted. A
correlation matrix was generated, representing a value (in the range of -1.00 to 1.00) that reflected the
relation between variables (correlation coefficient). Individual task times were used in this analysis,
versus an average of these task times (aggregated data). The reasoning behind this was by using more data
points the results will reflect a more accurate correlation value, whereas using fewer data points will tend
to inflate correlations. Aggregate data also does not consider the distribution of individual participant’s
performance, and may not accurately reflect true correlations (i.e. grouped and individual data may not

agree).

75

Significant correlations (p < 0.05) occurred for all interfaces where r=0.63 for keystrokes and
r=0.62 for mouse clicks and scrolls. Figure 44 and Figure 45 plots the correlation. The cluster of points in
the lower left corner correspond to the low complexity (search) tasks.

Scatterplot of TaskTime (min) against Keystrokes
TaskTime (min) = 0.7016+0.0284*x; 0.95 Conf.Int.

4 L
5
E
o 3
E
'_
X
®
= 27

1 L

0 L

0 20 40 60 80 100 120 140 160
Keystrokes

Figure 44: Keystrokes correlation to task time

76

Scatterplot of TaskTime (min) against Total mouse clicks and scrolls
TaskTime (min) = 0.894+0.014*x; 0.95 Conf.Int.

B®0008 00 o

TaskTime (min)

o

0 50 100 150 200 250 300
Total mouse clicks and scrolls

Figure 45: Mouse clicks and scrolls correlation to task time

5.9 Debrief Questionnaire Results

A four question questionnaire was completed in an interview style at the end of each trial with

each individual participant. The subsequent sections present the results the debriefing.

5.9.1 Question 1: Mental Model

The first question was, “Did you have a preference to enter actions or conditions first? If yes, why?”.
This question was to probe the participant’s mental model of the situation. 81% of participants said they
would rather enter conditions first, 6% said actions first, and 13% had no preference (see Figure 46). Of

the participants who reported they prefer to enter condition first, their reasoning behind it was:

e “It is the temporal order of how things work™ or “it is chronological”; similarly, “If that never

happens then don't get to the next thing.”

e “Conditions should come first- because based on programming, it’s better to write conditions

first -like an 'if else' statement”
o “It makes sense to define the condition before you tell the system what to do.”

e “It seems logical”.

77

Q1 Preference to enter actions or conditions
first?

=
O MW

[TS T TUR A B O I I

Conditions First Actions First Mo Preference
Figure 46: Debrief Question 1 Mental Model

5.9.2 Question 2: Features and Functions

Question 2 was, “What did you like about the functionality and features of each web tasking

platform? Is there anything else you would like to see in terms of functionality?”.

5921 IFTTT

IFTTT received many positive comments during the debriefing (see Figure 47). Most reported
that it was easy to use. 25% of participants said it was aesthetically pleasing, and 19% liked it was
prescriptive in nature (it prompted the user) and enjoyed the search function. IFTTT did not receive much
negative feedback (Figure 48). 19% reported that there was “too much white space”. 13% reported it

was difficult to find the search function.

78

IFTTT Positive Comments
12

10

4 I I
0 . .

Aesthically pleasing/ Easy/straightforward Prompting Ability to browse and
liked icons search function

fa

Figure 47: Debrief Question 2 Feature and Function IFTTT Positive

IFTTT Negative Comments

2
, =] l
]

Cannotdo Too much white Predetermined Can see htmlcode Difficult to use or
complex tasks space conditions to find the search
choose from function

Figure 48: Debrief Question 2 Feature and Function IFTTT Negative

5.9.2.2 Scribble
Scribble had a few positive comments during the debriefing (see Figure 49). 19% liked the

graphical or visual nature of the interface. However, this was not particular to the puzzle metaphor, they
simply appreciated that the format was presented graphically. Only 13% found it easy to use. Scribble
did receive much negative feedback (Figure 50). 31% of participants reported that they did not
understand the layout, or reasoning behind having conditions stacked on top of action pieces in the puzzle

metaphor. 25% reported that it was not visually appealing.

79

Scribble Positive Comments

12

10

8

7]

4

| B

1 1 —

Schedule Easy to usef User- Visual Garbage can to delete

friendly pieces

Figure 49: Debrief Question 2 Feature and Function Scribble Positive

Scribble Negative Comments

8
7
6
5
4
3
: I I
1
) l l B l l
Confusing Complicated Would like Not visually Do not Drop down Double click Cannotdrag
(new user) functionality prompting appealing understand menu for does not conditions
(more than layout time entry work piece
one task) {conditions
on top of
action piece)
Figure 50: Debrief Question 2 Feature and Function Scribble Negative
5.9.2.3 Zapier

Zapier did not receive many positive comments during the debriefing (see Figure 51). 19% liked
that there were many apps available (there are over 400 apps available at the time of this writing). Zapier
did receive much negative feedback (see Figure 52). 44% of participants reported that Zapier had a bad

search function, as low complexity tasks were difficult to complete. This is in line with the HTA

80

findings. 31% reported that there was too much information displayed at one time — a finding also in line

with the HTA results.

Zapier Positive Comments

12

10

2
"B B -

Many apps available Drop-down menus Creating new zaps Can enter condition
was easy or action first

Figure 51: Debrief Question 2 Feature and Function Zapier Positive

Zapier Negative Comments

8
7
6
5
4
3
2
1
; i]]
Complicated/ Bad search Too much Mot graphically Notintuitive Test function
difficult to use function information appealing
displayed at
one time (fields
to fill out)

Figure 52: Debrief Question 2 Feature and Function Zapier Negative

81

5.9.2.4 WebTasker

WebTasker received many positive comments during the debriefing (see Figure 53). 50% of
participants reported that it was easy to use and that it was visually appealing. 44% of participants
appreciated the linear order and the fact that the order meant something in terms of task execution.
WebTasker did not receive much negative feedback (see Figure 54). 25% reported that having the
capability to input more than one set of conditions and actions in the same task was complicated. 19%
reported it was unfavorable to use arrows for time entry when setting the schedule (arrows were used in

the prototype as it was a default time setting feature in the Axure software).

WebTasker Positive Comments
12

10

8 I I
0 I I

Visually appealing/ Linear view (order Easy to use/ User- Functionality of more
visually simple means something) friendly than one task

=]

Y

pa

Figure 53: Debrief Question 2 Feature and Function WebTasker Positive

WebTasker Negative Comments

1 -
]
Complicated functionality Would like prompting Arrows used for time entry

(more than one task)

Figure 54: Debrief Question 2 Feature and Function WebTasker Negative

82

5.9.3 Question 3: Scheduling Feature

Question 3 was, “How could we improve setting the frequency of condition check and setting the
task schedule?”, which was only applicable to Scribble and WebTasker. 38% of participants said they
would not change a thing with it (in either Scribble or the WebTasker interface). 25% reported to have
the time field type-able, versus the arrows used in the WebTasker interface and the drop-down menu used
to set time in the Scribble interface. Only one person reported they would disable scheduling altogether.
Recall that IFTTT and Zapier execute the recipes and zaps on a default basis of 5 or 15 minutes and do

not currently have any scheduling capabilities.

Q3 How to improve setting frequency of condition
check and setting task schedule?

0
MNone Use of calendar Type in the time Remove Remove Disable

field frequency of milliseconds scheduling
condition check

Figure 55: Debrief Question 3 Scheduling Feature

5.9.4 Question 4: Favourite Interface

Question 4 was, “Which interface did you like the most and why?”. The most favoured interface
was IFTTT, followed by WebTasker. Three participants said they their favourite was both IFTTT and
WebTasker and that is why N=19 (instead of 16) in Figure 56. Two people’s favourite interface was
Scribble.

83

Q4 Which interface did you like the most?

10

0

IFTTT Zapier Scribble WebTasker
Figure 56: Debrief Question 4 Favourite Interface

5.10 Usability Study Summary

The usability study revealed important information regarding composing web tasks. It was seen
that participants can successfully engage in creating web tasks with all web interfaces with one condition
and one action. Scribble and WebTasker had the capability to compose web tasks with multiple
conditions and actions. Within these two interfaces, participants took longer to compose these web tasks
and 13% reported they did not appreciate this added functionality (multiple conditions and/or actions) in

the Scribble debriefing and 25% reported this in the WebTasker debriefing.

Generally, participant task times were significantly shorter for low level task complexity tasks
except for Zapier, where searching for a zap was comparable to composing a new web task. There were
less errors for low level complexity tasks compared to high level complexity tasks. Scribble garnered the
most errors overall with the majority of the errors being in the high complexity tasks. Zapier had the most
number of errors for low complexity tasks (i.e. time out errors). This is attributed to a limited search

capability in the platform.

Users with computer programming experience did not have a significant effect on task time.
However, there was an interaction effect noted for WebTasker where it appeared that males with
computer programming experience had generally longer task times than females with computer
programming experience. Females without computer programming experience had longer task times than

males without computer programming experience. Although this interaction effect is speculated to be

84

spurious, it could be partially attributed to the small sample size and disproportion of females to males

(sample size was 9 females and 7 males).

The number of keystrokes, mouse clicks, and scrolls were recorded and were found to be
significant to the task times. SUS proved to be an indicative measure in this web tasking interface study,
as the results of SUS correlated to the likert scale question. However, only 56% of participants’ answers
matched their SUS score. Of the remaining 44% that did not match their debriefing answer to their
highest SUS score rating, their second highest SUS score was the interface they chose as their favourite,

with a mean difference of 12.5.

85

Chapter 6

Discussion

Several research questions were posed at the introduction of this thesis. Below is a summary of

the study results within the context of the research questions.

Part 1: What are the current Human Factors (HF) issues with existing web tasking platforms?
Analytical HF analysis through Hierarchical Task Analysis (HTA) was performed on three web tasking
interfaces: IFTTT, Zapier, and Scribble. This analysis revealed several HF issues such as freedom for
user actions and task structures as demonstrated in linear versus wide HTA structures. Issues identified
included: wide menu structures may indicate that there is too much information presented to the user at
one time; option to choose next step leaves room for human error (e.g. user inadvertently selecting to
enter action first if his intention was to selection condition first), and different interaction types may
impact user performance (scrolling versus using a search to find apps). The HTA was a helpful tool in

thoroughly investigating each interface and identifying all the user steps at the task level.

Part 2: How do people perceive composing web tasks? What makes up the ideal user control
metaphor for web tasking? A pilot usability study was conducted on existing web tasking interfaces and
the results were used as input into the researcher’s design of a unique web tasking interface, WebTasker.
Results of a literature review on mental models, end user programming, and usability guidelines were also
sources of design input. An interactive prototype of WebTasker was created based on all the design
input. The WebTasker design used a journey line control metaphor, which aimed to minimizes cognitive
loading (no need to match pieces to what type, i.e. condition, action, symbol), minimize clicks and scrolls
to fill in user information fields, utilized recognized symbols, and had capability to display task execution

status to the user.

Part 3: How does the new design, WebTasker, compare to the existing web tasking interfaces? A
full scale experimental study was conducted with 16 participants evaluated four web tasking interfaces for
approximately 2 hours per session. Each participant performed 4 high complexity tasks and 4 low
complexity tasks on 4 different interfaces (32 distinct tasks). Metrics to study end user interaction
included: task timings, errors, and ratings from a System Usability Scale (SUS) questionnaire. This
usability study showed that participants had poorer performance and found it more difficult to create web
tasks in web tasking platforms with multiple conditions and actions. The results showed that there was no
difference between performances between participants with computer programming experience than those
with none. The results of the SUS ratings highly agreed with the quantitative measures showing that

IFTTT received the highest mean SUS score (88.66), followed by WebTasker (85.47), then Scribble

86

(63.13), and Zapier (53.44). A main takeaway was that WebTasker was the only interface that simulated
showing task status (e.g. when first condition was met), and participants feedback indicated this is a

feature that they would like to see included in a web tasking interface.

6.1 Mental Models and User Performance

From the result of the debriefing questionnaire, users’ preference was to enter conditions first
then actions. This complemented the performance metrics used in the empirical study where users had
the best performance in IFTTT and WebTasker when composing web tasks (high complexity). The mean
for all high complexity tasks was 1.15 minutes in IFTTT and was IFTTT and WebTasker 2.56 minutes for
WebTasker. IFTTT had the least number of errors (14 total errors) followed by WebTasker (22 total
errors) for high complexity tasks. These results imply that the more prescriptive or constrained decision-
making an interface is, there will be less occurrence of human error. In addition, the ‘favourite’ interfaces

were [FTTT followed by WebTasker from the debriefing questionnaire.

6.2 Task Description

It is speculated that the second high complexity task (H2) in Zapier took the longest (had the
greatest task time) for two reasons. The main reason was the H2 task was the only task in the entire study
that had a slightly different wording, “Send an email with Gmail for new tweets from
@UWHFstudentgirl”’; where the action was indicated before the condition. Interestingly, this minor
change caused a higher task time, perhaps indicating a higher cognitive load. This is speculated to cause
a higher cognitive load because the task description did not match a user’s mental model of condition first
then action. The second reason why this task may have taken the longest was users had to type the twitter

ID “@UWHFstudentgirl”, thus this task involved slightly more typing relative to other tasks.

6.3 Task Complexity

In the empirical study (Chapter 5) task complexity was accounted for as an experimental factor.
There was two levels of complexity (low and high). This was simply distinguished by a search task
versus a composition task. However, complexity could have been broken down even further for the high
complexity/ web task composition. In terms of web tasking, it appeared that the more conditions and
actions there were the more ‘complex’ the composition task became. The only two interfaces these could
be investigated on were Scribble and WebTasker.

In Scribble tasks H1 to H3 had two conditions and one action. H4 had two sets of one condition
and one action. There was a learning effect observed with the H1 to H3, then H4 had a faster average

task time than H1 and H2 and slower task time than H4. In WebTasker this is evidence that task

87

complexity and learning are likely linked. There was as similar trend as in Scribble. There was a
statistically faster task time between H3 and H1 and H2 (some learning), then with the more complicated
task, H4 with two sets of one condition and one action, the task time was significantly higher than H3, but

still significantly lower than H1 and H2. To observe these trends refer to Figure 34 and Figure 38.

6.3.1.1 Need for more than one trigger

A recent study by Ur et al. (2015) examined the average users’ interaction of trigger-action
programming in the smart-home domain. It involved the participants in making up the tasks to be used in
the usability study. The study found that 22% of programming behavior required more than one trigger or
action. The IFTTT and Zapier platforms only allow one trigger and one action per recipe or zap. This is
a case where Scribble would be superior in functionality. According to the debriefing comments in this
usability study 25% of participants reported that they liked the appreciated the functionality to have more

than one condition and/or action.

6.4 Correlation from Task Timing

Mean task times from each individual trial were correlated with the collected keystrokes and
mouse clicks/ scrolls from each individual trial. Significant correlations (p < 0.05) occurred for all
interfaces where r=0.63 for keystrokes and r=0.62 for mouse clicks and scrolls. It is postulated that the
count of keystrokes and mouse clicks/scrolls in an HTA could yield highly predictive results in terms of
task timings. Simple task input counts could be used as an early usability predictor in web tasking

interfaces, potentially aiding designers with optimizing interfaces at early design stages.

HTA and counting the number of clicks and scrolls proved to be a pivotal analysis in this study.

It coincided with many (not all) of the findings through the empirical study, such as:

o IFTTT’s linear structure indicated that there was not much room for error (IFTTT yielded the

least number of errors).

e IFTTT had the narrowest HTA structure which indicated that this type of interface promotes

efficiency.
e Zapier low complexity/search task was difficult to execute.
e Zapier had too much information displayed at one time.

e Zapier would have the longest task timings.

88

6.5 Limitations

Several limitations of the usability study and analyses are discussed in the subsequent sections.

The limitations viewed in these sections may potentially be considered as future lines or research.

6.5.1 Keystroke and Mouse Click/scrolls Count approach

Unlike the Keystroke Level Model (KLM) method that uses a number of pre-defined operators to
predict expert error-free task execution times (Stanton, 2013), an elementary approach was taken in this
study of counting the clicks and scrolls without association these with an execution time. One limitation
of the simple keystroke and mouse click/scrolls counting approach is that it only considers physical tasks
and it does not capture context or any other cognitive demands. This is also a limitation of KLM. This
approach also does not account for input errors. Some systems may require more visual attention or
cognitive processing in addition to manual inputs. These analytical estimates of could be further enhanced
with other measures such as the number of available response options (e.g., menu items, number of

buttons) as well as a correlation with a mental workload measure.

6.5.2 Prototype limitations

WebTasker was created using prototype software and was able to be interactive by mocking up
linked webpages. The WebTasker prototype simulated the experience of creating a web task quite well,
to the point where participants were not aware this was only a prototype. However, there were several
limitations to the WebTasker prototype. It did not sufficiently handle user errors, as error messages were
not simulated in the current prototype of WebTasker. If users clicked on the wrong icon, for example,
they received no error message. This type of observed error was recorded by the researchers conducting
the experiment. For future versions of the WebTasker prototype, error messages should be incorporated
and should be expressed in plain language (no codes), precisely indicate the problem, and constructively

suggest a solution.

A related limitation of the prototype was that not all areas were “clickable” which caused
observed frustration during the usability study. As explained in the error results section for WebTasker
(Section 5.7.4.2) since WebTasker is not a fully functioning prototype, users would often repeatedly click
the same icon or link and not receive any feedback (if was not the correct link to click for a specific step

in the task). Each repeated click on the same wrong item was counted as an individual error.

Lastly, Axure had a time entry field that used arrows to set the time that was used as part of
setting the task schedule. This caused much reported frustration with participants in addition to
increasing the number of mouse click counts for the high complexity tasks. In a future version of

WebTasker, the time entry should be a type-able field based on participants’ feedback.

89

Chapter 7

Future Research

7.1 Future work on the usability study

As previously discussed, task complexity can be further defined. The variance in task
complexity could be developed in more detail for web tasking interfaces noting the research done by
Castaneda et al., 2013 of task complexity factors: number of web interaction, knowledge about the
task, information about previous task simplifications and the number of information inputs.
Furthermore, tasks could be varied or more targeted towards the participant audience. This study
tried to use general apps that many students would be familiar with (social media, email, weather,
etc.). A future version of this study could be specifically tailored to smart home users with tasks with

IOT home items (smart thermostat, fridge, lighting, etc.), for example.

As noted in the Discussion Section 6.2, the way the task was presented to the user made a
significant difference in task timing for Zapier H2. H2 had the action was presented before the
condition which undoubtedly caused the high variability within the task timing as well as contributed
to the greater task time. A study could be conducted specifically looking at this, controlling any

variability in presenting that task to the participant.

It was difficult to compare two beta/prototype interfaces (Scribble and WebTasker) to two
established programs (IFTTT and Zapier). Although, much of the statistical analysis was done within
interface comparison was completed that yielded significant results, it would have been interesting to
have valid and reliable data to compare across interfaces. The tasks used in each interface used in this
study were similar in context and composition; however, they were not exactly the same tasks across
interfaces. Due to this variance, statistically comparing task times across interfaces would not yield
comprehensive results. This study could be repeated using the same tasks in each interface, if possible
at a future time. If tasks are the same, then statistical tests (e.g. paired t-test comparison) would allow

for further insights to the degree of improvement in WebTasker over existing interfaces.

7.2 WebTasker design

Web Tasker could incorporate a delete function (e.g. such as the garbage can on the main
screen used on the Scribble interface) to support NH9: Help users recognize, diagnose, and recover

from errors. With the current design of WebTasker, the user has to click into the condition or action

90

and then delete it from there. Another option would be to add a delete link under the edit link (as

seen in Figure 27) to delete the app from the task composition screen.

The current linear control metaphor model of WebTasker is shown in Figure 57. Based on
some feedback during the debriefing it was suggested that instead of one long line it should be broken
up and shown in parallel as in Figure 58 (refer also to Figure 28 for a WebTasker screenshot of a
complex task). This should be taken into consideration for a future revision of the WebTasker

interface.

= | Al + A2

Figure 57: Current linear model of WebTasker

Al

+
]

A2

Figure 58: Potential parallel model of WebTasker

Another aspect that WebTasker could incorporate is the exploration of a test feature. This
could be implemented as an optional feature for users to feel more confident in the tasks they are
composing. Zapier addresses this by having a test feature to test the zaps. WebTasker could consider

and optional test function for tasks in a future iteration.

7.3 Beyond this study

The subsequent sub-sections discuss a few ideas for future web tasking projects that were

beyond the scope of this thesis.

7.3.1 Design of dashboard

Through the researchers’ interaction with the various web tasking interfaces it was observed
that none of them had an optimized interface for the task dashboard. The dashboard is where the user

would control tasks (turn them off off), modify them, and view them. It is essentially the task
91

management hub. An interesting project to undertake would be to design the ideal web tasking
dashboard. One approach that could be taken is Ecological Interface Design (EID). EID involves a
systematic method of designing interfaces for complex systems. The dashboard is where task status
could be displayed and ideally users’ could tell with a glance the status of each task (i.e. where the car
is on the journey line). Graphical metaphors, colours, screen layout etc. would have to be defined in

this project. This would be an exciting project to undertake.

7.3.2 Security and trust

The issues regarding security concerns about automating tasks is related to the end user’s risk
tolerance. Web tasking platforms use something called ‘pseudo-authentication’’ to access other
sites; when the user initially selects the site they want to grant access to, the automated web service
contacts that website and the user can grant it limited access but not with full credentials or privileges
(Hoy, 2015). Security was not an issue that was mentioned by any participants in the pilot or
usability study. However, security is an important issue that should be addressed by software
designers. A study from a HF perspective on trust in automation (in web tasking) could be a
worthwhile venture. A test feature (like in Zapier) may address some of the trust issues associated
with web tasking. To put this in context, if a user has set up a task to reward himself with the
purchase of a new iPad when the condition of a 4.0 GPA is met at the end of the school year, the user

would probably want to ensure he is not purchasing an iPad every term.

7.3.3 Improvements to Current Scribble Interface

Scribble is the only current web tasking program that offers the functionality of entering
multiple conditions and actions. Some small interface element changes could increase its usability, as
discovered through the various studies. In the short term, the current puzzle metaphor and interface

could be improved in the following ways (the study source is indicated in brackets):
e Have more entry points to find published Scribbles (HTA).

e Order condition and action apps in alphabetical order when users are selecting these

apps (HTA).

e Make app icons bigger and more visually appealing (pilot and usability study).

92

Change puzzle pieces to be distinctly different in shape in addition to colour to help
users distinguish condition piece and action piece more easily. This could decrease

learning time (pilot and usability study).

Change click interaction of adding puzzle pieces to dragging (pilot and usability
study).

Change some terminology to be clearer (e.g. “Execute Later” in schedule makes user

think it will only be done once later, but it can be recurring) (pilot study).

Change the drop down menu for time entry in the schedule to be a type-able field
(usability study).

Enable double clicking for selecting (usability study).

93

Chapter 8

Conclusion

User adoption of web apps has become widespread, being integrated into everyday life by the
majority of computer and smart phone users. An integration across apps is being achieved through
web tasking. Since web tasking is a relative new area of development, interaction analyses is key in
advancing and developing this area to result in an increase in user adoption. The outcomes of this
research included: collection of data on task timings, errors, SUS scores, and learning involved; a
collection of various typical tasks used in web tasking including a HTA of steps and actions
involved; correlation of keystroke and mouse clicks/scroll correlation to web task timings; and the

‘ideal control metaphor’ of a web tasking interface; WebTasker.

The usability study results showed that participants can successfully engage in creating web
tasks with one condition and one action. However, participants have poorer performance and find it
more difficult to create web tasks in web tasking platforms with multiple conditions and actions.
More prescriptive interfaces, IFTTT and WebTasker, had better user performance than those that
allowed more freedom (Zapier and Scribble), and had less frequency of human error. Participants’
feedback from the debriefing interview corresponded to the user performance in the usability study.
The best performance was in IFTTT and WebTasker and these were also the reported favoured
interfaces by the majority. An interesting finding was revealed during the debriefing when 44%
participants expressed their appreciation of the linear order and the fact that the order meant
something in terms of task execution in the control metaphor used in WebTasker. This is an

important finding that should be further integrated in future design revisions to WebTasker.

The usability study did find a significant difference between high (create a new web task) and
low complexity tasks (search published tasks). This study has the potential to be repeated with
refinements made to task selection and differences in varying number of conditions and actions
(increasing complexity). In addition, interface design improvements to WebTasker could be made
with a delete app function available on the task composition page (e.g. garbage can icon or link to
delete), consideration of test feature, and a change in the layout of a complex task showing different

sets of condition with associated actions on parallel lines instead of in series.

Other potential future web tasking projects include design of a dashboard (task management

page) and an HF study on trust of task automation in the context of web tasking.

94

Bibliography

Annett, J., & Stanton, N. (2000). Task analysis. London ; New York: Taylor & Francis.
Atzori, L., lera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer
Networks, 54(15), 2787-2805.

Bangor, A., Kortum, P., and Miller, J. (2009). Determining what individual SUS scores mean: adding
an adjective rating scale. J. Usability Studies 4, 3, 114-123.

Blackwell, A. (2001). See what you need: Helping end- users to build abstractions. Journal of Visual
Languages and Computing; J.Vis.Lang.Comput., 12(5), 475-499.

Brancheau, J. C. (1993). Management of end- user computing: status and directions. ACM Computing
Surveys, 25(4), 437-482.

Brooke, J. (1996). SUS: A “quick and dirty” usability scale. In P. W. Jordan, B. Thomas, B. A.
Weerdmeester, & 1. L. McClelland (Eds.), Usability evaluation in industry (pp. 189—194).
London: Taylor & Francis.

Burnett, M., Myers, B., Rosson, M., and Wiedenbeck. S. (2006). The next step: from
end-user programming to end-user software engineering. In CHI '06 Extended Abstracts on

Human Factors in Computing Systems (CHI EA '06). ACM, New York, NY, USA, 1699-
1702.

Castafieda, L., Muller, H. A., & Villegas, N. M. (2013). Towards personalized web-tasking: Task

simplification challenges. Proceedings - 2013 IEEE 9th World Congress on Services,
SERVICES 2013, 147-153.

Castafieda, L., Villegas, N. M., & Miiller, H. A. (2014). Self-adaptive applications: On the
development of personalized web-tasking systems. 9th International Symposium on Sofiware

Engineering for Adaptive and Self-Managing Systems, SEAMS 2014 - Proceedings, 49-54.

de Souza, C., Barbosa, S., & Da Silva, S. (2001). Semiotic engineering principles for evaluating
end- user programming environments. /nteracting with Computers; Interact. Computl 3(4), 467-

495.

95

Costabile, M.F., De Ruyter, B., Mehandjiev, N., and Mussio. P. (2010). End-user development of
software services and applications. In Proceedings of the International Conference on
Advanced Visual Interfaces (AV1'10), Giuseppe Santucci (Ed.). ACM, New York, NY, USA,
403-407.

Hartmann,B., Doorley, S., and Klemmer, S. R. (2003). Hacking, Mashing, Gluing: Understanding
Opportunistic Design. /[EEE Pervasive Computing 7, 3, 46-54.

Hoy, M. B. (2015). If this then that: An introduction to automated task services. Medical Reference

Services Quarterly, 34(1), 98-103.

IDC (2014), Telus/IDC Internet of Things Study 2014. Retrieved from http://resources-
business.telus.com/cms/files/files/000/000/698/original/InfoDoc_Telus.pdf

Kirwan, B., & Ainsworth, L. (1992). A Guide to task analysis. London ; Washington, DC: Taylor &

Francis.

Kromrey, J.D., & La Rocca, M.A. (1995). Power and Type I error rates of new pairwise multiple
comparison procedures under heterogeneous variances. Journal of Experimental Education,
63, 343-362.

Lewis J.R., & Sauro, J. (2009). The Factor Structure of the System Usability Scale. In Proceedings of

the Ist International Conference on Human Centered Design: Held as Part of HCI

International 2009 (HCD 09), Masaaki Kurosu (Ed.). Springer-Verlag, Berlin, Heidelberg,
94-103.

Mattila, K.V.V & Wiljas, M. (2011). Towards user-centered mashups: exploring user needs for
composite web services. In CHI '11 Extended Abstracts on Human Factors in Computing

Systems (CHI EA '11). ACM, New York, NY, USA, 1327-1332.

Nielsen, J., and Mack, R. L. (Eds.) (1994). Usability Inspection Methods, John Wiley & Sons, New
York.

Ng, J.W. (2015) Task as a Service Extending the Cloud From an App Development Platform into a
Tasking Platform, Proceedings 2015 IEEE 11th World Congress on Services.

Ng, J.W. (2014) Web tasking: a position paper. In Proceedings of 24th Annual International
Conference on Computer Science and Software Engineering (CASCON '14). IBM Corp.,
Riverton, NJ, USA, 306-313.

96

http://resources-/

Ng, J. W., & Lau, D. H. (2013). Social ontology and semantic actions: Enabling social networking
services for distributed web tasking. Proceedings - 2013 IEEE 9th World Congress on Services,
SERVICES 2013, 131-135.

Norman, D. A. (1988). The psychology of everyday things. New York: New York : Basic Books.
Prabhakararao S., Cook C., Ruthruff, J, Creswick E., Main M., Durham M., and Burnett. M. (2013).

Strategies and Behaviors of End-User Programmers with Interactive Fault
Localization. Proceedings - IEEE Symposium on Human-Centric Computing Languages and

Environments, 5-22.
Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, Millner, A.,

Rosenbaum, E., Silver, J., Silverman, B., and Kafai, Y.(2009). Scratch: programming for all.
Commun. ACM 52, 11 (November 2009), 60-67.

Robinson, L. (2009). A summary of diffusion of innovations. Retrieved 15 April 2015 from
http://www.enablingchange.com.au/Summary_Diffusion_Theory.pdf

Shepherd, A. (2001). Hierarchical task analysis. London; New York: Taylor & Francis.

Statistics Canada. (2012). Canadian Internet Use Survey, 2012. Retrieved April 27, 2016 from
Statistics Canada: http://www.statcan.gc.ca/daily-quotidien/131126/dq131126d-eng.pdf.

Stanton, N. (2013). Human factors methods: a practical guide for engineering and
design (Second edition. ed.). Farnham, Surrey; Burlington, VT: Ashgate Publishing Limited.

Stanton, N. (1996). Human factors in nuclear safety. London; Bristol, PA: Taylor & Francis.

Stolee, K.T., Elbaum, S., Rothermel, G. (2009). Revealing the copy and paste habits of end users.

Proceedings 2009 IEEE Symposium on Visual Languages and Human-Centric Computing,
pp-59-66.

Trochim, W. M. K. (2005). Research methods: the concise knowledge base. Cincinnati, OH: Atomic
Dog Publishing.
Ur, B., McManus, E., Ho, M. P. Y., & Littman, M. L. (2014). Practical trigger-action programming in
the smart home. Conference on Human Factors in Computing Systems - Proceedings, 803-812.
Wilson, J., & Corlett, E. (1995). Evaluation of human work: A practical ergonomics methodology

(2nd ed.). Bristol, Pa.: Taylor & Francis.

97

Appendix A
Usability Study Material

A.1 List of tasks used in usability study

IFTTT Create Tasks

[User will begin on https://ifttt.com/myrecipes/personal/new page]

Task 1

If daily step goal is achieved in Fitbit, then send a new email from Gmail.

e Enter condition: select Fitbit app, if a daily step goal achieved in Fitbit
e Enter action: select Gmail then send a new email, enter in To address
“ekittel@uwaterloo.ca”

e Enter Recipe Title: “test]” and Create Recipe <end task>

Task 2

If iPad price changes at BestBuy then post a tweet.
e Enter condition: select BestBuy app, if product prices changes, use SKU 3315023
e Enter action: select twitter then post a tweet
e Enter Recipe Title “test2” and Create Recipe <end task>

Task 3

If Facebook new status message is posted by you then create a text post in Tumblr
e Enter condition: select Facebook app, if a new status message by you
e Enter action: select Tumblr app, then create a text post
e Enter Recipe Title: “test3” and Create Recipe <end task>

Task 4

If the IBM stock prices rises above $160, then send an email from Gmail

e Enter condition: select Stocks app, if price rises above, user ticker symbol IBM, enter
price $160

e Enter action: select Gmail, then send an email, enter in To address
“ekittel@uwaterloo.ca”

e Enter Recipe Title: “test4” and Create Recipe <end task>

98

https://ifttt.com/myrecipes/personal/new

IFTTT Search Tasks
[User will begin on https://ifttt.com/recipes page]

1. Find: Tweet when you achieve your daily step goal in Fitbit

2. Find: If it’s going to rain tomorrow, send me an email from Gmail. Enter email
address “ekittel@uwaterloo.ca”

3. Find: Share new links you post on Facebook to Twitter.

4. Find: If google stock price drops, send an email reminder to purchase more shares.
Enter To address “ekittel@uwaterloo.ca”

Zapier Create Tasks
[User will begin on https://zapier.com/app/editor-original/5988019 page]
Task 1

When you post a new tweet post it to your Facebook timeline

This is what your task must contain. You do NOT necessarily have to follow this order:

e Enter condition/trigger: select twitter app, select My Tweet- Triggers from you tweet
something new

e Enter action: select Facebook app, select Post to Timeline- Create a new post on your
timeline.

e Select UWHFstudent@gmail.com Twitter and Facebook account

e Type in message field “This is testl”

o Test twitter trigger

e Name Zap “testl”

e Turn Zap on <end task>

Task 2
Send an email with Gmail for new tweets from @UWHFstudentgirl

This is what your task must contain. You do NOT necessarily have to follow this order:

e Enter action: select Gmail app, select Send Email

e Enter condition/trigger: select twitter app, select User Tweet

e Select UWHFstudent@gmail.com twitter account and UWHFstudent@gmail.com
account

e Enter username “UWHFstudentgirl” in ‘Only trigger a “User Tweet” from Twitter
when...” step

99

https://ifttt.com/recipes
https://zapier.com/app/editor-original/5988019

e Enter ekittel@gmail.com in the To field.
e Enter “test 2” in the Subject field.

e Enter “This is a test.” in the Body field.
o Test twitter trigger

e Name zap “test 2”

e Turn Zap on <end task>

Task 3

When you star an email in Gmail post it to your Facebook timeline.

This is what your task must contain. You do NOT necessarily have to follow this order:

Enter condition: select Gmail app, select New Starred Email
Enter action: select Facebook app, select Post to Timeline
Select UWHFstudent@gmail.com Gmail and Facebook account
Type “test 3” in Message field

Test Gmail trigger

Name zap “test 3”

Turn Zap on <end task>

Task 4

If it is going to rain today, send me an email from Gmail

This is what your task must contain. You do NOT necessarily have to follow this order:

e Enter action: select Gmail app, select Send Email
e Enter condition: select Weather by Zapier app, select Will it Rain Today?
e Select UWHFstudent@gmail.com account

e Enter 43.4 in Latitude field

e Enter -80.5 in Longitude field

e Enter ekittel@uwaterloo.ca in To field

e Enter “test 4” in the subject field

e Enter “This is a test.” in the Body field.

o Test weather trigger

e Name zap “test 4”

e Turn Zap on <end task>

100

mailto:ekittel@gmail.com
mailto:ekittel@uwaterloo.ca

Zapier Search Tasks
[User will begin on https://zapier.com/app/apps-explore page]

1. Email for a User’s Twitter Tweets, Get an email via Gmail for new tweets from a
specific user.

2. Trigger Weekly Email Reminders, sends an email via Gmail on a weekly basis to
remind me to do stuff.

3. Send an Email via Gmail at the same time every day.
4. Post My Tweets to Facebook Page

Scribble Create Tasks
[User will begin on

http://taskasaservice.canlab.ibm.com:10080/ScribbleProject/apps/services/www/Scribble App/desktop

browser/default/index.html page]
Task 1
If fit bit step goal is met AND UW GPA is met, then buy me an iPad from Best Buy; run this task

every day.

This is what your task must contain. You do NOT necessarily have to follow this order:

e Enter condition:
o select fit bit app (called “(Demo) User activity”),
o select “${my user id}” in Information needed for this condition field,
o select “Get Activity” in What is involved in this condition field,
o select “User step account”, select “matches”, and enter “10000” in Specify
conditions field
e Enter condition:
o Select UW app (look for UW logo and it is called “(Demo) Secured University”)
o Select “Read” in What is involved in this condition field
o Select “GPA of student” , select “greater than”, and enter 85 in the Specify
conditions field

e Enter action:
o Select Best Buy app (look for Best Buy logo, called, “(Demo) Product™)
o Select “Order” in What do you want to do with it field
o Enter “64GB iPad” in Product Name field
o Enter “Silver” in colour field
o Enter “1” in quantity field

101

https://zapier.com/app/apps-explore
http://taskasaservice.canlab.ibm.com:10080/ScribbleProject/apps/services/www/ScribbleApp/desktopbrowser/default/index.html
http://taskasaservice.canlab.ibm.com:10080/ScribbleProject/apps/services/www/ScribbleApp/desktopbrowser/default/index.html

e Enter action
o Select notify app (called “Notify Someone”)
o Select “Me” in Who field
o Enter “Task 1" in Subject field
o Enter “This is Task 1”” in Message field

e Set schedule
o Select “Execute Later” in Schedule a time option, and choose today’s date and
1:00 PM
o Select “Repeat”
o Select “Daily” and select 1:00 PM

e Name Scribble “Task 1” in Scribble name field
o Select Save <end task>
o

Task 2
If IBM stock is >$175 AND exchange rate is met, then notify me; run this task bi-weekly.

This is what your task must contain. You do NOT necessarily have to follow this order:

e Enter action
o Select notify app (called “Notify Someone”)
o Select “Me” in Who field
o Enter “Task 2” in Subject field
o Enter “This is Task 2” in Message field

e Enter condition:
o select Stock app (called “Stock Quote from WebServiceX™)
o select “Get Quote” in What is involved in this condition field
o Enter “IBM” in the Stock Symbol field
o Select “Current Price” and “greater than” and enter “175” in Specify conditions
field
o Specify condition frequency check
= Enter | day, 2:00 and 1 MS
e Enter condition:
o select Currency Exchange app (called “Currency Exchange from WebServiceX”)
o select “Calculate Rate” in What is involved in this condition field
o Enter “USD” in To (Currency Symbol) field
o Enter “CAD” in From (Currency Symbol) field

102

o Select “Currency Exchange Rate” and “matches” and enter “1.32” in Specify
conditions field
o Click Specify condition frequency check
= Enter | day, 2:00 and 1 MS

e Set schedule
o Select “Execute Later” in Schedule a time option, and choose today’s date and
7:15 AM
o Select “Repeat”
o Select “Bi-Weekly” and “Monday” and select 7:15 AM

e Name Scribble “Task 2” in Scribble name field
o Select Save <end task>

Task 3
If my bank account balance is less than $1000 then notify me; run this task every Friday at 10:00 a.m.

This is what your task must contain. You do NOT necessarily have to follow this order:

e Set schedule
o Select “Execute Later” in Schedule a time option, and choose today’s date
o Select “Weekly” and “Friday” and select 10:00 AM

e Enter action
o Select notify app (called “Notify Someone”)
o Select “Me” in Who field
o Enter “Task 3” in Subject field
o Enter “This is Task 3” in Message field

¢ Enter condition:
o select CIBC app (called “(Demo) Secured Bank™)
o select “Read Balance” in What is involved in this condition field
o Enter “1234567” in the Account ID field
o Select “Bank account balance” and “less than” and enter “1000 in Specify
conditions fields

e Name Scribble “Task 3” in Scribble name field
o Select Save <end task>

103

Task 4
If my bank account balance is more than $25, then buy me a movie ticket me AND if I meet my daily

step count goal then notify me; run this task on demand.

This is what your task must contain. You do NOT necessarily have to follow this order:

¢ Enter condition:
o select RBC app (called “(Demo) Account balance™)
o select “Read Balance” in What is involved in this condition field
o Enter “1234567” in the Account ID field
o Select “Bank account balance” and “greater than” and enter “25” in Specify
conditions fields
e Enter action
o Select Cineplex app (called “(Demo) Movie Ticket”
o Select “Buy Cineplex Ticket”
o Enter “2” in the Number of Tickets field

e Enter action
o Select notify app (called “Notify Someone”)
o Select “Me” in Who field
o Enter “Task 4” in Subject field
o Enter “This is Task 4” in Message field
e Enter condition:
o select fit bit app (called “(Demo) User activity”),
o select “${my user id}” in Information needed for this condition field,
o select “Get Activity” in What is involved in this condition field,
o select “User step account”, select “matches”, and enter “10000” in Specify
conditions field

e Set schedule
o Select “Execute on Demand”

e Name Scribble “Task 4 in Scribble name field
o Select Save <end task>

Scribble Search Tasks
[User will begin on Community of Scribbles page]

1. Find movie listings

2. Find Take the next bus to the airport if the weather is clear

104

3. Find Buy Twitter stock check

4. Find Book a vacation.

WebTasker Create Tasks

[User will begin on http://8cdoj0.axshare.com/#p=home at Create New Task page]
WebTasker Task 1
If fit bit weight goal is met AND UW GPA is met, then buy me an iwatch from Best Buy; run this

task every day.

e Enter condition:

®)
@)
©)

select fit bit app

select “Read Weight” in the Information needed for this condition field

select “User Weight” in Specify conditions field, and “matches”, and enter “150”
in Specify conditions field

e [Enter condition:

®)
@)

Select UW app (look for UW logo and it is called “GPA”)
Select “GPA of student” , select “greater than”, and enter 85 in the Specify
conditions field

e Enter action:

@)
@)

@)
@)

Select Best Buy app

Select “Order” in What do you want to do with it field
Enter “64GB iwatch” in Product Name field

Enter “Silver” in colour field

Enter “1” in quantity field

e Set schedule

©)
©)
©)

Choose today’s date and 5:00 PM
Select “Repeat”
Select “Daily” and select 5:00 PM

e Name Task “Task 1” in Task name field

©)

Select Save & Submit <end task>

105

http://8cdoj0.axshare.com/#p=home

WebTasker Task 2
If IBM stock is >$§175 AND exchange rate is met, then notify me; run this task bi-weekly.

Enter condition:

o

©)
@)
@)

select Stock app
select “Get Quote” in What is involved in this condition field
Enter “IBM” in the Stock Symbol field
Select “Current Price” and “greater than” and enter “175” in Specify conditions
field
Specify condition frequency check
= Enter 1 day, 4 hours, and 0 minutes

Enter condition:

©)
®)
@)
©)
®)

o

select Currency Exchange app (called “Currency Exchange from WebServiceX”)
select “Calculate Rate” in What is involved in this condition field
Enter “USD” in To (Currency Symbol) field
Enter “CAD” in From (Currency Symbol) field
Select “Currency Exchange Rate” and “matches” and enter “1.32” in Specify
conditions field
Click Specify condition frequency check
= Enter 1 day, 4 hours, and 0 minutes

Enter action

(@]

Select Notification app

o Select “Me” in Who field
o Enter “Task 2” in Subject field
Set schedule
o Choose tomorrow’s date and 7:15 AM

©)
@)

Select “Repeat”
Select “Bi-Weekly” and select 7:15 AM

Name Task “Task 2” in Task name field

o

Select Save & Submit <end task>

106

WebTasker Task 3
If my bank account balance is less than $1000 then notify me; run this task every Friday at 10:00 a.m.

e Enter condition:

o select RBC app

o select “Chequing Account”, “less than” and enter “1000 in Specify Conditions

field

o select 2 days, 3 hours, 0 minutes in Frequency of condition check field.
e Enter action

o Select Notification app

o Select “Me” in Who field

o Enter “Task 3” in Subject field
e Set schedule

o Select “Daily” and select 10:00 AM.

e Name Scribble “Task 3” in Scribble name field
o Select Save & Submit <end task>

WebTasker Task 4
If my bank account balance is more than $25, then buy me a movie ticket me AND if I meet my daily

step count goal then notify my mom; run this task on demand.

e Enter condition:
o select RBC app
o select “Chequing Account”, “less than” and enter “25” in Specify Conditions field
o select 2 days, 3 hours, 0 minutes in Frequency of condition check field.

e Enter action
o Select Cineplex app
o Select “Buy Cineplex Ticket”

e Enter NEW set of condition and action
o Enter condition: select fit bit app
o select “User step account”, and “is greater than”, and enter “5000” in Specify
condition fields

Enter action:

Select Notification app

Select “Mom” in Who field
Enter “Task 4” in Subject field

o O O O

e Set schedule
107

o Leave blank to run now.
e Name Task “Task 4 in Task name field
o Select Save & Submit <end task>

WebTasker Search Tasks
[User will begin on http://56rz68.axshare.com/#p=results 1 page]

1. Find Tweet when you achieve your daily step goal in Fit Bit
e Search “fit bit”

2. Find Get an email if there is going to be rain in your area tomorrow
e Search “rain”

3. Find Share links you post on Facebook to Twitter
e Search “links”

4. Find Notify me if Google Stock price changes
e Search “Google Stock”

108

http://56rz68.axshare.com/#p=results_1

UNIVERSITY OF WATERLOO
77 FACULTY OF ENGINEERING
Department of Systems
Design Engineering

A.2 Participant information letter, consent form, and briefing script

Information Letter and Consent of Participant

You are invited to participate in a Web Tasking Interface Study examining usability issues with
web tasking interfaces. User adoption of web applications (apps) has become widespread,
being integrated into everyday life by the majority of computer and smart phone users. Users
are finding multiple ways to utilize web apps outside of their typical self-contained purposes,

resulting in an increasing need to connect apps together.

An integration across web apps can be achieved with a web tasking platform. This is where
web tasks can be created by the end user by connecting several components of different web
apps. Web tasking is a new area in Human Computer Interaction (HCI) research and this
proposed study aims to gather data on existing web tasking platforms; including a prototype
designed by the researcher, to further develop web tasking interfaces to ultimately lead to an
increase in user adoption. In this study are interested in gathering data on task timings, errors,

and learning involved with different web tasking platforms.
What You Will Be Asked to Do

After your consent, you will be asked to complete short demographic questionnaire.
You will then be provided with a list of tasks to complete in different web tasking
interfaces. The tasks entail entering conditions and actions on the web tasking

interface; for example, if it is going to rain tomorrow send me an email.

At the end of each interface, you will be asked to fill out an 11-question System Usability

Scale (SUS) questionnaire.

109

UNIVERSITY OF WATERLOO
77 FACULTY OF ENGINEERING
Department of Systems
Design Engineering

Participation and Remuneration

Participation in this study is voluntary, and you will take approximately two hours of
your time. You may decline to answer any questions presented by the experimenter.
Further, you may decide to withdraw from this study at any time by advising the
researcher, and may do so without any penalty or loss. You will be paid $20 per hour for
your participation in this study even if you decide to withdraw your consent at any
time. The amount received is taxable. It is your responsibility to report this amount for

income tax purposes.

Contact Information
Catherine Burns Elizabeth Kittel

Phone: (519) 888-4567 ext. 33903 Email: ekittel@uwaterloo.ca
Email: catherine.burns@uwaterloo.ca

110

UNIVERSITY OF WATERLOO
77 FACULTY OF ENGINEERING
Department of Systems
Design Engineering

Consent

By signing this consent form, you are not waiving your legal rights or releasing the
investigator(s) or involved institution(s) from their legal and professional
responsibilities.

You agree to no further disclosure of the user interfaces reviewed in this study, since
some of the interfaces not commercially available or have not been released to market.

[have read the information presented in the information letter about a study being
conducted by Elizabeth Kittel under the supervision of Dr. Catherine Burns of the
Department of Systems Design Engineering at the University of Waterloo. | have had the
opportunity to ask any questions related to this study, to receive satisfactory answers
to my questions, and any additional details [wanted. | am aware that | may withdraw
from the study without penalty at any time by advising the researchers of this decision.

This project has been reviewed by, and received ethics clearance through a University
of Waterloo Research Ethics Committee. [was informed that if [have any comments or
concerns resulting from my participation in this study, I may contact the Director, Office
of Research Ethics at 519-888-4567 ext. 36005.

With full knowledge of all foregoing, I agree, of my own free will, to participate in this
study.

Name of Participant

Signature of Participant

Witness Name

Witness Signature

Date

111

Briefing Script

Hello. Thank you for participating in this test. Please fill out this
participant questionnaire with me.

This is a web tasking interface study. I will ask you to create several
tasks in four different interfaces. Web tasking is the integration of
apps to achieve one goal/task. In this day and age, app users are
finding more than one purpose for apps and it appears that single
apps are no longer meeting their needs. An integration across apps
is what would help them in their tasks across their web apps. This
is the reason web tasking platforms were created. They are still
relatively new and require further development. Your participation
in this study will contribute to that.

For each of the four interfaces, there will be a condition and an
action app you will enter to complete the task. For example, if the
forecast calls for rain tomorrow send me an email today. You will
need to select the weather app as the condition and the email app as
the action and enter some information in the appropriate fields (for
example the date and condition of rain for the weather). Each
interface is different in terms of how they look and their
functionality.

You will be creating these tasks from scratch or you will be
searching for them in the already published tasks (that were created
by other users), [tell them their order here, i.e. create or search tasks
first]. You will be instructed as to which tasks you must create
yourself and the ones you will search for.

The way you interact with the web tasking interface will be
observed and recorded by screen capture, keystrokes, and timing.
You will have a time limit of about 5 minutes per task for creating
tasks and a 2 minute time limit for your search tasks. I will let you
know when your time is up. The paper in front of you is your guide.
Feel free to use it at any time.

Do you have any questions?

112

A.3 Demographics Questionnaire

Web Tasking Study Demographics Questionnaire (to be filled out by experimenter)

Participant Code: Age:

Gender: MALE FEMALE

Do you have any computer programming experience? YES NO

If YES, what computer languages do you have experience and level do you have?

BASIC INTERMEDIATE ADVANCED
BASIC INTERMEDIATE ADVANCED
BASIC INTERMEDIATE ADVANCED
BASIC INTERMEDIATE ADVANCED
BASIC INTERMEDIATE ADVANCED

Familiarity with web tasking interfaces:

Please indicate your familiarity with the following interfaces (circle all that apply):

IFTTT NONE KNOW OF IT TRIED IT USE IT FREQUENTLY
Zapier NONE KNOW OF IT TRIED IT USE IT FREQUENTLY
Have you ever used any other web tasking type program before? YES NO

If YES, please indicate which program and the extent of use:

KNOW OF IT TRIED IT USE IT FREQUENTLY

113

A.4 SUS Questionnaire

The following statements were rated using a 5-point scale:

1

2.

8.

0.

. I think that I would like to use this system frequently

I found the system unnecessarily complex

. I thought the system was easy to use

. I think that I would need the support of a technical person to be able to use this system
. I found the various functions in this system were well integrated

. I thought there was too much inconsistency in this system

. I would imagine that most people would learn to use this system very quickly

I found the system very cumbersome to use

I felt very confident using the system

10. I needed to learn a lot of things before I could get going with this system

114

A.5 Debriefing Questionnaire

De-briefing Questions (to be asked by experimenter)

1.

Did you have a preference to enter actions or conditions first? If yes, why?

What did like about the functionality and features of each web tasking platform? Is there
anything else you would like to see in terms of functionality?

How could we improve setting the frequency of condition check and setting the task
schedule?

Which interface did you like the most and why?

115

Appendix B

Statistical Analysis

B.1 IFTTT Results

TASKTIME; LS Means
Current effect: F(7, 56)=3.1362, p=.00725
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals

4 L
8
2
E 3
£
=
%
g2
1 L
H1 H2 H3 H4 L1 L2 L3 L4
TASK
Repeated Measures Analysis of Variance (IFTTT)
Sigma-restricted parameterization
Effective hypothesis decomposition
SS Degr. of MS F p
Effect Freedom
Intercept 132.6736 1/ 132.6736| 235.8126, 0.000000
Gender 0.3779 1 0.3779 0.6717 0.428440
Computer Prog Exp 0.9774 1 0.9774 1.7372) 0.212099
Gender*Computer Prog Exp 1.3922 1 1.3922 24745 0.141686
Error 6.7515 12 0.5626
TASKTIME 4.8252 7 0.6893 3.1420/ 0.005357
TASKTIME*Gender 1.4685 7 0.2098 0.9562 0.468485
TASKTIME*Computer Prog Exp 0.6781 7 0.0969 0.4415 0.873241
TASKTIME*Gender*Computer Prog E 0.8586 7 0.1227 0.5591 0.786954
Error 18.4288 84 0.2194

116

Tukey HSD test; variable DV_1 (IFTTT)
Approximate Probabilities for Post Hoc Tests
Error: Within MS = .21939, df = 84.000

TASKl {1} {2} {3} {4} {5} {6} {7} {8}

CelNo. |TIME| 14604 | 1.0823 & .85208 & 1.2125 & .99062 | .79583 | .91042 & 1.1365
1 H1 0.315097 0.009630 0.806940 0.099792 0.003205 0.027790 0.517192
2 H2| 0.315097 0.859301 0.993467 0.999331 0.668057 0.967193 0.999981
3 H3| 0.009630 0.859301 0.376525 0.990482 0.999975 0.999968 0.676193
4 H4| 0.806940 0.993467 0.376525 0.880866 0.203259 0.605769 0.999809
5 L1 0.099792 0.999331 0.990482 0.880866 0.936526 0.999727 0.987101
6 L2] 0.003205 0.668057 0.999975 0.203259 0.936526 0.997052 0.451052
7 L3] 0.027790 0.967193 0.999968 0.605769 0.999727 0.997052 0.870339
8 L4] 0517192 0.999981 0.676193 0.999809 0.987101 0.451052 0.870339

117

B.2 Scribble Results

TASKTIM; LS Means
Current effect: F(7, 84)=350.48, p=0.0000
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals
5.0

45+

40t

35+

3.0t

25 ¢

20

Task Time (minutes)

15+

10t

05

0.0

H1 H2 H3 H4 L1 L2
Task

118

Repeated Measures Analysis of Variance (Scribble in Scribble data)
Sigma-restricted parameterization
Effective hypothesis decomposition
SS Degr. of MS F p
Effect Freedom
Intercept 458.2952 1| 458.2952 1130.459 0.000000
Computer Prog Exp 0.0052 1 0.0052 0.013 0.911866
Gender 0.2049 1 0.2049 0.505 0.490745
Computer Prog Exp*Gender 0.8755 1 0.8755 2.160 0.167406
Error 4.8649 12 0.4054
TASKTIM 343.6684 7 49.0955 350.475/ 0.000000
TASKTIM*Computer Prog Exp 0.5287 7 0.0755 0.539 0.802491
TASKTIM*Gender 1.4458 7 0.2065 1474 0.187511
TASKTIM*Computer Prog Exp*Gender 1.6489 7 0.2356 1.682 0.124575
Error 11.7669 84 0.1401
Tukey HSD test; variable DV_1 (Scribble in Scribble data)
Approximate Probabilities for Post Hoc Tests
Error: Within MS = .14008, df = 84.000
TASK| {1} {2} {3} {4} {5} {6} {7} {8}
Cell No. TIM | 46656 | 3.9708 | 2.0646 | 3.1010 | .68229 | .33333 | .33854 | .27500
1 H1 0.000143 0.000119 0.000119 0.000119| 0.000119| 0.000119 0.000119
2 H2| 0.000143 0.000119 0.000119 0.000119 0.000119 0.000119 0.000119
3 H3| 0.000119 0.000119 0.000119 0.000119 0.000119 0.000119 0.000119
4 H4 0.000119 0.000119 0.000119 0.000119 0.000119 0.000119 0.000119
5 L1| 0.000119 0.000119 0.000119 0.000119 0.157573 0.171489 0.054324
6 L2| 0.000119 0.000119 0.000119 0.000119 0.157573 1.000000 0.999854
7 L3| 0.000119 0.000119 0.000119 0.000119 0.171489 1.000000 0.999742
8 L4] 0.000119 0.000119 0.000119 0.000119 0.054324 0.999854 0.999742

119

B.3 Zapier Results

TASKTIME; LS Means
Current effect: F(7, 84)=24.650, p=0.0000
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals

4.5
40t
35}
3.0t
_ 25¢
S
B 20t
1.5}
1.0}
0.5+t
0.0 : : : : : : : :
H1 H2 H3 H4 L1 L2 L3 L4
TASKTIME
Repeated Measures Analysis of Variance (Zapier dat
Sigma-restricted parameterization
Effective hypothesis decomposition
SS Degr. of MS F p
Freedom
Effect
Intercept 4541972 1/ 454.1972|577.6865 0.000000
Computer Prog Exp 0.0894 1 0.0894 0.1137 0.741747
Task Complexity 0.0172 1 0.0172) 0.0219 0.884907
Computer Prog Exp*Task Complexity 0.0071 1 0.0071 0.0090 0.926117
Error 9.4348 12 0.7862
TASKTIME 66.3422 7 9.4775| 24.6498 0.000000
TASKTIME*Computer Prog Exp 2.6309 7 0.3758 0.9775 0.453092
TASKTIME*Task Complexity 1.2520 7 0.1789 0.4652 0.857071
TASKTIME*Computer Prog Exp*Task Compley| 0.8795 7 0.1256 0.3268 0.93980
Error 32.2966 84 0.3845

120

Cell No.

Tukey HSD test; variable DV_1 (Zapier data1)
Approximate Probabilities for Post Hoc Tests
Error: Within MS = .38448, df = 84.000

TASKT
IME

{1}
2.3615

12}
3.3990

{3}
1.4167

{4}
1.8354

1}
1.4469

{6}
1.9510

{7}
1.8740

{8
.785

0N O O WN |~

H1
H2
H3
H4
L1
L2
L3
L4

0.000331
0.001201
0.255323
0.001896
0.573611
0.348616
0.000119

0.000331

0.000119
0.000119
0.000119
0.000119
0.000119
0.000119

0.001201
0.000119

0.548073
1.000000
0.237462
0.432470

0.255323
0.000119
0.548073

0.640226
0.999521
1.000000

0.090037 0.000288

0.001896
0.000119
1.000000
0.640226

0.306187
0.522616
0.063656

0.573611
0.000119
0.237462
0.999521
0.306187

0.999968
0.000137

0.348616
0.000119
0.432470
1.000000
0.522616
0.999968

0.000201

0.00
0.00
0.09
0.00
0.06
0.00
0.00

121

B.4 WebTasker Results

TASKTIME; LS Means
Current effect: F(7, 84)=146.45, p=0.0000
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals
45

40 ¢

35+

3.0

25 ¢

20 |

15+

Task Time (minutes)

1.0 t

05 |

0.0 |

H1 H2 H3 H4 L1 L2
Task

122

Repeated Measures Analysis of Variance (WebTasker data’

Sigma-restricted parameterization

Effective hypothesis decomposition

SS Degr.of | MS F p

Effect Freedo
Intercept 2447752 1| #HHEHHAE 524.1296 1 0.000000
Computer Prog Exp 0.3601 1 0.3601 0.7710 0.397146
Gender 0.3718 1 03718 0.7960 0.389822
Computer Prog Exp*Gender 3.0914 1 3.0914 6.6196 0.024417
Error 5.6042 12/ 0.4670
TASKTIME 185.3075 7| 26.4725| 146.4519/0.000000
TASKTIME*Computer Prog Exp 0.7637 7 0.1091 0.6036 0.751341
TASKTIME*Gender 2.0728 7 0.2961 1.63820.135894
TASKTIME*Computer Prog Exp*Gender 2.8381 7/ 0.4054 2.2430 0.038477
Error 15.1837 84 0.1808

Tukey HSD test; variable DV_1 (WebTasker repeated measures)
Approximate Probabilities for Post Hoc Tests

Error: Within MS = .18076, df = 84.000

TASKT

Cel I IME

{1}
3.3094

{2}
3.0479

{3}
1.6219

{4} {5} {6} {7} {8}
2.2687 | .31458 | .22708 | .27083 | .28854

H1
H2
H3
H4
L1
L2
L3
L4

U

0.661824
0.000119
0.000119
0.000119
0.000119
0.000119
0.000119

0.661824

0.000119
0.000152
0.000119
0.000119
0.000119
0.000119

0.000119
0.000119

0.001233
0.000119
0.000119
0.000119
0.000119

0.000119 0.000119 0.000119/0.000119 0.000119
0.000152 0.000119 0.000119/0.000119 0.000119
0.001233 0.000119 0.000119/0.000119 0.000119

0.000119 0.000119 0.000119/0.000119
0.999055 0.999991 1.000000
0.999991 0.999912

1.000000

0.000119
0.000119 0.999055
0.000119 0.999991 0.999991
0.000119 1.000000 0.999912 1.000000

123

B.5 SUS Score

Multivariate Tests of Significance (SUS questionnaire resullts)
Sigma-restricted parameterization
Effective hypothesis decomposition
Test Value F Effect | Error p
Effect df
Intercept Wilks | 0.039260, 599.5444 2 49/ 0.000000
Interface Wilks | 0.571285 5.2763 6 98/ 0.000095
Programming experience Wilks 0.943535 1.4662 2 49 0.240751
Interface Order Wilks | 0.642360 1.5172 16 98 0.108850
Gender Wilks | 0.878669 3.3831 2 49/ 0.042046
Tukey HSD test; variable SUS Score (SUS questionnaire results)
Approximate Probabilities for Post Hoc Tests
Error: Between MS = 382.23, df = 50.000
Interface {1} {2} {3} {4}
Cell No. 88.656 63.125 85.469 53.438
1 IFTTT, 0.003098 0.967181 0.000190
2 Scribble| 0.003098 0.011409 0.504444
3 WebTasker| 0.967181 0.011409 0.000297
4 Zapier| 0.000190 0.504444| 0.000297

124

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Thesis Overview

	Chapter 2 Background
	2.1 Related Research
	2.1.1 End user programming
	2.1.2 Mashups

	2.2 Web browsing versus web tasking
	2.2.1 Task as a Service

	2.3 Literature Review
	2.3.1 Keywords and Approach
	2.3.2 Literature Review Results
	2.3.2.1 Who is the end user?
	2.3.2.2 What is end user tasking?
	2.3.2.3 What are web tasks?
	2.3.2.4 Current Tasking Platforms
	2.3.2.4.1 Terminology
	2.3.2.4.2 IFTTT
	2.3.2.4.3 Zapier
	2.3.2.4.4 Scribble

	2.3.2.5 Technology Adoption
	2.3.2.6 Tasks for Study

	Chapter 3 Analytical Study of Web Tasking Interfaces
	3.1 Background
	3.1.1 Aim

	3.2 Method
	3.3 Tasks
	3.4 Results
	3.4.1 Hierarchy of Functions
	3.4.2 Task Breakdown
	3.4.2.1 Scribble
	3.4.2.2 IFTTT
	3.4.2.3 Zapier

	3.5 Keystroke and Mouse Click Counts
	3.6 Conclusions and Recommendations

	Chapter 4 A New Web Tasking Interface: WebTasker
	4.1 Usability Guidelines
	4.2 Pilot Study
	4.2.1 Pilot Study Results
	4.2.1.1 IFTTT
	4.2.1.2 Zapier
	4.2.1.3 Scribble
	4.2.1.4 Node-RED

	4.3 Early web tasking concept ideas and prototypes
	4.4 Web Tasking Interface Prototype: WebTasker
	4.5 Other Design Factors

	Chapter 5 Usability Study
	5.1 Participants
	5.2 Stimuli and Apparatus
	5.3 Experimental Design
	5.3.1 Independent Variables
	5.3.2 Dependent Variables

	5.4 Procedure
	5.4.1 Timing
	5.4.2 Debriefing

	5.5 Analysis of Errors
	5.5.1 Typo Submission Error
	5.5.2 Selection of the Wrong Item
	5.5.3 Entry of Data in the Wrong Section
	5.5.4 Severe Errors, redid
	5.5.5 Time Out Errors
	5.5.6 Other

	5.6 Analysis of Results
	5.7 Usability Results
	5.7.1 IFTTT Results
	5.7.1.1 Error Results

	5.7.2 Scribble Results
	5.7.2.1 Error Results

	5.7.3 Zapier Results
	5.7.3.1 Error Results

	5.7.4 WebTasker Results
	5.7.4.1 WebTasker Interaction Effects
	5.7.4.2 Error Results

	5.8 System Usability Scale and Overall Likert Ratings Results
	5.8.1 Correlation of SUS Scores and Likert Scale Ratings
	5.8.2 Keystrokes and Mouse Clicks/Scroll Count Correlation to Task Time

	5.9 Debrief Questionnaire Results
	5.9.1 Question 1: Mental Model
	5.9.2 Question 2: Features and Functions
	5.9.2.1 IFTTT
	5.9.2.2 Scribble
	5.9.2.3 Zapier
	5.9.2.4 WebTasker

	5.9.3 Question 3: Scheduling Feature
	5.9.4 Question 4: Favourite Interface

	5.10 Usability Study Summary

	Chapter 6 Discussion
	6.1 Mental Models and User Performance
	6.2 Task Description
	6.3 Task Complexity
	6.3.1.1 Need for more than one trigger

	6.4 Correlation from Task Timing
	6.5 Limitations
	6.5.1 Keystroke and Mouse Click/scrolls Count approach
	6.5.2 Prototype limitations

	Chapter 7 Future Research
	7.1 Future work on the usability study
	7.2 WebTasker design
	7.3 Beyond this study
	7.3.1 Design of dashboard
	7.3.2 Security and trust
	7.3.3 Improvements to Current Scribble Interface

	Chapter 8 Conclusion
	Bibliography
	Appendix A Usability Study Material
	A.1 List of tasks used in usability study
	A.2 Participant information letter, consent form, and briefing script
	A.3 Demographics Questionnaire
	A.4 SUS Questionnaire
	A.5 Debriefing Questionnaire

	Appendix B Statistical Analysis
	B.1 IFTTT Results
	B.2 Scribble Results
	B.3 Zapier Results
	B.4 WebTasker Results
	B.5 SUS Score

