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Abstract

With the rapid increase of available data, it becomes computationally harder to extract useful
information, specially in the case of high-dimensional data. Choosing a representative subset of
the data can be useful to overcome this challenge as these representatives can be used by data
analysts or presented to end users to give them a grasp of the data nature and structure.

In this dissertation, first an Exemplar-based approach for topic detection is proposed, in
which detected topics are represented using a few selected tweets. Using exemplar tweets in-
stead of a set of keywords allows for an easy interpretation of the meaning of the detected topics.
The approach is then extended to detect topics that emerge in new epochs of data. Experimen-
tal evaluation on benchmark Twitter datasets shows that the proposed topic detection approach
achieves the best term precision. It does this while maintaining good topic recall and running
times compared to other approaches for topic detection. Moreover, the proposed emerging exten-
sion achieves higher topic recall with improved running times when compared to recent emerging
topic detection approaches.

To overcome the challenge of high-dimensional data, several techniques, like PCA and NMF,
were proposed to embed high-dimensional data into low-dimensional latent space. However, data
represented in latent space is difficult for data analysts to understand and grasp the information
encoded in it. In addition, these techniques do not take the relations between the data points
into account. This motivated the development of other techniques like MDS, LLE and ISOMAP
which preserve the relations between the data instances, but they still use latent features. In this
dissertation, a new embedding technique is proposed to mitigate the previous problems by pro-
jecting the data to a space described by few points (i.e., the exemplars) which preserves the rela-
tions between the data points. The proposed method Exemplar-based Kernel Preserving (EBEK)
embedding is shown theoretically to achieve the lowest reconstruction error of the kernel matrix.
EBEK achieves a linear running time complexity in terms of the number of the samples. Using
EBEK in the approximate nearest neighbor search task shows its ability to outperform related
work by up to 60% in the recall while maintaining a good running time. In addition, empirical
evaluation on clustering shows that EBEK achieves higher NMI than LLE and NMF by differ-
ences up to 40% and 15% respectively. It also achieves a comparable cluster quality to ISOMAP
with a difference up to 3% in NMI and F-measure with a speedup up to 15×. In addition, our
interpretability experiments show that EBEK’s selected basis are more understandable than the
latent basis in images datasets.
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Chapter 1

Introduction

1.1 Motivation

Recently, extracting useful information from a large volume of data has attracted many re-
searchers in different areas like text, images, videos and more. Nonetheless, this large size of
data has very high computational and memory demands; in addition it is hard for data analysts to
have a grasp of large sized data that has many dimensions. Developing large scale techniques that
select a subset of the data can approximate the whole data can be useful in many applications.

First, the selected samples can be presented to a data analyst to understand the nature of
the data, or to the end-users as in topic detection task from twitter streams. Although many
approaches have been proposed for topic detection from Twitter streams, they present each topic
as a set of keywords that can be unrelated to each other. On the other hand, selecting a few
tweets to represent the underlying topics will be more readable and interpretable by the users.
Previous approaches that were developed in the literature for topic detection like [15, 1] focus on
identifying terms that represent the topic regardless of how the terms can be properly connected
so that they can be easily interpreted by an individual and regardless of whether or not noisy
terms are included in the retrieved set. This motivates proposing a fast and accurate Exemplar-
based approach to detect topics in Twitter based on representing each topic by a single tweet.
This Exemplar-based representation alleviates the aforementioned problems and allows for easy
understanding of the retrieved topics.

Second, this can be useful in the case of dimensionality reduction where the existing tech-
niques, like Principal Component Analysis (PCA) [30], summarize the data by projecting it on
some latent space. These latent features are difficult to interpret and may contain negative mem-
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berships. This motivated another class of techniques to emerge in the literature which is Non-
negative Matrix Factorization (NMF) [34], which mitigates the negative membership problem by
describing the data using features that do not contain negative values. However, NMF techniques
still use latent basis making them difficult to interpret. Using exemplar-based embedding solves
the aforementioned problems by projecting the data into a lower dimension space spanned by
a subset of data points (i.e., the exemplars), which attains lucid features, as these features are
related to explicit data points. In addition, these exemplars can be used by the data analysts to
gain a better understanding of the data nature and structure.

One criterion for selecting the exemplars is minimizing the discrepancy between the original
data matrix and the low rank approximation obtained by these exemplars, which is a combina-
torial problem. Thus, many techniques have been proposed to solve it greedily as in [20]. One
limitation of these techniques is not taking the data points relations and similarities into account,
preserving such relations is shown to be effective in the similarity preserving dimensionality re-
duction techniques like Multidimensional Scaling (MDS) [50], Locally Linear Embedding (LLE)
[47] and ISOMAP [53]. Additionally, preserving the pairwise similarities in the embedded data
is very useful for the task of Approximate Nearest Neighbor (ANN) search, which is defined as
finding the set of samples that have the smallest distance to a given query sample. Finding ANNs
has a wide range of applications in machine learning and information retrieval [41].

In this dissertation, Exemplar-based Kernel Preserving (EBEK)) embedding is proposed to
choose the exemplars that result in the best low rank approximation of the similarities of the data
where the similarities are represented by the kernel matrix. In addition, formulating the problem
as preserving the similarities between the data points obviates the need to solve a combinatorial
problem as will be shown in the theoretical analysis. It is essential to develop techniques that
can work on the kernel matrix, as not all types of data can be represented in numerical feature
vectors form. For instance, there is a need to group users in social media based on their friendship
relations and to group proteins in bioinformatics based on their structures [18]. Nonetheless,
having only the kernel matrix but not the higher dimension representation of the data makes the
development of exemplar embedding techniques more challenging. To alleviate this problem, we
extend EBEK to support arbitrary kernels by inferring the needed information about the high-
dimensional data from the kernel matrix.
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1.2 Summary of Contributions

The contributions of the dissertation can be summarized as follows:

• Proposing an Exemplar-based approach for topic detection and extending it to detect emerg-
ing topics by introducing time slots and the notion of topic burst.

• Performing a comparative study between a wide range of various topic detection ap-
proaches.

• Performing an extensive evaluation against recent emerging topic detection approaches.

• Deriving a theoretical proof to show that Exemplar-based Linear Kernel Preserving em-
bedding achieves the minimum reconstruction error for the kernel matrix.

• Evaluating the proposed approach in practical domains like the approximate nearest neigh-
bors search.

• Showing the interpretability of the exemplars chosen by the proposed approach on images
datasets.

1.3 Dissertation Organization

The dissertation is organized as follows. Chapter 2 provides the needed background and dis-
cusses some of the related work. Then, Chapter 3 presents the details of the Exemplar-based
topic detection approach. After that, the Exemplar-based Kernel Preserving Embedding (EBEK)
is proposed in Chapter 4. Finally, Chapter 5 concludes the dissertation and show some future re-
search directions.
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1.4 Notations

The following notations are used throughout the rest of the dissertation unless otherwise is stated.
Scalars are denoted by small letters (e.g., m,n), sets are shown in script letters (e.g., E ,H),
vectors are denoted by small bold italic letters (e.g., f , g), and matrices are denoted by capital
letters (e.g., A, S). In addition the following notations are used:

For a set E :

|E| the size of the set.

For a vector x ∈ Rm:

xi i-th element of x.

For a matrix A ∈ Rn×m:

Ai,j the (i, j)-th entry of A.

Ai,: the i-th row of A.

A:,j the j-th column of A.

A:,E the submatrix of A which consists of the set E of columns.

Aη,E the submatrix of A that consists of the set η of rows and the set E of columns.

AT the transpose of A.

Ã the low rank approximation of A.

||A||F the Frobenius norm of A.

1.5 Summary

This chapter provided the motivation of this work along with the dissertation organization. The
next chapter we will provide the necessary background and related work.
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Chapter 2

Background and Related Work

2.1 Background

2.1.1 Low Rank Approximation

Given a data matrix X ∈ Rd×n, the matrix X̃ is called a low rank approximation of X and can
be expressed as

X̃ = BT

Where B ∈ Rd×m, m ≤ n , represents the basis of the column space of the low-rank approxima-
tion matrix X̃ . And the elements of T ∈ Rm×n represent the coefficients of the matrix X̃ in the
basis B.

Finding the best low-rank approximation is described as: giving a data matrix X ∈ Rd×n and
a positive integer k, find X̃ such that:

X̃ = arg min
A,rank(A)≤k

||X − A||F

The above equation measures the Frobenius norm of the discrepancy matrix between the
original matrix and its approximation.

2.1.2 SVD

Singular Value Decomposition is a well known matrix factorization technique, where for every
matrix X ∈ Rd×n there exists two orthogonal matrices U and V and a diagonal matrix Σ such
that X = UΣV T . Where, σ1 ≥ σ2 ≥ σ3 ≥ ... ≥ σn are the singular values of X .
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For every matrixX ∈ Rd×n, l = min(d, n) and r = number of non-zero eigenvalues, Singular
Value Decomposition has the following properties:

• rank(X) = r.

• range(X) = span(U:1, U:2, U:3...U:1n).

• null(A) = span(V:,r+1, V:,r+2, ...V:,n).

• ||A||2 = σ1.

• ||A||F =
√
σ2
1 + σ2

2 + ...+ σ2
r .

The truncated SVD can be used for obtaining rank-k approximation, which is computed as
follows:

X̃ = U:,1:kΣk,1:k(V:,1:k)
T

Where U:,1:k and V:,1:k are orthogonal matrices that represent the leading k left and right singular
vector of the matrix X respectively and Σ1:k,1:k is a diagonal matrix with the leading k singular
values on the diagonal. The product of these three matrices is known as the truncated SVD.

The low rank approximation obtained by SVD has the lowest reconstruction error in terms of
Frobenius and spectral norms. More formally.

||X − X̃k||2 = σk+1

||X − X̃k||F =
r−k∑
i=1

σk+i

2.1.3 Stochastic Singular Value Decomposition

As computing singular value decomposition can take long time or be infeasible for a large num-
ber of data points. SVD can be performed by using stochastic singular value decomposition
[27] , where stochastic singular value decomposition produces reduced a rank singular value
decomposition by applying two steps:

1. Compute an approximate basis for the column space of X

• Draw a random n× (k + p) matrix Ω
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• Y = XΩ Get a subspace that approximates the columns space of X

• Q = OrthCols(Y ) Get an orthogonal basis for this subspace

• This is repeated q (a parameter to the algorithm) times to get better results

2. Given Q, compute approximate SVD of X

• [Ũ , Σ̃, Ṽ T ] = svd(QTX)

2.1.4 Principal Components Analysis (PCA)

Principal components analysis (PCA) [30] is a very popular technique for dimensionality re-
duction. It projects the data matrix into a subspace of latent features that retains the maximum
variance of the data.

For a given data matrix X ∈ Rd×n (n samples), the direction of maximum variation (i.e, the
principal component) is given by the eigenvector associated with the largest eigenvalue of the
covariance matrix S = XTX,S ∈ Rn×nMore formally given a data matrix X ∈ Rd×n.

PCA can be related to the SVD of a centered data matrix X ∈ Rd×n

X = UΣV T

The columns of the matrix U represents the eigenvectors of the covariance matrix X .

2.1.5 Approximate Nearest Neighbor

Approximate Nearest Neighbor (ANN) search, is defined as finding the set of samples that have
the smallest distance to a given query sample. Finding ANNs has a wide range of applications in
machine learning and information retrieval [41]. Both the straightforward solution, which com-
putes the distances to all the samples and retrieve the nearest ones, and the Multi-dimensional
indexing methods like k-d tree [24] are not efficient and sometimes infeasible for large dimen-
sions. One way to alleviate the problem of large dimensions is given by Johnson-Lindenstrauss
Lemma in [29], which states that the pairwise distances in small point set can be well-preserved
in low-dimensional embedding. This is why several approaches have been proposed to project
the data into a lower dimensional space and then utilize this lower dimensional space to compute
the nearest neighbors of the data points as done in [26], [2] and [46].
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2.1.6 Matrix Congruence and Sylvester’s Law of Inertia

Congruent Matrices

Two square matrices A and B ∈ Rn×n with real entries are said to be congruent, if there exists
an invertible matrix P ∈ Rn×n such that

A = P TBP

Inertia of Matrices

The inertia of a Hermitian matrix A is defined to be the tuple

i(A) = {n+, n0, n−}

Where, n+ is the number of positive eigenvalues of A, n0 is the number of zero eigenvalues of
A, and n− is the number of negative eigenvalues of A.

Sylvester’s Law of Inertia

Two Hermitian matrices A,B ∈ Rn×n are said to be congruent if and only if they have the same
inertia.

One corollary of this theorem is that every Hermitian matrix is congruent to a diagonal matrix
D with n+ ones, n− negative ones and n0 zeros. In other words every Hermitian matrix D =
P TAP .

2.2 Related Work

First, this section covers some of the related work in the area of topic detection in subsection 2.2.1
and then covers some of the related work in the data embedding in subsections 2.2.2 and 2.2.3
respectively.
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2.2.1 Topic Detection

A variety of techniques have been proposed for topic detection. One approach depends on ap-
plying matrix factorization techniques on the term-document matrix. In this approach, the Term
Frequency–inverse Document Frequency (tf-idf) weighting data matrixX is factorized asW×H ,
whereW contains the membership of each tweet to each of the topics andH contains the weights
of each term to each of the topics. Latent Semantic Analysis is a popular text analysis approach
[33], which projects a data matrix X into a lower dimensional space whose basis are latent top-
ics. This is done by representing the matrix X as the product of three matrices (X = UΣV T )
using Singular Value Decomposition (SVD). SVD can take a long time or may become infeasible
for a large number of data points. LSA can be performed using stochastic SVD [27] (We will
refer to this approach as stochastic LSA.) Using LSA has two disadvantages: 1) The factorized
matrices may have negative values which can not be easily interpreted. 2) The discovered topics
are latent and do not have a clear meaning. This motivates using Non-negative Matrix Factoriza-
tion (NMF) as in [4, 5], where a data matrix X is factorized to the product of two non-negative
matrices W ×H . As the elements of the matrices W and H are non-negative, the membership
of each tweet to each topic can be interpreted easily.

There are many algorithms for NMF; I will focus on two of them. The first one is ALS
proposed in [4]. Alternating Least Squares (ALS) minimizes the reconstruction error of a data
matrix X by minimizing: ||X − W × H||F where ||A||F is the Frobenius norm of matrix A,
such that the elements of W and H are non-negative. The algorithm applies a least squares step
to find one matrix which is followed by another least squares step to find the other matrix in an
alternating manner. The other NMF algorithm is R1D proposed in [5]. The algorithm is based
on the observation that the leading singular vectors of a non-negative matrix are non-negatives
which yields a rank-1 approximation. Rank-One Downdate (R1D) extends this observation to
a higher rank approximation in an iterative fashion. At each iteration, the algorithm selects a
rank-one sub-matrix that minimizes the reconstruction error, subtracts it from the original matrix
and forces the negative residuals to zeros. However, NMF approaches describe the topic by a
set of terms which results in topics that are not easily understood by the user and allows noisy
terms to exist. Therefore, the proposed approach solves this problem by representing each topic
by a real tweet (exemplar) which will not suffer from noisy terms as it is written by a human. In
addition, real tweets can easily be understood by the user, thus users can directly understand the
detected topics.

Other approaches for detecting topics are proposed by clustering the set of tweets where the
tweets in the same cluster are assumed to discuss the same topic. K-means is a well known
clustering algorithm. Its objective function is to minimize the sum of squares of distances be-
tween each cluster’s data points and its centroid. K-means can be used for topic detection by
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considering that tweets in one cluster have the same topic, which is represented by the cluster
centroid. On the other hand, clustering suffers from fragmented topics and representing the topic
that a cluster discusses is an important task. This is solved in our approach by using exemplars
(tweets) to represent the topic.

There are a number of emerging topic detection approaches that have been recently intro-
duced in the literature like Latent Dirichlet Allocation (LDA), Document Pivot, Soft Frequent
Pattern Mining (SFM) and Bngram. LDA proposed by [6] is a probabilistic topic modeling ap-
proach. It assumes that each document has a hidden distribution over the terms and that each
topic has a hidden distribution over the documents. By observing the terms in each document,
LDA can infer these hidden distributions. It was reported in [42, 39] that LDA has a problem with
the data sparsity in short text. The document pivot approach is also used for emerging topic de-
tection. It was introduced by [45]. Document pivot works incrementally, which means the newly
arrived document is compared to the existing centroids, and if its similarity to the closest centroid
is above a certain threshold, the document is assigned to this centroid. Otherwise, a new cluster
is created that contains this document. Finally, clusters are sorted according to a score measure
that favors clusters with new terms and the top clusters are considered as emerging topics. The
main problem of the document pivot approach is that it usually generates fragmented clusters.
Moreover, SFM [1] is used for emerging topic detection. Its objective is to detect patterns of
co-occurrence between groups of terms and put terms together in the same topic if they usually
appear together. Finally, Bngram [1] was also proposed for detecting emerging topics. Its main
idea is to use Ngrams. The approach also proposed a new scoring measure based on time. This
score measure focuses on choosing terms that their frequencies have increased during the current
time slot compared to the previous time slots. There are many other approaches for emerging
topic detection like feature pivoting and frequent pattern mining. Our proposed emerging topic
detection approach inherits the same advantage of Exemplar topic detection. Thus it results in
easily interpreted emerging topics and it does not suffer from selecting noisy terms. In addition,
the Exemplar-based emerging topic detection approach keeps track of the topics evolution over
time, while LDA, document pivot and SFM, do not track topics changes over time.

2.2.2 Data Embedding

In this subsection, I shed the light on some of the embedding techniques that have been proposed
in the literature.
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Locally Linear Embedding (LLE)

LLE [47] is another dimensionality reduction technique that aims to find a mapping, which pre-
serves the local distances between the points, by trying to reconstruct the points only using their
k-nearest neighbors. The algorithm starts by finding the set of nearest neighbors for each data
point Xi which is denoted as Nxi . Then, it finds the cofficients w such that

W = arg min
w

n∑
i=1

||Xi: −
k∑
j=1

wijNxi(j)||2

Where Nxi(j) is the jth neighbor of the point xi.

The weight matrix W is then used to find the optimal embedding by solving the following
optimization problem

Y = arg min
Y

n∑
i=1

||Yi: −
∑

jNY:i
WijY:j

||2

It can be shown that the optimal solution is obtained by setting the columns of Y T to the
eigenvectors associated with the lowest eigenvalues of L where L = (I −W )T (I −W )

Multidimensional Scaling (MDS)

Classical MDS [50] minimizes the difference between the Euclidean distances of the data points
in the original space and the Euclidean distances of the projected data points in the lower dimen-
sional space and hence maintains the relationships between the points. More formally, given a
data matrix X ∈ Rd×n; MDS tries to find a an embedding matrix Y ∈ Rp×n where p << d such
that Y is

arg min
Y

n∑
i=1

n∑
j=1

(d
(X)
ij − d

(Y )
ij )2

Where d(X)
ij = ||X:i −Xj:|| and d(Y )

ij = ||Y:i − Yj:||.

It can be shown that the solution is Y = Λ
1
2V T , where V represents the eigenvectors ofXTX

corresponding to the top d eigenvalues, and Λ is the top d eigenvalues of XTX
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ISOMAP

ISOMAP [53] adapts the same objective of MDS but using a different distance measure called
geodesic distance. Geodesic distance is measured by the shortest path between the data points in
a graph formed by connecting the points only to its k-nearest neighbour. The ISOMAP algorithm
performs three steps

• Find the set of neighbors for each data point.

• Compute the pairwise geodesic distances between all points.

• Find the low-dimension embedding using MDS.

2.2.3 Approximate Nearest Neighbor

As computing Approximate Nearest Neighbor (ANNs) is a time and memory consuming task to
be performed on the high-dimensional data. That is why, several approaches have been proposed
to project the data into a lower dimensional space and then utilize this lower dimension space
to compute the nearest neighbors of the data points as in [26], [2] and [46]. For example, a
modified version of PCA called PCA-RR is used in [26] where the projection matrixW of PCA is
multiplied by a random orthogonal matrixR and then the approach usesWR as lower dimension
basis to project the data on. Yet the objective function of PCA does not preserve the similarities
of the data, which limits its ability to find the best ANNs. Locality-Sensitive Hashing (LSH) [2]
mitigates this problem by trying to preserve the local neighbors of the points using random hash
functions that with high probability map similar data points to the same buckets. While, utilizing
these buckets enables LSH to retrieve the ANNs, defining general random hash functions for LSH
is a difficult task. Shift-invariant Kernels Locality-Sensitive Hashing (SKLSH) [46] modifies the
objective function of LSH to approximate shift-invariant kernels using random feature mapping.
ITerative Quantization (ITQ) [26] is another approach for finding ANNs, which tries to learn a
similarity preserving binary coding using training data and then utilizes it to encode the data and
compute the ANNs. While ITQ coding captures the data properties, it requires a lot of training
data to find a good binary coding, in addition this training phase consumes a lot of time.

2.3 Summary

This chapter gave the necessary background about linear algebra, dimensionality reduction and
topic detection. Then it showed some of the related work in the area of dimensionality reduction
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and topic detection. In the next chapter an Exemplar-based topic detection approach for Twitter
Streams is proposed.
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Chapter 3

Exemplar-based Topic Detection in Twitter
Streams

Detecting topics in Twitter streams has been gaining an increasing amount of attention. It can be
of great support for communities struck by natural disasters, and could assist companies and po-
litical parties to understand users’ opinions and needs. Traditional approaches for topic detection
focus on representing topics using terms and are negatively affected by length limitation and the
lack of context associated with tweets. In this chapter, an Exemplar-based approach for topic de-
tection is proposed, in which detected topics are represented using a few selected tweets. Using
exemplar tweets instead of a set of keywords allows for an easy interpretation of the meaning of
the detected topics. The approach is then extended to detect topics that emerge in new epochs
of data. Experimental evaluation on benchmark Twitter datasets shows that the proposed topic
detection approach achieves the best term precision. It does this while maintaining good topic re-
call and running time compared to other approaches for topic detection. Moreover, the proposed
emerging extension achieves higher topic recall with an improved running time when compared
to recent emerging topic detection approaches.

The rest of the chapter is organized as follows: the chapter starts by discussing some of the
related work and then presenting the proposed approach for topic detection. This is followed
by extending the proposed approach to detect emerging topics. After that, the implementation
details are shown, experimental setup, results, and discussion.
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3.1 Exemplar-based Topic Detection

Due to the text length limitation, topic detection in short text is more challenging than in long
text. So most of the existing approaches are not suitable for detecting topics in short text, as
the is case in LDA which will not be able to accurately infer topic distribution over tweets due
to length limitations. Therefore there is a need to design new approaches for detecting topics
in short text. The basic idea behind this work is to use an Exemplar-based approach to detect
topics, where each detected topic is represented using the most representative tweet. This tweet
(i.e., the exemplar) is much easier to be interpreted by the user as it contains related terms and it
represents a topic that is of direct importance to the user.

In this section the Exemplar-based topic detection approach is proposed, then it is extended
to handle the detection of emerging topics.

Figure 3.1: The similarity distributions of two tweets: Tweet (A) with a high variance and Tweet
(B) with a low variance
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3.1.1 Problem Formulation

Given a set of tweets T of size n, our goal is to detect the underlying topics in this set and
represent each topic using only one tweet (exemplar). The selection criterion used to select this
tweet should be able to detect a tweet for each topic such that each tweet is descriptive for one
topic and discriminates this topic from other topics at the same time.

3.1.2 Exemplar Selection Criterion

The criterion used in this work is based on the following observation. A tweet which is similar
to a set of tweets and dissimilar to the rest of the tweets is a good topic representative. This can
be formulated by defining a similarity matrix Sn×n where Sij is the similarity between tweet ti
and tweet tj . The distribution of similarities between each tweet ti and the rest of the tweets can
be classified into three cases:

1. Tweet ti is similar to many tweets. Therefore, its similarity distribution will have low
sample variance

2. Tweet ti is very similar to a set of tweets and less similar to the others. Therefore, its
similarity distribution will have high sample variance

3. Tweet ti is not similar to most of the other tweets. Therefore, its similarity distribution will
have low sample variance

The tweets that fall in the second case are good candidates for representing topics, as each
tweet is very similar to a set of tweets and therefore it can capture their underlying topic. On
the other hand, each of these tweets is different from the rest of the tweets which means it can
distinguish between its topic and the rest of the topics. This suggests using the variance of
each tweet as a criterion for selecting topic representatives, where the sample variance of the
similarities for each tweet ti is computed as

var(S:i) =
1

n− 1

n∑
j=1

(Sij − µi)2 ,

where µi is the mean of similarities between ti and other tweets:

µi =
1

n

n∑
j=1

Sij .
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Figure 3.1 supports our intuition using real tweets, where a tweet with a high variance is
similar to a group of tweets that discuss the same topic and dissimilar to the rest of the tweets,
while the other tweet that has a low variance is dissimilar to most of the tweets.

3.1.3 Exemplar Selection Algorithm

Choosing exemplars for detected topics can be done in an iterative manner by choosing the tweet
with the highest variance in each iteration as an exemplar for a topic. One problem with this
approach is that it does not guarantee the selected tweets are talking about different topics. So
after choosing each exemplar, we have to remove its effect to ensure that no more tweets about
the same topic will be selected as exemplars of another topic. One way to remove the effect of
an exemplar ti is to disqualify the tweets that are ε close to it from being exemplars, and consider
the tweet that has the highest variance of similarity and is not ε close to ti as the exemplar of
the next topic. Figure 3.2 shows an example where each node represents a tweet and its ε close
tweets are within the dotted circle. Tweets are sorted descendingly based on the variance of their
similarities with the rest of the tweets and each tweet is labeled in accordance by this order. In
this example, after choosing the first tweet as the first topic exemplar, tweets 2, 3 and 4 are not
chosen as exemplars of new topics as they are very close to tweet 1 and do not represent new
topics. Tweet 5 which is the tweet with the highest variance of similarity and not ε close to tweet
1 is chosen as an exemplar of a new topic. Similarly, tweets 6 and 7 are not chosen as exemplars
while tweet 8 is chosen.

The set of exemplars E is constructed iteratively using the following objective function, at
each iteration i:

max
ti∈T

var(S:i)

s.t. Sij ≤ ε ∀ti, tj ∈ E and i 6= j

This objective function can be solved by iterating through the tweets in descending order
of the variance of their similarities and consider the first tweet that is not ε-close to ti as the
exemplar of the next topic.

3.1.4 Speeding Up Calculations

Computing a similarity matrix between a large number of tweets is very complex in terms of
running time and memory usage. Thus, to be able to handle large amounts of data, we approxi-
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Figure 3.2: Each dotted circle shows the tweets that are ε close to the tweet in the center. The
tweets are labeled in descending order of the variance of their similarities

mate the variance of the similarities of each tweet ti using its similarity with fewer number m of
tweets, where m < n. So the variance of each tweet is calculated as:

var(S:i) =
1

m− 1

m∑
j=1

(Ŝij − µ̂i)2

Where

µ̂i =
1

m

m∑
j=1

Ŝij

And Ŝ is the similarity matrix between all tweets n and a random subset of size m.

It is shown empirically in the evaluation section that this approach achieves good results with
acceptable run time. The pseudocode of the approach is shown in Algorithm 1.
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Algorithm 1: Exemplar-based Topic Detection
Data: T set of tweets, k number of topics, m size of the random subset and ε similarity

threshold
Result: E set of k tweets each representing a topic

1 T̂ ← select-random(T ,m)
// Select m random tweets

2 Ŝ ← similarity(T , T̂ )
3 v̂← zeros(n) // Vector of size n
4 i← 1
5 while i ≤ n do
6 v̂i ← var(Ŝ:i)
7 i← i+ 1

8 v̂← sort(v̂, ”descending”)
9 topic← 1

10 i← 1
11 while (topic < k) do
12 E .add(v̂i)
13 i← i+ 1
14 while similarity(v̂i, E(topic)) ≥ ε do
15 i← i+ 1

16 topic← topic+ 1

3.2 Emerging Topic Detection

To detect emerging topics, the notion of time slot is used to keep track of the evolution of each
topic over time. Therefore, a Twitter stream is divided into time slots where each time slot
contains the tweets that have occurred within its window. To detect emerging topics we need to
select exemplars that: 1) Capture the underlying topics in the current time slot and 2) Differ from
the topics that were discussed in the previous time slot. Based on these objectives, detecting
emerging topics is completed in two steps:

• Select a candidate set C of tweets that represent the topics in the current time slot m

• Filter the candidate set C by excluding the exemplars that are discussing the same topics
that appear in the previous time slot
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The first step is achieved by applying the algorithm discussed in the previous section to the
tweets in the current time slot. This will result in a candidate set C that contains candidate
exemplars; these exemplars represent topics that are discussed in the current time slot m. After
that, the set C is scanned to filter the candidate exemplars by comparing them to the topics in the
previous time slot. Comparing the candidate exemplars to all the tweets in the previous time slot
-to ensure and estimate its novelty- is a time consuming task. Therefore, each exemplar in the
set C is compared to the exemplars chosen in the previous time slot m − 1, as these exemplars
summarize the topics in the previous time slot.

A notion of topic burst is needed to measure how novel the topic is. Therefore, a topic burst
measure is introduced based on how the candidate topic is related to the previous topics. This is
done by computing the topic similarity to topics detected in the previous time slot and choosing
the topics that are not similar to the previously detected topics. As each time slot has its own
dictionary and vocabulary list, it is time consuming to match the dictionaries of the different time
slots to build a common dictionary. Thus, a simple similarity measure is defined as follows:

similarity(ti, tk) =
ti ∩ tk

max(|ti|, |tk|)

where

• ti ∈ Em and tj ∈ Em−1

• Em and Em−1 are the sets of selected exemplars at time slot m and m− 1 respectively

• ti ∩ tk are the number of common terms between tweet ti and tweet tk

• |ti| and |tj| is the number of terms in ti and tj respectively

This similarity measure depends on the common words relative to the tweets lengths, which
is simple and fast to calculate and does not involve relying on matching the time slot dictionaries.
Therefore, the objective function is now modified for each iteration i as follows:

max
ti∈Tm

var(S:i,m)

s.t. Sij,m ≤ ε ∀ti, tj ∈ Em and i 6= j

s.t. max similarity(ti, tk) ≤ δ

∀ti ∈ Em and tk ∈ Em−1

where
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• S:i,m denotes the similarity between tweet ti and all tweets in time slot m

• Tm is the set of tweets in time slot m

• δ is the maximum similarity threshold between an exemplar ti at time slot m and an exem-
plar tk in time slot m− 1

Therefore, to solve the previous objective function, at each iteration i the tweet with the
highest variance that is not similar to the previously selected i− 1 tweets (topics) and not similar
to topics detected at the previous time slot is selected. This will result in detecting emerging
topics which have suddenly gained peoples’ attention.

3.3 Experimental Results

Three Twitter datasets were used for evaluation in this chapter and were initially collected by
[1]. The datasets correspond to three distinct events which include FAcup (39,282 tweets), Super
Tuesday (707,300 tweets) and US Elections (1,157,674 tweets). I have re-constructed the three
datasets as only tweet ids were provided by [1]. The ground truth topics of the datasets were
constructed from news headlines reported during the events. Data is preprocessed using TMG
Matlab tool 1 to remove stop words and convert it to TF-IDF representation.

The proposed topic detection approach is compared against five topic detection approaches,
which are: Latent Semantic Analysis (LSA), stochastic LSA, Alternating Least Squares (ALS),
Rank-1 Downdate (R1D) and K-means. In addition, the extension of emerging topic detection
is compared to four recent emerging topic detection approaches, which are: Latent Dirichlet
Allocation (LDA), Document Pivot, Soft Frequent Pattern Mining (SFM) and Bngram.

As topics in each time slot were represented by keywords, labels for each tweet were not
provided. I have used the same measures and evaluation code used by [1] to evaluate the different
topic detection approaches. These measures are:

• Topic recall: The number of successfully retrieved topics divided by the total number of
topics that should have been retrieved.

• Term precision: The number of successfully retrieved keywords in the detected topics
divided by the total number of keywords in these topics.

1http://scgroup20.ceid.upatras.gr:8000/tmg/ [Last visit 14/02/2016]
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• Term recall: The number of successfully retrieved keywords divided by the total number
of keywords that should have been retrieved.

Topic precision was not used by [1] as not all the topics covered by Twitter appear in news
sources. For the other topic detection approaches, the top 15 keywords of each discovered topic
is used as topic keywords. While in Exemplar-based approach, each exemplar (tweet) is used
as a topic and its terms are used as topic representatives. The Exemplar-based approach uses a
random set to approximate the similarity matrix. Therefore, the Exemplar approach was run 10
times.The average and the 95% confidence intervals of the results were reported in Figures 3.3a
to 3.4c. Also, the similarity measure used was the cosine similarity and the size of the random
subset of tweets m used by the Exemplar approach was set to 1000.

Figures 3.3a, 3.3b and 3.3c show the evaluation measures of applying different topic detection
approaches in FAcup, Super Tuesday and US Elections datasets respectively. Exemplar-based
was applied by setting the similarity threshold ε to 0.5 in FAcup, to 0.01 in US Elections and to
0.1 in Super Tuesday, where these values were tuned empirically. Moreover, Table 3.1 shows the
running time for the topic detection approaches. For FAcup, LSA and stochastic LSA had the
least term precision. While, Exemplar approach increased the term precision with some loss in
term recall as it reduces the noise in the terms by enforcing the topics to be real tweets. Moreover,
LSA and stochastic LSA had the least topic recall. However, the rest of the approaches had close
topic recall values. For running time, Exemplar approach, K-means, LSA and stochastic LSA
had a close running time. Note that, we were unable to run ALS on the US Elections and Super
Tuesday datasets as it has a huge running time. In Super Tuesday dataset, Exemplar provided
again the best term precision. Moreover, Exemplar was the best in term recall and topic recall.
For running time, Exemplar and K-means approaches were the fastest. Finally, for the results of
US Elections dataset, Exemplar also reached the best term precision. For topic recall, Exemplar
was the best or second best in most cases, then LSA stochastic was the best in the first time slots.
Term recall results were comparable for all the used approaches. For the running time, Exemplar
approach and K-means were again the fastest.

Figures 3.4a, 3.4b and 3.4c show the evaluation measures of applying different emerging
topic detection approaches in FAcup, Super Tuesday and US Elections datasets respectively. The
δ parameter of the Exemplar approach was set to 0.5 in all datasets. In addition, Table 3.2 shows
the running time for the emerging topic detection approaches. For FAcup, LDA had the best topic
recall, while Exemplar was the second best in topic recall and term precision. For term recall,
Bngaram and SFM had the best term recall, however they were able to detect a few number of
correct topics which was reflected in the topic recall results. For running time, again Exemplar
approach was the fastest. In Super Tuesday dataset, Exemplar provided again the best topic recall
and term recall and was the third in term precision after Bngram and SFM which again had a
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Table 3.1: Running time in seconds for topic detection approaches

Dataset Number of
Topics (N)

R1D ALS LSA LSA
Stochas-

tic

K-
means

Exemplar

FAcup

N = 2 1.3133 38.3629 0.4229 0.2737 0.0957 0.8575

N = 10 6.5546 104.2447 0.5111 0.4613 0.1887 0.9226

N = 20 14.6239 220.6417 0.6565 0.9482 0.3909 0.8290

Super Tuesday

N = 12 114.7866 - 8.3473 25.7385 6.4527 15.0808

N = 52 450.0996 - 38.5653 171.9562 27.8256 20.5971

N = 92 732.1874 - 103.5337 387.4809 50.1507 24.7621

US Elections

N = 12 305.5000 - 14.4126 28.4466 8.9827 28.4967

N = 52 1081.3000 - 67.8509 140.4287 42.8705 38.6812

N = 92 1796.5000 - 209.6554 418.7506 63.8388 45.5971

low topic recall. For running time, SFM and Exemplar approach were the fastest approaches.
However, Bngram approach was the slowest one in all the three datasets. Finally, for the results
of US Elections dataset, Exemplar had the best topic recall and term recall. However, it was the
third in term precision after Bngram and SFM which both had a low topic recall in most cases.
For the running time, SFM and the Exemplar approach were the fastest. Moreover, our proposed
topic detection and emerging topic detection approaches are stable, where increasing the number
of topics either increases or maintains the same quality (topic recall, term precision and term
recall). While, the other approaches show unstable behavior with the number of topics as their
curves keep oscillating.

Table 3.3 shows sample topics detected by our proposed Exemplar approach and LDA in
the three different events. As shown in the table, the detected topics by our approach can be
easily interpreted and understood by the user while LDA detected topics are hard to interpret and
usually contain noisy confusing terms.
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(a) Results of topic detection on FAcup dataset
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(b) Results of topic detection on Super Tuesday dataset
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(c) Results of topic detection on US Elections dataset

Figure 3.3: Results of topic detection
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(a) Results of emerging topic detection on FAcup dataset
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(b) Results of emerging topic detection on Super Tuesday dataset
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(c) Results of emerging topic detection on US Elections dataset

Figure 3.4: Results of emerging topic detection
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Table 3.2: Running time in seconds for emerging topic detection approaches

Dataset Number of
Topics (N)

LDA Document
Pivot

SFM Bngram Exemplar

FAcup

N = 2 3.3550 8.2910 28.7680 266.3780 1.0102

N = 10 4.4020 8.2910 28.7680 266.3780 1.5930

N = 20 4.2670 8.2910 28.7680 266.3780 2.4871

Super Tuesday

N = 12 103.0670 235.6230 49.6520 613.5750 30.8725

N = 52 122.4840 235.6230 49.6520 613.5750 71.7208

N = 92 144.1410 235.6230 49.6520 613.5750 122.2432

US Elections

N = 12 114.8130 156.5290 78.4430 1436.2410 76.9178

N = 52 143.6980 156.5290 78.4430 1436.2410 182.4017

N = 92 172.4850 156.5290 78.4430 1436.2410 285.6489

3.4 Summary

In this chapter, an Exemplar-based approach for topic detection in Twitter streams is proposed.
The approach represents each topic using explicit data sample. The approach is extended to
detect emerging topics in new epochs of data. The effectiveness of the approach is shown us-
ing three different datasets. In the next chapter EBEK, an Exemplar-based Kernel Preserving
Embedding approach, is proposed.
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Table 3.3: Sample topics detected by Exemplar-based and LDA approaches

Topics Approach FAcup US Elections Super Tuesday

Topic 1
Exemplar RT @chelseafc: We’ve

kicked off
#CFCWembley

#FACupFinal (SL)

RT @AP: AP RACE
CALL: Obama wins

Vermont; Romney wins
Kentucky.

#Election2012

BREAKING NEWT:
Gingrich wins Georgia

Republican primary
(AP)

LDA chelsea liverpool final
kick la sl kicked cup

wembley de game reds
fa anthem win

vote voted america
president line years
election voting time
today make tonight

good de en

mitt romney georgia
newt ohio virginia

gingrich oklahoma iran
obama car santorum

tennessee energy drive

Topic 2
Exemplar Yellow card to Mikel

#FACupFinal
RT @AP: AP RACE
CALL: Romney wins

North Carolina.
#Election2012

RT @thinkprogress:
Mike Allen reports (on
@politico livestream)

that Romney campaign
...

LDA final chelsea la cup
liverpool de fa wembley
el en red comienza ya fc

phil

obama votes electoral
carolina romney indiana

kentucky north
projected south florida
vermont called win red

santorum ohio romney
exit polls cnn rick poll
voters gingrich exits

winning show em
republicans

Topic 3
Exemplar RT @chelseafc: 2nd

half kicked off
#CFCWembley

#FACupFinal (SL)

RT @TheEllenShow:
What an amazing night.

Congratulations
@BarackObama! I’m
proud of our country.

RT @AP: BREAKING
NEWS: Romney wins

Republican presidential
primary in Ohio

LDA fans anthem national
reds blues great easy

booing players trending
ramirez eh gaga lady

direction

voting time va tomorrow
work great lead white

choice house start
republicans clear
predicting half

peyton tennessee
manning colts breaking

tomorrow strong
character important

moral money tonight
won announce end
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Chapter 4

EBEK: Exemplar-based Kernel Preserving
Embedding

This chapter proposes Exemplar-based Kernel Preserving (EBEK) embedding to choose the ex-
emplars that result in the best low rank approximation of the similarities of the data where the
similarities are represented by the kernel matrix. In addition, formulating the problem as preserv-
ing the similarities between the data points obviates the need to solve a combinatorial problem as
will be shown in our theoretical analysis. It is essential to develop techniques that can work on
the kernel matrix, as not all types of data can be represented in numerical feature vectors form.
For instance, there is a need to group users in social media based on their friendship relations
and to group proteins in bioinformatics based on their structures[18].

Nonetheless, having only the kernel matrix but not the higher dimension representation of the
data makes the development of exemplar embedding techniques more challenging. To alleviate
this problem, we extend EBEK to support arbitrary kernels by inferring the needed information
about the high-dimensional data from the kernel matrix.

The rest of the chapter is organized as follows: Section 4.1 shows the details of the proposed
Exemplar-based Kernel Preserving embedding. Then, experimental evaluations are shown in
section 4.2.

4.1 EBEK: Exemplar-based Kernel Preserving Embedding

We start this section by providing the details of embedding that preserves linear kernels in subsec-
tion 4.1.1 and then we explain the details of extending the approach to support arbitrary kernels
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in subsection 4.1.2.

4.1.1 Exemplar-based Linear Kernel Preserving Embedding

Our objective in this work is choosing a subset of columns (i.e, data points) that preserve the pair-
wise similarities as much as possible between the data embedded in the span of these columns.
In addition, we would like these columns to be less similar to each other to ensure that these
columns capture the different characteristics of the dataset. Given this objective the problem can
be defined as follows.

Problem Definition Given a data matrixA ∈ Rd×n (n samples in d dimensional space). Select
a subset E of m columns, such that:

arg min
A:,E ,T

||S − S̃||F = arg min
A:,E ,T

||ATA− ÃT Ã||F

s.t. S(i, j) ≤ ε ∀i, j ∈ E (4.1)

Where Ã is the low rank approximation of A using the columns A:,E , Ã = A:,ET , A:,E ∈
R
d×m and T ∈ Rm×n. T represents the coefficients used to reconstruct the n samples using the

m selected samples and ε is a similarity threshold to ensure that the columns are not similar to
each other.

At first we will drop the constrains on the columns similarities and try to minimize the ob-
jective function and then we will show how to minimize the objective function while preserving
these constrains.

The goal of this objective function is to choose A:,E and T that minimize the Frobenius norm
of the difference between the pairwise similarity matrix of the original data (S = ATA) and the
pairwise similarity matrix of the low rank approximation data (S̃ = ÃT Ã), where the similarity
here is defined by the linear kernel. Therefore, the problem in equation 4.1 can be reduced to:

arg min
A:,E ,T

||ATA− ÃT Ã||F = (4.2)

arg min
A:,E ,T

||ATA− T TAT:,EA:,ET ||F
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Let SE,E = AT:,EA:,E ∈ Rm×m, which represents the pairwise similarities between the selected
m samples. Then, equation 4.2 can be rewritten as:

arg min
A:,E ,T

||S − T TSE,ET ||F (4.3)

As the matrix S is symmetric positive semi-definite (by construction), then S = V Σ2V T ,
where A = UΣV T , is the singular value decomposition of A. In addition, Σ is a diagonal matrix
with rank(S) positive elements and n−rank(S) zero elements on the diagonal. Then equation
4.3 can be written as:

arg min
A:,E ,T

||V Σ2V T − T TSE,ET ||F (4.4)

Lemma 4.1.1. ||GBQ||F = ||B||F for any matrix B and orthogonal matrices G and Q.

Proof.
||GBQ||2F = tr((GBQ)TGBQ)

= tr(QTBTGTGBQ)

= tr(QQTBTGTGB) = tr(BTB) = ||B||F
As Q and G are orthogonal matrices, hence QQT = I and GTG = I .

Based on lemma 4.1.1, equation 4.4 can be re-written as:

arg min
A:,E ,T

||V T (V Σ2V T − T TSE,ET )V ||F

= arg min
A:,E ,T

||Σ2 − V TT TSE,ETV ||F

= arg min
A:,E ,T

||Σ2 − (TV )TSE,ETV ||F (4.5)

Lemma 4.1.2. SE,E = P−TDP−1, where P ∈ Rm×m is an invertible matrix and D ∈ Rm×m is
a diagonal matrix that has only entries 0 and +1. The number of +1 in D equals r, where r is
the rank of matrix SE,E .
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Proof. Using Sylvester’s Law of Inertia [51], each symmetric matrix E ∈ Rm×m is congruent
to a diagonal matrix D ∈ Rm×m which has only entries 0, +1 and -1 along the diagonal, where
the number of zero diagonal elements is m − p, p = rank(E), the number of positive diagonal
elements, q, is the number of positive eigenvalues, the number of negative diagonal elements is
the number of negative eigenvalues p − q. Which means that there exists an invertible matrix
P ∈ Rm×m such that: P TEP = D. Applying this to the matrix SE,E gives the following:
P TSE,EP = D, then

SE,E = P−TDP−1 (4.6)

As the matrix SE,E is symmetric positive semi-definite, then it has r positive eigenvalues,
where r = rank(SE,E) = rank(A:,E), and m− r zero eigenvalues. The matrix P can be obtained
by multiplying pairs of elementary transformations, one of which is with rows and the other is
the corresponding transformation with the columns as explained in [35].

Theorem 4.1.3. By setting T = P (Σ1:m,:)V
T , where P satisfies equation 4.6 and selecting a

subset E of columns from matrix A that have the highest rank, the matrix S̃, which equals to
T TAT:,EA:,ET , achieves the minimum low rank approximation of S.

Proof. Using lemma 4.1.2, and by substituting equation 4.6 in equation 4.5, we get:

arg min
A:,E ,T

||Σ2 − (TV )TP−TDP−1TV ||F

= arg min
A:,E ,T

||Σ2 − (P−1TV )TDP−1TV ||F (4.7)

Our objective is to put the matrix D in canonical form such that:

D =


Ir

0
. . .

0

 (4.8)

Where Ir is r-by-r identity matrix. As the singular values of S are sorted along the diagonal
of Σ, putting the matrix D in the form of equation 4.8 enables us to cancel the first r singular
values (the largest ones), which means the error of equation 4.7 in terms of the Frobenius norm
will be

√∑n
i=r+1 σ

4
i , where σ2

i is the ith singular value of S. This can be achieved by setting the

value P−1TV = (Σ1:m,:), where Σ1:m,: is the first m rows of the matrix Σ. This can be seen by
substituting the value of P−1TV in equation 4.7 which will be:

arg min
A:,E ,T

||Σ2 − (Σ1:m,:)
TD(Σ1:m,:)||F (4.9)
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The term (Σ1:m,:)
TD(Σ1:m,:) in equation 4.9 is:



σ1
. . .

σm
0 . . . 0
...

. . .
0 . . . 0




Ir

0
. . .

0



σ1 0 . . . . . . 0

. . .

σm 0 . . . 0



=



σ2
1

σ2
2

. . .
σ2
r

0
. . .

0


Thus, the optimal value for P−1TV = (Σ1:m,:), and T = P (Σ1:m,:)V

T . The error in this case is
equal to the minimum achieved error using rank-k approximation obtained by SVD [60]. So to
minimize 4.7, we need to:

• Choose subset of columns E from A that have the maximum rank.

• Set the value of T to P (Σ1:m,:)V
T .

To maximize the rank of A:,E , there are two cases:

• If r ≥ m, any independent m columns can be chosen by reducing the matrix to its echelon
column form and use the non-zero columns.

• If r < m, in this case the non-zero columns of the echelon form and any other m − r
columns are used, and in this case the error will be zero.
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Recall that Ã = A:,ET . To obtain the lower dimension embedding of the data in the space
spanned by A:,E the matrix A:,E is replaced by its QR factorization. Ã = QRT , where Q is the
orthogonal bases of the space spanned by A:,E and the lower dimension embedding of the data is
RT .

Until now, we have only considered minimizing the objective function without the similar-
ities constrains. As shown in the previous proof, choosing any subset of columns that has the
maximum rank will be optimal for the objective function. Therefore, to decide which subset to
choose, we employ the similarities constrains and choose a subset of columns with the maximum
rank, such that the pairwise similarities between these columns are upper-bounded by a similarity
threshold ε that can be chosen empirically.

Algorithm 2 shows the pseudo code of the algorithm. The method getIndependentcol
returns m independent columns. This can be computed using echelon form. However, the set of
independent columns can be computed more efficiently using algorithm 3. The algorithm starts
with an arbitrary column, as the first independent column (line 2), then for each subsequent
column j check if it has component orthogonal to the previously chosen columns or not (lines 5
to 7); if it has it will be included in the set of independent columns (lines 8 to 10).

EBEK running time complexity isO(dnlogm+(d+n)m2+nmd+m3), whereO(dnlogm+
(d + n)m2) is the time to compute the stochastic SVD decomposition of A, O(nmd) for the
independent columns selection and O(m3) for computing the matrix P .

Algorithm 2: Linear Kernel Preserving Embedding
Data: Matrix A ∈ Rd×n and integer m
Result: W ∈ Rm×n, which represents the lower dimension embedding of the data

1 [Σ, V ]← stochasticSVD(A, m)
2 E ← getIndependentcol(A,m)
3 SE,E ← AT:,EA:,E

4 P ← diagMatrix(SE,E)
5 T ← PΣV T

6 [Q,R] = orthogonalize(A:,E)
7 W ← RT

4.1.2 Exemplar-based Kernel Preserving Embedding

The previous section illustrated the idea of how to choose the subset of columns in order to
preserve the linear kernel similarities. In this section, we generalize our approach to work with
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Algorithm 3: getIndependentcol: Independent Columns Selection
Data: Matrix A ∈ Rd×n, integer m
Result: E a set of indexes of m independent columns in matrix A

1 size← 1
2 E ← {1}
3 for i = 2 : min(m,n) do
4 ai ← A:,i

5 for j = 1 : size do
6 aj ← A:,E(j)

7 ai ← ai − <ai,aj>

<aj ,aj>
aj

8 if ||ai||1 6= 0 then
9 size← size + 1

10 E ← E ∪ i

any type of kernel matrix K.

Recall that in general K = φ(A)Tφ(A), where φ(A) is the representation of the matrix A in
the high-dimensional space which is defined by the kernel function. Let the SVD decomposition
of φ(A) be UΣV T , then the SVD decomposition of K equals V Σ2V T and hence the V and Σ
can be computed in the first step of the algorithm using the SVD decomposition of K.

The objective of the second step of algorithm 2 is retrieving m×m submatrix of K that has
the maximum rank. While this can be accomplished using the matrix A in the case of linear
kernel, it can not be done in the same way in the case of general kernels, as the matrix φ(A)
is not known. However, this objective is achieved by iteratively eliminating set of columns and
rows from K, such that the rank of K is maximized upon the elimination each time, which
maximizes the rank of φ(A), as rank(K) = rank(φ(A)). To show the process of eliminating
these columns and rows, we first introduce the following lemma.

Proposition 1. For any vector xi ∈ Rn linearly depends on xj ∈ Rn, sub(xi,M) linearly de-
pends on sub(xj,M), where sub(x,M) function returns a vector inR|M| containing elements
indexed by the setM of x.

Proof. As xi linearly depends on xj, then there exists scalars ai and aj not equal to zero, such
that: aixi + ajxj = 0 Applying the sub function to both sides of the previous equation and
noting that function sub attains the superposition principle, we get:

sub(aixi + ajxj,M) = sub(0,M)
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Algorithm 4: diagMatrix: Diagonalize the input matrix
Data: Matrix S ∈ Rm×m

Result: P
1 I ∈ Rm×m identity matrix
2 for i = 2 : m do
3 Di: = Si:/

√
|Si,i|

4 D:i = S:i/
√
|Si,i|

5 Ii: = Ii:/
√
|Si,i|

6 for j = i+ 1 : m do
7 mult = −Dj,i

Di,i

8 Dj: = mult×Di: +Dj:

9 D:j = mult×D:i +D:j

10 Ij: = mult× Ii: + Ij:

11 P = IT

sub(aixi,M) + sub(ajxj,M) = sub(0,M)

aisub(xi,M) + ajsub(xj,M) = sub(0,M)

Therefore, the vector sub(xi,M) linearly depends on the vector sub(xj,M).

The process starts by selecting an arbitrary column K:,i as the first independent column, then
all columns K:,j,∀j ∈ C are eliminated, where C is the set containing all columns that linearly
depend on K:,i. Removing such columns does not reduce the rank of the remaining submatrix.
To maintain the symmetry of the remaining matrix all the rows Kj,:,∀j ∈ C should be eliminated
too. As Kl,: = K:,l,∀i ∈ {1, 2, . . . n} (by the symmetry of K), then the rows Kj,:,∀j ∈ C are
linearly depending on the row Ki,:. By proposition 1, the rows sub(Kj,:, n − 1),∀j ∈ C are
linearly depending on the row sub(Ki,:, n − 1) too. Thus, the rank of the remaining submatrix
after the elimination of these rows is not affected. Note that, the columns sub(K:,j, n− 1),∀j ∈
C, that were removed, are linearly depending on the column sub(K:,i, n−1) by the same lemma.
The columns in the remaining submatrix do not depend on the column K:,i, which means we
can choose one of them to be the second independent column, and then repeat the process of
eliminating the columns depending on it and their corresponding rows. The process terminates
when either we achieve the size of the desired submatrix or we end up with submatrix of smaller
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size, which means that the original matrix has a rank less than m; in this case we can pad the
remaining submatrix with dependent columns and its corresponding rows.

Algorithm 5: Kernel Preserving Embedding
Data: Matrix K ∈ Rn×n and integer m
Result: T ∈ Rm×n, which represents the lower dimension embedding of the data

1 [Σ2, V ]← stochasticSVD(K, m)
2 E ← getIndependentcolKernel(K,m)
3 P ← diagMatrix(KE,E)
4 T ← PΣV T

Algorithm 6: Independent Columns Selection for Kernel Preserving Embedding
Data: Matrix K ∈ Rn×n, integer m
Result: E a set of indexes of m independent columns in matrix K

1 E ← {} // Set of independent columns
2 N ← set of all columns
3 for i = 1 : min(m,n) do
4 i← select column of K that is in N and not in E
5 E ← E ∪ ki
6 for j = 1 : n do
7 if column j /∈ N or j == i then
8 continue

9 KN ,j ← KN ,j − <KN ,i,KN ,j>

<KN ,i,KN ,i>
KN ,i

10 if ||KN ,j||1 = 0 then
11 N ← N \ j

4.2 Experimental Results

The effectiveness of the proposed approach is evaluated on two tasks, approximate nearest neigh-
bor search and clustering. Section 4.2.1 shows the setup and results for the ANN search task,
and section 4.2.2 shows the experiments setup and results for the clustering task. In the rest of
this section EBEK using linear kernel is referred to as EBEK; if other kernels are used, it will
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be stated explicitly. Then, Section 4.2.3 presents interpretability experiments to show that the
exemplars chosen by EBEK are interpretable.

4.2.1 Approximate Nearest Neighbor Search

This subsection discusses the experimental setup and results for the task of ANNs search. To
evaluate the effectiveness of our approach, the pairwise similarities between the lower dimen-
sion data is computed and the nearest neighbors are retrieved based on the lower dimension
embedding.

To build the ground truth, the set T of nearest neighbors is retrieved by computing the dis-
tance to all queries and then applying the linear scan. The search quality for each approach is
measured using Recall@R and Precision@R as in [59], where for each query the set ofR near-
est neighbors is retrieved and the recall is computed as the fraction of the samples in both set T
andR and the size of the set T , Recall@R = |R∩T |

|T | and Precision@R = |R∩T |
|R| .

We have used four datasets, COIL20 which contains 1440 samples in 1024 dimensional
space, ISOLET which contains 1560 samples in 617 dimensions, TDT2 which contains 9394
sample in 19677 dimensional space and a subset of 20 Newsgroups (20NG in short) contain-
ing 9990 samples in 29360 dimensional space [10]. The performance with |T | = 10, and 50
is reported and each experiment is repeated 10 times each time using the same 100 query and
the average and 95% confidence interval are provided. The observed behavior remains valid for
other |T |. Additionally, the number of the basis in the lower dimensional space m is set to 10 by
default, unless otherwise stated. Note that the results in this subsection are not affected by the
value of ε as discussed in section 4.1.1. Figure 4.1 shows the results of the different techniques
in COIL20 and ISOLET datasets and as shown in the figure, EBEK was able to achieve the best
Precision@R and Recall@R. After that, ITQ and PCA-RR were the second best in Precision@R
and Recall@R. Moreover, table 4.1 shows the running time of the techniques in COIL20 and
ISOLET datasets. The results show that LSH and SKLSH were the fastest approaches, while
EBEK was the third fastest approach with a gap of at most 0.04 seconds to LSH.

Figures 4.2 and 4.3 show the effect of changing the |T | on the Recall@R and Precision@R
for both TDT2 and 20NG datasets. Note that, MDS and LLE were omitted from TDT2 and 20NG
datasets as they were taking more than 20 minutes to run. Table 4.2 shows the running time of
obtaining the low dimension embedding and the bit-encoding (depending on the approach) in
TDT2 and 20NG datasets. It is obvious that EBEK consistently achieves the highest precision
and recall while achieving the lowest running time.
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Figure 4.1: Precision@R and Recall@R for COIL20 and ISOLET Datasets

Table 4.1: Approximate Nearest Neighbors Running Time (in Seconds) Comparison for COIL20
and ISOLET Datasets

COIL20 ISOLET
EBEK 0.07± 0.00 0.03± 0.01
ITQ 0.08± 0.00 0.05± 0.00
LSH 0.03± 0.00 0.02± 0.00
PCA-RR 0.07± 0.00 0.04± 0.00
SKLSH 0.03± 0.00 0.02± 0.00
MDS 129.39±

0.20
146.44±

1.23
LLE 0.43± 0.01 1.06± 0.05

4.2.2 Clustering

To evaluate the effectiveness of the proposed algorithm, the data is projected to a lower dimension
space using different approaches, then the projected data is clustered using K-means. K-means
algorithm is used as it is very popular and has been used in previous work as in [11][21]. After
the clustering is performed, the cluster labels are compared to ground-truth labels and the Nor-
malized Mutual Information (NMI) between clustering labels and the class labels, F-measure
and running time of the dimensionality reduction and clustering are reported. Experiments that
depend on random variable are repeated 10 times then the average and 95% confidence interval
are reported. The linear kernel is evaluated on four datasets, which have been used by [11][21]
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Figure 4.2: Recall@R for TDT2 and 20NG Datasets
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Figure 4.3: Precision@R for TDT2 and 20NG Datasets

for the feature selection task; table 4.3 shows the details of the datasets.1 In this subsection
we compare our approach against five other approaches: 1) PCA, which achieves the minimum
reconstruction error. 2) NMF using multiplicative update algorithm [34]. We used the Matlab
implementation with the default settings for PCA and NMF. 3) MDS; we used the Matlab im-
plementation. 4) LLE, and 5) ISOMAP; for both we used the implementation provided by the
authors.2,3

1The datasets are available at
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://archive.ics.uci.edu/ml/datasets/ISOLET
https://www.otexts.org/1577

2https://www.cs.nyu.edu/ roweis/lle/code.html
3http://isomap.stanford.edu/IsomapR1.tar
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Table 4.2: Approximate Nearest Neighbors Running Time Comparison.

TDT2
|T | = 10

TDT2
|T | = 50

20NG
|T | = 10

20NG
|T | =
50

EBEK 5.17± 0.07 5.17± 0.08 6.21± 0.07 6.35± 0.1

ITQ 32.77± 0.96 32.19± 1.66 260.40± 40.80 335.27± 74.82

LSH 14.47± 0.11 14.27± 0.18 268.09± 91.93 276.29± 80.68

PCA-RR 31.87± 1.12 31.70± 1.25 300.09± 58.29 451.66± 91.01

SKLSH 14.58± 0.27 14.16± 0.17 868.07± 130.50 716.33± 198.58

Table 4.3: The properties of datasets used for evaluation

Dataset # Instances # Features # Classes
ORL 400 1024 40
COIL20 1440 1024 20
ISOLET 1560 617 26
USPS 9298 256 10

As each dataset contains the same number of samples in each class, except for USPS dataset,
in LLE and ISOMAP we set the number of neighbors to the total number of samples divided
by the number of classes. The intuition behind this choice in LLE is to keep the samples in the
same class close to each other, while increasing the distance between the samples in different
classes. For ISOMAP the intuition is to approximate the neighborhood of each point by the
samples in the same class. For USPS dataset we set the number of neighbors to the floor of the
number of total samples divided by the number of classes. It is worth noting that for LLE and
ISOMAP we experimented smaller values for the number of neighbors than the aforementioned
one. However, the quality of clusters degrades with insignificant reduction in running time. In
addition, ISOMAP does not scale on the USPS dataset even when the number of neighbors is set
to 2; it takes more than half an hour to project the data on 50 dimensions.

Figure 4.4 shows the clustering results. The NMI and F-Measure for EBEK is very close
to those of PCA. Although PCA achieves running time less than EBEK, the later projects the
data on basis that can be related to real samples rather than latent basis as in the former. Also,
it can be seen that the porposed approach achieves NMI and F-Measure higher than LLE by a
difference up to 30% and 38% respectively; we can also note that our approach scales well with
the increase in the number of samples while LLE does not. While NMF achieves a good running
time, the quality of the clusters declines with increasing the number of samples as in USPS
dataset. ISOMAP achieves a higher NMI and F-Measure in some datasets by a difference up to
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3.6% and 3% respectively, however, this increase comes with 40 times increase in the running
time. Additionally, ISOMAP does not scale with the increase in the number of samples and it
does not run on the USPS dataset. Moreover, our approach achieves a speedup over ISOMAP
up to 2.8X. Our approach achieves a higher NMI and F-Measure than MDS by a difference up
to 2% in both measures with significant difference in the running time. Note that MDS takes
around 180 seconds in ORL, around 2900 seconds in ISOLET, around 2300 seconds in COIL20
and around 3700 seconds in USPS. However, the limit of the y-axis on these figures is small to
show the difference between the running time of the rest of the algorithms.

In addition, RBF kernel is evaluated using the same kernel parameters reported in [12] on
two datasets ORL and COIL20; table 4.4 shows the results using 50 and 100 dimensions. The
RBF kernel does not improve the results, which is consisted with the work done in [28], that
suggests using linear kernel for large number of features.

4.2.3 Interpretability Experiments

To show that the basis detected by EBEK are more understandable than the basis detected by the
other approaches, two datasets are selected which are COIL20 and ORL datasets and the basis se-
lected by EBEK and PCA-RR are drawn in figure 4.5. Note that the basis of PCA were similar to
the basis detected by PCA-RR and PCA-RR has much better quality in the approximate nearest
neighbor task, thus we only show PCA-RR basis. The value of ε was chosen empirically to yield
the best visualization results and was set to 0.65 and 0.94 in COIL20 and ORL datasets respec-
tively. As shown in the figure 4.5, in COIL20 dataset, EBEK basis were more interpretable than
PCA basis, as it shows that COIL20 contains different objects in different orientations. While
PCA produced understandable basis in the ORL dataset, still EBEK basis are more understand-
able. PCA basis point out that there is a change in the mouth area in the dataset images and as a
viewer you do not know what are these changes. However, EBEK shows you these changes with
men with breads and people with different mouth emotions. Additionally, EBEK basis capture
characteristics that PCA can not capture, for example that the dataset contains different gender,
different age and different color people.

To further show the interpretability of EBEK, we apply EBEK in the task of word embedding.
Word embedding [40] is a vector-space word representation that captures both syntactic and
semantic regularities between words in languages. Word embedding has showed interesting
results in capturing word analogy between words [44] which not only measures the degree of
similarity between the vector representation of pair of words, but in addition it captures other
dimension of difference. An example in [44] is used to illustrate this as follows. The analogy
”king→ queen as man→ woman” is encoded in the vector space by the vector equation king−
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Table 4.4: Different Kernel Types Comparison.

Dataset Measure Linear RBF

ORL (m=50)

Fmeasure 0.56± 0.01 0.58± 0.01

NMI 0.75± 0.01 0.75± 0.006

Time 0.05± 0.003 0.29± 0.05

ORL (m=200)

Fmeasure 0.53± 0.01 0.51± 0.012

NMI 0.72± 0.01 0.69± 0.01

Time 0.41± 0.027 1.02± 0.02

COIL20 (m=50)

Fmeasure 0.65± 0.01 0.59± 0.02

NMI 0.75± 0.008 0.69± 0.01

Time 0.13± 0.005 1.72± 0.02

COIL20 (m=200)

Fmeasure 0.65± 0.01 0.59± 0.02

NMI 0.75± 0.009 0.68± 0.01

Time 1.04± 0.028 7.05± 0.02

queen = man − woman. This enables word embedding to overcome the deficiencies in Latent
Semantic Analysis (LSA) [33], that LSA performs poorly on the word embedding task. Although
word embedding has many advantages over other techniques. It still embeds the data in a latent
space with basis that can not easily be interpreted. In this experiment we use EBEK as a post-
processing step for the vector representation obtained by word embedding techniques to embed
these vectors in a space of explicit words. Keeping in mind that EBEK preserves the relations
between the data instance, which enables it to preserve the advantages of the word embedding
while using explicit features at the same time.

Two word embedding techniques Glove tool [44] and word2vec [25] to first construct the
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embedding of words in 50 latent space and then EBEK is used on this output to embed the data
into 10 exemplars (i.e, words). Figure 4.6 shows the resulting embedding of samples words using
EBEK, the vertical axis represents the basis and the horizontal one represents samples. Words
are chosen to be in two groups: location and animal. As shown in the figure EBEK was able
to preserve the similarities between the location words and the animal words, for example in
Figures 4.6a and 4.6b you can see that the vectors of cat and dog are not only similar to each
other but different than the vectors of Seattle and Bosont .
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4.3 Summary

In this chapter the method EBEK, Exemplar-based Kernel Preserving embedding, is proposed.
EBEK is shown theoretically to achieve the lowest reconstruction error of the kernel matrix with
linear running time complexity. The effectiveness of the approach is shown on the approximate
nearest neighbor and clustering tasks, where EBEK performs better than the related work by
up to 60% in the recall while maintaining a good running time in the former case. and by up
tp 40% in the latter case. The next chapter concludes the work and gives some future research
directions.
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(a) F-Measure of ORL datasets
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(c) Runtime of ORL datasets
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(d) F-Measure of COIL20 datasets
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(f) Runtime of COIL20 datasets
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(g) F-Measure of ISOLET datasets

 0

 0.2

 0.4

 0.6

 0.8

 1

50 100 150 200

N
M

I

Number of Dimensions

EBEK
PCA

ISOMAP

LLE
NMF
MDS

(h) NMI of ISOLET datasets
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(i) Runtime of ISOLET datasets
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(j) F-Measure of USPS datasets
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Figure 4.4: Clustering results on different datasets
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(a) EBEK Basis in COIL20 Dataset (b) PCA Basis in COIL20 Dataset

(c) EBEK Basis in ORL Dataset (d) PCA Basis in ORL Dataset

Figure 4.5: EBEK and PCA Basis in COIL20 and ORL Datasets
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(a) Embedding of Glove vectors (b) Embedding of word2vec vectors

Figure 4.6: EBEK results on word embedding
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

This dissertation focuses on presenting techniques for selecting the representatives samples from
large datasets. It starts by showing the importance of using exemplars to represent data. Then,
an Exemplar-based approach for detecting frequent and emerging topics in Twitter streams. The
approach selects exemplar tweets as representatives for the detected topics based on the variance
of the similarity between exemplars and other tweets. Our Exemplar-based approach for topic
detection achieved the best term precision as it selects real tweets as topic representatives and
therefore reduces the noisy terms in the topics representatives. Moreover, the proposed emerging
extension achieved a better topic recall, term precision and running time compared to recently
proposed approaches for emerging topic detection.

In addition, an Exemplar-based Kernel Preserving (EBEK) embedding is proposed and shown
theoretically to achieve the lowest reconstruction error of the kernel matrix. Stochastic SVD is
employed to achieve an efficient implementation of EBEK, which runs in linear time in terms of
number of samples. Evaluation shows that EBEK exceeds the related work in the retrieved ANNs
quality, while maintaining a good running time. Moreover, in clustering EBEK outperforms the
related work in running time, while achieving a good clustering quality. Our future work in-
cludes exploiting distributed systems, like Spark to scale out the proposed approach, along with
a detailed complexity analysis of the distributed approach.
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5.2 Future Work

This subsection gives some directions to extend this work.

5.2.1 Developing a sampling method for Nyström

Developing sampling techniques for Nyström approximation is a challenging problem [32, 52,
17]. One way to extend this work is to extend it to sample data for Nyström approximation. Given
a data matrix X ∈ Rd∈n, each sample has d components in different directions, if we were to use
one sample X:i to reconstruct the whole data, the error will be the sum of the components of the
other samples in the directions that sample X:i does not span. So, based on this we can assign
an error to each sample and choose the set of samples that has the minimum error. However, this
approach has two drawback:

• The need to build a kernel matrix, which will be inefficient or infeasible for large data,
which is not feasible in case of large data [43].

• We need to update the error function for each sample upon choosing a new representative
which is very costly.

To mitigate the aforementioned problems, we can use a two-step algorithm for choosing
representatives. The first step clusters the samples and uses a representative for each cluster to
build a smaller similarity matrix of representatives instead of the whole matrix. This is based on
the following assumption: the samples that are in different clusters are less similar to each than
those in the same cluster, so we can approximate the similarities between samples from different
clusters as zero. The second step assigns a weight to each cluster representative as described
above. Then subset of these representatives will be chosen.

The challenges are:

• How to cluster the data such that the sizes of clusters are close to each other (i.e, bal-
anced clusters [3]) and at the same time each cluster is coherent so that we can assume the
similarity between samples from different clusters are zero.

• In one extreme, the number of clusters will equal the number of samples which mean we
will build a complete accurate Kernel matrix, which is infeasible for large data. On the
other extreme we will build m kernel matrix to approximate the original kernel, where m
is the number of chosen samples. The question is how to relate the number of clusters to
the error?
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5.2.2 Increase the sparsity of the EBEK embedding

Chapter 4 presenting an embedding technique that eases the interpretation of the data by embed-
ding the data into a space spanned by explicit features. One way to improve the interpretability
of the embedded vector is increasing the sparsity in the embedded vectors [22]. The sparsity can
be enforced using two ways:

• Consider any value in the embedded vectors below a fixed threshold to be zero. However,
using this method the resulting error can not be quantified.

• Incorporate a regularization term in equation 4.1 in section 4.1.1 that increases the more
the embedding is sparse. This can be achieved usign LASSO regularization [54, 55]

5.2.3 Scaling out the implementation of EBEK

Processing large volume of data on a single machine may be infeasible on one machine due to
memory and computational demands, which makes the use of distributed system a need. Many
frameworks have been developed to eliminate the challenges of distributed systems implementa-
tion like MapReduce [14], Spark [56], Giraph, which is an open source implmentation of Pregel
[38] and GraphLab [36]. One extention is to implement EBEK on one of these distributed sys-
tems.
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