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Abstract

This dissertation is a collection of works on different aspects of the following subjects:
causal set–continuum correspondence, wave propagation on causal sets, nonlocal quantum
field theory, potential connection between dark matter and quantum gravity and causal
structure of black holes in Lorentz violating gravitational theories.

We present two results which concern certain aspects of the question: when is a causal
set well approximated by a Lorentzian manifold? The first result is a theorem which shows
that the number-volume correspondence, if required to hold even for arbitrarily small re-
gions, is best realized via Poisson sprinkling. The second result concerns a family of lattices
in 1+1 dimensional Minkowski space, known as Lorentzian lattices, which we show provide
a much better number-volume correspondence than Poisson sprinkling for large volumes.
We argue, however, that this feature should not persist in higher dimensions and conclude
by conjecturing a form of the aforementioned theorem that holds under weaker assump-
tions, namely that Poisson sprinkling provides the best number-volume correspondence in
3+1 dimensions for spacetime regions with macroscopically large volumes.

We then study wave propagation on a background causal set. We introduce a family of
generalized d’Alembertian operators in D-dimensional MinkowskiMD spacetimes which are
manifestly Lorentz-invariant, retarded, and non-local. The prototypes of these operators
arose in earlier work as averages of matrix operators meant to describe the propagation of
a scalar field in a causal set. We generalize the original definitions to produce an infinite
family of ”Generalized Causet Box (GCB) operators” parametrized by certain coefficients
{a, bn}, and we derive the conditions on the latter needed for the usual d’Alembertian, �, to
be recovered in the infrared limit. The continuum average of a GCB operator is an integral
operator inMD, and it is these continuum operators that we mainly study. To that end, we
compute their action on plane waves, or equivalently their Fourier transforms g(p) [p being
the momentum-vector]. For timelike p, g(p) has an imaginary part whose sign depends
on whether p is past or future-directed. For small p, g(p) is necessarily proportional to
p · p, but for large p it becomes constant, raising the possibility of a genuinely Lorentzian
perturbative regulator for quantum field theory in MD. We also address the question of
whether or not the evolution defined by the GCB operators is stable, finding evidence that
the original 4D causal set d’Alembertian is unstable, while its 2D counterpart is stable.

Following our earlier work on wave propagation on a causal set, we study the quantum
theory of a massless scalar field whose evolution is given not by the the d’Alembertian,
but by an operator �̃ which is Lorentz invariant, reduces to � at low energies, and defines
an explicitly retarded evolution: �̃φ(x) only depends on φ(y), with y is in the causal past
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of x. This modification results in the existence of a continuum of massive particles, in
addition to the usual massless ones, in the free theory. When interactions are introduced,
these massive or off-shell quanta can be produced by the scattering of massless particles,
but once produced, they no longer interact, which makes them a natural candidate for
dark matter which we dub off-shell dark matter (OfDM). Finally, we generalize this idea
to massive scalar fields too.

We then consider phenomenological predictions of OfDM model in the context of cos-
mology. OfDM particles rate of production is suppressed by the scale of nonlocality (e.g.
Planck length). As a result, we show that OfDM is only produced in the first moments
of big bang, and then effectively decouples (except through its gravitational interactions).
We examine the observational predictions of this model: In the context of cosmic inflation,
we show that this proposal relates the reheating temperature to the inflaton mass, which
narrows down the uncertainty in the number of e-foldings of specific inflationary scenar-
ios. We also demonstrate that OfDM is indeed cold, and discuss potentially observable
signatures on small scale matter power spectrum.

Finally, we explore the validity of Cosmic Censorship conjecture in Lorentz violating
theories of gravity. Is Cosmic Censorship special to General Relativity, or can it survive
a violation of local Lorentz invariance? Studies have shown that singularities in Lorentz
violating Einstein-Aether (or Hořava-Lifshitz) theories can lie behind a universal horizon
in simple black hole spacetimes. Even infinitely fast signals cannot escape these universal
horizons. We review this result and extend it, for an incompressible aether, to 3+1D
dynamical or spinning spacetimes which possess inner Killing horizons, and show that a
universal horizon always forms in between the outer and (would-be) inner horizons. This
finding suggests a notion of Cosmic Censorship, given that geometry in these theories
never evolves beyond the universal horizon (avoiding potentially singular inner Killing
horizons). A surprising result is that there are 3 distinct possible stationary universal
horizons for a spinning black hole, only one of which matches the dynamical spherical
solution. This motivates dynamical studies of collapse in Einstein-Aether theories beyond
spherical symmetry, which may reveal instabilities around the spherical solution.
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Chapter 1

Introduction

The past five years have been very fruitful for fundamental physics. Due to the measure-
ment of Cosmic Microwave Background (CMB) anisotropies by Planck satellite, we now
have a better understanding of the initial state and cosmological history of our universe
[1, 2, 3]. The Planck data was a great improvement over the previous measurement of
CMB done by Wilkinson Microwave Anisotropy Probe [4]. It is quite remarkable that with
this measurement we can partially understand the state of our cosmos at a fraction of a
second after the big bang and at the energy scales of just a few orders below the quantum
gravity regime.

On the particle physics side, the Higgs boson, the last unverified ingredient of the
Standard Model of particle physics, was detected at Large Hadron Collider (LHC) with
mH = 126.0 ± 0.4(stat) ± 0.4(sys) GeV. This observation confirmed the 50 years old
prediction of Higgs boson [5], the first ever scalar field detected in nature. It is interesting
that the observed mass of the Higgs boson is in the range that makes the Standard Model
vacuum meta-stable which opens up theoretical speculations for the origin of this near-
criticality [6].

Recently, gravitational waves were detected for the first time by LIGO [7] which their
existence was theorized 100 years ago by Albert Einstein [8]. With this detection, a new
era of astrophysical observations is opened that could immensely impact our progress in
fundamental physics.

These exciting discoveries are all compatible with the well-established theories of cos-
mology, particle physics and gravity. However, it is quite unfortunate that they provide
us with no clue on how to proceed with resolving some longstanding problems/puzzles in
fundamental physics: dark matter, dark energy and quantizing gravity. The Planck data is
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well fitted by the so called ΛCDM cosmological model, and no deviation from a late time
cosmological constant is detected. While the data rules out many inflationary models, it
is still consistent with many others. Moreover, no tensor mode was detected which could
have greatly narrowed down the viable theories of inflationary epoch.

While the Standard Model of particle physics was confirmed at LHC, no sign of any
extension to the Standard Model, any supersymmetric particle or dark matter candidate
is detected so far. A deviation would have meant additional particles in nature that could
have pointed out new structures or symmetries in particle physics, but unfortunately the
data is well-described by the Standard Model of particle physics.

The area of gravitational wave observation is also still too young to discover any devia-
tion from General Relativity (GR). Hopefully, with increasing number of gravitational wave
detections in future we can put stringent constraints on deviations from GR or possibly
detect one.

With the current status of our observations, how can we make progress and find solu-
tions to the unresolved problems in fundamental physics? I believe there are two strategies
to move forward. One is to follow up on the well-known fundamental physical theories, like
local Quantum Field Theory (LQFT) and GR, and build new models within this context.
Another approach is to work on alternative theories with different fundamental assump-
tion(s) and look for new phenomenology, hoping it could result in a viable solution to these
problems. This thesis is a collection of my efforts following the latter approach.

1.1 Locality and Lorentz Invariance

Quantum field theory and General Relativity, the two main pillars of modern physics,
are established on two fundamental assumptions: Lorentz invariance and locality. From
observational point of view, Lorentz invariance has been tested in many experiments and to
a very high accuracy [9, 10] while the situation with locality is different. There is no direct
experiment testing locality; it is verified indirectly by the confirmation of local theories.

In this thesis, we explore the consequences of abandoning each one of these assumptions.
In summary, this thesis is an attempt to answer the following questions: Why locality? And
why Lorentz invariance? From the phenomenological point of view, it is worth mentioning
that in many approaches to quantum gravity one of these assumptions is relaxed and it
would be necessary to study the phenomenological consequences of this modification at
low energies to confirm/constrain each theory.

2



1.1.1 Lorentzian Nonlocality and Causal Set

Nonlocality can arise in many different contexts. One could think that it is impossible
to probe scales smaller than the Planck length, since it requires Planckian energies which
would end up making (Planckian) black holes. This in effect implies the existence of a
Planck size nonlocality coming from gravitational effects. However, nonlocality does not
have to be restricted to the Planckian regime. Almost any effective field theory shows
a degree of nonlocality which could be much larger than the Planck length (e.g. [11]).
Moreover, nonlocality could be not just an effective phenomena, but a direct consequence
of the fundamental structure of spacetime, as it appears in Causal Set approach [12] to
quantum gravity which I explain in what follows.

However, if Lorentz symmetry remains to be a fundamental symmetry of nature (as
current experiments suggest), the nature of non-locality should be Lorentzian, i.e. non-
locality in spacetime. As an example, let us consider Causal Set theory that postulates
the fundamental structure of spacetime is discrete and Lorentzian. This implies physics
cannot remain local beyond some scale (at least the discreteness scale).

But how could a discrete structure be Lorentzian? Obviously, this cannot be done if
we require invariance under the full Lorentz group exactly. So, the best we can do is to
introduce an approximate notion of Lorentz symmetry, for example invariance under a
discrete subgroup of Lorentz transformations. Due to the stochastic nature of causal sets,
the approximate Lorentz symmetry is defined statistically in the Causal Set approach.
Then the following question arises which is central to the Causal Set program: which
discrete structure keeps Lorentz invariance at best? Chapter 2 addresses different aspects
of this question.

The Lorentzian nonlocality manifests itself concretely when one seeks to describe the
wave propagation of a scalar field on a causal set by defining a discrete counterpart of the
d’Alembertian operator. An infinite family of these operators, controlled by a nonlocality
scale parameter, is defined in Chapter 3. Moreover, their continuum limit defines nonlocal
(Lorentzian) evolution for scalar fields on a continuum spacetime.

Having a nonlocal Lorentzian evolution for scalar fields, a natural question then arises:
what are the physical consequences of modifying local evolution of fields to a nonlocal
one described by the above-mentioned operators? Chapter 4 concerns quantization of the
nonlocal field theory and shows how this modification results in the appearance of a new
set of excitations of the field. Once interaction is introduced, the cross-section of any
scattering process which contains one or more of the new excitations in the “in” state is
zero; a behaviour that makes the new modes a natural candidate for dark matter. Chapter
5 discusses phenomenological predictions of this new dark matter candidate.
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As we discussed above, abandoning the assumption of locality which is inspired by
quantum gravity approaches like Causal Set could result in interesting phenomenology
and potentially a solution to the dark matter problem.

1.1.2 Lorentz Violation

While Lorentz symmetry is well tested in the matter sector, its tests in the gravitational
sector are much weaker and many Lorentz violating theories of gravity are still consistent
with observations. From theoretical point of view, main reason for studying alternative
gravitational theories stems from quantizing gravity. GR, while being a very successful
classical theory, has failed to cope with quantum mechanics. Therefore, one approach to
quantum gravity has been to abandon diffeomorphism invariance in order to make the
gravitational theory renormalizable (e.g. [13]).

Theories with broken Lorentz invariance exhibit a different causal structure compare
to GR. Since the notion of black holes are tightly connected to the causal structure of
each theory, black holes are primary objects to look for deviations from GR. In fact, in
many examples of theories with broken Lorentz invariance, superluminal degrees of freedom
appear (see [14, 15]) which potentially can escape the traditional Killing horizon of a black
hole. A natural question then arises which is addressed in Chapters 6 and 7: can black
holes (objects with a singularity protected by an event horizon) exist in these theories?

In the next Section, we will provide an overview of each chapter and how they are
connected in a bigger scheme. The material in each chapter is also presented as self-
contained as possible.

1.2 Outline

Here, we present a summary of each chapter of the thesis, its motivations and results.
We first start this thesis by the following question in Chapter 2: when is a causal set
well-approximated by a Lorentzian manifold?

From the viewpoint of Causal Set theory1, the continuum spacetime of general relativity
is only fundamental to the extent that it provides a good approximation to an underlying
causal set. Therefore, criteria must be established to determine how well a Lorentzian
geometry (M, g) approximates a causal set (C,≺). One natural criterion is to require the

1For a brief review on Causal Set theory see Chapters 2.2 and 2.3 of [16].
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existence of an injective map f : C → M which preserves causal relations: ∀ x, y ∈ C,
x ≺ y if and only if f(x) ∈ J−(f(y)), where J−(f(y)) is the set of all points in M which
lie in the causal past of f(y).

As far as the causal set-continuum correspondence is concerned, preserving causal re-
lations is not enough, because causal relations are left invariant under conformal transfor-
mations. To break this degeneracy, information about scale is needed. Causal sets contain
information about scale implicitly through counting of elements, since they are locally fi-
nite (i.e. discrete). In fact, discreteness allows one to count elements, which is thought to
provide information about scale: a spacetime region with volume V should contain about
ρV causal set elements, where ρ is a constant, thought to be set by the Planck scale, which
represents the number density of points.

Then, one has to require a number–volume (N-V) correspondence: the number NS of
embedded points in a spacetime region S ⊂M should “reflect” its volume VS:

NS ≈ ρVS = ρ

∫
S

√
−g(x)dDx. (1.1)

Having the N -V formulation at hand, the key question becomes: what is the map that
realizes the number–volume correspondence with the least noise?

The attitude in the causal set program is that this mapping is best done through
Poisson sprinkling. In this approach, one first reverses direction by obtaining a causal set
C(M) from a given spacetime (M, g): randomly select points from M using the Poisson
process at density ρ and endow the selected points with their causal relations.

But does Poisson sprinkling provide the best number-volume correspondence? We
show two results in Chapter 2 in regard to this question. The first result is that the
number–volume correspondence is best realized via Poisson sprinkling if required for any
(even arbitrarily small) volume. Quite surprisingly, we also show that 1 + 1-dimensional
Lorentzian lattices provide a much better number–volume correspondence than Poisson
sprinkling for large volumes. We present evidence, however, that this feature should not
persist in 3 + 1 dimensions and conjecture that the Poisson process should indeed provide
the best number–volume correspondence for macroscopically large spacetime regions.

Having studied the causal set–continuum correspondence, we turn into dynamics of
scalar fields on a background causal set in Chapter 3. If the fundamental structure of
spacetime really is of the form of causal sets, physics cannot be expected to remain local
at all scales. To appreciate why this should be, consider a covariant notion of closeness
or locality in a causal set. The only available measure of closeness between two elements
is some approximate notion of their Lorentzian distance. A small Lorentzian distance,
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however, does not mean that the two elements are in a small neighbourhood of each other:
any point may have many “close” neighbours near its past and future light cones. It is in
this sense that the continuum notion of locality, as induced by the topology of spacetime
as a manifold, is lost.

Dynamics of matter fields which propagate on the causal set would certainly be sensitive
to this loss of locality. This feature manifests itself concretely when one seeks to describe
the wave propagation of a scalar field on a causal set by defining a discrete counterpart of
the d’Alembertian operator, �.

We shall denote a discrete causal set d’Alembertian in D dimensions by B
(D)
ρ , where

ρ is a scale that controls the extent of the non-locality. For causal sets which are well-
approximated by D-dimensional Minkowski space MD, averaging B

(D)
ρ over all such causal

sets leads to a manifestly non-local, retarded and Lorentzian continuum operator �(D)
ρ de-

fined in MD. This operator is designed in a way that it reproduces the usual d’Alembertian
in the limit of zero non-locality scale: �(D)

ρ φ→ �φ as ρ→∞.

We compute the spectrum of eigenvalues of this operator and show that for timelike
momenta it contains also an imaginary part (unlike d’Alembertian operator), which changes
sign under interchange of past with future. This property has a significant consequence
when we discuss the quantization of the nonlocal field theories in Chapter 4. The UV
behaviour of the spectrum also differs from that of � in a way which suggests a genuinely
Lorentzian, perturbative regulator for quantum field theory.

At the next step in Chapter 4, we proceed to quantize this nonlocal field theory. Let’s
consider modifying the evolution of a massless scalar field φ coupled to a source J(x) via

�→ �̃ρ2:

�φ(x) = J(x)→ �̃ρφ(x) = J(x). (1.2)

The first obstacle to quantizing this theory comes from the fact that Equation (1.2)

cannot be derived from an action. One might propose to substitute � with �̃ρ in the
action of a massless scalar field:

S[φ] =

∫
d4x

(
1

2
φ(x)�̃ρφ(x)− J(x)φ(x)

)
. (1.3)

However, variation of S[φ] with respect to φ gives

1

2
(�̃ρ + �̃Tρ )φ(x) = J(x), (1.4)

2�̃ρ is a generic retarded and nonlolcal operator which reduces to � at low energies, i.e. ρ→∞. �(D)
ρ

is an example in this class of operators that arises from the evolution on an underlying causal set.
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where �̃Tρ is defined in Fourier space via complex conjugation of the spectrum of �̃ρ.

Since eigenvalues of �̃ρ are generally complex, Equation (1.4) is different from the desired
Equation (1.2), which further means that we cannot use (1.3) in Feynman path integral
to quantize this theory. The quantization scheme which we believe is the most suited in
this case is the Schwinger-Keldysh (or double path integral) formalism, since it naturally
incorporates a retarded operator.

Upon quantizing the free massless scalar field φ(x), we find off-shell modes in the mode

expansion of the quantized field operator φ̂(x). These are modes which do not satisfy any
dispersion relation, unlike in usual local quantum field theory where every Fourier mode in
the field expansion with four-momentum p is an on-shell quanta, i.e. it satisfies p · p = 0.
We show that the off-shell modes can exist in “in” and “out” states of scatterings 3 and
the cross-section of any scattering process which contains one or more off-shell particle(s)
in the “in” state is zero. That is to say, on-shell quanta can scatter and produce off-shell
particles, but once produced, off-shell particles no longer interact. This behaviour makes
these off-shell particles a natural candidate for dark matter. The phenomenological story,
which we discuss in Chapter 5, would be that dark matter particles were produced in the
early universe as off-shell modes of quantum fields which we shall refer to as off-shell dark
matter (OfDM). This feature of the theory can be traced back to the fact that �̃ρ defines
an explicitly retarded evolution. We demonstrate that the root of this behaviour comes
from the fact that off-shell modes are a continuum set of excitations and they have an
(infinitely) larger phase space compared to on-shells.

Chapter 5 concerns the phenomenological predictions of OfDM model in the context
of cosmology. In this chapter, we address different aspects of the following questions:
can OfDM model explain the observed energy density of cosmological dark matter for a
reasonable value of parameters (e.g. nonlocality scale)? Does OfDM behave as a cold dark
matter (CDM)? What are the observational signatures that could distinguish OfDM from
other dark matter candidates, for example WIMPs?

It is quite interesting that all the observational evidences for CDM is through its grav-
itational interactions. This property has a natural explanation in our model. As we men-
tioned earlier, OfDM particles cannot be detected through scattering experiments. This
means that if the majority of the observed cosmological dark matter is made of OfDM
particles, we would not be able to detect the dark matter particles directly. However, they
can be produced in scattering experiments and this is one way to indirectly confirm their
existence by detecting missing energy in scatterings.

3These modes are different from virtual particles which exist as intermediate states in Feynman dia-
grams.
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We discuss predictions of OfDM model in the context of cosmology and show that it is
intertwined with the physics of inflation and reheating. In a very simple reheating scenario,
this model effectively fixes the reheating temperature of the universe. By constraining the
reheating temperature, we can narrow the predictions of spectral index and tensor-to-scalar
ratio for a given inflationary potential, by fixing the number of e-foldings. Furthermore,
since OfDM particles are not interacting with other particles (and themselves), they do
not thermalize. This behaviour results into much shallower suppression of matter power
spectrum on small scales compared to a Gaussian cutoff of thermal dark matter candidates.
We show that this feature in principle could be another way to test this model via the
observations probing matter power spectrum in sub-pc scales.

We end our journey on nonlocal Lorentzian field theory at this point and mention a
few unanswered questions which could be the subject of future research:

1. In Chapter 5 we assumed that off-shell modes of a nonlocal field gravitate like ordi-
nary (on-shell) matter. This assumption has to be verified.

2. We presented the quantization of a nonlocal scalar field in Chapter 4. But how about
spinor or gauge fields? This is specially important in the case of gauge fields. Can
we define a nonlocal version of gauge transformation to keep gauge invariance? or a
Planck suppressed violation of gauge invariance is expected? What are the physical
consequences of breaking gauge invariance at high energies?

3. We show in Chapter 4 that off-shell modes of a nonlocal field cannot be detected in
scattering experiments. But how about other types of experiments? Is there a way
of observing off-shell modes in laboratory directly?

Now we turn our attention to Lorentz violation in alternative gravitational theories in
Chapters 6 and 7. There are various motivations to consider the existence of a funda-
mental preferred frame which range from pure phenomenology to attempts to solve the
non-renormalizability of quantum gravity and the cosmological constant problem(s). In
many explicit constructions, such as Einstein-Aether [15] or Gravitational Aether theo-
ries [17], K-essence [18], Cuscuton theory [19], or (non-projectable) Hořava-Lifshitz gravity
[13, 14], the low energy theory contains a fluid (which defines a preferred frame) with
superluminal or incompressible excitations.

The existence of superluminal excitations points out that a different causal structure
exists in these theories compared to GR, even when the back-reaction of these excitations
on the geometry is negligible. This property is especially of significance in the black hole
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solutions, since superluminal signals can potentially escape the traditional Killing horizon
of a black hole and make the classical theory unpredictable.

We lay out necessary foundations in Chapter 6 to study spherical gravitational collapse
of neutral matter in the presence of a superluminal fluid in details. Although the resulting
black hole solutions are close to the Schwarzschild spacetime, they possess a new feature:
they contain a trapped surface forbidding the escape of any signal, no matter how fast its
propagation speed is. This new type of horizon has been called a “Universal” horizon, as
it is universal to all signals with arbitrary speed.

We extend this result to charged and spinning black holes which possess inner Killing
horizons in Chapter 7, and show that a universal horizon always forms between the outer
and (would-be) inner horizons. This finding suggests a notion of Cosmic Censorship even
in Lorentz violating theories of gravity. A surprising result is that there are 3 distinct
possible stationary universal horizons for a spinning black hole, only one of them matches
the dynamical spherical solution. This motivates dynamical studies of collapse beyond
spherical symmetry, which may reveal instabilities around the spherical solution.
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Chapter 2

On the Causal Set-Continuum
Correspondence

2.1 Background

From the viewpoint of causal set theory, the continuum spacetime of general relativity is
only fundamental to the extent that it provides a good approximation to an underlying
causal set [12, 20, 21, 22, 23]. Once a full dynamical theory of causal sets is available, it is
necessary to judge whether or not the result of evolution looks anything like the universe
we observe at low energies. Therefore, criteria must be established to determine how well
a Lorentzian geometry (M, g) approximates a causal set (C,≺). 1 One natural criterion is
to require the existence of an injective map f : C → M which preserves causal relations:
∀ x, y ∈ C, x ≺ y if and only if f(x) ∈ J−(f(y)), where J−(f(y)) is the set of all points
in M which lie in the causal past of f(y). We would then say that C is embeddable in
M . Of course, it is not very likely for a causal set which has emerged out of the dynamics
to be exactly embeddable in any spacetime. Close to the discreteness scale, for instance,
one would expect the causal set to be fairly chaotic. Therefore, a certain degree of coarse
graining must be done before embedding is possible. It might also be necessary to introduce
some notion of approximate embedding, because matching all causal relations exactly (and
there would be a lot of them) seems too stringent a requirement. Once these issues are
settled and embedding is possible, one last piece of information is required: scale. This is

1 A causal set (causet) is a set C endowed with a binary relation ≺ such that for all x, y, z ∈ C the
following axioms are satisfied: (1) transitivity: x ≺ y & y ≺ z ⇒ x ≺ z, (2) irreflexivity: x ⊀ x, (3): local
finiteness: |{y ∈ C|x ≺ y ≺ z}| <∞.
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because preserving causal relations cannot distinguish between spacetimes whose metrics
are conformally related. Causal sets contain information about scale implicitly through
counting of elements, because they are locally finite (i.e. discrete). To make use of this
property, one also requires a number–volume (N-V) correspondence: the number NS of
embedded points in any spacetime region S ⊂M should “reflect” its volume VS:

NS ≈ ρVS = ρ

∫
S

√
−g(x)dDx, (2.1)

where ρ is a constant, thought to be set by the Planck scale, which represents the number
density of points. Of course, this correspondence cannot be exactly true, the most obvious
reason being that ρVS is not always an integer. Also, for any embedding, there would
always be infinitely many empty regions meandering through the embedded points. These
issues can be addressed by first settling on the types of “test regions” S, and then requiring
the correspondence in a statistical sense. To do so, let us first note that the causal set-
continuum correspondence is only physically meaningful on scales much larger than the
discreteness scale. Therefore, S should be a region whose spacetime volume is much larger
than that set by the discreteness scale. The shape of S can be picked to disallow regions
that meander through the embedded points but have large volumes. A natural choice, given
that spacetime is Lorentzian, is the causal interval I(x, y): given any two timelike points
x ≺ y ∈ M , I(x, y) is the collection of all points in the causal future of x and the causal
past of y. Having decided on the types of test regions, the number–volume correspondence
can be formulated as follows: pick at random M causal intervals S1, S2, . . . , SM with the
same volume V � ρ−1, and let N1, N2, . . . , NM be the number of embedded elements in
these regions, respectively. We then require that as M →∞:

〈N〉=ρV, δN

〈N〉
=

√
〈(N − 〈N〉)2〉
〈N〉

� 1. (2.2)

Having the N -V formulation at hand, 2 the key question becomes: what is the map that
realizes the number–volume correspondence with the least noise?

The attitude in the causal set program is that this mapping is best done through Poisson
sprinkling. In this approach, one first reverses direction by obtaining a causal set C(M)
from a given spacetime (M, g): randomly select points from M using the Poisson process

2 It may seem more natural to require instead |NS−ρVS | � ρVS for all test regions S. This requirement,
however, is a bit too stringent. Even if there is only one region which violates this condition, the N -V
correspondence would be rendered unsatisfied. Requiring (2.2) ensures that almost all regions have volumes
representative of the number of embedded points in them.
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at density ρ and endow the selected points with their causal relations. The probability of
selecting n points from a region with volume V is 3

P (n) =
(ρV )ne−ρV

n!
. (2.3)

Both the expectation value and variance of the number of selected points in a region with
volume V is equal to ρV :

〈N〉Pois=ρV,
δNPois

〈N〉Pois
=

1√
ρV

. (2.4)

The causal set-continuum correspondence is then judged as follows: a Lorenztian manifold
(M, g) is well-approximated by a causal set C if and only if C could have arisen from
a sprinkling of (M, g) with “high probability”. This definition is consistent with the N -V
requirement formulated above: if C is embeddable as a “large enough” sprinkling of (M, g),
(2.2) would be satisfied because of the ergodic nature of the Poisson process. The “high
probability” requirement is necessary to ensure that a large enough sprinkling is indeed
obtained. Ultimately, one needs to decide how high “high probability” is. A practical
meaning could be that observables (such as dimension, proper time, etc) are not too wildly
far from their mean [23]. It is interesting to note that any embeddable C has a finite
probability of being realized through a Poisson sprinkling. This formulation of the causal
set-continuum correspondence can be used for any point process (i.e. not just Poisson)
which satisfies the N -V requirement on average.

Poisson sprinkling has many desirable features. It has been proven that even its realiza-
tions do not select a preferred frame in Minkowski space [24]. If this mapping really does
provide the best causal set-continuum dictionary, it is intriguing that Lorentz invariance
should follow as a biproduct. Also, Poisson sprinkling works in any curved background.
Even the extra requirement of the shape of test regions as causal intervals is not neces-
sary in this context. On the way to proving that the causal set structure is in principle
rich enough to give rise to a smooth Lorentzian manifold, Poisson sprinkling has played a
central role. But is it unique?

This chapter contains two results which (we hope) shed some light on certain aspects
of this question. The first result is that the number–volume correspondence, if required
to hold even for arbitrarily small regions, is best realized via Poisson sprinkling. The

3 The Poisson process can be obtained by dividing spacetime into small regions of volume dV so that
(i) in each infinitesimal region one point can be selected at most, and (ii) this selection happens with the
probability ρdV independent of outside regions. Then, the probability of selecting n points in a volume V
is P (n) =

(
V/dV
n

)
(ρdV )n(1− ρdV )V/dV−n, which converges to (2) in the limit dV → 0.
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second result concerns a family of lattices in 1 + 1-dimensional Minkowski space, known
as Lorentzian lattices, which we show provide a better number–volume correspondence
than Poisson sprinkling for large volumes4. We argue, however, that this feature should
not persist in higher dimensions and that it is special to 1 + 1-dimensional Lorentzian
lattices. We conclude by conjecturing that Poisson sprinkling provides the best number–
volume correspondence in 3 + 1 dimensions for spacetime regions with macroscopically
large volumes.

2.2 Nothing beats Poisson for Planckian volumes

In this Section we prove that the number–volume correspondence is best realized via Pois-
son sprinkling for arbitrarily small volumes. We set ρ = 1 in the statement and proof of
the theorem.

Theorem 1. Let ξ be a point process whose realizations are points of a smooth Lorentzian
manifold (M, g). Let NS be the random variable which counts the number of points in
a causal interval S ⊂ M : it takes on a value n ∈ {0, 1, 2, . . . } with probability PS(n).
Assume also that ξ realizes the number–volume correspondence on average ∀ S: 〈NS〉 =∑∞

n=0 nPS(n) = VS, where VS is the spacetime volume of S. Then

〈(NS − VS)2〉 ≤ αVS where 0 ≤ α < 1. (2.5)

cannot be satisfied for all S. Note that the Poisson process satisfies (2.5) for α = 1.

Proof. It is shown in Appendix A.1 that the variance of any random variable NS which
takes on a value n ∈ {0, 1, 2, . . . } with probability PS(n), and whose mean is VS > 0, must
satisfy the inequality

〈(NS − VS)2〉 ≥ (VS − n∗)(n∗ + 1− VS), (2.6)

where n∗ is the largest integer which is smaller than or equal to VS. To see why this should
be true, consider choosing PS(n) to obtain the least possible variance for NS. Intuitively,
this can be done by letting PS(n) = 0 ∀ n 6= n∗, n∗ + 1. Requiring 〈NS〉 = VS and∑∞

n=0 PS(n) = 1 then implies PS(n∗) = n∗+ 1− VS and PS(n∗+ 1) = VS − n∗, which leads

4 The existence of Lorentzian lattices in 1 + 1-dimensional Minkowski space, and that they might be a
contender for the Poisson process, was suggested by Aron Wall to Rafael Sorkin, who then mentioned it
to us.
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to the variance (VS−n∗)(n∗+1−VS). The formal proof of this result is given in Appendix
A.1.

Let us now proceed to prove the theorem by contradiction. Assume there exists 0 ≤
α < 1 such that 〈(NS − VS)2〉 ≤ αVS for all S. It then follows from (2.6) that

(VS − n∗)(n∗ + 1− VS) ≤ αVS ∀ S. (2.7)

This, however, is clearly false because any region S with VS < 1−α violates this condition.

The proof of this theorem rests heavily on regions with Planckian volumes. For instance,
had we required the condition (2.5) for regions with VS > 1, the proof would not have gone
through. As we mentioned previously though, the causal set-continuum correspondence
is only physically meaningful on scales much larger than the discreteness scale. In order
to show that nothing really beats Poisson, our result would have to be generalized to the
case of larger volumes. We have, however, found a counter example to this conjecture in
the case of 1 + 1-dimensional Minkowski space. As we shall see in the next Section, 2D
Lorentzian lattices realize the number–volume correspondence much better than Poisson
sprinkling for large volumes.

2.3 2D Lorentzian Lattices

Why is a random, as opposed to regular, embedding of points thought to provide the best
number–volume correspondence? Consider, for instance, a causal set which is embeddable
as a regular lattice in 1 + 1-dimensional Minkowski space. Our intuition from Euclidean
geometry dictates that such a lattice should at least match, if not beat, a random sprinkling
in uniformity. Why not, then, use a regular lattice as opposed to Poisson sprinkling? Figure
2.1a shows what goes wrong in Lorentzian signature. Although the lattice is regular in
one inertial frame, it is highly irregular for a boosted observer. Therefore, there are many
empty regions with large volumes, which leads to a poor realization of the number–volume
correspondence. Are there any regular lattices in 1 + 1 that do not have this problem? As
it turns out, the answer is yes: Lorentzian lattices. These are lattices which are invariant
under a discrete subgroup of the Lorentz group. Such a lattice is shown in Figure 2.1b:
it goes to itself under the action of a discrete set of boosts. We have classified all 2D
Lorentzian lattices in Appendix A.2. In the case of the integer lattice shown in Figure
2.1a, the more it is boosted, the more irregular it becomes. A Lorentzian lattice, however,
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Figure 2.1: (a) The black dots show a lattice on the integers. The red dots are an active
boost of this lattice by velocity v = tanh(1.5). The red diamond is a causal interval in the
boosted frame which contains no points. The black diamond is the same causal interval as
seen in the original frame. (b) The black dots show a Lorentzian lattice generated by the
timelike vector ξ(0) = (

√
5/2, 1/2), and the spacelike vector ξ(1) = (0, 1). The red dots are

boosts of the Lorentzian lattice by v =
√

5/3, showing that this particular boost takes the
lattice to itself.
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Figure 2.2: The number–volume correspondence for the Lorentzian lattice shown in Figure
2.1b. (a) The mean and standard deviation of the number of points. (b) The histogram of
the number of points for different volumes.

does not have this problem because it eventually goes to itself. It is then reasonable to
expect a better number–volume correspondence in this case.

We have investigated the N -V correspondence for various Lorentzian lattices using
simulations. Figure 2.2 shows the result of one such analysis on the lattice shown in Figure
2.1b. The setup is as follows: we consider 1000 different causal diamonds with the same
volume V , whose centres and shapes vary randomly throughout the lattice5. For each
realization, the number of lattice points inside the causal diamond is counted, leading to a
distribution of the number of points for a given volume V . This procedure is then repeated
for different volumes. As it can be seen from Figure 2.2, the Lorentzian lattice shown in
Figure 2.1b realizes the number–volume correspondence with much less noise than Poisson
sprinkling for macroscopic volumes. In fact, Figure 2.2b shows that the dispersion about
the mean is barely growing with volume at all. The same exercise with the integer lattice
results in a huge dispersion, much larger than that of Poisson, which is to be expected.

5 We made sure to include “stretched out” causal diamonds, such as the black diamond shown in Figure
2.1a, as they are responsible for the poor realization of the number–volume correspondence in the integer
lattice.
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Figure 2.3: The number–volume correspondence for the 2 + 1 dimensional integer lattice.
For a given volume V , 200 different causal diamonds with volume V and randomly varying
shapes are chosen. The mean and standard deviation of the number of points (blue) is
compared with that of the Poisson process (red).

2.4 Higher–Dimensional Lorentzian Lattices

What about Lorentzian lattices in 3 + 1 dimensions? Would they also realize the number–
volume correspondence better than Poisson sprinkling? What is quite surprising is that
the integer lattice is a Lorentzian lattice in both 2 + 1 and 3 + 1 dimensions [25].6 We
know from the 1 + 1 dimensional integer lattice, however, that a boost along any spatial
coordinate direction would create huge voids in any higher-dimensional integer lattice.
Therefore, one would expect a poor number–volume realization in this case. We have
confirmed this intuition for the 2 + 1 dimensional integer lattice using simulations similar
to those discussed previously (see Figure 2.3).

What makes 1 + 1 dimensional Minkowski space special is that boosts can only be
performed along one spatial direction. If a lattice is invariant under the action of a boost
with velocity v = tanhφ∗, it is also left invariant when v = tanh(nφ∗), where n is any

6 In 2 + 1, for instance, the following boosts take the integer lattice to itself: vx = vy = 2/3 and
vx = 18/35, vy = 6/7.
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Figure 2.4: Various boosts of the Lorentzian lattice in Figure 2.1b, which is shown here with
black dots. The red dots are active boosts of the lattice with velocity v = tanh(φ = xφ∗),
where φ∗ = tanh−1(

√
5/3) and x=0.25, 0.5, 0.75, 1 is used in different figures. The dashed

blue lines correspond the lightcones of the origin, i.e. t = ±x.

integer. Because of this periodicity, a Lorentzian lattice does not “change” too drastically
under the action of an arbitrary boost. This is demonstrated in Figure 2.4.

A higher-dimensional lattice in Minkowski space would enjoy the same property if for
any given spatial direction, one can find a boost (in that direction) which takes the lattice
to itself. If this is not true, i.e. if there is a direction along which no boost leaves the lattice
invariant, a boosted observer in that direction would see a non-uniform lattice with large
voids, and therefore a poor realization of the number–volume correspondence. Intuitively,
it is hard to imagine such a lattice could exist, as there are infinitely many directions along
which one can boost (as opposed to just one in the case of 1 + 1 dimensions). In what
follows, we present a formal proof of this fact.

Theorem 2. No lattice in D–dimensional Minkowski space, with D > 2, enjoys the fol-
lowing property: given any spatial direction, there exists a boost in that direction which
takes the lattice to itself.
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Proof. We shall prove the theorem by contradiction. Let Λ(n̂, v) be a boost along the
spatial direction n̂ with speed v. We assume there exists a lattice generated by D linearly-
independent vectors ξ(d) (d ∈ {0, 1, 2, · · · , D − 1}), with the property that for any given
spatial direction n̂, there exists v(n̂) such that Λ(n̂, v(n̂)) takes the lattice to itself. Then,
for any spatial direction n̂ + δn̂ infinitesimally away from n̂, there should also be a boost
Λ(n̂+ δn̂, v(n̂+ δn̂)) which keeps the lattice invariant. Let us explore the consequences of
this fact.

A boost Λ(n̂, v) can be written as

Λ(n̂, v) = R−1(n̂)βx(v)R(n̂), (2.8)

where R(n̂) is the rotation which takes n̂ to the unit vector on the positive x–axis and
βx(v) is a boost along the positive x–direction with magnitude v. Let δR and δβx denote
the change in R and βx under an infinitesimal change in the direction n̂ → n̂ + δn̂ and
magnitude of boost v → v + δv, respectively:

R(n̂+ δn̂) = R(n̂) + δR(n̂), (2.9)

βx(v + δv) = βx(v) + δβx(v). (2.10)

To first order in δR, it can be shown that R(n̂+ δn̂)−1 = R−1(n̂)−R−1(n̂)δR(n̂)R−1(n̂) +
H.O, from which it follows that Λ(n̂+ δn̂, v + δv) = Λ(n̂, v) + δΛ(n̂, v) +H.O, where

δΛ(n̂, v) = R−1(n̂)δβx(v)R(n̂) + [Λ(n̂, v), R−1(n̂)δR(n̂)]. (2.11)

As is shown in Appendix A.2, a lattice generated by D linearly-independent vectors ξ(d) is
invariant under the action of a Lorentz transformation Λ(n̂, v) when all components of the
matrix A(n̂, v) = C(n̂, v)B−1 are integers, where

B
(d′)

(d) ≡ ξ(d) · ξ(d′), C
(d′)

(d) (n̂, v) ≡ Λ(n̂, v)ξ(d) · ξ(d′). (2.12)

We have assumed there exists a lattice with the following property: for every n̂, there
exists v(n̂) such that for all n̂, all components of A(n̂, v(n̂)) are integers. To first order in
δn̂, C(n̂+ δn̂, v(n̂+ δn̂)) = C(n̂, v(n̂)) + δC +H.O, where

δC
(d′)

(d) (n̂, v(n̂)) = δΛ(n̂, v(n̂))ξ(d) · ξ(d′). (2.13)

Finally,

A(n̂, v(n̂))→ A(n̂, v(n̂)) + δA(n̂, v(n̂)), δA(n̂, v(n̂)) = δC(n̂, v(n̂))B−1. (2.14)
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Since by assumption all components of A(n̂ + δn̂, v(n̂ + δn̂)) should remain integers, we

ought to have δA(n̂, v(n̂)) = 0 to first order. If any component δA
(d′)

(d) (n̂, v(n̂)) is non-

zero, we can always pick δn̂ small enough so that |δA (d′)
(d) (n̂, v(n̂))| < 1, which would in

turn imply that A
(d′)

(d) (n̂, v(n̂)) is not an integer.

Because B is invertible, δA(n̂, v(n̂)) = 0 is equivalent to δC(n̂, v(n̂)) = 0, which as
we will now show leads to a contradiction when D > 2. Consider first 2 + 1 dimensional
Minkowski space. In this case, there is only one angle of rotation θ and the rotation matrix
takes the form7

R(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 . (2.15)

Under an infinitesimal change of the angle of rotation θ + δθ, the rotation matrix changes
to first order in δθ by

δR(θ) = δθ

0 0 0
0 − sin θ cos θ
0 − cos θ sin θ

 . (2.16)

For every spatial direction θ, there should exist φ(θ) such that a boost with magnitude
v = tanh(φ) along that direction takes the lattice to itself. As usual

βx(φ(θ)) =

coshφ(θ) sinhφ(θ) 0
sinhφ(θ) coshφ(θ) 0

0 0 1

 , (2.17)

and to first order in δθ we have

δβx = δθ
dφ

dθ

sinhφ coshφ 0
coshφ sinhφ 0

0 0 0

 . (2.18)

For convenience, we may take θ = 0. Let φ(0) ≡ φ0 and dφ
dθ

(0) ≡ φ̇0. (Of course, we are
interested in φ0 6= 0, since φ0 = 0 is no boost at all.) In this case, it may be verified that

δΛ = δθ
(
φ̇0D + E

)
, (2.19)

where

D =

sinhφ0 coshφ0 0
coshφ0 sinhφ0 0

0 0 0

 , E =

 0 0 sinhφ0

0 0 coshφ0 − 1
sinhφ0 coshφ0 − 1 0

 . (2.20)

7 As usual, for a point (x, y) in the x-y plane, θ is defined by tan θ = y/x.
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As argued before, we ought to have δC = 0, which is equivalent to(
φ̇0D + E

)
ξd · ξd′ = 0, ∀ d, d′ ∈ {0, 1, 2}. (2.21)

Since {ξd} are linearly independent, this is equivalent to(
φ̇0D + E

)
V ·W = 0, ∀ V,W ∈ R3. (2.22)

Taking V = W to be the unit vector on the y-axis (namely V = W = (0, 0, 1)), it can be
shown that (2.22) is true only when φ0 = 0, which is a contradiction.

This proof generalizes trivially to higher dimensions, since boosts confined to the x− y
plane would lead to the same conclusion.

Therefore, given any Lorentzian lattice in D–dimensional Minkowski space, with D > 2,
there would be many boosted observers for whom the lattice looks highly irregular. As
argued previously, this indicates a poor realization of the number–volume correspondence.
This is not the case for Poisson sprinkling, because of its random and uncorrelated nature.
No inertial observer is likely to see large macroscopic voids because a boosted random
lattice is itself a random lattice. Concretely, the Poisson process does not pick out any
preferred frame in the sense that one cannot find a measurable map from sprinklings to
spacetime directions [24]. This suggests that Poisson sprinkling may be the best way of
realizing the number–volume correspondence in 3 + 1 dimensions. Theorem 2.5 shows this
is the case if one requires the correspondence to hold even for arbitrarily small regions.
However, based on the results and arguments presented thus far, our expectation is that
Poisson sprinkling realizes the number–volume correspondence with the least noise even
when only spacetime regions with macroscopically large volumes are considered. Below we
formulate this expectation as a conjecture:

Conjecture 1. Let ξ be a point process whose realizations are points of a 3+1-dimensional
smooth Lorentzian manifold (M, g). Let NS be the random variable which counts the number
of points in a causal interval S ⊂M : it takes on a value n ∈ {0, 1, 2, . . . } with probability
PS(n). Assume also that ξ realizes the number–volume correspondence on average ∀ S:
〈NS〉 = VS, where VS is the spacetime volume of S. Then, @ V∗ > 0 such that for all causal
intervals S with volume VS > V∗, the following holds:

〈(NS − VS)2〉 ≤ αVS where 0 ≤ α < 1. (2.23)
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2.5 Conclusions

Causal set theory maintains that all information about the continuum spacetime of general
relativity is contained microscopically in a partially order and locally finite set. Discreteness
allows one to count elements, which is thought to provide information about scale: a
spacetime region with volume V should contain about ρV causal set elements. In this
chapter, we proved a theorem which shows that this number–volume correspondence is
best realized via Poisson sprinkling for arbitrarily small volumes. Quite surprisingly, we
also showed that 1 + 1-dimensional Lorentzian lattices provide a much better number–
volume correspondence than Poisson sprinkling for large volumes. We presented evidence,
however, that this feature should not persist in 3 + 1 dimensions and conjectured that
the Poisson process should indeed provide the best number–volume correspondence for
macroscopically large spacetime regions.

In the next Chapter, we address how to define a wave propagation on a causal set that
reproduces local evolution law on large scales.
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Chapter 3

Generalized Causal Set
d’Alembertians

3.1 Introduction

Causal set theory postulates that the fundamental structure of spacetime is that of a locally
finite partially ordered set [12].1 Its marriage of discreteness with causal order implies that
physics cannot remain local at all scales. To appreciate why this should be, let us consider
how one might define a notion of “closeness” in a causal set, confining ourselves to causal
sets C which are obtained by randomly selecting points from a Lorentzian manifold M
and endowing the selected points with the causal relations inherited from the manifold2.
Given such a causet, any intrinsically defined notion of closeness between two elements of C
will reflect their Lorentzian distance in the embedding spacetime. But a small Lorentzian
distance between two points of M does not mean that they are confined to a small neigh-
bourhood within M . Rather, the second point can be “arbitrarily distant” from the first,
as long as it is located near to the lightcone of the latter. Thus, an element of C will in-

1 Characterized mathematically, this is a set C endowed with a binary relation ≺ such that for all
x, y, z ∈ C the following axioms are satisfied: (1) transitivity: x ≺ y & y ≺ z ⇒ x ≺ z; (2) irreflexivity:
x ⊀ x; (3): local finiteness: |{y ∈ C|x ≺ y ≺ z}| < ∞. Thus a causal set (causet) is in a certain sense
both Lorentzian [in virtue of (1) and (2)] and discrete [in virtue of (3)].

2 This process is known as Poisson sprinkling : Given a spacetime M , let the discrete subset of points,
C, be one particular realization of a Poisson process in M , and let the elements of C retain the causal
relations they have when regarded as points of M . In order that the resulting precedence relation on C
approximately encode the metric of M , one must exclude spacetimes with closed causal curves, for example
by requiring M to be globally hyperbolic.
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evitably possess very many “nearest neighbours”, no matter how that notion is formalized.
In this manner, the concept of locality provided by the topology of a continuous spacetime
manifold is lost.

This nonlocality manifests itself concretely when one seeks to describe the wave propa-
gation of a scalar field on a causal set by defining a discrete counterpart of the d’Alembertian
operator, �. For the aforementioned reasons, it seems impossible to proceed in analogy
with what one does when, for example, one discretizes the Laplacian operator in a Rie-
mannian spacetime. Nevertheless, a non-local operator was suggested in [26] which on
average reproduces � in the appropriate continuum limit for 1+1 dimensional Minkowski
space M2 (i.e. for causets derived by sprinkling M2). The expression introduced in [26]
was generalized to D = 4 dimensions in [27] and recently to arbitrary D in [28, 29].

We shall denote a discrete causal set d’Alembertian designed for MD by B
(D)
ρ , where ρ

(dimensionally an inverse spacetime volume) is a volume-scale that controls the extent of
the non-locality. In the case of causal sets which are well-approximated by D-dimensional
Minkowski space MD, averaging B

(D)
ρ over all such causets (i.e. averaging over all sprin-

klings of MD in the sense of footnote 2) leads to a non-local and retarded continuum

operator �(D)
ρ defined in MD. We shall refer to this operator as the continuum causal set

d’Alembertian. Its crucial property is that it reproduces the usual d’Alembertian in the
limit of zero non-locality scale: �(D)

ρ φ → �φ as ρ → ∞ for test-functions φ of compact
support.

Although the causet operator B
(D)
ρ is necessarily nonlocal, one might expect that the

range of its nonlocality could be confined to the discreteness scale itself. In other words,
one might expect that ρ ∼ `−4, ` being the — presumably Planckian — discreteness length.
However, one can also cite reasons why one might need to have ρ� `−4, leading to a more
long-range nonlocality.3 Although these reasons are not conclusive, let us accept them
provisionally. A natural question then arises: might such a “mesoscopic” nonlocality show
up at energy-scales accessible by current experiments?

Ideally, one would address this question in the fully discrete setting, but it seems much
easier to begin with the continuum version of the same question by asking what changes

3 The issue here concerns the behavior of B
(D)
ρ for one particular sprinkling versus its behavior after

averaging over all sprinklings. The latter converges to � as ρ → ∞ but the former incurs fluctuations
which grow larger as ρ→∞ and which therefore will be sizable if ρ is the sprinkling density, `−4. Which
behavior is relevant physically? In full quantum gravity some sort of sum over different causets will be
involved, including in particular a sum over sprinklings. Such a sum differs from a simple average and
might or might not damp out the fluctuations, or they might cancel in other ways. But if neither of these
things happens, the only way out [26] would be to choose ρ small enough that the necessary averaging will
occur within each individual causet.
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when the local operator � is replaced by the nonlocal operator �(D)
ρ . In this Chapter, we

make a start on answering this question by analysing the “spectral properties” (Fourier

transform) of a family of continuum operators �(D)
ρ . In Section 3.2, we discuss the contin-

uum operators corresponding to the original 2D [26] and 4D [27] causet d’Alembertians, and
in Section 3.3 we generalize the discussion to an infinite family of operators parametrized
by a set of coefficients, {a, bn}, for which we derive explicit equations that ensure the usual
flat space d’Alembertian is recovered in the infrared limit. Based on the UV behaviour of
these operators (which we determine for all dimensions and coefficients {a, bn}), we propose
a genuinely Lorentzian perturbative regulator for quantum field theory (QFT). Finally, we
address the question of whether or not the evolution defined by the (classical) equation

�(D)
ρ φ = 0 is stable. We devise a numerical method to test for stability and present strong

evidence that the original 4D causal set d’Alembertian is unstable in this sense, while its
2D counterpart is stable.

Throughout the paper we use the metric signature (−+ + · · · ) and set ~ = c = 1.

3.2 The Original 2D and 4D Causet d’Alembertians

In this Section we discuss the original continuum causet d’Alembertians for dimensions
two [26] and four [27]. Let us start by establishing some terminology. Given any two
elements x, y of a causal set C, we define the order interval Int(x, y) between them as the
set of all elements common to the (exclusive) future of x and the (exclusive) past of y:
Int(x, y) = {z ∈ C|x ≺ z ≺ y}. Notice that in our convention, Int(x, y) does not include x
or y. An element y ≺ x is then considered a past nth neighbour of x if Int(y, x) contains n
elements. For instance, y is a 0th neighbour of x if Int(y, x) is empty, a first neighbour if
Int(y, x) contains one element, and so on (see Figure 3.1 for an example). We denote the
set of all past nth neighbours of x by In(x).

Throughout the paper, we will only consider causal sets which are obtained by Poisson
sprinklings of Minkowski space at density ρ.
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Figure 3.1: A Poisson sprinkling of 1 + 1 Minkowski space at density ρ = 80. Here y0 is a
0th neighbour of x because there are no elements which are both to the future of y0 and
the past of x. Similarly, y1 is a first neighbour of x. The contributions of the points y0

and y1 to ρ−1(B
(2)
ρ Φ)(x) are b

(2)
0 Φ(y0) and b

(2)
1 Φ(y1), respectively. The continuum limit, or

rather average, of (B
(2)
ρ Φ)(x) can be understood as follows: fix the point x, keep sprinkling

at density ρ and compute (B
(2)
ρ Φ)(x) for every sprinkling. The average of all these values

is equal to (�(2)
ρ Φ)(x).
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3.2.1 2D

The original causet d’Alembertian for dimension 2, which we denote by B
(2)
ρ , acts on a

scalar field Φ(x) on the causal set in the following way [26]:

ρ−1(B(2)
ρ Φ)(x) = a(2)Φ(x) +

2∑
n=0

b(2)
n

∑
y∈In(x)

Φ(y), (3.1)

where
a(2) = −2, b

(2)
0 = 4, b

(2)
1 = −8, b

(2)
2 = 4. (3.2)

Figure 3.1 illustrates how B
(2)
ρ is defined, given a Poisson sprinkling of 2D Minkowski space

M2. The continuum operator �(2)
ρ is obtained by averaging B

(2)
ρ over all such Poisson

sprinklings at density ρ :

ρ−1(�(2)
ρ Φ)(x) = a(2)Φ(x) + ρ

2∑
n=0

b
(2)
n

n!

∫
J−(x)

e−ρV (x−y)[ρV (x− y)]nΦ(y) d2y . (3.3)

Here J−(x) denotes the causal past of x, and V (x−y) is the spacetime volume enclosed by

the past lightcone of x and the future lightcone of y. Note that �(2)
ρ is a retarded operator,

in the sense that (3.3) uses information only from the causal past of x.

The operator �(2)
ρ can be studied by analysing its action on plane waves. Due to

translation symmetry of Minkowski space,4 any plane wave eip·x is an eigenfunction of �(2)
ρ

(provided that the integrals in (3.3) converge, so that the left hand side is well defined):

�(2)
ρ eip·x = g(2)

ρ (p)eip·x, (3.4)

where p · x ≡ ηµνp
µxν and ηµν = diag(−1, 1). Interestingly enough, g

(2)
ρ (p) in this case can

be expressed in closed form:5

ρ−1g(2)
ρ (p) = −ZeZ/2E2(Z/2), (3.5)

where E2(z) is a generalized exponential integral function (see e.g. 8.19 of [30]) and

Z ≡ ρ−1p · p. (3.6)

4 This is why the volume V in (3.3) is a function only of the difference, x− y.
5 This formula is derived in Appendix B.3, using the general formalism developed in Section 3.3.
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Figure 3.2: (a) The principal branch of ρ−1g
(2)
ρ (p), which (for real p) depends only on

Z = ρ−1p · p , and on sgn(p0) when p is timelike. (b) The spectrum g
(2)
ρ (p) of the original

2D continuum causet d’Alembertian for real momenta p . For spacelike momenta (p·p > 0),
g(2)(p) is real. For timelike momenta, it is complex with an imaginary part whose sign is
opposite for past-directed and future-directed momenta.
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Here, as illustrated in Figure 3.2, E2(z) assumes its principal value, with a branch cut
along the negative real axis. For real and spacelike momenta (Z > 0), g(2) is real. For
real and timelike momenta (Z < 0), its value above/below the branch cut corresponds

to past/future-directed momentum-vectors. There, g
(2)
ρ is complex and changes to its

complex conjugate across the cut. That the spectrum is different for past and future-
directed momenta should come as no surprise, given that �(2)

ρ is retarded by definition.
We will see in Section 3.3 that these features persist in all dimensions and for a much
broader class of causet d’Alembertians.

The infrared (IR) and ultraviolet (UV) behaviours of g
(2)
ρ (p) are easily deduced from

the asymptotic forms of E2(Z) (see e.g. 8.11.2, 8.19.1, and 8.19.8 of [30]):

ρ−1g(2)
ρ (p)

Z→0−−−→ −Z + · · · (3.7)

ρ−1g(2)
ρ (p)

Z→∞−−−→ −2 +
8

Z
+ · · · . (3.8)

The first of these two equations shows that the usual d’Alembertian � is indeed reproduced
in the limit of zero non-locality. The second equation, on the other hand, reveals a UV
behaviour quite unlike that of the usual d’Alembertian; in Section 3.3.2 it will lead us to
propose a new regularization scheme for quantum field theory.

An important question is whether the evolution defined by �(2)
ρ Φ = 0 is stable or

not. To a large extent this is answered by the fact that the only zero of g
(2)
ρ (p) occurs at

Z = ρ−1p·p = 0. To demonstrate this, we note that g
(2)
ρ (p) has the following representation

(see e.g. 8.19.1 and 8.6.4 of [30]):

ρ−1g(2)
ρ (p) = −Zf(Z), f(Z) ≡

∫ ∞
0

te−t

t+ Z/2
dt. (3.9)

It therefore suffices to prove that f(Z) has no zeros when Z 6= 0. But the imaginary part
of f(Z) is

Im(f(Z)) = −Im(Z)

2

∫ ∞
0

te−t[
t+ Re(Z)

2

]2

+
[

Im(Z)
2

]2 dt. (3.10)

Because the integral that multiplies −Im(Z)/2 in (3.10) is strictly positive, Zf(Z) could
vanish only for real Z. Obviously, it does vanish for Z = 0, but elsewhere on the real axis,
it remains nonzero, as illustrated in Figure 3.2b.

What we have just proven is that a plane wave solves the equation �(2)
ρ Φ = 0 iff it solves

the equation �Φ = 0. To the extent that the general solutions of these two wave equations
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can be composed of plane waves, they therefore share the same space of solutions. This, of
course, is an important result in itself. But it also, a fortiori, answers the stability question
in the affirmative, since we know that the evolution corresponding to � is stable.

If there remains any doubt about stability or about the fact that both �Φ = 0 and
�(2)
ρ Φ = 0 yield the same evolution, it springs from a possible uncertainty about boundary

conditions. In the usual situation (that of the ordinary d’Alembertian �), one understands
how to relate a general solution to its initial data on an arbitrary Cauchy surface, and
when Φ falls off suitably at infinity, its total energy is defined and conserved. From energy
conservation, stability also follows — relative to the given choice of boundary conditions.
On the other hand in the case of �(2)

ρ , a connection between solutions and Cauchy data
remains to be found, as does a better understanding of appropriate falloff conditions. But
absent some such boundary condition there is nothing to exclude complex momenta p that
lead to exponential growth in time, e.g. an imaginary multiple of a real lightlike vector.

For these reasons, we would like to discuss stability from a slightly different angle,
which also will be helpful when we come to deal with the 4D case. Quite generally,
instabilities tend to be associated with exponentially growing “modes” (in this case plane
waves). Let us then assume that we can take this as our criterion of (in)stability. And
to exclude the kind of “fake instability” mentioned above, let us also require any putative
unstable mode, Φ(x) = eip·x, to be bounded at spatial infinity in at least one Lorentz frame.
(Unfortunately we cannot say “in all Lorentz frames”, since for a plane wave, exponential
growth in time induces exponential growth in space via a Lorentz boost.) We might hope
that the condition just formulated is equivalent to the following more natural one: consider
only solutions of �(2)

ρ Φ(x) = 0 which have compact support on every Cauchy hypersurface
(compact spatial support in every frame.)

Be that as it may, if this criterion is accepted, then we can establish stability very
simply in the present case, because an unstable mode, Φ(x) = eip·x, is then precisely
one such that p possesses a future-directed timelike imaginary part: p = pR + ipI with
pI · pI < 0 and p0

I > 0. This, however, is impossible for Z = 0, as one sees from the
equation 0 = p · p = pR ·pR−pI ·pI +2ipR ·pI , whose right-hand side has a strictly positive
real part when pI is timelike. For logical completeness, we should also observe that (3.5) is
valid for all complex p whose imaginary parts are timelike and future-directed. (For more

general complex momenta, the integral defining �(2)
ρ Φ might not converge, a circumstance

that, depending once again on the choice of falloff conditions, might or might not impinge
on the claimed identity between our solutions and those of the ordinary wave equation.)
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3.2.2 4D

The causet d’Alembertian for dimension 4, has the same general form as that for M2, but
with different coefficients [27] :

ρ−
1
2 (B(4)

ρ Φ)(x) = a(4)Φ(x) +
3∑

n=0

b(4)
n

∑
y∈In(x)

Φ(y), (3.11)

where

a(4) = − 4√
6
, b

(4)
0 =

4√
6
, b

(4)
1 = − 36√

6
, b

(4)
2 =

64√
6
, b

(4)
3 = − 32√

6
. (3.12)

The continuum average �(4)
ρ then also takes a similar form:

ρ−
1
2 (�(4)

ρ Φ)(x) = a(4)Φ(x) + ρ
3∑

n=0

b
(4)
n

n!

∫
J−(x)

e−ρV (x−y)[ρV (x− y)]nΦ(y)d4y. (3.13)

We will show in Section 3.3.1 that the “spectrum” of �(4)
ρ , as defined by �(4)

ρ eip·x =

g
(4)
ρ (p)eip·x, is given by

ρ−1/2g(4)
ρ (p) = a(4) + 4πZ−1/2

3∑
n=0

b
(4)
n

n!
Cn

4

∫ ∞
0

s4n+2e−C4s4K1(Z1/2s) ds, (3.14)

where K1 is a modified Bessel function of the second kind and

Z ≡ ρ−1/2p · p, C4 =
π

24
. (3.15)

All functions in (3.14) assume their principal values with branch cuts along the negative

real axis. Many properties of the 2D function g
(2)
ρ (p) carry over to g

(4)
ρ (p) . For timelike

p, the value of g
(4)
ρ (p) above/below the branch cut corresponds to past/future-directed

momenta, and it changes to its complex conjugate across the cut. Also, g
(4)
ρ is real for

spacelike momenta. Figure 3.3b shows the behaviour of g
(4)
ρ (p) for real momenta.

The IR and UV behaviours of g
(4)
ρ (p), which are derived in Sections 3.3.2 and 3.3.3, are

given by

ρ−1/2g(4)
ρ (p)

Z→0−−−→ −Z + · · · (3.16)

ρ−1/2g(4)
ρ (p)

Z→∞−−−→ − 4√
6

+
32π√
6Z2

+ · · · . (3.17)
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Again, the IR behaviour confirms that the usual d’Alembertian is reproduced in the limit
of zero non-locality. The UV limit has the form of a constant plus a term proportional to
p−4. The inverse of g

(4)
ρ (p), which defines the retarded Green’s function in Fourier space,

takes exactly the same form in the UV:

ρ1/2

g
(4)
ρ (p)

Z→∞−−−→ −
√

6

4
− 2π

√
6

Z2
+ · · · . (3.18)

In any QFT based on �(4)
ρ , the propagator associated with internal lines in Feynman

diagrams would presumably have the same UV behaviour. Subtracting the constant term
from the propagator (which corresponds to subtracting a δ-function in real space) would
then render all loops finite. This procedure could be the basis of a genuinely Lorentzian
regularization and renormalization scheme for QFT. We will discuss these things more
generally in Sections 3.3.3 and 3.3.4.

We have only been able to address the question of stability by numerical means in this
case, and we refer the reader to Section 3.3.5. It turns out that g

(4)
ρ (p) does in fact have

unstable modes in the sense that there exist complex momentum-vectors p which satisfy
g

(4)
ρ (p) = 0, and whose imaginary parts are timelike and future-directed. Such a mode

corresponds to a complex zero of g
(4)
ρ in the complex Z-plane, and Figure 3.3a shows one

such zero (the other one being its complex conjugate).

3.3 The Generalized Causet Box (GCB) Operators

The key property of the causet d’Alembertians introduced in the previous Section is that
they reproduce � in the continuum-averaged (averaged over all sprinklings) and local

(ρ → ∞) limit. In this Section, we explore a larger family of operators B
(D)
ρ which share

the same property. We place the following conditions on B
(D)
ρ :

1. Linearity: when B
(D)
ρ acts on a scalar field Φ, the result at an element x of the

causet should be a linear combination of the values of Φ at other elements y (possibly
including x itself). This is a natural requirement because � itself is linear.

2. Retardedness: (B
(D)
ρ Φ)(x) should depend only on Φ(y), with y in the causal past

of x. This requirement allows for a consistent evolution of a partial solution specified
on any “downward closed” subset of the causet.
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Figure 3.3: (a) An unstable zero of g
(4)
ρ (p). Contours of constant |ρ−1/2g

(4)
ρ | are plotted as

a function of the real and imaginary parts of Z = ρ−1/2p · p. (b) Spectrum g
(4)
ρ (p) of the

original 4D causet d’Alembertian for real momenta p. For spacelike momenta (p · p > 0),
g(4)(p) is real. For timelike momenta, it contains also an imaginary part whose sign is
opposite for past-directed and future-directed momentum-vectors.
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3. Label invariance: B
(D)
ρ should be invariant under relabellings of causal set elements.

This is the discrete analogue of general covariance.

4. Neighbourly democracy: all nth neighbours of x should contribute to (B
(D)
ρ Φ)(x)

with the same coupling.

Considering all these requirements, (B(D)Φ)(x) can be expressed in the following general
form

ρ−
2
D (B(D)

ρ Φ)(x) = aΦ(x) +
Lmax∑
n=0

bn
∑

y∈In(x)

Φ(y), (3.19)

where {a, bn} are dimensionless coefficients and In(x) is the set of all nth neighbours to the
past of x (see beginning of Section 3.2). This is a straightforward generalization of (3.1)
and (3.11), where we have now allowed ourselves up to Lmax neighbours. We will soon
see that recovering � requires keeping a minimum number of layers: e.g. Lmax ≥ 2 in 2D
and Lmax ≥ 3 in 4D. The original 2D and 4D proposals are then the minimal cases in this
sense.

The continuum-average �(D)
ρ of B

(D)
ρ acts on a scalar field Φ(x) in the following way:

ρ−2/D(�(D)
ρ Φ)(x) = aΦ(x) + ρ

Lmax∑
n=0

bn
n!

∫
J−(x)

e−ρV (x,y)[ρV (x, y)]nΦ(y)dDy. (3.20)

Here as before, J−(x) denotes the causal past of x, while V (x, y) is the spacetime volume
enclosed by the past light cone of x and the future light cone of y.

The occurrence of the factor e−ρV in (3.20) shows that the parameter ρ (which di-
mensionally is an energy-density) functions as a kind of “nonlocality scale” controlling

the distance over which the operator �(D)
ρ acts. As our definitions stand so far, this

nonlocality-scale directly reflects the fundamental discreteness-scale, because (3.20) was
derived under the assumption that ρ was the sprinkling-density in MD. However it turns
out that one can decouple the two scales by tweaking the definition (3.19) in such a way as
to produce a more general causet operator whose sprinkling-average reproduces the same
continuum operator (3.20), even when ρ is smaller than the sprinkling density. With this
operator, the nonlocality can extend over a much greater distance than that of the fun-
damental discreteness-scale. Although modifying B

(D)
ρ in this way has the disadvantge of

introducing a second, independent length scale, it allows one to overcome a potential diffi-
culty pointed out in [26], namely that (3.19) with fixed coefficients leads to fluctuations in

(B
(D)
ρ Φ)(x) which grow with ρ, rather than diminishing. We have provided the definition
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of this “tweaked” operator and the derivation of its continuum average in Appendix B.4;
but henceforth, we will concern ourselves exclusively with the continuum operator �(D)

ρ ,
without worrying about its relationship with any underlying discreteness. Correspondingly,
ρ will henceforth denote a non-locality-scale with no necessary relation to any discreteness
scale.

3.3.1 Spectrum

That any plane wave eip·x is an eigenfunction of �(D)
ρ in MD follows from translational

symmetry: V (x, y) = V (x− y). It can be shown in fact that

�(D)
ρ eip·x = g(D)

ρ (p) eip·x, (3.21)

ρ−2/Dg(D)
ρ (p) = a+

Lmax∑
n=0

(−1)nρn+1

n!
bn

∂n

∂ρn
χ(p, ρ), (3.22)

χ(p, ρ) =

∫
J+(0)

e−ρV (y) e−ip·y dDy, (3.23)

where V (y) = V (O, y) is the spacetime volume enclosed by the past light cone of y and
the future light cone of the origin:

V (y) = CD |y · y|D/2, CD =

(
π
4

)D−1
2

DΓ(D+1
2

)
. (3.24)

Evaluating χ(p, ρ) amounts to computing the Laplace transform of a retarded, Lorentz-
invariant function, which has been done in [31]. It follows from their result that

χ(p, ρ) = 2(2π)D/2−1(p · p)
2−D

4

∫ ∞
0

sD/2e−ρCDs
D

KD
2
−1(
√
p · ps) ds, (3.25)

where Kν is the modified Bessel function of the second kind. All functions in (3.25) assume
their principal values, with a branch cut along the negative real axis. This result is valid
for all p whose imaginary part is timelike and future-directed, i.e. pI · pI < 0 and p0

I > 0,
where p = pR + ipI and the Lorentzian norm is given by p · p = pR · pR − pI · pI + 2ipR · pI .
For momenta satisfying these conditions, the integral that defines χ(p, ρ), and consequently
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�(D)
ρ eip·x, is absolutely convergent. Plugging (3.25) into (3.22) we find

ρ−2/Dg(D)
ρ (p) = a+ 2(2π)D/2−1Z

2−D
4

Lmax∑
n=0

bn
n!
Cn
D

∫ ∞
0

sD(n+1/2)e−CDs
D

KD
2
−1(Z1/2s) ds,

(3.26)
where Z is a dimensionless quantity defined by

Z ≡ ρ−
2
D p · p. (3.27)

For real p = pR, g
(D)
ρ (p) can be defined by first adding a small future-pointing and

timelike imaginary part pεI to pR, and then taking the limit as pεI shrinks:

g(D)
ρ (pR) := lim

ε→0+
g(D)
ρ (pR + ipεI), pεI · pεI = −ε2. (3.28)

When pR is timelike, this amounts to changing Z = ρ−
2
D pR · pR on the right hand side of

(3.26) to Z + iε for past-directed, and Z − iε for future-directed pR. This is illustrated in
Figure 3.2a. Because of the appearance of Z1/2 in (3.26) and the fact that Kν(z̄) = Kν(z),
it follows for timelike p that

g(D)
ρ (−p) = g

(D)
ρ (p). (3.29)

Therefore, g
(D)
ρ (p) differs for past- and future-directed timelike p. This is to be expected,

since requiring �(D)
ρ to be retarded builds in a direction of time. For spacelike momenta

(Z > 0), g
(D)
ρ (p) is real, as follows from the fact that Kν(z) is real when ν is real and

ph(z) = 0 [30].

3.3.2 IR Behaviour

We want to choose the coefficients a and bn so that the usual d’Alembertian operator is
recovered in the limit of zero non-locality:

lim
ρ→∞
�(D)
ρ φ = �φ. (3.30)

This requirement is equivalent to demanding

g(D)
ρ (p)

Z→0−−−→ −p · p . (3.31)
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In Appendix B.1, we derive equations for a and bn which guarantee this behaviour for an
arbitrary spacetime dimension D. We expand Z

2−D
4 KD

2
−1(Z1/2s) on the right hand side of

(3.26) about Z = 0, and arrange a, bn so that the terms which grow faster than Z vanish,
while the coefficient of the term proportional to Z is −1. We state the main results here
and refer the reader to Appendix B.1 for the details.

In even dimensions, letting D = 2N + 2 with N = 0, 1, 2, . . . , the equations that
need to be satisfied are

Lmax∑
n=0

bn
n!

Γ(n+
k + 1

N + 1
) = 0, k = 0, 1, . . . , N + 1 (3.32a)

a+
2(−1)N+1πN

N !D2CD

Lmax∑
n=0

bnψ(n+ 1) = 0, (3.32b)

Lmax∑
n=0

bn
n!

Γ(n+
N + 2

N + 1
)ψ(n+

N + 2

N + 1
) =

2(−1)N(N + 1)!

πN
D2C

N+2
N+1

D , (3.32c)

where ψ(n) is the digamma function. Equations (3.32a) and (3.32c) determine bn, after
which (3.32b) fixes a. The minimum number of terms required to solve these equations is
determined by Lmax ≥ N + 2. In 2D and 4D in particular, keeping this minimum number
of terms leads to the solutions (3.2) and (3.12), respectively.

In odd dimensions, letting D = 2N + 1 with N = 0, 1, 2, . . . , the equation are

Lmax∑
n=0

bn
n!

Γ(n+
2k + 2

2N + 1
) = 0, k = 0, 1, . . . , N (3.33a)

a+
(−1)NπN+ 1

2

DCDΓ(N + 1
2
)

Lmax∑
n=0

bn = 0, (3.33b)

Lmax∑
n=0

bn
n!

Γ(n+
2N + 3

2N + 1
) =

4(−1)N−1Γ(N + 3
2
)

πN+ 1
2

DC
2N+3
2N+1

D . (3.33c)

Similarly to the even case, Equations (3.33a) and (3.33c) determine bn, after which (3.33b)
fixes a. The minimum number of terms is determined by Lmax ≥ N + 1.

3.3.3 UV Behaviour and the Retarded Green’s Function

The UV behaviour of g
(D)
ρ (p), as derived in Appendix B.2, is

ρ−2/Dg(D)
ρ (p)

Z→∞−−−→ a+ 2D−1π
D
2
−1Γ(D/2) b0 Z

−D
2 + · · · . (3.34)
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Thus, g
(D)
ρ (p) behaves as a constant plus a term proportional to (p · p)−D/2. Let us explore

the consequences of this fact for the retarded Green’s function GR(x, y) associated with

�(D)
ρ , which satisfies the usual equation

�(D)
ρ GR(x, y) = δ(D)(x− y), (3.35)

subject to the boundary condition GR(x, y) = 0 ∀ x � y.

Of course, translation invariance implies GR(x, y) = GR(x− y). The Fourier transform

G̃R(p) of GR(x− y) is given by the reciprocal of g
(D)
ρ (p):

GR(x− y) =

∫
dDp

(2π)D
G̃R(p)eip·(x−y)=

∫
dDp

(2π)D
1

g
(D)
ρ (p)

eip·(x−y). (3.36)

Figure 3.4a shows the path of integration in the complex p0 plane. When g
(D)
ρ (p) has no

zero in complex plane apart from at p · p = 0, this choice of contour ensures that GR is
indeed retarded. As we will argue in the next section, the presence of such zeros implies
that evolution defined by �(D)

ρ is unstable. Therefore, we shall ignore these cases for our
current discussion.

The behaviour of GR(x − y) in the coincidence limit x → y is determined by the
behaviour of G̃R(p) at large momenta:

ρ2/DG̃R(p)
Z→∞−−−→ 1

a
− 2D−1π

D
2
−1Γ(D/2)

b0

a2
Z−

D
2 + · · · (3.37)

Here we have assumed a 6= 0. When a = 0, G̃R(p) scales as pD for large momenta, a badly
divergent UV behaviour. Therefore we will confine ourselves to cases where a 6= 0.

The constant term 1
a

represents a δ-function in real space. The other terms in the series
have the form

∫
dDp p−nD, n = 1, 2, · · · , and it can be shown that they are all finite. It

then looks like subtracting 1
a
δ(D)(x − y) from ρ2/DGR(x − y) must result in a completely

smooth function in the coincidence limit, and we will now show this is indeed the case.

Although D = 4 is the dimension of greatest interest, the proof which we shall present
is valid in all even dimensions. Let us define

ρ2/DG(x− y) ≡ ρ2/DGR(x− y)− 1

a
δ(D)(x− y). (3.38)

Our task is then to show G(x − y) is a smooth function at x = y. It follows from (3.36)
that

ρ2/DG(x− y) =

∫
dDp

(2π)D

[
1

ρ−2/Dg
(D)
ρ (p)

− 1

a

]
eip·(x−y). (3.39)

38



−|~p| |~p| Re(p0 )

Im(p0 )

(a)

C1

C2

C3
C4

Re(Z)

Im(Z)

(b)

Figure 3.4: (a) The integration path in the complex p0 plane which defines the retarded
Green’s function. (b) The contour of integration used for counting the unstable modes of

�(D)
ρ . The direction of integration is taken to be counter-clockwise.

Because GR(x− y) is retarded by definition,∫
dDp

(2π)D
1

g
(D)
ρ (p)

eip·(x−y) = 0, x � y . (3.40)

From this it follows for all x � y that∫
dDp

(2π)D
1

g
(D)
ρ (p)

eip·(x−y) =

∫
dDp

(2π)D
1

g
(D)
ρ (p)

e−ip·(x−y) x�y= 0 , (3.41)

where the first equality is obtained by changing p → −p and then using (3.29), and the
second equality is a direct consequence of (3.40) with x and y interchanged. Returning to
(3.39), and subtracting zero in the form of (3.41), we obtain

G(x− y)
x�y
=

∫
dDp

(2π)D

[
1

g
(D)
ρ (p)

− 1

g
(D)
ρ (p)

]
eip·(x−y) (3.42)

=

∫
p2<0

dDp

(2π)D

[
1

g
(D)
ρ (p)

− 1

g
(D)
ρ (p)

]
eip·(x−y) , (3.43)
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where the second equality is true because g
(D)
ρ (p) is real for space-like momenta. (Note

that the 1
a

term contributes only when x = y.) In what follows, we let

ρ−2/Dg(D)
ρ (p) ≡ g̃(Z), (3.44)

as given in the right hand side of (3.26).

The integral in (3.43) can be divided into two integrals over p0 > 0 and p0 < 0. For a

fixed sign of p0, g
(D)
ρ (p) is only a function of p · p, making (3.43) the Laplace transform of

a Lorentz-invariant function. Similarly to how we derived (3.25), we use the result of [31]
to compute G(x− y):

ρ2/DG(x− y)
x�y
=

2

π(2π)D/2

∫ ∞
0

dξ ξD/2

× Re

[(√
s2
ε

)1−D
2
KD

2
−1(
√
s2
ε ξ)

(
1

g̃(−ξ2 + iε)
− 1

g̃(−ξ2 + iε)

)]
,

(3.45)

where s2
ε = −(tx − ty + iε)2 + |~rx − ~ry|2 and ε is a small positive number which should be

taken to zero at the end of calculations. When x − y is timelike and future-directed, we
can let

√
s2
ε = −iτxy where τxy > 0. Using properties of Bessel functions (see e.g. 10.27.9

of [30]), (3.45) can be simplified into the following form for even D:

ρ2/DG(x− y)
x�y
=
−i(−1)

D
2 τ

1−D
2

xy

(2π)D/2

∫ ∞
0

dξ ξD/2

(
1

g̃(−ξ2 + iε)
− 1

g̃(−ξ2 + iε)

)
JD

2
−1(τxyξ)

=
2(−1)1+D

2 τ
1−D

2
xy

(2π)D/2

∫ ∞
0

dξ ξD/2
Im [g̃(−ξ2 + iε)]

|g̃(−ξ2 + iε)|2
JD

2
−1(τxyξ). (3.46)

Using (x/2)1−D/2JD
2
−1(x)

x→0−−→ Γ(D/2)−1 (see e.g. 10.2.2 of [30]) and the fact that Im [g̃(−ξ2 + iε)]

is exponentially damped for large ξ (see Appendix B.2.1), it can be verified that

lim
x→y

ρ2/DG(x− y) =
22−D

2 (−1)1+D
2

(2π)
D
2 Γ(D

2
)

∫ ∞
0

dξ ξD−1 Im [g̃(−ξ2 + iε)]

|g̃(−ξ2 + iε)|2
. (3.47)

Thus G(x− y) approaches a constant in the coincidence limit.6 Strictly speaking, the dis-
cussion above only analyzes the behavior of G(x−y) as τxy approaches 0, and consequently
it does not exclude the presence of terms which blow up discontinuously on the light cone,
such as δ(τ 2

xy). However, a similar treatment for the case where x − y 6= 0 is null rather
than timelike removes this loophole.

6One can understand intuitively why GR(x− y) is the sum of a δ-function with a bounded remainder
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3.3.4 A Possible Regularization Scheme for Quantum Field Theoy

As was shown in the previous Section, changing the usual d’Alambertian to the nonlocal
operator �(D)

ρ makes the coincidence limit more divergent, rather than smoothing it out as
one might have initially expected. But it does so in an interesting way: all the divergences
have now been absorbed into one δ-function at x = y. This feature has a natural application
as a regularization tool for quantum field theory. In any QFT based on �(D)

ρ , one would
expect the propagator associated with internal lines in Feynman diagrams to have the same
UV behaviour as (3.37). Subtracting the constant term in (3.37) (which corresponds to
subtracting a δ-function in real space) would then render all loops finite. This would be a
genuinely Lorentzian regulator, with no need for Wick rotation. It would also be physically
motivated, with the “UV completion” being understood as a theory on the causal set. It
would be interesting to apply this technique to the renormalization of some well-understood
scalar field theories.

3.3.5 Stability

Is the evolution defined by �(D)
ρ stable? As we discussed in Section 3.2.1, instabilities are

in general associated with “unstable modes”, and we agreed to use this as our criterion of
instability for purposes of this paper. More specifically, we took such a mode to be a plane-
wave Φ(x) = eip·x satisfying the equation of motion �(D)

ρ Φ(x) = 0, with the wave-vector p
possessing a future-directed timelike imaginary part (i.e. p = pR + ipI where pI · pI < 0
and p0

I > 0).

The necessary and sufficient condition for avoiding unstable modes is then

g̃(Z) 6= 0 , ∀ Z 6= 0, (3.48)

where g̃(Z) is defined in (3.44). Let us argue why this is the case. First observe that
plane solutions of our wave-equation correspond exactly with zeros of g̃(Z). If the above
condition is verified, then the only such zero is at Z = 0, just as for the usual d’Alembertian.
But we know (as is also easy to demonstrate ab initio) that there are no unstable modes

by noticing that (up to an overall numerical factor) our nonlocal d’Alembertian operator has the form
1 − S, where the ‘1’ corresponds to the first term in (3.3) or (3.20) and the remainder S is given by
an integral-kernel which is both bounded and retarded. The inverse operator GR would then be GR =
(1−S)−1 = 1 +SGR = 1 +S +S2 +S3 · · · , a series that should converge sufficiently near to x = y. Since
the operator 1 is represented by a term of δ(x− y) in GR(x− y), one sees that GR(x− y) is the sum of a
δ-function with a term involving only smooth bounded functions.
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in the usual case. Conversely, when the above condition is violated for some complex
Z 6= 0, it is always possible to find a corresponding p with a timelike and future-directed
imaginary part which satisfies p · p = ρ

2
DZ. To see this, we let p = pR + ipI and take

pR =< π0
R, ~πR > and pI =< πI ,~0 > with πI > 0. This is always possible because pI is

timelike and future-directed. The equations that need to be satisfied are

pR · pR − pI · pI = ρ
2
DRe(Z), 2pR · pI = ρ

2
D Im(Z). (3.49)

Substituting for pI leads to

π0
R =

ρ
2
D Im(Z)

−2πI
, |~πR|2 = ρ

2
DRe(Z) +

ρ
4
D Im(Z)2

4π2
I

− π2
I . (3.50)

This system of equations always has a solution. In fact, there is a whole family of such
unstable modes parametrized by πI . Note however that the condition |~πR|2 > 0 puts an
upper bound on the value of πI , and therefore on the growth rate of such an instability.

We have thus reduced the question of whether or not �(D)
ρ has unstable modes to the

question of whether g̃(Z) has zeros other than Z = 0 in the complex plane. We can answer
this question by counting the zeros of g̃(Z) with the aid of the “argument principle” of
complex analysis:

1

2πi

∮
C

g̃′(Z)

g̃(Z)
dZ = N − P, (3.51)

where N and P are the number of zeros and poles, respectively, inside of the closed contour
C, which we choose as shown in Figure 3.4b. The number of poles inside C is zero because
all terms appearing in g̃(Z) are finite in that region (at least when Lmax is finite). As
shown in Figure 3.4b, the path of integration C comprises four pieces: C2 and C4 run from
−∞ to 0 a distance ε above and below the negative real axis respectively, C3 is a semicircle
of radius ε about the origin, and C1 is (almost) a circle whose radius should be taken to
infinity. For large Z we have from (3.34),

g̃′(Z)

g̃(Z)

Z→∞−−−→ −D2D−1π
D
2
−1Γ(D/2)

2a
b0Z

−D
2
−1 + · · · , (3.52)

and it follows that ∫
C1

g̃′(Z)

g̃(Z)
dZ = 0. (3.53)
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(We remind the reader of our standing assumption that a 6= 0. See the remarks following

(3.37).) On the other hand the IR behaviour, g̃(Z)
Z→0−−−→ −Z, leads to∫

C3

g̃′(Z)

g̃(Z)
dZ = iπ. (3.54)

Also, because g̃(x+ iε) = g̃(x− iε) for x < 0:∫
C2+C4

g̃′(Z)

g̃(Z)
dZ = 2i

∫
C2

Im

[
g̃′(Z)

g̃(Z)

]
dZ. (3.55)

Performing this last integral will allow us to determine whether �(D)
ρ has unstable modes

or not.

Given a choice of the parameters a and bn, the last integral can be computed numeri-
cally. In the minimal 4D case discussed in Section 3.2.2, we find that �(4)

ρ has precisely two
“unstable zeros”. (Notice that because g̃(Z̄) = g̃(Z), if Z is a zero of g̃(Z), so also is Z̄.)
We have located these zeros numerically, as shown in Figure 3.3a. With different choices
of the parameters {a, bn}, the number of zeros can change, but we have not been able to

find any choice that would make �(4)
ρ stable. It would be interesting to find an analytical

method to check for stability.

3.4 Summary and Remarks

We have defined an infinite family of scalar-field operators on causal sets which we dubbed
Generalized Causet Box (GCB) operators. For causal sets made by sprinklingD-dimensional
Minkowski space MD, these operators reproduce the usual d’Alembertian � = ∇µ∇µ when
one averages over all sprinklings and takes the limit of infinite sprinkling-density ρ. If, on
the other hand, one averages over all sprinklings while holding ρ fixed, one obtains an in-
tegral operator �(D)

ρ in MD which is manifestly Lorentz-invariant, retarded, and nonlocal,
with the degree of nonlocality set by ρ. In the present Chapter, we have been concerned
primarily with these continuum operators, whose nonlocality can be regarded as a “meso-
scopic” residue of the underlying causal set discreteness.

The GCB operators B
(D)
ρ and their continuum averages �(D)

ρ are parametrized by a
set of coefficients, and we derived the equations in these coefficients which ensure that
� is recovered in the infrared limit. The minimal solutions of these equations turned
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out to reproduce the original operators proposed in [26]. We also computed the Fourier

transform of �(D)
ρ , or equivalently its “spectrum of eigenvalues” obtained by applying it

to an arbitrary plane wave. For spacelilke momenta the spectrum is real. For timelike
momenta it contains also an imaginary part, which changes sign under interchange of past
with future. The UV behaviour of the spectrum differs from that of � in a way which led
us to propose a genuinely Lorentzian, perturbative regulator for quantum field theory.

We also studied the question of whether the evolution defined by the continuum-
averaged GCB operators is stable. This is of interest in relation to nonlocal field theo-
ries based on �(D)

ρ ; it can also serve as an indicator of the stability or instability of the

corresponding causet operator B
(D)
ρ . The continuum-average of the minimal 2D causal

set d’Alembertian was shown to be stable by a direct proof. In 4D we did not settle the
question analytically, but we devised a numerical diagnostic that applies to all the opera-
tors �(D)

ρ , and which disclosed a pair of unstable modes when applied to the minimal 4D
causal set d’Alembertian. Are any of the continuum-averaged GCB operators stable in
3 + 1 dimensions? We were not able to find any, but there are an infinite number of such
operators and a definitive search could only be conducted by analytical means.7 Finally, it
bears repeating that there might be more reliable indicators of instability than simply the
existence of an exponentially growing plane-wave solution, which a priori tells us nothing
about the behavior of solutions of limited spatial extent. For that reason, it would be
worthwhile to analyze directly the late-time behavior of the Green function GR(x − y)

which is inverse to �(D)
ρ . If it were bounded that would imply stability, and if it grew

exponentially, that would imply instability.

Our results also suggest other problems for further work. It would be interesting,
for example, to work out the continuum-averaged GCB operators in curved spacetimes.
It was found in [27] that the minimal 4D operator has the following limit as ρ → ∞:

�(4)
ρ Φ→ �Φ− 1

2
RΦ, where R is the Ricci scalar. (In fact one obtains the same limit in all

dimensions D [29].) Would this feature persist for all of the GCB operators? This feature
has also been used to define an action-functional for causal sets [27]. A final question then
is whether the instability found above has any consequences for this causal set action?

In the next Chapter, we review quantizing a nonlocal field theory of this type and
explain how this could potentially address one of the problems in fundamental physics,
namely the origin of dark matter.

7Also interesting would be an unstable operator whose corresponding growth-time was either very large
(cosmological) or very small (Plankian). In the former case, the instability would be irrelevant physically,
in the latter case it might still be compatible with stability of the corresponding discrete evolution. We
were not able to find any such operator in 4D either.
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Chapter 4

Dark Matter From Spacetime
Nonlocality

4.1 Introduction

The nature of dark matter is one of the most important problems in modern physics.
Almost a century after it was hypothesized, though, our understanding of it is still limited
to its gravitational signature on luminous matter. It is often assumed that dark matter is
a new weakly interacting particle which is just hard to detect. However, so far there has
been no conclusive direct or indirect detection in accelerators or cosmological/astrophysical
settings. In what follows, we propose that dark matter is not yet another new particle in
nature, but that it is a remnant of quantum gravitational effects on known fields. We arrive
at this possibility in an indirect and surprising manner: by considering retarded, nonlocal,
and Lorentzian evolution for quantum fields. Concretely, we study the consequences of
replacing the d’Alembertian � with an operator �̃ which is Lorentz invariant, reduces to
� at low energies, and defines a retarded evolution: (�̃φ)(x) only depends on φ(y), with y
is in the causal past of x. Why is this type of evolution interesting, what does it have to do
with quantum gravity, and how does it lead to a proposal for the nature of dark matter?

The causal set theory approach to quantum gravity postulates that the fundamental
structure of spacetime is that of a locally finite and partially ordered set [12]. Its marriage
of discreteness with causal order implies that physics cannot remain local at all scales. This
nonlocality manifests itself concretely, for instance, when one seeks to describe the wave
propagation of a scalar field on a causal set. As we showed in Chapter 3 coarse-graining the
quantum gravitational degrees of freedom leads to a nonlocal field theory described by an

45



operator exactly of the type �̃ [32, 33, 34, 35, 36]. There are reasons to suspect that this
type of nonlocality is not necessarily confined to the Planck scale, and that it may have
nontrivial implications for physics at energy scales accessible by current experiments (see
[37, 38] and references therein for implications of nonlocality in the context of cosmology).

It is then only natural to wonder what a quantum field theory built upon �̃ would look like,
especially that it may contain information about the fundamental structure of spacetime.

Studying �̃ is also interesting from a purely field-theoretic perspective, since it forces
us to relax one of the core assumptions of quantum field theory: locality. Most nonlocal
and Lorentzian quantum field theories studied in the literature consider modifications of
the type � → f(�). In this paper, we consider explicitly retarded operators, which are
more generic and have more interesting properties as a result. For instance, the Fourier
transform of �̃ is generically complex, which is a direct consequence of retarded evolution.
In fact, this feature is at the heart of our proposal for the nature of dark matter. It is also
worth mentioning that quantizing a field theory of the type described here is non-trivial
due to the absence of a local action principle. This presents a technical challenge, from
which one may gain deeper insight into quantization schemes.

What is the relation between a quantum field theory based on �̃ and dark matter?
Upon quantizing a free massless scalar field φ(x) with the classical equation of motion

�̃φ(x) = 0, we find off-shell modes in the mode expansion of the quantized field operator

φ̂(x). These are modes which do not satisfy any dispersion relation, unlike in usual local
quantum field theory (LQFT) where every Fourier mode with four-momentum p is an
on-shell quanta, i.e. it satisfies p · p = 0.1 This is equivalent to the statement that
the quantized field operator does not generically satisfy the classical equation of motion:
�̃φ̂(x) 6= 0. Note that an off-shell mode of a massless scalar field has an effective mass, and
can be thought of as a massive quanta in itself. We show that the off-shell modes can exist
in “in” and “out” states of scattering, and are different from virtual particles which exist
as intermediate states in Feynman diagrams. When considering the interacting theory,
we find an extremely surprising result: the cross-section of any scattering process which
contains one or more off-shell particle(s)2 in the “in” state is zero. That is to say, on-shell
quanta can scatter and produce off-shell particles, but once produced, off-shell particles no
longer interact. It is this behaviour that makes these off-shell particles a natural candidate
for dark matter. The phenomenological story would be that dark matter particles were
produced in the early universe in this fashion: as off-shell modes of quantum fields. This
feature of the theory can be traced back to the fact that �̃ defines an explicitly retarded

1 We use a signature of −+ ++ for the Minkowski metric ηµν . Also, p1 · p2 ≡ ηµνpµ1pν2 .
2In the quantum theory, an off-shell particle is 1-particle quantum state with a well-defined (non-zero)

mass and momentum, i.e. a massive eigenstate of Hamiltonian and momentum operator.
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evolution, which as mentioned previously, may be a remnant of quantum gravitational
degrees of freedom.

This Chapter is organized as follows. In Section 4.2, we start by setting forth a series of
axioms which any non-local, retarded, and Lorentzian modification of � at high energies
should satisfy. In Section 4.3, we argue there is no action principle for the theory of interest,
which forces us to carefully study, in Section 4.4, what quantization scheme should be used.
There, we argue that canonical quantization and the Feynman path-integral approach do
not work, and explain why the Schwinger-Keldysh (also known as the double path integral
or in-in) formalism provides the appropriate framework. Sections 4.5 and 4.6 describe
the interacting theory, where we work out the modified Feynman rules, find S-matrix
amplitudes, and compute cross-sections for various examples and comment on the time
reversibility of the theory. Although a continuum superposition of off-shell particles can in
principle scatter into on-shell modes, we argue why this is unlikely to happen. Extension
to massive scalar fields is discussed in 4.7. Section 5.5 concludes the paper.

4.2 Modified d’Alembertian: Definition

In this section we study generic spectral properties of non-local and Lorentzian modifica-
tions of the d’Alembertian �. We focus on a class of operators �̃ which defines an explicitly
retarded evolution: (�̃φ)(x) depends only on φ(y) with y in the causal past of x. As we
will see, such operators have interesting features which are absent in modifications of the
type f(�).3 We start by setting forth a series of axioms which a non-local, retarded, and
Lorentzian modification of � at high energies should satisfy:

1. Linearity:
�̃(aφ+ bψ) = a�̃φ+ b�̃ψ, a, b ∈ C, (4.1)

where φ and ψ are complex scalar fields and C denotes the set of complex numbers.

2. Reality: for any real scalar field φ, �̃φ is also real. Note that reality and linearity
imply for any complex scalar field φ that

(�̃φ∗) = (�̃φ)∗, (4.2)

where ∗ denotes complex conjugation.

3f(x) being an analytic function of x.
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3. Poincare-invariance: evolution defined by �̃ is Poincare-invariant. Consider a
scalar field φ(x) which transforms to φ′(x) = φ(Λ−1x) under a Poincare transforma-

tion x→ Λx. We require �̃ to be invariant under the action of Λ:

(�̃φ′)(x) = (�̃φ)(Λ−1x). (4.3)

Taking Λ to be a spacetime translation Λ(x) = x+a, one finds that the eigenfunctions

of �̃ are plane waves. To see this, let φ(x) = eip·x and define ψ(x) ≡ (�̃φ)(x). It
then follows from (4.3) that

e−ip·aψ(x) = ψ(x− a), (4.4)

where we have used the linearity condition. Solutions to the above equation are plane
waves:

ψ(x) = �̃eip·x = B(p)eip·x, (4.5)

where B(p) is any function of the wave-vector p. Therefore, it follows from transla-

tional invariance that eip·x is an eigenfunction of �̃ with the corresponding eigenvalue
B(p) . Taking Λ to be a Lorentz transformation, it can be shown that B(p) can only
depend on the the Lorentzian norm of p, i.e. p · p ≡ ηµνp

µpν , and whether or not p
is future or past directed, i.e. sgn(p0):

B(p) = B(sgn(p0), p · p). (4.6)

Combining (4.5) and (4.2) we find B(−p) = B∗(p), which using (4.6) is equivalent to

B(−sgn(p0), p · p) = B(sgn(p0), p · p)∗. (4.7)

For a spacelike wave-vector pµ, it is always possible to find a coordinate system in
which p0 = 0. As a result, B(p) is real for spacelike p. For timelike momenta,
however, B(p) may be complex and its imaginary part changes sign when p0 → −p0.

Most nonlocal modifications of � considered in the literature are of the form f(�),
in which case B(p) is only a function of p · p. In this paper we focus on a class of
nonlocal operators for which B(p) does depend on sgn(p0), and find many interesting
consequences as a result.

4. Locality at low energies: since � provides a good description of nature at low
energies, we require �̃→ � in this regime. In other words, expanding B(sgn(p0), p·p)
for “small” values of p · p, we require the leading order behaviour to be that of �:

B(p)
p·p→0−−−→ −p · p. (4.8)

Note that by a “small” value of p · p, we mean in comparison to a scale which can be
interpreted as the non-locality scale, implicitly defined through �̃.
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5. Stability: we require that evolution defined by �̃ is stable. This condition implies
that B(p), when analytically continued to the complex plane of p, only has a zero at
p · p = 0 [33].

6. Retardedness: (�̃φ)(x) only depends on φ(y), with y is in the causal past of x.

Let us briefly consider a class of operators which satisfy all the aforementioned axioms.
We shall let Λ denote the nonlocality energy scale and define

Λ−2(�̃φ)(x) = aφ(x) + Λ4

∫
J−(x)

f(Λ2τ 2
xy)φ(y)d4y, (4.9)

where a is a dimensionless real number, J−(x) denotes the causal past of x, and τxy is the
Lorentzian distance between x and y:

τ 2
xy = (x0 − y0)2 − |x− y|2. (4.10)

Examples of such operators have arisen in the causal set theory program [32, 33, 34, 35, 36]
(see the previous Chapter). This operator is clearly linear, real, Poincare-invariant and

retarded. It is shown in Appendix C.1 that there are choices of a and f for which �̃ is also
stable and has the desired infrared behaviour (4.8). One such choice is

f(s) =
4

π
δ(s− ε)− e−s/2

4π
(24− 12s+ s2), a = −2, (4.11)

where ε is an infinitesimally small positive number.

The eigenvalues B(p) of �̃ take the form (see [33])

Λ−2B(p) = lim
ε→0+

g((p+ ipε) · (p+ ipε)/Λ
2), (4.12)

g(Z) = a+ 4πZ−
1
2

∫ ∞
0

f(s2)s2K1(Z1/2s)ds, (4.13)

where pε is an infinitesimally small (pε · pε = −ε2), timelike, and future-directed (p0
ε > 0)

wave-vector. The analytic structure of B(p) is shown in Figure 4.1. Figure 4.2 shows the
behaviour of B(p) as a function of p ·p and sgn(p0) for the choice of f and a given in (4.11).
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Figure 4.1: Analytic structure of B(p) in the complex plane of Z = p · p/Λ2
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Figure 4.2: The Fourier transform B(p) = g(p · p/Λ2) of �̃ defined in (4.9), where a and f
are given by (4.11).
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4.3 Classical Theory

How would such non-local and retarded evolution manifest itself? To get a start on an-
swering this question, we modify the evolution of a massless scalar field φ coupled to a
source J(x) via �→ �̃:

�φ(x) = J(x)→ �̃φ(x) = J(x). (4.14)

It is worth noting that the solutions of �̃φ(x) = 0 are identical to those of �φ(x) = 0.

This follows from requiring a stable evolution for �̃ (see [33]). As we will see in Section
4.3.2, however, the story changes when J(x) 6= 0.

4.3.1 Absence of an action principle

It is natural to ask whether an action principle exists for φ, whose variation would produce
the non-local equation of motion �̃φ(x) = J(x). One might propose to substitute � with

�̃ in the action of a massless scalar field:

S[φ] =

∫
d4x

(
1

2
φ(x)�̃φ(x)− J(x)φ(x)

)
. (4.15)

Requiring S[φ] to be stationary with respect to first order variations in φ we find 4

1

2
(�̃+ �̃T )φ(x) = J(x), (4.19)

where �̃T is defined in Fourier space via

�̃T eip·x = B(p)∗eip·x. (4.20)

4 To see this, it is instructive to express the action in Fourier space. Define the Fourier transform f(p)
of f(x) via

f(x) =

∫
d4p

(2π)4
f(p)eip·x. (4.16)

Then, it can be shown that

S =

∫
d4p

(2π)4

[
φ(p)∗

1

4
(B(p) +B(p)∗)φ(p)− φ(p)∗J(p)

]
. (4.17)

Requiring S to be stationary with respect to first order variations φ(p) we find

1

2
(B(p) +B(p)∗)φ(p) = J(p). (4.18)
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In the case of the retarded operator (4.9), for instance, �̃Tφ(x) is the right hand side of
(4.9) with the domain of integration changed to the causal future of point x. Therefore,
(4.15) does not lead to a retarded equation of motion.

Due to the absence of a local Lagrangian description, quantizing a massless scalar field
theory built upon �̃ is non-trivial. We shall address this problem in Section 4.4, where we
argue that the the Schwinger-Keldysh quantization scheme can still be used to obtain the
desired non-local quantum field theory.

4.3.2 Green’s function

The Green’s functions of � and �̃ are quite different, especially in the ultraviolet (UV)

where their spectra differ. One important difference is that �̃ , unlike �, has a unique
inverse. Since �̃ is a retarded operator by definition, it only has a retarded Green’s function.
Recall that � has both a retarded GR(x, y) and advanced GA(x, y) Green’s function:

�xG
R,A(x, y) = δ(4)(x− y), (4.21)

which satisfy the following “boundary conditions”: GR(x, y) vanishes unless x � y (x is in
the causal future of y), and GA(x, y) vanishes unless y � x. The two Green’s functions are

related to one another via GA(x, y) = GR(y, x). In the case of �̃, Green’s function is unique
(just the retarded one) and switching the arguments of the retarded Green’s function does
not produce another Green’s function. Let us show why this is.

Let G̃(x, y) denote the Green’s function associated with �̃:

�̃xG̃(x, y) = δ(4)(x− y), (4.22)

Note that G̃(x, y) can be expressed as

G̃(x, y) =

∫
d4p

(2π)4

1

B(p)
eip·(x−y). (4.23)

The path of integration in the complex p0 plane is shown in Figure 4.3. This comes from
the fact that �̃ is a retarded operator, so B(p) analytically continued to the complex p0

plane takes its value above the cut. When B(p) has no zeros in complex plane apart from
at p ·p = 0, which is guaranteed by the stability requirement, this choice of contour ensures
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Im(p0 )

Figure 4.3: The integration path in the complex p0 plane which defines the retarded Green’s
function associated with �̃.

that G̃(x, y) ≡ G̃R(x, y) is indeed retarded. Switching the arguments of G̃R(x, y), we find

G̃R(y, x) =

∫
d4p

(2π)4

1

B(p)
eip·(y−x) (4.24)

=

∫
d4p

(2π)4

1

B(−p)
eip·(x−y) (4.25)

=

∫
d4p

(2π)4

1

B(p)∗
eip·(x−y), (4.26)

where in the second line we have changed integration variables from p to −p. Then

�̃xG̃
R(y, x) =

∫
d4p

(2π)4

B(p)

B(p)∗
eip·(x−y) 6= δ(4)(x− y), (4.27)

since B(p) is generically complex. As we will see in the sections to come, the fact that �̃
has a unique inverse plays a crucial role in the quantum theory of �̃.
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4.4 Quantum Theory

We wish to construct a quantum theory of a massless scalar field φ whose classical limit re-
produces the retarded evolution induced by �̃. The quantization scheme which we believe
is most suited in this case is the Schwinger-Keldysh (or double path integral) formalism.
In what follows, we will first review the usual paths to quantization (i.e. canonical quan-
tization and the Feynman path integral) and show why they fail in the case of a non-local

and retarded operator like �̃. The goal of these discussions is to make clear why we choose
the Schwinger-Keldysh formalism to construct a quantum field theory based on �̃.

4.4.1 Canonical quantization

Let us consider the canonical quantization of a free massless scalar field φ. The typical route
to quantization is as follows: start from an action principal for φ, derive the Hamiltonian
in terms of φ and its conjugate momentum, impose equal-time commutation relations, and
finally specify the dynamics via the Heisenberg equation. There is an equivalent approach,
however, which defines the theory with no reference to an action principle, using the Klein-
Gordon equation supplemented by the so-called Peierls form of the commutation relations:

�φ̂(x) = 0 (4.28)

[φ̂(x), φ̂(y)] = i∆(x, y), (4.29)

where ∆(x, y) is the Pauli-Jordan function:

∆(x, y) = GR(x, y)−GA(x, y)

= GR(x, y)−GR(y, x). (4.30)

It is well known that (4.29) is entirely equivalent to, but more explicitly covariant than,
the more commonly seen equal-time commutation relations (see e.g. Section C.2 of [16]).
Since ∆(x, y) is the difference of two Green’s functions, it satisfies the equation of motion:

�x∆(x, y) = 0. (4.31)

This is why (4.28) and (4.29) are consistent with one another: both the left and right hand
side of (4.29) vanish when �x is applied.

It is tempting to build the quantum theory of �̃ in a similar fashion:

�̃φ̂(x) = 0 (4.32)

[φ̂(x), φ̂(y)] = i∆̃(x, y) ≡ i(G̃R(x, y)− G̃R(y, x)). (4.33)
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In this case, however, ∆̃(x, y) does not satisfy the equation of motion (�̃x∆̃(x, y) 6= 0)

because G̃R(y, x) is not a Green’s function of �̃ (see Section 4.3 and (4.27)). Therefore,
the equation of motion (4.32) is not consistent with the commutation relations (4.33).

It is worth noting that the root of this inconsistency is that the Fourier transform B(p)

of �̃ is complex, which in turn follows from the fact that �̃ is retarded by definition. In
Section 4.4.3 we will arrive at a consistent quantum theory via the Schwinger-Keldysh
formalism, using which we also build a Hilbert space representation of the theory. There
we will see that the equation of motion (4.32) is given up in favour of the commutation
relations (4.33). As it turns out, the degree to which (4.32) is violated depends on the
imaginary part of B(p).

4.4.2 Feynman path integral

The Feynman path integral formalism requires a local Lagrangian description for the scalar
field φ. As was argued in Section 4.3.1, however, this is not viable if one requires a retarded
equation of motion. Therefore, the Feynman path integral formalism is also not suitable
for quantizing this theory.

4.4.3 Schwinger-Keldysh formalism

The Schwinger-Keldysh formalism has a natural way of incorporating a retarded operator.
In this approach an amplitude (called the decoherence functional D(φ+, φ−)) is assigned
to a pair of paths (φ+, φ−), which are constrained to meet at the final time (φ+(tf ,x) =
φ−(tf ,x)). The decoherence functional for a free massless scalar field takes the form

D(φ+, φ−) = Exp

[
i

∫
d4x

1

2
φq�Rφcl +

1

2
φcl�Aφq +

1

2
φq�Kφq

]
, (4.34)

where

φcl ≡ 1√
2

(
φ+ + φ−

)
, (4.35)

φq ≡ 1√
2

(
φ+ − φ−

)
. (4.36)

In (4.34), �R is the retarded d’Alembertian, �A = (�R)† is the advanced d’Alembertian,
and �K is an anti-Hermitian operator which contains information about the initial wave
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function [39].5 Any source term J(x) can be included by adding −Jφ+ + Jφ− = −
√

2Jφq

to the integrand.

Any n-point function in this theory is given by

〈 φ(α1)(x1) · · ·φ(αn)(xn)〉

=

∫
Dφ+Dφ−φ(α1)(x1) · · ·φ(αn)(xn)D(φ+, φ−), (4.37)

where αi ∈ {+,−, q, cl}. These correlation functions are related to the correlation functions
in Hilbert space representation by the following rule:

〈 φ+(x1) · · ·φ+(xn)φ−(y1) · · ·φ−(ym)〉

= 〈0|T̃
[
φ̂(y1) · · · φ̂(ym)

]
T
[
φ̂(x1) · · · φ̂(xn)

]
|0〉 (4.38)

where T (T̃ ) is the (anti) time-ordered operator, and |0〉 is the vacuum state of the free
theory.

In order to come up with a quantum theory for a non-local retarded operator, we replace
�R with �̃ in (4.34) (and �K with �̃K).6

Classical limit

Before going any further, let us take a look at the classical limit of this theory. Performing
Gaussian integrals (in the presence of a source term), we get

〈φcl(x)〉 =
1√
2

∫
d4y G̃R(x, y)J(y), (4.39)

〈φq(x)〉 = 0, (4.40)

resulting in

〈φ+(x)〉 = 〈φ−(x)〉 =

∫
d4y G̃R(x, y)J(y). (4.41)

It shows that in the classical limit where the field is represented by its expectation value,
there is no difference between φ+ and φ− and both satisfy the retarded equation of motion
�̃φ = J .

5 The retarded and advanced d’Alembertians are defined via GR,A(�R,Af) = f for all suitable test
functions f , where GR,A are the integral operators associated with the retarded and advanced Green’s
functions GR,A(x, y).

6We still need to determine �̃K . This has been done in 4.4.3.
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Green’s functions

Let us consider the two point correlation functions of this theory in the absence of any
source

−i 〈φcl(x)φq(y)〉 = G̃R(x, y) (4.42)

−i 〈φq(x)φcl(y)〉 ≡ G̃A(x, y) = G̃R(y, x) (4.43)

−i 〈φcl(x)φcl(y)〉 ≡ G̃K(x, y)

= −
∫
d4zd4w G̃R(x, z)B̃K(z, w)G̃A(w, y) (4.44)

−i 〈φq(x)φq(y)〉 = 0 (4.45)

where B̃K(x, y) is the kernel of �̃K . 7 Using the definition of φq and φcl, we get

− i〈φ+(x)φ+(y)〉 =
1

2

[
G̃K(x, y) + G̃R(x, y) + G̃A(x, y)

]
, (4.46)

− i〈φ−(x)φ−(y)〉 =
1

2

[
G̃K(x, y)− G̃R(x, y)− G̃A(x, y)

]
, (4.47)

− i〈φ−(x)φ+(y)〉 =
1

2

[
G̃K(x, y) + G̃R(x, y)− G̃A(x, y)

]
. (4.48)

Note that if this theory has an equivalent representation in terms of field operator in
a Hilbert space, then the above mentioned terms correspond to time-ordered two point
function, anti time-ordered two point function and two point function respectively (see
(4.38)).

We require that the theory describes a free scalar field in flat space-time at its ground
state. As a result, all n-point correlation functions of this theory must be translation
invariant,

〈φ(α1)(x1) · · ·φ(αn)(xn)〉 = 〈φ(α1)(x1 + y) · · ·φ(αn)(xn + y)〉. (4.49)

This condition requires that all operators �̃, �̃† and �̃K must be translation invariant.
Consequently, we get

�̃Keip·x = B̃K(p)eip·x, (4.50)

G̃K(x, y) = −
∫

d4p

(2π)4
G̃R(p)B̃K(p)G̃A(p)eip·(x−y) (4.51)

7If δy(x) ≡ δ(4)(x − y), then B̃K(x, y) ≡ (�̃Kδy)(x). With this definition, (�̃Kφ)(x) =∫
d4yB̃K(x, y)φ(y).
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Note that �̃K is an anti-Hermitian operator. It means B̃K(p) is a total imaginary number

(and G̃K(p) ≡ −G̃R(p)B̃K(p)G̃A(p) is also total imaginary since G̃R(p)G̃A(p) is real.)

Fixing G̃K

From here on, we assume that there is a Hilbert space representation of this theory with a
Hamiltonian evolution. We will justify this assumption later by finding the representation
itself. In Appendix C.2 we show that this assumption leads to the following relation, when
the quantum system is in its ground state

G̃K(p) = sgn(p0)
[
G̃R(p)− G̃A(p)

]
. (4.52)

Note that (4.52) is nothing but the fluctuation dissipation theorem (FDT) at zero temper-

ature. This fixes the eigenvalues of �̃K as follows:

B̃K(p) = 2iImB(p)sgn(p0) (4.53)

Hilbert space representation

We wish to find an equivalent Hilbert space representation in terms of a field operator
φ̂(x) for this theory. As we mentioned earlier, (4.48) is the two point function of such a
representation,

W (x, y) ≡ 〈0|φ̂(x)φ̂(y)|0〉 = 〈φ−(x)φ+(y)〉, (4.54)

where |0〉 is the ground state. If we use (4.48) and (4.52), we arrive at

W (x, y) =

∫
d4p

(2π)4

2Im[B(p)]θ(p0)

|B(p)|2
eip·(x−y), (4.55)

where we call W̃ (p) ≡ 2Im[B(p)]θ(p0)
|B(p)|2 . Since W (x, y) is a positive operator, Im[B(p)]θ(p0)

must be a non-negative number. So, we further assume

sgn (Im[B(p)]) = sgn(p0). (4.56)

Once this condition is satisfied, the field operator φ̂(x) and ground state |0〉, defined to
be

φ̂(x) =

∫
d4p

(2π)2

√
W̃ (p)

(
âpe

ip·x + â†pe
−ip·x) , (4.57)

[âp, âq] = δ(4)(p− q), (4.58)

âp|0〉 = 0 ∀p, (4.59)
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yield the desired correlation functions.

Note that ap is only defined for time-like future-directed p, because otherwise W̃ (p) is
zero in the field expansion. It means that all time-like future-directed (positive energy)
momenta contribute to the field expansion (4.57).

Hamiltonian

By definition, time evolution operator is the operator that evolves φ̂(x) in time,

φ̂(t,x) = Û(t, t0)φ̂(t0,x)Û †(t, t0). (4.60)

It can be directly checked that

Û(t, t0) = e−iĤ0(t−t0), (4.61)

Ĥ0 =

∫
d4p p0â†pâp, (4.62)

gives the right time evolution.

State |0〉 defined in (4.59) is the ground state of this Hamiltonian. Excited states
(n-particle states) can be built by acting a†’s on |0〉,

|p1 · · · pn〉 = â†p1
· · · â†pn|0〉. (4.63)

The excited state |p〉 represents a particle with energy p0 and momentum p8 where p0 is
independent of p9. This shows that the theory contains a continuum of massive particles
with positive energy. The existence of a continuum of massive particles in the context of
Causal Set theory also has been pointed out in [40], although their result is rather different
in some other aspects.

Comparison to local evolution

At this point, it would be illustrative to consider the result of this formalism for LQFT.
In this case

B(p) = Blocal(p) = (p0 + iε)2 − |p|2, (4.64)

8Momentum operator P̂ ≡
∫
d4p p â†pâp is the generator of spacial translation.

9Note that these states are different from the usual states |p〉 used in LQFT which describe a particle
with momentum p and energy |p|.
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where ε is a small positive number taken to zero at the end of calculation. The two point
function is given by

W̃ (p) = 2
εp0

(p2)2 + (εp0)2
θ(p0) = 2πδ(p2)θ(p0). (4.65)

As a result,

W (x, y) =

∫
d4p

(2π)4
2πδ(p2)θ(p0)eip·(x−y), (4.66)

φ̂(x) =

∫
d4p

(2π)2

√
2πδ(p2)θ(p0)

(
âpe

ip·x + â†pe
−ip·x) . (4.67)

Two point function and field expansion are exactly the ones we expected. Only on-shell
particles (p · p = 0) contribute to the field expansion.

Here, we see one important difference between local and retarded non-local evolution.
In the local case, only on-shell modes (p · p = 0) contribute to the field expansion. As a
result, excited states of the theory consist of all on-shell particles. In non-local retarded
case (where generically Im[B(p)] 6= 0), off-shell modes (p ·p 6= 0) also contribute to the field
expansion. Consequently, one expect the existence of off-shell modes in ”in” and ”out”
state of scatterings in the interacting theory.

Let us investigate properties of W̃ (p) for a generic non-local retarded operator. First
of all, it is only non-zero for time-like future-directed momenta. This means that only
time-like future-directed momenta contribute to the field expansion and can exist in ”in”
and ”out” state (particles with time-like momentum and positive energy).

Considering that B(p) is only zero at p·p = 0, W̃ (p) is a finite number for all p·p 6= 0 (we
will see the significance of this result in 4.6.2). On the other hand, since in the subspace of

on-shell modes �̃ operator is exactly the same as �, we conclude that W̃ (p) = 2πδ(p2)θ(p0)

for p · p = 0. Therefore, W̃ (p) consists of a divergent part at p · p = 0 and a finite part
for p · p 6= 0. This means that there are two different contributions to the field expansion
(4.57), one from on-shell modes that is the same as (4.67) and one from off-shell modes
which only exists in the case of non-local retarded evolution

φ̂(x) =

∫
d4p

(2π)2

√
2πδ(p2)θ(p0)

(
âpe

ip·x + â†pe
−ip·x)

+

∫
p2 6=0

d4p

(2π)2

√
W̃ (p)

(
âpe

ip·x + â†pe
−ip·x) . (4.68)
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4.4.4 Sorkin–Johnston quantization

The Sorkin-Johnston (SJ) proposal defines a unique vacuum state for a free massive scalar
field in an arbitrarily curved spacetime [41]. This proposal is a continuum generalization of
Johnston’s formulation of a free quantum scalar field theory on a background causal set [42].

As is the case for �̃, canonical quantization does not admit an obvious generalization for a
causal set. The SJ quantization scheme uses only the retarded Green’s function GR(x, y)

to arrive at the quantum theory. Since �̃ also admits a retarded Green’s function, one can
apply the SJ prescription to arrive at a free quantum field theory of the massless scalar field
we have been considering. In what follows, we will show that the SJ proposal applied to
�̃ produces the same free quantum theory as the Schwinger Keldysh formalism, provided
condition (4.56) is met.

Consider the corresponding integral operator of the kernel i∆(x, y) = GR(x, y) −
GR(y, x):

(i∆f)(x) =

∫
i∆(x, y)f(y)d4y. (4.69)

It can be shown that i∆ is Hermitian, which implies it has real eigenvalues, and that its
non-zero eigenvalues come in positive and negative pairs:

(i∆Tp)(x) = λ2
pTp(x) → (i∆T ∗p)(x) = −λ2

pT
∗
p(x). (4.70)

We have assumed here that the eigenfunctions Tp form an orthonormal basis of L2, which
can always be achieved since i∆ is Hermitian. The Sorkin-Johnston proposal is then to
define the two-point function to be the positive part of i∆(x, y) in the following sense:

〈0|φ̂(x)φ̂(y)|0〉 =
∑
p

λ2
pTp(x)T ∗p(y). (4.71)

Taking GR(x, y) to be the retarded Green’s function of �̃ (see (4.23) and (4.26)), we
find

i∆eip·x =
2Im(B(p))

|B(p)|2
eip·x, (4.72)

which using the SJ formalism then leads to the two-point function

〈0|φ̂(x)φ̂(y)|0〉 =

∫
d4p

(2π)4

2Im(B(p))

|B(p)|2
θ(Im(B(p)))eip·x. (4.73)

If condition (4.56) is satisfied, this two-point function is at that derived from the Schwinger-
Keldysh formalism (see (4.55) and (4.56)). It is reassuring that two different paths to
quantization, at least at the free level, lead to the same theory.
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4.5 Interacting Field Theory

Let us now consider the interacting theory. We introduce the interaction in the Hilbert
space representation by adding a potential term to the free Hamiltonian as follows:

Ĥ(t) = Ĥ0 +

∫
d3xV (φ̂(t,x)). (4.74)

Starting with a general initial wave function, one is able to find the final state of the system
by solving Heisenberg equation of motion in principle. However, in practice this is a very
hard task to do. So, we try to find the S-matrix amplitudes perturbatively.

In order to do so, we can use the available machinery of LQFT, and move to the
interaction picture. Time evolution in the interaction picture is given by

ÛI = Te−i
∫
d4xV (φ̂I) (4.75)

where φ̂I is the field in the interaction picture given by (4.57). Perturbative expansion of

ÛI yields S-matrix amplitudes. Performing the calculations to find the S-matrix, we come
up with modified Feynman rules for this theory. We explain these modifications in the
following two examples.

4.5.1 Example 1: 2-2 Scattering p1p2 → q1q2 in λ
4!φ

4 theory

Scattering amplitude Sq1q2,p1p2 is given by

Sq1q2,p1p2 = 〈q1q2|Te−i
∫
d4x λ

4!
φ̂4
I |p1p2〉. (4.76)

To first order in λ, it yields

Sq1q2,p1p2 = −i λ
4!

∫
d4x 〈q1q2|φ̂4

I(x)|p1p2〉

=
−iλ

(2π)4

√
W̃ (p1)W̃ (p2)W̃ (q1)W̃ (q2)δ(4)(

∑
p−

∑
q), (4.77)

where we have substituted for φ̂I from (4.57). It is interesting to note that (4.77) is time
reversal invariant.

In the transition from local to retarded non-local propagation, here we see the first
change in the scattering amplitudes. The values assigned to each external line have changed

from
√

2πδ(p2)θ(p0) to

√
W̃ (p). Note that here the scattering amplitude is computed in

the basis of 4-momentum |p〉 which is different from 3-momentum basis |p〉 of LQFT.
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4.5.2 Example 2: 2-2 Scattering p1p2 → q1q2 in λ
3!φ

3 theory

In this case, Sq1q2,p1p2 is given by

Sq1q2,p1p2 = 〈q1q2|Te−i
∫
d4x λ

3!
φ̂3
I |p1p2〉. (4.78)

To second order in λ, it yields

Sq1q2,p1p2 =
1

2
(
−iλ
3!

)2

∫
d4x d4y 〈q1q2|T φ̂3

I(x)φ̂3
I(y)|p1p2〉

=
−iλ2

(2π)8

√
W̃ (p1)W̃ (p2)W̃ (q1)W̃ (q2)δ(4)(

∑
p−

∑
q)

×
[
G̃F (p1 + p2) + G̃F (p1 − q1) + G̃F (p1 − q2)

]
.

G̃F (p) = θ(p0)
B(p)

+ θ(−p0)
B∗(p)

is the time-ordered two point function (4.46) in Fourier space. In the
transition from local to non-local operator, here we see another change in the scattering
amplitude. The values assigned to each internal line have changed to the new value for the
Feynman propagator G̃F (p).

From these examples, it is obvious how scattering amplitudes can be computed in this
theory. For any Feynman diagram only the values assigned to external lines and internal
lines have changed. Note that the amplitude of some diagrams in LQFT is zero, as a
result of energy-momentum conservation, while in this theory they are not. For example
in LQFT λφ3 theory, the amplitude assigned to diagram 4.4 is zero, because the sum of
two (non-parallel) null vectors cannot be a null vector. However, in this theory there is
a continuum of massive particles, and for example two on-shell particles can interact and
produce one off-shell particle.

4.6 From Scattering Amplitude to Transition Rate

At this point, we want to find the rate of a process using the S-matrix amplitudes. In
4.6.2 we have shown that if one (or more) of the incoming particles is off-shell, then the
differential transition rate of such scattering is zero. It means that in order to have a
non-zero transition rate (and cross-section), all of the incoming particles must be on-shell.
This is the most distinctive property of off-shell particles: cross-section of any scattering
with off-shell particles is zero.
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Figure 4.4: The amplitude of this diagram in LQFT is zero, because of the energy momen-
tum conservation; two massless particles cannot produce a massless particle. However, in
our theory there is a continuum of massive particles and the amplitude of this scattering
is generically non-zero.

For now consider the scattering from state |α〉 = |p1 · · · pNα〉 to |β〉 = |q1 · · · qNβ〉 where
all the incoming particles are on-shell, p2

i = 0. Assuming that the interactions happen
inside a box with volume V (see [43]), differential transition rate is given by

dΓ = 2πNα+1

[
(2π)3

V

]Nα−1
1

Ep1 · · ·EpNα

δ(4)(
∑

pi −
∑

qi)

×|M̃βα|2d4q1 · · · d4qNβ , (4.79)

where Epi
= |pi| and

Sβα = −2πiδ(4)(
∑

pi −
∑

qi)

√
W̃ (p1) · · · W̃ (pNα)M̃βα. (4.80)

In the case of 2-2 scattering, the differential cross section is given by

dσ =
dΓ
u
V

=
π2(2π)4

Ep1Ep2u
δ(4)(

∑
pi −

∑
qi)|M̃βα|2d4q1d

4q2, (4.81)

where

u =

√
(p1.p2)2 − p2

1p
2
2

p0
1p

0
2

(4.82)

is the speed of particle 1 in the frame of reference of particle 2 (and vice versa) and u
V

is
the flux of incoming particles.
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4.6.1 p1p2 → q1q2 cross section in λ
4!φ

4

As an example, we will find the cross section of p1p2 → q1q2 where p2
i = 0. Using (4.77)

and the definition (4.80), to first order in λ

M̃ =
λ

(2π)5

√
W̃ (q1)W̃ (q2). (4.83)

As a result, cross section is given by

dσ =
λ2

4 (2π)4 |p1 · p2|
W̃ (q1)W̃ (q2)δ(4)(p1 + p2 − q1 − q2)d4q1d

4q2. (4.84)

Let us constraint the outgoing particles to be only on-shell q2
i = 0. In this case W̃ functions

in (4.84) pick up a delta function and one can check that (4.84) for outgoing on-shell
particles results in the usual cross section of λφ4 in LQFT. However, if we constraint (at
least) one of the outgoing particles to be off-shell with a fixed mass, the cross section
becomes zero. Cross section over outgoing off-shell particles is only non-zero when the
integration over continuum mass is also performed. We see the significance of this in the
next section when considering the scattering of off-shell particles. Due to the contribution
of off-shell states, the total cross section (4.84) is increased compared to the local theory.

4.6.2 Off-shell particles and cross section

In order to calculate the cross section of any scattering involving incoming off-shell particles,
we make use of the fact that off-shell particles can be thought as a continuum of massive
particles.

This can be done by expressing the two-point function as a sum over massive two point
functions:

W (x, y) =

∫ ∞
0

dµ2ρ(µ2)

∫
d4p

(2π)4
2πθ(p0)δ(p2 + µ2)eip·(x−y), (4.85)

where ρ(−p2) = W̃ (p)
2π

for p0 > 0. Note from (4.68) that ρ(µ2) = δ(µ2) + ρ̃(µ2) where ρ̃ is a
finite function. In other words,

W (x, y) =

∫
d4p

(2π)4
2πθ(p0)δ(p2)eip·(x−y)

+

∫ ∞
0

dµ2ρ̃(µ2)

∫
d4p

(2π)4
2πθ(p0)δ(p2 + µ2)eip·(x−y). (4.86)
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In order to make everything more similar to LQFT, we discretize the mass parameter to
get

W (x, y) =

∫
d4p

(2π)4
2πθ(p0)δ(p2)eip·(x−y)

+
∞∑
j=1

∆µ2ρ̃(µ2
j)

∫
d4p

(2π)4
2πθ(p0)δ(p2 + µ2

j)e
ip·(x−y), (4.87)

where µ2
j = j∆µ2. (4.87) is the same as (4.86) in the limit ∆µ2 → 0.

The following field operator will yield the above two point function

φ̂(x) =

∫
d3p

(2π)3/2

1√
2|p|

(
âp,0e

ip·x + c.c
)∣∣
p0=|p|

+
∞∑
j=1

√
∆µ2ρ̃(µ2

j)

∫
d3p

(2π)3/2
√

2Ep,µj

(
âp,µje

ip·x + c.c
)

where

Ep,µ =
√

p2 + µ2 (4.88)[
âp,µi , â

†
q,µj

]
= δ(3)(p− q)δµi,µj (4.89)

âp,µ|0〉 = 0 (4.90)

and state |p, µ〉 ≡ â†p,µ|0〉 is a one particle state with momentum p, mass µ and energy
Ep,µ.

From now on, consider a concrete example of 2-2 scattering with λ
4!
φ̂4 interaction and

incoming particles with definite mass and momentum. The idea behind this proof can be
generalized to more complicated examples. Up to first order in λ

〈 p1,m1; p2,m2|Ŝ|q1, µ1; q2, µ2〉 =

− iλ

(2π)2
δ(4)

(∑
p−

∑
q
)√√√√ 2∏

i=1

(∆µ2)2ρ(µ2
i )ρ(m2

i )

4Eqi,µiEpi,mi

. (4.91)

In (4.91), if any of the particles was on-shell (say µ1 = 0), we should set ∆µ2ρ(µ2
1) = 1,

otherwise ρ is replaced by ρ̃.
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The differential cross section is given by

dσ = (2π)−2 λ2 (∆µ2)4ρ(µ2
1)ρ(µ2

2)ρ(m2
1)ρ(m2

2)

16uEp1,m1Ep2,m2Eq1,µ1Eq2,µ2

δ(4)(p1 + p2 − q1 − q2)d3p1d
3p2. (4.92)

In order to get the total cross section, we should also sum over the mass parameter in the
phase space of outgoing particles. In the (mass) continuum limit this means∑

∆µ2ρ(m2
i )→

∫
dm2

i ρ(m2
i ) (4.93)

which absorbs two factor of ∆µ2 in (4.92); however, there are two remaining factors of ∆µ2.
If the incoming particles (even one of them) are off-shell, since ρ(µ2) is a finite number, in
the limit ∆µ2 → 0, the cross section becomes zero. This means that the (total) transition
rate of scattering with off-shell particles with fixed mass is zero. The cross section is only
non-zero when both of the incoming particles are on-shell.

This is, in fact, consistent with what we have found in the previous section. There,
we have shown that the transition rate of on-shell → off-shell is non-zero, only when the
integration over mass of the off-shell particles is performed. In fact, scattering transition
rate of on-shell particles to off-shell particles with fixed masses is zero. Since the theory is
time reversal invariant, this suggests that the scattering transition rate of off-shell particles
with fixed masses must be zero too; consistent with what we have found here.

This also means that an initial state with a suitable continuum superposition of off-shell
masses can scatter into on-shell modes (time reverse of the process of on-shell scattering
into off-shell). However, as we argue in the next Section, these states are fine-tuned and
generally we do not expect to find the system in these superpositions.

4.6.3 Off-shell → on-shell scattering: continued

In the previous Section, we showed that the transition rate of scattering with off-shell
particle(s) is zero. However, a suitable continuum superposition of off-shell particles can
scatter non-trivially. In this section, we want to explain this point to a greater extent and
argue that it is unlikely to find the system in these superpositions. We will not go through
the detail of calculations since it is not essential to our argument in this secion.
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We make use of the following toy model theory that mimics many properties of the
proposed nonlocal theory:

L =
1

2
ψ0�ψ0 +

N∑
i=1

1

2
ψmi(�−m2

i )ψmi − λψ4, (4.94)

ψ ≡ ψ0 +
N∑
i=1

gi√
N
ψmi .

This is a theory of one massless scalar field (playing the role of on-shell modes) in addition
to N massive scalar fields (playing the role of off-shell modes) and we are interested in
N → ∞ limit of the theory (λ and gi’s are coupling constants and do not scale with N).
The advantage of working with this theory is that while its behaviour is very similar to the
non-local theory, (4.94) is a local quantum field theory and possibly more comprehensible
to the reader. The interaction term in (4.94) is designed in a way that interactions with
massive (off-shell) fields are suppressed by a factor of

√
N and in N → ∞ limit their

interactions become negligible. On the other hand, the number of off-shell fields goes to
infinity. In what follows, we explain that this theory imitates many properties of off-shell
and on-shell particles in the non-local theory.

First, let us define the following quantities: σ~p1~p2
m1m2→µ1µ2

is the scattering cross section
of two particles with masses and momenta m1, ~p1 and m2, ~p2 into two particles with masses
µ1 and µ2 (ψµ1 and ψµ2) and σ~p1~p2

m1m2
is the total scattering cross section of two particles

with masses and momenta m1, ~p1 and m2, ~p2.

Consider the scattering of two ψ0 particles into two final particles. If we restrict the two
final particles to be massive (off-shell fields with fixed masses), then the scattering cross
section in N →∞ limit goes to zero. However, if we sum over all massive final states (all
off-shell particles), the total cross section is non-zero. In fact, for different final states the
corresponding cross sections scales with N as follows:

σ~p1~p2

00→00 ∝ N0,

σ~p1~p2

00→0m ∝ 1

N
, m 6= 0,

σ~p1~p2

00→m1m2
∝ 1

N2
, m1,m2 6= 0.

While the interactions with individual massive fields are suppressed, the number of massive
states scales with N . In this way, the total scattering cross section of two initial massless
particles into two massive final states, summed over all masses, is finite and non-zero (the
same scaling works for scattering into one massless and one massive particles).
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On the other hand, any scattering with (at least) one massive initial state result into
zero cross section. For example, the following total scattering cross sections (summed over
all final states) scale with N as

σ~p1~p2

0m ∝ 1

N
, m 6= 0, (4.95)

σ~p1~p2
m1m2

∝ 1

N2
, m1,m2 6= 0, (4.96)

and they vanish in N →∞ limit.

As we showed, massive particles in this theory (4.94) mimic the properties of off-shell
states in the non-local theory; they can be produced by the scattering of massless states,
while the reverse process (scattering of massive states into massless) does not happen.

However, the theory is (obviously) time reversal invariant and massive→ massless scat-
terings must take place. This is indeed true, but as we demonstrate here the initial massive
state that scatters non-trivially must be a superposition of different masses. Consider state
γ, a superposition of M different masses, scatters off a massless particle. Then, the total
transition probability Γ0γ scales as

Γ0γ < A
M

N
(4.97)

Where A have no dependence on M and N (see Appendix C.3 for proof). This transition
probability is non-zero in N →∞ limit, only when M also scales with N .

So, massive → massless scattering indeed happens. However, the massive state that
scatters non-trivially must be a superposition of (infinitely) many different masses and in
this sense is fine-tuned. It is similar to an egg that smashes into pieces upon falling on the
ground; the reverse process of pieces assembling an egg can in principle happen, but it is
very unlikely.

In this sense, we expect the off-shell to on-shell scattering in the non-local theory to be
negligible. In principle this transition can happen, but it is very implausible. The essence
of our reasoning in this Section is based on thermodynamical arguments and although it
is not a complete proof, we hope that we have provided enough evidence to show that
off-shell → on-shell scattering is very unlikely. Definitely, further quantitative studies are
needed to augment (or disprove) our claim. Perhaps, a good starting point is to consider
the toy model theory (4.94), since it shares a lot of properties of the non-local theory.
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4.7 Extension to Massive Scalar Fields

Throughout this Chapter, we only considered the modification of a massless scalar field.
But what about massive scalar fields? One may suggest to replace � with �̃ in the equation
of motion of a massive scalar field as follows

(�̃−M2)φ(x) = J(x) (4.98)

and follow similar steps of quantization. However, this method does not work. If M is a
real number, then there is no mode satisfying (4.98) in the absence of J . In other words,
there is no on-shell modes.

Another way is to choose M to be a complex number such that for a time-like future
directed momentum p, B(p) = M2. In this case, the mass of on-shell mode is given by

m2 ≡ −p2. However, �̃ − M2 is no longer a real operator and the solution to (4.98)
generically cannot be real.

The extension to massive scalar fields can be done by considering the following obser-
vation. All of the properties in massless case can be read from the analytic structure of
B(p) in Figure 4.1. Massless modes are on-shell because there is a simple zero at p2 = 0
and there are off-shell modes for time-like momenta because there is a cut for time-like
momenta in 4.1.

In this way, the extension to massive case seems much simpler. �−m2 must be replaced
with �̃m whose eigenvalues Bm(p) satisfy the followings:

1. There is only one simple zero at p2 = −m2. Also limp2+m2→0
Bm(p)
p2+m2 = −1 to get the

correct local limit.

2. The cut must be only on momenta with higher masses p2 < −m2. Otherwise, in the
quantum theory, there are off-shell modes with masses smaller than m which makes
the on-shell mode unstable (on-shell modes can always decay into off-shell modes
with less mass).

3. ImBm(p) ≥ 0 for p0 > 0.

Conditions 4 and 5 in Section 4.2 and (4.56) must be replaced by the above-mentioned
conditions. One easy way to come up with such an operator is to make use of the existing
operator B(p) in the massless case, and consider it as a function of p2 and sgn(p0). Then,

Bm(p) = B(p2 +m2, sgn(p0)). (4.99)

has all the desired properties (this also has been shown in [40]).
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4.8 Conclusion

In this Chapter, we studied the physical consequences of a causal non-local evolution of
a massless scalar field. We started by modifying the d’Alembertian to a causal non-local
operator at high energies. Quantization of a free field showed that the field represents
a continuum of massive particles. In fact, there were two sets of modes: on-shell modes
(massless particles) and off-shell modes (massive particles).

The Feynman rules for the perturbative calculation of S-matrix amplitudes were dis-
cussed. The most important result (in our opinion) is the fact that the cross section of any
scattering with off-shell particles is zero. This suggests that although these modes exist
and probably can be detected by other means, there is no way of detecting them through
scattering experiments. This property opens up the possibility that dark matter particles
might be just the off-shell modes of known matter. Finally, we extended this formalism to
massive scalar fields.

Throughout this Chapter we only considered scalar field theories, but how about other
types of fields? Extension to other types of fields, such as vector field, is not as straightfor-
ward as for scalar fields. Incorporating gauge symmetry in the theory is another important
issue. Whether causal Lorentzian evolution can be extended to vector fields (and other
types fields rather than scalars) can be the subject of future studies.

In the next Chapter, we explore phenomenological implications of the proposed dark
matter candidate in the context of cosmology.
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Chapter 5

Off-shell Dark Matter:
A Cosmological relic of Quantum Gravity

5.1 Introduction

A vast range of observations in Astrophysics and Cosmology have now provided concrete
evidence for the existence of cosmological cold dark matter (CDM), which appears to
make up the majority of mass density in our universe (only second to the mysterious dark
energy). Rotation curves of galaxies (e.g. [44]), gravitational lensing (e.g. [45]), and
Cosmic Microwave Background (CMB) [1, 46] all indicate that General Relativity with
ordinary (or known) matter is not consistent with observations. It is worth noting that,
unlike dark energy, evidence for the existence of CDM ranges from cosmological to galactic
(i.e. six orders of magnitude) in physical scale.

Since all the observational evidence for CDM is through its gravitational interactions,
it has been tempting to explore a modification of Einstein gravity as a substitute (e.g.
[47, 48, 49, 50]). However, given the range of observational data matched by CDM (in
particular, the precision measurements of CMB anisotropy power spectrum [1, 46]) it has
become nearly impossible to fit the data with any modified gravity alternative (which does
not have an effective built-in dark matter component) [51].

As a result, the most popular approach has been to consider CDM as a new (beyond
Standard Model) weakly interacting particle. There are strong evidences that CDM particle
has to be (at most) weakly interacting with the Standard Model, as otherwise it should
have been detected by now, through various astrophysical or terrestrial probes (see, e.g.
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[52]). It also has to be sufficiently cold, as there is no evidence for a thermal cut-off in the
cosmological matter power spectrum, down to sub-Mpc scales [53]. It is quite remarkable
that a simple assumption of adding a non-relativistic (and non-interacting) dark matter is
compatible with all the cosmological observations.

Here, we study a rather different approach which has been proposed in the previous
Chapter, and we shall refer to as off-shell dark matter (OfDM). In this proposal, CDM
originates from considering quantum gravitational effects on the evolution of fields. These
effects manifest themselves through modifying the evolution law of quantum fields to a
non-local evolution described by a causal non-local operator �̃ which substitutes the role
of d’Alembertian.

Let us outline some features of this model. First, this non-local modification results
in the appearance of a new set of modes (or excitations) associated to each field. In fact,
modification of a field with mass M leads to two sets of modes:

1. Modes with mass M , called on-shell.

2. A continuum of massive modes with mass higher than M , called off-shell.

We call the original mass of the field (M) “intrinsic mass”. In other words, intrinsic mass
is the mass of the on-shell modes (or the least value mass of the excitations).

The important property that differentiates these two sets of modes and points to the
direction of dark matter is the following: transition rate of any scattering including (even)
one off-shell mode in the initial state is zero. This property makes off-shell modes a natural
candidate for CDM, simply because they cannot be detected through non-gravitational
scattering experiments [54]. In fact, they can be produced by scattering of “on-shell”
particles, but they do not scatter, annihilate or decay. As such, the only way to detect
these particles is through their gravitational signatures.

In the next Section, we will review the important features of this model. Section 5.3
is dedicated to the production of OfDM in the context of inflation and reheating. We
will discuss the effect of OfDM on matter power spectrum in Section 5.4. I, Section 5.5
concludes the paper.

5.2 Review of OfDM

Let us start this Section by the following question: If off-shell modes of matter can be
produced by the scattering of on-shell modes, while the reverse does not happen, shouldn’t
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Figure 5.1: A simple annihilation process (on left) and decay process (on right).

we see any signature of this in scattering experiments, for example in Large Hadron Col-
lider (LHC)? In other words, whenever we perform scattering experiments, a part of the
incoming energy must transfer to off-shell modes and become undetectable. Shouldn’t we
have already seen this effect by now?

In order to answer this question, consider a simple annihilation or decay process (Figure
5.1). First, let us define the following quantities: σ1F (Γ1F ) is the cross-section (rate) of
producing one off-shell particle and one on-shell particle and σO (ΓO) is the cross-section
(rate) of producing purely on-shell particles. If we assume that the energy of the process is
much higher than the intrinsic mass of the out states, ECM �M (as we will see later, this
is the relevant regime for dark matter production), following the results in [54], we arrive
at1

Γ1F

ΓO
=
σ1F

σO
=

∫
d4p1d

4p22πδ+(p2
1)W̃ (p2)δ4(q − p1 − p2)∫

d4p1d4p22πδ+(p2
1)2πδ+(p2

2)δ4(q − p1 − p2)
(5.1)

where q is the incoming energy-momentum and W̃ (p) is given in terms of the spectrum of

1δ+(p2) ≡ δ(p2)θ(p0)
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non-local operator �̃

W̃ (p) =
2Im B(p)

|B(p)|2
θ(p0), (5.2)

�̃eip·x = B(p)eip·x. (5.3)

Note that W̃ (p) is the two point correlation function (or Wightman function) of the field
in the momentum space

〈0|ψ̂(x)ψ̂(y)|0〉 =

∫
d4p

(2π)4
W̃ (p)eip·(x−y) (5.4)

Equation (5.1) can be simplified further if we assume that the energy scale of the

scattering2 −q2 ≡ E2
CM is much lower than the non-locality scale Λ defined through �̃. In

this regime,

B(q) = −q2 +O
(
q4

Λ2

)
(5.5)

Im B(q) = a
q4

Λ2
+O

(
q6

Λ4

)
. (5.6)

For a 6= 0 3, Λ can be redefined to set a = 1
2
.

With this assumption, we can make use of the Taylor expansion of W̃

W̃ (q) =
1

Λ2
+O

(
q2

Λ4

)
, M2 � −q2 � Λ2, (5.7)

to finally get (to the leading order)

Γ1F

ΓO
=
σ1F

σO
=

1

4π

(
ECM

Λ

)2

, (5.8)

where ECM � Λ is the centre of mass energy of the incoming particle(s). Note that for
a decay process, ECM is the mass of the decaying particle. Although, we derived (5.8)
for simple interactions of Figure 5.1, it is generally correct (up to order one corrections)

2Throughout this paper we are using (−+ ++) signature for the metric.
3Another possibility would be that a = 0. In that case, the leading term to the imaginary part of B

comes in 6th order. We will not pursue this possibility in this paper.
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as long as ECM is much higher than the intrinsic mass of the intermediate particle(s) in
Feynman diagrams.

Now, let us define σ2F (Γ2F ) to be the cross section (rate) of producing two off-shell
particles in the out state (Figure 5.1). Then,

Γ2F

ΓO
=
σ2F

σO
=

∫
d4p1d

4p2W̃ (p1)W̃ (p2)δ4(q − p1 − p2)∫
d4p1d4p22πδ+(p2

1)2πδ+(p2
2)δ4(q − p1 − p2)

=
1

48π2

(
ECM

Λ

)4

(5.9)

As we see, adding one more off-shell particle in the final state suppresses the cross

section by another factor of
(
ECM

Λ

)2
. So, the rate of two off-shell particles production is

suppressed by a factor of
(
ECM

Λ

)2
compared to one off-shell particle production.

Before going any further, let us discuss the typical mass of the off-shell particle produced
in Figure 5.1. For one off-shell particle production, the mass distribution of the produced
off-shell particle is given by

P1F (m) = N

∫
d4p1d

4p2δ+(p2
1)W̃ (p2)δ(4)(q − p1 − p2) mδ(p2

2 +m2), (5.10)

Where N is the normalization factor. Using (5.7) it reduces to

P1F (m) =
4m

E2
CM

(
1− m2

E2
CM

)
0 < m < ECM, (5.11)

assuming that the off-shell particle is intrinsically massless (or its mass much smaller than
ECM). For two off-shell particles production, the mass distribution is given by

P2F (m) = N ′
∫
d4p1d

4p2W̃ (p1)W̃ (p2)δ(4)(q − p1 − p2) mδ(p
2
2 +m2), (5.12)

which reduces to

P2F (m) =
48m

E2
CM

(
1

4
− 1

4
(
m

ECM
)4 − (

m

ECM
)2Sinh−1[

E2
CM −m2

2mECM
]

)
(5.13)

In both cases the typical mass of the produced off-shell particles is ∼ ECM/2.

Now, we can estimate how likely it is to produce off-shell particles in LHC experiments.
If we set Λ ∼ MP ≡ 1√

8πG
∼ 1018 GeV and ECM ∼ 1 TeV (LHC energy scale), we realize
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that the rate of producing off-shell particles in LHC is 10−31 lower than the rate of a
normal scattering happening. In other words, out of 1031 scatterings in LHC, on average
one results into the production of an undetectable particle (off-shell mode), explaining why
OfDM could be well-hidden from high energy physics experiments.

However, in the cosmological history of the universe, much higher energy scales are
reachable and off-shell dark matter production is most efficient. In other words, through
cosmological history, a part of the energy in the on-shell sector has been transferred to off-
shell sector (while the reverse does not happen) and we detect this energy gravitationally
as dark matter. The main purpose of this study to investigate the production of OfDM
in the early universe and its observational consequences.

In summary:

• Whenever a scattering happens, there is a chance of producing dark matter particles
which is given by (5.8) and (5.9). Furthermore, the probability of producing two
dark matter particles in one scattering is much lower than producing only one.

• Dark matter production is most efficient at high (center of mass) energy scatterings.
Therefore, most of the dark matter is produced during the stages in the cosmological
history where the universe is dense (lots of scatterings) and hot (high energies), i.e.
early universe.

Before ending this section, let us discuss the physical range for the non-locality scale
Λ. If Λ comes from quantum gravitational effects or fundamental discreteness of spacetime
[55, 33, 56], we expect it to be around MP. On the other hand, a priori, Λ can be much
smaller than MP, even as low as ∼ 10 TeV, as suggested in large extra dimension models
that are constructed to address the hierarchy problem (e.g., [57]), or by the cosmological
non-constant problem [58]. However, in this paper we assume Λ � Hinf , i.e. the non-
locality scale is much larger than the Hubble scale during inflation. Otherwise, it would
not be consistent to use the standard results of slow-roll inflation when Λ . Hinf , since the
effect of non-locality on the evolution of inflaton or metric could not be neglected.

5.3 Off-shell Dark Matter Production

What are the processes in the early universe that are relevant for OfDM production? First
of all, we consider inflation as a starting point in the universe. Whatever happened before
inflation is diluted by the exponential expansion of the universe and is not relevant for our
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discussion. Furthermore, the effect of non-locality on the inflationary predictions can be
neglected in the Hinf � Λ regime. After inflation, we consider two major processes that
produce dark matter particles: inflaton decay to standard model particles (reheating) and
radiation self interaction in the universe.

5.3.1 Reheating

In this Section, we consider the simplest reheating model: inflation (φ field) decays through
the effective interaction gφψψ̄, where ψ represents standard model fields or an intermediate
field4 that decays into standard model particles later.

Decay of inflaton into (on-shell) standard model particles makes the radiation fluid of
the universe (their kinetic energy is much higher than their masses.) As we mentioned
earlier, however, inflation cannot only decay into on-shell particles; it also has to decay
into off-shell particles (off-shell dark matter). Based on (5.8), decay rate into dark matter
compared to the decay rate into radiation is suppressed by a factor of

f =
1

4π

(mφ

Λ

)2

� 1, (5.14)

where mφ is the mass of inflaton at the end of inflation. As a result, after inflation there
are three major constituents of the universe:

1. Inflaton field (φ): This field can be treated as a non-relativistic matter after inflation
when m � H [59]. Inflaton energy density (ρφ) is the dominant energy density of
the universe after inflation and it perturbatively decays into radiation (decay rate Γ)
and dark matter (decay rate fΓ). We later comment on why the coherent decay of
inflaton can be ignored.

2. Radiation: This includes all (on-shell) ψ particles. Since the decay rate of inflaton
into radiation is much bigger than the decay rate into dark matter, radiation energy
density (ρr) will dominate the energy density of the universe after the decay of inflaton
field.

3. Dark matter: This includes all off-shell ψ particles. As we argue later, dark matter
acts as a non-relativistic matter and its energy density is the last one to become
dominant.

4In this case we assume that the mass of ψ field is much smaller than the inflaton’s.
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This system of three fluids satisfies the following equations:

ρ̇φ + 3Hρφ = −(1 + f)Γρφ (5.15)

ρ̇r + 4Hρr = Γρφ (5.16)

ρ̇φ→DM + 3Hρφ→DM = fΓρφ (5.17)

with Friedmann equation, where H = ȧ
a

is the Hubble parameter, a is the scale factor of
the universe and ρφ→DM is the contribution to dark matter energy density from inflaton
decay.5

Let us define the fraction of total dark matter energy density from inflaton decay

x =
ρφ→DM
ρDM

, (5.18)

where ρDM is the total dark matter energy density. Solving the system of differential
equations, we arrive at [60]

Trh = x
Teq
f
, (5.19)

where Trh is the reheating temperature (temperature of radiation at the time of inflaton-
radiation equality) and Teq is the temperature at the matter-radiation equality.

Since Teq ' 0.75 eV, Equation (5.19) fixes the reheating temperature for a given mass
of inflaton.6 This can be used, for example, to constraint spectral index (ns) and tensor to
scalar ratio (r) of a given inflationary potential by using the following equation:

Ne = 67 − ln

(
k

a0H0

)
+

1

4
ln

(
V

M4
P

)
+

1

4
ln

(
V

Ve

)
+

1

12
ln

(
ρth
Ve

)
− 1

12
ln gth (5.20)

where Ne is the number of e-foldings that mode k is superhorizon during inflation, Ve is
the potential energy at the end of inflation, ρth ∼ gthT

4
rh is the radiation energy density at

reheating temperature, a0H0 is the present Hubble radius, V is the potential energy when
mode k crosses the horizon during inflation, gth is the number of effective bosonic degrees

5Annihilation of radiation into OfDM barely changes the radiation energy density, which is why it has
been ignored in (5.16).

6We will show later that x is very close to 1.
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(a) Blue regions show the prediction of nat-
ural and R2 inflation for k = 0.002 Mpc−1

with Trh = 10 MeV-1015GeV. Orange regions
show the prediction of the same models with
the constraint coming from OfDM model for
Λ = 0.1MP −MP.

(b) Prediction of ns and r for different infla-
tionary potentials at k = 0.002Mpc−1. Each
region represents the prediction with the as-
sumption of OfDM with Λ = 0.1MP −MP.
The shaded region (curve) show the 68%
(95%) constraints from CMB observations [3].

Figure 5.2: Predictions of spectral index, ns, and tensor to scalar ratio, r, for a number of
inflationary potentials with OfDM constraint (5.19).
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of freedom at reheating temperature and we have assumed pressureless effective equation
of state for inflaton during reheating [61].

Figure 5.2a shows how the predicted regions for the Natural [62] and R2 [63] inflations
have shrunk significantly in the ns, r plane as a result of fixing the reheating temperature.
A similar constraint can be found for other inflationary potentials, e.g. Figure 5.2b shows
the prediction of OfDM model for a number of inflationary models.

We shall next review and justify the assumptions we made in the above calculations.

Coherent decay of inflaton

The coherent decay of inflaton is negligible if the following condition is satisfied [60, 59]

Γ

mφ

�
(
mφ

MP

)2

. (5.21)

Using Γ ∼ T 2
rh

MP
and (5.19), this reduces to

10−18

(
Λ

Mp

)4(
10−5MP

mφ

)7

� 1 (5.22)

Non-relativistic dark matter

The mass distribution of dark matter particles is given in (5.11). When a dark matter
particle is produced, its energy is below ECM, while, according to (5.11), masses of the
98% of the dark matter particles are above 0.1ECM. In other words, upon production, dark
matter particles are relativistic (but not highly relativistic) and through the expansion of
the universe they soon become non-relativistic. This justifies our earlier assumption to
model dark matter particles as a non-relativistic fluid.

5.3.2 Radiation self-interaction

How much dark matter is produced as a result of radiation self interaction? Here we find an
upper bound on the amount of dark matter production through self interaction of radiation.
Let us assume a simple annihilation process, such as in Figure 5.1, and ignore the intrinsic
mass of the particles. Ignoring the intrinsic mass of the particles is consistent with finding
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an upper limit for the dark matter production, since we are allowing for more dark matter
production by ignoring the intrinsic masses (more phase space volume to produce OfDM).
The average mass of the produced dark matter particles is∫

dm mP1F (m) =
8

15
ECM, (5.23)

and the cross section of producing one dark matter particle is7

σ1F =
σO
4π

(
ECM

Λ

)2

=
λ2

128π2Λ2
. (5.24)

Since this contribution to dark matter has been produced at very high energies (lower
bound on reheating temperature is Trh > 5 MeV), it will be highly redshifted today. As a
result, current energy density of dark matter is the same as its mass density (see Section
5.3.1). The comoving mass density of the produced dark matter particles through radiation
self interaction is given by

dρrad→DM/dt = a3(t)

∫
d3p1

(2π)3

d3p2

(2π)3
g1n(~p1)g2n(~p2)〈mσ1Fvrel〉, (5.25)

where t is the cosmological time, n(~p) = 1
e|~p|/T±1

is the occupation number of incoming
on-shell states at temperature T , g is the degeneracy factor, vrel is the relative velocity
of the incoming particles and ~pi’s are the momenta of the incoming particles. It is clear
that (5.25) results into a bigger comoving mass density when we choose bosonic occupation
number.

Using (5.23), (5.24), vrel . 2 and performing the integrals over momenta in (5.25), we
arrive at

dρrad→DM/dt . g1g2
8λ2

45(2π)6
Γ2[3.5]ζ2[3.5]a3(t)

T 7

Λ2
, (5.26)

where Γ and ζ are Gamma and Zeta function respectively.

Perturbative calculations are valid only if λ < 1. If we consider this condition in (5.26)
and sum over all constituent of the radiation fluid, we arrive at

ρrad→DM < 4× 10−5

∫
dt g2a3(t)

T 7

Λ2
, (5.27)

7This is again consistent with finding the upper bound, since the cross section of two off-shell production
is much smaller.
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where g is the total number of degrees of freedom in the radiation fluid.

During reheating (by solving (5.15-5.17))

t ∝ a3/2, T 4 ∝ ρrad ∝ a−3/2. (5.28)

Substituting these values back in (5.27), we realize that the annihilation of radiation into
dark matter is most efficient at the end of reheating. The same manipulation shows that the
annihilation of radiation into dark matter during radiation era happens at the beginning
of radiation era and is of the same order.

Let us now work out how much dark matter will be produced in radiation era (after
reheating). During radiation era

t =

√
45

2π2g

MP

T 2
. (5.29)

Combining this, with Eq. (5.27), and the results of Sec. (5.3.1), we find:

ρrad→DM
ρDM

< 10−5 × g3/2MPT
2
rh

TeqΛ2

∼ 10−3 × g3/2MPTeqΛ
2

m4
φ

∼ 10−7
( g

124

)3/2
(

Λ

MP

)2(
mφ

10−5MP

)−4

, (5.30)

where we used g ' 124 for standard model of particle physics.

Therefore, for Λ ∼MP and high scale inflation mφ ≈ 10−5MP, the production of OfDM
due to radiation self-interaction is much smaller than the contribution from inflaton decay
(in effect x = 1). However, ρrad→DM can become important in scenarios with lighter
inflaton, i.e. if mφ . 10−7(MPΛ)1/2.

So far we have studied the predictions of this model in the context of inflation. As
we showed earlier, this model effectively fixes the reheating temperature of the universe.
By constraining the reheating temperature, we can narrow the predictions of (ns, r) for a
given inflationary potential, by fixing the number of e-foldings. However, the predictions
for (ns, r) are model dependent and vary with the inflationary potential. Conversely, one
can use the observational constraints on (ns, r) as a way to fix the non-locality scale Λ, in
the context of a given inflationary model.
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5.4 Cold OfDM

In principle, OfDM particles with very low masses can be produced in scatterings. These
low mass particles can behave like hot dark matter at different stages in the evolution of
the universe. Let us estimate an upper bound on the fraction of hot OfDM particles at a
given redshift.

An off-shell dark matter particle with mass m has energy Em =
E2

CM+m2

2ECM
and momentum

pm =
E2

CM−m
2

2ECM
, where ECM is the energy of the process producing the dark matter particle.8

At redshift z, this particles is relativistic if pm
1+z

1+zpr
& m, where zpr is the redshift at the

time of production.

Given the mass distribution of OfDM particles and assuming that most of the dark
matter particles are produced at the time of reheating (as we discussed in previous sections),
we can find the fraction of hot dark matter particles (Ωh). This has been shown in Figure
5.3a. Only a small fraction of OfDM is hot at z < 1000, which makes it a good candidate
for CDM. This result is not surprising since, as we mentioned earlier, even at the time of
production these particles are not highly relativistic.

Let us work out the distribution of free streaming distance λfs. This is given by

λfs = u

∫
dt√

a4 + u2a2
(5.31)

where u = apr
v√

1−v2 and v = pm
Em

is the velocity of dark matter particle with mass m

at the time of production. Assuming apr = arh, Equation (5.31) gives the free streaming
distance in terms of m and Trh. This equation can be used further to derive the probability
distribution of λfs, since the probability distribution of m (5.11) is known. The result
has been shown in Figure 5.3b. Since the velocity distribution of OfDM particles is
different from Maxwell-Boltzmann distribution, probability distribution of λfs in this model
is different from ordinary thermal WIMP scenario. In particular, it has a much shallower
power-law (rather than gaussian) cut-off at large λfs’s. This leads to a different matter
power spectrum (on small-scales) which can, in principle, be a probe to distinguish these
two models. Figure 5.4 shows the matter transfer function T (k).

In Figure 5.4 two effects has been considered: Growth in matter fluctuations due to an
early era of matter domination (inflaton dominated era) and free streaming effect. Early

8This comes from conservation of energy-momentum in the rest frame of incoming particle(s). Here,
we have ignored mass of the on-shell particle produced together with OfDM particle.

84



Trh= 10 MeV

Trh = 100 GeV

1 1000 106 109
10-25

10-20

10-15

10-10

10-5

1

z

Ωh

(a) The fraction of off-shell dark matter par-
ticles, produced at the time of reheating, that
remain relativistic down to a given redshift.
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(b) Distribution of free streaming distance of
OfDM for different reheating temperatures. The
top axis shows the characteristic halo mass associ-
ated with the free streaming scale, in units of Earth
mass.

Figure 5.3

matter era result into amplification of matter fluctuations for modes that enter the horizon
during reheating. This amplification is roughly ∝ k2

ln(k)
[60]. On the other hand, free

streaming effect result into the decrease in the matter power spectrum on small scales
∝ k−2. The combination of the two effects has been shown in Figure 5.4. On small scales,
transfer function drops as (ln k)−1 which is to be contrasted with a much steeper gaussian
cut-off in thermal scenarios.

Future gravitational probes of dark matter structure on small scales can potentially
test this prediction for matter power spectrum on 10−1 − 10−3 pc scales [64, 65, 66].

5.5 Summary & Conclusion

In this Chapter, we laid out some features of off-shell dark matter model. This model is
motivated by considering the effect of nonlocality on the evolutions of fields which manifests
itself by introducing a new set of excitations. The new excitations, named as off-shell
modes, cannot be detected through scattering experiments that makes them a natural
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Figure 5.4: Matter transfer function due to the growth in early matter era and free stream-
ing effect. Instead of an exponential cut-off for large k in thermal scenarios, there is
∝ (ln k)−1 drop in OfDM scenario.
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candidate for dark matter. So, if OfDM makes up the observed cosmological dark matter,
we would not be able to detect dark matter particles directly.

However, OfDM particles can be produced in scattering experiments and this is one
way to indirectly confirm their existence by detecting missing energy in scatterings. The
probability of missing energy is given by (5.8) and (5.9). Scattering experiments with
enough precisions to detect this missing energy could be a possible way to test this model.

We discussed predictions of OfDM model in the context of cosmology and showed that
it is intertwined with the physics of inflation and reheating. For a very simple reheating
model, we showed that OfDM particles are generically produced in the era of reheating
and through the decay of inflaton. Since OfDM particles are not interacting with other
particles (and themselves), they do not have a thermal distribution. We calculated their
distribution function in our simple reheating model and showed that it leads to much
shallower suppression of matter power spectrum on small scales compared to a gaussian
cutoff of thermal dark matter candidates. This in principle could be another way to test
the model via the observations probing matter power spectrum in sub-pc scales.

We end this Chapter by noting the following theoretical aspects of OfDM which are
yet to be explored:

1. Throughout this Chapter we assumed that off-shell modes of a nonlocal field gravitate
like ordinary (on-shell) matter, i.e. an off-shell mode with mass m gravitates like a
normal particle with the same mass. This assumption, which seems reasonable, is
yet to be verified through a consistent coupling of nonlocal quantum field theories to
gravity.

2. So far, the quantization of this type of nonlocal field theory has only been done for
scalars. But how about spinor or gauge fields? This is especially important in the
case of gauge theories which govern all interactions in the Standard Model of particle
physics. There are (at least) two obvious ways to proceed here:

(a) One can define a nonlocal version of gauge transformations to keep gauge invari-
ance. This presumably implies that scattering processes have to include pairs
of on-shell modes, or otherwise charge conservation would be violated. In the
case of our phenomenological reheating model in Section 5.3.1, it means that
the inflaton field has to first decay into a neutral field which later decays into
standard model particles, otherwise Equation (5.14) is not applicable.

(b) Gauge invariance is broken at a Planck suppressed level, similarly to the vi-
olation of diffeomorphism invariance in Horava-Lifhsitz gravity [13]. In this
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case, one should look for (possibly dangerous) physical consequences of break-
ing gauge invariance.
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Chapter 6

Dynamical Emergence of Universal
Horizons

6.1 Introduction

General relativity (GR) has been our best classical theory of gravity that is compatible
with a wide variety of experiments. 4D diffeomorphism invariance is the fundamental gauge
symmetry of GR, resulting in the absence of a preferred frame. Despite this, there are good
reasons to consider a fundamental preferred frame. Here, we list a few of the interesting
alternative theories of gravity that invoke this property:

1. One reason to consider theories with a preferred frame is purely phenomenological.
An example is Einstein-Aether theory [15]. The preferred frame is built into the the-
ory via a unit time-like vector uµ. The action is the Einstein-Hilbert action plus all
possible terms containing first order derivatives of uµ. This yields several free param-
eters that can be constrained/detected experimentally (e.g. [67, 68]). In particular,
these constraints imply that aether disturbances should propagate (super)luminally
[69].

2. Another theory with a preferred frame is Gravitational Aether theory [17], which is
an attempt to solve the (old) cosmological constant problem by simply subtracting
the trace of the energy-momentum tensor from the right hand side of Einstein’s
equations. This ensures that the zero point energy of quantum field theory does not
gravitate. But in order to satisfy the Bianchi identities a new term (a symmetric
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tensor) must be added to the right hand side of Einstein’s equations. The Bianchi
identities then relate this term to the trace of matter energy-momentum tensor,
via energy-momentum conservation. The new term is assumed to have the form
of a perfect fluid (or the gravitational aether). In the limit of zero energy density
(incompressibility), no new dynamical degree of freedom appears and the Bianchi
identities completely fix the evolution of the aether, whose four-velocity introduces
a preferred direction of time.

3. Cosmological dynamical scalar fields generically introduce a preferred frame. An
example of this type of theory is K-essence, constructed so that the scalar field
develops a negative pressure once the matter dominated era begins. Its associated
dynamical behaviour is then deemed responsible for the accelerating cosmic expansion
of our universe, whilst avoiding anthropic arguments [18]. However, any such model
that solves such problems necessarily has perturbations propagating faster than speed
of light [70].

4. Pushing K-essence to its limit, cuscuton theory is a scalar field theory with infinite
sound speed [19]. Cuscuton action is given by

S =

∫
d4x
√
−g(µ2

√
∂νφ∂νφ− V (φ)). (6.1)

This theory is the same as the low energy limit of (non-projectable) Hořava-Lifshitz
gravity for quadratic potential V (φ) [71]. The relation between parameters of cuscu-
ton and λ parameter of Hořava-Lifshitz gravity is as follows

µ2 = −V ′′(φ) =
λ− 1

16πGN

. (6.2)

They also have the same solution as Einstein-Aether theory when aether is hypersurface-
orthogonal and c2 = λ− 1 is the only non-vanishing term in Einstein-Aether action.

Constant field surfaces of cuscuton define a preferred time direction because signals
propagate instantaneously on these surfaces. A constant field surface also has con-
stant density and constant mean curvature. As a result, in a cosmological space-time,
cuscuton can be considered as global time.

5. Shape dynamics is an alternative theory of gravity whose fundamental symmetry is
scale invariance [72]. It has been shown that shape dynamics and GR produce the
same solutions in regions of space-time that admit a CMC slicing [73]. Whether
shape dynamics predicts a different solution (or even no solution) where there is no
CMC slicing is still an open question.
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6. Finally, Hořava-Lifshitz gravity [13, 14] is a potentially renormalizable theory of
gravity that breaks 4D diffemorphism invariant at high energies. However the non-
projectable version of the theory reduces in the low energy limit to the Einstein-
Hilbert action together with a scalar field with infinite sound speed (cuscuton) [71].

Spherically symmetric black hole solutions in Hořava-Lifshitz gravity have been studied
in [74], and it has been shown that the Schwarzschild metric is a solution to the equations
of motion for large black holes (whose curvature radius is much bigger than the Planck
length). These solutions are the same as the spherically symmetric black hole solutions of
Einstein-Aether theories [75], since spherical symmetry requires the aether vector field to be
hypersurface-orthogonal. As long as the effect of the cuscuton on geometry is negligible, the
Schwarzschild metric remains a black hole solution in Hořava-Lifshitz gravity. However,
the behavior of the cuscuton is important to the causal structure of spacetime, simply
because its sound speed is greater than the speed of light.

In this Chapter, we investigate this issue. Our motivation is to study black hole so-
lutions in theories with a preferred time direction. We specifically consider the causal
structure of black hole solutions in Hořava-Lifshitz (or cuscuton) gravity. Although spher-
ically symmetric black holes in Hořava-Lifshitz (and Einstein-Aether) gravity are close to
the Schwarzschild solution, they possess a new feature: they contain a trapped surface
forbidding the escape of any signal, no matter how fast its propagation speed. This new
type of horizon has been called a “Universal” horizon, as it is universal to all signals
with arbitrary speed. Previously demonstrated for static spherically symmetric systems
[76, 77, 78] (and [79] for stationary solutions), we investigate here the collapse of a spherical
thin shell and show how a universal horizon emerges in a dynamical setting. Also, unlike
previous studies considering only asymptotically flat background, we have done our study
of universal horizon in asymptotically cosmological solution. We note that the dynamical
formation of a similar additional trapped surface in K-essence models was also recently
demonstrated, though there was numerical evidence of a breakdown of the initial value
problem [80, 81].

The structure of this Chapter is as follows. We start by reviewing the propagation
of a scalar field (with a general action) in a general background space-time. We then
show how perturbations of the scalar field propagate through space-time, and derive the
“propagation cone” of perturbations at any given point. The propagation cone (sometimes
called the sound cone) is an analogue of the light cone for the scalar field perturbations.
For a scalar field, we find that the propagation cone depends on the constant background
field surfaces. In Section 6.3, we explicitly derive the equation of motion of background
field and propagation cone in the limit where the sound speed is very large. Section
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6.4 contains the solution for a collapsing spherical thin shell space-time. We show that
constant field surfaces are well behaved as long as the shell’s radius (R) is bigger than
Schwarzschild radius (2M). However, when R approaches the critical value Rc < 1.5M
constant field surfaces start to stack up around the r = 1.5M surface. This behaviour
shows that the field perturbations cannot escape from inside r = 1.5M to infinity even
though they propagate almost instantaneously. As a result, there exists a horizon for
these perturbations (universal horizon) at r = 1.5M . This result is in agreement with the
previous study of universal horizon in the infinite speed Einstein-Aether [82]. Section 6.5
covers the emergence of universal horizon.

6.2 Introduction to Signal Propagation

Consider a scalar field φ with the following action

S =

∫
d4x
√
−gL (X,φ) , (6.3)

where X = 1
2
gµν∇µφ∇νφ and gµν

1 is the spacetime metric. We have restricted the La-
grangian L to depend only on the field and its first derivative. The energy-momentum
tensor

Tµν = L,X∇µφ∇νφ− gµνL, (6.4)

is the same as that of a perfect fluid Tµν = (ρ+ p)uµuν − p gµν with

uµ =
∇µφ√
∇αφ∇αφ

, (6.5)

p = L, (6.6)

ρ = 2XL,X − L, (6.7)

provided that X > 0 (so that the fluid has a rest frame). Henceforth we assume that X > 0,
which has two advantages. Not only can the scalar field be understood as a perfect fluid
(as noted above) but together with null energy condition (which requires that L,X ≥ 0)
this assumption implies that the spacetime is stably causal [83].

Variation of the action (6.3) with respect to φ yields the following equations of motion
(for the derivation of the following equations (6.8)-(6.14) see [83])

G̃µν∇µ∇νφ+ 2XL,Xφ − L,φ = 0, (6.8)

1metric signature (+−−−)
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where G̃µν = L,Xgµν + L,XX∇µφ∇νφ.

To see how a φ-signal propagates in this spacetime, consider a small field perturbation
π(x) on some background field φ0(x) (neglecting the geometric back-reaction). These
perturbations satisfy the following hyperbolic equation

1√
−G

∂µ

(√
−GGµν∂νπ

)
+M2

effπ = 0, (6.9)

where

Gµν =
cs
L2
,X

G̃µν ,
(
G−1

)
µν
Gνρ = δρµ, (6.10)

√
−G =

√
−det (G−1)µν , (6.11)

M2
eff =

cs
L2
,X

(
2XL,Xφφ − L,φφ +

∂G̃µν

∂φ
∇µ∇νφ0

)
, (6.12)

c2
s =

1

1 + 2X
L,XX
L,X

. (6.13)

The quantity cs is the propagation speed of the field perturbation π in the field rest frame
(co-moving frame).

Equation (6.9) is a Klein-Gordon equation with the effective metric(
G−1

)
µν

=
L,X
cs

(
gµν − c2

s

L,XX
L,X
∇µφ0∇νφ0

)
, (6.14)

which determines the propagation of perturbations. Indeed, (G−1)µν defines a “propaga-
tion” cone at any point in spacetime, through(

G−1
)
µν
vµvν = 0. (6.15)

Using the above equations, we get

gµνv
µvν =

(
1− c2

s

)
(gµνu

µvν)2 (6.16)

showing that for superluminal perturbations (cs > 1), the vector v must be space-like with
respect to the metric gµν , consistent with our expectation that the influence cone is wider
than the light cone for superluminal propagation. It also shows that the propagation cone
at any point depends on the background field through the vector field uµ.
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From now on we will focus on a scalar field with the following Lagrangian

L = aXn − V (φ), (6.17)

where a and n are constants. So, Equation (6.13) yields

c2
s =

1

2n− 1
. (6.18)

Note that 1
2
< n < 1 and n > 1 respectively correspond to superluminal and subluminal

propagation. The fluid also becomes incompressible (i.e. infinite speed of sound) at n = 1
2
.

For n < 1
2

the sound speed becomes imaginary, which is a sign of instability. We are
interested in the superluminal case 1

2
< n < 1. The propagation cone is then given by

gµνv
µvν =

2 (n− 1)

2n− 1
(gµνu

µvν)2 . (6.19)

The right hand side of equation (6.19) is negative for 1
2
< n < 1, implying v is space-like.

Normalizing gµνv
µvν = −1, we get

(uµv
µ)2 = − 2n− 1

2 (n− 1)
. (6.20)

Note that as n approaches 1
2
, v becomes orthogonal to the velocity vector u. It means

that the propagation cone becomes almost tangent to constant field surfaces, for which
perturbations propagate (almost) parallel to the constant background field surfaces.

In summary, in order to determine how φ-signals (perturbations) propagate through
spacetime, we first solve Equation (6.8) for the background field φ0. Equation (6.20) then
determines the propagation cone at any point of spacetime. Henceforth, we shall focus on
fields with a very large sound speed, for which the values of n are very close to 1

2
.

6.3 Background Field and Propagation Cone

Equation (6.8) (together with (6.17)) yields

anXn−1

(
gµν + (n− 1)

∇µφ∇νφ

X

)
∇µ∇νφ+ V ′(φ) = 0. (6.21)
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where n = 1
2
(1 + ε2), ε� 1. In order to find the propagation cone for small perturbations,

we need to solve (6.20) and (6.21), which we shall do as a power series in ε. Considering
first the equations for n = 1

2
(zeroth order in ε), we have

a
√

2

2
∇µu

µ + V ′(φ) = 0, (6.22)

uµv
µ = 0, (6.23)

where we have used

∇µu
µ =

1√
∇αφ∇αφ

(
gµν − ∇

µφ∇νφ

∇αφ∇αφ

)
∇µ∇νφ, (6.24)

to get (6.22) (which is the cuscuton equation of motion). For values of n & 1
2

(slightly
greater than 1

2
), up to first order in ε (6.20) and (6.21) become

a

2
√
X

(
gµν − ∇

µφ∇νφ

2X

)
∇µ∇νφ+ V ′(φ) = 0, (6.25)

uµv
µ = ε. (6.26)

Since equation (6.25) is the same as (6.22), up to first order in ε the field φ satisfies the
cuscuton equation of motion. Also the propagation cone is determined by equation (6.26).
Because of the key role of the cuscuton field in the discussion, we will explain some of its
properties; this will help us to solve (6.25).

6.3.1 Cuscuton Characteristics

Cuscuton is a scalar field with an infinite speed of sound (n = 1
2
). Its energy-momentum

tensor can be expressed in the form of a perfect fluid Tµν = (ρ+ p)uµν − pgµν , where

ρ = V (φ), (6.27)

p = a
√
X − V (φ), (6.28)

uµ =
∇µφ√
∇αφ∇αφ

, (6.29)

and it satisfies the equation of motion (6.22).

Equation (6.29) shows that constant field surfaces are the same as co-moving surfaces,
as the field’s velocity vector uµ is the normal vector to constant field surfaces. Since the
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mean curvature K (the trace of the extrinsic curvature) of constant field surfaces is the
divergence of the normal vector to the surface, we have

K = uα;α = −
√

2

a
V ′(φ), (6.30)

where we have used (6.22) in the second equality. Equation (6.30) shows that mean cur-
vature K is constant on a constant field surface. It means that constant cuscuton field
surfaces are CMC (constant mean curvature) surfaces. Consequently in order to find con-
stant cuscuton field surfaces we only need to find the CMC surfaces of the background
spacetime.

6.4 CMC Surfaces of Spherically Collapsing Thin Shell

of Dust Spacetime

As we mentioned in the previous Section, we only need to find CMC surfaces of the back-
ground spacetime to determine the propagation cone. We consider here a collapsing shell
of spherically symmetric dust as the background spacetime and derive its CMC surfaces.

Assuming that the thin shell is located at r = R(t), it divides spacetime into two regions
with the following metrics:

I : ds2 = A2(t)dt2 − dr2 − r2dΩ2, r < R(t)

II : ds2 = f(r)dt2 − dr2

f(r)
− r2dΩ2, r > R(t),

in which f(r) = 1− 2M
r

, and we have ignored the gravitational back reaction of the cuscuton
field. The shell radius satisfies the following geodesic equation

Ṙ = −f(R)

√
1− f(R)

e2
, (6.31)

where e is a constant of motion and · = d
dt

. The function A(t) can be found by matching
the line elements at r = R(t)

A = f(R)

√
1 +

2M

e2R
. (6.32)
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In order to find CMC surfaces in this spacetime, we need to find CMC surfaces in each
region and match them at r = R(t). If tCMC = T (r) is a CMC surface with constant mean
curvature K, the normal vector uµ (in region II) to this surface will be

uµ =
1

N
∇µ(t− T (r)) =

1

N
(1,−T ′(r), 0, 0), (6.33)

where N is the normalization factor

N2 =
1

f(r)
− f(r)T ′2(r) (6.34)

that we choose to be positive. As a result

uµ =
1

N
(

1

f(r)
, f(r)T ′(r), 0, 0) (6.35)

and K = ∇µu
µ yields

ur =
K

3
r − B

r2
, (6.36)

where B is an integration constant. This constant may vary from one CMC surface to
another. Comparing (6.35) with (6.36) yields

T ′(r) =
ur

f(r)
√
f(r) + (ur)2

=
K
3
r − B

r2

f(r)
√
f(r) +

(
K
3
r − B

r2

)2
, (6.37)

with the following unit normal to the CMC surface

urII =
K

3
r − B

r2
, (6.38)

utII =
1

f(r)

√
(
K

3
r − B

r2
)2 + f(r). (6.39)

Similar calculations yield the following unit normal

urI =
K

3
r, (6.40)

utI =

√
(Kr

3
)2 + 1

A
. (6.41)

to the CMC surface in the first region.
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6.4.1 Finding B

Our next task is to obtain B. Its value can be fixed by matching the two CMC solutions
on the shell’s surface. We construct a set of orthonormal basis vectors {n, ei}, i ∈ {1, 2, 3},
where the ei’s form a complete orthonormal basis for the shell’s surface and n is the unit
vector normal to the surface.

The value of B must be chosen such that K = ∇µu
µ remains non-singular on the

surface of the shell. The previous derivations for u in region I and II are only valid inside
each region and not on the surface.

Figure 6.1: Space-time diagram showing r = R(t). The region inside the dashed lines is V .
Two sides of this region, normal to shell’s surface, are much smaller than the other sides,
so their contribution to the R.H.S of (6.42) is negligible.

However, non-singularity of K can be imposed by Gauss’s law. Consider a small space-
time volume V (Fig. 6.1); using Gauss’s law we find∫

V

K dV =

∫
V

∇µu
µ dV =

∫
∂V

uµn
µ
V dS, (6.42)

where nV is the normal vector to the region V .

For sufficiently small V only sides parallel to the shell’s surface contribute to the right-
hand side of (6.42) and nV = ±n. The left-hand side approaches zero as V → 0. Hence

98



u · n ≡ uµn
µ must remain continuous across the surface. Since K is non-singular, we find

that uI · n = uII · n, where the equality must be imposed on the shell.

Moreover, in order to have a smooth CMC surface, we demand that the projection of
u onto the surface of the shell remain continuous, implying uI · ei = uII · ei. Although
this smoothness condition results in three equations, two of them are trivial because of
spherical symmetry. The non-trivial equation reads

gttu
t
Idt+ grru

r
IdR = gttu

t
IIdt+ grru

r
IIdR (6.43)

This equation can be solved (analytically) for B in terms of R and K, and it has two
different solutions. The previous condition (non-singularity) picks one of them.

It can be easily shown that imposing smoothness condition requires that u · n either
remains continuous or flips sign across shell’s surface. The correct value of B is the one
that does not change the sign of u · n.

In the following, we will explicitly derive CMC surfaces in two cases.

6.4.2 K > 0

Using (6.31) and (6.37), we get

tCMC(r) = L(K)

−
∫ K−1

r

dx
K
3
x− B

x2

f(x)
√
f(x) +

(
K
3
x− B

x2

)2
, (6.44)

tshell(r) = −
∫ r

r0

dx
1

f(x)
√

1− f(x)
e2

+ t0, (6.45)

where t0 and r0 are constants (determining the initial position of shell), L(K) is another
integration constant (determining the behavior of CMC surfaces at large radii) and (6.44)
is only valid for r > R. Note that t = tshell(r) and r = R(t) describe the same surface.

L(K) can be fixed by matching cuscuton solutions to cosmological ones at large dis-
tances, remembering that a CMC surface is also a cuscuton constant density surface.
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Figure 6.2: The function h(r, R) in terms of r for different values of B (setting M = 1).
h is always positive when B > Bc. It has double root at r = 1.5M when B = Bc and
becomes negative for B < Bc.

Taking the derivative with respect to K in (6.44), we obtain

1

K̇
≡
(
∂t

∂K

)
r∼K−1

≈ L′(K) +
1

K2

1
3
−K2B√

1 + (1
3
−K2B)2

≈ L′(K) +
1

K2

1√
10

(6.46)

where we have used MK � 1 (as the Schwarzschild horizon 2M is much smaller than the
cosmological horizon K−1) and K2B � 1 (since we expect to have a homogeneous cuscuton
field on cosmological scales (6.36)). Knowing K̇ from cosmology, we can fix L(K).

Once all the constants (t0, r0 and L(K)) are fixed, we require tCMC(R) = tshell(R).
This equation together with (6.43) for each value of R gives the corresponding value of K
and B and completely fixes the CMC surfaces. Equation (6.44) can be expressed also in
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the following form

tCMC(r) = tshell(R) (6.47)

+

∫ r

R

dx
K
3
x− B

x2

f(x)
√
f(x) +

(
K
3
x− B

x2

)2
, r > R

Notice that (6.47) is a meaningful equation only if for all r > R, h(r, R) ≡ f(r) +(
K
3
r − B(R)

r2

)2

remains positive (R only fixes the value of B). Clearly, this condition is

satisfied for r > 2M . For r < 2M , if we neglect K
3
r term (as it is much smaller than B

r2 ),

there is a critical value Bc =
√

27
4
M2 above which h(r) is always positive. For B = Bc,

function h(r) has a double root at r = 3
2
M (Fig. 6.2). This argument shows that the

behavior of CMC surfaces depend heavily on how B changes with R (Fig. 6.3).

6.4.3 K = 0

In this case, we get

tCMC(r) = −
∫ r

r′0

dx
B
x2

f(x)
√
f(x) + B2

x4

+ t′0, r > R, (6.48)

where r′0 and t′0 are constants. In the case of maximal surfaces (K = 0), (6.43) gives
B = B(R) (for K = 0), and (6.48) together with tCMC(R) = tshell(R) determine the CMC
surfaces for radii larger than R. Consequently,

tCMC(r) = −
∫ r

R

dx
B(R)
x2

f(x)
√
f(x) + B(R)2

x4

+ tshell(R), r > R, (6.49)

6.5 Emergence of the Universal Horizon

As we mentioned earlier, an observer inside r = 1.5M cannot send any signal outside
this radius, after some stage in collapse, even using superluminal φ-signals that propagate
almost instantaneously. We shall demonstrate this for two cases.
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Figure 6.3: B as a function of R for K = 0 and e = 1. The horizontal line shows B = Bc.
The radius at which B(R) = Bc is called Rc. Note that Rc < 1.5M .

6.5.1 V (φ) = 0

If we set V (φ) = 0 in (6.30), we get

K = uα;α = 0, (6.50)

implying that constant field surfaces are maximal surfaces. As we showed earlier, in order
to determine the signal propagation in this background, we need to find normal vector uµ

to constant field surfaces. Then Equation (6.26) determines the sound cone at any point
of spacetime. Using (6.38) and (6.39), we get

urII = −B
r2
, (6.51)

utII =
1

f(r)

√
B2

r4
+ f(r), (6.52)
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where B is given by (6.43) (K = 0). As shown in Appendix D.1, there is always a radius
Rc ≤ 1.5M for which the corresponding value of B is Bc, B(Rc) = Bc. It means that when
shell’s radius approaches Rc, the value of B becomes closer to Bc, and the t-component of
the normal vector (utII) at r = 1.5M approaches zero. Note that Rc must be smaller than
1.5M ; otherwise the t-component of the normal vector would be utI .

On the other hand, equation (6.26) at r = 1.5M yields

− 1

3
utIIv

t + 3urIIv
r = ε. (6.53)

Consequently, (for a fixed value of ε) when R reaches Rc the first term in the above equation
becomes negligible. As a result vr < 0 (because B > 0) and the propagation cone becomes
tilted toward the center. As a result, no signal can escape r ≤ 1.5M . The surface r = 1.5M
is the “Universal Horizon” as no signal (even with infinite propagation speed) can escape
from within.

Maximal surfaces (surfaces of constant field) have been shown in Fig. 6.4 in Schwarzschild
and Kruskal2 coordinates. Close to Rc, maximal surfaces tend to stay very close to
r = 1.5M .

6.5.2 V (φ) 6= 0

The case V (φ) 6= 0 is almost the same as V (φ) = 0, as long as MK � 1. This can be
argued as follows. We are interested in the regions where the shell radius is of order M .
As a result, solutions to (6.43), as long as MK � 1, are the same as K = 0. Hence a small
non-zero value of K will not change the shape of the CMC surfaces at small radii (radii of
the order of M), and it only affects the shape of CMC surfaces at large radii (cosmological
scale). However, our derivation of the universal horizon (in the previous section) only
depends on maximal surfaces inside Schwarzschild radius. Consequently, we can apply the
same argument to a small non-zero value of K.

2Kruskal coordinates:

v =
∣∣∣ r
2M
− 1
∣∣∣ 12 e r

4M

[
sinh(

t

4M
)θ(r − 2M) + cosh(

t

4M
)θ(2M − r)

]
,

u =
∣∣∣ r
2M
− 1
∣∣∣ 12 e r

4M

[
cosh(

t

4M
)θ(r − 2M) + sinh(

t

4M
)θ(2M − r)

]
,
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(a) Constant field surfaces in Kruskal co-
ordinates. Thick blue, yellow and brown
curves respectively represent r = 0, the
shell’s surface and r = 2M . Blue curves rep-
resent constant field surfaces and the dotted
green curve is r = 1.5M . We see that after
some point constant field surfaces tend to
stay close to r = 1.5M .
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(b) Constant field surfaces in Schwarzschild co-
ordinates. The thick blue curve is the shell’s sur-
face, and blue curves are constant field surfaces.
We see that after some point they tend to stay
close to r = 1.5M .

Figure 6.4: Constant field surfaces for e = 1 and M = 1 in Kruskal and Schwarzschild
coordinates. Grey area shows the region causally disconnected from infinity.
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6.5.3 Is the Universal Horizon Singular?

Until now, we have ignored the effect of the cuscuton on the background geometry. This
assumption is valid if the cuscuton’s pressure and density remain small.

Consider a quadratic potential V (φ) = λφ2 for the cuscuton. Using the cuscuton’s
EOM (6.30) we find K ∝ φ, implying that the field value is suppressed by the Hubble
parameter (K = 3H where H is Hubble parameter) . As a result the cuscuton’s energy
density ρ = V (φ) is also Hubble-suppressed. Since the cuscuton pressure is given by the
time derivative of φ (6.28), it is suppressed by Ḣ. This argument shows that the cuscuton
energy density and pressure are small. However, since constant field surfaces tend to stack
around r = 1.5M upon formation of the universal horizon, the above argument may not be
applicable in this limit. We show here that upon forming a universal horizon, this surface
is non-singular. In fact the cuscuton’s pressure and density remain small when shell radius
approaches Rc.

According to (6.27) the density always remains finite for a well-behaved potential and
boundary condition. As an example, for V (φ) = λφ2 and matter dominated cosmology, ρ
remains small (in fact, it decreases with time and approaches zero). Since the pressure is
given by (6.28)

p = a
√
X − V (φ), (6.54)

we need to show that 2X = gµν∂µφ∂νφ remains finite in the limit R→ Rc.

In the following we assume that V (φ) is at least quadratic in φ. Differentiating (6.30),
we get

∂µK = −
√

2

a
V ′′(φ)∂µφ. (6.55)

As a result,

2X =
a2

2 (V ′′(φ))2 g
µν∂µK∂νK

=
a2

2 (V ′′(φ))2

[
1

f(r)
(∂tK)2 − f(r) (∂rK)2

]
. (6.56)

Using the identity (
∂K

∂r

)
t

= −
(
∂t

∂r

)
K

(
∂K

∂t

)
r

, (6.57)

together with (6.37), equation (6.56) yields

2X =
a2

2 (V ′′(φ))2

(
∂K
∂t

)2

r

f(r) +
(
K
3
r − B

r2

)2 . (6.58)
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In order to have a singularity the following term[
f(r) +

(
K

3
r − B

r2

)2
](

∂t

∂K

)2

r

(6.59)

must approach zero. Let us provisionally assume that(
∂t

∂K

)
r

=
1

K̇
−
∫ K−1

r

dx
x
3
− dB/dK

x2[
f(x) +

(
K
3
x− B

x2

)2
] 3

2

(6.60)

does not approach zero. The other term f(r)+
(
K
3
r − B

r2

)2
can reach zero upon formation of

universal horizon (R→ Rc, B → Bc) at r = 1.5M . However,
(
∂t
∂K

)
r=1.5M

is also diverging
at the same limit. Considering (6.59) in the limit R→ Rc and r → 1.5M we find[

f(r) +

(
K

3
r − B

r2

)2
](

∂t

∂K

)2

r

∼ (r − 1.5M)2 × 1

(r − 1.5M)4
∼ 1

(r − 1.5M)2
(6.61)

showing that not only (6.59) does not reach zero, it rather diverges as r → 1.5M . Hence
ρ = −p at r = 1.5M in the limit of the formation of the universal horizon.

The behaviour of
(
∂t
∂K

)
r

heavily depends on the value of dB/dK. Note that if
(
∂t
∂K

)
r

becomes zero at some point, it means that two CMC surfaces crossed each other. As a
result, it seems that as long as we are able to find solutions for the cuscuton,

(
∂t
∂K

)
r

never

vanishes. In the following, we will prove (by contradiction) that for K̇ < 0, this term does
not vanish.

If
(
∂t
∂K

)
r

= 0 at some point, dB/dK must be positive; otherwise the integrand in (6.60)

will be always positive and
(
∂t
∂K

)
r
< 0.

On the other hand,
(
∂t
∂K

)
r

= 0 means that two CMC surface have crossed each other
(as in Fig. 6.5). Note that these surfaces must cross and cannot be tangent to each other
because

(
∂t
∂K

)
r

changes sign near its zero. It means that R1 ≤ R2 (where Ri is the shell
radius corresponding to surface i), and consequently B(R1) ≤ B(R2), valid at least when
the shell’s radius is close to Rc.

If we assume that these surfaces are infinitesimally close to each other, then

dB/dK =
B(R1)−B(R2)

K1 −K2

≤ 0. (6.62)
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Figure 6.5: Space-time diagram showing two crossing CMC surfaces and the shell’s surface
(dashed line).

Note that the crossing point can be on the shell, which in this case dB/dK = 0. This is
in contradiction with the fact that dB/dK must be positive. As a result, we have shown
that for negative values of K̇,

(
∂t
∂K

)
never becomes zero.

In Appendix D.2, we have derived an approximate formula for dB/dK which further
shows that

(
∂t
∂K

)
does not become zero.

6.6 Summary and Conclusions

Constant field hypersurfaces of a cuscuton field represent the preferred time slicing in the
low energy limit of Hořava-Lifshitz gravity. In this Chapter, we have demonstrated that,
although the space-time geometry of a large black hole in Hořava-Lifshitz gravity is very
similar to Schwarzschild geometry, the causal structure is completely different.

Nevertheless, we showed that as a black hole forms, there still exists an event horizon
for signals with arbitrarily large speed. No matter how fast a signal propagates, it cannot
escape from inside this universal horizon (i.e. grey area in Fig. 6.4), as seen in static
solutions previously [76, 77, 78]. If this was not the case, one could have imagined that
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signals originating from regions close to the singularity could in principle propagate outside,
leading to a naked singularity, and rendering the classical theory unpredictive. Instead,
the emergence of a universal horizon during the formation of the black hole implies that a
version of Cosmic Censorship might still hold here. These results are also consistent with
earlier studies of the gravitational collapse of K-essence matter [80, 81], in which sonic
horizons could form inside luminal horizons, and gravitational collapse in the context of
Einstein-aether theories [84].

This causal structure has an additional interesting property. The universal horizon
relates the finite time coordinate inside black hole to future infinity (outside). As a result,
any observer falling into black hole will hit the universal horizon at a finite proper time,
prior to which she can, in principle, see events that happen outside black hole at arbitrarily
late times (if she can see arbitrarily superluminal signals in the preferred frame). For ex-
ample, the black hole itself radiates its mass through Hawking evaporation, with quantum
mechanical effects becoming important when the black hole radiates a substantive portion
of its mass. While, for an observer outside a massive black hole, this takes a long time
(∼ M3), an observer falling into black hole can detect these quantum mechanical effects
(via superluminal contact with outside) within a much shorter time (∼ M), just before
hitting the universal horizon. In this sense, the universal horizon can be considered the
causal future boundary of the classical space-time.

This realization could also be intimately related to the claim that, while the universal
horizon in our spherically symmetric system is regular, it is unstable to aspherical per-
turbations that might change it to a singular surface [76]. On the other hand, [82, 85]
argue that, similar to the ordinary null horizons, universal horizons may radiate particles,
and a fixed temperature and entropy can be assigned to them. However, it seems that
the instability of universal horizon by aspherical perturbations is incompatible with the
derivation of horizon temperature.

Another important issue regarding Lorentz violating theories is their apparent tension
with generalized 2nd law. It has been argued that in a theory with two different fields
A and B with different speeds cA and cB where each has its own horizon around black
hole, one can violate generalized 2nd law with building a perpetual motion machine (see
for example [86, 87]).

In the next Chapter, we consider the case of charged and spinning black holes.
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Chapter 7

Cosmic Censorship in Lorentz
Violating Theories of Gravity

7.1 Introduction

Theory of general relativity (GR) has been successful in describing a wide range of phenom-
ena, from solar system to cosmological scales. In addition to being consistent with various
experiments, the mathematical elegance of the theory is very appealing. Diffeomorphism
invariance, at the core of GR, gives a straightforward constructive way of building the
theory. In fact, GR is the simplest diffeomorphism invariant theory for metric.

From observational point of view, there is no reason to abandon this theory. GR is
compatible with a wide variety of experimental constraints1. On the other hand, many
attempts have shown so far that modifying GR is a tricky task, and one often faces physi-
cally unacceptable results, e.g. the appearance of Boulware-Deser ghost in massive gravity
[88] and ghost degrees of freedom in quadratic gravity [89].

However, studying non-GR theories of gravity is still valuable, and the main reason
stems from quantizing gravity. GR, while being a very successful classical theory, has
failed to cope with quantum mechanics. Therefore, one approach to quantum gravity has
been to abandon diffeomorphism invariance, as e.g., done in the celebrated Horava-Liftshitz
gravity [13]. However, the strict empirical constraints on violations of equivalence principle

1Although there have been various attempts to solve the problems of dark matter and dark energy with
GR modifications, simple solutions to these problem in the context of GR exist. In other words, there is
no apparent observational contradiction with GR which necessitates GR modifications.
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requires observable deviations from Lorentz symmetry to be limited to high energies, which
provides a challenge for the construction of these theories (e.g., [90]).

In different examples of theories with broken Lorentz invariance, superluminal degrees
of freedom appear (see [14, 15]). The existence of superluminal excitations (SLE) points
out that a different causal structure exists in these theories compared to GR, even when the
back-reaction of these excitations on the geometry is negligible. This property is especially
of significance in the black hole (BH) solutions. While potentially SLE can escape the
traditional Killing horizon of a BH and make the classical theory unpredictable [91], it
has been shown in many examples [92, 93, 78, 94, 95, 79, 77, 76] that a notion of horizon
(called universal horizon) still exists in these theories. Moreover, universal horizon (UH)
thermally radiate and satisfies the first law of horizon thermodynamics2 [96, 82, 85, 97] (but
also see [98]). Studying the notion of universal horizon and its temperature and entropy is
important since it guides us to better understanding the structure of UV theory.

Following our discussion from the previous Chapter, here we study the universal horizon
formation in dynamical or stationary spacetimes with an inner Killing horizon, in the limit
of infinite sound speed for excitations (i.e. incompressible limit). In order to do so, we
make use of the fact that surfaces of global time (defined by the background field), in the
incompressible limit of Lorentz violating theories, coincide with constant mean curvature
(CMC) surfaces of the spacetime (see Section 6.3). Furthermore, the backreaction of the
incompressible field on the spacetime geometry is negligible as long as the event horizon
is much smaller than the cosmological horizon [99]. In the next Section, we show how
the universal horizon forms in a dynamical setting, in the collapse of a charged shell, and
we derive a formula for the radius of the universal horizon in terms of the charge. In
Section 7.3.1, we propose a geometric definition for universal horizon. This allows us to
study the universal horizon for spinning black holes. In 7.3.2 we show that there are three
axisymmetric surfaces which satisfy the conditions of a universal horizon. As we show,
this means that two families (with infinite numbers) of axi-symmetric universal horizons
in Schwarzschild case exist. Section 7.4 concludes this Chapter.

7.2 Universal Horizon in Dynamic Reissner–Nordstrom

Geometry

We start this section by finding CMC slicing of dynamic Reissner–Nordstrom (RN) geome-
try. As we mentioned earlier, CMC surfaces of this spacetime are the constant global time

2so far only for spherically symmetric solutions
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surfaces of the background incompressible field, and they define the new causal structure
imposed by this field. Once we derive the CMC slicing, we focus on the (universal) horizon
formation in this geometry.

7.2.1 CMC Surfaces in a Dynamic Reissner–Nordstrom Geome-
try

In order to examine the formation of the universal horizon in a dynamic Reissner–Nordstrom
geometry, one must first describe surfaces of constant mean curvature for a collapsing
charged massive spherical shell. An examination of CMC surfaces has been similarly looked
at in the restricted case of maximal surfaces (K = 0) [100]. The dynamics of the collapse
itself is well known and described by Israel [101]. Describing the metric in the standard
way has the geometry inside the shell as flat and the RN outside. We write this geometry
as:

ds2 = f−(r)dt2− − f−(r)−1dr2 − r2dΩ2 (r < R)

ds2 = f+(r)dt2+ − f+(r)−1dr2 − r2dΩ2 (r > R)

where f−(r) = 1 and f+(r) = 1 − 2M
r

+ Q2

r2 in G = c = 1 units. The parameters are the
gravitational mass M and shell’s charge Q. For simplicity we will often use relative charge
q = Q/M . While the spherical coordinates are shared between the inner and outer regions,
the time coordinates t− and t+ correspond to the Minkowski and RN time respectively.

Let the family of spacelike CMC surfaces be denoted by ΣK(tg) where tg is a global time
coordinate that is constant for each surface. The timelike normal vector to this surface is
labelled vµ. The CMC condition implies ∇µv

µ = K, resulting in:

∂

∂t±
vt± +

1

r2

∂

∂r
r2vr = K (7.1)

If we denote B ≡ −r2vr and use the normalization condition vµv
µ = 1 then:

r2vt± = ±f±(r)−1
√
B2 + f±r4. (7.2)

For now we use the ’+’ case so that for vt > 0 for r �M . Additional explanation and the
cases where ’−’ is relevant will be seen in Section 7.2.4. Combining this result with (7.1)
we get
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B

f±(r)
√
h(r, B)

∂

∂t±
B − ∂

∂r
B = Kr2 (7.3)

with h(r, B) = B2 + f±r
4. The characteristic equations of (7.3) are simply:

dt±
ds

=
B

f±(r)
√
h(r, B)

,
dr

ds
= −1, and

dB

ds
= Kr2, (7.4)

for some parameter s. Using the second equation of (7.4) to integrate the first and third
equations results in:

t± = (t±)0 −
∫ r

r0

Bdr

f±(r)
√
h(r, B)

, and B =
K

3
(r3 − r3

0) +B0, (7.5)

where (t±)0, r0, and B0 are integration constants. In order to fix these constants, we
examine the internal and external cases separately.

1) Inside the shell: If r0 = 0 then B(r = 0) = B0. If B0 6= 0 this would lead to a
contradiction, as vr = −B

r2 should be finite in the flat geometry. Therefore with r0 = 0, the
equation reduces to:

t− = (t−)0 +

∫ r

0

Kr3dr

3
√

(Kr
3

3
)2 + r4

andB =
K

3
r3 (7.6)

2) Ouside the shell: Let r0 = R((t+)0), we can determine B0 by looking at the boundary
between the flat and RN spaces. Projecting the vector vµ along the shell should give us
continuous observable values. The shell timelike path comes from S = R(t±)−r = 0 which
creates the unit normal vector and tangent vector labelled as nµ and uµ respectively. If we
choose the sign of the normalization factors such that ur < 0 , the vectors take the form
of:

nµ− =
gµν

N−
(∇−)νS =

1

N−
(

dR

dt−
, 1, 0, 0), (7.7)

uµ− =
1

N−
(1,

dR

dt−
, 0, 0), (7.8)

N2
− = 1− (

dR

dt−
)2, (7.9)
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inside the shell, while outside takes the from of:

nµ+ =
gµν

N+

(∇+)νS =
1

N+

(f−1
+

dR

dt+
, f+, 0, 0), (7.10)

uµ+ =
1

N+

(1,
dR

dt+
, 0, 0), (7.11)

N2
+ =

f 2
+ − ( dR

dt+
)2

f+

. (7.12)

We wish to find functions C(R) and D(R), such that:

vµ− = Cnµ− +Duµ−. (7.13)

From inside the shell vµ(R) = (1, 0, 0, 0) which means C = −1
N−

dR
dt−

and D = 1
N−

. Requiring

projections (C and D) to be the same from outside, we get:

B0 = −R2(C(n+)r +D(u+)r) =
R2

N+N−

(
dR

dt+
− f+

dR

dt−

)
. (7.14)

So, if we specify the dynamics of the shell dR
dt±

, all the parameters are fixed.

The description of the radial velocity comes from Israel and De La Cruz [101]:(
dR

dt−

)2

= 1− R2

(εR− b)2
, (7.15)(

dR

dt+

)2

= f 2
+ −

f 3
+R

2

(εR− b− m
ε

)2
, (7.16)

where ε = M
M and b = M(ε2q2−1)

2ε
with M denoting the total rest mass. We can use (7.15)

and (7.16) to reduce N+ = Rf+

εR−b−M
ε

and N− = R
εR−b . Note that N+ changes signs to enforce

ur < 0, becoming negative only when dR
dt±

flips signs. These choices simplifies B0 to:

B0 =
M

ε

√
(εR− b)2 −R2. (7.17)
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Figure 7.1: h(r, B) with sub-critical, post-critical and critical B for Q = 0.

7.2.2 Horizon Formation

Following the analysis of previous Chapter, we examine the properties of t+. The behaviour
of t+ heavily depends on h(r, B). While B is large, which corresponds to large R, h(r, B) is
never vanishing. However when a critical value Bc is reached, h(r, Bc) has double root at a
particular value of r labelled rh (see Figure 7.1). Something interesting will occur when rh
is larger than the radius of the shell for which Bc occurs named Rlc or radius of last contact
(B(Rlc) = Bc). A signal sent out from the shell at Rlc will proceed out to rh but takes
infinitely long time to ever reach this radius. In fact, signals sent just outside Rlc will form
an envelope around rh staying at this radius longer and longer, as Rlc is approached, before
escaping to infinity (see Figure 7.3). The values of Bc and rh can be found by finding the

solutions to h(r, B) = ∂h(r,B)
∂r

= 0. We examine this equation in two different cases.

Case 1: K = 0

Equations for the double root reduce to:
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r4
h − 2Mr3

h +Q2r2
h +B2

c = 0 (7.18)

2r3
h − 3Mr2

h +Q2rh = 0 (7.19)

to which the solutions with non-negative real Bc are the trivial rh = Bc = 0 and

rh =
3M

4
+
M

4

√
9− 8q2 (7.20)

Bc = rh

√
−r2

h + 2mrh −Q2 = r2
h

√
−f+(rh). (7.21)

It is of interest to note that the UH is always between the inner and outer Killing
horizons of the metric (see Figure 7.2).

Case 2: K 6= 0

Equations for the double root are written as:

K2

9
r6
h + r4

h + (
2KB0

3
− 2M)r3

h +Q2r2
h +B2

0 = 0,

K2

3
r5
h + 2r3

h + (kB0 − 3M)r2
h +Q2rh = 0.

The non-trivial solution for Bc is:

Bc = rh

√
−r2

h + 2Mrh −Q2 − Kr3
h

3
= r2

h

√
−f+(rh)−

Kr3
h

3
, (7.22)

however the solution for rh can be at best expressed perturbatively in K. To linear order
the solution is:

rh = r0
h −K

(r0
h)

3
√
−f+(r0

h)

M
√

9− 8q2
+O(K2), (7.23)

where r0
h = 3M

4
+ M

4

√
9− 8q2. Assuming that the expansion of the background field is

negligible (for example fixed by cosmology, as K = 3×Hubble constant), in the region of
interest 0 < r < 2M the effect of terms containing K are insignificant. From here we set
K = 0 as its effect will only come into play when looking at the causal structure when R
is very large.
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The last unknown of the universal horizon is where it begins before it asymptotes to
rh. To solve for Rlc we use that B(Rlc) = Bc and it results in either:

Rlc =
b

2
− B2

c

2bM2
, (7.24)

for ε = 1 or

Rlc =
εb+

√
ε2(ε2 − 1)B2

c/M
2 + b2

ε2 − 1
, (7.25)

for ε > 1.

We take the larger of the solutions to the quadratic, as the first instance of Bc will
create the behaviour desired.

7.2.3 Inside the Universal Horizon

The foliation can be extended for B < Bc, however some subtleties arise. Denote the unit
tangent vector of the CMC surfaces at the point the surface intersects the shell as sµ which
in components can be written as:

sµ =
1

Ns

(T ′cmc(R), 1, 0, 0), (7.26)

N2
s =

1− f 2
+T
′2
cmc

f+

=
R4

h(R,B(R))
, (7.27)

where the last equality comes from using the derivative of (7.5). In general h(r, B(R)) is a
quartic that can not easily be factored, however when restricted to the surface of the shell
it can be factored to:

h(R,B(R)) =

(
R2 −MR +

Mb

ε

)2

. (7.28)

Thus one can write the normalization factor as:

Ns =
R2

R2 −MR + Mb
ε

. (7.29)

As a result, between the zeroes of 1/Ns at M
1±
√

1−4b/ε

2
we get sr < 0. In particular this

means that rather than increasing in r the CMC surfaces that intersect between these two
roots will have a strictly decreasing r coordinate. Moreover it is precisely at these points
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where st switches signs corresponding to the second solution for T ′cmc which comes from
the ’-’ solution to r2vt+ .

The second complication occurs when R does not lie between the roots of Ns while still
being less than Rlc. Here the CMC surface increases its radial coordinate initially only
to encounter a zero of h(r, B(R)) at rturn. The integral for t+ can carried out since T ′cmc
only depends on the square root of h(r, B(R)) and, by construction, rturn is only a first
order zero of h(r, B(R)). After this point T ′cmc switches signs and the r coordinate begins
decreasing, flipping the direction of the integration taking the surface from rturn to 0.

Now that these subtleties are understood, we are ready to examine the structure of the
complete foliation.

7.2.4 Foliation Structure

We will break up the discussion into several sections. For all our analysis we consider the
shell to be dropped from infinity thus ε ≥ 1 [101], in particular the inward velocity of the
shell at infinity is exactly

√
ε2 − 1. There are 4 cases of interest:

Case 1: Q = 0

When restricted to Schwarzschild, b = −M
2ε

making it strictly negative. In particular the
value of ε is only relevant to the radius of last contact, and so without losing any depth
of examination we set ε = 1. Figures 7.3 and 7.4a illustrate the foliations created by
the CMC surfaces for R > Rlc and the final well defined CMC surface that creates the
universal horizon in Schwarzchild and Kruskal-Szekeres coordinates. Once a conformal
compactification has been performed the casual structure is clear in Figure 7.4b with the
additional sub-UH CMC surfaces (which end in singularity, rather than the space-like
infinity i0).

Case 2: Q 6= 0 & b ≤ 0

For ε small enough such that the numerator of b remains negative, the shell is unable to
rebound before collapsing to a singularity. In Schwarzchild and the charged generalization
of Kruskal-Szekeres remain almost identical in their analogous charts. The causal structure
in Figure 7.5 reveals the distinction from case 1. The collapse ends in the coordinates,
colloquially called the parallel universe.
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Case 3: Q 6= 0 & 0 < b < b/ε+ 1/ε2

For the range of ε such that 0 < b < M
ε2

, the shell rebounds at the radius of b
ε−1

but in
the parallel coordinates which distinguishes it from the next case. In particular this means
that t(R) has a stationary point between r+ and r−. Figure 7.6 shows the collapse and the
corresponding causal structure for this case.

Case 4: Q 6= 0 & b ≥ b/ε+ 1/ε2

Subsequently for b > M
ep

shell rebounds at the radius of b
ε−1

in the original coordinate charts
or exactly where the original and parallel coordinates meet . In particular this means
that t(R) has a stationary point at or inside r−. The Schwarzchild and Kruskal-Szekeres
coordinates are again nearly indistinguishable from case 1 except when the placement
of Rlc requiring that the UH being in a second charts however this does not reveal any
new structure. Figure 7.7 and 7.8 represents paths within this case, b = b/ε + 1/ε2 and
b > b/ε+ 1/ε2 respectively. In this final case Rlc < r− resulting in the the UH piercing the
r−. Nevertheless, the singularity and the parallel interior horizon, which is considered to
be unstable [102] is still hidden within the UH.

7.2.5 Censorship in Reissner-Nordstrom

Ultimately, in all the above cases, the UH shields any singularity from being probed even
using superluminal signals and preserves a sense of cosmic censorship in Lorentz violating
theories. It is apparent from the structure that every CMC is terminated at i0, i+, i−

′
,i0
′

or the singularity. We would posit an analogous, although informally made, statement to
the original weak cosmic censorship conjecture: the set of points which can be connected to
i0 with CMC surfaces (an analogous property of being in the causal past of I+) is distinct
from the set of points which can be connected to the singularity. Moreover, the boundary
between these two sets will exactly be the universal horizon.

Even though we have plotted the maximal foliation of spacetime beyond the universal
horizon, one can argue that the self-consistent evolution of the Lorentz-violating theory
(including, e.g., backreaction or quantum effects, which we have ignored) stops at the
universal horizon, which can be viewed as the boundary of classical spacetime (see Sec.
VI in [99] for more discussions). To see this more explicitly, note that the CMC surfaces
beyond universal horizon end in singularity. Therefore, arbitrarily fast communication
along these surfaces leads to a breakdown of initial value formulation in this region. The
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fact that both curvature singularity and the (potentially unstable) inner Killing horizon
[102] lie beyond the universal horizon, further suggests a notion of strong cosmic censorship.

Note that in the cases where a parallel universe exists, a second UH acts as a white
hole horizon for superluminal signals.

7.3 Spinning Black Holes: A Tale of Three Horizons

7.3.1 Geometrical Definition of Universal Horizon

In the previous Section, we discussed the formation of universal horizon in a dynamic RN
geometry. Before moving on to the spinning black hole case, it would be illuminating to
acquire more intuition about the geometric nature of the universal horizon. We start by
asking the following question: is there a way of finding the universal horizon in the final
geometry (after collapse completed) without knowing the details of collapse?

Let’s consider the Schwarzschild case (Q = 0 collapse). CMC surfaces in the thin shell
collapse geometry describe the surfaces of constant global time. As we discussed earlier,
as long as we are interested in the behaviour of these surfaces near the black hole (small
radii) we can treat them as maximal surfaces (K = 0). Maximal surfaces in this geometry
inside the Schwarzschild radius asymptote to r = 3

2
M before escaping to infinity. This

suggests that r = 3
2
M itself should be a maximal surface. In fact, one can simply verify

that r = r∗ is a maximal (space-like) surface in Schwarzschild spacetime, only if r∗ = 3
2
M .

This observation suggests a geometrical definition for (asymptotic) universal horizon in
stationary spacetimes; it is a maximal space-like hypersurface which is invariant under the
flow of time-like Killing vector. Let’s discuss each element of this definition.

First of all, UH has to be a maximal surface as we described earlier. It also has to be
space-like, since it describes a constant global time surface. Secondly, it is invariant under
time translation, as it is the asymptotic surface of the maximal slicing.

We will show later explicitly that this definition does not pick a unique hypersurface.
However, this should not be surprising, since the position of universal horizon depends on
the behaviour of the background incompressible fluid (which defines the global time), unlike
the Killing horizon where its position is independent of the behaviour of the background
fields [99, 83]. Again, let’s consider Schwarzschild spacetime. If we use the given definition
of UH with the additional assumption of spherical symmetry, there is a unique solution of
r = 3

2
M . However, there are many non-spherical UHs in the same geometry.
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Before moving to the spinning case, let’s find the spherical UH of RN geometry using
the definition given above. Assume r = rh to be the universal horizon and vµ the unit
normal vector to this surface. Solving

∇µu
µ = 0, (7.30)

we get
f ′(rh) = −4f(rh), (7.31)

with f(r) = 1 − 2M
r

+ Q2

r2 . Eq. (7.31) has a unique solution, which coincides with our
previous result for universal horizon (7.20), and is plotted in Figure (7.2). One can also
directly check that (7.31) is equivalent to system of equations (7.18) and (7.19).

7.3.2 Universal Horizon in Kerr geometry

In this Section, we find the asymptotic universal horizon of Kerr metric. Given our defini-
tion above, it is a static axisymmetric3 (space-like) maximal surface. We express the Kerr
metric in the following coordinates:

ds2 =

(
1− 2mr

ρ2

)
dt2 − ρ2

∆
dr2 − ρ2dθ2 − 4mra sin2 θ

ρ2
dtdφ

−
(
r2 + a2 +

2mra2 sin2 θ

ρ2

)
sin2 θdφ2 (7.32)

where

ρ2 = r2 + a2 cos2 θ, (7.33)

∆ = r2 − 2mr + a2. (7.34)

The inner (r−) and outer (r+) Killing horizons are the solution to ∆ = 0.

UH is the surface
r = rh(θ) (7.35)

which satisfies
∇µv

µ = 0 (7.36)

where vµ is the (time-like) normal vector to the universal horizon. In other words,

vµ =
1

N
(0, 1,−r′h, 0) (7.37)

3we assume that the background incompressible field obeys the axial symmetry of Kerr geometry.
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where ′ is the derivative w.r.t θ and N is the normalization factor

N2 = − 1

ρ2

(
∆ + r′2h

)
. (7.38)

Equation (7.38) leads to the following conclusion: demanding UH to be a space-like surface
(vµ to be time-like) requires the UH to be positioned between the inner and the outer Killing
horizons

N2 > 0→ ∆ < 0→ r− < rh(θ) < r+. (7.39)

Now on to finding rh(θ): Equation (7.36) takes the form

2(rh −m) +
rh(r

2
h − 2mrh + a2)

r2
h + a2 cos2 θ

− (rh −m)(r2
h − 2mrh + a2)

r2
h − 2mrh + a2 + r′2h

=
r′h

tan θ
+ r′′h − r′h

[
a2 sin θ cos θ

r2
h + a2 cos2 θ

+
r′hr
′′
h

r2
h − 2mrh + a2 + r′2h

]
. (7.40)

One way to find the solution of this differential equation is to expand rh(θ) in powers of a

rh(θ) = m
∑
n=0

an

mn
r(n)(θ) (7.41)

and solve the differential equation order by order. At zero order (a = 0), we expect r(0) = 3
2
.

At any higher order, we find Legendre differential equation. Requiring finite solution at
θ = 0 and θ = π, this gives us a unique solution at any order. Here is the solution up to
the order a4:

r(2n−1) = 0, n ∈ {1, 2, · · · }

r(0) =
3

2

r(2) = − 1

36
cos2 θ − 13

36

r(4) =
49

10692
cos4 θ +

29

4752
cos2 θ − 1057

14256
.

Surprisingly though, upon solving (7.40) numerically, we have found two more solutions
that are different from (7.41) and do not approach to rh = 3

2
m as a→ 0 (see Figure 7.9).

The case of a = 0 is interesting, since the background geometry is spherically symmetric,
and yet we have found two axisymmetric UHs. Moreover, we can always perform a rotation
and get two other axisymmetric UHs. This means that there are two families (with infinite
number in each family) of axisymmetric UHs in Schwarzschild spacetime.
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7.4 Conclusion

In the incompressible (or infinitely fast propagation speed) limit of many Lorentz-violating
theories of gravity, surfaces of constant mean curvature define the preferred foliation [99]
(for a careful study of theories with infinite sound speed see [94]). For such theories, one
may worry that superluminal signal propagation may lead to naked singularities. In this
Chapter, we have shown that a universal horizon always forms when a charged spherical
shell collapses to form a Reissner–Nordstrom black hole. Evidence that causal horizon
formation will take place in Lorentz-violating theories supports a conjecture similar to
cosmic censorship in General Relativity.

We see that the universal horizon acts almost like an extension of i+, since any ob-
server approaching the UH will pass through all future CMC surfaces outside the UH.
Consequently, the analysis conducted here is likely only valid in the classical regime (ig-
noring quantum effects like the evaporation of BH). As a result the region close to the UH
is likely where non-classical effects will begin to become relevant. Making claims past this
region may require the full UV theory.

We have also presented a geometric definition for the UH which provides a tool for
finding generic solutions in non-spherically symmetric geometries. This tool is additionally
valuable as the full evolution of the system up to the point of UH formation is not needed
to be explored. In particular, we show how the definition can be applied to the Kerr
geometry, revealing a family of solutions in a non-spherical geometry.

Slowly rotating black hole solutions of Einstein-Aether theory has been studied in [103].
Specifically, in the limit that the spin-0 mode of Aether propagates infinitely fast, slowly
rotating black hole solutions of Einstein-Aether and Horava-Lifshitz are the same and they
possess a universal horizon. Corrections to the location of the universal horizon does not
appear in the first order of rotation parameter (Equation (104) in [103]) which is consistent
with our result in the previous section.

Additional horizon solutions may be real and the result of different (possibly more
generic) collapse histories; or just an artifact of our definition which does not single out
the correct universal horizon. Since the spherical universal horizon in Schwarzschild case
is suspected to become singular [76] by aspherical perturbations, the outermost universal
horizon (that we have found) can potentially shield this singularity and save cosmic cen-
sorship. This further motivates numerical dynamical studies of non-spherical collapse in
Lorentz-violating gravitational theories.

Gravitational dynamics within real black holes may yet have more surprises in store for
us!
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Figure 7.2: The outer, inner, and universal horizons for K = 0 and varying Q

Figure 7.3: The universal horizon formation for Q = 0 in Schwarzschild coordinates. The
blue lines represent CMC surfaces, the lowest brown line where the CMC line originate from
is the shell’s surface, the red line and the boundary of the shaded region is the universal
horizon (UH).
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(a) The universal horizon formation for Q =
0 in Kruskal-Szekeres coordinates. The
lines/region have the same meaning as Fig-
ure 7.3, additionally ,the dotted black is the
radius that UH asymptotes to, the thick
black line represents the null horizons, and
the dashed line the singularity.

(b) The Penrose diagram for a Q = 0 collapsing
shell depicting the UH horizon. The lines/region
have the same meaning as Figure 7.3 with the
inclusion of sub-UH CMC surfaces in blue.

Figure 7.4: Surfaces for constant global time and formation of the universal horizon in
Kruskal-Szekeres coordinates and Penrose diagram for Q = 0.
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Figure 7.5: The Penrose diagram for Q = 0.99M and ε = 1 collapsing shell depicting the
UH. The lines/region have the same meaning as Figure 7.3 with the inclusion of sub-UH
CMC surfaces in blue.
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Figure 7.6: The Penrose diagram for Q = 0.99M and ε = 1.1 values. These parameters
make b/(ε − 1) < b/ε + 1/ε2. The lines/region have the same meaning as Figure 7.3 with
the inclusion of sub-UH CMC surfaces in blue.
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Figure 7.7: The Penrose diagram for Q = 0.99M and ε set to make b/(ε− 1) = b/ε+ 1/ε2.
The lines/region have the same meaning as Figure 7.3 with the inclusion of sub-UH CMC
surfaces in blue.
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Figure 7.8: The Penrose diagram for Q = 0.99M and ε = 3/2 values. These parameters
make b/(ε − 1) > b/ε + 1/ε2. Coloured lines/region have the same meaning as Figure 7.3
with the inclusion of sub-UH CMC surfaces in blue.
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(b) a = 0 (Schwarzschild)

Figure 7.9: Polar plot r(θ)
m

. Green curve is the UH solution of (7.41). Blue curves are
additional numerical solutions to (7.40) and shaded region is the region between inner and
outer Killing horizons. The outer (inner) UH is tangent to the outer (inner) Killing horizon
at θ = π

2
.
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Appendix A

Supplementary material for Chapter
2

A.1 Proof of Inequality (2.6)

Theorem 3. Let NV be a discrete random variable which takes on a value n ∈ {0, 1, 2, · · · }
with probability PV (n), and whose mean is V > 0:

〈NV 〉 =
∞∑
n=0

nPV (n) = V. (A.1)

NV has the least variance when PV (n) = 0 ∀ n 6= n∗, n∗+ 1, where n∗ is the largest integer
which is smaller than or equal to V . Equivalently:

〈(NV − V )2〉 ≥ (V − n∗)(n∗ + 1− V ), (A.2)

where the inequality is saturated for the aforementioned process.

Proof. The following three conditions must be true

∞∑
n=0

PV (n) = 1, (A.3)

∞∑
n=0

PV (n)n = V, (A.4)

0 ≤ PV (n) ≤ 1 ∀ n. (A.5)
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We denote the random variable which we claim has the least variance by Nm
V , and its

probability mass function by Pm
V . It follows from (A.3) and (A.4) that

Pm
V (n∗) = n∗+ 1−V, Pm

V (n∗+ 1) = V −n∗, 〈(Nm
V −V )2〉 = (V −n∗)(n∗+ 1−V ).

(A.6)
Let us now show that for any other probability mass function PV (n):

σ2
V ≡

∞∑
n=0

PV (n)(n− V )2 ≥ (V − n∗)(n∗ + 1− V ). (A.7)

To this end, we define the following

AV ≡
n∗∑
n=0

PV (n), (A.8)

BV ≡
n∗∑
n=0

PV (n)(V − n) =
∞∑

n=n∗+1

PV (n)(n− V ), (A.9)

where the last equality follows from (A.4). On the one hand,

BV =
n∗∑
n=0

PV (n)(V − n) ≥ (V − n∗)
n∗∑
n=0

PV (n) = AV (V − n∗). (A.10)

On the other hand,

BV =
∞∑

n=n∗+1

PV (n)(n− V ) ≥ (n∗ + 1− V )
∞∑

n=n∗+1

PV (n) = (n∗ + 1− V )(1−AV ). (A.11)

It then follows from (A.10) and (A.11) that

1− BV

n∗ + 1− V
≤ AV ≤

BV

V − n∗
, (A.12)

which in turn implies that

BV ≥ (V − n∗)(n∗ + 1− V ). (A.13)

Consider now the variance:

σ2
V =

n∗−1∑
n=0

PV (n)(n− V )2 +
∞∑

n=n∗+2

PV (n)(n− V )2

+ PV (n∗)(V − n∗)2 + PV (n∗ + 1)(n∗ + 1− V )2. (A.14)
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For all n 6= n∗, n∗ + 1, (n− V )2 > |V − n|, from which it follows that

σ2
V ≥

n∗−1∑
n=0

PV (n)(V − n) +
∞∑

n=n∗+2

PV (n)(n− V )

+ PV (n∗)(V − n∗)2 + PV (n∗ + 1)(n∗ + 1− V )2 (A.15)

= 2BV + (n∗ − V )(n∗ + 1− V ) [PV (n∗) + PV (n∗ + 1)] . (A.16)

The equality in the last line follows from recognizing that

∞∑
n=n∗+2

PV (n)(n− V ) =
n∗+1∑
n=0

PV (n)(V − n). (A.17)

Finally, using the inequality (A.13):

σ2
V ≥ 2(V − n∗)(n∗ + 1− V ) + (n∗ − V )(n∗ + 1− V ) [PV (n∗) + PV (n∗ + 1)] (A.18)

= (V − n∗)(n∗ + 1− V ) [2− PV (n∗)− PV (n∗ + 1)] (A.19)

≥ (V − n∗)(n∗ + 1− V ), (A.20)

where the last inequality follows from the fact that PV (n∗)+PV (n∗+1) ≤ 1. This concludes
the proof of the theorem.

A.2 2D Lorentzian Lattices: Details

We wish to construct a lattice that is invariant under the action of a discrete subgroup of
the Lorentz group. We shall work in D-dimensional Minkowski space and use the metric
signature −+ + · · · . Consider D vectors ξ(d), with d ∈ {0, 1, 2, · · · , D− 1}, which generate
the lattice. In other words, any element of the lattice X can be written as

X = n(d)ξ(d), (A.21)

where n(d) are integers and the summation over d is implicit. Let Λ be an element of the
Lorentz group. We require that for all points X on the lattice, ΛX is also a point on the
lattice:

ΛX = n(d)Λξ(d) = m(d)ξ(d), (A.22)

where m(d) are integers. We may decompose Λξ(d) in the basis of the generators:

Λξ(d) = A
(d′)

(d) ξ(d′), (A.23)
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where A
(d′)

(d) are constants which depend on Λ and ξ(d). It then follows from (A.22) that

n(d)A
(d′)

(d) = m(d′). (A.24)

Therefore, A
(d′)

(d) must be an integer for all d and d′ if our lattice is to be invariant under

the action of Λ. In order to compute A, we can“dot” both sides of (A.23) by ξ(d′′):

Λξ(d) · ξ(d′′) = A
(d′)

(d) ξ(d′) · ξ(d′′). (A.25)

Defining the matrices B and C as,

B
(d′)

(d) ≡ ξ(d) · ξ(d′), C
(d′)

(d) ≡ Λξ(d) · ξ(d′), (A.26)

it follows that
A = CB−1. (A.27)

Consider now the case of 1 + 1 Minkowski space, i.e. D = 2. Let ξ(0) and ξ(1) be the
timelike and spacelike generators:

ξ(0) = ε

(
coshψ
sinhψ

)
, ξ(1) = δ

(
sinh θ
cosh θ

)
, (A.28)

where ε, δ > 0. Also, since in 1 + 1 we only have boosts to consider:

Λ =

(
coshφ sinhφ
sinhφ coshφ

)
. (A.29)

Defining the following quantities,

γ =
δ

ε
, χ = ψ − θ, (A.30)

it follows from (A.26) that

B = ε2
(
−1 γ sinhχ

γ sinhχ γ2

)
, C = ε2

(
− coshφ γ sinh(φ+ χ)

γ sinh(χ− φ) γ2 coshφ

)
. (A.31)

Using (A.27):

A =
1

coshχ

(
cosh(φ+ χ) 1

γ
sinhφ

γ sinhφ cosh(φ− χ)

)
. (A.32)
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We need to pick φ, χ and γ so that all elements of A are integers. Let k1 − k4 be integers
and require

cosh(φ+ χ)

coshχ
= k1,

1

γ

sinhφ

coshχ
= k2, γ

sinhφ

coshχ
= k3,

cosh(φ− χ)

coshχ
= k4. (A.33)

Note that
k1, k4 > 0, sgn(k2) = sgn(k3). (A.34)

The second and third equations in (A.33) are equivalent to

γ2 =
k3

k2

,
sinh2 φ

cosh2 χ
= k2k3. (A.35)

Also, the first and fourth equations in (A.33) imply

2 coshφ = k1 + k4, 2 sinhφ tanhχ = k1 − k4. (A.36)

The first equation in (A.36) fixes φ up to a sign, using which the second equation in (A.35)
fixes χ up to a sign. Putting these together in the second equation in (A.36), we obtain
the following constraint on the integers k1 − k4:

k1k4 − k2k3 = 1. (A.37)

This equation can be satisfied for various integers, and therefore there are many Lorentzian
lattices in 1 + 1.

To summarize: find integers k1 − k4 that satisfy the conditions (i) k1, k4 > 0, (ii)
sgn(k2)=sgn(k3), (iii) k1k4 − k2k3 = 1. Then, if we let cosh(φ) = k1+k4

2
, γ =

√
k3/k2, and

sinh(χ) = k1−k4

2
√
k2k3

, the lattice generated by ξ(0) and ξ(1) goes to itself under the action of

Λ(φ), with ψ, θ, δ, ε satisfying (A.30). Figure 2.1b shows an example of a Lorentzian lattice
with k1 = 2, k2 = k3 = k4 = 1, δ = 1, and θ = 0.
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Appendix B

Supplementary material for Chapter
3

B.1 IR Behaviour of the GCB Operators: Details

Here we will derive the equations that the constants a and {bn} should satisfy in order

for �(D)
ρ to have the desired IR behaviour (3.30), or equivalently (3.31), which in turn is

equivalent to

g̃(Z)
Z→0−−−→ −Z, (B.1)

where g̃(Z) is defined by
ρ−2/Dg(D)

ρ (p) ≡ g̃(Z), (B.2)

as given in the right hand side of (3.26).

B.1.1 Even Dimensions

Let D = 2N + 2 where N = 0, 1, 2, . . . . Then

g̃(Z) = a+ 2(2π)N
Lmax∑
n=0

bn
n!
Cn
D

∫ ∞
0

s2(N+1)n+2N+1e−CDs
D

(Z1/2s)−NKN(Z1/2s) ds. (B.3)

In order to examine the behaviour of g̃(Z) as Z → 0, we need to expand (Z1/2s)−NKN(Z1/2s)
in this regime. From the power series expansion of KN (see e.g. 10.31.1 and 10.25.2 of
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[30]), it follows that

(Z1/2s)−NKN(Z1/2s) =2N−1(Zs2)−N
N−1∑
k=0

Γ(N − k)

k!
(−Zs2/4)k (B.4a)

+
(−1)N+1

2N+1N !
ln(Z) (B.4b)

+
(−1)N

2N+1N !
[−2 ln(s/2) + ψ(1) + ψ(N + 1)] (B.4c)

+
(−1)N+1s2

2N+3(N + 1)!
Z ln(Z) (B.4d)

+
(−1)N

2N+3(N + 1)!
[−2 ln(s/2) + ψ(2) + ψ(N + 2)] s2Z (B.4e)

+O(Z2),

where ψ(n) is the digamma function. Because we need the leading behaviour of ρ−
2
D g̃(Z)

to be −Z, we have only considered terms up to this order. All the terms in (B.4a) and
(B.4b) diverge as Z → 0, forcing us to pick the bn such that none of them contribute to
g̃(Z) in the Z → 0 limit. The contribution of the term (B.4d) is also unwanted and should
be made to vanish by choosing bn appropriately. This leads us to the following series of
equations:

Lmax∑
n=0

bn
n!
Cn
D

∫ ∞
0

s2(N+1)n+2k+1e−CDs
D

ds = 0, k = 0, 1, . . . , N + 1. (B.5)

The integration over s can be performed (see e.g. 5.9.1 of [30]) to give us the condition
reproduced above as equation (3.32a):

Lmax∑
n=0

bn
n!

Γ(n+
k + 1

N + 1
) = 0, k = 0, 1, . . . , N + 1. (B.6)

Requiring the contribution of the constant term (B.4c) to vanish yields

a+
(−1)N+12πN

N !

Lmax∑
n=0

bn
n!
Cn
D

∫ ∞
0

s2(N+1)n+2N+1e−CDs
D

ln(s) ds = 0. (B.7)

We can perform the integral over s by using the formula (see e.g. 5.9.19 and 5.9.1 of [30])∫ ∞
0

sµe−as
D

ln(s) ds =
Γ(µ+1

D
)

D2a
µ+1
D

[
ψ(
µ+ 1

D
)− ln(a)

]
, (B.8)
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leading to (3.32b):

a+
2(−1)N+1πN

D2CDN !

Lmax∑
n=0

bnψ(n+ 1) = 0. (B.9)

Finally, requiring the contribution of (B.4e) to reproduce the desired −Z behaviour leads
to

Lmax∑
n=0

bn
n!
Cn
D

∫ ∞
0

s2(N+1)n+2N+3e−CDs
D

ln(s) ds =
2(−1)N(N + 1)!

πN
. (B.10)

Performing the integral using (B.8) furnishes (3.32c):

Lmax∑
n=0

bn
n!

Γ(n+
N + 2

N + 1
)ψ(n+

N + 2

N + 1
) =

2(−1)N(N + 1)!

πN
D2C

N+2
N+1

D . (B.11)

B.1.2 Odd Dimensions

Let D = 2N + 1 where N = 0, 1, 2, . . . . Then

g̃(Z) = a+ 2(2π)N−1/2

Lmax∑
n=0

bn
n!
Cn
D

∫ ∞
0

s2(N+1)n+2Ne−CDs
D

(Z1/2s)−N+1/2KN−1/2(Z1/2s) ds.

(B.12)
From the power series expansion of KN (see 10.27.4 of and 10.25.2 of [30]), it follows that

(Z
1
2 s)−N+ 1

2KN− 1
2
(Z

1
2 s) =(−1)N−12N−

3
2π(Z

1
2 s)−2N+1

N∑
k=0

(Zs2/4)k

k!Γ(k −N + 3
2
)

(B.13a)

+
(−1)N2−N−

1
2π

Γ(N + 1
2
)

(B.13b)

+
(−1)N2−N−

5
2π

Γ(N + 3
2
)

s2Z (B.13c)

+O(Z3/2).

As before, we have only kept track of terms up to Z. The contributions of all the terms in
(B.13a) should be made to vanish; this leads to the equation

Lmax∑
n=0

bn
n!
Cn
D

∫ ∞
0

s2(N+1)n+2k+1e−CDs
D

ds = 0, k = 0, 1, . . . , N. (B.14)
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Performing the integral over s gives us (3.33a):

Lmax∑
n=0

bn
n!

Γ(n+
2k + 2

2N + 1
) = 0, k = 0, 1, . . . , N. (B.15)

Requiring the contribution of the constant term (B.13b) to vanish yields

a+
(−1)NπN+ 1

2

Γ(N + 1
2
)

Lmax∑
n=0

bn
n!
Cn
D

∫ ∞
0

s2(N+1)n+2Ne−CDs
D

ds = 0 , (B.16)

which is equivalent to (3.33b):

a+
(−1)NπN+ 1

2

DCDΓ(N + 1
2
)

Lmax∑
n=0

bn = 0 . (B.17)

Finally, requiring the contribution of (B.13c) to reproduce the desired −Z behaviour leads
to

(−1)NπN+ 1
2

4Γ(N + 3
2
)

Lmax∑
n=0

bn
n!
Cn
D

∫ ∞
0

s2(N+1)n+2N+2e−CDs
D

ds = −1, (B.18)

which furnishes (3.33c):

Lmax∑
n=0

bn
n!

Γ(n+
2N + 3

2N + 1
) =

(−1)N−14Γ(N + 3
2
)

πN+ 1
2

DC
2N+3
2N+1

D . (B.19)

B.2 UV Behaviour of the GCB Operators: Details

Here we derive the UV behaviour of �(D)
ρ . We will make use of the following identity [31],

which holds for arbitrary natural number m:

Kp(Z
1
2 s)

Z
p
2

= (−1)m
(

2

s

)m
dm

dZm

{
Kp−m(Z

1
2 s)

Z
p−m

2

}
. (B.20)
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B.2.1 Even Dimensions

Let D = 2N + 2 where N = 0, 1, 2, . . . , and p = m = N in (B.20). It then follows that

Z−N/2KN(Z
1
2 s) = (−1)N

(
2

s

)N
dN

dZN
K0(Z

1
2 s). (B.21)

Substituting this in the definition of g̃(Z), as given by (B.3), produces

g̃(Z) = a+ (−1)N22N+1πN
Lmax∑
n=0

bn
n!
Cn
D

dN

dZN
I(D)
n (Z) , (B.22)

where

I(D)
n (Z) ≡

∫ ∞
0

sDn+1e−CDs
D

K0(Z
1
2 s) ds . (B.23)

It then suffices to study the behaviour of this integral as Z → ∞. It follows from 10.29.4
of [30] that

K0(Z
1
2 s) =

−1

Z
1
2 s

d

ds

(
sK1(Z

1
2 s)
)
. (B.24)

Plugging this relation in (B.23) and integrating by parts yields

I(D)
n (Z) = − 1

Z
1
2

{
sDn+1e−CDs

D

K1(Z
1
2 s)
∣∣∣∞
0
−
∫ ∞

0

sK1(Z
1
2 s)

d

ds
(sDne−CDs

D

) ds

}
. (B.25)

The first term vanishes when evaluated at ∞. When evaluated at 0, it is non-zero only
when n = 0, because K1(Z

1
2 s)→ Z

1
2 s−1 when s→ 0. It then follows that

I(D)
n (Z) =

1

Z
1
2

{
δn0

Z
1
2

+

∫ ∞
0

sK1(Z
1
2 s)

d

ds
(sDne−CDs

D

) ds

}
. (B.26)

From 10.29.3 of [30],

K1(Z
1
2 s) =

−1

Z
1
2

d

ds
K0(Z

1
2 s). (B.27)

Plugging this back into (B.26) and integrating once again by parts yields

I(D)
n (Z) =

1

Z

{
δn0 +

∫ ∞
0

K0(Z
1
2 s)

d

ds

[
s
d

ds
(sDne−CDs

D

)

]
ds

}
. (B.28)

It can be shown that

lim
Z→∞

∫ ∞
0

K0(Z
1
2 s)

d

ds

[
s
d

ds
(sDne−CDs

D

)

]
ds = 0. (B.29)
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With the aid of (B.22), it then follows that for large Z,

g̃(Z) = a + 2D−1π
D
2
−1Γ(D/2)b0 Z

−D
2 + · · · (B.30)

Notice that both these terms are real for both positive and negative Z, because D/2 is
an integer when D is even. In order to produce the sub-leading terms, one can continue
integrating by parts in (B.28). The sub-leading terms are thus also real, whence the
imaginary part of g̃(Z) must, for even D, decay faster than any power of Z for Z → ∞.
This behavior can be seen in Figures 3.2b and 3.3b.

B.2.2 Odd Dimensions

Let D = 2N + 1 where N = 0, 1, 2, . . . , and p = m− 1
2

= N − 1
2

in (B.20). It then follows
that

Z
1−2N

4 KN− 1
2
(Z

1
2 s) = (−1)N

(
2

s

)N
dN

dZN
{Z

1
4K− 1

2
(Z

1
2 s)}. (B.31)

From 10.39.2 of [30], we have that

K− 1
2
(Z

1
2 s) = Z−

1
4

( π
2s

) 1
2
e−Z

1
2 s , (B.32)

whence

Z
1−2N

4 KN− 1
2
(Z

1
2 s) =

(−1)N2N−
1
2π

1
2

sN+ 1
2

dN

dZN
e−Z

1
2 s. (B.33)

Substituting this into the definition of g̃(Z), as given by (B.12), produces

g̃(Z) = a+ (−1)N22NπN
Lmax∑
n=0

bn
n!
Cn
D

dN

dZN
I(D)
n (Z), (B.34)

where

I(D)
n (Z) ≡

∫ ∞
0

sDne−CDs
D

e−Z
1
2 s ds. (B.35)

It then suffices to study the behaviour of this integral as Z →∞:

I(D)
n (Z) = −Z−

1
2

∫ ∞
0

sDne−CDs
D d

ds
e−Z

1
2 s ds

= −Z−
1
2

{
sDne−CDs

D−Z
1
2 s
∣∣∣∞
0
−
∫ ∞

0

e−Z
1
2 s d

ds
(sDne−CDs

D

)

}
= Z−

1
2

{
δn0 +

∫ ∞
0

e−Z
1
2 s d

ds
(sDne−CDs

D

)

}
. (B.36)
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Again, because

lim
Z→∞

∫ ∞
0

e−Z
1
2 s d

ds
(sDne−CDs

D

) = 0, (B.37)

we can deduce from (B.34) that

g̃(Z) = a + 2D−1π
D
2
−1Γ(D/2)b0Z

−D
2 + · · · . (B.38)

B.3 Derivation of Equation (3.5)

From the general equations, (3.22) and (3.25), we have

ρ−1g(2)
ρ (p) = a(2) + ρ

2∑
n=0

(−1)nρn

n!
b(2)
n

∂n

∂ρn
χ(p, ρ), (B.39)

where {a(2), b
(2)
n } are given in (3.2) and

χ(p, ρ) = 2

∫ ∞
0

se−ρs
2/2K0(

√
p · ps) ds. (B.40)

From the relation (see e.g. 8.6.6 and 8.19.1 of [30]),

eZE1(Z) = 2

∫ ∞
0

e−tK0(
√

2zt) dt, (B.41)

it follows that
χ(p, ρ) = ρ−1eZ/2E1(Z/2) , Z = ρ−1p · p. (B.42)

Furthermore, using the identities (see e.g. 8.9.14 and 8.19.12 of [30]),

d

dz
[ezEp(z)] = ezEp(z)

(
1 +

p− 1

z

)
− 1

z
, (B.43)

pEp+1(z) + zEp(z) = e−z, (B.44)

it can be shown that

ρ2∂χ

∂ρ
= eZ/2E2(Z/2)− eZ/2E1(Z/2) (B.45)

ρ3∂
2χ

∂ρ2
= eZ/2E1(Z/2) [2 + Z/2]− eZ/2E2(Z/2) [3 + Z/2] . (B.46)

Equation (3.5) results from plugging these expressions back into (B.39) and using (B.44):

ρ−1g(2)
ρ (p) = −ZeZ/2E2(Z/2). (B.47)
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B.4 Damping the fluctuations

In reference [26] a prescription was given to get from the causet d’Alembertian B
(2)
ρ of (3.1)

a new operator B̃
(2)
ρ,ε , whose fluctuations are damped, but which has the same mean over

sprinklings as B
(2)
ρ̃ with ρ̃ = ερ. Here we generalize this prescription to the class of causet

d’Alembertians B
(D)
ρ defined in (3.19). (See Sections 3.2 and 3.3 for any symbol which is

not defined in what follows.)

Given the causal set d’Alembertian,

ρ−2/D(B(D)
ρ Φ)(x) = aΦ(x) +

Lmax∑
m=0

bm
∑
y∈Im

Φ(y), (B.48)

we construct as follows a new operator B̃
(D)
ρ,ε whose effective non-locality energy-density

scale is ερ:

ρ̃−2/D(B̃(D)
ρ,ε Φ)(x) = aΦ(x) +

∞∑
n=0

b̃n
∑
y∈In

Φ(y), (B.49)

with

b̃n = ε(1− ε)n
Lmax∑
m=0

(
n

m

)
bmε

m

(1− ε)m
, ε = ρ̃/ρ. (B.50)

(Here, the binomial coefficient
(
n
m

)
is zero by convention for m > n.)

Let us demonstrate that the continuum limit of B̃
(D)
ρ,ε , which we will denote by �̃(D)

ρ̃ , is
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equal to �(D)
ρ̃ :

ρ̃−2/D(�̃(D)
ρ̃ Φ)(x)− aΦ(x)

= ρ

∞∑
n=0

b̃n
n!

∫
J−(x)

e−ρV (x,y)[ρV (x, y)]nφ(y)dVy

= ρε

Lmax∑
m=0

bmε
m

m!

∫
J−(x)

e−ρV (x,y)

{
∞∑
n=m

(1− ε)n−m

(n−m)!
[ρV (x, y)]n

}
φ(y)dVy

= ρ̃

Lmax∑
m=0

bm
m!

∫
J−(x)

e−ρV (x,y)

{
∞∑
n=m

(1− ε)n−m

(n−m)!
[ρV (x, y)]n−m

}
[ερV (x, y)]m φ(y)dVy

= ρ̃
Lmax∑
m=0

bm
m!

∫
J−(x)

e−ρV (x,y)e(1−ε)ρV (x,y) [ρ̃V (x, y)]m φ(y)dVy

= ρ̃
Lmax∑
m=0

bm
m!

∫
J−(x)

e−ρ̃V (x,y) [ρ̃V (x, y)]m φ(y)dVy.

= ρ̃−2/D(�(D)
ρ̃ Φ)(x)− aΦ(x).

Of course, we have not proven here that the fluctuations of B̃
(D)
ρ̃ are actually damped.

This has been confirmed numerically for the minimal 2D and 4D operators in [26] and [27].
It would be interesting to confirm it also for the full set of GCB operators in all dimensions.
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Appendix C

Supplementary material for Chapter
4

C.1 Existence and Examples of �̃

Here we will show there are operators �̃ which satisfy all the axioms introduced in Section
4.2. In fact, we will outline a procedure for constructing such operators.

We shall consider the following operator:

Λ−2(�̃φ)(x) = aφ(x) + Λ4

∫
J−(x)

f(Λ2τ 2
xy)φ(y)d4y, (C.1)

where Λ denotes the nonlocality energy scale, a is a dimension-less real number, J−(x)
denotes the causal past of x, and τxy is the Lorentzian distance between x and y:

τ 2
xy = (x0 − y0)2 − |x− y|2. (C.2)

It may be shown that

�̃eip·x = B(p)eip·x, (C.3)

B(p) = Λ2g̃(p/Λ), (C.4)

g̃(z) = a+

∫
J+(0)

f((y0)2 − |y|2)e−iz·yd4y, (C.5)
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where as usual x · y = ηµνx
µyν . Evaluating g̃(z) amounts to computing the Laplace

transform of a retarded, Lorentz invariant function, which has been done in [30]. It follows
from their result that

g̃(z) = g(z · z), (C.6)

g(Z) = a+ 4πZ−
1
2

∫ ∞
0

f(s2)s2K1(Z1/2s)ds, (C.7)

where an infinitesimal time-like and future-directed imaginary part ought to be added to
z on the right hand side of (C.6) (see [33] for more details).

C.1.1 IR conditions

The infrared condition (4.8) is equivalent to satisfying

g(Z)
Z→0−−−→ −Z. (C.8)

In [33], a framework is developed to determine what constraints (C.8) places on a and f , for
some specific choices of f which arise in causal set theory. Generalizing that methodology
in a straightforward manner, we find that (C.8) is true if and only if the following conditions
are satisfied: ∫ ∞

0

f(s2)s2k+1ds = 0, k = 0, 1, 2 (C.9)∫ ∞
0

f(s2)s5 ln sds = − 4

π
, (C.10)

a+ 2π

∫ ∞
0

f(s2)s3 ln sds = 0. (C.11)

C.1.2 From B(p) to �̃

It is often desirable to constrain the behaviour of B(p), as opposed to �̃ directly. For
instance, as is argued in Section 4.4.3, the quantum theory is well behaved only when the
imaginary part of B(p) (for timelike and future-directed p) is always positive. The question
then becomes: are there any choices of a and f which allow for this possibility, provided
the IR conditions (C.9)–(C.11) are satisfied? To answer this question, we turn the problem
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around. Given a choice of B(p), we reconstruct a and f and then ask if the IR conditions
are met.

It can be shown that for x > 0: (see e.g. 10.27.9 and 10.27.10 of [30])

g(−x2 − iε) = gR(−x2 − iε) + igI(−x2 − iε), (C.12)

gR(−x2 − iε) = a+
2π

x

∫ ∞
0

f(s2)s2Y1(xs)ds, (C.13)

gI(−x2 − iε) = −2π2

x

∫ ∞
0

f(s2)s2J1(xs)ds. (C.14)

We can now use the following orthonormality conditions of Bessel functions (see e.g. 1.17.13
of [30]) to express f in terms of g̃I :

δ(x− x̃) = x

∫ ∞
0

tJ1(xt)J1(x̃t)dt. (C.15)

Doing so yields:

f(s2) = fg(s
2) + h(s2), (C.16)

fg(s
2) = − 1

2π2s

∫ ∞
0

gI(−x2 − iε)x2J1(sx)dx, (C.17)

where h satisfies for all x: ∫ ∞
0

h(s2)s2J1(xs)ds = 0. (C.18)

This means that specifying g̃I(−x2−iε) fixes f up to any part for which the right hand side
of (C.14) vanishes. One example of a nontrivial function which satisfies (C.18) is the delta
function: h(x) = δ+(x) ≡ δ(x− ε), where ε is an arbitrarily small positive real number.
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We can now express the IR conditions in terms of gI and h:∫ ∞
0

h(s2)s2k+1ds

− 1

2π2

∫ ∞
0

gI(−x2 − iε)x2

∫ ∞
0

dss2kJ1(xs) = 0, (C.19)∫ ∞
0

h(s2)s5 ln sds

− 1

2π2

∫ ∞
0

gI(−x2 − iε)x2

∫ ∞
0

dss4J1(xs) ln s = − 4

π
, (C.20)

a +2π

∫ ∞
0

h(s2)s3 ln sds

− 1

π

∫ ∞
0

gI(−x2 − iε)x2

∫ ∞
0

dss2J1(xs) ln s = 0. (C.21)

The above integrals over s are not absolutely convergent, so use the usual trick:∫ ∞
0

dsJ1(xs)e−δs
δ→0−−→ 1

x
, (C.22)∫ ∞

0

dss2J1(xs)e−δs
δ→0−−→ 3δ

x4
, (C.23)∫ ∞

0

dss4J1(xs)e−δs
δ→0−−→ −45δ

x6
, (C.24)∫ ∞

0

dss2J1(xs) ln se−δs
δ→0−−→ −2x−3, (C.25)∫ ∞

0

dss4J1(xs) ln se−δs
δ→0−−→ 16x−5. (C.26)

Having the delta function example in mind, we shall require h to satisfy for all k = 1, 2∫ ∞
0

h(s2)s2k+1ds = 0,

∫ ∞
0

h(s2)s2k+1 ln sds = 0, (C.27)

Also, we assume that the following integrals converge:∣∣∣∣∫ ∞
0

gI(−x2 − iε)x−kdx
∣∣∣∣ <∞, k = 1, 2, 3, 4 (C.28)∣∣∣∣∫ ∞

0

gI(−x2 − iε)x−k lnxdx

∣∣∣∣ <∞ k = 2, 4. (C.29)
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The IR conditions then reduce to∫ ∞
0

gI(−x2 − iε)x dx = π2

∫ ∞
0

h(u)du, (C.30)∫ ∞
0

gI(−x2 − iε)x−3dx =
π

2
, (C.31)∫ ∞

0

gI(−x2 − iε)x−1dx = −π
2
a. (C.32)

Note that the only nontrivial condition to satisfy is (C.30), since (C.31) just fixes the
normalization of gI and (C.32) determines a. Note that for positive gI(−x2 − iε) which is
required by consistent quantum theory, a must be a negative number.

If h is taken to be zero, then gI ought to change sign, which leads to a quantum theory
with an unbounded Hamiltonian. We note that the class of operators which arise in causal
set theory in [33] all have h = 0, and therefore this feature.

Let us work out a complete example in 4D. Let

gI(−x− iε) = Ax2e−x/2, h(x) = αδ+(x). (C.33)

where A and α are real constants. It can then be shown using (C.30)–(C.32):

A =
π

2
, α =

4

π
, a = −2. (C.34)

It then follows from (C.17) that

fg(s) = −e
−s/2

4π
(24− 12s+ s2). (C.35)

Therefore:

f(s) =
4

π
δ+(s)− e−s/2

4π
(24− 12s+ s2). (C.36)

C.1.3 Stability from positivity of gI

We have required that evolution defined by �̃ should be stable. Instabilities are in general
associated with “unstable modes”, and in line with [33], we shall use this as our criterion
of instability. More specifically, we take such a mode to be a plane-wave eip·x satisfying the
equation of motion �̃eip·x = 0, with the wave-vector p possessing a future-directed timelike
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imaginary part (i.e. p = pR + ipI where pI · pI < 0 and p0
I > 0). It is shown in [33] that

the necessary and sufficient condition for avoiding unstable modes is

g(Z) 6= 0 , ∀ Z 6= 0 and Z ∈ C. (C.37)

On the other hand, we argued in 4.4.3 that for consistency reasons we need to assume
ImB(p) > 0 for p0 > 0 which implies g(Z) has a positive (negative) imaginary part under
(above) the cut in Figure 4.1.

Here, we show that not even stability condition and positivity of gI(−x2 − iε) (see
Appendix C.1.2) are consistent, but latter is a sufficient condition for stability. In order to
prove it, we make the following assumptions:

1. g(Z) has a simple zero at Z = 0. IR conditions on g(Z) (C.8) guarantee this as-
sumption.

2. g(Z) has positive (negative) imaginary part under (above) the cut.

We prove this by counting the number of zeros of g inside contour C = C1+C2+C3+C4

in Figure C.1.

If N and P are the number of zeros and poles of g, respectively, inside the contour C
(taken to be anticlockwise), then∫

C

dZ
g′(Z)

g(Z)
= −2πi(N − P ). (C.38)

Let’s evaluate the left hand side of (C.38) for each contour separately:

1. C1: According to (C.7), g(Z) approaches the constant value of a < 0 (see C.1.2) for
large Z. In fact, g(Z)→ a +O( 1

Zn
) for some positive value of n (which depends on

the function f). This means for a 6= 0,∫
C1

dZ
g′(Z)

g(Z)
= 0. (C.39)

2. C2 & C4: Since the values of g above and under the cut are complex conjugate of
each other, the contribution from these diagrams can be added together to get∫

C2+C4

dZ
g′(Z)

g(Z)
= 2iIm

∫ 0

−∞
dx

g′(x+ iε)

g(x+ iε)

= 2iIm ln

[
g(0 + iε)

g(−∞+ iε)

]
, (C.40)
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C1

C2

C3
C4

Re(Z)

Im(Z)

Figure C.1: The integration path in the complex Z plane. The closed contour is taken to
be counterclockwise.
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where ε is an infinitesimal positive number.

If we define g(Z) = rg(Z)eiϕg(Z), the right hand side of (C.40) (apart from the factor
of 2i) measures how much ϕg rotates from Z = −∞ + iε to Z = 0 + iε. Since
Img(x + iε) < 0 on the whole negative real line, ln [g(x+ iε)] is definable on one
Riemann sheet. Combining this result with g(−∞+ iε) = a < 0 and g(0 + iε) = −iε,
we get ∫

C2+C4

dZ
g′(Z)

g(Z)
= iπ. (C.41)

3. C3: IR conditions require that close to Z = 0, g(Z) = −Z. This means∫
C3

dZ
g′(Z)

g(Z)
=

∫
C3

1

Z
= −iπ. (C.42)

Adding the values of all the contours and considering the fact that g(Z) is finite everywhere
(P = 0), we conclude that the number of zeros of g in complex plane of Z (inside contour
C) is zero. Since there is no zero on the negative real line (Img(x + iε) 6= 0), there is no
zero of g in the complex plane of Z except the one at Z = 0. Therefore, stability has been
proven.

C.2 FDT

Here, we present the proof of (4.52) 1. Let’s start by the following definitions

i∆(x, y) ≡
[
φ̂(x), φ̂(y)

]
, (C.43)

G(1)(x, y) ≡
〈{

φ̂(x), φ̂(y)
}〉

, (C.44)

W+(x, y) ≡
〈
φ̂(x)φ̂(y)

〉
, (C.45)

W−(x, y) ≡
〈
φ̂(y)φ̂(x)

〉
, (C.46)

GF (x, y) ≡ −i
〈
T φ̂(x)φ̂(y)

〉
, (C.47)

where {} is anti-commutator and 〈〉 shows expectation value in a quantum state. If we
define

GR(x, y) ≡ ∆(x, y)H(x � y), (C.48)

1Most of the content of this appendix is taken from [104].
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GA(x, y) ≡ −∆(x, y)H(x ≺ y), 2 (C.49)

we get the following relations

i∆(x, y) = W+(x, y)−W−(x, y)

= i
[
GR(x, y)−GA(x, y)

]
, (C.50)

G(1)(x, y) = W+(x, y) +W−(x, y), (C.51)

GA(x, y) = GR(y, x), (C.52)

GF (x, y) =
1

2

[
GR(x, y) +GA(x, y)

]
− i

2
G(1)(x, y). (C.53)

For a translational invariant system, the value of all the two point functions depend only
on space-time separation. This will allow us to define the following Fourier transform with
respect to time

A(ω,x,x′) ≡
∫
dt A(t,x; t′,x′)e−iω(t−t′). (C.54)

Now, let us assume that the quantum system is in thermal state with temperature T = 1
β
.

It requires that
W±(t,x; t′,x′) = W∓(t+ iβ,x; t′,x′), (C.55)

resulting in the following relation in Fourier space

W
+

(ω,x,y) = eβωW
−

(ω,x,y). (C.56)

Using (C.50), we get

W
+

(ω,x,y) =
i∆(ω,x,y)

1− e−βω
, (C.57)

W
−

(ω,x,y) = −i∆(ω,x,y)

1− eβω
. (C.58)

On the other hand, since GR and GA are time transpose of each other, in Fourier space
they are complex conjugate. As a result,

ImG
F

(ω,x,y) = −1

2
ReG

(1)
(ω,x,y)

= −1

2

[
W

+
(ω,x,y) +W

−
(ω,x,y)

]
= −1

2
i∆(ω,x,y) coth(

βω

2
) (C.59)

2where H is the Heaviside function: H(x � y) = 1 if x � y and otherwise 0
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where Im and Re are imaginary part and real part respectively and in the second line

we have used the positivity of two point function W+ (resulting that W
+

(ω,x,y) and

W
−

(ω,x,y) are real.)

With the assumption that this field theory in Hilbert space representation has an equiv-
alent representation in terms of double path integral, time ordered two point function is
given by (4.46). In Fourier space, it reads

G
F

(ω,x,y) =
1

2

[
G
K

(ω,x,y) +G
R

(ω,x,y) +G
A

(ω,x,y)
]
. (C.60)

G
K

(ω,x,y) is a total imaginary number and G
R

(ω,x,y) + G
A

(ω,x,y) is a real number.
As a result,

G
K

(ω,x,y) = 2iImG
F

(ω,x,y). (C.61)

Combining (C.50)(C.59)(C.61) we arrive at

G
K

(ω,x,y) = coth(
βω

2
)
[
G
R

(ω,x,y)−GA(ω,x,y)
]
, (C.62)

which reduces to (4.52) at zero temperature.

C.3 Quantum Transition

We start by proving a simple theorem for any quantum system. Consider a quantum
mechanical system in the (normalized) initial state |α〉 evolves in time and the probability
of finding the system at a later time tf in the state |βi〉 is called Pi, and assume |βi〉’s are
orthonormal:

Pi = |〈βi|U |α〉|2 (C.63)

where U is the time evolution operator.

Now, consider a (normalized) state |β〉 as a superposition of |βi〉 states:

|β〉 =
∑
i

ci|βi〉 (C.64)∑
i

|ci|2 = 1.
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Probability P of measuring the system at time tf in the state |β〉 is given by

P = |〈β|U |α〉|2. (C.65)

Then,

P = |〈β|U |α〉|2 =

∣∣∣∣∣∑
i

c∗i 〈βi|U |α〉

∣∣∣∣∣
2

≤

(∑
i

|ci|2
)(∑

i

|〈βi|U |α〉|2
)

=
∑
i

Pi (C.66)

where we have used the triangular inequality in the second line. So P is bounded from
above by

∑
i Pi.

Now, let’s get back to the scattering of a massless particle with state γ, a superposition
of M different masses, in Section 4.6.3. We already have shown (see (4.95)) that Γ0mi

defined as transition probability of a massless particle scattering with a massive particle
(mass mi) scales with N as

Γ0mi =
Ai
N

(C.67)

where Ai depends on the momentum of the particles but independent of N . Using (C.66)
for transition probabilities, we conclude that

Γ0γ ≤
∑
i

Ai
N
≤ A

M

N
(C.68)

where A is the maximum of Ai’s.
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Appendix D

Supplementary material for Chapter
6

D.1 Proof of the Existence of Universal Horizon

Here, we investigate the conditions for the existence of a universal horizon for K = 0 but
arbitrary value of e. As we showed in section 6.5, a universal horizon will appear if there
is a radius Rc smaller than 1.5M such that the corresponding value of B is Bc. In fact,
this is one of the conditions for the existence of universal horizon.

Condition 1:
There exists Rc ≤ 1.5M such that B(Rc) = Bc.

We prove that this condition is always satisfied. Solving (6.43) for small values of R, we
find B(R = 0) = 0. It can be checked easily that the minimum value of B at R = 1.5M is
always greater than or equal to Bc. Hence there must be Rc ≤ 1.5M such that B(Rc) = Bc.
If there is more than one solution to B(R) = Bc for R ≤ 1.5M , we call the biggest one Rc.

One more condition also needs to be satisfied: solutions of CMC surfaces must be well
defined before the shell radius reaches Rc. In other words, solutions in region II must be
well defined all the way to Rc.

Condition 2:
There does not exist R > Rc such that for some value r > R, h(r, R) < 0.
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In the proof of condition 1, we showed that for Rc ≤ R ≤ 1.5M , B(R) ≥ Bc (otherwise
there is a violation of the condition that Rc is the biggest root of B(R) = Bc, which is
smaller than 1.5M). This means that h(r, R) is always positive for Rc ≤ R ≤ 1.5M (Figure
6.2). As a result, condition 2 is satisfied for this range of R. Furthermore it is obvious that
condition 2 is satisfied for R > 2M .

Finally, we prove that the condition 2 is satisfied for region 1.5M < R < 2M by
contradiction. Assume that a radius R0 > 1.5M exists such that for some value r0 > R0,
h(r0, R0) < 0. By the properties of the function h it is clear that B(R0) < Bc (otherwise

h is always positive). Also, h(r, R0) has only one minimum at rmin = (2B2(R0)
m

)1/3. Using
B(R0) < Bc, it is clear that rmin < 1.5M . Since the function h has only one minimum, we
conclude

rmin < 1.5M < R0 < r0 → h(R0, R0) < h(r0, R0) < 0. (D.1)

However, it can be checked directly that h(R,R) = 1− 2m
R

+ B2(R)
R4 ≥ 0.

Consequently, the appearance of a universal horizon has been shown for arbitrary value
of e.
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D.2 Dependence of B on K

Here, we want to derive an analytic expression relating B to K in the limit of universal
horizon formation. We will use the following approximation for this derivation.

First, we match CMC surfaces to cosmological ones deep inside the Hubble radius. This
approximation let us use (6.49) to find a time coordinate for each CMC surface at large
radii (large compared to the Schwarzschid radius and small compared to the cosmological
horizon). Then, knowing K = K(t) for a specific cosmology, we can assign a value of K
to each surface. Second, we perform all calculations in the limit R→ Rc. In this limit the
time coordinate of each CMC surfaces goes to infinity. We are interested in the leading
order divergent term. In the following, when two equations are related through ∼, it means
that they are equivalent up to their leading order.

We begin by finding tCMC . According to (6.49), we have

tCMC(r) = tshell(R)−
∫ r

R

dx
B
x2

f(x)
√
f(x) + B2

x4

= tshell(R)−M
∫ r/M

R/M

dx
bx

(x− 2)
√
x4 − 2x3 + b2

= tshell(R)−

M

∫ r/M

R/M

dx
bx

(x− 2) ((x− 1.5)2 (x2 + x+ 3
4

)
+ b2 − b2

c)
1/2

where b ≡ B
M2 and bc ≡ Bc

M2 =
√

27
4

.

In the limit R → Rc (b → bc), the divergent term in the last equation comes from the
integral around x = 1.5. Considering that tshell(R) limits to a constant value, we find

tCMC(r) ∼

−M

∫ 1.5+ε

1.5−ε
dx

bx

(x− 2)
√

(x− 1.5)2 (x2 + x+ 3
4

)
+ b2 − b2

c

∼ 3Mbc

∫ 1.5+ε

1.5−ε
dx

1√
9
2

(x− 1.5)2 + b2 − b2
c

. (D.2)

Using the following identity for small y∫ +ε

−ε

dx√
z2x2 + y2

∼ − ln(y2)

|z|
, (D.3)
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(D.2) yields
tCMC ∼ −

√
2Mbc ln

(
b2 − b2

c

)
. (D.4)

For a specific cosmological scenario, we can relate K to B through K = K (tCMC). As
an example, for a matter dominated cosmology K = 2

t
, and so

K =
2

tCMC

∼ −
√

2

Mbc ln(b2 − b2
c)
, (D.5)

which results in
dK

dB
=

1

M2

dK

db
=

2
√

2

bcM3

b

(b2 − b2
c) [ln (b2 − b2

c)]
2 . (D.6)

As a result, dK/dB → ∞ as b → bc. Consequently
(
∂t
∂K

)
r

does not approach zero in this
limit. As another example, consider ΛCDM cosmology. At late times, we have

K2 = K2
Λ +K2

0e
−KΛtCMC ∼ K2

Λ +K2
0

(
b2 − b2

c

)√2bcMKΛ , (D.7)

which again gives dK/dB →∞ (MKΛ � 1).
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