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Abstract

Floor Response Spectra (FRS), also called In-structure Response Spectra (IRS) in some

standards and literature, are extensively used as seismic input in safety assessment for

Systems, Structures, and Components (SSCs) in nuclear power plants. Efficient and accurate

determination of FRS is crucial in Seismic Probabilistic Risk Analysis (SPRA) and design

of nuclear power facilities. Time history method has been commonly used for generating

FRS in practice. However, it has been demonstrated that time history analyses produce

large variability in the resultant FRS, especially at FRS peaks, which are of main interest

to engineers. Therefore, results from only a single, or a few, time history analysis cannot

yield reliable FRS; a large number of time history analyses are needed to achieve sufficient

accuracy in FRS. Nevertheless, this procedure is time-consuming and cumbersome from a

practical point of view.

The purpose of this study is to develop a method of generating FRS that overcomes

the deficiencies of the time history method and preserves the advantages of conventional

response spectrum analysis for structures. A direct spectra-to-spectra method is analyti-

cally developed for the generation of FRS without introducing spectrum-compatible time

histories as intermediate seismic input or performing time history analyses. Only the in-

formation required in a conventional response spectrum analysis for structural responses,

including prescribed GRS and basic modal information of the structure (modal frequencies,

mode shapes, and participation factors) is needed. The concept of t-response spectrum is

proposed to determine the responses in the tuning case when the secondary system is res-

onant with the supporting structure. Furthermore, a new modal combination rule (called

FRS-CQC), which fully considers the correlation between the responses of the secondary

system and the supporting structure, and the correlation between modal responses of the

structure, is derived based on random vibration theory.

A scaling method, based on the proposed direct spectra-to-spectra method, is further

developed for generating FRS in a situation when the modal information of structure is not

available. A system identification technique is carried out to recover the modal information

of equivalent significant modes of the structure from existing GRS-I and FRS-I. Scaling
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factors are then determined in terms of the equivalent modal information along with the

GRS-I and GRS-II. The proposed scaling method can scale FRS to various damping ratios

when the interpolation method recommended in standards are not applicable, and can also

consider the large variations in the spectral shapes between GRS-I and GRS-II.

The proposed direct spectra-to-spectra method is further extended to generate FRS

considering the effect of soil-structure interaction in conjunction with the substructure

method. A methodology is presented to develop a vector of modification factors for the

tri-directional Foundation Input Response Spectra (FIRS) obtained from a free-field site

response analysis using the properties of the structure and underlying soil. The modified

response spectra, called Foundation Level Input Response Spectra (FLIRS), are then used

as input in the direct method to a fixed-base model for generating FRS.

The proposed methods are both efficient and accurate, giving a complete probabilistic

description of FRS peaks, and accurate FRS comparable to those obtained from time history

analysis using a large number of spectrum-compatible time histories.
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1C H A P T E R

Introduction

Secondary systems are structures, systems and components (SSCs) that are attached to or

supported by the traditional civil engineering structure, such as building, dam, nuclear

power structure and so on, which are categorized as primary systems. For instance, in a

nuclear power plant as shown in Figure 1.1, the primary systems consist of a reactor building,

a service building and a turbine building. Secondary systems comprise various equipment

including electrical systems, mechanical systems, control systems, etc. Secondary systems,

however, are far from being of secondary importance in spite of the name. The fact is that

secondary systems play various function to maintain operational process in the primary

system and support human activities. Moreover, the cost of secondary systems may be

considerably higher than that of the main structure.

During the past decades, it was demonstrated that secondary systems were vulnerable in

earthquake events (Figure 1.2). The failure of secondary systems not only cause tremendous

economic loss, but also threat to safety of life. In the 1994 Northridge earthquake in Los

Angeles, several major hospitals were forced to be evacuated, not because of the damage

of the main structures, but due to the failure of some crucial secondary systems, such

as emergency power systems, control systems of medical equipment, water supply piping

systems (Villaverde, 2009).

For seismic analysis of primary structure, the seismic input are usually given in terms

of site-specific ground response spectra, which are provided by seismologists or specified

1
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Figure 1.1 Primary and secondary systems in a nuclear power plant
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Figure 1.2 Damage of secondary systems in earthquake events

in design code. Structural responses can be obtained by performing dynamic analysis for

the structure, the methods for structural analysis are well developed. Contrary to primary

systems which are designed to resist forces caused by earthquake, the preliminary design

of secondary systems is generally accomplished by different groups. Only the capacity of

resisting regular operational load and accidental load may be considered in this procedure.

Since secondary systems are usually attached to the floors or walls of primary systems,

when an earthquake occurs, secondary systems are suffered from the vibration of the floor

to which they are attached, rather than subject to ground motions at the base of primary

system directly. However, the motions of floor which are transmitted through the supporting
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1.1 seismic analysis methods for secondary systems

structure are modified and its amplitude can be amplified significantly, thus cause severe

damage to the secondary systems. Therefore, the seismic input for secondary systems is not

only determined by ground excitations acting on the base of the primary structure, but is

also highly depended on the dynamic characteristics of the supporting primary structure.

Seismic design and analysis are mandatory for safety-related secondary systems in nu-

clear power plants (ASCE, 1998; ASCE, 2005). Seismic analysis of secondary systems pro-

vides useful information to seismic probability risk assessment (SPRA) of nuclear facilities,

which is now widely used for seismic safety evaluation of existing power stations, and design

of new-built plants. Therefore, it is necessary to study the seismic behavior of secondary

systems and develop reliable and practical approaches to determine the seismic responses

of secondary systems.

1.1 Seismic Analysis Methods for Secondary Systems

Practically, seismic responses of secondary systems can be determined by two approaches:

floor response spectrum approach and combined primary-secondary system approach. An

overview of these two approaches is illustrated in Figure 1.3.

The floor response spectrum approach is a decoupled analysis method, which means the

primary and secondary systems are analyzed separately. A dynamic analysis is performed

for the primary structure at first without considering the effect of the secondary system. The

input for the primary structure can be a set of time histories compatible with prescribed

ground motion spectra. Responses of the primary structure at the locations to which

the secondary systems are attached can be obtained, then are utilized as the input to a

single degree-of-freedom oscillator to generate floor response spectra, which is a plot of

the maximum responses of the oscillator versus the frequency of the oscillator. Therefore,

engineers can estimate the maximum response of a secondary system readily from the floor

response spectra.

In the combined primary-secondary system approach, the primary and secondary sys-

tems are modelled as an integral part. Both time history analysis and response spectrum

analysis can be applied for determining the responses of the secondary systems. There is no
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1.1 seismic analysis methods for secondary systems
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un

ug(t) ug(t)

Figure 1.3 Seismic analysis methods for secondary systems

doubt that this approach can give an theoretically accurate responses of secondary systems,

however, some challenges and difficulties exist. Large differences between the character-

istics of primary systems and that of secondary systems, such as mass and stiffness, may

cause serious numerical problems in a modal analysis or time history analysis, thus give

inaccurate solutions. Also, there are usually excessive degrees-of-freedom in a combined

primary-secondary system, dynamic analysis of the entire system is not efficient since only

seismic responses of secondary systems are of interest. Moreover, although a combined

primary-secondary system analysis can give seismic responses for a secondary system at a

certain location. There may be a large number of secondary systems and the locations of

secondary system may be varied, the calculation of each case is not feasible or desirable from

a practical point of view. Consequently, the combined primary-secondary system approach

is not widely used in practice. For secondary systems whose stiffness, mass, and result-
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1.1 seismic analysis methods for secondary systems

ing frequency range should be considered, a combined primary-secondary system will be

established to account for possible dynamic interaction effects. Criteria to decoupled and

coupled analyses are recommended in some studies (Gupta and Tembulkar, 1984; Hadjian

and Ellison, 1986) and standards USNRC (2012); typical rules are shown in Figure 1.4. The

blue line criteria is suggested in Hadjian’s work based on performing parametric studies

for two types of two degree-of-freedom models. It shows that the criteria of decoupling

analysis mainly depends on the mass ratio and the frequency ratio between primary and

secondary systems. The red line represents the criteria specified in the standard review plan

of USNRC (2012).
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Figure 1.4 Decoupled and coupled analysis criteria

Although problems associated with the assumption of decoupled analysis may be encoun-

tered in some special applications, the floor response spectrum method with the decoupled

assumption is widely accepted in practice since the majority of secondary systems have rel-

ative small mass compared to the mass of the supporting structure; the effect of interaction

between the primary and secondary system can be negligible.
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1.2 floor response spectrum

1.2 Floor Response Spectrum

ASCE (1998) proposes that floor response spectra shall be generated by time history analyses

or a direct spectra-to-spectra method (Figure 1.5).

Figure 1.5 Two methods of generating floor response spectrum

1.2.1 Time History Method

For time history method, a dynamic analysis for primary structure is conduct by using

modal superposition or direct time integration method. The time histories at the locations

to which secondary systems are attached are obtained and sequently are used to generate

floor response spectra. Conceptually, a time history analysis can give accurate responses

for a given ground motion record. However, recorded ground motion time histories repre-
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1.3 previous research on floor response spectra

sentative of the site of interest are generally not available, therefore, artificial time histories

compatible with a target ground response spectrum are usually generated as intermediate

input to the primary structure. However, it has been recognized that there are significant

variabilities in FRS generated by the time history method (Chen and Soong, 1988; Singh,

1988; Villaverde, 1997), in the sense that two spectrum-compatible time histories may give

significantly different FRS. Hence, if only a single set of tri-directional earthquake time

histories, or even a small number of sets of tri-directional earthquake time histories, is used

in the time history analysis to calculate FRS, the FRS obtained is not reliable. Consequently,

a large number of sets of tri-directional earthquake time histories may be required to obtain

an reliable probabilistic description of FRS; but this procedure is not only cumbersome but

also computationally expensive.

1.2.2 Direct Spectra-to-Spectra Method

Various direct spectra-to-spectra methods have been developed to avoid the deficiencies

of time history methods. The “direct” means that ground response spectrum is used at

input directly without generating any intermediate input such as spectrum-compatible time

histories or spectrum-compatible power spectral density functions. In the direct methods,

floor response spectra are analytically expressed in terms of ground motion spectra and

some basic modal information of the primary structure, including modal frequencies and

damping ratios, mode shapes, and modal participation factors, which can be obtained from

a modal analysis.

1.3 Previous Research on Floor Response Spectra

Some research work on developing direct spectra-to-spectra method for generation of floor

response spectra has been conducted during the past decades.

Biggs and Roesset (1970) first proposed a simple semi-empirical method to generate floor

response spectra without performing time history analyses. Seismic response of secondary

systems is considered as a combination of amplification of ground motion and amplification

of structure motion. Amplification curves for the two types of amplification, which were

8



1.3 previous research on floor response spectra

plotted versus the ratio between equipment period (Te) and structure period (Ts) as shown

in Figure 1.6, were developed empirically based on an analysis for a model subjected to

four actual earthquake records. Maximum response of secondary system is calculated by

combining the responses of all structural modes through the square root of the sum of the

squares (SRSS) rule. Similar approaches were carried out later by Kapur and Shao (1970),

Duff (1975).
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Figure 1.6 Empirical amplification curves in Biggs and Roesset’s study

Singh (1975) develop a method to generate floor response spectra based on random vibra-

tion theory which incorporates a probabilistic concept. This approach is further extended

by Singh (1980) considering resonance cases when the frequency of secondary systems is

closed to one of the natural frequencies of the primary structure. In this method, the

primary structure is assumed to be subject to a stochastic ground excitation characterized

by power spectral density function (PSDF). The PSDF of structural responses, which are

associated with the mean squared responses of secondary system, are obtained in terms of

modal information of primary structure, complex frequency response functions, and PSDF

of the prescribed ground motion. The mean square responses of secondary systems is then

connected to its maximum response by multiplied with a peak factor as shown in Figure

1.7. A similar method on the basis random vibration principles in conjunction with mode

acceleration formulation was also presented by Singh and Sharma (1985).
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1.3 previous research on floor response spectra

Response x(t) Probability

Time

Standard 

|x(t)|
max

=PF  σ
x

Deviation σ
x

Figure 1.7 Relationship between maximum and mean responses in random process

Some direct approaches of generating FRS involving frequency domain analyses were

developed. Scanlan (1974), Jeanpierre and Livolant (1977) present direct calculation methods

of floor response spectra by taking the Fourier transform of ground motion. Peters et al.

(1977) conducted a modal analysis for a structure with interaction-free, a single degree-

of-freedom system attached, to produce approximate modal information of the structure-

equipment system. An analytical expression of equipment response in non-resonance cases

was derived and an approximation for secondary system response in a resonance case was

recommended. The total responses of secondary system are determined through the SRSS

modal combination rule.

It was pointed out by Kelly and Sackman (1978) that neglecting the dynamic interaction

between primary and secondary systems yields conservative results in FRS when the mass

ratio between secondary system and primary system is not small and resonance between

primary and secondary system occurs. Sackman and Kelly (1978, 1979, 1980) employed a

perturbation technique to solve eigenvalues of the combined primary-secondary system in

which the equipment frequency is close to one of the natural frequencies of the supporting

structure. Modal responses for non-tuning and tuning cases are given in closed-form,

and the modal responses are sequently combined using the SRSS modal combination rule.

Similar perturbation-based approaches were also utilized and improved by Sackman et al.

(1983), Igusa and Kiureghian (1985), Gupta and Jaw (1986a), Singh and Suarez (1986), Suarez

and Singh (1987a) to express the modal properties of the combined primary-secondary
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1.3 previous research on floor response spectra

system in term of that of each individual subsystem. Kiureghian et al. (1983), Igusa and

Kiureghian (1985) investigated the responses of secondary system under stochastic seismic

input using the modal properties of the combined primary-secondary system. Besides,

a mode synthesis method was used by Suarez and Singh (1987b, 1987c) to consider the

interaction between primary and secondary systems. A simple Newton-Raphson algorithm

is employed to solve a nonlinear characteristic equation for the eigenvalues of the combined

system. Since the approach is not derived on the basis of the perturbation theory, it is

also applicable for relatively heavy secondary systems. Using this method, the interaction

between two secondary systems and structure is considered by Suarez and Singh (1989) as

well.

Generally, due to the difference between the damping of structure and equipment, the

combined primary-secondary system possesses non-classical damping even though the

primary system itself is classically damped. Therefore, the damping matrix of the system

cannot be diagonalized by the eigenvectors of the undamped primary system. Igusa et al.

(1987) derived a modal combination method to combine the spectral moments of the

responses for the non-classically damped system characterized by complex eigenvalues

and eigenfunctions. Singh and Sharma (1985) developed floor response spectra using

equivalent modal frequencies and damping ratios which are transformed from the complex

eigenvalues of a non-classical damping system. Gupta and Jaw (1986b) proposed a modal

superposition method to deal with the non-classical damping problem. One complex

eigenvector is replaced by two real eigenvectors, and modal equations can be obtained

in the same form of classically damped system. Singh and Suarez (1987) expressed the

characteristic equation of the combined primary-secondary system in terms of the exact

dynamic properties of each subsystem, and solved the equation numerically to obtain the

complex-valued eigenproperties, which are used for determining floor response spectra.

As some secondary systems such as piping system are multiply connected to the primary

system, the spatial coupling effect on the response is also accounted in the generation

of floor response spectra. Gupta (1984) evaluated the mode shapes and frequencies of a

coupled model consists of a multiple degree-of-freedom secondary system and a multiple

degree-of-freedom primary system using the perturbation theory. Floor response spectra at
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the connecting degree-of-freedom are obtained deterministically alone with the correlation

between the FRS. An improvement on this method was presented by Gupta and Jaw (1986c)

with a better perturbation algorithm, the interaction and non-classical damping was also

considered. Igusa and Kiureghian (1985) also extended their method which is on basis

of modal synthesis, perturbation technique, and random vibration theory, to generate

probabilistic FRS for multiply support secondary systems. Asfura and Kiureghian (1986)

introduced a concept of cross-cross floor spectrum (CCFS), which is defined in terms of

covariance of the responses of two oscillators mounted on two locations of the supporting

structure, to consider the correlation between modal responses and between motions at

supporting nodes. Burdisso and Singh (1987) developed a response spectrum method for

seismic analysis of multiply support secondary systems. The response of the secondary

system is divided into the inertia and the pseudo-static components. Maximum response

of each component as well as the correlation between these two component, which is called

cross response component, can be calculated by a response spectrum method. Since pseudo-

acceleration floor response spectra, relative velocity floor response spectra and cross floor

response spectra are required as input in the proposed response spectrum method, Singh

and Burdisso (1987) also present a method to determine these spectra from ground response

spectra directly.

The effect of nonlinear behavior of primary structure on floor response spectra was

addressed by some researchers. Viti et al. (1981) studied the response of a single degree-

of-freedom with elasto-plastic stiffness under seismic load. Peak reduction coefficients

between Linear and non-linear floor response spectra which can reflect the effect of non-

linearity are obtained for various damping ratios and ductility factors in numerical exam-

ples. Sewell (1986) performed a comprehensive parametric study on a multiple degree-of-

freedom system, effect of various factors on linear and nonlinear floor response spectra was

investigated. Igusa (1990) employed an equivalent linearization technique to investigate the

dynamic behavior of an inelastic two degree-of-freedom primary-secondary system. The

seismic response of the secondary system is derived analytically, and the effect of the non-

linearities on the response is examined. Politopoulos and Feau (2007) proposed a design

floor response spectrum through developing equivalent linear models for a single degree-

12
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of-freedom primary structure with different types of nonlinearity. An extensive parametric

study was also carried out by Chaudhuri and Villaverde (2008) to understand the effect of

structure nonlinearity on seismic responses of secondary systems. The results indicated

that the responses of secondary system may be amplified in special situations considering

the nonlinearity of the primary structure.

In current practice, FRS is generally generated without considering the effect interaction.

For the tuning cases, one of the terms becomes the first-order derivative of the relative

velocity with respect to damping (see equation (2.2.27)), which cannot be determined

analytically in terms of the input GRS. Singh (1980), Kiureghian et al. (1983), Igusa and

Kiureghian (1985) studied the response of a tuned primary-secondary system under a wide-

band stochastic input which can be approximated as a white noise in this case. Yasui et al.

(1993),An et al. (2013) considered the phase differences between the primary and secondary

system in time domain to obtain an approximate value of this tuning term.

Although there have been a number of direct spectra-to-spectra methods available for

generating FRS since 1970s, they have not been widely used in nuclear industry. Some

methods give conservative results in some frequency ranges but unconservative results

in other frequency ranges due to the various approximations used. Furthermore, it is

unknown when and by how much the FRS obtained is conservative or unconservative. If

the results are scaled so that the resulting FRS are conservative over the entire frequency

range, FRS in some frequency ranges become excessively conservative. The results of FRS

should be conservative but not too conservative; otherwise, the cost of seismic qualification

of systems, structures, and components (SSC) of nuclear power plants will be significantly

increased. Some methods are derived based on pronounced theories, the implementation

of these methods are, however, not free of complication and difficulties. For instance, the

direct method developed by Singh (1975, 1980) is recommended in standard ASCE (1998).

Although FRS is defined analytically in terms of the modal information of the primary

structure and ground response spectra, some coefficients are not given explicitly. These

coefficients which lack for physical meaning to engineers have to be obtained by solving

systems of equations. Moreover, numerical difficulties may be encountered in solving the

equations, particularly, for large complex structure.
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1.4 Objectives of This Study

The objective of this study is to develop an accurate and efficient direct spectra-to-spectra

method for generating floor response spectra:

❧ This method should provide accurate FRS peaks, where large variability exhibits if the

time history method is used.

❧ The method should preserve the conventional form of spectrum analysis to which

engineers are accustomed.

❧ No additional information is required except that needed in a traditional response

spectrum analysis of structural responses.

❧ All the coefficients and parameters in this method should be given explicitly so that

the formulations are convenient to implement.

❧ This method should be applicable to large three-dimensional complex structures with

closely-spaced modes.

1.5 Organization of This Study

In Chapter 2, a direct spectra-to-spectra method for generating floor response spectra

(FRS) of large three-dimensional structure is developed. Starting with the fundamentals of

structural dynamics, seismic response of a SDOF oscillator mounted on a SDOF primary

structure is studied first. The response of the oscillator is derived analytically based on

Duhamel’s integral. For the tuning case when the oscillator is resonant with the SDOF

primary structure, the concept of t-response spectrum (tRS) is introduced, along with

the statistical relationships between tRS and GRS developed through extensive numerical

simulations, to give an accurate and complete probabilistic description of FRS, since large

variabilities exist in this important case. The formulation is then extended to a SDOF

oscillator mounted on a multiple DOF primary structure. A new modal combination

method for generating FRS, called FRS-CQC, is developed based on random vibration

theory. FRS-CQC can fully account for the correlation of responses between equipment and

its supporting structure with closely-spaced modes. FRS is formulated in terms of input
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1.5 organization of this study

GRS and the basic modal information of structure which is needed in the conventional

spectrum analysis of structural responses.

In Chapter 3, the direct method proposed in Chapter 2 prompted the development of

a scaling method of generating FRS. The challenge and difficulties of two typical scaling

problems are introduced first. Based on the analytical formulation of the direct method

which provides a strong physical insights into the essential characteristics of FRS, a system

identification technique is presented to recover the dynamical information of significant

equivalent modes of the underlying structure from the GRS and available FRS. A large

number of numerical simulations are performed to quantify the relationship between tRS

and different equipment damping ratios. Scaling factors are then determined in terms of the

equivalent dynamical information (modal frequencies, modal damping ratios, and modal

contribution factors) and input GRS. The effect of higher equipment damping ratio and

variations of GRS spectral shapes can be fully accounted.

In Chapter 4, a methodology is developed for generating FRS considering the effect of

dynamic soil-structure interaction based on the substructure technique and the proposed

direct spectra-to-spectra method. Dynamic stiffness matrix of a three-dimensional struc-

ture with rigid foundation under three translational and three rotational base excitations

is derived, and is expressed in terms of the modal information of the structure. A transfer

matrix which is dependent on the dynamic stiffness matrix of the structure-foundation sys-

tem and that of generalized soil springs is developed to modify the tri-directional response

spectra at the foundation level of the free-field (FIRS). The modified response spectra,

called foundation level input response spectra (FLIRS), are then used as the input to the

fixed-base structure to generate FRS using the direct spectra-to-spectra method. The effect

of soil-structure interaction on FRS is studied, the physical meaning and advantages of the

proposed method are highlighted.

Chapter 5 presents some conclusions from this study and proposes directions for future

research.
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2C H A P T E R

Generating Floor Response Spectra:
Direct Spectra-to-Spectra Method

Theoretically, time history analyses can give accurate structural responses for a real earth-

quake event, the ground motion time histories of the next earthquake event are, however,

unpredictable. Therefore, response spectrum analysis which incorporates a probabilistic

concept into the seismic input are commonly used by engineers in seismic design and

analysis. A modal analysis of the structure is performed prior to a response spectrum anal-

ysis to identify the basic modal information of the structure including natural frequencies,

modal damping ratios, mode shapes and modal participation factors. Maximum modal

response of the structure can be estimated by reading the spectral value from the prescribed

ground response spectrum for the corresponding frequency of the mode. An appropriate

modal combination rule is then used to combine the maximum responses of all modes to

determine the maximum total response of the structure.

Nevertheless, the maximum responses of structure are not adequate to determine floor

response spectra (FRS). Spectrum-compatible time histories, as intermediate seismic input

to the structure, have to be generated, and time history analyses are performed to obtain the

time histories of the structural responses, which will be sequently used for generating FRS.

However, as mentioned in Chapter 1, since time history analysis produces large variability

in the resultant FRS due to the inherent randomness and uncertainties of the time histories,
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2.1 response spectra

a large number of time history analyses are needed to achieve reliable results which are

time-consuming and cumbersome.

In this chapter, it is aimed to develop FRS analytically in time domain based on Duhamel’s

integral. Only the basic structural modal information required in a traditional response

spectrum analysis of a structure, including natural frequencies, modal damping ratios,

mode shapes and modal participation factors, is needed. Starting from the fundamentals

of structure dynamics, responses of secondary system mounted on a structure are derived

rigorously. A full probabilistic description on FRS peaks where large variability exhibits is

implicitly incorporated into the formulation, and a new modal combination rule for FRS

which is applicable for structure with closely-spaced modes is derived.

2.1 Response Spectra

2.1.1 Ground Response Spectra

In seismic design and assessment of nuclear power plants, seismic excitations in two or-

thogonal horizontal directions H1 and H2, and vertical direction V are usually applied.

Suppose that ui
g(t), i=1, 2, 3, where u1

g(t)=uH1
g (t), u2

g(t)=uH2
g (t), and u3

g(t)=uV
g (t), is

the displacement of the ground motion in direction i. When a single degree-of-freedom

(SDOF) oscillator with circular frequency ω0 and damping coefficient ζ0 is subjected to this

ground motion, as shown in Figure 2.1, the equation of motion is

ẍ i
G + 2ζ0ω0 ẋ i

G + ω2
0 x i

G = − ü i
g(t), (2.1.1)

where x i
G(t)=u i

G(t)−u i
g(t) is the relative displacement of the oscillator and u i

G(t) is the

absolute displacement. The subscript “G” denotes that the oscillator is mounted on the

ground. The absolute acceleration is ü i
G(t)= ẍ i

G(t)+ ü i
g(t)=−(2ζ0ω0 ẋ i

G +ω2
0 x i

G). The

maximum absolute acceleration of the oscillator S
i
A(ω0, ζ0) = max

∣
∣ü i

G(t)
∣
∣ is the ground

(acceleration) response spectrum (GRS) in direction i.

2.1.2 FRS of SDOF Primary Structure

For the special case when the primary structure is SDOF with circular frequency ω and

damping coefficient ζ , u(t) and x(t)=u(t)−ug(t) are the absolute and relative displace-
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2.1 response spectra

ments of the structure, respectively, satisfying

ẍ(t) + 2ζω ẋ(t) + ω2x(t) = −üg(t), (2.1.2)

ü(t) = ẍ(t) + üg(t) = −2ζω ẋ(t) − ω2x(t). (2.1.3)

The motion of a SDOF oscillator with circular natural frequency ω0 and damping coefficient

ζ0 mounted on the primary structure (Figure 2.2) is governed by

ẍF + 2ζ0 ω0 ẋF + ω2
0 xF = − ü(t), (2.1.4)

üF(t) = ẍF(t) + ü(t) = −2ζ0 ω0 ẋF(t) − ω2
0 xF(t), (2.1.5)

where xF(t)=uF(t)−u(t) and uF(t) are the relative and absolute displacements of the

oscillator. The maximum absolute acceleration of the oscillator SF(ω0, ζ0) = max
∣
∣üF(t)

∣
∣

is the floor (acceleration) response spectrum (FRS) of the SDOF primary structure.

2.1.3 FRS of Multiple DOF Primary Structure

Consider a three-dimensional model of a structure with N nodes. A typical node n has

six DOF: three translational DOF u
n,1

, u
n,2

, u
n,3

, and three rotational DOF u
n,4

, u
n,5

, u
n,6

.

The structure is subjected to tri-directional seismic excitations (Figure 2.1). The relative

displacement vector x of dimension 6N is governed by

Mẍ(t) + Cẋ(t) + Kx(t) = −M
3∑

i=1

I
i ü i

g(t), (2.1.6)

where

x =

















x1

x2
...

xN

















, xn =

















x
n,1

x
n,2
...

x
n,6

















, I
i =















1i

1i

...

1i















, 1i =

















δi1

δi2
...

δi6

















,

M, C, K are, respectively, the mass, damping, and stiffness matrices of dimension

6N×6N, xn is the relative displacement vector of node n, I i is the influence vector of

the seismic excitation in direction i, and δij denotes the Kronecker delta function.

Let x = x1 + x2 + x3, where xi is the relative displacement vector due to the earth-

quake excitation ui
g(t) in direction i. Hence, x i

n, j
= u i

n, j
− ui

g δij, where x i
n, j

and u i
n, j

are,
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respectively, the relative and absolute displacements of node n in direction j due to the

earthquake excitation in direction i. Since the system is linear, from equation (2.1.6), xi is

governed by

Mẍ i(t) + Cẋ i(t) + Kx i(t) = −M I
i ü i

g(t), i = 1, 2, 3. (2.1.7)

Free Vibration

Consider the undamped free vibration of the structure Mẍ(t) + Kx(t) = 0. Let ω1,

ω2, . . . , ω6N be the 6N natural frequencies and 8=
[

ϕ1, ϕ2, . . . , ϕ6N

]

be the modal

matrix, where ϕ
k
=

{

ϕT
1,k

, ϕT
2,k

, . . . , ϕT
N,k

}
T is the mode shape of the kth mode, with

ϕ
n,k

={
ϕ

n,1; k
, ϕ

n,2; k
, . . . , ϕ

n,6; k

}
T. In element ϕ

n, j; k
, the first subscript n refers to the

node number, the second subscript j indicates the direction of response, and the third

subscript k refers to the mode number.

The modal matrix 8 has the following orthogonal properties

8TM8 = diag
{

m̄1, m̄2, . . . , m̄6N

}
T = m̄,

8TK8 = m̄�2 = diag
{

m̄1ω
2
1, m̄2ω

2
2, . . . , m̄6N ω2

6N

}
T,

� = diag
{

ω1, ω2, . . . , ω6N

}
T,

(2.1.8)

where m̄1, m̄2, . . . , m̄6N are the modal masses. Assume that the structure has classical

damping so that the modal matrix 8 can also diagonalize the damping matrix, i.e.,

8TC8 = diag
{

c̄1, c̄2, . . . , c̄6N

}
T, c̄

k
= m̄

k
·2ζ

k
ω

k
. (2.1.9)

Forced Vibration

Apply the transformation

xi(t) = 8Qi(t), i = 1, 2, 3, (2.1.10)

where

Qi =



















Q i
1

Q i
2
...

Q i
N



















=



















Ŵi
1 q i

1

Ŵi
2 q i

2
...

Ŵi
6N q i

6N



















, Qi
n =



















Ŵ i
n,1

q i
n,1

Ŵ i
n,2

q i
n,2

...

Ŵ i
n,6

q i
n,6



















, xi =



















x i
1

x i
2
...

x i
N



















, xi
n =



















x i
n,1

x i
n,2
...

x i
n,6



















, (2.1.11)
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x i
n, j

=
N∑

ν=1

6∑

δ=1

ϕ
n, j; 6(ν−1)+δ

Ŵ i
ν,δ

q i
ν,δ

=
6N∑

k=1

ϕ
n, j; k

Ŵ i
k

q i
k
, (2.1.12)

L
i
n, j

= ϕT
6(n−1)+j MI

i
, or L

i
k

= ϕT
k

MI
i
, (2.1.13)

Ŵ i
n, j

=
L

i
n, j

m̄6(n−1)+j

, or Ŵ i
k

=
L

i
k

m̄
k

=
ϕT

k
MI

i

ϕT
k

Mϕ
k

. (2.1.14)

For ease of presentation, the two-subscript-notation n, j (node, direction) and the one-

subscript-notation k=6(n−1)+ j are used interchangeably; the former is advantageous

in describing the meaning of the quantity in terms of node and direction, and the latter

gives the position of the quantity in the corresponding vector. L
i
n, j

is the earthquake

excitation factor, quantifying the contribution of earthquake excitation in the ith direction

to the modal response q i
n, j

. Ŵ i
k

is the modal participation factors; if Ŵ i
k

is small, then the

contribution of mode ϕ
k

to the structural response due to excitation in the ith direction is

small.

Substituting equation (2.1.10) into (2.1.7) and multiplying 8T from the left yield

(8TM8)Q̈i(t) + (8TC8)Q̇i(t) + (8TK8)Qi(t) = −8TMI
i
ü i

g(t).

Using relations (2.1.8), (2.1.9), (2.1.13), and (2.1.14) gives

q̈ i
k
(t) + 2ζ

k
ω

k
q̇ i

k
(t) + ω2

k
q i

k
(t) = − ü i

g(t), k = 1, 2, . . . , 6N, i = 1, 2, 3. (2.1.15)

The absolute acceleration of the nth node in direction j due to the earthquake excitation

in direction i can be obtained using equations (2.1.12) and (2.1.15)

ü i
n, j

(t) = ẍ i
n, j

(t) + ü i
g(t)δij =

6N∑

k=1

ϕ
n, j; k

Ŵ i
k

q̈ i
k
(t) + ü i

g(t)δij

=
6N∑

k=1

ϕ
n, j; k

Ŵ i
k

[

− ü i
g(t) − (2ζ

k
ω

k
q̇ i

k
+ ω2

k
q i

k
)
]

+ ü i
g(t)δij,

6N∑

k=1

ϕ
n, j; k

Ŵ i
k

= δij,

= −
6N∑

k=1

ϕ
n, j; k

Ŵ i
k
(2ζ

k
ω

k
q̇ i

k
+ ω2

k
q i

k
)

= −
6N∑

k=1

ü i
n, j; k

, ü i
n, j; k

= ϕ
n, j; k

Ŵ i
k
(2ζ

k
ω

k
q̇ i

k
+ ω2

k
q i

k
), (2.1.16)
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in which ü i
n, j; k

is the contribution from the kth mode and ϕ
n, j; k

Ŵ i
k

is the contribution

factor.

Floor Response Spectrum

If the absolute response u i
n, j

(t) of the nth node in direction j due to earthquake excitation in

direction i is input to a SDOF oscillator with circular frequency ω0 and damping coefficient

ζ0, as shown in Figure 2.1, the governing equation of motion is

ẍ i
F, n, j

+ 2ζ0 ω0 ẋ i
F, n, j

+ ω2
0 x i

F, n, j
= − ü i

n, j
(t), (2.1.17)

ü i
F, n, j

(t) = ẍ i
F, n, j

(t) + ü i
n, j

(t) = −2ζ0 ω0 ẋ i
F, n, j

− ω2
0 x i

F, n, j
, (2.1.18)

where x i
F, n, j

(t) = u i
F, n, j

(t)−u i
n, j

(t) is the displacement of the oscillator relative to the nth

node in direction j, and u i
F, n, j

(t) is the absolute displacement of the oscillator. The subscript

“F” denotes that the oscillator is mounted on the floor. The maximum absolute acceleration

of the oscillator

S
i
n, j

(ω0, ζ0) =
∣
∣ü i

F, n, j
(t)

∣
∣

max
(2.1.19)

is the floor (acceleration) response spectrum (FRS) of the nth node (floor) in direction j

subjected to earthquake excitation in direction i.

It is specified in ASCE 4-98 (ASCE, 1998) that, for direct spectra-to-spectra methods,

when the response spectrum of a given direction at a given location has contributions from

more than one spatial component of earthquakes, these contributions shall be combined by

the SRSS rule. Hence, combining contributions from tri-directional earthquake excitations,

FRS of the nth node in direction j is given by

S
n, j

(ω0, ζ0) =

√

3∑

i=1

[

S
i
n, j

(ω0, ζ0)
]2

. (2.1.20)

2.2 Direct Method for Generating FRS

In this section, a direct spectra-to-spectra method for generating FRS is developed based

on Duhamel’s integral.
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2.2.1 SDOF Oscillator Mounted on SDOF Structure

Consider a SDOF oscillator mounted on a SDOF structure, as shown in Figure 2.2. Adopt

the notations

h(t) = e−ζωt
sin ω

d
t

ω
d

, hc(t) = e−ζωt
cos ω

d
t

ω
d

, ω
d

= ω
√

1−ζ 2, (2.2.1)

h0(t) = e−ζ0ω0t
sin ω

0,d
t

ω
0,d

, hc
0(t) = e−ζ0ω0t

cos ω
0,d

t

ω
0,d

, ω
0,d

= ω0

√

1−ζ2
0 . (2.2.2)

Motion of Structure

For a SDOF system governed by equation (2.1.2) with zero initial conditions, using

Duhamel’s integral (Clough and Penzien, 2003), the relative displacement x(t) and the

relative velocity ẋ(t) of the structure can be given the convolutions as follows

x(t) = h(t) ∗ üg(t), ẋ(t) = ḣ(t) ∗ üg(t), (2.2.3)

where h(t) is the unit impulse response function of the structure and ω
d

is the damped

circular frequency defined by equation (2.2.1). The derivative of h(t) is

ḣ(t) = −
ζ

√

1−ζ 2
e−ζωt sin ω

d
t + e−ζωt cos ω

d
t = −ζω h(t) + e−ζωt cos ω

d
t. (2.2.4)

Substituting equation (2.2.3) into (2.1.3), the absolute acceleration of the structure is given

by

ü(t) = −2ζω ḣ(t) ∗ üg(t) − ω2h(t) ∗ üg(t). (2.2.5)

Motion of Oscillator

The motion of the structure, to which the oscillator is attached, defines the input to the

SDOF oscillator with circular natural frequency ω0 and damping coefficient ζ0; the rela-

tive and absolute motions of the oscillator are governed by equations (2.1.4) and (2.1.5),

respectively. Substituting equation (2.2.5) into Duhamel’s integral and using the associativ-

ity of convolutions, the relative displacement xF(t) and velocity ẋF(t) between the structure
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and the oscillator are

xF(t) = h0(t) ∗ ü(t) = −2ζω h0(t) ∗ ḣ(t) ∗ üg(t) − ω2h0(t) ∗ h(t) ∗ üg(t),

ẋF(t) = ḣ0(t) ∗ ü(t) = −2ζω ḣ0(t) ∗ ḣ(t) ∗ üg(t) − ω2ḣ0(t) ∗ h(t) ∗ üg(t),
(2.2.6)

where the unit impulse response function h0(t) is defined by equation (2.2.2).

Substituting equation (2.2.6) into (2.1.5) and applying the distributivity of convolutions,

the absolute acceleration of the oscillator is expressed as

üF(t) = −2ζ0 ω0 ẋF(t) − ω2
0 xF(t)

=
[

4ζ0ζ ω0 ω · ḣ0(t) ∗ ḣ(t) + 2ζ0 ω0 ω2 · ḣ0(t) ∗ h(t)

+ 2ζω2
0 ω · h0(t) ∗ ḣ(t) + ω2

0 ω2 · h0(t) ∗ h(t)
]

∗ üg(t)

=
[

(1−2ζ 2
0 −2ζ 2 +4ζ 2

0 ζ 2)ω2
0 ω2 · h0(t) ∗ h(t)

+ 4ζ0 ζ
√

(1−ζ 2)(1−ζ 2
0 ) ω2

0 ω2 · hc
0(t) ∗ hc(t)

+ 2ζ0

√

1−ζ2
0 (1−2ζ 2)ω2

0 ω2 · h(t) ∗ hc
0(t)

+ 2(1−2ζ 2
0 )ζ

√

1−ζ 2 ω2
0 ω2 · h0(t) ∗ hc(t)

]

∗ üg(t), (2.2.7)

where hc(t) and hc
0(t) are defined in equations (2.2.1) and (2.2.2).

For most SSCs in nuclear power plants, the damping coefficients ζ, ζ0 < 0.2 (EPRI, 1994).

When the duration of the excitation t is sufficiently long, it is reasonable to assume that

∣
∣h0(t) ∗ h(t) ∗ üg(t)

∣
∣

max
≈

∣
∣hc

0(t) ∗ hc(t) ∗ üg(t)
∣
∣

max

≈
∣
∣h(t) ∗ hc

0(t) ∗ üg(t)
∣
∣

max
≈

∣
∣h0(t) ∗ hc(t) ∗ üg(t)

∣
∣

max
. (2.2.8)

In principle, the maximum values of the convolution terms in equation (2.2.7) do not

occur simultaneously because of the phase differences between the sine and cosine terms.

For lightly-damped systems, the values of the higher order terms ζ 2, ζ 2
0 , and ζ0 ζ are

very small compared to 1, so that the corresponding terms are negligible. The maximum

response of the oscillator is then reduced to

∣
∣üF(t)

∣
∣

max
≈ ω2

0 ω2
∣
∣h0(t) ∗ h(t) ∗ üg(t)

∣
∣

max
, (2.2.9)

which is expressed analytically as a double convolution. Note that, if the SDOF oscillator

is mounted directly on the ground, the term ω2h(t) is removed from equation (2.2.9) and
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FRS reduces to GRS, i.e.,

SA(ω0, ζ0) = ω2
0

∣
∣h0(t) ∗ üg(t)

∣
∣

max
=

∣
∣
∣ω0 e−ζ0ωt sin ω0t ∗ üg(t)

∣
∣
∣

max
. (2.2.10)

Denote C(t)=h0(t) ∗ h(t). From the definition of Duhamel’s integral, it is obvious that

C(t) is the response of an oscillator with the circular frequency ω0 and damping coefficient

ζ0 under the excitation of h(t). The equation of motion is written as

C̈(t) + 2ζ0ω0 Ċ(t) + ω2
0 C(t) = h(t) = 1

ωd
e−ζω sin ω

d
t. (2.2.11)

The general solution for this differential equation consists of the complementary solution

and a particular solution C(t) = CC(t) + CP(t), where

CC(t) = e−ζ0ω0t
(

C1 cos ω
0,d

t + C2 sin ω
0,d

t
)

, for ζ0 < 1, (2.2.12)

is the complementary solution with coefficients C1 and C2 determined by the initial condi-

tions, and CP(t) is a particular solution determined in the following.

2.2.2 Non-tuning Case

If ω 6=ω0 and ζ 6=ζ0, a particular solution CP(t) is given by

CP(t) = e−ζωt
(

P1 cos ω
d

t + P2 sin ω
d

t
)

, (2.2.13)

where

P1 = −
r
√

1−ζ 2 ·A

ω2
0ωd ·1

, P2 =
(1−ζ 2) ·B

ω2
0ωd ·1

, r =
ω

ω0

, (2.2.14)

and A=2(ζ0 −ζ r), B=1−r2 −ζ r ·A, 1= r2 ·A+(1−ζ 2) ·B2. For zero initial conditions

y(0)=0 and ẏ(0)=0, the coefficients C1 and C2 of the complementary solution are given

by

C1 = −P1, C2 = −
A ·P1

2
√

1−ζ2
0

−
r
√

1−ζ 2 ·P2
√

1−ζ2
0

. (2.2.15)

Having obtained C(t)=h0(t) ∗ h(t), the maximum absolute acceleration of the oscillator

given by equation (2.2.9) is

∣
∣üF(t)

∣
∣

max
=

∣
∣
∣

(

C1 ω2
0 ω2e−ζ0ω0t cos ω

0,d
t + C2 ω2

0 ω2e−ζ0ω0t sin ω
0,d

t

+ P1 ω2
0 ω2e−ζωt cos ω

d
t + P2 ω2

0 ω2e−ζωt sin ω
d

t
)

∗ üg(t)
∣
∣
∣
max

. (2.2.16)
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Floor Response Spectra

For lightly damped systems (say, ζ , ζ0 < 0.2), ω
0,d

≈ω0 and ω
d
≈ω. Equation (2.2.16)

reduces to

∣
∣üF(t)

∣
∣

max
=

∣
∣
∣

(

C1 ω2
0 ω2e−ζ0ω0t cos ω0t + C2 ω2

0 ω2e−ζ0ω0t sin ω0t

+ P1 ω2
0 ω2e−ζωt cos ωt + P2 ω2

0 ω2e−ζωt sin ωt
)

∗ üg(t)
∣
∣
∣
max

=
∣
∣
∣C1 ω0 ω2 ·

[

ω0 ḣ0(t) ∗ üg(t)
]

+ C2 ω0 ω2 ·
[

ω2
0 h0(t) ∗ üg(t)

]

+ P1 ω2
0 ω ·

[

ω ḣ(t) ∗ üg(t)
]

+ P2 ω2
0 ω ·

[

ω2 h(t) ∗ üg(t)
]
∣
∣
∣
max

. (2.2.17)

The maximum response
∣
∣üF(t)

∣
∣

max
may be over-estimated if it is calculated by the sum

of the maximum values of each term in equation (2.2.17), since the maximum values of
∣
∣ω2h(t)∗ üg(t)

∣
∣

max
and

∣
∣ω ḣ(t)∗ üg(t)

∣
∣

max
, or

∣
∣ω2

0h0(t)∗ üg(t)
∣
∣

max
and

∣
∣ω0 ḣ0(t)∗ üg(t)

∣
∣

max
,

do not occur simultaneously.

Since there is a π/2 phase difference between the sine and cosine functions, it is appropri-

ate to employ the SRSS combination rule to calculate the maximum absolute acceleration.

Therefore, in non-tuning cases (when the frequencies of the structure and equipment are

well separated), the FRS is obtained from equation (2.2.17) as

S
2
F(ω0, ζ0) = AF

2
0 · S

2
A(ω0, ζ0) + AF

2 · S
2
A(ω, ζ ), (2.2.18)

in which SF(ω0, ζ0)=
∣
∣üF(t)

∣
∣

max
is the FRS or the spectral acceleration of a SDOF oscillator

(with circular frequency ω0 and damping ratio ζ0) mounted on the SDOF structure (with

circular frequency ω and damping ratio ζ ), SA(ω0, ζ0) is the GRS or the spectral accelera-

tion of the oscillator mounted on the ground, and AF and AF0 are the amplification factors

discussed in the following subsection.

2.2.3 Amplification Factors

For non-tuning cases, the amplification factors AF0 and AF are given by

AF0 =
r2

√

(1−r2)2 +4(ζ0
2 +ζ 2)r2 −4ζ0ζ r(1+r2)

,

AF =
1

√

(1−r2)2 +4(ζ0
2 +ζ 2)r2 −4ζ0ζ r(1+r2)

.

(2.2.19)
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ug(t) x0(t)

ω0, ζ0

ug(t) x0(t)

ω0, ζ0

ω, ζ Very stiff Very flexible

ω >> ω0 ω << ω0

ug(t) x(t)

ug(t) x(t)

ω0, ζ0

ω, ζ ω, ζ

Figure 2.3 Two extreme cases of motion amplification

If damping is light and the effect of damping is neglected, the amplification factors are

approximately

AF0 ≈
r2

1−r2
, AF ≈

1

1−r2
, r =

ω

ω0

. (2.2.20)

From equation (2.2.18), the FRS SF(ω0, ζ0) can be interpreted as a combination of

❧ amplified spectral acceleration AF0 · SA(ω0, ζ0) of the oscillator, and

❧ amplified spectral acceleration AF · SA(ω, ζ ) of the structure.

To illustrate the physical meaning of equation (2.2.18), consider two extreme cases (Figure

2.3):

❧ Frequency ratio r→∞ (ω≫ω0): The structure is very stiff comparing to the oscil-

lator, so that the structure and the ground can be considered as an integral rigid body.

The frequency components of ground motions, to which the oscillator is sensitive,

are transmitted by the structure without modification. Therefore, the equipment

behaves as if it is directly mounted on the ground. When r→∞, the amplification

factors AF0 =1 and AF=0 agree with this case.

❧ Frequency ratio r→0 (ω≪ω0): The oscillator is very stiff comparing to the structure

or the structure is very flexible comparing to the oscillator, so that the response of the

oscillator is the same as that of the structure. When r=0, the amplification factors
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AF0 =0 and AF=1, and the maximum response of the oscillator is equal to the

spectral acceleration of the structure.

The amplification factors AF0 and AF given by equations (2.2.19) and (2.2.20) are for

non-tuning cases. To extend the concept of amplification factors to perfect-tuning and

near-tuning cases, the behavior of the amplification factors given by equation (2.2.20) is

investigated by plotting them in Figure 2.4(a):

❧ The amplification factor of ground motion AF0 is similar to the Dynamic Magnifica-

tion Factors (DMF) of a SDOF oscillator subjected to a harmonic loading

DMF0 =
r2

√

(1−r2)2 + (2ζ r)2
. (2.2.21)

❧ The amplification factor of structure motion AF is similar to the DMF of a SDOF

oscillator under harmonic base excitation

DMF =
1

√

(1−r2)2 + (2ζ r)2
. (2.2.22)

DMF0 and DMF given by equations (2.2.21) and (2.2.22) are shown in Figures 2.4(b) and

(c). It is seen that damping has little effect on the response amplification in non-resonant

or non-tuning cases (when r is not close to 1), but has a significant effect on the response in

perfect-tuning or near-tuning cases (when r approaches 1).

Based on the expressions of DMF0 and DMF given by equations (2.2.21) and (2.2.22),

when the effect of damping is considered, it is appropriate to assume that the amplification

factors AF0 and AF are of the form, for both tuning and non-tuning cases,

AF0 =
r2

√

(1−r2)2 + (2ζ e r)2
0,

, AF =
1

√

(1−r2)2 + (2ζe r)2
, (2.2.23)

in which ζ
0,e

and ζe are considered to be the equivalent damping coefficients for the ampli-

fication factors of ground motion and structure motion, respectively.

In the non-tuning cases, the amplification factors given by equations (2.2.19) and (2.2.20)

can be used directly; it is not necessary to specify the equivalent damping coefficients ζ
0,e

and ζe in equation (2.2.23).
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Figure 2.4 Amplification Factors
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In the following subsection, the tuning case is investigated to quantify the equivalent

damping coefficients ζ
0,e

and ζe.

2.2.4 Perfect-tuning Case

When ω0 =ω and for small damping ζ0, ζ < 0.2, C(t)=h0(t) ∗ h(t) becomes

h0(t) ∗ h(t) =
∫ t

0

1

ω0

e−ζ0ω0(t−τ) sin ω0(t−τ) ·
1

ω
e−ζωτ sin ωτ dτ

=
1

ω3 [4+(ζ −ζ0)
2]

[
2

ζ −ζ0

(e−ζωt −e−ζ0ωt) cos ωt + (e−ζωt +e−ζ0ωt) sin ωt

]

,

which can be simplified to, for small damping (ζ −ζ0)→0,

h0(t) ∗ h(t) =
1

2ω3(ζ −ζ0)
(e−ζωt − e−ζ0ωt) cos ωt +

1

4ω3
(e−ζωt + e−ζ0ωt) sin ωt

=
ḣ(t)− ḣ0(t)

2ω3(ζ −ζ0)
+

h(t)+h0(t)

4ω2
. (2.2.24)

Substituting equation (2.2.24) into (2.2.9) yields the maximum response of the oscillator

∣
∣üF(t)

∣
∣

max
=

∣
∣
∣
∣

ω ḣ(t) ∗ üg(t)−ω ḣ0(t) ∗ üg(t)

2(ζ −ζ0)
+

ω2 h(t) ∗ üg(t)+ω2 h0(t) ∗ üg(t)

4

∣
∣
∣
∣

max

=
∣
∣
∣
∣

ω

2
·

u̇(t)− u̇0(t)

ζ − ζ0

+
ü(t)+ ü0(t)

4

∣
∣
∣
∣

max

, (2.2.25)

in which the following relationships have been used

u(t)=h(t) ∗ üg(t), u̇(t)= ḣ(t) ∗ üg(t), ü(t)=ω2h(t) ∗ üg(t)=ω ḣ(t) ∗ üg(t). (2.2.26)

When ζ0 =ζ , u̇(t)= u̇0(t) and ü(t)= ü0(t); the first term in equation (2.2.25), which is

dominant, is undefined. For (ζ −ζ0)→0, equation (2.2.25) becomes

∣
∣üF(t)

∣
∣

max
=

1

2

∣
∣
∣
∣
ω

∂ u̇(t)

∂ζ
+ ü(t)

∣
∣
∣
∣

max

. (2.2.27)

Differentiating u̇(t) = ḣ(t) ∗ üg(t) with respect to ζ gives

∂ u̇(t)

∂ζ
=

∂
[

ḣ(t) ∗ üg(t)
]

∂ζ
= −ω t e−ζωt cos ωt ∗ üg(t). (2.2.28)
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Figure 2.5 Illustration of GRS and tRS

Note that ü(t) can also be written as ü(t) = ω2 h(t) ∗ üg(t) = ωe−ζωt sin ωt ∗ üg(t).

Hence, in the perfect-tuning case with ω0 =ω, ζ0 =ζ, FRS given by equation (2.2.27)

becomes

SF(ω, ζ ) = 1
2

∣
∣
∣−ω2te−ζωt cos ωt ∗ üg(t) + ωe−ζωt sin ωt ∗ üg(t)

∣
∣
∣

max

= S
t
A(ω, ζ ). (2.2.29)

Analogous to GRS defined in (2.2.10), equation (2.2.29) is defined as t-Response Spectrum

(tRS), in which “t” indicates “tuning” or the extra “t” variable in the first convolution

term as compared to GRS defined in equation (2.2.10) . The concepts of GRS and tRS are

illustrated in Figure 2.5. Under an earthquake excitation üg(t),

❧ GRS SA( f, ζ ) is the maximum acceleration response of a SDOF oscillator (with fre-

quency f and damping ratio ζ ) mounted directly on ground;
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❧ tRS S
t
A( f, ζ ) is the maximum acceleration response of a SDOF oscillator (with fre-

quency f and damping ratio ζ ) mounted on top of a SDOF structure (with the same f

and ζ ) that is mounted on ground. The identical SDOF oscillator and SDOF structure

are uncoupled and are in resonance or tuning.

FRS given by equation (2.2.29) can be expressed in the form of equation (2.2.18). Note

that, in the perfect-tuning case, ω0 =ω, r=1, ζ0 =ζ, and SA(ω0, ζ0)=SA(ω, ζ ), AF0 =AF.

Equation (2.2.18) reduces to

SF(ω0, ζ0) =
√

2 ·AF0 ·SA(ω0, ζ0) = S
t
A(ω0, ζ0), (2.2.30)

which gives

AF0 = AF =
1

√
2

·
S

t
A(ω0, ζ0)

SA(ω0, ζ0)
. (2.2.31)

From equation (2.2.23), when r=1, one has

AF0 =
r2

√

(1−r2)2 + (2ζ e r)2
0,

∣
∣
∣
∣

r=1

=
r2

2ζ
0,e

, AF =
1

2ζe

. (2.2.32)

Hence, from equations (2.2.31) and (2.2.32), the equivalent damping coefficients for the

perfect-tuning case are given by

ζ
0,e

= ζe =
1

√
2

·
SA(ω0, ζ0)

S
t
A(ω0, ζ0)

. (2.2.33)

A comprehensive study on the statistical relationship between GRS and tRS is conducted

by Li et al. (2015). A large number of real horizontal and vertical ground motions, which are

selected from the Pacific Earthquake Engineering Research Center Strong Motion Database

(PEER, 2010) and the European Strong Motion Database, are employed to perform numer-

ical simulations. Statistical relationships between tRS and GRS are constructed based on

three different site conditions following the the site classification criteria (ASCE, 2010; IBC,

2012):

❧ 49 horizontal and 49 vertical ground motions of B sites;

❧ 154 horizontal and 154 vertical ground motions of C sites; and

❧ 220 horizontal and 220 vertical ground motions of D sites.
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Figure 2.6 Ratio of tRS to GRS for the 49 horizontal ground motions at B sites
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Figure 2.7 Ratio of tRS to GRS for the 49 vertical ground motions at B sites
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Table 2.1 Coefficients of simplified horizontal statistical relationship for various damping ratios

f

(Hz)

Damping Ratio ζ (%)

1.0 3.0 5.0 7.0 10.0 15.0 20.0

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

0.1∼5 3.00 1.12 0.30 2.11 1.07 0.24 1.70 1.07 0.21 1.44 1.07 0.20 1.18 1.09 0.19 0.93 1.14 0.18 0.80 1.21 0.19

8 3.00 1.33 0.27 2.14 1.45 0.25 1.76 1.51 0.24 1.54 1.55 0.23 1.34 1.61 0.21 1.20 1.69 0.16 1.09 1.69 0.14

10 2.99 1.45 0.29 2.19 1.65 0.28 1.88 1.77 0.28 1.70 1.84 0.26 1.52 1.89 0.22 1.30 1.85 0.18 1.16 1.80 0.13

16 3.31 2.21 0.43 2.72 2.57 0.40 2.39 2.58 0.33 2.15 2.52 0.27 1.86 2.38 0.21 1.48 2.14 0.15 1.30 2.01 0.11

25 6.42 5.67 0.62 5.07 5.02 0.35 3.66 3.95 0.22 2.80 3.27 0.16 2.20 2.80 0.10 1.72 2.42 0.06 1.52 2.25 0.04

33 7.35 6.68 0.49 3.77 4.02 0.21 2.32 2.88 0.11 1.67 2.36 0.07 1.30 2.06 0.04 1.20 1.98 0.03 1.18 1.97 0.02

50∼100 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0

Table 2.2 Equations for coefficients and standard deviations of horizontal statistical relationship

Frequency

(Hz)
Coefficient c1 Coefficient c2 Standard deviation σ

ln S
t

A

0.1∼5.0 0.06(ln ζ )2 − 0.92 ln ζ + 3.03 0.02(ln ζ )3 − 0.04(ln ζ )2 − 0.02 ln ζ + 1.12 −0.01(ln ζ )2 − 0.05 ln ζ + 0.30

8.0 0.10(ln ζ )2 − 0.93 ln ζ + 3.01 −0.01(ln ζ )3 + 0.07(ln ζ )2 + 0.03 ln ζ + 1.35 −0.01(ln ζ )3 + 0.02(ln ζ )2 − 0.02 ln ζ + 0.27

10.0 0.06(ln ζ )2 − 0.80 ln ζ + 2.99 −0.06(ln ζ )3 + 0.21(ln ζ )2 + 1.45 −0.01(ln ζ )3 + 0.01(ln ζ )2 + 0.28

16.0 −0.08(ln ζ )2 − 0.45 ln ζ + 3.32 −0.22(ln ζ )2 + 0.58 ln ζ + 2.24 0.02(ln ζ )3 − 0.12(ln ζ )2 + 0.07 ln ζ + 0.43

25.0 0.39(ln ζ )3 − 1.74(ln ζ )2 + 0.16 ln ζ + 6.33 0.35(ln ζ )3 − 1.66(ln ζ )2 + 0.77 ln ζ + 5.58 0.02(ln ζ )3 − 0.04(ln ζ )2 − 0.21 ln ζ + 0.60

33.0 0.21(ln ζ )3 − 0.22(ln ζ )2 − 3.16 ln ζ + 7.23 0.20(ln ζ )3 − 0.38(ln ζ )2 − 2.15 ln ζ + 6.58 0.04(ln ζ )2 − 0.31 ln ζ + 0.49

50.0∼100.0 0 1 0
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Table 2.3 Coefficients of simplified vertical statistical relationships for hard sites

f

(Hz)

Damping Ratio ζ (%)

1.0 3.0 5.0 7.0 10.0 15.0 20.0

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

0.1∼8.0 3.06 1.15 0.28 2.17 1.09 0.23 1.76 1.08 0.21 1.49 1.07 0.21 1.21 1.08 0.20 0.93 1.11 0.19 0.78 1.17 0.20

10.0 3.07 1.23 0.20 2.19 1.28 0.19 1.80 1.35 0.19 1.58 1.42 0.20 1.37 1.48 0.19 1.14 1.51 0.16 1.00 1.52 0.14

15.0 3.04 1.35 0.26 2.20 1.54 0.25 1.85 1.66 0.25 1.66 1.75 0.23 1.48 1.80 0.21 1.32 1.83 0.17 1.23 1.84 0.14

25.0 3.28 2.28 0.6 2.64 2.53 0.43 2.33 2.55 0.33 2.14 2.53 0.27 1.94 2.48 0.20 1.62 2.28 0.13 1.45 2.16 0.09

33.0 3.87 3.29 0.65 3.42 3.56 0.39 2.90 3.27 0.28 2.39 2.89 0.23 1.88 2.50 0.16 1.36 2.09 0.10 1.20 1.96 0.07

50.0∼100 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0

Table 2.4 Coefficients of simplified vertical statistical relationships for soft sites

f

(Hz)

Damping Ratio ζ (%)

1.0 3.0 5.0 7.0 10.0 15.0 20.0

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

c1 c2 σ
ln S

t
A

0.1∼8.0 3.1 1.17 0.32 2.22 1.11 0.28 1.8 1.10 0.27 1.53 1.10 0.26 1.26 1.11 0.26 0.98 1.14 0.25 0.84 1.20 0.24

10.0 3.06 1.24 0.22 2.18 1.32 0.18 1.78 1.35 0.18 1.53 1.38 0.18 1.28 1.39 0.18 1.06 1.42 0.16 0.88 1.37 0.14

15.0 3.02 1.40 0.24 2.15 1.47 0.27 1.75 1.51 0.28 1.53 1.55 0.25 1.31 1.57 0.23 1.11 1.60 0.18 1.01 1.64 0.15

25.0 3.20 2.62 0.73 2.70 2.84 0.48 2.51 2.88 0.34 2.34 2.82 0.27 2.12 2.68 0.22 1.81 2.45 0.17 1.59 2.28 0.12

33.0 3.17 2.62 0.58 3.05 3.19 0.39 2.79 3.15 0.28 2.45 2.93 0.22 2.15 2.73 0.15 1.80 2.46 0.11 1.58 2.29 0.08

50.0∼100 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0 0.0 1.00 0.0
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Table 2.5 Equations for coefficients and standard deviations of vertical statistical relationships for hard sites

Frequency

(Hz)
Coefficient c1 Coefficient c2 Standard deviation σ

ln S
t

A

0.5∼8.0 0.04(ln ζ )2 − 0.89 ln ζ + 3.09 0.01(ln ζ )4 − 0.06(ln ζ )3 + 0.12(ln ζ )2 − 0.12 ln ζ + 1.15 0.01(ln ζ )2 − 0.06 ln ζ + 0.28

10.0 0.07(ln ζ )2 − 0.90 ln ζ + 3.08 −0.04(ln ζ )3 + 0.19(ln ζ )2 − 0.13 ln ζ + 1.24 −0.01(ln ζ )3 + 0.05(ln ζ )2 − 0.05 ln ζ + 0.2

15.0 0.10(ln ζ )2 − 0.90 ln ζ + 3.06 −0.03(ln ζ )3 + 0.13(ln ζ )2 + 0.08 ln ζ + 1.35 −0.01(ln ζ )3 + 0.01(ln ζ )2 + 0.25

25.0 −0.03(ln ζ )2 − 0.52 ln ζ + 3.25 −0.03(ln ζ )3 − 0.02(ln ζ )2 + 0.29 ln ζ + 2.28 0.01(ln ζ )3 − 0.05(ln ζ )2 − 0.12 ln ζ + 0.60

33.0 0.17(ln ζ )3 − 0.98(ln ζ )2 + 0.51 ln ζ + 3.83 0.17(ln ζ )3 − 1.10(ln ζ )2 + 1.28 ln ζ + 3.26 0.01(ln ζ )2 − 0.26 ln ζ + 0.65

50.0∼100 0 1 0

Table 2.6 Equations for coefficients and standard deviations of vertical statistical relationships for soft sites

Frequency

(Hz)
Coefficient c1 Coefficient c2 Standard deviation σ

ln S
t

A

0.5∼8.0 0.04(ln ζ )2 − 0.90 ln ζ + 3.13 0.01(ln ζ )3 − 0.03(ln ζ )2 − 0.04 ln ζ + 1.17 −0.04 ln ζ + 0.32

10.0 0.05(ln ζ )2 − 0.90 ln ζ + 3.08 −0.02(ln ζ )4 + 0.09(ln ζ )3 − 0.14(ln ζ )2 + 0.14 ln ζ + 1.24 −0.01(ln ζ )3 + 0.06(ln ζ )2 − 0.09 ln ζ + 0.22

15.0 0.09(ln ζ )2 − 0.95 ln ζ + 3.05 0.01(ln ζ )4 − 0.07(ln ζ )3 + 0.15(ln ζ )2 − 0.03 ln ζ + 1.40 −0.01(ln ζ )3 − 0.01(ln ζ )2 + 0.04 ln ζ + 0.24

25.0 −0.08(ln ζ )2 − 0.27 ln ζ + 3.15 0.04(ln ζ )4 − 0.25(ln ζ )3 + 0.37(ln ζ )2 + 0.06 ln ζ + 2.63 0.01(ln ζ )3 − 0.02(ln ζ )2 − 0.24 ln ζ + 0.74

33.0 −0.19(ln ζ )2 + 3.21 0.07(ln ζ )4 − 0.34(ln ζ )3 + 0.17(ln ζ )2 + 0.65 ln ζ + 2.62 0.02(ln ζ )3 − 0.07(ln ζ )2 − 0.13 ln ζ + 0.58

50.0∼100.0 0 1 0
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Figures 2.6 and 2.7 shows the statistical relationship between GRS and tRS for horizontal

and vertical ground motions at B sites, respectively. It is found through regression analyses

of the simulation results that site conditions affect the statistical relationship between tRS

and GRS in vertical direction only, and the statistical relationship could be categorized by

soil sites and rock sites. For a given GRS SA( f, ζ ), the corresponding tRS S
t, p
A ( f, ζ ) with any

non-exceedance probability (NEP) can be estimated as

ln S
t, p
A ( f , ζ ) = c1( f , ζ ) + c2( f , ζ ) · ln SA( f , ζ ) + σ

ln S
t
A

( f , ζ ) ·8−1(p), (2.2.34)

where the coefficients c1( f , ζ ) and c2( f , ζ ), and the standard deviation σ
ln S

t
A

( f , ζ ) are

determined through the regression analyses. Table 2.2 and Tables 2.5 and 2.6 provide the

values of the coefficients and the standard deviation for the horizontal and vertical tRS,

respectively. Values for other frequencies can be obtained by linear interpolation in the

logarithmic scale of frequency.

For the perfect tuning case, two equivalent damping ratios ζ
0,e

and ζe are used in formu-

lating the amplification factors in equation (2.2.23), which depend on tRS that are employed

to calculate the FRS in the tuning cases. In other words, the equivalent damping ratios af-

fect FRS mainly in the tuning cases. There are two unknown parameters ζ
0,e

and ζe to

be determined. However, it is not necessary to know the relationship between these two

parameters since only the maximum value
∣
∣üF(t)

∣
∣

max
is to be determined. Hence, one

could manipulate and let ζ
0,e

= ζe which yields

∣
∣üF(t)

∣
∣

max
=

1

2 ζe

√

[SA(ζ0)]
2 + [SA(ζ )]

2
. (2.2.35)

As
∣
∣üF(t)

∣
∣

max
is actually tRS in this case, for ζ

0,e
= ζe, the only parameter ζe can be easily

determined as

ζ
0,e

= ζe =
SA(ω0, ζ0)√

2 · S
t
A(ω0, ζ0)

. (2.2.36)

The validity and the accuracy of using only one equivalent damping ratio have been verified

by a large number of simulations. Formulation of FRS with various equipment damping

ratio for ζ0 6= ζ will be discussed in Chapter 3.
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Comments on Approximations of FRS

In equation (2.2.29), FRS is equal to tRS for the perfect-tuning case. However, due to

the presence of a time variable t in the first convolution term, it is difficult to obtain an

analytical expression for equation (2.2.29) in terms of GRS.

Over the past decades, researchers (Yasui et al., 1993; An et al., 2013) have made some

approximations to evaluate equation (2.2.25).

The second term on the right-hand side of equation (2.2.25) may be neglected, since its

contribution is far less than that of the dominant first term. Therefore, equation (2.2.25)

becomes

∣
∣üF(t)

∣
∣

max
≈

∣
∣
∣
∣

ü(t) − ü0(t)

2(ζ −ζ0)

∣
∣
∣
∣

max

. (2.2.37)

A similar formula is derived in (Yasui et al., 1993) through integration by parts

2ζ üF(t) − 2ζ0 üF(t+1t) ≈ ü(t) − ü0(t). (2.2.38)

It is assumed that the two terms on the left-hand side of equation (2.2.38) have different

phase angles, and the maximum value of the left-hand side is obtained by summing the

maximum absolute value of each term

2(ζ +ζ0)
∣
∣üF(t)

∣
∣

max
=

∣
∣ü(t) − ü0(t)

∣
∣

max
. (2.2.39)

Since the maximum values
∣
∣ü(t)

∣
∣

max
=SA(ω, ζ ) and

∣
∣ü0(t)

∣
∣

max
=SA(ω0, ζ0) do not occur

simultaneously, the SRSS combination rule is applied to evaluate the right-hand side of

equation (2.2.39). Hence, the maximum response of the oscillator or FRS is given by

SF(ω0, ζ0) =
∣
∣üF(t)

∣
∣

max
=

√

S
2
A(ω, ζ ) + S

2
A(ω0, ζ0)

2(ζ +ζ0)
. (2.2.40)

In the perfect-tuning case, ω0 =ω, ζ0 =ζ , SA(ω0, ζ0)=SA(ω, ζ ), it reduces to

SF(ω0, ζ0) =
1

2
√

2 ζ0

·SA(ω0, ζ0). (2.2.41)

However, these approximations are reasonable only when the phase differences between

the two terms on the left-hand side and right-hand side of equation (2.2.39) are π and π/2,
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respectively. In this case, the maximum values of the two sides can be obtained by the sum

of absolute values and the SRSS rules, respectively.

Otherwise, this assumption, which gives a constant amplification factor 1/(2
√

2ζ0), can

be inaccurate. For example, considering an extreme case for f0 = f =100 Hz, the structure

and equipment are both extremely stiff so that the maximum acceleration of the equipment

should be close to the PGA of GRS, i.e., SF(ω0, ζ0)=SA(ω0, ζ0). For a given damping

coefficient ζ0, the amplification factor for the perfect-tuning case should be dependent on

the frequency instead of being a constant.

2.2.5 SDOF Oscillator Mounted on Multiple DOF Structure

Since almost all engineering structures have multiple DOF, the formulation for an oscillator

mounted on a SDOF structure is extended to an oscillator mounted on a multiple DOF

structure in this subsection.

Consider a three-dimensional model of a structure with N nodes, in which each node

has six DOF, subjected to tri-directional earthquake excitations, as shown in Figure 2.1.

The equation of motion in the matrix form is given by equation (2.1.6).

Applying modal analysis as presented in Section 2.1.3, the 6N-DOF system (2.1.7) is

reduced to a series of 6N SDOF systems, in which the modal displacement qi
k
(t) of the kth

mode (SDOF system) under the earthquake excitation in direction i is governed by equation

(2.1.15). The absolute acceleration ü i
n, j

(t) of node n in direction j under the earthquake

excitation in direction i is given by equation (2.1.16), which is a linear combination of all

6N modal responses and the contribution factor of the kth modal response qi
k

is ϕ
n, j; k

Ŵ i
k
.

Maximum Modal Response Contribution

As derived in Section 2.2.3, for a SDOF oscillator mounted on a SDOF structure, the

maximum response of the oscillator is given by equation (2.2.18). Therefore, from equations

(2.1.15) to (2.1.19), for the maximum absolute acceleration S
i
n, j

(ω0, ζ0) in direction j of

an oscillator (with frequency ω0 and damping ratio ζ0) mounted at node n under the

earthquake excitation in direction i , the maximum contribution by the kth mode, i.e., the

maximum absolute acceleration of the oscillator under the excitation ü i
n, j; k

of equation
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(2.1.16), is given by

R i
n, j; k

= ϕ
n, j; k

Ŵ i
k

√
{

AF
2
0, k · [S

i
A(ω0, ζ0)]2 + AF

2
k · [S

i
A(ω

k
, ζ

k
)]2

}

, (2.2.42)

where S
i
A(ω, ζ ) is GRS of the earthquake excitation in direction i, and AF

0, k and AFk are

the amplification factors of the kth mode given by

AF
0, k =

r2
k

√

(1−r2
k
)2 +(2ζ

k,e
r

k
)2

, AFk =
1

√

(1−r2
k
)2 +(2ζ

k,e
r

k
)2

, r
k

=
ω

k

ω0

. (2.2.43)

Modal Combination: FRS-CQC

Since the maximum responses R i
n, j; k

of the oscillator contributed to S
i
n, j

(ω0, ζ0) by each

of the k modes (k=1, 2, . . . , 6N) do no occur simultaneously, they have to be combined

following an appropriate combination rule.

Comparing equations (2.1.2) to (2.1.5) with equations (2.1.15) to (2.1.18), and using

equation (2.2.9), the contribution from the kth mode to the response of the oscillator (with

frequency ω0 and damping ratio ζ0) mounted on the multiple DOF structure under the

earthquake excitation in direction i is approximately given by

Q i
k
(t) = ω2

0 ω2
k
· h0(t) ∗ h

k
(t) ∗ ü i

g(t) = ω2
0 ω2

k
· C

k
(t) ∗ ü i

g(t), (2.2.44)

where C
k
(t)=h0(t) ∗ h

k
(t). The covariance between Q i

k
(t) and Q i

κ(t) of modes k and κ is

given by

E[Q i
k
(t)Q i

κ(t+τ)]
= ω4

0 ω2
k
ω2

κ ·E
[ ∫ ∞

−∞
C

k
(τ1) ü i

g(t−τ1) dτ1

∫ ∞

−∞
Cκ(τ2) ü i

g(t+τ −τ2) dτ2

]

= ω4
0 ω2

k
ω2

κ

∫ ∞

−∞

∫ ∞

−∞
C

k
(τ1)Cκ(τ2) E[ ü i

g(t−τ1) ü i
g(t+τ −τ2)] dτ1dτ2

= ω4
0 ω2

k
ω2

κ

∫ ∞

−∞

∫ ∞

−∞
C

k
(τ1)Cκ(τ2)Rü i

gü i
g
(τ +τ1 −τ2) dτ1dτ2. (2.2.45)

Taking Fourier transform of both sides yields

SQ i
k

Q i
κ
(ω) =

∫ ∞

−∞
E[Q i

k
(t)Q i

κ(t+τ)] ·e− i ωτ dτ
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= ω4
0 ω2

k
ω2

κ

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
C

k
(τ1)Cκ(τ2)Rü i

gü i
g
(τ +τ1 −τ2) ·e− i ωτ dτ1dτ2dτ.

(2.2.46)

Setting τ3 =τ +τ1 −τ2, equation (2.2.44) can be written as

SQ i
k

Q i
κ
(ω) = ω4

0 ω2
k
ω2

κ

∫ ∞

−∞
C

k
(τ1)eiωτ1 dτ1

∫ ∞

−∞
Cκ(τ2)e− iωτ2 dτ2

∫ ∞

−∞
Rü i

gü i
g
(τ3)e− iωτ3 dτ

= ω2
k
ω2

κ · C
∗

k
(ω) · C κ(ω) · Sü i

gü i
g
(ω), (2.2.47)

where C
k
(ω)=H0(ω)H

k
(ω) is the Fourier transform of the convolution C

k
(t)=h0(t) ∗

h
k
(t), C

∗
k
(ω) is the complex conjugate of C

k
(ω), and Sü i

gü i
g
(ω) is the power spectral density

of the earthquake excitation ü i
g(t).

Taking the inverse Fourier transform of equation (2.2.47) yields

E[Q i
k
(t)Q i

κ(t+τ)] =
1

2π

∫ ∞

−∞
SQ i

k
Q i

κ
(ω)eiωτ dω

=
ω4

0 ω2
k
ω2

κ

2π

∫ ∞

−∞
C

∗
k
(ω) ·C κ(ω) ·Sü i

gü i
g
(ω)eiωτ dω. (2.2.48)

Setting τ = 0 results in

E[Q i
k
(t)Q i

κ(t)] =
ω4

0 ω2
k
ω2

κ

2π

∫ ∞

−∞
C

∗
k
(ω) ·C κ(ω) ·Sü i

gü i
g
(ω)dω

=
ω4

0 ω2
k
ω2

κ

2π

∫ ∞

−∞
H ∗

0 (ω)H ∗
k
(ω) ·H0(ω)Hκ(ω) ·Sü i

gü i
g
(ω)dω. (2.2.49)

Since ground motions can be generally modelled as wide-band noises, it is reasonable

to assume the seismic input ü i
g(t) as a white noise by letting the power spectral density

Sü i
gü i

g
(ω)=S

i. Therefore, equation (2.2.49) can be written as

E[Q i
k
(t)Q i

κ(t)] =
ω4

0 ω2
k
ω2

κ

2π
·Si · I

kκ
, (2.2.50)

where

I
kκ

=
∫ ∞

−∞
H ∗

0 (ω)H ∗
k
(ω) ·H0(ω)Hκ(ω)dω
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=
∫ ∞

−∞

1

(ω2
0 −ω2)2 +(2ζ0ω0ω)2

·
1

(ω2
k
−ω2)− i 2ζ

k
ω

k
ω

·
1

(ω2
κ −ω2)+ i 2ζκωκω

dω

=
∫ ∞

−∞

[

(ω2
k
−ω2)+ i 2ζ

k
ω

k
ω

]

·
[

(ω2
κ −ω2)− i 2ζκωκω

]

1
kκ

dω

= Re(I
kκ

) + i Im(I
kκ

) (2.2.51)

where

1
kκ

=
[

(ω2
0 −ω2)2 +(2ζ0ω0ω)2

]

·
[

(ω2
k
−ω2)2 +(2ζ

k
ω

k
ω)2

]

·
[

(ω2
κ −ω2)2 +(2ζκωκω)2

]

,

Re(I
kκ

) and Im(I
kκ

) are the real and imaginary parts of I
kκ

, respectively, given by

Re(I
kκ

) =
∫ ∞

−∞

(ω2
k
−ω2) ·(ω2

κ −ω2) + (2ζ
k
ω

k
ω) ·(2ζκωκω)

1
kκ

dω,

Im(I
kκ

) =
∫ ∞

−∞

2ζ
k
ω

k
ω ·(ω2

κ −ω2) − 2ζκωκω ·(ω2
k
−ω2)

1
kκ

dω,

which can be evaluated by the method of residue to yield

Re(I
kκ

) =
π · α

kκ

2ζ0ω
3
0 ·ω4
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in which

α
kκ

=
3∏

l = 1

D−1
kκ , l

·
4∑

l = 0

C
kκ , l

ζ l
0, (2.2.53)
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Therefore, equation (2.2.50) can be expressed as
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When κ =k, equation (2.2.54) becomes
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Hence, the correlation coefficient between the contributions to the response of an oscillation

mounted on the structure under an earthquake excitation in direction i by kth and κth

modes is obtained as
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which is independent of the direction i of the earthquake excitation and can be written as

ρ
kκ

=
α

kκ
√

β
k
βκ

. (2.2.57)

Combining the maximum absolute acceleration R i
n, j; k

of the oscillator contributed by

mode k, given by equation (2.2.42), for all 6N modes gives the FRS of node n in direction

j under the earthquake excitation in direction i defined by equation (2.1.19):

S
i
n, j

(ω0, ζ0) =
∣
∣ü i

F, n, j
(t)

∣
∣

max
=

√
√
√
√

6N∑

k=0

6N∑

κ=0

ρ
kκ

R i
k

R i
κ . (2.2.58)

FRS S
n, j

(ω0, ζ0) of the nth node in direction j under tri-directional earthquake excitations

is then obtained from FRS S
i
n, j

(ω0, ζ0), i=1, 2, 3, using the SRSS combination rule given

by equation (2.1.20).

Comments on Modal Combination

Since the modal combination in equation (2.2.58) is a complete quadrature for maximum

responses of the oscillator contributed by all 6N modes, it is therefore called FRS-CQC to

differentiate it from CQC (Complete Quadratic Combination), which combines maximum

responses of the 6N modes. To visualize the correlation coefficient of FRS-CQC, for given

damping ratios ζ0, ζk, and ζκ , the correlation coefficient ρkκ is a function of frequency

ratios rk and rκ and can be plotted as a surface. Figure 2.8 shows the plot of ρkκ with

ζ0 =ζk =ζκ =5%, rk and rκ ranging from 0 to 2.50. Some remarkable features of FRS-CQC

can be observed:

❧ Similar to the correlation curve of the conventional CQC which is symmetric about

ωk =ωκ , the correlation surface of FRS-CQC is symmetric about the plane rk = rκ

(ωk =ωκ). The correlation coefficient ρkκ =1 for rk = rκ , meaning that responses of

closely-spaced modes are fully correlated.

❧ Different from the correlation coefficient in conventional CQC, which is uniformly

positive, the correlation coefficient of FRS-CQC is negative inside the areas approxi-

mately for rk < 1< rκ and rκ < 1< rk as shown in Figure 2.9. In other words, negative

correlation generally occurs when the equipment frequency is located between the
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Figure 2.8 3D-view of FRS-CQC correlation coefficients with 0 6 r 6 2.5

Figure 2.9 2D-view of FRS-CQC correlation coefficients with 0 6 r 6 2.5
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structural frequencies of two not-closely-spaced modes, which usually results in a

valley between the FRS peaks.

❧ For the extreme case when the equipment frequency is significantly higher than the

structural frequency with rk →0 and rκ →0, FRS-CQC is reduced to the conventional

CQC. Figure 2.10 shows the correlation surface of FRC-CQC for rk and rκ ranging

from 0 to 0.02, which is an enlarged view of the tiny portion of the surface close to

the origin in Figure 2.8. The intersection between the surface and a plane defined by

rk =a or rκ =a (a is an arbitrary positive value that approaches zero) can provide a

correlation curve of the conventional CQC. For instance, the correlation surface is cut

by a plane rk =0.01 as shown in Figure 2.11. It can be observed that the correlation co-

efficient ρkκ =1 at rκ =0.01, when two structural frequencies are coincident ωk =ωκ .

Furthermore, the correlation curve is positive and symmetric about rk = rκ =1.

❧ To determine responses of multiple DOF structures under earthquake excitations

using a response spectrum method, the correlation coefficient between two modal

responses is determined for CQC (Kiureghian, 1980; Der Kiureghian, 1981), i.e.,

ρ
CQC

kκ
=

E[q
k
(t)qκ(t)]

√

E[{q
k
(t)

}2 ] · E[{qκ(t)
}2 ]

, (2.2.59)

where q
k
(t)=h

k
(ω) ∗ üg(t) is the response of the kth mode.

❧ To determine FRS, the response of an oscillator (with frequency ω0 and damping

ratio ζ0) mounted on the multiple DOF structure is required. The correlation coeffi-

cient between the responses of the oscillator contributed by two modal responses is

determined for FRS-CQC, i.e.,

ρ
FRS-CQC

kκ
=

E[Q
k
(t)Qκ(t)]

√

E[{Q
k
(t)

}2 ] · E[{Qκ(t)
}2 ]

, (2.2.60)

where Q
k
(t)=ω2

0 ω2
k

h0(t) ∗ h
k
(t) ∗ üg(t) is the response of the oscillator contributed

by the kth mode.

❧ When ω0 →∞, i.e., when the oscillator is very rigid, Q
k
(t)→q

k
(t). Therefore,

ρ
FRS-CQC

kκ
includes
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• the correlation between Q
k
(t) and Qκ(t),

• the correlation between q
k
(t) and qκ(t),

• the correlations between Q
k
(t) and qκ(t) and between Qκ(t) and q

k
(t).

❧ It is important to note that CQC was derived for responses of multiple DOF (Ki-

ureghian, 1980; Der Kiureghian, 1981), considering only the correlation between two

modal responses q
k
(t) and qκ(t). If CQC (with ρ

CQC

kκ
) or SRSS is used in modal

combination to generate FRS, large errors may occur, especially for structures with

closely-spaced modes.

Figure 2.10 3D-view of FRS-CQC correlation coefficients with 0 6 r 6 0.02

Figure 2.11 3D-view of FRS-CQC cut by rk = 0.01
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Generation of floor response spectra

Therefore, for a SDOF oscillator mounted on a multiple DOF structure, the procedure of the

proposed direct spectra-to-spectra method of generating FRS is illustrated in Figure 2.12.

A modal analysis is performed first to obtain the modal information of the structure. The

amplification factors and FRS-CQC coefficients are determined from the modal informa-

tion along with tRS that corresponds to the prescribed GRS. Multiplying the amplification

factors to the target GRS results in the modal responses, which are sequently combined by

FRS-CQC rule to generate FRS.
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Figure 2.12 Procedure of proposed direct method for generating FRS
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2.3 Numerical Examples

The accuracy and efficiency of the direct spectra-to-spectra method developed in this

chapter for generating FRS is demonstrated through numerical examples by comparing

results from the proposed direct method with those from time history analyses.

The primary source of variability in time history analysis stems from the inherent un-

certainties and randomness of the time histories, reflected in the rugged spectral shapes of

FRS. Although there are large variations in individual FRS as shown later in this section, the

statistical results of FRS (such as mean FRS or FRS with 84.1% non-exceedance probability

(NEP)) from a number of time histories converge to smooth spectra as the number of time

histories increases.

In this study, the statistical results of FRS of a large number of time history analyses are

considered as the “exact” FRS and used as benchmark for verifying the accuracy of the

direct method.

2.3.1 Model Information

A service building of a nuclear power plant is selected as the primary structure. A three-

dimensional finite element model of the building, as shown in Figure 2.13, is established

using the commercial finite element analysis software STARDYNE.

The superstructure of the building consists of steel frames and concrete floor slabs, and

the basement is constructed using concrete. The elevation of each floor and the dimensions

of the building are shown in Figure 2.13. Some information of the finite element model is

listed in Table 2.7.

A modal analysis is performed to obtain modal frequencies, modal participation factors,

and modal shapes of the model. Modal information of 145 modes, in which the modal

frequencies are less than 33 Hz, is extracted.

FRS at two nodes located on the second and third floors of the building are considered.

Node 1 is on an edge of the second floor and Node 2 is on the third floor, as shown in Figure

2.13.
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Table 2.7 Information of finite element model

Node Lumped Mass
Beam Shell

Element Section Element Section

Number 1351 120 1740 31 830 8

Table 2.8 Modal information at Node 1

Mode Frequency

(Hz)

Participation

factor

Modal shape Contribution

factor

2 2.676 −7.413 −0.05082 0.38

20 5.838 −2.945 −0.02603 0.08

21 5.918 2.943 0.06409 0.19

31 7.212 −8.883 −0.01942 0.17

103 22.95 −100.8 0.00088 −0.09

106 23.96 −337.3 0.00024 −0.08

Table 2.9 Modal information at Node 2

Mode Frequency

(Hz)

Participation

factor

Modal shape Contribution

factor

2 2.676 −7.413 −0.14630 1.08

20 5.838 −2.945 −0.01904 0.06

21 5.918 2.943 0.04151 0.12

31 7.212 −8.883 0.03847 −0.34

105 23.34 −96.07 −0.00045 0.04

106 23.96 −337.3 −0.00011 0.04

107 23.98 −50.65 −0.00092 0.05
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Modal information of the significant modes at these two typical nodes is listed in Tables

2.8 and 2.9. The participation factors and modal shapes in these two tables are for direction

2 shown in Figure 2.13. The contribution factor is the product of the participation factor and

the modal shape, quantifying the contribution of the corresponding mode in the response

of the node; all other modes that are not listed in Tables 2.8 and 2.9 have absolute values of

the contribution factors less than 0.04. The summation of the 145 mode contribution factors

at each node is close to 1. It is seen that there are closely-spaced modes with considerable

contributions to the responses at both Nodes 1 and 2. For example, modes 20 and 21 are

closely-spaced for Node 1; modes 20 and 21, modes 105 to 107 are closely-spaced for Node

2.

2.3.2 Input GRS

Two types of response spectra, GRS of USNRC R.G. 1.60 (1973) and Standard UHS for

CENA (2007), are selected as input GRS in the numerical examples. These GRS are piece-

wise straight lines in log-log scale as shown in Figure 2.14. However, in nuclear industry

practice, they are often plotted in the log-linear scale for better visualization in the range of

engineering interest. In the log-linear scale, the spectra become piecewise curves as shown

by dashed lines in Figure 2.15. For the ease of application, the critical (corner) points are

commonly connected by straight lines as shown by the solid lines in Figure 2.15 for analysis

and design. It can be seen that the GRS become smoother and conservative after the adjust-

ment. Therefore, the spectral shapes consisting of piecewise straight lines in log-linear scale

will be adopted in this study.

GRS of USNRC R.G. 1.60

The 5%horizontal and vertical design spectra in USNRC R.G.1.60 (1973) are taken as GRS in

this example. The horizontal GRS are anchored at 0.3g PGA, and the vertical PGA is taken

as 2/3 of the horizontal PGA. To perform time history analyses, 30 sets of tri-directional

time histories spectrum-compatible with GRS (two horizontal GRS and one vertical GRS)

are generated following the Approach 2 of USNRC SRP 3.7.1, as shown in Figure 2.16.
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Standard UHS for CENA

The 5% standard Uniform Hazard Spectrum (UHS) proposed by Atkinson and Elgohary

(2007) for Central and Eastern North America (CENA) sites anchored at 0.3g is chosen as

the horizontal GRS; the vertical input GRS is taken as 2/3 of the horizontal GRS. 30 sets of

time histories compatible with the standard UHS are generated following the requirements

of CSA N289.3 (2010), as shown in Figure 2.17. Compared to design spectrum in USNRC

R.G. 1.60, the most apparent characteristic of the standard UHS is the different spectrum

shape; the standard UHS has relatively low spectral acceleration values in the intermediate

frequency range from 2 to 10 Hz, but contains abundant higher frequency content in the

frequency range from 20 to 50 Hz.

For both USNRC R.G. 1.60 GRS and CENA UHS, all spectrum-compatible time histories

are generated using the Hilbert-Huang Transform method (Ni et al., 2011; Ni et al., 2013).

Samples of the tri-directional compatible time histories for CENA UHS are shown in Figure.

2.3.3 Comparison of FRS

FRS of the Service Building under the Excitation of GRS of USNRC R.G. 1.60

FRS at Node 1 and Node 2 obtained from both time history analyses and the direct spectra-

to-spectra method are plotted in Figures 2.19 and 2.20, respectively. These FRS are cal-

culated over 200 frequencies including natural frequencies of the dominant modes of the

structure. The mean FRS obtained from time history analyses, which are considered as the

“exact” FRS, are highlighted by red dashed lines; the FRS generated by the proposed direct

method are represented as black solid lines.

It is seen that FRS generated by the direct method agree extremely well with the “exact”

FRS over the entire frequency range. The relative errors are less than 5% at the peaks of

FRS, whereas there are large variabilities in FRS from time history analyses, as shown in

Figure 2.19 and 2.20. This example demonstrates that time history analysis can lead to

approximately 30% overestimation or 20% underestimation at the FRS peaks, even though

the time histories are well compatible with the target GRS (within 10% of the target GRS).
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Furthermore, it is observed that FRS from a single time history analysis may be over-

conservative at some peaks but significantly nonconservative at other peaks.

The primary source of variability in time history analysis stems from the inherent un-

certainties and randomness of the spectrum-compatible time histories, which are reflected

from their rugged spectral shapes. As seen in Figures 2.16 and 2.17, there is an apparent

difference between the response spectrum of a spectrum-compatible time history and the

target GRS, which has a smooth spectral shape. From equation (2.2.18), it is clear that FRS

are amplified GRS. Therefore, this difference is also amplified by an amplification factor,

which can range from 5.5 to 7 in tuning cases. For an oscillator mounted on a SDOF

structure, a 5% difference in GRS can result in approximately 30% difference at FRS peaks.

For an oscillator mounted on a multiple DOF structure, modal responses are multiplied by

the contribution factors and combined through equations (2.2.42) and (2.2.58). As a result,

variabilities in FRS are combinations of the differences in all modal response and are also

significant.

To further verify the significance of modal combination on the determination of FRS,

Figures 2.21 and 2.22 show the FRS generated by the direct method using the conventional

CQC combination rule. For FRS at Node 1, there are 21%, 29%, and 44% relative errors

at the first, second peaks, and the valley between the two peaks, respectively. For Node 2,

CQC gives results close to the “exact” FRS around the first peak. However, there is 30%

under-estimation at the second peak.

Figure 2.23 illustrates the seismic responses of the first four significant modes at Node 1.

The effect of modal combination can be analyzed qualitatively as follows.

❧ For low frequencies f< 2 Hz, the response of the oscillator is contributed mainly

by the amplified ground motion. Since the oscillator is a SDOF system, it does not

involve modal combination.

❧ For frequencies from 2 to 20 Hz, which cover the dominant modal frequencies of

the structure, each mode has considerable contribution so that the effect of modal

combination becomes significant. Conventional CQC combination rule, which is

developed to combine structural responses to account for the correlation between
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Figure 2.23 Analysis of modal combination of FRS

modal responses of the structure, cannot fully account for the correlation between

the responses of the oscillator contributed by different modal responses and the

correlation between response of the oscillator contributed by a modal response and

the response of a structure mode.

❧ For high frequencies f >20 Hz, because the oscillator is sufficiently rigid, its response

is close to the structural response. The formula of FRS-CQC can be reduced to CQC

in this case; hence, the resultant FRS given by these two combination rules are close.

Since structures in nuclear power plants have multiple dominant modes, and some of them

are closely-spaced, modal combination rules significantly influence the resultant FRS. It

is demonstrated that FRS-CQC combination rule is valid and accurate to combine modal

responses.

FRS of the Service Building under the Excitation of Standard UHS for CENA

For Standard UHS for CENA, the proposed direct method is validated by comparing FRS

obtained from the direct method with the “exact” FRS, as shown in Figures 2.24 and 2.25. It

is seen that FRS given by the proposed direct method agree extremely well with the “exact”
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FRS over the entire frequency range, and the relative errors at peaks are mostly less than

5%. Compared to Figures 2.19 and 2.20, there are some differences in the spectral shapes

of FRS, particularly over the higher frequency range from 10 to 40 Hz. FRS peak up in this

range since the spectral acceleration of UHS reaches the maximum value while the spectral

acceleration of R.G. 1.60 GRS decreases.

Peak FRS generated from UHS are generally lower than those from R.G. 1.60 GRS. The

reason is that the spectral accelerations of UHS are apparently lower than those of R.G.

1.60 over the frequency range from 2 to 8 Hz, where the dominant modes of the structure

contribute most.

Probabilistic Descriptions of FRS Peaks

Another major advantage of the proposed direct method is that it can give probabilistic

descriptions for FRS peak values. Using the probabilistic description of tRS developed

in the companion paper, FRS with any desired level of NEP p can be determined from

the given GRS and the corresponding tRS with NEP p. FRS with 84.1% NEP at Node 1

obtained by time history analyses and the proposed direct spectra-to-spectra method are

compared in Figure 2.26 for USNRC R.G. 1.60 GRS and in Figure 2.27 for Standard UHS

for CENA. The relative errors at the three FRS peaks are 4.5%, 1%, and 1%, respectively, for

USNRC R.G. 1.60 GRS; the relative errors at the four FRS peaks are 0.3%, −1.3%, −0.7%,

and −3.8%, respectively, for Standard UHS for CENA. This excellent degree of agreement

further demonstrates the accuracy of the proposed method.

It is noted that the mean FRS and FRS with 84.1% NEP given by the proposed direct

method are almost the same for non-tuning cases, as shown in Figures 2.26 and 2.27.

This can be explained by equation (2.2.23) and Figure 2.4. The amplification factors

given by equation (2.2.23) depend on the equivalent damping ratios ζ
0,e

and ζe, which

are determined by tRS and GRS in equation (2.2.33) and have a significant effect on the

amplification factors in the perfect-tuning and near-tuning cases but have a negligible

effect in non-tuning cases, as shown in Figure 2.4. As a result, for non-tuning cases, the

amplification factors are almost the same for all values of the equivalent damping ratios,

leading to that FRS for all levels of NEP p are almost the same.
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Because of the large amplification factors in the perfect-tuning and near-tuning cases,

small deviations of the response spectrum of a time history from the target GRS are signifi-

cantly amplified. Although the compatibility of the time histories is good by satisfying code

requirements, as shown in Figures 2.16 and 2.17, there are large variabilities in the FRS from

time history analyses, particularly in the perfect-tuning and near-tuning cases, as shown

in Figures 2.19, 2.20, 2.24, and 2.25. Peak responses can be overestimated and underesti-

mated by as much as 35% and 25%, respectively. Hence, results from time history analyses

using a single set or a small number of sets of spectrum-compatible ground motions are

not adequate to give accurate FRS. This observation further highlights the advantage of the

proposed direct method, which uses the target GRS as input directly, without generating

spectrum-compatible time histories that are the primary source of variabilities.

2.4 Summary

In this chapter, a direct spectra-to-spectra method is developed for accurate and efficient

generation of FRS. Seismic response of a SDOF oscillator mounted on a SDOF primary
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structure is studied first. The response of the oscillator is derived analytically based on

Duhamel’s integral. For the tuning case when the oscillator is resonant with the SDOF

primary structure, the concept of tRS is introduced, along with the statistical relation-

ships between tRS and GRS developed from extensive numerical simulations, to give an

accurate and complete probabilistic description of FRS, since large variabilities exist in this

important case.

The formulation is then extended to a SDOF oscillator mounted on a multiple DOF

primary structure. A new modal combination method for generating FRS, called FRS-

CQC, is developed based on random vibration theory. FRS-CQC can fully account for

the correlation of responses between equipment and its supporting structure with closely-

spaced modes.

Numerical examples of a typical service building subjected to tri-directional seismic input

are presented. FRS determined by the proposed direct method agree extremely well with

the “exact” FRS, which are obtained through a large number of time history analyses, for

both conventional Newmark-type GRS (USNRC R.G. 1.60 GRS) and UHS for CENA with

significant high frequency spectral accelerations. It is demonstrated that FRS determined

by time history analyses have large variabilities, particularly in tuning cases or at FRS peaks;

hence, FRS determined by time history methods using a single set or a small number of

sets of spectrum-compatible tri-directional time histories are not reliable. Furthermore,

it is shown that modal combination methods significantly affect the results; there will be

large errors if the conventional CQC or SRSS modal combination methods are applied to

determine FRS. The proposed direct spectra-to-spectra method can avoid these deficiencies

and give accurate FRS, especially probabilistic descriptions of FRS peaks.

The proposed direct spectra-to-spectra method has three significant and novel features:

1. Using the concept of tRS and the statistical relationships between tRS and GRS, FRS

in the perfect-tuning and near-tuning cases can be determined accurately for both

conventional Newmark-type GRS and UHS with significant high frequency spectral

accelerations.

2. The correlations of responses between equipment and it supporting structure with

closely-spaced modes can be fully accounted for through FRS-CQC combination rule.
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As a result, the proposed direct method can generate accurate FRS for complex three-

dimensional finite element structural models with closely-spaced modes under tri-

directional seismic input.

3. From the complete probabilistic descriptions of tRS for given GRS, the proposed direct

method can give complete probabilistic descriptions of FRS peaks, i.e., FRS with any

desired level of NEP p can be determined.

In summary, the proposed direct spectra-to-spectra method is accurate and efficient, with

analytical formulation in terms of basic modal information of the primary structure,

prescribed GRS, and the corresponding tRS. It can be conveniently implemented in practice

to generate FRS for complex structures with closely-spaced modes.
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3C H A P T E R

Generating Floor Response Spectra:
Scaling Method

In seismic risk assessment and refurbishment of existing nuclear facilities, it is necessary to

develop new FRS as seismic demand for SSCs since the amplitude and spectrum shape of

new input ground motion spectrum (GRS) may be significantly different from that of the

GRS used in the past seismic design and analysis. Scaling methods, which allow the genera-

tion of FRS corresponding to new GRS by multiplying existing FRS with appropriate scaling

factors rather than by performing re-analyses of the structure, are efficient and economical

approaches. In practice, preliminary estimation of new FRS can generally be obtained by

scaling the existing FRS upward for the increase of the new GRS over the previous GRS

under acceptable circumstances. Otherwise, a reanalysis of structure is required. It is, of

course, desirable for engineers to utilize as much of the existing information and results

as possible without repeating the procedure of dynamic analysis, which introduces extra

costs and is time consuming. However, in many practical situations, it is challenging to

generate FRS not only by scaling but also by analyzing structural responses due to the lack

of structural model information.

The direct method for generating FRS developed in Chapter 2 prompted the develop-

ment of the scaling method presented in this chapter. The analytical formulation of the

direct spectra-to-spectramethod provides a strong physical insight into the essential char-

acteristics of FRS, which allows the identification of dynamical information of significant
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equivalent modes of the underlying structure from the available FRS and GRS. Scaling fac-

tors are then determined in terms of the dynamical information (modal frequencies,modal

damping ratios, and modal contribution factors) and input GRS.

3.1 Scaling Problems

In many practical situations, scaling methods are efficient and economical approaches to

obtain FRS:

Scaling Problem 1: Knowing FRS SF( f, ζ0) with one or only a few values of damping ratio,

it is required to determine SF( f, ζ ′
0) for a number of different damping ratios ζ ′

0.

Scaling Problem 2: Knowing FRS-I SF-I( f, ζ0) with one or only a few values of damping

ratio for Ground Response Spectra (GRS-I) SG-I( f, ζ ), it is required to determine

FRS-II SF-II( f, ζ ′
0) for a number of different damping ratios ζ ′

0 under different GRS-

II SG-II( f, ζ ).

In the following, some existing results for both scaling problems are reviewed briefly. The

importance and challenges of scaling methods are highlighted.

Scaling Problem 1

Scaling Problem 1 arises quite frequently in practice. Usually FRS corresponding to one or

only a few damping ratios are available. However, FRS for various damping ratios, which

may range from 2% to 15%, are required.

For example, for many existing nuclear power plants, usually low structural damping

ratios were used in the original dynamic models. Also the final FRS curves were presented

with low equipment damping ratios up to 5% or 7%. In seismic margin assessment, median

damping ratios for structures are required, which are larger than those used in the original

dynamic analyses; FRS with higher equipment damping ratios are also required. Engineer-

ing activities, driven by schedule and budget, call for a prompt and economical approach

to generate the updated FRS for high equipment damping ratios with the high (median)

structural damping ratios.
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ASCE 4-98 Clause 2.2.1 (1998) provides the following equation to determine SF( f, ζ )

from SF( f, ζ1) and SF( f, ζ2):

SF( f, ζ ) = SF( f, ζ1) + [SF( f, ζ2) − SF( f, ζ )]
ln ζ − ln ζ1

ln ζ2 − ln ζ1

, (3.1.1)

which can be written as

SF( f, ζ )− SF( f, ζ1)

SF( f, ζ2)− SF( f, ζ1)
=

ln ζ − ln ζ1

ln ζ2 − ln ζ1

, (3.1.2)

i.e., SF( f, ζ ) is determined by linear interpolation in the SF( f, ζ )-ln ζ plane.

ASCE 4-98 Clause 3.4.2.4 (1998) gives the following equation

SF( f, ζ ) =
√

S
2
F( f, ζ2) + [S

2
F( f, ζ1) − S

2
F( f, ζ2)]

ζ1

ζ

( ζ −ζ2

ζ1 −ζ2

)

, for ζ1 < ζ < ζ2 63ζ1.

(3.1.3)

Equation (3.1.3) can be written as

S
2
F( f, ζ2) − S

2
F( f, ζ )

ζ2 − ζ
=

ζ1

ζ

S
2
F( f, ζ2) − S

2
F( f, ζ1)

ζ2 − ζ1

. (3.1.4)

Note that
S

2
F( f, ζ2) − S

2
F( f, ζ )

ζ2 − ζ
=

S
2
F( f, ζ2) − S

2
F( f, ζ1)

ζ2 − ζ1

(3.1.5)

amounts to determining S
2
F( f, ζ ) by linear interpolation in the S

2
F( f, ζ )-ζ plane. Since

ζ1/ζ < 1, the slope of the solid line given by equation (3.1.4) is less than the slope of the

dashed line given by linear interpolation (3.1.5), as illustrated in Figure 3.1. FRS determined

from equation (3.1.4) are more conservative than the results given by linear interpolation in

the S
2
F( f, ζ )-ζ plane.

SQUG GIP Section 4.2.2 (2001) provides two results for IRS:

1. For IRS shape similar to the Bounding Spectrum (without very narrow peaks),

SF( f, ζ ) = SF( f, ζ0)

√

ζ0

ζ
=⇒ SF( f, ζ ) ∼

1
√

ζ
. (3.1.6)

For all f > fPeak (corresponding to peak of IRS), SF( f, ζ )>ZPA (zero-period accelera-

tion). Equation (3.1.6) amounts to scaling SF( f, ζ ) proportional to 1/
√

ζ .
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Figure 3.1 Scaling method for FRS given by ASCE 4-98 Clause 3.4.2.4

2. For equipment mounted below about 40 feet above the effective grade and has a funda-

mental natural frequency greater than about 8 Hz,

❧ f 6 8 Hz: SF( f, ζ ) = SF( f, ζ0)

√

ζ0

ζ
=⇒ SF( f, ζ ) ∼

1
√

ζ
;

❧ f >20 Hz: SF( f, ζ ) = SF( f, ζ0), i.e. assuming that damping has no effect;

❧ 8 Hz< f < 20 Hz:
log SF( f, ζ )− log SF(8Hz, ζ )

log f − log 8
=

log SF(20Hz, ζ )− log SF(8Hz, ζ )

log 20− log 8
,

i.e., SF( f, ζ ) is obtained from linear interpolation in log SF( f, ζ )-log f plane be-

tween 8 Hz and 20 Hz.

From this summary, it is clearly seen that existing scaling approaches are essentially

• a simple scaling, such as equation (3.1.6) with a uniform scaling factor for all fre-

quency f; or

• linear interpolation based on various assumptions between SF( f, ζ ) and ζ or f, which

are not valid when the equipment damping ratios of required FRS are out the range,

or when only one FRS with 5% equipment damping ratio is available.

Scaling Problem 2

An accurate and reliable method for Scaling Problem 2 is important in many engineer-

ing projects. For example, in a life-extension project of an existing nuclear power plant,

SF-I( f, ζ ) are usually available for Design Basis Earthquake (DBE) SG-I( f, ζ ). SF-II( f, ζ ) are
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required for site-specific ground motion response spectra (GMRS) or review-level earth-

quakes (RLE) SG-II( f, ζ ) in seismic margin analysis. Project scope and budget may not

warrant a complete seismic structural analysis to obtain SF-II( f, ζ ).

In rehabilitation projects, sometimes structures need to be strengthened due to a higher

seismicity SG-II( f, ζ ) than the original design SG-I( f, ζ ). It is tricky to decide which

strengthen scheme is the most economical from the seismic point of view. A quick yet

accurate approach to determine SF-II( f, ζ ) from SG-II( f, ζ ) will assist engineers to decide

which strengthen scheme is optimal.

Similarly, in a new-build, SF-I( f, ζ ) are available for a generic design based on a standard

GRS SG-I( f, ζ ), such as those in CSA N289.3 (2010) or USNRC R.G. 1.60 (1973). An efficient

and good estimate of SF-II( f, ζ ) for site-specific GRS SG-II( f, ζ ) is critical for feasibility

analysis, budgeting, scheduling, bidding and tendering, and procurement of important

equipment, which may take years to manufacture, before the site-specific design is finalized

and a complete seismic analysis is performed.

It is obviously desirable for engineers to use as much of the available information and

results of previous analyses as possible without performing a complete dynamic analysis,

which is time consuming and introduces extra costs. However, the existing scaling methods

recommended in EPRI NP-6041-SL (1991) basically give approximate estimates with an

uniform scaling factor and are restricted to some special cases. Because of their crude

approximations, they are not widely used in nuclear industry.

Objective and Scope

The primary challenges and difficulties in developing FRS based on results of previous

analyses include:

1. Related to Scaling Problem 1, FRS with various equipment damping ratios, which may

range from 2% to 15%, are required when FRS corresponding to only a few damping

ratios (e.g., 5%) are available.

2. Differences in the spectral shapes between GRS-I of the previous analysis and the new

GRS-II may result in significant variations in the FRS shapes.
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3. In some technical reports of nuclear facilities constructed decades ago, only the final

resultant FRS-I are available. Therefore, it is challenging to develop FRS-II not only

by scaling method but also by a re-analysis of structural response due to the lack of

structural model information.

Despite the important applications of accurate and reliable scaling methods for generating

FRS in the nuclear industry, there have been no significant progress in developing such

methods in the past decades due to these theoretical and technical challenges.

Consequently, FRS-II have been developed by re-analysis rather than by scaling in almost

all cases. Time history method is a most commonly used method for generating FRS in

current practice. However, due to the inherent randomness and uncertainty of spectrum-

compatible time histories which are generated as intermediate seismic inputs from a target

response spectrum, time history method introduces large variabilities in FRS, particularly

at FRS peaks which are of primary interest for engineers. In order to obtain accurate

FRS, a large number of time history analyses are needed; it is, however, excessively time-

consuming and computationally expensive.

The direct spectra-to-spectra method developed in chapter 2 prompted the development

of the scaling method presented in this chapter. By introducing the concept of t-response

spectra (tRS) and developing statistical relationships between tRS and GRS to deal with

tuning or resonance between the equipment and primary supporting structure, a direct

spectra-to-spectra method for generating FRS is developed. Only basic modal information

of the structure (including modal frequencies, modal damping ratios, modal participation

factors, and mode shapes at the locations of interest along with input GRS) is needed. It

has been demonstrated that this highly efficient direct method can provide accurate FRS,

especially give probabilistic descriptions at FRS peaks, matching those obtained by time

history analyses with a large number of time histories.

In this chapter, a scaling method for solving the two scaling problems based on the

direct spectra-to-spectra method developed in Chapter 2 is presented. In Section 3.2, a

system identification procedure is developed to obtain the modal information of significant

equivalent modes of the underlying structure. In Section 3.3, procedures for the two

scaling problems are developed. Numerical examples for scaling FRS for a typical service
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building in a nuclear power plant are presented in Section 3.4 to demonstrate the accuracy

and advantages of the proposed scaling method, which is efficient, accurate, and easy to

implement.

3.2 System Identification

An essential task in a scaling method for generating FRS is system identification: to recover

the most significant dynamical characteristics of the underlying structure from S
G-I

( f, ζ )

and available S
F-I

( f, ζ ). The formulation of the direct spectra-to-spectra method (Jiang

et al., 2015) provides a strong physical insight into FRS and is ideally suited for system

identification.

It is known that FRS is contributed primarily by a number of significant modes of the

structure, and FRS peaks occur at the frequencies of these modes. Therefore, for the mth

DOF (corresponding to the nth node in direction j), the first step is to extract the significant

equivalent modal information (frequencies and the corresponding spectral accelerations)

from the available FRS-I.

It should be noted that the available FRS have usually been broadened and smoothed,

which means some spectral values may have been modified artificially and thus inappropri-

ate to be used for identifying the structural information. Nevertheless, since the plateaus of

FRS result from broadening (normally by ±15%) the peaks of raw FRS, it is reasonable to

use the middle point at an FRS plateau for the natural frequency of a significant structural

mode and the corresponding spectral acceleration. If there is a wide plateau, it may be as-

sumed that it is the result of broadening and smoothing from more than one peak, as shown

in Figure 3.2. In this case, two or more significant modes may be taken considering that the

corners are usually the results of broadening from a peak by ±15%; however, it is understood

that the broadened-and-smoothed FRS may not accurately reflect the underlying raw FRS.

The number of the significant structural modes can be larger than the number of FRS

plateaus due to the possible existence of closely-spaced modes. However, a cluster of

closely-spaced modes can be treated as one synthesized mode with the same frequency and

an equivalent modal contribution factor. This assumption may not be able to reproduce
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Figure 3.2 Broadened-and-Smoothed FRS

exactly the same dynamical information as the original structure; but it simplifies the

calculation for generating FRS without compromising the accuracy.

In general, the available FRS-I in direction i is obtained under tri-directional excitations.

In system identification, the available FRS-I and GRS-I in direction i are used to obtain

the equivalent significant modes of the underlying structure. Hence, the equivalent system

contains the significant dynamic characteristics of generating FRS in direction i under tri-

directional seismic excitations from GRS in direction i. As a result, even though only GRS

in direction i is used in generating FRS in the proposed scaling method, the generated FRS

contains the effect of tri-directional seismic excitations.

Suppose that GRS-I SG-I( f, ζ0) and FRS-I SF-I( f, ζ0) for the mth DOF (corresponding to

the nth node in direction j) of the original structure are available. For clarity of presentation,

the subscript m signifying the mth DOF is dropped. It is assumed that there are N significant

modes in the underlying structure, where N may be slightly larger than the number of

plateaus in FRS-I.

As an example of illustration, for a given FRS-I as shown in Figure 3.2, the frequencies

of the four significant modes fk, k=1, 2, 3, 4, and the corresponding spectra accelerations

Sk =S
F-I

( fk , ζ0) can be easily obtained by inspection and simple calculation.
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The maximum value of the contribution of the kth significant mode to the absolute

acceleration of the oscillator mounted in the mth DOF is, from equation (2.2.42),

Rk = ϕk Ŵk

√

[AF0,k SG-I( f0, ζ0)]
2 + [AFk SG-I( fk, ζk)]

2
,

︸ ︷︷ ︸ ︸ ︷︷ ︸

Xk ak (3.2.1)

where ζ0 is the damping ratio of the FRS, ζk is the damping ratio of the significant mode k

of the underlying structure, and the amplification factors AF0,k and AFk can be evaluated

from equation (2.2.43). Note that the superscript i is dropped since only the direction cor-

responding to the mth DOF is considered. Hence, the value of ak can be easily determined.

The unknown quantity Xk characterizes the contribution factor of significant mode k in

the response of the mth DOF.

From equation (2.2.58), the FRS-I value of the mth DOF at frequency f0 is given by

[S
F-I

( f0, ζ0)]
2 =

N∑

k=1

N∑

κ=1

ρ
kκ

R
k

Rκ . (3.2.2)

Setting f0 = fs, s=1, 2, . . . , N, where fs is the frequency of the sth significant mode,

substituting equation (3.2.1) into (3.2.2), and denoting ak

∣
∣

f0= f s
= ak;s give

N∑

k=1

N∑

κ=1

ρ
kκ

a
k;s

a
κ ;s

X
k

Xκ = [SF-I( fs, ζ0)]
2 = S

2
s , s=1, 2, . . . , N, (3.2.3)

where, with f0 = fs,

a
k;s

=
√

[AF0,k SG-I( f0, ζ0)]
2 + [AFk SG-I( fk, ζk)]

2
,

AF
0,k =

rk
2

√

(1−rk
2)2 + (2ζe rk)

2
, AFk =

1
√

(1−rk
2)2 + (2ζe rk)

2
, rk =

fk

f0

,

ζe =
SG-I( f0, ζ0)

√
2 · S

t
G-I

( f0, ζ0)
.

For a damping ratio ζ0, there are N spectral accelerations at the frequencies fs, s=1, 2, . . . , N,

of the significant modes. Hence, there are N quadratic equations in (3.2.3) for N unknowns

X
k
, which can be readily solved numerically. It is noted that the solution sets of the quadratic
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3.3 scaling of frs

system are generally non-unique. For instance, the number of possible solution sets may be

up to four when N=2 since the solutions can be graphically represented as the intersections

of two ellipses. An effective way to find the most realistic solutions is by taking advantage of

the modal property
N∑

k=1

Ŵ
k
ϕ

k
=

N∑

k=1

X
k
→1. (3.2.4)

It should be emphasized that X
k

denote the equivalent modal contribution factors which may

not represent the underlying system exactly. Therefore, the summation of X
k

is expected to

approach 1 rather than equal to 1 exactly; the problem can be interpreted as an optimization

problem of minimizing the objective function

f(X) =
∣
∣
∣
∣

N∑

k=1

X
k
− 1

∣
∣
∣
∣
, (3.2.5)

subject to nonlinear constraints

∣
∣gs(X) − S

2
s

∣
∣ 6 εs ·S

2
s , s = 1, 2, . . . , N, (3.2.6)

where

gs(X) =
N∑

k=1

N∑

κ=1

ρ
kκ

a
k;s

a
κ ;s

X
k

Xκ , (3.2.7)

and εs are error tolerances which are usually set as small as 10−2 to 10−3. This optimization

process can be easily implemented by many mathematical software packages, such as Excel.

With the above discussion, an efficient method of identifying significant equivalent modal

information of the underlying structure is summarized in Figure 3.3.

3.3 Scaling of FRS

A scaling method is advantageous in the following situations:

❧ For some structures built a few decades ago, dynamical information of the structures

may not be available. A complete dynamic analysis is not possible unless finite element

models are established from scratch.

❧ Even if complete finite element models of structures are available, it may not be desirable

to perform dynamic analysis to generate FRS due to project constraints, such as scope

and budget constraints.
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Figure 3.3 Procedure of system identification

In engineering projects when a scaling method is called for to generate FRS, it is as-

sumed that a set of tri-directional FRS S
i
F-I

( f, ζ0) and the corresponding tri-directional

GRS S
i
G-I

( f, ζ0) are available for some values of damping coefficient ζ0 (e.g., 5%), where the

superscript i (i=1, 2, 3) denotes the direction of the spectrum. As discussed in Section 3.2,

it is assumed that FRS in direction i is completely due to seismic excitation in direction i;

hence, the superscript i is dropped for clarity of presentation.
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3.3 scaling of frs

The analytical formulation of the direct spectra-to-spectra method for generating FRS

developed by Jiang et al. (2015) provides an ideal avenue for a scaling method. For the mth

DOF of the original system, the proposed scaling method involves the following steps:

1. Extract frequencies fk and determine the modal contribution factors Xk, k=1, 2, . . . , N,

of the significant modes of the underlying structure from the available SG-I( f, ζ0) and

SF-I( f, ζ0), as presented in Section 3.2.

2. Using the extracted dynamical information of the underlying structure,

❧ Scaling problem 1: scale SF-I( f, ζ0) to generate SF-I( f, ζ ′
0) for required damping

values ζ ′
0.

❧ Scaling problem 2: scale SF-I( f, ζ0) to generate SF-II( f, ζ ′
0), corresponding to the

new GRS SG-II( f, ζ0), for required damping values ζ ′
0.

3.3.1 Scaling GRS to Different Damping Ratios

In contrast to the primary structures in nuclear power plants, whose modal damping ratios

are usually from 5% to 7%, components and various types of equipment are generally made

of different materials so that their damping ratios can range from 2% to 15%. In order to

assess the seismic demands for different types of equipment accurately, GRS and FRS with

the corresponding damping ratios are needed.

Based on equation (2.2.42) for the modal response

∣
∣ü0,k

∣
∣

2

max
= [AF0,k SG(ω0, ζ0)]

2 + [AFk SG(ωk, ζk)]
2
, (3.3.1)

it can be anticipated that the change of the equipment damping ratio ζ0 will affect the

the amplification factors AF
0,k and AFk, as well as the ground input SG(ω0, ζ0). It was

demonstrated that the damping effect on the amplification factors are negligible for non-

tuning cases (Jiang et al., 2015). When the equipment is relatively much stiffer than the

structure, the modal response of the structure-equipment system is reduced to the structural

modal response SG(ωk, ζk). As a result, the equipment damping ratio has no effect in this

case. When the equipment is relatively much more flexible than the structure, the modal

response of the structure-equipment system is reduced to the response of the equipment
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supported directly on the ground, i.e., SG(ω0, ζ0). Consequently, the effect damping effect

on FRS is the same as that on GRS.

However, the most-common standards and codes, such as ASCE 43-05 (2005), NUREG

CR-0098 (1978), and CSA N289.3 (2010), provide GRS for only 5% damping. Therefore,

Damping Correction Factors (DCF) defined as

D(ω;ζ0, ζ ′
0) =

SG(ω, ζ ′
0)

SG(ω, ζ0)
(3.3.2)

is used to adjust GRS SG(ω, ζ0) corresponding to ζ0 =5% damping ratio to GRS SG(ω, ζ ′
0)

of another damping level ζ ′
0. A comprehensive study on DCF for horizontal GRS was

conducted by Cameron and Green (2007), in which DCF is tabulated for various damping

ratios, site conditions, and earthquake magnitudes.

3.3.2 Generating FRS for Different Damping Ratios Using the
Direct Method

Consider the underlying structure with the significant modes identified in Section 3.2 under

the excitation of SG(ω, ζ0). For the tuning case when ω0 =ωk, the maximum absolute

acceleration of an oscillator with frequency ω0 and damping ζ0 due to excitation of the kth

mode is given by equation (2.2.35) with the equivalent damping ratio given by equation

(2.2.36), which can be written as, using equation (3.3.2),

∣
∣ü0,k

∣
∣

max
=

√

D(ω0;ζk, ζ0)
2 + 1

2 ζe

SG(ω0, ζk). (3.3.3)

For ζ0 =ζk , D(ω0;ζk, ζ0)=1, the modal response reduces to
∣
∣ü0,k

∣
∣

max
= SG(ω0, ζk)/(

√
2ζe).

From equation (3.3.3), the ratio of the modal responses with equipment damping ratio ζ ′
0

to the modal response with equipment damping ratio ζ0 is given by

∣
∣ü0,k

′ ∣
∣

max
∣
∣ü0,k

∣
∣

max

=

√

D(ω0;ζk, ζ ′
0)

2 + 1

2
·

ζe

ζ ′
e

, (3.3.4)

where ζ ′
e is the equivalent damping coefficient corresponding to modal damping ζk and

equipment damping ζ ′
0 6=ζk.
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Since the physical meaning of tRS is the modal response of an equipment-structure

system in perfect-tuning, equation (3.3.4) can be written as

SG(ω0, ζ ′
0 6=ζk)

S
t

G(ω0, ζ0 =ζk)
=

√

D(ω0;ζk, ζ ′
0)

2 + 1

2
·
ζe

ζ ′
e

, (3.3.5)

where, following Jiang et al. (2015),

S
t

G(ω0, ζ0 =ζk) =
1

2
·
∣
∣
∣
∣

∂ u̇k(ζk)

∂ζk

∣
∣
∣
∣

max

, (3.3.6a)

SG(ω0, ζ ′
0 6=ζk) =

1

2
·
∣
∣
∣
∣

u̇k(ζ
′
0) − u̇k(ζk)

ζ ′
0 − ζk

∣
∣
∣
∣

max

. (3.3.6b)

To determine SG(ω0, ζ ′
0 6=ζk), consider the maximum modal velocity u̇k(ζ ), which de-

creases monotonically with the modal damping ratio ζk, as illustrated in Figure 3.4 (without

loss of generality, the case of ζ ′
0 >ζk is shown):

❧ From equation (3.3.6a), tRS S
t

G(ω0, ζ0 =ζk) and S
t

G(ω0, ζ ′
0 6=ζk) are equal to half

of the slopes of the tangent line at point A (with ζ0 =ζk) and point B (with ζ ′
0 6=ζk),

respectively.

❧ From equation (3.3.6b), SG(ω0, ζ ′
0 6=ζk) is equal to half of the slope of the secant

connecting points A and B.

❧ From the Mean Value Theorem in calculus, there exists ζ̄ between ζ0 and ζ ′
0 such

that

S
t

G(ω0, ζ̄ ) = SG(ω0, ζ ′
0 6=ζk), (3.3.7)

where ζ̄ =α ·ζ ′
0 +(1−α) ·ζk, 0< α< 1, i.e., the slope of the tangent line at some

point C (with ζ̄ ) is equal to the slope of the secant connecting points A and B.

An in-depth parametric study is performed to quantify the relationship between SG(ω0, ζ ′
0 6=ζk)

and S
t

G(ω0, ζ̄ ). It is found that, when α=0.5 in which ζ̄ represents the average damping

ratio of equipment and structure modes, equation (3.3.7) gives sufficiently accurate ap-

proximations for SG(ω0, ζ ′
0 6=ζk) over the frequency range from 0.1 Hz to 100 Hz. It is

anticipated that the accuracy of this approximation will be affected by the damping ratio

difference 1ζ =
∣
∣ζ ′

0 −ζk

∣
∣; therefore, a correction factor is introduced in equation (3.3.7) to
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Figure 3.5 Comparison of approximate SG(ω0, ζ ′
0) with numerical simulation

yield

SG(ω0, ζ ′
0 6=ζk) = S

t
G(ω0, ζ̄ ) ·

(

1 +
∣
∣ζ ′

0 −ζk

∣
∣
)

, ζ̄ = 1
2 (ζ ′

0 +ζk). (3.3.8)

Figure 3.5 shows a comparison of SG(ω0, ζ ′
0 6=ζk) approximated by equation (3.3.8) and

the mean value calculated by numerical simulations from 30 time histories compatible with

5%USNRC R.G. 1.60 GRS (1973), where the damping ratio of structural mode ζk =5%, and
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the equipment damping ratio ζ ′
0 varies from 2% to 15%. It can be concluded that equation

(3.3.8) provides excellent approximations over the entire frequency range and for various

equipment damping ratios. It is observed that the responses are more sensitive for lower

equipment damping ratios, say ζ ′
0 < 5%.

From equations (3.3.5) and (3.3.8) the equivalent damping ratio ζk,e
′ for modal damping

ζk and any equipment damping ratio ζ ′
0 can be obtained as

ζ ′
e = ζe ·

S
t

G(ω0, ζk)

S
t

G

(

ω0, 1
2 (ζ ′

0 +ζk)
)

·
(

1+
∣
∣ζ ′

0 −ζk

∣
∣
) ·

√

D(ω0;ζk, ζ ′
0)

2 +1

2
. (3.3.9)

The method for determining tRS S
t

G(ω0, ζ ) for any frequencies and damping ratios is well

developed in Li et al., 2015, whereas DCF D(ω0;ζk, ζ ′
0) is tabulated in Cameron and Green

(2007).

FRS of the mth DOF of the original structure for damping ratio ζ ′
0 can then be obtained

using equations (2.2.35), (2.2.36), (2.2.42) and (2.2.43):

[SF(ω0, ζ ′
0)]

2 =
N∑

k=1

N∑

κ=1

ρ
kκ

Rk Rκ , (3.3.10)

where

Rk = Xk

√

[AF0,k SG(ω0, ζ ′
0)]

2 + [AFk SG(ωk, ζk)]
2
,

AF0,k =
rk

2

√

(1−rk
2)2 + (2ζ ′

e rk)
2

, AFk =
1

√

(1−rk
2)2 + (2ζ ′

e rk)
2

, rk =
ωk

ω0

,
(3.3.11)

and the equivalent damping ratio ζ ′
e is given by equation (3.3.9).

3.3.3 Scaling Problem 1

Given SG-I( f, ζ0), the procedure of scaling SF-I( f, ζ0) to SF-I( f, ζ ′
0) for a desired damping

value ζ ′
0 is as follows:

1. System Identification: Identify significant modes from SG-I( f, ζ0) and SF-I( f, ζ0) and

obtain frequencies fk and modal contribution factors Xk, k=1, 2, . . . , N.
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2. Direct Method: Using the direct method, equations (3.3.9) to (3.3.11), from SG-I( f, ζ0)

determine S
D
F-I

( f, ζ0) and S
D
F-I

( f, ζ ′
0) for the desired damping ratio ζ ′

0, where the super-

script “D” stands for “Direct Method”.

3. Scaling FRS

❧ If SF-I( f, ζ0) is raw FRS, determine the scaling factor as

R FRS-I( f, ζ0, ζ ′
0) =

S
D
F-I

( f, ζ ′
0)

S
D
F-I

( f, ζ0)
. (3.3.12)

The scaled FRS-I for damping ratio ζ ′
0 is obtained from the available SF-I( f, ζ0) as

SF-I( f, ζ ′
0) = R FRS-I( f, ζ0, ζ ′

0) × S
F-I

( f, ζ0). (3.3.13)

❧ If SF-I( f, ζ0) has been broadened and smoothed, the scaling factor (3.3.12) is

not used in this case, since the broadened-and-smoothed FRS-I contains a large

amount of artificially modified information which is inappropriate to use for scal-

ing. S
D
F-I

( f, ζ ′
0) is used as SF-I( f, ζ ′

0).

❧ SF-I( f, ζ ′
0) is then broadened and smoothed as needed.

3.3.4 Scaling Problem 2

Given SG-I( f, ζ0) and SF-I( f, ζ0), the procedure of scaling SF-I( f, ζ0) to obtain SF-II( f, ζ ′
0)

for a new SG-II( f, ζ0) and desired damping value ζ ′
0 is as follows:

1. System Identification: Identify significant modes from SG-I( f, ζ0) and SF-I( f, ζ0) and

obtain frequencies fk and modal contribution factors Xk, k=1, 2, . . . , N.

2. Direct Method: Using the direct method, equations (3.3.9) to (3.3.11), determine

❧ S
D
F-I

( f, ζ0) from SG-I( f, ζ0),

❧ S
D
F-II

( f, ζ ′
0) from SG-II( f, ζ0) and for the desired damping ratio ζ ′

0.

3. Scaling FRS

❧ If SF-II( f, ζ0) is raw FRS, determine the scaling factor as

R FRS-II( f, ζ0, ζ ′
0) =

S
D
F-II

( f, ζ ′
0)

S
D
F-I

( f, ζ0)
. (3.3.14)
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The scaled FRS-II for SG-II( f, ζ0) and for damping ratio ζ ′
0 is obtained from the

available SF-I( f, ζ0) as

SF-II( f, ζ ′
0) = R FRS-II( f, ζ0, ζ ′

0) × S
F-I

( f, ζ0). (3.3.15)

❧ If SF-I( f, ζ0) has been broadened and smoothed, the scaling factor (3.3.14) is not

used. S
D
F-II

( f, ζ ′
0) is used as SF-II( f, ζ ′

0).

❧ SF-II( f, ζ ′
0) is then broadened and smoothed as needed.

3.4 Numerical Application

To verify the accuracy and demonstrate the efficiency of the proposed scaling methods for

generating FRS, numerical examples are presented for the two scaling problems.

A typical service building in nuclear power plants is selected as the primary structure.

A three-dimensional finite element model of the building is established by the commercial

finite element analysis software STARDYNE, as shown in Figure 2.13. Details about the

model were described in Chapter 2. Two types of ground response spectra, i.e., USNRC

R.G. 1.60 GRS (1973) and Standard Uniform Hazard Spectra (UHS) for Central and Eastern

North America (CENA) (Atkinson and Elgohary, 2007), between which significant differ-

ences exist in the spectral shapes, are considered as GRS-I and GRS-II, respectively. Figure

3.6 illustrates the two GRS with 5% damping ratio anchored at 0.3g peak ground acceler-

ation (PGA). It can be observed that USNRC R.G. 1.60 GRS possesses more intermediate

frequency content (1-10 Hz), whereas CENA UHS are abundant in high frequency range

(20-50 Hz).

In this study, 30 sets of tri-directional spectrum-compatible time histories are generated

using the Hilbert-Huang Transform method (Ni et al., 2011; Ni et al., 2013) for each GRS type.

FRS at two nodes as indicated in Figure 2.13 are obtained through performing numerical

time history analyses of the structure, and the mean FRS from the 30 sets of simulations are

considered as “exact” FRS at the locations. Herein, only the mean FRS with 5% damping

ratio produced by time histories compatible with USNRC R.G. 1.60 GRS are treated as

available FRS-I; all other mean FRS will be used as benchmark for validating the proposed

scaling method.
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Figure 3.6 Two types of input ground response spectra

3.4.1 Equivalent Modal Information

In this Section, modal information of the equivalent structural modes is identified from the

existing FRS-I using the method developed in Section 3.2.

The exact FRS-I at Node 1 with 5% damping ratio is shown as the black dashed line in

Figure 3.7, which is considered as the available SF-I( f, ζ0 =5%). It can be seen that there are

three peaks located around 2.5 Hz, 5.8 Hz, and 18 Hz, where significant modes generally

exist. It is also observed that the second peak has a wider band, indicating that there may

exist multiple closely-spaced modes in the range from 5.5 to 7.5 Hz. In addition, it should be

noted that, although the third peak is relatively lower, flat and wide, some significant modes

may exist in higher frequency range (20 to 30 Hz), since GRS-I has lower spectral values

and decreases drastically in this range. Hence, the first question arises from implementing

the proposed method is choosing a suitable number of significant equivalent modes.
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Number of Significant Equivalent Modes

It is discussed in Section 3.2 that the number of equivalent modes can be equal to or larger

than the number of FRS peaks. In order to study the effect of the number of equivalent

modes, FRS-I is approximated by 3, 4, 5, and 6 equivalent modes using the proposed method

for system identification. The circles in Figures 3.7 to 3.10 represent the critical points used

for locating the frequencies of significant equivalent modes and the corresponding spectral

accelerations. All the critical points are selected at the FRS peaks or the knees of the

curve, and the number of critical points is equal to the number of significant equivalent

modes. The coordinates of the critical points and modal information of the identified

equivalent modes are listed in Table 3.1, where fk , Sk , and Xk denote the frequencies,

spectral accelerations, and contribution factors of the equivalent modes, respectively. An

appropriate way of verifying the accuracy of the extracted equivalent modal information

is using the modal information to reproduce FRS-I. The colored solid lines in Figures 3.7

to 3.10 are the FRS-I generated through the direct spectra-to-spectra method using the

equivalent modal information.

Some remarkable features can be observed from Figures 3.7 to 3.10 and Table 3.1:

1. All the reproduced FRS-I agree well with the exact FRS-I. The FRS match perfectly at

the critical points, the information of which are employed for the nonlinear constraints

in equation (3.2.6). The FRS at other points generally converge to the exact values as the

number of modes increases, and 5-equivalent-mode approximation can give sufficient

accuracy.

2. Comparing Figures 3.7 to 3.10, assuming multiple closely-spaced modes at the sec-

ond peak, where the relatively wider peak occurs, can give better approximation as

anticipated.

3. One exception is that the 4-mode approximation does not produce a better result than

the 3-mode approximation. This phenomenon can be explained by the equivalent

modal information listed in Table 3.1. From the sum of the contribution factors, it is

seen that the optimal solutions for the 4-mode approximation are weakly satisfactory

to model the real physical structural system in this case. However, it will be seen that
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these discrepancies do not have a significant effect when scaling factors are employed to

generate FRS-II in the following examples.

4. In spite of lower spectral acceleration in higher frequency range (20 to 30 Hz), the

contribution factors of these modes are considerably large. In the following examples,

it will be seen that these modes have a significant effect when scaling FRS-I to FRS-II,

which corresponds to a GRS-II with rich high-frequency content.

Table 3.1 Equivalent Modal information at Node 1

3-Mode Approximation 4-Mode Approximation

Mode fk (Hz) Sk (g) Xk fk (Hz) Sk (g) Xk

1 2.6 2.33 0.41045 2.6 2.33 0.42045

2 5.8 1.82 0.35426 5.8 1.82 0.36846

3 17.5 0.72 0.20915 17.5 0.72 0.18337

4 26.0 0.62 −0.18246
∑

Xk 0.974
∑

Xk 0.790

5-Mode Approximation 6-Mode Approximation

Mode fk (Hz) Sk (g) Xk fk (Hz) Sk (g) Xk

1 2.6 2.33 0.40911 2.6 2.33 0.40814

2 5.8 1.82 0.34412 5.8 1.82 0.31816

3 7.2 1.44 0.21987 6.6 1.50 0.12831

4 17.5 0.72 −0.17889 7.2 1.45 0.12149

5 26.0 0.62 0.17037 17.0 0.72 −0.17207

6 26.0 0.62 0.17321
∑

Xk 0.965
∑

Xk 0.977
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Figure 3.7 3 Equivalent Modes Approximation of FRS-I at Node 1
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Figure 3.8 4 Equivalent Modes Approximation of FRS-I at Node 1
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3.4 numerical application

Multiple Solutions

In some cases, there may be multiple solutions for the optimization problem. The black dash

line in Figure 3.11 shows the exact FRS-I at Node 2, which possesses two normal peaks. The

equivalent modal information at Node 2 is identified by 2- and 3-mode approximations, as

listed in Table 2. Two sets of solutions are obtained for each approximation. The accuracy of

the identified modal information is again verified by reproducing FRS-I using the extracted

information in the direct spectra-to-spectra method. The red and blue solid lines in Figures

3.11 and 3.12 represent the reproduced FRS-I based on the two sets of equivalent modal

information. Some observations from Figures 3.11, 3.12, and Table 3.2 are:

1. The sum of the contribution factors for each solution set is quite different from 1.0 (for

the real modal information of structure) for each approximation.

2. As the number of equivalent modes increases, the two sets of solutions approach the

real modal information of the structure, and the reproduced FRS-I thus converge to the

exact FRS-I.

3. The discrepancies of the reproduced FRS-I mainly occur at low frequency range (far less

than the natural frequency of the first dominant mode) and the valley between the two

peaks. However, these discrepancies do not have a significant effect when scaling factors

are used to scale FRS, as shown in the following examples.

Table 3.2 Equivalent Modal information at Node 2

2-Mode Approximation 3-Mode Approximation

Mode fk (Hz) Sk (g) Xk Set-1 Xk Set-2 fk (Hz) Sk (g) Xk Set-1 Xk Set-2

1 2.676 5.850 1.10103 1.08536 2.676 5.850 1.10028 1.08801

2 7.000 2.324 −0.41993 0.43529 7.000 2.324 −0.43149 0.42562

3 23.500 1.100 0.10966 −0.11178

∑

Xk 0.681 1.521
∑

Xk 0.778 1.402
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3.4.2 Scaling Problem 1 – Scaling FRS to Various Damping Ratios

Based on the above validation of identified equivalent modal information, 5- and 3-mode

approximations are applied to generate the scaling factors given by equation (3.3.12) for

scaling FRS-I with 5% damping ratio to FRS with other damping ratios at Nodes 1 and 2,

respectively. Then, multiplying the scaling factors with the exact FRS-I results in FRS with

other damping ratios. The procedure for scaling problem 1 is illustrated in Figure 3.13.

Figures 3.14 and 3.15 show the comparison of the “exact” FRS (obtained from the mean

of 30 time history analyses) and FRS obtained from the proposed scaling method, for 2%,

4%, 7%, 10%, and 15% equipment damping ratios, at the two nodes. It is seen that the scaled

FRS agree excellently with the exact FRS over the entire frequency range and for various

damping ratios.

Scaling factors for the two nodes are plotted in Figures 3.16 and 3.17. It is important to

note that the shapes of the scaling factors are quite similar to the shapes of the FRS which

are functions of frequency and damping ratio. Furthermore, peaks emerge at the natural

frequencies of the equivalent modes, which indicates that the scaling of FRS depends on

the modal information of the structure. Therefore, using a constant scaling factor to scale

FRS will lead to inconsistent conservatism or underestimation in any situations. At low

frequencies, the scaling factors are nearly constant since FRS are close to GRS based on

the physical interpretation of the formula of the direct spectra-to-spectra method (Jiang

et al., 2015). In very high frequency range, scaling factors converge to 1 as FRS approach the

structural responses at the node, which are independent of the equipment damping ratios.

3.4.3 Scaling Problem 2 – Scaling FRS for Different GRS

For Scaling Problem 2, i.e., scaling SF-I( f, ζ0) corresponding to SG-I( f, ζ0) to obtain

SF-II( f, ζ ′
0) corresponding to SG-II( f, ζ0), the scaling factors are determined using equation

(3.3.14). The procedure for scaling problem 2 is illustrated in Figure 3.18.

For Node 1, the scaling factors are calculated using the modal information approximated

by 3, 4, 5 and 6 equivalent modes; the reproduced FRS-II using the equivalent modal

information in the scaling method are compared with the exact FRS-II in Figures 3.19 to
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3.22. It is observed that all approximations lead to excellent agreement with the exact results,

except for the high frequency range for the 3-mode approximation. This error is caused

by ignoring contributions from the high-frequency modes. As discussed earlier, although

these modes may not have pronounced effect on FRS-I resulting from a GRS-I that is lack

of high frequency content, their effect will be activated and significantly amplified when the

input GRS is rich in high frequency content. Consequently, it is reasonable and necessary

to assume a few high frequency modes in the higher frequency range (20 to 30 Hz) where

GRS-II possesses abundant high frequency content. Another observation is that the 4-mode

approximation produces better results in Figure 3.20 compared to Figure 3.8.

It is also found that the reproduced FRS-II from two sets of solutions for the modal

information (listed in Table 3.2) of Node 2 almost coincide and agree very well with the exact

FRS-II. This phenomenon highlights the advantage of the scaling method: even though

there may be significant discrepancy between the identified equivalent modal information

and that of the real structure, the scaling method can still generate FRS with sufficient

accuracy.
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3.4 numerical application

FRS-II with various damping ratios obtained using the scaling method are shown in

Figures 3.23 and 3.24, in which 5 and 3 equivalent modes, respectively, are used for Nodes

1 and 2. It is seen that FRS-II obtained using the scaling method agree very well with

the exact results. The scaling factor given by equation (3.3.14) is shown in Figure 3.25 for

Node 1. It is noted that the peaks of the scaling factor may not occur at equivalent modal

frequencies, since the scaling factors depend on not only the modal information but also

the differences in the spectral shapes.

3.4.4 Scaling Broadened FRS

In practice, the available FRS-I are usually broadened and smoothed, and raw FRS may not

be available. As shown in Figure 3.26, the blue solid line represents the broadened-and-

smoothed FRS-I at Node 1. The black dash line is the raw FRS-I; it is shown in this figure

for reference only and its information will not be used in the following analysis.

Different from the raw FRS-I where the locations of FRS-I peaks can be accurately

identified, peaks of broadened FRS-I are generally assumed at the middle points of the

plateaus. Thus, three critical points are selected from the three middle point of the plateaus.

Besides these three points, other critical points are selected approximately based on the

shape of the broadened FRS-I. It should be noted that these critical points are not necessary

on the original raw FRS-I, which is assumed to be unknown. Since the second peak has wide

band, it is assumed that there are three closely-spaced modes in the second peak plateau. In

addition, a high-frequency mode is assumed in the higher frequency range. Therefore, the

available FRS-I is approximated by 6 equivalent modes. The equivalent modal information

obtained by applying the system identification technique and the coordinates of the selected

critical points are listed in Table 3.3.

To evaluate the accuracy of the equivalent modal information, FRS-I is reproduced by

using the identified equivalent modal information in the direct method and plotted as

red solid line in Figure 3.26. It can be seen that there are certain shifts at FRS-I peaks

compared to the original raw FRS-I due to the bias in selecting critical points; however,

these differences are not significant after broadening and smoothing.
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3.5 summary

Table 3.3 Equivalent modal information of 6 mode-approximation for broadened FRS

Mode fk (Hz) Sk (g) Xk Mode fk (Hz) Sk (g) Xk

1 2.6 2.35 0.40907 4 7.5 1.50 0.10277

2 5.5 1.50 0.16376 5 17.0 0.75 −0.18680

3 6.5 1.85 0.34813 6 25.0 0.65 0.18178

The equivalent modal information is then employed in the direct spectra-to-spectra

method to generate FRS-II as discussed in Section 3.3.4. In Figure 3.27, FRS-II determined

from the equivalent modal information are compared with the exact FRS-II. The FRS-

II obtained from the direct method can match the exact FRS-II very well after both are

broadened and smoothed.

It is worthy to emphasize that scaling factor is not used in this case, since the raw FRS-I

is assumed unavailable and the broadened-and-smoothed FRS-I contains a large amount

of artificially modified information which is inappropriate to use for scaling. Nevertheless,

the direct spectra-to-spectra method can procedure adequately accurate FRS-II when an

appropriate number of equivalent modes are included.

3.5 Summary

In this study, a scaling method for generating FRS is presented based on the previously-

developed direct spectra-to-spectra method for generating FRS, which requires only the

basic modal information of structures and the input GRS. The analytical formulation of

the direct spectra-to-spectra method provides a strong physical insight into FRS, which

allows the identification of dynamical information of the significant equivalent modes

of the underlying structure from the available FRS-I and GRS-I. Scaling factors are then

determined in terms of the dynamical information (including modal frequencies, damping

ratios, and contribution factors) and the input GRS-I and GRS-II.

Numerical examples of a typical service building in nuclear power plants show that the

FRS obtained by this scaling method agree very well with the numerically “exact” FRS which

104



3.5 summary

are obtained from a large number of time history analyses, even when there are significant

differences between the spectral shapes of GRS-I and GRS-II. It is also demonstrated that

this method provides accurate FRS with various equipment damping ratios.

The proposed method is efficient, accurate, and convenient to implement. It allows

engineers to generate accurate FRS for different GRS and for various damping ratios by

using as much of the available results as possible without performing a complete dynamic

analysis, which introduces extra costs and is time consuming.

However, it should be noted that the accuracy of scaled FRS-I or FRS-II obviously depends

on the accuracy of the available FRS-I; for example, if the available FRS-I contains excessive

conservatism, the scaled FRS-I or FRS-II would contain the same level of conservatism.

In Appendix A: Benchmark Studies to Verify an Approximate Method for Spectra Scaling of

EPRI 1002988 (EPRI, 2002, p.A-1), it is commented that “More sophisticated scaling proce-

dures can be applied providing that the eigensolutions for the original models are available.

These scaling procedures can utilize random vibration theory, direct generation computer

programs, also based on random vibration theory, or time history solutions. In some cases,

the eigensolution outputs in the analysis reports are only partially complete. . . . spectra are

scaled . . . by more simplified procedures using only frequencies and participation factors.”

It should be emphasized that the scaling method developed in this study does not require

any information on the underlying structure yet still yields excellent FRS results. The

dynamic information of the equivalent significant modes of the underlying structure are

recovered by using system identification based on the direct method (Jiang et al., 2015),

which has been demonstrated to be very accurate as long as the available FRS are reasonable.

If eigensolutions are available, then there is no need to use scaling methods. The direct

method (Jiang et al., 2015) can be applied to generate FRS with accuracy matching those

obtained from a large number of time history analyses and with complete probabilistic

descriptions of FRS peaks (any level of NEP p). On the other hand, if partial modal

information (modal frequencies) is available, it can be useful in system identification in

helping to locate significant modes, especially high frequency modes; this is particularly

important when available FRS-I has been broadened and smoothed.
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4C H A P T E R

Generating Floor Response Spectra:
Considering Soil-Structure Interaction

4.1 Introduction

In seismic design and assessment of structures, the input earthquake excitations, which

are in terms of site-specific ground response spectra or time histories, are provided by

seismologists or specified in design codes. Civil engineers can obtain seismic responses of

a structure subjected to the prescribed seismic input by performing dynamic analysis. It

is reasonable to conduct this procedure when the structure is founded on rigid bedrock.

However, it has been demonstrated that the effect of interaction between the structure and

its surrounding soil is not negligible (Wolf, 1985; 1987):

❧ Seismic responses at the foundation of the structure are different from the free-field

responses at the site due to the presence of the structure.

❧ The structure will interact with the surrounding soil, leading to a further change of

the seismic motion at the base.

The typical myth about the effect of soil-structure interaction (SSI) is that considering SSI

will reduce the overall seismic responses of the structure, since it elongates the fundamental

period of the structure which mostly corresponds to a lower spectral acceleration in a

ground response spectrum. In addition, the effective damping of a soil-structure system,

which consists of structural damping, soil material damping, and soil radiation damping,
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4.1 introduction

is considerably higher than that of the structure, leading to more energy dissipation and

further reduction of the responses. However, it is well understood that FRS peaks occur

at the frequencies of the structure dominant modes. Considering the SSI effect results in

shifting of structural natural frequencies, and thus leads to shifting of FRS peaks, which

could possibly approach the resonant frequencies of equipment mounted on the structure.

Consequently, the seismic input to equipment could be significantly increased. Figure 4.2

illustrates this effect: the frequency of the dominant mode of a structure reduces from 5.8

Hz to 4.5 Hz and the FRS peak shifts from 5.8 Hz to 4.5 Hz when the SSI effect is taken into

account. Although the FRS peak value for the soil-structure system is less than that for the

fixed-base structure, the increase of the seismic input can be as large as 40% (from 1.5g to

2.1g) for an equipment with a natural frequency of 4.5 Hz.

Therefore, seismic input and structural analysis should not be considered independently

when the structure is founded on relatively soft soil. The effect of soil will be considered in

two major steps of soil-structure interaction analysis:

1. Since response spectra are normally prescribed at the bedrock or ground surface, a site

response analysis is performed to determine the foundation input response spectra

(FIRS) base on wave propagation theory. The free-field can be generally modelled as a

series of soil layers with certain properties and depth resting on the bedrock, which is

usually regarded as an elastic homogeneous half-space as shown in Figure 4.1.

2. A dynamic analysis of the structure is conduct using FIRS, considering the interaction

between the structure and the surrounding soil.

The most straightforward approach for considering SSI effect is to model the soil-structure

system as an integral part, then perform dynamic analysis for the entire system. This

method is referred as the complete method of SSI analysis. However, in contrast to the

structure, which can be modelled with sufficient accuracy by a system with a finite number

of degrees-of-freedom, the soil medium is essentially an unbounded domain. Therefore,

the modelling of the soil is accomplished by a truncated soil medium with so-called artificial

boundaries, as shown in Figure 4.3. Conceptually, the artificial boundary conditions are

capable of representing the dynamic properties of the missing soil, and perfectly absorbing
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the incoming waves. Some types of artificial boundaries were developed under different

assumptions. (Smith, 1974; Deeks and Randolph, 1994; Wolf and Song, 1996)

However, the complete method requires solving a large system of coupled equations

with excessive degrees-of-freedom, which is not only computationally expensive but also

inefficient since only the responses of the structure are of interest. Moreover, when the

properties of the structure or soil are changed, the entire analysis procedure has to be

repeated.

For these reasons, the substructure method for SSI analysis (Gutierrez and Chopra,

1978), which is theoretically equivalent to the complete method, yet allows to divide the

systems into more manageable parts and to analyze these parts separately using appropriate

methods, has been developed. Some commercial finite element analysis software packages,

such as SASSI (Lysmer et al., 1983), ACS SASSI (Ghiocel, 2015) were developed on the basis

of the substructure method, and are currently employed in practice to perform dynamic

analysis for soil-structure systems. However, the seismic inputs required by ACS SASSI

109



4.2 substructure method

are spectrum-compatible time histories, which means that the deficiencies of time history

analysis for generating FRS, as discussed in Chapter 1, are inevitable.

Furthermore, when soil is involved in analysis, it is important to consider uncertainties

in soil. CSA N289.3 (2010) requires that uncertainties in soil properties and modelling of

SSCs be considered in a time history analysis. Furthermore, maximum of maxima of the

resultant FRS is used for design. Apparently, this approach is extremely time-consuming,

and the results are excessively conservative.

As a result, it is desirable to develop an efficient and accurate method for generating

FRS taking into account the SSI effect. Some methods have been developed to perform

a modal analysis for the soil-structure system represented by a structure supported by

lumped-parameter soil springs, and equivalent modal damping ratios for the system are

utilized to decouple the equations of motion (Roesset et al., 1973; Tsai, 1973). Researchers

also employed modified base excitations to address the SSI effect (Jennings and Bielak,

1973; Wu and Smith, 1995) by applying the mode superposition principle. However, these

methods are not developed for a response spectrum analysis. It has been demonstrated

that the spectra-to-spectra method developed gives excellent results of FRS for a fixed-base

structure; the objective of the following study is to extend this method to treat the effect of

SSI by utilizing modified response spectra.

4.2 Substructure Method

4.2.1 Dynamic Stiffness Matrix

For a multiple degrees-of-freedom (DOF) linear system, the equation of motion is of the

form

M ẍ(t) + C ẋ(t) + K x(t) = p(t), (4.2.1)

where M, C, K are the mass, damping, and stiffness matrices, respectively, p(t) is the load

vector, and x(t) is the response vector. Under harmonic excitation p(t)=Pei ωt, the response

x(t) can be expressed as x(t)=Xei ωt. Substituting x(t) into equation (4.2.1) yields

SX = P, (4.2.2)
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Figure 4.4 Coupled Soil-Structure Model

where S is the frequency dependent dynamic stiffness matrix given by

S = −ω2 M + iω C + K. (4.2.3)

In terms of the dynamic stiffness matrix, the equation of motion (4.2.1) can be express as

an equation of dynamic equilibrium (4.2.2).

4.2.2 Substructure Model for Flexible Foundation

The coupled soil-structure model is shown in Figure 4.4. Let Us and Ub be amplitudes of

the absolute displacement vectors of the superstructure and foundation, respectively, where

the subscripts “s” and “b” stand for the degrees-of-freedom of “structure” and “base” (or
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boundary of soil-structure interface), respectively. The equation of dynamic equilibrium

of the structure is given by





Ss
ss Ssb

s

Sbs
s Sbb

s











Us

Ub






=







Ps

Pb






, (4.2.4)

where Ps is the amplitude vector of the load applied on the nodes of the structure, and

Pb is the amplitude vector of the interaction forces between the structure and soil. For

earthquake excitation, the nodes of the structure not in contact with the soil are not loaded,

i.e., Ps =0, and hence

Ss
ss Us + Ssb

s Ub = 0. (4.2.5)

Let Sbb
g

be the dynamic stiffness matrix of the soil with excavation, and Ub
g

be the

amplitudes of absolute displacement vector of the soil with excavation under the earthquake

excitation. The subscript “g” stands for ground or the soil with excavation. The interaction

forces of the soil depend on the relative motion between the foundation (base) and the soil

at the interface, i.e.,

Pb = Sbb
g

(Ub −Ub
g
). (4.2.6)

Equation (4.2.4) becomes





Ss
ss Ssb

s

Sbs
s Sbb

s +Sbb
g











Us

Ub






=







0

Sbb
g

Ub
g






. (4.2.7)

In equation (4.2.7), the earthquake excitation is characterized by Ub
g

, which is the motion

of the nodes on the soil-structure interface of the soil with excavation. It is desirable to

replace Ub
g

by the free-field motion Ub
f that does not depend on the excavation.

4.2.3 Free-Field Soil Model

The free-field soil can be divided into the excavated soil and the soil without excavation as

shown in Figure 4.4. Regarding the excavated soil as a “structure”, referring to the coupled

soil-structure model and equation (4.2.7), one has Ũb = Ub
f , S̃bs

s =0, and hence S̃bb
s = Sbb

e ,

which is the dynamic stiffness matrix of the excavated soil; the subscript “e” stands for
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excavated soil. Hence, the second block-row of equation (4.2.7) gives

[

S̃bs
s S̃bb

s +Sbb
g

]







×

Ub
f






=

{

Sbb
g

Ub
g
}

=⇒ (Sbb
e +Sbb

g
)Ub

f = Sbb
g

Ub
g
. (4.2.8)

Note that adding the excavated soil to the soil with excavation leads to the free-field

system, i.e.,

Sbb
g + Sbb

e = Sbb
f , or Sbb

g = Sbb
f −Sbb

e . (4.2.9)

Hence, equation (4.2.8) can be written as

Sbb
f Ub

f = Sbb
g

Ub
g

, (4.2.10)

where Sbb
f is the dynamic stiffness matrix of the free-field that is discretized at the nodes

at which the structure is inserted, and Ub
f is the free-field motion at the nodes of the soil-

structure interface. Hence, Ub
f is the free-field response of the soil at the foundation level;

the acceleration response spectra of üb
f are the Foundation Input Response Spectra (FIRS),

which can be obtained from a site response analysis of the free-field.

Using equation (4.2.10), equation (4.2.7) becomes





Ss
ss Ssb

s

Sbs
s Sbb

s +Sbb
g











Us

Ub






=







0

Sbb
f Ub

f






. (4.2.11)

Equation (4.2.11) is the equation of motion of the structure supported on a generalized

spring characterized by the dynamic stiffness matrix Sbb
g

, and the other end of the spring is

subjected to earthquake excitation Ub
f , which is free-field response at the foundation level.

Using equation (4.2.9), equation (4.2.11) can also be written as





Ss
ss Ssb

s

Sbs
s (Sbb

s −Sbb
e )+Sbb

f











Us

Ub






=







0

Sbb
f Ub

f






. (4.2.12)

4.2.4 Substructure Model for Rigid Foundation

In many engineering applications, such as in nuclear power plants, the foundations can

be assumed to be rigid. In this case, the free-field earthquake excitation is applied at only
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one node O on the foundation (Figure 4.5). Hence, referring to the general case of flexible

foundation (Section 4.2.2), one has

Sbb
s =⇒ Ss

OO , Sbs
s =⇒ Ss

Os , Ssb
s =⇒ Ss

sO , Sbb
g =⇒ S

g
OO , Sbb

f =⇒ SOO
f ,

Ub =⇒ UO , Ub
g =⇒ U

g
O , Ub

f =⇒ UO
f .

Equation (4.2.11) then becomes





Ss
ss Ss

sO

Ss
Os Ss

OO +S
g

OO











Us

UO






=







0

SOO
f UO

f






. (4.2.13)

Equation (4.2.13) is the equation of motion of the structure supported on a generalized

spring characterized by the dynamic stiffness matrix S
g

OO at node O, and the other end

of the spring is subjected to earthquake excitation UO
f , which is free-field response at the

foundation level (node O as shown in Figure 4.6). Using equation (4.2.9), equation (4.2.13)

can also be written as




Ss
ss Ss

sO

Ss
Os (Ss

OO −Se
OO)+SOO

f











Us

UO






=







0

SOO
f UO

f






. (4.2.14)

For a structure with N nodes (not including the rigid foundation), each node has 6 DOF

(three translational and three rotational). The rigid foundation has one node O with 6

DOF. The dimensions of the vectors Us , UO , and UO
f are 6N, 6, and 6, respectively. The

dimensions of the dynamic stiffness sub-matrices of the structure Ss
ss , Ss

sO , Ss
Os , Ss

OO are

6N×6N, 6N×6, 6×6N, and 6×6, respectively. The dimensions of the dynamic stiffness

sub-matrices of the soil SOO
f , S

g
OO , and Se

OO are all 6×6.

4.2.5 Fixed-Base Model for Rigid Foundation

If the soil is firm enough so that the structure can be considered as fixed-base as shown in

Figure 4.7, the motion of point O of the basemat is the earthquake input to the structure.

From the first block-row of equation (4.2.13), one has

Ss
ss Us + Ss

sO UO = 0 =⇒ Us = S
fb UO , S

fb = −
(

Ss
ss

)−1
Ss

sO , (4.2.15)
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where S
fb is the dynamic stiffness matrix for fixed-base analysis, the superscript“fb”stands

for fixed-base.

In seismic analyses, rotational ground motions are not considered and only translational

ground motions are considered. Re-organize vector Us and rewrite UO as

Us =







Us,T

Us,R







6N×1

, UO =







UO
fb

0







6×1

, (4.2.16)

in which the subscripts “T” and “R” stand for translational and rotational degrees-of-

freedom, respectively. Re-arranging and partitioning S
fb accordingly, one has

S
fb =





S
TT

fb
S
TR

fb

S
RT

fb
S
RR

fb





6N×6

, (4.2.17)

in which each submatrix is of dimension 3N×3. Equation (4.2.15) can be written as






Us,T

Us,R






=





S
TT

fb
S
TR

fb

S
RT

fb
S
RR

fb











UO
fb

0






=







S
TT

fb
UO

fb

S
RT

fb
UO

fb






. (4.2.18)

Multiplying the first block-row of equation (4.2.18) by
(

S
TT

fb
)

T yields

(

S
TT

fb
)

T
Us,T = [

(

S
TT

fb
)

T
S
TT

fb ]UO
fb . (4.2.19)
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The reason for performing this manipulation is to make [
(

S
TT

fb
)

T
S
TT

fb ] a square matrix of

dimension 3×3, the purpose of which will be clear in Section 4.3.

The tri-directional (translational) acceleration response spectra UO
fb applied at the foun-

dation of a fixed-base structure are called Foundation Level Input Response Spectra

(FLIRS), as shown in Figure 4.7. It is important to note that FLIRS are different from

Foundation Input Response Spectra (FIRS), which are the acceleration response spectra at

the elevation of the foundation of the free-field, as illustrated in Figure 4.5.

The concept of FLIRS, which are the seismic input to fixed-base structures, is important

in seismic design and assessment of nuclear power plants. Generic design of a nuclear

power plant is based on fixed-base analysis under the tri-directional seismic excitations

represented by standard GRS, such as those in CSA N289.3 or USNRC R.G. 1.60, anchored

at a specific Peak Ground Acceleration (PGA). By comparing the site-specific FLIRS with

the standard GRS, based on which the generic nuclear power plant is designed, initial

feasibility of the generic design at the desired site can be assessed and Systems, Structures,

and Components (SSCs) that may be vulnerable can be identified.

Since the dimension of the dynamic stiffness sub-matrix Ss
ss is 6N×6N, the evaluation of

its inverse in equation (4.2.15) could be numerically challenging when N is large. To take

advantage of the modal properties of the structure, a modal analysis is conducted.

For a three-dimensional model of a structure with N nodes (not including rigid foun-

dation), a typical node n has six DOF: three translational DOF un,1, un, 2, un, 3, and three

rotational DOF un,4, un,5, un,6. The structure is subjected to tri-directional seismic excita-

tions at the foundation. The relative displacement vector x of dimension 6N is governed by

(see, e.g., Jiang et al., 2015)

M ẍ(t) + C ẋ(t) + K x(t) = −M
3∑

i=1

I
i ü i

g(t), (4.2.20)

where
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, (4.2.21)
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M, C, K are, respectively, the mass, damping, and stiffness matrices of dimension 6N×6N,

xn is the relative displacement vector of node n, I i is the influence vector of the seismic

excitation in direction i, and δij denotes the Kronecker delta function.

For a structure-foundation system resting on soil, the base excitations may also contain

rotational components, equation (4.2.20) can be extended to

Mẍ(t) + Cẋ(t) + Kx(t) = −MI üO(t), (4.2.22)

where node O is at the rigid foundation, and

I = [ I
1

I
2

I
3

I
4

I
5

I
6

], üO(t) =
{

ü1
O(t), ü2

O(t), ü3
O(t), θ̈1

O(t), θ̈2
O(t), θ̈3

O(t)
}T

.

Here I i are defined in equation (4.2.21) for i=1, 2, 3, and
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,

x̄n, ȳn, and z̄n represent the coordinates of the nth node in a Cartesian coordinate system

with its origin located at Node O.

Letting x(t)=Xei ωt and uO(t)= UO ei ωt, equation (4.2.22) becomes

(−ω2M + iωC + K)X = ω2MI UO . (4.2.23)

Applying the modal transformation X=8Q, where 8 is the modal matrix, substituting

into equation (4.2.23), and multiplying 8T from the left yield

(−ω28TM8 + iω8TC8 + 8TK8)Q = ω28TMI UO . (4.2.24)

Employing the orthogonality gives

diag
{

−ω2 + i 2ζnωnω + ω2
n

}

Q = ω2ŴUO , (4.2.25)

where Ŵ is a 6N×6 matrix of the modal participation factors given by

Ŵ =
8TMI

8TM8
. (4.2.26)
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Figure 4.8 Dynamic equilibrium of structure-foundation system

Hence,

X = ω28HŴ UO , (4.2.27)

where H is a diagonal matrix of the complex frequency response functions, i.e.,

H = diag

{
1

ω2
n − ω2 + i 2ζnωnω

}

. (4.2.28)

Since the relative displacement x=u−I uO, substituting into equation (4.2.27) gives

U = (ω28HŴ + I)UO . (4.2.29)

Comparing equation (4.2.29) with equations (4.2.15), one obtains

S
fb = ω28HŴ + I. (4.2.30)

Based on Newton’s second law,the dynamic force equilibrium of the structure-foundation

system in Direction 1, as illustrated in Figure 4.8, is given by

−ω2

(
N∑

n=1

mn,1 Un,1 + mO,1 UO,1

)

= FO,1, (4.2.31)

in which FO,1 is the interaction force in Direction 1. The first term can be written in a

matrix form as

−ω2 [(I
1
)T MU + mO,1 UO,1] = FO,1. (4.2.32)
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Similarly, taking moment about Node O, the dynamic moment equilibrium of the structure-

foundation system in Direction 5 is given by

−ω2

[
N∑

n=1

(mn,5 Un,5 + mn,1 Un,1 z̄n) + mO,5 UO,5

]

= MO,5, (4.2.33)

in which the summation term can be expressed into a matrix form as

−ω2 [(I
5
)T MU + mO,5 UO,5] = MO,5. (4.2.34)

The dynamic equilibrium in the other directions can be derived similarly as equations

(4.2.32) and (4.2.34). Therefore, the dynamic equilibrium equation of the entire structure-

foundation system can be obtained as

−ω2 (I
T

MU + MO UO) = FO, (4.2.35)

where the first term represents the resultant of the superstructure’s motion about the foun-

dation at the Node O, MO is a 6×6 mass matrix of the foundation, and FO denotes the

vector of soil-structure interaction forces acting on the foundation, which are given by

FO = SOO
f (UO

f − UO) from equation (4.2.6).

Therefore, equation (4.2.35) can be rewritten as

−ω2
I

T
MU +

(

−ω2 MO + SOO
f

)

UO = SOO
f UO

f . (4.2.36)

Comparing with the second block-row of equation (4.2.14), a structure founded on the

ground surface implies Se
OO =0; hence

Ss
Os = −ω2

I
T

M, Ss
OO = −ω2 MO. (4.2.37)

4.3 Foundation Level Input Response Spectra (FLIRS)

As discussed in Section 4.2.5, it is desirable to determine the equivalent FLIRS for the

structure with rigid foundation (studied in Section 4.2.4) in seismic design and assessment.

In SSI analysis, a fixed-base analysis can be performed using the equivalent FLIRS as the

seismic input, instead of a coupled soil-structure analysis using FIRS as the seismic input.

From the first block-row of equation (4.2.14), one obtains

Us = −
(

Ss
ss

)−1
Ss

sO UO = S
fb UO . (4.3.1)
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From the second block-row of equation (4.2.14), one has

Ss
Os Us + [

(

Ss
OO −Se

OO

)

+SOO
f ]UO = SOO

f UO
f . (4.3.2)

Substituting equation (4.3.1) into (4.3.2) yields

Ss
OsS

fb UO + [
(

Ss
OO −Se

OO

)

+SOO
f ]UO = SOO

f UO
f ,

which gives

UO = S
−1 SOO

f UO
f , S = Ss

Os S
fb +

(

Ss
OO −Se

OO

)

+ SOO
f . (4.3.3)

︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸

6×1 6×6 6×6 6×1 6×6N 6N×6 6×6

Note that S−1 SOO
f is a square matrix of dimension 6×6; partition it as follows:

S
−1 SOO

f = T =





T
TT

T
TR

T
RT

T
RR





6×6

, (4.3.4)

in which each submatrix is of dimension 3×3.

Substituting equation (4.2.37) into equation (4.3.3) yields

S = −ω2
(

I
T

MS
fb + MO

)

+ SOO
f . (4.3.5)

Since the earthquake influence matrix I and the fixed-base model structural response

transfer matrix S
fb are dimensionless, and SOO

f denotes the dynamic stiffness of the soil

springs, equation (4.3.5) can be expressed in terms of a standard dynamic stiffness matrix

as

S = −ω2M̃ + iωC f + K f, (4.3.6)

where M̃=I
T

MS
fb+MO is a 6×6 mass matrix which is determined by the structure and

foundation mass matrices, influence matrix, and the fixed-base structure transfer matrix

S
fb ; K f and C f are the stiffness and damping matrices of soil springs, respectively.

Therefore, the problem can be interpreted as a synthesized 6-DOF mass, which is

frequency-dependent, supported by generalized soil springs. With a better understand-

ing of the physical behaviour of the soil-structure system, the advantage of the proposed

direct method becomes evident: When the properties of a structure or soil are changed,
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4.3 foundation level input response spectra (flirs)

only the synthesized mass or the stiffnesses of the generalized soil springs need to change;

as a result, a reanalysis of the entire system, which is time-consuming, can be avoided.

Furthermore, the required computational effort is reduced significantly, since it is needed

to evaluate the inverse of a 6×6 matrix rather than a 6N×6N matrix, which may lead to

numerical difficulties for a large-scale system.

In a site response analysis, the soil medium is modelled as a series of semi-infinite

layers on a half-space, and the rotational responses of free-field should be very small under

the translational excitation at bedrock. Hence, the rotational input at foundation level is

negligible compared to the translational input; the rotational input is usually not given by a

site response analysis and is taken as 0.

From equations (4.3.1) and (4.3.3), one has Us =S
fb
TUO

f , i.e.,







Us,T

Us,R







6N×1

=





S
TT

fb
S
TR

fb

S
RT

fb
S
RR

fb





6N×6





T
TT

T
TR

T
RT

T
RR





6×6







UO,T
f

0







6×1

=





S
TT

fb
S
TR

fb

S
RT

fb
S
RR

fb









T
TT

UO,T
f

T
RT

UO,T
f



 =







S
TT

fb
T
TT

UO,T
f + S

TR

fb
T
RT

UO,T
f

S
RT

fb
T
TT

UO,T
f + S

RR

fb
T
RT

UO,T
f






.

(4.3.7)

Note that it is not possible to have a single set of tri-directional translational FLIRS in a fixed-

base analysis to give both correct translational responses Us,T and rotational responses

Us,R . In the generation of floor response spectra (FRS), only translational responses are

needed. Hence, from the first block-row of equation (4.3.7), one has

Us,T = S
TT

fb
T
TT

UO,T
f + S

TR

fb
T
RT

UO,T
f . (4.3.8)

Multiplying
(

S
TT

fb
)

T from the left yields

(

S
TT

fb
)

T
Us,T =

{
(

S
TT

fb
)

T
S
TT

fb
T
TT

+
(

S
TT

fb
)

T
S
TR

fb
T
RT

}

UO,T
f

= [
(

S
TT

fb
)

T
S
TT

fb ]
{

T
TT

+ [
(

S
TT

fb
)

T
S
TT

fb ]−1
(

S
TT

fb
)

T
S
TR

fb
T
RT

}

UO,T
f . (4.3.9)

Since [
(

S
TT

fb
)

T
S
TT

fb ] is a square matrix of dimension 3×3, it is straightforward to determine

its inverse. Thus, the purpose of the transformation in equation (4.2.19) becomes evident.
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4.3 foundation level input response spectra (flirs)

Comparing equation (4.3.9) with equation (4.2.19), one obtains the equivalent FLIRS as

UO
fb = T UO,T

f , (4.3.10)

where T is a complex transfer matrix from FIRS (generated by UO,T
f ) to FLIRS (generated

by UO
fb ), given as

T = T
TT

+ [
(

S
TT

fb
)

T
S
TT

fb ]−1
(

S
TT

fb
)

T
S
TR

fb
T
RT

. (4.3.11)
︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸

3×3 3×3 3×3 3×3N 3N×3 3×3

The first and second term of T denote the contributions from the translational and rota-

tional motions of the foundation in the soil-structure system, respectively.

It is important to emphasize that, although the FLIRS given by equation (4.3.10) would

not give correct rotational responses Us,R of a structure, it gives exact translation responses

and hence exact FRS because only translational responses are required to generate FRS.

Therefore, the fixed-base analysis of the structure under the excitation of FLIRS UO
fb given

by equation (4.3.10) gives exactly the same FRS as a full coupled soil-structure analysis

under the excitation of FIRS UO,T
f .

Based on the theory of random vibration, the relation between the power spectral density

functions of UO
fb and UO,T

f can be determined by

S
fb

ÜÜ
(ω) =

[∣
∣T(ω)

∣
∣

2 ]

S
f

ÜÜ
(ω) , (4.3.12)

where S
fb

ÜÜ
(ω) and S

f

ÜÜ
(ω) are the 3×1 vectors of the power spectral density functions of

UO
fb and UO,T

f , respectively. In equation (4.3.12),
[∣
∣T(ω)

∣
∣

2 ]

denotes a matrix in which each

element is equal to the squared modulus of the corresponding element in T. For a complex

number a+ ib, its modulus is defined as
∣
∣a+ ib

∣
∣=

√

a2 +b2. It is found that, for structures

in nuclear power plants, the off-diagonal terms of T are relatively small compared to the

diagonal terms, and thus may be neglected. It means that the motion of the foundation in

one direction is only induced by the excitations in the same direction.

It is known that the mean square response of a SDOF oscillator under a base excitation

UO,T
f can be obtained by

E[Ẍ2
0(t)] =

∫ ∞

−∞

∣
∣ω2

0 H0(ω)
∣
∣

2
S

f

ÜÜ
(ω)dω , (4.3.13)
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in which H0(ω) is the complex frequency response function characterized by the circular

frequency ω0 and damping ratio ζ0 of the SDOF oscillator. For excitations with wide-band

power spectral densities, S
f

ÜÜ
(ω) can be approximated by constant S

f

ÜÜ
. From equations

(4.3.12) and (4.3.13), the ratios between the mean square responses of a SDOF oscillator

under base excitation UO
fb and those under base excitation UO,T

f can be calculated by

R
2(ω0, ζ0) =

∫ ∞

−∞

∣
∣ω2

0 H0(ω)
∣
∣

2 [∣
∣T(ω)

∣
∣

2 ]

S
f

ÜÜ
(ω)dω

∫ ∞

−∞

∣
∣ω2

0 H0(ω)
∣
∣

2
S

f

ÜÜ
(ω)dω

=

∫ ∞

−∞

∣
∣H0(ω)

∣
∣

2 [∣
∣T(ω)

∣
∣

2 ]

1 dω

∫ ∞

−∞

∣
∣H0(ω)

∣
∣

2
dω

,

(4.3.14)

where 1 is the 3×1 vector with all elements being 1. Equation (4.3.14) can be easily

evaluated numerically.

The maximum response of a SDOF oscillator, which is by definition the response spec-

trum, is usually related to its root mean square response through a peak factor as

SA(ω0, ζ0) =
∣
∣X0(t)

∣
∣

max
= P ·

√

E[X2
0(t)]. (4.3.15)

Combining equations (4.3.14) and (4.3.15) yields the tri-directional fixed-base FLIRS

S
fb
A (ω0, ζ0) =

P
fb

P
f

·R(ω0, ζ0) S
f
A(ω0, ζ0). (4.3.16)

For responses in earthquake engineering, the values of peak factors P
fb and P

f are not

different significantly; they are often assigned the numerical value 3. Hence

S
fb
A (ω0, ζ0) = R(ω0, ζ0) S

f
A(ω0, ζ0), (4.3.17)

in whichR(ω0, ζ0) can be interpreted as response spectrum modification factors from FIRS

to FLIRS.

4.4 Generating FRS Considering SSI

For a structure in a nuclear power plant with its rigid foundation embedded in layered soil, a

procedure for generating FRS considering SSI is illustrated in Figure 4.9 and is summarized

as follows:
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1. Consider the layered soil as a free-field. With seismic input applied at the bedrock, a site

response analysis is performed to obtain the Foundation Input Response Spectra (FIRS)

UO
f or UO,T

f at the elevation of the foundation.

2. Establish a model of the layered soil. Determined the dynamic stiffness matrices of the

excavated soil Se
OO and the soil with excavation S

g
OO . The dynamic stiffness matrix of

the free-field is SOO
f = S

g
OO +Se

OO .

3. Set up a finite element model of the structure. Determine the dynamic stiffness matrices

Ss
ss , Ss

sO , Ss
Os , Ss

OO . Perform a modal analysis to obtain the modal frequencies ωn, modal

damping coefficients ζn, modal matrix 8, and matrix of modal contribution factors Ŵ.

4. Determine the Foundation Level Input Response Spectra (FLIRS):

❧ S
fb = ω28HŴ + I =





S
TT

fb
S
TR

fb

S
RT

fb
S
RR

fb





6N×6

H = diag

{
1

ω2
n − ω2 + i 2ζnωnω

}

6N×6N

Ŵ =
8TMI

8TM8
is a 6N×6 matrix of the modal participation factors.

I = [ I
1

I
2

I
3

I
4

I
5

I
6

]6N×6

❧ S = Ss
OsS

fb +
(

Ss
OO −Se

OO

)

+ SOO
f

Determine the inverse S
−1. The dimension is 6×6.

❧





T
TT

T
TR

T
RT

T
RR





6×6

= S
−1 SOO

f

❧ Transfer matrix: T = T
TT

+ [
(

S
TT

fb
)

T
S
TT

fb ]−1
(

S
TT

fb
)

T
S
TR

fb
T
RT

❧ FLIRS modification factor: R2(ω0, ζ0) =

∫ ∞

−∞

∣
∣H0(ω)

∣
∣

2
[
∣
∣T(ω)

∣
∣

2
] 1 dω

∫ ∞

−∞

∣
∣H0(ω)

∣
∣

2
dω
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❧ FLIRS: S
fb
A (ω0, ζ0) = R(ω0, ζ0)S

f
A(ω0, ζ0)

5. The FLIRS S
fb
A (ω0, ζ0) are input to the fixed-base finite-element model of the structure

to generate the required FRS, which are exactly the same as the FRS obtained from a full

coupled soil-structure analysis under the excitation of FIRS.

Hence, when the direct spectra-to-spectra method developed by Jiang et al. (2015) is

applied to the fixed-base structure under the excitation of FLIRS S
fb
A (ω0, ζ0), FRS with

complete probabilistic descriptions of FRS peaks, i.e., FRS with any desired level of NEP

p can be obtained. If the method of time history is applied, such a result could only

be obtained from a large number of coupled soil-structure analyses using a commercial

finite-element software, such as ACS SASSI, with a large number of generated time

histories compatible with the FIRS.

4.5 Numerical Example

To verify the accuracy and efficiency of the proposed method, FRS of a typical reactor

building in nuclear power plants founded on the surface of a homogeneous half-space

are generated following the procedure summarized in Section 4.4. The resultant FRS are

then compared with the mean FRS obtained from a large number of time history analyses,

which is referred as the “exact” FRS for benchmark. Based on the physical meaning of the

formulation in the proposed method, some key parameters, which affect the resultant FRS

when the SSI effect is accounted, are investigated.

Model information

The selected reactor building consists of a containment and an internal structure that are

supported by a circular disk foundation with a radius of 19.8m, as shown in Figure 4.10.

Using the commercial finite element software STARDYNE, the building is modelled as a

lumped-parameter system which can characterize the most significant dynamic properties

of the structure. There are total 12 nodes for both the superstructure and the foundation,

and each node has 6 DOF. Therefore, the model is a 6×12 DOF system. For a fixed-base

model, the DOF at Node O, which denotes the foundation, are constrained. The model is
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symmetric about X- and Y-axes, and the finite element model information is described in

Tables 4.1 and 4.2 (Li et al., 2005).

The underlying soil is chosen as an infinite homogenous half-space. To consider the

variability of the soil properties, three soil cases with different shear modulus, including

Case 1: Lower Bound (LB, −30%), Case 2: Best Estimate (BE), and Case 3: Upper Bound

(UB, +30%), are studied. For each case, the stiffnesses of the soil springs in the three

translational and three rotational directions are calculated by the formula recommended in

ASCE 4-98 Standard (1998, Page 25) and are listed in Table 4.3. The radiation and material

damping of the soil is treated as one damping ratio of 0.3 and 0.1 for translational and

rotational components, respectively.

Figure 4.10 Primary and secondary systems in a nuclear power plant
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Table 4.1 Nodal information of reactor building model

Node Elevation (m) Mass (×106 kg)
Moment of inertia (×106 kg ·m2)

Ixx = Iyy Izz

0 −10 8425 843 1643

1 −4.5 13420 1260 1931

2 4 5710 370 0

3 10.32 5970 394 0

4 19.15 6750 500 0

5 29 1270 110 0

6 −0.585 2288 424 824

7 9.875 3033 568 1087

8 20 2960 554 1063

9 30 2960 554 1063

10 39.15 3068 562 1081

11 50.02 6271 910 1727

Table 4.2 Beam Element Properties of reactor building model

Section Beam Area (m2) Shear area (m2) Second area moment (m4)

1 0 1204 1084.7 115436

2 1 50 19 5720

3 2 110 70 8160

4 3 140 70 8160

5 4 60 30 325

6 5 176 88 30570

7 6-10 107 53.5 19241
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Table 4.3 Soil properties and equivalent stiffness

Case

Shear Shear Soil spring stiffness

modules velocity Translational (×1011 N/m) Rotational (×1014 N ·m/rad)

(MPa) (m/s) Kx = Ky Kz Krx = Kry Krz

1 (LB) 6790 1616 6.57 7.79 2.04 2.81

2 (BE) 9700 1931 9.38 11.1 2.91 4.02

3 (UB) 12610 2202 12.2 14.5 3.78 5.22

Soft soil 1358 323 1.31 1.56 0.41 0.56

Foundation input response spectra

The R.G. 1.60 response spectra (USNRC, 1973) are assumed as the foundation input re-

sponse spectra (FIRS) obtained from a site response analysis. The peak ground accelera-

tions are anchored to 0.3g and 0.2g for the horizontal and vertical directions, respectively.

30 sets of tri-directional time histories, which are compatible with the target FIRS as shown

in Figure 2.16, are generated by the Hilbert-Huang Transform method (Ni et al., 2013,

2011), and will be used for performing time history analyses to provide the “exact” FRS for

benchmark.

Effect of soil-structure interaction on FRS

The effect of SSI on FRS is studied first by comparing the mean FRS obtained from the 30

sets of time history analyses. The mean FRS at Node 5 for a fixed-base model and the Case

1 (LB) soil-structure model are plotted in Figure 4.11. It is observed that the peak value of

FRS is reduced by 22% when the SSI effect is accounted, despite the peak floor acceleration,

which represents the structural response, is decreased by only 10%. It means that the SSI

effect is more significant on FRS. However, FRS of the soil-structure model are not always

lower than those of the fixed-base model. It can be seen that there is a peak emerging on the

left of the main peak (around 4 Hz), which leads to a 23% increase in FRS. Furthermore, the
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spectral value at the second FRS peak is increased by 13% in contrast to the behaviour at the

main peak.

Another observation is made in Figure 4.12, in which FRS at Node 5 for two SSI cases,

Case 2 (BE) and Case 3 (UB), are compared. Only slight differences are observed at the FRS

peaks, although there is a 30% increase in the soil shear modulus. It implies that FRS is not

very sensitive to the underlying soil properties when the soil is sufficiently rigid. Although

the differences are small, one can still see that FRS of Case 2 (BE), with relatively soft

soil, is higher at the first peak but lower at the second peak, which is consistent with the

observation in Figure 4.11. Therefore, it is necessary to identify key parameters that affect

the FRS when the SSI effect is taken into account. In the following, FRS of Case 1 (LB) and

Case 3 (UB) will be generated through the proposed method and be validated by comparing

with the “exact” FRS.

Development of foundation level input response spectra (FLIRS)

Following Step 4 in Section 4.4, a modal analysis is performed for the fixed-base model.

Basic modal information, including natural frequencies and mode shapes of the first 25

modes, is extracted. The mass matrix and earthquake influence matrix can be readily

determined from the information in Table 4.1. Modal information of significant modes at

locations of interest is shown in Table 4.4, and the modal damping ratio of the structure is

5%. The dimensionless transfer matrix of the fixed-base model Sfb is calculated for different

values of ω, varying from 0.2π to 200π with an increment of 0.2π . Each elements in the

matrix is complex and can be regarded as a transfer function. The modulus of the elements

corresponding to the translational DOF at Nodes 2 to 5 are plotted versus frequency in

Figure 4.13. It can be seen that the modulus of the transfer functions peak at the structural

frequencies of the significant modes.

The transfer matrixT defined by equation (4.3.10) is determined frequency by frequency,

and the modulus of T11 is shown in Figure 4.14. To distinguish the contributions from

the translational and rotational motions of the foundation to FLIRS, the contribution

of translational components, which is characterized by the modulus of the first term in

equation (4.3.10), is also plotted in Figure 4.14. It can be observed that the rotational
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0

1

2

3

4

5

6

1 10 100Frequency (Hz)0.2

Sp
ec

tr
al

 A
cc

el
er

at
io

n
 (

g)

Soil Case 3

Soil Case 2

Figure 4.12 Sensitivity analysis of soil properties on FRS

132



4.5 numerical example

0

2

4

6

8

10

12

14

1 10 100Frequency (Hz)0.2

D
im

en
si

o
n

le
ss

 C
o

m
p

le
x 

M
o

d
u

lu
s

Node 4

Node 5

Node 2

Node 3

Figure 4.13 Modulus of fixed-base model transfer function for Nodes 2 to 5 in X-direction

Translational contribution |TTT,11|
FLIRS transfer function |T11|

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 10 100Frequency (Hz)0.2

D
im

en
si

o
n

le
ss

 M
o

d
u

lu
s

1.6

1.8

2.0

Soil-structure model
natural frequencies

Fixed-base model 
natural frequencies

Figure 4.14 Modulus of horizontal component in FLIRS transfer matrix (Case 1)

133



4.5 numerical example

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 10 100Frequency (Hz)0.2

D
im

en
si

o
n

le
ss

 M
o

d
u

lu
s

1.6

1.8

2.0

So! Soil

Soil Case 1

Rigid Rock

Figure 4.15 Effect of soil properties on modulus of transfer matrix horizontal component

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 10 100Frequency (Hz)0.2

D
im

en
si

o
n

le
ss

 M
o

d
u

lu
s

1.6

1.8

2.0

So! Soil

Soil Case 1

Rigid Rock

Figure 4.16 Effect of soil properties on modulus of transfer matrix vertical component

134



4.5 numerical example

0.4

0.6

0.8

1.0

1.2

1.4

1 10 100Frequency (Hz)0.2

F
L

IR
S 

M
o

d
i!

ca
ti

o
n

 f
ac

to
r

1.6

Soil Case 1

Soil Case 3

Figure 4.17 Horizontal FLIRS Modification factor

0.4

0.6

0.8

1.0

1.2

1.4

1 10 100Frequency (Hz)0.2

F
L

IR
S 

M
o

d
i!

ca
ti

o
n

 f
ac

to
r

1.6

Soil Case 1

Soil Case 3

Figure 4.18 Vertical FLIRS Modification factor
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Figure 4.19 Horizontal FLIRS

0

0.2

0.4

0.6

0.8

1 10 100Frequency (Hz)0.2

Sp
ec

tr
al

 A
cc

el
er

at
io

n
 (

g)

0.1

0.3

0.5

0.7

FLIRS Case 1

FLIRS Case 3

FIRS

Figure 4.20 Vertical FLIRS

136
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Table 4.4 Modal information of significant modes

Mode
Frequency Participation Modal contribution factor

(Hz) factor Node 2 Node 3 Node 4 Node 5

2 4.393 1.279 0.04 0.05 0.06 0.08

4 5.449 1.336 0.64 0.82 1.05 1.34

7 12.721 −0.511 0.19 0.14 −0.01 −0.51

12 18.753 0.114 0.11 0.05 −0.10 0.06

components have a pronounced effect on the total equivalent base excitation to the fixed-

base model in the frequency range of 2 Hz to 10 Hz, which covers the frequencies of the

dominant structural modes. Therefore, the rotational movement of foundation cannot be

neglected.

Analogous to the modulus of the transfer matrix of the fixed-base structure shown in

Figure 4.13 where peaks emerge at the frequencies of the significant structural modes,

the frequencies corresponding to the peaks in Figure 4.14 can be interpreted as the natural

frequencies of the soil-structure system (or the equivalent synthesized mass-spring-damper

system). For instance, the first two peaks of the soil-structure system, located at 3.8 Hz and

5.1 Hz, can be explained as a result of the frequency shifting of the fixed-base model from

4.4 Hz and 5.4 Hz due to the SSI effect. Meanwhile, the significant modal frequencies of

the fixed-base model correspond to the bottom of the valley between the peaks, implying

considerable reductions of the responses of the structure.

For further illustration, two special soil cases, a soft soil case given in Table 4.3 and a

rigid rock case that the shear modulus is 10 times of that of Case 3 (UB), are added for

discussion. The modulus of T11 for these two cases are plotted in Figures 4.15 and 4.16 for

comparison. It shows that FLIRS is hardly modified for a structure resting on the surface of

rigid rock, thus FIRS can be used as FLIRS directly. For soft soil case, the natural frequency

shifting and reduction of responses for a soil-structure system are significant. However, the
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locations of the valley do not change for all cases since the frequencies of fixed-base model

are not affected by the soil properties.

The FLIRS modification factors R(ω0, ζ0) are then used to generate FLIRS from FIRS;

FLIRS are used in the direct method for generating FRS from the fixed-base model. Figures

4.17 and 4.18 show the horizontal and vertical components of the FLIRS modification

factors for soil Case 1 (LB) and Case 3 (UB). It can be seen that the FLIRS is smoother than

the modulus of transfer function |T11|. The FLIRS modification factor in Figure 4.17 can

also explain the phenomenon of SSI effect observed in Figure 4.11: FRS decreases at the

first peak but increases at the second peak. Therefore, it should be emphasized that FRS

may increase when the effect of SSI is taken into account. The resultant FLIRS for soil Case

1 and Case 3 are shown in Figure 4.19 and 4.20.

Validation of the proposed method

The direct spectra-to-spectra method (Jiang et al., 2015; Li et al., 2015) is applied to generate

FRS at Nodes 2 to 5 in the internal structure. The resultant FLIRS are used as the input

response spectra to the fixed-base model. FRS are calculated at 200 frequencies including

the natural frequencies of the structure using the direct spectra-to-spectra method. For soil

Case 1 (LB) and Case 3 (UB), the resultant FRS at various nodes are plotted along with the

FRS generated by the 30 sets of time history analyses in Figures 4.21 to 4.28. FRS obtained

by the direct method and the mean FRS of the time history analyses, which are regarded

as the “exact” FRS, are shown in black solid lines and red dash lines, respectively. It is

seen that the FRS obtained by the direct method generally agree very well with the “exact”

FRS over the entire frequency range, whereas results from time histories analyses exhibit

large variability. Particularly, FRS peak values can be overestimated by more than 30% or

underestimated by mores than 20%. However, the differences at the FRS peaks between the

direct method and the “exact” FRS are generally less than 5%, which are well within the

range of acceptable errors.
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Figure 4.23 Comparison of FRS at Node 4 for soil Case 1 (LB)
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Figure 4.25 Comparison of FRS at Node 2 for soil Case 3 (UB)
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4.6 Summary

In this chapter, a method is developed for generating FRS considering SSI based on the

substructure technique and the direct spectra-to-spectra method (Jiang et al., 2015; Li et al.,

2015). The tri-directional response spectra at the foundation level of the free-field (FIRS)

are modified by multiplying a vector of modification factors, which depend on properties

of both structure and soil. The modified response spectra, called foundation level input

response spectra (FLIRS), are then used as the input to the fixed-base structure to generate

FRS using the direct spectra-to-spectra method. The concept of FLIRS has great practical

significance in seismic risk assessment.

A numerical example is performed to verify the proposed method. FRS of a typical

reactor building with a rigid foundation supported by an elastic homogeneous half-space

are generated by 30 sets of time history analyses and the proposed method. Comparison of

the resultant FRS shows that the FRS obtained by the proposed method agree very well with

the mean FRS of a large number of time history analyses, which is regarded as the “exact”

FRS, for all nodes on the internal structure of the reactor building; whereas FRS obtained

from time history analyses exhibit large variability at the FRS peaks. The proposed method

is efficient and accurate. It is also demonstrated that the effect of soil-structure interaction

may increase FRS at certain frequencies, which leads to a higher seismic demand for the

equipment in the supporting structure.
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Conclusions and Future Research

Floor Response Spectrum (FRS) is critical in seismic probabilistic risk analysis and design

of secondary systems in nuclear power facilities. This study aims at developing an accurate

and highly efficient method for the generation of FRS. Some contributions for this purpose

have been accomplished in this study, and are summarized as follows.

5.1 Direct Spectra-to-Spectra Method

A direct spectra-to-spectra method is developed to overcome the deficiencies of the time

history method. “Direct” means GRS is used as seismic input directly without generating

any intermediate input, such as spectrum-compatible time histories. FRS can be determined

readily from the input GRS and the basic modal information required in a traditional

response spectrum analysis of structure. Some remarkable features and advantages of the

proposed direct spectra-to-spectra method are summarized as follows:

❧ The direct method gives accurate FRS; FRS obtained by this method agree extremely

well with the “exact” results obtained from extensive time history analyses. Particu-

larly, values at FRS peaks, which are of main interest to engineers, can be estimated

accurately, while the time history method produces large variabilities at the peaks.

Apparently, overestimation of FRS peaks results in unnecessary high costs in seismic

design and qualification of SSCs; whereas underestimation is strictly impermissible.
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❧ The direct method can give full probabilistic descriptions at FRS peaks, which can

satisfy various seismic design and assessment requirements for SSCs with different

safety margins.

❧ The direct method is analytically formulated and it is convenient to implement using

a programming language, such as MATLAB, C, or Fortran. Only the specified GRS

and basic modal information of the primary structure, which can be readily obtained

from a modal analysis, are needed.

❧ The direct method is highly efficient. FRS can be generated in a few seconds by

a computer implementation of the direct method. In contrast, a large number of

time history analyses need to be performed in a commercial finite element anal-

ysis software to achieve results with similar accuracy. The process of generating

spectrum-compatible time histories and performing dynamic analyses is computa-

tionally expensive and time-consuming.

❧ The formulation of the direct method provides physical insight into which vibration

modes of the primary structure make significant contributions to the response of

the system. For a new build at a different site, the design of the primary structures,

including reactor buildings and auxiliary buildings, do not have significant changes.

However, the design GRS is dependent on the local site conditions. Using the direct

method and the existing modal information, FRS can be quickly estimated using the

new design GRS as input, without generating spectrum-compatible time histories.

These results can provide guidance for the preliminary design and procurement of

SSCs in an early stage.

❧ Since FRS obtained from a single time history analysis, or even a small number of

time history analyses, have rugged spectral shape due to inherent randomness and

uncertainty of time histories, the FRS need to be smoothed for practical use. In

contrast, the specified GRS having smooth spectral shapes are used as input directly

in the direct method, the resulting FRS, which are the amplified GRS, preserve the

feature of smooth spectral shapes. Consequently, FRS smoothing can be avoided by

using the direct method.
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5.2 Scaling of Floor Response Spectra

A scaling method for generating FRS is developed based on the direct spectra-to-spectra

method for generating FRS. The analytical formulation of the direct spectra-to-spectra

method provides a strong physical insight into FRS, which allows the identification of

dynamical information of the significant equivalent modes of the underlying structure

from the available GRS-I and FRS-I. Scaling factors are sequently determined in terms of

the dynamical information (modal frequencies, damping ratios, and contribution factors)

and the input GRS-I and GRS-II. Some remarkable features and advantages of the proposed

scaling method are summarized as follows:

❧ The proposed scaling method allows to obtain accurate FRS by using as much of the

available results as possible without performing a complete dynamic analysis, which

introduces extra costs and is time consuming.

❧ A system identification technique is presented to recover the equivalent modal infor-

mation of significant modes for a complex structure with a large number of degree-

of-freedom. FRS or structural responses can be determined with sufficient accuracy

by using the equivalent modal information of a few modes.

❧ FRS with higher equipment damping ratios be can obtained by the scaling method

when the interpolation method recommended in standard ASCE (1998) is invalid.

❧ The scaling FRS can generate accurate FRS even though large variations exist between

the spectral shape of GRS-I and GRS-II.

❧ The scaling factors depends on dynamical characteristics of the structure, damping

ratio of the secondary system, and variations in the spectral shape of GRS. It means

that scaling of FRS is a complex problem, using a constant scaling factor may result in

inaccurate FRS.

❧ For broadened and smoothed FRS-I which are modified artificially, methods of se-

lecting critical points for performing system identification are presented. Despite

there may be bias in selecting the critical points, the equivalent modal information

can still provide sufficiently accurate FRS-II after broadening.
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5.3 Generating FRS Considering Soil-Structure
Interaction

For a structure founded on soil site, the dynamical soil-structure interaction (SSI), which

affects the seismic behavior of the structure thus results in different FRS, cannot be ne-

glected. A methodology is developed to generate FRS considering the SSI effect on the basis

of the substructure method and the proposed direct spectra-to-spectra method. Some

remarkable features and advantages of the proposed method are summarized as follows:

❧ A method of determining a vector of modification factors for the foundation input

response spectra (FIRS), which is obtained from a free-field site response analysis, is

developed to incorporate the SSI effect. The modified FIRS, which is called FLIRS, are

used as input in the direct spectra-to-spectra method to generate FRS. Additionally,

the natural frequencies of the soil-structure system can be identified accurately by the

vector of modification factors.

❧ The proposed method is computationally efficient. A soil-structure system can

be physically interpreted as a frequency-dependent synthesized nodal mass with 6

degree-of-freedom supported by generalized soil springs. When the properties of

a structure or soil are changed, only the synthesized mass or the stiffnesses of the

generalized soil springs need to change; as a result, a reanalysis of the entire system,

which is time-consuming, can be avoided. Furthermore, the required computational

effort is reduced significantly, since it is needed to evaluate the inverse of a 6×6 matrix

rather than a 6N×6N matrix, which may lead to numerical difficulties for a large-scale

system.

❧ The SSI effect may increase FRS at certain frequencies, which leads to a higher seismic

demand for the equipment in the supporting structure.

❧ The proposed method considering SSI is demonstrated using a structure with rigid

foundation supported on soil medium which is modelled as a homogenous half-space.

FRS obtained using the proposed method agree well with “exact” results obtained

from a large number of time history analyses.
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5.4 Future Research

In future research, the direct spectra-to-spectra method and the scaling method will be

extended to generate third-level FRS (FRS3) for SSCs mounted on secondary systems. For

example, to seismic qualify a component of a large equipment (secondary system), such as a

valve of a heat exchanger, mounted on a floor, the excitations to the large equipment are the

responses of the floor (FRS) and the excitations to the component are the responses of the

large equipment (FRS3). In such situations, the direct method is especially important and

useful for the following reasons

❧ Time histories compatible to the tri-directional FRS are usually not readily available.

❧ There are very large variabilities in time history analyses in generating FRS from

GRS-compatible time histories (Jiang et al., 2015) and further in generating FRS3

from FRS-compatible time histories.

Furthermore, by taking advantage of the accuracy and efficiency of the proposed method

for generating FRS considering SSI, the effect of the uncertainties in the properties of

structure, secondary system, and underlying soil on the resultant FRS can be investigated

systematically.
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