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Abstract

One feature that is common to many fluid flows is that phenomena of interest often
occur at disparate length scales, whether it be vortices interacting with a boundary layer,
or shear instabilities on an internal gravity wave. It has been demonstrated in many studies
that when performing computer simulations of fluid flows, one must ensure that sufficient
resolution is used to capture the smallest scale features of the flow. If the smallest scale
features of the flow occur in a small subset of the problem domain, however, much of the
computational resources used for a simulation will be wasted where they are not needed.
In order to address these kinds of problems, a class of algorithms known as adaptive mesh
refinement (AMR) seek to use grid resolution only where it is needed. Upon a coarse base
grid, areas of a fluid flow where small scale features occur are identified, and a hierarchy of
successively finer grids is build until sufficient resolution is obtained. We give a thorough
review of the adaptive mesh refinement algorithm for the incompressible Navier-Stokes
equations presented in Martin, Colella, and Graves (2008) and connect their techniques to
the literature for finite volume methods. The performance and scalability of their algorithm
on a commodity computer cluster is studied in order to systematically choose optimal grid
parameters. This algorithm is then used to perform a number of simulations of vortices
interacting with a viscous boundary layer. Following Clercx and Bruneau (2006), the
interaction of a vortex dipole with a solid wall is modelled: a problem which has been
suggested as a difficult physical benchmark for incompressible Navier-Stokes solvers due
to the resolution needed to obtain the correct behaviour for the flow. The interaction of
a vortex ring with a solid wall is also simulated for a variety of Reynolds numbers. The
results of these simulations are shown agree well with those seen in laboratory experiments.
A loop-structured secondary vortex ring is formed which undergoes a topologically complex
interaction with the initial vortex ring, ultimately leading to the breakdown and dissipation
of both vortex rings. Emphasis is placed on the performance of AMR when compared to a
traditional single grid model, and subsequently, the ability of AMR methods to model fluid
flows using direct numerical simulation at higher Reynolds numbers than were previously
possible.
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Chapter 1

Introduction

There has been a renewed interest in recent years in vortex interactions with a solid wall.
As an example, a review article in the Annual Review of Fluid Mechanics on the “Dynamics
and Instabilities of Vortex Pairs” [30] was published in January of this year. The article
surveys work that has been done to date on the stability of vortex pairs in two and three
dimensions. Of particular interest to the Aerospace industry is vortex pairs interacting
with the ground at high velocities. A review of the structure of the wing-tip vortices that
are generated by transport aircraft is given in [42] and also [13]. The structure of the wake
behind subsonic transport aircraft involve a number of vortex pairs, which have instabilities
in three dimensions. At airports many of these structures can persist over runways for long
periods of time, creating a hazard to planes which are taking off or landing [42].

In addition to the Aerospace industry, there are those in the turbulence modelling
community who have an interest in the modelling of vortical structures near solid walls.
Contrary to what many fluid dynamicists first believed, the structure of turbulent boundary
layers is actually quite organized, containing hairpin and other vortex structures. A review
of the formation and organization of hairpin vortex structures in turbulent flows is given
in [2]. To date most of the computer simulations of vortex interactions with solid walls
have either been at very low Reynolds numbers or else have used Large Eddy Simulation.
This is due to the significant amount of resolution needed to completely model the viscous
boundary layer that forms in these types of flows. To try and overcome this obstacle,
we will turn to methods which seek to apply high resolution only where it is needed in
a computer simulation. First, however we will review the governing equations of fluid
mechanics and the dynamics of vortex motions.

1



1.1 Equations of Motion

In this section we will examine the equations of motion for a constant density and viscosity
fluid. These primitive variable equations can then be used to derive equations governing
the dynamics of vortex motion, from which a number of immediate and important results
follow. We will then analyze how to compare geometrically similar flows for their important
ratios of parameters and see how this is related to the theory of boundary layers for a viscous
fluid near a solid wall. The mechanism for vorticity generation in the viscous boundary
layer will prove to be central to the phenomena we will study later.

1.1.1 Conservation Laws

The Navier-Stokes equations1 are a set of conservation laws which describe the evolution
of a Newtonian Fluid2. We will also make the assumptions that our fluid is incompressible3

and has constant density and viscosity. The form the Navier-Stokes equations take under
these assumptions is

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u (1.1)

∇ · u = 0 (1.2)

where u is the fluid velocity, p the fluid pressure per unit mass4, and ν is the kinematic
viscosity. The first equation (really three equations) expresses the conservation of momen-
tum, and the second equation expresses the conservation of mass. In addition to these two
equations, we need initial and boundary conditions to completely define our problem.

One observation about the system (1.1) - (1.2) is that it contains no evolution equation
for the pressure. Additionally, the mathematical theory for the Navier-Stokes equations
tells us that we cannot prescribe initial and boundary conditions for both the pressure and
the velocity. We will see later that all of this creates a great deal of difficulty when trying
to solve these equations numerically.

1See [29] for a derivation.
2A Newtonian fluid is one whose viscous stress tensor is linearly proportional to its rate of strain tensor.
3This approximation amounts to filtering out high speed sound waves which have no effect on the

remaining dynamics.
4The density can be thought of as being set to unity, or else divided through and absorbed into the

pressure term.
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Boundary Conditions

The velocity and pressure on the domain boundary must be compatible with our conser-
vation laws. By considering an infinitesimally small fluid element on a solid boundary, one
can derive the following boundary conditions for the velocity [29]:

u · n̂ = 0 (1.3)

u · t̂ = 0 (1.4)

where n̂ is the vector normal to the boundary, and t̂ is any vector tangent to the boundary.
The first condition says that there can be no fluid flow through the solid boundary. The
second conditions arises from the inclusion of viscosity and is referred to as the no-slip
condition as it prohibits fluid from flowing immediately adjacent to the solid boundary.
Since we can form a complete coordinate system using vectors normal and tangent to the
boundary, it is possible to combined these two conditions into a single condition that states

u = 0 (1.5)

on boundaries. Notice we have not prescribed the pressure on the boundary. Instead
we will use the normal component of the momentum equation to determine the pressure
boundary conditions. Taking the dot product of (1.1) with the normal vector and applying
(1.3) gives

∇p · n̂ =
∂p

∂n̂
= 0. (1.6)

Another boundary condition which we will use is the no-shear or symmetry boundary
condition, which retains (1.3) but replaces the no slip condition with

∂(u · t̂)

∂n̂
= 0. (1.7)

This says that there can be no shear production at the domain boundary. Another inter-
pretation comes from the method of images. In this sense the boundary condition can be
thought of as extending the fluid to include its mirror image reflected across the domain
boundary. Notice that since we have used the same no normal flow conditions as above
that the pressure boundary condition will still be given by (1.7).

Lastly, we will occasionally use periodic boundary conditions for three dimensional
simulations. If we have a rectangular domain [0, L] × [0,W ] × [0, H], then requiring that
the flow be periodic in the z-directions says that

u(x, y, 0, t) = u(x, y,H, t) (1.8)

and equivalently for the pressure.

3



1.1.2 Vorticity

Vorticity is a scalar (vector) field in two (three) dimensions given by the curl of the
velocity field

ω = ∇× u (1.9)

and is a local measure of how quickly the fluid is rotating about an axis at a particular
point in space [39]. The axis of rotation is given by the direction of ω and the strength of
the rotation is given by half of its magnitude. An important and related quantity is the
circulation around a closed curve C

Γ =

∮
C

u · ds. (1.10)

Assuming that the curve C is the boundary of a smooth orientable surface, S, Stokes
theorem gives the relationship between vorticity and circulation as

Γ =

∫∫
S

ω · n̂dS. (1.11)

Hence, the circulation is the total flux of the vorticity through the surface S.

The integral curves of the vorticity field are know as vortex lines. The set of all vortex
lines passing through a closed curve is referred to as vortex tube. If A1 and A2 are the
cross sections at two points on a vortex tube, and V is the volume contained between them,
then it follows from the divergence theorem that∫∫

A1

ω · n̂dS −
∫∫
A2

·n̂dS =

∫∫∫
V

∇ · ωdV = 0 (1.12)

and hence that the flux of the vorticity is constant along the vortex tube [39]. Combining
this with (1.10) gives that the circulation is constant throughout the vortex tube. There-
fore, we can use the circulation as a convenient measure of the strength of a vortex tube.
Finally, vortex filament is any vortex tube which is immediately surround by irrotational
fluid.

Kelvin’s Circulation Theorem And The Helmholtz Laws

Using the definitions above and the equations of motion, a number of important results
can be derived. Kelvin’s Circulation Theorem states the circulation around a material
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curve is conserved following the flow for an ideal fluid (i.e. inviscid, conservative body
forces).

DΓ

Dt
= 0. (1.13)

For a proof of this theorem see [39]. Three important results which follow from this are
known as the Helmholtz Laws5:

I The strength of a vortex filament does not vary with time during the fluid motion.

II A vortex filament cannot end in the fluid: it must form a closed loop or else end at
the domain boundaries.

III Fluid particles originally free of vorticity remain free of vorticity for all times.

A last lemma to the circulation theorem is that viscosity provides a source of circulation.

The Vorticity Equation

Consider the momentum equation (1.1). We can rewrite the advection term in the form

(u · ∇)u = ∇
(

1

2
u · u

)
− u× (∇× u) (1.14)

Taking the curl of (1.1) then gives

∇× ∂u

∂t
+∇×

(
∇
(

1

2
u · u

)
− u× (∇× u)

)
= −∇×∇p+∇× ν∇2u

⇒ ∂ω

∂t
+ 0 +∇× u× ω = 0 + ν∇2ω (1.15)

(1.16)

Using the identity

∇× u× ω = (∇ · ω + ω · ∇) u− (∇ · u + u · ∇)ω (1.17)

= (ω · ∇)u− (u · ∇)ω (1.18)

5Helmholtz derived these independently and before Kelvin proved the circulation theorem [39].
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where the terms containing the divergence vanish due to (1.2) and the fact that the diver-
gence of the curl of a vector field is zero, equation (1.17) can be written in the form

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2ω. (1.19)

This is known as the vorticity equation. Notice that the left hand side of (1.19) is the
rate of change of ω following the flow. Therefore the terms on the right hand size of
(1.19) represent the production or dissipation of vorticity. We will examine more closely
the physical meaning of each of these terms.

Vortex Tilting and Stretching

The first term on the right hand side of (1.19) represents vortex stretching and tilting.
Consider an axisymmetric vortex oriented with the z-axis:

ω = Ω(r, z)ẑ (1.20)

Assuming the fluid is inviscid, then initially the vorticity evolution in cylindrical coordi-
nates is

Dωz
Dt

= Ω
∂uz
∂z

(1.21)

Dωr
Dt

= Ω
∂ur
∂z

. (1.22)

where we have linearized the first term on the right hand side of (1.19). If uz varies with
z, then this corresponds to a stretching in the z-direction. Equation (1.21) says that this
vortex stretching results in an increase or decrease in the vorticity ωz along the same
axis. Similarly, if ur varies with z, then equation (1.22) says that there is a resulting
increase or decrease in the vorticity ωr in the direction normal to the vortex axis. This
corresponds to vortex tilting. Notice that in two dimensions it is impossible for there to
be an variation in the z-direction, hence the stretching and tilting terms vanish. These are
thus truly three dimensional effects.

Diffusion of Vorticity

In two dimensions, the stretching/tilting term in the vorticity equation (1.19) vanishes and
we are left with

∂ω

∂t
+ (u · ∇)ω = ν∇2ω (1.23)
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This is an advection-diffusion equation and hence the role of viscosity is to diffuse vorticity.
Consider a point vortex of the form

ω = Γ0 δ(x). (1.24)

for some constant, Γ0. The similarity solution to (1.23) with this initial condition is

ω =
Γ0

4πνt
e−

r2

4νt . (1.25)

where r is the radial distance from the origin. Hence, after an infinitesimally small amount
of time our point vortex becomes a vortex of finite extent and finite strength. This solution
is known as the Lamb-Oseen vortex and plays an important role in the study of vortex
dynamics [39]. One can readily show from (1.25) that the circulation of the Lamb-Oseen
vortex around a circle of radius r centred at the origin is

Γ = Γ0(1− e−
r2

4νt ) (1.26)

and the tangential velocity along this circle is given by

uθ =
Γ

2πr
=

Γ0

2πr

(
1− e−

r2

4νt

)
. (1.27)

Kinetic Energy and Enstrophy

The total kinetic energy per unit mass of a velocity field u is the quantity

K(t) =

∫∫∫
1

2
‖u‖2dV (1.28)

and is a measure of the amount of motion present within the fluid. For unforced, constant
density, viscous flows, the total kinetic energy of a flow is always decreasing. Additionally,
the rate at which the total kinetic energy decreases can tell us something about how
efficiently viscous forces are acting on the flow.

An analogous quantity for the vorticity field ω is the total enstrophy given by

Ω(t) =

∫∫∫
1

2
‖ω‖2dV. (1.29)

This is a measure of the amount of energy present in the form of vortical motions in the
fluid. While enstrophy is dissipated by viscous forces, it is also produced by the stretching
and intensification of large scale vortices. Additionally, the rate of dissipation of total
kinetic energy is proportional to the total enstrophy. We will use both the total kinetic
energy and total enstrophy to characterize and compare different flows.
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1.1.3 Dimensional Analysis

A fundamental concept in the study of fluid dynamics is that of dynamic similarity.
Loosely dynamic similarity is the idea that geometrically similar fluid flows with the same
boundary conditions behave in the same way. In a more technical sense, appealing to the
Buckingham Pi Theorem, we know that since there are a finite number of dimensional
variables and parameters involved in a flow, and there are a finite number of dimensional
units, then there can only be a finite number of independent dimensionless variables and
parameters [12]. These dimensionless variables are formed using the products of powers of
our dimensional variables.

For example, suppose that a large ship of length L can travel at a maximum speed U in
the open ocean, and that water has a kinematic viscosity of ν. Since L has units of length,
L, and U has units of length per time, LT −1, and the viscosity has units L2T −1, the only
dimensionless combination of these variables that we can form is

Re =
UL

ν
. (1.30)

This is called the Reynolds Number and it is one of the most important dimensionless
parameters in the study of fluid mechanics.

Suppose that we wish to model the viscous drag on the large ship by towing a small
model ship in a wave tank in a laboratory. If we want to ensure that the dynamics are the
same as for the large ship then we will need to ensure the laboratory flow has the same
Reynolds number. Since the scale model ship has a much smaller length, and the water
has the same viscosity, then the Reynolds number tells us we will need to tow the model
ship at a much fast velocity for the dynamics to be the same.

Another useful purpose of dimensionless parameters is to classify different regimes for a
given fluid flow. For example, in the study of the flow of fluids around a circular cylinder,
the flow has fundamentally different behaviour for different Reynolds numbers. For Re < 4
the flow around the cylinder is smooth and the dynamics are simply described. For 80 <
RE < 200, a trail of vortices known as the Von Karmen vortex street form an oscillatory
pattern downwind from the cylinder. Finally, for Re� 200, the wake behind the cylinder
becomes very chaotic.

In general, fluid flows at lower Reynolds numbers tend to be smooth and fluid parcels
follow parallel paths which do not intersect. This is known as laminar flow. For large
Reynolds numbers, fluid flow tends to be very disorganized and there is an appearance of
many small scale structures. This is known turbulent flow.
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The terms “low Reynolds number” and “high Reynolds number” are often used loosely
in the literature and there is not always a hard dynamics cutoff with which to classify
the point at which a flow changes regimes. This is further complicated when a fluid flow
involves multiple length and time-scales which one could choose to define the Reynolds
numbers. As a result, one must be careful when comparing the results of different studies
and the claims made therein. Most importantly, whenever it is possible to define different
Reynolds numbers using different length and timescales it must be understood how to
convert between them so that flows can be correctly categorized.

Reynolds Numbers for Vortex Dynamics

In the study of vortex dynamics, there are a number of different Reynolds number which
can be define. We will now examine some of them and then show how they are related
for certain kinds of flows which will be studied later. When defining all of the Reynolds
numbers we will assume that we are concerned with a vortex filament of initial diameter
2R0 and circulation Γ0, whose initial translational velocity is Us, in water with kinematic
viscosity ν.

The translational Reynolds number of the vortex filament can be defined by tak-
ing the characteristic velocity to be the translational velocity of the filament, and the
characteristic length scale to be its diameter. Then

Retr =
2UsR0

ν
(1.31)

In a laboratory setting, this is the easiest Reynolds number to use when categorizing flows.
If for example the apparatus used generates vortices of a fixed length and a municipal water
source is used, then to increase the translational Reynolds number, one must increase the
velocity with which generated vortices travel. In a computational setting, one can fix the
length and translation speed of the prescribed initial conditions and then vary ν to change
the translation Reynolds number. This will ensure that phenomena of interest will occur
at roughly the same physical time in each case, making them easier to track.

The second Reynolds number which is commonly used in vortex dynamics is the vortex
or circulation Reynolds number. As mentioned previously, the circulation of a vortex
filament can be used to characterize the strength of the flow around it. Since circulation
has units of L2T −1, then

ReΓ =
Γ0

ν
. (1.32)
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In a laboratory setting, this Reynolds number is used less commonly because it is difficult
to measure the circulation of a vortex filament. In a computational setting it is seen often
as the initial condition can be prescribed exactly, and circulation can be calculated easily
using (1.11).

Lastly, the bulk or integral-scale Reynolds number is defined by using the root-
mean-square of the velocity field over the entire domain, D,

Urms =

√√√√ 1

V ol(D)

∫∫∫
D

‖u‖2 dV (1.33)

as well as the domain length, LD to obtain

ReI =
UrmsLD

ν
(1.34)

Consider a scenario in two dimensions where two Lamb-Oseen vortices, (1.25), of equal
strength and opposite circulation, and initial radius a, are placed with their centres a
distance b apart. The vortices will form a vortex dipole which translates in a direction
perpendicular to the line which their two centres lie on. It can be shown [37] that if a

b
< 1

2

then in the inviscid limit the dipole will translate with a speed of

Us =
Γ0

2πb
. (1.35)

This leads to a translational Reynolds number of

Retr =
2UsR0

ν
=

aΓ0

2πbν
. (1.36)

To compare this to the vortex Reynolds number, we can compute the ratio

ReΓ

Retr

=
2πb

a
. (1.37)

Given the assumption that a
b
< 1

2
, this implies that ReΓ > 4πRetr for the translating Lamb-

Oseen dipole, i.e. there is an order of magnitude difference between the vortex Reynolds
number and the translational Reynolds number for this system. A similar situation will
arise later when we study vortex rings.
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The Viscous Boundary Layer

For large Reynolds numbers, it can be shown through scaling analysis [29] that the effects
of viscous stress are negligible throughout the fluid flow except at solid boundaries. At solid
boundaries viscous effects become very important in a thin layer known as the viscous
boundary layer. The thickness, δ, of this layer varies like

δ ∼ 1√
Re

(1.38)

which implies that it will become increasingly thin as the Reynolds number increases. The
viscous boundary layer plays an important role in the simulation of vortex-wall interactions
and resolving it in computer simulations will require significant computational resources.

1.2 Numerical Methods for Partial Differential Equa-

tions

While some exact solutions to the Navier-Stokes equations exist in special cases, a general
solution will probably never be known. In order to make any progress in the modelling of
vortex interactions with a wall we will need to find approximate solutions to the Navier-
Stokes equations using sophisticated numerical analysis techniques. The solution domain
for a problem is discretized onto a computational grid and the solution is advanced forwards
in time using an iterative algorithm. Numerical solutions are tested for convergence and
compared to physical experiments to ensure their validity and accuracy.

1.2.1 Adaptive Mesh Refinement

While many classical numerical methods for PDEs use a single uniform grid over the en-
tire computational domain, if phenomena of interest occupy a small subset of the domain,
then much of this resolution will be wasted where it is not needed. Adaptive mesh refine-
ment (AMR) techniques seek to increase the resolution of the computational domain only
where it is needed. Beginning with a coarse base mesh, cells are tagged for refinement
where it is required. The resolution can be increased in a number of ways, some of which
included subdividing a tagged grid cell locally, or overlaying the coarse grid with a finer
computational grid. The previous method is known as cell-based AMR while the latter
is known as structured AMR. In this work block structured AMR, which is defined by
a hierarchy of logically rectangular grids, will be used.
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Chombo: Software for Adaptive Solutions to Partial Differential Equations

Developing software for PDE based scientific applications can be a daunting task, one
which is even further complicated by the use of AMR. It is good practice therefore to
use existing software when possible to save on human and financial resources. Further,
if software is open source then it can often be customized to meet the demands of a
particular application6. Chombo [1] is a software library for implementing finite difference
and finite volume methods for the solution of partial differential equations using block-
structured adaptive mesh refinement. Developed by the Applied Numerical Algorithms
Group (ANAG) at Lawrence Berkeley National Laboratory, Chombo is written in C++
and Fortran, and uses the MPI framework for parallelism. A bit mapping data structure
is used to manage the grid hierarchy and extensive use of C++ templating allows for
customization. Chombo has proven to be highly scalable to over 105 cores and has been
used to develop a wide variety of scientific applications. Additionally, a number of already
developed applications come with the standard Chombo repository. In the present work the
AMRINS code developed by Dan Martin of ANAG is improved upon and used extensively.

Other AMR Software

There are a number of other AMR software libraries which are freely available. They vary
widely in their complexity and ease of use. We list a sampling of them below.

• SAMRAI: Structured Adaptive Mesh Refinement Software[27]. This library was
developed at Lawrence Livermore National Laboratory. It is intended to be used
for large scale multi-physics simulations. The library is built using C++ and MPI,
and uses HDF5 for I/O. The developers of SAMRAI claim it scales to over 105

cores. A few of the application SAMRAI has been used for include supersonic flow,
magnetohydrodynamics, and multiphase flows.

• Gerris: A comprehensive software package developed by Stéphane Popinet at Uni-
versité Pierre et Marie Curie which includes both libraries for AMR as well as com-
plete applications [38]. The incompressible Navier-Stokes solver in Gerris uses the
same finite volume method as [7]. In addition to AMR, Gerris can also handle com-
plicated domain boundaries using an embedded boundary type method and is paral-
lelized through the MPI framework. The type of AMR used by Gerris is cell-based,
and uses quadtree or octree data structures. There is also a free surface algorithm

6Barring any licensing restrictions.
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in the Navier-Stokes solver. A few examples of the application Gerris has been used
for are Rayleigh-Taylor instabilities, flow around an aerofoil, and tsunami run-up
modelling on a three-dimensional beach.

• Paramesh: A library from Druxel Univeristy and NASA Goddard Space Flight Cen-
ter to handle the grid hierarchy and operations for AMR applications. Built using
Fortran 90 and C, Paramesh uses the MPI library to handle parallelism. Paramesh
uses block structured AMR and quadtree or octree data structures. A few examples
of applications Paramesh has been used for are supersonic flows and magnetohy-
drodynamics. Unfortunately Paramesh is no longer has technical support and is no
longer funded.

• Carpet: An AMR library for the Cactus framework for the development of PDE
based scientific applications. Carpet has options to develop applications in Fortan
77 and 90, as well as C, and C++. Parallelism is handled using the MPI framework
and data I/O using HDF5.

• AMRClaw: An AMR library developed by Rene Leveque’s group to work with
CLAWPACK. The user must write their problem in a standard conservation law
form and provide a Riemann solver to CLAWPACK. The algorithm used is Leveque’s
wave-propagation finite volume formulation. The developers of AMRClaw claim that
it scales to over 105 cores.

1.3 High Performance Computing

In modern scientific applications, the resolution needed to perform computer simulations
of interest is often so high that the simulations cannot be carried out on a single core7;
thus, parallel processing has become a fact of life for the modern scientist. High Per-
formance Computing (HPC) refers to the use of parallel processing to run advanced
software applications more quickly, efficiently, and reliably that could be done on a single
core computer. In previous decades high performance computing was only carried out
by the largest and most well funded of research groups with access to large super com-
puters. With the advent of inexpensive multicore processors, however, high performance

7We will refer to the number of cores used for a particular simulation as this is the most precise
terminology and will lead to the least confusion. While colloquially one often uses the term processor in
proxy for the term core, a given processor might have multiple cores so this usage is ultimately incorrect.
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computing has become accessible to even the most humble of research groups. Addition-
ally modern computing conglomerates such as SciNet and SharcNet facilitate collaboration
and allow various universities to combine their computing resources and provide access to
larger computer clusters. It is therefore necessary to understand what high performance
computing can and cannot do for us and the various metrics we can use to measure how
well our software is performing in an HPC environment.

1.3.1 Parallel Performance Metrics

The first and most intuitive metric when evaluating the parallel performance of software
is the wall-clock time. The Wall-Clock Time, Tc is the amount of physical time that has
elapsed during the execution of our parallel software on C cores. This is the metric we
often care about the most as we would like our simulation data as quickly as possible so
that we can conduct analysis. Simply using a larger number of cores to get results faster is
not necessarily a prudent use of computing resources as using twice as many cores rarely
results in a simulation finishing in half the time.

In light of this, the next metric that is useful to define is parallel speedup. The
Speedup, Sc, obtained by using C cores is the ratio of wall-clock times for serial and
parallel execution of the code and is given by

Sc =
T1

Tc
.

In a perfect world the speed up of our code would be exactly the number of cores that
we were using to run our software. This is called linear or perfect speedup. In practice
however our speedup will often look like Figure 1.1 as there are parts of our code that
cause bottlenecks. When it is not possible or feasible to run a computer simulation on a
single core, we can calculate the speedup obtained by running on C cores over C ′ cores via
the Relative Speedup

SC
′

C =
TC′

TC
.

Another useful time scale to define in addition to wall-clock time is the CPU Time.
This is the sum total of the time used across all cores to perform a computer simulation
and is simply given by the number of cores times the wall-clock time, CTC . From this we
can define the Parallel Efficiency, EC of using C cores, which is the ratio of cpu times
for serial and parallel execution of our code

EC =
T1

CTC
.
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Figure 1.1: Hypothetical speedup graph (red) plotted beside the line of perfect speedup
(blue).

If our code could achieve perfect speedup, then it would have an efficiency of EC = 1 for
all numbers of cores. In practice however our efficiency often decreases monotonically to
zero for large numbers of cores. Analogously we can define the Relative Efficiency, EC′

C

of using C cores over C ′ cores to be the ratio of the cpu times

EC′

C =
C ′TC′

CTC
.

1.4 Computer Systems

Three computer systems were used at various times to carry out the computer simulations
that will be presented.

• Orca: One of the HPC clusters maintained by SHARCNET. The 32 “kglamb” nodes
are composed of two 8 core, 2.7 GHz Intel E5-2690 (first generation) processors, with
20MB cache, and either 64 GB or 128 GB of memory per node. This equals a total
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of 512 available cores. The interconnect is QDR InfiniBand. The Intel v12.1.3 C++
and Fortran compilers were used on this system, along with the OpenMPI v1.6.2
MPI library, which was compiled with the same compilers. HDF5 v1.8.11 was used
for file I/O.

• Hood: One of the clusters owned by the fluids group in the Applied Mathematics
Department at the University of Waterloo. Hood is composed of 4 NUMA nodes,
each with an 8 core, 2.4 GHz Intel Xenon E5-4640 (first generation) processor and
88GB of memory. This equals a total of 32 available cores. The Intel v15.0.0 C++
and Fortran compilers were used on this system, along with the OpenMPI v1.8.4
MPI library, which was compiled with the same compilers. HDF5 v1.8.13 was used
for file I/O on this system.

• Boogaloo: A desktop tower owned by professor Marek Stastna in the Applied Math
Department at the University of Waterloo. Boogaloo is composed of 1 node with two
6 core, 2.6 GHz Intel E5-2630 processors and 98 GB of memory. With hyperthreading
enabled this equals a total of 24 available virtual processors. The GNU v4.8.4 C++
and Fortran compilers were used, along with the OpenMPI v1.6.5 MPI library, which
was compiled with the same compilers. HDF5 v1.8.13 was used for file I/O on this
system.

1.5 Thesis Organization and Contributions

The remainder of the thesis is divided into two major parts. Chapter 2 gives an extensive
review of the algorithm used by the AMRINS code. The projection method of [7] is
reviewed in detail and tied into the broader context of finite volume methods. The details
of the block-structured AMR used by Chombo are reviewed and then all of the parts
are tied together to give a complete AMR algorithm for the incompressible Navier-Stokes
equations.

In Chapter 3, the results of three different sets of computer simulations are presented.
First, a series of tests is conducted to examine the performance of the AMRINS code and
to determine optimal grid parameters for the AMR scheme. In the second section, a series
of experiments involving the interaction of a two dimensional vortex dipole with a solid
wall are simulated. Simulations are conducted over a wide range of Reynolds numbers and
these results are compared to benchmark values from the literature. In the last section
of this chapter, the interaction of a three dimensional vortex ring with a solid wall are
simulated.
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The last chapter of the thesis gives a brief overview of a number of potential paths the
research presented here could take in the future.

The author’s contributions to the field which are contained within this thesis include,
but are not limited to:

• Significant scale and performance analysis of the Chombo AMRINS code on a com-
modity cluster system which lead to a number of code improvements. These include

– The removal of crippling memory leaks

– Changes to the multigrid algorithm and multigrid parameter tuning to ensure
robust convergence under a variety of circumstances

– Analysis of optimal grid generation parameters

• The benchmarking of the Chombo AMRINS code against the difficult Clercx and
Bruneau vortex dipole problem.

• The simulation of the Clercx and Bruneau dipole problem to higher Reynolds num-
bers than have been done previously.

• The simulation of a vortex ring wall interaction to higher Reynolds numbers than
have been possible previously.

• Analysis of the kinetic energy and enstrophy time-series, as well as the bottom shear
stress of a vortex ring wall interaction.

All of these results are novel and warrant publication in a peer-reviewed academic journal.
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Chapter 2

Methods

2.1 Introduction

In a paper published in 1989, Bell, Colella, and Glaz (BCG89) [7] developed a second-order
finite volume method for the constant density incompressible Navier-Stokes equations.
Using Colella’s unsplit second order MUSCL scheme and a projection method based upon
the Helmholtz Decomposition Theorem, their method was more robust than many other
algorithms at the time. While this method would be improved upon in various ways
in subsequent publications, the fundamental concepts in the algorithm remain the same;
hence their original 1989 paper has had a lasting impact on the field.

We will now examine the development and extension of the BCG89 algorithm through
to the version used by Martin, Colella, Graves [32], which uses adaptive mesh refinement
in three dimensions. First we examine Colella’s unsplit Godunov method for the advection
terms. This will be followed by a brief treatment of the viscous terms. Next we will develop
the theory of projection methods based upon the Helmholtz Decomposition Theorem. After
using these pieces to solve the Navier Stokes equations on a single grid, we will consider
the Berger-Oliger time-stepping algorithm for hyperbolic problems using adaptive mesh
refinement. Finally, we will put all of these parts together as done in Martin, Collela,
Graves [32].
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2.2 Finite Volume Formulation

Finite volume methods are a broad class of algorithms for finding numerical solutions to
conservation laws of the form

∂u

∂t
+∇ · f(u) = q. (2.1)

They have enjoyed widespread use because of their robustness and ability to deal with
difficult problems arising from conservation laws, such as those involving shocks. The the-
ory behind finite volume methods respects the fundamental structure the equations being
solved and is intimately tied to the mathematical theory of hyperbolic equations. With-
out loss of generality, we will develop the finite volume formulation of the incompressible
Navier-Stokes equations in two dimensions as the formulation in three dimensions extends
readily from this case.

Suppose we wish to find the solution to (2.1) over a rectangular domain, R : [0, L] ×
[0,M ], that we divide into a grid of N by M computational grid cells. Each one of these
cells will have dimensions ∆x by ∆y where

∆x =
L

N
, ∆y =

H

M
.

For convenience we will further label the center of each grid cell as (i, j), where 1 ≤ i ≤

Figure 2.1: The computational domain (in two dimensions).

N, 1 ≤ j ≤M . The right face of the i, jth grid cell will be labeled (i+ 1
2
, j), with a similar

convention for the other three faces.
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Figure 2.2: The i, jth computational grid cell (in two dimensions). The open circle indicates
the cell centre. The diamonds indicate left and right cell faces, while the filled circles
indicate the top and bottom cell faces.

Let Ri,j denote the i, jth grid cell of the computational grid. Integrating (2.1) over this
domain, using the divergence theorem, and dividing by ∆x∆y gives

1

∆x∆y

∂

∂t

∫
Ri,j

u dxdy +
1

∆x∆y

∫
∂R

i+1
2 ,j

f · n̂ dy − 1

∆x∆y

∫
∂R

i− 1
2 ,j

f · n̂ dy

+
1

∆x∆y

∫
∂R

i,j+1
2

f · n̂ dx− 1

∆x∆y

∫
∂R

i,j− 1
2

f · n̂ dx =
1

∆x∆y

∫
Ri,j

q dxdy (2.2)

where ∂Ri+ 1
2
,j is the right cell face of Ri,j, and the other three faces are labeled in the same

fashion. If we let

Ui,j(t) =
1

∆x∆y

∫
Ri,j

u(x, y, t) dxdy (2.3)

denote the average value of u over the i, jth grid cell at time t, using Q̃ similarly for q,
and

F̃i+ 1
2
,j(t) =

1

∆y

∫
∂R

i+1
2 ,j

f
(
u(xi+ 1

2
,j, y, t)

)
· n̂ dy (2.4)
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be the (spatial) average flux through the right cell face, ∂Ri+ 1
2
,j, at time t, then equation

(2.2) becomes

∂Ui,j

∂t
+

F̃i+ 1
2
,j − F̃i− 1

2
,j

∆x
+

F̃i,j+ 1
2
− F̃i,j− 1

2

∆y
= Q̃i,j. (2.5)

Suppose now that we wish to find our solution on the time interval t ∈ [0, T ]. We
achieve this by taking N discrete time-steps of (varying) size ∆tn. To determine a formula
for advancing our solution from time tn to time tn+1 we can integrate equation (2.5) over
this interval and divide by ∆tn. This gives

Un+1
i,j −Un

i,j

∆tn
+

F
n+ 1

2

i+ 1
2
,j
− F

n+ 1
2

i− 1
2
,j

∆x
+

F
n+ 1

2

i,j+ 1
2

− F
n+ 1

2

i,j− 1
2

∆y
= Q

n+ 1
2

i,j , (2.6)

where

Q
n+ 1

2
i,j =

1

∆t

tn+1∫
tn

Q̃i,j(t)dt (2.7)

is the average value of q over the grid cell Ri,j from time tn to time tn+1, and similarly,

F
n+ 1

2

i+ 1
2
,j

=
1

∆t

tn+1∫
tn

F̃i+ 1
2
,j(t)dt (2.8)

is the average flux through the right cell face, ∂Ri+ 1
2
,j, from time tn to time tn+1. 1

Notice that discrete equation (2.6) has the same conservative form as equation (2.1).
This is satisfying from a physical point of view as our algorithm reflects the underlying
nature of our system and is part of the reason that finite volume methods have enjoyed
such success.

A second important point is that we have made no simplifying assumptions to obtain
equation (2.6) (other than the regularity of our computational grid). This means that the
order of accuracy of our algorithm will be completely determined by how we choose to
evaluate the average fluxes and average forcing. We will examine one particular way of
approximating the average flux in the next section.

1These are not the spatial averages Q̃i,j(t) and F̃i+ 1
2 ,j

(t) evaluated at the half time t = tn + ∆t
2 .
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2.2.1 Advection Terms: MUSCL Scheme

MUSCL (Monotone Upstream-centred Scheme for Conservation Laws) or Variable Extrap-
olation methods are a class of higher-order extensions to the first-order Godunov scheme.
This class of methods can be broken down into three steps:

• Reconstruct: First, a piecewise polynomial reconstruction of u is buillt within each
grid cell from the cell averaged values.

• Evolve: Next, the piecewise polynomial reconstruction is then evolved forward in
time by solving the Riemann problem that results at each cell face from its neighbour-
ing cells. The Riemann problem may be solved exactly, but often an approximate
Riemann solver is used to spare computational cost.

• Average: Lastly, the solution to the Riemann problem is used to evaluate the average
flux through the cell face. This may be done exactly, however the integral (2.8) is
often approximated.

The advection terms in [7] are computed using Colella’s second-order unsplit MUSCL
type scheme [19], which uses a primitive variable Riemann solver. The conservation
law, (2.1), is written in the form

∂w

∂t
+ c(w) · ∇w = q (2.9)

were w are the primitive variables and c = (c1, c2). This could be the momentum equation,
(1.1), or a the equation for a scalar which is advected with the fluid flow, for example. It
is assumed that over one time-step the value of w is slowly varying and that the advection
velocity can be approximated by a background state

c̄(x, y) = c(w̄(x, y)) (2.10)

and hence the primitive variable equation (2.9) becomes

∂w

∂t
+ c̄ · ∇w = q. (2.11)

The Riemann problem for this equation can be solved exactly using the method of charac-
teristics.
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The average flux (2.8) is approximated using the midpoint rule

F
n+ 1

2

i+ 1
2
,j

=
1

∆t

tn+1∫
tn

F̃i+ 1
2
,j(t)dt

=
1

∆t

tn+1∫
tn

1

∆y

∫
∂R

i+1
2 ,j

f
(
u(xi+ 1

2
,j, y, t)

)
· n̂ dydt

≈ f
(
u(xi+ 1

2
,j, yi+ 1

2
,j, t

n + ∆t
2

)
)
· n̂ (2.12)

Because of the approximation (2.10), it is possible to write the flux in terms of the primitive
variables f(w)·n̂ = c(w̄)w. Therefore (2.12) can be evaluated by finding an approximation

to w at the right cell face at the half-time, w
L,n+ 1

2

i+ 1
2
,j

. This is accomplished using a Taylor

series expansion about the cell-centre

w
L,n+ 1

2

i+ 1
2
,j

= w(xi+ 1
2
,j, yi+ 1

2
,j, t

n + ∆t
2

) ≈Wn
i,j +

∆x

2

(
∂w

∂x

)n
i,j

+
∆t

2

(
∂w

∂t

)n
i,j

(2.13)

and constitutes the reconstruction step discussed above. Since the time derivative is not
easy to approximate apriori, equation (2.11) is solved for the time derivative and this is
substituted into (2.13)

w
L,n+ 1

2

i+ 1
2
,j
≈ Wn

i,j +
∆x

2

(
∂w

∂x

)n
i,j

+
∆t

2

(
−c(w̄) · ∇wn

i,j −Qn
i,j

)
= Wn

i,j +
∆x

2

(
1− c1(w̄)

∆t

∆x

)(
∂w

∂x

)n
i,j

− c2(w̄)
∆t

2

(
∂w

∂y

)n
i,j

− ∆t

2
Qn
i,j.(2.14)

The normal derivative can be evaluated using the second-order centred difference formula(
∂w

∂x

)n
i,j

=
Wn

i+1,j −Wn
i−1,j

∆x
(2.15)

and the transverse derivative can be evaluated using the upwinded difference formula(
∂w

∂y

)n
i,j

=


Wn

i,j−Wn
i,j−1

∆y
if c2 > 0

Wn
i,j+1−Wn

i,j

∆y
if c2 < 0

. (2.16)
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The normal and transverse derivatives may be slope limited, however, in practice this is
often unnecessary at low Mach numbers. We can derive a similar approximation to w at
the left cell face at the half time

w
R,n+ 1

2

i− 1
2
,j

= Wn
i,j −

∆x

2

(
1 + c1(w̄)

∆t

∆x

)(
∂w

∂x

)n
i,j

− c2(w̄)
∆t

2

(
∂w

∂y

)n
i,j

− ∆t

2
Qn
i,j. (2.17)

After the left and right states are determined, the Riemann problem at each cell interface
can be solved and used to calculate the numerical flux

F
n+ 1

2

i+ 1
2
,j

= c(w̄) wRiemann
i+ 1

2
,j

. (2.18)

The only outstanding decision to be made is how to choose the background state w̄(x, y)
used to evaluate the advection velocities. This can be chosen in a number of ways and we
will examine how to do this in a predictor-corrector fashion in the next section.

An important point that has been overlooked so far is that of stability. It can be shown
that the MUSCL scheme given above is stable provided the Courant-Friedrichs-Lewy
(CFL) Condition

∆t <
∆x

c̄(x, y).
(2.19)

is satisfied. This says that information will not propagate through more than one grid cell
during one time-step. In practice the CFL condition is used to choose a stable time step

∆tn+1 =
σ∆x

max
i,j

c̄ni,j
(2.20)

where σ is our CFL factor2. Adaptive time-stepping of this form means that larger time-
steps can be taken when the flow is slow and smaller time-steps will be used when necessary.

For convenience in what follows we will work in terms of our original primitive variables:

un+1
i,j − uni,j

∆t
+ [(u · ∇)u]

n+ 1
2

i,j = − (∇p)n+ 1
2

i,j + ν
(
∇2u

)n+ 1
2

i,j
(2.21)

sn+1
i,j − sni,j

∆t
+ [∇ · (su)]

n+ 1
2

i,j = κ(∇2s)
n+ 1

2
i,j (2.22)

where it us understood that uni,j denotes the average value of u over the i, jth grid cell
even though we have dropped the capitalized notation.

2In most of our simulations we will use σ = 0.5
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Advection Velocity

The face-centred advection velocity is first approximated by averaging the cell-centred
velocity to the cell-faces:

uedge

i+ 1
2
,j

=
uni,j + uni+1,j

2
, (2.23)

with appropriate formulas for the other faces. Next, we correct this by extrapolating the
normal component of the velocity from the cell-centre to the cell-faces via Taylor series
expansion

u
L,n+ 1

2

i+ 1
2
,j

= uni,j +
∆x

2

(
1− unorm

i,j

∆t

∆x

)(
∂u

∂x

)n
i,j

− vtan
i,j

∆t

2

(
∂u

∂y

)n
i,j

+
∆t

2
ν(∇2u)ni,j(2.24)

u
R,n+ 1

2

i− 1
2
,j

= uni,j −
∆x

2

(
1 + unorm

i,j

∆t

∆x

)(
∂u

∂x

)n
i,j

− vtan
i,j

∆t

2

(
∂u

∂y

)n
i,j

+
∆t

2
ν(∇2u)ni,j(2.25)

where

unorm
i,j =

uedge

i− 1
2
,j

+ uedge

i+ 1
2
,j

2
, vtan

i,j =
vedge

i,j− 1
2

+ vedge

i,j+ 1
2

2
(2.26)

and the partial derivatives are evaluated using the differencing schemes (2.15) and (2.16)
described above3.

Next, the Riemann problem is solved at each cell-face. For our equations this amounts
to choosing the upwind state:

u
n+ 1

2

i+ 1
2
,j

=


u
L,n+ 1

2

i+ 1
2
,j

if uedge

i+ 1
2
,j
> 0

u
R,n+ 1

2

i+ 1
2
,j

if uedge

i+ 1
2
,j
< 0

1
2
(u

L,n+ 1
2

i+ 1
2
,j

+ u
R,n+ 1

2

i+ 1
2
,j

) if uedge

i+ 1
2
,j

= 0

. (2.27)

Finally, the edge-centred advection velocity is MAC projected4 to ensure it is incompress-
ible

uhalf = PMAC
(
un+ 1

2

)
. (2.28)

The is the velocity that is now used to advect any scalar quantities and the velocity itself.

3The pressure gradient is not included in the extrapolation step because the advection velocity will be
projected with an edge-centred MAC projection which will in turn remove the pressure gradient.

4See Section 2.2.2 for an explanation of the MAC projection.
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Scalar Advection

Scalar quantities are updated in a similar fashion using the extrapolation formulas

s
L,n+ 1

2

i+ 1
2
,j

= sni,j +
∆x

2

(
1− unorm

i,j

∆t

∆x

)(
∂s

∂x

)n
i,j

− vtan
i,j

∆t

2

(
∂s

∂y

)n
i,j

+
∆t

2
κ(∇2s)ni,j (2.29)

s
R,n+ 1

2

i− 1
2
,j

= sni,j −
∆x

2

(
1 + unorm

i,j

∆t

∆x

)(
∂s

∂x

)n
i,j

− vtan
i,j

∆t

2

(
∂s

∂y

)n
i,j

+
∆t

2
κ(∇2s)ni,j (2.30)

where

unorm
i,j =

uhalf
i− 1

2
,j

+ uhalf
i+ 1

2
,j

2
, vtan

i,j =
vhalf
i,j− 1

2

+ vhalf
i,j+ 1

2

2
(2.31)

and the partial derivatives are evaluated using the differencing schemes (2.15) and (2.16).
Next, the Riemann problem is solved at each cell-face. For our equations this amounts to
choosing the upwind state:

s
n+ 1

2

i+ 1
2
,j

=


s
L,n+ 1

2

i+ 1
2
,j

if uedge

i+ 1
2
,j
> 0

s
R,n+ 1

2

i+ 1
2
,j

if uedge

i+ 1
2
,j
< 0

1
2
(s
L,n+ 1

2

i+ 1
2
,j

+ s
R,n+ 1

2

i+ 1
2
,j

) if uedge

i+ 1
2
,j

= 0

. (2.32)

The flux can now be calculated at each cell face as

F
n+ 1

2

i+ 1
2
,j

= uhalf
i+ 1

2
,j
s
n+ 1

2

i+ 1
2
,j

(2.33)

and the scalar s can be updated using the discrete conservation law (2.6). The integral
for the source term of the source term on the right side of (2.6) is approximated using the
trapezoidal rule. This leads to an implicit Crank-Nicholson type scheme for the diffusive
terms which can be solved using standard multigrid techniques. (See the section on the
discretization of the viscous terms of the momentum equation for details).

Velocity Advection

The velocity field is updated using advective differencing. Reusing the normal veloci-
ties predicted in the advection velocity calculation, only the tangential component of the
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velocity at each cell face is calculated now. The extrapolation formulas are

v
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2
,j
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where unorm
i,j and vtan

i,j are given by (2.31), and the partial derivatives are evaluated using
the differencing schemes (2.15) and (2.16). Next, the Riemann problem is solved at each
cell-face:

v
n+ 1

2

i+ 1
2
,j

=


v
L,n+ 1

2

i+ 1
2
,j

if uhalf
i+ 1

2
,j
> 0

v
R,n+ 1

2

i+ 1
2
,j

if uhalf
i+ 1

2
,j
< 0

1
2
(v
L,n+ 1

2

i+ 1
2
,j

+ v
R,n+ 1

2

i+ 1
2
,j

) if uhalf
i+ 1

2
,j

= 0

. (2.36)

The MAC correction5 is then added to the tangential velocity ...

vhalf = vn+ 1
2 − (∇φ)MAC (2.37)

and a cell-centred advection velocity uADV is formed by averaging the edge-centred MAC
projected velocities to the cell centres. Lastly, the velocities are updated using equation
(2.21) where the advection terms are calculated using the formulas

[(u · ∇)u]
n+ 1

2
i,j = uADV

i,j

(
uhalf
i+ 1

2
,j
− uhalf

i− 1
2
,j
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2
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)
(2.38)

[(u · ∇) v]
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2
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i,j

(
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− vhalf

i− 1
2
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∆x

)
+ vADVi,j

(
vhalf
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2

− vhalf
i,j− 1

2
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)
(2.39)

Viscous Terms

The integral average of the viscous terms in equation (2.21) is approximated using the
trapezoidal rule. This results in a semi-implicit Crank-Nicholson scheme. The Laplacian
operator is discretized using a standard five point stencil

(∇2u)i,j =
ui+1,j − 2ui,j + ui−1,j

∆x2 +
ui,j+1 − 2ui,j + ui,j−1

∆y2 (2.40)

5See Section2.2.2 for details on how this is computed.
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to achieve second order accuracy in space. The viscous term (∇2u)
n+ 1

2
i,j is then evaluated

as the average of the values at times tn and tn+1,

(∇2u)
n+ 1

2
i,j =

(∇2u)n+1
i,j + (∇2u)ni,j

2
. (2.41)

This Helmholtz problem for un+1 is solved using standard multigrid techniques. (See [14]
or [49] for example).

2.2.2 Projection Methods

One of the difficulties in solving the incompressible Navier-Stokes equations is that there
is no evolution equation for the pressure. Additionally one must decide how to enforce the
incompressibility condition (1.2). Fortunately both of these difficulties can be addressed
simultaneously using the Helmholtz Decomposition Theorem.

Recall that the Helmholtz Decomposition Theorem states if V∗ is a twice differentiable
vector field then it can be decomposed into an incompressible field V and an irrotational
field ∇φ,

V∗ = V +∇φ. (2.42)

Taking the divergence of this gives

∇2φ = ∇ ·V∗ (2.43)

which we can solve formally for φ. Once we know φ we can solve equation (2.42) to obtain
an expression for V,

V = V∗ −∇φ. (2.44)

We can now formally define the projection operator P to be

P[V∗] = (I−∇(∇2)−1∇·)V∗ = V. (2.45)

This operator returns the incompressible part of the vector field V∗. We can similarly
define the complement to this operator

(I− P) [V∗] = ∇φ (2.46)

which returns the gradient part of V∗. To find boundary conditions for (2.43) we solve
equation (2.42) for ∇φ and then evaluate the normal component of this on the boundary:

∂φ

∂n̂
= n̂ · ∇φ = n̂ · (V∗ −V) . (2.47)
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Chorin [17] was the first to formally demonstrate that this process could be used enforce
the incompressibility condition for a discretized form of the Navier-Stokes equation. By in-
troducing discrete versions D and G of the divergence and gradient operators, respectively,
a discrete version of the projection operator can be defined by

P[V∗] = (I−G(DG)−1D)V∗. (2.48)

One can rewrite equation (2.21) in the form

un+1 + ∆t (∇p)n+ 1
2 = un + ∆t [(u · ∇)u]n+ 1

2 + ∆tν
(
∇2u

)n+ 1
2 (2.49)

= un+1,∗ + ∆t(∇p)n−
1
2 (2.50)

where
un+1,∗ = un + ∆t [(u · ∇)u]n+ 1

2 + ∆tν
(
∇2u

)n+ 1
2 −∆t(∇p)n−

1
2 (2.51)

and (∇p)n− 1
2 is the lagged pressure gradient, i.e. the average pressure gradient over the

previous time-step. Applying the discrete projection operator to equation (2.50) gives

un+1 = P
[
un+1,∗ + ∆t(∇p)n−

1
2

]
(2.52)

and

(∇p)n+ 1
2 =

1

∆t
(I− P)

[
un+1,∗ + ∆t(∇p)n−

1
2

]
. (2.53)

It can now be seen that in this formulation we are solving (2.43) for the pressure directly
and then correcting using equation (2.44) to find the incompressible velocity field at the
new time 6.

Unfortunately the discretization used in [17] for the operators lead to a local decoupling
of grid cells and non trivial kernel for G. While Bell, Colella, and Glaz [7] managed to use
a similar method based on a finite element discretization and a more compact stencil for
DG, their method ultimately suffered from the same drawbacks. Additionally, the node-
centred stencils used in both of these algorithms meant that two different sets of linear
algebra solvers had to be carried around in their code: one for the projection and one for
the viscous solve.

In pursuit of a cell-centred discretization of the projection which avoided local grid
decoupling and fit into the framework of fast iterative solvers (i.e. multigrid), many authors

6This is in contrast to other formulations which use some combination of projecting the velocity update
∂u
∂t and solve for the pressure increment ∇φ = (∇p)n+ 1

2 − (∇p)n−
1
2 . Almgren et al. [3] showed that these

formulations have less desirable properties than the current one for cell-centred stencils.
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relaxed the requirement that the discretized projection be exact. This led to a class of
algorithms known as approximate projection methods7. In this class of methods
a convenient discretization is chosen for the Laplacian operator, L, in equation (2.43),
independent of the discretizations chosen for the divergence, D, and the gradient, G.
Hence it is often the case that L 6= DG. This means that even with repeated application
of the projection operator P, the velocity field will have a divergence on the same order of
magnitude error of the discretization used.

MAC Projection

In [31] the advection velocity is projected prior to being used to ensure it is (approxi-
mately) divergence free and to allow for a less severe CFL constraint [4]. This face-centred
projection is known as a MAC projection. Equation (2.43) is solved for φ using standard
multigrid techniques, where the divergence of the face-centred velocity is calculated as

(∇ ·V∗)i,j =
U∗i+ 1

2
,j − U∗i− 1

2
,j

∆x
+
V ∗i,j+ 1

2
− V ∗i,j− 1

2

∆y
. (2.54)

Next, ∇φ is calculated at the cell faces using the differencing formulas

(φx)i+ 1
2
,j =

(φ)i+1,j − (φ)i,j
∆x

(2.55)

(φy)i,j+ 1
2

=
(φ)i,j+1 − (φ)i,j

∆y
. (2.56)

and then used to correct the advection velocity using (2.44).

Cell-Centred Projection

Martin and Colella [31] also use a cell-centred approximate projection method to enforce
the incompressibility condition at the end of each time-step. First an approximation to
the velocity at the new time-step un+1,∗ is found at the cell centres using the procedure
outlined in the previous sections. Next this cell-centred velocity is averaged to the cell
faces:

un+1,∗
i+ 1

2
,j

=
un+1,∗
i+1,j + un+1,∗

i,j

2
(2.57)

vn+1,∗
i,j+ 1

2

=
vn+1,∗
i,j+1 + vn+1,∗

i,j

2
(2.58)

7See [3] for a thorough review of approximate projection methods.
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The lagged pressure gradient at the cell faces is then added to this velocity

V∗ = un+1,∗ + ∆tn(∇p)n−
1
2 . (2.59)

and this is the vector field that is then projected. The Laplacian operator in equation
(2.43) is discretized using a standard five-point finite difference stencil (2.40) to achieve
second order accuracy. Equation (2.43) is solved for φ using standard multigrid techniques,
where the divergence of the face-centred velocity is calculated using (2.54). Next, ∇φ is
calculated at the cell faces using (2.57) and (2.58), and then averaged to the cell centres
via

(φx)
n+1
i,j =

(φx)
n+1
i+ 1

2
,j

+ (φx)
n+1
i− 1

2
,j

2
(2.60)

(φy)
n+1
i,j =

(φy)
n+1
i,j+ 1

2

+ (φy)
n+1
i,j− 1

2

2
. (2.61)

Lastly this cell-centred gradient is used to correct the original cell-centred velocity field
with equation (2.44).

2.2.3 Initial and Boundary Conditions

Given initial and boundary conditions we now have a recursive procedure to determine u
and s at all points in our domain and for all times t ∈ [0, T ]. We will now examine how to
calculate the boundary terms and initialize all of our fields.

Boundary Conditions

Suppose that we have the boundary conditions

G

(
u,
∂u

∂x

)
= 0, H

(
s,
∂s

∂x

)
= 0 (2.62)

on ∂R, for some functions G and H. To implement these numerically a ring of ghost cells
is introduced around the edge of the computational grid as seen in Figure 2.3. We then fill
these cells by extrapolating in the direction normal to the boundary using the boundary
condition at the edge of our domain and an appropriate number of interior grid cells. The
order of our interpolating polynomial must match the order of our finite volume scheme
to ensure we do not loose accuracy at the boundary. Additionally the depth of the ring of
ghost cells will depend on the order of our scheme.
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Figure 2.3: A ring of ghost cells two cells deep around the outside of a computational
domain. The black circles show the points that are used for the extrapolation to fill in the
value at the centre of the ghost cell, indicated with the red circle.

Initial Conditions

Given a set of initial conditions

u(x, y, 0) = u0(x, y) (2.63)

s(x, y, 0) = s0(x, y) (2.64)

we are not guaranteed that u0 is divergence free. Additionally, we need to find our initial
pressure gradient as the mathematical theory of the Navier-Stokes equations tells us that
we cannot specify both the velocity and the pressure. To accomplish these two goals we
first perform a specified number of projections on the initial velocity field to drive its
divergence towards zero. Typically only one projection is performed, but one could use
more. Since we do not know the initial pressure gradient yet it is not included in the
projection step.

To determine the initial pressure gradient we first initialize it to be zero. Next we take
a time-step of size ∆tinit = ∆t

2
using the time-stepping algorithm described above. The

cell-centred projection at the end of the time-step solves for the pressure. The velocities
are then reset to the (divergence free) initial conditions. The process may be repeated
any number of time, although it is typically only done a single time. Once the pressure
gradient is initialized the simulation can begin at time t = 0 using a full time-step.
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2.3 Adaptive Mesh Refinement

When using numerical analysis to find an approximate solution to any differential equation
it is important to ensure that one uses a sufficiently large number of grid cells to guarantee
that the solution has converged, i.e., using a larger number of grid cells won’t improve the
accuracy of the solution any further. In [44], it was demonstrated that having sufficient
resolution is even more important that the order of accuracy of an algorithm in the sense
that even high order schemes give poor results for under-resolved flows. It is often the case,
especially for variable density flows, however, that the phenomena of interest is confined
to a small region of the fluid domain. Hence if a uniform resolution is used for the entire
domain much of the computational resources will be wasted in regions where the fluid flow
is relatively uniform. Adaptive Mesh Refinement (AMR) methods seek to resolve the
conflict between the need for sufficient resolution and finite computational resources by
only refining the computational grid in regions where it is actually needed and adapting
grids in time to follow flow features as they evolve.

While a number of different kinds of mesh refinement strategies are available, we would
like to reuse as much of our previous algorithm for solving the Navier-Stokes equations
as possible. We will therefore restrict ourselves to the use of Block Structured Adap-
tive Mesh Refinement. Block Structured AMR seeks to build a hierarchy of logically
rectangular grids which satisfy a proper nesting criterion, as shown in Figure 2.4. This cri-
terion ensures that each successive level of grid refinement is completely contained within
the previous level, and that grids must remain orthogonal to coordinate lines. All of this
results in a greatly simplified time-stepping algorithm and a significant increase in ease of
implementation. Before we examine how to perform calculations on an AMR hierarchy we
will introduce some precise definitions to clarify the constraints on our grids.

2.3.1 Preliminary Notions

To define our AMR hierarchy we will index our levels of grids with integers, 0 ≤ l ≤ N ,
with 0 corresponding to the coarsest level and N corresponding to the finest. Let Ω(l)

denote the lth level and ∂Ω(l) denote its boundary. Our levels will satisfy the criteria

Ω(l+1) ⊂ Ω(l) (2.65)

and additionally will satisfy the proper nesting criterion

∂Ω(l−1) ∩ ∂Ω(l+1) = ∅. (2.66)
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Figure 2.4: An example of an a properly nested block structured AMR hierarchy. The base
level 0 (light gray) is the coarsest grid and fills the entire problem domain. Level 1 (dark
gray) is the next finest level of grids and is completely contained within level 0. Finally
level 2 (gray) contains the finest grids and is completely contained within level 1. The
black lines show the boundaries between the various grids on each level. In this example
level 2 consists of the union of 13 grids of varying size.

This ensures that there will be a ring at least one grid cell wide separating successive levels,
which is sufficient for a second order method.

Let Γ(0) be the grid with cells of size ∆x(0) which covers our entire base domain. Then
Ω(0) = Γ(0). Let Γ

(l)
k be a grid of cell size ∆x(l) on level Ω(l). We will require that our grids

do not overlap,
Γ

(l)
j ∩ Γ

(l)
k = ∅, j 6= k, (2.67)

and completely cover our level,
Ω(l) = ∪ Γ

(l)
k . (2.68)

We can define the refinement ratio to be the integer amount, r(l), that we have decreased
our cell size by:

r(l) =
∆x(l)

∆x(l+1)
. (2.69)
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Since cells on levels lower in the hierarchy will be covered by cells on higher levels, it is
useful to define the coarsening operator

Cr(i, j) =

(⌊
i

r

⌋
,

⌊
j

r

⌋)
. (2.70)

This operator takes in index of a cell on a finer level and returns the index of the grid cell
on the coarser level which lies beneath it. From the criteria (2.65) and (2.66) it follows
that

Cr
(
Ω(l+1)

)
⊂ Ω(l). (2.71)

We are now in a position to define the valid region, Ω
(l)
valid, of level l to be the region

which is not covered by any finer levels:

Ω
(l)
valid = Ω(l) \ Cr

(
Ω(l+1)

)
. (2.72)

If u is one of our variables then we can define a level variable, u(l), to be the value of u
on level l, including the invalid region. Similarly we define a composite variable, ucomp,
values of u on the union of the valid regions of each level over the entire AMR hierarchy.
When it is necessary to transfer data from a finer level to a coarser level we define the
averaging operator

〈
u(l)
〉

to be the arithmetic average of u(l) to Cr
(
Ω(l+1)

)
. Finally, it will

be understood that when we solve a problem on an AMR hierarchy that we will take our
solution to be the composite version of our variables.

2.3.2 Grid Generation

Grid generation is handled using the algorithm outlined in [9]. A user specified criterion it
used to determine whether a particular grid cells needs further refinement. The algorithm
in [9] is then used to generate a series of grids from the point clusterings. In the present
work the criterion

‖ω‖ > ωthreshold

is used to tag cells for refinement, where ω is the vorticity field, given by 1.9, and ωthreshold

is chosen on a problem-by-problem basis.

There are several important grid parameters which control the gridding process. The
first is the maximum box size. For example, if a patch of tagged cells could be covered
by a grid box of 1024×1024 grid cells, but the maximum box size is restricted to 256×256,
then the grid generation algorithm will cover this patch of tagged cells with 4 boxes instead
of 1. While this may seem like an unnecessary increase in computational cost, it a HPC
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environment it can actually lead to better load balancing over a larger number of processors.
On the base level the maximum grid size will determine how many boxes the base level
should be decomposed into. Hence for a single grid run this amounts to simply performing
a domain decomposition.

A second important grid parameter is the so-called block-factor. In the simplest sense
this determines the minimum grid size that may be used on a given level. Again, in a HPC
environment this parameter ensures that there is not an unnecessarily large number of
grids on a given level, leading to a large communication cost between processors. In a
deeper sense, due to the nature of the multigrid algorithm presented in Section 2.3.4, the
block-factor also specifies the minimum amount that a given AMR level is coarsenable by.
It will be required that the block-factor, bf , satisfies the property

bf

rl
= 2N

for some integer N to ensure that the multigrid algorithm can be performed.

The last grid parameter that must be specified is the fill ratio or efficiency parameter,
0 < ε < 1. Given a cluster of tagged grid cell, ε specifies the minimum allowable ratio of
tagged grid cells to total coarse grid points covered by a new grid. Hence, setting ε closer
to one will generate a hierarchy of grids which more aggressively follow flow features. The
trade-off however is that more small grids may have to be used.

2.3.3 Stencils for Composite and Level Variables

Now that it is understood what we mean when we talk about an AMR hierarchy, we
are in a position to describe the stencils used for computations on both composite and
level variables. These will look very similar to the single grid case on the interior of each
level, however, special attention will need to be paid to computations near the coarse-fine
interface between two levels.

Divergence and Flux Registers

Since we would like to solve (2.1) using AMR it is necessary to determine how to evaluate
the divergence of level and composite variables. Let u = (u, v) be an edge-centred vector
field on level l. The level divergence of u is given by the differencing formula

(
D(l)u

)
i,j

=
u

(l)

i+ 1
2
,j
− u(l)

i− 1
2
,j

∆xl
+
v

(l)

i,j+ 1
2

− v(l)

i,j− 1
2

∆xl
, (2.73)
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i+1/2,j

i,j-1/2

i,j+1/2

i,j

Figure 2.5: An example of the composite divergence stencil at a coarse-fine interface. The
value of u(l) at the black dots, as well as the average value of u(l+1) at the red dots is used
to calculate the composite divergence of u at the cell centre of the i, jth grid cell on level
l.

ignoring any coarse-fine boundaries. If none of the edges of the i, jth grid cell are on the
interface of the next finest level then the composite divergence of u, Dcomp,lu , is given
by the same formula. If, however, any of the edges of a grid cell are on the interface of
the next finest level then the average value

〈
u(l)
〉

is used. For example, for the grid cell in
Figure 2.5. the stencil is given by

(
Dcomp,lu

)
i,j

=
u

(l)

i+ 1
2
,j
−
〈
u(l+1)

〉
i− 1

2
,j

∆xl
+
v

(l)

i,j+ 1
2

− v(l)

i,j− 1
2

∆xl
. (2.74)

If any of the edges of a grid cell are on the interface of the next coarser level then nothing
needs to be done since the value of u(l) is valid there. It is inconvenient to keep track
of all of the different cell edges where a different stencil will need to be applied. In the
interest of computational efficiency, it would be convenient if we could use the standard
level divergence stencil and then compute the difference between ul and u(l+1) only when
necessary. To this end we will define the flux register,

δu(l+1) =
〈
u(l+1)

〉
− u(l) (2.75)

which is defined on Cr
(
∂Ω(l+1)

)
, i.e.,the coarse-fine interface. δu(l+1) belongs to level l+ 1

but has the grid spacing and indexing of level l. We can now express the composite
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divergence of u as (
Dcomp,lu

)
i,j

=
(
D(l)u(l)

)
i,j

+
(
D

(l)
R δu(l+1)

)
i,j

(2.76)

where (
D

(l)
R δu(l+1)

)
i,j

=
1

∆xl

∑
±δu(l+1) (2.77)

is the reflux divergence, where the sum is over all of the cell edges on the coarse-
fine interface and the ± corresponds to the right/top and left/bottom sizes of the cell,
respectively.

The Gradient and Coarse-Fine Interpolation

In addition the divergence of a composite variable we can also define how to take the
gradient. The composite gradient, Gcompφ, of a cell centred scalar field φ is a face
centred vector field which is defined on all valid edges in the AMR hierarchy. At cell
which are not adjacent to the coarse-fine interface between two levels, the stencil for the
composite gradient reduces to the usual centred differencing formulas

(
Gcomp,l
x φ

)
i+ 1

2
,j

=
φ

(l)
i+1,j − φ

(l)
i,j

∆xl
(2.78)

(
Gcomp,l
y φ

)
i,j+ 1

2

=
φ

(l)
i,j+1 − φ

(l)
i,j

∆xl
. (2.79)

For cells on a finer level which are adjacent to a coarse-fine boundary, ghost cells are filled
in by interpolating data from the coarser level. Figure 2.6 shows typical stencils used for
this case. First, a quadratic interpolation is performed on the coarser level in a direction
parallel to the coarse-fine interface to find an intermediate value. Next, a second quadratic
interpolation is performed on the finer level in a direction perpendicular to the coarse-fine
interface using data from the finer level as well as the intermediate value from the first
interpolation. In the event that there are not enough valid cells on the coarse level to
use the regular centred interpolation stencil, the stencil is shift by one coarse grid cell, as
shown by the lower stencil in Figure 2.6. In the rare case that there are not enough valid
coarse grid cells to use the shifted stencil then the order of the interpolation is dropped.
We will denote the above coarse-fine interpolation procedure for a variable φ to fill in
ghost cells on level l using data from level l − 1 as

φl = I(φ(l−1), φ(l)) on ∂Ω(l). (2.80)
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Figure 2.6: An example of the quadratic interpolation stencils that are used to fill in
ghost cells on the finer level at the coarse-fine interface. The upper stencil shows the most
typical case. First data on the coarser level (black dots) is used to interpolate parallel
to the coarse-fine interface to obtain an intermediate value (the blue dot on the dotted
line). Next a second quadratic interpolation is performed using fine level data and the
intermediate value from the first interpolation to fill in the ghost cell (red dot) of the finer
level. The lower grouping of grid cells shows and example of a case when the first quadratic
interpolation on the coarser level would be shifted as there are not enough valid coarse grid
cells to use a centred stencil.
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To compute the level gradient, G(l)u(l), of a variable u on level l, the same procedure
described for the composite gradient is used, with the exception that G(l) is computed on
all edges of level l, not just the valid ones.

The Laplacian

The Laplacian is straightforward to define for both level and composite variables as the
divergence of the gradient:

Lcompu = Dcomp (Gcompu) on
⋃
l≥0

Ω
(l)
valid (2.81)

L(l)u(l) = D(l)(G(l)u(l)) on Ω(l). (2.82)

Hence, on the interior of a level, the Laplacian reduces to the usual five-point stencil. At
the coarse-fine interface however data from the coarser level will be used to interpolate to
ghost cells on the finer level.

2.3.4 Martin-Cartwright Multigrid Algorithm

The hierarchical nature of the grids used in adaptive mesh refinement lends itself naturally
to the use of geometric multigrid. There are two kinds of elliptic solves that we must
concern ourselves with. The first involves solving for a level variable on a single level,
while the second involves solving for a composite variable on the AMR hierarchy for levels
l ≥ lbase, where the base level lbase isn’t necessarily the coarsest level.

Level Solve

To solve an elliptic problem on one level, the usual multigrid algorithm is used, with a few
minor modifications. First, physical boundary conditions are used on the problem domain
boundary, however at the coarse-fine interface data is interpolated from the coarser level.
Next, the level solve ignores all other grids in the AMR hierarchy: at each stage in the
V-cycle grids are coarsened by a factor of two regardless of the refinement ratio used to
build the AMR hierarchy. Once the grids cannot be coarsened any further, the stabilized
biconjugate gradient method is used to solve the residual equation. After the solution is
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found on the coarsest level, this is used to correct the solution on the next finer level. A few
passes of Gauss-Siedel are performed and then the correction continues up the multigrid
hierarcy until the initial level is reached. This process is shown pictorially in Figure 2.7.

level 0

level 1

level 2

V-cycle For Level Solve on Level 2

BiCGStab

Coarsen
by 2

Figure 2.7: An example of the V-cycle used when solving for a level variable. In this case
a variable is being solved for on the second level in the AMR hierarchy and the block
factor is 23 = 8. As this is a level solve, all coarser grids in the hierarchy are ignored when
coarsening and are only used to provide the boundary data at a coarse-fine interface. At
each stage in the multigrid solve grids are coarsened by a factor of 2, regardless of the
refinement ratio used. Once the coarsest multigrid level is reach, the stabilized biconjugate
gradient method is used.

Composite Solve

Martin and Cartwright [33] developed a cell-centred geometric multigrid algorithm for
elliptic problems on an AMR hierarchy. The elliptic problem is solved on levels l ≥ lbase,
where lbase not necessarily the coarsest level. Just as in the usual multigrid algorithm,
starting on the finest AMR level the initial residual for the problem is calculated. Next, a
level V-cycle is performed, coarsening by a factor of two log2 r

(l)−1 times before coarsening
by a factor of r(l) down to the next AMR level. This process continues down the AMR
hierarchy until level lbase is reached. At this point, the same algorithm described in the
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previous section is used to solve the problem on level lbase. The solution from lbase is used
to correct the solution on level lbase +1. Next, another level V-cycle is performed to smooth
the solution before the correction process continues recursively up the AMR hierarchy until
the finest level is reached. This situation is shown pictorially in Figure 2.8. AMR multigrid
has been demonstrated to be fast and robust over a wide range of problems.

level 0

level 1

level 2

V-cycle For Composite Solve

BiCGStab

Coarsen
by 2

Coarsen
by 2

Coarsen
by r

Figure 2.8: An example of the V-cycle used when solving for a composite variable. In this
case, the base level is lbase = 0, the refinement ratio is 4, and the block factor is 23 = 8. A
level V-cycle is performed on level 2 before coarsening to level 1. This process continues
on level 1 until level 0 is reached. On level 0, the same procedure described for the level
solved is used, with the stabilized biconjugate gradient method being used on the coarsest
multigrid level. At this point the solution on level 0 is used to correct level 1. After another
level V-cycle is performed, level 2 is corrected, and a final V-cycle is performed.

2.3.5 Composite and Level Projection

The incompressibility condition can be enforced on each level in the AMR hierarchy using
the same cell-centred approximate projection method described previously. The biggest
difference now is that data must be interpolated at the coarse-fine interface to evaluate
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the Laplacian. Additionally, we want to ensure that our velocity field satisfies the incom-
pressibility condition in the composite sense as it is the composite version of our primitive
variables that we have defined to be the solution.

Level Projection

If V(l),∗ is a cell-centred level velocity, then we can define our level projection on level l
by the following procedure:

1. Average V(l),∗ from the cell centres to the cell faces.

2. Solve
L(l)φ(l) = D(l)V(l),∗ on Ω(l) (2.83)

for φ(l), applying physical boundary conditions on the domain boundary and inter-
polating at the coarse fine interface.

3. Compute G(l)φ at the cell-faces and average this to the cell centres.

4. Correct the original cell-centred level velocity

V(l) = V(l),∗ −G(l)φ(l) on Ω(l) (2.84)

We will denote this procedure by P(l). The solve in the second step is performed using
multigrid on one AMR level. A level MAC projection for a face-centred velocity can
be defined by omitting the first and last averaging steps and will be denoted by P(l)

MAC.

Composite Projection

We can similarly define a composite projection for a cell-centred composite velocity
Vcomp,∗ by the following procedure:

1. Average Vcomp,∗ from the cell centres to the cell faces.

2. Solve
Lcompφcomp = DcompVcomp,∗ on

⋃
l≥lbase

Ω
(l)
valid (2.85)

for φcomp, applying physical boundary conditions on the domain boundary and inter-
polating at the coarse fine interface.
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3. Compute Gcompφ at the cell faces and average this to the cell centres.

4. Correct the original cell-centred composite velocity

Vcomp = Vcomp,∗ −Gcompφcomp on
⋃

l≥lbase

Ω
(l)
valid (2.86)

We will denote this procedure by Pcomp. The solve in the second step is performed using
the Martin-Cartwright multigrid algorithm on all levels l ≥ lbase.

2.3.6 Berger-Oliger Time-Stepping

As the resolution increases in the AMR hierarchy, so does the time-step restriction give by
the CFL criteria (2.19) on each level. If all of the levels in the AMR hierarchy are stepped
forward in time simultaneously using the time-step of the finest level, then a significant
amount of extra work will be done on the coarser levels where a larger time-step could
be used. It would be more efficient if instead the coarsest level was advanced first using
a larger time-step, and then the finer levels were recursively advanced using successively
finer time-steps. This kind of recursive time-stepping procedure for an AMR hierarchy is
known as subcycling. A recursive procedure for solving hyperbolic problems on an AMR
hierarchy was first introduced in [11] and then specialized for solving conservations laws
of the form (2.1) using finite volume techniques in [10]. Without loss of generality, we will
assume a fixed time-step here, however, in Section 2.4 we will allow a variable time-step.

Starting at level l = 0:

1. Update the level variable U(l) using the conservative update (2.6):

U(l),n+1 = U(l),n −∆t(l)(D(l) F(l),n+ 1
2 ) on Ω(l) (2.87)

2. If we are not on the finest level, then initialize the flux register for that level:

δF(l+1) = −F(l),n+ 1
2 · n̂ on Cr(l)

(
∂Ω(l+1)

)
(2.88)

3. If we are not on the coarsest level, then update the flux register on this level using
the average flux:

δF(l) → δF(l) + 1
r(l−1)

〈
F(l),n+ 1

2 · n̂
〉

on Cr(l−1)

(
∂Ω(l)

)
(2.89)
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4. If we are not on the finest level, take r(l) time-steps of length ∆t(l+1) = ∆t(l)

r(l)
using

steps 1 to 4 on level l + 1, else continue time-stepping using step 1 until we have
reached the same time as the next coarsest level.

5. If we are not on the finest level, average the solution from the next finer level down
to this level:

U(l),n+1 =
〈
U(l+1),n+1

〉
on Cr(l)

(
∂Ω(l+1)

)
(2.90)

6. If we are not on the finest level, correct the solution on this level with the reflux
divergence:

U(l),n+1 → U(l),n+1) −∆t(l)(D
(l)
R δF(l)) on Ω(l) (2.91)

We will refer to steps 5 and 6 above as synchronization as they force the update for
the composite solution to be in discrete conservation form. A pictorial representation of
this subcycling process can been seen in Figure 2.9. It is important to note here that at a

level 0

level 1

level 2

sub-cycling

synchronization

Sub-cycled AMR Time-Stepping

level advance

Figure 2.9: An example of sub-cycled AMR time-stepping for a hierarchy of two AMR
levels and a refinement ratio of 2. First the coarsest level is advanced one time-step. Next,
the first AMR level is advanced using a time step half that of the coarsest level. This
recursive process continues to the finest level. The finest level, level 2, is then advanced
until it reaches the same time as level 1. At this point levels 1 and 2 are synchronized.
Level 1 is then advanced a second time-step, followed by advances on level 2. Finally once
all three levels have reach the same time as level 0 they are collectively synchronized.
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coarse-fine interface, data from the coarser level is interpolated in both space and time to
fill in ghost cells on the finer level. This is in contrast to a purely elliptic problem where
there is no time-dependence at the coarse-fine interface.

2.3.7 Freestream Preservation

In [31], it was found that O(∆x(l)) errors that occur at the coarse-fine interface can contam-
inate the solution of a nearly constant scalar field on the interior of a level after successive
regridding operations. To remedy this, an auxillary variable, Λ, was introduced to correct
the advection velocity. Λ is a passive, conserved scalar

∂Λ

∂t
+∇ · (uΛ) = 0. (2.92)

and is initialized to be unity everywhere. In theory, Λ should remain unity for all times,
therefore Λ−1 is a measure of how much the free stream has deviated. The elliptic problem

∇2eΛ = η(Λ− 1) (2.93)

is solved to find a correction to the advection velocity

uADV
Λ = uADV +∇eΛ, (2.94)

where η > 0 is a parameter which determines the strength of the correction. The boundary
conditions for eΛ are

∂eΛ

∂n
= 0. (2.95)

The effect of this correction is to drive Λ back to unity. The elliptic problem (2.93) is solved
in the composite sense for levels l ≥ lbase during the synchronization step. Additionally,
the correction is recomputed after each regridding operation.

2.3.8 Viscous Terms

The TGA Scheme

In [32] it was determined that using the Crank-Nicholson scheme (2.41) as was done in
[7] led to weak instabilities at the coarse-fine interface between levels which persisted
throughout a simulation. In order to remedy this, a modified version of the second order
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L0-stable scheme presented by Twizell, Gumel, and Arigu (TGA) [51] was used. If we
write the momentum equations in the form

∂u

∂t
= ν∇2u +N (u) (2.96)

where N is the nonlinear and pressure gradient terms, then the modified TGA scheme
presented in [32] is

un+1 =
(
I − c1ν∇2

)−1 (
I − c1ν∇2

)−1
[(
I + c3ν∇2

)
un + ∆t

(
I + c4ν∇2

)
N n+ 1

2

]
(2.97)

where N n+ 1
2 is N evaluated at the half-time and

c1 = 2a−1
a+σ

∆t c3 = (1− a)∆t

c2 = 2a−1
a−σ ∆t c4 =

(
1
2
− a
)

∆t
(2.98)

where

a = 2−
√

2 + ε (2.99)

σ =
√
a2 − 4a+ 2 (2.100)

and ε is a small parameter chosen to be 10−8. When used on an AMR hierarchy, data is
interpolated in both space and time from a coarser level when necessary, and all inversions
are solved using the multigrid algorithm described previously. We will denote the above
process by

LTGA(u) =
un+1 − un

∆t
−N n+ 1

2 . (2.101)

In the AMR case, this solve will be a level solve and the Laplacian ∇2 will be replaced by
the level Laplacian L(l).

Implicit Refluxing

In the case where there is viscosity, the refluxing for the velocity is handled implicitly. The
viscous flux generated by the TGA scheme is

FTGA,(l) =
ν

∆t

(
µ1u

(l),n+1 + µ2u
† + µ3u

(l),n + ∆t(l)µ4N (l),n+ 1
2

)
(2.102)
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where u† is the solution the intermediate problem(
I − c1νL

(l)
)
u† =

(
I + c3νL

(l)
)
u(l),n + ∆t

(
I + c4νL

(l)
)
N (l),n+ 1

2 . (2.103)

During the time-step on one level the flux registers are then updated as

δV(l+1) = −
(
uAD,(l) · n̂

)
uhalf,(l) − FTGA,(l) · n̂ (2.104)

on Cr(l)
(
∂Ω(l+1)

)
if we aren’t on the coarsest level, and

δV(l) → δu(l) +
1

r(l−1)

〈(
uAD,(l) · n̂

)
uhalf,(l) + FTGA,(l) · n̂

〉
(2.105)

on Cr(l−1)

(
∂Ω(l)

)
if we aren’t on the finest level. Finally, during the synchronization step,

an implicit problem is solved in the composite sense

(I −∆tlbaseLcomp)δucomp = ∆t(l)D
(l)
R δV

(l+1) (2.106)

for l ≥ lbase, and then the velocity is refluxed using this correction

u(l) → u(l) + δu(l) (2.107)

for l ≥ lbase.

2.4 Putting it All Together

Now we have all of the pieces necessary to layout the full AMR algorithm for the incom-
pressible Navier-Stokes equations as in [32]. For the sake of clarity and ease of presentation
we give the algorithm in the form of pseudocode. Note: the Initialization step is performed
both at the beginning of a new simulation, and also after the regridding step.
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Algorithm 1 Main

function Main
Build Initial Grids
Compute ∆t(0), set t(0) = 0
Initialize(0,t(0))
while t(0) < Tmax do

∆t(0) = TimeStep(0, t(0),∆t(0)
t(0) → t(0) + ∆t(0)

end while
end function

Algorithm 2 Berger-Oliger time stepping

function TimeStep(l,t(l),∆t(l))
if n == nregrid then

Regrid(l,t(l))
n = 0

end if
LevelAdvance(l,t(l),∆t(l))
Subcycle:
if l < lmax then

∆t(l+1) = ∆t(l)

r(l)

while t(l+1) < t(l) do
∆t(l+1) = TimeStep(l + 1,t(l+1),∆t(l+1))
t(l+1) → t(l+1) + ∆t(l+1)

end while
end if
Synchronize:
if (t(l) + ∆t(l)) < (t(l−1) + ∆t(l−1)) then

Synchronize(l, t(l) + ∆t(l), ∆t(l))
end if
Set n = n+1
Compute ∆t(l)

return ∆t(l)

end function
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Algorithm 3 Level Advance

function LevelAdvance(l,t(l),∆t(l))
Compute the normal components of the velocity, and MAC project, unorm,(l)

Compute the scalar fluxes using the MUSCL scheme, F
(l)
s , F

(l)
Λ and advect

s(l),n+1 = s(l),n −∆t(l)D(l)F(l)
s

Λ(l),n+1 = Λ(l),n −∆t(l)D(l)F
(l)
Λ

Compute the tangential components of the velocity, and add MAC correction, utan,(l)

Compute advection velocity by averaging normal and tangential velocities to cell centres. uAD,(l)

Correct advection velocity with the free-stream potential,

u
ADV,(l)
Λ = uADV,(l) +∇e(l)

Λ

Advect the velocity field

u(l),∗ = u(l),n −∆t(l) [(u · ∇)u]
(l),n+ 1

2 −∆t(l)(∇p)(l),n− 1
2 + ∆t(l)LTGAu(l),∗

Update flux registers :
if l < lmax then

δs(l+1) = −F(l),n+ 1
2

s · n̂
δΛ(l+1) = −F(l),n+ 1

2

Λ · n̂
δV(l+1) = −

(
uAD,(l) · n̂

)
uhalf,(l) − FTGA,(l) · n̂

 on Cr(l)
(
∂Ω(l+1)

)

end if
if l > 0 then

δs(l) → δs(l) + 1
r(l−1)

〈
F

(l),n+ 1
2

s · n̂
〉

δΛ(l) → δΛ(l) + 1
r(l−1)

〈
F

(l),n+ 1
2

Λ · n̂
〉

δV(l) → δu(l) + 1
r(l−1)

〈(
uAD,(l) · n̂

)
uhalf,(l) + FTGA,(l) · n̂

〉
 on Cr(l−1)

(
∂Ω(l)

)

end if
Level Project to find the divergence free velocity and new pressure gradient

u(l),n+1 = P(l)
[
u(l),∗ + ∆t(l)(∇p)n− 1

2

]
(∇p)(l),n+ 1

2 = 1
∆t(l)

(
I− P(l)

) [
u(l),∗ + ∆t(l)(∇p)n− 1

2

]
end function
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Algorithm 4 Synchronize

function Synchronize(lbase,t
sync,∆tsync)

Refluxing:
for l = lmax − 1 to lbase − 1 do

s(l) → s(l) −∆t(l)D
(l)
R δs

(l+1)

Λ(l) → Λ(l) −∆t(l)D
(l)
R δΛ

(l+1)

end for
Implicit Refluxing:
Solve:

(I −∆tbaseνLcomp)δucomp = ∆t(l)D
(l)
R δV

(l+1) for l ≥ lbase

then correct
for l = lmax − 1 to lbase − 1 do

u(l) → u(l) + δu(l)

end for
Sync Projection:
Solve:

Lcompesync = Dcompucomp,∗ for l ≥ lbase

then correct
ucomp = ucomp,∗ −∆tsyncDcompesync

Freestream presevation
Solve:

LcompeΛ =
η

∆tsync
(Λcomp − 1) for l ≥ lbase

then compute the freestream correction:

up = GcompeΛ

end function
Average solution down from finer levels
for l = lmax − 1 to lbase − 1 do

u(l) =
〈
u(l+1)

〉
s(l) =

〈
s(l+1)

〉
Λ(l) =

〈
Λ(l+1)

〉
 on Cr(l)(Ω

(l+1))

end for
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Algorithm 5 Regrid

function Regrid(lbase,tbase)
Tag cells
Build new grids using Berger-Rigtous algorithm
Average/Interpolate primitive variables from old grids to new grids
Initialize(lbase,tbase)

end function

Algorithm 6 Initialize/PostRegrid

function Initialize(lbase,t
init)

Project the velocity field
Solve:

Lcompeinit = Dcompucomp,∗ for l > lbase

then correct
ucomp = ucomp,∗ −Gcompeinit

Initialize freestream correction:
Solve:

LcompeΛ =
η

∆tbase
(Λcomp − 1) for l ≥ lbase

then compute the free stream correction

up = GcompeΛ

Initialize the pressure gradient:
Set p(l) = 0 for l > lbase

Set ∆tinit = 1
2∆t(lmax)

for l = lbase to lmax do
Compute u(l),∗ as in a normal time-step
Set V∗ = u(l),∗ + ∆tinitG(l)p(l)

Solve:
L(l)p(l) = D(l)V ∗

and then correct
u(l) = V∗ −∆tinitG(l)p(l)

end for
end function
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Chapter 3

Results

3.1 The AMRINS Code

The AMRINS code used for all of the simulations is included with the standard Chombo
repository. Upon first use the performance of AMRINS was less than satisfactory. The first
issue that needed to be addressed was severe memory leakage. The initial version of the
code crashed on the computer system Orca after running out of memory. Intel Inspector
was used to profile the code’s memory usage and find a number of memory leaks. Most
of these leaks were cause by hanging pointers whose allocated memory was not correctly
deallocated during regridding operations.

The second issue that needed to be addressed was the poor performance of the multigrid
solvers. It would often take 15-30 iterations for the solvers to converge, and both the MAC
and level projection solvers would hang frequently. Initially the solver used at the bottom
of the multigrid V-cycle simply used a few iterations of Gauss-Siedel relaxation to try and
solve the residual equation. If a small block factor was used, then the level solvers would
often not converge. An example of this performance is shown in Figure 3.1 for a typical
level solve using a block factor of 8. Using a larger block factor (64 for example) remedies
this because a large block factor ensured the multigrid solver could coarsen a sufficient
number of times to render the solver on the bottom level trivial. A deeper inspection of
the residuals at each level during a V-cycle confirmed this. An example of this performance
is shown in Figure 3.2 for a typical level projection solve using a block factor of 64.

Unfortunately it is not always optimal, or even possible in three dimensions, to use a
large block factor. To remedy the lack of convergence for smaller block factors, the Gauss-
Siedel solver was replaced with a stabilized biconjugate gradient solver. After this, the
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Figure 3.1: A typical level projection solve using a block factor of 8 and the Gauss-Seidel
relaxation bottom solver.

various multigrid parameters, such as the number of smoothings between V-cycles, and
number of preconditioner iterations was thoroughly tuned on a solver-by-solver basis for
each of the multigrid solves in the code. All of this effort ensures that we can be confident
that the code is converging as expected. An example of this performance is shown in Figure
3.3 for a typical level projection solve using a block factor of 8 after the performance tuning.

Lastly, Intel VTune Amplifier was used to performance profile the code for a few of
the simulations conducted for scale testing. From this profiling it was determined that the
AMRINS code is well optimized and that no further performance gains could be obtained
without significant changes to the code. The vast majority of the computational time

54



Figure 3.2: A typical level projection solve using a block factor of 64 and the Gauss-Seidel
relaxation bottom solver.

Figure 3.3: A typical level projection solve using a block factor of 8 and the BiCGStab
bottom solver.

during each time-step is spent on the multigrid solves and, to a lesser extent, the advection
calculations. This is very typical for computational fluid dynamics software.

3.2 Scale and Performance Testing

As discussed in the opening chapter, it is important to understand the strengths and
limitations of any software in a HPC environment. Knowing the potential scalability of a
code, and the optimal runtime parameters, will allow one to be a good steward of available
computational resources and not consume CPU time unnecessarily. Given the plethora of
grid parameters available in the AMRINS code, such as the maximum grid size, number
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of AMR levels, and the grid efficiency, it was not immediately clear how to choose the
parameters to obtain optimum performance. To address this, a test problem involving a
translating dipole was chosen and the code was run with a small number of fixed time steps
to explore the space of possible grid parameters. It should be emphasized that the purpose
of these numerical experiments is to determine the optimal grid generation parameters, and
not to rigorously demonstrate the scalability of the Chombo library. In [52] the Chombo
library is shown to have good weak scalability for up to 131,000 processors for both a
hyperbolic gas dynamics code, and a matrix-free geometric multigrid solver for an elliptic
problem.

3.2.1 Test Problem

Clercx and Bruneau [18] suggest a problem involving the interaction of a two-dimensional
vortex dipole with a solid wall as a difficult benchmark for incompressible Navier-Stokes
solvers. The computational domain is taken to be a 2× 2 square and the initial conditions
are given by a pair of shielded monopoles of opposite circulation in close proximity. The
monopoles are initialized as

ω(x, y, 0) = ω0

(
1− r2

r2
0

)
e−r

2/r20 (3.1)

where the initial strength of each monopole is chosen to be ω0 = ±300, r is the radial
distance from the centre of the monopole, and the initial radius of the monopole is chosen
to be r0 = 0.1. The monopole centres are placed a distance of b = 2r0 and at a height
of h = 10r0 from the bottom wall of the domain. These initial conditions can be seen
in the top panel of Figure 3.4. After the start of the simulation the monopole pair sheds
the shielding and translates downwards, impacting the bottom wall of the domain. This
situation can be seen in the bottom panel of Figure 3.4.

With this choice of initial conditions, the initial root-mean-square velocity is Urms ≈ 1,
and the integral-scale Reynolds number can increased by lowering the kinematic viscosity.
For the performance testing, an integral Reynolds number of ReI = 2500 was choosen. In
comparison, the initial circulation around the inner part of one of the shielded monopoles
can be calculated to be approximately Γ0 ≈ 105. This gives a vortex Reynolds number of

ReΓ =
Γ0

ν
≈ 105ReI ≈ 2.626× 105. (3.2)

As reported in [18], it is difficult to estimate the initial translation speed of the dipole pair
as it does not completely form until around t = 0.1; however, the dipole collides with the
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wall for times in the range 0.32 < t < 0.37, depending on the Reynolds number, so we can
estimate the translation speed to be on the order of Us ≈ 1

1/3
= 3. This gives a Reynolds

number of

Re =
2Usr0

ν
≈ 6

10ν
=

3

5
ReI ≈ 1500. (3.3)

Four sets of simulations were carried out, each with increasing resolution using the same
initial setup. In each set of simulations, timings for a single grid simulation are compared
to the simulations using one, two, or three levels of AMR: where the resolution on the finest
level is the same as the resolution of the single grid resolution. The same fixed time-step
is used on the finest level of each simulation to ensure that every simulation ends at the
same final time. For a given number of AMR levels, multiple simulations are carried out
using different maximum AMR grid sizes and numbers of processors. The refinement ratio
is always taken to be 4, as it was shown in [31] that, for a given resolution, a refinement
ratio of 2 is usually less efficient due to the needed extra level of refinement and costliness
of the synchronization operations. Additionally, the multigrid solvers are generally less
efficient for a refinement ratio greater than 4.

3.2.2 Results

All of the simulations for performance testing were run on the system Orca described in
Section 1.4.

For the first set of simulations, the resolution of the finest level was chosen to be
∆x = 2

2048
. A stable fixed time-step of ∆t = 2.0 × 10−5 was used on the finest level and

160 time-steps were taken on the finest level of each simulation. The maximum AMR grid
size was varied between 1282 grid cells and 10242 grid cells, however, maximum grid sizes
in the range 2562 to 5122 proved to be the most effect. Results are shown in Figures 3.5
and 3.6 for maximum grid sizes in the latter range.

Figure 3.5 shows the wall-clock timings against the number of cores for simulations
using a single grid, one, and two levels of AMR. The different colour curves correspond to
different maximum grid sizes. The AMR runs finish in roughly the same amount of time
as the single grid run using far fewer cores. The runs using a maximum grid size of 2562

or 3842 perform better than those using a maximum grid size of 5122.

Figure 3.6 shows the relative speedup of the code againt the number of cores. The
speedup is calculated relative to the lowest number of cores for each set of simulations.
The relative speedup was used as it was not a practical use of resources to run simulations
on a single core. The black dashed line shows the slope of the perfect speedup curve. It can
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be seen that the single grid runs scale very well, while the AMR runs do not. This is due
to the fact that the AMR runs are already achieving a very low wall-clock time on just 4
or 8 processors.

The minimum wall-clock time for each maximum grid size and number of AMR levels
is compiled in Table 3.1 along with the number of cores that were used. Additionally, the
amount of CPU time used has been calculated. For this first series of simulation, the single
grid case using a maximum grid size of 2562 finished in the least amount of time, 90 seconds,
using 64 cores. The next lowest wall-clock timing was achieved by the simulation using 2
levels of AMR, and a maximum grid size of 3842 on 16 cores in 148 seconds. While this is
significantly slower, the amount of CPU time used is substantially less: corresponding to
a savings of 59%. Similarly, the run using 2 levels of AMR and a maximum grid size of
2562 on 8 cores yields a savings of 79%.

AMR Levels Max. Box Size Cores Wall-Clock Time (s) CPU Time (h)
256 64 90 1.6

0 384 64 178 3.16
512 16 246 1.09
256 8 172 0.382

1 384 16 165 0.733
512 16 220 0.977
256 8 151 0.335

2 384 16 148 0.657
512 16 176 0.782

Table 3.1: Minimum wall-clock times for ∆x = 2
2048

. The

For the next set of simulations, the resolution on the finest level was increased to
∆x = 2

4096
. A stable fixed time-step of ∆t = 1.0 × 10−5 was used on the finest level and

160 time-steps were taken on the finest level of each simulation. As before the maximum
grid size, number of AMR levels, and number of cores was allowed to vary.

Figure 3.7 shows the wall-clock timings against the number of cores for simulations
using a single grid, and one and two AMR levels. The runs using AMR are able to finish
in roughly the same amount of wall-clock time as the fastest single grid run using far
fewer cores. On this larger problem, using a maximum grid size of 5122 appears to be
more advantageous. Runs using a maximum grid size of 7682 and 10242 were conducted,
however they used significantly more wall-clock time than any of the simulations presented
here.
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Figure 3.8 shows the relative speedup against the number of cores for the same set of
simulations. The relative speedup was again calculated relative to the minimum number
of cores used for each series of simulations at a given maximum grid size and number of
AMR levels. As before, the single grid simulations show very good scaling properties. The
dashed line shows the slope of the perfect speedup curve. Those runs using AMR show
very good speedup for lower numbers of cores, but then quickly cap out again. This is
likely due to the fact that they are able to achieve a very low wall-clock time on far few
cores than the singe grid case.

The minimum wall-clock time for each maximum grid size and number of AMR levels
is compiled in Table 3.2 along with the number of cores that were used. Additionally
the total CPU time used has been calculated. For this series of simulations the minimum
wall-clock time was achieved using two AMR levels and a maximum grid size of 5122 on
16 cores. This run also used the lowest amount of CPU time at just 1.41 hours. When
compared to the fastest single grid, which used 6.72 CPU hours, this represents a savings
of 79%.

AMR Levels Max. Box Size Cores Wall-Clock Time (s) CPU Time (h)
256 128 376 13.37

0 384 64 496 8.82
512 64 378 6.72
256 32 356 3.16

1 384 32 370 3.29
512 16 374 1.66
256 32 332 2.95

2 384 16 330 1.47
512 16 317 1.41

Table 3.2: Minimum wall-clock times for ∆x = 2
4096

For the next set of simulations, the resolution on the finest level was increased to
∆x = 2

8192
. A stable fixed time-step of ∆t = 2.0 × 10−6 was used on the finest level and

320 time-steps were taken on the finest level of each simulation. The maximum grid size,
number of AMR levels, and number of cores was allowed to vary. The single grid runs in
this set of simulations took over an hour and so were terminated as to not waste computer
resources. Additionally, a set of simulations with 3 levels of AMR was added.

Figure 3.9 shows the wall-clock timings against the number of cores for simulations
using up to 3 levels of AMR. For a given number of cores, runs using 2 or 3 AMR levels
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performed better than those using just one. Using 3 AMR levels does not appear to have
any advantage over using 2. It is likely because the features for this test case are highly
localized and all of the AMR levels cover roughly the same geometric area in the domain.
Hence there is not a significant reduction in the number of grid points that need to be
updated. Additionally, the operations required for synchronization are expensive due to
the elliptic solves. Overall it appears that using a maximum grid size of 5122 achieves lower
wall-clock times.

Figure 3.10 shows the relative speedup against the number of cores for the same set
of simulations. The dashed lines once again show the slope of the perfect speedup curve.
Unlike the previous sets of simulations, the AMR runs are continuing to achieve speedup
for larger numbers of cores. For 2 AMR levels it appears that the relative speedup is at
least doubled when the number of cores is quadrupled.

The minimum wall-clock time for each maximum grid size and number of AMR levels
is compiled in Table 3.3 along with the number of cores that were used. Additionally
the total CPU time used has been calculated. For this series of simulations the minimum
wall-clock time was achieved using 2 AMR levels and a maximum grid size of 3842 on 64
cores. This run used 23.86 CPU hours, which represents a savings of at least 81% over the
equivalent single grid run.

AMR Levels Max. Box Size Cores Wall-Clock Time (s) CPU Time (h)
256 128 > 1h > 128

0 384 128 > 1h > 128
512 128 > 1h > 128
256 128 1559 55.43

1 384 128 1700 60.44
512 32 1742 15.48
256 128 1407 50.02

2 384 64 1342 23.86
512 32 1451 12.9
256 128 1527 54.29

3 384 64 1399 24.87
512 64 1423 25.29

Table 3.3: Minimum wall-clock times for ∆x = 2
8192

For the last set of simulations, the resolution on the finest level was increased to ∆x =
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2
16384

. A stable fixed time-step of ∆t = 2.5×10−6 was used on the finest level and 256 time-
steps were taken on the finest level of each simulation. The maximum grid size, number
of AMR levels, and number of cores was allowed to vary. Again, no single grid runs were
carried out due to the significant amount of time they required.

Figure 3.11 shows the wall-clock timings again the number of cores for simulations
using up to 3 levels of AMR. It appears that this problem is large enough that the amount
of wall-clock time used continues to decrease for large numbers of cores. Additionally, a
maximum grid size of 5122 appears to the optimal grid size for a given number of cores.
Figure 3.12 shows the relative speedup for the same set of simulations, although it was less
merit than for the previous simulations as there are fewer data points. The dashed lines
again show the slope of the perfect speedup curve.

The minimum wall-clock time for each maximum grid size and number of AMR levels
is compiled in Table 3.4 along with the number of cores that were used. Additionally the
total CPU time has been calculated. For this series of simulations the minimum wall-clock
time was achieved using 2 AMR levels and a maximum grid size of 5122 on 128 cores. If
the number of cores were doubled up to 256 it is very likely that lower wall-clock times
could be achieved.

AMR Levels Max. Box Size Cores Wall-Clock Time (s) CPU Time (h)
256 128 3545 126.0

1 384 128 2869 102.0
512 128 1.8h 230.4
256 128 2929 104.14

2 384 128 2437 86.65
512 128 1896 67.41
256 128 2995 106.48

3 384 128 2640 93.87
512 128 2009 71.43

Table 3.4: Minimum wall-clock times for ∆x = 2
16384

3.2.3 Discussion

The results of the previous section have demonstrated a number of important aspects of
the AMRINS code. The first is that, in all but the most trivial grid resolutions, adaptive
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mesh refinement offers a significant cost savings over a single grid in terms of both wall-
clock time and number of cores used. More succinctly, AMR requires significantly less
CPU time. In most cases, using a maximum box size of 5122 was the most advantageous.
This became most evident for the very high resolution cases. Lastly, the code appears to
scale well and a factor of at least 2 speedup can be achieved by quadrupling the number
of cores used.

A corollary to the above is that for a given computer system, an AMR code can be
used to perform simulations that would not be accessible with a single grid. This has
important implications for scientists with access to limited computer resources. In a later
chapter three dimensional simulations with a resolution equivalent to a single grid with
768x768x384 grid points will be performed using only 24 cores in 4 days on a single node
system. A simulation of this size might typically require over 500 cores using a single grid
on an HPC cluster.

The number of different computer architectures which are available is staggering. While
traditional Cray-type HPC clusters have a large number of nodes with 1 or two processors
per node, many commodity HPC clusters today are built using large chips with as many as
6 to 8 cores per processor, with large shared L2 and L3 caches. It is not realistic to expect
that a software application will run optimally with the same parameters on both of these
very different types of systems. It is not clear why a maximum grid size of 512 was optimal
in our particular study. This could be due to any number of factors including various cache
sizes and interconnect speeds. In light of this, it would be prudent for any application with
as many parameters affecting performance as AMRINS to include a simple benchmarking
test such as the one presented here which users could use to tune the code for a particular
computer system.

While all of testing was done in two dimensions, the results will be extrapolated and a
maximum grid size of 643 = 5122 will be used in three dimensions. In the future, similar
three dimensional scale testing should be performed to determine optimal grid parameters
for three dimensional simulations. Such a study could help differentiate between the effects
of node interconnect and cache sizes. A 643 grid will occupy the same space in memory
as a 5122 grid, however it requires significantly more communication overhead. Thus if
it were found that 643 is the optimal grid size for three dimensional simulations, then it
could be concluded that the cache size is the limiting factor. However, if a larger grid size
were more optimal in three dimensions, then it could be concluded that communication
overhead is the limiting factor.
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Figure 3.4: The top panel shows the initial vorticity field for the benchmark problem taken
from Clercx and Bruneau [18]. After the start of the simulation, the vortex dipole begins
propagating downwards, eventually interacting wit the bottom boundary as can be seen in
the bottom panel.
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Figure 3.5: Wall-clock time vs. number of cores for ∆x = 2
2048

. The black curve corresponds
to a maximum grid size of 2562, the blue curve to 3842, and the red curve to 5122. The
runs with 1 and 2 levels of AMR achieve roughly the same wall-clock times as the single
grid run using far fewer cores.
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Figure 3.6: Relative speedup vs number of cores for ∆x = 2
2048

. The speedup is calculated
relative to the smallest number of cores used in each series of simulation as it was impracti-
cal to run these simulations on one core. The black curve corresponds to a maximum grid
size of 2562, the blue curve to 3842, and the red curve to 5122. The single grid runs achieve
good scalability for for a maximum grid size of 2562. The AMR runs however demonstrate
poor speedup. This is due to the fact that they already achieve a low wall-clock time using
a small number of cores.

65



Figure 3.7: Wall-clock time vs. number of cores for ∆x = 2
4096

. The black curve corresponds
to a maximum grid size of 2562, the blue curve to 3842, and the red curve to 5122. Again,
the AMR runs achieve roughly the same wall-clock time as the single grid runs using far
few cores.
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Figure 3.8: Relative speedup vs. number of cores for ∆x = 2
4096

. The speedup is calculated
relative to the smallest number of cores used in each series of simulations as it was imprac-
tical to run these simulations on one core. The black curve corresponds to a maximum
grid size of 2562, the blue curve to 3842, and the red curve to 5122. The single grid runs
achieve good scalability for all numbers of cores, while the AMR runs only achieve good
scalability for the small numbers of cores. This is again due to the fact that the AMR
simulations quickly obtain a low wall-clock time on a small number of cores.
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Figure 3.9: Wall-clock time vs. number of cores for ∆x = 2
8192

. The black curve corresponds
to a maximum grid size of 2562, the blue curve to 3842, and the red curve to 5122. All
single grid runs took over an hour of wall-clock time so they were terminated. Additionally,
a series of runs with 3 levels of AMR were conducted. It appears that there is no gain from
using 3 levels of AMR over 2 levels.

68



Figure 3.10: Relative speedup vs. number of cores for ∆x = 2
8192

. The speedup is cal-
culated relative to the smallest number of cores used in each series of simulation as it
was impractical to run these simulations on one core. The black curve corresponds to a
maximum grid size of 2562, the blue curve to 3842, and the red curve to 5122. Most of the
AMR simulations achieve a speedup of at least two by quadrupling the number of cores
used.
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Figure 3.11: Wall-clock time vs. number of cores for ∆x = 2
16384

. The black curve corre-
sponds to a maximum grid size of 2562, the blue curve to 3842, and the red curve to 5122.
For all runs it using a maximum grid size of 5122 appears to be the most optimal. Again,
there is no advantage to using 3 levels of AMR over 2.
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Figure 3.12: Relative speedup vs. number of cores for ∆x = 2
16384

. The speedup is
calculated relative to the smallest number of cores used in each series of simulation as it
was impractical to run these simulations on one core. The black curve corresponds to a
maximum grid size of 2562, the blue curve to 3842, and the red curve to 5122. While the
speedup curves are less meaningful as there are only 2 data points for many simulations,
the 5122 case using 3 AMR levels again shows a speedup of 2 when the number of processors
is quadrupled.
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3.3 Vortex-Dipole Wall Interactions

As mentioned in the previous section, Clercx and Bruneau [18] proposed the interaction
of a two-dimensional vortex dipole with a solid boundary as a challenging computational
benchmark for incompressible Navier-Stokes solvers. Initial conditions are given by 3.1 and
the computational domain is taken to be a 2x2 square with no-slip boundary conditions.
After initialization, the dipole propagates downward, shedding its shielding in the process,
and finally interacting with the bottom boundary. With the given initial conditions the
integral-scale Reynolds number is approximately ReI = 1

ν
.

In [18] a finite difference solver based on the primitive variable form of the Navier-
Stokes equations, (1.1) - (1.2), as well as a spectral collocation solver based on the vorticity
equation (1.19) were used to carry out the simulations. Experiments were conducted over
a broad range of Reynolds numbers, and at each Reynolds number the resolution was
gradually increased until convergence was achieved. The total kinetic energy and total
enstrophy time-series were analyzed, and the maximum values of enstrophy and the time
at which they occurred were recorded. All of the metrics are intended for benchmarking
purposes.

In a follow up study by Kramer and Clercx [28], two separate regimes were identified
based on the integral-scale Reynolds numbers. For ReI / O(104), the dipole rebounds
from the wall, creating vorticity of opposite sign in the boundary layer which rolls up into
another weaker vortex. The newly formed vortices pair with their parent vortices to form
new dipoles of unequal strength and recirculate to interact with the bottom boundary
a second time. This process continues until dissipation occurs. For ReI ' O(104), a
recirculation region forms, leading to an instability in the boundary layer and an eruption
of smaller vortices.

While AMRINS has been tested with a number of simple benchmark problems in the
past, this is the most rigorous benchmark it has been tested with, to date. Additionally,
while the vortex-dipole benchmark has been used to test a number of different codes such
as [45], [26] and [23], this is the first time we are aware of that it has been applied to a
code using block-structured adaptive mesh refinement. While the wavelet based code in
[23] also used resolution only where it is needed, the results had a wide margin of error
in the maxima of the total enstrophy time-series. In [26] a spectral code which uses a
penalization method on the boundaries appears to perform well against this benchmark.
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3.3.1 Setup

To test the abilities of AMR, the vortex-dipole bench mark was conducted on a single-
grid for integral-scale Reynolds numbers 1250, 2500, 5000, and 10, 000. Resolution was
gradually increased at each Reynolds number to ensure grid convergence. The bench
mark was then conducted for the same Reynolds numbers at the same resolutions using
AMR. Two levels of AMR were used in each simulation with an refinement ratio of 4, and
regridding was performed on each level every 2 time-steps. A maximum grid size of 5122

was also used, as this was determined to be optimal in the previous section. Cells were
tagged for refinement whenever |ω| > 7.5. All of the simulations were conducted on the
computer system “Orca” described in Section 1.41.

3.3.2 Results

Re 1250

For an integral-scale Reynolds number of 1250, the benchmark was run three times on
a single grid using 2048 × 2048, 3072 × 3072, and 4096 × 4096 grid cells respectively.
As computed in the previous section, the initial circulation Reynolds number is ReΓ ≈
105ReI ≈ 1.312 × 105. The top panel of Figure 3.4 shows the initial vorticity field. Each
shielded monopole has a core which is surrounded by a shielding of opposite vorticity. The
bottom panel shows the dipole which forms and propagates downwards just after it makes
contact with the bottom boundary. Since we are not interested in the second weaker dipole
which forms from the shielding, as its dynamics are similar to the stronger dipole, we will
focus on the area directly surrounding the stronger dipole in the remaining figures.

Figures 3.13 and 3.14 show a time-series of the dipole interacting with the bottom
boundary for the simulation using 4096 × 4096. Each half of the initial dipole induces
vorticity of opposite circulation in the boundary layer adjacent to the solid wall due to the
no-slip condition. The boundary layer rolls up to form a new dipole of unequal strength
compared to its parent vortex. Because the parent vortex in each of the newly formed
dipoles is unevenly matched with its child vortex the dipoles have nonzero angular mo-
mentum and recirculate to interact with the wall a second time. This cyclical process
occurs twice more until viscous dissipation finally diffuses the vortices.

1Unfortunately, there was an issue with the Sharcnet filesystem during the time which all of these
simulations were conducted which caused performance issues due to slowed I/O capabilities, so there is no
reliable timing data available to compare the performance of the single grid and AMR runs
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The same series of simulations was repeated using AMR. The AMR runs had a base
grid resolution of 128× 128, 192× 192, and 256× 256, which with 2 levels of AMR and a
refinement ratio of 4 yields a resolution on the finest level equivalent to that of the single
grid runs. Figures 3.15 and 3.16 show a comparison of the vorticity field for the single
grid run of resolution 4096 × 4096 with the AMR run of base grid resolution 256 × 256
at a similar output time. There is a very good agreement between the two simulations.
Additionally, the vorticity field of the AMR run is overlaid with the outline of the grids
used. Notice that the grids evolve in time to follow the flow features.

To further demonstrate the equivalence of the results for the highest resolution single
grid and the AMR runs, we plot the time-series of the total kinetic energy and total
enstrophy for both cases in Figure 3.17. It can be immediately seen that the kinetic energy
and enstrophy curves are identical for the single grid and AMR runs. The maximum values
of the enstrophy and the times at which they occur are tabulated in Table 3.5. The values
from [18] are included for comparison purposes. Recall that two numerical methods were
used in [18]: a finite difference method and a spectral method. The times at which the
maximum enstrophy values occur agree to two decimal places for all resolutions. For the
finest resolution, both the single grid and AMR runs agree with the benchmark values for
the maximum enstrophy to less than 1%.
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Figure 3.13: A time-series of the vorticity field after the initial dipole collides with the
bottom boundary for Re = 1250. The initial dipole halves induce vorticity of opposite
circulation in the boundary layer, which eventually rolls up and the parent vortices to
form two new dipoles of unequal strength. These dipoles then recirculated and collide with
the wall a second time. (Cont’d in Figure 3.14)

75



Figure 3.14: (Cont’d from Figure 3.13) After the new dipoles interact with the wall, the
recirculation process continues until viscous dissipation eventually diffuses the vortices.
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Figure 3.15: A comparison of the single grid and AMR runs with the highest resolution
for Re = 1250 at similar times. There is excellent agreement between the two simulations.
The vorticity field in the lower panel is overlaid with the outline of the grids used for the
AMR simulation.
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Figure 3.16: A comparison of the single grid and AMR runs with the highest resolution
for Re = 1250 at similar times. There is excellent agreement between the two simulations.
The vorticity field in the lower panel is overlaid with the outline of the grids used for the
AMR simulation.
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Figure 3.17: A comparison of the total kinetic energy and total enstrophy curves for the
highest resolution single grid and AMR simulations for Re = 1250. There is a very good
agreement between both sets of simulations for all times.

Base Grid Resolution t1 Ω1 t2 Ω2

2048× 2048 0.34197 1829.2 0.61616 720.6
Single Grid 3072× 3072 0.34134 1871.0 0.61553 725.3

4096× 4096 0.34105 1886.7 0.61530 726.9
128× 128 0.33968 1819.4 0.61393 726.8

AMR 192× 192 0.33946 1869.0 0.61372 728.6
256× 256 0.33925 1886.4 0.61292 732.4

Clercx. FD 1536× 1536 0.341 1891 0.616 724.9
Clercx. SM 384× 384 0.3414 1899 0.6162 725.3

Table 3.5: The first two maximum enstrophy values, Ω1 and Ω2, and the times at which
they occur, t1 and t2, respectively, for Re = 1250. Results from [18] are included for
comparison purposes.
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Re 2500

For an integral-scale Reynolds number of 2500, the benchmark was run twice on a single
grid using 3072×3072, and 4096×4096 grid cells, respectively. As computed in the previous
section, the initial circulation Reynolds number is ReΓ ≈ 105ReI ≈ 2.625×105. The same
series of simulations was repeated using AMR. The AMR runs had a base grid resolution of
192× 192, 256× 256, and 384× 384, which with 2 levels of AMR and a refinement ratio of
4 yields a resolution on the finest level equivalent to that of a single grid with 3072× 3072,
4096× 4096, and 6144× 6144 grid cells respectively.

Figures 3.18 and 3.19 show a time series of the simulation carried out using a single
grid and a resolution of 4096 × 4096. The dynamics at this Reynolds number are similar
to those seen in the previous case with Re = 1250 with the exception that the vortices
persist longer. This can be seen by comparing the bottom panel of Figure 3.14 with the
bottom panel of Figure 3.19, which occur at roughly the same physical time.

Figures 3.20 and 3.21 show a comparison of the single grid run of resolution 4096×4096
with the AMR run with base grid resolution 384 × 384 at similar output times. There is
again a good qualitative agreement between the two simulations.

In Figure 3.22 the total kinetic energy and total enstrophy curves of the highest reso-
lution single grid and AMR runs are plotted against each other. Good agreement is shown
between the two methods for all times. The first two maximum values of the enstrophy and
the times at which they occur are compiled in Table 3.6 for all of the single grid and AMR
runs. Additionally, the values from [18] are included for comparison purposes. The times
at which the maximum values occur agree to two decimal places for all simulations.The
maximum enstrophy values of the highest resolution single grid run were within 1% of
the finite difference code, and 2% of the spectral code results from [18], while the highest
resolution AMR run was within < 1% and 1%, respectively, of the same benchmark results.
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Figure 3.18: A time-series of the vorticity field after the initial dipole collides with the
bottom boundary for Re = 2500. The dynamics for the first part of the evolution are
similar to the Re = 1250 case. (Cont’d in Figure 3.19)
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Figure 3.19: (Cont’d from Figure 3.19) The viscous dissipation is weaker than in the
previous case so vorticity persists for longer times in this simulation.
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Figure 3.20: A comparison of the single grid and AMR runs with the highest resolution
for Re = 2500 at similar times. There is excellent agreement between the two simulations.
The vorticity field in the lower panel is overlaid with the outline of the grids used for the
AMR simulation.
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Figure 3.21: A comparison of the single grid and AMR runs with the highest resolution
for Re = 2500 at similar times. There is excellent agreement between the two simulations.
The vorticity field in the lower panel is overlaid with the outline of the grids used for the
AMR simulation.
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Figure 3.22: A comparison of the total kinetic energy and total enstrophy curves for the
highest resolution single grid and AMR simulations for Re = 2500. There is a very good
agreement between both sets of simulations for all times.

Base Grid Resolution t1 Ω1 t2 Ω2

Single Grid 3072× 3072 0.32841 3170.2 0.60888 1399.7
4096× 4096 0.32793 3234.6 0.60847 1410.2
192× 192 0.32655 3165.1 0.60672 1404.3

AMR 256× 256 0.32615 3217.4 0.60539 1417.8
384× 384 0.32554 3277.9 0.60732 1423.4

Clercx. FD 2048× 2048 0.328 3270 0.608 1408
Clercx. SM 512× 512 0.3279 3313 0.6089 1418

Table 3.6: The first two maximum enstrophy values, Ω1 and Ω2, and the times at which
they occur, t1 and t2, respectively, for Re = 2500. Results from [18] are included for
comparison purposes.
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Re 5000

For an integral-scale Reynolds number of 5000, the benchmark was run on a single grid
using 4096 × 4096 grid cells. As computed in the previous section, the initial circulation
Reynolds number is ReΓ ≈ 105ReI ≈ 5.25 × 105. The same series of simulations was
repeated using AMR. The AMR runs had a base grid resolution of 256 × 256, 384× 384,
and 512 × 512. With 2 levels of AMR and a refinement ratio of 4 this yields a resolution
on the finest level equivalent to that of a single grid run with 4096 × 4096, 6144 × 4096,
and 8192× 8192 grid cells, respectively.

Figures 3.23 and 3.24 show a time series of the simulation carried out using a single
grid and a resolution of 4096× 4096. The dynamical processes observed at this Reynolds
number are quite different than the previous two. The bottom panel of Figure 3.23 reveals
that smaller vortices continue to be generated in the boundary layer in the wake of the two
newly formed dipoles. After the child dipoles recirculate and undergo a second collision
with the boundary, several dipoles are generated travelling in different directions, as can
be seen in the middle panel of Figure 3.24. The entire cyclical motion persists for a long
time after the initial collision producing a complex pattern of vortices. A comparison with
the AMR simulations is omitted here for the sake of brevity, however the results match
the time series shown for the single grid simulation.

To compare the AMR and single grid simulations of finest resolution, the total kinetic
energy and total enstrophy are shown in Figure 3.25. The kinetic energy curves agree
for both simulations almost exactly. For the enstrophy curves, the AMR case slightly
overshoots the maximum values predicted by the single grid case, however the AMR run
has a higher resolution on its finest level. The first two maximum values of the enstrophy
and the time at which they occur are compiled in Table 3.7, along with the values from
[18] for comparison purposes. The times at which the maxima occur agree to two decimal
places for all simulations. Additionally, the highest resolution AMR run agrees with the
maximum values of the benchmark to within 2%.
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Figure 3.23: A time-series of the vorticity field after the initial dipole collides with the
bottom boundary for Re = 5000. While the overall dynamics are similar here to the
previous two cases, the bottom panel reveals a trail of smaller vortices being shed from the
boundary layer in the wake of the two child dipoles. (Continued in Figure 3.24)
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Figure 3.24: (Continued from Figure 3.23) After the first pair of child dipoles recirculate
and collide with the wall a second time, several dipole pairs are generated, travelling in
various directions. After the recirculation process continues again, the bottom panel reveals
a a complex grouping of vortices which persist late into the simulation before finally being
dissipated. 88



Figure 3.25: A comparison of the total kinetic energy and total enstrophy curves for
the highest resolution single grid and AMR simulations for Re = 5000. There is good
agreement between both simulations for all times. The AMR run slightly overshoots the
maximum enstrophy values of the single grid run, however since the AMR run has finer
resolution this could simply mean that the single grid simulation is under resolved.

Base Grid Resolution t1 Ω1 t2 Ω2

Single Grid 4096× 4096 0.32387 5195.1 0.60279 3514.9
256× 256 0.32240 5167.9 0.60067 3522.0

AMR 384× 384 0.32139 5367.9 0.60060 3671.5
512× 512 0.32114 5446.84 0.60063 3723.4

Clercx. FD 1536× 1536 0.323 5435 0.605 3667
Clercx. SM 384× 384 0.3234 5536 0.6035 3733

Table 3.7: The first two maximum enstrophy values, Ω1 and Ω2, and the times at which
they occur, t1 and t2, respectively, for Re = 5000. Results from [18] are included for
comparison purposes.
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Re 10,000

For an integral-scale Reynolds number of 10, 000, the benchmark was run twice on a single
grid using 4096×4096 and 6144×6144 grid cells respectively. As computed in the previous
section, the initial circulation Reynolds number is ReΓ ≈ 105ReI ≈ 1.05× 106. The same
series of simulations was repeated using AMR. The AMR runs had a base grid resolution
of 384× 384 and 512× 512, which with 2 levels of AMR and a refinement ratio of 4 yields
a resolution on the finest level equivalent to that of a single grid run with 6144× 6144 and
8192× 8192 grid cells respectively.

Figures 3.26 through 3.28 show a timer series of the simulation carried out using AMR
with a base grid resolution of 512 × 512. The dynamics of this case are similar to the
previous case, with the addition of a boundary layer instability as discussed in [28]. The
top panel in Figure 3.29 shows a close up of the right dipole shortly after it collides with
the bottom boundary. The boundary layer rolls up due to a shear-instability before it even
detaches from the wall. The bottom panel of Figure 3.29 shows the distribution of vorticity
in the boundary layer at the same time as the top panel, confirming that there are regions
of alternating vorticity.

An important observation from the time series is that the symmetry of the simulation
is broken. As observed in laboratory experiments, the symmetry of the system is unstable
to small perturbations. This perturbation could come from any number of steps in the
solution procedure, including the regridding or synchronization steps. Further study needs
to be done, turning off various features of the model one at a time, to determine the exact
cause.

The first two maximum values of the enstrophy and the times at which they occur
are compiled in Table 3.8. The value and time for the first maximum as computed in
[28] is included, however the authors did not give a time of occurrence and value for the
second maximum. The time at which the first maximum occurs agrees to two decimal
places for all simulations. There is a difference of 5% in the maximum enstrophy value
of the AMR run with the highest resolution and that of the benchmark. The time of
occurrence for the second enstrophy maximum agree to one decimal place amounts of the
the simulations. The value of the second enstrophy maximum of the single grid run with
the finest resolution and the AMR run with the finest resolution agrees to within 1%. It
is likely that the resolution of both the AMR and single grid runs needs to be increased
further to better agree with the benchmark results. The divergence between the enstrophy
curves for the single grid and AMR runs after the second maximum occurs is likely due to
the symmetry breaking of the AMR simulation.
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Figure 3.26: A time-series of the vorticity field after the initial dipole collides with the
bottom boundary for Re = 10, 000. The vorticity field from the highest resolution AMR
run is shown, overlaid with the outline of the grids used. At this Reynolds number there is
an instability in the boundary layer which causes vortices to roll up before the boundary
layer detaches. (Cont’d in Figure 3.27) 91



Figure 3.27: (Cont’d from Figure 3.27) As the child dipoles continue to recirculated and
interact with the wall, the structure of the swirls in the vorticity field is much finer at this
Reynolds number. Additionally, a number of strong compact vortices are ejected from the
boundary layer in the wake of the child dipoles. (Cont’d in Figure 3.28)
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Figure 3.28: (Cont’d from Figure 3.27) Towards the end of the simulation the symmetry
of the vorticity field is broke, as seen in the top pannel. Notice that the grids used in the
bottom panel are not symmetric either. The cause of the symmetry breaking still needs to
be determined.
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Figure 3.29: The top panel shows the right half of the dipole a very short time after the
initial dipole collides with the wall. The shear instability in the boundary layer can be
seen as small vortices roll up even before the boundary layer detaches from the wall. The
lower panel shows the vorticity profile in the boundary layer at the same instant.

94



Figure 3.30: A comparison of the total kinetic energy and total enstrophy curves for the
highest resolution single grid and AMR simulations for Re = 10, 000. There is good
agreement between both simulations for early times (t . 0.6), however after this they
diverge. It is likely that this is caused by the symmetry breaking of the AMR simulation.

Base Grid Resolution t1 Ω1 t2 Ω2

Single Grid 4096× 4096 0.32068 7941.5 0.62464 5348.9
6144× 6144 0.32029 8650.8 0.62782 6011.7

AMR 384× 384 0.31828 8621.4 0.62528 4989.3
512× 512 0.31837 8942.2 0.63330 5989.8

Clercx. SM 1536× 1024 0.3201 9426 - -

Table 3.8: The first two maximum enstrophy values, Ω1 and Ω2, and the times at which
they occur, t1 and t2, respectively, for Re = 10, 000. Results from [28] are included for
comparison purposes.
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Re 100,000

While the highest Reynolds number considered for the vortex dipole wall interactions
simulated in [28] is Re = 20, 000, others have modelled dynamics in regimes higher than this
using a variety of methods. Spalart, Strelet, and Shur [43] model the interaction of a Lamb-
Oseen type dipole pair with a solid boundary, with and without a constant background
flow, using a Reynolds-Averaged Navier-Stokes (RANS) type model. The translational
Reynolds number of their simulations is Retr = 5 × 106, however their results are likely
severely under resolved or suffer from excessive numerical dissipation as the vorticity field
is as smooth or smoother than the low Reynolds number cases we have shown above. Turk,
Coors, and Jacob [50] also model the interaction of a Lamb-Oseen type dipole pair with
a solid boundary using a vorticity equation based numerical model. They find that for a
circulation Reynolds number of Re = 3.33 × 106 that very strong compact vortices form
and erupt from the boundary layer. Lastly, in order to isolate the stability of the boundary
layer at Reynolds number up to 105, Gargano et al. [22] model flow in the boundary layer
using a vorticity equation based model which is forced by a large rectilinear vortex. They
find a complex pattern of vortices form in the boundary layer on a scale much smaller than
that seen in the Re = 104 regime presented above.

To test the limits of the AMR code, the Clercx and Bruneau dipole problem was
simulated, this time using an integral-scale Reynolds number of ReI = 105. The circulation
based Reynolds number for this case is therefore ReΓ = 105ReI = 1.05 × 106, and the
translational Reynolds number is Retr ≈ 3

5
ReI = 6.0× 104. The simulation was performed

using two levels of AMR with a refinement ratio of 4. Regridding was performed every two
time-steps on each level and a base grid resolution of 1024× 1024 grid cells was used. This
gives a resolution of ∆x = 2

16384
on the finest level. The simulation was performed on the

system “Orca” using 128 cores. The simulation was run to a time of t = 0.6.

Since we are interested in the boundary layer physics, a time series of the right half of
the dipole is shown around the moment at which the first collides with the wall is show in
Figures 3.31 to 3.34. This time series compares the dynamics of the integral-scale Reynolds
number 2500, 5000, 10, 000, and 100, 000 cases. As can be seen in the bottom right panel of
Figure 3.31 the boundary layer dynamics at Reynolds number 100, 000 is markedly different
from the previous cases. The boundary layer has rolled up into a number of very strong,
compact vortices with circulation opposite to that of the parent vortex. Figures 3.32 and
3.33 show that a cloud of child vortices recirculate with the initial parent vortex, however
the structure is much less coherent that the other three cases. Additionally, the boundary
layer continues to shed a number of strong, compact vortices. Lastly, it can be seen in
Figure 3.34 that the parent vortex and cloud of child vortices reach the boundary for a
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second time much faster than the do in the lower Reynolds number cases.

Figure 3.35 compares a close up of the boundary layer an infinitesimally small time
after the dipole collides with the wall for the integral-scale Reynolds number of 10, 000,
and 100, 000. The maximum vorticity in the Re = 100, 000 simulation is roughly three
times larger than the Re = 10, 0000 case. Additionally a large number of small vortices,
with both positive and negative circulation, can be seen rolling up the in the boundary layer
and undergoing a series of interactions before they exit the boundary layer. In comparison,
only one large vortex with negative circulation is generated in the left panel. Finally, Figure
3.37 shows the vorticity in the boundary layer at the same time and location as Figure
3.35 for the Re = 100, 000 case.

3.3.3 Discussion

We have seen in the previous simulations that AMR gives results that are equivalent to a
single grid simulation using the same underlying algorithm. The total kinetic energy and
enstrophy time series showed excellent agreement between the AMR and single grid simu-
lations. Additionally, the maximum entrophy values and the times at which the occurred
agreed well with the results from Clercx and Bruneau [18]. For the AMR simulation with
integral-scale Reynolds number 10, 000, the symmetry of the problem was broken. The
cause of this symmetry breaking is as of yet unclear, and needs to be determined by sys-
tematic further study.

A higher integral-scale Reynolds number regime of Re = 100, 000 was simulated for the
vortex dipole wall interaction presented in [18]. To the best of our knowledge, this is the
first time this regime has been simulated for this particular problem. In this case the initial
dipole induces the formation of a large number of strong, compact vortices which erupt
from the boundary layer. A close-up of the boundary layer just after the dipole collides
with the wall initially reveals a complex series of interactions among small vortices which
is not observed at lower Reynolds numbers.

While the dynamics of the last simulation are interesting, it is not clear whether they
would still be physically realized in a fully three-dimensional flow. As noted in the lit-
erature, [30], a three-dimensional pair of counter-rotating vortex tubes can undergo both
a short wave instability, known as the elliptic instability, and a long wave instability,
known as the Crow instability, which will eventually leading to their breakdown. This
phenomenon has been observed in wind tunnel and wave-tank experiments [13, 24]. The
three-dimensional vortex pair problem, along with other possible extensions of the simula-
tions in this section will be discussed in the following chapter.
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Figure 3.31: A time-series comparing the boundary layer dynamics shortly after the initial
dipole collides with the wall for Reynolds numbers 2500, 5000, 10, 000, and 10, 000. The
highest Reynolds number case is remarkably different from the other three as there is the
appearance of a number of strong, compact vortices which form and are ejected from the
boundary layer. (Cont’d in 3.31)
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Figure 3.32: (Cont’d from 3.31) As the initial vortex recirculates, the smaller vortices are
entrained and carried with it, as shown in the bottom right panel. This is in contrast to
the other three cases were vorticity of opposite circulation rolls up from the boundary layer
and pairs with the initial vortex to form a new dipole. (Cont’d in 3.33)
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Figure 3.33: (Cont’d from 3.32) For the cases with Reynolds number 5000, 10, 000 and
100, 000 a trail of vortices continues to be shed in the wake of the newly formed dipole.
The bottom right panel shows the primary vortex in the highest Reynolds number case
does not regain as much height as in the other three cases. (Cont’d in 3.34)
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Figure 3.34: (Cont’d from 3.33) The bottom right panel shows the primary vortex quickly
reaches the wall again, leaving behind it a thing wispy tail of positive vorticity in the
highest Reynolds number case. In the other three cases the newly formed dipole is still
recirculating and will not make contact with the wall again until further into the simulation.
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Figure 3.35: A close-up comparison of the boundary layer structures for the Re = 10, 000
(left) and Re = 100, 000 (right) cases. In the Re = 10, 000 case only one large vortex of
opposite circulation to the primary vortex has rolled up and an formed in the boundary
layer. In the Re = 100, 000 case a the boundary layer has formed a a number of strong,
compact vortices which continue to rollup and interact as they exit the boundary layer.

Figure 3.36: An close-up of the small scale vortices formed at Reynolds number 100, 000
overlaid with the grid reveals that all of the flow features are adequately resolved. At the
resolution used for this simulation there are approximately 8 grid points per 1.0 × 10−3

units.
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Figure 3.37: The vorticity profile the boundary layer at the same instant as shown in the
right panel Figure 3.35 for Re = 100, 000.
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3.4 Vortex Ring Wall Interactions

There have been a number of laboratory and computational studies on the interaction of
vortex rings with a solid wall, and a thorough review of the topic is given in [55]. We will
briefly discuss some of the previous investigations here.

One of the most complete set of laboratory experiments on this problem, conducted
over a wide range of Reynolds numbers, is presented in [15]. The results are encyclopedic
in nature and have proven to be an invaluable tool for comparison in a number of com-
putational studies. A vortex ring is formed by forcing fluid through a restricted opening
using a pump. Dye is placed both in the orifice from which the vortex ring is generated
and along the bottom wall to visualize the interaction.

In [15] it was observed that as the initial or primary vortex ring (PVR) interacts with the
wall it induces vorticity of opposite circulation in the boundary layer. This vorticity rolls
up and separates from the boundary later forming a secondary vortex ring (SVR) which
migrates up and over top of the primary vortex ring into its centre. For translational
Reynolds numbers Retr > 350 the formation of a weaker tertiary vortex ring (TVR) was
also observed. In the range of Reynolds numbers 470 < Retr < 1600, the SVR undergoes a
wavy instability and forms what was termed a loop structured vortex ring in [15]2. In this
case the SVR is stretched under and over the PVR.

For translational Reynolds numbers in the range Retr > 2500, the SVR and TVR are
much stronger. The SVR again develops a wavy instability as it migrates to the centre of
the PVR, however it is much less apparent and the SVR is not pulled under and over the
PVR. This was dubbed a kink strutured vortex ring in [15]. The tertiary vortex ring, which
also has stronger circulation in this regime, also migrates up and over the PVR. Once the
TVR has migrated over the PVR, the velocity it induces on the SVR cause sthe SVR to
be ejected away from the boundary and into the bulk fluid, dragging the TVR with it.
In [15] this process is described as forming a mushroom cloud like structure. The PVR
subsequently breaks down into a turbulent cloud which quickly dissipates. It is noted in
[15] that the structure of the SVR transitions from a loop structured to a kink structured
vortex in the range 1600Retr < 2500.

A number of different computer simulations studies of vortex ring wall interactions have
been performed previously. In [36] a series of axis-symmetric simulations are performed
for a translational Reynolds numbers 564 ≤ Retr ≤ 3000 using a finite difference code.
Additionally a three dimensional simulation is performed for Retr = 1250. Their results

2An excellent sketch of this situation is provided in [15]
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are compared to the laboratory experiments in [56]. In [47] spectral method is used to
simulate both perturbed and unperturbed vortex ring wall interactions at a translational
Reynolds number of Retr = 645. In [16] a lattice-Boltzman type model is used to simulate
both normal and oblique collisions of a vortex ring with a wall for translation Reynolds
numbers up to Retr = 1000. Their oblique collisions are conducted over a wide range of
angles of incidence. Both the vorticity field and vortex core trajectories are compared to
laboratory experiments. In [53] the vortex ring wall interaction problem was used as a test
case to validate an AMR code. Simulations were performed for a translational Reynolds
number of Retr = 570 and 670. The code is able to correctly model the development of
the secondary and tertiary vortex rings, as well as the trajectories of the cores of all three
rings.

With this backdrop, we will look to push the envelope using AMR and try to perform
full three dimensional simulations of the interaction of a vortex ring with a solid wall for
higher Reynolds numbers that have been considered previously.

3.4.1 Setup

To simulate the collision of a vortex ring with a solid wall, a Gaussian vortex ring with
with major radius r0 and the initial velocity profile

uφ =
Γ0

2πσ

(
1− e−σ2/σ2

0

)
φ̂ (3.4)

was used, where φ̂ is the unit vector which is tangential to circles of circulation about the
ring’s core and σ is the radial distance from the ring’s core. The parameters σ0 and Γ0 are
the minor radius and initial circulation, respectively. A sketch of this profile is shown in
Figure 3.38. The major and minor axes, and initial circulation were chosen to be

r0 =
5

12
, σ0 = 0.21r0, Γ0 = 1.8534. (3.5)

The initial translational velocity of the vortex ring is [39]:

Us =
Γ0

4πr0

(
ln

8r0

σ0

− 1

4

)
≈ 1.2. (3.6)

This gives a translational Reynolds number of

Retr =
2Usr0

ν
≈ 1

ν
. (3.7)
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Figure 3.38: A sketch of the vortex ring defined by equaton (3.4).

Comparatively, the vortex Reynolds number is

ReΓ =
Γ0

ν
≈ 1.8534Retr. (3.8)

For the first experiment with Retr = 1000, the computational domain was taken to be a
rectangular box with dimensions 4.0×4.0×2.0. This large domain ensured that the domain
boundaries are sufficiently distant from the ring so as not to effect its evolution. The vortex
ring is positioned over the centre of the bottom boundary at a height of z0=3r0. No-slip
boundary conditions are used on the bottom vertical boundary, while no-shear boundary
conditions are used on all others. Two levels of AMR were used on top of the base grid and
the refinement ratio was taken to be r = 4. Cells on all levels were tagged for refinement
whenever the norm of the velocity exceeded the threshold

‖ω‖ > 7.5 (3.9)

which is approximately 10% of the maximum initial vorticity. A grid efficiency factor of
90% was used and regridding was performed every two time-steps on all levels. The initial
setup is shown in Figure 3.39.

For the next two experiments with Retr = 1500, and Retr = 2000, one quarter of the
ring was simulated using symmetry boundary conditions on a quarter of the full domain,
i.e. a 2 × 2 × 2 box with the vortex ring centred over one corner at a height of z0 = 3r0.
This allowed for a higher resolutions to be achieved without significant extra computational
cost. The Retr = 1000 experiment was also simulated on a half domain and quarter domain
using symmetry boundary conditions to determine what effect, if any, this technique might
have on the results of the higher Reynolds number cases.
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Figure 3.39: The initial setup for the vortex ring wall collision simulations.

The initial conditions were not seeded with a perturbation or any noise as it has been
documented in the literature that using a rectangular grid for a vortex ring wall collision
results in a perturbation of wavenumber four [54]. We will examine what effect AMR has
on this result.

3.4.2 Results

Re 1000

For the first set of simulations, the Reynolds number was taken to be Retr = 1000. This
simulation was performed on the full domain using a base grid resolution of 32× 32× 16,
48× 48× 24 and 64× 64× 32 grid cells. Computations for the first two resolutions were
carried out on the machine “Hood” described in Section 1.4. The lowest resolution run
required 4 hours of wall-clock time on 24 cores. The second run required 37.5 hours of
wall-clock time on 24 cores. The highest resolution run was conducted on the Sharcnet
cluster described in Section 1.4 and required 81.2 hours of wall clock time on 64 cores.

Figures 3.40 through 3.48 show a time series of the vortex ring collision with the bottom
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boundary. The magnitude of the vorticity field, ‖ω‖, is plotted in three dimensions. Hotter
colours correspond to higher vorticity. The top panel of each figure shows a side view of
the domain, while the bottom panel shows the ring from above. Both the top and bottom
panels occur at the same instant and have the same colour gradient.

Figure 3.40 shows the PVR shortly before it interacts with the wall. As the ring ap-
proaches the boundary, it induces vorticity of opposite circulation in the viscous boundary
layer. This vorticity rolls up and, as the boundary layer separates, forms the SVR. This
process can be seen in Figures 3.41 and 3.42. The SVR migrates upwards and over the
top of the PVR and develops a wavy instability , as seen in Figure 3.43. It is important
to note that PVR does not actually make contact with the bottom boundary; rather, it
“rebounds” and expands parallel to the wall.

At this Reynolds number, as the SVR migrates to the middle of the primary vortex
ring it forms a loop pattern as described in [15]. This can be seen clearly in Figure 3.45
along with the generation of a TVR which has the same circulation as the PVR. Next, the
SVR is pulled under and over the stronger PVR. This interaction continues in an organized
fashion (Figures 3.46 throught 3.48) until eventually all three rings are diffused by viscosity.
Notice in Figure 3.48 that the structures created by the vortex rings interacting remain
quite stable late into the simulation.
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Figure 3.40: The primary vortex ring at it begins to interact with the boundary for Retr =
1000. The upper panel shows a side view of the ring, while the lower panel shows a
top-down view.
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Figure 3.41: The primary vortex ring induced vorticity in the boundary layer with opposite
circulation.
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Figure 3.42: As the vorticity induced in the boundary layer separates, it forms a secondary
vortex ring. This secondary ring migrates up and over top of the primary ring.
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Figure 3.43: As the secondary vortex ring migrates over top of the primary ring it begins
to develop a wavy instability.
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Figure 3.44: The wavy instability of the secondary vortex ring grows as it continues to
migrate into the centre of the primary vortex ring.
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Figure 3.45: Once the secondary vortex ring reaches the centre of the primary vortex ring
it forms the classic loop structures observed in experiments. Additionally, the development
of a tertiary vortex ring can be observed on the outside of the primary ring.
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Figure 3.46: The secondary vortex ring is stretched under and over the primary ring causing
local increases in vorticity.
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Figure 3.47: The primary and secondary vortex rings continue to stretch each other. The
flow remains very organized.
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Figure 3.48: Late in the simulation the flow continues to remain organized as viscosity
slowly dissipates the vorticity field. The primary vortex ring structure is still clearly
visible.
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Re 1500

The simulation was conducted on a quarter domain using Retr = 1500 and symmetry
boundary conditions. The base grid resolution for this run was 32 × 32 × 32 grid cells.
Calculations were carried out on the machine “Boogaloo” described in Section 1.4. The
simulation required approximate 12 hours of wall-clock time to complete using just 16
cores.

Figures 3.49 through 3.55 show a time series of the magnitude of the vorticity field.
Note: the colour gradient was adjusted slightly in this sequence of plots to include more of
the cool region as some of the important features are relatively weak. Figure 3.49 shows
the generation of the SVR, which has a stronger circulation at this Reynolds number than
at Retextuptr = 1000. The SVR again migrates over top of the PVR, as seen in Figure
3.50, and then down into its centre, as seen in Figure 3.51. The waviness of the SVR ring
is not as pronounced in this simulation. Figure 3.51 also reveals that a much stronger TVR
is generated in this simulation. Figure 3.52 shows the TVR being stretched over the top
of the PVR, while simultaneously the SVR is being pulled underneath. The result of this
process is a slowing and thickening of all three structures as can be seen in Figures 3.53
and 3.54. By the end of the simulation, seen in Figure 3.55, the structure of the SVR and
TVR has broken down into wispy filaments, and the PVR is weak and hardly coherent.
Vorticity has not completely diffused at this point however.

Re 2000

In the last experiment, the vortex ring wall interaction is simulated at Retr = 2000 on a
quarter domain using symmetry boundary conditions. The simulation was run using a base
grid resolution of 48 × 48 × 48 grid cells. Computations were carried out on the machine
“Boogaloo” described in Section 1.4 and required 45.5 hours to complete using 24 cores.

Figure 3.56 shows the generation of the SVR, which has an even strong circulation at
this Reynolds number. The SVR again migrates over top of the PVR, developing a wavy
instability, as seen in Figure 3.57. In this case however, the SVR is strong enough to induce
waviness in the PVR. As the SVR migrates to the centre of the PVR it again forms a loop
pattern. The SVR is again pulled under the PVR, however the mutual compression of the
PVR and SVR causes an increase in vorticity in the vicinity of the subduction, as seen in
the bottom panel of Figure 3.58. A stronger TVR is again generated in this simulation. As
the stretching of the SVR continues in Figure 3.59, its circulation continues to intensify.
The PVR continues to be stretched in this region as well. Figure 3.60 shows a network
of strong vortex filaments are starting to form. This picture has a complex topology, and
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while the SVR appears to still be visible in the bottom panel of Figure 3.60, it is not 100%
clear where the PVR ends and the SVR begins. In Figure 3.61 we see that the entire
structure is starting to break down into a cloud of small vortex filaments, until finally at
the end of the simulation the cloud of vortex filaments appears to be random in structure,
as seen in Figure 3.62. Notice the significant drop in the intensity of vorticity in Figure
3.62: the maximum in the vorticity field has decreased by over 50% in a very short amount
of time.
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Figure 3.49: The generation of the secondary vortex ring for the Retr = 1500 case. The
circulation of the secondary ring is strong that in the previous case.
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Figure 3.50: The secondary vortex ring migrates over top of the primary vortex ring.
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Figure 3.51: The secondary vortex ring has migrated into the centre of the primary ring.
Here it is less wavy that in the Retr = 1000 case. Additionally, the tertiary vortex ring
generated at this Reynolds number is stronger and can be seen migrating over top of the
primary vortex ring. 122



Figure 3.52: The tertiary vortex ring is stretched down over top of the primary vortex ring
and is pulled beneath it along with the secondary vortex ring.
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Figure 3.53: As the secondary and tertiary rings continue to be stretched and wrapped
around the primary ring.

124



Figure 3.54: The structures wrapped around the primary vortex ring begin to thicken.
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Figure 3.55: By the end of the simulation the structure of the SVR and TVR has broken
down into wispy filaments, and the PVR is weak and hardly coherent. Vorticity has not
completely diffused at this point however.
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Figure 3.56: The generation of the secondary vortex ring at Retr = 2000. The secondary
ring has a core vorticity of the same magnitude as the primary ring in this case.
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Figure 3.57: As the secondary vortex ring migrates over the top of the primary ring it
undergoes a wave instability. The primary vortex ring is deformed by the secondary ring.
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Figure 3.58: The secondary vortex ring is puled under the primary ring and its circulation
is intensified due to the stretching process.
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Figure 3.59: As the secondary vortex ring continues to be stretched thinner, it mutually
stretches the primary ring causing it to deform. The weaker tertiary vortex ring has formed
and begins to migrate upwards.
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Figure 3.60: A complex network of strong thin vortex filaments has formed. While the
structure of the secondary vortex ring is still somewhat visible in the lower panel, the
primary vortex ring is no longer discernable.
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Figure 3.61: The flow as begun to unravel into a cloud of small vortex filaments.
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Figure 3.62: The cloud of small vortex filaments has continued to diffuse into the domain
while the strength of their circulation has diminished significantly. Notice the maximum
value on the colour axis has been lowered to 45 from 100.
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Kinetic Energy and Enstrophy

To better compare the dynamics of the above simulations, the total kinetic energy and total
enstrophy curves for all three experiments are plotted on the same axes in Figure 3.63. In
order to give meaning to the comparison, the total kinetic energy and total enstrophy curves
for the Retr = 1000 are taken from the simulation performed on the quarter domain. In the
top panel we see the total kinetic energy curves. As expect, all three curves decay from the
start to the finish of each simulation. While the Retr = 1000 and Retr = 1500 curves have
roughly the same shape, the kinetic energy of the Retr = 2000 simulation quickly decreases
shortly after time t = 2. The lower panel showing the total enstrophy curves offers a hint
a what is happening. All three simulations begin with the same amount of total entrophy.
At times between 1.35 < t < 1.4 all three curves attain their first maximum. This roughly
corresponds to the time when the vortex ring initially interacts with the wall. As was
observed for the two dimensional vortex dipole simulations, the maximum enstrophy value
is larger for higher Reynolds numbers. While the total enstrophy curves for the Re = 1000
and Re = 1500 decrease from their initial maximum and remain lower than this value for
all times after, the Re = 2000 curve sees a second significant spike in enstrophy production
around time t = 2. This occurs shortly after the time when the SVR is pulled under the
PVR and the series of strong stretching events begins. The kinetic energy decreases most
rapidly after this point as the strong stretching breaks the PVR and SVR down into a
cloud of vortex filaments. Based on these facts, it would be safe to conjecture that the
breakdown of the vortex ring into a turbulent cloud is what has been observed. This is in
contrast to the Retr = 1000 case where Figure 3.48 which shows that the PVR still has a
fundamentally ring-like structure.

Symmetry Conditions

To examine the effect that the use of symmetry boundary conditions to simulate part of
the vortex ring has on its overall dynamics, the Retr = 1000 case was simulated two more
times, once on a half domain and once on a quarter domain using the same resolution on
the finest AMR level as in the full domain case. Figures 3.64 through 3.66 show a time
series comparing each of these simulations at roughly the same output times. In Figure
3.64 we see the initial production of the SVR. The vorticity at the core of the SVR is
marginally stronger in the full domain simulation that in the two simulations that used
symmetry conditions. As the SVR migrates over top of the PVR, the wavy instability
of the SVR is stronger in the full domain case than in either the half of quarter domain
simulations. This is seen in Figure 3.65. Finally, Figure 3.66 shows that the SVR is pulled
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Figure 3.63: The total kinetic energy and total enstrophy curves for the vortex ring wall
interactions at translational Reynolds numbers 1000, 1500, and 2000. While the total
kinetic energy of the first two cases decays at roughly the same rate, the curve for the Re =
2000 case quickly decreases after time t = 2. This corresponds to a period of significant
enstrophy production in the flow. Both these events correlate the the development of
a network of strong small vortex filaments which eventually lead to the breakdown and
diffusion of the vortex rings. It can be conjecture that this is the turbulent breakdown of
the vortex ring.

under the PVR in the full domain case, compressing the PVR and causing an intensification
of circulation. In the symmetry cases, however, the SVR remains in the centre of the PVR
and is relatively weak. These results suggest that low radial or axial modes are responsible
for some of the behaviours we have observed in the SVR as the lowest of these modes would
be geometrically filtered in the two symmetry cases.
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Figure 3.64: A comparison of the secondary vortex ring formation at Retr = 1000 for
simulations using half and quarter domain with symmetry boundary conditions to the full
domain simulation. The vorticity at the core of the secondary vortex appears marginally
stronger in the full domain case than for the half and quarter domain cases.
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Figure 3.65: As the secondary vortex ring migrates over the top of the primary vortex ring,
the wavy instability is much more pronounced in the full domain simulation than in either
the quarter or half domain simulations.
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Figure 3.66: While the secondary vortex ring develops the expected loop shaped structure
in the full domain simulations, it is weak and remains in the centre of the primary ring in
the half and quarter domain simulations.
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Bottom Shear Stress

In [35], the resuspension of a sediment bed by a vortex ring was investigated experimentally.
A bed of particles was created at the bottom of a tank to simulate sediment, an a vortex
ring was generated using a pumping method. The vortex ring travels downwards and
interacts with the bottom boundary, undergoing a normal collision. The Reynolds number
based on the translational speed of the ring was fixed between experiments, while the
diameter of the particles was varied from 90µm to 1600µm, and the relative density of the
particles was varied from 1.2 to 7.

Since the resuspension of the particles is directly tied to the shear stress in the bottom
boundary, in [35] the viscous stress in the bottom boundary is found indirectly by measuring
the velocity field directly adjacent to the wall. It is found that the highest values of the
shear stress occur directly below the core of the PVR, and that the maximum value of
shear stress in the bottom boundary occurs when the PVR first interacts with the bottom
boundary. Additionally, it is noted that the azimuthal velocities induced by the breakdown
of the PVR and SVR are of secondary significance as they only lead to small-scale scarring
features around the edge of the crater formed by the initial PVR collision.

While the AMRINS currently does not have the capabilities to model particles advected
with a flow, it is possible to calculated the viscous shear stress

τz|z=0 =

√
∂u

∂z

2

+
∂v

∂z

2

(3.10)

in the bottom boundary for the vortex ring simulations carried out above and compare to
the results of [35].

Figure 3.67 shows the bottom shear stress for the case when the Reynolds number is
1500. The upper panel corresponds to the instant when the first maximum value of bottom
shear stress occurs, which is roughly when the PVR first interacts with the bottom bound-
ary. Additionally, the shape of the bottom shear stress profile mimics that of the PVR, with
the maximum value occurring directly beneath its core. The lower panel corresponds to the
instant when the second maximum value of bottom shear stress occurs, which is roughly
when the SVR begins to stretch and breakdown the PVR. The values of shear stress here
are smaller than in the upper panel and isolated to small patches around the edge of the
PVR. These small patches of shear stress would lead to the scarring behaviour observed
in [35], but would not necessarily suspend a significant amount of sediment depending on
the relative density and size of the particles.
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Figure 3.68 shows the bottom shear stress for the case when the Reynolds number is
2000. The results here are similar to the previous case, with the first maximum value of
the bottom shear stress occurring directly the below the PVR core when the PVR first
interacts with the the bottom boundary. The secondary maximum value of bottom shear
stress again occurs when the SVR begins to breakdown the PVR, however, the maximum
values are more localized and smaller in magnitude when compared to the upper panel.

3.4.3 Discussion

We have seen the results of three sets of computer simulations of a vortex ring interacting
with a solid wall at higher Reynolds numbers than have been simulated previously. The
Retr = 1000 experiments agree very well with those observed in [15], such as the generation
and loop structure of the SVR. For Reynolds numbers in the range 1600 < Retr < 2500,
it was observed in [15] that the SVR transitions gradually from a loop structure to a kink
structure. For Retr > 2500 the kink structured SVR was ejected away from the wall into
the bulk fluid after an interaction with the TVR. While one could conjecture that we have
observed the turbulent breakdown of the PVR here based on the rapid stretching events
which lead to a cloud of small vortex filaments and a rapid decay of total kinetic energy,
the ejection of the SVR was not observed. It is not clear from [15] however that this should
be observed at this Reynolds number, which is less than 2500.

The comparison of the simulations at Retr = 1000 for different partial domains using
symmetry conditions suggest that some caution must be taken when using these kinds of
approximations. Hence, the higher Reynolds number simulations should be recalculated
on a full computational domain. Additionally, for a better comparison with experiments,
the trajectory of the vortex core should be tracked for each Reynolds number as was done
in [15] and other studies.

Lastly, the shear stress induced in the bottom boundary by the vortex ring was cal-
culated for the simulations conducted herein. These profiles are qualitatively similar to
those observed in [35] as the largest values of the bottom shear stress occur directly below
the core of the PVR when it first collides with the bottom boundary. The shear stresses
induced by the breakdown of the primary vortex ring by the secondary vortex ring are
found to be smaller and magnitude and isolated to small patches around the edge of the
primary ring. These small isolated patches would lead to the scarring patterns observed
in [35]. Despite some open questions, AMR has proven to be a strong tool here again,
allowing new regimes to be accessed in the simulation of a vortex ring interacting with a
wall using minimal computational resources.
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Figure 3.67: The shear stress induced by the vortex ring in the bottom boundary for
Reynolds number 1500. The upper and lower panels show the instants at which the first
and second maximum values of bottom shear stress occur respectively. Note: The colour
axes are different between the upper and lower panels.
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Figure 3.68: The shear stress induced by the vortex ring in the bottom boundary for
Reynolds number 2000. The upper and lower panels show the instants at which the first
and second maximum values of bottom shear stress occur respectively. Note: The colour
axes are different between the upper and lower panels.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

A finite volume based model using adaptive mesh refinement has been used to simulate
vortex-wall interactions in both two and three dimensions. Scale testing of this code
revealed that it achieved good scalability for very high resolution simulations. These tests
also revealed that AMR offered a significant savings in CPU time over an equivalent single
grid simulation. This allows for simulations to be performed using a smaller number of cores
and has important implications for research groups with limited computational resources.

The interaction of a two dimensional vortex dipole with a solid wall was also simulated.
The results of the AMR model were compared to benchmark results taken from the liter-
ature and matched up very well. Additionally, the flow was simulated for a much higher
Reynolds number than had been done previously, revealing the formation and ejection of
a cloud of strong, compact vortices from the boundary layer.

Lastly the interaction of a three dimensional vortex ring with a solid wall was simu-
lated. In laboratory experiments it is observed that a complex series of events takes place
generating a secondary and tertiary vortex ring. Using the AMR code we were able to
correctly obtain the loop structure of the secondary vortex ring at a moderate Reynolds
number. In the final simulation, the Reynolds number was pushed further than has been
simulated previously using a fully three dimensional model and it can be conjectured to
be the turbulent breakdown of the vortex ring that was simulated.
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4.2 Future Work

AMR techniques are becoming increasingly popular in a wide variety of applications. While
the results of the simulations conducted have been promising, the diligent scientist is always
looking ahead to future problems which may be studied. We now give a short list of possible
extensions to the work that has been presented.

4.2.1 Vortex Wall Interactions

Vortex Ring

There are still a few outstanding questions regarding the vortex ring wall interactions
presented in the last chapter. First, the higher Reynolds number simulations should be
conducted using the full computational domain without symmetry boundary conditions.
This would require a substantial amount of computing power and such simulation could
possibly benefit from using a deeper AMR hierarch, i.e. 3 or 4 levels of refinement. Ad-
ditionally the trajectories of the primary, secondary, and tertiary vortex ring cores should
be calculated. If simulations could be performed for Reynolds numbers greater than 2500
then it should be possible to observe the ejection of the secondary vortex ring into the bulk
fluid.

Three Dimensional Vortex Pairs

The interaction of a vortex pair with a solid boundary in three dimensions has been stud-
ied both computationally and in laboratory and wind tunnel experiments by a number of
others. A review paper was published in January of this year related to the topic [30].
This problem is of particular interest to the aerospace industry due to the wingtip vortices
generated by passenger and cargo planes. As seen in the chapter on vortex dipole wall
interactions, it is very computationally intensive to simulated these types of flows at high
Reynolds numbers. This fact is compounded further in three dimensions. So far compu-
tational studies have been done for low to moderate Reynolds numbers, however few if
any DNS studies have been done for high Reynolds number flows. An AMR based model
appears to be the perfect candidate in this situation as the vortex pair only occupy a small
portion of the computational domain.
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4.2.2 Variable Density Flows

AMR has been successfully used for variable density flows in [5, 6, 40] among others. Due to
the highly templated nature of the Chombo library, it should be relatively straightforward
to change the classes which handle the projection operations in the AMRINS code to
perform a variable density projection. A number of interesting variable density flows such
as those involving gravity currents or shear instabilities of internal solitary waves involve a
number of different length and time scales. Such flows would benefit from the use of AMR
as the phenomena of interest require significant resolution but only occupy a small subset
of the entire domain.

4.2.3 Free Surface Flows

AMR has been used to simulate free surface flows in [46]. Level Set and Volume of Fluid
techniques naturally fit within the finite volume frame work and allow for accurate interface
tracking as well as the inclusion of surface tension. A significantly challenging problem
involving free surface flows is that of modelling breaking surface waves. In recent years it
has been discovered that microscale breaking wave occupy a large portion of the surface of
many lakes a low to moderate wind speeds [25]. These waves break without the entrainment
of air and contain features, such as parasitic capillary waves, which are highly dependent
on surface tension. Such waves have been shown to greatly enhance the flux of heat and
dissolved gases across the air-water interface of lake whenever they are present [57].

4.2.4 Complex Geometries

A number of AMR applications have used embedded boundary methods to simulate prob-
lems on arbitrary geometries in three dimensions [38, 5, 53]. This coupled with the ability
to handle variable density flows would provided a very useful computational tool for study-
ing a number of difficult problems of interest to the lake and ocean modelling communities,
such as the shoaling and breaking of internal waves. Problems of this type involved a num-
ber of length scales and would require significant resolution to capture instabilities and
mixing which occur. At the present moment the AMRINS code can only simulate rectan-
gular domains. Another embedded boundary Navier-Stokes solver which comes with the
standard Chombo library also assume constant density and is a non-subcycled algorithm.
Since subcycling provides a significant cost savings for deep AMR hierarchies this is a
disadvantage. Given all of this a code using embedded boundaries which could simulate
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variable density flows would likely need to be designed from the ground up and would be
a significant undertaking.

4.2.5 Higher Order Finite Volume Methods

Fourth order routines for the Chombo library have recently been developed [34, 58]. These
new parts of the library and slated to be included in the next publicly available release
of Chombo sometime later this year. This would allow for the extension of the AMRINS
code to a completely fourth order scheme.
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