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Abstract 

Graphene is a two dimensional material which has combination of unique mechanical, electrical and 

optical properties. Due to the unique properties of graphene, it has potential for several applications 

such as radio frequency applications and ultrafast photodetectors. Reducing contact resistance of 

metal-graphene is important for further improvement of graphene devices and for realization of 

graphene based electronics.  Contact between graphene and metal can be improved by edge contact 

length. Edge contact length improves coupling between metal and graphene; therefore, contact 

resistance is reduced. Edge contact length can be introduced by generating nanostructures under 

metal.  

Fabrication of graphene based devices requires special treatment due to graphene‟s two 

dimensional natures. In this thesis, fabrication process for graphene devices is discussed in details. 

Main attention is given to reducing contact resistance. The fabrication process includes e-beam 

lithography; choosing right metals and metallization techniques; etching of graphene; lift-off issues; 

and reducing resist residues.  

In this research, graphene under the metal contacts was patterned by electron beam lithography 

with series of holes of 100nm to 300nm radius etched by oxygen plasma etching. The holes were 

patterned by electron beam lithography, and metallization was carried out by electron beam 

evaporation followed by lift-off process. The effects of the geometrical parameters of the holes and 

different graphene length under the metal are investigated experimentally. This research can be used 

as source of graphene device fabrication for the beginners. 
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Chapter 1 

INTRODUCTION 

1.1 Graphene  

Graphene is two-dimensional material composed of carbon atoms with atomic thickness. Carbon 

atoms in graphene are arranged in honeycomb structure [1].  Graphene has combination of unique 

properties such as extremely high electrical conductivity[2], highest mechanical strength[3], 

extremely high thermal conductivity[4] and high transparency[5]. Graphene doesn‟t have band gap 

and can be considered as a semimetal (Figure 1). It is also very  flexible crystal [3].   

 

Figure 1 a) Graphene honeycomb structure composed of two atoms, A and B, in unit cell.   b) 

Graphene’s band structure. c) Electronic energy dispersion of graphene, and d) energy band 

structure at low energies. Dirac point is where conduction and valance cones are touching each 

other. Figure is taken from[5]. 

1.1.1 Graphene properties 

 Mobility of charge carriers in graphene is extremely high due to ballistic transport which shown to be 

200,000 
   

  
  [2].Mechanical strength is also very high due to the sigma ponds and delocalized pi 
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bond and experimental observation show that Young‟s modulus of graphene is 1TPa [3]. In principle 

ideal single layer graphene       can hold one cat[6]. Graphene also have interesting optical 

properties. For example, graphene has interband absorption  in the range of visible to infrared of the 

electromagnetic field spectrum  [7] and its optical transmission is about 97.7% of  incident light[8].  

1.1.2 Graphene types 

There are many different way to produced graphene. Among them mechanical exfoliation using 

scotch tape , chemical exfoliation from reduced graphene oxide (rGO)[9], epitaxial growth of 

graphene[10], and chemical vapor deposition (CVD) graphene[11] are most popular. Most striking 

properties of graphene such as extremely high mobility have shown in scotch tape graphene[2]. 

Scotch tape graphene is a method were graphene flakes can be peeled off by scotch tape from  

graphite. Although scotch taped graphene has outstanding properties, it cannot be used for real world 

applications because  the graphene flakes size are in the range of  several micrometer[12] and 

continues film cannot be obtained by this method. On the other hand, the CVD graphene has 

capability to be used in the real world applications because large and continuous graphene layers can 

be obtained.  

1.1.3 Graphene applications 

 Graphene can be used in various applications such as transistors and touch screens devices. In 

addition, it can be used   in photonic devices such as photodetector, electro optic modulators, and 

LEDs[13]. Graphene field effect transistor (GFET) is considered to be one of the most important 

applications of this two-dimensional material. However, single layer graphene doesn‟t have bandgap; 

therefore, ON/OFF ratio is very low about 10-100[14]. Although, bandgap can be introduced by 

modifying graphene, e.g., by make graphene nanoribbons, mobility of the channel is significantly 

reduced. In large area CVD graphene charge carrier mobility is also low compared with III-V 

semiconductors. However, short channel affects in transistors can be reduced if graphene is used due 

to its ultimate thickness. [14]  

Nevertheless, graphene transistors can be used in radio frequency (RF) applications where the 

ON/OFF ratio is not very important [14].  In high speed graphene transistors, bandwidth of the device 

is limited by resistive-capacitive (RC) delay. Resistance in short channel device which are required 

for high speed applications is limited by contact resistance[5].In the next chapter, reduction of contact 

resistance in GFET will reviewed.  
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Chapter 2 

Contact resistance in graphene devices 

2.1 Contact resistance 

Total resistance of transistor channel can be given by[15]: 

       +2  +      (1) 

where       is the channel resistance,    is the metal to metal contact resistance,    is the 

contact resistance and    is the total resistance. 

Contact resistance occur when two different materials comes in to contact. Transfer length 

method (TLM) is used to measure contact resistance of metal-semiconductor junction[16]. In 

this method, total resistance of devices having different channel length is measured. Metal-

metal resistance can be omitted because it is generally much lower than contact resistance of 

metal-semiconductor contact resistance, so equation 1 can be approximated as equation 2.  

Then, by plotting    vs  (distance between two contacts) one can find transfer length, sheet 

resistance and contact resistance of the device (Figure 2, equation 4). 

Transfer length is the length where the potential drops between metal and semiconductor by factor of 

   . Transfer length is important property of devices because of the planar geometry of contacts. 

Even though, current through the channel is generally be uniform it is not flow uniformly to contacts 

(Figure 4).  
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Figure 2: Schematic of graphene channel. Total resistance versus channel length of the device is 

plotted. Figure is taken from [15]. 

 

      +
   

𝑊
 

 

Contact resistivity is given by [15]: 

 𝜌       (8) 

where     is area of the contact.  Current will mainly flow through the area near the contact 

with channel which is: 

    ( )         (9) 

where     is the transfer length. Transfer length is given by: 
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   √
𝜌 
  

 (10) 

 

where    is sheet resistance of the channel.  

2.1.1 Metal-graphene contact 

In the metal-semiconductor junctions Fermi energy, EF,  of metal and semiconductor will be 

equalized. Therefore, Schottky barrier will appear which is         (    and   are work 

function and electron affinity of semiconductor) as shown in the Figure 3a. On the other hand, metal-

metal contact don‟t have potential barrier due to large amount of carrier density. Even though, charge 

transfer will occur between metals, the junction will have small screening length. Hence, potential 

difference changes abruptly at the interface of two metals as shown in the Figure 3 b). 

Graphene does not have band gap; therefore, graphene-metal junction is analogous to metal-metal 

junction. In the Figure 3 d) and e), energy and density of states relation (DOS) is shown before and 

after contact. Charge transfer will occur from graphene to metal if metal work function is higher than 

graphene. These charges can shift EF of graphene leading to doping near the metal contact and 

potential difference    as shown in the Figure 3 c) and e). Due to the fact that graphene have limited 

DOS, screening length of graphene-metal junction is much larger than screening length of metal-

metal junction. 

 

Figure 3 a) Metal-semiconductor b) Metal-metal c) metal-graphene contact energy band 

diagram. Energy and DOS of graphene/metal before d) and after e) contact. The figure was 

taken from [17]. 
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2.1.2 Contact resistivity in graphene 

 

Transfer length in graphene  devices is less than 1 micron[17], [18]. Contact resistivity in 

graphene devices is changing with the contact area; however, it is constant when width of the 

channel is changed[17]. This is happens due to short transfer length,    in graphene-metal 

junction. Therefore, the contact resistivity for graphene devices can be given by  𝜌 (Ω𝜇 )  

  𝑊 (Figure 4).  

 

Figure 4: Left: Current is flowing from metal contacts to channel is not uniform through 

contact. Right: Contact resistivity of graphene is characterized by width of the channel. Figure 

was taken from[17]. 

2.1.3 Contact resistivity limitations 

Contact resistance in graphene devices is high due to the limited density of state in graphene (2D 

material)[17]. In comparison silicon devices have contact resistivity of    Ω𝜇  [19] while in 

graphene device contact resistance varies from several hundreds to thousands Ω𝜇    The minimum 

contact resistance, assuming all no scattering, a graphene-metal contact is given by[20][21]: 

 
 𝑊  

 

   
√
 

  
        Ω √  (11) 
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where W is the width of the cannel, h is the Planck‟s constant and  n is the carrier density. Carrier 

density in graphene is in the orders of           , which results in contact resistance of 

   Ω𝜇 [20]. Nevertheless, lower contact resistivity values have been shown experimentally.  

2.1.4 Contact resistance versus gate bias 

It was shown by Xia et al. [22] that contact resistance varies as a function of gate bias. 

Interestingly, contact resistance has same behavior as channel resistance; it increases when gate bias 

is close to Dirac point and decreases when it is away from it. It is important to note that contact 

resistance variations are huge near the Dirac point at room temperature as shown in Figure 5.[22] 

 

Figure 5: a) Total resistance of the channel versus Vg. b) Contact resistance versus Vg-VDirac.. Vg 

and VDirac are gate bias and Dirac point voltages respectively. Figure was taken from [22]. 

2.2 Reducing contact resistance 

2.2.1 Work function and Surface roughness effect 

There are several methods for reducing contact resistance between metal and graphene. Watanabe et. 

al[23] studied the contact resistance between metal and graphene (scotch taped) by using metals with 

different work functions . They show that work function of metal does not affect  contact resistance, 

while surface roughness of the metal can affect the  contact resistivity of the graphene devices as 

shown in (Figure 6 c)  [23]. Particularly, Co, Ni and Pd show lower contact resistivity due to smooth 

surface, film uniformity and smaller grain sizes which increase the contact area(Figure 6) [23]. 
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Figure 6: Contact resistance of graphene devices as a function of metal work function . 

c)Schematic of metal graphene contact Figure was taken from[23]. 

Nonetheless, graphene doped with metal   near the contacts  (        𝜇 )  due to the work function 

difference between graphene and metals as was experimentally observed in the scanning photocurrent 

study [24]. This feature of metal graphene contacts can be used as photodetectors which can operate 

at ultrahigh frequencies[25]. 

Purity of metal contacts is another important parameter for obtaining low contact resistance. Zhong 

et.al[26] used high purity Pd contacts by  depositing Pd at high vacuum level (~10
-7

 Torr) and 

measured the Pd-graphene contact resistivity as low as    Ω𝜇  which was  attributed to high purity 

of the deposited  metal, quality of graphene and clean interfaces. [26] 

2.2.2 Metal deposition type 

Nagashio et al. used four- probe measurement in order to measure contact resistivity of graphene 

devices. In this case the contact resistivity (𝜌 ) is given by: 

 
      (       

 

 
) (12) 

 𝜌       (13) 

   

where    is the contact resistance,    is the total resistance of the channel,     is the resistance of the 

channel, L is the distance between source and drain, l is the distance between two voltage probes, 𝜌 is 

the resistivity and  is the width of the channel [17] (Figure 7 b). In the Figure 7 b, 𝜇   𝜇   versus 
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contact resistivity is shown, where the  𝜇   is the two probe mobility which includes contact 

resistivity and the  𝜇   is the four probe mobility.  

By using sputtered Ti and Cr layers, as adhesion layer for Au contacts,  the contact resistivity 

increases while using Ni contact without any adhesion layer resulted in lower contact resistivity as 

shown in Figure 7 . RF sputtered contact damages graphene, while thermal Ti doesn‟t damage[17].  

It can be concluded that the contact metal types and deposition technique should be chosen carefully 

when considering device fabrication. For example, Xia et al. measured contact resistivity of Pd 

contacts in  an exfoliated graphene as low as    Ω𝜇  without using adhesive layer at room 

temperature[22]. 

 

 

Figure 7: a) Contact resistivity of the Cr/Au, Ti/Au and Ni contacts as a function of         . b) 

Optical image of graphene devices used for the measurements and schematic of the structure. 

Figure was taken from[17].  

2.2.3 Photoresist residues 

Residue on graphene surface due to micro-nanofabrication process increases contact resistivity 

because it does not allow graphene to have immediate contact with metal and increase the surface 

roughness. Photoresist residues can be removed by Ultraviolet/Ozone treatment. Reduction of the 

photoresist residue was observed in AFM studies where surface roughness of the graphene layer was 

reduced after Ultraviolet/Ozone treatment. In addition, this process damages graphene surface which 

can be shown by Raman spectra where the D band and G band ratio increases after certain exposure 

a) b) 
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time. The minimum contact resistance was measured by this method was as low as    Ω𝜇  where Ti 

(20 nm)/Au (80nm) was used as contact [27]. 

Oxygen plasma etching is also capable to improve contact resistivity. This process should be done 

before metallization of graphene contacts. Schematic of process development is shown in the Figure 

8. In this case the improvement of the contact resistivity between graphene and metal was not only 

attributed to removing the photoresist residue but also due to creating defects in graphene. In addition, 

the contact resistivity can be improved further by annealing at 450-475 
0
C for 15 min after 

metallization process [28] . 

 

Figure 8: a) Schematic diagram of graphene device fabrication process where oxygen plasma 

etching was used to improve contact resistance. b) Specific contact resistivity of various metal 

contacts measured after oxygen plasma treatment. Figure was taken from [28]  

Graphene devices fabricated by photolithography and electron beam lithography (EBL) have different 

contact resistance values. This difference was attributed to the presence of residual layer after 

development process of resist. It was shown that after using a photoresist like AZ5214E,  3-4 nm 

residual layer remains on the graphene surface after development process. While, ~1nm residual layer 

is observed for EBL resist Poly(methyl methacrylate) ,PMMA,. Therefore, metal-graphene contact 

resistance of device fabricated by EBL is generally lower than that fabricated by photolithography as 

shown in Figure 9. [29] 
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Figure 9: Contact resistance values for graphene devices fabricated with optical and electron 

beam lithography. Figure was taken from [29] 

 Leong et al. shown that present of PMMA residue doesn‟t affect contact resistivity too [30]. This 

discrepancy between previously stated results might be due different type of resist and fabrication 

process. Li et. al [27] and Robinson et.al[28] were used optical lithography followed by 

ultraviolet/ozone  treatment and oxygen plasma cleaning to improve the contact resistance of the 

fabricated devices which is different from the Leong et.al technique.  

Although, Leong et al. [30] show that residual layer doesn‟t affect contact resistance, metallization 

was done after first lithography step. Fabrication process of graphene devices may require more steps; 

as a result, residual thickness will more thicker and can affect contact resistance. 

2.2.4 Aluminum sacrificial layer  

 The graphene surface and metal-graphene contact interface can be protected from the resist residue 

by using a thin layer of Al as sacrificial layer.  The Al can be etched by using Tetramethylammonium 

hydroxide (TMAH), which can be found in several photoresist developers,  without damaging the 

graphene surface ,and the contact resistivity obtained by this method can be varied in the range of 

     𝜇      Ω𝜇   by using Ti(1.5 nm)/Pd(45 nm)/Au(15nm) as contacts[31]. While without 

sacrificial layer it was measured in the range of 2000 Ω µm to2500 Ω µm[31] .  AFM studies reveal 

that using Al sacrificial layer between the graphene and resist in the device fabrication resulted in  a 

smoother surface  comparable to that before any fabrication process as shown in Figure 10. As can be 
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seen from figures 10 a and 10b, the amount of resist residue in the fabricated structure using Al 

sacrificial layer is much smaller than that without using Al sacrificial layer. By using the Al sacrificial 

layer, the surface roughness of the graphene films was measures as low as 0.2 nm after standard 

development process which is similar to that measured in the a bare graphene film before standard 

development process while, the surface roughness in the graphene film was measured as 1 nm after 

standard development process without using Al sacrificial layer. [31] 

 

Figure 10: AFM images of graphene (a) without sacrificial layer and (b) with sacrificial layer 

after standard development process using lithography resist. Figure  was taken from [31]. 

2.2.5 Annealing 

PMMA is generally used for transferring graphene from copper substrate to another substrate. 

Moreover, it is used as resist in EBL, which resulted in the presence of residue on the graphene 

surface and hence might increasing the metal-graphene contact resistance. The amount of the PMMA 

residue in the graphene surface can be reduced by annealing the graphene sample. This process is 

generally carry out using different temperature and environment conditions such as vacuum at 300 

0
C[32] , underH2/Ar atmosphere  at 400 

0
C [33] and under CO2 atmosphere and temperature larger 

than 200 
0
C[34]. It was also reported that the graphene surface can be cleaned from resist residue by 

using rapid thermal annealing process under N2 environment at 250 
0
C.This process is much shorter 

than thermal annealing process[35].  

Unfortunately, annealing process cannot be used in the standard lift-off processes because the resist 

reflow it at high temperatures. In the lift-off process, resist is patterned by lithography and after 
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development, metallization is done. Before metallization, substrate is covered by resist and annealing 

at high temperatures will result in reflow of resist to the patterned structures. For example, glass 

transition temperature (Tg) of PMMA, is ~ 106 
0
C and it is reflowing on the graphene surface during 

the rapid thermal annealing process at temperature close or higher than its Tg. So, annealing after 

development and before metallization cannot be used to remove resist residuals. 

However, annealing process can be used after metal deposition. Annealing after metalization  

improves contact resistance in graphene devices[28][20][19].   The reason for this process is due to 

dissolution of carbon from the graphene to the metal which result in generation of end contact[36]. 

This should not be confused with removal of resist residual, which are already underneath the metal 

contacts. Leong et. al.[30] show that diffusion of carbon atoms into the metal contact (e.g. Ni) leads 

to reduce the contact resistivity, which can be attributed to the formation of end contact between the 

graphene and metal that result in have lower resistance.  

Balci et al. show that contact resistivity of graphene can be improved by rapid thermal annealing. 

Significat improvement was observed in Cu contacts while less improvement was observed in Pd 

(Figure 11). [20] 

 

 

Figure 11: Contact resistivity of graphene before and after thermal annealing of different metal 

contacts. Figure was taken from[20]. 
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2.3 End-contact for reducing graphene contact resistance 

2.3.1 Theoretical and numerical predictions 

There are two different type of metal-graphene contacts; side contact and end contact as shown in 

Figure 12. In the side contact mode the metal is directly placed on top of the graphene; while, in the 

end contact mode at the edge of graphene is in contact with the metal surface as shown in Figure 12a.  

It was numerically shown that the edge contact mode offers lower contact resistivity and  higher 

mechanical stability of the contacts compare to that  in end contact mode [37]. 

 

Figure 12: Left: Schematic presents of (a) end contact mode and (b) side contact mode in a 

metal-graphene / -carbon nanotube device. Right: corresponding values of contact resistance 

for both  end contact and side contact modes using different metal contacts. The contact 

resistance is significantly reduced when end contact mode is used. Figure was taken from[37]. 

The contact resistance at the metal-graphene interface is also strongly depends on the  interaction 

energy between metallic atoms such as Ti, Pd, Pt, Cu and Au[37]. When the metallic atom is in end 

contact mode the distance between metal and carbon is smaller than that in the side contact mode, and 

hence the interaction energy is significantly higher in the end contact geometry as it is evident from 

Figure 13. The largest difference between side contacted and end contacted interaction energies was 

observed for the Cu (323 times), Pt(259 times), Au(247 times), Pd (199 times), and Ti (12.9) times. 

So, more contact resistance improvements can be observed for Cu, Pt and Au rather than Pd and Ti 

when end contacted mode is used. Improvement of the contact resistivity from side contacted to end 

contacted mode for Cu and Pd observed as 32% and 22%, respectively[19]. 
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Figure 13: Interaction energy per carbon atom in a) end contact mode graphene and b) side 

contact mode graphene (Ti is multiplied by 1/5). Figure was taken from[37] 

2.3.2 Experimental results 

Recently, Smith et. al and co-worker [19] experimentally show that  increasing edge contact length 

can reduce contact resistance graphene devices. This can be achieved by introducing cuts in graphene 

under the metal area to increase edge contact length as shown in Figure 14a, and the contact 

resistance improvement was observed after annealing process. However, after certain number of cuts 

(e.g. 8 cuts) the graphene channel under metal becomes thin (less than 40 nm), which increases the 

contact. This phenomenon observed  due to the  scattering of electrons and band gap widening[19]. 

Epitaxial graphene was used in this study and measurement was done for short channels (<1.5 

micron) Cu contacts and for longer channels (> 1micron) for Pd contacts. E-beam lithography 

(PMMA resist) and lift-off process was used for fabrication of the devices. 
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Figure 14: a) Schematic of patterned contact cuts under metal contact. b) Total resistance 

change as a function of number of cuts. c) Total resistance of graphene devices before and after 

annealing process. Figure was taken from [19]. 

However, all of improvements in contact resistivity were observed after annealing process (Figure 14 

c). The annealing process was carried out in a high vacuum chamber at 350 
0
C for 15 hours. The 

contact resistivity between Cu-graphene where improved by 32%, while for Pd-graphene the contact 

resistivity was improved by 22% after annealing process. By using epitaxial graphene and Cu 

contacts the minimum contact resistivity was recorded as low as   Ω𝜇 . It was also reported that a 

contact resistivity variation in a patterned graphene device was improved [19].The ratio of peripheral 

length to area effect is another parameter that affect thee contact resistivity, and it was reported that in 

the Au-graphene structure the end contact mode offer contact resistance           times lower than 

the side-contacted  mode[38]. 

2.3.3 Transfer length increase due to edge contacts 

Transfer length is another parameter that could affect the contact resistance in a graphene based 

devices. Recently, Song et al. [39]reported that by introducing nanoholes in graphene surface the 

transfer length is increased as shown in Figure 15a.  Nanostructures were patterned by using EBL, 

where PMMA is used as a resist, and samples were annealed in vacuum at 300 
0
C for two hours 

before measurements. Using nanoholes with radius of 0.38 micron radius inside graphene under the 

metal contacts resulted in minimum contact resistance of    Ω𝜇 , in a CVD graphene and Pd (20 

nm)/Au (30nm) structure.    
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Figure 15: a) Schematic demonstration of top and side view of graphene based device. Bottom: 

one dimensional model for metal graphene contact b) Contact resistance as a function of length 

of graphene under channel. Transfer length was       , nanoholes radius are 0.38 μm. The 

transfer length in contacts without nanholes is    . Figure was taken from[39] . 

In the Figure 15b, contact resistivity as a function of graphene length under the metal is shown. 

Reduction of contact resistance with respect to the length of the graphene under the metal indicates 

that transfer length is large which was not observed on the devices without nanoholes. Transfer length 

for their devices was shown to be    𝜇  (nanoholes with radius of 0.38 micron), while in contacts 

without nanholes is   𝜇  . [39] 

2.3.4 Metal catalyzed etching for low contact resistance 

Leong et. al.[40] demonstrated that metal catalyzed etching of graphene can significantly decrease 

contact resistivity of the graphene devices . E-beam lithography, oxygen plasma etching and thermal 

evaporation were used for graphene devices fabrication. In order to obtain the graphene etch pits, a 

thin metallic layer up to 2 nm (e.g. Ni) is deposited by using electron beam evaporation followed by 

annealing process at temperature of 580 
0
C for 30 min in Ar/H2 environment. Then, 100 nm thick Ni 

is deposited as contacts as it is shown in Figure 16 a. The chemical reaction between the carbon atoms 

in graphene and etchant gas (i.e. H2) during the etching process is given by;  

C(solid) + 2H2(gas) → CH4(gas) 

where Ni acts as catalyst. This process provides with zigzag edge of the graphene which is the major 

reason for reduction of graphene contact resistivity. Hexagonal etch pits were observed after 

annealing process as shown in Figure 16 b and 16c. The average contact resistance by using this 
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technique was reported as low as   Ω𝜇  and no significant improvement was observed after 

annealing process[40]. 

 

 

Figure 16: a) Schematic diagram of fabrication process of nickel-etched-graphene contacts. b) 

The SEM image of etched pits on few layer graphene at 45
o 
. C) SEM image of hexagonal etched 

pits etched pits. Scale bar is 500nm. Figure was taken from [40]. 

2.3.5 N-type doping and edge contact for Ti, Cu, Pd 

Recently, Park et. al.[41]  reported that contact resistivity of graphene can be considerably reduced 

when combination of n-type doping and edge contact mode  patterning is used. It was reported that by 

using poly(4-vinylphenol)/poly(melamine- co -formaldehyde) (PVP/ PMF)  as dopant, N-type doped 

graphene was achieved when PMF concentration is larger than 200%. CVD graphene was used in this 

process and PVP/ PMF was spin coated on graphene before transferring it to the SiO2/Si substrate. 

Optical lithography was carried out to isolate graphene and EBL was used for edge contact 

patterning. Contact resistance for side contact geometry was found to be lowest for Pd (Figure 17 a). 

While, the difference in contact resistivity between Ti, Cu and Pd after n-type doping by PVP/ PMF 
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was very small (Figure 17 b). Interestingly, it was shown that Ti contacts provide lowest contact 

resistivity following by Cu, Pd. Further reduction of contact resisitivity for edge contact mode is 

observed when n-type doping is used which is shown in the Figure 17 d. 

 

Figure 17: Contact resistance as a function of Vgs-VDirac for Ti, Pd and Cu.  a)side contact mode, 

b) side contact mode  and n-type doping, c) edge contact mode and d) contact resistivity for Ti, 

cu, Pd for edge contact mode before and after n-type doping. The Vgs and VDirac are gate bias 

voltage and Dirac point voltage respectively. Figure was taken from [41]. 
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2.4 Conclusion 

Reduction of graphene-metal contact resistance can be achieved by clean interfaces, selection of the 

metals, and edge contact. Reduction via edge contact mode seems to be very promising because it 

enables to achieve very low contact resistivity values. Length of the edge contact can be controlled by 

using lithographic methods which is desirable for having consistent results through process. Further, 

research can be done for achieving lower contact resistance values. This may include increasing edge 

contact length by creating smaller nanostructures in graphene also different shapes can be used. 

Comparative study using different metals should be done for edge contact mode such as Au, Ni, Co. 
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Chapter 3 

Experimental 

3.1 Introduction 

Fabrication process for graphene devices should be carefully considered. In this chapter, fabrication 

process of back-gated graphene transistors will be discussed in detail.  

. Single layer CVD graphene placed on top of 285 nm thermally grown SiO2/p-Si wafer was 

purchased from Graphene Supermarket where. p- Si substrate will be used as back gate. The CVD 

graphene is polycrystalline since it was grown on a polycrystalline Cu foil. 

The SEM image of single layer graphene used in this study is shown in Figure 18. In lens detector 

senses low energy electrons which are generally emitted from the very surface. Blue arrows indicate 

graphene wrinkles, while yellow multilayer graphene islands as shown in the Figure 18 

 

Figure 18: The SEM image of single layer CVD graphene on SiO2/p-Si. Yellow triangles 

indicate: multilayer domains of graphene. Blue triangles shows graphene wrinkles due to 

thermal expansion mismatch between graphene and copper and red triangle shows cracks 
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. 

3.2  Fabrication Steps 

3.2.1 Alignment markers 

The alignment markers were patterned using electron beam lithography followed by reactive ion 

plasma (RIE) etching process and metallization. A 180nm thick  PMMA (950K MW, A3) was spin 

coated at speed of  2000 rpm and post baked at 180 
0
C for 15 min on the graphene sample. Alignment 

markers were exposed using exposure dose of 120 
  

     at 10kV acceleration voltage, and 30 𝜇  

aperture. Then sample was developed using Methyl Isobutyl Ketone (MIBK)1: isopropyl alcohol 

(IPA3)  for 30 second . The reactive ion plasma etching process was carried out using oxygen as 

etchant gas at flow rate of 10sccm, power of  50W, platen diameter 200 mm, for 20 sec and pressure 

of 100 mTorr to etch graphene and  to improve the adhesion of alignment markers to the substrate. In 

the next step, the electron beam evaporation (EBE) was used to deposit Ti (1 nm)/Au(20 nm) with the 

rate 0.05 and 0.1 nm/s respectively . In the last step, samples were immersed in acetone overnight for 

lift of process to be completed. Figure 19 shows optical images fabricated alignment markers in a 

graphene/SiO2/Si wafer 

 

 

Figure 19:  Optical images of alignment markers. Large crosses are alignment makers, while 

small ones alignment markers for write field alignment.  
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We also tried to depositing alignment markers and contact pads at the same time in order to reduce 

number of fabrication steps. In this scenario, 430 thick PMMA (950K, A6) was spin coated at speed 

of 5000 rpm and baked at 180 
0
C for 1 min to higher thickness is needed for lift-off process where our 

metal thickness is ~100nm . The sample was exposed with electron beam at exposure does of 160 

  

   ., at 10kV acceleration voltage, and 30 𝜇  aperture. Then, oxygen plasma etching process was 

carried. Afterwards, Ti (1-5nm)/Au(100nm) was deposited using  EBE technique at deposition rate of 

0.05nm/s and 0.1 nm/s respectively for Ti and Au. In the last step, samples were immersed in the 

acetone overnight for lift off process. 

3.2.2 Fabrication of holes in graphene and isolation 

Graphene antidots were fabricated 200 nm  thick PMMA ( 950K, A3) was coated on the graphene 

samples using spin casting technique at  speed of 2000 rpm for 35 sec and   was used as a mask and 

resist.  The EBL was carried out to pattern a series of nanoholes with different diameters in the range 

of 100 nm to 300 nm. It is known that exposing the resist with higher acceleration voltage and smaller 

aperture improve the resolution of the structures due to the less scattering and higher depth of focus. 

Therefore, acceleration voltage of 25kV and 20    aperture was used to expose PMMA resist and.. 

Exposure dose test was performed before fabricating actual devices. The optimum exposure does and 

preset hole diameter were obtained as 311.84       , 90 nm,  311.84  
  

   
  190 nm and 283.52   

    with designed structures 90,180, 280  nm respectively for nanoholes with diameter of 100 nm, 

200 nm, and 300 nm (Figure 20). 



 

 24 

 

 

Figure 20 SEM image of graphene with holes of a)100nm , b) 300nm and c) 300nm radius. 

In the next step, graphene was isolated as shown in Figure 21. It is possible to do it together with 

antidots; however, this graphene isolation process is a long time because of the small size of the 

aperture. In this process, the exposure was carried out at 10kV acceleration voltage, aperture size of 

30 μm and exposure does of 120 
  

   . After that the development process was carried out using 

MIBK1:IPA3 for 30 sec. followed by oxygen plasma etching which was described before. 

 



 

 25 

 

Figure 21: Optical image of graphene samples with antidots (green arrow) and isolation of 

graphene(blue arrow) where PMMA was used as a mask. 

3.2.3 Metallization 

In this step,   a 180 nm thick PMMA was spin coated using the aforementioned parameters. The 

electron exposure does was set as   120 
  

    at 10kV acceleration voltage and aperture size of 30𝜇 . 

After exposing the sample the development process was carried out using MIBK1:IPA3 for 30 s 

.Then, the   Pd (20nm) /Au(30 nm) contacts were deposited using EBE technique at deposition rate of  

0.05nm /s and 1nm/s respectively. In the final step the lift-off process was carried out by immersing 

the sample in  acetone for one day. Figure 22shows the patterned contact on top of the graphene 

surface after lift-off process. 

 

Figure 22: Optical image of contacts on top of graphene. 
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3.2.4 Contact pads 

In the third lithographic step the metallic contact pads were fabricated using a 430 nm thick 

PMMA. The PMMA(950k and A6) was coated using spin coating technique at speed of 5000 rpm 

followed by  baking at 180
o
Cfor 1min min. The coated lithography resist was exposed by electron 

beams at electron dose of  160 
  

    , 10kV acceleration voltage and aperture size of 60 𝜇 . A higher 

aperture was used to obtain more current which allows reducing the writing time.  After that, the 

development process was utilized by using MIBK1:IPA3 for 30 sec followed by reactive ion etching 

process using oxygen as described before. Then, Ti (1-5nm) as adhesion layer and 100 nm thick Au 

was deposited as metal contact using EBE at deposition rate of 0.05 nm/s and 0.1 nm/s respectively. 

Figure 22 shows the optical image of deposited metal contact after lift-off process. 

 

 

Figure 23: Optical image of contact pads. Large squares are contact pads 

3.2.5 Passivation layer 

Passivation layer were studied; however, TLM measurements were not done for devices with 

passivation layer due to some challenges which will be described in Chapter 4.  

To protect the surface structure of the fabricated device from the ambient environment the passivation 

layer is required. Presence of H2O and O2  in the ambient environment can  change the graphene  to 

P-doped graphene through redox reaction    +     +   
       [42]. By protecting the surface 

through passivation layer the  hysteresis was reduced during the electrical measurements and more 

reliable results can be achieved[43].  
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Graphene devices without passivation layer were also measured and will be discussed in Chapter 4.  

Herein, Al seed layer of 2-3nm was deposited on top graphene by using EBE method   and ~78nm of 

Al2O3 was used as passivation layer which was be deposited by using atomic layer deposition (ALD) 

technique (Figure 24).  

 

 

Figure 24 Optical image of TLM structure after Al2O3 deposition. 

Because passivation layer will cover whole device structure including contact pads, one more 

lithography step followed by etching process will be required to etch Al2O3 from the metal contacts. 

Both wet etching and reactive ion etching process was tried. Wet etching was carried out by using 

MIF 319 developer which consists of 2.45% TMAH. This process was also used for removing  5 nm 

Al which was deposited as  sacrificial layer in the beginning of the fabrication process [31].  

Reactive ion etching process was carried out using Cl2 and BCl3 gas precursors as etchant gas.  

This process was also etched the PMMA very quickly. Therefore, thick PMMA (i.e. 1100 nm) was 

used as etching mask to protect the graphene surface during the etching process. Patterning was 

carried out using EBL at acceleration voltage of 25 kV, aperture size of 60 𝜇  and exposure dose of 

293
  

   . It should be noticed that due to the high thickness of PMMA, high acceleration voltage was 

required to expose such a thick layer. High aperture size was used to reduce exposure time by 

achieving larger currents. 
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3.2.6  Gate fabrication  

The substrate, P-doped Si, was used as gate because it is conductive. In GFETs without passivation 

layer SiO2 (285 nm) was etched, while devices with passivation layer Al2O3(~78nm) and 

SiO2(285nm) . Dry etching process was used for this process. PMMA(~430nm) layer together with 

thick photoresist (~Shipley 1811) was used as mask for this process. SiO2 (285 nm)  etching was done 

in RIE a process using O2 and C4F8 as etchant gas at flow rate of 15 and 40 sccm, RF power of 200 

W, ICP power of 2500 W, platen diameter 200 mm for 90 sec.  Al2O3(~78nm)  etching was done in 

RIE a process using Cl2 and BCl3 as etchant gas at flow rate of 10 and 40 sccm, RF power of 150 W, 

ICP Power 800 W platen diameter 200 mm for 90 sec.   

 

3.3 Measurements 

The probe station with Keithley 4200-SCS semiconductor parameter analyzer and Agilent 4155 C 

was used for electrical characterization. Measurements were carried out in ambient conditions. 

Resistance values are extracted from applied voltage in the range of -1 V to 1V where the I-V 

behavior was mainly linear. The bias voltage between source and drain was applied by 0.2 V step and 

gate bias was not used during these measurements. All measurements were carried out before and 

after annealing process. 
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Chapter 4 

Results and Discussions 

4.1 Fabrication issues  

4.1.1 Resist residues 

The resist residue is one of the most common issues in fabrication of graphene based devices as 

shown in Figure 25. There is no effective way to remove it by using solvents. The CVD graphene 

film is grown on Cu substrate then transferred to SiO2 (90 nm to 300 nm)/Si substrate. Generally 

PMMA is used as a mechanical support layer for graphene transfer[44].  PMMA residues also 

observed after transfer as discussed elsewhere [45] .One common technique which is used to remove 

the PMMA residue is annealing process in the Ar/H2 environment at 250 
o
C and higher[46]. 

However, this process cannot be used after development process because it will exceed PMMA glass 

transition      
o
C); as a result, PMMA will flow to the structures. Amount of the resist residuals is 

increased after each lithography step and decreasing the number of lithographic steps is promising 

way to reduce the amount of resist residual. Also, reducing baking time and temperature of PMMA 

reduces amount of residues on the surface[45]. 

Descum process is common technique to remove resist residuals. This process involves O2 plasma 

etching which is effective way to remove organic materials from the substrate. However, this process 

is also used to etch graphene. Also, slightly etching graphene can improve contact resistivity[28].  

However, contact resistivity may change significantly because oxygen plasma treatment is not a 

controllable process.   

Interestingly, residual layer can be observed on smaller structures when they are fabricated with 

higher electron doses in electron beam lithography followed by O2 plasma etching. 

In our initial trials to fabricate graphene transistor the resist residue were observed in a several cases. 

Therefore, reactive ion etching process was carried our using oxygen as etchant gas at low rate of 10 

sccm, working pressure of 100mTorr , RF power of 50W for 5s to remove 3.5-5 nm PMMA residue 

before metallization. In order to fully remove graphene it was found that 20 s of etching is required.  

This process was used only in initial devices to avoid effect of plasma etching on contact resistance.  
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Figure 25: PMMA residues on top of graphene after patterning graphene. a) The SEM image of 

patterned structure with residual layer. b) Optical image of patterned graphene, the thin 

transparent layer on top of the structures is residual layer. 

 Further fabrication was optimized and reactive ion etching process before metallization was omitted 

in order to avoid any effects of plasma etching on contact resistivity of graphene transistors. 

Decreasing baking time of PMMA from 20 min to 1min after spin coating, result in reduction of 

PMMA residuals.  In addition, graphene samples should not be reused. Reusing graphene samples 

leads to more number of steps which will result in more resist residuals. With considering these 

points, the  resulted r structures on top of graphene was resist residue free as can be seen from Figure 

26. 

 

Figure 26: The optical image of fabricated graphene structure without resist residues  

We have also tried to use sacrificial layer in  order to avoid direct contact of graphene with resist Al 

sacrificial layer can be used[31]. Al sacrificial layer can be removed by light concentration (2.5%) of 

TMAH, which is also found in some developers [31]. By using this process clean graphene surfaces 
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can be obtained. However, several issues was faced during this process, one of the problems is 

wrapping of graphene after removing Al sacrificial layer. In the Figure 27 a), wrapping of graphene 

can be observed while for Figure 27 b) wrapping is not observed. In both of the cases graphene 

surface is clean. Graphene wrapping might appear due to thermal stresses. Wrapping is not observed 

Figure 27 b) because graphene is supported from the all sides. Also, this effect might be avoided by 

optimizing fabrication steps. 

 

Figure 27: Optical image of graphene devices fabricated by using Al sacrificial layer. a)After 

removing Al sacrificial layer from the  graphene channel where graphene was wrapped. B) 

after removing Al sacrificial layer from the contact pad area.  

Even though, the problem with wrapping might be overcome, resist residue might appear in the 

surface especially if sample is reused several times. The reason for residual is due to the RIE etching 

of Al sacrificial layer which is used for fabrication of the holes. Some recipe as for Al2O3 RIE etching 

was used except time which is 12 sec. RIE process sometimes leave residues which then cannot be 

removed even with oxygen plasma etching process. In the Figure 28, residual layer for patterned 

structure can be seen, while no residual layer is observed for the structure without holes. 
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Figure 28 Optical images after removing Al sacrificial layer from the contact area a) for 

without holes b) with holes.  

The presence of the resist residue in the fabricated structures could be due to the  that heavily exposed 

PMMA and which behaves like a negative resist [47]. However, the electron doses that was used for 

exposure is less than those expected, which is about ten times more. Interestingly, this process usually 

occurs after oxygen plasma etching which is used to make holes in the graphene. Oxygen plasma 

etching may also contribute to scission of top ~0.5 micron layer  [48] which means that PMMA is 

exposed during the reactive ion etching process. This might result in obtaining thin negative  PMMA 

layer which cannot be removed by acetone.  

In one of the cases, we tried to reduce number of steps leaving PMMA after generating nanoholes. 

After making nanoholes in graphene by using oxygen plasma etching where PMMA was used as 

mask, one more exposure was done for metallization. In this case as shown in Figure 29, the PMMA 

residues were observed in most of the structures. This might be due to the fact that leftover PMMA 

between structures was slightly exposed due to scattering in high density structures.  Then reactive 

ion etching was resulted in more exposure. Finally, exposure for metallization might generate 

negative thin PMMA layer on top the graphene.  
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Figure 29 : The optical microscope images of graphene TLM structure after development 

process and metallization. Green residues can be observed on top of the structures. 

4.1.2 Lift-off process 

Samples were left in acetone for one day for lift-off process. Lift-off process is very sensitive in 

graphene substrate. Sonication process cannot be used in lift-off process because it may damage 

graphene as well as removing the patterned nanostructure from the graphene surface due to low 

adhesion between graphene and metals. Squirting acetone by pipette was done to help complete lift-

off process after leaving samples in acetone for one day. This should be carried out carefully because 

high pressure can damage structures on top of graphene. Another method of improving lift-off 

process is to coat larger thickness of PMMA for better undercut; however, it cannot be a solution if 

small structures are required. Bi layer resists such as PMMA/MMA (copolymer), could be used to 

improve the lift-off process due to the better undercut. Also, hot acetone can be used for lift-off 

process. 

 

4.1.3 Metallization 

Pd(30nm)/Au(20nm) contacts were deposited using electron beam evaporation (INTLVAC-Ebeam) at 

deposition rates of  0.5Å/s and 1 Å/s  for the Pd and Au respectively. Proper selection of deposition 



 

 34 

rate and thickness of the metals is very important. Robinson et al.[28] reported that Al, Pt and Pd 

delamination was observed for the thickness more 15nm [28] without using adhesive layer.  

 

Nevertheless, this issue was not reported by other authors probably due to different rate of deposition. 

Lower rates will result in low thermal stresses which will allow depositing thicker metals. 

Metals generally do not adhere very well to graphene. It is very easy to clean graphene surface from 

Au metals just by touching it. Adhesive thin layer such as Ti and Cr can be used to improve adhesion 

of metals contact to graphene. In our previous studies Cr was used as a contact; however, a lot of 

cracks were observed after deposition 50 nm thick Cr at rate of 1 Å/s due to thermal stresses as shown 

in Figure 30.  However; by reducing the deposition rate to 0.5 Å/s and metal thickness to 3 nm  the 

effects of  thermal stress can be improved and crack free film can be deposited.  

 

Figure 30: Cr contacts on graphene film with cracks. The Cr was deposition at deposition rate 

of 1Å/s and the total thickness of Cr is 50 nm. 

 

.  

In this study Pd/Au was chosen because it shows lowest contact resistivity compare to the other 

metallic combination contact[22]. This Pd/Au contact layer could be easily damaged during 

measurement using probe station as it is shown in Figure 31.   
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Figure 31: Pd/Au contact pads after measurement. Contact pads are damaged due to low 

adhesion to graphene which was easily scratched with the probes. 

In order to avoid this issue, another metallization step was carried out after Pd/Au deposition where 

Ti (1-2nm)/Au(100nm) metal layer was deposited on top of SiO2, where Ti is used to improve 

adhesion to the substrate.  

4.1.4 Passivation layer 

Passivation layer was used to protect graphene channels from the H2O and O2. Al2O3 layer grown by 

ALD is one of the best passivation layers for this purpose. After covering whole structure by Al2O3 

(as shown in  

 

Figure 24), alumina layer from the contact should be etched. PMMA has very low adhesion to Al2O3 

which affects the etching process results. MIF 319, which is used to etch. Al2O3 can penetrate trough 

the edge of metal to graphene and wash it away.  This problem can be used by improving adhesion 

between resist and Al2O3. For example, baking PMMA for the longer time (>15min). 
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Figure 32 Optical images of TLM structures after Al2O3 wet etching from the contact pad area 

a) after annealing b) before annealing. 

In addition, this process generates bubble like structures on top Al2O3 as shown in Figure 32 a) which 

was grown after annealing process. This problem can be solved by improving adhesion of resist to 

Al2O3. Improving adhesion between Al2O3 and graphene can be improved to avoid this issue. For 

example, thicker Al seed layer ~ 5nm can be used as adhesive layer. 

Another way to etch Al2O3 is to use dry etching process. This process was successfully etched 

graphene. However, during measurements high gate leakage currents were observed. This problem 

was attributed to high DC bias during Al2O3 etching which was about ~390 V, breakdown voltage for 

285 nm SiO2 is about ~285V. Etching step should be optimized. 
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4.2 Electrical characterization  

4.2.1 Preliminary work 

In this section, preliminary results will be discussed. A series TLM structures were fabricated without 

optimized fabrication process and sacrificial layer. Resist residue was observed in most of the 

structure as shown in Figure 25 and  oxygen plasma was used to remove it which was discussed 

previously in 4.1.1. Also, Al2O3 passivation layer was not used in these devices.  Electrical 

measurements were carried out using probe station and semiconductor parameter analyzer (Keithley 

4200-SCS and Agilent 4156C). Current between source and drain as function of bias voltage between 

source and drain was measured for all of the devices. In the Figure 33, the I-V curves of different 

channels with nanohole with diameter of 300 nm are compared. As can be seen from this Figure 33 a) 

the current was reduced by using longer channels as expected.  

 

Figure 33: a) The measured current as a function of bias voltage between source and drain. b) 

The measured current form source and drain as a function of gate bias. The Lgr is graphene 

length under metal contact.c) The measured current form source and drain as a function of 

gate bias of GFET with passivation layer. 
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As can be seen from Figure 28, the graphene shows p-type behavior in all devices which might be due 

to the present of H2O/ O2 and resist residuals on graphene surface. In the Figure 33 c), GFET with 

passivation layer was measured, ambipolar behavior, where Dirac point is near to 0 V is observed 

because graphene channels are protected from the ambient. When the positive bias applied p-n-p 

junction is formed while for negative bias p-p-p junction; therefore, asymmetric behavior of the 

Figure 33 c) [17]. 

Total resistance as a function of channel length is shown in Figure 34. It was found that the total 

resistance was reduced by increasing the channel length as it is evident from Figure 34.  It is also 

clear that there are small deviations from linear behavior which could be attributed to the non-

uniformity of graphene film. The measurements are done after annealing. In some devices extremely 

high resistance were recorded which was due to the fact that channels was damaged during 

fabrication and annealing process. 

 

Figure 34 Total resistance as a function of channel length in graphene devices having antidots 

with radius of a) 100 nm, b) 200 nm and c) 300 nm. All measurements were carried out after 

annealing process. 
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In series of characterization the sheet resistances was calculated before and after annealing process by 

using transfer length method described in Chapter 2. It was found that calculated sheet resistance 

values were changed slightly after annealing process. Change in sheet resistance might due to the 

damage during annealing process. The annealing process was carried out using working pressure of 

3×10
-5

 Torr and temperature of 300 
o
C for 2 hours  Usually, annealing process was carried out at 

higher vacuum conditions where pressure is around           . It should be noticed that most of the 

short channels were damaged due to the thermal stress between metal and substrate. Figure 35 shows 

the calculated sheet resistance of survived samples before and after annealing process. The increase in 

sheet resistance after annealing might be attributed to damage during annealing process. 

 

 

Figure 35: The calculated sheet resistance of fabricated devices before and after annealing 

extracted from TLM measurements. 

The measured contact resistivities of different samples before and after annealing are compared in 

Figure 36. As can be seen from this figure there is no reduction pattern in the measured  contact 

resistivity before annealing However, after annealing the measured contact resistivity was reduced for 

the longer graphene length under metal as it is clear from Figure 36. The reduction in the measured 

contact resistivity could be attributed to increasing the transfer length as result of present of antidots 

in the structure. This also supports the idea that transfer length is increased when antidots are present 

[39]. Interestingly, in one of the structures contact resistivity as low as    Ω𝜇  were measured for 
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antidots with radius of 200 nm. Although, the lowest contact resistivity is observed for 200nm radius 

antidots, more study is required to confirm the low contact resistivity in the proposed structure. Also, 

slight plasma etching might affect contact resistivity.   

 

Figure 36: The measured contact resistivity of graphene field effect transistor before and after 

annealing. The Lg is graphene length under metal contact. 

4.2.2 Devices with optimized fabrication process 

In this section, results of electrical characterization of TLM structures fabricated by optimized 

process are presented. In the optimized process, clean interfaces were obtained through the reduction 

of baking time and minimizing number of PMMA depositions.  Produced TLM structures have 

nanoholes with radius of 100 and 300 nm, and graphene length under metal contacts is ~48𝜇  and 

~48.3𝜇 , respectively. Channel length of graphene devices varies between 1 and 7 micron with 7 

different channels. More channels were fabricated to produce more reliable results. Graphene surface 

before metallization was relatively cleaner as shown in the Figure 26. Although I-V curves are linear 

for the longer channels, non-linear curves were observed for shorter channels as seen in curves taken 

between -1V and 1V, Figure 37 a).. Total resistance was also observed to be linearly dependent on 

channel length as previously seen in specimens before annealing. However, after annealing at 300 
o
C 

for 2 hours under vacuum environment, the deviation of data points from fitted linear curve is 
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reduced. Therefore, the total resistance becomes more linearly dependent on channel length (Figure 

37 b)). Moreover, the results are more linear compared with preliminary results which are given the 

Figure 34. The improvement in electrical properties of optimized structures is attributed to clean 

interfaces, free of residual layer. 

 

Figure 37 a) I-V curves for various channel lengths between 1 and7 micron. b) Total resistance 

versus channel length. These measurements were done after annealing. Both graphs are taken 

from graphene devices having nanoholes with radius of 100nm.   

 

Sheet resistance and contact resistance values obtained after annealing at 300 
o
C for 2 hours as 

described in preliminary studies are shown in Figure 38. Sheet resistance values ~450 – 550 Ω    are 

close to the values provided by vendors. Significant reduction in contact resistivity is observed in the 

graphene devices with holes (Figure 38a)). In addition, remarkable improvement is observed in 

optimized process compared to preliminary work (see Figure 36 and Figure 38).  Lowest contact 

resistivity, ~ 150Ω𝜇   values are observed for graphene devices with holes of radius 100 nm. This 

result supports the idea that contact resistivity can be improved by increasing end contact length by 

having smaller hole radius. 
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Figure 38 Dependence of a) Contact resistivity and b) sheet resistance on nanohole radius for 

graphene devices. 
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Chapter 5 

Conclusion and Future work 

5.1 Conclusion 

Unique properties of graphene such as high charge carrier mobility can be used in various high speed 

electronic and photonic applications. One of the important challenges is to reduce graphene contact 

resistance .The contact resistance plays a significant role especially in the short channel devices. 

Clean surface should be achieved before metallization in order to have lower contact resistivity 

values. Therefore, special attention should be given during fabrication process including baking time 

and temperature of resist, and number of resist depositions on top of graphene. Moreover, contact 

metallization process variables should be carefully optimized to avoid cracking and delamination 

mainly due to thermal stresses. Since contact resistivity is also influenced by the type of metal, it is 

crucial to select proper metal for metallization. One of the promising methods to reduce contact can 

be achieved by increasing edge contact length. Furthermore, contact resistivity can be improved 

substantially through end contact mode geometry which can be achieved by introducing nanoholes in 

the graphene under metal. In this thesis, graphene devices with the hole radius of 100, 200, 300 nm 

were fabricated with different graphene length under metal contacts. Experimental results reveal that 

transfer length is increased in the presence of nanoholes under metal contacts. Furthermore, graphene 

devices fabricated using optimized process display lower contact resistance values due to the clean 

interfaces. It was shown that contact resistance as low as ~150 
 

  
 was obtained in devices with 100nm 

holes  These results obtained after annealing is more consistent probably due to enhancement of 

interaction between metal and graphene. 

5.2 Future work 

More TLM structures should be fabricated in order to make reliable statistical analysis and draw a 

general conclusion about contact resistance. In the current study, sheet resistance variations were 

measured in TLM structures. Since those variations may affect the calculated contact resistivity 

values, different measurement methods such as four-probe method should be utilized for comparison. 

Additionally, the effect of various metals like Ni and Co on contact resistivity should be studied by 

following the same fabrication process used in the current study.  Because the effect of 

aforementioned metals have not been reported using the current fabrication process. Graphene 
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devices with passivation layer should also be studied to observe gate bias dependence of contact 

resistance. Passivation layer may reduce hysteresis during measurements. Although, it is possible to 

reduce contact resistivity by patterning graphene with EBL, this process is very expensive and cannot 

be used for large area fabrication. Lithography by self-assembly such as nano-shpere lithography and 

anodized aluminum oxide template (AAO), large area and cost effective production techniques, can 

be utilized for patterning of graphene. To the best of our knowledge, there is no work that shows 

reduction of contact resistance by using self-assembly lithography. Nevertheless, there are studies on 

patterning graphene  by using nano-sphere lithography [49][50][51] and AAO [52][53][54]. Most of 

these studies concentrated on fabricating small neck in order to introduce band gap to graphene 

[52][53][54][50]. Introducing band gap should improve On/OFF ration of graphene transistors. 

5.3 Published paper and Conference presentation 

M. Irannejad, W. Alyalak, S. Burzhuev, A. Brzezinski, M. Yavuz, and B. Cui, “Engineering of Bi-

/Mono-layer Graphene Film Using Reactive Ion Etching,” Trans. Electr. Electron. Mater., vol. 16, no. 

4, pp. 169–172, Aug. 2015. 

 

S. Burzhuev, M. Irannejad, M. Yavuz,“Decreasing contact resistance in graphene devices by 

optimizing edge contact under metal”, Graphene & 2D Materials International Conference and 

Exhibition, Montreal, Canada,  14-16 October, 2015. 
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Appendix A 

Recipe for bottom gated graphene transistor 

1. Obtain single layer CVD graphene on SiO2(285 nm)/p-Si 

2. Spin coat with PMMA  

a. PMMA A3,#steps=2, thickness about 180nm 

i. Speed=1000rpm, ramp=200rpm/s, time=1s 

ii. Speed=2000rpm, ramp=1500rpm/s, time=35s 

b. PMMA A6,#steps=2, thickness about 430nm  

i. Speed=1000rpm, ramp=200rpm/s, time=1s 

ii. Speed=5000rpm, ramp=1500rpm/s, time=35s 

3. Baking at 180 
o
C for 1min on hot plate 

4. E-beam lithography at EHT=10kV using 30 micron aperture 

a.    𝜇      dose for large structures and thin PMMA film (180nm) 

b.    𝜇      dose for large structures and thick PMMA film (430nm) 

5. E-beam lithography at EHT=25kV using 20 micron aperture 

a. 311.84, 311.84 and 283.52𝜇      with designed structures of 90, 180, 280 nm to 

obtain 100, 200 and 300nm holes, respectively.  

6. Development 

a. MIBK1:IPA3  for 30s 

b. Rinse in IPA for 30s 

7. Oxygen plasma etching to etch graphene 

8. E-beam evaporation 

a. Ti/Au 

i. Thickness 1-0.5/20nm, rate 0.05/0.1 nm/s, respectively. 

b. Pd/Au 

i. Thickness 20/30nm, rate=0.05/0.1 nm/s, respectively. 

c. Ti\Au 

i. Thickness 1-2nm/100nm,rate=0.05/0.11 nm/s, respectively. 

9. Lift-off  

a. Leave samples in acetone overnight 

b. Squirt acetone by pipette 

 

Details of Steps for production of bottom gated transistor 

1. Alignment markers 

a. Spin coat PMMA(2a) 

b. Bake (3) 

c. E-Beam lithography(4a) 

d. Development (6) 

e. Etching graphene (7) 
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f. Metallization (8a) 

g. Lift-off (9) 

2. Isolation, and nanoholes 

a. Spin Coat PMMA (2a) 

b. Bake (3) 

c. Expose (4a,5c ) 

d. Development (6) 

e. Oxygen plasma etching (7) 

f. Remove PMMA with acetone (9a) 

 

3. Metallization 

a. Spin Coat PMMA(2a) 

b. Bake (3) 

c. Expose(4a) 

d. Development (6) 

e. Metallization (8b) 

f. Lift-off (9) 

4. Contact pads 

a. Spin Coat PMMA(2b) 

b. Bake (3) 

c. Expose(4b) 

d. Development (6) 

e. Metallization (4b) 

f. Lift-off (9) 

 

5. Etching SiO2 on backside (refer to experimental section for details) 

a. Spin coat by thick PMMA or photoresist 

b. Bake  

c. Etch by using RIE 

 

or  

a. Spin coat Photoresist (you can‟t use PMMA, use AZ photoresist ) 

b. Bake 

c. Etch by using BHF 
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