
Towards the Efficient Generation of
Gray Codes in the Bitprobe Model

by

Zachary Frenette

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2016

c© Zachary Frenette 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We examine the problem of representing integers modulo L so that both increment and
decrement operations can be performed efficiently. This problem is studied in the bitprobe
model, where the complexity of the underlying problem is measured by the number of
bit operations performed on the data structure [18]. In this thesis, we will primarily be
interested in constructing space-optimal data structures. That is, we would like to use
exactly n bits to represent integers modulo 2n. Brodal et al. gave such a data structure,
which requires n−1 bit reads and 3 bit writes, in the worst case, to perform increment and
decrement operations [3]. We provide several improvements to their data structure. First,
we give a data structure that requires n−1 bit reads and 2 bit writes, in the worst case, to
perform increment and decrement operations. Then, we refine this result to obtain a data
structure that requires n − 1 bit reads and a single bit write to perform both operations.
This disproves the conjecture that, when a space-optimal data structure uses only 1 bit
write to perform these operations, then every bit in the data structure must be inspected
in the worst case [10, 2].

iii

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor J. Ian Munro, for his
patience, knowledge, and support throughout the duration of my research. I would also
like to thank Hicham for our many discussions, as well as Nicole for always lending an ear.
Last but not least, I would like to thank Professor Naomi Nishimura and Professor Gordon
Agnew for taking the time to read my thesis and providing feedback, when necessary.

iv

Dedication

This thesis is dedicated to my family, for their endless support and encouragement.

v

Table of Contents

List of Figures vii

Glossary of Terms and Acronyms viii

1 Introduction 1
1.1 Problem Definition and Notation . 2
1.2 Decision Assignment Tree Model . 3
1.3 Thesis Outline . 4

2 Survey of Previous Work 5
2.1 Space-Optimal Counters . 5
2.2 Redundant Counters . 7

3 Lower Bounds 10
3.1 Worst-Case Lower Bounds . 10
3.2 Average-Case Lower Bounds . 11

4 Efficiently Generating Quasi-Gray Codes 14

5 Efficiently Generating Gray Codes 17
5.1 Constructing an (n, n− 1, 2)-Scheme . 17
5.2 Constructing an (n, n− 1, 1)-Scheme . 21
5.3 Exhaustive Search Results . 22

6 Conclusions and Future Work 25

References 27

vi

List of Figures

1.1 DATs for incrementing and decrementing the SBC on 2-bit integers 3
2.1 The BRGC on 3, 4, and 5 bits . 6
2.2 The RPGC on 2 and 4 bits . 7
2.3 Summary of previous results for space-optimal counters 9
2.4 Summary of previous results for redundant counters 9
4.1 Increment and decrement trees for a (4, 3, 2)-scheme 15
4.2 Structure of an (n, n− 1, 3)-scheme . 16
5.1 Conceptualization of Theorem 5.4 . 19
5.2 Increment and decrement trees for a (5, 4, 1)-scheme 23
5.3 Exhaustive search results for 4 ≤ n ≤ 6 . 24

vii

Glossary of Terms and Acronyms

BRGC The acronym for Binary Reflected Gray Code.

Code A counting sequence with space-efficiency e = 1.

Counter A d-bit data structure that encodes integers modulo L,
where L ≤ 2d.

Counting sequence A cyclic sequence of L distinct d-bit integers.

DAT The acronym for Decision Assignment Tree, which is used
to describe the increment and decrement operations.

(d, e, r, w)-scheme A description of the increment and decrement operations
performed by a d-bit counter with space-efficiency e, which
requires reading r bits and writing w bits in the worst case.

(d, r, w)-scheme Abbreviated notation for a (d, e, r, w)-scheme with e = 1.

Gray code A code induced by a (d, r, w)-scheme whenever w = 1.

Quasi-Gray code A code induced by a (d, r, w)-scheme whenever w ∈ Θ(1).

Redundant counter A counter with space-efficiency e < 1.

RPGC The acronym for Recursive Partition Gray Code.

SBC The acronym for Standard Binary Code.

Space-efficiency The ratio e = L/2d.

Space-optimal counter A counter with space-efficiency e = 1.

viii

Chapter 1

Introduction

We study the problem of designing data structures that efficiently represent integers modulo
L. In particular, we would like to increment and decrement the integer using as few bit
operations as possible. We analyze this problem in the bitprobe model, which was first
introduced by Minsky and Papert in 1969 to discuss the average-case bitprobe complexity
of the membership problem [18]. In this model, the cost of computation is measured purely
by the number of bit operations performed on the data structure. That is, the number of
bits read and the number of bits written are the characteristics that define the complexity
of the underlying problem. In 1981, Yao generalized the bitprobe model to the cellprobe
model [29], where the complexity of the underlying problem is measured by the number
of reads and writes performed on w-bit cells. Although less powerful than the cellprobe
model, the bitprobe model has been subjected to extensive study in computer science
[8, 10, 17, 4]. In fact, many problems have been analyzed in the bitprobe model, including
polynomial evaluation [11, 6], dynamic connectivity and dynamic partial sums [22], and the
membership problem [23, 24, 27, 15, 12]. For an overview of other data structure problems
in the bitprobe model, we refer the reader to the survey of Nicholson, Raman and Rao
[19].

There are many applications which require data structures that can efficiently increment
and decrement integers. For example, Pagh, Pagh and Rao used such a data structure
to create a succinct representation of a dynamic multiset, allowing them to construct an
optimal dynamic Bloom filter [21]. In another application, succinct representations of
integers are used implicitly to create efficient representations of binomial queues – a notion
first examined by Vuillemin [28]. Finally, by utilizing a redundant binary representation,
Carlsson, Munro and Poblete devised an implicit binomial queue that allows constant time

1

insertions in the worst case [5]. For other applications, we refer the reader to the works of
Okasaki and Savage [20, 26].

1.1 Problem Definition and Notation

We define a counter as a d-bit data structure that encodes integers modulo L, where L ≤ 2d.
In addition, we define a counting sequence C = 〈c0, c1, . . . , cL−1〉 as a cyclic sequence of L
distinct d-bit integers. For a fixed counting sequence, a counter must support the following
two basic operations:

1. Increment modifies the state of the counter from ci to ci+1

2. Decrement modifies the state of the counter from ci to ci−1

Note that both operations are performed modulo L. That is, incrementing cL−1 produces
c0, and likewise, decrementing c0 produces cL−1.

The ratio e = L/2d is called the space-efficiency of the counter. In particular, when L = 2d,
we say that the counter is space-optimal, and refer to the corresponding counting sequence
as a code. On the other hand, when L < 2d, we say that the counter is redundant. Note
that in such a case, not all bit arrangements may correspond to valid integer values. When
examining the overall efficiency of a counter, we will consider three different measures of
complexity: the number of bit reads and writes performed in the worst case, the number of
bit reads and writes performed on average, and the the space-efficiency of the counter. For
this problem, the average number of bit reads is calculated by adding the total number of
bits read during L increment (or decrement) operations, and then dividing this total by L.
Likewise, the average number of bits written can be defined in an analogous fashion.

Given a d-bit counter with space-efficiency e, we define a (d, e, r, w)-scheme as a description
of the increment and decrement operations, which are performed by reading r bits and
writing w bits in the worst case. Whenever the space-efficiency of the counter is equal to
1, we will omit the second parameter for convenience. That is, we define a (d, r, w)-scheme
as a (d, e, r, w)-scheme with e = 1. For example, the standard binary representation of
integers (also called the Standard Binary Code) uses n bits to represent integers modulo
2n. Since every bit needs to be read and written in the worst case, the Standard Binary
Code gives an (n, n, n)-scheme. In this thesis, we will primarily be interested in a specific
class of codes. In particular, we say that a (d, r, w)-scheme induces a Gray code G whenever
w = 1 [13], and more generally, we call G a quasi-Gray code whenever w ∈ Θ(1) [2].

2

b1

b1 ← 1 b2

b1 ← 0

b2 ← 1

b1 ← 0

b2 ← 0

(a) Increment Tree

b1

b2

b1 ← 1

b2 ← 1

b1 ← 1

b2 ← 0

b1 ← 0

(b) Decrement Tree

Figure 1.1: DATs for incrementing and decrementing the SBC on 2-bit integers

1.2 Decision Assignment Tree Model

The algorithms for incrementing and decrementing integer counters will be presented in
the Decision Assignment Tree (DAT) model. First introduced by Fredman [10], a DAT
is a binary tree with the following characteristics. Each internal node is labelled by the
location of a particular bit in the data structure, while each leaf node contains assignment
statements that describe which bits in the data structure are updated. The increment (or
decrement) algorithm begins by reading the bit specified by the label at the root node.
Then depending on the value of the bit read, the algorithm moves to either the left child or
the right child of that node. More precisely, if the algorithm reads a bit having the value
0, it will move to the left child of the current node. On the other hand, if the algorithm
reads a bit having the value 1, it will move to the right child of the current node. This
procedure is applied recursively until the algorithm arrives at a leaf node, where it finally
performs the required updates to the data structure. Figure 1.1 shows how to generate the
Standard Binary Code (SBC) on 2-bit integers of the form b2b1. In particular, the DAT
on the left shows how to perform increment operations, while the DAT on the right shows
how to perform decrement operations.

Analyzing the complexity of a scheme under this model can be done in a straightforward
manner. In particular, the number of bits read in the worst case is determined by the
height of the DAT, while the number of bits written in the worst case is indicated by the
leaf with the largest number of assignment statements. To calculate the average number
of bits read, we sum over the length of every root-to-leaf path in the DAT, multiplied by
the fraction of times each path is used during the generation of the counting sequence.
Similarly, to calculate the average number of bits written, we sum over the number of
assignment statements in every leaf, multiplied by the fraction of times each leaf is reached

3

during the generation of the counting sequence. For example, we can see that the increment
tree in Figure 1.1 has a height of 2, and that the largest number of assignment statements
in a single leaf is also 2. This allows us to conclude that the scheme performs 2 bit reads
and 2 bit writes in the worst case. Furthermore, we observe that two of the four bit strings
in the counting sequence require a single bit read, while the other two bit strings require
both bits to be read. Likewise, the same observation can be made regarding the number of
bits written. From this, we conclude that the scheme requires, on average, 2

4
·1+ 2

4
·2 = 1.5

bit reads and bit writes to perform an increment operation. The same analysis can be
carried out on the decrement tree.

1.3 Thesis Outline

The remaining chapters of this thesis are organized as follows. In chapter 2, we survey some
of the previous results pertaining to integer counters. In chapter 3, we explore several lower
bounds regarding the number of bit reads required to perform increment and decrement
operations. In chapter 4, we describe the details of an (n, n− 1, 3)-scheme [3]. In chapter
5, we improve the write complexity of this scheme by reducing the number of bit writes
required from 3 to 2. We then further improve this result by reducing the number of bit
writes required down to 1. That is, we present an n-bit Gray code that requires, in the
worst case, n − 1 bit reads to perform increment and decrement operations. Lastly, we
finish with some concluding remarks and then briefly discuss potential directions for future
work.

4

Chapter 2

Survey of Previous Work

Succinct representations of integers have been extensively studied in computer science, and
in this chapter, we survey some of the key results.

2.1 Space-Optimal Counters

The SBC uses n bits to represent integers modulo 2n, resulting in an (n, n, n)-scheme that
requires all n bits to be read and written in the worst case. However, the SBC requires
only 2 − 21−n bit reads and bit writes on average to perform increment (or decrement)
operations. In 1953, Frank Gray patented a code now known as the Binary Reflected Gray
Code (BRGC) while working on methods for converting analog signals into digital signals
[13, 14]. Unlike the SBC, the BRGC requires merely a single bit write to generate the next
element in the code, and can be defined recursively as follows. Let Gn denote the BRGC
on n bits, and let GRn denote the code Gn in reverse order. For n = 1, the BRGC is defined
as G1 = 〈0, 1〉, while for n ≥ 2, we have

Gn = 〈0Gn−1, 1GRn−1〉.

Given b ∈ {0, 1}, we use bG to denote a sequence where b is prefixed to every bit string in
G. Therefore, prefixing a 0 to every bit string in Gn−1 generates the first half of Gn, while
prefixing a 1 to every bit string in GRn−1 generates the second half of Gn. An example of
the BRGC for 3 ≤ n ≤ 5 is provided in Figure 2.1. To perform an increment operation,
we have two cases to consider. If the current state of the counter has even parity, then it
suffices to flip the rightmost bit. On the other hand, if current state of the counter has odd

5

000
001
011
010
110
111
101
100

0000 1100
0001 1101
0011 1111
0010 1110
0110 1010
0111 1011
0101 1001
0100 1000

00000 01100 11000 10100
00001 01101 11001 10101
00011 01111 11011 10111
00010 01110 11010 10110
00110 01010 11110 10010
00111 01011 11111 10011
00101 01001 11101 10001
00100 01000 11100 10000

Figure 2.1: The BRGC on 3, 4, and 5 bits

parity, then we find the rightmost 1 and flip the bit to its left. Decrement operations can
be performed in a similar manner. In particular, if the current state of the counter has odd
parity, then it suffices to flip the rightmost bit. However, if current state of the counter has
even parity, then we find the rightmost 1 and flip the bit to its left. Although the problem
of generating the BRGC has been subjected to extensive study [7, 1, 14], Fredman showed
that any DAT which induces Gn must read all n bits in the worst case [10]. Furthermore,
since every bit must be inspected to determine the parity of a bit string, this procedure
for incrementing and decrementing Gn requires an average of n bit reads.

In 2010, Bose et al. introduced a different Gray code called the Recursive Partition Gray
Code (RPGC) [2]. By using a divide and conquer approach, they were able to create an n-
bit counter that requires O(log n) bit reads on average to perform increment and decrement
operations, even though generating the code requires n bit reads in the worst case. 1 Let
Rn denote the RPGC on n bits. When n = 1, the RPGC is defined as R1 = 〈0, 1〉,
and when n ≥ 2, the increment and decrement operations are defined in a mutually
recursive manner. For simplicity, assume that n is a power of 2. To perform increment
and decrement operations, the current state of the counter is divided into two substrings,
X and Y , which we interpret as bit strings from the sequence Rn/2. When performing
an increment operation, we recursively increment X unless X = Y , at which point we
recursively decrement Y . Similarly, when performing a decrement operation, we recursively
decrement X unless X = Y + 1, at which point we recursively increment Y . Figure 2.2
provides an example ofR2 andR4. In addition to this result, Bose et al. utilized the RPGC
as a building block to construct DATs for other space-optimal counters [2]. They show that
for sufficiently large n and any integer c ≥ 1, there exists an (n, n, c)-scheme which generates
a quasi-Gray code requiring, on average, no more than O(log(2c−1) n) bit reads to perform
increment operations. Furthermore, by picking c ∈ O(log∗ n), they construct a DAT for

1Logarithms are taken to the base 2.

6

00
01
11
10

0000 1010 1111 0101
0010 1011 1101 0100
0110 0011 1001 1100
1110 0111 0001 1000

Figure 2.2: The RPGC on 2 and 4 bits

an (n, n,O(log∗ n))-scheme that reads at most 17 bits on average to perform increment
operations. Although these two results have incredibly efficient increment operations, we
note that they do not efficiently support decrement operations.

All of the counters seen so far require n bit reads in the worst case. However, through
an exhaustive search, Brodal et al. were able to find a (4, 3, 2)-scheme, and then use it to
construct an (n, n−1, 3)-scheme which supports both increment and decrement operations
[3]. Furthermore, their construction uses the RPGC to represent the lower-order bits of
the data structure, allowing their counter to read, on average, no more than O(log n) bits.
The results described in this section are summarized in Figure 2.3.

2.2 Redundant Counters

By utilizing redundancy, it is often possible to improve the number of bit reads required by a
scheme. In particular, by using O(n) bits of extra space, Fredman provided a data structure
that requires only O(log n) bit reads and a single bit write to perform increment operations
[10]. Rahman and Munro later improved this result by giving an (n+ 1, 1/2, log n+ 4, 4)-
scheme that supports both increment and decrement operations [25]. Their data structure
divides the counter into three blocks. The first block is a status bit that indicates whether
a delayed bit write is required, while the other two blocks are used to store a variation of
the BRGC [16, 25]. These two blocks are of size log n and n − log n respectively. When
performing increment (or decrement) operations, the writes required in the smaller block
are applied immediately. However, the writes required in the larger block are applied
during subsequent operations, at which point the status bit is used to keep track of this
information.

Similar ideas were used by Brodal et al. to give an (n + 1, 1/2, log n + 2, 3)-scheme that
supports both increment and decrement operations [3]. However, in their data structure,
the smaller block stores the RPGC while the larger block stores the SBC. To perform
increment operations, the smaller block is incremented until it overflows, at which point
the status bit is used to indicate a delayed propagation of the carry. During subsequent

7

increment operations, the value of the smaller block is used as a pointer to a particular bit
within the larger block, implicitly indicating the location of the current carry. In addition
to this result, a trade-off is shown between the space-efficiency of the scheme and the
number of bit reads required in the worst case. In particular, for an arbitrary integer
1 ≤ t ≤ n− log n− 1, a variety of data structures parametrized by t are given, each with a
space-efficiency close to one [3]. For counters with efficient average-case complexity, Bose
et al. give an (n + t log n, 1 − O(n−t), O(t log n), 2c + 1)-scheme for arbitrary parameters
c ≥ 1 and t > 0 [2]. In addition to having a space-efficiency close to one, their scheme
requires, on average, no more than O(log(2c) n) bit reads.

Prior to these results, this problem was studied by Frandsen, Miltersen and Skyum within
the context of dynamic language membership problems [9]. In particular, they give an (n+
log n, 2/n−O(2−n), log n+ 1, log n+ 1)-scheme supporting both increment and decrement
operations. However, as n becomes larger, the space-efficiency of their scheme approaches
zero. The results of this section are summarized in Figure 2.4.

8

F
ig

u
re

2.
3:

S
u
m

m
ar

y
of

p
re

v
io

u
s

re
su

lt
s

fo
r

sp
ac

e-
op

ti
m

al
co

u
n
te

rs

D
im

en
si

on
B

it
s

re
ad

B
it

s
w

ri
tt

en
In

c.
&

D
ec

.
R

ef
er

en
ce

W
or

st
C

as
e

A
ve

ra
ge

C
as

e
W

or
st

C
as

e

n
n

2
−

21
−
n

n
Y

S
B

C

n
n

n
1

Y
G

ra
y

[1
3]

n
n

6
lo

g
n

1
Y

B
os

e
et

al
.

[2
]

n
n

O
(l

og
(2
c−

1
)
n

)
c

N

n
n

17
O

(l
og
∗
n

)
N

4
3

3
2

Y
B

ro
d
al

et
al

.
[3

]
n

n
−

1
O

(l
og
n

)
3

Y

F
ig

u
re

2.
4:

S
u
m

m
ar

y
of

p
re

v
io

u
s

re
su

lt
s

fo
r

re
d
u
n
d
an

t
co

u
n
te

rs

D
im

en
si

on
E

ffi
ci

en
cy

B
it

s
re

ad
B

it
s

w
ri

tt
en

In
c.

&
D

ec
.

R
ef

er
en

ce
W

or
st

C
as

e
A

ve
ra

ge
C

as
e

W
or

st
C

as
e

O
(n

)
1/

2O
(n

)
O

(l
og
n

)
O

(l
og
n

)
1

N
F

re
d
m

an
[1

0]

n
+

lo
g
n

2/
n
−
O

(2
−
n
)

lo
g
n

+
1

3
lo

g
n

+
1

Y
F

ra
n
d
se

n
et

al
.

[9
]

n
+
t
lo

g
n

1
−
O

(n
−
t)

O
(t

lo
g
n

)
O

(l
og

(2
c)
n

)
2c

+
1

N
B

os
e

et
al

.
[2

]

n
+

1
1/

2
lo

g
n

+
4

O
(1

)
4

Y
R

ah
m

an
et

al
.

[2
5]

n
+
t

≥
1
−

1/
2t

lo
g
n

+
t

+
1

O
(l

og
lo

g
n

)
3

N

B
ro

d
al

et
al

.
[3

]

n
+
t

≥
1
−

1/
2t

lo
g
n

+
t

+
2

O
(l

og
lo

g
n

)
2

N

n
+
t

≥
1
−

1/
2t

lo
g
n

+
t

+
3

O
(l

og
lo

g
n

)
1

N

n
+
t

≥
1
−

1/
2t

lo
g
n

+
t

+
2

O
(l

og
lo

g
n

)
3

Y

n
+
t

≥
1
−

1/
2t

lo
g
n

+
t

+
3

O
(l

og
lo

g
n

)
2

Y

9

Chapter 3

Lower Bounds

In this chapter, we explore several lower bounds regarding the number of bit reads required
to perform increment and decrement operations. In particular, to generate integers modulo
2n, it can be shown that r ∈ Ω(log n) whenever e = 1 or w = 1 [10, 19]. Furthermore, we
will show that, on average, no space-optimal counter can perform better than the SBC.
That is, any (n, r, w)-scheme requires at least 2 − 21−n bit reads on average to perform
increment or decrement operations.

3.1 Worst-Case Lower Bounds

For this first lower bound, information-theoretic arguments are used to show that any
(d, e, r, 1)-scheme requires at least a logarithmic number of bit reads in the worst case [10].
In particular, to obtain a bound on the height the corresponding DAT, it suffices to obtain
a bound on the number of leaves in the tree. This notion is formalized with the following
theorem.

Theorem 3.1 ([10]). Every (d, e, r, 1)-scheme that generates integers modulo L requires
at least r ≥ log logL + 1 bit reads in the worst case to perform increment (or decrement)
operations.

Proof. Let T be a DAT which performs increment operations for a (d, e, r, 1)-scheme. Since
T generates integers modulo L, at least logL of the d bits in the data structure need to be
modified. In particular, each of these bits need to be modified at least twice: once when
being set to 1, and once when being set to 0. Therefore, since leaves can only contain one

10

assignment statement, the number of leaves in T must be at least 2 logL. Furthermore,
since a DAT of height r has at most 2r leaves, it follows that 2 logL ≤ 2r. Hence, we have
r ≥ log logL+ 1, as required.

To facilitate the discussion of the next lower bound, we begin by defining some notation.
Let T be a DAT for a (d, e, r, w)-scheme and let l be a leaf node of T . First, we define
Wl to be the set of bits that appear in the assignment statements of l. Similarly, let Rl

denote the set of bits that must be read in order to reach l. The following lemma shows
that, in a space-optimal counter, we can only update bits that have been previously read.
In particular, if there exists a leaf l such that Wl 6⊆ Rl, then T cannot possibly induce a
valid code. Moreover, this lemma will be the crux of the argument used in the proof of
Theorem 3.3.

Lemma 3.2. Let T be a DAT which performs increment (or decrement) operations for an
n-bit space-optimal counter. Then for any leaf node l of T , we have Wl ⊆ Rl.

Proof. Assume by way of contradiction that there exists a leaf l and a bit b such that
b ∈ Wl but b 6∈ Rl. Since b 6∈ Rl, there must exist a pair of integers X = xnxn−1 . . . x1 and
Y = ynyn−1 . . . y1 that reach l when they are incremented. Moreover, this pair of integers
differs only at the position indicated by b. As a result, X and Y must be incremented to
the same integer, which contradicts the definition of a space-optimal counter.

Theorem 3.3 ([19]). Every (n, r, w)-scheme requires at least r ≥ log n+ 1 bit reads in the
worst case to perform increment (or decrement) operations.

Proof. Assume by way of contradiction that there exists an (n, r, w)-scheme that induces
a code C such that r ≤ log n, and let T denote the corresponding DAT which performs
increment operations. Since T has height r, it follows that T must have at most 2r − 1 ≤
2logn − 1 = n − 1 internal nodes. Thus, there exists a bit b in the data structure that is
never read during any of the increment operations. Since the space-efficiency of the counter
is equal to one, there must exist a leaf l such that b ∈ Wl but b /∈ Rl. Consequently, we
have Wl 6⊆ Rl, which, by Lemma 3.2, contradicts the fact that C is a code. As a result, it
follows that r ≥ log n+ 1, as required.

3.2 Average-Case Lower Bounds

In this section, we prove a lower bound on the average number of bit reads required to
perform increment (or decrement) operations on an n-bit code. In particular, we show

11

that any (n, r, w)-scheme requires at least r̄ ≥ 2− 21−n bit reads on average to increment
an n-bit integer, which implies that the SBC is optimal in this regard. To show this, we
will argue that any DAT achieving an average of 2− 21−n bit reads must have a particular
structure. More precisely, for every internal node in the levels 1 through n−1, exactly one
of its two children must be a leaf. Consequently, any deviation from this structure either
induces an invalid code, or increases the number of bit reads performed. We will formalize
this notion with the following theorem.

Theorem 3.4. Every (n, r, w)-scheme requires at least r̄ ≥ 2 − 21−n bit reads on average
to perform increment (or decrement) operations.

Proof. Let T be a DAT for an (n, r, w)-scheme that requires an average of r̄ bit reads to
perform increment operations, and let z1 denote the first bit inspected by the increment
algorithm. Observe that each internal node in T must have two children, each of which
is either a leaf node, or another internal node. Hence, when analyzing the underlying
structure of T , we have three cases to consider. First, suppose that both children of the
root are leaf nodes. Then, by Lemma 3.2, T cannot induce a valid code for any value of
n larger than one. On the other hand, suppose that both children of the root are internal
nodes. In this case, the increment algorithm will read a second bit, regardless of the value
of z1. Hence, we have r̄ ≥ 2 ≥ 2 − 21−n. In the third case, the algorithm will only read
another bit whenever z1 = b1, for some b1 ∈ {0, 1}. That is, when z1 = b1, the algorithm
will probe a second bit, and when z1 = 1 − b1, the algorithm performs the required bit
writes to the data structure. In this case, the expected number of bit reads is bounded by
r̄ ≥ 1

2
· 1 + 1

2
· 2 = 3

2
, which is the only case where we can hope to do better than 2− 21−n.

We now apply this argument inductively. Suppose that the internal node at level k ≤ n−1
reads bit zk. We again have three cases to consider. In the first case, when both children
are leaf nodes, at most k ≤ n − 1 of the n bits are ever read. Hence, by Lemma 3.2, T
cannot induce a valid code. In the second case, if both children are internal nodes, then r̄
becomes too large. In particular, the leaf at depth 1 ≤ j ≤ k − 1 is reached 2n−j times,
while the internal node at level k is reached 2n−k+1 times. Therefore, by using the identity∑k−1

j=1 j/2
j = 2− (k + 1)21−k, we have

r̄ ≥
k−1∑
j=1

j/2j + (k + 1)21−k

= 2− (k + 1)21−k + (k + 1)21−k

= 2.

12

In the third case, the algorithm will only read another bit whenever zk = bk, for some
bk ∈ {0, 1}. That is, when zk = bk, the algorithm will probe a (k + 1)-th bit, and when
zk = 1 − bk, the algorithm performs the required bit writes to the data structure. In this
case, the expected number of bit reads is bounded by

r̄ ≥
k−1∑
j=1

j/2j + k2−k + (k + 1)2−k

= 2− (k + 1)21−k + k2−k + (k + 1)2−k

= 2− 2−k.

Finally, when k = n, there are no new bits for the algorithm to read. Therefore, both
children of the nth internal node must be leaf nodes, and so, the average number of bit
reads required does not increase. Hence, we have r̄ ≥ 2− 21−n, as required.

13

Chapter 4

Efficiently Generating Quasi-Gray
Codes

In 2014, Brodal et al. presented the first space-optimal counter that, in the worst case,
requires fewer than n bit reads to perform increment and decrement operations [3]. Since
their result forms the basis of our contributions in this thesis, we cover it extensively in
this chapter. In particular, by utilizing a (4, 3, 2)-scheme, they devised an (n, n − 1, 3)-
scheme for any n ≥ 5. Their (4, 3, 2)-scheme was obtained through an exhaustive search.
Assuming the counter is of the form b4b3b2b1, the increment and decrement trees are shown
in Figure 4.1. We will denote these trees by T(4,3,2) and T ′(4,3,2) respectively. For example,
to increment the counter from 0001 to 0100, the algorithm reads the bits b1, b3 and b2, and
then updates the bits b1 ← 0 and b3 ← 1. Likewise, to decrement the counter from 0001
to 0000, the algorithm reads the bits b1, b3 and b4, and then updates the bit b1 ← 0.

Theorem 4.1 ([3]). There is a (4, 3, 2)-scheme that supports both increment and decrement
operations.

For larger values of n, the representation of the counter is divided into two blocks B(4,3,2)

and BG of size 4 and n − 4 respectively. In particular, B(4,3,2) uses the (4, 3, 2)-scheme
outlined in Theorem 4.1, while BG uses the representation of a Gray code. This structure
is illustrated in Figure 4.2. To perform increment operations, we first increment BG and
then check if it represents 0. If it does, then we also increment B(4,3,2). Similarly, to perform
decrement operations, we decrement BG, and if BG was 0 before being decremented, then
we also decrement B(4,3,2). We will formalize this notion with the following theorem.

Theorem 4.2 ([3]). For n ≥ 5, there exists an (n, n − 1, 3)-scheme that supports both
increment and decrement operations.

14

b1

b2

b4

b1 ← 1 b2 ← 1

b4

b1 ← 1 b4 ← 0

b3

b2

b1 ← 0

b3 ← 1

b1 ← 0

b2 ← 0

b4

b4 ← 1 b3 ← 0

(a) Increment Tree

b1

b2

b3

b1 ← 1

b2 ← 1

b1 ← 1

b3 ← 0

b4

b4 ← 1 b2 ← 0

b3

b4

b1 ← 0 b3 ← 1

b4

b1 ← 0 b4 ← 0

(b) Decrement Tree

Figure 4.1: Increment and decrement trees for a (4, 3, 2)-scheme

Proof. Let G be an (n − 4)-bit Gray code, and let TG and T ′G denote the corresponding
increment and decrement trees. Without loss of generality, we assume that every leaf in
these two trees has depth n−4. Let l be the leaf in TG that corresponds to the integer that
appears immediately before the string of all 0’s. In addition, let bk ← 0 denote the lone
assignment statement in l. To construct the increment tree, which we denote by T , we
begin by taking TG and replacing l by a copy of T(4,3,2). Moreover, we add the assignment
statement bk ← 0 to each of the leaves in T(4,3,2). Therefore, T will initially update the first
n − 4 bits through 2n−4 states, according to the rules of TG. However, when performing
this final increment operation, T will also update the last 4 bits of the data structure,
according to the rules of T(4,3,2).

Performing decrement operations can be done in an analogous manner. Let l′ be the leaf
in T ′G that corresponds to the string of all 0’s. To construct the decrement tree, which we
denote by T ′, we take T ′G and replace l′ by a copy of T ′(4,3,2). Then, like in the construction

15

bn bn−1 bn−2 bn−3

B(4,3,2)

bn−4 . . . b2 b1

BG

Figure 4.2: Structure of an (n, n− 1, 3)-scheme

of T , we add the assignment statement bk ← 1 to each of the leaves in T ′(4,3,2). Therefore, T ′
will update the first n− 4 bits according to the rules of T ′G. Moreover, when the first n− 4
bits are all 0’s, T ′ will also update the last 4 bits of the data structure, according to the
rules of T ′(4,3,2). In terms of efficiency, both T and T ′ have height n−1. Furthermore, both
DATs require 3 bit writes in the worst case: one when updating BG, and up to two more
when updating B(4,3,2). Therefore, T and T ′ induce an (n, n−1, 3)-scheme, as required.

Note that, in our construction, T and T ′ require at least n−4 bit reads to perform increment
and decrement operations. However, by choosing G to be the RPGC, a careful analysis
will show that, on average, the increment and decrement operations can be performed with
O(log n) bit inspections [2, 3].

16

Chapter 5

Efficiently Generating Gray Codes

In this chapter, we explore methods for reducing the write complexity of the (n, n− 1, 3)-
scheme presented in the previous chapter. First, we describe a method for generalizing
existing schemes to larger values of n, without increasing the number of bit writes required.
This result, in conjunction with Theorem 4.1, will allow us to construct an (n, n − 1, 2)-
scheme for all n ≥ 4. We then improve this result by further reducing the number of bit
writes required. By constructing an (n, n− 1, 1)-scheme for all n ≥ 5, we provide the first
Gray code that requires, in the worst case, fewer than n bit reads to perform increment
and decrement operations. Finally, we also summarize the results of our exhaustive search
for schemes on small values of n.

5.1 Constructing an (n, n− 1, 2)-Scheme

Let G be an n-bit Gray code and let π be a permutation of [n]. 1 We use the notation
π(G) to denote the sequence obtained by applying π to every element in G. That is, for
every element X = xnxn−1 . . . x1 in G, we let π(X) = xπ(n)xπ(n−1) . . . xπ(1). Similarly, for
any bijection ϕ : {0, 1}n → {0, 1}n, we use the notation ϕ(G) to denote the sequence
obtained by applying ϕ to each element in G. Lastly, we use the notation ⊕ to denote the
exclusive-or operator. The following lemmas will lead the reader to the main result of this
section, which is Theorem 5.4.

Lemma 5.1. Let G be an n-bit Gray code and let π be a permutation of [n]. Then π(G) is
also an n-bit Gray code.

1The notation [n] is used to denote the set {1, . . . , n}.

17

Proof. Let X = xnxn−1 . . . x1 and Y = ynyn−1 . . . y1 be two consecutive elements in G.
Observe that xi = yi implies that xπ(i) = yπ(i). Likewise, xi 6= yi implies that xπ(i) 6= yπ(i).
Hence π(X) and π(Y) have Hamming distance one, and so, π(G) is an n-bit Gray code.

Lemma 5.2. Let G be an n-bit Gray code, let A = anan−1 . . . a1 be any n-bit integer, and
let ϕA(Z) = Z ⊕ A. Then ϕA(G) is also an n-bit Gray code.

Proof. Let X = xnxn−1 . . . x1 and Y = ynyn−1 . . . y1 be two consecutive elements in G.
Observe that xi = yi implies that xi ⊕ ai = yi ⊕ ai. Likewise, xi 6= yi implies that
xi ⊕ ai 6= yi ⊕ ai. Hence ϕA(X) and ϕA(Y) have Hamming distance one. Furthermore,
since ϕA is bijective, ϕA(G) contains 2n distinct elements. Therefore, ϕA(G) is an n-bit
Gray code.

Lemma 5.3. Let S and T be two distinct n-bit integers that have Hamming distance one.
Then there exists an n-bit Gray code GST such that S and T appear consecutively in GST .

Proof. Let G be any n-bit Gray code, and let X and Y denote two consecutive elements
in G. Suppose that X and Y differ at position j and that S and T differ at position i. We
will use G to construct GST as follows. First, we define a permutation π of [n] such that
π(i) = j and π(j) = i. In addition, let A = π(X) ⊕ S and let ϕA(Z) = Z ⊕ A. We claim
that GST = ϕA(π(G)) is a Gray code satisfying the desired properties. In particular, by
Lemmas 5.1 and 5.2, GST is indeed a Gray code, and so it suffices to verify that S and T
appear consecutively in GST . Since X and Y are consecutive elements in G, we have

ϕA(π(X)) = π(X)⊕ A
= π(X)⊕ (π(X)⊕ S)

= S

and

ϕA(π(Y)) = π(Y)⊕ A
= π(Y)⊕ (π(X)⊕ S)

= T

are consecutive elements in GST . Note that the second equation follows from the fact that
π(Y) ⊕ π(X) is the n bit integer containing a single 1 at position j and 0’s everywhere
else. Therefore, GST is a Gray code that satisfies the desired properties.

Let C be an n-bit code and let TC be a DAT which generates C by using r bit reads and
w bit writes. Moreover, suppose that there exists a leaf l in TC such that |Wl| = 1. We

18

bn+1 bn . . . bi+1 bi bi−1 . . . b2 b1

BC

bn+1 bmn−δ . . . bm2 bm1

BU

bkδ . . . bk2 bk1

BR

Figure 5.1: Conceptualization of Theorem 5.4

will now show that by using C and TC as building blocks, we can construct an (n + 1)-bit
code that can be generated by a DAT requiring r + 1 bit reads and w bit writes. The
representation of this (n+ 1)-bit code is divided into two blocks. The first block is a single
bit bn+1, while the second block, which we denote by BC, is used to store C. Conceptually,
it will also help to further divide BC into two subblocks: BR and BU . In particular, BR

contains the δ ≤ r bits that appear in Rl, while BU contains the remaining n− δ bits. By
utilizing this structure, which is illustrated in Figure 5.1, we can generate our (n + 1)-bit
code as follows.

Theorem 5.4. Let C be an n-bit code and let TC be a DAT which, in the worst case,
requires r bit reads and w bit writes to generate C. If there exists a leaf l in TC such that
|Wl| = 1, then there exists a DAT which, in the worst case, requires r + 1 bit reads and w
bit writes to generate an (n+ 1)-bit code.

Proof. Let T = tδtδ−1 . . . t1 denote the string that corresponds to the values of the bits in
BR when l is reached. Likewise, let S = sδsδ−1 . . . s1 denote the string that corresponds
to the values of the bits in BR, immediately after applying the assignment statement in
l. Note that S and T have Hamming distance one since |Wl| = 1. Therefore, by Lemma
5.3, there exists a δ-bit Gray code GST such that S and T appear consecutively in GST .
We will use the notation TST to denote the corresponding DAT. Moreover, without loss of
generality, we assume that every leaf in TST has depth δ.

Now we construct a DAT, which is denoted by T , that generates the desired (n + 1)-bit
code. First, we label the root node of T by bn+1. Next, we define the left subtree of

19

T to be TC, with the modification that l contains the assignment statement bn+1 ← 1.
Finally, we define the right subtree of T to be TST , with the modification that the leaf
corresponding to S contains the assignment statement bn+1 ← 0. Therefore, to generate
this (n + 1)-bit code, we begin by reading bn+1. If the value of bn+1 is 0, we increment
BC according to the rules of TC, unless the values of the bits in BR are equal to T . In
this case, the algorithm performs the update bn+1 ← 1. On the other hand, if the value
of bn+1 is 1, we increment BR according the the rules of TST . In particular, the algorithm
continues to cycle through the elements of GST until the values of the bits in BR are equal
S. At this point, the algorithm performs the update bn+1 ← 0. Note that this occurs 2n−δ

times, with each occurrence having a different value stored in BU . Therefore, T generates
2n−δ2δ = 2n distinct integers when bn+1 has a value of 1. Moreover, when bn+1 has a value
of 0, T generates the 2n distinct integers in C. As a result, this construction induces a code
with a total of 2n+1 distinct integers. In terms of efficiency, since δ ≤ r, the height of T is
equal to r + 1. Since the right subtree of T generates a Gray code, the maximum number
of writes required remains w.

In order to generate a code that supports both increment and decrement operations, we
introduce the following definitions. Let T and T ′ denote the increment and decrement
trees for an (n, r, w)-scheme. Moreover, let Zl denote the set of integers that reach l when
incremented (or decremented). We say that the pair of leaves (l, l′) is symmetric if the
following two conditions hold:

• l is a leaf in T and l′ is a leaf in T ′

• there exists a bijection ψ : Zl → Zl′ such that ψ(X) = Y if and only if X appears
immediately before Y in the corresponding code

By utilizing this symmetry between leaves, we obtain the following theorem.

Theorem 5.5. For n ≥ 4, there exists an (n, n−1, 2)-scheme that supports both increment
and decrement operations.

Proof. When n = 4, the claim is established in Theorem 4.1. For larger values of n, we
will need to inductively apply Theorem 5.4. Let Tn−1 and T ′n−1 denote the increment and
decrement trees for an (n− 1, n− 2, 2)-scheme. To support both operations, we require a
symmetric pair of leaves (l, l′) such that |Wl| = |Wl′ | = 1. Observe that when n = 5, the
4th and 3rd leaves in Figure 4.1 satisfy this requirement. We begin by applying Theorem
5.4 on Tn−1 and l to obtain the increment tree for an (n, n−1, 2)-scheme, which is denoted
by Tn. Furthermore, let GST denote the δ-bit Gray code used in the construction of Tn,
and let GRST denote the code GST in reverse order. Then, to construct the corresponding
decrement tree T ′n, it suffices to apply Theorem 5.4 using l′ as the chosen leaf and GRST as the

20

chosen δ-bit Gray code. Moreover, this procedure for constructing Tn and T ′n guarantees the
existence of another symmetric pair of leaves that can be used during the next application
of Theorem 5.4. This follows from the fact that the bits of GST and GRST are always read in
the right subtree of Tn and T ′n respectively. Hence, Tn and T ′n induce an (n, n−1, 2)-scheme,
as required.

5.2 Constructing an (n, n− 1, 1)-Scheme

In this section, we show how to transform the (4, 3, 2)-scheme, which is outlined in Figure
4.1, into a (5, 4, 1)-scheme. The main idea is to replace the 2-bit write transitions by
multiple 1-bit write transitions. For example, consider the 6th leaf from the left in the
increment tree. Currently, we have

(0011, 1011)
b1,b2−−→ (0000, 1000).

Here, values above the arrow denote the bits that are updated during the corresponding
increment operation. Observe that since our scheme is space-optimal, we cannot directly
replace this transition by

(0011, 1011)
b1−→ (0010, 1010)

b2−→ (0000, 1000).

This follows from the fact that these transitions, in conjunction with the original ones,
would require both 0011 and 1010 to be incremented to 0010. In order to resolve this issue,
we simply need to add an extra bit b5, which instead gives the following transitions

(00011, 01011)
b5−→ (10011, 11011)

b1−→ (10010, 11010)
b2−→ (10000, 11000)

b5−→ (00000, 01000).

We can now apply the same idea to the 5th leaf in the increment tree. In particular, the
resulting transitions are

(00001, 01001)
b5−→ (10001, 11001)

b3−→ (10101, 11101)
b2−→ (10111, 11111)

b1−→ (10110, 11110)
b2−→ (10100, 11100)

b5−→ (00100, 01100).

Note that two additional transitions are required in order to ensure that the counting
sequence has no redundancy. Moreover, to support decrement operations, we simply need
to reverse the transitions outlined above. The resulting increment and decrement trees for
this (5, 4, 1)-scheme are presented in Figure 5.2.

21

Theorem 5.6. There is a (5, 4, 1)-scheme that supports both increment and decrement
operations.

For larger values of n, we can apply the same proof strategy as Theorem 5.5.

Theorem 5.7. For n ≥ 5, there exists an (n, n−1, 1)-scheme that supports both increment
and decrement operations.

Proof. When n = 5, the claim is established in Theorem 5.6. For larger values of n, we
will need to inductively apply Theorem 5.4. Let Tn−1 and T ′n−1 denote the increment and
decrement trees for an (n− 1, n− 2, 1)-scheme. To support both operations, we require a
symmetric pair of leaves (l, l′) such that |Wl| = |Wl′ | = 1. Observe that when n = 6, the
4th and 3rd leaves in Figure 5.2 satisfy this requirement. We begin by applying Theorem
5.4 on Tn−1 and l to obtain the increment tree for an (n, n−1, 1)-scheme, which is denoted
by Tn. Furthermore, let GST denote the δ-bit Gray code used in the construction of Tn,
and let GRST denote the code GST in reverse order. Then, to construct the corresponding
decrement tree T ′n, it suffices to apply Theorem 5.4 using l′ as the chosen leaf and GRST as the
chosen δ-bit Gray code. Moreover, this procedure for constructing Tn and T ′n guarantees the
existence of another symmetric pair of leaves that can be used during the next application
of Theorem 5.4. This follows from the fact that the bits of GST and GRST are always read in
the right subtree of Tn and T ′n respectively. Hence, Tn and T ′n induce an (n, n−1, 1)-scheme,
as required.

5.3 Exhaustive Search Results

In this section, we summarize the results of our exhaustive search for schemes on small
values of n. In particular, these results are shown in Figure 5.3. We use the notation ‘+’ to
denote that a scheme with the corresponding values of n, r and w exists. Likewise, we use
the notation ‘−’ to denote that no scheme exists for the specified parameters. Moreover,
we use ‘?’ to denote that the existence of a (n, r, w)-scheme remains unknown, as the state
space was much too large to search entirely. Observe that, by Lemma 3.2, we require
that Wl ⊆ Rl for every leaf l in a DAT. Therefore, we can automatically place a ‘−’ for
schemes where w > r. In addition, the existence of a (6, 4, w)-scheme remains unknown
when 1 ≤ w ≤ 4. Although we conjecture that such a scheme does not exist, we do believe
that an (n, n− 2, w)-scheme exists for larger values of n.

22

b 5

b 1

b 2

b 4

b 1
←

1

b 2
←

1

b 4

b 1
←

1

b 4
←

0

b 3

b 2

b 5
←

1

b 5
←

1

b 4

b 4
←

1

b 3
←

0

b 1

b 3

b 2

b 5
←

0

b 2
←

0

b 2

b 5
←

0

b 2
←

0

b 3

b 2

b 3
←

1

b 1
←

0

b 2

b 2
←

1

b 1
←

0

(a
)
In
cr
em

en
t
T
re
e

b 5

b 1

b 2

b 3

b 5
←

1

b 5
←

1

b 4

b 4
←

1

b 2
←

0

b 3

b 4

b 1
←

0

b 3
←

1

b 4

b 1
←

0

b 4
←

0

b 1

b 2

b 3

b 2
←

1

b 2
←

1

b 3

b 1
←

1

b 1
←

1

b 2

b 3

b 5
←

0

b 3
←

0

b 3

b 5
←

0

b 2
←

0

(b
)
D
ec
re
m
en
t
T
re
e

F
ig

u
re

5.
2:

In
cr

em
en

t
an

d
d
ec

re
m

en
t

tr
ee

s
fo

r
a

(5
,4
,1

)-
sc

h
em

e

23

Figure 5.3: Exhaustive search results for 4 ≤ n ≤ 6

r

1 2 3 4

w

1 − − − +

2 − − + +

3 − − + +

4 − − − +

r

1 2 3 4 5

w

1 − − − + +

2 − − − + +

3 − − − + +

4 − − − + +

5 − − − − +

r

1 2 3 4 5 6

w

1 − − − ? + +

2 − − − ? + +

3 − − − ? + +

4 − − − ? + +

5 − − − − + +

6 − − − − − +

24

Chapter 6

Conclusions and Future Work

In this thesis, we first surveyed several of the previous results pertaining to integer counters.
We then explored lower bounds regarding the number of bit reads required to perform
increment and decrement operations. In particular, it was shown that r ∈ Ω(log logL)
bit reads are necessary to generate integers modulo L, whenever e = 1 or w = 1 [10, 19].
Moreover, we argued that, on average, no (n, r, w)-scheme can require fewer than 2− 21−n

bit reads to perform increment and decrement operations, implying that the SBC is optimal
in this regard. Then, we examined a space-optimal counter that requires, in the worst case,
n− 1 bit reads and 3 bit writes to perform increment and decrement operations [3]. This
counter was constructed from a (4, 3, 2)-scheme, which was found through an exhaustive
search. Finally, we presented a technique for extending the (4, 3, 2)-scheme mentioned
above, without having to increase the number of bit writes required. That is, for all
n ≥ 4, we established the existence of an (n, n − 1, 2)-scheme which supports increment
and decrement operations. Furthermore, we showed how transform the above-mentioned
(4, 3, 2)-scheme into a (5, 4, 1)-scheme. Then, by using this (5, 4, 1)-scheme, we designed an
(n, n− 1, 1)-scheme for all n ≥ 5. In other words, we constructed an n-bit Gray code that
requires, in the worst case, n−1 bit reads to perform increment and decrement operations.
This construction disproves the conjecture that a DAT which generates an n-bit Gray code
must have height n [10, 2].

In terms of future work, there are many avenues that one could explore, and so we conclude
with a list of open problems.

1. Improve the read complexity of space-optimal counters. In particular, space-optimal
counters are only known to exist for values of r ≥ n− 1, though we conjecture that
(n, n− c, w)-schemes exist, for any constant c > 0.

25

2. The RPGC is an n-bit code that requires, on average, O(log n) bit reads to perform
increment and decrement operations [2]. Is it possible to design a Gray code that
reads, on average, fewer bits than the RPGC?

3. The (n, n− 1, 1)-scheme devised in chapter 5 requires, on average, n− 1 bit reads to
perform increment and decrement operations. Is there a Gray code that reads n− 1
bits in the worst case, but only O(log n) bits on average?

4. Improve the lower bounds for space-optimal counters. In particular, to generate
integers modulo 2n, at least log n + 1 bit reads are necessary. Can this lower bound
be improved? Likewise, can one obtain an ω(1) lower bound for the average-case
read complexity of quasi-Gray codes?

5. Several of the schemes surveyed in chapter 2 can only perform increment operations.
Can these schemes be modified to also support decrement operations?

26

References

[1] James R. Bitner, Gideon Ehrlich, and Edward M. Reingold. Efficient generation of
the binary reflected gray code and its applications. Communications of the ACM,
19(9):517 – 521, 1976.

[2] Prosenjit Bose, Paz Carmi, Dana Jansens, Anil Maheshwari, Pat Morin, and Michiel
Smid. Improved methods for generating quasi-gray codes. In Proceedings of the 12th
Scandinavian Conference on Algorithm Theory, SWAT ’10, pages 224 – 235. Springer-
Verlag, 2010.

[3] Gerth Stølting Brodal, Mark Greve, Vineet Pandey, and Srinivasa Rao Satti. Integer
representations towards efficient counting in the bit probe model. Journal of Discrete
Algorithms, 26:34 – 44, 2014.

[4] Harry Buhrman, Peter Bro Miltersen, Jaikumar Radhakrishnan, and Srinivasan
Venkatesh. Are bitvectors optimal? SIAM Journal on Computing, 31(6):1723 –
1744, 2002.

[5] Svante Carlsson, J. Ian Munro, and Patricio V. Poblete. An implicit binomial queue
with constant insertion time. In Proceedings of the 1st Scandinavian Workshop on
Algorithm Theory, SWAT ’88, pages 1 – 13. Springer-Verlag, 1988.

[6] Victor Chen, Elena Grigorescu, and Ronald de Wolf. Efficient and error-correcting
data structures for membership and polynomial evaluation. In Proceedings of the 27th
International Symposium on Theoretical Aspects of Computer Science, STACS ’10,
pages 203 – 214, 2010.

[7] Martin Cohn and Shimon Even. A gray code counter. IEEE Transactions on Com-
puters, 18(7):662 – 664, 1969.

[8] Peter Elias and Richard A. Flower. The complexity of some simple retrieval problems.
J. ACM, 22(3):367 – 379, 1975.

27

[9] Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven Skyum. Dynamic word
problems. J. ACM, 44(2):257 – 271, 1997.

[10] Michael L. Fredman. Observations on the complexity of generating quasi-gray codes.
SIAM Journal on Computing, 7(2):134 – 146, 1978.

[11] Anna Gál and Peter Bro Miltersen. The cell probe complexity of succinct data struc-
tures. Theoretical Computer Science, 379(3):405 – 417, 2007.

[12] Mohit Garg and Jaikumar Radhakrishnan. Set membership with a few bit probes.
In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 776 – 784, 2015.

[13] Frank Gray. Pulse code communications. U.S. Patent 2632058, 1953.

[14] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 2: Gener-
ating All Tuples and Permutations. Addison-Wesley Professional, 2005.

[15] Moshe Lewenstein, J. Ian Munro, Patrick K. Nicholson, and Venkatesh Raman. Im-
proved explicit data structures in the bitprobe model. In Algorithms - ESA 2014,
volume 8737, pages 630 – 641. Springer Berlin Heidelberg, 2014.

[16] Harold M. Lucal. Arithmetic operations for digital computers using a modified re-
flected binary code. IEEE Trans. Comput., pages 449 – 458, 1959.

[17] Peter Bro Miltersen. The bit probe complexity measure revisited. In Proceedings of
the 10th Annual Symposium on Theoretical Aspects of Computer Science, STACS ’93,
pages 662 – 671. Springer-Verlag, 1993.

[18] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational
Geometry. MIT Press, 1969.

[19] Patrick K. Nicholson, Venkatesh Raman, and S. Srinivasa Rao. A survey of data
structures in the bitprobe model. In Space-Efficient Data Structures, Streams, and
Algorithms, volume 8066, pages 303 – 318. Springer Berlin Heidelberg, 2013.

[20] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

[21] Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An optimal bloom filter replace-
ment. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’05, pages 823 – 829, 2005.

[22] Mihai Pǎtraşcu and Corina E. Tarniţǎ. On dynamic bit-probe complexity. Theoretical
Computer Science, 380(1-2):127 – 142, 2007.

28

[23] Jaikumar Radhakrishnan, Venkatesh Raman, and S. Srinivasa Rao. Explicit deter-
ministic constructions for membership in the bitprobe model. In Algorithms - ESA
2001, volume 2161, pages 290 – 299. Springer Berlin Heidelberg, 2001.

[24] Jaikumar Radhakrishnan, Smit Shah, and Saswata Shannigrahi. Data structures for
storing small sets in the bitprobe model. In Algorithms - ESA 2010, volume 6347,
pages 159 – 170. Springer-Verlag, 2010.

[25] M. Ziaur Rahman and J. Ian Munro. Integer representation and counting in the bit
probe model. Algorithmica, 56(1):105 – 127, 2010.

[26] Carla Savage. A survey of combinatorial gray codes. SIAM Review, 39(4):605–629,
1997.

[27] Emanuele Viola. Bit-probe lower bounds for succinct data structures. SIAM Journal
on Computing, 41(6):1593 – 1604, 2012.

[28] Jean Vuillemin. A data structure for manipulating priority queues. Communications
of the ACM, 21(4):309 – 315, 1978.

[29] Andrew C. Yao. Should tables be sorted? J. ACM, 28(3):615 – 628, 1981.

29

	List of Figures
	Glossary of Terms and Acronyms
	Introduction
	Problem Definition and Notation
	Decision Assignment Tree Model
	Thesis Outline

	Survey of Previous Work
	Space-Optimal Counters
	Redundant Counters

	Lower Bounds
	Worst-Case Lower Bounds
	Average-Case Lower Bounds

	Efficiently Generating Quasi-Gray Codes
	Efficiently Generating Gray Codes
	Constructing an TEXT-Scheme
	Constructing an TEXT-Scheme
	Exhaustive Search Results

	Conclusions and Future Work
	References

