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Abstract

We propose and develop new schemes for post-quantum cryptography based on isoge-
nies over elliptic curves. For our first contribution, we show that ordinary elliptic curves
have less than exponential security against quantum computers. These results were used
as the motivation for De Feo, Jao and Plût’s construction of public key cryptosystems
using supersingular elliptic curve isogenies. We extend their construction and show that
isogenies between supersingular elliptic curves can be used as the underlying hard math-
ematical problem for other quantum-resistant schemes. For our second contribution, we
propose an undeniable signature scheme based on elliptic curve isogenies. We prove its se-
curity under certain reasonable number-theoretic computational assumptions for which no
efficient quantum algorithms are known. This proposal represents only the second known
quantum-resistant undeniable signature scheme, and the first such scheme secure under
a number-theoretic complexity assumption. Finally, we also propose a security model for
evaluating the security of authenticated encryption schemes in the post-quantum setting.
Our model is based on a combination of the classical Bellare-Namprempre security model
for authenticated encryption together with modifications from Boneh and Zhandry to han-
dle message authentication against quantum adversaries. We give a generic construction
based on Bellare-Namprempre for producing an authenticated encryption protocol from any
quantum-resistant symmetric-key encryption scheme together with any digital signature
scheme or MAC admitting any classical security reduction to a quantum-computationally
hard problem. Using this model, we show how to explicitly construct authenticated en-
cryption schemes based on isogenies.
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Chapter 1

Introduction

Elliptic curves, over time, have proven themselves to be a reliable mathematical tools for
constructing cryptographic primitives. The resulting area of cryptography is known as El-
liptic Curve Cryptography and remains the object of continued study. The theory of elliptic
curves is well-established and plays an important role in many current areas of research in
mathematics. However, in cryptography, applications of elliptic curves to practical cryp-
tosystems have so far limited themselves only to the objects, that is, the actual elliptic
curves, rather than the maps between the objects. In contrast, in mathematical research,
the study of the maps or morphisms between objects typically demands equal if not more
attention than that of the objects themselves. We believe that it is time to introduce into
cryptography the use of maps, or isogenies, between elliptic curves as a direct component
in the design and construction of cryptosystems. Such cryptosystems appear to be a good
candidate for future post-quantum cryptosystems which are intended to be used in the
event that quantum computers become a reality.

We currently live in an era where the future development of quantum computers is fore-
seeable. Many physicists and engineers believe that in about ten to twenty years we will
start seeing quantum computers in practical use. The emergence of quantum computers is
an exciting prospect for those who can take advantage of the extra computational capabili-
ties that they offer. However, adversaries seeking to attack cryptosystems will also be able
to take advantage of quantum computers. It is well-known that quantum computers can
efficiently factor large integers and solve the discrete logarithm problem in finite groups
using Shor’s algorithm [Sho97]. Most modern-day cryptosystems are based on these two
mathematical problems, which are safe against classical adversaries, but will not be safe
against adversaries with quantum computers. One could in theory use quantum techniques
such as quantum key distribution to achieve unbreakable encryption that is immune to at-
tacks unconditionally, but we do not yet know whether these techniques will scale up to
satisfy future demand. An alternative approach, called Post-Quantum Cryptography, aims
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to develop cryptosystems for classical computers which would be secure against quantum
adversaries.

In recent years, the topic of post-quantum cryptography has been the subject of a great
deal of interest in the cryptographic research community. Existing families of post-quantum
cryptosystems can be divided into five broad subcategories: lattice-based schemes, code-
based schemes, hash-based schemes, multivariate polynomials-based schemes, and elliptic
curve-based schemes. Of these, the first four families are firmly established in the literature;
the fifth one, which represents our work, is less mainstream at the moment, but attracting
increasing interest. More specifically, our post-quantum elliptic curve cryptosystems are
based on isogenies, which are maps between elliptic curves. Compared to other families, our
approach has a number of advantages: it is well-suited to key exchange and encryption, and
can achieve signatures and authentication as well with slightly less efficiency. In addition,
the relationship between the security parameter and the public parameters to be used in
the system is more straightforward with isogenies than with other families such as lattice-
based schemes. We anticipate another benefit to be that existing cryptographic libraries
for elliptic curve arithmetic can be re-used or re-purposed for isogeny-based cryptography,
providing a head start in designing high-performance implementations secure against side-
channel attacks.

The underlying hard problem for isogeny-based cryptography is: given two isogenous
supersingular elliptic curves, find an isogeny between them. Currently no quantum algo-
rithm is known for solving this problem in general in less than exponential time. One of
the main reasons why this problem seems intractable for quantum computers is that the
endomorphism ring for the elliptic curve is non-commutative, which shields the problem
against attacks like Shor’s algorithm.

In this thesis, we start by providing the necessary mathematical background needed for
understanding elliptic curves, isogenies, endmorphism rings and complex multiplication.
This material can be found in Chapter 2. We also briefly describe Stolbunov’s schemes
from [Sto10].

In Chapter 3 we describe the computational theory of isogenies. We show how to evalu-
ate isogenies between ordinary elliptic curves in subexponential running time (classically).
This result appeared previously in my Master’s thesis [Sou10], and portions were also pub-
lished in [JS10] and [CJS14], but we include it here because it is necessary background
for later chapters. We then consider the problem of finding isogenies between ordinary
elliptic curves, and show that it can be done in subexponential running time on a quan-
tum computer. This result has not previously appeared in any thesis, although it was
also published in [CJS14]. This chapter shows that ordinary elliptic curves, though widely
used in traditional elliptic curve cryptography, do not provide a good foundation for post-
quantum cryptography. For this reason, in the rest of the thesis we consider only the case
of non-ordinary, i.e. supersingular elliptic curves.
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In Chapter 4, we review the existing constructions of isogeny-based cryptosystems using
supersingular elliptic curve isogenies. We present the key exchange, public-key encryption,
and zero-knowledge proof schemes from [JDF11] and [DFJP14], and discuss the mathemat-
ical hard problems on which their security is based. This chapter contains no contributions,
but it is necessary background for explaining our contributions.

In Chapter 5, we present a quantum-resistant, isogeny-based undeniable signature
scheme. Of course, as with most asymmetric cryptography, by quantum-resistant we mean
that at present, no quantum algorithm is known, and the research indicates that most
likely will not be known. We describe our protocol and prove that the scheme satisfies the
required security properties against quantum adversaries. Specifically, we prove that the
scheme is unforgeable and invisible and that the confirmation and disavowal protocols are
complete, sound and zero-knowledge. These results were published in [JS14].

Finally, we present a quantum security model for authenticated encryption based on
a combination of existing quantum security models for encryption and signature/MAC
schemes and existing classical security models for authenticated encryption. We present a
quantum analogue of the security model of Bellare and Namprempre [BN08] for quantum
adversaries, and show that a quantum-resistant encryption scheme and a quantum-resistant
MAC scheme combined using encrypt-then-MAC yields a quantum-resistant authenticated
encryption scheme. These results were published in PQCrypto 2016 [SJS16]. As an appli-
cation of our security model, we construct and present an authenticated encryption scheme
based on supersingular elliptic curve isogenies. These results are presented in Chapter 6.
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Chapter 2

Isogenies and Applications to
Cryptography

In this chapter we give an in-depth treatment of the mathematical and computational
theory of isogenies. We start with some mathematical background and definitions. We
mention some examples of prior applications of isogenies to cryptography, including count-
ing points on elliptic curves over a finite field and the transfer of discrete logarithms. We
also present Stolbunov’s scheme for encryption using isogenies over ordinary elliptic curves,
which represents the first published isogeny-based cryptosystem.

2.1 Algebraic Curves

The goal in this section to briefly present the material needed to be able to define the
notion of isogenies between elliptic curves. The material in this section and the following
two sections is contained in [Sil92] (in particular, the first 3 chapters). In many cases,
definitions and propositions, theorems, etc. will be used and the proofs omitted. The
reader who is interested in more detail and proofs may refer to that book.

We let K be a perfect field (one whose finite extensions are separable), K̄ a fixed
algebraic closure of K and GK̄/K the Galois group of K̄/K.

We first begin with background on affine varieties.

Definition 2.1.1. Affine n-space (over K) is the set of n-tuples

An = An(K̄) = {P = (x1, . . . , xn) : xi ∈ K̄}.

Also, the set of K-rational points in An is defined by

An(K) = {P = (x1, . . . , xn) : xi ∈ K}.
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Note that in this work we will mainly focus on A2 and A3.

Let I ⊂ K̄[X1, . . . , Xn] be an ideal. Then we associate to I the following subset of An

corresponding to I:
VI = {P ∈ An : f(P ) = 0 for all f ∈ I}.

We thus obtain the following definitions:

Definition 2.1.2. An (affine) algebraic set is any set of the form VI . Also, if V is an
algebraic set, the ideal of V is given by

I(V ) = {f ∈ K̄[X1, . . . , Xn] : f(P ) = 0 for all P ∈ V }.

We say that V is defined over K, denoted by V/K, if I(V ) can be generated by polynomials
in K[X1, . . . , Xn]. If V is defined over K, the set of K-rational points of V is the set

V (K) = V ∩ An(K).

We also define I(V/K) = I(V )∩K[X1, . . . , Xn]. If we refer to Hilbert’s basis theorem,
we see that all such ideals are finitely generated. In this work we will mainly be concerned
with the case where I(V ) is principal (i.e. generated by one polynomial). Also, note that
if f(X1, . . . , Xn) ∈ K[X1, . . . , Xn] and P ∈ An, then for any σ ∈ GK̄/K , f(P σ) = f(P )σ.

Definition 2.1.3. V is called an (affine) variety if it is an affine algebraic set such that
I(V ) is a prime ideal in K̄[X1, . . . , Xn]. If V/K is a variety, then the affine coordinate ring
of V/K is defined by

K[V ] =
K[X1, . . . , Xn]

I(V/K)
.

Observe that K[V ] is an integral domain, and its quotient field, denoted by K(V ), is called
the function field of V/K. (We define K̄[V ] and K̄(V ) in a similar manner by replacing K
with K̄.)

We need a few more definitions related to the dimension of V .

Definition 2.1.4. Let V be a variety. The dimension of V , denoted by dim(V ), is the
transcendence degree of K̄(V ) over K.

We will deal primarily with varieties V ⊂ An given by a single non-constant polynomial;
in this case dim(V ) = n− 1.

Definition 2.1.5. Let V be a variety, P ∈ V , and f1, . . . , fm ∈ K̄[X1, . . . , Xn] a set of
generators for I(V ). Then we say that V is non-singular (or smooth) at P if the m × n
matrix

(∂fi/∂Xj(P ))1≤i≤m,1≤j≤n

has rank n−dim(V ). If V is non-singular at every point, then we say that V is non-singular
(or smooth).
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When m = 1, a point P ∈ V is a singular point if and only if

∂f/∂X1(P ) = · · · = ∂f/∂Xn(P ) = 0.

We now move to discussing projective varieties. Projective spaces arose through the
process of adding “points at infinity” to affine spaces.

Definition 2.1.6. Projective n-space (over K), denoted Pn or Pn(K̄), is the set of all
(n+1)-tuples

(x0, . . . , xn) ∈ An+1

such that at least one xi is non-zero, modulo the equivalence relation given by

(x0, . . . , xn) ∼ (y0, . . . , yn)

if there exists a λ ∈ K̄∗ with xi = λyi for all i. We denote the equivalence class of
{(λx0, . . . , λxn)} by [x0, . . . , xn], and we call x0, . . . , xn homogeneous coordinates for the
corresponding point in Pn. As usual, the set of K-rational points in Pn is given by

Pn(K) = {[x0, . . . , xn] ∈ Pn : all xi ∈ K}.

Notice that if P = [x0, . . . , xn] ∈ Pn(K), it does not mean that each xi ∈ K; however,
it does mean that choosing some i so that xi 6= 0, we get that each xj/xi ∈ K.

Definition 2.1.7. A polynomial f ∈ K[X0, . . . , Xn] is homogeneous of degree d if

f(λX0, . . . , λXn) = λdf(X0, . . . , Xn)

for all λ ∈ K̄. An ideal I ⊂ K̄[X0, . . . , Xn] is homogeneous if it is generated by homoge-
neous polynomials.

Given a homogeneous ideal I, we associate a subset of Pn,

VI = {P ∈ Pn : f(P ) = 0 for all homogeneous f ∈ I}.

Definition 2.1.8. A (projective) algebraic set is any set of the form VI . If V is a projective
algebraic set, the (homogeneous) ideal of V , denoted by I(V ), is the ideal in K̄[X0, . . . , Xn]
generated by

{f ∈ K̄[X0, . . . , Xn] : f is homogeneous and f(P ) = 0 for all P ∈ V }.

We say that such a V is defined over K, denoted by V/K, if its ideal I(V ) can be generated
by homogeneous polynomials in K[X0, . . . , Xn]. As usual, if V is defined over K, the set
of K-rational points of V is the set V (K) = V ∩ Pn(K).
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Definition 2.1.9. A projective algebraic set V is called a (projective) variety if its homo-
geneous ideal I(V ) is a prime ideal in K̄[X0, . . . , Xn].

Note that Pn contains many copies of An. For each 0 ≤ i ≤ n, we have an inclusion

φi : An → Pn

(y1, . . . , yn) 7→ [y1, y2, . . . , yi−1, 1, yi, . . . , yn].

We define:
Ui = {P = [x0, . . . , xn] ∈ Pn : xi 6= 0}

(Notice that U0, . . . , Un cover all of Pn.) Hence, we get a natural bijection

φ−1
i : Ui → An

[x0, . . . , xn] 7→ (x0/xi, x1/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi).

Thus, fixing i, we will identify An with the set Ui in Pn via φi. So, given a projective
algebraic set V with homogeneous ideal I(V ) ⊂ K̄[X1, . . . , Xn], we will write V ∩ An to
denote φ−1

i (V ∩ Ui), which is the affine algebraic set with ideal I(V ∩An) ⊂ K̄[Y1, . . . , Yn]
given by

I(V ∩ An) = {f(Y1, . . . , Yi−1, 1, Yi, . . . , Yn) : f(X0, . . . , Xn) ∈ I(V )}.

This process of replacing f(X0, . . . , Xn) by f(Y1, . . . , Yi−1, 1, Yi, . . . , Yn) is called de-
homogenization with respect to Xi. We can also reverse the process—namely, given a
non-homogeneous polynomial f(Y1, . . . , Yn) ∈ K̄[Y1, . . . , Yn], let

f ∗(X0, . . . , Xn) = Xd
i f(X0/Xi, X1/Xi, . . . , Xi−1/Xi, Xi+1/Xi, . . . , Xn/Xi)

where d = deg(f) is the smallest integer for which f ∗ is a polynomial. (We call f ∗ the
homogenization of f with respect to Xi.)

Definition 2.1.10. Let V be an affine algebraic set with ideal I(V ), and consider V as a
subset of Pn via the map

V ⊂ An φi→ Pn.

The projective closure of V , denoted by V̄ , is the algebraic set whose homogeneous ideal
I(V̄ ) is generated by

{f ∗(X1, . . . , Xn) : f ∈ I(V )}.
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In this way, each affine variety can be identified with a unique projective variety. Since
notationally it is easier to deal with affine coordinates, often, we will write down a non-
homogeneous equation for a projective variety V , with the understanding that V is the
projective closure of the given affine variety W . The points V −W are called points at
infinity on V .

Example 2.1.11. Define V to be the projective variety given by the equation

V : Y 2 = X3 + 17.

In this case we really mean the variety in P2 given by homogeneous equation

Ȳ 2Z̄ = X̄3 + 17Z̄3.

This variety has one point at infinity, [0, 1, 0] (we obtain it by setting Z̄ = 0).

Certain properties of a projective variety V are defined in terms of the affine (sub)variety
V ∩ An.

Definition 2.1.12. Let V/K be a projective variety. Choose An ⊂ Pn so that V ∩An 6= ∅.
The dimension of V is the dimension of V ∩ An. The function field of V , denoted K(V ),
is the function field of V ∩ An; similarly for K̄(V ).

Definition 2.1.13. Let V be a projective variety with P ∈ V . Choose An ⊂ Pn so that
P ∈ An. Then V is non-singular (or smooth) at P if V ∩ An is non-singular at P .

We now move on to algebraic maps between projective varieties, which are the maps
defined by rational functions.

Definition 2.1.14. Let V1 and V2 ⊂ Pn be projective varieties. A rational map from V1

to V2 is a map of the form
φ : V1 → V2

φ = [f0, . . . , fn],

where all fi ∈ K̄(V1) have the property that for every point P ∈ V1 at which fi’s are all
defined,

φ(P ) = [f0(P ), . . . , fn(P )] ∈ V2.

If V1 and V2 are defined over K, then GK̄/K acts on φ in the following way:

φσ(P ) = [fσ0 (P ), . . . , fσn (P )].

If there is some λ ∈ K̄∗ so that λf0, . . . , λfn ∈ K(V1), then φ is said to be defined over K.
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Definition 2.1.15. A rational map

φ = [f0, . . . , fn] : V1 → V2

is regular (or defined) at P ∈ V1 if there is a function g ∈ K̄(V1) such that each gfi is
regular at P and for some i, (gfi)(P ) 6= 0. If such g exists, we set

φ(P ) = [(gf0)(P ), . . . , (gfn)(P )].

A rational map which is regular at every point is called a morphism.

We now move on to curves, which are projective varieties of dimension 1. We will
mostly focus on smooth curves.

Proposition 2.1.16. Let C be a curve, V ⊂ PN a variety, P ∈ C a smooth point, and
φ : C → V a rational map. Then φ is regular at P . In particular, if C is smooth, then φ
is a morphism.

Proof. [Sil92, II.2.1].

Theorem 2.1.17. Let φ : C1 → C2 be a morphism of curves. Then φ is either constant or
surjective.

Proof. [Sil92, II.2.3].

Let C1 and C2 be curves defined over a field K and let φ : C1 → C2 be a non-constant
rational map defined over K. The composition with φ induces an injection of function
fields that fixes K:

φ∗ : K(C2)→ K(C1)

φ∗(f) = f ◦ φ.

We are now ready to define the degree of φ.

Definition 2.1.18. Let φ : C1 → C2 be a map of curves defined over K. If φ is constant,
we define the degree of φ to be 0. Otherwise, we say that φ is finite, and define its degree
by

deg φ = [K(C1) : φ∗(K(C2))].

We say that φ is separable (inseparable) if the extension K(C1)/φ∗(K(C2)) is separable
(inseparable).

It is a known fact that if φ is a non-constant map from curve C1 to curve C2 defined
over K, then [K(C1) : φ∗(K(C2))] is finite; hence the definition makes sense.
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2.2 Elliptic Curves

An elliptic curve is a curve given by a Weierstrass equation over some field F (as shown
below). An elliptic curve admits an addition operation, which we will define shortly,
making the set of points on the curve into an abelian group. We focus on the case where
the characteristic of the field is different from 2 and 3; the general case may be found
in [Sil92, App. A].

We define the Weierstrass equation to be the locus in P2 of the curve

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

where a1, . . . , a6 ∈ K̄. For ease of notation, we use non-homogeneous coordinates to express
the Weierstrass equation in the following way:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We must remember that there is one point at infinity, [0, 1, 0], which we will denote by ∞.
If C is the curve represented by the above equation and a1, . . . , a6 ∈ K, then we say that
C is defined over K. If we assume that char(K) 6= 2, 3, then using a change of variable,
we can simplify the equation to

y2 = x3 + ax+ b.

There are a few associated values with this curve:

• discriminant ∆ = −16(4a3 + 27b2).

• j-invariant j = −1728(4a)3/∆.

• invariant differential ω = dx/(2y) = dy/(3x2 + b).

The curve represented by the above equation is smooth if and only if ∆ 6= 0.

Definition 2.2.1. Let F be a field such that charF 6= 2, 3. Let a, b ∈ F . An elliptic curve
E, defined over the field F , is a set

{(x, y) ∈ F × F : y2 = x3 + ax+ b} ∪ {∞}

.

We will usually denote the elliptic curve by E(F ), E : y2 = x3 + ax + b, or simply by
E when the field and equation are known.

As already mentioned, E forms an abelian group under the group law, where the point
at infinity, ∞, is the identity of the group. We define the group law here. Let P =
(x1, y1), Q = (x2, y2) ∈ E. Then we define:
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• P +∞ =∞+ P = P

• −P = (x1,−y1) (assuming P 6=∞)

• P + (−P ) =∞

• P +Q = R = (x3, y3) =(
x4

1 − 2ax2
1 − 8bx1 + a2

4(x3
1 + ax1 + b)

,
(x6

1 + 5ax4
1 + 20bx3

1 − 5a2x2
1 − 4abx1 − 8b− a)y1

8(x3
1 + ax1 + b)2

)
,

if P = Q and P 6=∞

• P +Q = R = (x3, y3) =(
y2

1 − 2y1y2 + y2
2 − x3

1 + x2
1x2 + x1x

2
2 − x3

2

x2
1 − 2x1x2 + x2

2

,
x1y2 − x2y1 + x3y1 − x3y2

x2 − x1

)
,

if P 6= Q and P,Q 6=∞

When charF is 2 or 3, then the Weierstrass equation simplifies to different forms, with
the discriminant, j-invariant, invariant differential, and the group law modified accordingly.
For details see [Sil92, III.1, III.2, A].

2.3 Isogenies

We are now ready to define an isogeny. We give the definition of isogenies and examine
some of their properties. We then present some examples of families of isogenies.

Definition 2.3.1. Let E and E ′ be elliptic curves defined over some field F . An isogeny
φ : E → E ′ is an algebraic morphism of the form

φ(x, y) =

(
f1(x, y)

g1(x, y)
,
f2(x, y)

g2(x, y)

)
,

satisfying φ(∞) =∞ (where f ′is and g′is are polynomials in x and y). We say that E1 and
E2 are isogenous if there is an isogeny either from E1 to E2 or E2 to E1.

One can show that every isogeny is in fact a group homomorphism [Sil92, III.4.8].

There is only one constant isogeny, namely φ(P ) = ∞ for all P ∈ E1. This constant
isogeny is usually denoted by [0], and by convention we let deg[0] = 0. All other isogenies
are non-constant, hence surjective, that is φ(E1) = E2. For all such non-constant isogenies,
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we define the degree to be the degree as an algebraic map (i.e. [F (E1) : φ∗(F (E2))]); and
we classify the isogeny to be separable (inseparable) if the extension F (E1)/φ∗(F (E2)) is
separable (inseparable).

Let φ : E1 → E2 be a non-constant isogeny. We define kerφ = φ−1(∞). It is known
that kerφ is a finite subgroup of E1 [Sil92, III.4.9].

Theorem 2.3.2. Let E1, E2 be elliptic curves defined over some field F . Let φ : E1 → E2

be a non-constant separable isogeny. Then # kerφ = deg φ.

Proof. [Sil92, III.4.10(c)].

Proposition 2.3.3. Let E be an elliptic curve over some field F . Let Φ be a finite subgroup
of E. Then there exists a unique elliptic curve E ′ (over F ) and a separable isogeny

φ : E → E ′

such that
kerφ = Φ.

Proof. [Sil92, III.4.12].

We now look at a few examples of isogenies.

Example 2.3.4. Scalar multiplication

• Let F be a field of characteristic different from 2 and 3 and E(F ) : y2 = x3 + ax+ b
be an elliptic curve.

• For n ∈ Z, define [n] : E → E by [n](P ) = nP (we usually call this multiplication by
n-map). Then [n] is a separable isogeny.

• We can give an explicit algebraic morphism for each such n by using the group law
for elliptic curves; for instance when n = 2,

[2](x, y) =

(
x4 − 2ax2 − 8bx+ a2

4(x3 + ax+ b)
,

(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b− a)y

8(x3 + ax+ b)2

)
• Note that the degree of [n] is n2.

• The cardinality of ker([n]) is also n2.
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• Note that # ker([n]) = deg[n], which agrees with Theorem 2.3.2.

Example 2.3.5. Frobenius map

• Let F = Fq be a finite field of size q (where q is a prime power).

• Let E be an elliptic curve defined over Fq.

• Define π : E → E by
π(x, y) = (xq, yq).

• π is an algebraic map and a group homomorphism, hence an isogeny. In fact, π is an
inseparable isogeny.

• Observe that deg(π) = q, but # ker(π) = 1.

• deg(π) 6= # ker(π) because π is inseparable.

Example 2.3.6. Complex multiplication

• Let F be a field such that
√
−1 ∈ F .

• Let E : y2 = x3 − x be defined over F .

• As usual let i =
√
−1 ∈ F .

• Define
φ(x, y) = (−x, iy).

• Then φ ◦ φ = [−1].

• This isogeny can be viewed as an extension of scalar multiplication isogenies to
complex numbers.

Notice that in the definition of isogeny, we stated that elliptic curves are isogenous if
there exists an isogeny from E1 to E2 or from E2 to E1. In fact, these two conditions are
equivalent, as the following result shows.

Theorem 2.3.7. Let E1, E2 be elliptic curves and φ : E1 → E2 be an isogeny defined over
field F . Let m = deg φ. Then there exists a unique isogeny

φ̂ : E2 → E1

that satisfies
φ̂ ◦ φ = [m] (on E1) and φ ◦ φ̂ = [m] (on E2).
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Proof. [Sil92, III.6.1(a) and III.6.2(a)].

Definition 2.3.8. Let E1, E2 be elliptic curves and φ : E1 → E2 be an isogeny defined
over field F . The dual isogeny to φ is the isogeny

φ̂ : E2 → E1

given by 2.3.7. (Note that here we assume that φ 6= [0]. If φ = [0], then we set φ̂ = [0].)

It follows that the relation of being isogenous is an equivalence relation.

We need a few more facts about dual isogenies, which are summarized in the following
theorem.

Theorem 2.3.9. Let E1, E2, E3 be elliptic curves and let φ : E1 → E2, ϕ : E1 → E2, and
ψ : E2 → E3 be isogenies defined over field F . Then:

• ψ̂ ◦ φ = φ̂ ◦ ψ̂.

• φ̂+ ϕ = φ̂+ ϕ̂.

• For all m ∈ Z, [̂m] = [m] and deg[m] = m2.

• deg φ̂ = deg φ.

• ˆ̂
φ = φ.

Proof. [Sil92, III.6.2].

Example 2.3.10. Dual isogenies

• Let F = F109.

• Let E1 : y2 = x3 + 2x + 2 and E2 : y2 = x3 + 34x + 45. An isogeny φ : E1 → E2 (of
degree 3) is given by

φ(x, y) =

(
x3 + 20x2 + 50x+ 6

x2 + 20x+ 100
,
(x3 + 30x2 + 23x+ 52)y

x3 + 30x2 + 82x+ 19

)
.

• There exists an isogeny φ̂ : E2 → E1, given by

φ̂(x, y) =

(
x3 + 49x2 + 46x+ 104

9x2 + 5x+ 34
,

(x3 + 19x2 + 66x+ 47)y

27x3 + 77x2 + 88x+ 101

)
,

satisfying φ ◦ φ̂ = [3] and φ̂ ◦ φ = [3].
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• φ̂ is the dual isogeny of φ and vice-versa.

• Note that this implies that deg(φ ◦ φ̂) = deg(φ̂ ◦ φ) = 32 = 9.

There is a very useful theorem by Tate which provides us with an efficient method for
determining whether two curves are isogenous or not.

Theorem 2.3.11. For any two curves E1 and E2 defined over Fq, there exists an isogeny
from E1 to E2 over Fq if and only if #E1(Fq) = #E2(Fq).

Proof. [Tat66, §3].

Note that using techniques of Schoof in [Sch95], we can compute the number of points
on a given elliptic curve in polynomial time. Hence, we obtain an efficient way to check
whether two curves are isogenous or not. However, Tate’s theorem does not tell us what
that isogeny is or how to compute it.

2.4 The Endomorphism Ring of Elliptic Curve

We now define and give some of the properties of the endomorphism ring of an elliptic
curve E. Given elliptic curves E1 and E2 defined over some field F , we set

Hom(E1, E2) = {φ : φ : E1 → E2 is an isogeny over F̄}.

Definition 2.4.1. Let E be an elliptic curve defined over a field F . Then the endomor-
phism ring of E is

End(E) = Hom(E,E).

Notice how in the definition, we have used the term ring. Besides being the set of all
isogenies that map from E(F̄ ) to itself, including the constant homomorphism, End(E)
is a ring under pointwise addition (i.e. if P ∈ E(F̄ ) and φ1, φ2 ∈ End(E), then (φ1 +
φ2)(P ) = φ1(P ) + φ2(P )) with the multiplication operation being composition of isogenies
(i.e. (φ1φ2)(P ) = (φ1 ◦ φ2)(P ) = φ1(φ2(P ))).

We now specialize to the case of elliptic curves defined over finite fields.

Theorem 2.4.2. Let E be an elliptic curve defined over a finite field. As a Z-module,
dimZ End(E) is equal to either 2 or 4.

Proof. [Sil92, V.3.1].
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We formulate a definition to distinguish between the two cases.

Definition 2.4.3. An elliptic curve E over a finite field is supersingular if dimZ End(E) =
4, and ordinary if dimZ End(E) = 2.

Two isogenous elliptic curves E1 and E2 are either both ordinary, or both supersingular.
Thus, there will never be an isogeny between an ordinary and a supersingular elliptic curve.
In cryptography, it is traditionally more common to use ordinary curves because they are
more secure for use in discrete logarithm-based schemes. The reason is that Menezes et
al. [MOV91] showed that the discrete logarithm problem on a supersingular elliptic curve
can be reduced to a discrete logarithm problem in a finite field, which is easier to solve; this
reduction is referred to as the “MOV reduction.” (The reduction applies to ordinary curves
as well, but it does not speed up the computation of the DLOG in that case.) However,
supersingular curves are actually more secure against quantum computers, when we use
cryptosystems based on isogenies. These issues will be discussed at length throughout this
thesis.

Before continuing our discussion of endomorphism rings, we need to briefly discuss the
topic of orders in quadratic number fields. This material appears in [Cox89, p. 133].

Definition 2.4.4. An order O in a quadratic field K is a subset O ⊂ K such that:

• O is a subring of K (containing 1).

• O is a finitely generated Z-module.

• O contains a Q-basis of K.

Note that it follows from the definition that O is a free Z-module of rank 2.

When K is a quadratic field, let OK be the ring of integers of K. Then OK is an order
in K. Moreover, if we let O be any order of K, then O ⊂ OK . The order OK is called the
maximal order of K.

We can describe these orders more explicitly. Let dK be the discriminant of K and let

wK =
dK +

√
dK

2
.

Then
OK = Z[wK ].

We can also give a more explicit description of an arbitrary order O in K.

16



Lemma 2.4.5. Let O be an order in a quadratic field K of discriminant dK. Then O has
finite index in OK. Letting c = [OK : O], we have

O = Z + cOK = Z[cwK ],

where wK is defined as above.

Proof. [Cox89, §7].

Note: The index value c in Lemma 2.4.5 is called the conductor of O. Also note that
if we are given an order O of discriminant D, then the discriminant of the maximal order
OK is the largest square-free part of D, i.e. D = c2dK , where dK is the discriminant of OK
and c is a conductor. We say that O is an imaginary quadratic order if D < 0, and a real
quadratic order otherwise. We denote by O∆ an imaginary quadratic order of discriminant
∆.

We now return to the description of the endomorphism ring.

Theorem 2.4.6. Let E be an ordinary elliptic curve defined over the finite field Fq. Then

End(E) ∼= O∆,

where ∆ < 0. That is, the endomorphism ring of E is isomorphic to an imaginary quadratic
order of discriminant ∆.

Proof. [Sil92, V.3.1].

(Note: This ∆ is unrelated to the ∆ that we defined previously as the discriminant
of the elliptic curve. From now on, we will use ∆ to refer only to the discriminant of an
imaginary quadratic order.)

Let E be an elliptic curve defined over Fq, let πq be the Frobenius map, and let t =
Trace(πq) be the trace of πq as an element of End(E). The integer t is called the trace of
E. We have a relation t = q + 1−#E(Fq) [Sil92, p. 142] and π2

q − tπq + q = 0.

Let K denote the imaginary quadratic field containing End(E), with maximal order
OK . The field K is called the CM field of E. We write cE for the conductor of End(E)
and cπ for the conductor of Z[πq]. It follows from Lemma 2.4.5 and [Cox89, §7] that
End(E) ∼= Z + cEOK and ∆ = c2

E∆K , where ∆ (respectively, ∆K) is the discriminant of
the imaginary quadratic order End(E) (respectively, OK). Furthermore, the characteristic
polynomial x2 − tx + q of πq has discriminant ∆π = t2 − 4q = disc(Z[πq]) = c2

π∆K , with
cπ = cE · [End(E) : Z[πq]].
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Figure 2.1: Isogeny volcano

Following [FM02] and [Gal99], we say that an isogeny φ : E → E ′ of prime degree `
defined over Fq is “down” if [End(E) : End(E ′)] = ` (note that this means that End(E ′) ⊂
End(E)), “up” if [End(E ′) : End(E)] = ` (note that this means that End(E) ⊂ End(E ′)),
and “horizontal” if End(E) = End(E ′). Two curves in an isogeny class are said to “have the
same level” if their endomorphism rings are equal. Within each isogeny class, the property
of having the same level is an equivalence relation. A horizontal isogeny always goes
between two curves of the same level; likewise, an up isogeny enlarges the endomorphism
ring and a down isogeny reduces it. Since there are fewer elliptic curves at higher levels
than at lower levels, the collection of elliptic curves in an isogeny class visually resembles
a “pyramid” or a “volcano” [FM02], with up isogenies ascending the structure and down
isogenies descending. If we restrict to the graph of `-isogenies for a single `, then in
general the `-isogeny graph is disconnected, having one `-volcano for each intermediate
order Z[πq] ⊂ O ⊂ OK such that O is maximal at ` (meaning ` - [OK : O]). The “top
level” of the class consists of curves E with End(E) = OK , and the “bottom level” consists
of curves with End(E) = Z[πq].

The structure of an isogeny volcano is illustrated in Figure 2.1.

We also have the following theorem that states the number of `-isogenies of each type.

Theorem 2.4.7. Let E be an ordinary elliptic curve over Fq, having endomorphism ring
End(E) of discriminant ∆. Let ` be a prime different from the characteristic of Fq.

• Assume ` - cE. Then there are exactly 1 +
(

∆
`

)
horizontal isogenies φ : E → E ′ of

degree `.

– If ` - cπ, there are no other isogenies E → E ′ of degree ` over Fq.
– If ` | cπ, there are `−

(
∆
`

)
down isogenies of degree `.
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• Assume ` | cE. Then there is one up isogeny E → E ′ of degree `.

– If ` - cπ
cE

, there are no other isogenies E → E ′ of degree ` over Fq.
– If ` | cπ

cE
, there are ` down isogenies of degree `.

Proof. [FM02, §2.1] or [Gal99, §11.5].

In light of Theorem 2.4.7, we say that ` is an Elkies prime if
(

∆
`

)
= 1 (implying ` - cE),

or equivalently if and only if E admits exactly two horizontal isogenies of degree `. (Some
authors also allow

(
∆
`

)
= 0, but we do not need this case.)

For the rest of this thesis we will only work with horizontal isogenies over finite fields.
That is, unless otherwise stated all definitions and theorems are restricted in scope to
horizontal isogenies.

Definition 2.4.8. Let E1, E2, E3 be elliptic curves over Fq. Let φ : E1 → E2, and
φ′ : E1 → E3 be isogenies over Fq. We say that φ and φ′ are isomorphic if there exists an
isomorphism η : E2 → E3 such that

η ◦ φ = φ′.

We state a theorem from [Cox89] that we will need.

Theorem 2.4.9. Let L ⊆ C be a lattice. Then for a number α ∈ C \ Z, the following
statements are equivalent:

(a) αL ⊂ L.

(b) There is an order O in an imaginary quadratic field K such that α ∈ O and L = βI
for some β ∈ C and some proper fractional O-ideal I.

Proof. [Cox89, Theorem 10.14].

Theorem 2.4.10. Let φ : E → E ′ be a (horizontal) isogeny. Then kerφ is a fractional
ideal of End(E).

Proof. The proof follows from Theorem 2.4.9. Specifically, let End(E) = OD, α = D+
√
D

2
,

and Φ = kerφ. Observe that the points in Φ lifted to C form the lattice for E ′. Hence,
Theorem 2.4.9(a) holds. Therefore Theorem 2.4.9(b) implies that kerφ = βI, where I is a
(proper) fractional ideal of some order O, such that End(E) ⊂ O. To show that kerφ is
itself a fractional O-ideal, it is enough to show that kerφ ⊂ 1

n
End(E) for some integer n.

But this relationship clearly holds for n = deg φ.
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We now show that O ⊂ End(E). We assume the opposite and proceed by contradic-
tion. Choose α′ ∈ O \ End(E). In that case, Theorem 2.4.9(b) holds for α′, and thus
Theorem 2.4.9(a) implies that α′Φ = Φ, or that O ⊂ End(E ′), which contradicts the fact
that End(E ′) = End(E).

Theorem 2.4.11. Let φ : E → E ′ be an isogeny. Then, up to isomorphism, the ideal kerφ
uniquely determines φ.

Proof. [Sil92, III.4.12].

The above two theorems are very useful because it is usually impractical to express
isogenies algebraically. Rather than expressing the isogeny φ directly, we can represent it
using its kernel kerφ.

We have mostly discussed the ordinary elliptic curves and the structure of their en-
domorphism rings. We now need to briefly examine the same for supersingular elliptic
curves. In this case, the structure theory is less well-developed, and in particular there is
no known analogue of the “volcano” structure that is present for ordinary curves. What
is known is that supersingular curves can always be defined over Fp2 , and for every prime
` that does not divide p, there exist ` + 1 isogenies (counting multiplicities) of degree `
originating from each such supersingular curve.

The structure of the endomorphism ring of a supersingular elliptic curve is that of an
order in a quaternion algebra, which we define here:

Definition 2.4.12. A quaternion algebra over Q is an algebra of the form

Q + Qα + Qβ + Qαβ,

where α2, β2 ∈ Q, α2, β2 < 0, αβ = −βα.

Corollary 2.4.13. The endomorphism ring of an elliptic curve is either Z, an order in a
quadratic imaginary field, or an order in a quaternion algebra. In characteristic zero, only
the first two are possible, and in a finite field, only the latter two are possible.

Proof. [Sil92, III.9.4].

These results show that, since the endomorphism ring of a supersingular elliptic curve
has rank 4, it must be an order in a quaternion algebra. Observe that, unlike the ordinary
case with an imaginary quadratic order, the endomorphism ring of a supersingular elliptic
curve is non-commutative.
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2.5 Complex Multiplication and Group Action

We know that over the complex numbers, every elliptic curve E is isomorphic to C/Λ for
some lattice Λ = 〈w1, w2〉. In more detail, let Λ ⊂ C be a lattice. Then:

• ℘(z) = 1
z2 +

∑
w∈Λ
w 6=0

(
1

(z−w)2 − 1
w2

)
• G4 =

∑
w∈Λ
w 6=0

1
w4 , G6 =

∑
w∈Λ
w 6=0

1
w6

• φ(z) = (℘(z), ℘′(z)/2)

• E : y2 = x3 − 15G4x− 35G6

As already seen in previous sections, the endomorphism ring of an elliptic curve over a
finite field is larger than Z and hence in this case the curve has complex multiplication. We
state here a few important consequences of complex multiplication, but for more details
we refer to [Wat69], [Lan87] and [Sil94, II].

We first state the following useful theorem:

Theorem 2.5.1. Let E be a given elliptic curve. There is a natural 1-1 correspondence
between proper ideals a, b ⊂ End(E) and horizontal isogenies φa and φb (up to isomorphism
of isogenies) between the corresponding curves. As a result, we also have:

• φab = φa ◦ φb.

• deg φa equals the norm of a.

Proof. For the case when End(E) is a maximal order see [Sil94, II.1.2]. For more general
cases see [Lan87].

This theorem shows that using ideals to represent isogenies does not affect the main
arithmetic properties of isogenies.

We need to define the following set:

Definition 2.5.2. The set of isomorphism classes of elliptic curves E/Fq with End(E) =
OK is denoted Ellp,n(OK), where n = #E.

Thus, let us denote by φb : E → Eb the isogeny corresponding to an ideal b (keeping
in mind that φb is only defined up to isomorphism of Eb). Principal ideals correspond to
endomorphisms, so any other ideal equivalent to b in the ideal class group Cl(O∆) of O∆
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yields the same codomain curve Eb, up to isomorphism [Wat69, Thm. 3.11]. Hence one
obtains a well-defined group action ∗ : Cl(O∆)×Ellq,n(O∆)→ Ellq,n(O∆) taking [b] ∗ j(E)
to j(Eb), where [b] denotes the ideal class of b. This group action, which we call the complex
multiplication operator, is free and transitive [Wat69, Thm. 4.5], and thus Ellq,n(O∆) forms
a principal homogeneous space over Cl(O∆).

2.6 Application: Stolbunov’s Scheme

In this section we briefly present two examples by Stolbunov [Sto10] of cryptosystems based
on isogenies between ordinary elliptic curves. One scheme is for key exchange and the other
is for public key encryption.

For the following two schemes, we let x be an ordinary elliptic curve over some finite
field. We let G be a set of isogenies in End(x), but in practice should be all of End(x).
Finally we let H = {Hk : k ∈ K} be a set of secure hash functions indexed by a finite set
K. (The family H is needed to be able to prove the security of the scheme.)

Figure 2.2: Key agreement protocol by Stolbunov

We also give the statements of the security proofs from Stolbunov’s paper.

Theorem 2.6.1. The key exchange protocol in figure 2.2 is session-key (SK) secure in the
authenticated-links adversarial model (AM).

Proof. [Sto10, Theorem 1].

Theorem 2.6.2. The public-key encryption protocol in figure 2.3 is secure in the sense of
IND-CPA.
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Figure 2.3: Public key encryption protocol by Stolbunov

Proof. [Sto10, Theorem 2].

These security results only hold if the underlying mathematical problem of computing
isogenies between ordinary elliptic curves is hard. Although this problem seems to be hard
for classical computers, we show in the next chapter that it is easier to solve on a quantum
computer.
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Chapter 3

Computation of Isogenies Between
Ordinary Elliptic Curves

3.1 Introduction

This chapter consists of material from our published article in the Journal of Mathematical
Cryptology [CJS14], co-authored with Andrew Childs and my supervisor David Jao. Some
(but not all) of this material also appeared in [Sou10] (my Master’s Thesis). The last
section of this chapter has not previously appeared in any thesis, and serves to motivate
the use of supersingular elliptic curve isogenies in post-quantum cryptography.

We address two notions in this chapter - evaluating isogenies and computing or con-
structing isogenies. Evaluating isogenies means that whenever we are given an elliptic
curve and an isogeny mapping from it, we wish to evaluate that isogeny. Computing or
constructing isogenies means that whenever we are given to isogenous elliptic curves, we
wish to find the isogeny between them.

In this chapter we present and describe in details our algorithm for evaluating large
prime degree isogenies, having subexponential running time in the size of the magnitude of
the discriminant of the endomorphism ring of the elliptic curve and polynomial in the size
of the degree of the isogeny. The proofs of correctness and the running-time analysis rely
on only one standard assumption, namely the Generalized Riemann Hypothesis (GRH).

Our first objective is to evaluate an isogeny of large degree in subexponential time,
given a compact representation. Specifically, we wish to evaluate the unique horizontal
normalized [BCL08] isogeny on a given elliptic curve E/Fq whose kernel ideal in End(E)
is given as L = (`, c + dπq), at a given point P ∈ E(Fqn), where ` is an Elkies prime, πq
denotes the Frobenius map on E, and c and d are rational numbers specifying the ideal L
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and hence the isogeny. As in [BCL08], we must also impose the additional restriction that
` - [End(E) : Z[πq]]; for Elkies primes, an equivalent restriction is that ` - [OK : Z[πq]], but
we retain the original formulation for consistency with [BCL08].

In practice, one is typically given ` instead of L, but since it is easy to calculate the list of
(at most two) possible primes L lying over ` (cf. [BV07]), these two interpretations are for all
practical purposes equivalent, and we switch freely between them when convenient. When
` is small, one can use modular polynomial based techniques [BCL08, §3.1], which have
running time O(`3 log(`)4+ε) [Eng09]. However, for isogeny degrees of cryptographic size
(e.g. 2160), this approach is impractical. The Bröker-Charles-Lauter algorithm sidesteps
this problem, by using an alternative factorization of L. However, the running time of
Bröker-Charles-Lauter is polynomial in |∆| (where ∆ is the discriminant of End(E)), and
therefore even this method only works for small values of |∆|. In this chapter we present a
modified version of the Bröker-Charles-Lauter algorithm which is suitable for large values
of |∆|.

We give an overview of our approach. In order to handle large values of |∆|, there are
two main problems to overcome. One problem is that we need a fast way to produce a
factorization

L = Ie11 I
e2
2 · · · I

ek
k · (α) (3.1)

as in lines 2 and 3 of the BCL algorithm (Algorithm 4.1 in [BCL08]). The other problem
is that the exponents ei in Equation (3.1) need to be kept small, since the running times of
lines 3 and 4 of Algorithm 4.1 in [BCL08] are proportional to

∑
i |ei|Norm(Ii)

2. The first
problem, that of finding a factorization of L, can be solved in subexponential time using
the index calculus algorithm of Hafner and McCurley [HM89] (see also [BV07, Chapter
11]). To resolve the second problem, we turn to the following idea of Galbraith, Hess, and
Smart [GHS02], and recently further refined by Bisson and Sutherland [BS11]. The idea
is that, in the process of sieving for smooth norms, one can arbitrarily restrict the input
exponent vectors to sparse vectors (e1, e2, ..., ek) such that

∑
i |ei|N(Ii)

2 is kept small. The
details of this approach can be found in [JS10].

We present a variant of the algorithm. Our variant improves on the above described
algorithm in the sense that we remove all heuristic assumptions except GRH. In practice
the new algorithm is slower, although asymptotically it has the same running time as
before, with the same constants in the exponents.

Finally, in this chapter, we give a subexponential-time quantum algorithm for construct-
ing a nonzero isogeny between two given elliptic curves (of the type arising in the afore-
mentioned cryptosystems). We show that the running time of our algorithm is bounded

above by Lq(
1
2
,
√

3
2

) under (only) the Generalized Riemann Hypothesis (GRH), where

LN(α, c) := exp[(c+ o(1))(lnN)α(ln lnN)1−α].
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This result raises serious questions about the viability of isogeny-based cryptosystems over
ordinary curves in the context of quantum computers.

3.2 Isogeny Graphs Under GRH

Let Cl(O∆) denote the ideal class group of O∆. We want to reduce the number of heuristic
assumptions used in Algorithm 3 from [JS10]. In fact, we will remove all of them, except
for GRH. Although this change makes the algorithm slower in practice, its asymptotic
running time is still unchanged. We start with some results on isogeny graphs, which we
need as part of our running-time analysis. The running-time analysis in Section 3.3 relies
on the following result which states, roughly, that random short products of small primes
in Cl(O∆) yield nearly uniformly random elements of Cl(O∆), under GRH.

Theorem 3.2.1. Let O∆ be an imaginary quadratic order of discriminant ∆ < 0 and
conductor c. Set G = Cl(O∆). Let B and x be real numbers satisfying B > 2 and
x ≥ (ln |∆|)B. Let Sx be the multiset A ∪ A−1 where

A = {[p] ∈ G : gcd(c, p) = 1 and Np ≤ x is prime}.

Then, assuming GRH, there exists a positive absolute constant C > 1, depending only on
B, such that for all ∆, a random walk of length

t ≥ C
ln |G|

ln ln |∆|

in the Cayley graph Cay(G,Sx) from any starting vertex lands in any fixed subset S ⊂ G

with probability at least 1
2
|S|
|G| .

Proof. Apply Corollary 1.3 of [JMV09] with the parameters

• K = the field of fractions of O∆

• G = Cl(O∆)

• q = |∆|.

Observe that by Remark 1.2(a) of [JMV09], Corollary 1.3 of [JMV09] applies to the
ring class group G = Cl(O∆), since ring class groups are quotients of narrow ray class
groups [Cox89, p. 160]. By Corollary 1.3 of [JMV09], Theorem 3.2.1 holds for all suffi-
ciently large values of |∆|, i.e., for all but finitely many |∆|. To prove the theorem for all
|∆|, simply take a larger (but still finite) value of C.
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Corollary 3.2.2. For any fixed integer m, Theorem 3.2.1 holds even if the definition of
the set A is changed to

A = {[p] ∈ G : gcd(m∆, p) = 1 and Np ≤ x is prime}.

Proof. The alternative definition of A differs from the original definition by at most O(ln q)
primes. As stated in [JMV09, p. 1497], such a change does not affect the conclusion of the
theorem.

3.3 Computing the Action of Cl(O∆) on Ell(O∆)

In this section, we describe a new algorithm to evaluate the horizontal isogeny correspond-
ing to a given kernel. In contrast with the Algorithm 4 in [JS10], this algorithm relies
on no heuristic assumptions other than GRH. In terms of performance, this algorithm is
slightly slower, although its running time is still L|∆|(

1
2
,
√

3
2

). The algorithm takes as input
a discriminant ∆, an elliptic curve E, a point P , and a kernel ideal L, and outputs φ(P ),
where φ : E → E ′ is the normalized horizontal isogeny corresponding to L.

In this section, we describe the steps in our algorithm. In Section 3.4 we show that,
under GRH, our algorithm has a running time of Lq(

1
2
,
√

3
2

), which is subexponential in the
input size. We stress that although similar algorithms have appeared in several previous
works, our algorithm is the first to achieve provably subexponential running time without
appealing to any conditional hypotheses other than GRH.

We present our algorithm in several stages.

Computing a factor base. Algorithm 1 computes a factor base for Cl(O∆) consisting
of all split primes up to L|∆|(

1
2
, z). The optimal value of the parameter z is determined

in Section 3.4. The algorithm is based on, and indeed almost identical to, Algorithm 11.1
in [BV07]. The subroutine primeForm [BV07, §3.4] calculates a quadratic form correspond-
ing to a prime ideal of norm p, and the subroutine kronecker [BV07, §3.4.3] calculates the
Kronecker symbol. The map σ denotes complex conjugation.

Computing a relation. Given a factor base F = {p1, . . . , pf} and an ideal class [b] ∈
Cl(O∆), Algorithm 2 produces a relation vector z = (z1, . . . , zf ) ∈ Zf for [b] satisfying
[b] = Fz := pz11 · · · p

zf
f , with the additional property that the L∞-norm |z|∞ of z is less

than O(ln |∆|) for some absolute implied constant (cf. Proposition 3.4.5). It is similar to
Algorithm 11.2 in [BV07], except that we impose a constraint on |v|∞ in line 1 in order
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Algorithm 1 Computing a factor base

Input: An imaginary quadratic discriminant ∆ < 0 and a parameter z
Output: A factor base F , or nil
1: Set L← dL|∆|(1

2
, z)e, k ← dlnLe, F ← ∅

2: for all primes p < L do
3: if kronecker(∆, p) = 1 then
4: i← 0
5: repeat
6: i← i+ 1
7: g ← primeForm(∆, p)
8: until i > 2k or g 6= nil

9: if g 6= nil then
10: F ← F ∪ {g, gσ}
11: else
12: Return nil

13: end if
14: end if
15: end for
16: Return F

to keep |z|∞ small, and (for performance reasons) we use Bernstein’s algorithm instead of
trial division to find smooth elements.

We remark that Corollary 9.3.12 of [BV07] together with the restriction C > 1 in
Theorem 3.2.1 implies that there exists a value of t satisfying the inequality in Algorithm 2.

Computing φ(P ). Algorithm 3 evaluates φ(P ), where φ : E → E ′ is the normalized
isogeny isogeny corresponding to the kernel ideal L.

3.4 Running Time Analysis

Here we determine the theoretical running time of Algorithm 3, as well as the optimal
value of the parameter z in Algorithm 1. As before, these two quantities depend on each
other, and hence both are calculated simultaneously.

For convenience, for any c we denote L|∆|(
1
2
, c) by L(1

2
, c).

Proposition 3.4.1. Algorithm 1 takes time L(1
2
, z) and succeeds with probability at least

1/4.
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Algorithm 2 Computing a relation

Input: A discriminant ∆ < 0, a parameter z, a factor base F of size f , an ideal class
[b] ∈ Cl(O∆), and an integer t satisfying C ln |Cl(O∆)|

ln ln |∆| ≤ t ≤ C ln |∆| where C is the

constant of Theorem 3.2.1/Corollary 3.2.2
Output: A relation vector z ∈ Zf such that [b] = [Fz], or nil
1: Set S ← ∅, P ← {N(p) : p ∈ F}
2: Set `← L|∆|(

1
2
, 1

4z
)

3: for i = 0 to ` do
4: Select v ∈ Zf0..|∆|−1 uniformly at random subject to the condition that |v|∞ = t

5: Calculate the reduced ideal av in the ideal class [b] · [Fv]
6: Set S ← S ∪N(av)
7: end for
8: Using Bernstein’s algorithm [Ber], find a P-smooth element N(av) ∈ S (if there exists

one), or else return nil

9: Find the prime factorization of the integer N(av)
10: Using Seysen’s algorithm [Sey87, Thm. 3.1] on the prime factorization of N(av), factor

the ideal av over F to obtain av = Fa for some a ∈ Zf
11: Return z = a− v

Proof. Since Algorithm 1 is identical to Algorithm 11.1 in [BV07], the proposition follows
from Lemmas 11.3.1 and 11.3.2 of [BV07].

Proposition 3.4.2. The running time of Algorithm 2 is at most L(1
2
, z) + L(1

2
, 1

4z
), as-

suming GRH.

Proof. Line 1 of the algorithm requires L(1
2
, z) norm computations. Line 2 is negligi-

ble. Line 5 requires C ln |∆| multiplications in the class group, each of which requires
O((ln |∆|)1+ε) bit operations [Sch91]. Hence the for loop in lines 3–7 has running time
L(1

2
, 1

4z
). Bernstein’s algorithm [Ber] in line 8 has a running time of b(log2 b)

2+ε where
b = L(1

2
, z) + L(1

2
, 1

4z
) is the combined size of S and P . Finding the prime factorization

in line 9 costs L(1
2
, z) using trial division, and Seysen’s algorithm [Sey87, Thm. 3.1] in line

10 has negligible cost under ERH (and hence GRH). Accordingly, we find that the running
time is

L(1
2
, z) +O((ln |∆|)2+ε) + L(1

2
, 1

4z
) + b(log2 b)

2+ε + L(1
2
, z) = L(1

2
, z) + L(1

2
, 1

4z
),

as desired.

Proposition 3.4.3. Under GRH, the probability that a single iteration of the for loop of
Algorithm 2 produces an F-smooth ideal av is at least L(1

2
,− 1

4z
).
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Algorithm 3 Evaluating prime degree isogenies

Input: A discriminant ∆ < 0, an elliptic curve E/Fq with End(E) = O∆, a point P ∈
E(Fq) such that [End(E) : Z[Frobq]] and #E(Fq) are coprime, and an End(E)-ideal
L = (`, c + dFrobq) of prime norm ` 6= char(Fq) not dividing the index [End(E) :
Z[Frobq]].

Output: The unique elliptic curve E ′ admitting a normalized isogeny φ : E → E ′ with
kernel E[L], and the x-coordinate of φ(P ) for ∆ 6= −3,−4 or the square (resp. cube)
of the x-coordinate otherwise.

1: Using Algorithm 1, compute a factor base; discard any primes dividing qn to obtain a
new factor base F = {p1, p2, . . . , pf}

2: Using Algorithm 2 with any valid choice of t, compute a relation z ∈ Zf such that
[L] = [Fz] = [pz11 pz22 · · · p

zf
f ]

3: Compute a sequence of isogenies (φ1, . . . , φs) such that the composition φc : E → Ec
of the sequence has kernel E[pz11 pz22 · · · p

zf
f ], using the method of [BCL08, §3]

4: Using Cornacchia’s algorithm, find a generator α ∈ O∆ of the fractional ideal
L/(pz11 pz22 · · · p

zf
f )

5: Evaluate φc(P ) ∈ Ec(Fq)
6: Write α = (u + v Frobq)/z, compute the isomorphism η : Ec

∼→ E ′ with η∗(ωE′) =
(u/z)ωEc , and compute Q = η(φc(P ))

7: Compute z−1 mod #E(Fqn) and R = (z−1(u+ v Frobq))(Q)
8: Put r = x(R)|O

∗
∆|/2 and return (E ′, r)

Proof. We adopt the notation used in Theorem 3.2.1 and Corollary 3.2.2. Apply Corol-
lary 3.2.2 with the values m = qn, B = 3, and x = f = L(1

2
, z)� (ln |∆|)B. The ideal class

[b] · [Fv] is equal to the ideal class obtained by taking the walk of length t in the Cayley
graph Cay(G,Sx), having initial vertex [b], and whose edges correspond to the nonzero
coordinates of the vector v. Hence a random choice of vector v under the constraints
of Algorithm 2 yields the same probability distribution as a random walk in Cay(G,Sx)
starting from [b].

Let S be the set of reduced ideals in G with L(1
2
, z)-smooth norm. By [BV07, Lemma

11.4.4], |S| ≥
√
|∆|L(1

2
,− 1

4z
). Hence, by Corollary 3.2.2, the probability that av lies in S

is at least
1

2

|S|
|G|

=
1

2
·
√
|∆|
|G|

· L(1
2
,− 1

4z
).

Finally, Theorem 9.3.11 of [BV07] states that

√
|∆|
|G| ≥

1
ln |∆| . Hence the probability that av

is F -smooth is at least
1

2
· 1

ln |∆|
· L(1

2
,− 1

4z
) = L(1

2
,− 1

4z
).
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The result follows.

Corollary 3.4.4. Under GRH, the probability that Algorithm 2 succeeds is at least 1− 1
e
.

Proof. Algorithm 2 loops through ` = L(1
2
, 1

4z
) vectors v, and by Proposition 3.4.3, each

such choice of v has an independent 1/` chance of producing a smooth ideal av. Therefore
the probability of success is at least

1−
(

1− 1

`

)`
> 1− 1

e
,

as desired.

The following proposition shows that the relation vector z produced by Algorithm 2 is
guaranteed to have small coefficients.

Proposition 3.4.5. Any vector z output by Algorithm 2 satisfies |z|∞ < (C + 1) ln |∆|.

Proof. Since z = a− v, we have |z|∞ ≤ |a|∞+ |v|∞. But |v|∞ ≤ C ln |∆| by construction,
and the norm of av is less than

√
|∆|/3 [BV07, Prop. 9.1.7], which implies

|a|∞ < log2

√
|∆|/3 < log2

√
|∆| < ln |∆|.

This completes the proof.

Finally, we analyze the running time of Algorithm 3.

Theorem 3.4.6. Under GRH, Algorithm 3 succeeds with probability at least 1
4
(1− 1

e
) and

runs in time at most

L(1
2
, 1

4z
) + max{L(1

2
, 3z), L(1

2
, z)(ln q)3+ε}.

Proof. We have shown that Algorithm 1 has running time L(1
2
, z) and success probability

at least 1/4, and Algorithm 2 has running time L(1
2
, z)+L(1

2
, 1

4z
) and success probability at

least 1− 1
e
. Assuming that both these algorithms succeed, the computation of the individual

isogenies φi in line 3 of Algorithm 3 proceeds in one of two ways, depending on whether the
characteristic of Fq is large [BCL08, §3.1] or small [BCL08, §3.2]. The large characteristic
algorithm fails when the characteristic is small, whereas the small characteristic algorithm
succeeds in all situations, but is slightly slower in large characteristic. For simplicity, we
consider only the more general algorithm.

The general algorithm proceeds in two steps. In the first step, we compute the kernel
polynomial of the isogeny. The time to perform one such calculation is
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O((`(ln q) max(`, ln q)2)1+ε) in all cases ([LS08, Thm. 1] for characteristic ≥ 5 and [DF10,
Thm. 1] for characteristic 2 or 3). In the second step, we evaluate the isogeny using Vélu’s
formulae [Vél71]. This second step has a running time of O(`2+ε(ln q)1+ε) [IJ10, p. 214].
Hence the running time of line 3 is at most

|z|∞(O((`(ln q) max(`, ln q)2)1+ε) +O(`2+ε(ln q)1+ε)).

By Proposition 3.4.5, this expression is at most

(C + 1)(ln |∆|)(max{L(1
2
, 3z), L(1

2
, z)(ln q)3+ε}+ L(1

2
, 2z)(ln q)1+ε)

= max{L(1
2
, 3z), L(1

2
, z)(ln q)3+ε}.

Since the running time of all other lines in Algorithm 3 is bounded by that of line 3, the
theorem follows.

Corollary 3.4.7. Under GRH, Algorithm 3 has a worst-case running time of at most
Lq(

1
2
,
√

3
2

).

Proof. Using the inequality |∆| ≤ 4q, we may rewrite Theorem 3.4.6 in terms of q. We
obtain

L(1
2
, 1

4z
) + max{L(1

2
, 3z), L(1

2
, z)(ln q)3+ε} ≤ Lq(

1
2
, 1

4z
+ 3z).

The optimal choice of z = 1
2
√

3
yields the running time bound of Lq(

1
2
,
√

3
2

).

3.5 A Quantum Algorithm For Constructing Isoge-

nies

We now move on to the quantum approach to solving the problem of finding and evaluating
the isogeny between two given ordinary elliptic curves. Note that this problem is harder
than the previous one that we looked at. In fact, it is believed to be exponential for a
classical computer. However, quantum computers are able to solve more classes of problems
and we take advantage of that. Since evaluating the isogeny can be done subexponentially,
we are left to show that finding the isogeny itself can also be done subexponentially, using
a quantum computer.

Our quantum algorithm for constructing isogenies uses a simple reduction to the abelian
hidden shift problem. This problem is defined as follows. Let A be a known finite abelian
group (with the group operation written multiplicatively) and let f0, f1 : A→ S be black-
box functions, where S is a known finite set. We say that f0, f1 hide a shift s ∈ A if
f0 is injective and f1(x) = f0(xs) (i.e., f1 is a shifted version of f0). The goal of the
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hidden shift problem is to determine s using queries to such black-box functions. Note
that this problem is equivalent to the hidden subgroup problem in the A-dihedral group,
the nonabelian group Ao Z2 where Z2 acts on A by inversion.

Isogeny construction is easily reduced to the hidden shift problem using the group
action defined in Section 2.5. Given two isogenous curves E0, E1 with endomorphism ring
O∆, we define functions f0, f1 : Cl(O∆) → Ellq,n(O∆) that hide [s] ∈ Cl(O∆), where [s] is
the ideal class such that [s] ∗ j(E0) = j(E1). Specifically, let fi([b]) = [b] ∗ j(Ei). Then,
since ∗ is a free and transitive group action [Wat69, Thm. 4.5], f0 and f1 hide [s]:

Lemma 3.5.1. The function f0 is injective and f1([b]) = f0([b][s]).

Proof. Since ∗ is a group action,

f1([b]) = [b] ∗ j(E1)

= [b] ∗ ([s] ∗ j(E0))

= ([b][s]) ∗ j(E0)

= f0([b][s]).

If there are distinct ideal classes [b], [b′] such that f0([b]) = f0([b′]), then [b] ∗ j(E0) =
[b′] ∗ j(E0), which contradicts the fact that the action is free and transitive [Wat69,
Thm. 4.5]. Thus f0 is injective.

Note that a similar connection between isogenies and hidden shift problems was de-
scribed in [Sto10, Section 7.2]. However, that paper did not mention the injectivity of
the hiding functions in the context of the reduction. Without the assumption that f0 is
injective, the hidden shift problem can be as hard as the search problem, and hence re-
quires exponentially many queries [BBBV97] (although for non-injective functions f0 with
appropriate structure, such as the Legendre symbol, the non-injective hidden shift problem
can be solved by a quantum computer in polynomial time [DHI02]). On the other hand,
injectivity implies that the problem has polynomial quantum query complexity [EH00],
allowing for the possibility of faster quantum algorithms.

This reduction allows us to apply quantum algorithms for the hidden shift problem
to construct isogenies. The (injective) hidden shift problem can be solved in quantum
subexponential time assuming we can evaluate the group action in subexponential time.
The latter is possible due to Algorithm 3.

We consider two different approaches to solving the hidden shift problem in subexpo-
nential time on a quantum computer. The first, due to Kuperberg [Kup05], has a faster
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running time but requires superpolynomial space. The second approach generalizes an
algorithm of Regev [Reg]. It uses only polynomial space, but is slower than Kuperberg’s
original algorithm.

Method 1: Kuperberg’s algorithm. Kuperberg’s approach to the abelian hidden shift
problem is based on the idea of performing a Clebsch-Gordan sieve on coset states.

Theorem 3.5.2 ([Kup05]). The abelian hidden shift problem has a [quantum] algorithm
with time and query complexity 2O(

√
n), where n is the length of the output, uniformly for

all finitely generated abelian groups.

In our context, we have 2O(
√
n) = 2O(

√
ln |∆|) since |Cl(O∆)| = O(

√
∆ ln ∆) [BV07, The-

orem 9.3.11]. Furthermore, 2O(
√

ln |∆|) = L(o(1)) = L(0) regardless of the value of the
implied constant in the exponent, since the exponent on the left has no

√
ln ln |∆| term,

whereas L(0) does. As mentioned above, Kuperberg’s algorithm also requires superpoly-
nomial space (specifically, it uses 2O(

√
n) qubits).

Method 2: Regev’s algorithm. Regev [Reg] showed that a variant of Kuperberg’s
sieve leads to a slightly slower algorithm using only polynomial space. In particular, he
proved Theorem 3.5.3 below in the case where A is a cyclic group whose order is a power
of 2 (without giving an explicit value for the constant in the exponent). Theorem 3.5.3
generalizes Regev’s algorithm to arbitrary finite abelian groups.

Theorem 3.5.3. Let A be a finite abelian group and let functions f0, f1 hide some unknown
s ∈ A. Then there is a quantum algorithm that finds s with time and query complexity
L|A|(

1
2
,
√

2) using space poly(log |A|).

We now return to the original problem of constructing isogenies. Note that to use
the hidden shift approach, the group structure of Cl(O∆) must be known. Given ∆, it is
straightforward to compute Cl(O∆) using existing quantum algorithms (see the proof of
Theorem 3.5.5). Thus, we assume for simplicity that the discriminant ∆ is given as part
of the input. This requirement poses no difficulty, since all existing proposals for isogeny-
based public-key cryptosystems [Cou06, RS06, Sto10] stipulate thatO∆ is a maximal order,
in which case its discriminant can be computed easily: simply calculate the trace t(E) of
the curve using Schoof’s algorithm [Sch95], and factor t(E)2−4q to obtain the fundamental
discriminant ∆ (note of course that factoring is easy on a quantum computer [Sho97]).

Remark 3.5.4. One can conceivably imagine a situation where one is asked to construct an
isogeny between two given isogenous curves of unknown but identical endomorphism ring.
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Algorithm 4 Isogeny construction

Input: A finite field Fq, a discriminant ∆ < 0, and Weierstrass equations of isogenous
elliptic curves E0, E1 with endomorphism ring O∆

Output: [s] ∈ Cl(O∆) such that [s] ∗ j(E0) = j(E1)
1: Decompose Cl(O∆) = 〈[b1]〉 ⊕ · · · ⊕ 〈[bk]〉 where |〈[bj]〉| = nj
2: Solve the hidden shift problem defined by functions f0, f1 : Zn1×· · ·×Znk → Ellq,n(O∆)

satisfying fc(x1, . . . , xk) = ([b1]x1 · · · [bk]xk) ∗ j(Ec), giving some (s1, . . . , sk) ∈ Zn1 ×
· · · × Znk

3: Output [s] = [b1]s1 · · · [bk]sk

Although we are not aware of any cryptographic applications of this scenario, it presents no
essential difficulty. Bisson has shown using Theorem 3.2.1 (see [Bis11, Thm. 6.1]) that the
discriminant ∆ of any ordinary elliptic curve can be computed in Lq(

1
2
, 1√

2
) time under only

GRH (assuming that factoring is easy, which is the case for quantum computers [Sho97]).

Assuming ∆ is known, we decompose Cl(O∆) as a direct sum of cyclic groups, with a
known generator for each, and then solve the hidden shift problem. The overall procedure
is described in Algorithm 4.

Theorem 3.5.5. Assuming GRH, the running time of Algorithm 4 is Lq(
1
2
,
√

3
2

) (respec-

tively, Lq(
1
2
,
√

3
2

+
√

2)) using Theorem 3.5.2 (respectively, Theorem 3.5.3) to solve the
hidden shift problem.

Proof. We perform Step 1 using [CM01, Algorithm 10], which determines the structure of
an abelian group given a generating set and a unique representation for the group elements.
We represent the elements uniquely using reduced quadratic forms, and we use the fact
that, under ERH (and hence GRH), the set of ideal classes of norm at most 12 ln2 |∆|
forms a generating set [Bac90, Thm. 4]. Note that the result in [Bac90, Thm. 4] applies
to non-maximal as well as maximal orders—take f in the statement of that theorem to be
the conductor of the non-maximal order. By Theorem 3.5.2 (resp. Theorem 3.5.3), Step 2

uses 2O(
√

ln |∆|) = L(o(1)) = L(0) (resp. L(
√

2)) evaluations of the functions fi. By Corol-

lary 3.4.7, these functions can be evaluated in time Lq(
1
2
,
√

3
2

) using Algorithm 3, assuming

GRH. Overall, Step 2 takes time Lq(
1
2
,
√

3
2

+ o(1)) = Lq(
1
2
,
√

3
2

) using Theorem 3.5.2, or

Lq(
1
2
,
√

3
2

+
√

2) using Theorem 3.5.3. The cost of Step 3 is negligible.

Remark 3.5.6. GRH is a natural assumption. It seems necessary. Without it, the best
known bounds on the factor base size are exponential.

Remark 3.5.7. The running time of the algorithm is ultimately limited by two factors: the
best known quantum algorithm for the hidden shift problem runs in superpolynomial time,
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and the same holds for the best known (classical or quantum) algorithm for computing the
complex multiplication operator. Improving only one of these results to take polynomial
time would still result in a superpolynomial-time algorithm.
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Chapter 4

Isogeny-Based Quantum-Resistant
Key Exchange and Encryption

4.1 Introduction

As part of the background material necessary in order to explain our contributions from
Chapters 5 and 6 of this thesis, we describe in this chapter the isogeny-based cryptosystems
of De Feo and Jao [JDF11] and De Feo et al. [DFJP14]. Portions of these publications
were used in this chapter with permission.

The Diffie-Hellman scheme is a fundamental protocol for public-key exchange between
two parties. Its original definition over finite fields is based on the hardness of computing
the map g, ga, gb 7→ gab for g ∈ F∗p. As already discussed in previous chapters, Stol-
bunov [Sto10] proposed a Diffie-Hellman type system based on the difficulty of computing
isogenies between ordinary elliptic curves, with the stated aim of obtaining quantum-
resistant cryptographic protocols. The fastest known (classical) probabilistic algorithm for
solving this problem is the algorithm of Galbraith and Stolbunov [GS11], based on the
algorithm of Galbraith, Hess, and Smart [GHS02]. This algorithm is exponential, with a
worst-case running time of O( 4

√
q). However, as we have shown in previous chapter (and

our paper [CJS14]), the private keys in Stolbunov’s system can be recovered in subexpo-
nential time. Moreover, even if we only use classical attacks in assessing security levels,
Stolbunov’s scheme requires 229 seconds (even with precomputation) to perform one key
exchange operation at the 128-bit security level on a desktop PC [Sto10, Table 1].

In this chapter, we will look at isogeny-based key-exchange, encryption, and identifi-
cation schemes proposed by De Feo and Jao in [JDF11]. Their primitive achieves perfor-
mance on the order of 60 milliseconds at the 128-bit security level (as measured against
the fastest known quantum attacks) using desktop PCs, making the schemes far faster
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than Stolbunov’s. In terms of security, their schemes are not vulnerable to our algorithm
presented in Chapter 3, nor to any algorithm of this type, since they are not based on a
group action. The fastest known attacks against those schemes, even on quantum comput-
ers, require fully exponential time. The schemes involve new computational assumptions
upon which their quantum resistance is based, and like all new computational assumptions,
further study and the passage of time is needed for validation. Nevertheless, we believe
the proposal represents a promising candidate for quantum-resistant isogeny-based public-
key cryptography. We also use those computational assumptions for developing further
schemes.

The scheme, presented in Section 4.2, uses isogenies between supersingular elliptic
curves rather than ordinary elliptic curves. The main technical difficulty is that, in the
supersingular case, the endomorphism ring is noncommutative, whereas Diffie-Hellman
type protocols require commutativity. In Sections 4.3 and 4.4 we will see formal statements
of the hardness assumptions and security reductions for the system.

4.1.1 Ramanujan Graphs

Let G = (V , E) be a finite graph on h vertices V with undirected edges E . Suppose G is
a regular graph of degree k, i.e., exactly k edges meet at each vertex. Given a labeling of
the vertices V = {v1, . . . , vh}, the adjacency matrix of G is the symmetric h× h matrix A
whose ij-th entry Ai,j = 1 if an edge exists between vi and vj and 0 otherwise.

It is convenient to identify functions on V with vectors in Rh via this labeling, and
therefore also think of A as a self-adjoint operator on L2(V). All of the eigenvalues of A
satisfy the bound |λ| ≤ k. Constant vectors are eigenfunctions of A with eigenvalue k,
which for obvious reasons is called the trivial eigenvalue λtriv. A family of such graphs G
with h → ∞ is said to be a sequence of expander graphs if all other eigenvalues of their
adjacency matrices are bounded away from λtriv = k by a fixed amount.1 In particular, no
other eigenvalue is equal to k; this implies the graph is connected. A Ramanujan graph is
a special type of expander which has |λ| ≤ 2

√
k − 1 for any nontrivial eigenvalue which is

not equal to −k (this last possibility happens if and only if the graph is bipartite). The
Ramanujan property was first defined in [LPS88]. It characterizes the optimal separa-
tion between the two largest eigenvalues of the graph adjacency matrix, and implies the
expansion property.

A fundamental use of expanders is to prove the rapid mixing of the random walk on V
along the edges E . The following rapid mixing result is standard but we present it below
for completeness. For the proof, see [JMV09] or [DSV03, Lub94, Sar90].

1Expansion is usually phrased in terms of the number of neighbors of subsets of G, but the spectral
condition here is equivalent for k-regular graphs and also more useful for our purposes.
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Proposition 4.1.1. Let G be a regular graph of degree k on h vertices. Suppose that the
eigenvalue λ of any nonconstant eigenvector satisfies the bound |λ| ≤ c for some c < k.
Let S be any subset of the vertices of G, and x be any vertex in G. Then a random walk of

length at least log 2h/|S|1/2
log k/c

starting from x will land in S with probability at least |S|
2h

= |S|
2|G| .

4.1.2 Isogeny Graphs

An isogeny graph is a graph whose nodes consist of all elliptic curves in Fq belonging to a
fixed isogeny class, up to F̄q-isomorphism (so that two elliptic curves which are isomorphic
over F̄q represent the same node in the graph). In practice, the nodes are represented
using j-invariants, which are invariant up to isomorphism. Isogeny graphs for supersingular
elliptic curves were first considered by Mestre [Mes86], and were shown by Pizer [Piz90,
Piz98] to have the Ramanujan property.

Every supersingular elliptic curve in characteristic p is defined over either Fp or Fp2

[Sil92], so it suffices to fix Fq = Fp2 as the field of definition for this discussion. Thus, in
contrast to ordinary curves, there are a finite number of isomorphism classes of supersin-
gular curves in any given isogeny class; this number is in fact g + 1, where g is the genus
of the modular curve X0(p), which is roughly p/12. It turns out that all supersingular
curves defined over F̄p belong to the same isogeny class [Mes86]. For a fixed prime value
of ` 6= p, we define the vertices of the supersingular isogeny graph G to consist of these
g + 1 isomorphism classes of curves, with edges given by isomorphism classes of degree-`
isogenies, defined as follows: two isogenies φ1, φ2 : Ei → Ej are isomorphic if there exists
an automorphism α ∈ Aut(Ej) (i.e., an invertible endomorphism) such that φ2 = αφ1.
Pizer [Piz90, Piz98] has shown that G is a connected k = ` + 1-regular multigraph satis-
fying the Ramanujan bound of |λ| ≤ 2

√
` = 2

√
k − 1 for the nontrivial eigenvalues of its

adjacency matrix.

4.2 Public-Key Cryptosystems Based On Supersingu-

lar Curves

In this section we present a key-exchange protocol and a public-key cryptosystem anal-
ogous to those of [RS06, Sto10], and a zero-knowledge identification scheme, all using
supersingular elliptic curves.

The protocols require supersingular curves of smooth order. Such curves are normally
unsuitable for cryptography since discrete logarithms on them are easy. However, since the
discrete logarithm problem is unimportant in our setting, this issue does not affect us. In
the supersingular setting, it is easy to construct curves of smooth order, and using a smooth
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order curve will give a large number of isogenies that are fast to compute. Specifically, we
fix Fq = Fp2 as the field of definition, where p is a prime of the form `eAA `

eB
B · f ± 1. Here

`A and `B are small primes, and f is a cofactor such that p is prime. Then we construct
a supersingular curve E defined over Fq of cardinality (`eAA `

eB
B f)2. By construction, E[`eAA ]

is Fq-rational and contains `eA−1
A (`A + 1) cyclic subgroups of order `eAA , each defining a

different isogeny; the analogous statement holds for E[`eBB ].

The protocols revolve around the following commutative diagram

E E/〈P 〉

E/〈Q〉 E/〈P,Q〉

φ

ψ
(4.1)

where φ and ψ are random walks in the graphs of isogenies of degrees `A and `B respectively.
Their security is based on the difficulty of finding a path connecting two given vertices in
a graph of supersingular isogenies.

4.2.1 Zero-Knowledge Proof of Identity

We begin with the protocol which is easiest to understand. Peggy knows a cyclic degree
`eAA isogeny φ : E → E/〈S〉, with the curves E and E/〈S〉 publicly known, and wants to
prove to Vic that she knows a generator for 〈S〉, without revealing it.

The protocol is loosely inspired by the zero-knowledge proof of membership for Graph
Isomorphism [GMW91]. In that protocol, Peggy shows that she knows a graph isomor-
phism G ' G′ by first publishing a random H such that the following diagram commutes

G G′

H
φ ψ

(4.2)

and then revealing only one among φ and ψ. Intuitively, this protocol is perfectly zero-
knowledge because the information that Peggy reveals (i.e., a random permutation of G
or G′) could be easily computed by anyone without her help.

In an analogous way, the protocol consists in publishing the vertices of diagram (4.1),
and then revealing some, but not all, of its arrows. Unlike the case of Graph Isomorphism,
in the protocol Peggy needs to use her secret knowledge to create the diagram, thus we
cannot achieve a perfect zero-knowledge. Nevertheless, we will show in Section 4.4 that,
under suitable assumptions, the protocol is computationally zero-knowledge.
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We show below the diagram used in the protocol. 〈S〉 is the kernel of the secret isogeny
φ of degree `eAA , while 〈R〉 is a cyclic group of order `eBB .

E E/〈S〉

E/〈R〉 E/〈S,R〉

φ

ψ ψ′

φ′
(4.3)

Peggy can compute the diagram as follows:

• She uses Vélu’s formulas to compute the isogeny ψ : E → E/〈R〉;

• She computes R′ = φ(R) and the isogeny ψ′ : E/〈S〉 → E/〈S,R〉;

• She computes S ′ = ψ(S) and the isogeny φ′ : E/〈R〉 → E/〈S,R〉.

Now, the natural question is: which arrows of the diagram can Peggy reveal without
compromising her secret φ? It is not hard to see, and we will show it in Theorem 4.4.3,
that the knowledge of (ψ, φ′) or (ψ′, φ′) allows anyone to compute the kernel of φ. However,
we will argue that there is no obvious way to compute φ from the sole knowledge of φ′.
Revealing one of ψ or ψ′ is no problem either, however revealing (ψ, ψ′) altogether is more
subtle. Indeed, revealing the points R and φ(R) uncovers some information on the action
of φ on E[`eBB ]: it is to be expected that after a few iterations Peggy will reveal a basis
(P,Q) of E[`eBB ] and the respective images φ(P ), φ(Q), thus allowing anyone to evaluate
φ on the whole E[`eBB ]. Nevertheless, we conjecture that this leakage does not compromise
Peggy’s secret either, and we make these data part of the public parameters.2

Finally, we present the protocol.

Secret parameters A supersingular curve E defined over Fq and a primitive `eAA -torsion
point S defining an isogeny φ : E → E/〈S〉.

Public parameters The curves E and E/〈S〉. Generators P,Q of E[`eBB ] and their images
φ(P ), φ(Q).

Identification Repeat m times:

1. Peggy chooses a random point R of order `eBB and computes diagram (4.3).

2An alternative solution, that intuitively leaks less information on φ, would be to publish random
generators of 〈R〉 and 〈φ(R)〉. However, it is not clear that this idea would considerably improve the
security of the protocol, and we will not pursue it further for coherence with the protocols that will follow.
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2. Peggy sends the curves E1 = E/〈R〉 and E2 = E/〈S,R〉 to Vic.

3. Vic selects a random bit b and sends it to Peggy.

4. If b = 0, Peggy reveals the points R and R′ = φ(R). Vic accepts if they have
order `eBB and generate the kernels of isogenies E → E1 and E/〈S〉 → E2,
respectively.

5. If b = 1, Peggy reveals the point ψ(S). Vic accepts if it has order `eAA and
generates the kernel of an isogeny E1 → E2.

4.2.2 Key Exchange

The key exchange protocol is a variation à la Diffie-Hellman over diagram (4.1). The idea is
to let Alice choose φ, while Bob chooses ψ. Although similar in spirit to the protocol based
on the action of the class group on ordinary elliptic curves of [Sto10], a main technical
difference is that, since ideal classes no longer commute (or indeed even multiply together)
in the supersingular case, extra information must be communicated as part of the protocol
in order to ensure that both parties arrive at the same common value.

We fix as public parameters a supersingular curve E0 defined over Fp2 , and bases
{PA, QA} and {PB, QB} which generate E0[`eAA ] and E0[`eBB ] respectively, so that 〈PA, QA〉 =
E0[`eAA ] and 〈PB, QB〉 = E0[`eBB ]. Note that all torsion groups are always defined over
Fp2 , hence this requires picking a curve having the correct order over Fp2 . Alice chooses
two random elements mA, nA ∈R Z/`eAA Z, not both divisible by `A, and computes an
isogeny φA : E0 → EA with kernel KA := 〈[mA]PA + [nA]QA〉. Alice also computes
the image {φA(PB), φA(QB)} ⊂ EA of the basis {PB, QB} for E0[`eBB ] under her secret
isogeny φA, and sends these points to Bob together with EA. Similarly, Bob selects ran-
dom elements mB, nB ∈R Z/`eBB Z and computes an isogeny φB : E0 → EB having kernel
KB := 〈[mB]PB + [nB]QB〉, along with the points {φB(PA), φB(QA)}. Upon receipt of EB
and φB(PA), φB(QA) ∈ EB from Bob, Alice computes an isogeny φ′A : EB → EAB having
kernel equal to 〈[mA]φB(PA) + [nA]φB(QA)〉; Bob proceeds mutatis mutandis. Alice and
Bob can then use the common j-invariant of

EAB = φ′B(φA(E0)) = φ′A(φB(E0)) = E0/〈[mA]PA+[nA]QA,[mB ]PB+[nB ]QB〉

to form a secret shared key.

The full protocol is given in Figure 4.1. We denote by A and B the identifiers of Alice
and Bob, and use sID to denote the unique session identifier.
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A B
Input: A,B, sID Input: B
mA, nA ∈R Z/`eAA Z mB, nB ∈R Z/`eBB Z
φA := E0/〈[mA]PA+[nA]QA〉 φB := E0/〈[mB ]PB+[nB ]QB〉

A,sID
φA(PB),
φA(QB),
EA−−−−−→
B,sID
φB(PA),
φB(QA),
EB←−−−−−

EAB := EBA :=
EB/〈[mA]φB(PA)+[nA]φB(QA)〉 EA/〈[mB ]φA(PB)+[nB ]φA(QB)〉

Output: j(EAB), sID Output: j(EBA), sID

E0

EA

ker
(φA

)=
〈[mA

]PA
+[nA

]QA
〉

φA
(PB

),φA
(QB

)

EB

ker(φ
B )=〈[m

B ]P
B+[n

B ]Q
B 〉

φ
B (P

A ),φ
B (Q

A )

EAB

ker
(φ
′
A

)=〈[
mA

]φB
(PA

)+[nA
]φB

(QA
)〉

EBA

ker(φ ′
B )=〈[m

B ]φ
A (P

B )+[n
B ]φ

A (Q
B )〉

‖

Figure 4.1: Key-exchange protocol using isogenies on supersingular curves.

4.2.3 Public-Key Encryption

The key-exchange protocol of Section 4.2.2 can easily be adapted to yield a public-key
cryptosystem, in much the same way that Elgamal encryption follows from Diffie-Hellman.
We briefly give the details here. All notation is the same as above. Stolbunov [Sto10] uses
a similar construction, upon which this one is based.

Setup Choose p = `eAA `
eB
B ·f±1, E0, {PA, QA}, {PB, QB} as above. Let H = {Hk : k ∈ K}

be a hash function family indexed by a finite set K, where each Hk is a function from
Fp2 to the message space {0, 1}w.

Key generation Choose two random elements mA, nA ∈R Z/`eAA Z, not both divisible by
`A. Compute EA, φA(PB), φA(QB) as above, and choose a random element k ∈R
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K. The public key is the tuple (EA, φA(PB), φA(QB), k) and the private key is
(mA, nA, k).

Encryption Given a public key (EA, φA(PB), φA(QB), k) and a message m ∈ {0, 1}w,
choose two random elements mB, nB ∈R Z/`eBB Z, not both divisible by `B, and com-
pute

h = Hk(j(EAB)),

c = h⊕m.

The ciphertext is (EB, φB(PA), φB(QA), c).

Decryption Given a ciphertext (EB, φB(PA), φB(QA), c) and a private key (mA, nA, k),
compute the j-invariant j(EAB) and set

h = Hk(j(EAB)),

m = h⊕ c.

The plaintext is m.

For detail on the algorithmic aspects of the schemes, please refer to the original paper.

4.3 Complexity Assumptions

As before, let p be a prime of the form `eAA `
eB
B · f ± 1, and fix a supersingular curve E0

over Fp2 together with bases {PA, QA} and {PB, QB} of E0[`eAA ] and E0[`eBB ] respectively.
In analogy with the case of isogenies over ordinary elliptic curves, we define the following
computational problems, adapted for the supersingular case:

Problem 4.3.1 (Decisional Supersingular Isogeny (DSSI) problem). Let EA be another su-
persingular curve defined over Fp2 . Decide whether EA is `eAA -isogenous to E0.

Problem 4.3.2 (Computational Supersingular Isogeny (CSSI) problem). Fix an isogeny
φA : E0 → EA whose kernel is 〈[mA]PA + [nA]QA〉, where mA and nA are chosen at random
from Z/`eAA Z and not both divisible by `A. Given EA and the values φA(PB), φA(QB), find
a generator RA of 〈[mA]PA + [nA]QA〉.

We remark that given a generator RA = [mA]PA + [nA]QA, it is easy to solve for
(mA, nA), since E0 has smooth order and thus extended discrete logarithms are easy in
E0 [Tes99].
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Problem 4.3.3 (Supersingular Computational Diffie-Hellman (SSCDH) problem). Fix an
isogeny φA : E0 → EA whose kernel is equal to 〈[mA]PA + [nA]QA〉, and let φB : E0 → EB
be an isogeny whose kernel is 〈[mB]PB + [nB]QB〉, where mA, nA (respectively mB, nB)
are chosen at random from Z/`eAA Z (respectively Z/`eBB Z) and not both divisible by `A
(respectively `B). Given the curves EA, EB and the points φA(PB), φA(QB), φB(PA),
φB(QA), find the j-invariant of E0/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉.
Problem 4.3.4 (Supersingular Decisional Diffie-Hellman (SSDDH) problem). Given a tuple
sampled with probability 1/2 from one of the following two distributions:

• (EA, φA(PB), φA(QB), EB, φB(PA), φB(QA), EAB), where the quantities EA, φA(PB),
φA(QB), EB, φB(PA), and φB(QA) are as in the SSCDH problem and

EAB ∼= E0/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉,

• (EA, φA(PB), φA(QB), EB, φB(PA), φB(QA), EC), wherein the quantities EA, φA(PB),
φA(QB), EB, φB(PA), and φB(QA) are as in the SSCDH problem and

EC ∼= E0/〈[m′A]PA + [n′A]QA, [m
′
B]PB + [n′B]QB〉,

where m′A, n
′
A (respectively m′B, n

′
B) are chosen at random from Z/`eAA Z (respectively

Z/`eBB Z) and not both divisible by `A (respectively `B),

determine from which distribution the tuple is sampled.

The ordinary case analogue of the following problem is trivially solvable in polynomial
time. Its supposed difficulty in the supersingular case is at the heart of the security of this
identification scheme.

Problem 4.3.5 (Decisional Supersingular Product (DSSP) problem). Given a degree `eAA
isogeny φ : E0 → E3 and a tuple sampled with probability 1/2 from one of the following
two distributions:

• (E1, E2, φ
′), where the productE1×E2 is chosen at random among those `eBB -isogenous

to E0 × E3, and where φ′ : E1 → E2 is an isogeny of degree `eAA , and

• (E1, E2, φ
′), where E1 is chosen at random among the curves having the same cardi-

nality as E0, and φ′ : E1 → E2 is a random isogeny of degree `eAA ,

determine from which distribution the tuple is sampled.

We conjecture that these problems are computationally infeasible, in the sense that
for any polynomial-time solver algorithm, the advantage of the algorithm is a negligible
function of the security parameter log p. The resulting security assumptions are referred
to as the DSSI assumption, CSSI assumption, etc.
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4.3.1 Hardness Of The Underlying Assumptions

In this section we discuss the feasibality of solving isogeny-based computational problems
on a quantum computer. At a high level, the fastest known attacks against CSSI, DSSP
involve claw-finding in the isogeny graph. Known existing lower bounds for quantum claw-
finding provide some assurance that a faster attack will never be found since such an
attack would require a non-generic solutions to the claw-finding problem. The lack of any
related commutative group structure or periodic function in the isogeny graph indicates
that analogues to Shor’s algorithm are unlikely to apply to isogeny computation.

Given a CSSI (respectively, SSCDH) solver, it is trivial to solve SSCDH (respectively,
SSDDH). It is also trivial to solve SSDDH given a DSSI solver. There are no known
reductions in the other direction, and given that the corresponding question of equivalence
for discrete logarithms and Diffie-Hellman has not yet been completely resolved in all cases,
it is reasonable to assume that the question of equivalence of CSSI, SSCDH, and SSDDH
is at least hard to resolve. For the purposes of this discussion, we will presume that DSSI
and CSSI are equivalent to SSDDH. Concerning DSSP, there is an evident reduction to
DSSI. However, it seems reasonable to assume that DSSP is easier than the latter.

In the context of cryptography, the problem of computing an isogeny between isoge-
nous supersingular curves was first considered by Galbraith [Gal99] in 1999. The first
published cryptographic primitive based on supersingular isogeny graphs is the hash func-
tion proposal of Charles et al. [CLG09], which remains unbroken to date (the cryptanalysis
of [PLQ08] applies only to the LPS graph-based hash function from [CLG09], and not to
the supersingular isogeny graph-based hash functions). The fastest known algorithm for
finding isogenies between supersingular curves in general takes O(

√
p log2 p) time [CLG09,

§5.3.1]; however the presented problem is less general because the degree of the isogeny
is known in advance and is smooth. In addition, the distribution of isogenous curves ob-
tained from taking kernels of the form 〈[mA]PA + [nA]QA〉 is not quite uniform: a simple
calculation against Proposition 4.1.1 indicates that a sequence of eA isogenies of degree
`A falls short of the length needed to ensure uniform mixing, regardless of the value of p.
Since our research group is the first to propose using isogenies of this type, there is no
existing literature addressing the security of the isogenies of the special form proposed.

There are easy exponential attacks against DSSI and CSSI that improve upon exhaus-
tive search. To find an isogeny of degree `eAA between E and EA, an attacker builds two

trees of all curves isogenous to E (respectively, EA) via isogenies of degree `
eA/2
A . Once the

trees are built, the attacker tries to find a curve lying in both trees. Since the degree of
the isogeny φA is ∼ √p (much shorter than the size of the isogeny graph), it is unlikely
that there will be more than one isogeny path—and thus more than one match—from
E to EA. Given two functions f : A → C and g : B → C with domain of equal size,
finding a pair (a, b) such that f(a) = g(b) is known as the claw problem in complexity
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theory. The claw problem can obviously be solved in O(|A| + |B|) time and O(|A|) space
on a classical computer by building a hash table holding f(a) for any a ∈ A and looking

for hits for g(b) where b ∈ B. This gives a O(`
eA/2
A ) = O( 4

√
p) classical attack against

those cryptosystems. With a quantum computer, one can do better using the algorithm
in [Tan08], which has complexity O( 3

√
|A||B|), thus giving an O(`

eA/3
A ) = O( 6

√
p) quantum

attack against the presented cryptosystems. These complexities are optimal for a black-box
claw attack [Zha05].

We consider the question of whether the auxiliary data points φA(PB) and φA(QB)
might assist an adversary in determining φA. Since (PB, QB) forms a basis for E0[`eBB ], the
values φA(PB) and φA(QB) allow the adversary to compute φA on all of E0[`eBB ]. This is
because any element of E0[`eBB ] is a (known) linear combination of PB and QB (known since
extended discrete logarithms are easy [Tes99]). However, there does not appear to be any
way to use this capability to determine φA. Even on a quantum computer, where finding
abelian hidden subgroups is easy, there is no hidden subgroup to find, since φA has degree
`eAA , and thus does not annihilate any point in E0[`eBB ] other than the identity. Of course,
if one could evaluate φA on arbitrary points of E0[`eAA ], then a quantum computer could
easily break the scheme, and indeed in this case the scheme is also easily broken classically
by using a few calls to the oracle to compute a generator of the kernel of the dual isogeny
φ̂A. However, it does not seem possible to translate the values of φA on E0[`eBB ] into values
on E0[`eAA ].

Recall that, for both ordinary and supersingular curves, there is a natural bijection
between isogenies (up to isomorphism) and (left) ideals in the endomorphism ring. In the
ordinary case the endomorphism ring is commutative, and ideal classes form a finite abelian
group. This property has been used by Childs et al. [CJS14] to solve the ordinary analogue
of CSSI in quantum subexponential time. It is natural to ask whether their algorithm can
be adapted to the supersingular setting. Here the endomorphism ring is a maximal order
in a noncommutative quaternion algebra, and the left ideal classes do not form a group at
all (though they do form a groupoid). Since the algorithm of Childs et al. depends crucially
on the properties of abelian groups, we believe that no reasonable variant of this strategy
would apply.

The same correspondence between isogenies and ideals can be applied to DSSP. Indeed,
deciding DSSP amounts to deciding whether the ideals S, S ′ associated to φ, φ′ are conju-
gated, i.e., whether there exists a left ideal R ∈ End(E0) such that S = RS ′R−1. Although
it can be hoped that deciding conjugacy of ideal classes in the quaternion algebra Qp,∞ is
feasible, we are still faced with the problem that the best known algorithms to compute the
endomorphism rings of supersingular curves are exponential in log p [Koh96, Cn04, Bel08].
Hence, we deem DSSP secure given the current knowledge.

The fact that it is possible to obtain a zero-knowledge identification scheme from CSSI
comes as no surprise, since it is well known that a zero-knowledge protocol can be ob-
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tained from any problem in NP [GMW91]. Nevertheless, the generic construction is not
very efficient, and many efforts have been made to obtain efficient ad-hoc schemes from
NP-complete problems [Sha89, Ste94a, Ste94b, Poi95]. While the security of most of these
schemes is based on two solid assumptions, namely that P 6= NP and that secure commit-
ment schemes exist, the presented identification scheme stands on a much weaker ground:
the CSSI and DSSP problems. As performances go, it is reasonable to assume that the
presented scheme will be some orders of magnitude slower than the best zero-knowledge
protocols. We can thus conclude that presented scheme is of a purely theoretical and
pedagogical interest. Yet it is remarkable that an efficient identification scheme based on
graphs of supersingular isogenies simply exists, while the analogous construction for ordi-
nary curves is trivially broken and no other identification scheme is currently known to
work in that case [Sto10].

4.4 Security Results

In this section we state the security results for the schemes presented in this chapter. The
statements of the theorems are as follows:

Theorem 4.4.1. If the SSDDH assumption holds, then the key-agreement protocol of Sec-
tion 4.2.2 is session-key secure in the authenticated-links adversarial model of Canetti and
Krawczyk [CK01].

Theorem 4.4.2. If the SSDDH assumption holds, and the hash function family H is
entropy-smoothing, then the public-key cryptosystem of Section 4.2.3 is IND-CPA.

Theorem 4.4.3. Under the CSSI and DSSP assumptions, the identification scheme of
Section 4.2.1 is zero-knowledge.

For proofs of the theorems, we refer to the original paper [JDF11].
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Chapter 5

Isogeny-Based Quantum-Resistant
Undeniable Signatures

5.1 Introduction

This chapter is based on [JS14], authored jointly with my supervisor David Jao.

Many current cryptographic schemes are based on mathematical problems that are
considered difficult with classical computers, but can easily be solved using quantum al-
gorithms. To prepare for the emergence of quantum computers, we aim to design cryp-
tographic primitives for common operations such as encryption and authentication which
resist quantum attacks. One family of such primitives, proposed by De Feo, Jao, and
Plût [DFJP14, JDF11], which we described in the previous chapter, uses isogenies between
supersingular elliptic curves to construct cryptographic protocols for public-key encryp-
tion, key exchange, and entity authentication which are believed to be quantum-resistant.
To date, however, this protocol family lacks comprehensive techniques for achieving data
authentication.

In this chapter, we present a new construction of quantum-resistant undeniable signa-
tures based on the difficulty of computing isogenies between supersingular elliptic curves.
Few such constructions are known, and indeed the only other proposed quantum-resistant
undeniable signature scheme in the literature is the code-based scheme of Aguilar-Melchor
et al. [AMBGS13]. Our scheme uses a completely different approach and is based on
completely different assumptions, making it a useful alternative in the event that some
breakthrough arises in the cryptanalysis of code-based systems.

Undeniable signatures provide tools for signer to prove that the signature is valid for
a given message, if it was truly signed by him. If the signature is fake, the signer has the
tools to prove that it is fake.
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5.2 Quantum-Resistant Undeniable Signatures From

Isogenies

In this section, we present a new construction of an undeniable signature scheme from
isogenies. An undeniable signature can be verified by any party, but verification requires
interaction with the signer. To distinguish between invalid (forged) signatures and valid
signatures that the verifier refuses to verify, an undeniable signature scheme also includes
a mechanism for the signer to prove (interactively) that an invalid signature is forged.
Our construction uses a three-prime variant of the original two-prime protocol given in
Section 4.2.2. As a consequence, the resulting commutative diagrams for zero-knowledge
proofs become 3-dimensional rather than 2-dimensional.

5.2.1 Definition

An undeniable signature scheme [KF08] consists of a key generation algorithm, a signing
algorithm, a validity check, a signature simulator, a confirmation protocol πcon and a
disavowal protocol πdis. The role of the confirmation protocol πcon is for the signer to prove
to the verifier that the signature is valid. The role of the disavowal protocol πdis is for
a valid signer to be able to prove to the verifier that the signature that the verifier has
received is not valid.

Unforgeability is defined using the following game between a challenger and an adversary
A.

1. The challenger generates a key pair (vk, sk) randomly, and gives the verification key
vk to A.

2. For i = 1, 2, . . . , qs for some qs, A queries the signing oracle adaptively with a message
mi and receives a signature σi.

3. Eventually, A outputs a forgery (m∗, σ∗).

We also allow the adversary A to submit pairs (mj, σj) to the confirmation/disavowal oracle
adaptively in step 2, where the confirmation/disavowal oracle responds as follows:

• If (mj, σj) is a valid pair, then the oracle returns a bit µ = 1 and proceeds with the
execution of the confirmation protocol πcon with A.

• Otherwise, the oracle returns a bit µ = 0 and proceeds with the execution of the
disavowal protocol πdis with A.
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We say that A succeeds in producing a strong forgery if (m∗, σ∗) is valid and (m∗, σ∗) is
not among the pairs (mi, σi) generated during the signing queries. The signature scheme
is strongly unforgeable if the probability that A succeeds in producing a strong forgery is
negligible for any PPT adversary A in the above game.

Invisibility is defined using the following game between a challenger and an adversary
A.

1. The challenger generates a key pair (vk, sk) randomly, and gives the verification key
vk to A.

2. A is permitted to issue a series of signing queries mi to the signing oracle adaptively
and receive a signature σi.

3. At some point, A chooses a message m∗ and sends it to the challenger.

4. The challenger chooses a random bit b. If b = 1, then he computes the real signature
for m∗ using sk and sets it to be σ∗. Otherwise he computes a fake signature m∗

using vk and sets it to be σ∗. He sends σ∗ to A.

5. A performs some signing queries again.

6. At the end of this game, A outputs a guess b′.

We allow the adversary A to submit pairs (mj, σj) to the confirmation/disavowal oracle
adaptively in step 2 and in step 5. However, A is not allowed to submit the challenge
(m∗, σ∗) to the confirmation/disavowal oracle in step 5. Also, A is not allowed to submit
m∗ to the signing oracle. We say that the signature scheme is invisible if no PPT adversary
A has non-negligible advantage in this game.

For an undeniable signature scheme to be secure, it must satisfy unforgeability and in-
visibility. In addition, the confirmation πcon and disavowal πdis protocols must be complete,
sound, and zero-knowledge.

5.2.2 Protocol

Let p be a prime of the form `eAA `
eM
M `eCC · f ± 1, and fix a supersingular curve E over

Fp2 together with bases {PA, QA}, {PM , QM} and {PC , QC} of E[`eAA ], E[`eMM ] and E[`eCC ]
respectively. The design of the protocol is such that, generally speaking, points in 〈PA, QA〉
are used for key material, points in 〈PM , QM〉 are used for message data, and points in
〈PC , QC〉 correspond to commitment data.

The signer generates two secret random integers mA, nA ∈ Z/`eAA Z, obtains KA =
[mA]PA + [nA]QA and computes EA = E/〈KA〉. Let φA be an isogeny from E to EA.
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Public parameters: p, E, {PA, QA}, {PM , QM}, {PC , QC}, and a public hash function
H : {0, 1}∗ → Z.

Public key: EA, φA(PC), φA(QC).

Private key: mA, nA.

To sign a message M , we compute the hash h = H(M). Let KM = PM + [h]QM . Then
the signer computes the isogenies

• φM : E → EM = E/〈KM〉

• φM,AM : EM → EAM = EM/〈φM(KA)〉

• φA,AM : EA → EAM = EA/〈φA(KM)〉

along with the auxiliary points φM,AM(φM(PC)) and φM,AM(φM(QC)). The signer then
presents these two auxiliary points along with EAM as the signature. (See Figure 5.1.)

The confirmation protocol proceeds as follows. We must confirm EAM without revealing
the isogenies used to produce it. We do so by “blinding” EAM using φC and disclosing the
blinded isogenies (see Figure 5.2).

EA

E

EAM

EM

φA,AM

φA

φM

φM,AM

Figure 5.1: Signature generation.
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φAC,AMC

φA

φC

φM φAM,AMC

φM,AM

φM,MC

φMC,AMC

φC,MC

φC,AC

Figure 5.2: Confirmation protocol.

1. The signer secretly selects random integers mC , nC ∈ Z/`eCC Z, and computes the point
KC = [mC ]PC + [nC ]QC together with the curves and isogenies in Figure 5.2. Here
EC = E/〈KC〉, EMC = EM/〈φM(KC)〉 = EC/〈φC(KM)〉, EAC = EA/〈φA(KC)〉 =
EC/〈φC(KA)〉, and EAMC = EMC/〈φC,MC(KA)〉.

2. The signer outputs EC , EAC , EMC , EAMC , and ker(φC,MC) as the commitment.

3. The verifier randomly selects b ∈ {0, 1}.
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4. If b = 0, the signer outputs ker(φC). Using the signer’s public key, the verifier
computes ker(φA,AC). Using knowledge of ker(φM), the verifier computes φM,MC .
Using the auxiliary points given as part of the signature, the verifier can compute
φAM,AMC . The verifier checks that each isogeny maps between the corresponding two
curves specified in the commitment. Using knowledge of ker(φC), the verifier also
independently re-computes φC,MC and checks that it matches the commitment.

5. If b = 1, the signer outputs ker(φC,AC). The verifier computes φMC,AMC and φAC,AMC ,
and checks that each of φC,AC , φMC,AMC , and φAC,AMC maps between the correspond-
ing two curves specified in the commitment.

We now describe the disavowal protocol. Suppose the signer is presented with a falsified
signature (EF , FP , FQ) for a message M , where EF is the falsified EAM , and {FP , FQ}
are the falsified auxiliary points corresponding to φM,AM(φM(PC)) and φM,AM(φM(QC))
respectively. We must disavow EF without disclosing EAM . To do this, we blind EAM as
before to obtain EAMC , and disclose enough information to allow the verifier to compute
EFC and check that EFC 6= EAMC .

1. The signer secretly selects random integers mC , nC ∈ Z/`eCC Z, and computes KC =
[mC ]PC + [nC ]QC along with all the curves and isogenies in Figure 5.3.

2. The signer outputs EC , EAC , EMC , EAMC , and ker(φC,MC) as the commitment.

3. The verifier randomly selects b ∈ {0, 1}.

4. If b = 0, the signer outputs ker(φC). The verifier computes φC , φM,MC , φA,AC ,
and φF : EF → EFC = EF/〈[mC ]FP + [nC ]FQ〉, and checks that each isogeny maps
between the corresponding two curves specified in the commitment. The verifier
independently re-computes φC,MC and checks that it matches the commitment. The
verifier also checks that EFC 6= EAMC .

5. If b = 1, the signer outputs ker(φC,AC). The verifier computes φAC,AMC and φMC,AMC ,
and checks that these isogenies map to EAMC .
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Figure 5.3: Disavowal protocol.

5.3 Complexity Assumptions

As before, let p be a prime of the form `eAA `
eB
B `

eC
C · f ± 1, and fix a supersingular curve

E over Fp2 together with bases {PA, QA}, {PB, QB}, and {PC , QC} of E[`eAA ], E[`eBB ], and
E[`eBB ] respectively.

We recall that we have assumptions stated in Section 5.3, which are DSSI, CSSI, SS-
CDH, SSDDH, and DSSP.

In analogy, we define the following computational problems, which we assume are
quantum-infeasible:

Problem 5.3.1 (Modified Supersingular Computational Diffie-Hellman (MSSCDH) prob-
lem). With notation as in the SSDDH problem, given EA, EB, and ker(φB), determine
EAB. Note that no auxiliary points for φA are given.

Problem 5.3.2 (Modified Supersingular Decisional Diffie-Hellman (MSSDDH) problem).
With notation as in the SSDDH problem, given EA, EB, EC , and ker(φB), determine
whether EC = EAB. Note that no auxiliary points for φA are given.

Problem 5.3.3 (One-sided Modified Supersingular Computational Diffie-Hellman (OMSS-
CDH) problem). For fixed EA and EB, given an oracle to solve MSSCDH for any EA, EB′ ,
ker(φB′) where EB′ 6∼= EB, solve MSSCDH for EA, EB, and ker(φB).

Problem 5.3.4 (One-sided Modified Supersingular Computational Diffie-Hellman (OMSS-
CDH) problem). For fixed EA, EB, and EC , given an oracle to solve MSSCDH for any EA,
EB′ , ker(φB′) where EB′ 6∼= EB, solve MSSDDH for EA, EB, EC , and ker(φB).

We conjecture that these problems are computationally infeasible, in the sense that
for any polynomial-time solver algorithm, the advantage of the algorithm is a negligible
function of the security parameter log p. The resulting security assumptions are referred
to as the DSSI assumption, CSSI assumption, etc.
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We also need a heuristic assumption concerning the distribution of blinded false signa-
tures:

Assumption 5.3.5. Fix a supersingular elliptic curve E, an `eAA -isogeny φA, an `eBB -isogeny
φB, and a curve EF , not isomorphic to EAB. For any pair of points {P,Q} in EF , only a
negligibly small fraction of integer pairs mC , nC satisfy
EF/〈mCP + nCQ〉 = EAB/〈φB,AB(φB(mCPC + nCQC))〉.

This assumption is desirable, as in the disavowal protocol, it should be intractable to
find mC , nC such that we obtain a map EF → EABC . This assumption makes sense, as the
adversary does not have sufficient information to obtain that map, as the curves EFC and
EABC would be independent of each other. This assumption has also been computationally
tested.

5.3.1 Hardness Of The Underlying Assumptions

All of our unmodified complexity assumptions (those not containing “Modified” in the
name) are identical to the corresponding assumptions from [DFJP14, JDF11], except that
our assumptions are formulated using primes of the form p = `eAA `

eB
B `

eC
C · f ± 1, rather than

primes of the form p = `eAA `
eB
B · f ± 1. We have no reason to believe that this alteration

would affect the validity of these assumptions. A close analogy to this situation is the
comparison between three-prime RSA and two-prime RSA, where the use of three-prime
RSA incurs some efficiency loss but no known security concerns.

Our modified assumptions are needed in order to prove the security of our undeniable
signature scheme. The MSSCDH and MSSDDH assumptions are complementary to the
SSCDH and SSDDH assumptions, with the main difference being that the input consists of
a kernel but not a pair of auxiliary points (rather than the other way around). We believe
these assumptions are credible and comparable to SSCDH/SSDDH. The OMSSCDH and
OMSSDDH assumptions are somewhat more artificial, and more study will be needed to
justify confidence in them. They arise naturally in the analysis of our undeniable signature
scheme.

Our heuristic assumption (Assumption 5.3.5) seems quite natural, and we have con-
ducted numerous empirical experiments confirming it in practice. It would in fact be quite
surprising if the assumption failed to hold. However, we have not yet succeeded in finding
a proof of the assumption.
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5.4 Security Proofs

To prove the security of our scheme, we must show that the confirmation and disavowal
protocols are complete, sound and zero-knowledge, and that the overall scheme satisfies
the unforgeability and invisibility properties.

The basic principle behind the proofs is that, as was the case in the basic key-exchange
protocol (Section 4.2.2), knowledge of (the kernels of) any two opposite-side isogenies lying
in a given cube face reveals no information about the other edges in the cube, by the DSSI
and DSSP assumptions. On the other hand, knowledge of any two adjacent isogenies in
a given commutative square yields full information about all the isogenies in the square.
It does not matter which direction the arrows point, since one can reverse the direction of
any arrow using dual isogenies.

Remark 5.4.1. To compute the dual isogeny of an isogeny φ : E → EA = E/〈A〉 whose
kernel is generated by a point A, pick any point B ∈ E \ 〈A〉, and compute φ(B). Then
φ(B) generates a kernel subgroup whose corresponding isogeny φ′ : EA → E = EA/〈φ(B)〉
is isomorphic to the dual isogeny φ̂. In general, EA/〈φ(B)〉 is isomorphic but not equal to
E, so we also need to compute the appropriate isomorphism, but computing isomorphisms
in general is known to be easy [Gal99].

5.4.1 Confirmation Protocol

We need to prove three things: completeness, soundness and zero-knowledge. We apply
classical techniques from [FFS88, GMW91].

Proof of completeness. Completeness for this protocol is obvious. Using the algorithm
presented in Section 5.2.2, the signer can always compute the diagram in Figure 5.2 and
make the verifier accept.

Proof of soundness. Let Charles be a cheating prover that is able to convince the verifier
with non-negligible probability. We also assume that Charles is polynomially bounded.
We treat Charles as a black-box that we can control in the sense that we can restart it
a polynomial number of times on the same input and each time ask a different set of
questions. We can then learn with high probability the diagram in Figure 5.4. Knowing
this diagram, we can compute ker(φA), since we know 3 out of 4 edges in the top face. We
then have full knowledge of φA, and can then trivially solve the MCSSI problem for the
left face.

Proof of zero-knowledge. We show how a cheating verifier (CV) can construct a simulator
S. The simulator S makes uniformly random guesses about what the verifier’s challenge
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will be. Regardless of the guess, S chooses random integers mC , nC ∈ Z/`eCC Z and computes
φC : E → EC = E/〈mCPC + nCQC〉.

If S guesses b = 0, it computes the diagram given in Figure 5.6. The simulator can now
answer the CV’s challenge in the case b = 0. The simulator’s response is indistinguishable
from, and indeed identical to, that of the real prover.

If S guesses b = 1, it chooses some random isogeny φC,AC : EC → EAC , and computes
the diagram given in Figure 5.7. The simulator uses this diagram to answer the CV’s
challenge in the case b = 1. In this diagram, the curves EC and EMC are genuine, and the
curves EAC and EAMC are fake. However, the CV cannot tell that these curves are fake,
or else it would be able to solve DSSP for the top face of the cube. Hence the simulator’s
response is indistinguishable from that of the real prover.

5.4.2 Disavowal Protocol

As before, we prove completeness, soundness and zero-knowledge.

Proof of completeness. Completeness for this protocol is obvious. Using the algorithm
presented in Section 5.2.2, the signer can always compute the diagram in Figure 5.2 and
make the verifier accept. Assumption 5.3.5 is needed to guarantee acceptance.

Proof of soundness. Let Charles be a cheating prover that is able to convince the verifier
with non-negligible probability. We also assume that Charles is polynomially bounded.
We treat Charles as a black-box that we can control in the sense that we can restart it
a polynomial number of times on the same input and each time ask a different set of
questions. We can then learn with high probability the diagram in Figure 5.5. Knowing
this diagram, we can compute ker(φA), since we know 3 out of 4 edges in the top face. We
then have full knowledge of φA, and can then trivially solve the MCSSI problem for the
left face.

Proof of zero-knowledge. We show how a cheating verifier (CV) can construct a simulator
S. The simulator S makes uniformly random guesses about what the verifier’s challenge
will be. The simulator S first chooses random integers mC , nC ∈ Z/`eCC Z and computes
φM,MC : EM → EMC = EM/〈mCφM(PC) + nCφM(QC)〉.

If S guesses b = 0, it computes the diagram given in Figure 5.8. Here the curves
EC , EMC , and EAC are genuine, and the curves EAM and EAMC are fake. The simulator
uses the diagram to answer the CV’s challenge in the case b = 0. The simulator’s response
is indistinguishable from the real prover, since otherwise the CV could solve DSSP for the
bottom face of the cube.
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If S guesses b = 1, it chooses some random isogeny φC,AC : EC → EAC , and computes
the diagram given in Figure 5.9. The simulator uses this diagram to answer the CV’s
challenge in the case b = 1. In this diagram, the curves EC and EMC are genuine, and the
curves EAC and EAMC are fake. However, the CV cannot tell that these curves are fake,
or else it would be able to solve DSSP for the top face of the cube. Hence the simulator’s
response is indistinguishable from that of the real prover.
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Figure 5.4: Proof of soundness (confirma-
tion)
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Figure 5.5: Proof of soundness (disavowal)
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Figure 5.6: Confirmation (b = 0 case)
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Figure 5.7: Confirmation (b = 1 case)
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Figure 5.8: Disavowal (b = 0 case)
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Figure 5.9: Disavowal (b = 1 case)58



5.4.3 Unforgeability and Invisibility

Finally, we prove that the protocol satisfies the unforgeability and invisibility properties
from Section 5.2.

Proof of unforgeability. To prove unforgeability, we must show that after making a poly-
nomial number of queries to a signing oracle, an adversary is still unable to generate a
valid signature. Note that we have shown that the confirmation and disavowal protocols
are zero-knowledge. Forging signatures is then equivalent to solving OMSSCDH.

Proof of invisibility. To prove invisibility, we must show that after making a polynomial
number of queries to a signing oracle, an adversary will still be unable to decide whether
a given signature is valid. This problem is equivalent to OMSSDDH.

5.5 Parameter Sizes

As stated in [DFJP14, JDF11], the fastest known quantum isogeny finding algorithms in
our setting require O(n1/3) running time, where n is the size of the kernel. Based on this
figure, we obtain the following parameter sizes and signature sizes for various levels of
security:

Security level log2 p Signature size

80 bits 720 5760 bits
112 bits 1008 8064 bits
128 bits 1152 9216 bits
192 bits 1728 13824 bits
256 bits 2304 18432 bits

These numbers compare favorably with those of the only other available quantum-resistant
undeniable signature scheme, that of Aguilar-Melchor et al. [AMBGS13]. For example, at
the 128-bit security level, the scheme of [AMBGS13] requires a signature size of 5000 bits
for the code-based portion plus an additional “roughly 40k Bytes” [AMBGS13, p. 116] for
the conventional digital signature portion.

Regarding performance, a comparison is difficult because [AMBGS13] does not provide
any performance numbers. For isogeny computations, recent implementation work of De
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Feo et al. [DFJP14, Table 3] and Fishbein [Fis14, Figure 4.1] demonstrates that a single
1024-bit isogeny computation can be performed in 120 ms on a desktop PC, and in under
1 second on an Android device. Our protocol requires three such computations for signing,
up to eight for confirmation, and up to nine for disavowal.

5.6 Conclusion

In this chapter we presented a quantum-resistant undeniable signature scheme based on
the hardness of computing isogenies between supersingular elliptic curves. Our scheme
represents the first quantum-resistant undeniable signature scheme based on a number-
theoretic computational assumption, and compares well with the only prior undeniable
quantum-resistant signature scheme (a code-based scheme) in terms of performance and
bandwidth. Future work may entail developing new protocols such as digital signature
schemes or more efficient schemes based on weaker assumptions.
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Chapter 6

Post-Quantum Security Models For
Authenticated Encryption

6.1 Introduction

This chapter is based on [SJS16], authored jointly with my supervisor David Jao, and
Srinath Seshadri.

Authenticated encryption (AE) forms a critical component of our existing internet
infrastructure, with many widely used protocols such as TLS, SSH, and IPsec depend-
ing on AE for their basic functionality. Despite this importance, there is relatively little
existing literature on the subject of combining post-quantum authentication and encryp-
tion schemes in a provably secure way. A few works [BCNS14, FSXY13, SWZ15] have
dealt with the problem of post-quantum authenticated key exchange, but do not provide
any self-contained discussion of AE outside of the (much) more complicated context of key
exchange; moreover, [BCNS14] and [SWZ15] simply use RSA and DH respectively for long-
term authentication keys, on the grounds that there is no immediate need for quantum-safe
authenticity. In this work, we adopt a different goal: we propose security definitions for
post-quantum AE with the goal of achieving authentication and confidentiality against
fully quantum adversaries, and give examples of such AE schemes constructed from exist-
ing underlying symmetric-key and digital signature primitives, using the quantum random
oracle for the latter. Although our definitions are technically new, they are largely based
on combinations of existing ideas, allowing us to reuse security proofs from other settings
in the present context.

Note that our emphasis in this work is on constructing generic compositions of confi-
dentiality and authentication primitives, rather than specialized authenticated encryption
modes of operation as in the CAESAR competition [MR14]. While specialized first-class
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primitives are certainly valuable, we feel that understanding composed primitives repre-
sents a natural first step.

6.2 Security Definitions

Bellare and Namprempre [BN08] showed that an IND-CPA encryption scheme combined
with a SUF-CMA message authentication code under the Encrypt-then-MAC paradigm
yields an IND-CCA authenticated encryption scheme. We wish to obtain a generalization
of this construction which works against quantum adversaries. As a starting point, we
review the security definitions of Boneh and Zhandry [BZ13b] for symmetric-key encryption
schemes and digital signatures.

The main idea in these definitions is to allow quantum queries. One might question
why quantum queries would be needed. One answer is that, if we want our schemes to
be implementable on quantum computers, then in this scenario a quantum query from an
adversary could receive a quantum response. It seems prudent to consider the security of
AE schemes in this situation. Of course, our specific proposals are post-quantum schemes,
and they can also be implemented on a classical computer.

The most natural extension of IND-CPA security to the quantum setting consists of
allowing full unrestricted quantum queries to the encryption oracle. However, Boneh and
Zhandry showed [BZ13b, Theorems 4.2 and 4.4] that this definition is too powerful, in the
sense that no encryption scheme satisfies this security definition. In place of full quantum
queries, Boneh and Zhandry propose a definition in which challenge messages can only be
encrypted classically [BZ13b, Definition 4.5]:

Definition 6.2.1 (IND-qCPA). We say that a symmetric-key encryption scheme E =
(Enc,Dec) is indistinguishable under a quantum chosen message attack (IND-qCPA secure)
if no efficient adversary A can win in the following game, except with probability at most
1/2 + ε:

Key generation: The challenger picks a random key k and a random bit b.

Queries: A is allowed to make two types of queries:

Challenge queries: A sends two messages m0,m1 (of equal length), to which the
challenger responds with c∗ = Enc(k,mb). (Note that only one such query can
be made within one game.)

Encryption queries: For each such query, the challenger chooses randomness r,
and encrypts each message in the superposition using r as randomness:∑

m,c

ψm,c|m, c〉 7→
∑
m,c

ψm,c|m, c⊕ Enc(k,m; r)〉
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Guess: A produces a bit b′, and wins if b = b′.

Similarly, Boneh and Zhandry define the notion of quantum chosen ciphertext secu-
rity [BZ13b, Definition 4.6]:

Definition 6.2.2 (IND-qCCA). We say that a symmetric-key encryption scheme E =
(Enc,Dec) is indistinguishable under a quantum chosen ciphertext attack (IND-qCCA
secure) if no efficient adversary A can win in the following game, except with probability
at most 1/2 + ε:

Key generation: The challenger picks a random key k and a random bit b. It also creates
creates a list C which will store challenger ciphertexts.

Queries: A is allowed to make three types of queries:

Challenge queries: A sends two messages m0,m1 (of equal length), to which the
challenger responds with c∗ = Enc(k,mb). (Note that only one such query can
be made within one game.)

Encryption queries: For each such query, the challenger chooses randomness r,
and encrypts each message in the superposition using r as randomness:∑

m,c

ψm,c|m, c〉 7→
∑
m,c

ψm,c|m, c⊕ Enc(k,m; r)〉

Decryption queries: For each such query, the challenger decrypts all ciphertexts
in the superposition, except those that were the result of a challenge query:∑

c,m

ψc,m|c,m〉 7→
∑
c,m

ψc,m|c,m⊕ f(c)〉

where

f(c) =

{
⊥ if c ∈ C
Dec(k, c) otherwise.

Guess: A produces a bit b′, and wins if b = b′.

For the above definitions, A is allowed to make polynomial (in the size of the security
parameter) number of queries. The value r is the same for all messages within the same
query. There is no limit on the number of messages within the same query (i.e. the
superposition can involve as many messages, as wanted).

We now discuss Boneh and Zhandry’s quantum security definition for signatures. It is
assumed that the adversary can query for signatures of superpositions of messages. In this
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situation, the definition of existential unforgeability needs to be modified, since a naive
reading of the definition would allow the adversary simply to measure a superposition and
claim the resulting signature as an existential forgery. Let q be a polynomial function in
the security parameter. For our purposes, the security parameter is the finite field size.
To solve this problem we simply require the adversary to produce q + 1 signatures from q
queries [BZ13b, Definition 3.2]:

Definition 6.2.3 (SUF-qCMA). A signature scheme S = (Gen, Sign,Ver) is strongly un-
forgeable under a quantum chosen message attack (SUF-qCMA secure) if, for any efficient
quantum algorithm A and any polynomial q, the algorithm A’s probability of success in
the following game is negligible in λ:

Key generation: The challenger runs (sk, pk)← Gen(λ), and gives pk to A.

Signing Queries: A makes a polynomial number q of chosen message queries. For each
query, the challenger chooses randomness r, and responds by signing each message
in the query using r as randomness:∑

m,t

ψm,t|m, t〉 7→
∑
m,t

ψm,t|m, t⊕ Sign(sk,m; r)〉

Forgeries: A is required to produce q + 1 message-signature pairs. The challenger then
checks that all the signatures are valid, and that all message-signature pairs are
distinct. If so, the adversary wins.

Definition 6.2.4 (WUF-qCMA). A signature scheme S is weakly unforgeable under a
quantum chosen message attack (WUF-qCMA secure) if it satisfies the same definition
as SUF-qCMA, except that we require the q + 1 message-signature pairs to have distinct
messages.

Note that our terminology differs slightly from Boneh and Zhandry [BZ13b], although
the content of the definitions is identical: Boneh and Zhandry use the terms “strongly
EUF-qCMA” and “weakly EUF-qCMA” instead of SUF-qCMA and WUF-qCMA. In ad-
dition, Boneh and Zhandry have similar definitions for SUF-qCMA and WUF-qCMA secure
message authentication codes [BZ13a].

Finally, we give our definitions of INT-qCTXT and INT-qPTXT. We constructed these
definitions by starting with the classical security definitions of INT-CTXT and INT-PTXT
from Bellare and Namprempre [BN08, §2], and modifying them in a manner similar to
Boneh and Zhandry’s definition for digital signatures (Definition 6.2.3).
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Definition 6.2.5 (INT-qCTXT). An encryption scheme E = (Enc,Dec) satisfies integrity
of ciphertext under a quantum attack (INT-qCTXT security) if, for any efficient quantum
algorithm A and any polynomial q, the probability of success of A in the following game
is negligible in λ:

Key generation: The challenger picks a random key k.

Encryption queries: A makes a polynomial q such queries. For each such query, the
challenger chooses randomness r, and encrypts each message in the superposition
using r as randomness:∑

m,c

ψm,c|m, c〉 7→
∑
m,c

ψm,c|m, c⊕ Enc(k,m; r)〉

Decryption queries: For each such query, the challenger decrypts all ciphertexts in the
superposition, except those that were the result of a challenge query:∑

c,m

ψc,m|c,m〉 7→
∑
c,m

ψc,m|c,m⊕Dec(k, c)〉

Forgeries: A is required to produce q + 1 message-ciphertext pairs. The challenger then
checks that all the ciphertexts are valid, and that all message-ciphertexts pairs are
distinct. If so, the adversary wins.

Definition 6.2.6 (INT-qPTXT). An encryption scheme E = (Enc,Dec) satisfies the in-
tegrity of plaintext under a quantum attack (INT-qPTXT secure) if it satifies the same
definition as INT-qCTXT, except that we require the q + 1 message-ciphertext pairs to
have distinct messages.

6.3 Main Theorem

In this section, we prove that an IND-qCPA encryption scheme together with a SUF-qCMA
signature or MAC scheme yields an authenticated encryption scheme via the Encrypt-then-
MAC method (where the sender first encrypts the message and then signs or produces the
MAC for ciphertext), satisfying the respective privacy and integrity guarantees of IND-
qCCA (Definition 6.2.2) and INT-qCTXT (Definition 6.2.5), the quantum analogues of
the classical notions of IND-CCA and INT-CTXT security used in Bellare and Namprem-
pre [BN08]. We adopt the proofs to work with the definitions for quantum adversary
model. We will interchangeably be using Signature and MAC notion as they can replace
each other. For verification in case of MAC, we simply mean that the party checks and ver-
ifies whether or not MAC of the given value is correct. We begin by showing a WUF-qCMA
MAC implies INT-qPTXT security:
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Theorem 6.3.1. Let SE = (Ke, E ,D) be a symmetric-key encryption scheme, let
MA = (Km, T ,V) be a message authentication scheme, and let SE = (K̄, Ē , D̄) be the
authenticated encryption scheme obtained from SE and MA via the Encrypt-then-MAC
method. Given any adversary I against SE, we can construct an adversary F such that

AdvINT-qPTXT

SE (I) ≤ AdvWUF-qCMA
MA (F ).

Proof. (Based on [BN08, Theorem 4.1]) We construct the adversary F as follows:

1. Use the key Ke.

2. Run I.

3. On query Enc(M) (where M can be in superposition):

C ′ ← E(Ke,M); τ ← Tag(C ′); Return C ′ ‖ τ to I

4. On query Ver(C):

Parse C as C ′ ‖ τ ′; v ← Ver(C ′, τ ′); Return v to I

until I halts.

Let Ci = C ′i ‖ τi for i ∈ {1, . . . , q + 1} be the Ver queries of I that lead to winning
game INT-qPTXTSE , after q queries to Enc. Let Mi = D(Ke, C

′
i). We know that due to

the property of INT-qPTXT of SE , at most q of them were obtained from the q queries
to Enc of I; hence C ′is were the result of at most q queries of F to Tag, but we obtained
q + 1 valid tags. Hence, F wins whenever WUF-qCMAMA I wins INT-qPTXTSE .

Although our proof of Theorem 6.3.1 is for MACs, the same proof works for digital
signatures (replacing the Tag oracle with the Sign oracle). Of course, in the content of
using signatures, we assume that the public keys are authenticated.

Next we show that a SUF-qCMA signature or MAC implies an INT-qCTXT authenti-
cated encryption scheme.

Theorem 6.3.2. Let SE = (Ke, E ,D) be a symmetric-key encryption scheme, let
MA = (Km, T ,V) be a message authentication scheme, and let SE = (K̄, Ē , D̄) be the au-
thenticated encryption scheme obtained from SE and MA via encrypt-then-MAC compo-
sition method. Given any adversary I against SE, we can construct an adversary F such
that

AdvINT-qCTXT

SE (I) ≤ AdvSUF-qCMA
MA (F ).
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Proof. (Based on [BN08, Theorem 4.4]) Here we use the same adversary as in Theo-
rem 6.3.1. Let Ci = C ′i ‖ τi for i ∈ {1, . . . , q + 1} be the Ver queries of I that lead
to winning game INT-qCTXTSE , after q queries to Enc. If only at most q of the Ci’s were
returned to I by Enc, then at most q were queried by F with Tag (i.e., the corresponding
C ′is). Hence, F wins whenever SUF-qCMAMA I wins INT-qCTXTSE .

Again, the proof of Theorem 6.3.2 carries over to digital signatures as well, replacing
the Tag oracle with a Sign oracle.

We now show that the authenticated encryption scheme in Encrypt-then-MAC inherits
the IND-qCPA property from the underlying encryption scheme:

Theorem 6.3.3. Let SE = (Ke, E ,D) be a symmetric-key encryption scheme, let
MA = (Km, T ,V) be a message authentication scheme, and let SE = (K̄, Ē , D̄) be the au-
thenticated encryption scheme obtained from SE andMA via the Encrypt-then-MAC com-
position method. Given any adversary A against SE, we can construct an adversary Ap
such that

AdvIND-qCPA

SE (A) ≤ AdvIND-qCPA
SE (Ap).

Furthermore, Ap uses the same resources as A.

Proof. (Based on [BN08, Theorem 4.3]) We construct Ap as follows:

Km ← Km
Run A
On query to Enc

C ← Enc(M)

τ ← Tag(Km, C)

Return C ‖ τ to A
Until A halts and returns b

Return b.

We can see that if A wins, then so does Ap, since a winning output for A is a winning
output for Ap; the tag can be ignored.

Finally, we prove that INT-qCTXT and IND-qCPA security imply IND-qCCA security
(Theorem 6.3.7). The proof relies on three games G0, G1, and G2 as defined in Figure 6.1.
These games are based on the corresponding three games from Figure 7 of [BN08], ex-
cept that we modify the games mutadis mutandis to conform to our quantum definitions
(Definitions 6.2.1 and 6.2.2).
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Games G0 and G1 : Game G2 :

proc Initialize proc Initialize

K
$← K; b

$← {0, 1};S ← ∅ K
$← K; b

$← {0, 1}

proc Challenge(M0,M1) proc Challenge(M0,M1)

C
$← Enc(K,Mb);S ← S ∪ {C}; Return C C

$← Enc(K,Mb); Return C

proc Enc(M) proc Enc(M)

C
$← Enc∗(K,M);S ← S ∪ {C}; Return C C

$← Enc∗(K,M); Return C

proc Dec(C) proc Dec(C)

M ← Dec∗(C) Return ⊥
If M 6= ⊥ then bad← true; M ← ⊥
Return M

proc Finalize(d) proc Finalize(d)

Return (d = b) Return (d = b)

Figure 6.1: Games G0, G1, and G2.

In figure 6.1 Game G1 contains the code in the box while G0 does not. The functions
Enc∗ and Dec∗ refer to the encryption and decryption oracle functions from Definition 6.2.2.

The proof of Theorem 6.3.7 uses the identical until bad lemma [BN08, Lemma 2.1]:

We first define the term identical until bad using the definition in [BR06], and then
move on to the lemma.

Definition 6.3.4 (Identical until bad). Games G and H are said to be identical until bad
if one has the statement if bad then S where the other has the empty statement.

Lemma 6.3.5. (Identical until bad lemma) Let Gi and Gj be identical until bad games,
and A an adversary. Then for any y: Pr[GAi =⇒ y]−Pr[GAj =⇒ y] ≤ Pr[Gj sets bad].

It is not immediately clear (to us, anyway) that the identical until bad lemma holds for
quantum adversaries. Fortunately, in Theorem 6.3.7, we only need the special case i = 0,
j = 1, and y = true, and in this case we can prove the result for quantum adversaries. We
use the following lemma of Shoup [Sho01, Lemma 1].
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Lemma 6.3.6. Let E,E ′, and F be events defined on a probability space such that Pr[E∧
¬F ] = Pr[E ′ ∧ ¬F ]. Then we have |Pr[E]− Pr[E ′]| ≤ Pr[F ].

This lemma holds regardless of whether or not the adversary is classical or quantum,
as it is a mathematical statement. Define the event E to be [GA0 =⇒ true] and E ′ to
be [GA1 =⇒ true]. Define F to be [GA1 sets bad]. Observe that in this case E ∧ ¬F
corresponds to the outcome M =⊥ in the game G0, meaning that A wins the game.
Similarly, E ′ ∧ ¬F corresponds to the outcome M =⊥ in G1, meaning that A wins the
game. Note that for M =⊥, both G0 and G1 return the same responses, and hence have
the same probability of winning. Hence, Pr[E ∧¬F ] = Pr[E ′ ∧¬F ], which means Lemma
1 of [Sho01] can be applied to obtain |Pr[E]−Pr[E ′]| ≤ Pr[F ]. Finally, we need to remove
the absolute values, to obtain Pr[E ′] ≤ Pr[E]. It is easy to see that we can do so, because
for G0 we sometimes return the message, while for G1, we always return M = ⊥, so that
the success probability of G0 is at least that of G1. Hence the identical until bad lemma
holds for quantum adversaries in the special case where i = 0, j = 1, and y = true.

We recall Definition (1) in [BN08]:

AdvIND-CCA
SE (A) = 2 · Pr[IND-CCAASE =⇒ 1]− 1.

The quantum version of this definition is:

AdvIND-qCCA
SE (A) = 2 · Pr[IND-qCCAASE =⇒ 1]− 1.

Theorem 6.3.7. Let SE = (K, E ,D) be an encryption scheme. Let A be an IND-qCCA
adversary against SE running in time t and making qe Enc queries and qd Dec queries.
Then, we can construct an INT-qCTXT adversary Ac and IND-qCPA adversary Ap such
that

AdvIND-qCCA
SE (A) ≤ 2 · AdvINT-qCTXT

SE (Ac) + AdvIND-qCPA
SE (Ap).

Furthermore, Ac runs in time O(t) and makes qe Enc queries and qd Ver queries, while Ap
runs in time O(t) and makes qe queries of target messages Mi.

Proof. We have:

Pr[IND-qCCAASE =⇒ true] = Pr[GA0 =⇒ true]

= Pr[GA1 =⇒ true]+

(Pr[GA0 =⇒ true]− Pr[GA1 =⇒ true])

≤ Pr[GA1 =⇒ true] + Pr[GA1 sets bad] (6.1)
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The last inequality follows from the identical until bad lemma in the special case i = 0,
j = 1, and y = true (which we proved above). Now, observe that for Dec, G1 always
returns ⊥, and hence

Pr[GA1 =⇒ true] = Pr[GA2 =⇒ true]. (6.2)

Let us now define the adversary Ap. It simply runs A, answering A’s challenge and
encryption queries with its own queries, and answering A’s queries for decryption with ⊥.
It outputs whatever A outputs. Hence, we get:

Pr[GA2 =⇒ true] ≤ Pr[IND-qCPA
Ap
SE =⇒ true]. (6.3)

Next, we define the adversary Ac. The adversary Ac picks a random bit b, then runs A and
answers its queries as follows. For challenge and encryption queries, Ac submits challenge
and encryption queries and returns the results to A. For the Dec query, Ac submits it to
the Ver oracle, and, regardless of the response, returns ⊥ to A. Hence, we get:

Pr[GA1 sets bad] ≤ Pr[INT-qCTXTAcSE =⇒ true]. (6.4)

Combining the definition

AdvIND-qCCA
SE (A) = 2 · Pr[IND-qCCAASE =⇒ 1]− 1

with Equations (6.1), (6.2), (6.3), and (6.4), we obtain

AdvIND-qCCA
SE (A) ≤ 2 · AdvINT-qCTXT

SE (Ac) + AdvIND-qCPA
SE (Ap).

Combining Theorems 6.3.2, 6.3.3, and 6.3.7, we obtain our main theorem:

Theorem 6.3.8. Let SE = (Ke, E ,D) be a symmetric-key encryption scheme, let
MA = (Km, T ,V) be a message authentication scheme, and let SE = (K̄, Ē , D̄) be the au-
thenticated encryption scheme obtained from SE andMA via the Encrypt-then-MAC com-
position method. Given that SE is IND-qCPA and MA is SUF-qCMA, then the resulting
SE is IND-qCCA.

Proof. By Theorem 6.3.2, sinceMA is SUF-qCMA, we get that SE is INT-qCTXT. Also,
by Theorem 6.3.3, since SE is IND-qCPA, we get that SE is also IND-qCPA. Finally,
because SE is INT-qCTXT and IND-qCPA, by Theorem 6.3.7, we get that it is IND-
qCCA.

As with Theorems 6.3.1 and 6.3.2, Theorem 6.3.8 also holds with digital signature
schemes used in place of MACs.
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6.4 Quantum-Resistant Strongly Unforgeable Signa-

ture Schemes

In this section we examine some concrete choices of strongly unforgeable signature/MAC
schemes which could be suitable for our AE construction. We limit ourselves to only a few
representative examples to illustrate the general idea. We focus on signature schemes as in
our view they are somewhat more interesting, but similar ideas apply to MACs [BZ13a].
We begin with a review of the Boneh-Zhandry transformation [BZ13b, Construction 3.12]
for transforming any classically strongly secure digital signature scheme into a SUF-qCMA
scheme:

Construction 6.4.1. Let Sc = (Genc, Signc,Verc) be a be a signature scheme, H be a hash
function, and Q be a family of pairwise independent functions mapping messages to the
randomness used by Signc, and k some polynomial in λ. Define S = (Gen, Sign,Ver) where:

• Gen(λ) = Genc(λ)

• Sign(sk,m) :

– Select Q ∈ Q, r ∈ {0, 1}k at random.

– Set s = Q(m), h = H(m, r), σ = Signc(sk, h; s). Output (r, σ).

• Ver(pk,m, (r, σ)) :

– Set h = H(m, r). Output Verc(pk, h, σ).

If the original signature scheme Sc is SUF-CMA against a classical chosen message
attack performed by a quantum adversary, then by [BZ13b, Corollary 3.17] the transformed
scheme S is SUF-qCMA in the quantum random oracle model.

Furthermore, if the verification function in the signature scheme Sc involves indepen-
dently deriving the value of σ and checking whether or not the derived value matches the
value which was originally sent, a further optimization is possible: one can hash σ to reduce
its length to a minimum. We employ this optimization in our examples.

Note that we have included Q. An example of Q, can be a family of hash functions.
We can further assume that whenever needed, we are using this example.

6.4.1 Strong Designated Verifier Signatures from Isogenies

A strong designated verifier signature (SDVS) scheme [JSI96] is a digital signature scheme
in which only a designated party (specified at the time of signing) can verify signatures, and
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verification requires that party’s private key. Note that an SDVS is enough for AE, since
only the two parties participating in the AE protocol need to be able to verify signatures.

Sun, Tian, and Wang in [STW12] present an isogeny-based SDVS scheme, and give
a classical security reduction to the SSDDH problem [JDF11], which is believed to be
infeasible on quantum computers. This reduction qualifies as a straight-line reduction in
the sense of the security framework of Song [Son14], and hence remains valid for quantum
adversaries. However, the reduction only establishes SUF-CMA security, not SUF-qCMA
security. Applying the Boneh-Zhandry transformation (Construction 6.4.1), we obtain the
following SDVS scheme, which is SUF-qCMA:

Setup: Fix a prime p = `eAA `
eB
B · f ± 1, a supersingular base curve E over Fp2 , generators

{PA, QA} of E[`eAA ], and generators {PB, QB} of E[`eBB ]. Let H1, H2 : {0, 1}∗ → {0, 1}k
be independent secure hash functions (with parameter k), and Q a family of pairwise
independent functions mapping messages to the randomness used in signing.

Key generation: A signer selects at random mS, nS ∈ Z/`eAA Z, not both divisible by `A,
and then computes an isogeny φS : E → ES = E/〈[mS]PA + [nS]QA〉 and the values
φS(PB) and φS(QB). The private key is (mS, nS) and the public key is the curve ES
and the points φS(PB) and φS(QB).
A designated verifier selects at random mV , nV ∈ Z/`eBB Z, not both divisible by `B,
and then computes an isogeny φV : E → EV = E/〈[mV ]PB + [nV ]QB〉 and the values
φV (PA) and φV (QA). The private key is (mV , nV ) and the public key is the curve EV
and the points φV (PA) and φV (QA).

Signing: Select at random Q ∈ Q, r ∈ {0, 1}k for use in the Boneh-Zhandry transforma-
tion. Compute s = Q(m), h = H1(m, r), and φ′S : EV → ESV = EV /〈[mS]φV (PA) +
[nS]φV (QA)〉. Set σ = H2(h||j(ESV )||s). The signature is (r, σ).

Verification: Compute φ′V : ES → ESV = ES/〈[mV ]φS(PB) + [nV ]φS(QB)〉 and h =

H1(m, r). Set σ′ = H2(h||j(ESV )||Q(m)). Verify that σ′
?
= σ.

6.4.2 Ring-LWE Signatures

To give another example, we combine the Ring-LWE signature scheme of Güneysu et
al. [GLP15] with Construction 6.4.1 from [BZ13b] to obtain a SUF-qCMA signature scheme
based on Ring-LWE:

Setup: Set R = Fq/〈xn + 1〉 where n is a power of 2. Let H1 : {0, 1}∗ → {0, 1}k and
H3 : {0, 1}∗ → R be independent secure hash functions (with parameter k) and Q a
family of pairwise independent functions mapping messages to the randomness used
in the signing function. Choose a bound B on the maximum coefficient size.
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Key generation: A signer generates two small polynomials s1(x), s2(x) ∈ R, selects
a(x) ∈ R at random, and computes the public key t(x) = as1(x) + s2(x).

Signing: Select Q ∈ Q, r ∈ {0, 1}k at random for the Boneh-Zhandry transformation,
and y1(x), y2(x) ∈ R at random for the signature scheme. Compute s = Q(m),
h = H1(m, r), and c(x) = H3(BitString(a(x)y1(x) + y2(x))||h||s). Finally, compute
z1(x) = s1(x)c(x) + y1(x) and z2(x) = s2(x)c(x) + y2(x). Check that the coefficients
of the polynomials z1(x), z2(x) are within the bound B; if not, restart. The signature
is (r, z1(x), z2(x), c(x))

Verification: Check that the coefficients of the polynomials z1(x), z2(x) are within the

bound B; if not, reject. Compute x h = H1(m, r), and check whether c(x)
?
=

H3(a(x)z1(x) + z2(x)− t(x)c(x)||h||Q(m)). If so, accept; otherwise reject.

6.5 Quantum-Resistant Authenticated Encryption

We give a generic construction of authenticated encryption schemes which are provably
quantum-resistant in the sense of INT-qCTXT and IND-qCCA. For the underlying en-
cryption scheme, we assume that a classical symmetric-key block cipher E in a suitable
block cipher mode of operation with random IVs will suffice to provide quantum security,
taking care to use 2` key sizes to obtain ` bits of security. We refer to [ATTU16] for
a discussion of the choice of the mode of operation. For the MAC/signature scheme we
can employ the Boneh-Zhandry transformation on any SUF-CMA scheme secure against
quantum adversaries as described in Section 6.4. Combining those two components, we
obtain an IND-qCCA and INT-qCTXT authenticated encryption scheme as follows:

Setup:

1. Choose parameters for the underlying encryption and signature schemes.

2. Let H : {0, 1}∗ → {0, 1}k be a secure hash function (with security parameter k).

3. Let Q be a family of pairwise independent functions mapping messages to the
randomness used in the signature scheme.

Key generation:

1. Alice chooses her private parameters for the encryption and signature schemes.
If required, she produces and publishes the corresponding public keys.

2. Bob chooses his private parameters for the encryption and signature schemes.
If required, he produces and published the corresponding public keys.

73



Encryption:

Suppose Bob wants to send a message m ∈ {0, 1}∗ to Alice.

1. Using the common encryption key e that he shares with Alice, encrypt the
message using the underlying symmetric-key encryption scheme to obtain c =
E(e,m).

2. Select Q ∈ Q, r ∈ {0, 1}k at random.

3. Compute t = Q(m).

4. Computes the value h = H(c, r).

5. Using h and his private signing key s, Bob computes the authentication tag
σ = Sign(s, h; t).

6. The ciphertext is {c, r, σ}.

Decryption:

Suppose Alice receives ciphertext {c, r, σ} from Bob.

1. Compute the value h = H(c, r).

2. Using h and Bob’s public signing key p, compute the verification function
Ver(s, h, r, σ), if it returns true, continue; if not, stop.

3. Using the common encryption key e that she shares with Bob, decrypt the
message and obtain m = D(e, c).

Again, in the case where the verification function in the signature scheme involves
independently deriving the value of σ and checking that the derived value matches the
value which was originally sent, we can hash σ prior to transmission to reduce its length
to a minimum.

6.6 Isogeny-Based Quantum-Resistant Authenticated

Encryption Scheme

In this section, we propose a quantum-resistant authenticated encryption scheme based on
isogenies between supersingular elliptic curves. For the key exchange step, we use the pre-
vious key exchange scheme of Jao and De Feo from [JDF11] (presented in Chapter 4), and
for the signature scheme, we use the strong designated-verifier scheme from Section 6.4.1.

Setup:
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1. Choose primes `A, `B, `A′ , `B′ , p, p
′ and exponents eA, eB, eA′ , eB′ such that p = `eAA `

eB
B ·

f±1 and p′ = `
eA′
A′ `

eB′
B′ ·f ′±1 give us supersingular elliptic curves E/Fp2 (which denote

simply by E) and E/Fp′2 (which denote simply by E ′).

2. Choose bases {PA, QA} and {PB, QB}, which generate E[`eAA ] and E[`eBB ], respectively.

3. Choose bases {PA′ , QA′} and {PB′ , QB′}, which generate E ′[`
eA′
A′ ] and E ′[`

eB′
B′ ], respec-

tively.

4. Let H1, H2 : {0, 1}∗ → {0, 1}k be independent secure hash functions (with parameter
k).

Key Generation:

1. Alice chooses random integers mA, nA ∈ Z/`eAA Z not divisible by `A and m′A, n
′
A ∈

Z/`eA′A′ Z not divisible by `A′ . Then, using these values, computes φA : E → EA =
E/〈[mA]PA + [nA]QA〉 and φ′A : E ′ → E ′A = E ′/〈[m′A]PA′ + [n′A]QA′〉. Then, she
computes φA(PB), φA(QB), φ′A(PB′), φ

′
A(QB′) and publishes her public key as:

{EA, E ′A, φA(PB), φA(QB), φ′A(PB′), φ
′
A(QB′)}.

Her private key is {mA, nA,m
′
A, n

′
A}.

2. Bob chooses random integers mB, nB ∈ Z/`eBB Z not divisible by `B and m′B, n
′
B ∈

Z/`eB′B′ Z not divisible by `B′ . Then, using these values, computes φB : E → EB =
E/〈[mB]PB + [nB]QB〉 and φ′B : E ′ → E ′B = E ′/〈[m′B]PB′ + [n′B]QB′〉. Then, he
computes φB(PA), φB(QA), φ′B(PA′), φ

′
B(QA′) and publishes his public key as:

{EB, E ′B, φB(PA), φB(QA), φ′B(PA′), φ
′
B(QA′)}.

His private key is {mB, nB,m
′
B, n

′
B}.

Encryption: Suppose Bob wants to send a message m ∈ {0, 1}∗ to Alice.

1. Using Alice’s public parameters {EA, φA(PB), φA(QB)} and his private key, Bob com-
putes EAB = EA/〈[mB]φA(PB) + [nB]φA(QB)〉. Then he computes the j-invariant of
EAB, j(EAB).

2. Using the j-invariant and the key to the symmetric encryption scheme, Bob encrypts
the message and obtains c = E(j(EAB),m).

3. Using Alice’s public parameters {E ′A, φ′A(PB′), φ
′
A(QB′)} and his private key, Bob

computes E ′AB = E ′A/〈[m′B]φ′A(PB′)+[n′B]φ′A(QB′)〉. Then he computes the j-invariant
of E ′AB, j(E ′AB).

4. Bob select r ∈ {0, 1}k at random.
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E EA E ′ E ′A

EB EAB E ′B E ′AB

Figure 6.2: Isogenies in Authenticated Encryption Scheme

5. Bob computes the value h = H1(c, r).

6. Using h and j(E ′AB), Bob computes the authentication tag σ = H2(h||j(E ′AB)).

7. The ciphertext is {c, r, σ}.

Decryption: Suppose Alice receives ciphertext {c, r, σ} from Bob.

1. Using Bob’s public parameters {E ′B, φ′B(PA′), φ
′
B(QA′)} and her private key, Alice

computes E ′AB = E ′B/〈[m′A]φ′B(PA′) + [n′A]φ′B(QA′)〉. Then she computes the j-
invariant of E ′AB, j(E ′AB).

2. Alice computes the value h = H1(c, r).

3. Using h and j(E ′AB), Alice computes H2(h||j(E ′AB)) and compares it to the authen-
tication tag σ. If it matches, she continues, if not, stops.

4. Using Bob’s public parameters {EB, φB(PA), φB(QA)} and her private key, Alice
computes EAB = EB/〈[mA]φB(PA)+[nA]φB(QA)〉. Then she computes the j-invariant
of EAB, j(EAB).

5. Using the j-invariant and the key to the symmetric encryption scheme, decrypts the
message and obtains m = D(j(EAB), c).

Figure 6.2 depicts the scheme, where we edges represent isogenies, solid ones are known
to Alice, dashed are known to Bob.

Remark 6.6.1. For the ease of presentation, we did not include the steps related to mapping
messages to randomness, using Q.
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We discuss the security of our scheme. Our scheme uses elliptic curve isogenies in the
same manner as [JDF11]. Thus, under the same security assumptions, namely SSCDH,
SSDDH, CSSI, and DSSI, we see that this approach is quantum-secure. For the encryption
part, we are using a classical symmetric-key encryption scheme, which is believed to be
IND-CPA secure against quantum attacks. Assuming that the symmetric-key encryption
scheme is actually secure, we can then achieve IND-qCPA security against quantum ad-
versaries (doubling the key size if necessary to fend off quantum brute-force attacks). As
previously mentioned, AES is believed to be a suitable such scheme. For the authenti-
cation part, we used an SDVS scheme, which we transformed to be SUF-qCMA secure.
Finally, by Theorem 6.3.8, we conclude that the resulting scheme is an IND-qCCA and
INT-qCTXT secure authenticated encryption scheme.

6.7 Overhead Calculations and Comparisons

In this section we study the communication costs of our AE scheme, from the point of view
of both per-message communication overhead and key transmission overhead.

6.7.1 Communication Overhead

Recall that the ciphertext which Bob sends to Alice consists of the triplet (c, r, σ), where
c is the underlying ciphertext content, r is a k-bit nonce, and σ is the signature tag. In
the case where the verification function in the signature scheme involves independently
deriving the value of σ, we can hash σ down to k bits as well. For a security level of `
bits, the minimum value of k required for collision resistance is 2` bits in the quantum
setting [Ber09]. The per-message communication overhead of the scheme is thus 4` bits in
the case where the signature tag can be hashed, and 2`+ |σ| bits otherwise. Note that in
the former case the per-message communications overhead is always the same, independent
of which component schemes are chosen.

6.7.2 Public Key Overhead

For the overhead involved in transmitting the public keys to be used for the signature
scheme, we use the table of Fujioka et al. [FSXY13], augmented with some more recent
results as described below. Although [FSXY13] deals with the case of post-quantum au-
thenticated key exchange, the same key sizes apply to the AE setting.

With the exception of Ring-LWE as explained below, we aim for 128-bit quantum
security. For Ring-LWE, we use the numbers from [GLP15]. Since the scheme in [GLP15]
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Signature scheme Bits
Ring-LWE (80-bit security) [GLP15] 11600
Ring-LWE (256-bit security) [GLP15] 25000
NTRU [SWZ15] 5544
Code-based [FSXY13] 52320
Multivariate polynomials [HLY12] (via [FSXY13]) 7672000
Isogeny-based [AJK+16] 3073

Table 6.1: Key transmission overhead

is based on power-of-2 cyclotomic rings, there is a large jump in parameter size between
n = 29 and n = 210, with the former providing 80 bits of security and the latter 256 bits
of security. There is no intermediate power of 2 that would provide 128 bits of security.
For this reason, we list both 80-bit and 256-bit security levels in our table. The numbers
for NTRU are from Schanck et al. [SWZ15]. For isogeny-based SDVS schemes we use
the recent results of [AJK+16]. Note that SDVS schemes require two-way transmission of
public keys even if the encrypted communication is one-way, whereas standard signature
schemes require two-way transmission of public keys only for two-way communication.
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Chapter 7

Future Work

There are a number of possible directions for further research. Our schemes admit effi-
cient implementations in the sense that the running time is polynomial. However, they
are still much slower than traditional schemes such as ECC (which are safe only against
classical adversaries), as well as certain high-performance quantum-resistant schemes such
as NTRU. There is always a security vs. efficiency trade-off, but we are nevertheless inter-
ested in speeding up implementations to the extent that we can. Some low-hanging fruit
may be available in this regard thanks to the existing literature of known optimizations
for elliptic curve cryptography and elliptic curve arithmetic. For example, existing results
on addition chains could be used to speed up isogeny evaluation.

It is standard in cryptography to cryptanalyze both the details of the proposed protocols
as well as the hardness of the underlying mathematical problem upon which the protocols
are based. Further work in both of these areas is critical in order to build up confidence
in the schemes among the wider cryptologic research community.

We seek to construct standard (i.e. non-interactive) digital signature schemes using
isogenies. Such schemes are a fundamental requirement for internet security today. Cur-
rently the best we can do is to apply generic transformations which convert interactive
authentication protocols into non-interactive digital signature schemes. These transforma-
tions work, but they are slightly inefficient, introducing a polynomial factor of overhead
in both computations and communications. A direct construction of an efficient digital
signature scheme would be very helpful in order to help make the case for isogeny-based
cryptography.

Another direction is to work on other definitions of security for post-quantum cryptog-
raphy. As observed by Boneh and Zhandry in [BZ13b] and by us in Chapter 6, a number
of definitions cannot be directly taken from the classical works and simply used without
modification in quantum settings. It is important to review all existing cryptographic secu-
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rity definitions and analyze whether they are suitable for quantum adversaries, modifying
them as necessary.

Aside from encryption and digital signatures, the third main pillar of internet security
is authenticated key exchange (AKE). Developing an AKE scheme entails two tasks. First,
we need a quantum-aware security model for AKE. Second, we need to develop an actual
candidate for a post-quantum AKE scheme. Our work on authenticated encryption serves
as a good foundation for developing security models for AKE.

We have in this thesis laid the initial foundation for post-quantum cryptography based
on supersingular elliptic curve isogenies. This area has great potential and we hope that
the wider cryptographic community will express an interest and perform more research in
this direction.
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[Sch95] Réne Schoof, Counting points on elliptic curves over finite fields, J. Théor.
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