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Abstract 

Fine particulate matter with a diameter less than 2.5 µm (PM2.5) has harmful impacts on 

regional climate, economic development and public health. The high PM2.5 concentrations in 

China’s urban areas are mainly caused by combustion of coal and gasoline, industrial pollution 

and unknown/uncertain sources. The Beijing-Tianjin-Hebei (BTH) region with a land area of 

218,000 km2, which contains 13 cities, is the biggest urbanized region in northern China. The 

huge population (110 million, 8% of the China’s population), local heavy industries and vehicle 

emissions have resulted in severe air pollution. To monitor ground-level PM2.5 concentration, 

the Chinese government spent significant expense in building more than 1500 in-situ stations 

(79 stations in the BTH region). However, most of these stations are situated in urban areas. 

Besides, each station can only represent a limited area around that station, which leaves the 

vast rural land out of monitoring. In this situation, geographic information system and remote 

sensing can be used as complementary tools. Traditional models have used 10 km MODIS 

Aerosol Optical Depth (AOD) product and proved the statistical relationship between AOD 

and PM2.5. In 2014, the 3 km MODIS AOD product was released which made PM2.5 

estimation with a higher resolution became possible.  

This study presents an estimation on PM2.5 distribution in the BTH region from 

September 2014 to August 2015 by combining the MODIS satellite data, ground measurements 

of PM2.5, and meteorological documents.  Firstly, the 3 km and 10 km MODIS AOD products 

were validated with AErosol RObotic NETwork (AERONET AOD. Then the MLR and GWR 

models were employed respectively to estimate PM2.5 concentrations using ground 

measurements and two MODIS AOD products, meteorological datasets and land use 

information. Seasonal and regional analyses were also followed to make a comparative study 

on strengths and weaknesses between the 3 km and 10 km AOD products. Finally, the number 

of non-accidental deaths attributed to the long-term exposure of PM2.5 in the BTH region was 

estimated spatially. 

 The results demonstrated that the 10 km AOD product provided results with a higher 

accuracy and greater coverage, although the 3 km AOD product could provide more 
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information about the spatial variations of PM2.5 estimation. Additionally, compared with the 

global regression, the geographically weighed regression model was able to improve the 

estimation results. Finally, it was estimated that more than 30,000 people died in the BTH 

region during the study period attributed to the excessive PM2.5 concentrations. 
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Chapter%1.%Introduction%

1.1%Background%%

1.1.1%Introduction%to%PM2.5%

Air pollution is a recognized threat to public health and has been globally associated with increasing 

mortality and morbidity. Recent studies demonstrate that there has been a steadily worldwide increase of 

the burden of disease attributed to ambient air pollution since 1990 (Forouzanfar et al. 2015). It was 

reported that 3.7 million people died in 2012 caused by ambient air pollution, and the Southeast Asian and 

Western Pacific regions bear most of the burden (WHO, 2012).   

Currently, the major pollutants include particulates, sulfur oxides, nitrogen oxides, carbon 

monoxide and ground level ozone. Particulate matter (PM) is a mixture of liquid and solid airborne particles 

with complex compositions and diameters (Gupta et al., 2006; Lin et al., 2015). PM consist of coarse 

particles (often defined as particles with a diameter > 2.5 µm), fine particles (PM2.5, particles with a 

diameter < 2.5 µm) and ultrafine particles (particles with a diameter <0.1 µm) (Wilson et al., 1997; Pope 

III et al., 2000). Coarse, fine and ultrafine particles differ by size, source, formation mechanism, lifetime 

and spatial- distribution (Wilson et al., 1997). Compared with coarse-mode particle have an atmospheric 

half-life of minutes to hours, PM2.5 has a half-life of days to weeks. PM2.5 can travel 100s to 1000s of 

kilometre, while coarse – mode particle can only travel 1 to 10s of kilometre (Wilson et al., 1997).   

The composition of PM2.5 varies due to its source: natural and anthropogenic source. Natural 

source include sea salt, dust, volcanic eruptions, forest and grassland fires (Emili et al., 2010; Beh et al., 

2013), while anthropogenic source include fossil fuel combustion (coal, gasoline and diesel), industrial 

processes, transportation and uncertain sources (Emili et al., 2010; Wang et al., 2016).  Figure 1.1 shows 

the size range and some of the major components of PM2.5 and PM10. Generally, PM2.5 contains 

nanoparticles (condensed organic carbon and sulfuric acid vapors), ultrafine particles (fresh high 

temperature emissions, organic carbon and metal vapors), while PM10 contains the components of PM2.5, 

and other components such as geological material, pollen and sea salt. (Watson et al., 2002; Cao et al., 

2013). In addition, atmospheric chemical reactions also occur among primary particles and result in 

secondary particles (Franklin et al., 2008).  
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Figure 1.1 Ambient particles’ size distribution, patterned after Chow (1995) and Watson (2002). 

 (Source: Cao et al., 2013) 

The increase of PM2.5 has significantly negative effects on weather and climate change, public 

health and economic development.  The PM2.5’s effects on climate change can be classified in direct and 

indirect effects. Direct effects are PM2.5’s interactions with radiation, such as scattering and absorbing 

the solar radiation and terrestrial surface radiation, which influence the radiation budget balance and 

temperature (Guo et al., 2009; Sokolik et al., 1996). The indirect effect is that PM2.5 may influence the 

chemical composition and density of the atmosphere which in turn influence the climate. Indirect 

influences also include  altering the characteristics of clouds (even the precipitation) since the formation 

of clouds depends on atmospheric composition, dynamics and other characteristics (Donner, 2016; Guo et 

al., 2009; Schwartz et al., 1995). Different components of PM2.5 also play different roles in affecting 

climate change. For example, sulfate aerosol has cooling effects that may slow down global warming but 

vary geographically (Change, 2001). Moreover, PM2.5 also contributes to the formation of acid rain 

(EPA .n.d) and reduces agricultural productivity (Chameides et al., 1999). PM2.5 also causes the reduction 

of visibility due to the hygroscopic properties of constituent Sulphur (Deng et al., 2011). Usually, with 

high humidity and low temperature, visibility is easily reduced as SO2 is converted to sulfate under this 

circumstance, which also causes the “yellow colour” (The World Bank, 2009; Liu et al., 2014). 

Due to its size, PM2.5 can be breathed deeply into the lungs and would never come out (Pope III 

et al., 2000). Long term and short exposure to PM2.5 has been associated with hospital admissions for 
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pneumonia, emergency department visits, asthma, bronchitis, cardiovascular problems, respiratory 

infections, lung cancer,  heart disease and premature deaths. (Wellenius et al., 2005; Baccarelli, 2009; Jones 

et al., 2015; Kioumourtzoglou et al., 2016; Zanobetti et al., 2015). According to a survey in OECD 

Environmental Outlook To 2050, it is estimated that in 2010, 1.4 million people died due to PMs and this 

number is expected to increase to 2.3 in 2030 and 3.6 in 2050. Most of the premature deaths are elderly 

with weaker immune systems (EPA. n.d). Children are also at high health risks because their immune and 

respiratory systems are premature: 40% of asthma cases are children, while the population of children only 

occupies 25% of the whole world’s population (EPA. n.d).Recent research also shows the health risks 

attributed to PM2.5 differ for men and women: the increase of PM2.5 is associated with a higher increase 

of heart rhythm disturbance admission to hospital for women than for men (Bell et al., 2015). In addition, 

PM2.5 can even damage DNA in human cell (Sørensen et al., 2003; Corsini et al., 2013).  

In addition to the influence on climate change and human health, PM2.5 also brings economic loss. 

According to Ontario Ministry of the Environment (MOE) (2005), Ontario was burdened with 

approximately $9.6 billion CAD economic loss due to the high concentration of ozone and PMs in 2003. 

$5.28 billion CAD loss was due to U.S. emissions, while the rest, $4.32 billion CAD, is attributed to 

provincial air pollution. It was also estimated that in the Yangtze River Delta, China, the total economic 

loss caused by the high concentration of PM2.5 was ¥22.10 billion CNY in 2010 (Wang et al., 2015a).  Gao 

et al (2015) assessed that Beijing’s economic loss resulted from the haze in January 2013 was more than 

$250 million USD.  

PM2.5 may also lead to other potential issues, such as international dispute. For example, it is 

estimated that more than 50% of Ontario’s PM2.5 is carried from the U.S. (Ontario MECC, n.d). It was 

also argued that the dust storms from arid regions of Mongolia and Northern and Western China traveled 

quickly over Korea and Japan (Chung et al., 2002; Sun et al., 2005; Park et al., 2007). In addition, dust and 

anthropogenic emissions from Asia traverse the Pacific Ocean and enter North America in a few days during 

spring when storm and frontal activities are most dynamic (Roberts et al., 2006; Park et al., 2007). These 

discussions indicate PM2.5 is a global issue and may lead to international disputes.  

1.1.2%Global%Regulations%and%Standards%towards%PM2.5%

Complaints on air pollution have been raised since the13th century when coal was first used in 

London. The most famous event was “the Great Smog of 1952” (or “Big Smoke”) in London from 

December 5 to 9, 1952. It was estimated in the following weeks, over 12,000 residents died due to the PMs 

and sulfur dioxide in this event (Bell et al., 2004). Along with this smog disaster, the Meuse valley fog of 

Belgium in 1930, the Los Angeles Photochemical Smog Event in 1940, the Donora Smog in the U.S. in 

1948 and the Air Pollution inversion in New York in 1963 and 1966 pushed and urged governments and 
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public organizations to pay more attention to air pollution and the issue of relevant policies and standards 

are followed.  

Table 1.1 Countries and organization’s standards on PM2.5 

Country/Region
/Organization 

Issued Year 
Yearly Averaged 
Standard (µg/m3) 

Daily Averaged  
Standard(24-hour)/(µg/m3) 

Reference 

WHO 2006 10 25 
Air Quality Guidelines Global 

Update 2005 

Australia 2005 8 25 
National standards for criteria air 

pollutants 1 in Australia 

Canada 2012 
10 (Standard for 

year of 2015) 
28 (Standard for year of 

2015) 

Canadian Ambient Air Quality 
Standards (CAAQS) for PM2.5 and 

Ozone 

China 2012 15 35 Ambient Air Quality Standards 

European Union 2015 25  
European Emission Standards- Air 

Quality Standards 

Hong Kong 2014 35 75 Hong Kong’s Air Quality Objectives 

Taiwan 2012 15 35 Particulate Matters Regulation 

United States 2013 12 35 
National Ambient Air Quality 

Standards. 
 

Some countries and organizations’ regulations are listed in Table 1.1. In the WHO Air Quality 

Guidelines (Global Update 2005), PM2.5’s yearly and daily (24h) standard was set as 10 µg/m3 and 25 

µg/m3, respectively. This guideline is widely used as a reference for decision-makers across the world to 

set air quality management standards and goals (WHO, 2015).  However, it is surveyed that, in 1600 cities 

worldwide, only 12% of the urban population’s living environment reached WHO air quality guidelines for 

PM2.5 (WHO. n.d). Average PM2.5 levels in many developing countries can be 4-12 times higher than the 

WHO PM2.5 guideline level (WHO. n.d). In Canada, PM standards were firstly set by Canadian Council 

of Ministers of the Environment (CCME) in 2000 (CCME, 2014). In 2012, Canadian Ambient Air Quality 

Standards (CAAQS) for Fine Particulate Matter and Ozone set the yearly and daily PM2.5 standards for 

2015 at 10 µg/m3 and 28 µg/m3, respectively. The standards for 2020 will be reviewed in 2016 (CCME, 

n.d). In additional to the national standards, provinces may set stricter standards. For instance, in the New 

Ambient Air Quality Criteria for PM2.5 adopted by the British Columbia (B.C.) government in 2009, the 

criteria was 25 µg/m3 daily and 8 µg/m3 yearly (B.C. Air Quality, n.d.). 
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For the U.S, PM2.5 was firstly regulated in the National Ambient Air Quality Standards (NAAQS) 

in 1997 (EPA, 2013). NAAQS are established by the U.S. EPA under the Clean Air Act. Since then, PM2.5 

standards have been revised and in the last version revised in 2013, the yearly and daily average PM2.5 are 

12 µg/m3 and 35 µg/m3, respectively (EPA, 2013).  

Compared to the above organizations and developed countries, China did not pay adequate 

attention to implementing policy on PM2.5 before 2012. Although scholars have started field studies on 

PM2.5 in China since the last century (Yao et al., 2002), PMs seldom came into Chinese horizon, while 

other countries have already began to revise their regulations. In 1982, the first version of Atmospheric 

Environmental Quality Standards (GB3095-1982) was released by the Chinese Ministry of Environmental 

Protection (MEPCN), then revised in 1996 (GB3095-1996), 2000 (GB3095-2000) and 2012 (GB3095-

2012). In 2012, PM2.5 was eventually considered a mandatory monitoring index in the 2012 Ambient Air 

Quality Standards (GB3095-2012). The yearly and daily standards are 15 µg/m3 and 35 µg/m3, respectively.   

However, this regulation just came into effect nationally on January 1, 2016. Other countries and regions, 

such as Australia and the the European Union, also created their own regulations on PM2.5, and their 

current criterion can be found in Table 1.1. 

1.1.3%Monitoring%PM2.5%by%GroundFlevel%Stations%and%Remote%Sensing%Techniques:%Pros%

and%Cons%

Along with implementing policies and standards, governments and public organizations also built 

air quality programs or ground-level stations to provide ground-measured PM2.5 information. Such as the 

AirNow Net of the U.S., the Canadian Air and Precipitation Monitoring Network, and the Chinese National 

Air Quality Forecasting Information System..  

Generally, ground-based monitoring data is regarded as an accurate measurement, but it only 

represents the concentration in a relatively small region (Tian et al., 2010). Moreover, the number of 

ground level stations is limited and these stations’ distributions are often sparse and unbalanced, which 

makes continuous spatial monitoring difficult (Hu et al., 2013).  Apart from the spatial coverage and 

resolution, the temporal coverage of ground-level PM monitoring, relying on instrument operation period 

and functionality, also highly varies (Benas et al., 2013). Moreover, the construction and maintenance of 

ground-level stations are time-consuming and labor-consuming.  

The drawbacks of ground-level monitoring mentioned above have led to an ongoing exploration 

for PM estimation with remote sensing techniques (Benas et al., 2013), which has the following advantages. 

Firstly, the image derived from satellite could provide complete and general information air quality 

anywhere in the world (Hadjimitsis, 2009). Secondly, because satellite provides the opportunity to acquire 
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global air quality, it also became possible to discover the source of urban air pollutants and even global 

transportation of air pollutants (Wang et al., 2013).What is more, this method costs less to monitor air 

quality for developing countries or regions which are in lack of ground-level stations but have severe air 

pollution. Previous studies have shown the correlation between satellite-derived AOD and ground-level 

PM2.5 concentration by various models (Chu et al., 2003; Wang, 2003). AOD is a parameter of the 

extinction of electromagnetic radiation at a given wavelength (Chudnovsky et al., 2014). AOD can 

describe how much sunlight is blocked by particles in the whole atmosphere(NOAA, n.d.). 

However, satellite techniques also have shortcomings. The major issue preventing a robust 

relationship between AOD and PM2.5 is that AOD presents the whole atmospheric aerosol distribution, 

while ground-level PM2.5 measurements are measured near the Earth’s surface (Benas et al., 2013).  

Furthermore, due to cloud, snow and ice cover, AOD information cannot always be retrieved from remote 

sensing instruments, which makes researchers unable to estimate PM2.5 concentrations (Lee et al., 2012). 

A few satellite sensors are available for AOD observations such as AVHRR, TOMS, MODIS and 

MISR. Among these sensors, MODIS, boarded on Terra and Aqua satellite, was the most often used one. 

In addition, users can use 10km MODIS AOD products provided by NASA instead of retrieving AOD 

from satellite images themselves. This product has been provided since 2000 and it is based on dark target 

algorithm and deep blue algorithm. In 2014, a new AOD product, with 3 km spatial resolution was released 

based on only the dark target algorithm and this product provides a chance to predict PM2.5 concentrations 

in a high spatial resolution. Various statistical models include the simple linear regression model, the 

multiple linear regression (MLR) model, the geographically weighted regression (GWR) model and 

artificial neural network (ANN) algorithms. Van Donkelaar et al (2010) generated a map about global 

satellite-derived PM2.5 using the averaged AOD from MISR and MODIS during 2001 and 2006. Their 

results are shown in Figure 1.2. 
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Figure 1.2 Global satellite-derived PM2.5 (µg/m3) averaged from 2001 to 2006.(Source: van Donkelaar et 

al., 2010) 

1.1.4%PM%2.5%in%BeijingFTianjinFHebei%Region%of%China%

Figure 1.2, shows that, the highest value of PM2.5 was distributed in northern China, which was 

even higher than that in Sahara Desert, where sand storm are prevalent and usually result in high value of 

PM2.5.. The region of Beijing, Tianjin and Hebei Province, i.e., the BTH region, are all located in the 

region with the highest PM2.5 concentrations in Figure 1.2. The BTH region consists of 13 cities in total 

and it is the economic, political and cultural center of China. To a larger extent, to study PM2.5 patterns 

will provide references for local governments on their economic restructuring. In 2014, the BTH region’s 

population reached 110 million. Moreover, due to the enactment of “Two-Child Policy” and the abolition 

of “One-Child Policy” in 2015, a new baby boom is happening in the BTH region now.  The increasing 

population will bring more resources consumption and more air pollutants, which in turn means that more 

people’s health will be affected by this severe air pollution. Thus, to monitor and regulate local pollutant 

emission will be a challenging task in the following years. Additionally, studying PM2.5 concentrations 

and emissions may help to reduce international disputes. For example, it has been discussed the dust from 

arid regions of China and Mongolia could quickly travel over Japan and Korean, and could even reach 

North America (Park et al., 2007).  

In conclusion, to explore the use of remote sensing techniques in  the estimation of PM2.5 in the 

BTH region will not only benefit local citizens’ health and their quality of life, but also facilitate local 

Satellite-derived PM2.5 (µg/m3) 
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government to take corresponding actions in regulating pollutants emission and protecting its local 

environment. This study will even contribute to local and global sustainable development.  

1.2%Objective%of%the%Study%

Overall, the goal of this study is to explore the remote sensing datasets and statistical models for estimating 

PM2.5 concentrations in the BTH region from September 2014 to August 2015. The specific objectives of 

this thesis are as following: 

•! To validate the new MODIS AOD product (the 3 km AOD product) with ground level AOD 

measurements;  

•! To compare the difference of performance between the 3 km and 10 km AOD products in PM2.5 

estimation at various spatial and temporal scales; 

•! To explore the MLR and the GWR model in PM 2.5 prediction; 

•! To apply remote sensing techniques to the public health field for mortality estimation.  

1.3%Structure%of%the%Thesis%

This thesis consists of six chapters and the remaining chapters are as follows:  

Chapter 2 reviews previous studies on PM2.5, AOD, the algorithms and models in PM2.5 

estimations, and the application of public health in use of satellite remote sensing technology.  

Chapter 3 introduces the study area and describes the datasets used in this study.  

Chapter 4 explains the approaches and models, such as MLR and GWR in estimating PM2.5 

concentrations. 

Chapter 5 presents and compares the major results from different models and products. In addition, 

it also presents the results in the application of public health.  

Chapter 6 draws the conclusion of this study, including the contribution, the uncertainties and 

limitations of this study, and the potential directions for improvement in the future.  
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Chapter%2.%Literature%Review%

2.1%GroundFlevel%Measurements%of%PM2.5%%

Air quality monitoring networks and programs have been established in many countries and regions to 

provide pollutant concentrations at variable scales (Tian et al., 2010). Most of them have made their air 

quality monitoring data freely available online and began to provide PM2.5 monitoring data. Table 2.1 

presents some of the air quality programs across the world.  For Canada, apart from the national air quality 

program listed in Table 2.1, Ontario (ON), British Columbia (BC), Newfoundland and Labrador (NL) and 

Quebec (QC) also have their own air quality program (Air Quality Ontario; British Columbia Air Quality; 

Department of Environment and Conservation, Newfoundland and Labrador; Province of Québec - Air 

Quality Index). 

Since 2000, China National Environmental Monitoring Center (CNEMC) has started air quality 

daily report and forecasting work in 47 major cities. However, only sulfur dioxide (SO2), nitrogen dioxide 

(NO2) and PM10 was monitored at that time. In 2012, the number of monitored cites increased to 75 and 

PM firstly became one of the monitoring items. However, PM2.5 monitoring data was confidential until 

January 1, 2014. Since then, public can acquire PM2.5 real-time monitoring information in 190 cities. On 

January 1, 2016, Chinese National Air Quality Forecasting Information System 

(http://106.37.208.228:8082/) started to provide PM2.5, PM10, SO2, NO2, carbon monoxide (CO) and 

Ozone (O3) forecasting information in 24 and 48 hours. But only 36 major cities are currently in this 

forecasting program.  
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Table 2.1 Main air quality programs around the world 

 Country Air Quality Program 

America 

United State AirNow Net 

Canada Air Quality Ontario 

Canada Canada Air Quality - AQI Maps 

Canada Canadian Air and Precipitation Monitoring Network (CAPMoN) 

Canada Environment Canada Air Quality Index 

Mexico Sistema De Monitoreo Atmosférico de la Ciudad de México 

Brazil Qualidade do Ar - São Paulo 

Asia 

China Current Air Pollution Index (API) 

China Shanghai Environment Monitoring Center (SEMC) 

India Air Quality Index 

Taiwan Current PSI 

Thailand Regional Air Quality Data 

Australia/ 

Oceania 

Australia Air Quality Index for Western Australia 

Australia EPA Victoria 

New Zealand New Zealand Ministry for the Environment - Air Quality 

Europe 

 

 

 

Europe Air Quality Levels in Europe - European Environment Agency 

Europe Air Quality in Europe - CITEAIR 

France Airparif 

Germany 
Umweltbundesamt (UBA) - Current concentrations of air pollutants 

in Germany 

Italy SINAnet 

Netherlands Rijksinstituut (Rural Air Quality Monitoring Network) 

Sweden Swedish Environmental Research Institute 

Switzerland Federal Office for the Environment FOEN 

United Kingdom UK-AIR Daily Air Quality Index 

 (Source: AirNow Network, 2016)  

In terms of the devices for measurement of PM2.5, PM2.5 can be continuously monitored by 

Tapered Element Oscillating Microbalance (TEOM), Beta Attenuation Monitoring (BAM) and Gravimetric 

Method, which are not only claimed in Chinese National Ambient Air Quality Standard (NAAQS, GB3905-

2012) but also recommended by United States Environmental Protection Agency (U.S. EPA) and Canadian 
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Council of Ministers of the Environment (CCME) (U.S. EPA, 2006; CCME, 2011). TEOM install filter 

membranes in a tapered oscillating microbalance. When the sample air is drawn through the filter 

membrane, PM2.5 accumulates and the oscillation’s frequency changes, then the instrument can calculate 

and output PM2.5 mass concentrations continuously (Queensland Government, 2016). TEOMS have been 

approved as a measuring method in the Europe (EN12341), U.S. (Designation no. EQPM-1090-079) and 

etc. (Winkel et al., 2015). Similarly, BAM method is to measure the beta ray’s attenuation when beta ray 

flux through the tape impregnated with PM2.5 (Gobeli, et al., 2008). The National Air Quality Monitoring 

Network of the Netherlands Gravimetric is currently using this method (Winkel et al., 2015). Gravimetric  

Method is measured bases on the air volume and the weight difference before and after the sample air goes 

through filter (MEPCN, HJ 618-2011) 

2.2%Aerosol%Optical%Depth%

Aerosol optical depth (AOD) is a dimensionless parameter indicating the extinction of electromagnetic 

radiation at a given wavelength (Chudnovsky et al., 2014). All types of  particles in the atmosphere, 

including PM2.5, dust and smoke can prevent sunlight by absorbing or scattering (NOAA, n.d.), and AOD 

can delineate the degree of the attenuation (NOAA, n.d.). AOD values often range from 0 to 2. A value 

smaller than 0.1 indicates an extremely clear sky with good visibility, while a value larger than1 usually 

indicates severe hazy conditions (NASA, 2000).  

The research on AOD monitoring progressed fast in last 20 years. Two methods are mainly utilized 

for AOD survey, the ground station-based method and the satellite remote sensing- based method. The 

ground station-based method mainly adopts the sun spectrophotometer and other instruments: these 

instruments deployed in stations can acquire the AOD information accurately, but those information can 

only reflect a limited geographic space.  Various ground level monitoring network have been built, such as 

Aerosol BObotic Network (AEORNET), SkyRadiometer Network (SKYNET), and etc. Remote Sensing 

technique has advantages, which ground level monitoring site do not have, to monitor AOD, such as the 

broader coverages. MODIS AOD product is the most widely used remote sensing data in recent years’ 

study.  

2.2.1%GroundFlevel%AOD%measurement.%%

Various international and national networks have been established for long-term AOD observation.  

AEORNET program is established by NASA and PHOTONS (PHOtométrie pour le Traitement 

Opérationnel de Normalisation Satellitaire; Univ. of Lille 1, CNES, and CNRS-INSU) then extended by 

other networks, national agencies, institutes, universities, individuals, etc.  AERONET is contributed with 

other networks including (AEROCAN, Baseline Surface Radiation Network (BSRN), Global Atmosphere 
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Watch-Precision Filter Radiometer (GAW-PFR) network, SKYNET, and etc.) (Levin et al., 2008). National 

networks are supported by Chinese Sun Hazemeter Network (CASHNET), Australia Bureau of 

Meteorology (BOM), Finnish Meteorological Institute (FMI), German Weather Service (DWD), Japan 

Meteorological Agency, U.S. (networks including Atmospheric Radiation Measurement (ARM) Program 

and Surface Radiation (SURFRAD) (Levin et al., 2008). 

AERONET is a network of sun/sky radiometers to provide global, long-term and continuous 

ground-level AOD information with high temporal resolution (15 min) and low uncertainties (0.01-0.02) 

(Sayer et al., 2013). The installation of AERONET instruments has started in early 1990s and more than 

750 sites have been built until now. The distributions of AERONET sites are shown in Figure 2.1. The 

instrument deployed in AERONET site is an automatic tracking sun and sky scanning radiometers (CIMEL 

Electronique CE-318 Sun-sky radiometer) (Hollben et al., 1998; Choi et al., 2016), which is shown in Figure 

2.2. Direct radiation is measured by this instrument with a 1.2° full field of view at 340, 380, 440, 500, 675, 

870, 940, and 1020"nm (nominal wavelengths) every 15"minutes (Eck et al., 2005; Choi et al., 2016;). 

Except 940nm, which is used for column water vapor retrieval, all other wavelengths are used for AOD 

retrieval (Hollben et al., 2001; Eck et al., 2010; Choi et al., 2016). With a high accuracy (0.015 uncertainty) 

(Slutsker et al. 1999), AERONET AOD is widely used to validate AOD retrievals from satellite sensor 

systems, including MODIS (Munchak et al., 2014; Tao et al., 2015), TOMS (Torres, 2002), SeaWiFS 

(Mélin et al., 2010), MISR (Bibi et al., 2015) and AVHRR (Kahn et al., 2005).  

 

Figure 2.1AERONET sites (Source, AERONET, 2016a) 
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Figure 2.2 CIMEL Sunphotometer (Source: AERONET, 2016b) 

SKYNET is an observation network to study aerosol-cloud-radiation interaction. Until now, more 

than 25 sites have been built and their locations are shown in Figure 2.3. It can be found most of the sites 

are deployed in Asia, including Japan, China, India, Mongolia and Europe. All sites are equipped with a 

sky radiometer and radiation instruments as main instruments. Some selected sites are also equipped with 

other instruments such as the cloud camera. Sano et al. (2013) showed that the difference between SKYNET 

and AERONET AOD at a wavelength of 0.67 is less than 0.008, which indicates that they have similar 

accuracy in AOD monitoring.  

 

Figure 2.3 SKYNET/skyradiometer sites map. Sites with data available as of July 30, 2013 are shown in red. 

(Source:  SKYNET, 2016) 
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GAW-PFR network is built with the equipment of a new generation of sunphotometers, PFR (Lavin 

et al., 2008) by World Meteorological Organization GAW programme. A first comparison in 2000 at Mauna 

Loa showed an excellent agreement within 0.005 between AERONET AOD and GAW-PER AOD 

(McArthur et al., 2003).  

In addition, Lidar is a useful technology for aerosols’ measurement. Several Lidar networks are 

available for relevant profiles such as the Micro-Pulse Lidar Network of NASA (MPLNET).  

2.2.2%Satellite%Data%and%Algorithms%for%AOD%retrieval%

The Remote Sensing research on aerosol began from the mid-1970s and nowadays a very rich system by 

using the satellite remote sensing AOD have been built (Guo et al., 2009). In this subsection, the satellite 

sensor system for AOD retrieval and most widely used algorithms are reviewed.  

2.2.2.1%Satellite%Sensor%Systems%for%AOD%Retrieval%

Since the development of remote sensing techniques from 1980s, satellite images have been explored for 

AOD retrieval. Most often used sensors for AOD observation are listed in Table 2.2, which is explained in 

the following content.  

The Advanced Very High Resolution Radiometer (AVHRR) was the earliest sensor used in AOD 

study (Guo et al., 2009). In 1978, the AVHRR was aboard on TIROS-N. Since then, almost 40 years 

AVHRR datasets have been accumulated which makes it a unique data series for a long-term continuous 

record of aerosol properties over both ocean and land. However, retrieving AOD from AVHRR images is 

a challenging work because of the limitation of band-setting: there is only one visible wavelength (Mei et 

al., 2013). Kaufman et al. (1998) retrieved AOD from AVHRR data from dark dense vegetation. In 2012, 

Land Aerosol property and Bidirectional reflectance Inversion by Time Series technique (LABITS) was 

proposed by Li et al. (2012) for aerosol retrieval from NOAA AVHRR data. Although AVHRR AOD can 

facilitate the aerosol climatology and climate change study after 1980s, snow, ice, and cloud cover still 

impede AVHRR from retrieving AOD. Additionally, this monitor is too sensitive to detect cloud, systematic 

and random error range, which has fluctuation (Liu et al. 2004). 

Similar with AVHRR, the Total Ozone Mapping Spectrometer (TOMS) has also been able to 

provide AOD data from 1978 to present. The TOMS aboard on Meteor-3 stopped in December 1994, and 

it was succeeded by TOMS aboard on Earth Probe launched later in July 1996, but this definitely left a gap 

in data availability. This dataset consists of daily Ozone data and monthly AOD at 1° resolution. As a 

backscattered near-ultraviolet radiations satellite, TOMS has strong analysis capabilities to identify aerosol 

sizes and types for regional studies (Torres et al., 2002). 
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The POLarization and Directionality of the Earth’s Reflectances (POLDER) instrument is the only 

instrument to offer a global and long-term polarized observations (Wang et al., 2015b). With POLDER 

monitor, AOD with thin cloud condition can be retrieved due to polarization property of the monitor (Xia 

et al., 2009). Moreover, because polarization is sensitive to particle’s size, aerosol types can be identified 

by different polarized reflectance (Li et al., 2015). However, this monitor only served from 1996 to 2012.  

Furthermore, AOD retrieved from POLDER shows low accuracy (Quaas et al., 2005) and the results with 

dust weather need to be improved because of the complex particles polarization characteristics (Xia et al., 

2009). 

Compared with other monitors, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), designed 

for observing water surface, provides more stable and accurate AOD data especially over ocean. An AOD 

dataset is provided based on “Deep Blue” algorithm at 550nm (algorithms are reviewed in the next sub 

subsection). However, SeaWiFS was only in operation during 1997 and 2010.   

Moderate Resolution Imaging Spectroradiometer (MODIS) is carried on both Terra and Aqua 

launched in 1999 and 2002, respectively. The band designation for MODIS can be found in Table 2.3: 

there are seven well-calibrated channels for spectral information ranging from visible to SWIR wavelength 

(470, 550, 670, 870, 1240, 1640 and 2100 nm) (Chu et al., 2003). MODIS derives an AOD product (Terra: 

MOD04_L2; Aqua: MYD04_L2) at 10 km resolution using “Deep Blue” (DB) and “Dark Target” (DT) 

algorithms. DT is adopted over ocean and dark land, such as vegetated area, while DB is applied over the 

entire land areas including both dark and bright surfaces in MODIS Collection 6 (C6) product. “Collection” 

means a MODIS dataset and previous collections include 001, 003, 004, 005 and 051.  Data user can 

choose the parameter when downloading data online, such as 

“AOD_550_Dark_Target_Deep_Blue_Combined” and “Deep_Blue_Aerosol_Optical_Depth_550_Land”. 

For more detailed product information, please refer to MODIS Website (http://modis.gsfc.nasa.gov/). In 

2014, DT algorithm team released 3 km MODIS AOD product in a separate file (Terra: MOD04_3K; 

Aqua: MYD04_3K) as a part of MODIS C6 production. Xie et al (2015) estimated PM2.5 within urban 

region in Beijing, China using 3 km MODIS AOD product. In the same year, Retails et al. (2015) identified 

the correlations between 3 km MODIS AOD product and ground-based PM10 measurements in the area 

of Athens, Greece. AOD retrieved from MODIS by using visible spectrum and infrared spectrum can 

reduce errors caused by a single band calibration (Xie et al., 2011). Meanwhile, the high temporal 

resolution (twice a day provided by Terra and Aqua) is another advantage of MODIS AOD product over 

others. However, cloud, snow and ice still affect the accuracy of AOD retrieval from MODIS (Gupta et al. 

2006).  
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Table 2.2  Most often used sensors for AOD observation 

Sensor Satellite 
Spectral 

Coverage 
(µm) 

Spatial 
Resolution 

(km) 

Temporal 
Resolution 

(day) 

Launched 
Year 

Out of  
Service Year Organization Major Advantages for 

 AOD Retrieval 
Major Disadvantages 

/Challenges for AOD  Retrieval 

AVHRR TIORS-N/NOAA 0.55-12.5 1.09 0.5 1978  U.S.: 
NOAA 

Long-term high-resolution 
observation (38years) 

Band-setting (only one 
visible wavelength) ( Mei et 
al., 2013) 

TOMS Nimbus-7/Meteor-
3/Earth Probe 0.31-0.38 1° 1 1978  U.S.: 

NASA 
Long-term observation 
(36) years 

AOD data is provided monthly 
(George et al., 2013) 

POLDER Adeos/Parasol 0.44-0.91 6.00*7.00 4 1996 2012 France: 
CNES 

AOD with thin cloud 
condition can be retrieved; 
Multi-angle observation.  

It has been out of service 
since 2012; 
Low accuracy( Quaas et al., 
2005) 

SeaWiFS OrbView2 0.40-0.89 1.00 /4 .00 1 1997 2010 U.S.: 
NASA 

Stable and accurate AOD 
data especially over ocean 

It has been out of service 
since 2010 

MODIS Terra/Aqua 0.41-14.39 0.25/0.50/1.00 1 1999  U.S.: 
NASA 

High temporal resolution 
(twice a day from Terra 
and Aqua) 

Cloud, snow and ice still 
affects AOD retrieval. 

MISR Terra 0.45-0.87 0.25 2-9 depending 
on latitude 1999  U.S.: 

NASA 
Observation from multi-
angles. 

Some areas can only be 
covered 3-4 time per month.  

AATSR ENVISAT 0.55-12 1.00 35 2002 2012 European: 
ESA 

Better accuracy in desert 
region than MODIS 
AOD( Bevan et al. 2012) 

Less accuracy in other region 
on land than MODIS AOD 
( Bevan et al.. 2012) 

MERIS ENVISAT 0.39-1.04 1.05/0.26 3 2002 2012 European: 
ESA 

Good accuracy in arid area 
(Benas et al. 2013). 

Could not reach an ideal 
accuracy over water surface 
(Benas et al., 2013). 

CCD HJ-1 0.45-0.90 0.03 4 2008  China: 
CRESDA High spatial-resolution 

Band setting (the lack of a 
shortwave infrared band) 
makes it different to retrieve 
AOD (Sun et al., 2010). 

OLI/TRIS Landsat 8 0.44-1.38 0.03 16 2013 2013 U.S.: 
NASA High spatial-resolution Low temporal resolution. 
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Table 2.3 Band designation for MODIS 

Primary Use Band 
Bandwidth 

(Band1-19:nm; 
Band20-36:um) 

Spectral Radiance 
(W/m2 -µm-sr) 

Spatial 
Resolution(m) 

Land/Cloud/Aerosols 
Boundaries 

1 620 - 670 21.80 
250 

2 841 - 876 24.70 

Land/Cloud/Aerosols  
Boundaries 

3 459 - 479 35.30 

500 
4 545 - 565 29.00 
5 1230 - 1250 5.40 
6 1628 - 1652 7.30 
7 2105 - 2155 1.00 

Ocean 
Color/Phytoplankton/Biogeoc

hemistry 

8 405 - 420 44.90 

1000 

9 438 - 448 41.90 
10 483 - 493 32.10 
11 526 - 536 27.90 
12 546 - 556 21.00 
13 662 - 672 9.50 
14 673 - 683 8.70 
15 743 - 753 10.20 
16 862 - 877 6.20 

Atmospheric Water Vapor 
17 890 - 920 10.00 
18 931 - 941 3.60 
19 915 - 965 15.00 

Surface/Cloud Temperature 

20 3.70 - 3.84 0.45(300K) 
21 3.93 - 3.99 2.38(335K) 
22 3.93 - 3.99 0.67(300K) 
23 4.02 - 4.08 0.79(300K) 

Atmospheric Temperature 
24 4.43 - 4.50 0.17(250K) 
25 4.48 - 4.55 0.59(275K) 

Cirrus Clouds Water Vapor 
26 1.36 - 1.39 6.00 
27 6.54 - 6.90 1.16(240K) 
28 7.18 - 7.48 2.18(250K) 

Cloud Properties 29 8.40 - 8.70 9.58(300K) 
Ozone 30 9.58 - 9.88 3.69(250K) 

Surface/Cloud Temperature 
31 10.78 - 11.28 9.55(300K) 
32 11.77 - 12.27 8.94(300K) 

Cloud Top Altitude 

33 13.19 - 13.49 4.52(260K) 
34 13.49 - 13.79 3.76(250K) 
35 13.79 - 14.09 3.11(240K) 
36 14.09 - 14.39 2.08(220K) 

  (Source: NASA, 2016) 
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Multi-angle Imaging SpectroRadiometer (MISR), carried only on Terra, collects information 

from multi- nine angles. Most of the aerosol information comes from the observation taken at 

scattering angles. Scattering angles are the angles between observation direction and initial sun’s 

direction. These additional information makes it possible to derive aerosol properties (NASA, n.d.b). 

Another unique property for MISR is its sub-pixels: every standard 17.6 km ×17.6 km pixel 

containes16 sub-regions (1.1 km × 1.1 km). This property highly increases the ability to avoid cloud 

disturbance significantly (Martonchik et al. 2004). However, due to the characteristics of MISR orbit, 

the monitor only passes certain places near the equator 3 or 4 times per month. Long time gap raises 

difficulties in studying aerosols in those areas where are in lack of ground based monitors (Martonchik 

et al., 2004). 

In addition to MISR, Advanced Along-Track Scanning Radiometer (AATSR) also provides 

two-angle observation (55° and 90°). Together with AATSR, Medium Resolution Imaging 

Spectrometer (MERIS) is also launched on Envisat (“Environmental Satellite”) in 2002. MISR’s nine-

angle observation is able to reduce the error caused by atmospheric scattering and absorption of single 

angle monitors. The AOD derived from AASTR, in the desert region, shows a better accuracy than 

that derived from MODIS, while in other regions on land, it is less accurate than that derived from 

MISR (Bevan et al., 2012). Similar with AATSR, MERIS data shows a good accuracy in an arid area. 

However, AOD retrieved with MERIS data over water surface could not reach an ideal accuracy 

(Benas et al., 2013). Various algorithms have been developed for retrieving AOD from AATSR and 

MERIS, such as MERIS/AATSR synergy algorithm (North et al., 2009) and the Multi-Angle 

Implementation of Atmospheric Correction) (MAIAC) algorithm (Lyapustin et al., 2011). Basing on 

synergistic MERIS/AATSR aerosol observation, Beloconi et al. (2016) estimated urban PM10 and 

PM2.5 concentrations in Greater London Area in 2016. 

Huan Jing 1 (HJ-1) satellite, carrying a charge-coupled device (HJ-1 CCD) sensors, was 

launched in 2008 by Chinese Resources Satellite Application Center. The high spatial and temporal 

resolution (30 m; 4 days) makes HJ-1/CCD a suitable instrument for AOD monitoring. However, due 

to the absence of shortwave infrared band, it becomes a challenge for HJ-1/CCD to utilize traditional 

algorithms, such as DDV, to retrieve AOD data. Sun et al. (2010) developed a new algorithm for HJ-

1/CCD by combining MODIS surface reflectance as a support. Li et al. (2011) used the similar method 

to estimate AOD with a resolution of 100 m, but its applicability on different underlying surface was 

still an issue. Yu et al. (2015) applied DDV algorithm over dark pixels and DB algorithm on light pixels 

but the results still had high biases with MODIS AOD.   
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Landsat8 was launched in February 2013 successfully and sensors boarded on it consist the 

Operational Land Image (OLI) and the Thermal Infrared Sensor (TIRS). Compared to the Enhanced 

Thematic Mapper Plus (ETM+) on Landsat-7, OLI has two new bands: blue (0.43-0.45µm) and SWIR 

(1.36-1.39µm). Zhang et al. (2015) applied DT algorithm toOLI data to retrieve AOD over Beijing. 

Later in the same year, Sun et al. (2015) constructed a Land Surface Reflectance (LSR) database with 

MODIS surface reflectance product, based on which AOD can be retrieved from OLI data at 500 m 

spatial resolution. Although the high resolution of OLI data will facilitate scientists to monitor AOD 

even air quality variables on regional scale, the relatively low temporal resolution (16 days) is the main 

limitation of this dataset.  

2.2.2.2#Algorithm#for#AOD#Retrieval#

Until now, more than 10 algorithms have been explored for AOD retrieval from satellite datasets, such 

as Multi-channel Reflectance, Dense Dark Vegetation algorithm (DDV, also known as dark target (DT) 

algorithm), Structure Function Algorithm, Contrast Reduction (CR) algorithm and Deep Blue (DB) 

algorithm. Some of the most often used algorithms are listed in Table 2.4. MODIS Atmosphere 

Discipline Group adopts DDV and DB to retrieve MODIS AOD product.  

Multichannel Reflectance algorithm’s principle is, the aerosol characteristics can be identified 

with different channels by being compared with channels’ reflectance ratio, namely color ratio (Guo et 

al., 2009). Durkee (1986) applied the Multichannel Reflectance algorithm on AVHRR Channels 1 and 

2 to retrieve AOD over water bodies.  

Kaufman et al (1988) utilized Dark Object algorithm to estimate AOD via the low reflectance 

of dark vegetation in the visible spectrum. Since then, this method has been widely used to generate 

satellite retrieved AOD, such as MODIS AOD product. DDV assumes earth as a Lambertian. For the 

dark object (the pixel covered with vegetation), the reflectance in the red and blue band are negligible. 

So the satellite received reflectance can be considered the contribution from atmosphere. Dark object 

can be identified by normalized difference vegetation index (NDVI) (Zhang et al., 2015). The apparent 

reflectance received by satellite can be described as Eq. (2-1): 

!"#$ %&, %(, ∅ = !+ %&, %(, ∅ + " -. ∙" -0 1.(-.,-0,∅)
[561. -.,-0,∅ 7]                                (2-1) 

where ρTOA is the reflectance of top of atmosphere; µs�cos θs, µv�cos θv, θs is solar azimuth; θv is 

satellite azimuth, and ∅  is relative azimuth; ρ0, T and S represent atmospheric status; ρs is surface 

reflectance. Assuming different atmospheric parameters and geometric information, lookup table 

(LUT) can be generated by the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) 
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model based on the relationship between AOD and, ρ0, T and S. Then LUT can be used to retrieve 

AOD.  Simulation of the Satellite Signal in the Solar Spectrum (5S) model was developed by Tanre et 

al. (1986) to simulate the solar radiation. Later, Vermote et al. (1997) developed 5S model to 6S model 

in 1997. 6S model is available online (http://6s.ltdri.org/#) along with the user manual. However, due 

to the principles of DDV, this algorithm does not work well in regions where are in lack of surface 

plants, such as Polar Regions and desert.  

Table 2.4  Summary of the most often used AOD retrieval methods 

Algorithm Advantages Limitation References 

Multichannel Reflectance Work well with water bodies.  
Durkee et al. 

(1986) 

Dense Dark Vegetation 

Easy principles. Work well with 

the surface covered with 

vegetation. 

Does not work well with 

the surface without 

vegetation (dark target).  

Kaufman et al. 

(1988) 

Structure Function 

Method 

Works well in the desert, urban 

and other bright area 

The choice of reference 

needs easily increase the 

accidental error 

Tanre et al. (1988) 

Polarization and 

Directionality of the 

Earth's Reflectance 

Helps to retrieve aerosol of 

mixed pixel with water over 

land 

 BRDF is required.  Leroy et al. (1997) 

Thermal Infrared 

Contrast Method 

Work well with arid and half-

arid region 

Does not work well with 

the areas with less dust.  
Tanre et al. (1991) 

Deep Blue Method 
Can be worked with any satellite 

monitors with blue band 

Inapplicable for 

historical AOD research.  
Hsu et al. (2004) 

Simplified Aerosol 

Retrieval 

Algorithm(SARA) 

Does not require LUT in the 

computation; 

Work well with both bright 

urban and dark rural surfaces 

(Bilal et al., 2013);  

Better applicability at different 

level of air pollution (Li et al., 

2015).   

Does not work well for 

high-level AOD (Bilal et 

al., 2013); 

Applicable only with 

MODIS collections.  

Bilal et al. (2013) 

Structure function method assumes that surface reflectance does not change during the daytime, 

so AOD information can be derived basing on the difference of surface reflectance with a given 
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reference atmospheric condition (Tanre et al. 1988). This method works well in the desert, urban and 

other bright area. However, the choice of reference is easy to increase the accidental error. 

Polarization and Directionality algorithm has been applied with POLDER, MODIS data and 

other monitors’ data (Vachon et al. 2004). Polarization is also known as bidirectional reflectance. This 

algorithm relies on backward scattering polarization characteristics to estimate AOD. This algorithm 

could help to retrieve aerosol of mixed pixel with water over land (Leroy et al., 1997). However, 

Polarization and Directionality algorithm requires Bidirectional Reflectance Distribution Function 

(BRDF).  

For thermal infrared contrast method, AOD can be retrieved because infrared channel is 

sensitive to the dust (Ackerman, 1997). This method is based on a series of continuous contrast of 

observations. This method works well with arid and half-arid area, but it may not work well for the 

areas with less dust (Guo et al., 2009).  

To increase accuracy in AOD retrieval over bright area like desert or bare land, Hsu et al. 

(2004) purposed a novel algorithm (deep blue), based on the blue band. Surface reflectance is low at 

these blue wavelengths so the aerosol’s change can be detected with the change of total reflectance 

and enhanced spectral contrast (Hus et al., 2004; Ginoux et al., 2012). Compared with previous 

algorithms which mainly used bands longer than 600nm (Red), deep blue algorithm can be 

implemented with any satellite monitors with blue band (Hsu et al., 2004). However, early monitors, 

such as AVHRR and TOMS, do not contain blue band. So when doing historical AOD research, deep 

blue algorithm may be inapplicable. 

2.3#PM2.5#Estimation#Models#

2.3.1#Factors#

Meteorological parameters and socio-economic factors have been widely utilized as inputs to perfect 

models. These factors are listed in Table 2.5.  
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Table 2.5 Factors used in PM2.5 estimation models 

Type Factors Principles Reference 

Natural/ 

Meteorological 

Parameters 

Visibility (m) 

Meteorological variables 

and other natural factors 

affect the formation and 

dispersion of PM2.5; 

PM2.5 also affect some 

weather conditions, such 

as visibility. 

You et al. (2016) 

Relative Humidity (%) Kumar et al.  (2007) 

 Precipitation (mm) Tai et al. (2010) 

Temperature (K) Kumar et al. (2007) 

Wind Speed(m/s)/Direction  Lei et al. (2015) 

Boundary Layer Height (m) Just et al. (2015) 

Elevation (m) Paciorek et al. (2008a) 

Pressure (hPa) 
van Donkelaar et al. 

(2006) 

Dew Point (K) Zhang (2013) 

Socio-

economic 

Factors 

GDP (dollar) 
Human activities generate 

considerable amount of 

PM2.5 

Wang et al. (2016) 
Population  

Road Density (m/m2) Paciorek et al. (2008a) 

Land Use Information Kloog et al. (2012) 

 

Meteorological variables and other natural factors affect the formation and dispersion of PM2.5. 

At the same time, PM2.5 also affect some weather conditions, such as visibility, so weather conditions’ 

variance can be considered as the reflection of PM2.5’ effects. More specifically, as introduced in 

Section 2.1, components in PM2.5 can severely reduce visibility by absorption and scattering of lights 

due to their hygroscopic property (Chen et al., 2014). This is because with the content of Sulphur, 

PM2.5 are hygroscopic. With the higher humidity, the hygroscopic particles absorb more water, then 

scattering becomes more intensive (Deng et al., 2011). Moreover, RH helps the formation of 

ammonium nitrate (Tai et al., 2010).  However, precipitation has a negative correlation with PM2.5 

components due to scavenging effect (Tai et al., 2010). In addition, temperature is positively associated 

with some components of PM2.5, such as sulfate and organic carbon and. (Tai et al., 2010). At the same 

time, it has been found there is a negative correlation between temperature and nitrate in some regions 

(Tai et al., 2010). Additionally, wind speed and wind direction strongly associate with the 

concentrations of PM 2.5 because PM 2.5 components can be carried by wind from the source region 

of air pollution to other areas (Tai et al., 2010). Furthermore, Planetary boundary layer (PBL) is the 

lowest part of the atmosphere and it can affect regional pollutants dispersion (Hu et al., 2014). During 

the daytime, the height of PBL (HPBL) increased a few kilometres due to the sun radiation, while at 
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night, HPBL decreases and PBL becomes stable (Miao et al., 2015). It is often assumed that PMs are 

well mixed in PBL (Gupta et al., 2006; Koelemeijer et al., 2006; Di Nicolantonio et al., 2007; Wu et 

al., 2012). Therefore HBPL is often used to improve PM2.5-AOD estimation model. Regions with high 

value of elevations, such as mountain or plateau region, tend to impede pollutant’s dispersion. Also, 

with the increase of elevation, PM2.5 concentration and composition also changes due to the changes 

of temperature and pressure. Therefore elevation is also utilized as an independent variable in the model. 

Other meteorological factors, such as dew point, can also contribute to PM2.5-AOD estimation models 

(Zhang, 2013). 

However, the use of only meteorological factors is not sufficient to explain PM2.5 

concentrations because human activities also generate a considerable amount of PM2.5. Road traffic, 

aviation and marine transportation, household activities (cooling and heating),  construction, and 

industry (especially heavy industry) are all emission sources of PM2.5 (Keuken et al., 2013; Lin et al., 

2013). Thus, GDP, population, road density, and other land use information are also utilized to perfect 

models reflecting the impact of human activities on PM2.5 (Paciorek et al., 2008a; Kloog et al., 2012; 

Wang et al., 2016).   

2.3.2#Models#

Current PM2.5-AOD estimation models can be classified into two types: observation-based and 

simulation-based methods (Lin et al., 2015). Simulation-based models are mainly basing on chemical 

transport models (Drury et al., 2010; Liu et al., 2004; Martin, & Park, 2006; van Donkelaar et al., 2010) 

while observation-based models mainly rely on statistical regression (Lin et al., 2015). Table 2.6 

presents some typical models which are described in the following content.  

2.3.2.1#SimulationAbased#Model#

Simulated-based models are always based on 3D chemical transport models (3D CTM) (San José et al., 

2008). These models have been developed since 1990s (San José et al., 2008) and always consist of a 

meteorological driver and a chemical transport module. Liu et al. (2004) introduced Goddard Earth 

Observing System Atmospheric Chemistry Transport (GEOS-Chem) model into AOD-PM2.5 

simulation. GEOS-Chem is driven by meteorological variables from the GEOS of NASA (Chen et al., 

2009). Later, van Donkelaar et al. (2006) applied GEOS-Chem model and calculated the PM2.5 

concentration with MODIS and MISR data for 2001 to 2005 at a global level. In their research, it is 

estimated that Northern India and East Asia were exposed to pronounced PM2.5 levels (40-50 µg/m3) 

and more than 30% of the global population were exposed to PM2.5 concentrations higher than 35 

µg/m3. However, the PM2.5 range they estimated is from 0 to 50 µg/m3, which does not indicate the 
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varied situation when PM2.5 were higher than 50 µg/m3, which is common in China and India. In 2015, 

van Donkelaar et al (2015a) continued to utilize GEOS-Chem model and SeaWiFS, MISR and MODIS 

data to develop a global map of mean PM2.5 concentrations from 2001 to 2010, which is shown in 

Figure 2.4. The PM2.5 concentration s in China exceeds 80 µg/m3.  

The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is a 

numerical weather prediction system for atmospheric research needs (Tie et al., 2007). WRF-Chem 

models results present a good association with the correct emission database (San José et al., 2008; 

Saide et al., 2011). Eta-CMAQ and MM5-CMAQ model have also been applied in estimating PM2.5 

(Yu et al., 2004; San Joset al., 2008; Lang et al., 2013). For more examples of meteorological drivers 

and chemical transport modules, please refer to San José’s research ( 2008).   

The main advantage of these models is these models are able to simulate the factors (such as 

chemical composition and particulate size) affecting the correlation between AOD and PM2.5. 

However, complex principles and operations are major shortages of these models. 

 

 

Figure 2.4 Global mean PM2.5 concentrations from 2001 to 2010 (Source: van Donkelaar et al., 2015) 
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Table 2.6 Most often used PM2.5-AOD models 

Type Model Strength Weakness References 

Simulation-

Based Model 

GEOs-CHEM 

Simulate chemical composition and 

particulate size 
Complex principles and operations 

Liu et al. (2004) 

Eta-CMAQ Yu et al. (2004) 

MM5-CMAQ; 
San José et al. 
(2008) 

WRF-CHEM Saide et al. (2011) 

Observation-

Based Model 

Simple Linear Regression  Simple principles 

Aerosol structure, 

composition and size are 

not considered;  

They can hardly predict 

episodic events;  

They tend to 

overestimated the low 

concentrations and 

underestimated the high 

ones 

Other factors are not considered Chu et al. (2003) 

Multiple Linear 

Regression (MLR) 
More factors can be taken into account.  

Low spatial resolution of the estimation 

from the MLR model with only 

meteorological factors  

Li et al. (2011) 

Land Use Regression 

(LUR) 

It is an useful tool to study intra-urban 

variability of PM2.5 with a high spatial 

resolution (Meng et al., 2016) 

Temporal resolution is limited (Kloog et 

al., 2012); LUR does not predict for 

short-term exposure study (Kloog et al., 

2012) 

Kloog et al. (2012) 

Non-linear Model 

This model describes non-linear relationship 

between dependent and independent 

variables and computing intensity is not 

added (Li et al., 2011) 

This model only works for certain areas 

or seasons (Li et al., 2011).  

Engel-Cox et al. 

(2004) 

Generalized Additive 

Model (GAM)  

Non-linear relationship between dependent 

and independent variables can be considered 
Local variables are not considered Li et al. (2011) 

Geographically Weighted 

Regression (GWR) 
The consideration of local variables. Computing intensity is increased.  Hu et al. (2013) 

Artificial Neural Network 

algorithms 

This model is helpful to reduce uncertainties 

and improve the accuracy when estimating 

high and low PM mass (Gupta et al., 2009b) 

Computing intensity is increased.  

Some sites with high concentrations 

were still underestimated (Wu et al., et 

al., 2012) 

Gupta. (2009b) 
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2.3.2.2$Observation0based$Model$

The general form of simple linear regression model can be described as Eq. (2-2): 

PM2.5 = C + M * AOD                                                         (2-2) 

where C is the intercept and M is the slope (Gupta et al., 2009a). 

Chu et al. (2003) applied this simple linear regression model to estimate PM10 concentration with 

daily averaged AERONET AOD measurements in Italy and the coefficient of determination (R2) was 0.67. 

At the same time, Wang & Christopher (2003) adopted MODIS AOD product (Level 2, Version 4) and 7 

stations’ PM2.5 concentrations in Alabama, U.S. and built a simple linear regression with a R2 of 0.49. Li 

et al. (2005) also demonstrated a good correlations between PM10 and AOD in Hong Kong with simple 

linear regression. Although their researches present AOD as a useful tool for PM estimation, most 

researchers agree that AOD alone cannot retrieve surface distribution of PM2.5 with satisfied accuracies 

because the inconsideration of other factors may affect AOD-PM2.5 relationship (Paciorek et al., 2008b; 

Gupta et al., 2009a).  

To incorporate more parameters, the MLR model was developed (Gupta & Christopher, 2009a; 

Li et al., 2011). The general form of multiple regression models can be described as Eq. (2-3): 

PM2.5 = C1 + C2 * AOD + C3…n * V3…n                                       �2-3� 

where C1 is the intercept of this model and C2 is the regression coefficient for AOD. C3-Cn are regression 

coefficients for the corresponding predictor variables, while V3-Vn are predictor variables (Gupta, 2009a).  

These variables could be temperature, relative humidity, height of the planetary boundary layer and wind 

speed. Gupta et al. (2009a) developed MLR equations with AOD and meteorological factors over the 

southern U.S. Their results indicated there were up to threefold increases from simple linear regression’s 

correlation coefficients to the MLR model’s correlation coefficients. Li et al. (2011) applied MODIS AOD 

and NCEP (National Centers for Environmental Prediction) in regression models and the R square is 

improved from 0.24 in simple linear regression model to 0.44 in the MLR model. Though showing a better 

capacity due to the consideration of more relevant variables, most previous MLR models with 

meteorological factors are based on a global, national or regional level, the variability within a city can 

hardly be derived due to the spatial resolutions.  

In this situation, it is more accurate to estimate the intra-urban variability of PM levels with land-

use regression models (Meng et al., 2016).  Land use regression (LUR) is one of the multivariate regression 

models and it  incorporates land use variables at a monitored level, such as elevation, traffic density and 

account, PM2.5 point emissions, road density and road type, the distance to main road and the percentage 
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of urban area (Ryan et al., 2007; Kloog et al., 2012).  Though the LUR model could help to study PM2.5 

distribution with a high resolution, the temporal resolution is often limited because land use terms do not 

generally vary in a short time (Kloog et al., 2012; Meng et al., 2016).  

Although aforementioned studies proved linear regression as a strong tool to predict PM2.5, 

PM2.5-AOD relationship could be non-linear (Engel-Cox et al., 2004; Liu et al., 2005). A general format 

of non-linear model can be described as Eq (2-4) (Li et al., 2011):   

log $%&.( = *+ + *-./ ∙ log 123 + +*45 6 ∙ 78 + *9 ∙ log : …+*< ∙ =(?)             (2-4) 

where *+ is the intercept, *-./ , *45 , *9  and *<  are regression coefficients of log 123 , 78 (relatively 

humidity), log :  (T: Temperature) and function of other variables. Li et al. (2011) showed non-linear 

regression model shows a better performance (R2=0.49) than simple and multiple linear regression (R2= 

0.24; 0.44). You et al. (2016) also improve the coefficient of determination from 0.08 when using linear 

regression to 0.61 when using non-linear regression in a semi-arid area in northern China. Similar to non-

linear regression model, a more complex model, generalized additive model (GAM) also allows non-linear 

function of variables. This model is developed for each scaling method at each site (Liu et al., 2011).  By 

allowing some of all variables to be non-linear related to dependent variable, GAM improves the capacity 

of traditional linear regression (Liu et al., 2009; Liu et al., 2011; Liu et al., 2012). Though non-linear model 

is able to improve the accuracy in these studies, it only works for certain areas and or seasons (Li et al., 

2011).  Moreover, similar to linear regression, this model does not consider local variables: this is because 

the correlations between AOD and PM2.5 are non-stationary, so the dependent and independent variables 

are not spatially constant (Engel-Cox et al., 2004; Hu et al., 2009; Hu et al., 2013).   

To solve this problem, spatial regression model, such as the GWR model is also applied to build a 

local relationship between AOD and PM2.5 (Hu et al., 2013).  Instead of assuming global geographic 

uniformity, GWR estimates PM2.5 in consideration of local variability. The GWR model can be expressed 

as Eq. (2-5): 

$%&.(6AB = *+,AB + *D,AB123AB + *&,AB?&,AB + *E,AB?E,AB …… *F,AB?F,AB                  (2-5) 

where $%&.(6AB is PM2.5 concentration at location s on day d; *+,AB is the intercept at location s on day d; 

?&,AB to ?F,AB are values of variables 2 to n at location s on day d; *&,AB to *F,AB are  slopes of corresponding 

variables.  Hu et al. (2013) adopted both Ordinary Least Squares and the GWR model to estimate PM2.5 

in U.S., and R squre was slightly improved when using the GWR model. Van Donkelaar et al. (2015) also 

built the GWR model over North America to estimate PM2.5 and their research shows compared with the 

linear regression, the GWR model yields significant improvement of accuracy (R2 = 0.62 versus R2 = 0.62) 

compared with the linear regression. The GWR model has also been applied in China at a national level in 
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previous studies (Ma et al., 2014). You et al. (2016) used the GWR model with the 3 km AOD product to 

estimate PM2.5 concentrations at a national-scale. Their model could explained 81% of the dairy PM2.5 

variations. However, they did not validate the 3 km AOD product before using. Moreover, they did not 

compare the performances between the 3 km and 10 km AOD products.  

In most statistics models, the regression equations show better capacity in predicting mean 

concentration rather than episodic events, besides, they tend to overestimate the low concentrations while 

underestimated the high ones (Dye et al., 1998; Hubbard & Cobourn, 1998; Ryan, 1995; Gupta et al, 2009a). 

To solve these problems along with reducing the uncertainties in the estimation, neural network approach 

is developed. Roughly, neural network is a set of computer algorithms designed to simulate biological 

neural network in learning and pattern recognition (Gupta et al, 2009b). Gupta et al. (2009b) compared the 

simple correlation (R2= 0.36), multiple regression (R2=0.46) and neural network (R2=0.55) models in 

southeast U.S and neural network model had the highest accuracy. However there was no unified and 

integrated instruction for neural network(Gupta et al., 2009b; Liu et al., 2005). Wu et al. (2012) and Guo et 

al. (2013) also applied back-propagation artificial neural network (BP ANN) over China. However, some 

sites with high PM mass were underestimated.  

Other models may include mixed effect model (Lee et al., 2012), alternating conditional 

expectation (ACE) model (Benas et al., 2013) and semi-empirical observation-based models (Chu et al., 

2013; Tao et al., 2013). 

Though various observation- based models works well to estimate PM2.5 in most regions, a major 

issue for these models is the lack of vertical information of AOD since AOD present the entire aerosol’s 

property while PM2.5 is only measured close to surface (Gupta et al., 2009b). Meanwhile, most 

observation-based models work well in predicting averaged PM2.5 concentration in daily or monthly scales 

but can hardly predict episodic event. Also, high concentrations are usually underestimated.  

2.4$PM2.50Mortality$

Mortality includes non-accidental mortality and accidental mortality. This study only discuss the non-

accidental mortality. The published evidence has proved the relationship between PM2.5 exposure and non-

accidental mortality (Gamble et al., 1998; Franklin et al., 2007; Shi et al., 2016). As mentioned in Section 

2.1, concentration–response function (CRF) is often used to quantitatively describe the mortality and PM2.5. 

In addition, relative risk, excess risk and odds ratio, are also used in quantitative studies in public health 

field (Lu et al., 2015). Relative risk (RR) is the risk or bad outcome of a group exposed to a treatment (such 

as PM2.5) compared with another group without this treatment (Irwig et al., 2008). A RR greater than 1 

indicates the risk is increased when people are exposed to the treatment, while a RR less than 1 indicates a 
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safer circumstance (the risk is decreased) (Irwig et al., 2008). Excess risk (ER) is also known as excess 

relative risk (Fry et al., 2013). The relationship between ER and RR are ca be described as Eq. (2-6) (Fry 

et al., 2013; Lu et al., 2015): 

G7 % = 77 − 1 ∗ 100%                                                      (2-6) 

Though numerous studies have been conducted in developing countries, ER and RR cannot be 

simply transferred to Chinese context (Lu et al., 2014). This is because ER and RR vary in different regions 

due to the difference in air pollution level, the vulnerability of people to PM2.5, the composition of PM2.5 

and the population structure. The ERs of total non-accidental mortality due to exposure to PM2.5 in 

previous studies are shown in Table 2.7: ER (%) denotes the percent increase of total non-accidental 

mortality with per 10 µg/m3increment of PM2.5.  

Usually, long-term exposure (Pope III et al., 2002; Zeger et al., 2008; Cao et al., 2011; Shi et al., 

2016; Zhang et al., 2016) brings higher ER than short-term does (Huang et al., 2012; Lu et al., 2015; Shi et 

al., 2016). ER for low concentrations is higher than ER in the whole study cohort (WHO, 2015; Shi et al., 

2016). Women experience higher ER than men do (Huang et al., 2012). The ER may be different due to 

PM2.5 composition: Laden et al (2000) found the ER of PM2.5 from mobile sources (3.4% increase in daily 

mortality with 10 µg/m3) was higher than that from coal combustion (1.1% increase) while PM2.5 from 

crustal particles had no association with daily mortality. Cao et al. (2011) indicate that ER in China may be 

lower than the type found in developed countries. The ER or RR study in China were mainly focus on short-

term (usually 1 day) or long-term (1 or more years), and there are seldom study based on seasonal exposure.  

Attributable fraction (AF) can assess the proportion of the disease (or mortality) attributed to a 

certain risk (such as PM2.5) in a population (Steenland et al., 2006). AF can be derived from RR or ER. 

The relationship between AF and RR can be described by Eq. (2-7) (Steenland et al., 2006; Anenberg et al., 

2009): 

1M = 77 − 1 /77                                                             (2-7) 

Based on the definition of AF, the distributed total non-accidental mortality rate can be 

determined by Eq. (2-8) (Nawahda et al., 2012): 

:OP*Q6ROR − *SSTUVRP*Q6%OWP*QTPXYZ&.( = [O[ ∗ :OP*Q6ROR −

*SSTUVRP*Q6%OWP*QTPX6\*]VQTRV ∗ 1M̂ _&.( ∗ ∆$%&.(                                                                       (2-8) 

where :OP*Q6ROR − *SSTUVRP*Q6%OWP*QTPXYZ&.( is the mortality attributed to ∆$%&.( exposure; pop is the 

exposed population. 
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Traditional numerical analysis can only provide a statistical description of PM2.5-mortality 

relationship. Nowadays, remote sensing techniques provide a opportunity to examine the spatial pattern of 

mortality attributed to PM2.5.  

 

Table 2.7 ER (95%CI) of total non-accidental mortality due to the exposure to PM2.5 in previous studies 

Author Study Time Study Area 
ER (%) of Total non-accidental Mortality 
(95%CI) 

Shi et al. (2016) 2003-2008 
U.S.: New England 
Region 

2.14 (short-term (2 days) exposure) 

9.28 (long-term (1 year) exposure) 

Zeger et al. (2008) 2000-2005 U.S.: metropolis 6.8-13.2 (long-term (6 years) exposure ) 

Pope III et al. (2002) 
1979-1983; 

1999-2000 
U.S.: 50 States in U.S. 4 (long-term (1-4 year) exposure ) 

Zhang et al.  (2016) 2013 China: Shenzhen 0.69 (long-term (1 year) exposure) 

Lu et al.  (2015) 1999-2013 
China: mainland, Hong 
Kong and Taiwan 

0.4 (short-term (daily)exposure) 

Lee et al. (2015) 2001-2008 
11 East Asian cities 
(Korea. Japan, Taiwan 
and China) 

0.38 (short term(daily) exposure) 

Cao et al. (2012) 2004-2008 China: Xi’an 0.18 (short term(daily) exposure) 

Huang et al. (2012) 2004-2008 China: Xi’an 

0.25 (Female, short-term (daily) 
exposure) 

0.17 (Male, short-term(daily) exposure)  

Cao et al. (2011) 1991-2000 30 Provinces in China 0.9 (long-term (1 year) exposure ) 

ER: Excess Risk for mortality are presented as % (95%CI) per 10µg/m3 increment of PM2.5 

CI: Confidence interval   
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2.5$Chapter$Summary$

PM2.5 can be acquired from air quality monitoring networks and programs established in many countries 

and regions. However, ground-level PM2.5 can only present a limited area around the monitoring sites. In 

this situation, satellite measurements can be adopted to acquire PM2.5 with greater spatial coverage.  The 

strong relationship between satellite AOD and PM2.5 has been found in previous research. Numerous 

satellites and algorithms have been employed for AOD retrieval. In previous studies, MODIS is the most 

often used satellite and MODIS also provides AOD product derived with deep blue and dark target 

vegetation algorithms to users directly so that users do not have to retrieve AOD from RS data by 

themselves. In 2014, NASA released MODIS Collection 6 product containing an AOD product with 3 km 

resolution. Usually, ground-level AOD measurements, such as AOD provided by AERONET, can be 

adopted to calibrate satellite AOD. Current models for AOD-PM2.5 can be classified into simulation-based 

and observation-based methods. In observation models, linear regression are most often used and spatial 

regression can consider the spatial autocorrelation. To improve the PM2.5-AOD estimation model, other 

factors, such as meteorological and socio-economic factors, are also taken into consideration in more 

complex models. At last, the PM2.5 distribution estimated from satellite data can contribute to 

epidemiology study as an application, such as mortality rate estimation.  
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Chapter$3.$Study$Area$and$Data$

3.1$Study$Area$

The Beijing-Tianjin-Hebei (BTH) region, also known as the Jing-Jin-Ji region, is the capital region of China. 

As the core area of the Bohai Economic Rim, the BTH region consists of two municipalities (Beijing and 

Tianjin) and eleven prefecture-level cities in Hebei Province (Shijiazhuang, Baoding, Langfang, Tangshan, 

Zhangjiakou, Chengde, Qinhuangdao, Cangzhou, Hengshui, Xingtai and Handan). 

 

Figure 3.1 Study area 

Presented in Figure 3.1, the BTH region, with an area of 217,127 km2 (The Central People’s 

Government of the People’s Republic of China, 2016), is located northeastern mainland China between the 

longitude of 113°27′-119°50′ East and the latitudes of 36°05′�42°40′ North. It is bounded on the southeast 

and south by Shandong and Henan Province. Northern BTH region is neighbour to Inner Mongolia and 

Liaoning Province, and western BTH region is adjacent to Shanxi Province, which is rich in coal resources. 

Eastwardly, the BTH region faces Korea and Japan across the Bohai Sea. With a temperate continental 
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monsoon climate, the BTH region has humid and hot summers, and dry and cold winters. The 2014 annual 

average temperature in the BTH region was from 3.8 ℃ to 15.5℃ while annual average precipitation was 

around 400 mm (China Meteorological Administration, 2015).  

As the center of the Bohai Economic Rim, the BTH region has always been the China’s economic 

development leader since Chinese Reform and Opening up Policy in 1978. The 2014 BTH Gross Regional 

Product (GRP) is RMB 66478.91 million yuan, which is 10.45% of 2014 Gross Domestic Product (GDP, 

RMB 634043.4 million yuan) (China Statistical Yearbook, 2015). According to the World Bank’s data, in 

2014, the BTH region’s GRP is only lower than 15 countries’ GDP in the world and higher than that of the 

rest, such as Indonesia, Netherlands, Turkey and Saudi Arabia. As the capital of China and the core area of 

the BTH region, Beijing has an integrated industrial system and is in the advanced industrialization stage 

because of its political, cultural and information strength. Tianjin, the biggest harbor city in northern China, 

has strength in logistics, shipping and aviation.  Tianjin Port is not only an important node in the BTH 

region’s modern transportation system but also a vital port for international trade. Shijiazhuang is the capital 

city of Hebei province and it is called “A City on the Railway” because it is an important railway hub. 

Owing to its transportation and natural resources, heavy industries and manufacturing are the mainstay 

industries in Shijiazhuang. Tangshan is famous for its heavy industries such as coal-mining, metallurgic 

and ceramic industry.  

 Economic development always comes with employment opportunities and attracts migrants. At 

the same time, with China’s urbanization, the BTH region has become one of the most populated regions 

in China. In 2014, the BTH region’s population reached 110.53 million, which accounts for 8.1% of nation’s 

population (United Nations, 2015). As all know, “One-Child Policy”, issued in 1980, is an important policy 

for China to slow down its population explosion. However, in 2015, Chinese government issued the “Two-

Child Policy” and repealed the old “One-Child Policy”, and a new increase of population in the near future 

is expected. 

The dense population, high-speed economic development and urbanization, industrial process, 

congested local traffic and coal consumption for winter heating all make the BHT region the most 

concentrated region of PM2.5 in China. During the study period, as shown in Figure 3.4 , none of the eleven 

cities reached the national annual standard (15 µg/m3) and some of their averaged PM2.5 were 500% higher 

than national standard and 800% higher than WHO guideline (10 µg/m3). Trapped by surrounding 

mountains and plateau, air pollutant in the BTH region accumulate easily. Specifically, the BTH region has 

a complex topography with three geographic units: North China Plain, Yan Mountains and Taihang 

Mountains, and Bashang Plateau. As shown in Figure 3.1, most of southeastern and central BTH region lies 

on the North China Plain.  Taihang Mountains run through the western BTH region while Yan Mountains 
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range surround the BTH region from north. Bashan Plateau, located in the northern part of Zhangjiakou 

and Chengde, is the southeastern edge of the Mongolian Plateau. Therefore, only the northwest wind could 

dissipate air pollutant while the southeast wind helps to accumulate air pollutant in the BTH region.  

3.2$Data$

3.2.1$MODIS$10$km$and$3$km$Data!

Similar to other geographic features, aerosols also vary on different research scales. Thus, the choice of 

spatial scale becomes important to fulfill specific research need. The traditional 10 km MODIS AOD 

product works well in climate related application but it is insufficient in fine scale’s study (Leigh et al., 

2014). Therefore, 3 km MODIS AOD was released in 2014 as a part of MODIS Collection 6 product 

(MYD04_3K and MOD04_3K). As shown in Figure 3.2, with a higher spatial resolution, MODIS 3km 

AOD products can help to display more variation than the 10 km AOD product does. The grids with invalid 

data are mainly due to the cloud, ice and snow cover or other reasons related with algorithms. MODIS AOD 

product files are stored in Hierarchical Data Format (HDF-EOS). 

!

Figure 3.2  A comparison of the MODIS True Colour Image, MODIS10 km AOD and 3 km AOD 

Products (Source: Leigh et al., 2014) 

 

MODIS True Colour Image MODIS 10 km AOD MODIS 3 km AOD 

0.00                         0.50                         1.00                          1.50                      2.00 

AOD at 550 nm 
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Figure 3.3 Retrieval algorithms for the 10 km and 3 km AOD products (Source: Leigh et al., 2014) 

Based on the 10 km Dark Target AOD product, the 3 km AOD product is generated with dark target 

(DT) algorithm by using three waveband (0.47, 0.66 and 2.12 µm) , using similar inversion methods and 

LUT (Xie et al., 2015; Leigh et al., 2014). As shown in Figure 3.3, the processes flow for 10 km and 3 km 

DT AOD product are similar: the input data is retrieved in a box with 20 × 20 and 6×6 pixels for 10 km and 

3 km data, respectively. Clouds, ice and snow cover will impede dark target algorithm, so after last step, 

clouds and inappropriate surfaces are masked, followed by a process to discard darkest and brightest 

reflectivity range to reduce uncertainties (Xie et al., 2015; Leigh et al., 2014). In addition to the size of 

retrieval boxes, another difference is, the retrieval algorithm for 10 km AOD requires at least 12 valid pixels, 

while the 3 km AOD requires 6 valid pixels in a box. If the number of valid pixels in a box cannot reach 

this requirement, this box would be dropped in retrieved result. This indicates 3 km algorithm attempts a 

“better quality” retrieval by increasing the minimum percentage of “good” pixels in 3 km algorithm 

compared to that in 10 km algorithm. The other procedures in generating the 3 km product remains 

unchanged as that of 10 km dark target product. In addition to DT algorithm applied in both products, 10 

km product also adopts Deep Blue algorithm. As introduced in Chapter.2, DB algorithm is helpful to 

increase AOD retrieval’s accuracy over bright area, such as desert or bright area within urban area. At the 

same time, AOD can be retrieved with a greater coverage with both DT and DB algorithms than with only 

DT method.  

Compared with 10 km product, 3 km product is able to better retrieve smoke plume through cloud. 

Also, 3 km product provides information closer to islands and coastlines. However, higher resolution comes 
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with more noise. According to Leigh et al. (2014)’ s validation, although products with 3 km and 10 km are 

both correlated well with AERONET AOD measurement, higher biases and uncertainties can be observed 

in 3 km product. 

Quality (QA) flag is an indicator of the assessment on AOD data’s quality from algorithm team 

and the QA flag values range from 0-3. QA3 is the recommended quality level for land products (NASA, 

n.d.c). Each pixel has its QA flag. In this study, only these pixels with QA3 was used.  

In this thesis, in order to match MODIS AOD retrievals with the acquision time of meteorological 

data (Acquired time: 14:00), only Aqua satellite, operated on sun-synchronized orbit with a period of 

approximately 100 minutes, was employed in this study. Aqua’s overpass time at equator is at local time 

13:30 in ascending order, which suggests that the satellite normally flies over the study area during 13:30 

pm to 14:00 pm.  

To evaluate 3 km and 10 km products’ performance in AOD estimation, AOD measurement from 

AERONET was used for MODIS AOD validation. The temporal resolution of ground-level AERONET 

AOD is 15 minutes on average (Zhou et al., 2009). Five sites have been built in the BTH region, which are 

presented in Table 3.1. However, only Beijing and Xianghe sites were well operated during the research 

period. Therefore, Xianghe and Beijing sites’ AOD were calibrated with satellite-derived AOD in this study.  

Table 3.1 AERONET Stations in the BTH region 

Station Name Latitude Longitude Operation Time 

Beijing 39.98° N 116.38° E 7-March-2001-Present 

Xianghe 39.75° N 116.96° E 20-March-2001-Present 

Beijing-CAMS The data in research period cannot be retrieved 

PKU_PEK Station was out of operation in research period. 

Yufa_PEK Station was out of operation in research period. 

AERONET AOD inversion product has three data quality levels: Level 1.0 (unscreened data but 

may not have final calibration applied), Level 1.5 (cloud-screened data but may not have final calibration 

applied. These data are not quality assured.), and Level 2.0 (pre- and post-field calibration applied, cloud-

screened, and quality-assured data) (NASA, n.d.a). In this project, only the data at level 2 was adopted. .  
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3.2.2$Ground0level$PM2.5$Measurements!

 

Figure 3.4 Ground monitoring stations’ locations and the averaged PM2.5 of every city’ all stations during 

the study period 

Hourly PM concentrations measured at 14:00 in 79 ground stations in the BTH region were 

acquired from MEPCN (http://www.zhb.gov.cn/). The locations of these 79 stations are shown in Figure 

3.4 and most of them are located in the urban area. Please refer to Appendix I for more specific information 

about these stations (City, Station Name, Station Code, Longitude and Latitude). Ground-level PM2.5 

concentrations were mainly measured by the TEOM and BAM instruments as introduced in Chapter 2. On 

the basis of the Environmental Protection Standard of China (HJ 618-2011), all the measurements had been 

processed with calibration and quality control (MEPCN, 2011).  Averaged PM2.5 of every city’ all stations 

during the study period is shown in Figure 3.4. It can be found the averaged PM2.5 of all cites were ranged 

from 24 µg/m3to 108 µg/m3and none of them reached the national standard (15 µg/m3). It should also be 

noted that this “averaged PM2.5” is roughly determined by limited number of stations so biases are existing.  
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3.2.3$Supplementary$Data$

Supplementary data include meteorological data, social-economic data, land use data and mortality 

information.  

3.2.3.1$Meteorological$Data$

In this project, meteorological data was obtained from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) reanalysis datasets (ERA-Interim). ECMWF uses its data assimilation systems and 

forecast models to re-analyze observation datasets. As one of the ECMWF’s reanalysis datasets, ERA-

Interim is a global atmosphere reanalysis from 1979. In this study, the meteorological data from September 

2014 to August 2015 was used.  The meteorological data included surface temperature (temperature at 2 m) 

(K), surface pressure (Pa), wind speed (m/s), relative humidity (%) and boundary layer height (BLH) (m). 

The acquired time, spatial resolution and step’s information of every factor have been listed in Table 3.2.  

Table 3.2  Meteorological data used in this study 

Meteorological Data Beijing Time Spatial Resolution Step 

Temperature (K) 

14:00 
0.125° 

0  Surface Pressure (Pa) 

U Wind/V Wind Speed (m/s) 

Relative humidity (%) 
3  

Boundary Layer Height (m) 8:00; 20:00 

U wind: wind from the west  

V wind: wind from the south.  

Step= 3: this factor is re-analyzed on a 3 hours-averaged time level.  

In Table 3.2, wind speeds consist of wind speeds from two directions: Uwind is the wind from west 

to east while Vwind is the wind from south to north. The temporal resolutions of temperature, wind speed 

and RH are four times per day (2:00, 8:00, 14:00, and 20:00 Beijing Time). Thus for these three factors, the 

data acquired at 14:00 was adopted to be matched with the remote sensing AOD time. For BLH, the 

temporal resolution is twice a day (8:00 and 20:00 Beijing time). Thus BLH at 8:00 and 20:00 were both 

used in model building because the time variation of BLH is complex during the day time and the BLH at 

14:00 cannot be simply determined by BLH at 8:00 and 12:00. The spatial resolutions of these four factors 

are all of 0.125°. The step indicates whether the data is re-analyzed based on an averaged-time or not. Step 

0 means this data is not on an averaged-time level while 3 means this factor is re-analyzed at a 3 hours –
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averaged level.  The spatially averaged values of these seven factors during research period are shown in 

Figure 3.5.  

The values of annual averaged BLH at 8:00 ranged from 536 m to 1490 m (Figure 3.5 (a)) while 

those of BLH at 20:00 ranged from 114 m to 394 m (Figure 3.5 (b)): the high values for both factors were 

mainly distributed on mountain areas. The Uwind and Vwind speed ranged from -0.72 to 3.78 m/s and -

1.46 to 0.63 m/s, respectively. The negative value means the wind was from the inverse direction. From the 

Figures 3.5 (c) and (d), it can be seen that the plain area of the BTH region, such as Handan, Hengshui and 

Tianjin, were often experienced the wind from the south while for the mountainous region, such as Chengde 

and Zhangjiakou, winds were often from the northwest. For the annual averaged RH, though distribution 

was complex, the coastal regions, such as some areas of Tangshan and Tianjin, had the highest value of RH.  

The temperature and surface pressure had similar distributions: the low values were located in the plain 

area while high values were located in mountainous regions.
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Figure 3.5  Annual averaged meteorological factors during the study period
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3.2.3.2$Socio)economic$and$Land$Use$Data$

In this thesis, spatial socio-economic and land used data involves GDP, population, the percent of urban 

area, and elevation data.  

The GDP, population, and land use data were provided by the Data Center for Resources and 

Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn). Based on 2010 

national census data, these two data sets were all generated at 1 km spatial resolution. GDP and population’ 

spatial distribution are shown in Figures 3.6(a) and (b).  

 

Figure 3.6 GDP and land use data in 2010 

RESDC also provided 2010 land use data at 1 km through remote sensing data and other techniques. 

Basing on the land use data, urban area (Code number: 51) could be extracted and the percent of the urban 

area was then aggregated on 3 km and 10 km resolutions by ArcGIS 10.3.1 in this study for later analysis. 

The percent of urban area with 3 km resolution is shown in Figure 3.6 (c). Beijing was the most concentrated 

city for all three factors.  

Elevation data was obtained from the digital elevation model (DEM) of the Shuttle Radar 

Topography Mission (SRTM) with a resolution of 30m. The elevation data of the BTH region is presented 

in Figure 3.1.  

3.2.3.3 Health Data 

To provide an example on how to apply remote sensing techniques in other fields, such as epidemiology 

study, this study also estimated the spatial mortality rate attributed by PM2.5 exceeding Chinese annual 
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averaged standard (15 µg/m3) in the BTH region. Thus health data was also employed in this thesis. Health 

data involved in this study included an ER and a total non-accidental mortality baseline data. Cao et al. 

(2011) examined the association between air pollutants and mortality from 1991 to 2000 based on the annual 

average air pollution exposure in 30 provinces in China. In their research, it is estimated that 10 µg/m3 

increase of PM2.5 was corresponded with 0.90% increment in total non-accidental mortality, which was 

adopted as the ER in this study.  

The all-cause mortality of China can be required from China Statistical Yearbook and 2014 is 

the most recent year with available data. So in this paper, the mortality data of 2014 was used instead of the 

study period (between September 2014 and Auguest 2015). In 2014, the mortality of China was 0.716% 

(China Statistical Yearbook, 2015). All-cause mortality consists of non-accidental mortality and accidental 

mortality. Non-accidental mortality can be categorized by the International Classification of Diseases 10th 

Revision (ICD-10: A00-R99) (Ma et al., 2015).  The detailed causes of death information was provided by 

the Data-Center of China Public Health Science (DCCPHS) and the most recent version was 2008 National 

Disease and Cause Death Database. Basing on this database, non-accidental death accounted for 90.44% of 

all-cause mortality. Due to the lack of more recent data, it was assumed that this proportion kept stable from 

2008 to 2014 and 90.44% is then used to determine the 2014 non-accidental mortality from all-cause 

mortality. Therefore, 2014 non-accidental mortality was estimated to be 0.647%, which was used as the 

non-accidental mortality baseline in this research.  

3.3$Chapter$Summary$

Overall, the BTH region has always been the economic leader in China. Both heavy industries and the coal 

combustion for winter heating in northern China produced considerable amount of air pollutant. Moreover, 

the dense population and transportation also aggravated the severe pollution. However, because BTH is 

surrounded by mountains and plateau in northern and western sides, air pollutants are easy to be 

accumulated due to the wind from west and from south. In this study MODIS AOD at the 3 km and 10 km 

AOD from September 2014 to August 2015 were used to build models with the ground-level PM2.5 

acquired from MEPCN. Along with finer resolution, 3 km product also brings more noise. Other 

supplementary data were also involved including GDP, population and land used data from RESDC, and 

meteorological data from ECMWF. For a further application of remote sensing results, ER from Lu et al 

(2015), and the non-accidental mortality information from local organization were also utilized.   
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Chapter$4.$Methodology$

This chapter describes the methodology. Section 4.1 presents an overview of workflow. Section 4.2 

explains AOD validation method. Section4.3 describes the data preprocessing and Section 4.4 explains the 

MLR and GWR models’ construction. Section 4.5 explains how mortality distribution was determined and 

a summary of this chapter is followed.  

4.1$Overview$of$Workflow$

The methodology contains four modules, which are AOD validation, data preprocessing, model 

construction, and application (see Figure 4.1). The first module is AOD validation. The 10 km and 3 km 

MODIS AOD were calibrated with ground-level AOD acquired from AERONET. In the second module, 

along with the in-situ PM2.5 after data cleaning, MODIS AOD and meteorological data were conducted 

with outlier identification and removal steps. Then PM2.5 concentrations were matched with all the 

variables, including AOD, meteorological data, social-economic factors and land-use information from 

September 2014 to August 2015 in the BTH region. Then this result was inputted into the MLR and GWR 

models in the third module. After the validation for each model, a seasonal analysis and a regional analysis 

were followed. Then based on the population’s spatial distribution data, the population exposed to a long-

term harmful level of PM2.5 was derived. At the same time, the spatial mortality rate attributed from 

PM2.5’s seasonal change was generated based on ER and total non-accidental mortality documents. 
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Figure 4.1 Workflow of the methodology 
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4.2$MODIS$AOD$Validation$with$AERONET$AOD$

The AOD acquired from the AERONET Beijing site and Xianghe site were at 1640, 1020, 870, 675, 

440,380 and 340nm wavelength. However, the MODIS AOD was at 550nm wavelength, so the ground-

level AOD was interpolated at 550nm according to the following Ångström formula (Ångström. 1964): 

!" # �$#%"                                                                            (4-1) 

where  !" #  is the AOD  at the wavelength #,  $ is the Ångström turbidity and & presents the Ångström 

exponent. The Ångström exponent and Ångström turbidity can be computed respectively by Eq. (4-2) and 

Eq. (4-3): 

& = − )* +, -. /+, -0
)* -. -0

                                                                    (4-2) 

$ = +, -.
-.1,

= +, -0
-01,

                                                                         (4-3) 

where the AOD at 550 nm wavelength was interpolated with the AOD at 675nm (#2) and the AOD at 440 

nm (#3) in this research.  

As introduced in Chapter 3, the AERONET AOD data and the MODIS AOD data had different 

temporal and spatial resolutions. The Aqua satellite passes the BTH region around 13:30-14:00. So the 

AERONET AOD from 13:30 to 14:00 were averaged at Beijing and Xianghe sites and collocated with 10 

km and 3 km MODIS AOD every day. However, satellite-derived AOD could not cover Xianghe and 

Beijing site everyday due to the cloud cover and other reasons. Furthermore, Xianghe site and Beijing site’s 

AOD were not always valid from 13:30 to 14:00 PM during the study period. As a result, after the spatial 

and temporal matching, there were only 101 10 km AOD - AERONET collocations and 30 AOD - 

AERONET collocations in Beijing site. For Xianghe site, there were 96 and 40 collocations, respectively, 

for the 10 km AOD-AERONET and the 3 km AOD-AERONET. The results and analyses are presented in 

Chapter 5.   

4.3$Data$Preprocessing$

Firstly, all the raster data sets’ geographical coordinates are unified as China_Lambert_Conformal_Conic. 

Then the meteorological datasets acquired from the ECMWF were resampled to 3 km resolution and 10 km 

resolution for the 3 km MODIS AOD and 10 km MODIS AOD respectively by using bilinear interpolation. 

For the GDP, population and DEM data, their resolutions are less than 3 km. So these data sets were also 

aggregated to 3 km and 10 km resolution. This aggregation process was conducted by ArcGIS 10.3.1. and 

the aggregation techniques for GDP and population were “SUM” and that for DEM data was “MEAN”.  

For the percent of urban area data, it had already been calculated on 3 km and 10 km as introduced in 

Chapter 2. For the PM2.5 concentrations acquired from MEP of China, the raw data was stored in text file. 
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So text files were converted to features classes. Then, for those PM2.5 sites located in the same pixel of the 

MODIS AOD, their PM2.5 concentrations were averaged. This step was conducted for both the 10 km and 

3 km AOD data.  

Every day’s PM2.5 data at each site was matched with all the variables at the same time within the 

same pixel. Those PM2.5 concentrations with no AOD data matched are considered invalid data. Then there 

were 1497 lines of valid records for 3 km MODIS AOD model and 3132 lines of valid records for 10 km 

MODIS AOD models. For the MODIS data, only the AOD data with a quality (QA) flag 3 was used in this 

study so those lines with “QA_flag” <3 were removed. Then other variables and PM2.5’s outliers were 

removed by Box-plot, which can be conducted in SPSS software.  

  

 

Figure 4.2 Box-Plot of the whole year’s PM2.5 in the 10 km AOD model 

Figure 4.2 shows the Box-plot of the PM2.5 concentrations inputted in 10 km model. “ ” denotes 

mild outliers while “�” demonstrates extreme outliers. In this Box-plot, the dots with PM2.5> Q3+1.5IQR 

and PM2.5< Q1-1.5IQR are considered as outliers. Q3 is the upper quartile and Q1 is the lower quartile; 

IQR is the interquartile range. Extreme outliers are those PM2.5 concentrations with values greater than 

Q3+3IQR or less than Q1-3IQR while mild outliers are those between Q3+3IQR to Q3+1.5IQR and those 

between Q1-3IQR to Q1-1.5IQR. In this study, both extreme and mild outliers were removed. This step 

  Mild Outliers 

�Extreme Outliers 

Mild Outliers 

PM2.5 µg/m3 
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was also conducted for all the meteorological variables. After the outliers’ removal, there were 1431 lines 

of records for the 3 km AOD MODIS model and 2851 lines for 10 km AOD model.  

4.4$Model$Construction.$

4.4.1$Multiple$Linear$Regression$Model$

In this project, meteorological parameters and land use information were both taken into the MLR model. 

The MLR model in this study can be expressed by Eq. (4-4): 

453.7 = &2 + &9:; ∙ =>? + &@AB ∙ CDE + &FG ∙ HI + &JKGL:NN ∙ OPI08 + &JKG3N:NN ∙ OPI20 +

&TUVWX ∙ YZ[\] + &^UVWX_ ∙ `Z[\] + &ab ∙ c4 + &b:b ∙ 4de + &f;b ∙ g?4 + &bhiT ∙ 4djY + &;kl ∙

?m5                                                                                                                                                           (4-4) 

where 453.7 is the estimated PM2.5;_&2 is the intercept of this equation; &9:;, &@AB .... are the coefficients 

of corresponding factors; =>? is the MODIS AOD value; CDE and HI are the temperature and relative 

humidity values; OPI08 and OPI20 are the boundary layer height at 8:00 and 20:00; YZ[\] and `Z[\] 

are the Uwind speed and Vwind speed; c4 is the surface pressure; 4de is the population concentration 

while 4djY is the percent of urban area, and ?m5 is the elevation value.  

In this study, the SPSS software was used to build the MLR model. This model was firstly built for 

the whole study period (between September 2014 and August 2015) for both 10 km and 3 km product. Then, 

to determine whether the models are over-fitted, 10-fold cross validations were conducted. The whole 

dataset was split into ten folds and each of them had approximately 10% of the total data points. Then one 

fold was used for validation while the rest nine folds were used for training and this process was repeated 

for every fold.  

Further, seasonal models were constructed to compare 3 km and 10 km AOD products’ 

performances in different seasons. In this study, fall was from September 1, 2014 to November 30, 2015; 

winter was from December 1, 2014 to February 28, 2015; spring was from March 1, 2015 to May 31, 2015 

and summer was from June 1, 2014 to August 31, 2015.  After the seasonal models, regional models were 

built for all the cities to assess the models in smaller spatial scales. 

4.4.2$Geographically$Weighted$Regression$Model$

The GWR model generates a continuous surface of parameters by considering parameters’ spatial 

variations instead of assuming globally constant coefficient. The traditional GWR model on a daily basis 

can be expressed as Eq. (4-5) 

453.7 V,o,X = &2 V,o,X + &9:; V,o,X ∙ =>? V,o,X + &@AB V,o,X ∙ Cm5 V,o,X + &FG V,o,X ∙ HI V,o,X +

&JKGL:NN V,o,X ∙ OPI08 V,o,X + &JKG3N:NN V,o,X ∙ OPI20 V,o,X + &TUVWX V,o,X ∙ YZ[\] V,o,X +
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&^UVWX V,o,X _ ∙ `Z[\] V,o,X + &ab V,o,X ∙ c4 V,o,X + &b:b V,o ∙ 4de V,o + &f;b V,o ∙ g?4 V,o + &bhiT V,o ∙

4djY V,o + &;kl V,o ∙ ?m5 V,o                                                                                                                (4-5) 

where 453.7 V,o,X  is ground-level PM2.5 at location (i, j) on day d; &2 V,o,X  is the intercept of this equation,  

&9:; V,o,X , &@AB V,o,X  and ... are the slopes of corresponding variables. ; =>? V,o,X  is the MODIS AOD 

value at location (i, j) on day d; Cm5 V,o,X  is the temperature at location (i,j) on day d ; HI V,o,X  is the 

relative humidity at location (i, j) on day d; OPI08 V,o,X  is the boundary layer height at 8:00 and 

OPI20 V,o,X  is the boundary layer height at 20:00 at location (i, j) on day d ; YZ[\] V,o,X  is Uwind speed 

and `Z[\] V,o,X  is Vwind speed at location (i, j) on day d ; c4 V,o,X  is the surface pressure at location (i, j) 

on day d; 4de V,o  is the population at location (i, j); g?4 V,o  is the GDP at location (i, j); 4djY V,o  is the 

percent of Urban area at location (i, j); ?m5 V,o  is the elevation at location (i, j). Population, GDP, the 

percent of urban area do not have daily variation so they are constant at the same location during the study 

period.  

To generate this daily GWR model, there have to be at least 12 sites’ data available in one day 

because there are 12 independent variables, otherwise Eq. (4-5) cannot be built or solved. However, 79 

sites’ data are not all valid every day because the AOD data does not cover the whole study area every day. 

For the 3 km MODIS AOD – PM2.5 pairs, 137 days’ data during the study period are valid while 68.88% 

(93 days) of these days have less than 12 sites’ data available within a day. For the 10 km MODIS AOD-

PM2.5 pairs, 181 days have valid data for model construction however, only 55.80% (101 days) of them 

have more than 12 pairs within one day. Thus, if the GWR model is only built for those days with more 

than 12 sites’ AOD available, a considerable amount of information of the rest days would be useless. To 

avoid the loss and the waste those days’ information, in this project, the GWR model is built on an annual 

averaged basis and a seasonal averaged basis instead of a daily basis to generate a local R2 for each PM2.5 

monitoring station.  

In this study, the GWR model was calculated using GWR4 software, which is a Microsoft 

Windows-based application software developed and programmed by Professor Tomoki Nakaya from 

Ritsumeikan University in Japan. In this study, the Gaussian GWR model was chosen as the model type 

because it is suitable for modelling numerical responses while other two model types, the Poisson and 

Logistic GWR model, are suitable for modelling count or binary responses (Nakaya, 2014). The adaptive 

kernel type was chosen due to the uneven distribution of the PM2.5 monitoring sites. Furthermore, the 

“Golden Section Search” was used to automatically determine the best bandwidth size while “AIC” (Akaike 

Information Criterion) was used for bandwidth selection. In general, AIC can be used to determine the 

model which is closest to reality and the best model should have the lowest AIC value (Fotheringham et al., 

2003; Hu et al., 2012).At the same time, AIC can be used to assess whether the GWR model could generate 
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a better result than global regression model. Therefore, a global regression model was also built with the 

same datasets: global regression model generates globally constant coefficient. More introduction of AIC 

can be found elsewhere (Bozdogan et al., 1987). 

Then, the models’ residual was conducted with a spatial autocorrelation analysis. In this study, the 

spatial autocorrelation was analyzed by calculating Moran’s I values in ArcGIS 10.3.1.  The detailed 

introduction of Moran’s I values can be found elsewhere (Hu et al., 2013). Generally, Moran’s I value 

ranges from -1 to +1 (Cliff et al., 1981). When Moran’s I value is greater than zero, it is indicated the 

existence of positive spatial autocorrelations while the negative value of Moran’s denotes the negative 

autocorrelation. If Moran’s I value is near zero, it means there is no spatial autocorrelation (Hu et al., 2013).  

The ideal GWR models should have residuals with no significant spatial autocorrelation (Wang et al., 2005; 

Zhao et al., 2010). In another word, the Moran’s I value should be near zero (Hu et al., 2013).  

After the spatial autocorrelation analysis, a 10-fold Cross Validation (CV) was conducted to verify 

whether the GWR model was over-fitted or not.  

Then seasonal models were also built to identify different seasons’ variation. For the GWR model, 

the analysis based on regional models was not conducted because when the spatial scale became smaller, 

the in-situ monitoring stations’ number was not enough to build the GWR model.  

4.5$Application:$Estimation$of$the$Mortality$Rate$Attributed$to$the$PM2.5$Exceeded$

National$Standard.$$

After determining every cell’s population and corresponding PM2.5 exposure, the non-accidental mortality 

rate attributed to PM2.5 which exceeded could be derived. ER, RR and AF were involved in this section 

(Please refer to Chapter 2 for the definitions and explanations of ER, RR and AF). Based on the relationships 

between ER and RR, and that between AF and RR, AF can be derived by ER and their relationship is 

described by Eq. (4-6): 

AF= (ER / (ER + 100)                                                              (4-6) 

Based on Eq. (2-8), the mortality rate of every cell in this study can be determined by Eq. (4-7): 

∆Cdqrs_\d\ − rtt[]D\qrs_5duqrs[qvwB3.7_ [, x = ede_([, x) ∗ Cdqrs_\d\ −

rtt[]D\qrs_5duqrs[qv_Or|Ds[\D ∗ =}bl3.7 ∗ ∆453.7([, x)                                                                   (4-7) 

where ∆Cdqrs_\d\ − rtt[]D\qrs_5duqrs[qvwB3.7_ [, x  is the total non-accidental mortality rate at 

location [, x  attributed to those PM2.5 concentrations higher than national yearly standard (15µg/m3); 

ede_([, x)  is the population at location [, x ; total non-accidental mortality baseline was 0.647% as 

introduced in the Chapter 2; =}bl3.7  is the attributed fraction of PM2.5 derived from Eq. (4-6); 
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∆453.7([, x) is the difference between the estimated PM2.5 and the national yearly standard at location ([, x). 

This analysis was conducted by ArcGIS 10.3.1. 

4.6$Chapter$Summary$

This chapter provides an overall and comprehensive introduction of the methodology used in this study. 

There are four modules involved in the methodology: AOD validation, data pre-processing, model 

construction and application. Firstly, AOD validation was to validate the MODIS AOD product with the 

ground-level AOD to assess the 10 km and 3 km AOD products’ performance. Then data pre-processing 

module was to pre-process the satellite data, meteorological data, social-economic data and land use data 

for model construction. In the next step, the MLR and GWR models were both built to estimate PM2.5 

concentrations and investigate its spatial distribution. At the last, the number of deaths attributed to long-

term exposure of severe PM2.5 pollutions was also estimated with a spatial distribution.  
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Chapter$5.$Results$and$Analysis$

This chapter presents the discussion and the results. Section 5.1 describes the MODIS AOD validation 

results. Section 5.2 presents the MLR model’s results. The GWR model’s results are followed in Section 

5.3. Section 5.4 discusses the remote sensing’s application in mortality rate estimation. At the last, this 

chapter is summarized in Section 5.5. 

5.1$MODIS$AOD$Validation$

Firstly, the MODIS AOD at 3 km and 10 km resolution products were validated by the AERONET AOD 

measurements. As stated in Chapter 4, after temporal and spatial matching, there were 101 and 30 

collocations, respectively, for the MODIS 10 km AOD-AERONET observations and the 3 km AOD-

AERONET observations in Beijing site. In Xianghe site, the number of valid collocations for the 10 km 

AOD (96) was also higher than that of the 3 km AOD (40). All the satellite derived AOD and ground level 

observed AOD values fell in a reasonable range, 0.01 to 5, proposed by Xie et al. (2011).  Figure 5.1 shows 

the time variations of the MODIS AOD values and the AERONET AOD measurements. As shown in 

Figures 5.1 (a) and (c), the 3 km AOD-AERONET collocations were concentrated in fall (between 

September 1 and November 30), spring (between March 1 and May 3) and summer (between June 1 and 

August 31), while there was only one pair of the AERONET AOD – MODIS 3 km AOD collocation in 

winter (between December 1and February 28). This invalid period might bring a bias when assessing the 

10 km and 3 km AOD products’ performance. As shown in Figures 5.1 (a), (b), (c) and (d), it can be drew: 

(1) both the 10 km and 3 km MODIS AOD products tended to overestimate AERONET observations; (2) 

for Xienghe site, this overestimate was more obvious in summer and for Beijing site, it was more obvious 

in summer and fall; (3) for both MODIS AOD products and AERONET observations, more fluctuation can 

be seen in summer in both sites.  
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(a)! AERONET AOD (Xianghe Site) – MODIS 3 km AOD 

 
(b) AERONET AOD (Xianghe Site) – MODIS 10 km AOD 

 
(c) AERONET AOD (Beijing Site) – MODIS 3 km AOD 

 
(d) AERONET AOD (Beijing Site) – MODIS 10 km AOD 

Figure 5.1 Line charts for the 10 km MODIS AOD and the AERONET observations in Xianghe and Beijing 

sites 
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Figure 5.2 Scatter plots of the MODIS AOD retrievals against the AERONET observed AOD 

 
Table 5.1 Statistics from the collocations shown in Figure 5.2. N= number of valid 
collocations.  EE is ±0.15AOD±0.05 for all cases.  
Station Product Resolution N R2 %below EE %within EE %above EE 

Beijing 
10 km 101 0.76 1.98 55.45 42.57 

3 km 30 0.85 0.00 0.00 100.00 

Xianghe 
10 km 96 0.79 2.08 64.58 33.33 

3 km 40 0.95 2.50 60.00 37.50 

(a) Beijing (10 km AOD) (b) Beijing (3 km AOD) 

(d) Xianghe (3 km AOD) (c) Xianghe (10 km AOD) 

Best Fit Line 
(y=x) 

Linear Regression 
Line 

10 km Product Expected Error (EE) 
Line          ±0.15AOD±0.05 

y"="1.27x"+"0.04"
R²"="0.76"

y"="1.15x"+"0.33"
R²"="0.85 

y"="1.04x"+"0.06"
R²"="0.79 

y"="1.38x"3"0.06"
R²"="0.95 
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Figure 5.1 shows the scatter plots of collocations in two sites, in which red lines denote linear 

regression lines and black lines present the best fit lines (y=x). The black dash lines denote the expected 

error (EE) lines for the MODIS 10 km AOD product over land, ∆! = _±0.05 ± 0.15!, defined by NASA 

(Chu et al., 1998). The statistical information shown in Figure 5.2 is concluded in Table 5.1  

From Figure 5.2 and Table 5.1, it can be found that for Beijing site, 55.45% MODIS 10 km-

AERONET AOD collocations fall within EE lines and 42.57% collocations fall above EE lines, while all 

the MODIS 3 km-AERONET AOD collocations are above EE lines. This means for Beijing site, AOD was 

overestimated by 3 km product, while the 10 km AOD product was closer to the true value. However, R2 

of 10 km (0.76) is 9% lower than that of the 3 km AOD product (0.85), which means the 3 km AOD product 

was better correlated with the true value.  This trend can also be found in Xianghe site’s case: R2 of 10 km 

and 3 km is 0.79 and 0.99, respectively. The 10 km AOD-AERONET AOD collocations were more 

distributed between EE lines (64.58%) while only 60% 3 km AOD-AERONET AOD collocations distribute 

between EE lines. For both cases, the percentage of collocations above EE lines is higher in 3 km than in 

10 km product, which indicates 3 km product tended to overestimate ground-level AOD.   

As a summary, the MODIS 10 km AOD-AERONET AOD and the MODIS 3 km AOD-AERONET 

AOD comparison in Beijing and Xianghe sites were investigated, in which 10 km product provided more 

collocated pairs with AERONET observations than 3 km product with AERONET observation. Meanwhile, 

both 10 km and 3 km MODIS AOD products were well correlated with AERONET AOD. According to 

the above analysis, the 3 km AOD product showed higher bias, while the 10 km AOD product showed more 

uncertainties. Because of the higher bias, the MODIS Atmosphere Team revised 3 km land product’s EE 

to ∆! = _±0.05 ± 0.2AOD (Leigh et al., 2014)  

5.2$Multiple$Linear$Regression$

This section includes the analysis on the annual MLR model, seasonal MLR models and the regional 

MLR models.  

5.2.1$Annual$Model$Results$

This subsection explained the annual MLR models from three aspects: the description of the statistical 

results, the 10-fold cross validation (CV) and an air pollution event during April 23, 2015 and April 28, 

2015, described by daily PM2.5 concentrations.   

5.2.1.1$Statistical$Description$

The annual MLR models were built by both the 10 km and 3 km AOD products with meteorological factors 

and land use information. The mean value of each parameter are shown in Table 5.2.  
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From Table 5.2, it can be learnt that for the dataset extracted by ground-level monitoring stations 

from the valid 3 km AOD and corresponding other parameters, the annual average PM2.5 was 42.14 (µg/m3), 

10 µg/m3 lower than that in the dataset extracted from the valid 10 km AOD. The average AOD value was 

0.77 in the 3 km AOD dataset while that in the 10 km AOD was lower (0.51). The relative humidity was 

33.56% in the 3 km AOD dataset and 27.68% in the 10 km AOD dataset. The temperature was 299.76K in 

the 3 km AOD dataset and 288.79 in the 10 km AOD dataset. The surface pressures in both datasets were 

similar, around 98.50 Kpa. The average Uwind speed was higher in the 10 km AOD dataset (1.38m/s) than 

in the 3 km AOD dataset (0.95 m/s). For the Vwind speed, it was 0.65m/s in the 3 km AOD dataset while 

in the 10 km AOD dataset, the wind speed was 0.11m/s from the negative direction. In terms of the BLH 

in the 3 km AOD dataset, the average value acquired at 8:00 and 20:00 were 1.61 km and 0.11 km, 

respectively, and those in the 10 km AOD dataset were 1.32 km and 0.15 km. The average elevation in the 

3 km AOD dataset was 81.57 m, which was 10 m lower than that in the 10 km AOD dataset. For the percent 

of the urban area, it was 67.67% in the 3 km AOD dataset and 42.01% in the 10 km AOD dataset. This is 

because most of the ground-level monitoring stations are located in urban areas, so the area closer to the 

monitoring stations was more likely to be an urban area. Thus, with the increase of the grid size, more non-

urban areas were likely to be contained in the same grid. So the percent of urban area tended to be decreased 

with the increase of the grid size. Because the different grids’ sizes, GDP and population within a pixel 

were remarkably different in two dataset. The averaged GDP was RMB 120,000 yuan in the 3 km AOD 

dataset and RMB 890,000 yuan in the 10 km AOD dataset. For the averaged population within a grid, it 

was 60,000 people in the 3 km AOD dataset and 530,000 people in the 10 km AOD dataset.  

 
Figure 5.3 Scatter plots for the MLR Model’s results between the ground-measured PM2.5 and the predicted 

PM2.5 concentrations from (a) the 3 km AOD model, and (b) the 10 km AOD model 
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Table 5.2 3 km AOD and 10 km AOD annual MLR models’ results for all independent variables. 

Factors 
3 km AOD MLR Model 10 km AOD MLR Model 

Mean Coefficient Sig. VIF Mean Coefficient Sig. VIF 

PM2.5 (µg/m3) 42.14   52.27   

Constant   -22.51 0.74     195.45 0.00   

AOD 0.77 3.59 0.00 1.67 0.51 82.27 0.00 1.4 

Relative Humidity (%) 33.56 -59.84 0.00 2.19 27.68 -108.89 0.00 1.6 

Temperature (K) 299.76 0.93 0.00 1.94 288.79 Not Significant 

Surface Pressure(KPa) 98.11 -2.01 0.00 4.16 98.86 -1.07 0.00 4.13 

Uwind Speed (m/s) 0.95 Not Significant 1.38 2.34 0.00 1.32 

Vwind Speed (m/s) 0.65 0.13 0.00 1.46 -0.11 Not Significant 
Boundary Layer Height at 

8:00 (km) 1.61 -122.26 0.00 2.14 1.32 -3.42 0.00 1.18 

Boundary Layer Height at 
20:00 (km) 0.11 188.53 0.00 1.04 0.15 -162.46 0.00 1.06 

GDP (RMB 1000 Yuan) 119.22 0.03 0.00 10.8 887.27 0.002 0.00 1.07 

Elevation (m) 81.57 -0.30 0.00 4.28 91.96 -0.26 0.00 4.27 

Population (1000 People) 62.81 0.04 0.00 1.12 534.43 Not Significant 

Percent of Urban Area (%) 61.67 Not Significant 42.01 Not Significant 
Mean: the averaged value of each independent variable; 

Coefficient: the coefficient of each independent variable in specific regression model; 

Sig.: significance level. Sig.=0.00 indicate the variable is statistically significant at the 0.00 level.  

VIF: variance inflation factor 

Confidence levels of the MLR models have been assessed by using F tests for each parameter. The 

results of this study were significant with 95% confidence level (α = 0.05). Figure 5.3 shows the scatter 

plots of MLR models’ results between monitoring stations measurement and predicted PM2.5 

concentrations generated from the 3 km AOD model (Figure 5.3.(a)) and the 10 km AOD model(Figure 

5.3.(b)). There were 1431 data points in the 3 km AOD product and 2851 data points in the 10 km AOD 

model in total. In these two scatter plots, the red colour means the high density of data points. It can be 

noticed that in the 3 km AOD MLR model, ground measured PM2.5 concentrations ranged from 0 to 140 

(µg/m3) and the predicted PM2.5 ranged from 0 to 90 (µg/m3). These ranges for the 10 km AOD MLR 

model were relatively broader: the ground measured PM2.5 was from 0 to 240 (µg/m3) and the predicted 

PM2.5 was from 0 to 170 (µg/m3). The coefficient of determination (R2) for the 3 km AOD MLR model 



   

 

57 

was 0.44 and that of the 10 km AOD MLR model was 0.55: the 10 km AOD MLR model could explain 

55% of the variability, while the 3 km AOD MLR model could only explain 44% of the variability. The 

slops of 3 km and of the 10 km AOD MLR model were 0.42 and 0.54, respectively, while their intercepts 

were similar around 24. This means both of the models tended to overestimate the ground-level PM2.5 

concentrations when PM2.5 was lower than 42-52 (µg/m3) while when PM2.5 concentration was higher 

than this level, two models tended to underestimate the real values. Specifically, this overestimation and 

underestimation were more severe in 3 km AOD MLR model. The root-mean-square deviations (RMSE) 

of two model indicate the average magnitude of the forecast errors was 23.72 in the 3 km AOD MLR model 

and was 32.50 in the 10 km AOD MLR Model: the 10 km AOD MLR model predicts PM2.5 with more 

errors though it has better coefficient of determination. This was mainly because the range of the predicted 

PM2.5 was 0-90 (µg/m3) in the 3 km AOD MLR model and was 0-170 (µg/m3) in the 10 km AOD MLR 

model: the boarder range might bring higher predicted error even the 10 km AOD MLR model had a higher 

R2.  The Mean Absolute Percent Error (MAPE) refers to the percentage of the over-forecasted or under-

forecasted part. The 3 km AOD MLR-predicted PM2.5 had a higher MAPE (91.09%) than that of PM2.5 

predicted by the 10 km AOD product.  

The coefficient, significance level and variance inflation factor (VIF) of each variable in two annual 

MLR modes are shown in Table 5.2. For the MLR model derived from the 3 km AOD product, Uwind 

speed and the percent of urban area were not significant while in MLR model derived from the 10 km AOD, 

temperature, Vwind speed, population and the percent of urban area were all not significant. The VIF of all 

the significant parameters in two models all ranged from 0 to 10, which means there was no significant 

multicollinearity between independent variables (Okazaki et al., 2014). In terms of the coefficient, AOD, 

Uwind and Vwind speed, GDP and population in both models showed positive values of coefficient which 

means with the increase of these parameters, PM2.5 increased. Meanwhile, the coefficient of relative 

humidity, surface pressure, BLH at 8:00 and elevation were all negative values, which demonstrated that 

PM2.5 increased with the decrease of these parameters.  

5.2.1.2$10)Fold$Cross$Validation$

To assess whether the models were over-fitted, a 10-fold CV was conducted after the annual MLR model 

construction. CV’s scatter plots are shown in Figure 5.4. The predicted PM2.5 in CV of two models had 

similar ranges with those of annual MLR models: the predicted PM2.5 of the 3 km AOD Model’s CV was 

from 0 to 90 (µg/m3) and that of the 10 km AOD model’s CV ranged from 0 to 160 (µg/m3). R2 of the 3 km 

AOD MLR CV was 0.40, lower than that of the 3 km AOD MLR model. Similarly, in the 10 km AOD 

MLR model, CV’s R2 (0.53) was a little bit lower than that of the MLR model. This means both MLR 

models were slightly over-fitted. In 10-fold CV, RMSE of the 3 km AOD MLR model (24.52) was still 
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lower than RMSE of the 10 km AOD MLR model (39.12). However, for MAPE, it was 91.73% in CV of 

the 3 km AOD MLR model, lower than that of the 10 km AOD MLR CV (92.40%), which was opposite 

with the MAPE’s pattern in predicted models as shown in Figure 5.3.  

 
Figure 5.4 Scatter plots for 10 – fold CV of the MLR model from (a) the 3 km AOD model, and (b) the 10 

km AOD model 

5.2.1.3$An$Air$Pollution$Event$$

Based on the annual MLR model, every day’s PM2.5 concentration map in the BTH region was generated. 

To present the daily PM2.5 concentrations, in this sub subsection, an air pollution event between April 23, 

2015 and April 28, 2015 is presented and described. Figure 5.5 shows the PM2.5 distributions generated 

by the 3 km AOD MLR model during this event period and Figure 5.6 presents the PM2.5 distributions 

derived from 10 km MLR model during the same period. In Figure 5.5, the predicted PM2.5 in six figures 

ranges from 0 to 120 (µg/m3): red colour denotes high PM2.5 concentration and blue colour denotes low 

concentrations. On April 23, 2015 (Figure 5.3(a)), the highest PM2.5 concentrations derived from the 3 km 

AOD MLR model were around 90 µg/m3 and distributed in Cangzhou, Hengshui and the eastern part of 

Baoding in Hebei Province. Beijing, Shijiangzhuang and Chengde in Hebei Province had relatively lower 

PM2.5 concentrations. Because of the lack of valid AOD data, PM2.5 concentrations of other cities are 

unknown, such as Handan, Zhangjiakou in Hebei Province and Tianjin. In April 24, PM2.5 concentrations 

in Baoding, Tianjin, Beijing, and Baoding Hebei Province were all increased around 60 -90 µg/m3. In the 

next day (Figure 5.3 (c)), PM2.5 concentrations in the eastern BTH region kept increasing, especially in 

Tianjin, while the PM2.5 in Zhangjiakou, western Baoding and western Shijiazhuang Hebei Province were 

dissipated to some extent. On April 26 (Figure 5.5 (d)),� Beijing, Tianjin, Qinhuangdao, Langfang, 

Cangzhou, Hengshui, the north of Chengde and the north of Shijiazhuang in Hebei Province were all 
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covered with PM2.5 concentration higher than 90 µg/m3 and the PM2.5 in some part in Beijing, Langfang 

and Tianjin reached the highest value, 120 µg/m3. Those areas along the western border of the BTH region 

had relatively less PM2.5 pollution. April 26 can be regarded as the mostly polluted day during this air 

pollution event. After 24 hours, from the limited amount of pixels in Tianjin, Tangshan, Cangzhou and 

Langfang in Hebei Province, it can be found the PM2.5 concentrations were dissipated in a large extent. 

However, due to the lack of valid PM2.5 estimation in Beijing, Zhangjiakou and Chengde in Hebei Province, 

it is hard to learn the PM2.5’s change in those areas. In the last day, as shown in Figure 5.5 (f), most of the 

valid pixels roughly illustrated a clear air in the BTH region.  

However, compared with the 10 km AOD MLR model derived PM2.5 in this period, the 3 km AOD 

MLR model tended to overestimate the PM2.5 concentrations in the BTH region. Figure 5.6 shows the 

process of air pollution’s accumulation and dissipation in this event derived from the 10 km AOD MLR 

model. The predicted PM2.5 in six figures ranged from 0 to 80 (µg/m3): red colour also denotes high PM2.5 

concentration and blue colour denotes low values.  Another difference is, compared with the 3 km AOD 

MLR model, the 10 km AOD MLR model provided greater coverage. For example, in April 25, the PM2.5 

concentrations in northern part of Chengde in Hebei Province was unknown in the map of the 3 km AOD 

model (Figure 5.6 (c)), while in the map mapped by the 10 km AOD model (Figure 5.6 (c)), PM2.5 in the 

northern Chengde in Hebei Province was estimated around 30 (µg/m3) with a greater coverage. However, 

with a higher resolution, 3 km AOD MLR model could show model variations on the ground. This is also 

explained in Section 5.3.1 in detail.  
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Figure 5.5  3 km AOD model-predicted PM2.5 concentrations from April 23 to 28, 2015 
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Figure 5.6 10 km AOD model-predicted PM2.5 concentrations from April 23 to 28, 2015 

5.2.2$Seasonal$Model$

After the annual MLR model construction, seasonal models were also built to determine MLR models’ 

performance in different seasons. 

The statistical results of two models in four seasons are shown in Table 5.3. The counts of the 

training samples in fall and spring were higher in the 10 km AOD MLR models than in the 3 km AOD 

MLR models. On the contrary, the count of the training samples in summer was higher in the 3 km AOD 
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MLR model (641) than in the 10 km AOD MLR model (472). The count of the training samples in winter 

was only 27 in the 3 km AOD MLR model, which was the smallest count between four seasons. In contrast, 

winter’s training samples’ count (1127) was the greatest one between four seasons in the 10 km MOD MLR 

model and it has 1100 samples more than that of the 3 km MLR model, which was an extreme difference. 

So the different structure of the samples’ counts in four seasons might be one of the reasons which 

introduced basis in the annual MLR models, and it might also result in different performance of two models 

in four seasons.  

Table 5.3  Statistical results from seasonal MUL models 

Season 

3 km AOD model  10 km model  

N R2 
RMSE 
(µg/m3) 

MAPE 
(%) N R2 

RMSE 
(µg/m3) 

MAPE 
(%) 

Fall 322 0.42 20.38 99.99 420 0.49 23.97 98.69 

Winter 27 0.78 6.78 35.84 1127 0.7 32.02 80.43 

Spring 467 0.46 24.58 81.56 832 0.6 27.91 67.52 

Summer 614 0.48 22.82 71.92 472 0.51 23.72 63.32 

Mean 357.5 0.54 18.64 72.3275 712.75 0.58 26.905 77.49 

N: Number of the training samples.  

R2: Coefficient of determination 

RMSE (µg/m3): Root-Mean-Square Error 

MAPE (%): Mean Absolute Percent Error  

 

For the 3 km AOD MLR model, compared with the annual model, R2 was slightly improved to 

0.46 in the spring model and to 0.48 in the summer model. For the winter model. R2 was significantly 

improved to 0.78 and RMSE and MAPE were also decreased in a large extent compared with the annual 

model. However, the model has worse performance in fall (R2 = 0.42). Meanwhile, for the 10 km AOD 

MLR model, R2 was also highly improved in the winter model (R2 = 0.7) and the fall model also has the 

lowest R2 in four seasons.  

By comparing both the 3 km and 10 km AOD seasonal MLR models, it can be found that except 

winter, R2 of the seasonal MLR models with the 3 km AOD were still lower than with the 10 km AOD 

model during three other seasons.  The average R2 of four seasons’ 3 km AOD MLR model was 0.54, 0.10 

higher than annual model; average R2 from seasonal model was only improved 0.03. 
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It can be concluded that winter model performed better than the other three seasons’ model for both 

the 3 km and 10 km AOD models and MLR models had the worst performance in fall with both AOD 

product. Please refer to Appendix II for each parameter’s mean value, coefficient and significance.  

5.2.3$Regional$Model$

As introduced in Section 5.2.1, the counts of the training samples were different in four seasons and this 

difference might bring basis. Similarly, counts of the valid training samples were also different between 

cities. Figure 5.7 shows the valid training samples’ total counts of each city from the 3 km AOD model and 

the 10 km AOD model. The difference between the counts were not only a result of the AOD coverage, but 

also because each city has different numbers of in-situ monitoring stations. Please refer to Appendix I for 

the information in each city’s in-situ stations.  

From Figure 5.7, it can be found for the 3 km AOD model, the count of each city’s training samples 

was from 36 to 272 and for the 10 km AOD model, and their counts were higher, from 94 to 1650. As a 

whole, the central BTH region, including Beijing, Baoding, Tianjin, Shijiazhuang, and Tangshan in Hebei 

Province, tended to have more training samples, on the contrast, northern and southern parts of the BTH 

region tended to have less training samples, such as Zhangjiakou Xingtai and Handan in Hebei Province. 

No matter for the 3 km or 10 km AOD model, Beijing has the highest counts of sample. This spatial structure 

of sample’s counts may affect the whole area derived-model’s performance in different cities.  
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Figure 5.7 Training samples’ count of each city from (a) the 3 km AOD model and (b) the 10 km AOD 
model 

The statistical results of each city’s model are shown in Table 5.4 and Figure 5.8 presents the 

regional MLR’s R2 in a box plot. It can be found for regional models with the 3 km AOD, all the cities’ R2 

was lower than 0.44 (R2 of the model based on whole study area) except Hengshui (R2 = 0.47). Moreover, 

the MLR model could not even be built with Cangzhou and Handan’s dataset because the independent 

variables were not significant and could not explain any variations. This indicates building the models with 

smaller spatial scales could not help 3 km AOD MLR models to improve the model performance and the 

relevant research should be based on a larger spatial scale when using the 3 km AOD product.  Also, it also 

suggests more in-situ stations should be built to increase the training samples’ counts and the performance 

of models.  

 

 

 

 

 (a)   (b)  
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Table 5.4 Regional MUL models’ results 

Cities 
3 km AOD 10 km AOD 

N R2 RMSE 
(µg/m3) 

MAPE 
(%) N R2 RMSE 

(µg/m3) 
MAPE 

(%) 
Baoding 155 0.10 28.82 45.61 165 0.51 37.52 99.12 

Beijing 272 0.16 27.63 54.06 620 0.63 27.38 79.45 

Cangzhou 37 Model cannot be built 168 0.64 25.42 93.48 

Chengde 87 0.11 24.02 99.99 200 0.59 14.59 78.19 

Handan 59 Model cannot be built 98 0.40 38.58 55.23 

Hengshui 55 0.47 10.20 56.86 115 0.68 24.96 53.51 

Langfang 91 0.06 23.86 118.62 180 0.65 32.44 83.31 

Qinhuangdao 96 0.23 16.38 82.86 94 0.46 17.01 70.73 

Shijiazhuang 184 0.18 23.93 83.18 248 0.46 32.52 78.89 

Tangshan 141 0.27 25.78 86.65 350 0.56 34.42 89.81 

Tianjin 133 0.32 23.40 66.44 404 0.70 31.60 64.04 

Xingtai 84 0.09 12.48 88.13 94 0.53 34.12 72.88 

Zhangjiakou 36 0.30 20.84 87.35 113 0.56 16.30 66.83 

Mean 110 0.21 21.58 79.07 219.15 0.57 28.22 75.81 

 

 
Figure 5.8 Box-Plot of the regional MLR models’ R2 

R2 of Regional Models 
from 10 km Product 

R
2
 of Regional Models 

from 3 km Product 



   

 

66 

On the contrast, with a smaller spatial scale, the 10 km AOD regional models’ R2 of most cities 

increased from 0.55 (R2 of the model based on whole study area) except Baoding, Handan, Qinhuangdao, 

Shijiazhuang and Xingtai in the Hebei Province. R2 of all the cities were ranged from 0.46 to 0.7 and the 

average R2 of each city was 0.57, which indicated the smaller spatial scale helped the 10 km AOD MLR 

model to improve the estimation performance and also helped to study the spatial variation within a region.  

5.3$Geographically$Weighted$Regression$Model$

In this section, the GWR model was explained from two aspects: an annual model and seasonal models.  

5.3.1$Annual$Model$

The statistical results of the GWR model, including AIC, local R2, RMSE, MAPE and Moran’s I value, are 

shown in Table 5.5. As introduced in Chapter 4, a 10-fold CV was also conducted and the same statistical 

results of CV are also shown in Table 5.5. At the same time, to assess whether the GWR model could 

improve estimation accuracy, the global regression’s results are also listed in the same table.  

Table 5.5  Statistical results of the GWR model, 10-fold CV for the GWR model and the corresponding 

MLR model from the 3 km and 10 km AOD products. 

Model Type N AIC Local R2 RMSE 
(µg/m3) 

MAPE 
(%) Moran’s I 

3 km AOD 

GWR Model 79 539.40 0.82-0.96 5.83 0 0.08 

10-Fold CV for 
GWR 79  0.81-0.96 8.69 9.37 0.03 

Global Regression 
Model 79 552.65 0.90 7.24 8.12  

10 km AOD 

GWR Model 79 533.62 0.83-0.95 5.61 6.63 -0.03 

10-Fold CV for 
GWR 79  0.82-0.96 10.02 10.95 0.16 

Global Regression 
Model 79 548.19 0.91 7.17 10.47  

 

In this study, the GWR model was based on the annual average data of each monitoring station, so 

the number of training samples for the GWR model, CV and global regression was all of 79. When 

determining whether the models’ residual had spatial autocorrelation, it should be noticed in Table 5.5 that 

no matter for the GWR model or the global regression model with the 3 km or 10 km product, Moran’s I 

were all near zero. As mentioned in Chapter4, negative value of Moran’s I denote a negative autocorrelation 

while positive values means the existence of positive spatial autocorrelation. In this situation, the ideal 

GWR model’s Moran’ I value should be near zero, otherwise, other spatial models, such as spatial lag, 
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should be used instead of the GWR model. Therefore, GWR models built in this study were qualified for 

further analysis.  

In terms of AIC, the 3 km AOD GWR model’s AIC was 539.40, lower than AIC of the 3 km AOD 

global regression model (552.65). For 10 km GWR model, AIC was 533.62, which was also lower than the 

10 km AOD global regression model’s AIC (548.19). As mentioned in Chapter 4, a lower AIC indicates an 

increase of the estimation results. Therefore, in this study, no matter the 3 km or 10 km AOD GWR model, 

GWR model performed better in predicting PM2.5 concentrations than global regressions did. Meanwhile, 

AIC of the 3 km AOD GWR model was slightly higher than AIC of the 10 km AOD GWR model, which 

indicates when using the GWR model, the 10 km AOD model still has a higher accuracy than 3 km AOD 

models.  

From Table 5.5, it can be learnt local R2 of the 3 km AOD GWR model was from 0.82 to 0.96 and 

its CV’s local R2 had a similar range: 0.81 to 0.96. For the 3 km AOD product, the GWR model had a local 

R2 ranged from 0.83-0.96 and its CV’s local R2 was also similar. To decide whether GWR models were 

overestimated or not, Figure 5.9 shows the box-plot of GWR models and CVs’ local R2. From this table, it 

can be found for the 3 km AOD model, although the median local R2 of CV was slightly higher than that 

of the GWR model, first quartile and third quartile of local R2 of the GWR model and CV were similar. 

Thus it can be concluded the 3 km AOD GWR model was not over-fitted. On the contrast, for the 10 km 

AOD model, it can be found from Figure 5.9 that although the GWR model and CV had similar ranged, 

0.83 was an outlier of the GWR model’s local R2 and the GWR model’s actual local R2 range should be 

from 0.86 to 0.95. Therefore, it can be carefully concluded that, the 10 km AOD GWR model was slightly 

over-fitted but this over-fitting was at an acceptable level.  
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Figure 5.9 Local R2 of GWR models and corresponding CVs from two AOD products 

Comparing the 3 km AOD GWR model’s RMSE and MAPE (Table 5.5) with those of global 

regression, it can be found the GWR model brought with more accuracy. Meanwhile, the 10 km AOD GWR 

model also has a higher accuracy than its global regression.  

Then based on the 3 km and 10 km AOD WGR model, the estimations of annual average PM2.5 

distribution were mapped in Figure 5.10. As a whole, the 3 km AOD GWR model (Figure5.10 (a)) and the 

10 km AOD model (Figure 5.10 (b)) present similar spatial distributions of PM2.5 concentrations. In these 

two figures, red colour denotes high PM2.5 while blue colour indicates relatively clean air. The estimated 

PM2.5 concentrations were ranged from 0 to 110 (µg/m3).  

10 km AOD 
GWR 

10 km AOD 
GWR CV 

3 km AOD 
GWR CV 

3 km AOD 
GWR 

Local R2 
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Figure 5.10 Estimated PM2.5 generated by the annual GWR model from (a) the 3 km AOD product, (b) 

the 10 km AOD and (c) the average PM2.5 of each city from their ground-level monitoring stations 

Figure 5.10 (c) shows the each city’s average PM2.5 concentrations from their ground-level 

monitoring stations during the research period and this figure is as same as Figure 3.4. As shown in Figure 

5.10 (a) and (b), the mountainous area and the plateau region (Chengde and Zhangjiakou) had low 

concentrations of PM2.5 (10 to 45 µg/m3). Beijing, Tianjin, Qinhuangdao, Tangshan, Langfang and 

Cangzhou in Hebei Province had median levels of PM2.5 pollutions: 20-85 (µg/m3). It should be noticed 

that Tianjin harbour, marked with a red square in Figures (a) and (b), had a much higher value of PM2.5 

(85.36 µg/m3) than other areas in Tianjin (around 70-75 µg/m3). This also proved that the transportation 

was an important source of PM2.5. The rest cities, Baoding, Shijiazhuang, Xingtai, Handan, and Hengshui 

in Hebei Province were polluted with the highest level of PM2.5 (80-110 µg/m3) in the BTH region. This 

distribution agreed with the ground level monitoring data.  

Figure 5.10 (c) is generated only by the monitoring stations clustered in urban area. However, 

ground-level monitoring stations measurement actually could only represent a limited area around the 

station. That is to say, the rest of the area’s PM2.5 was not able to be taken into consideration when 

calculating the average value of this city and when mapping Figure 5.10 (c). Additionally, Figure 5.10 (c) 

could not present the variation of PM2.5 concentrations in those areas without ground-level monitoring 

stations. Speaking of the variation, the 3 km AOD GWR model was able to present more variations than 

(a)  (b)  (c)  
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the 10 km AOD GWR model did. Figure 5.11presents the PM2.5 concentrations in Beijing estimated by 

the 3 km AOD GWR model (see Figure 5.11 (a)) and the 10 km AOD GWR model (see Figure 5.11 (b)). 

Though Figure 5.11estimated PM2.5 in Beijing with similar distribution and level from 20 to 85µg/m3, the 

3 km AOD generated map can present more variations no matter within the urban area or along the 

administrative boundary. However, due to the combination and influence of meteorological dataset with 

lower spatial resolution (0.125°×0.125°), the grids’ patterns of meteorological dataset can be easily 

identified in the PM2.5 concentrations’ map generated by the 3 km AOD GWR model (see Figure 5.11(a)).  

 

Figure 5.11 Estimated PM2.5 generated by the GWR model from (a) the 3 km AOD product and (b) the 10 

km AOD product in Beijing 

5.3.2$Seasonal$Model$

After the annual model, seasonal model was also generated to learn each season’s characteristics in PM2.5 

pollution and to assess the GWR model’s performance in four seasons. As mentioned in Section 5.2.2, in 

this study, winter season was in lack of the 3 km AOD training samples, and once the number of the training 

sample was too low, the GWR model’s construction would be failed (the reason has been explained in 

Chapter 4). As a consequence, winter model of the 3 km AOD GWR model was failed to be built. The 

statistical results of other seasons are shown in Table 5.6. For all the other seasons in the 3 km and 10 km 

AOD GWR models, the numbers of training samples were all 79. At the same time, Moran’s I of models 

were all near zero.  

 

(a)  (b)  
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Table 5.6 Statistical results of seasonal GWR models from the 3 km and 10 km AOD products 

Model Type N Local R2 RMSE (µg/m3) MAPE (%) Moran’s I 

3 km AOD GWR 
Model 

Fall 79 0.64-0.96 9.19 8.49 0.06 

Winter Model construction was failed due to the limited number of training 
samples (see Section 4.4.2) 

Spring 79 0.74-0.92 9.29 7.08 -0.2 

Summer 79 0.61-0.84 8.65 7.25 0.02 

10 km AOD GWR 
Model 

Fall 79 0.69-0.95 8.1 8.73 0.09 

Winter 79 0.83-0.96 8.82 7.32 -0.04 

Spring 79 0.75-0.93 7.26 5.06 -0.22 

Summer 79 0.62-0.85 9.27 6.92 0 
 

 

 
Figure 5.12 Local R2 of seasonal GWR models from (a) the 3 km AOD product and (b) the 10 km AOD 

product. 

Figure 5.12 shows box-plots of all the models’ local R2. From Table 5.6 and Figure 5.12, it can be 

found for the 3 km AOD seasonal GWR model, the spring model had a relatively higher and clustered range 

of local R2 (0.74-0.92). Compared with other two seasons’ models, the summer model had a lower range of 

local R2 (0.61-0.84). This indicate the spring model has the best performance while the GWR model in the 

winter did not perform as good as in the other two seasons. For winter, this sequence was the winter model 

(a) (b) 

Fall Spring Summer Fall Spring Summer Winter 
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(0.83<local R2<0.96), the spring model (0.75<local R2<0.93), the fall model (0.69<local R2<0.95) and the 

summer model (0.62<local R2<0.85). Comparing the local R2 in the same season of two AOD products’ 

models, it can also be drew that 3 km and 10 km AOD had similar performance in the same season.  

Following the seasonal GWR model, PM2.5 concentration’s distribution were mapped and shown 

in Figures 5.13 (fall and winter) and 5.14 (spring and summer). To make it easier to learn PM2.5’s change 

trend during the study period, the same colour bar was used in all estimated maps, ranged from 0 to 

130µg/m3. Moreover, the ground-level monitoring stations’ averaged PM2.5 concentration of each city was 

also mapped for each season. When studying the seasonal trend of PM2.5 concentrations from GWR model 

-generated results, it could be concluded that, fall and winter had the more severe PM2.5 pollution while 

spring and summer were polluted less in general. Among these seasons, PM2.5 pollution was most severe 

in winter (see Figure 5.13(d)). In addition, the high values of PM2.5 (around 110-130 µg/m3) were 

distributed in Baoding, Shijiazhuang, Xingtai, Hengshui and Handan in Hebei Province. By comparing the 

PM2.5’s spatial distribution generated by two AOD products in the same season, it should be noticed that, 

in general, they have similar estimations in fall (see Figures 5.13 (a) and (b)), spring (see Figures 5.14 (a) 

and (b)) and summer (see Figures 5.1 (d) and (e)). These estimation agreed with the distribution generated 

by ground-level monitoring stations’ measurements. However, some difference between the predictions 

from two AOD products’ model can be observed. For example, when we take the 10 km AOD GWR model 

as the basis to discuss, the 3 km AOD GWR model tended to underestimate the western and eastern part of 

Handan in fall (see Figures 5.13 (a) and (b)); the 3 km AOD GWR model also tended to slightly 

underestimate PM2.5 in Baoding and Handan in Hebei Province; however, it estimated slightly higher 

PM2.5 in Zhangjiakou and Beijing in summer than the 10 km AOD GWR model did.  

However, these bias between two products’ estimated results can hardly be validated because there 

was no monitoring station in those areas. In addition, the circumstance in the past cannot be retrieved even 

the monitoring stations could be built in the future. However, building more ground-level monitoring 

stations will contribute to adding more “control points” and to increasing the estimation accuracy in the 

whole region.  
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Figure 5.13 Estimated PM2.5 generated by the seasonal GWR model from (a) the 3 km AOD product in 

fall , (b)the 10 km AOD product in fall, (c) the 10 km AOD product in winter, (d) the average PM2.5 of 

each city in fall, and (e) in winter from their ground-level monitoring stations 

(a) (b) (d)  
 

(c) (e)  
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Figure 5.14 Estimated PM2.5 generated by the seasonal GWR model from (a) the 3 km AOD product in 

spring, and (b) in summer, (c) the 10 km AOD product in spring, and (d) in summer,  (e) the averaged 

PM2.5 of each city in spring, and (f) in summer from their ground-level monitoring stations. 

(a)  
 

(b)  
 

(e)  
  

(d)  
 

(f)  
  

(c)  
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5.4$Application:$The$Number$of$Deaths’$Estimation$

Based on the annual GWR model generated in Section 5.3.1 and the method to estimate the number of 

deaths (Section 4.5), the number of the non-accidental deaths attributed to the PM2.5 concentration 

exceeding national standard (15 µg/m3) during the study period were produced. Figure 5.15 shows the 

estimation results of the number of the non-accidental deaths: Figure 5.15 (a) demonstrates the number of 

deaths within a pixel generated by the GWR model based on the 3 km AOD and Figure 5.15 (b) shows that 

of the 10 km AOD GWR model. Because the grids’ sizes were different, the highest number of deaths in 

Figure 5.15 (b) was higher than that of Figure 5.15 (a). Then the sum of each city’s total deaths attributed 

to the exceeded PM2.5 was also calculated and this result from the 3 km AOD GWR model is shown in 

Figure 5.15 (c). Because that from 10 km AOD GWR model delivers the same information with Figure 

5.15 (c) so it is not presented in this thesis.  

 

Figure 5.15 Number of the non-accidental deaths estimated by the GWR model based on (a) the 3 km AOD 

product, (b) the 10 km AOD product, and (c) the sum of the total deaths’ number in each city generated by 

Figure 5.15(a). 

 (*number of the deaths: the deaths number shown in this figure denotes the non-accidental deaths 

attributed to long-term exposure to the PM2.5 exceeding Chinese national standard) 

The total non-accidental deaths attributed to the excessive PM2.5 was 33104 estimated by the 3 km 

AOD GWR model’ result (see Figure 5.15(a)) and was 33, 357 estimated by the 10 km AOD GWR model’s 

(a)  
 

(b)  
  

(c)  
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result (see Figure 5.15 (b)). There were three obvious hot spots of deaths in Beijing, Tianjin and 

Shijiazhuang, which might be owing to the high density of their population. However, when it comes to the 

sum of a city’s whole deaths attributed to PM2.5 exceeding 15 µg/m3, Baoding had the largest number of 

deaths (4, 452). Additionally, the number of deaths in Shijiazhuang, Beijing and Handan all exceeded 4000. 

Chengde and Zhangjiakou, with the lowest annual average PM2.5 concentrations, had the lowest deaths’ 

number (270 and 447, respectively) in the BTH region.  

Traditional statistical documents only provide the mortality rate or the population of a region or 

city. In this study, with the help of remote sensing, it can be learned where, statistically, the mortality risks 

increased the most. Thus, this section gives an example of how to apply remote sensing techniques in other 

fields, such as public health. 

 

5.6$Chapter$Summary$

This chapter shows the major results obtained based on the methodology. Firstly, the MODIS AOD 

products were validated with the AERONET AOD and the results showed both the 3 km and 10 km AOD 

products tended to overestimate the AERONET AOD. At the same time, the 3 km AOD showed higher 

bias while 10 km product showed more uncertainties. Secondly, no matte for annual or seasonal MLR 

models, the 10 km AOD MLR model showed higher accuracy than the 3 km AOD MLR model. Then, an 

air pollution event in April 2015 was also described by using daily PM2.5 concentrations derived from the 

MLR model. Thirdly, seasonal MLR models could help both the 3 km AOD and 10 km AOD to improve 

the estimation accuracy, but regional models could only help the 10 km AOD model to increase the 

estimation accuracy. For the seasonal models, the MLR models performed better in winter than in three 

other seasons. Fourthly, the GWR model performed better in predicting PM2.5 concentrations than global 

regressions did. In addition, when using the GWR model, the 10 km AOD models still had a slightly higher 

accuracy than 3 km AOD models. However, 3 km AOD models could present more local variations. For 

seasonal GWR models, 3 km and 10 km AOD GWR models had a similar performance in the same season. 

At the last, the number of deaths attributed to those PM2.5 concentrations which exceeded Chinese national 

standard was estimated. The results showed the total deaths reached 33,100 in the BTH region during study 

period and this number was highest in Baoding (4452). At the same time, three hot-spots of deaths could 

be observed in Beijing, Tianjin and Shijiazhuang.  
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Chapter$6.$Conclusions$and$Recommendations$

This chapter presents key findings responding to research objectives of this study, the limitation and 

contribution of this research, and the suggestions for future studies.   

6.1$Key$Findings$Responding$to$Research$Objectives$

This study aims to estimate PM2.5 concentrations in the BTH region using MODIS AOD products, 

meteorological datasets and land use information based on MLR and GWR models. The key findings 

responding to each specific objective are summarized below.   

6.1.1$Objective$1:$MODIS$3$km$and$10$km$AOD$Products’$Validation$

3 km AOD product was released in 2014 as a part of MODIS Collection 6 product. Until now, 3km AOD 

product has not been widely used in the BTH region. One of this study’s achievements is the validation of 

the 3 km AOD product in the BTH region.  

By comparing the 3 km MODIS AOD with AERONET AOD and 10 km MODIS AOD with  

AERONET AOD, both the 3 km and 10 km AOD products had a good correlation with AERONET AOD 

and this correlation was observed better in the 3 km AOD validation; both the 3 km AOD and 10 km AOD 

products tended to overestimate ground-measured AOD and this overestimation was more severe in the 3 

km AOD validation. As a whole, 3km AOD product shows higher bias but better correlation with the true 

values while the 10 km AOD showed more uncertainties in predicting ground-level AOD.  

6.1.2$Objective$2:$MODIS$3$km$and$10$km$AOD$Products’$Assessment$in$PM2.5$

Estimation 

PM2.5 concentrations was estimated by the MODIS 3 km and 10 km AOD products along with 

meteorological datasets and land use surrogates.  All cities’ annual averaged PM2.5 exceeded Chinese 

national standards. In addition, different seasons and cities present varied characteristics. 

By comparing the MODIS 3km and 10 km AOD products, it was found the 10 km AOD had a 

much better accuracy in PM2.5 estimation. Meanwhile, the 10 km AOD-derived PM2.5 estimation’s spatial 

coverage was greater than that of the 3 km AOD – derived PM2.5 estimation. This is not only because of 

its spatial resolution, but also owing to different algorithms of two products. On the contrast, the 3 km AOD 

product performed better in presenting spatial variations, which may help governments to identify the 

emission sources.   
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6.1.3$Objective$3:$Multiple$Linear$Regression$and$Geographically$Weighted$Model’s$

Performance$

In this study, the MLR model was used to generate the daily distributions, which enables it to study the 

temporal trend of PM2.5’s change. However, due to the lack of non-retrieved days’ AOD, the MLR model-

estimated PM2.5‘s accuracy still has space to be improved. MLR model is actually one of the global 

regression with global coefficients.  

The GWR model, estimating local coefficients and local R2, was able to improve the estimation 

accuracy than the corresponding global regression model. However, in this study, the GWR model was not 

able to generate daily concentrations due to the lack of collocations between satellite AOD and ground-

level PM2.5. Thus, this study also suggests more ground-level monitoring stations (“control points”) should 

be built in the future.  

6.1.4$Objective$4:$Mortality$Estimation$

Academic research should not only be investigating data products and models: it should also explore 

corresponding application. This study applies the models constructed using remote sensing datasets and 

statistical regression in public health field. It was estimated that during the study period in BHT region, 

more than 30, 000 people died due to the long-term exposure to PM2.5 concentrations exceeding Chinese 

national standard. Additionally, from this study, it can also be learnt where statistically, the mortality risks 

increased the most.  

6.2$Limitations$of$this$Thesis$

Though this study achieved each objectives and made responding contributions, limitation and uncertainties 

should be concerned 

At the first, the vertical structure and components of aerosol was not considered and this would 

affect PM2.5’s estimation accuracy. This is because AOD presents the whole atmospheric aerosol 

distribution, while ground-level PM2.5 are measured near the Earth’s surface.  

Secondly, this study only utilized Aqua MODIS AOD product for time matching with 

meteorological data, but Terra MODIS AOD product was not explored. However, if the Terra MODIS 

AOD was also used, the non-retrieved day’s AOD might be reduced and the PM2.5 might be estimated 

with a higher accuracy and a greater coverage. Another consequence of only using Aqua MODIS AOD 

product is the PM2.5 estimation in this study was actually just based on the PM2.5 at 14:00, not the whole 

day.  
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Thirdly, the lack of the AOD data in non-retrieved days and regions bring biases in AOD validation 

and PM2.5 estimation.  Similar biases also existed when estimating PM2.5 in the whole BTH region 

because the ground level stations are limited in number and distributed unevenly. 

In addition, for the GWR model, the estimation was on an annual or seasonal averaged basis. Daily 

estimation failed when using the GWR model due to the lack of ground-level stations.  

At the last, meteorological parameters and land use surrogates were just described and simulated 

by statistical methods in this study. How each parameter affects PM2.5’s accumulation and dispersion was 

not studied deeply. These parameters actually have remarkable potentials in PM2.5 studies. For example, 

by combing wind speed and direction, the pollutants’ sources may be predicted.  

6.3$Recommendations$for$Future$Studies$

According to limitations, some research directions are proposed as followed: 

Firstly, aerosol’s vertical structure and components should be explored by more remote sensing 

techniques, such as Lidar.  

Secondly, by integrating other remote sensing’s datasets, such as Terra MODIS AOD product and 

Landsat 8 data, the non-retrieved days or pixels should be reduced.  

Then, more spatial regression models should be explored in this field, such as Spatial Lag, for 

spatial relationship’s research.  

Moreover, the research scale should be enlarged to a national or global level, so that the pollutants’ 

sources and transfer’s trend can be identified.  

Last but not the least, more ground-level monitoring stations should be constructed. This point 

seems to conflict the intention of using remote sensing method: with more stations to monitor ground PM2.5, 

remote sensing results may be useless or unimportant. But this advice does not mean the more stations, the 

better. Actually, with the current monitoring stations, PM2.5 estimation using remote sensing can already 

generate an acceptable result. However, these stations are mostly located in urban areas, leaving rural area 

unobserved. So if more ground-level monitoring stations should be built with a scientific distribution (or a 

better pattern) and kept in a reasonable number, the estimation accuracy would be improved, not only in 

urban area, but also in other areas.  
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Appendix(I(

City City's Averaged 
PM2.5 (µg/m3) Station Station Code Longitude Latitude Station's Averaged 

PM2.5(µg/m3) 

Zhangjiakou 24.88 

North Pump Room 1061A 114.89 40.81 20.02 
The People'S Park 1057A 114.90 40.83 24.56 
Shijihao Garden 1060A 114.90 40.77 25.18 
Agent Factory 1058A 114.89 40.79 26.02 

Wujing Ku 1059A 114.88 40.82 28.65 

Chengde 35.99 

The Bank Of China 1063A 117.95 40.99 32.94 
Li Palace 1066A 117.94 41.00 33.83 

Cultural Center 1065A 118.18 40.77 34.16 
The Railway 1062A 117.96 40.94 34.68 

Development Zone 1064A 117.96 40.93 44.32 

Qinhuangdao 47.08 

Diyiguan 1043A 119.77 40.02 40.49 
The Construction Of Building 1046A 119.19 39.72 43.85 

Beidaihe Environmental Protection Bureau 1042A 119.53 39.83 48.64 
The City Government 1045A 119.61 39.94 50.66 

Monitoring station 1044A 119.60 39.96 51.78 

Cangzhou 58.82 

The Municipal Environmental Protection 
Bureau 1073A 116.87 38.32 57.77 

Cangxian  Construction Bureau 1071A 116.89 38.30 58.44 
Television Station 1072A 116.86 38.31 60.27 

Beijing 71.04 

Huairou Town 1009A 116.65 40.31 60.90 
Dingling 1002A 116.23 40.30 67.90 

Shunyi New Town 1008A 116.66 40.18 68.41 
Changping Town 1010A 116.23 40.23 69.07 

Temple Of Heaven 1004A 116.42 39.89 71.87 
Wanshouxigong 1001A 116.37 39.89 72.26 

Ancient City 1012A 116.20 39.91 72.36 
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Dongsi 1003A 116.44 39.94 73.41 
Olympic Sports Center. 1011A 116.40 39.99 73.54 

Haidian Wanliu 1007A 116.31 39.97 73.58 
Guanyuan 1006A 116.37 39.94 74.24 

Agriculture Exhibition Hall 1005A 116.47 39.95 74.90 

Tianjin 75.50 

Dagu Road 1017A 117.26 39.14 67.97 
Han North Road 1026A 117.74 39.12 69.01 
Qingjian Road 1015A 117.19 39.12 69.40 

Yongming Road 1024A 117.47 38.84 70.28 
Yuejin Road 1021A 117.32 39.09 70.87 

Hangtian Road 1025A 117.43 39.13 71.56 
The Fourth Street 1023A 117.22 39.09 74.44 
Southport Road 1014A 117.36 39.26 74.49 
Forward Road 1018A 117.23 39.12 76.64 

Monitoring Center 1013A 117.17 39.10 80.69 
Nanjing Road 1016A 117.19 39.13 81.59 

Beichen Science And Technology Park 1019A 117.23 39.23 81.64 
Tuanbowa 1027A 117.22 38.85 84.16 

Tianshan Road 1020A 117.28 39.14 84.28 

Langfang 75.58 

Environmental Monitoring And 
Supervision Center 1069A 116.72 39.56 69.42 

North China Institute Of Technology 1070A 116.74 39.53 75.25 
Medicinal Materials Company 1067A 116.71 39.54 75.68 

Development Zone 1068A 116.76 39.57 81.97 

Hengshui 86.18 

North Motor Factory 1074A 115.69 37.75 83.32 
The City Monitoring Stations 1075A 115.64 37.74 87.47 

The Municipal Environmental Protection 
Bureau 1076A 115.69 37.74 87.77 

Tangshan 82.45 

Materiel Administration 1038A 117.97 40.18 79.00 
Ceramic Company 1039A 118.18 39.64 80.10 

No.12 Middle School 1040A 118.18 39.66 82.06 
Radar Station 1037A 118.02 39.73 82.67 
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Supply and Marketing Agency 1036A 118.20 39.63 84.23 
Xiao Mountains 1041A 118.31 39.74 86.63 

Shijiazhuang 93.74 

Fenglong Mountain 1035A 114.36 37.91 80.17 
The Worker Hospital 1029A 114.53 38.05 85.99 

Xinangaojiao 1032A 114.45 37.99 87.98 
Century Park 1033A 114.54 38.02 92.85 

The People'S Hall 1034A 114.52 38.05 95.50 
High-Tech Zone 1030A 114.61 38.05 96.33 
Xibeishuiyuan 1031A 114.47 38.06 103.77 

Chemical School 1028A 114.61 38.00 107.35 

Handan 94.10 

Congtai Park 1050A 114.50 36.62 87.96 
Mining Institute 1049A 114.50 36.58 92.96 

Dongwushuichuli Factory 1048A 114.54 36.62 96.57 
Environmental Protection Agency 1047A 114.51 36.62 98.90 

Baoding 98.18 

Film Factory 1055A 115.46 38.88 91.19 
The Reception Center 1053A 115.47 38.91 93.97 

Huadian Area 1052A 115.52 38.89 96.95 
Swimming Center 1051A 115.49 38.86 97.43 

Surface Water Factory 1054A 115.45 38.96 99.83 
Monitoring station 1056A 115.52 38.87 109.72 

Xingtai 107.39 

Teacher College 1078A 114.46 37.11 99.31 
Road And Bridge Corporation 1079A 114.53 37.09 107.56 

The Municipal Environmental Protection 
Bureau 1080A 114.49 37.11 108.36 

Dahuo Spring 1077A 114.49 37.09 114.33 
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3KM 
 
 
Model 
  
  
  
  
  
  
  
  
  
  
  
  
  
  

                          Season 
Factors 

Fall Winter Spring Summer 

Mean Coefficient Sig.  Mean Coefficient Sig.  Mean Coefficient Sig.  Mean Coefficient Sig.  

PM2.5 (µg/m3) 29.56     23.33     44.711 -404.83   47.61     

Constant   -324.35 0.00   39.73 0.00     0.00   -857.809 0.00 

AOD 0.52 4.04 0.00 0.16 Not Significant 0.7395 3.02 0.00 0.096483 3.18 0.00 

Relative Humidity (%) 35.75 -53.65 0.00 22.45 Not Significant 22.516 Not Significant 41.3049 Not Significant 

Temperature (K) 294.81 1.28 0.00 278.02 Not Significant 298.01 1.51 0.00 304.63121 4.373965 0.00 

Surface Pressure(KPa) 98.8 Not Significant 99.30 Not Significant 98.375 Not Significant 97.48473 -4.52777 0.00 

Uwind Speed (m/s) 0.58 1.94 0.00 1.80 -4.29 0.00 2.1481 0.86 0.00 0.21586 Not Significant 

Vwind Speed (m/s) 0.11  -1.28 2.52 0.00 0.9127 -0.09 0.04 0.83303 0.155408 0.01 

Boundary Layer Height at 
8:00 (KM) 1.29 -190.42 0.00 1.12 Not Significant 1.9076 Not Significant 1.5746418 -0.1165 0.00 

Boundary Layer Height at 
20:00 (KM) 0.11 312.03 0.00 0.16 Not Significant 0.1472 Not Significant 0.0956363 0.439414 0.00 

GDP (Thousand Yuan) 121.91 Not Significant 45.02 Not Significant 110.33 -0.03 0.01 127.84001 Not Significant 

Elevation (m) 99.02 Not Significant 76.26 -0.06 0.00 70.51 Not Significant 81.07 -0.043 0.00 

Population (Thousand 
People) 50.62 Not Significant 9.11 Not Significant 68.202 -0.04 0.02 67.47025 Not Significant 

The Percent of Urban 
Area (%) 54.21 -12.32 0.00 12.76 Not Significant 

 63.383 Not Significant 66 Not Significant 
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10KM 
 
Model 

Season 
Factors 

Fall Winter Spring Summer 

Mean Coefficient Sig. Mean Coefficient Sig. Mean Coefficient Sig. Mean Coefficient Sig. 

PM2.5 (µg/m3) 32.6   59.01 -295.08  53.71   51.12   

Constant  -4.19 0.00   0.00  360.62 0.00  -1153.84 0.00 

AOD 0.41 57.94 0.00 0.35 130.34 0.00 0.59 71.35 0.00 0.83 35.55 0.00 

Relative Humidity (%) 32.68 -72.88 0.00 25.19 -90.4 0.00 21.59 Not Significant 39.96 Not Significant 

Temperature (K) 292 1.01 0.00 278.56 1.3 0.00 291.96 Not Significant 304.83 0.49 0.00 

Surface Pressure(KPa) 98.26 -2.18 0.01 99.74 Not Significant 98.97 -3.09 0.00 97.25 -0.31 0.00 

Uwind Speed (m/s) 1.22 1.62 0.01 1.53 3.64 0.00 1.96 2.14 0.00 0.18 -1.38 0.02 

Vwind Speed (m/s) -0.63 Not Significant -0.96 Not Significant 0.65 Not Significant 1.06 -1.59 0.02 
Boundary Layer Height 

at 8:00 (KM) 1.32 -280.98 0.00 0.91 -397.41 0.00 1.72 -223.11 0.00 1.61 -162.88 0.00 

Boundary Layer Height 
at 20:00 (KM) 0.24 Not Significant 0.14 Not Significant 0.13 Not Significant 0.1 Not Significant 

GDP (Thousand Yuan) 894.49 Not Significant 906.94 -0.01 0.02 836.81 -0.01 0.05 922.91 Not Significant 

Elevation (m) 140.04 -0.03 0.04 81.41 Not Significant 78.09 -0.06 0.00 98.82 Not Significant 
Population (Thousand 

People) 383.84 -0.01 0.01 564.33 Not Significant 599.26 Not Significant 481.91 Not Significant 

The Percent of Urban 
Area (%) 34.53 Not Significant 44.95 0.07 0.23 47.08 Not Significant 40.6 Not Significant 
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