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Abstract

In this thesis we use a knowledge-based approach to disambiguating prepositional phrase

attachments in English sentences. This method was first introduced by S. M. Harabagiu.

The Penn Treebank corpus is used as the training text. We extract 4-tuples of the

form [ V P , NP1, Prep, NP2 ] and sort them into classes according to the semantic rela-

tionships between parts of each tuple. These relationships are extracted from WordNet.

Classes are sorted into different tiers based on the strictness of their semantic relationship.

Disambiguation of prepositional phrase attachments can be cast as a constraint satisfac-

tion problem, where the tiers of extracted classes act as the constraints. Satisfaction is

achieved when the strictest possible tier unanimously indicates one kind of attachment.

The most challenging kind of problems for disambiguation of prepositional phrases are

ones where the prepositional phrase may attach to either the closest verb or noun.

We first demonstrate that the best approach to extracting tuples from parsed texts

is a top-down postorder traversal algorithm. Following that, the various challenges in

forming the prepositional classes utilizing WordNet semantic relations are described. We

then discuss the actions that need to be taken towards applying the prepositional classes

to the disambiguation task. A novel application of this method is also discussed, by

which the tuples to be disambiguated are also expanded via WordNet, thus introducing

a client-side application of the algorithms utilized to build prepositional classes. Finally,

we present results of different variants of our disambiguating algorithm, contrasting the

precision and recall of various combinations of constraints, and comparing our algorithm

to a baseline method that falls back to attaching a prepositional phrase to the closest left

phrase. Our conclusion is that our algorithm provides improved performance compared

to the baseline and is therefore a useful new method of performing knowledge-based

disambiguation of prepositional phrase attachments.
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Chapter 1

Introduction

1.1 The Significance of Prepositional Phrase Attachments

Prepositional phrases, such as “with chopsticks” and “in the park” do not occur by

themselves in written English. They require another phrase to be attached to, for example

Joe eats with chopsticks.

The above sentence is unambiguous. It is clear that “with chopsticks” is attached to the

verb phrase, “eats”. However, not all prepositional phrase attachments are unambiguous.

In the sentence

Carl saw the man in the park

it is not possible to determine immediately whether Carl was in the park and saw a man,

or whether Carl saw a man that was in the park.

Systems like grammar checkers, parsers, and machine translators (among others) each

implement or utilize some form of disambiguation algorithm. One task done by such

algorithms is the disambiguation of prepositional phrase attachments. While such an

1



CHAPTER 1. INTRODUCTION 2

undertaking is mostly trivial to humans, an efficient algorithmic solution to it for com-

puters remains elusive. However, disambiguation of prepositional phrase attachments is

necessary for the understanding of text.

Efficient disambiguation of prepositional phrase attachments is a very difficult prob-

lem in natural language processing [Brill and Resnik, 1994] [Harabagiu, 2000]. Difficulties

arising from this task are rooted in the fact that the problem encompasses not only lex-

ical ambiguities but also semantic and thematic ambiguities (see section 1.3 for details).

Prepositional phrase attachments are important to text understanding and even infor-

mation extraction because they affect the meaning of sentences in a critical manner. In

addition to the previous example of ambiguous meanings of prepositional attachments,

one can consider how the mere presence of a prepositional phrase attachment can alter

the meaning of a sentence. For example, in the sentence

[ Nurses can reduce the likelihood of being named in a lawsuit by maintaining

clinical competency ]. [Schulmeister, 1999]

the relevance of the subject is altered if the prepositional phrase attachment is left out:

[ Nurses can reduce the likelihood of being named in a lawsuit . ]1

The original sentence indicates that the risk of lawsuits can be reduced if nurses perform

a certain action. The second one implies that just having a nurse in the area will reduce

the risk of lawsuit. The thematic content of the sentence is altered by omitting the

prepositional phrase attachment.

1This abbreviated sentence was an actual result produced by the Medstract system ([Pustejovsky
et al., 2002b], [Pustejovsky et al., 2002a]).
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1.2 Focus of this Paper

During the course of this paper an algorithm is described that performs disambiguation

of ambiguous prepositional phrase attachments. Once trained, the algorithm receives as

input tuples extracted from ambiguous attachments, and returns a value containing the

suggested attachment type.

Throughout this paper we will consider phrases to be collections of words within a

sentence that function like a single syntactic unit. The phrase head is the word that

links each phrase to the rest of the sentence. Phrase heads are usually the first word of

a phrase.

The type of sentences of interest for this paper are those whose syntactic structure

contains a particular sequence of parts of speech. This sequence is indicated by the 4-

tuple containing a verb phrase (VP), a noun phrase (NP), a preposition, and another

noun phrase:

[ V P , NP1, Prep, NP2 ].

These sentences are of interest in natural language processing because they only obey

the English rule of thumb an average of 60 percent of the time. The aforementioned

rule states that whenever there is a choice between two phrases to which a prepositional

phrase can be attached, the rightmost should be chosen. This rule is hence known as

right attachment [Kimball, 1973]. The structure of the above figure can be simplified by

reducing the verb phrases and noun phrases to their phrase heads, those being a verb for

the verb phrase and a noun for the noun phrase respectively.

[ V erb, Noun1, Prep, Noun2 ].

We can justify this simplification because phrase attachments are relations between the

involved phrases. Since such relations are characterized by links and the links themselves
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1. Sally V P ( watches NP ( the bees ) PP ( Prep( with ) NP ( her binoculars ) ) ).
2. The doctor V P ( has approved ) NP ( the new treatment PP ( Prep( for )

NP ( his ailment ) ) ).

Figure 1.1: Examples of an adverbial (1) and an adjectival (2) prepositional phrase
attachment

are rooted in the phrase heads, we can infer that these phrase heads are sufficient to pro-

vide the lexical information necessary to disambiguate prepositional phrase attachments.

Prepositional phrases that are attached to the verb phrase have the prepositional

phrase defining attributes pertaining the theme whose action, state, or event are lexi-

calized by the verb phrase head. This type of attachment is called adverbial or left in

this paper attachment. A prepositional phrase modifying a noun phrase, on the other

hand, affects the nominal of such noun phrase by defining its attributes. When the

noun phrase head is a nominalization of a verb (that is, a noun morphologically derived

from that verb, such as rejection) then the prepositional attachment defines the thematic

attributes of the phrase in a manner similar to adverbial attachments. Prepositional

phrases attached to the noun phrase are called adjectival or right attachments through-

out this paper. While “adjectival attachment” does not completely reflect the nature of

attachments where the noun phrase head is a nominalization, we believe that it is an

acceptable generalization since we do not concern ourselves with particular special cases

regarding the attributes of the prepositional phrases. In other words, the labels differen-

tiate whether the prepositional phrase is attached to the noun phrase or the verb phrase,

and nothing more. Figure 1.1 provides examples of sentences containing adverbial and

adjectival attachments respectively.

We have chosen to focus the input to our algorithm on the aforementioned 4-tuples

and ignore other parts of the sentence (such as subject-object relations) because those

tuples are formally considered to be the critical components needed for prepositional
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phrase attachment disambiguation [Brill and Resnik, 1994].

Training and execution of our algorithm is unsupervised, meaning that the system

does not wait for human input for all or part of its steps. Supervised algorithms, on the

other hand, require human actions at certain parts of their training in order to interpret

certain input.

1.3 Prepositional Phrase Attachment Ambiguities

Formal English rules indicate that whenever possible, prepositional phrases should be

placed so that they attach to the nearest part of speech (right association). This principle

does not perform well when applied to common English sentences, however, thus reduc-

ing the effectiveness of an always-adjectival attachment algorithm to about 60 percent

[Kimball, 1973]. Identifying which preceding phrase a prepositional prhase is attached to

is thus important for the understanding of a sentence.

Four types of knowledge may be employed in order to disambiguate prepositional

phrase attachments. Some of these types of knowledge are more frequent in texts than

others. We have listed them in order of commonality:

• Lexical : Lexical information is provided by the sentence structure and contains not

only part of speech information but also sentence syntax. This kind of information

may not always be enough to disambiguate prepositional phrase attachments, but

it is a valuable asset in narrowing down the scope of the problem by delineating the

valid attachment forms.

• Semantic: Determining the sense of the words involved in a prepositional attach-

ment can help us in fixating the type of prepositional phrase attachment we have

in a manner similar to the lexical information.
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• Thematic: Some prepositional phrase attachments, such as “John talked to the man

in the room” are correct in both adverbial and adjectival form - John may have been

in the room, talking to the man, or he could have been talking to the man that was

in the room. Determining whether this prepositional phrase attachment is of the

adverbial or adjectival kind in this case is no longer a matter of specifying which

combination is valid. Contextual information would be needed to further determine

which type of attachment should be chosen.

• World knowledge: Some phrases, particularly composite proper nouns such as

“Bank of Commerce”, contain prepositional phrases whose attachment is static be-

cause of the attributed sense of the phrase, which may not always be derived from

the individual senses of its components. Knowing the domain for which the text

was written (business journals, for example) may provide important information on

which kinds of phrases have a particular sense and attachment type differing from

the one that would be determined by the independent senses of their components.

It is rare to find sources for which all four of these types of knowledge are readily available.

Lexical information is the easiest to obtain, since it can be extracted with considerable

success rates with the help of part of speech taggers as described in section 2.1. Utilization

of semantic information embedded in text requires a considerable effort. A preexisting

knowledge of the lexical structure of the text is necessary, as well as knowledge of the

grammatical rules that apply to the parsed source. World knowledge, on the other hand,

is a considerably more difficult matter. It requires an understanding of the area that

the text stems from, which is challenging when performing unsupervised disambiguation.

This kind of knowledge can rarely be directly extracted from the parsed text, requiring an

external source to be supplied. When available, databases like gazetteers (geographical

dictionaries) provide a wealth of information useful to focus on the appropriate phrases.
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Thematic knowledge is usually the most difficult kind to acquire, since it depends on

partial understanding of the context in which a sentence is parsed. For that reason it is

normally left out of unsupervised prepositional phrase disambiguation algorithms.

Semantic information is the one which we shall focus most of our attention for this

paper, because it is the most useful kind in order to perform proper disambiguation of

prepositional phrase attachments. In order to facilitate this task we will be using a pre-

tagged source, the Penn Treebank [Marcus et al., 1993], to acquire lexical information.

The system presented emulates the approach to prepositional phrase disambiguation with

the WordNet ontology [Miller, 1995] proposed in [Harabagiu, 1996] and further extends

it by applying their techniques in a novel way. This is achieved by applying parts of

the routines that were used to train the algorithm to the disambiguation phase, greatly

improving the recall rate of the system.



Chapter 2

Natural Language Processing

2.1 Part of Speech Tagging

Part of speech tagging is the area of natural language processing that focuses on labeling

of the words in a sentence. The labeling is usually done as an intermediate step towards

other applications of natural language processing, such as information gathering, question

answering, and shallow parsing.

The labels utilized in part of speech tagging are usually those identified in the Brown

corpus [Francis and Kucera, 1979] or a variant thereof. Table 2.1 shows some commonly

used tags. A typical tagging of a sentence may look like this:

[ The-AT cat-NN chased-VBD the-AT fly-NN towards-IN the-AT bank-

NN . ]

However, some measure of syntactic disambiguation is required in order to prevent inco-

herent results such as

[ The-AT cat-NN chased-VBD the-AT fly-VB towards-IN the-AT bank-

VB . ]

8
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Tag Part of Speech
AT article
IN preposition
JJ adjective
VB verb, base form
VBD verb, past tense
NN singular or mass noun

Table 2.1: Examples of commonly used part of speech tags

The extent of such disambiguation only goes as far as being able to produce coherent

chains of word-tag pairs. Resolution of prepositional phrase attachment ambiguity for

example is not a task required of part of speech taggers. It is thus said that the task

of these taggers is of limited scope. However, the usefulness of taggers is not to be

underestimated because of this limited scope - taggers are crucial to natural language

processing applications.

Typically we run into two kinds of part of speech taggers, stochastic and rule-based,

which are discussed below.

2.1.1 Stochastic Taggers

One of the easiest taggers that is possible to create is a “dumb” probabilistic tagger. In

such a system, the tagger is trained on large quantities of pre-tagged text. The frequencies

of the tags for each word in the training text are collected These frequencies are used

for tagging new text by assigning each word the tag that is most likely for it. [Charniak

et al., 1993] demonstrated that such a tagger performs at an astonishingly high level

of 90% correctness. The efficiency of such a tagger indicates that statistical methods

perform well for part of speech tagging. A common stochastical approach is the Markov

Model, by which sentences are treated as Markov chains where the states are represented

by the words’ tags. The Markov Model is a left-to-right finite state model, which means
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that once a word has been tagged, its tag is not altered. To be more precise, Markov

chains feature two properties:

• Time invariance and

• Limited horizon.

The former is the already described property of word tags being stationary. The latter

attribute is based on the notion that, knowing the present, the state of the past is irrele-

vant to predict the future. In a Markov Model tagger that means that, knowing the tag

of the current word, it is not necessary to know the tags of the previous words. Because

this model works with two words at a time (the word being tagged and its predecessor),

it is said to be a bigram tagger. Some versions of Markov Model taggers are trigram

taggers, which means that they use the tag information of the two preceeding words to

select the tag of the current word. Church [1988], one of the most referenced publications

on tagging and one of the most influential forces to drive researchers to the problem of

part of speech tagging, describes a trigram tagger.

Markov Model taggers can be grouped into two categories - Visible Markov Model

taggers (commonly referred to as just Markov Model taggers) and Hidden Markov Model

(HMM) taggers. Both of these types perform the same tagging procedure, and differ

only in how they are trained. Visible Markov Model taggers are trained on tagged texts,

and the models are called visible because we can observe the state of the model as it is

trained. HMM taggers, on the other hand, are handy in situations where large amounts of

tagged corpora are unavailable, such as domain-specific texts and foreign language texts.

They are trained with the aid of dictionaries. One class of HMM taggers assigns zero

probabilities to impossible word-tag pairs, such as speaker-AT . Another type of HMM

tagger groups words into classes depending on the tags that they may be paired with.

For example, all words that may contain the tags NN and JJ (and only those tags) are
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put into the NN −JJ group. The advantage of such a method is that it is not necessary

to fine-tune each word separately. It is important to note, however, that this approach is

disadvantageous when enough training material is available to perform per-word analysis.

We have already mentioned one variation of Markov Model taggers, trigram taggers.

Another important variation to consider is the tagging of unknown words. The efficiency

of the dumb tagger in [Charniak et al., 1993] is so high because it deals with blind

tagging of known words. However, not only do unknown words have no statistical data

to help the tagger identify which tag it is more likely to have, but they also lack any

concrete information as to which word class they belong to. A naive solution is to set

the probability of such a word belonging to any word class to the same value. A small

variant of this approach is to only consider open word classes, such as nouns, verbs, and

adverbs. Neither of these solutions, however, prove to be sufficiently accurate, averaging

at about 40% error rate. A better solution is to consider the morphological and lexical

information that may be extracted from a word, such as “words ending in -ed tend to be

past participles”. These features are usually considered to be independent of each other

in literature dealing with this problem, but that assumption is often an improper one.

Interactions between word features, such as the relation between “unknown word” and

“capitalized word” can be as important as the features themselves [Manning and Schütze,

1999].

2.1.2 Rule-Based Taggers

Early rule-based part of speech taggers were founded on simple inferences gained from

syntagmatic information extracted from sentences. Such information usually consists of

tag chains and their features. For example, the chain AT−JJ−NN is common in English

sentences, whereas the chain AT −JJ−V BP is forbidden. Such deterministic rule-based

taggers do not perform at high precision, producing a success rate of only 77% at best.
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With the advent of stochastical part of speech taggers, rule-based taggers were mostly

ignored. Brill [1992] introduced a rule-based part of speech tagger whose accuracy can

be compared to the top stochastic models, and whose design sports several advantages

over statistical models. Such advantages include robustness, automatic acquisition of

rules, reduction of required stored information, a small set of meaningful rules, easy

improvement, and better portability between tag sets or corpora genres.

The base model of this rule-based tagger is founded on the dumb statistical model.

On its first iteration of training, the tagger labels all words in a training corpus with their

most likely label, independently of their context. Unlike dumb statistical models, the Brill

tagger does not stop here. After tagging all words, triples of the form labela, labelb, num

are extracted from the tagged text, where labela is the label that the tagger assigned to

the word, labelb the label that the word should have had instead, and num the number

of occurrences of this mistake. The tagger then automatically creates a list of rules using

a small set of instructions. These rules are created using contextual information inferred

from the incorrectly tagged triples to correct their instances. They are then individually

tested against the training corpus, and the rule with the best success rate (where success

rate = number of improper tags fixed - number of new words improperly tagged) is se-

lected as a permanent rule. The procedure then continues to extract triples and formulate

rules until an arbitrarily selected accuracy has been achieved. This approach is similar

to boosting, which we describe in section 3.5.

2.2 WordNet

WordNet [Miller, 1995] is an online lexical reference system - in other words, an ontology

- created at Princeton University, in which words are classified into synonym sets (synsets

in short) that tie words to lexical concepts. Different synsets are constructed for nouns,
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verbs, adjectives, and adverbs. Each synset can contain different words, and each word

can occur in different synsets, depending on the sense of the word and the part of speech

category (noun, verb, adjective, adverb). Various relations such as hypernymy, meronymy

and antonymy create links between the synsets of each category. It is these synsets and

their relations - in particular hypernymy and hyponymy - which we shall exploit in the

algorithm presented in this paper.

Synonymy as implemented in WordNet is based on the weakened form of the classical

definition of synonymy. The latter is generally attributed to Leibniz (via Miller [1995]),

and consists of declaring two words as being synonymous if the truth value of a sentence

containing one of the words does not alter if said word is replaced with the other one.

The weakened definition restricts this condition to a certain linguistic context. Because

of this relaxed characterization, synonymy is not a discrete concept but rather an area on

a gradient where words with high similarity are clustered together. An interesting side

effect of this characterization is that synonymy does not carry across word categories. In

fact, until recently there was no relation at all between word classes in WordNet1.

WordNet is an invaluable tool in applying semantic senses to phrase heads. As in-

dicated in section 1.3, semantic information can provide a wealth of information critical

to prepositional phrase disambiguation. Beginning at chapter 4 we shall further discuss

the implications of the use of WordNet for the extraction of semantic knowledge from

collected 4-tuples.

1The latest version of WordNet introduces some weak relations between certain synsets in different
word classes. For the purpose of this paper, however, we shall work from the assumption that there are
no relations between synsets of different word classes in WordNet. The rationale behind that is that such
relations are a new introduction and may be prone to change in the future. For example synsets in the
noun category have no relation to synsets in the verb category in WordNet.



CHAPTER 2. NATURAL LANGUAGE PROCESSING 14

( (S
(NP-SBJ

(NP (NNP Pierre) (NNP Vinken) )
(VP (MD will)

(VP (VB join)
(NP (DT the) (NN board) )
(PP-CLR (IN as)

(NP (DT a) (JJ nonexecutive) (NN director) ))))
(. .) ))}

Figure 2.1: Excerpt from a tagged and parsed Penn Treebank source

2.3 Penn Treebank

Penn Treebank is an ongoing effort to construct a large annotated corpus that can serve

as the base for research in all areas related to natural language, such as natural language

processing (NLP) and theoretical linguistics. It is widely utilized as a training corpus for

NLP algorithms, which makes it a good choice for any research in the area since utilizing

the same corpus helps in reducing possible variants that might influence the results of

corpus-trained algorithms.

Two forms of annotation are featured in the Penn Treebank: Part of speech tagging,

and skeletal syntactic structure. The latter is the one which gives this corpus its name:

each syntactic skeleton can be described as a syntactic tree, so the collection of these

forms a bank of trees (treebank). Figure 2.1 is an example of such tagged and structured

text.

The latest version of the Penn Treebank contains four annotated corpora: the Wall

Street Journal, the Brown Corpus, switchboard transcripts, and ATIS2. Our work focused

on the annotated Wall Street Journal corpus as the principal training and testing set in

2Automatic Terminal Information Service - a service that continuously broadcasts recorded information
for the purpose of improving pilot and controller effectiveness and relieving frequency congestion by
automating the repetitive transmission of essential but routine information.



CHAPTER 2. NATURAL LANGUAGE PROCESSING 15

order to minimize the thematic diversity of our knowledge base.



Chapter 3

Prepositional Phrase Attachment

Disambiguation

Since disambiguation of prepositional phrase attachments is a common but difficult prob-

lem in natural language processing, much effort has been put into developing efficient

algorithms capable of performing such disambiguation. In this chapter we survey the

most common approaches.

Numerous approaches have been proposed to extract the four types of information

required to disambiguate prepositional phrase attachments. In recent years the focus in

natural language processing in general has shifted towards stochastical methods, since

they provide an easier way of achieving good results at acceptable costs when compared

to rule- and corpus-based approaches. Statistical methods, however, require a larger

amount of resources than other systems, and cannot handle variations in style very well.

It is for that reason that in this paper we shall only briefly cover these, focusing instead

on rule- and knowledge-based alternatives.

16
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3.1 Corpus-Based Statistical Disambiguation

In [Hindle and Rooth, 1991] a method of prepositional phrase disambiguation was pro-

posed that utilized distributional frequencies within an automatically parsed corpus to

determine the relative associative strength between a preposition and verb and noun

phrase heads.

The method in which the type of association is determined - whether adjectival or

adverbial1 is based on lexical association and therefore relies purely on syntactic knowl-

edge. The training set is composed of triples of the form [ V P , NN , PP ]. For each

triple, the number of times it occurs within a text are counted, providing the frequency

information needed for the next step. Once all the distributional frequencies have been

collected, disambiguation is a matter of calculating the relative strength of association

between a preposition and the verb phrase head versus the likelihood of said preposition

being attached to the noun phrase head, and selecting the better one. The efficiency of

this method is in the 80% range.

Like many stochastic methods, this approach relies on a very large table of probabil-

ities. Not only is such a method prone to the data sparsity problem2, but the size of the

model acquired during training makes analysis and refinements of its workings a difficult

task.

1In their text, the authors refer to these attachments as nominal and verbal . In order to maintain
the consistency in this text, we have decided to utilize the terminology previously defined in Chapter 1.
However, the words adjectival and adverbial may be replaced with nominal and verbal respectively within
this context without any fear of altering their sense.

2The data sparsity problem occurs when the training corpus does not contain tuples similar to the ones
occurring in the test set. The lack of similar tuples results in a deficiency in frequencies for disambiguation
purposes.
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3.2 Statistical Backed-Off Model

This model, pioneered by [Collins and Brooks, 1995], is a more advanced approach to

statistical prepositional phrase attachment disambiguation. It works by calculating the

frequencies for [ V P , NP1, Prep, NP2 ] 4-tuples based on the frequencies of previous

attachments with the same phrase heads. In this sense it is similar to the corpus-based

statistical disambiguation algorithm. It differences itself from the former, however, in that

it utilizes an approach that mimics the backed-off n-gram model in how it handles data

sparsity. This algorithm falls back to triples and eventually word pairs if no frequencies

for similar 4-tuples can be found. Of all purely statistical methods, this one performs

best at a precision of 84.5%.

3.3 Transformation-Based Error-Driven Rule Learning

This method is a wide-spread alternative to stochastical methods in natural language

processing. Error-driven rule learning starts out with a base rule which is applied to the

test set. Additional rules are applied to the entries in the set which were missed by the

previous rules, and the best performing one of those additional rules is appended to the

formal rule chain. The process is reiterated until addition of rules stops when an arbitrary

precision has been reached.

An analogous method to this one was described in Section 2.1.2. In [Brill, 1992]

a part of speech tagger that applies this learning technique to determine part of speech

assignment for words is described. Its author has applied the same technique to rule-based

prepositional phrase disambiguation in [Brill and Resnik, 1994].

The process begins by considering always-adjectival attachment as its base rule. Once

that is done, transformation rules learned from a training corpus are applied in an iterative

fashion.
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Error-driven rule learning performs slightly better than corpus-based statistical dis-

ambiguation at 80.8% precision. Its disadvantage, hovever, lies in that this is not an

unsupervised method and requires a training corpus with pre-annotated correct attach-

ments. The advantage to this approach is that it utilizes a small number of readable rules

to achieve its high accuracy. The use of these rules, in contrast to the vast frequency

tables of stochastic methods, makes a straightforward analysis of this algorithm possible.

3.4 Knowledge-Based Ambiguity Resolution

In [Harabagiu, 1996], the authors propose a knowledge-based method of prepositional

phrase disambiguation. This method is trained on 4-tuples of the form [ V B, NN1, Prep,

NN2 ] that are extracted from the Penn Treebank corpus. [ V B, NN1, Prep, NN2 ] are

the heads of [ V P , NP1, PP , NP2 ] respectively. Since the Penn Treebank corpus is fully

parsed, all these tuples have their correct prepositional attachment disambiguated. All of

the extracted tuples are sorted into different classes of semantic relationship based on the

WordNet synsets that their arguments belong to. For any two adjectival attachment 4-

tuples A and B, A and B belong to the same class if they both have the same preposition,

NN1A and NN1B belong to the same WordNet hierarchy and NN2A and NN2B also

belong to the same WordNet hierarchy. Similarly, any two adverbial attachment 4-tuples

A and B belong to the same class if they both have the same preposition, V BA and V BB

belong to the same WordNet hierarchy and NN2A and NN2B also belong to the same

WordNet hierarchy.

Two colocated heads H1 and H2 belong to the same WordNet hierarchy if any of the

following conditions holds true (in order of relevance):

• H1 and H2 are synonyms. In this case, they both point to the same WordNet

synset. This is the tightest semantically disambiguated relation between phrase
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heads possible with this method.

• H1 is a hypernym/hyponym of H2. In this case the synset pointed to by H1 is a

direct parent/child of the synset pointed to by H2.

• H1 and H2 share a common hypernym/hyponym. For this condition to be true the

synsets pointed to by H1 and H2 are siblings.

An additional set of inferential rules are used to resolve any remaining ambiguities that

could not be eliminated by (or arose as a product of) the sorting of 4-tuples into classes.

Once the tuples have been sorted into different classes we just need to express the

disambiguation of prepositional phrase attachments in the test corpus as a constraint

satisfaction problem. The unknown variable is the attachment type of a new tuple, and

clusters of prepositional classes are used as constraints. A tuple is disambiguated if

there is a match for it in only one of those clusters. Because prepositional attachments

in these classes are disambiguated via the utilization of semantic information extracted

from WordNet, the resulting byproduct is that prepositional attachments hereby disam-

biguated syntactically are also disambiguated semantically.

3.5 Boosting

Boosting is a method founded on the Probably Approximately Correct (PAC) model

[Valiant, 1984]. Schapire [1990] first presented a provable boosting algorithm. Similar

in design to error-driven rule learning, boosting allows the user to experiment with dif-

ferent weak instruction (rule) sets that perform slightly better than a random guessing

model. Algorithms using these weak rules can, as with the previously seen rule-based

error-driven learning algorithm, be “boosted” to arbitrarily strong algorithms. A major

difference, however, is that boosting stops including new rules when the inclusion of the
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best performing rule candidate does not improve performance over a random guessing

algorithm.

Boosting by itself is not a prepositional phrase disambiguation algorithm, but it may

be used to enhance other kinds of disambiguation methods.



Chapter 4

Building a Knowledge Base

The following chapters will focus on the implementation of the algorithms used in this

paper. In this chapter we will describe the extraction of tuples of the form [ V erb, Noun1,

Prep, Noun2 ] from the Penn Treebank. Following that, the classification of tuples into

prepositional classes is explored. Chapter 6 describes the use of the prepositional classes as

constraints for the disambiguation of unknown tuples. Chapter 7 covers the analysis of the

results from the algorithm constructed during Chapters 4 - 7. Finally, Chapter 8 explores

changes and improvements applied to the base algorithm to improve its performance.

4.1 The Knowledge Base

The first step to producing an algorithm capable of performing prepositional phrase

attachment disambiguation is to construct a knowledge base for it. One of the most

important tasks to training such a knowledge base is the extraction of information from

training texts into a format that is usable by the algorithm. We have decided to focus

on the Treebank corpus [Marcus et al., 1993] as our main training text from which to

extract the required information. The reason for this is that it is the same corpus that is

22
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used by [Harabagiu, 1996], which we are using as the baseline for our algorithm.

4.2 Splitting the Corpus into Training and Target Sets

We have chosen the treebank corpus described in Section 2.3 to train and test our prepo-

sitional phrase attachment disambiguation algorithm. To do this we split the corpus into

two sets: The target set, which is composed of 10% of the Penn treebank corpus randomly

selected from its Wall Street Journal section, and the training set, which consists of the

remainder of the Wall Street Journal treebank corpus. The knowledge base is built with

the training corpus, and the trained algorithm is tested on the target set. The advantages

of this approach are two-fold: The target set stems from the same subset of English sen-

tences as the training corpus (business English in this case), so both sets are semantically

connected; and the target set is already parsed, so we can use the same algorithm that

was used to build the knowledge base to extract the solutions from this set, which can

thus be used to procure vital statistics as to the precision and recall rate of our algorithm.

When selecting the random 10% from the Penn treebank corpus for our target set we

had to decide how to perform the sampling. The treebank corpus is split among 2̃300

files. It can be assumed that the target tuples are more or less evenly distributed among

these files, and empirical data indicates that sampling 10% of the files composing the

Penn treebank corpus is roughly equivalent to sampling 10% of each tuple set. Therefore

it is possible to reduce the sampling task to selecting 230 files out of the entire treebank

set. A better solution, however, is to first parse the entire treebank set, then select 10%

of all tuples of the adjectival kind and 10% of the tuples of the adverbial kind. Since

the sets for adjectival attachments and adverbial attachments do not overlap, we are

guaranteed to again have 10% of the total set. The tools we created to do the sampling

sport an adaptable design. Both methods can be applied with equal ease. Since the
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second solution is more reliable in terms of producing a uniform number of tuples we

decided to favor it.

Another decision to be made on the topic of sampling for the training corpus is whether

we want a completely random sample or whether we want to force the sampling evenly

throughout the treebank corpus (for example, by randomly selecting one file out of every

ten). In the end we concluded that a completely random sample is less prone to bias

error, and that the fully random sampling performs well enough at avoiding clustering of

samples (which would be one reason to smooth out the sampling process).

The splitting of the input corpus was performed immediately after all tuples had been

extracted from the Penn Treebank corpus, but before we attempted to assign each of the

tuples’ elements to their WordNet synset. This decision was made in order to leave tuples

in the test set that contain elements that do not match any WordNet synset. Any action

otherwise would have artificially inflated the recall rate of the algorithm and could have

led us to a skewed analysis of the results. Out of a total of 12407 adjectival attachment

tuples, 8685 were used to train the algorithm. A total of 5095 adverbial attachment tuples

out of 7279 were also used for algorithm training purposes. The remainder was kept to

construct the test set.

4.3 Committing Parsed Strings into Data Structures

In section 1 we indicated that we would be working with 4-tuples of the format

[ V erb, Noun1, Prep, Noun2 ]

It is these tuples that we are interested in extracting from the Treebank corpus. However,

we additionally want to acquire another kind of information that is embedded in the

training text, namely the correct attachment for the prepositional phrase. As a result,

the actual data structures that interest us are of the following kind:
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[ V erb, [ Noun1 ], [ Prep, Noun2 ] ].

and

[ V erb, [ Noun1, [ Prep, Noun2 ] ] ].

where the former indicates that the prepositional phrase is attached to the preceding verb

phrase, and the latter indicated that the prepositional phrase is attached to the preceding

noun phrase. Note that in this form, it is easy to determine the form of the prepositional

phrase attachment by the level of its nesting: A third-level nesting of the prepositional

phrase indicates that it is of the adjectival kind (attached to the preceding noun phrase),

whereas a second-level nesting of this phrase indicates that it is of the adverbial kind

(attached to the preceding verb phrase). In addition Ruby[Matsumoto, 1995] [Thomas

et al., 2004], the programming language that we use, further simplifies extraction of

individual elements of the nesting by offering methods of “flattening” nested arrays.

Flattening nested arrays converts them into a single array, where individual elements are

indexed as they are encountered during a depth-first traversal. The two structures above

for example are transformed into the following one

[ V erb, Noun1, Prep, Noun2 ].

which features the same layout as the 4-tuple mentioned at the beginning of this section.

In order to store the type of attachment of these tuples, we first decided to place

the strings containing the parsed and tagged sentences into nested arrays that reflect the

parsed structure of the training corpus. Fortunately this was facilitated by the division of

parsed structures with parentheses in the parsed texts. The resulting data structure is in

fact a tree, with leaves represented by the tokens extracted from the strings (in this case,

each token is a word) and roots represented by arrays. It is therefore easy to differentiate

between roots and leaves by checking the type of the object that is being handled.
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Once all sentences were parsed into their respective data structures, these data struc-

tures were refined to contain only the necessary information.

4.4 Composite Verbs and Nouns

An important decision was what to do with groups of words that form a single semantic

unit, such as will be and interest rates. We were faced with two choices. The first choice

was whether to use all the words together as a single token. It was quickly decided to

not group these words into one token, because that would greatly reduce the number of

tuples that may be grouped by similarity class. The second decision to be made arose

as a result of the first one, namely which of the words to choose as being representative

of the group. In the first case of words grouped into a semantic unit the words involved

are different parts of speech. These groups were encountered when dealing with nested

“chunks” - parsed syntagmas, such as verb phrases and noun phrases - of the same type.

For “will be”, will is the modal and be is the verb. We ultimately concluded that for

these cases it was sensible to assume that the best fit part of speech would be the one

that identifies the chunk that it occurs in. The example above was extracted from a verb

phrase, so we picked the base form, be, as the representative part of speech of this unit.

The second case is trickier - both words are the same part of speech and are encoun-

tered at the same level within a phrase, so there is no solid syntactic information for the

parser’s decision making process. In the end it was reasoned that there are two kinds

of composite nouns of interest - composite proper nouns, such as Brenda Malizia Negus,

New York, and Federal Reserve, and the rest (such as percentage point). The latter case

is easier for us, since we concluded that the former word of such a composite noun acts

as an adjectival modifier. By inference we take the latter noun to be the representative

of this particular syntagma. For these kinds of composite nouns our task is reduced to
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finding two consecutive noun terminals - that is, an array with two elements where the

first element matches the regular expression /ˆNN/ - and eliminate the former.

For composite proper nouns, however, we decided that all the words composing this

syntagma are representatives of it. Consequently we had to find a way to prevent these

from being reduced as the other composite nouns were. The first idea was to look for

capitalized nouns, under the assumption that two consecutive capitalized nouns indicates

that both of them are proper nouns. This is a weak point to make decisions on, however,

and better suited as a complement to a part of speech tagger than an actual parser. Parts

of speech, hovever, do provide a solution to this quandary. Identification of proper nouns

is easy to implement by taking advantage of the additional information provided by the

tags available in the Penn treebank corpus. In this treebank, all proper nouns are tagged

with the NNP tag. Since NNP is also matched by the /ˆNN/ regular expression it follows

that composite proper nouns are a subset of the entire set of composite nouns we collected

and reduced in the above algorithm. Therefore we can modify such algorithms to identify

the special case of two consecutive proper nouns (matched by the regular expression

/ˆNNP/ ) and concatenate them instead of eliminating the first of the two. With this

algorithm, proper nouns like “Elsevier N.V.” are transformed into “Elsevier N.V.” (note

the underscore) instead of just N.V..

This solution to compressing composite nouns is robust and uses intrinsic information

available in the source text to make a decision. It is also capable of handling composite

nouns containing more than two words by performing a step-wise reduction. For example

“Brenda”, “Malizia”, “Negus” is first transformed into “Brenda Malizia”, “Negus” and

then into “Brenda Malizia Negus”.
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4.5 Refining Parsed Sentences

All the work mentioned thus far in this chapter was done to prepare the training corpus

for our parser, whose sole purpose is to identify and collect the required 4-tuples from

said corpus. This section describes the different approaches that have been taken to

implementing this parser, and the varying levels of success achieved by each approach.

We have identified and implemented three possible solutions: One bottom-up parser and

two top-down algorithms.

4.5.1 The Preemptive Bottom-Up Approach

The first idea to refining the data structures obtained from the parsed sentences is focused

on approaching the solution of parsing the text by utilizing homogeneous attachment

features as an anchor point. For the purposes of this application, the only homogeneously

formed features are the prepositional phrases. These phrases are closest to the leaf end

of the parse tree, so once identified they allow our application to retrieve the rest of the

required structures by working its way up that tree. This approach is very similar to how

bottom-up parsers work, and draws its name from them.

The basic feature of the algorithm is that it iterates over each element of the array

that we use as a data structure, recursing into each nested array it encounters. In other

words, the algorithm is instructed to descend the tree that is formed by the arrays on a

preorder depth-first basis. When the algorithm encounters a preposition, the recursion

stops and begins with the extraction of the preposition embedded in this phrase. The

algorithm is then instructed to find the nearest attached noun phrase and to extract the

phrase head from it. As has been previously discussed, extracting the phrase head for

this application is equivalent to extracting the first noun. The preposition and noun thus

obtained are placed into an array, forming the [ Prep Noun2] structure common to both
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the target data structures we expect to construct. The array is then returned, putting

an end to the recursion, and initiating the second phase of the information refinement

algorithm.

Upon receiving a return value from a recursive call, the algorithm checks the length

of this value to decide what the next course of action should be.

• If the return value is nil or if the length of the return value is zero, then the

recursive algorithm encountered the end of the nesting of the arrays without finding

a candidate structure for a 4-tuple. The algorithm then proceeded to iterate over

the next elements in the current level of nesting of the arrays.

• If an array of nonzero length is returned, then the algorithm has run into a preposi-

tional phrase down its recursion path1. If the length of the array returned is two or

three2, then the algorithm has to make a decision based on the state of the current

nesting level:

– If the current level is a noun phrase and the length of the returned array is two

then the prepositional phrase is of the adjectival kind. The algorithm recurses

its current nesting level to find the nearest 3 noun, and builds an array with

this noun and the array containing the prepositional phrase, thus setting the

base form for an adjectival attachment 4-tuple. The array is then returned to

its upper level for further actions.

– When the length of the returned array is 3 and the current level is a verb

phrase, then we are dealing with the return value of the above item. The task

1It is interesting to note that the minimum nonzero length of the array that may be returned is two,
namely the array containing a preposition and a noun.

2A length of four indicates that a full 4-tuple has been extracted.

3By finding the nearest element we refer to recursing down the array tree in a depth-first manner and
terminating the recursion on the first element encountered.
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at hand then is to find the nearest nested verb and finish the construction of

the adjectival attachment 4-tuple, which is then returned.

– Sometimes a case is encountered where the current level is a noun phrase and

the length of the returned array is three. It is possible that the algorithm is

dealing with a composite noun in this case (commonly a proper noun), so our

algorithm finds the closest nested noun and prepends it to the noun in the array

returned. This way the related nouns are joined in one object, and the array

depth is not altered. Early implementations of this approach did not perform

this action and were subject to discrepancies. They would encounter situations

where a 4-tuple contains nouns where a verb is expected. It was identified that

nested noun phrase levels were the reason for this occurrence. Any algorithm

not designed to handle this kind of event would be unable to create 4-tuples

of the proper form. The changes described above are one solution to solving

this issue.

– The last case to consider is the situation when the algorithm receives an array

of length 2 from a recursive iteration, but is at a verb phrase level during the

current iteration. This case occurs when the prepositional phrase is unambigu-

ously attached to a verb phrase. A “dumb” algorithm that performs no checks

between the return value of its received return value and the phrase that it

is currently located at will assume that it is at the last steps of the process

of finding an adverbial 4-tuple. Such a naive empirically-oriented algorithm

would then attempt to find the nearest nested verb and noun in the parse tree

and prepend them to the returned array.

Such an assumption, however, is erroneous. The expected 4-tuple is only

present if the text in fact contains an ambiguous sentence of the form [ V P ,
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NP ( The visitors ) V P ( eat ) PP ( with NP ( chopsticks ) ).

Figure 4.1: Unambiguous prepositional phrase attachment

NP1, Prep, NP2 ]. Since it is just as likely, however, that we are dealing with

an unambiguous prepositional phrase attachment, such as the one described in

figure 4.1. A parser that ignores these cases will fail. As can be inferred from

the above sentence, the first noun phrase is missing, thus making the second

noun phrase the nearest one to the verb phrase and returning the second noun

as the “first” one. In this case the naive unbound algorithm would produce a

4-tuple of form [ “eat”, “chopsticks”, “with”, “chopsticks” ].

As has already been mentioned, the problem in this case is that no bound

checks are performed to match the current position of the algorithm within

the parse tree and the return value. In other words, the recursive algorithm

which finds the respective parts of speech (noun, verb, preposition) has no

delimiter as to where it should look. A possible solution to this dilemma

is to have the invoking method exclude or prune the branch that contains

the prepositional attachment from the data structure that the recursive find

method receives. This solution, however, is not very elegant in that it provides

a postorder solution to a preorder algorithm. Furthermore, by introducing a

top-down solution to a problem caused by bottom-up parsing unnecessarily

increases the complexity of the algorithm, introducing additional problems

of interaction between recursive iterations and increasing the frailty of the

algorithm in general.

• A returned array length of 4 indicated that a full 4-tuple has been extracted, and

it is thus passed up along the hierarchy for collection by the driver program.



CHAPTER 4. BUILDING A KNOWLEDGE BASE 32

As it is currently exhibited, the above algorithm displays a number of flaws and

drawbacks that indicate that a preorder bottom-up method is not the ideal approach

to extracting 4-tuples from tagged and parsed sentences. Some of these issues, such as

the nested noun hierarchy and the case where there is no noun phrase on an adverbial

attachment, have already been addressed in the above sections. One important issue,

however, has not yet been solved, namely the non-recursive nature of the algorithm after

the first prepositional phrase has been encountered. Any sentence that contains two

prepositional attachments will only produce a 4-tuple (if any) on the first prepositional

phrase encountered, because all recursion stops at that point. This again is a problem

inherent to the preorder bottom-up approach, because there is no natural way of keeping

a running memory of each step. Keeping a running stack of the tuples that have already

been crawled by the algorithm might be a way to maintain the needed information. It

was decided not to implement a separate stack because the other approaches considered

provide more elegant solutions.

The elemental reason for the unsuitability of the bottom-up approach is that, unlike

context-free grammar parsers, it lacks a good set of grammar rules to reconstruct phrases

from tokens. Such a set, if it were to exist, would have to be very extensive in order to

provide support for the various nuances of English grammar. Bottom-up parsing is an

all-or-nothing approach, and thus the least fit of the three proposed systems to perform

extraction of ambiguous prepositional phrase tuples.

4.5.2 The Tiered Top-Down Approach

In the previous section it was determined that a preorder bottom-up approach to ex-

tracting 4-tuples from parse trees is an inefficient solution. It has also been concluded

that while a bottom-up approach is capable of easily locating prepositional phrase attach-

ments, top-down techniques are better fit to perform the fine-grained parsing required
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for the extraction of ambiguous 4-tuples. Top-down approaches have the additional ad-

vantage of performing their recursion in the same order in which it is desired to maintain

a parse history. By combining the parse history into the recursion stack the need for an

additional data structure to maintain this information can be eliminated, simplifying the

algorithm and making it more robust.

The first observation of the running method of top-down systems is that a such an

approach will first run into the verb phrase section of the ambiguous branches. By

predicting where the algorithm enters the branches it is possible to determine an approach

to tackling a purely top-down algorithm. The idea is founded on the realization that each

consecutive part of the 4-tuples that we are looking for is nested deeper within the verb

phrase root. This would indicate that a tiered approach is better suited for the extraction

of 4-tuples than the preemptive bottom-up approach. The steps involved in examining

the parse tree with this method are as follows:

• The initial traversal algorithm recurses down the entire sentence structure searching

for the beginning of a verb phrase. Recursion stops here, and the branch containing

this verb phrase is passed on to the next part of the algorithm.

• The part of the algorithm that deals with the verb phrases is the most complex

one because it is the one where there are the highest chances for the algorithm to

incorrectly parse a branch.

While the perorder bottom-up approach described in the previous section is prac-

tically blind to the structure of the branch that the prepositional phrase is located

in, a top-down system has no such limitation. It is therefore possible for the parser

to first perform a check and confirm whether it is possible at all for the branch

in question to contain the 4-tuple that is expected by establishing the existence of

the necessary branch structure. The implementation of this idea is straightforward:
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The branch is scanned for the appearance of noun phrases, a prepositional phrase,

and another noun phrase in a depth-first manner. Depth-first scanning ensures that

the phrases are present in the correct order. Because this is intended to be a tiered

algorithm, this check is performed by ignoring the actual nesting of the elements.

That is, it is assumed that any sequence of the form [ NP , PP , NP ] will indicate

the presence of either of the target tuples within the verb phrase, regardless of the

elements encountered between each of the tokens of the sequence. To perform such

a scan the only thing necessary was to flatten the data structure4 and run a regular

expression on it to find the three tokens.

Ignoring the nesting of the phrases within the verb phrase branch is a quick method

of locating candidates for parsing, but not without problems. Several of these were

encountered during initial tests of this algorithm, and close examination of the

nested phrases unveiled new and unexpected sets of difficulties not encountered by

the bottom-up approach. The first problem is that the presence of a noun phrase

element does not always indicate the presence of a noun. The reason for this problem

is that the part of speech tagger applied to the parsed texts sometimes inserts null

tokens where an object has been left out of the sentence. Figure 4.2 is an excerpt of

a sentence containing a typical occurrence of null tokens. The phrase that causes a

problem in this case is the noun phrase. It is a null noun phrase, meaning that while

it is a part of the parse tree it does not contain any words, only the NONE null

token to indicate that it is empty. Therefore it appears to our parser as containing a

sequence of [ V P , NP , PP , NP ] phrases, while actually being just an unambiguous

sequence of [ V P , PP , NP ] phrases. In order to deal with this issue it was decided

4A flattened data structure is obtained by taking a structure composed of nested arrays and recursively
extracting each of the nested arrays into their parent array. The result is a one-dimensional array of items
as encountered in a preorder traversal of the nested arrays.
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(NP
(NP (DT the) (CD 400) (JJ taxable) (NNS funds) )
(VP (VBN tracked)
(NP (-NONE- *) )
(PP (IN by)

(NP-LGS
(NP (NNP IBC) (POS ’s) )
(NNP Money) (NNP Fund) (NNP Report) ))))

Figure 4.2: Excerpt of a parsed sentence containing a null noun phrase.

that it would be necessary to not only search for a [ NP , PP , NP ] syntagma, but

also for a parallel [ NN , IN , NN ] syntagma. However, the initial implementation

of this solution made the did not draw any direct ties between the phrases and

the parts of speech sought, resulting in mismatched phrase and phrase head sets.

This mistake was quickly discovered, and a better solution was drafted. The new

system was set up to include the additional tokens into the regular expression, as

they are expected to occur in the vicinity of the former symbols. Therefore the set

that is searched for is [ NP , NN , PP , IN , NP , NN ]. There is, however, still

a problem with this technique. Regular expressions are greedy, meaning that they

will try to find the most extensive string that matches their requirements. A much

better solution would be to utilize an algorithm that tries to minimize the distance

between the tokens. The catch to implementing such an algorithm is to define a

measure for distance between tokens. Token counting is not a good solution, since

phrases may contain a variable amount of tokens. While it is not impossible to

implement a system that maintains a measure of token distance, the work that is

expected to be done by the parser in order to properly determine whether there

actually is a tuple in a sentence is a greater part of the effort needed to actually

extract such a tuple from that sentence. The proposed preorder top-down parser
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therefore may not be the most appropriate for the extraction of the needed tuples

from the array tree. Like the bottom-up parser, this system became frail due to

unexpected changes in the structure of the parse trees.

4.5.3 The Backed-Out Top-Down Approach

Because the preemptive bottom-up parser and the tiered top-down system were imple-

mented before work on the backed-out top-down approach had begun, the latter was

implemented with the complications of its predecessors in mind. If anything is to be

learned from the tiered top-down approach, then that is that it is of key importance

to minimize the syntactic distance between the tokens that compose each tuple. We

have observed that the two previous attempts at creating a parser lacked any means of

maintaining minimal syntactic distance. The solution to this shortcoming in the parsing

process is as trivial as it is easy to overlook. By switching the system from a preorder

traversal algorithm (as was utilized by the two previous systems) to a postorder one, it

is possible to reduce the complexity - and thus the frailty - of the parser.

• The size of the branch that is to be parsed can be minimized via postorder traversal

by working on verb phrases as the parser backs out of each branch. By looking for

matches while backing out of the branches the parser maintain a minimal match

pattern like the bottom-up approach. The postorder top-down system lacks the

shortcoming of the bottom-up approach because it has already built a parse stack

when it traversed towards the leaves. In order to eliminate duplicates with nested

verb phrases the branches that have already been parsed are pruned as they are

left.

• The problem of null noun phrases encountered in Section 4.5.1 and depicted in

Figure 4.2 was tackled by limiting the recursive finding algorithm to only a certain
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set of allowed phrases. These sets are composed of the phrase that the desired word

is the determiner for (noun phrases for nouns, prepositional phrases for prepositions,

and verb phrases for verbs), simple declarative clauses (S), and unlike coordinated

phrases (UCP ). The likelihood of UCP tokens appearing in the text is minimal -

in fact it is the most unlikely phrase of all of the possible ones - but it was decided

to include it for completeness’ sake.

• Each of the components of the 4-tuple are searched for sequentially within the

verb phrase. The parser first looks for the verb, then the first noun phrase. The

part responsible for finding the first noun phrase also attempts to find an attached

prepositional phrase. If one is found and we have a full tuple set (a [ V B, NN ,

IN , NN ] set with no null tokens) then we tag this tuple as being a tuple of the

adjectival kind. If no prepositional phrase is found attached to the noun phrase

then we attempt to find one attached to the verb phrase. As before, we check if

a full tuple set is available, and in the affirmative case we tag it as being of the

adverbial kind.

All in all, the approach thus described features some major advantages. It boasts a very

simple and compact design by utilizing the recursive call stack as a parser stack, and has

shown itself to be robust and resistant to fluctuations in the input text.

4.6 Chapter Summary

In this Chapter we have covered how the pre-tagged text in the Penn Treebank corpus is

parsed to extract the needed tuples of the form [ V erb, Noun1, Prep, Noun2 ]. First the

corpus was split into two sets, a training set and a testing set. Splitting was performed

by random selection. The training set is composed of 90% of the total amount of tuples

of the corpus, while the rest of the tuples constitutes the test set.
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The approach taken to parsing the corpus was to translate the tagged text into tree-like

data structures and to explore different traversal strategies to find the best fit strategy.

It was decided that a postorder traversal form brought forth the best results because it is

capable of building a parse stack and analyze it in a single pass. The building stage is the

traversal down towards the leaves, while the analysis stage is the return. The tokens of

each tuple are kept tightly clustered by pruning used tokens during the analysis. Pruning

prevents these tokens from occurring multiple times in tuples.



Chapter 5

Semantic Classes Of Prepositional

Attachments

In this chapter we describe how we classify the tuples extracted with the algorithm

described in Chapter 4 into prepositional classes. These classes are then used in the

algorithm described in Chapter 6 as constraints for the disambiguation routines. We used

the rules described in Section 3.4 as our core rules when performing this classification.

5.1 Assignment Of Synonym Sets To Terms Of Tuples

Semantic classes as described in Section 3.4 can only be built with tuples for which all

words involved in an attachment can be disambiguated. This means that for each 4-tuple

[ V B, NN1, Prep, NN2 ] we need to find either

• The senses for V B and NN2, if the attachment is adverbial, or

• The senses for NN1 and NN2 if the attachment is adjectival.

39
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This is performed before any attempt is made to cluster the 4-tuples into classes of

prepositional relations, but after the splitting of the input corpus into training and test

sets in order to avoid any artificial skewing of the distribution of tuples.

5.1.1 WordNet Difficulties

It was decided at this point that it would be useful to collect some statistics on the results

of matching tokens in tuples to WordNet synsets. A surprising fact was that the most

recent algorithm resulted in an unexpected low recall rate of about 10%. An investigation

into the kind of tuples that were rejected revealed that the problem resided in the algo-

rithm passing a literal transcript of the terms as found in the Penn Treebank corpus to the

WordNet library for the Ruby programming language [Matsumoto, 1995] [Thomas and

Hunt, 2002] [Thomas et al., 2004] . This library turned out to contain a deficient word

normalization algorithm. The normalization algorithm only looked up transformation

tables to find the base forms of words, and did not perform any direct transformations

by itself. In order to solve this issue, the normalization task was delegated to an external

tool that made direct use of the original WordNet libraries. This modification consid-

erably improved the recall rate of sense assignment to adjectival attachment tuples, but

adverbial attachment tuples remained at what seemed to be an uncommon low 50% recall.

5.1.2 Symbols As Nominals

Our investigations revealed that another reason for the low recall in our algorithm was the

way in which contractions were parsed in the Penn Treebank corpus. “It′s” was parsed

into a syntactic structure that can be roughly described as NP ( NN − It ) V P ( V B−′ s

), “They′re” into NP ( NN − They ) V P ( V B −′ re ), and so on.

Because of the high number of occurrences of tuples containing these cases it was

decided to pre-parse the input set by transforming all occurrences of ’s and ’re into is
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and are. When looking for further contractions we also encountered a number of cases

of year contraction which we expanded as well (’80s to 1980s) and three cases where the

Treebank corpus contained misspelled or misparsed text. These are as follows:

• maitre ’d, where it should have been maitre d’ ;

• fancy’schvartzer where it should have been fancy schvartzer ;

• the’breakup where it should have been the breakup

Since these were very rare (three occurrences of maitre ’d and one occurrence of the

other two each) we decided to not fix them in the input set since doing that would not

significantly improve the performance of the classification algorithm.

That covered all the ambiguous symbols with a tilde in them. Another common case

was the appearance of “%” as a noun. WordNet performs no translation from “%” to

“percent”, thus leaving this symbol in an ambiguous state. We manually corrected this

case because it is a common occurence.

If not considered carefully, the alterations described in this section could be regarded

as changing the status of our algorithm from unsupervised to supervised. We can justify

these modifications because they solve a shortcoming of WordNet, and do not require any

further human interaction once implemented.

5.1.3 Polysemous Normalization

A problem that is related to semantic class polysemy can be encountered during the

normalization process described in the previous sections. This problem occurs when a

word can be normalized to two different synset entities. Examples are the words “fell”

and “days”. “Fell” can be the past tense of “fall”, or it can be the infinitive of “fell”

itself. Similarly, “days” may be the plural of “day”, but it also appears in a synset as a

collective noun.
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1. (1) days, years – (the time during which someone’s life continues; “the

monarch’s last days”; “in his final years”)

Because we have no way of determining which of the two (or more) normalized forms of

the word we should deal with, our algorithm creates a combination of all possible forms.

A tuple of the form [ “fell”, “in”, “days” ] would thus create the following normalized

combinations:

• [ “fall”, “in”, “day” ];

• [ “fall”, “in”, “days” ];

• [ “fell”, “in”, “day” ];

• [ “fell”, “in”, “days” ].

We do not handle this from the normalization as a particular problem, rationalizing this

lack of preoccupation by assuming that, as with polysemous words, most of the combina-

tions will be discarded because of data sparsity - namely the lack of other tuples matching

the corresponding phrase heads’ synsets. An algorithm that focuses on maximizing its

precision should eventually discard most of these tuples at the cost of recall, whereas a

recall-focused version of such an algorithm should attempt to maximize the amount of

combinations resulting from the tuples in its input. Later in this chapter we will discuss

a number of approaches regarding precision versus recall as applied to polysemous words

- that is, combinations that lead to multiple senses from a single normalization of a word.

The approaches thus discussed can be ported back and applied to solving the issue of

aggregate word transformations from a single source.
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Attachment kind
Adjectival Adverbial

Total 8685 5095
Recalls 1211 322
Normalizations 8366 5218

Table 5.1: Results of normalizations

5.1.4 Effects of normalization and WordNet lookup

After applying the enhancement to allow combinations of polynominalizations, we wanted

to get some statistics regarding the usefulness of normalizations. The reason for doing so

is because this tool is also utilized to determine the recall for training the disambiguation

algorithm on phrase heads. Table 5.1 shows the results obtained. We began with the

8685 adjectival 4-tuples and 5095 adverbial 4-tuples resulting from the work in section

4.2. After applying the normalization, 1211 and 322 tuples were discarded from the ad-

jectival and adverbial tuple sets respectively. These were the tuples that had one or both

phrase heads which could not be matched to any sense in WordNet. The remaining row,

“Normalizations”, lists the number of tuples obtained after the normalization process.

Note that there are more normalizations of adverbial tuples than there were original

tuples. This peculiarity can be traced back to the polysemous normalizations. For any

tuple that has one phrase head with n normalizations, n tuples will be created. Tuples

that have two polysemous phrase heads will produce n×m tuples, where n is the number

of normalizations possible for one phrase head and m is the number of normalizations

possible for the other head. This causes the statistics collected in this section to be

less useful than they could be, but not completely unreliable. A possible alteration that

would increase the value of these numbers would be a change in how they are collected -

if the normalizations and recalls can be clustered by their source, the statistics presented

here can be made more accurate. Such a change was not implemented because it would
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require a considerable amount of retroactive changes to our system which would degrade

its performance in a manner that would cause the drawbacks to outweigh the benefits.

5.2 Tuples That Can Successfully Create Classes

After the work described in Section 5.1, two sets of tuples were produced:

• One aggregation of adjectival attachment tuples for which both nouns have one or

more WordNet synsets assigned to them.

• Another collection of adverbial attachment tuples which have their verb and prepo-

sitional noun paired with one or more WordNet synsets.

Even though it is possible to perform an exhaustive comparison between all tuples within

each set, not all of the relations between tuples A and B - where tuple A is composed

of [ H1A, Prep, H2A ] and tuple B is composed of [ H1B, Prep, H2B ] - will produce a

synonymy class that is useful to our algorithm1.

The points listed here were discovered upon our first experimental attempt at building

a collection of semantic classes based on synonymy alone. The failure of that attempt

led to a further investigation into the kind of tuple comparisons that may turn out

problematic results. In this section we address conclusions drawn from this investigation.

A number of tuple comparisons will produce semantic classes that cannot disam-

biguate one or both of the phrase heads in each tuple. In other words, we cannot reduce

the number of senses that are possible for these phrase heads to one sense per head.

1Tuples with unmatched prepositions are not considered in any of these sections because they are very
likely to act on different senses of a word. We therefore only consider interactions between tuples that
share the same preposition.
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5.2.1 Unmatched Tuples

The most obvious of the ambiguous cases is the one where the two tuples don’t fall within

any of the categories defined in Section 3.4. That means that at least one of the [ H1A,

H1B ] or [ H2A, H2B ] pairings don’t share a synonymy hierarchy (be it a synonym,

parent/child, or sibling relation). Because there is no match between co-located phrase

heads, these cases fall through the algorithm and produce no class at all, so we do not

have to worry about them where produced semantic classes are concerned.

5.2.2 Multiple Classes From A Pair

A more difficult case occurs when we cannot reduce the synsets that match a colocated

pair of phrase heads to one. This is particularly evident when either the H1 and/or the

H2 phrase heads in both tuples contain the same word, but it can also occur when two

words occur in more than one WordNet synset. This last subject was briefly discussed

from the normalization point of view in Section 5.1.3. In the next section we will discuss

the implications of these classes in terms of semantic class construction.

During the experimental version of our algorithm a number of instances were encoun-

tered where exact duplicates of tuples were obtained. This particular issue was resolved

by eliminating duplicate entries from the training set. A list of the tuples that were

removed was kept, however, and a count of the total number of occurrences of each par-

ticular tuple. Tuple frequencies have been utilized previously to calculate the chances of

a prepositional phrase attachment being affiliated to the preceding noun phrase or verb

phrase. By keeping a record of the tuples with multiple occurrences, sufficient informa-

tion has been retained to allow the construction of a fallback statistical algorithm that

makes use of this piece of information. From the tuples resulting from the normalization

process, 4573 unique adverbial attachment tuples were found, 317 of which had one or
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Tuple
1 [ “rise”, “in”, “quarter” ]
2 [ “climb”, “in”, “quarter” ]
3 [ “fall”, “in”, “quarter” ]
4 [ “begin”, “with”, “service” ]
5 [ “start”, “with”, “overhaul” ]

Table 5.2: A sample of ambiguous tuples

more duplicates. A total of 7268 unique adjectival classes were found, with 540 of those

having duplicate tuples.

Table 5.2 shows a list of less obvious tuple combinations where combinations of phrase

heads can lead to an inability to clearly pair them with a particular sense. When cases 1

and 2 are compared, the sense of the verb phrase heads can be pinned to sense number

9 of the word “rise”

9. (4) wax, mount, climb, rise – (go up or advance; “Sales were climbing after

prices were lowered”)

because that is the only one where “rise” and “climb” co-occur. We cannot disam-

biguate the noun phrase head, however, because we do not know which of the 13 senses

of “quarter” apply. A similar issue occurs with cases 1 and 3. We can fixate “rise” to

its first sense and “fall” to its 15th sense because they share a common hypernym:

1. travel, go, move, locomote – (change location; move, travel, or proceed;

“How fast does your new car go?” “We travelled from Rome to Naples by

bus”; “The policemen went from door to door looking for the suspect”; “The

soldiers moved towards the city in an attempt to take it before night fell”)

While the verb phrase head can be bound to one sense, the noun phrase head cannot

be disambiguated. Lastly, cases 4 and 5 present a narrower ambiguity which, despite its
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limited scope is probably the most important ambiguity on this subject. For these two

cases exhibited in the table we are able to disambiguate the noun phrase heads to the

8th sense of “service”,

8. (17) overhaul, inspection and repair, service – (periodic maintenance on a

car or machine; “it was time for an overhaul on the tractor”)

On the other hand, five senses out of ten of “begin” also include “start” in their synonym

list, as follows:

1. (379) get down, begin, get, start out, start, set about, set out, commence –

(take the first step or steps in carrying out an action; “We began working at

dawn”; “Who will start?”; “Get working as soon as the sun rises!”; “The first

tourists began to arrive in Cambodia”; “He began early in the day”; “Let’s

get down to work now”)

2. (58) begin, start – (have a beginning, in a temporal, spatial, or evaluative

sense; “The DMZ begins right over the hill”; “The second movement begins

after the Allegro”; “Prices for these homes start at $250,000”)

3. (27) begin, lead off, start, commence – (set in motion, cause to start; “The

U.S. started a war in the Middle East”; “The Iraqis began hostilities”; “begin

a new chapter in your life”)

...

7. begin, start – (have a beginning characterized in some specified way; “The

novel begins with a murder”; “My property begins with the three maple trees”;

“Her day begins with a work-out”; “The semester begins with a convocation

ceremony”)

8. begin, start – (begin an event that is implied and limited by the nature or
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inherent function of the direct object; “begin a cigar”; “She started the soup

while it was still hot”; “We started physics in 10th grade”)

Once again, we are left with an ambiguous semantic class.

5.2.3 Solving Polysemous Classes

One alternative to discarding the semantic classes for polysemous tuples that was con-

sidered is a case where one a tuple of the form [ “get”, “with”, “service” ] were to be

encountered in addition to cases 4 and 5. A smart algorithm could infer that this tu-

ple complements that ambiguous semantic class and utilize it to disambiguate this class.

This, however, would add an extra level of complexity to the algorithm by introducing a

form of backtracing. Such a form of backtracing is redundant because the target seman-

tic class can be reached in most cases via two independent paths, namely by building a

disambiguated class for the tuple and case 4 and another version of the same class for

the tuple and case 5. Duplicate classes can be eliminated with a postprocessor. A special

case that cannot be handled by this solution is one where we have three tuples A, B and

C, each with different phrase heads ( a, b and c ), and four senses 1, 2, 3 and 4 where

• a and b are contained within sense 1;

• a and c are contained within sense 2;

• b and c are contained within sense 3;

• a, b, and c are contained within sense 3.

In this situation no single comparison between two tuples can yield a completely dis-

ambiguated semantic class. That would seem to indicate that the solution we seek in

order to reduce the scope of these classes to one sense is non-trivial. One could attempt

to tackle the situation by attempting to refine ambiguous semantic classes (and maybe
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create new ones). Such an undertaking could be accomplished by running the class con-

struction algorithm again with the extracted classes as input. This is briefly discussed in

Chapter 9.

One could argue that attempting to refine these ambiguous classes is counterproduc-

tive since it could be contended that for any ambiguous semantic class, all combinations

presented by the polysemous semantic class could be valid. This argument is an opti-

mistic view of the situation and is to be considered problematic. The final part of the

algorithm is tasked with determining the attachment type of a 4-tuple. To do so it casts

this task as a constraint satisfaction problem, with the semantic classes acting as con-

straints. If these constraints are too permissive, errors will creep in and the performance

of the algorithm will suffer. On the other hand, while it is entirely possible that some

of these combinations may be incorrect, thus being a potential source for error in the

algorithm, we speculate that the impact of incorrect combinations is of no more concern

than the effect of phrase heads with a large number of senses - such as “is” - occurring

frequently.

The bottom line is that the choice between discarding or including ambiguous classes

can be cast as deciding whether to give precision or recall more weight. Tossing out

ambiguous semantic classes should improve precision as it eliminates potentially false

positives. On the other hand, disposing of these classes will have a considerable negative

impact on recall, because the total of combinations producing ambiguous semantic classes

out of tuple pairings is higher than the sum of unambiguous semantic classes produced

via the same process. There may be some way to improve that ratio, but addressing that

would bring us out of the scope of our problem.

For the implementation of our algorithm we decided to discard semantic classes pro-

duced from tuple pairs with headers whose words are the same, but kept the polysemous

classes created from headers that do not contain the same words yet produce multiple
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sense solutions.

5.2.4 Relational Transitivity

During the early experimental versions of our algorithm we produced a very low recall

rate. An inspection of that algorithm led to an important observation regarding the

nature of class relations in terms of transitivity.

The initial algorithm only looked up hypernym/hyponym relations from tuple A to

tuple B, under the assumption that a hypernym relation from B to A would be caught as

a hyponym relation from A to B. This assumption is in fact correct, but it is not precise.

We discovered that the conditions under which we were running our algorithm allowed

for relations between tuples A and B to exist in which the prepositional class formed by

the hypernym relation from A to B did not coincide with the prepositional class formed

by the hyponym relation from B to A. Neither of the classes were incorrect, but the set

that resulted as a combination of both classes was larger than the set of each individual

class.

The ultimate conclusion is that for the purpose of constructing prepositional classes

the assumption that paired WordNet relations - hypernym/hyponym relations in par-

ticular - are transitive must not be made. Therefore, when applying this axiom to the

implementation of the algorithm responsible for determining prepositional classes, we

must keep in mind that mere combinations are not sufficient to exhaust all the possible

relations between tuple A and tuple B. In fact the relations need to be explored in a

permutational fashion in order to provide a thorough set of prepositional classes. For ex-

ample, to construct a list of all the words from a hypernym relation from token a to token

b, all hypernyms H1 of a that are synonyms of b are collected, as well as all hyponyms

H2 of b that are synonyms of a. H1 and H2 are then combined. The resulting set, H1,2,

is the list of all words based on a and b that share a hypernym/hyponym relation.
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5.2.5 Extended Implementation of Sibling Classes

The definition of sibling prepositional classes in [Harabagiu, 1996] was that of classes

formed by tuples with a common hypernym, or classes formed by tuples with a common

hyponym. This classification ignores classes which may be formed by pairs of tuples

where the hypernym of one tuple is the hyponym of the other one. One reason for

ignoring those cases is to maintain a closer semantic relationship among the phrase heads

that are thus paired. If one were to plot the synonymy and hypernymy hierarchy in

WordNet of words occurring in two tuples, then the graph could be divided into tiers

or hierarchy levels. The tuples occurring in each level would have a similar degree of

specificity. For example, both hawk and vulture have bird of prey as their hypernym,

which in turn has bird as its hypernym. Hawk and vulture have the same degree of

specificity in this hierarchy, which is higher than that of either bird of prey and bird .

Harabagiu [1996] has reduced the semantic distance between two tuples by minimizing

the difference in WordNet hierarchy tiers. The precision of prepositional classes is thus

improved by limiting the set of prepositional classes to those that share common levels

within the WordNet hierarchy.

The problem with that approach is that, while the semantic distance between tuples

remains the same in regard to the number of edges necessary to construct a class, there

is no conclusive method of weighing the edges themselves. Furthermore, it is improper

to assume that semantic distances are a proper measure of similarity between tuples

[Harabagiu, 2000]. In order to determine whether it would be more beneficial to our

algorithm to utilize a comprehensive set of sibling classes or to limit them to classes that

strictly share a common hypernym or a common hyponym, we implemented a version of

each system. It was concluded from the results of these systems that the gain in recall from

performing comprehensive sibling class construction outweighs the potential performance
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gain of the limited system. As a result, all of the sibling prepositional classes used in our

algorithm are of the comprehensive kind. This decision has an effect on nomenclature in

use: Because the classes are no longer limited to sharing a hypernym/hyponym exclusively

in one direction in the WordNet hierarchy, reporting them as being siblings is no longer a

proper description for them. To prevent confusion by changing the terms utilized, we will

continue to utilize the legacy nomenclature and refer to these classes as sibling classes.

5.3 Performance Issues

In order to build prepositional classes from the extracted information, each tuple has to

be matched against every other tuple. Because there are n tuples and n − 1 tuples to

be matched against, the class building algorithm runs in O(n2) time. We applied various

optimizations and pruning in order to improve the performance of the algorithm. This

section discusses each of those changes.

5.3.1 Smaller Batches

An improvement that lends itself to a potentially much higher performance gain is to

split the work into smaller sections. When building classes we can be certain that there

is no need to compare tuples with unmatched prepositions. We can thus split the input

set by clustering the tuples according to their preposition and processing each batch

separately. While this process adds little performance improvement in a single-threaded

program over a full comparison between tuples2, a distributed version can benefit from this

modification by running the tuple matches for different prepositions in separate threads.

The performance thus gained depends on the kind of system that the parser is run on

2Even though we cut down significantly on the number of comparisons performed, O((n/k)2 ∗ k) still
resolves to O(n2). The operations eliminated were also simple comparisons, which are fast instructions.
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and how the system is implemented. An implementation that utilizes marshaling to share

large batches of information between processes is better suited for a system with remote

machines, whereas a version that uses pipes as a form of inter-process communication

(IPC) performs better on a multiprocessor machine or local computer clusters with low

latency and high bandwidth networking. A rudimentary implementation of this concept

was able to reduce the running time of our parser by about 40%3 by parsing adjectival

and adverbial attachments in separate threads. Further changes were not implemented

because they would have required a large-scale restructuring of the program.

5.3.2 Elimination of Duplicate Comparisons

One easy way to gain a little performance is by eliminating unnecessary object compar-

isons. Finding all pairs of tuples that form a prepositional class can be cast as attempting

Data: tuple set
Result: All tuples have been matched against all other tuples in order to build

prepositional classes.
classes = [ ];
foreach tuple in set do

foreach otherTuple in set do
/* matches() returns an array containing the classes formed by

a match, or nil if there was no match */
tmp = tuple.matches(otherTuple);
if tmp then

/* where << is the concatenation operator. */
classes << tmp;

end
end

end
Algorithm 5.1: Simple class building algorithm

3This figure does not include further performance increases due to system differences such as hard
drive and physical memory latency and the total amount of physical memory available. The latter have
helped reduce the parser’s running time by an additional 20%.
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to match each tuple against all other tuples. An easy way to perform this is by placing

all tuples into an array and matching each of them against a clone of that array, as shown

in Algorithm 5.1. If there are n tuples in that array, then the number of computations

performed by this algorithm is n2. However, because we are dealing with combinations,

not permutations, the number of computations performed can be reduced. Tuples do not

need to be matched against themselves, and do not need to be matched again against

tuples occurring before them in the array. A modification of Algorithm 5.1 yields better

results at n∗ (n−1)/2 tuple comparison. This was achieved by eliminating elements from

our data structures after the outer loop of the algorithm finished using them. Elim-

Data: tuple set
Result: All tuples have been matched against all other tuples in order to build

prepositional classes.
classes = [ ];
repeat

/* shift() removes the first element from set and returns it */
tuple = set.shift();
foreach otherTuple in set do

/* matches() returns an array containing the classes formed by
a match, or nil if there was no match */

tmp = tuple.matches(otherTuple);
/* nil?() returns true is tmp is nil, false if it is not */
if tmp.nil?() then

/* where << is the concatenation operator. */
classes << tmp;

end
end

until set.length() == 0 ;
Algorithm 5.2: Improved class building algorithm

ination of used elements can be done by either using range counters and incrementing

them after each iteration of the outer loop, or by utilizing a dynamic data structure such

as a queue or stack. There is also an additional benefit to the latter implementation in

that it reduces the memory footprint of the system. The algorithm itself still remains at
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O(n2), but the smaller improvements add up to a considerable performance increase. In

our system the data structure version of this enhancement has been implemented. The

modifications are shown in Algorithm 5.2. The array objects in Ruby are subclasses of

collections and as such have inherent methods that let them act like a stack, queue, or

linked list, thus requiring only trivial changes for this improvement to be implemented.

These changes come at the cost of increased system overhead due to garbage collection,

but the benefits still vastly outweigh this small performance loss.

5.3.3 Reducing I/O Bottlenecks

Performing synset lookup in advance for all tuples significantly reduces the time taken

for each iteration, since synset lookup is bound to a BerkleyDB database and thus I/O-

bound. I/O operations are expensive, and if enough physical memory is available then

loading the necessary information into it beforehand signifies a considerable improvement

in running time. In our algorithm we perform all the I/O-bound operations in advance

and store the results. This process triples the amount of physical memory used, but has

helped reduce the running time from 60+ minutes to an average of 5 minutes for the

synonym class building algorithm alone.

Despite the performance gains achieved by loading everything into physical memory

we cannot ignore the possibility of the process using up all the system memory. This

did in fact occur when we built the hypernym/hyponym classes and sibling classes in our

algorithm. It required careful planning and frequent marshaling of intermediate results to

minimize memory usage to a point where the system did not suffer a hit in performance

because of memory page faults.
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5.4 Chapter Summary

In this Chapter we have covered the use of the tuples extracted in the previous Chapter

to build prepositional classes. A prepositional class is formed when all the tokens of

two tuples share a relationship in WordNet. Three levels of relationship were explored:

synonym, hypernym/hyponym, and sibling (tuples with a common hypernym/hypony).



Chapter 6

Prepositional Classes as

Disambiguators

In Chapter 5 the nuances of building a knowledge base were covered. This chapter takes

the work performed there and presents the results of its implementation and application

to the test set of tuples reserved for this purpose in section 4.2.

6.1 The Test Corpus

The set of tuples initially set aside for testing purposes was composed of 5906 tuples

of adjectival/adverbial attachment type. The correct attachment is provided by these

tuples, but our application will ignore that information except for the measurement of

the precision of the attachment decision algorithm.

57
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6.2 Alternate Algorithms

In order to increase the thoroughness of our examination of the attachment decision

algorithms we decided to implement some simple alternatives to our disambiguation al-

gorithm. These implementations serve a twofold purpose - they act as a predictable

point of reference for the measurement of our algorithm, and provide inexpensive fallback

algorithms which can be used to boost the recall figures of our own algorithm.

6.2.1 Random Attachment

This algorithm was implemented to provide an absolute lower bound to our tests. It

performs at predictable 50% average precision.

6.2.2 Right Attachment

The right attachment algorithm assumes that all prepositional phrases are attached to

their closest part of speech, which in this case is the noun phrase. In other words, it is

an algorithm that always decides on adjectival attachment. As mentioned in section 1.3,

[Kimball, 1973] predicts an average of 60 percent precision with this type of attachment

decision algorithm. On our tuple set, the results precision for right attachment precision

were set at 63.021%, which falls within the acceptable range for us to confirm the results

in [Kimball, 1973]. This attachment decision algorithm performs with the same results

upon each iteration, thus being more reliable than the random attachment algorithm. It

also performs better on a constant basis. It is because of this that we decided to use it

as our fallback algorithm.
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6.3 Disambiguation Algorithm Implementations

In order to depict the evolution of our refined knowledge base we took snapshots of the

different stages it went through during its implementation. All of these stages demon-

strate the changes in precision and recall produced by the addition of consecutively more

thorough tuple matching algorithms. In this section we will step through the knowledge

bases as viewed by the disambiguation algorithm, and the steps that this disambiguation

algorithm went through in order to disambiguate unknown tuples.

6.3.1 Internal Sorting of Prepositional Classes

All prepositional classes were sorted by their preposition, and independent of each other.

This was done in response to the reasoning in Section 5.3.1, wherein we argued that

performing tuple matching across dissimilar prepositions adversely affects the precision

of prepositional classes in a manner that outweighs the gains of having a higher recall

rate.

6.3.2 External Sorting of Prepositional Classes

A second commonality between knowledge base versions is how they are stored. Each

stage had its classes sorted by their degree of separation in WordNet. Synonym, hyper-

nym/hyponym, and sibling classes each were collected as independent sets, and each set is

in turn split between tuples derived from right (adjectival) attachment and those derived

from left (adverbial) attachment. The file size of these collections growed predictably in

an exponential form. It is possible to compress the file size of these sets by removing

duplicates, but we decided not to do so because the number of identical classes for a par-

ticular tuple may provide our algorithm with the means necessary to disambiguate tuples

for which we have results as both adjectival and adverbial fields. While the number of am-
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biguous tuples present is very small, the application of class frequency to prepositional

attachment disambiguation has shown some improvements in certain cases at minimal

costs.

6.3.3 Tuple Normalization

Prior to any application of constraints to the test set, we applied normalization to the

tuples in our it in a fashion similar to the normalization performed in Section 5.1.3 when

constructing the prepositional classes. WordNet was again used to construct the base

forms of each term, which were collected and used at the time of constraint application

instead of the inflected form.

6.3.4 Priority of Constraint Selection

The various implementations of attachment decision algorithms described in this chap-

ter are all applications of constraint satisfaction. Each set of classes - synonyms, hy-

pernyms/hyponyms, siblings - is viewed as a constraint on the input, which are the

ambiguous tuples from the test set. Synonyms are the tightest constraint, followed by

hypernyms/hyponyms, followed by sibling classes. This order is imposed by the maxi-

mum degree of separation between tuples that were used to construct the classes. This

degree of separation ranges from 0 at synonym classes, to 2 at sibling classes. The degree

of separation is set by the minimum number of edges necessary to connect any respecive

phrase heads of the tuples in the WordNet hierarchy. Synonym classes are formed with

phrase heads that share the same WordNet synsets and therefore do not need any edges

to connect. Hypernym/hyponym classes share at least one set of phrase heads for which

one head is the hypernym/hyponym of the other, resulting in one edge being needed.

Sibling classes contain phrase heads which share a common hypernym/hyponym (but are

not synonyms), resulting in a minimum of two edges to jump from one to another. Our
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algorithm will settle on the first constraint that is matched exclusively. By exclusively

matched constraints we refer to those which are matched either for the adjectival attach-

ment set or the adverbial attachment set, but not both at once. If a tuple is matched

by both sets it is passed on to the next level of constraints, just as if it had remained

unmatched. The implementation of this system is as follows:

• If the target tuple is featured in either the adjectival synonym class or the adverbial

synonym class - but not both - then the class that it is matched to is considered

to be the correct attachment. The algorithm would stop at this point because the

attachment is disambiguated.

• A tuple that is matched by both adjectival and adverbial constraints offers two

choices to our algorithm, both of which are explored in our work:

– The simple solution is to delegate the disambiguation to the next level of

constraint. This method is more time efficient, at the cost of a small amount

of precision loss.

– The alternative is to utilize a count of the number of constraints matched

in each set as collected during the external sorting of prepositional classes in

order to weigh the decision towards either the adjectival set or the adverbial

set.

• If the tuple is not found in either the adjectival set or the adverbial set then that

signifies that it didn’t properly match any of the synonym attachment constraints

(which are respresented as the classes) and the decision is delegated to the hyper-

nym/hyponym classes.

• The constraint matching is repeated for hypernym/hyponym classes, a failure in

matching the constraints resulting in a further delegation down the list to sibling
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classes.

• Sibling classes are the last constraints to be considered in the knowledge base.

• Tuples that match both or none hypernym/hyponym class attachments are collected

as the set of tuples that could not be disambiguated. These tuples affect the recall

of the algorithm.

6.4 Chapter Summary

This chapter describes how to apply the prepositional classes constructed during the pre-

vious chapter’s work to the disambiguation of prepositional phrase attachments. The task

was cast as a constraint satisfaction problem, with the classes acting as the constraints.

Satisfaction is produced when a tuple solely matches either right attachment classes or

left attachment classes. Synonym classes are tested first, followed by hypernym/hyponym

classes. Sibling classes are tested last.



Chapter 7

Constraint Result Assessment

We recorded various numbers at different key stages of our algorithm. These results are

shown in Table 7. Pictured are the levels of constraints used for a particular snapshot,

the precision and recall of our algorithm, the precision of our algorithm when using right

attachment as a fallback algorithm (bringing the recall up to 100%), and the precision

of the fallback algorithm on the tuples that were matched by our algorithm. We have

sorted the results by their degree of complexity.

We have split the table into three sections, each one containing the results for the ver-

sions of the algorithm using the various degrees of complexity by which we performed the

external sorting of prepositional classes. We have also highlighted the features of tuples

that were most desireable (in bold) and least desirable (in bold italics). Examination

of the numbers produces allows us to draw some conclusions regarding the effectiveness

of the algorithm and the rate at which the the statistics change.
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Constraints Precision Recall Precision with Right attachment
Fallback precision

S 90.799 6.976 64.900 63.835
Sa 90.799 6.993 64.917 63.680
S,H 86.8055 14.629 66.2885 64.468
Sa,H 86.821 14.646 66.305 64.393
Sa,Ha 86.508 14.934 66.2885 64.626

S,H,Z 78.924 30.850 68.5235 61.087
Sa,H,Z 78.936 30.867 68.540 61.053
Sa,Ha,Z 79.105 31.036 68.626 61.0475
Sa,Ha,Za 77.859 32.272 68.371 61.280

Legend: S = Synonym, H = Hypernym/Hyponym, Z = Sibling,
Xa = Constraint X with additional frequency-based ambiguity resolution.

Table 7.1: Constraint results.

7.1 Complexity versus Precision

The first pattern that can be examined is the relation between the degrees of highest

semantic distance that the prepositional classes were constructed with and the precision of

our disambiguation algorithm. The second column of the table demonstrates that higher

semantic distance results in lower precision. On the first change in level of constraints

a drop in precision of about 4% can be observed, and an 8% drop on the second level

change. There is no sufficient information available to conclusively determine that this

trend will continue as more lax constraints are added, but it is most likely that another

level of constraints will confirm a linear drop in precision in relation to complexity. What

makes this pattern more interesting is the fact that the number of total constraints grows

exponentially as more levels are added, making the precision drop at a lower rate than

complexity.
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7.2 Complexity versus Recall

After observing the rate at which recall increases with respect to complexity we can

conclude that the rate of recall doubles with every level of constraints added. This points

to an exponential growth rate of recall within the system. There is reason, however, to

believe that this rate cannot be sustained. Recall growth will eventually flatten as the

system approaches the limit of WordNet’s knowledge base. The maximum recall possible

without any additional word databases would be the percentage of tuples that do not

contain words unknown to WordNet. This is estimated to be around 75% based on the

results from the normalization process in Chapter 5.

7.3 Recall versus Precision

Since we have observed that there is a relation between complexity and recall as well

as a relation between complexity and precision, it is now possible to draw a relation

between recall and precision. These two values grow in opposite directions. It follows that

maximizing one of them will minimize the other, and vice-versa. A naive observation to

be concluded from this would be that there is one point where the combination between

precision and recall is balanced and has the best yield in efficiency. This assumption

ignores a key figure in the table, namely the precision of the right attachment algorithm

on the same set of tuples as those that were matched by our algorithm. This number

affects the precision of our algorithm when combined with right attachment. The lower

this value is, the higher the effect of our algorithm is on the overall precision. It is

possible that the combination of these three curves will yield more than one maximum.

The present data, however, is insufficient to determine where such points will be.
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7.4 Effect of Constraint Counts

The last important observation to be drawn from Table 7 is regarding the effect of uti-

lizing constraint frequency to disambiguate those cases where we find a solution in both

the adjectival and adverbial prepositional class sets. We have implemented this use of

constraint counts in an incremental fashion. Three important statements can be made

about this exercise:

• Using constraint counts does not cause the algorithm to be any worse off than not

using constraint counts. None of the cases seen had a worse joint precision with the

fallback algorithm than if the counts had been ignored.

• Constraint counts have a very small effect when applied only to synonym (zero de-

gree WordNet separation) constraints. This can be rationalized as being caused by

the efficiency with which synonym prepositional classes work, leaving no ambiguous

classes to be resolved, and by the relatively small number of synonym classes in our

knowledge base.

• Using counts on second degree constraints degrades the performance over using

constraint counts on only up to first degree prepositional classes. A possible ex-

planation for this effect is that the precision of hypernym prepositional classes is

sufficiently large to have a greater impact on the system than the more extensive

set of second degree prepositional classes.

7.5 Chapter Summary

The results from the base algorithm were analyzed in this Chapter. Four kinds of statis-

tics were collected. These are precision of the standalone base algorithm, recall of the
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standalone base algorithm, precision of the base algorithm with a right attachment fall-

back system, and precision of the right attachment system on the tuples matched by the

base algorithm.

The statistics described above were collected while running this system with different

variations of our knowledge base. Results were gathered on a corpus of only synonymy-

based classes, synonymy and hypernymy/hyponymy based classes, and finally the full set

of synonymy, hypernymy/hyponymy, and sibling classes. In addition, each variation was

tested with incremental class count disambiguation, by which additional disambiguation

is performed through selecting attachment based on the number of results.

The best results were achieved with a complete corpus and class count disambiguation

up to the hypernym/hyponym level with 68.626% precision using the right attachment

fallback algorithm. This indicates that prepositional class frequencies at the sibling level

are too distorted to be effective in a disambiguation effort.



Chapter 8

Alterations to the Algorithm

In order to further improve the recall rate of our algorithm some changes to our disam-

biguation algorithm have been implemented.

8.1 Client-side Word Sense Expansion

In our base algorithm we normalized the words and used their base form for the tuple

matching algorithm. While this was a step in the right direction, our algorithm could

do better. We utilized the module that was created for the construction of our knowl-

edge base to collect the synonym, hypernym, and hyponym information for the tuples

in our test set. By doing this, a novel client-side use for the prepositional class creation

algorithm presented by [Harabagiu, 1996] has been implemented. As was done with the

reconstruction of the original algorithm, the statistics at different stages of this new im-

plementation were recorded. The results of this collection can be seen in Tables 8.1 and

8.2. Table 8.1 contains results for algorithms using only zero and one degree constraints,

whereas Table 8.2 shows results for the complete set of constraints. For convenience, we

have included a copy of the base algorithm that produced the best results so that the

68
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Constraints Precision Recall Precision with Right attachment
Fallback precision

Sa,H 86.821 14.646 66.305 64.393

S,H + C1 80.706 20.623 66.949 61.6585
Sa,H + C1 80.722 20.640 66.949 61.690
Sa,Ha + C1 80.238 21.334 66.915 61.984
S,H + C2 71.296 36.454 65.7975 63.679
Sa,H + C2 71.309 36.472 65.7975 63.695
Sa,Ha + C2 71.099 36.675 65.713 63.758
S,H + C3 71.247 43.989 66.153 64.126
Sa,H + C3 71.286 43.989 66.170 64.125
Sa,Ha + C3 71.451 44.061 66.238 64.140

Legend: S = Synonym, H = Hypernym/Hyponym, Z = Sibling,
Xa = Constraint X with additional frequency-based ambiguity

resolution, Cn = Client-side class expansion.

Table 8.1: Constraint results - Two classes.

new statistics can be compared and contrasted to it. Three stages of the client-side

algorithm were focused on to collect these results: Usage of synonymy information alone,

uncombined use of synonymy, hypernymy, and hyponymy information, and fully com-

bined use of the three kinds of information. These stages have been labeled as C1, C2,

and C3 respectively. All changes were applied on a system that performs all three levels

of constraint lookup. As was done with the base system, we also recorded the effects of

prepositional class counts on the stages of the algorithm in an incremental manner.

8.1.1 Client-Side - Synonymy

For this system we collected only synonym information from each tuple in the test set.

Each phrase head has a number of synsets that it matched to. For each of these synsets

there is a word collection that lists all of the terms that match this synset. In other

words, a list of synonyms. These sum of all these lists constitutes the list of words that

share a semantic meaning with the phrase head. To apply a matching constraints the
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Constraints Precision Recall Precision with Right attachment
Fallback precision

Sa,Ha,Z 79.105 31.036 68.626 61.0475
S,H,Z + C1 74.261 46.969 70.369 59.616
Sa,H,Z + C1 74.270 46.986 70.369 58.631
Sa,Ha,Z + C1 74.385 47.528 70.488 58.675
Sa,Ha,Za + C1 71.525 52.624 69.150 59.878
S,H,Z + C2 69.939 69.336 69.0315 61.270
Sa,H,Z + C2 69.963 69.336 69.048 61.270
Sa,Ha,Z + C2 69.7975 69.404 68.930 61.283
Sa,Ha,Za + C2 69.480 70.0135 68.727 61.330
S,H,Z + C3 69.827 75.703 69.082 61.821
Sa,H,Z + C3 69.850 75:703 69.100 61.821
Sa,Ha,Z + C3 69.940 75.703 69.167 61.821
Sa,Ha,Za + C3 69.983 76.329 69.981 61.890

Legend: S = Synonym, H = Hypernym/Hyponym, Z = Sibling,
Xa = Constraint X with additional frequency-based ambiguity

resolution, Cn = Client-side class expansion.

Table 8.2: Constraint results - Three classes.

problem was cast as finding a non-empty set at the intersection of this collected word list

and a word list from a prepositional class.

8.1.2 Client-Side - Uncombined Range

The algorithm labeled as stage two (C2 ) adds hypernym and hyponym word lists to the

synonym sets in the previous stage. These three lists, however, are not mixed. This means

that the system performs searches where all phrase head lists are from one and only one

of the three lists. The lists are all either synonym lists, hypernym lists, or hyponym lists.

8.1.3 Client-side - Combined Information

The last stage combines synonym, hypernym, and hyponym word lists to explore all

possible variations of these sets. The challenge in this case has been to determine which
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Data: tuple targets.
Result: tokens in tuples are replaced with 3 arrays, each containing a list of

synonyms, hypernyms/hyponyms, and siblings respectively.
foreach tuple in targets do

/* collect synonyms, hypernym/hyponyms, and siblings. Each set is
wrapped in its own array [ ] . */

foreach token in tuple do
/* where << is the concatenation operator. */
token = [ token.synonyms() ] << [ token.hypernyms() <<
token.hyponyms() ] << [ token.siblings()] ] ;

end
end

Algorithm 8.1: Uncombined-range word expansion

Data: tuple targets.
Result: tokens in tuples are replaced with a list containing their synonyms,

hypernyms/hyponyms, and siblings.
foreach tuple in targets do

/* collect synonyms, hypernym/hyponyms, and siblings. Unlike
Algorithm 8.1, the lists are not wrapped in their own array and
thus merged. */

foreach token in tuple do
/* where << is the concatenation operator. */
token = token.synonyms() << token.hypernyms() << token.hyponyms()
<< token.siblings();

end
end

Algorithm 8.2: Same-priority word expansion
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Rank Feature Short form
1st All synonyms SSS
2nd Two synonyms, one hypernym/hyponym SSH
3rd Two synonyms, one sibling SSZ
4th One synonym, two hypernyms/hyponyms SHH
5th One synonym, one hypernym/hyponym, one sibling SHZ
6th One synonym, two siblings SZZ
7th Three hypernyms/hyponyms HHH
8th Two hypernyms/hyponyms, one sibling HHZ
9th One hypernym/hyponym, two siblings HZZ
10th Three siblings ZZZ

Table 8.3: Priority of client-side combined constraints.

combination is given priority. One option considered was to merge all three sets into one

larger list. Algorithm 8.2 describes a possible approach to merging all three word lists.

The advantage of this is that all words receive the same priority, removing chances of

improper prioritization. The efficiency of the algorithm is improved as well because there

is no need for multiple searches. The disadvantage of this system is that all words receive

the same priority. Synonym sets should receive higher priority than hypernym/hyponym

sets because of their improved precision. It is for this reason that our system explores all

combinations separately.

The challenge was to determine the order in which the combinations should be ap-

proached. The final decision was to favor combinations with synonym sets over combi-

nations with hypernym/hyponym sets, and combinations with hypernym/hyponym sets

over combinations with sibling sets. The relations were made transitive, meaning that

synonym set combinations were favored over sibling set combinations as well. The imple-

mentation follows a switched approach. Stronger relations are tested first, and failure to

find a match leads to the next strongest relation. Because the prepositions in the 4-tuples

do not change, only 3 tokens need to be matched against the prepositional classes. We

know that each of these tokens has 3 possible sets from which to draw a match from -
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the synonym set, the hypernym/hyponym set, and the sibling set. No token has priority

over any of the other ones. Therefore, ranking of matches is performed on a collective

basis. Table 8.3 illustrates the ranks used in our application.

8.2 Assessment of Results

The changes described in this section have produced interesting statistics. Some of them

reinforce the conclusions that were drawn during the analysis of the base system, while

others contradict trends that were observed previously.

8.2.1 Precision versus Recall

The most noticeable event that was observed is that the increase in recall rates has

begun to slow down. This effect had already been predicted in the previous chapter.

As the parser approaches the limit of tuples whose phrase heads can be identified by

WordNet, the curve will flatten until it hits that hard limit. In conjunction with the

observed increase in recall rates, the decrease in precision has nearly stalled. From these

observations it is possible to conclude that as the knowledge base reached its saturation

point, precision and recall become disjoint from the size of the knowledge base. More

importantly, we learned that it would be wasteful to extend the knowledge base of the

base system beyond second degree prepositional class relations.

8.2.2 Effect of Client-Side Class Extension

A surprising result from both tables of statistics is the effect of client-side class expansions

on the test tuple set. Precision of the algorithm with fallback has in fact reached its peak

with C1 class expansions. This can be explained by comparing algorithm precision with

right attachment precision on the same set. By increasing the recall rate of the algorithm
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its precision is affected. It is logical to expect less precise algorithms to perform closer to

right attachment after the algorithm’s peak performance has been reached.

One exception that can be observed is the C3 class expansion with full class count-

based disambiguation. The large difference in recall over its predecessors is enough to

offset the reduced precision.

8.2.3 Effect of Class Count

Unlike the trend observed in the base system, our modifications have altered the effect of

prepositional class frequencies on precision and recall. Whereas the base system benefited

noticeably from it (specially on first degree prepositional classes), our modified algorithm’s

precision and recall rates brought forth mixed results from its application. In both tables

we can observe that class count has a detrimental effect on C1 and C2 algorithms.

Opposing this trend, the C3 modified algorithm sees a steady rise in performance with

each additional level of count-based class disambiguation.

What can be concluded from these observed trends is that class count-based dis-

ambiguation has a positive effect on algorithms that rely more heavily on recall, while

precision-focused algorithms will see detrimental effects on their performance if class

count is applied to them.

8.2.4 The “Better” Algorithm

Deciding whether one algorithm is superior to another one is a subjective matter. While

overall precision is possibly the best indicator of improvement, other factors also need to

be considered.

The modified system with C1 alterations is clearly ahead in general efficiency when

combined with right attachment fallback. It features the highest precision when no class

count disambiguation is applied to it, and has the second shortest running time (after the
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base system) due to reduced complexity. C1 performs well on both two- and three-degree

constraint sets. On the other hand, the C3 altered algorithm boasts the highest recall

rate (which can be further boosted with class count disambiguation), to a point where it

can be applied without the need for a fallback algorithm on sets utilizing three constraint

levels. Not needing a fallback algorithm is an important milestone, and the ability to be

able to perform well without any additional assistance should not be ignored. The C2

hybrid algorithm, which attempts to maintain a compromise between higher precision

and higher recall, has demonstrated the least favorable results.

Making a choice as to which algorithm is the better selection for a general purpose

algorithm, we favor the C1 modified algorithm due to its steady performance, and leave

the C3 algorithm for domain-specific applications.

8.3 Chapter Summary

This chapter covered client-side word sense expansion, an additional change that we have

implemented on the system to improve its performance. The change involves the use of

WordNet to extend the test set tuples with the synsets of their phrase heads.

Client-side word sense expansion were tested at three levels. For the first level, tokens

were expanded to the set of their synonyms. Second, tokens were expanded to the set

of their synonyms, hypernyms, and hyponyms, and looked up on each set separately.

The last phrase head expansion was performed on fully combined synonym, hypernym,

and hyponym sets. Both the second and the third extended systems give preference to

synonym sets. Hypernym/hyponym sets are considered to be equivalent in priority.

Results for each level of client-side class expansion were recorded with two knowledge

bases. The first one is composed of synonym- and hypernym/hyponym-based preposi-

tional classes. The second knowledge base uses the complete set of prepositional classes.
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Both corpora were also tested with incremental levels of class count disambiguation.

Two systems using the complete set of prepositional classes were singled out for their

superior performance. Synonym-based client-side expansion achieved the highest preci-

sion with right attachment fallback at 70.369%, with no class count disambiguation or

count-based disambiguation only at the synonym level. Full client-side and count-based

disambiguation performed next best, at 69.983% standalone precision and 76.329% stan-

dalone recall, and 69.981% precision with right attachment fallback.



Chapter 9

Conclusions and Future Work

9.1 Summary and Research Method

In this paper we have presented and implemented a class-based algorithm for the disam-

biguation of prepositional phrase attachments, and enhancements to this algorithm. The

base algorithm featured here is a recreation of the one described by [Harabagiu, 1996].

At the beginning of this paper the problem of prepositional phrase attachment disam-

biguation was identified. This was followed by a discussion on techniques and tools that

aid in the process of disambiguation of prepositional phrase attachments. After that, we

appraised and discussed the current methods of attachment disambiguation, and briefly

discussed the reasons for choosing a class-based disambiguation algorithm over more con-

ventional methods such as statistical or rule-based algorithms.

In Chapter 4, we described how the pre-tagged text in the Penn Treebank corpus is

parsed to extract the needed tuples of the form [ V erb, Noun1, Prep, Noun2 ]. First the

corpus was split into two sets, a training set and a testing set. Splitting was performed

by random selection. The training set was composed of 90% of the total amount of tuples

of the corpus, while the rest of the tuples constituted the test set. The approach taken

77
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to parsing the corpus was to translate the tagged text into tree-like data structures and

to explore different traversal strategies to find the best fit strategy. It was decided that a

postorder traversal form brought forth the best results because it was capable of building

a parse stack and analyzing that stack in a single pass. The building stage was the

traversal down towards the leaves, while the analysis stage was the return. The tokens of

each tuple were kept tightly clustered by pruning used tokens during the analysis. Pruning

prevented these tokens from occurring multiple times in tuples. Chapter 6 described how

to apply the prepositional classes constructed during the previous chapter’s work to the

disambiguation of prepositional phrase attachments. The task was cast as a constraint

satisfaction problem, with the classes acting as the constraints. Satisfaction was produced

when a tuple solely matches either right attachment classes or left attachment classes.

Synonym classes were tested first, followed by hypernym/hyponym classes. Sibling classes

were tested last.

The last section of the thesis explored the results of the implemented algorithm.

These were analyzed in Chapter 7. Four kinds of statistics were collected. These were

precision of the standalone base algorithm, recall of the standalone base algorithm, pre-

cision of the base algorithm with a right attachment fallback system, and precision

of the right attachment system on the tuples matched by the base algorithm. The

described statistics were collected while running the system with different variations

of our knowledge base. Results were gathered on a corpus of only synonymy-based

classes, synonymy and hypernymy/hyponymy based classes, and finally the full set of

synonymy, hypernymy/hyponymy, and sibling classes. In addition, each variation was

tested with incremental class count disambiguation, by which additional disambiguation

is performed through selecting attachment based on the number of results. The best

results were achieved with a complete corpus and class count disambiguation up to the

hypernym/hyponym level with 68.626% precision using the right attachment fallback
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algorithm.

The last chapter covered client-side word sense expansion, an additional change that

we have implemented on the system to improve its performance. The change involved

the use of WordNet to extend the test set tuples with the synsets of their phrase heads.

Client-side word sense expansion was tested at three levels. For the first level, tokens

were expanded to the set of their synonyms. Second, tokens were expanded to the set of

their synonyms. hypernyms, and hyponyms and looked up on each set separately. Lastly,

phrase head expansion was performed on fully combined synonym, hypernym, and hy-

ponym sets. Both the second and the third extended systems gave preference to synonym

sets. Hypernym/hyponym sets were considered to be equivalent in priority. Results for

each level of client-side class expansion were recorded with two knowledge bases. The

first one is composed of synonym- and hypernym/hyponym-based prepositional classes.

The second knowledge base used the complete set of prepositional classes. Both cor-

pora were also tested with incremental levels of class count disambiguation. Two system

using the complete set of prepositional classes were singled out for their superior perfor-

mance. Synonym-based client-side expansion achieved the highest precision with right

attachment fallback at 70.369%, with no class count disambiguation or count-based dis-

ambiguation only at the synonym level. Full client-side and count-based disambiguation

performed next best, at 69.983% standalone precision and 76.329% standalone recall,

and 69.981% precision with right attachment fallback.

9.2 Limitations

The presented system performs on-line lookup of prepositional classes. This means that

its running performance is affected both in terms of resources used and execution time.

Optimizations have not been included in order to preserve flexibility in implementation.
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These optimizations can be rolled in once the algorithm performs with sufficient precision

and recall.

In order to reduce the amount of resources utilized by the application, sense disam-

biguation of the tuple phrase heads is not performed, and relevant sense information

is discarded. Better encoding of the information and elimination of non-critical debug-

ging information should be sufficient to free up enough resources to reintroduce semantic

knowledge for each synset.

Even though the presented algorithm requires a considerably smaller training set than

statistical systems, it still relies on a pre-tagged source. Such texts are difficult to find

for domain-specific applications.

There is a limit as to how many of the tuples can be disambiguated, which depends

on the ratio of tokens that can be found in the WordNet database to those which cannot.

Estimates based on results from Chapter 5 place this limit at about 75% of the total set

of tokens.

9.3 Future Work

Further improvements could be applied by creating additional semantic classes from

the directly extracted classes. Synonym class clusters themselves can be combined to

form additional first degree (hypernym/hyponym) and second degree (sibling) classes.

This approach would be an extension of the original class-building algorithm. The ad-

vantage of utilizing synonym class clusters to build additional disambiguation classes

is that this process is more exhaustive and efficient than performing individual hyper-

nym/hyponym/sibling class lookup between 4-tuples.

The knowledge-base building algorithm can be enhanced with the aid of dictionaries,

encyclopedias, and gazetteer databases in order to reduce the number of unmatched
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phrase heads in WordNet and thus improve the system’s recall rate. The use of proper

nouns changes faster than any system - be it knowledge-based or stochastical - can keep

up with. Disambiguation of tuples containing such terms has to be performed at the

last moment. By utilizing a frequently-updated database of proper nouns, the client-side

token expansion algorithm can be modified to attempt to perform a live match of any

unmatched target token to its most likely synonym.

The presented system does not give priority to any of the tokens in the target 4-tuples.

The current method utilized to disambiguate a tuple when it matches prepositional classes

for both left and right attachment at a particular level is a plain frequency-based sys-

tem. When comparing the frequencies for right and left attachment, however, the system

ignores the fact that right attachment is more likely to occur in first place. While we

have demonstrated that the use class frequencies can have a positive effect on the base

system, our extended system has not benefited from it except in the case of comprehen-

sive client-side and server-side disambiguation (see Table 8.2). By skewing the priority

of tokens within the 4-tuples the positive effects of frequency-based disambiguation can

be boosted. For example the match

[H,S, Prep, S]

in which the head of the noun phrase is matched against a synonym, and the head of the

verb phrase is matched against a hypernym/hyponym, may be preferred over

[S, H, Prep, S]

where the matches are inverse. The reason for this particular preference is the fact that

right attachment is more likely to occur. The effect of such prioritization needs to be

documented.

The problem of prepositional phrase attachment disambiguation can be extended to

cases which feature multiple prepositional phrases, such as
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He saw the man in the park with the telescope

The decision making process is complicated in this case by the availability of two preposi-

tional phrases instead of one. One possible approach to solving this problem is to alter the

constraint selection algorithm to process both prepositional phrase attachments at the

same time. Another possible approach would be to treat each phrase as an independent

attachment, and handle them separately.

Class-based disambiguation is not restricted to prepositional phrase attachments only.

The same principles can be applied to other forms of binary attachment disambiguation,

such as object attachment in

The fishbone was stuck in her throat, and it was swollen.

and

Her throat had a fishbone stuck in it, and it was swollen.

In both sentences, it refers to the throat. However, the placement of the object that this

is attached to has changed.

In the above case, disambiguation can be performed syntactically. By populating a

knowledge-base with examples of correct object attachment, this problem can be solved

in an analogous manner to prepositional phrase attachment disambiguation.

9.4 Contributions

In this paper we have replicated the system described in [Harabagiu, 1996] and added

enhancements to improve its performance. Just like the original system, our algorithm

relied on WordNet in order to produce prepositional classes, and was trained and tested

on the Penn Treebank corpus. Prepositional classes were formed by combining tuples
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whose phrase heads share a close connection within the WordNet hierarchy. This was

determined by the synonymy, hypernymy/hyponymy, and sibling relations between the

phrase heads.

Unlike the work described in [Harabagiu, 1996], we have chosen to not pursue sense

disambiguation of every token in the 4-tuples used, in order to improve recall of the

system. This is possible because sense disambiguation of tokens is not a crucial part to

the disambiguation process, only a by-product.

We have extended the sibling relations and explored a greater range of tuple com-

binations. The extension was achieved by allowing tuples to form a prepositional class

if the hypernym of one is shared with the hyponym of the other. This is opposed to

the original description of the system which only considered tuples which both share a

common hypernym or hyponym.

The system that we replicated and extended performs perceptibly better than right

attachment (which performs at 63.021% precision), exceeding its precision by 14.8-

27.7% on matched tuples. When combined with right attachment as a fallback algorithm

to achieve 100% recall, the base system performs at a 5.8% higher precision than right

attachment alone.

We have enhanced the disambiguation algorithm by performing client-side synset ex-

pansion of tuples. This novel application of class-based lookup provides a significant

improvement over the base algorithm of 15.9-35.3% recall at an affordable cost in preci-

sion loss of 4.9-9.2%. The precision of the new algorithm with a fallback system at 100%

recall has been improved by an additional 1.8% to 70.369%. Furthermore, the recall

rate of the extended system after the implemented changes reached 76.329%, allowing

it to perform on its own without a fallback algorithm.

Both base and extended algorithms have been additionally extended with class count

disambiguation. This change has improved the recall rate of the base system by 0-2.2%,
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and the recall rate of the enhanced algorithm by 0.6-5.7%.

We expect this system to be used as a skeleton model to create newer and better

algorithms, both in terms of precision as well as recall. Client-side application of common

techniques is also a method that is often overlooked, and we hope to raise the awareness

of such usage throughout this paper. Because client-side token expansion is performed

on-the-fly, it is advantageous over static prepositional classes in that it can use the latest

knowledge repositories to improve its performance.



Glossary

antonymy: The semantic relation that holds between two words that can (in a given

context) express opposite meanings, 12

fallback algorithm: An algorithm that can make an attachment decision when the base

algorithm cannot, 53

hypernymy: The semantic relation of being superordinate or belonging to a higher rank

or class, 11

hyponymy: The semantic relation of being subordinate or belonging to a lower rank or

class, 12

marshaling: See serialization, 49

meronymy: The semantic relation that holds between a part and the whole, 11

pipes: In UNIX programming, a method of channeling the input and output of programs,

49

polysemy: The ambiguity of an individual word or phrase that can be used (in different

contexts) to express two or more different meanings, 38
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serialization: In programming, the process of storing objects somewhere to reconstitute

them later, 49

synset: A set of one or more synonyms, 11

syntagma: A syntactic string of words that forms a part of some larger syntactic unit,

24
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