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Abstract 

With the continued growth of global population, urbanization becomes an inevitable 

trend. As substantial urban expansion undergoes, ecosystem and global land cover have been 

altered consequently. Urban development becomes the biggest contributor to global carbon 

emissions while the process of urbanization results in urban heat islands, climate change, and 

losses of carbon sinks. Urban vegetation has drawn direct attention of city planners and 

policy makers by considering the importance of vegetation in urban climate modification and 

energy conservation in different ways. For instance, tree shading and wind shielding effects 

can attenuate the direct solar heat and air infiltration into individual houses. In city wide, 

vegetation contributes the largest proportion of carbon storage which reduces climate 

warming and urban heat island effects by sequestering CO2 and storing carbon in biomass.  

The carbon content stored in individual trees can be estimated by dendrometric 

parameters such as the diameter at breast height (DBH) using allometry-based models. With 

the development of airborne laser scanning (ALS) technology, ALS data and very high 

resolution multispectral imagery have proven to be promising tools for deriving dendrometric 

parameters in forest. With the emerging multispectral ALS technology, it became possible to 

obtain both the range and spectral information from a single source meanwhile the intensity 

of multispectral ALS showed its power in vegetation mapping.  

This study aims to develop a workflow that can quantify the carbon storage in urban 

trees using multispectral ALS data. The workflow consists of four steps: multispectral ALS 

data processing, vegetation isolation, dendrometric parameters estimation, and carbon storage 

modeling. First, the raw multispectral ALS data is intensity-rectified and filtered to generate 

a normalized Digital Surface Model (nDSM) and multispectral ALS intensity information at 

wavelengths: 532 nm (Green), 1064 nm (Near-infrared, NIR), and 1550 nm (Shortwave 

Infrared, SWIR), respectively. Vegetation covers are isolated by the support vector machine 

(SVM) classifier using multispectral ALS intensity information and nDSM in which total six 

classes including two vegetation classes (grass and tree) are classified. Individual tree crown 

is delineated by local maxima filtering and marker-controlled watershed segmentation. Tree 
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height and crown width are derived from the crown segments and compared with field 

measurements. An ALS-DBH (diameter at breast height) multiple linear regression model is 

developed to predict field-measured DBH using ALS-derived tree height and crown width 

and assessed by cross validation. Then the carbon storage in individual trees is calculated by 

allometric equations using ALS-estimated DBH and height. A total of 40 trees are sampled in 

the field that four attributes: height, crown width, DBH, and biomass are recorded for each 

single tree.  

The results show that the land cover classification with multispectral ALS intensity 

images and nDSM achieves above 90% overall accuracy. The result of local maxima filtering 

is improved by using both multispectral ALS intensity and nDSM as input data. The ALS-

derived tree height has a root mean square error (RMSE) of 1.21 m (relative RMSE = 6.8%) 

and the ALS-derived crown width has a RMSE of 1.47 m (relative RMSE = 16.4%). The 

prediction performance of the ALS-DBH model achieves R
2
 over 0.80 with a RMSE of 4.6 

cm. The predicted carbon storage using ALS-modeled DBH corresponded to a RMSE of 142 

kg (28.6%) and a bias of 14.4 kg. Results suggest that ALS-based dendrometric parameter 

estimation and allometric models can yield consistent performance and accurate estimation. 

Citywide carbon storage estimation is derived in this study by extrapolating the values within 

the study area to the entire city based on the specific proportion of each land cover type in the 

entire city. The proposed workflow also reveals the potential of multispectral ALS data in 

estimating carbon storage at individual-tree level and mapping vegetation in the urban 

environment.   
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Chapter 1 

Introduction 

1.1 Motivation 

With the continuing growth of global population, urbanization becomes an inevitable 

trend. Urban expansion accelerates as the advancements of socioeconomic activities and 

population growth. Today, over 50% of the global population resides in cities where by 2050 

urban areas will hold up to another 2.5 billion people which in total is equivalent to 66% of 

the global population (United Nations, 2014). As substantial urban expansion undergoes, 

ecosystem and global land cover have been altered consequently (Carlson & Arthur, 2000). 

Land cover transition takes place everywhere from natural environment to diverse urban land 

types such as impervious surface, build-up areas, recreation areas, and urban green spaces. 

Meanwhile, substantial urban growth brings pressing problems to the world today such as the 

urban heat island effect. Intensive urban developments and economic activities increase 

energy consumption and result in greenhouse gases emissions (Corfee-Morlot et al., 2009; 

Scatterwaite, 2009; Dodman et al., 2012). Urban development becomes the biggest 

contributor to global carbon emissions while the energy sector becomes the largest source of 

greenhouse gases which contributes about 85% of Canada’s total greenhouse gas emissions 

(Environment Canada, 2015). Besides, as urban land covers expand, direct losses of 

vegetation cover occur. Without vegetation covers act as the largest carbon sink, 

deforestation becomes the second largest contributor of greenhouse gases (Johnson, 2009). 

Increased awareness of high energy use and urban heat islands has led urban 

municipalities to put conservation efforts in implementing strategies that can protect urban 

climate and energy use at the city scale. Urban vegetation has drawn direct attention of city 

planners and policy makers by considering ecological sustainability and energy conservation. 

Trees play an important role in urban climate modification and energy conservation in 

different ways. For instance, tree shading and wind shielding effects can attenuate the direct 

solar heat and air infiltration into individual houses (Sawka et al., 2013). In the context of 

Canada’s climate, there are high demands in both heating and cooling energy for indoor 
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climate controls (Akbari et al., 2012). By planting vegetation proximate the houses and 

increasing the albedo of urban surfaces, annual cooling energy use can be reduced 10-19% 

(Xu et al., 2012; Sawka et al., 2013). Strategic planting can make full use of tree shading and 

aggregate canopy covers to receive energy conservation benefits. Trees also facilitate 

evapotranspiration and airflow dynamics (Sawka et al., 2013). Urban thermal comfort can be 

significantly improved by the effect of evapotranspiration. In city wide, urban trees reduce 

air pollution through direct dry deposition and also influence the cooling of the ambient 

temperature which slows the smog formation. Vegetation contributes the largest proportion 

of carbon storage which in return reduces the rate of climate warming and urban heat islands 

(Davies et al., 2011). Urban trees both sequester CO2 and store excess carbon in biomass (71% 

of total urban carbon storage) which significantly influences environmental quality and 

human health (Donovan & Butry, 2010; Roy & Pickering, 2012). Preserving carbon storage 

and also improving green space infrastructure in urban area has significant environmental 

and substantial benefits (van den Berg et al., 2015). Consequently, estimation and monitoring 

of urban carbon stocks and green space become important indeed. First quantification of 

carbon storage in urban trees was conducted in 1990s (Nowak et al., 1993). In Canada, 

Environment Canada conducts national scale estimations of urban forest carbon sequestration 

rate and the greenhouse gas emissions and removals at an annual base (Pasher et al., 2014). 

However, the estimations of tree carbon stocks require excessive field data which could be 

time-consuming and labor-intensive. Moreover, the estimation of dry biomass often requires 

destructive measurements. There is a clear need for techniques to efficiently and cost-

effectively assess urban trees in both individual and regional scales. Especially, the ability of 

assessing carbon stocks at individual-tree level is very important since it takes vegetation 

structures and fine-scale heterogeneous composition into account (Davies et al., 2011). In 

literature, the carbon content stored in individual trees can be assessed through aboveground 

dry-weight biomass calculation using allometric equations. Dendrometric parameters such as 

individual tree height or crown diameters are generally used in the allometric equation to 

derive diameter at breast height (DBH). Dry biomass then is calculated using allometric  
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model with DBH as the input and further transformed to carbon storage by a conversion rate 

around 0.5 (Lieth, 1963; Whittaker & Likens, 1973).  

With the development of light detection and ranging (LiDAR) or laser scanning 

technologies, airborne laser scanning (ALS) and very high resolution multispectral imagery 

have proven to be promising tools for the derivation of dendrometric parameters in forest. 

Typical ALS technology provides detailed topographic information through the dense and 

accurate georeferenced point clouds and ALS-derived digital elevation models (DEM). 

Meanwhile ALS intensity records the backscattered energy from laser pulses. However, since 

the response in single wavelength (typical ALS system emits laser pulses at wavelength in 

1064 nm) may not be sufficient to identify different targets, the reflectance properties of ALS 

data are less frequently used in applications. Data fusion technique especially has overcome 

the limitation of single source data by taking advantages of both spectral information from 

imagery and range information from ALS point clouds. In terms of vegetation analysis, 

previous studies have successfully extracted detailed vegetation covers from very high 

resolution multispectral satellite imagery such as QuickBird and applied it to the ALS-

derived canopy height model (CHM) for dendrometric measurements and biomass estimation 

in both forestry and urban studies (Huang et al., 2013; Schreyer et al., 2014; Pasher et al., 

2014; Sousa et al., 2015). However, data discrepancies have always existed due to data 

inconsistence in terms of cloud occurrence, shadow effects, and inconsistent spatial and 

temporal resolution. With the emerging multispectral ALS technology, it becomes possible to 

obtain both the range and multiple reflectance data from a single data source. The first 

commercial multispectral ALS system, Titan, released by Teledyne Optech Inc. has 

integrated three laser channels at wavelengths of 532 nm, 1064 nm, and 1550 nm, 

respectively. This emerging ALS system showed great potential in land cover mapping 

without the aid of passive multispectral images (Bakula, 2015; Wichmann et al., 2015). This 

active laser system can largely avoid those factors commonly associated with passive optical 

sensors such as weather conditions and shadow effects. However, the potential of ALS 

intensity currently remains undervalued and the applications in use of this newly released 

system are at an early stage of development. Given the current development of tree inventory 
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with typical ALS data, this study aims to explore the feasibility of multispectral ALS range and 

intensity data in carbon storage estimation. 

1.2 Objectives of the Study 

The primary objective of this study was to develop a workflow that can quantify the carbon 

storage in urban trees using multispectral ALS data. To achieve this, this study aimed to first 

classify vegetation covers based on multispectral ALS range and intensity data by applying 

Support Vector Machine (SVM) classifier. Secondly, this study aimed to derive dendrometric 

parameters such as tree height and crown diameter in order to establish an allometric 

relationship between ALS-derived measurements (tree height and crown width) and the field-

measured parameter (DBH) through regression modeling. Lastly, this study quantifies the 

carbon storage in urban trees for the Town of Whitchurch-Stouffville, Ontario. 

1.3 Organization of the Thesis 

This thesis consists of six chapters: 

Chapter 2 gives a literature review on the development of multispectral ALS technology 

with an emphasis on the generation of ALS-derived DEM and related considerations. It also 

reviews current studies in land cover mapping and biomass estimation in use of both ALS 

and imagery. 

Chapter 3 provides a description of the study area, a summary of the multispectral ALS 

dataset, and the statistics of the field measurements. 

Chapter 4 describes the proposed workflow which consists of four steps: ALS data 

processing, vegetation isolation, dendrometric parameters extraction, and carbon storage 

estimation.  

Chapter 5 presents results of the study including accuracy assessment of the land cover 

classification, validation of the tree-crown segmentation, validation of the ALS-DBH linear 

regression modeling, and the final calculation of the urban tree carbon storage. It also 

discusses the key findings of this thesis. 

Chapter 6 concludes the deliverables of the study and offers recommendations for future 

works. 
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Chapter 2 

Related Work 

In this chapter, a fundamental working principle of the typical ALS system and an 

introduction to the Teledyne Optech Titan multispectral ALS system are given. The 

applications of land cover mapping and forest inventory in use of ALS data are reviewed 

with an emphasis of the approaches in ALS data processing, individual tree segmentation, 

dendrometric parameter estimation, and allometry-based biomass modeling. 

2.1 Multispectral Airborne Laser Scanning 

Airborne laser scanning (ALS) is an active-sensor mapping system that provides 3D 

information of the surface through emitting laser pulses towards the surface and recording 

the travel time of the return signals. Meanwhile, the tiling direction of the laser beam and the 

location of the flight are recorded by the system. The ALS system is essentially featured by 

the penetration capability of laser pulses into the terrain surface. As an active remote sensor, 

the ALS system can be operated at day and night which successfully avoids the influences by 

shadow and solar illuminations. Today, ALS technology becomes well established and has 

opened a new era in the field of forestry, bathometry, urban management, and so on. This 

section first introduces the multispectral ALS technology, giving focuses especially on the 

characteristics of a multispectral ALS system, the principle and system components of the 

ALS systems, and the direct geo-referencing of the ALS data. The accuracy and generation 

of ALS-derived data are discussed with specific considerations related to this study. 

2.1.1 Characteristics of A Multispectral ALS System 

In the development of ALS technology, a new resolution occurs when the operation of lasers 

with multiple spectral bands becomes available. A typical ALS system usually operates a 

near-infrared (NIR) laser scanner in topographic mapping where complete absorption occurs 

in water areas. With the addition of a green-band laser (green lights can penetrate into 

shallow water), it enabled applications in bathymetry. The multispectral ALS data utilized in 

this study was generated from the first commercial multispectral active imaging sensor: 
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Optech Titan (see Figure 2.1). Detailed specifications are listed in Table 2.1. Optech Titan 

operates three laser channels at wavelength: 1550 nm (shortwave infrared, SWIR), 1064 nm 

(near infrared, NIR), and 532 nm (green), respectively. These three channels produce 

independent scan lines by sending pulses with separate forward angles (NIR channel has 0 

forward angle; SWIR channel has 3.5 forward angle; green channel has 7 forward angle). It 

also enabled three independent intensity profiles generated at these wavelengths. Hence, 

besides the 3D information, the spectral characteristics of objects at different spectral bands 

became available. The spectral behaviors of basic land cover types at Titan operated spectral 

wavelengths are illustrated in Figure 2.2. NIR and SWIR lights tend to be absorbed 

completely at water surface while the green light can penetrate into the water body at certain 

depths (up to 15 m). Vegetation tends to reflect most at the NIR band but lowest at the green 

band. Since Optech Titan is released in 2014, its potentials in topographic mapping and land 

cover classification have been actively evaluated (Bakula, 2015; Wichmann et al., 2015). 

 

Figure 2.1 Optech Titan system (reprinted from Teledyne Optech Titan, 2015) 
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Figure 2.2 Titan spectral bands with general spectral behaviors for vegetation, soil, and water 

(reprinted from Teledyne Optech, 2015) 

 

2.1.2 Principle of Multispectral ALS System 

A multispectral ALS system follows the standard ALS principles that measures the ranges to 

an object mainly based on the light transit time estimation method, also known as time-of-

flight (TOF) method (Beraldin et al., 2010). Regardless of the scanning platform, the 

fundamental principle of range measurement by an ALS system can be described by  

 =
c

n

𝜏

2
                                                                                (2.1) 

Table 2.1 Titan configurations 

Laser channels 1550 nm, 1064 nm, 532 nm  

Scan angle 0 - 60° 

Pulse repetition frequency (PRF) 300 kHz per channel, 90kHz total 

Accuracy Horizontal: 1/7, 500 × altitude,1 σ 

Vertical: < 5 - 10 cm, 1σ 

Range precision < 8 mm; 1σ 
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where c is the speed of light in vacuum, n is the correction factor that applied if light travels 

in a medium;  is the range, and  is the time that light travels from the sensor to a target and 

back to the sensor (also known as TOF). Hence, with n =1 and the flying height is 1000 m, 

the TOF for a single pulse is 6.7 µs. For precise mapping, the position and orientation of the 

aircraft have to be recorded at certain level of accuracy. The laser light source is more 

directional and coherent than sunlight which allows the laser pulses to keep high spatial 

coherence when it hits and transmits back. The spatial coherence is dependent with the 

wavelength of the laser source that shorter the wavelength can create longer the coherence 

length. The multispectral ALS systems now integrate eye-safe lasers with wavelengths in the 

range of 0.4 to 1.6 µm. The strength of a reflected laser pulse is recorded as intensity values 

which measures the reflectivity of surface targets at the laser-specific wavelength. The 

intensity data provides complementary information to the 3D measurement which helps 

differential objects with similar elevation but different reflectivity. Meanwhile, the scanner 

emits pulses with certain scanning angles to optimize both the across- and along- track range 

(see Figure 2.3). A relationship between swath width sw of a scanner and the scanning angle 

can be established as  

sw = 2h tan
𝜃

2
                                                                 (2.2)  

where  is the scan angle and h is the vertical height between the ground and the aircraft. 

Similarly, the laser footprint which is the size of laser pulse projected on the ground is 

described by 

D = 2 h tan


2
                                                                         (2.3) 

Where γ is the laser beam divergence (typically ranges from 0.1 to 1 mrad) and h is the 

vertical height between the ground and the aircraft. Multiple signal returns can be generated 

by the TOF range system when the rises of signals occur. Therefore, not only the first hit on a 

tree branch is recorded, the following hits (up to four echoes) penetrated into the canopy will 

also be recorded.  
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2.1.3 Components of A Multispectral ALS System 

The basic components of a multispectral ALS system include:  

1) a scanner assembly,  

2) an airborne Global Navigation Satellite System (GNSS) antenna, 

3) an inertial measurement unit (IMU), 

4) a control and data recording unit, 

5) an operator laptop, and  

6) a flight management system (see Figure 2.3).  

The scanner assembly consists of the lasers and the scanning mechanism. As the aircraft 

flies, the scanner assembly sends laser pulses continuously towards the terrain. For the Titan 

system, a point density of 25 points/m
2
 can be reached from a survey with a flying height of 

1000 m, PRF of 900 kHz, field of view (FOV) of 30, and a cruising speed of 60 m/s. The 

scanning assembly is mounted in the fuselage pointing exposed to the ground. The laser 

scanner and digital cameras form the imaging components of the ALS system. Range 

accuracy is mainly affected by the incidence angle of the scan head to the surface of interest 

(Beraldin et al., 2010). Here, scanners can also be grouped based on two types of range 

measurement techniques. The TOF scanners calculate the range based on the travel 

difference of laser pulses. Majority of scanners follow this concept to determine the range. 

The phase-shift based scanners calculate the phase difference of emitted modulated 

sinusoidal laser pulse using a phase shift principle. This technique can achieve better ranging 

accuracy but shorter measurement range. The laser scanners generally collect the amplitude 

of return points forming the ALS intensity data. The digital cameras can provide additional 

visual information that often images are geo-referencing with MLS points to depict points 

with detailed colours. 

The GNSS antenna is mounted at the top of the aircraft creating undisturbed connection 

with GNSS satellites. GNSS has included a series of global navigation satellite system such 

as U.S. GPS (Global Positioning System) and Russian GLONASS. The GNSS receivers can 

record: time, position and velocity of the aircraft. By acquiring satellite signals, the GNSS 

can provide exactly the position and orientation of the ALS system. The antenna typically 
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receives GPS signals at the frequency of 2 Hz which is equivalent to locate positions with 35 

m spacing under an aircraft speed of 70 m/s. To restitute the flight trajectory with complete 

positioning records, IMU system is introduced. IMU records: roll, pitch and yaw angles of 

the sensor platform. These values can derive the aircraft acceleration rate and rotation rate 

which could further record the positioning information of the system. The GNSS/IMU  

 

Figure 2.3 Principle of ALS 
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components control geo-referencing to the point clouds. Once satellite signals are blocked, 

the IMU will aid in providing location information. Since the GNSS signals have a frequency 

rate of 1-10 Hz while the IMU typically records orientation and position at rate of 100-2000 

Hz, as flight speed increases, the IMU can record more precise positioning information with 

much smaller timescale. The trajectory is monitored mathematically using algorithmic 

filtering and smoothing techniques such as Kalman filter (Skaloud & Schwartz, 2000). The 

control and data recording unit controls the whole system meanwhile it stores ranging and 

positioning data. The operator laptop displays the system performance. And the flight 

management system provides real-time survey conditions to the pilot. 

2.1.4 Direct Geo-referencing  

Before delivering ALS data to end users, the coordinates of laser points have to be assigned 

by the control unit of the navigational system. This process refers to direct geo-referencing.  

The coordinate of a target p(t) is calculated by 

𝑝(𝑡) =  𝑝𝑁(𝑡) +  𝑅𝑁(𝑡) 𝑅𝑆(𝑡) 𝑟𝐿(𝑡)                                            (2.4)    

where 𝑝𝑁(𝑡) refer to the position of the laser scanner at time t in a Cartesian geographic 

coordinate system,  𝑅𝑁(𝑡) refers to the rotation matrix that describes the orientation of the 

laser channel in 3D space,  𝑅𝑆(𝑡) refers to the rotation matrix that describes the orientation of 

the scanning mechanism and the scanning process,  𝑟𝐿(𝑡) refers to the distance measured by 

the laser scanner at time t (Hebel & Stilla, 2012). 

      The accuracy of laser points is influenced by several error sources in the ALS system. for 

example, the positioning errors for a 500-m-height survey can come from the GNSS related 

errors (3-30 cm), the IMU related errors (10-20 cm), lever arms (2-3 cm), and footprint size 

(10-20 cm) (Hebel & Stilla, 2012).  

2.1.5 ALS-derived DTM and DSM 

Besides the point cloud itself, various digital products can be generated from the ALS data; 

such as digital terrain model (DTM), digital surface model (DSM), and ALS intensity 

imagery. The DTM refers a digital representation of the bare earth that has ground surface 

without objects attached (Sithole & Vosselman, 2005). Before, the photogrammetry was 



 

 12 

mainly used to derive topographic information for large spatial coverage. In recent years, the 

generation of DTM from ALS data becomes an available approach. Various factors can 

affect the quality of the ALS-derived DTM such as ALS point density, flight height, scan 

angle, surface complexity and so on. Specifically, the amount of returned ground signals 

decreases as the scan angle increases (Hyyppä et al., 2008). In terms of surface complexity, 

tree canopy and understory vegetation can significantly influence the accuracy of ALS-

derived DTM since fewer points can reach the ground. There are several steps and 

considerations towards the DTM generation by ALS systems. First, filtering is needed to 

classify points into terrain and off-terrain. Subsequently, interpolation is required to convert 

terrain points into digital format. And importantly, these steps are required to be automatic in 

order to process huge amounts of data.  

A series of terrain-point filtering methods have been proposed and can be grouped into 

different streams. Slope-based filtering methods utilized the concept of mathematical 

morphology to calculate the distance and height difference between two points within a 

predefined structure element; and by moving the structure element onto each point, the point 

with height exceeded the predefined threshold was labeled as off-terrain points (Vosselman, 

2000; Sithole, 2001). Progressive densification based filtering methods (such as the 

progressive triangulated irregular network (TIN) densification method) allow the terrain to 

grow from a coarse approximation and then iteratively refine the criteria. (Axelssion, 2000; 

Sohn & Dowman, 2002). A TIN was formed by triangulating points iteratively until no 

points can be added into the TIN if certain constrain of description length, spline function or 

height difference is met. For example, as shown in Figure 2.5 three angles 1 2 3 and the 

height difference between a point P and the triangle facet are calculated if the point P met all 

the predefined thresholds, P is added to the terrain TIN.  

Surface based filtering methods reconstruct the DTM by defining both the functional 

model and the weight model. Elmqvist et al. (2001) developed the active shape models that 

reconstruct the surface by an energy function that is controlled by both inner and external 

forces. Segment-based filtering methods treat a group of points with similar characteristics as 

one segment. Segmentation is performed first according to predefined criteria to generate 
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segments. Then segments were classified by different approached into terrain and off-terrain 

segments (Sithole & Vosselman, 2005; Tovari & Pfeifer, 2005). In general, the TIN-based 

and surface-based filtering methods worked better than others in the DTM extraction (Sithole 

& Vosselman, 2005).  

Once terrain points are filtered out of the point cloud, interpolation methods are applied 

to create a digital representation of the terrain surface. Four commonly applied interpolation 

methods in the DTM generation were selected to give an introduction here: point-to-raster 

interpolation, nearest neighbor interpolation, inverse distance weighted (IDW) interpolation, 

and linear interpolation. The point-to-raster interpolation method simply assigns cell values 

based on the statistical properties of the points within each cell. For example, the raster cell 

value may be defined as the minimum, maximum, or average of the total points within it. 

This method is computational efficient. The nearest neighbour interpolation assigns void 

pixels with the values of its nearest neighbor. This interpolation method is computational 

efficient but may generate considerable errors when the data contains gaps. The IDW is the 

most commonly applied interpolation method that calculates the cell values according to 

user-defined weighting rules and searching distance. Hence, the result depends on user-

tunable parameters and point density variation. The linear interpolation method first 

computes a TIN surface of the point cloud and finds the triangle that the point located in. The 

value of the point is linearly interpolated from its barycentric coordinates using the nodes of  

                                                      

Figure 2.4 Progressive TIN densification 

(a) (b) 
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the triangle. 

The generation of DSM technically follows the process as for DTM except the selection 

of interpolation methods. Since DSM encloses the elevations of terrain surface with objects 

attached, interpolation should be chosen application by application to fit different needs of 

surface texture. However, due to the vertical variability existed in vegetation structures the 

interpolation process (such as using the point-TIN-raster method) generally produces 

underestimation of the surface elevation in vegetated area. Assigning the highest point to the 

cell and choosing the cell size close to the point spacing can help eliminate this problem 

(Heidemann et al., 2012).  

2.1.6 ALS-derived Intensity Imagery 

As discussed previously, the multispectral ALS system records the amplitude of the return 

pulse and stores it as intensity. The intensity of ALS represents the reflectivity of the target 

and provides ancillary information to the point cloud. However, unlike reflectivity collected 

by passive sensors (e.g. QuickBird, camera), the reflectivity data by the ALS system may not 

look natural and easy to interpret. It is because as an active senor its light energy may vary 

15-20% pulse by pulse (Heidemann et al., 2012). Also, the laser pulses are sent with 

oscillating incident angles (e.g. 0 to  30) within a single scan swath. For different scan 

lines, variation in flight heights can also contribute to variation in the returned energy. 

Comparing to the illumination by Sun, passive sensors can record reflected energy with 

constant angle of incidence and constant distance relative to the sensor. Hence, extensive 

variation of recorded intensity can exist within a scan swath or overlap swaths making the 

intensity calibration difficult. Meanwhile, the ALS system incorporates an automatic gain 

control (AGC) to adjust the sensitivity of the detector for receiving the return energy 

(Heidemann et al., 2012). The recorded intensity is modified and compressed into 16-bits 

accordingly.  

The generation of the ALS intensity imagery could follow the same technique for DTM 

and DSM. ALS-derived intensity imagery refers to the conversion of 3D point into 2D 

imagery which assigns the ALS intensity instead of elevation as the cell value. Since the laser 



 

 15 

band width is extremely narrow (20 nm), the typical ALS intensity imagery is similar as one 

NIR band from hyperspectral imagery (Heidemann et al., 2012). In terms of the multispectral 

ALS sensors such as Titan, three intensity images can be generated by the NIR, SWIR, and 

green band. The single NIR ALS intensity showed less importance in previous studies, 

however, the multiple intensity profiles from the multispectral ALS have showed great 

values in land cover mapping (Wichmann et al., 2015; Bakula, 2015).  

2.2 ALS in Tree-level Inventory 

Laser technology has first become popular in forestry sector towards large-scale and cost 

effective forest inventory since 1980s (Aldred & Bonnor, 1985). Forest inventory mainly 

covers the information of tree, stand, and large plot profiles. Given the scope of the proposed 

study, focuses are placed on previous studies conducted at the tree level. Before deriving any 

estimation from the ALS point cloud, DTMs/DSMs are often generated by classifying points 

into surface and terrain. Besides forestry studies, the step of vegetation isolation is required 

in urban vegetation analysis. The tree height and crown diameter are the two most 

commonly-derived dendrometric parameters from ALS data. From dendrometric parameters, 

diameter at breast height (DBH), tree volume, and biomass can be derived by using 

allometric equations. Allometry is the study that finds the relationship between tree species 

and dendrometric parameters, usually using tree height and stem or base diameter 

(Heidemann et al., 2012). To derive vegetation measurements such as tree carbon storage, 

four steps: CHM generation, vegetation isolation, dendrometric parameter calculation, and 

biomass modeling are needed. Here, this review discussed considerations and different 

approaches in each of the step.  

2.2.1 Canopy Height Model Generation 

The normalized digital surface model (nDSM) or the canopy height model (CHM) in forestry 

is obtained by subtracting the DSM using the corresponding DTM (see Figure 2.6). CHM 

generally forms in a raster or TIN height format (Hyyppä et al., 2008). The difference 

between the elevation of laser pulse and estimated terrain can indicate the elevation of the 

above-ground objects, such as trees and manmade objects. The CHM-derived tree height was 
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reported to have an underestimation in general (Leeuwen & Nieuwenhuis, 2010; Kankare et 

al., 2013; Estornell et al., 2015). The underestimation of tree height varies from 0.63 m for 

coniferous trees and 0.43 m for deciduous trees with a sample size of 967 trees (Heurich et 

al., 2008). The underestimation of tree height is caused by several factors such as point 

density, flying height, the penetration of the laser pulse, and so on. As the flying height 

elevated from 400 m to 1500 m, the accuracy of tree height lowered from 0.76 m to 1.16 m 

(Yu et al., 2004). The accurate ALS-derived raster data such as CHM forms the base of the 

estimation of dendrometric parameters and the performance of relevant empirical models. 

Different methods such as distribution-analysis based or individual-tree based techniques can 

be applied to derive tree information from the laser point cloud. However, all of the methods 

rely heavily on the CHM data that stores canopy heights in pixels. Hence, the generation of 

nDSM or CHM acts as the dominant element that provides valuable information towards the 

derivation of dendrometric parameters. 

2.2.2 Approaches in Vegetation Isolation 

For urban scenes, the process of vegetation isolation is required to differentiate vegetated 

area from other land cover types. Due to the lack of spectral information of typical ALS data, 

data integration that combines multispectral images with ALS data is often applied in order 

to extract vegetated areas from urban environments. Recent studies in the urban tree carbon 

storage estimation apply thresholding to the normalized difference vegetation index (NDVI) 

data which are derived from high-resolution multispectral images (e.g., QuickBird) to 

identify vegetation areas (Chen et al., 2009; Huang et al., 2013; Raciti et al., 2014; Schreyer 

et al., 2014; Zhang et al., 2015). The NDVI can be calculated by  

                                                   NDVI =

𝑁𝐼𝑅−


𝑅𝑒𝑑


𝑁𝐼𝑅+𝑅𝑒𝑑

                                                            (2.5) 

where  refers to the spectral reflectance at wavelength .  

Raciti et al. (2014) identified vegetated areas from QuickBird imagery by assuming the 

NDVI value exceeds 0.1. Simple thresholding on NDVI keeps computation of the vegetation 

isolation process simple and productive. However, fine detailed urban vegetation mapping 
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(c) 

generally requires both height and spectral information with the use of advanced 

classification methods (Yan et al., 2015). The nDSM has shown its value in improving land 

cover classification accuracy (Huang et al., 2008; Chen et al., 2009; Hartfield et al., 2011). 

Hartfield et al. (2011) demonstrated the integration of nDSM can increase the overall 

classification accuracy by 5%. However, the addition of single ALS intensity has been 

reported to contain certain noises in vegetation areas (as discussed in Section 2.2) which may 

affect the overall land cover classification performance (Yan et al., 2012).  

Various classification methods have demonstrated their functionalities in classifying 

urban vegetation. These methods can be grouped into two streams: pixel-based classification 

and object-based classification methods. Lodha et al. (2006) achieved above 90% accuracy 

by applying the SVM classifier to generate four land cover classes (building, tree, roads, and 

grass) using ALS-derived height data. The SVM classifier was initially developed to solve 

two class problems (Kavzoglu & Colkesen, 2009). In a two-class case, SVM searches for an 

optimal hyper plane that can separate two classes with the maximum margin width (see  

   

 

Figure 2.5 ALS-derived products: (a) DTM; (b) DSM; and (c) CHM representing the 

normalized above-terrain heights. 

(a) (b) 
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Figure 2.7). The optimal hyperplane is defined as w ∙ x + b = 0 where w is the orientation of 

the hyper plane, b is the bias of the distance of the hyper plane to the origin, and x refers to  

the point lying on the hyper plane. Support vectors are the training points lying on two hyper 

planes which are parallel to the optimal hyper plane. The two hyper planes are defined as 

w ∙ x + b = ±1 which can separate points into -1 and 1 classes. Therefore the margin width 

between the two classes equals to 2/w and the optimal hyperplane can be derived. To achieve 

nonlinear multi-classes separation with remote sensing data, kernel-base mapping functions 

are introduced and largely dominates the performance of SVM. Kernel types in SVM include 

namely, linear, polynomial, radial basis function (RBF) and sigmoid kernels.  

Guo et al. (2011) examined the feature importance for complex urban environment by 

applying the Random Forest (RF) classifier on ALS and multispectral aerial imagery. The RF 

classifier is chosen due to its capacity of handling large dataset, computational efficiency, 

and its comparable-to-SVM classification accuracy. With the increase of spatial resolutions, 

object-based classification methods become popular than pixel-based method to classify 

objects consisted of several pixels. Moreover, object-based methods take the spatial 

information into account which can largely overcame the salt-and-pepper noises inevitably 

associated with traditional pixel-based classification methods (Blaschke et al., 2010). Tong et 

al. (2014) tested the performance of both object-based classification and SVM classification 

using the data fusion of aerial photo and ALS data. The object-based method consisted of a 

segmentation process and a decision tree classification. The result outperformed the SVM 

classification. Zhou et al. (2013) proposed an object-based approach that used ALS-derived 

height and intensity solely to classify four urban land covers (e.g., building, pavement, tree, 

and shrub) with an above 90% overall accuracy. However, the performance of object-based 

classification methods was influenced by the segmentation results or the user-defined rules 

especially in highly heterogeneous landscapes (Blaschke et al., 2010). 

2.2.3 Approaches in Tree Crown Delineation 

Once the vegetation can be classified and isolated from the study area, the vegetation-

isolated CHM can provide a representation of the surface of canopy only. In order to obtain 

information at the individual tree level, tree segmentation methods are implemented to 
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identify individual tree crown. Numerous tree detection and delineation algorithms have been 

proposed to first detect treetops and then delineate tree crowns from optical images in the 

past two decades. These algorithms have also been applied and shown good performance on 

the ALS-derived CHMs. Local maxima filtering (Culvenor, 2002; Wulder et al., 2000; 

Popescu et al., 2003), template matching (Pollock, 1996), valley-following algorithm 

(Gougeon, 1995), region growing segmentation (Solberg et al., 2006), and marker-controlled 

watershed segmentation (Meyer & Beucher, 1990) especially have drawn great attentions.  

Local maxima filtering has been widely adapted by many crown delineation methods as 

the first step to locate the position of treetops (Chen et al., 2006; Zhao et al., 2009; Dalponte 

et al., 2011; Xu et al., 2014; Zhang et al., 2015). Treetop positions assumed to have higher 

values in the CHM were identified by finding the local maxima within a moving window 

with fixed size. The local maxima filtering was largely influenced by the selection of window 

size and the degree of smoothing of the dataset (Koch et al., 2014). Commission errors might 

be presented by detecting non-treetop points as treetops (Chen et al., 2006). Valley-following 

tree crown delineation algorithm finds local minima as the valley instead of finding the local  

 

Figure 2.6 SVM in a two-class linear case 
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maxima. The valley pixels can grow and separate the mountain-like tree crowns. The region- 

growing segmentation first placed seeds at locations generated by the tree detection results. 

The seeds acted as the starting position where a region can grow as long as it met the criteria 

to stop. Solberg et al. (2006) implemented the region-growing based algorithm using the 

ALS-derived canopy surface model to derive individual tree heights with around 66% 

detection rate. Dalponte et al. (2011) performed seed region growing method on a convoluted 

CHM to delineate tree crowns where the seeds were selected by thresholding. Raciti et al. 

(2014) used object-based segmentation algorithms to hierarchically segment nDSM height 

metrics into various sizes of vegetation objects where a region growing method was used to 

select the seed within each object. The watershed segmentation is one of the 

traditionalregion-based segmentation approaches introduced by Beucher and Lantuejoul 

(1979). The fundamental idea of this watershed segmentation is to consider the greyscale 

image as a surface consisting of catchment basins and watershed lines. Water tends to flow 

from the regional minima across the entire image. Once water from different regional minima 

is about to merge, dams are built along the boundary of different catchment basins which 

forms the watershed lines. The presence of many regional minima in the digital images 

gradients may usually lead to overestimating the number of catchment basins. This may due 

to the noise or local irregularities in the image (Ke & Quackenbush, 2011). 

        To reduce the oversegmentation, Meyer & Beucher (1990) introduced the marker-

controlled watershed segmentation. This marker-controlled watershed process could be 

explained under the water flow scenario as well. Water is raised from the marker-present 

regions with different colors. Water tends to flow over a catchment basin if there is no color 

associated with it. Catchment basins with distinct markers are separated with a watershed line 

(Najman & Schmitt, 1996). Chen et al. (2006) isolated individual treetops from ALS-derived 

canopy maxima model using the masker-controlled watershed segmentation with a 64% 

absolute accuracy. Xu et al. (2014) implemented a watershed segmentation method to 

delineate individual tree segment on the CHM to derive tree height and crown diameter. The 

crown diameter was measured by the mean of the maximum crown diameter and the one 

took at the perpendicular direction. Casas et al. (2016) identified tree crowns in a burned 
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forest using watershed segmentation algorithm combined with local maxima filtering where 

the local maxima points were defined by searching in eight neighborhoods. 

Kaarinen et al. (2012) tested nine tree detection methods and concluded that the 

detection result was mainly dependent on the applied algorithm. The authors also concluded 

that for the ALS point density closed to 8 pts/m
2
 local maxima filtering combining with 

either region growing or watershed segmentation could yield better tree detection results. 

Koch et al., (2014) pointed out that the detection of local maxima was the vital step for most 

of the algorithms. Vauhkonen et al. (2012) concluded that instead of the applied algorithms, 

forest types, tree density, and the degree of canopy overlapping became important factors for 

the result of tree detection. 

2.2.4 Biomass / Carbon Storage Estimation  

Biomass is conventionally measured in the field by destructive cutting the tree off, dry 

weighing its components, and interpolating its total dry mass. The carbon stored in wood and 

bark is about 50% of the biomass (Lieth, 1963; Whittaker & Likens, 1973). To avoid 

destructive sampling, allometry was introduced to establish the relationship between 

dendrometric parameters and biomass. By measuring dendrometric parameters such as tree 

height, DBH, and crown base height in the field, foresters can build a predictive model that 

takes accurately-sampled trees as input to predict the stem volume or biomass at plot or stand 

level. However, since in-situ measurements are labor-intensive and time consuming for 

large-scale vegetation inventory, ALS remote sensing became a well-established technology 

to derive dendrometric parameters in forestry. Allometry is also very important in biomass 

estimation with the use of ALS technology that it established empirical relationships between 

both direct and indirect measurements in the ALS data and the biomass. Many studies have 

confirmed the agreement between ALS-derived dendrometric parameters with field samples 

(Popescu, 2007; Zhao et al., 2009). The feasibility of using the ALS-derived tree structure 

parameters to estimate biomass or carbon storage has sequentially been proved (Hauglin et 

al., 2014; Schreyer et al., 2014; Raciti et al., 2014). Biomass estimation with ALS can be 

done by both area based methods and individual tree crown based methods (Vauhkonen et al., 
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2014). Given the scope of this study was to derive carbon storage at single tree level, focuses 

are given to previous studies using individual tree crown based methods (see Table 2.2).  

Popescu (2007) developed linear regression model to derive DBH and biomass for 

individual pine trees from ALS-derived crown diameter and height. 43 trees were sampled 

for DBH and allometry-derived biomass. Field-measured DBH and biomass then were 

applied to construct regression equations with ALS-derived variables. Strong correlation (R
2
 

= 0.87) was found between the ALS-derived height, crown width and the field-measured 

DBH. The regression model showed R
2
 of 0.87 and a RMSE of 4.9 cm for DBH estimation; 

also R
2
 of 0.88 and a RMSE of 162.72 kg for biomass estimation. Zhao et al. (2009) 

developed scale-invariant biomass models using the canopy height distribution (CHD) as the 

independent variable to map biomass at a range of scales. The CHD is defined as the 

probability distribution of tree heights over a unit area. The reason to use the CHD instead of 

conventional allometric variables like DBH was that the CHD can be directly measured by 

the ALS. Zhao et al. (2009) established linear relationships for both pines and deciduous 

trees between field-measured DBH from 117 sampled trees and ALS-derived height, crown 

width, and crown base height. The classification of tree species was performed on a 

QuickBird image with an overall accuracy of 89.7%. The tree height and crown width were 

identified from the CHM that assuming the crown width was a linear function of height. The 

crown base height defined as the height of the crown was estimated by a voxel-based height 

bin approach. The ALS-derived DBH was calculated by the regression model and further the 

distribution of the ALS-derived DBH was used to model the distribution of CHD at the plot 

level. For the individual-tree level biomass estimation =, they achieved R
2
 of 0.8 and 0.88 

with RMSE of 237 kg and 138 kg for pines and deciduous species, respectively. Hauglin et al. 

(2014) estimated the crown biomass of Norway spruce using a similar modeling approach 

presented by Zhao et al. (2009) and Popescu (2007). Hauglin et al. (2014) constructed two 

ALS crown biomass model that one was using ALS-derived crown volume as the 

independent variable to predict the terrestrial laser scanning (TLS) derived crown biomass; 

another one was using the ALS-derived tree height and crown diameter to predict the TLS-

measured DBH and predicting crown biomass using an existing allometric model. 
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Meanwhile, a total of 85 field samples were split into 68 trees for model fitting and 17 trees 

for model validation. The R
2
 of the ALS-DBH model was 0.84 with a RMSE% of 35.1. 

Kankare et al. (2013) evaluated the prediction of different combinations of the ALS-derived 

variables to model four biomass components (stem wood, living branch, canopy, and total 

biomass). They found that the total biomass was best estimated by tree species, DBH, height, 

crown area, and the percentage of signal returns at 40% of total tree height. The DBH was 

calculated from an existing allometric model using tree height. The overall accuracy of the 

ALS-derived height reported with a RMSE of 2.4 m and RMSE% of 12.6. The estimates of 

DBH was reported a RMSE of 5.053 cm with RMSE% of 24.95. The estimates of total 

biomass of pine trees had an R
2
 of 0.74 with a RMSE of 41.43 kg and spruce species had an 

R
2
 of 0.82 with a RMSE of 86.58 kg. Casas et al. (2016) proposed a Gaussian process 

regression model to estimate snag DBH using tree height and crown area which achieved a 

higher R
2
 as 0.81 with a RMSE of 10.6 cm compared with a commonly used allometric 

approach (R
2
 of 0.73 and a RMSE of 16.5 cm). Moreover, Casas et al. (2016) explored the 

use of ALS intensity and height information to classify snag and live trees. Estornell et al. 

(2015) estimated the pruning biomass of olive trees by creating separate regression models 

for both field measurements and ALS data. The regression model established for field 

measurements used sampled tree heights and crown diameters as independent variables and 

the sampled pruning biomass as the predicted variable. The ALS-based regression model 

used the ALS-derived crown area and maximum intensity as independent variables with an 

achieved R
2
 of 0.89 and a RMSE of 2.78 kg. 

Studies of mapping carbon storage in urban trees with ALS technology have been 

actively conducted in recent years (Raciti et al., 2014; Schreyer et al., 2014). Raciti et al. 

(2014) estimated carbon storage in urban trees for the City of Boston by developing an ALS-

height-only regression model to estimate carbon storage across the city. A total 404 

accurately segmented tree crowns from the nDSM were split into 284 samples for model 

fitting and 120 samples for validation. The reason to use a simple linear regression of tree 

biomass and height was to avoid the influence of crown segmentation results. An R
2
 of 0.79 
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Table 2.2 Summary of the methods listed in Section 2.2.4 

Authors Model Type ALS-derived Variables Predicted Variable 

Popescu (2007) linear regression  Height, crown width; 

 DBH 
 Field-measured DBH 

 Allometry-based biomass 

Model Validation:  

DBH: R
2
 = 0.87, RMSE = 4.9 cm Biomass: R

2
 = 0.88, RMSE = 162.72 kg 

Zhao et al. 

(2009) 

linear regression Height, crown width,  

crown base height 

Field-measured DBH 

Model Validation:  

DBH: Pines: R
2
 = 0.87, RMSE = 5.62 cm Deciduous:  R

2
 = 0.89, RMSE = 4.80 cm 

Biomass: Pines: R
2
 = 0.8, RMSE = 237 kg  Deciduous: R

2
 = 0.88,  RMSE = 138 kg 

Kankare et 

al.(2013) 

linear regression Tree height, canopy size, 

and canopy density 

Biomass by destructive 

sampling 

Model Validation: 

Height: Bias% = -2.44%, RMSE%= 12.60% 

DBH: Bias% = -18.51%, RMSE%= 24.85% 

Biomass: Pines: R
2
 = 0.74, RMSE% = 26.3%   Spruce: R

2
 = 0.82, RMSE% = 36.79% 

Hauglin et al. 

(2014) 

linear regression Height, crown diameter Allometry-based crown 

 biomass 

Model Validation: Biomass: R
2
 = 0.84, RMSE% = 35.1% 

Raciti et al. 

(2014) 

linear regression Height Field-estimated biomass 

Model Validation: Biomass: R
2
 = 0.79 

Estornell et al. 

(2015) 

linear regression Crown area, maximum 

intensity 

Pruning biomass by 

destructive sampling 

Model Validation: Pruning Biomass: R
2
 = 0.89, RMSE = 2.78 kg 

Casas et al. 

(2016) 

Gaussian process 

regression 

Height, crown area Field-measured DBH 

Model Validation: DBH: R
2
 = 0.81, RMSE =10.6 cm 
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was found between field-estimated biomass and model predicted biomass. This study further 

linked carbon storage in urban trees to the demographic characteristics that no strong 

correlations were found in Boston neighborhoods. Schreyer et al. (2014) estimated the carbon 

storage in urban trees and its distribution was extrapolated to the entire city of Berlin in terms 

of land use types. This study did not propose a regional-specific allometric model for the 

study area but applied the ALS-DBH model developed by Zhao et al. (2009) and a carbon 

allometric model using DBH as the only independent variable. 87% of the modeled DBH 

showed an underestimation which was further calibrated by a weighted arithmetic average 

DBH. The carbon storage in urban trees was calculated as half of the model-based biomass 

regardless of the genus. Meanwhile the crown base height was assumed to be half of the 

ALS-derived height and the crown width was calculated in 16 directions with a series of 

criteria instead of the conventional estimation of crown width in 4 directions as proposed by 

Popsecu et al. (2003) or as used by Xu et al. (2014). 

 

2.3 Chapter Summary 

This chapter first introduced the characteristics of the Optec Titan multispectral ALS system 

and the fundamental backgrounds of the ALS technology in terms of the working principle, 

system components, direct-georeferencing, and special considerations related to ALS-derived 

products. This chapter also reviewed the applications of ALS in both forest inventory and 

vegetation mapping with an emphasis on discussing the methods of vegetation isolation, 

individual tree delineation, and allometric biomass modeling. A summary of the methods of 

biomass modeling mentioned in Section 2.2.4 can be found in Table 2.2. Noted by carefully 

reviewing the literature, it was worth trying to examine the feasibility of the multispectral 

ALS intensity data in land cover classification. Meanwhile, both the multispectral ALS 

intensity and the ranging information could show their powers in the carbon/biomass 

estimation at the individual tree level.  
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Chapter 3 

Study Area and Data Sources 

This chapter consists of three sections. Section 3.1provides a description and a map of the 

study area. Section 3.2  summarizes the multispectral ALS data used in this study. The field 

measurements are described in Section 3.3 the sampling process and the statistics of the field 

data. 

3.1 Study Area 

The study area of this study is located in the Town of Whitchurch-Stouffville, Ontario 

(43°58′00″N, 79°15′00″W), which is a municipality in the Greater Toronto Area. 

Whitchurch-Stouffville is 24 km north of Toronto with a population of 37,628 in 2011 

(Statistics Canada, 2015). The study area has a total area of approximately 1 km
2
.
 
The study 

area is characterized by a typical residential landscape (see Figure 3.1). It contains two water 

bodies (Musselman Lake and Winsor Lake) and three land cover types: residential area, open 

area (grassland and woody area) and park and recreation (DMTI Spatial, 2015). The 

residential area consists of single detached dwellings with mature street and backyard trees 

planted at least ten years ago (Google Earth, 2004). There are different types of trees that live 

in the study area including deciduous trees such as maple, ash, oak, elm, black cherry, 

basswood and conifers (Brook McIlroy, 2002). The study area has a hilly topography where 

near half of the residential areas located on the uphill side and the rest located on the 

downhill side near the Musselman Lake.  

3.2 Multispectral ALS Datasets 

Two multispectral ALS datasets were acquired by the Teledyne Optech Titan multispectral 

ALS system on July 2, 2015. The multispectral ALS datasets had two flight lines that 

covered and intersected at the study area. For each laser channel the georeferenced point 

clouds were stored and delivered separately in the LAS files. Total six LAS files and two 

KML files of the trajectory were included. Each LAS file stored seven attributes of the point  
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Figure 3.1: Study area 
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clouds including scan angles, flightline edge, return numbers, number of returns, scan 

direction, and the intensity collected by each of the three laser channels. No camera images 

were collected during the survey. The initial survey strips were first cropped to the size of the 

study area and data pre-processing has been done for the two ALS data separately before 

merging them together. The survey was planned primarily for system calibration but not for 

forest inventory or vegetation mapping. The flight altitudes were above 1000 m with the 

pulse frequency of 100 kHz for each channel, yielding an average point spacing of 0.8 m per 

point and average point density of 7.7 points / m
2
 (two strips combined). Detailed summary 

of the acquired Titan ALS datasets can be found in Table 3.1. 

3.3 Field Measurements 

Field data were collected on February 9, 2016 (see Figure 3.2). A total of 40 trees are 

sampled in the field that four attributes: height, crown width, DBH, and biomass are recorded 

for each single tree. Tree heights were measured using a hypsometer in units of meter. DBH 

was measured with a diameter tape in units of centimeter. Since the field measurement was 

conducted during the leaf-off season, the third attribute, crown width was measured using the 

aerial photos from Google Earth. The crown width is defined as the mean of the maximum 

crown diameter and the dimeter measured at the direction perpendicular to the maximum 

using the Ruler tool in Google Earth in units of meter. The forth attribute, single tree carbon 

storage is estimated by plugging the field-measured DBH and tree height in the Canadian 

national aboveground all-species biomass equations (Lambert et al., 2005). The equations 

calculate the dry aboveground biomass by relating tree height and DBH to each biomass 

components such as wood, bark, and foliage, with a uniform relationship:  𝐵𝑖𝑜𝑚𝑎𝑠𝑠 =

 1𝐷𝐵𝐻 2 𝐻 3 ; where 1, 2 and 3 are the parameters generated for the all-species group 

with different values according to the tree compartments. The carbon storage in sampled 

trees was then defined as half of the sum of the dry aboveground biomass in each 

compartment. The descriptive statistics of the field measurements and the allometry-based 

biomass are given in Table 3.2 
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Table 3.1 Summary of the multispectral Titan ALS dataset 

Laser channels 532 nm; 1064 nm; 1550 nm 

Flight of View (FOV) 30° 

Pulse repetition frequency (PRF) 100 kHz per channel, 300 kHz in total 

Flight height Strip 1: 1030 m; 

Strip 2: 1043 m 

Flight Speed 69-70 m / s 

Flight Date July 2, 2015 

Number of ALS strips 2 

Number of returns 4 

Number of points Channel (532 nm): 3,665,956 

Channel (1064 nm): 3,692,211 

Channel (1550 nm): 3,072,895 

Average point density 7.7 points / m
2
 in total 

 

Figure 3.2 Location of 40 sampled trees in the field 

Table 3.2 Statistics of the field measurements for 40 sampled trees 

 Height (m) Crown Width(m) DBH (cm) Carbon (kg) 

Maximum 26.90 16.57 98.0 2172.14 

Minimum 9.70 4.64 27.0 105.31 

Mean 17.48 9.11 48.8 481.85 

Std 4.57 3.07 14.6 382.40 
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3.4 Chapter Summary 

This chapter provided the description of the study area and data sources. The study area was 

characterized by single detached houses with mature street trees planted over ten years. The 

multispectral ALS data were acquired on July 2, 2015 and the field measurements were 

collected in February 2016. A total of 40 trees were selected and matched with the ALS-

derived results. Four attributes of each sampled tree were collected in the field.  
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Chapter 4 

Estimation of Carbon Storage in Urban Trees 

The methodology of this study consists of four parts: ALS data processing, vegetation 

isolation, dendrometric parameter extraction, and carbon storage modeling. Detailed 

processes in each of the step are illustrated in Figure 4.1. 

4.1 ALS Data Processing 

4.1.1 ALS Data De-nosing and Intensity Normalization 

Before grouping the raw ALS points into ground and non-ground points, the outliers 

collected by each laser channel were removed from the raw point clouds. An ALS intensity 

filtering was performed first to threshold the intensity values within three standard deviations 

(Wichmann et al., 2015). This de-nosing process removed points from specular reflections 

that had extreme high intensity in the raw ALS point clouds. Then a statistical outliner 

removal filter was applied to remove air points that were isolated and far from their 

neighbors. The filter calculated the mean distance from a point to its six neighbors and 

removed the point if the mean distance exceed the global distance mean plus one standard 

deviation. All of the de-nosing processes were completed separately for each flight strip. 

The filtered raw ALS intensity was then normalized by the range normalization equation 

(Korpela et al., 2010):  

I′ = 𝐼𝑟𝑎𝑤 ∙  (
𝑅

𝑅𝑟𝑒𝑓
)

𝑎

                                                  (4.1) 

where I′ is the range normalized intensity, Iraw is the raw ALS intensity, 𝑎 is the exponent 

defined based on the target geometry. The raw intensity is normalized according to the ratio 

of flight-to-target range, R, to the mean reference range, Rref. In literature, the selection of 

exponent, 𝑎, was examined with the conditions of surface objects that 𝑎 = 2 was optimal for 

large surfaces such as trees with broad leaves and 𝑎 = 3 was optimal for point-like objects 

such as conifer crowns (Korpela et al., 2010). In this study, 𝑎 was selected empirically by 

testing 𝑎  [2, 4] with an interval of 0.5. Very little changes were observed by altering 𝑎 
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Figure 4.1 Workflow of the proposed methodology 



 

 33 

from 2 to 4 in which both the mean value and standard deviation were barely changed while 

the minimum value varies around 0.05. Hence, 𝑎  = 2 was applied in Equation (4.1) to 

normalize the ALS intensity. 

4.1.2 ALS-derived Intensity Imagery 

After removing outliers and rectifying the intensity values, point clouds from two flight strips 

were merged together which in total three ALS point clouds were acquired by the laser 

channels. Then each point cloud was rasterized into an intensity image with the ground 

resolution of 1 m. The pixel size was selected according to the point spacing of the dataset 

(0.8 m / point in Section 3.2). By selecting the pixel size close to the point spacing, most of 

the pixels can contain at least one point and the vertical distribution of the points can be 

largely highlighted. In this way, points were grouped into 1-m grids and the pixel values 

were assigned by the mean intensity of the points within the grid. For the grids which had no 

point filled in, the grid values were interpolated linearly by searching the neighbors. Here 

three mean intensity raster data were generated for Channel 532 nm, 1064 nm, and 1550 nm, 

respectively.  

4.1.3 ALS-derived Digital Elevation Model 

Besides the generation of ALS intensity images, DSM and DTM were created from the raw 

ALS by a ground-point filtering and rasterization process. First, the point clouds generated in 

Section 4.1.1 were merged together. The last returns in the whole point clouds were inputted 

in the progressive TIN densification algorithm proposed by Axelsson (2000) to classify 

ground and non-ground points. This method was selected because it has been widely applied 

and showed its robustness in both urban and forest conditions (Sithole & Vosselman, 2004; 

Meng et al., 2010; Tong et al., 2014). The whole ALS dataset was classified into ground and 

non-ground classes.  

To assess the accuracy of the ground-point filtering result, two residential sites with the 

size of 90 m  150 m per site located at the left-part and right-part of the study area 

respectively were selected and evaluated by manual classified ground and non-ground results. 

Type I error was calculated by the percentage of misclassified ground points over total 
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ground points. Type II error was calculated as the percentage of misclassified non-ground 

points over total non-ground points. Overall accuracy was obtained by calculating the 

corrected-classified points over total points.  

A DTM raster data was generated by rasterizing all the ground points into 1-m grids 

based on linear interpolation method. The DSM was generated in a similar way by using the 

non-ground class and the maximum height within the grid was assigned to the pixel values. 

In this way, the points that represent the treetops could be largely reserved. The linear 

interpolation method was selected due to its computational efficiency; moreover, considering 

the hilly topography of the study area and the relatively sparse ground points, linear 

interpolation was more suitable than other interpolation methods. Lastly, a nDSM raster data 

was acquired by subtracting the DTM from the DSM.  

4.1.4 nDSM Preprocessing 

Holes or pixels with negative values were found with the initial ALS-derived nDSM (see 

Figure 4.2). The holes were commonly presented in ALS-derived nDSM causing from 

processes in rasterization, the ground-point filtering, and interpolation (Ben-Arie et al., 2009). 

A hole-filling algorithm was applied to fill a pixel with the mean of its eight neighbors if this 

pixel has more than 2 m elevation difference with its eight neighbors (Zhang, 2015). The 

hole-filled nDSM and three multispectral ALS intensity data were applied to the next section 

as the input data. 

 

Figure 4.2 Pits in the raw nDSM 
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4.2 Vegetation Isolation 

Besides the multispectral intensity and nDSM data described in Section 4.1, two additional 

indices are derived as follows 

𝑝𝑁𝐷𝑊𝐼 =  
𝐶𝐺𝑟𝑒𝑒𝑛− 𝐶𝑁𝐼𝑅

𝐶𝐺𝑟𝑒𝑒𝑛+ 𝐶𝑁𝐼𝑅
                                                 (4.2) 

𝑝𝑁𝐷𝑉𝐼 =  
𝐶𝑁𝐼𝑅− 𝐶𝑆𝑊𝐼𝑅

𝐶𝑁𝐼𝑅+ 𝐶𝑆𝑊𝐼𝑅
                                                   (4.3) 

where CGreen, CNIR, CSWIR refer to the laser channels at 532 nm, 1064 nm, and 1550 nm, 

respectively. 

By visually examining the pNDWI and pNDVI indices (see Figure 4.2), both the pNDVI 

and pNDWI  showed good discrimination for artificial objects. These two indices can 

facilitate the manual selection of training samples and work as the ancillary data in the 

classification process. The contribution of these two indices to the overall accuracy of 

classification was analyzed. Total six input data, including 1) Green channel intensity; 2) 

NIR channel intensity, 3) SWIR channel intensity, 4) nDSM, 5) pNDWI, and 6) pNDVI were 

generated and inputted into the classification scheme. 

Because the study area was characterized by simple residential landscape, it can be 

grouped into six land cover types including water, house, road, grass, tree, and open area. 

Description of the land cover types are presented in Table 4.1. However, due to the 

bathymetry capability of the channel at 532 nm, water points in the study area tended to 

have irregular intensity that was induced by the interaction of laser points with both water 

surface and organic matters underneath. It appeared noisy in the intensity data (see Figure 

4.3) and might potentially influence the classification result. Hence, water bodies including 

Musselman Lake, Windsor Lake and one small water region were masked out of the dataset 

resulting in only five land cover types were trained and classified in this study. Interpreting 

land cover types from ALS intensity were not as easy as from passive optical images. 

Training samples are selected based on all the input data and examined by the aerial photos 

from Google Earth (see Table 4.1). Certain land cover types such as grass and open area 
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could be distinguished from only one or two intensity data and can be hardly identified from 

the rest. For each land cover type, a minimum of 600 pixels were selected as training 

samples and for vegetation covers who occupied a large portion of the study area more than 

1000 pixels were selected. Total 5535 pixels were collected as training samples and the 

pixels selected for each land cover type were evenly distributed across the study area.  

The SVM classifier was selected to perform land cover classification with multispectral 

ALS-derived data due to the popularity of SVM in typical ALS-related classification studies 

which makes the classification result of this study comparable to previous studies. In 

literature, there is no clear clue to use one kernel function rather than others (Mather et al., 

2011). So the RBF kernel, e−𝛾‖(𝑥−𝑥𝑖)‖2
 which has been commonly applied in the 

classification with remote sensing data was selected with a user-defined kernel 

width, as 0.167  (defined as one over the number of input data) and the regularization 

parameter, C as 100. 

 

Figure 4.2 Examples of ALS-intensity-derived indices 
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Figure 4.3 Multispectral ALS intensity on waterbodies (green band) 

The SVM classification is performed on three combinations of the input data shown in 

Table 4.2. The selection of input data was mainly designed for showing the benefits of 

multispectral ALS in land cover classification (Selection 2) compared with typical ALS data 

( Selection 3 ). Meanwhile, Selection 1  was designed to examine the contribution of 

multispectral-intensity-derived indices in overall classification accuracy. To assess the 

quality of the classification result, total 522 reference pixels were selected by stratified 

random sampling across the study area and manually labeled into land cover types. For each 

class, a minimum of 60 reference pixels were labeled and for vegetation covers who 

occupied a large portion of the study area more than 100 reference pixels were included. 

Lastly, the error matrix was generated to examine the performance of the classification 

results according to the commission and omission errors. Kappa coefficient was not used in 

this study due to its reported problems in accuracy assessment (Pontius & Millones, 2011). 

Kapa coefficient was reported to be highly correlated with the overall accuracy and have 

problems with the correction for chance agreement used in Kappa formula (Olofsson et al., 

2014). 

 

 

Musselman Lake 
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Tree 

Vegetation that is visible 

from nDSM including tall 

trees and bushes 

 

House 

Single family houses that 

are visible from nDSM and 

pNDWI 

 

Road 

Both main road and paths 

connected to individual 

houses were included and 

examined based on pNDVI 

 

Grass 

The grassland that has been 

well-maintained by the 

residents and showed high 

reflectivity in the NIR 

intensity data but were 

invisible from nDSM 
 

Open Area 

The public green space that 

were located in the park and 

recreation zones which 

showed a mixture of soil and 

grass by viewing in aerial 

photos  

 

 

Table 4.1 Description of the land cover types and corresponding training samples 

nDSM 

nDSM 

pNDVI 

NIR 

NIR 
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The tree class was further extracted and employed iteratively by a 3 × 3 majority filter 

for five times. The majority filtering can help reduce the salt-and-pepper effect which is 

commonly existed in the pixel-based classification. The number of iterations was tested 

empirically to generate an optimal tree mask that can remove isolated pixels and reserve the 

shape of the crowns for the dominant trees. By this method, pits within a tree crown can be 

filled; meanwhile the filtered tree class was used for masking the nDSM to generate a tree-

isolated nDSM. 

 

4.3 Dendrometric Parameter Estimation 

The tree-isolated nDSM was also referred to as the CHM, a model displaying tree positions 

by tree crowns in a top-down view and storing the height values in pixels. A 3  3 local 

maxima filter was first employed on the CHM to detect treetops. A pixel with the highest 

value than its eight neighbors was defined as the treetop. To eliminate the commission errors 

associated with the local maxima filtering (see Figure 4.5) and detect the true treetop pixels, 

the local maxima in the CHM were further filtered by the ALS intensity data. The ALS 

intensity values were dependent not only on the reflectivity of the object but also on the 

range between the sensor and the object. A true treetop pixel would have both high intensity 

and height values. Under this assumption another 1-m raster data was generated here as the 

sum of the maximum intensity of the first return in each channel. The clusters of local 

maxima in the CHM which had more than fifteen pixels together were further extracted and 

only the pixels that also were the local maxima in the maximum intensity layer were retained 

in the final treetop results. Previous studies relied on changing the window size and shape of 

Table 4.2 Combinations of input data for SVM classification 

Selection 1 Green + NIR + SWIR + nDSM + pNDWI + pNDVI 

Selection 2 Green + NIR + SWIR + nDSM 

Selection 3 NIR + nDSM 
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(a) (b) (c) 

the filter to refine the treetops (Chen et al., 2006; Zhao et al., 2009). These approaches were 

not suitable here because the CHM resolution (1 m) generated in this study was relatively 

coarse so that increasing the window size of the local maxima filter would result in excluding 

small tree crowns.  

The Marker-controlled watershed segmentation was applied to segment the CHM into 

individual tree crowns by defining the pre-detected treetops as the markers. In this way, 

every pre-detected treetop would have one closed segment. The performance of the 

segmentation in isolating tree crowns was evaluated by the absolute accuracy calculated as:  

 absolute accuracy𝑡𝑟𝑒𝑒 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 =  
𝑛1,1

𝑛𝑡𝑜𝑡𝑎𝑙
                                       (4.4) 

where 𝑛1,1 is the number of detected crown segments which have a one-to-one relationship to 

the ground truth; 𝑛𝑡𝑜𝑡𝑎𝑙 is the number of tree crowns in the ground truth. Two sites with 

street trees located along the sides were selected as the ground truth. Each site had an area of 

60 m by 300 m. The watershed segmentation result was visually compared with the original 

tree-isolated nDSM and the aerial photos in Google Earth meanwhile the total number of tree 

crowns identified in the ground truth was recorded. 

 

Figure 4.4 Examples of a 3  3 local maxima filtering on CHM 

Tree height is defined as the average of the local maxima within each segment and the 

crown diameter is defined as the average of the maximum crown diameter passing through 

the center of the local maxima and the one measured at the perpendicular direction (see 

Figure 4.6). 
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(a) (b) 
  

 

Figure 4.5 Measurement of tree height and crown diameter: (a) location of the pixel with 

maximum value within a tree crown, (b) illustration of the crown width measurement 

 

To evaluate the accuracy of the ALS-derived dendrometric parameters, the ALS-derived 

tree height and crown width were compared with the field measurements. The crown 

segments generated from the ALS data were matched with the 40 field-sampled trees and the 

RMSE and bias are calculated to compare the ALS-derived dendrometric parameters with 

field samples: 

Bias =  
∑ 𝑋𝐴𝐿𝑆,𝑖 − 𝑋𝑓𝑖𝑒𝑙𝑑,𝑖

𝑛
𝑖=1

𝑛
                                                    (4.5) 

RMSE = √
∑ 𝑋𝐴𝐿𝑆,𝑖 − 𝑋𝑓𝑖𝑒𝑙𝑑,𝑖)2𝑛

𝑖=1

𝑛
                                          (4.6) 

RMSE% =
RMSE

𝑋̅𝐴𝐿𝑆

                                                                        (4.7) 

where n is the number of field samples which equaled to 40 trees in this study; X refers to the 

values of dendrometric parameters (height or crown width) measured either in the field or 

from the ALS data and 𝑋̅𝐴𝐿𝑆 is the arithmetic mean of the ALS-derived measurements.  

Moreover, a linear regression model was fit to the ALS-derived tree height and crown 

width to determine if there was a strong correlation between these two variables. 
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4.4 Carbon Storage Modeling 

In order to predict the carbon storage in trees, a multiple linear regression model was 

developed empirically to predict the field-measured DBH by the ALS-derived tree height and 

crown width as the independent predictors (Popescu et al., 2007). The empirical equations 

derived from the ALS-DBH linear regression model are: 

DBH𝐹𝑖𝑒𝑙𝑑 = 𝑎 ∙ 𝐶𝐷𝐴𝐿𝑆 + 𝑏 ∙ 𝐻𝐴𝐿𝑆 + 𝑐                                     (4.8.1) 

𝑎 =
(∑ 𝐻𝐴𝐿𝑆

2)(∑ 𝐶𝐷𝐴𝐿𝑆 ∙ 𝐷𝐵𝐻𝐹𝑖𝑒𝑙𝑑) − (∑ 𝐶𝐷𝐴𝐿𝑆 ∙ 𝐻𝐴𝐿𝑆)(∑ 𝐶𝐷𝐴𝐿𝑆 ∙ 𝐷𝐵𝐻𝐹𝑖𝑒𝑙𝑑)

(∑ 𝐶𝐷𝐴𝐿𝑆
2)(∑ 𝐻𝐴𝐿𝑆

2) − ∑ 𝐶𝐷𝐴𝐿𝑆 ∙ 𝐻𝐴𝐿𝑆
2 (4.8.2) 

𝑏 =
(∑ 𝐶𝐷𝐴𝐿𝑆

2)(∑ 𝐻𝐴𝐿𝑆 ∙ 𝐷𝐵𝐻𝐹𝑖𝑒𝑙𝑑) − (∑ 𝐶𝐷𝐴𝐿𝑆 ∙ 𝐻𝐴𝐿𝑆)(∑ 𝐻𝐴𝐿𝑆 ∙ 𝐷𝐵𝐻𝐹𝑖𝑒𝑙𝑑)

(∑ 𝐶𝐷𝐴𝐿𝑆
2)(∑ 𝐻𝐴𝐿𝑆

2) − ∑ 𝐶𝐷𝐴𝐿𝑆 ∙ 𝐻𝐴𝐿𝑆
2  (4.8.3) 

c = 𝐷𝐵𝐻̅̅ ̅̅ ̅̅ − 𝑎 ∙ 𝐶𝐷̅̅ ̅̅
𝐴𝐿𝑆 − 𝑏 ∙ 𝐻̅𝐴𝐿𝑆                                              (4.8.4) 

where CD is the crown width in m and H is the canopy height in m; a, b, c refer to the 

parameters derived from the empirical model fitting.  

The 40 field-sampled trees were split into two datasets that 20 trees used for model 

parameterization and the remaining 20 trees reserved for validation. To eliminate the 

influence of tree locations in model fitting, each 10 adjacent tree samples were grouped 

together under one sampling location which results in total four sampling groups. Six 

combinations of training and validation datasets were chose by selecting two sampling 

locations out of four for model development and using the remaining two locations for 

validation. All six models were developed at a 0.05 significance level and were fitted through 

a cross validation process. The parameters generated for each model were collected. The 

predictive power of the regression models and the performance were inspected by the 

coefficient of determination (R
2
) and the accuracy of the prediction was examined by the 

RMSE of the predicted parameters 

𝑅2 =
∑ (𝑦𝑓𝑖𝑡𝑡𝑒𝑑 − 𝑦̅𝑓𝑖𝑒𝑙𝑑)2𝑛

𝑖=0

∑ (𝑦𝑓𝑖𝑒𝑙𝑑 − 𝑦̅𝑓𝑖𝑒𝑙𝑑)2𝑛
𝑖=0

                                            (4.9) 



 

 43 

where y refers to the values of dendrometric parameters (height or crown width) measured 

either in the field or from the ALS data.  

Comparing R
2 
and RMSE of the six ALS-DBH regression models, the one with high R

2
 

in the model fitting and low RMSE in the validation was selected to predict DBH. In 

addition, a multiple regression model was constructed by using the height and crown width 

of the 40 field samples to predict field-measured DBH. This field-DBH model was first 

evaluated by R
2
 of modeling fitting and was applied to estimate DBH using ALS-derived 

parameters. The strength of relationship between the ALS-predicted DBH and field-

measured DBH was also examined by linear regression.  

After selecting the ALS-DBH regression model, the ALS-estimated DBH and height were 

plugged into the Canadian national above-ground biomass equations proposed by Lambert et 

al. (2005) to estimate the carbon storage in trees. In Lambert et al. (2005), the set of 

equations based on DBH and height for all species (Equations 4.10.1-4.10.6) is selected to 

calculate the biomass here since no genus or species information is available in this study. 

The above-ground biomass was estimated as the sum of biomass in tree compartments 

(foliage, branch, wood, and bark). And the carbon stored in trees was estimated as the half of 

total biomass. The carbon storage predicted by the ALS-derived parameters was compared 

with that estimated by the field-measured DBH and height and evaluated by the RMSE and 

R
2
. 

𝑦𝑓𝑜𝑙𝑖𝑎𝑔𝑒 = 𝛽𝑓𝑜𝑙𝑖𝑎𝑔𝑒1𝐷𝛽𝑓𝑜𝑙𝑖𝑎𝑔𝑒2 𝐻𝛽𝑓𝑜𝑙𝑖𝑎𝑔𝑒 3 + 𝑒𝑓𝑜𝑙𝑖𝑎𝑔𝑒                                            (4.10.1) 

𝑦𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 = 𝛽𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠1𝐷𝛽𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 2𝐻𝛽𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 3 + 𝑒𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠                                 (4.10.2) 

𝑦𝑤𝑜𝑜𝑑 = 𝛽𝑤𝑜𝑜𝑑1𝐷𝛽𝑤𝑜𝑜𝑑 2𝐻𝛽𝑤00𝑑 3 + 𝑒𝑤𝑜𝑜𝑑                                                             (4.10.3) 

𝑦𝑏𝑎𝑟𝑘 = 𝛽𝑏𝑎𝑟𝑘1𝐷𝛽𝑏𝑎𝑟𝑘 2𝐻𝛽𝑏𝑎𝑟𝑘 3 + 𝑒𝑏𝑎𝑟𝑘                                                                   (4.10.4) 

𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑓𝑜𝑙𝑖𝑎𝑔𝑒 + 𝑦𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 + 𝑦𝑤𝑜𝑜𝑑 + 𝑦𝑏𝑎𝑟𝑘                                                     (4.10.5) 

Carbon =
𝑦𝑡𝑜𝑡𝑎𝑙

2
                                                                                                           (4.10.6) 
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where y is the dry biomass compartment in kg, D is the DBH in cm, H is the height in m, and 

the  is the model parameter with defined values in each compartment (see Table 4.3); and e 

is the error terms.  

 

To show whether carbon storage in trees varied with land cover types, the ALS-derived 

tree-crown segments were first converted into vector data in GIS with the amount of carbon 

storage stored in the attributes. The carbon storage within each land cover type was 

calculated by adding up all the carbon storage in trees and dividing by the area of the land 

cover type. For the Town of Whitchurch-Stouffville, the carbon stocks were extrapolated by 

multiplying the specific carbon amount per unit area with the total area of each land cover 

type. And for those land cover types such as the industrial sites and government and 

institutional area which were excluded in the study area, the carbon stored in government and 

institutional areas was given the same amount per unit area as the residential but zero for the 

industrial sites. Then a citywide carbon storage map was created. 

Table 4.3 Parameters for all-species equations listed in Lambert et al. (2005) 

Species Parameter Value Standard Deviation 

All Species bwood1 0.0283 0.0004 

 bwood2 1.8298 0.0075 

 bwood3 0.9546 0.0101 

 bbark1 0.012 0.0003 

 bbark2 1.6378 0.017 

 bbark3 0.7746 0.0233 

 bbranches1 0.0338 0.0008 

 bbranches2 2.6624 0.0182 

 bbranches3 -0.5743 0.0233 

 bfoliage1 0.1699 0.0036 

 bfoliage2 2.3289 0.0184 

 bfoliage3 -1.1316 0.0235 
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4.5 Chapter Summary 

This chapter described the methodology of the study in details. It presented the stepwise 

procedures in data processing, vegetation isolation, dendrometric parameter extraction, and 

carbon modeling. A series of methods were conducted in the present study including SVM 

classification, watershed segmentation, and allometry-based multiple linear regression. The 

rationale behind the method selections was also discussed. Principles and applications in the 

literature can be found in Chapter 2. And the results in each of the step would be presented in 

the next chapter. 
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Chapter 5 

Results and Discussion 

This chapter presents and discusses the results generated using the proposed methodology. A 

data analysis of the multispectral ALS data is also included to give a detailed introduction to 

this new sensor. The performance of the ground filtering and SVM classifier are evaluated. 

The accuracy of ALS-derived dendrometric parameters are assessed by comparing ALS-

derived dendrometric parameters with field measurements. The parameterization process of 

the allometry-based ALS-DBH models is also included to estimate tree carbon stocks in the 

study area. Lastly, a map showing the estimated carbon storage in the Town of Whitchurch-

Stouffville is presented.  

5.1 Accuracy Assessment for Ground-point Filtering 

Two sites with a size of 90 m  150 m per site are selected to evaluate the performance of 

ground-point filtering using the progressive TIN densification algorithm (see Figure 5.1). For 

the two validation sites, ground and non-ground points were manually classified as the 

reference data and were compared to the automatic filtering result. There were total 193,316 

points in the two sites. And both the number of ground points misclassified in the non-ground 

class and the number of non-ground points misclassified in the ground class are counted and 

showed in Table 5.1. Type I error was 2.8% and Type II error was 4.2%. Larger Type II error 

was due to the filter includes low vegetation points into the terrain. Low vegetation was also 

causing difficulties to the manual ground point selection. The overall accuracy for ground-

point filtering was 96.4% which was calculated as the total correctly-classified points over 

the total points. 

5.2 Analysis of Multispectral ALS Data for Land Cover Classification 

5.2.1 Spectral Analysis of the Land Cover Classes  

To analyze the potential of the intensity of the Titan multispectral ALS data, the spectral 

patterns of the five defined classes in each channel are plotted in Figure 5.2. The intensities  
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Figure 5.1 Illustration of the ground filtering result and the location of two validation sites 

 

 

 

Table 5.1 Accuracy assessment for ground-point filtering 

 Filtered   

Reference Ground Non-ground Total Error (%) 

Ground 76,404 2,212 78,616 Type I =  2.8% 

Non-ground  4,817 109,883 114,700 Type II =  4.2% 

Selected validation sites 

Non-ground points 

Ground point 
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were stored in 8-bits integers giving the range of values from 0 to 255. The histogram for 

each class is generated according to the training samples selected during the classification 

process. In addition to the original channels, histograms on the nDSM, pNDVI, and pNDWI 

are also shown in Figure 5.2.  

The tree class contained spectral peaks at low intensity (< 30) for all three bands. This 

class also had a peak at the highest elevation among the classes (> 10 m). The tree class had 

positive pNDWI and pNDVI values. For house class, low intensities were observed in both 

NIR and SWIR bands. The house class also had a peak at medium intensities for the green 

band, negative pNDVI, and positive pNDWI. For all the low-elevation classes such as road, 

grass and open area, high intensities were observed in the green band. Grass and open area 

tended to have a peak at low intensities in the SWIR band while the road class had a low-

intensity peak in the NIR band. The road class followed the same trend as the house class in 

the spectral indices that had negative pNDVI and positive pNDWI. The grass class had all 

positive values in both spectral indices where no distinct separation was observed. The open 

area class appeared to have two positive peaks in the pNDWI and one positive and one 

negative peak in the pNDVI. Except for the house class, all classes had a wider intensity 

distribution on the green band. Manmade objects such as road and houses showed clear 

discrimination on pseudo indices. The elevations of the house class varied from 3 to 10 m. 

The elevations of grass and open area were more fluctuant than the road class. The spectral 

patterns observed in the grass class were similar to those found in optical imagery that 

grasses tended to reflect more at the near-infrared light. This was not observed in the tree 

class which was mainly because tree class contained multiple returns and as the pulses 

energy decreased as it transmitted farther. The house class was associated with the lowest 

intensities in the NIR band compared with other classes. And the road class had the highest 

reflectivity in the SWIR band. 

5.2.2 Spectral Analysis of the Tree Class 

Because the classification at tree-genus or -species level is important especially for precise 

biomass estimation, the spectral patterns of the tree class are examined further to find if 
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Tree Class 

 

House Class 

 

Road Class 

 

Grass Class 

 

Open Area Class 

 

Figure 5.2 Historgams for five classes 
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current multispectral ALS datasets can distinguish the tree class into conifer and deciduous 

trees. By confirming the tree types in Google Earth, separate subsets for conifers and 

deciduous trees are created and plotted in Figure 5.3. There are no obvious distinctions 

between the tree genus on the histograms and by visual observations. However, through close 

visual observation to the pNDVI dataset, the trees with dark-colour leaves such as the 

Crimson King Maple tree could stand out from the tree class (see Figure 5.4). The spectral 

pattern for trees with dark-colour leaves is also plotted in Figure 5.3. No clear spectral 

distinctions between trees with different leaf colours are observed from the laser channels 

(see Figures 5.3 (a), (c), and (e)). But a close-to-1 peak is observed in the pNDVI dataset for 

trees with dark-colour leaves meanwhile both conifers and deciduous trees have a pNDVI 

peak close to 0 (see Figure 5.3 (f)). The multispectral ALS datasets generated in the study 

may not be sensitive enough to provide separate classification for conifers and deciduous 

trees. However, the analysis presented here shows that the multispectral ALS intensity may 

be influenced by factors such as the colour/reflectivity of the objects which in turn will be 

beneficial to the studies of tree mortality, rooftop solar energy, and so on.  

5.2.3 Accuracy Assessment of the Classification Results by SVM Classifier 

Accuracy assessment was conducted on the classification results in order to examine the 

classification performance of multispectral ALS data. Table 5.2 lists the confusion matrix of 

the classification result using all the six input data (Selection 1 in Table 4.2). For each class, 

User’s accuracy and Producer’s accuracy were calculated. The tree class achieved both high 

User’s accuracy and Producer’s accuracy (>95%). This class is mainly misclassified with the 

house class which was not surprising since they have similar spectral patterns and elevations 

as shown in Figure 5.2. A construction site with sandy ground located in the lower right 

corner of the classification map also caused problems to the classifier (see Figure 5.5). This 

area is misclassified as a mixture of roads and open area because the spectral behavior is 

more as the road class. Meanwhile the term “open area” defined in this study is more as 

public green space which are natural and vegetated areas. The grass class and the open area 

class were not very discriminable from each other which both were having the lowest User’s 

accuracy and Producer’s accuracy. Besides these two classes, all the classes achieved the 
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Figure 5.3 Historgams for the tree class 

 

 

 

(b) (a) 

(c) (d) 

(e) (f) 
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(a)(b)(d), and (e) reprinted from Google Earth (2015) 

Figure 5.4 Trees with dark-colour leaves in Google Earth and the pNDVI 

high User’s and Producer’s accuracy (>90%). The overall accuracy of this data input was 

around 90%. Figure 5.5 shows the final classification map. This combination of input data 

achieves highest overall accuracy among the three selections (see Table 5.3). The 89% 

overall accuracy was achieved by using the ALS-derived raster data along which indicated 

the contributions of the two calculated indices to the overall accuracy was not significant. 

The comparison between typical ALS data and multispectral ALS data on land cover 

classification was also conducted that the same classification process was applied to the 

nDSM and NIR band only. The overall accuracy of classification in use of typical ALS data 

was around 79%. 

5.3 Performance of the Watershed Segmentation 

In order to distinguish individual tree crowns in the CHM, a three-step segmentation process 

was conducted by first isolating the nDSM into CHM according to the tree class generated 

from the classification result. Then, the second step was to find treetops in the CHM. Lastly 

Crimson King Maple pNDVI 

(d) (e) (f) 

Unknown species pNDVI 

(a) (b) (c) 
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the watershed segmentation was performed to create a crown segment for each treetop. The 

generation of CHM is illustrated in Table 5.4.  

5.3.1 Results for the Local Maxima Selection 

The second step of the methodology was to find the local maxima in the tree-isolated nDSM 

(the so-called CHM) as the treetop candidates. In this study, a new approach was proposed to 

reduce the number of pixels generated by the original 3  3 local maxima filter and to find 

the true treetop pixels. Figure 5.6 illustrates the comparison between the original local  

 

Figure 5.5 Classification map of the study area 
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Table 5.2 Confusion matrix for the SVM classification using six input data 

 Grass Tree House Road  Open Area  

Classified 

Pixels 

     Total User’s 

Accuracy 

Grass  99 0 2 0 11 112 88.39% 

Tree 0 139 3 0 2 146 95.21% 

House 1 4 62 0 1 66 93.94% 

Road 4 0 1 82 4 91 90.11% 

Open Area 15 1 0 2 89 107 83.18% 

Total 119 144 68 84 107 522  

Producer’s 

Accuracy 

83.19% 96.53% 91.18% 97.62% 83.18%   

Overall Accuracy = 90.23%     

 

Table 5.3 Accuracy report for the classification results 

 Green NIR SWIR nDSM pNDWI pNDVI Overall Accuracy 

Selectio

n 1 

      90.23 % 

Selectio

n 2 

      89.12% 

Selectio

n 3 

      79.04% 
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Table 5.4 Generation of tree-isolated nDSM 

nDSM Tree Class on nDSM Tree Mask by Majority 

Filtering  

Tree-isolated nDSM 

    

maxima result performed on the CHM and the refined result which only retained the pixels 

that were having a local maximum on both the maximum intensity data and the CHM. It was 

noticeable that the clusters of local maxima in the original result were eliminated by the 

proposed method. Then the watershed segmentation algorithm is applied to generate crown 

segments by using the refined local maxima as the markers (see Figure 5.6 (c) ).  

5.3.2 Accuracy Assessment of Segmentation 

To evaluate the segmentation result, two validation sites are selected to count the number of 

tree crowns that can be visually identified from aerial photos in Google Earth and compared 

with the automatically generated crowns (see Table 5.5). The evaluation focused on 

examining the capability of the segmentation algorithm in delineating individual tree crowns. 

Hence the accuracy was calculated as the percentage of the number of detected crowns that 

were having a one-to-one relationship to the ground truth over the total number of the crowns. 

For Site 1, there were total 65 trees that can be identified in the aerial photo while 49 trees 

that had a single crown delineated by the watershed segmentation algorithm. For Site 2, there 

were 114 trees in the ground truth and 80 trees were identified as individual crowns in the 

segmentation result. The accuracies for these two sites were 75.4% and 70.2%, respectively. 

The achieved accuracy rates were not surprising since previous studies have reported that due 

to the nature of ALS system the dominant trees located in the upper portion of the canopies 



 

 56 

Figure 5.6 Results obtained by local maxima filtering and the maker controlled watershed 

segmentation 

 

  

 

 

 

 

The results of local maxima filtering 

performed on the CHM data 

Local maxima 

CHM 

 

 

The results of local maxima filtering refined 

by the maximum intensity data 

           Refined local maxima 

CHM 

    Maximum intensity 

The results of watershed segmentation 

applied on the CHM with the refined local 

maxima as markers 

 Crown segments 

(a-1) 

(b-1) (b-2) 

(c-1) 

(a) 

(b) 

(c) 
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 were better detected than the canopies nearby or underneath (Kaartinen et al., 2012). Due to 

the relative coarse resolution of the dataset and the nature of the ALS system, the 

segmentation result mainly included the dominant trees in the study area. 

5.4 Validations for the ALS-derived Dendrometric Parameters 

The accuracies of ALS-derived tree height and crown width were assessed by the samples 

measured in the field. For the ALS-derived tree height, a RMSE of 1.21 m (relative RMSE = 

6.8%) and a negative bias of 0.2 m (relative bias = -0.1%) is given in Table 5.6. For the ALS-

derived crown width, a RMSE of 1.47 m (relative RMSE = 16.4%) and a negative bias of 

0.18 m (relative bias =-2%) were observed. The tree height was underestimated because of 

the undergrowth and the factors related to the flying height (1000 m) and the point density (7 

to 8 points / m
2
). The relative RMSE of crown width was mainly caused by the resolution of 

the CHM and the results of crown segmentation. 

 

 

Table 5.5 Evaluations of the segmentation result 

  Site1 Site2 

Reference 

  

Results 

 
 

𝐍𝟏,𝟏 49 80 

𝐓𝐨𝐭𝐚𝐥  65 114 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 75.4% 70.2% 
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5.5 Validations for the ALS-predicted DBH and Tree Carbon 

The results of model fitting and validation of the six ALS-DBH regression models are listed 

in Table 5.7. The 40 field-measured samples were previously split into 4 groups and 10 trees 

in each group. The models were iteratively fitted by 20 trees selected from two groups out of 

four and were validated by the rest 20 trees. Model 2 was selected as the overall best model 

to predict DBH in this study because it has a relatively high coefficient of determination 

(R
2
=86%) from model fitting and a relatively low RMSE (5.6 cm) from the validation. The 

regression equation is as:  

DBH =  −11.2792 + (−0.2958) CD +  3.2637  H                                  (5.1)   

To determine the number of decimal places for the coefficients in the regression equation, the 

residuals between the DBH values predicted by the coefficients with eight decimal places 

and that predicted by coefficients rounded to two, three, and four decimal places, respectively 

are compared in Figure 5.7. To keep high prediction accuracy, coefficients in the regression 

model are rounded to four decimal places. For comparison purposes, Table 5.8 shows the 

field-based DBH model that is constructed by using all the field-measured height and crown 

width as explanatory variables and the validation result generated by comparing the filed-

measured DBH with the modeled DBH using the ALS-derived height and crown width. The 

R
2
 between field-measured DBH and field-measured dendrometric parameters (height and 

crown width) was 0.79. The RMSE of the validation was 6.4 cm. The accuracy of the field-

based model was approximately the same as the average accuracy of the six models. No 

significant bias was observed. Moreover, the R
2
 between field-measured tree height and 

crown width was calculated as 0.34 indicating insignificant correlation between these two 

variables. Though DBH cannot be directly measured on the CHM, all the generated ALS-

Table 5.6 Validation statistics for the ALS-derived dendrometric parameters 

Parameter RMSE RMSE% Bias Bias% 

Height (m) 1.21  6.8%  -0.20 -0.1%  

Crown Width (m) 1.47  16.4%  -0.18  -2%  



 

 59 

DBH models showed that the DBH correlated well with ALS measurements. The accuracies 

of the ALS-modeled DBH and ALS-derived carbon storage are given in Table 5.9. The 

predicted DBH using ALS-derived parameters corresponded to a RMSE of 6.4 cm (relative 

RMSE = 13.1%) and a bias of 0.4 cm. The relationship between field-measured DBH and 

ALS-modeled DBH is plotted in Figure 5.8. ALS-derived carbon storage was obtained by 

plugging the ALS-modeled DBH into the Canadian national biomass equations (see Chapter 

4, Equation 4.10). The results are compared with the reference carbon storage estimated by 

field-measured DBH and plotted in Figure 5.9. The R
2
 of both DBH and carbon storage were 

both above 0.80. The predicted carbon storage using ALS-modeled DBH corresponded to a 

RMSE of 142 kg (28.6%) and a bias of 14.4 kg. 

Table 5.7 Results of model fitting and model validation 

Model Model Fit 

R
2
 

Model Fit  

RMSE (cm) 

Validation 

R
2
 

Validation  

RMSE (cm) 

1 0.83 5.35 0.80 6.82 

2 0.86 6.60 0.76 5.60 

3 0.86 3.86 0.71 8.25 

4 0.75 7.89 0.77 4.82 

5 0.78 5.59 0.85 6.55 

6 0.81 7.00 0.83 5.20 

 

Table 5.8 DBH model developed by all-field measurements and validation statistics 

# of   

training 

samples 

Model Equation Model  

R
2
 

Validation  

RMSE 

(cm) 

40 DBH = -1.4394 + 0.6193 CD + 2.5520  H 0.79 6.41 

 

 

 



 

 60 

 

 
 

Figure 5.7 Residual plots for model-predicted DBH generated by coefficients with 2, 3, and 

4 decimal places 

  

Figure 5.8 Scatterplot of the ALS-modeled 

DBH vs. field-measured DBH 

Figure 5.9 Scatterplot of the ALS-predicted carbon 

storage vs. field-estimated carbon storage 
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Table 5.9 Accuracy of ALS-predicted vs. field-measured results 

Parameter RMSE RMSE% Bias Bias% 

DBH (cm) 6.39  13.1%  0.44  0.1%  

Carbon (kg) 142.0  28.6%  14.4  2.9%  

5.6 Analysis of the ALS-estimated Results 

The accuracy of tree-height measurements using ALS data has previously been studied by 

Yu et al. (2004), Kaartinen et al. (2012), and Hadaś & Estornell (2016). Yu et al. (2004) 

found that as flying height increased from 400 m to 1500 m the accuracy of tree heights 

lowered from 0.76 to 1.16 m for single tree species. Kaartinen et al. (2012) reported that the 

best methods which utilized the local maxima finding with a point density of 8 points / m
2
 

can obtain a RMSE of 60 cm to 80 cm for tree heights. Hadaś & Estornell (2016) showed 

that the bias of tree height measurements can decreased from -1.48 m to -0.72 m if the point 

density increased from 3.5 points / m
2
 to 9 points / m

2
. The RMSE achieved in the present 

study is in line with these studies and is potentially affected by the errors generated during 

the field measurements. Both overestimations of the crown size and underestimation of the 

tree heights are likely a result of the overlaying crown covers of the dominant tree and the 

suppressed trees but could be mitigated if the resolution of CHM is at the sub-meter level.  

The results of ALS-modeled DBH are in line with the finding in Hauglin et al. (2014) 

and Popescu et al. (2007) regarding the tree height and crown width as good predictors to 

predict DBH using linear regression. The accuracy found in the present study is higher than 

these two studies. Hauglin et al. (2014) reported a RMSE of 35% for ALS-estimated DBH of 

Norway spruce. Popescu et al. (2007) reported a lower RMSE (4.9 cm) and higher R
2
 

compared to the present study. However, considering the accuracies in Popescu et al. (2007) 

was for single tree species which had an average DBH as 29.55 cm meanwhile they used all 

43 sampled trees to construct the model and validate the model using the same dataset; the 

RMSE% and R
2
 in their study would be higher than this study. For aboveground biomass 

Popescu et al. (2007) reported a RMSE of 47% for single tree species. Kankare et al. (2013) 
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reported a RMSE of 26.3% and 36.8% for pines and spruce, respectively. Huaglin et al. 

(2014) achieved a RMSE of 35.1% for biomass estimation. Though the achieved accuracy of 

carbon estimation is higher in the present study, these studies are not entirely comparable 

because some studies used field-destructive measurements as reference data which is not 

available in this study. And because genus information is also not available, the estimation of 

carbon stocks was done by the allometry equations for all species in Lambert et al. (2005) so 

that the derived carbon mainly depended on the ALS-derived DBH and height with little 

considerations given to the differences in species. 

5.7 Analysis of Carbon Storage 

There are a total of 2555 dominant trees in the study area. The trees were located along the 

roadsides, in the backyard, and around the lakes. The average tree carbon was 484.3 kg and 

resulted in total 1.24 kt C (10
3
 tons Carbon). The study area can be generally divided into 

four land use types: residential, park and recreational, open area, and water. The open area 

occupied the largest portion of the study area which had 47.0 ha. The residential area 

occupied 25.8 ha. And the park had a small area of 2.5 ha. The extracted carbons in trees 

were therefore grouped based on the land use type and the amount of carbon stored in each 

land cover type was calculated.  

Within the study area, open areas contained the largest tree carbon stocks (682.7 t), 

followed by residential areas (362.6 t), and last parks and recreational areas (29.2 t). The tree 

carbon storage for the open area, residential, and parks on a per-unit-area basis were 14.54 t 

C/ ha, 14.08 t C/ha, and 11.57 t C/ha, respectively. In the citywide, open area occupied 83.7% 

(191.5 km
2
) of the total city area and contained the largest carbon storage as 278.4 kt C. 

Residential area covered 8.3% (19.4 km
2
) of the total city area and contained 27.3 kt C tree 

carbons. Parks covered 12.8 km
2
 with a total carbon storage estimated as 14.8 kt C. The 

carbon storage map shows that large tree carbon stocks are accumulated in urban 

environment and are distributed heterogeneously among land use types (see Figure 5.10).  

The estimated tree carbons in the study area are in line with the estimation of carbon 

storage in Canadian urban trees conducted by researchers at Environment Canada (Pasher et 
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al., 2014). Pasher et al. (2014) estimated the carbon stocks in trees by applying the crown 

cover area of urban trees and a Canadian-specific area-based growth rate for urban trees. 

Pasher et al. (2014) reported a total urban area of 5317 km
2
 in Ontario Mixedwood Plains 

with an estimation of carbon storage as 9177.6 kt C resulting in a carbon storage per unit 

urban area as 17 kt C/ha. This is slightly more than what has been predicted in this study 

(around 14 kt C/ha). The main source of the difference comes from the approaches to 

estimate the biomass amounts between the present study and that used in Pasher et al. (2014). 

 

Figure 5.10 Carbon storage map for the Town of Whitchurch-Stouffville, Ontario 
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5.8 Chapter Summary 

This chapter provided the results generated by the stepwise approaches proposed in Chapter 

4. A classification map was created for the study area by using the SVM classifier with the 

multispectral ALS datasets. An analysis of the spectral behaviors of land covers in 

multispectral ALS channels was presented. The carbon storage in trees was estimated at the 

individual-tree level by applying a modified marker-controlled watershed segmentation 

algorithm and the allometry-based ALS-DBH modeling. The accuracies of ground-point 

filtering, the land cover classification, segmentation results, and the ALS-derived 

dendrometric parameters were provided. The parameterization process for the ALS-DBH 

modeling and the rationale behind parameter selection were presented. The tree carbon in the 

study area was estimated and used to extrapolate the carbon storage in the whole city. A 

carbon storage map for the Town of Whitchurch-Stouffville, Ontario was presented.  
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Chapter 6 

Conclusions and Recommendations  

In this chapter, the key findings and contributions of this study are summarized. The 

limitations of the proposed methodology are also discussed. And recommendations for 

further studies in terms of the applications of the multispectral ALS data are provided at the 

end. 

6.1 Conclusions 

This study proposed a workflow to map land covers and estimate aboveground carbon 

storage in trees at the spatial resolution of 1 m using the multispectral ALS data. This study 

shows that good classification result can be obtained solely from the multispectral ALS 

datasets. It achieved an overall accuracy of 90% which was 11% higher than that obtained 

using a single-wavelength ALS data. Spectral patterns for imperious surfaces (road, building, 

rooftops) and single-return vegetation (grass) are observed to have similar patterns as in the 

optical imagery. The dendrometric parameters at single-tree level can be derived directly 

from the multispectral ALS data. The study also shows the use of both spectral and geometric 

properties of the multispectral ALS data can improve the detection of treetops. The 

improvement could be more significant if the resolution of the CHM gets finer.  

The study presented the feasibility of applying forest based allometric methods to assess 

carbon stocks in urban environment. Dominant tress with less underneath or nearby trees 

were better detected and analyzed in the proposed study. Though DBH cannot be directly 

measured from the ALS data, the ALS-predicted DBH remains to be a power predictor to 

estimate tree carbon at the individual-tree level. More accurate tree carbon could be obtained 

if genus information and crown base heights are further investigated. An improvement of 

derivation of the crown width would also help in better prediction of tree carbon stocks. This 

study derived similar carbon amounts per unit area on both residential area and open area 

within the study area because the open area has twice the size of the residential area but the 

density of the canopy covers is less than it in the residential area. Citywide carbon storage 



 

 66 

estimation is derived in this study by extrapolating the values within the study area to the 

entire city based on the specific proportion of each land cover type in the entire city. This 

approach is applicable in the present study because the Town of Whitchurch-Stouffville has a 

relatively simple city structures and the study area has included the major components of the 

city and those land covers excluded in the study area only occupied a little proportion of the 

entire city. 

Urban ecosystems are an important component in the global carbon cycle. In the context 

of urban sprawl, quantifying the carbon storage for urban areas is very important in terms of 

getting reliable estimation of carbon sequestration rate and magnitude. But it is a difficult and 

complex task that requires advanced analysis techniques and data sources to achieve fine-

scale estimation. The methods developed here provide an accurate and detailed estimate of 

how urban trees in a Canada’s city plays the role as a carbon sink. The presented approach of 

estimating carbon stocks in urban trees takes the advantages of the available Canada-wide 

allometry relationship between biomass and the tree DBH and height, and also the power of 

the ALS system in providing the estimation of dendrometric parameters. The methodology 

proposed in the present study does not require destructive sampling or large-scale field works. 

It is applicable to other urban areas and is beneficial to better understand urban carbon 

budgets and urban heat island effects. It also provides valuable information on the impact of 

climate change to city planners.  

In conclusion, the present study has developed a detailed workflow to estimate tree 

carbon stocks from the multispectral ALS data by using a series of techniques including 

SVM classification, watershed segmentation, and allometry-based linear regression modeling. 

This study also demonstrated the strong capability of multispectral ALS data in land cover 

mapping and tree-level inventory in urban environment. The Titan scanner showed a trend 

for the development of airborne LiDAR technology. This scanner is able to realize a series of 

environmental and topographic applications that have been done previously by 

photogrammetric data. 
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6.2 Recommendations 

Nevertheless, the 3D information of ALS technology has been widely applied in vegetation 

analysis. The information of ALS intensity was less frequently used in previous studies and 

only played as an ancillary role in land cover mapping and forest inventory. The findings in 

the present study suggest that the use of the multispectral ALS intensities may be 

undervalued and should be investigated further. The understanding of multiple-return 

intensities will be more complex and confused than single-channel ALS or optical imagery. 

Hence, the usefulness of the multispectral ALS intensity depends on the calibration process 

which requires in-depth investigation in the future. Though superior object-based 

classification methods have been proposed in recent years, the analysis of the multispectral 

ALS intensity data showed that individual land cover types cannot be distinguished clearly in 

single ALS channels. Hence, the classification method applied in this study remains to be a 

pixel based method. However, it is strongly recommended that researchers conduct in-depth 

analysis of the NIR and SWIR intensity bands and examine the applicability of performing 

object-based classification on individual bands in order to classify tree genus. The present 

study reveals some clues of the potential of the multispectral ALS data in providing fine-

scale and class-diverse land cover mapping. The classification of hardwood and softwood is 

especially important for vegetation analysis. Though this study did not achieve a tree-genus 

level of classification, it is still highly possible to be accomplished by taking full usage of the 

3D geometry and intensity information of the multispectral ALS datasets. The proposed work 

should be extended further in terms of estimating the urban vegetation conditions for specific 

species, estimating the carbon sequestration and emission rate.  
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