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Abstract

Semiparametric methods are well-established for the analysis of a progressive Markov illness-death
process observed up to a noninformative right censoring time. However often the intermediate and
terminal events are censored in different ways, leading to a dual censoring scheme. In such settings
unbiased estimation of the cumulative transition intensity functions cannot be achieved without
some degree of smoothing. To overcome this problem we develop a sieve maximum likelihood
approach for inference on the hazard ratio. A simulation study shows that the sieve estimator offers
improved finite-sample performance over common imputation-based alternatives and is robust to
some forms of dependent censoring. The proposed method is illustrated using data from cancer
trials.
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1 INTRODUCTION

Vital status for individuals in a clinical trial is often readily available. Detection of non-fatal events
requires closer surveillance, which can prove difficult and costly to maintain over time. As a result
survival times are subject to right censoring, but the occurrence of intermediate events may be right-
censored earlier or interval-censored between assessments. In general we refer to this scenario as dual
censoring. Various forms of dual censoring arise in trials involving tumor progression. Guidelines call
for the analysis of so-called time to progression (TTP), coinciding with detection of progression, or
progression-free survival (PFS), given by the earliest of TTP and death (FDA, 2007). TTP is typically
right-censored at death or the preceding (negative) assessment, which induces dependent censoring.
PFS is thus deemed preferable to TTP (FDA, 2007, p. 8), but this outcome is subject to systematic
imputation.

http://dx.doi.org/10.1093/biostatistics/kxv042
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Figure 1: Multistate alternatives to TTP and PFS: chain of events (left), semicompeting risks (middle),
and progressive illness-death (right) models.

Multistate models have been suggested as a more natural framework for assessing treatment effects
on progression and death. A chain of events model (Fig. 1, left), for example, is useful for settings in
which progression always precedes death (Frydman, 1995b). Semicompeting risks (Fig. 1, middle)
have been proposed for the case where death may precede progression (Hu and Tsodikov, 2014). Xu
et al. (2010) observe that semicompeting risks essentially amount to the progressive illness-death
model (Fix and Neyman, 1951; Fig. 1, right), which is fully specified by the state-transition intensity
functions.

Among the three state-transition structures, methods to deal with specific instances of dual censoring
are most developed for the illness-death model. Frydman (1995a) considers the nonparametric
maximum likelihood estimator (NPMLE) from interval-censored progression times with known
progression status. This is generalized by Frydman and Szarek (2009) to account for unknown status,
which often arises when the last assessment is negative and long precedes right-censoring or death.
Bebchuk and Betensky (2001) combine local likelihood and multiple imputation to estimate transition
intensities under progression times right-censored before death. Joly et al. (2002) propose spline-based
penalized likelihood for the (Cox, 1972) proportional hazards model for an interval-censored variant
of this observation scheme. Jackson (2011) considers a piecewise exponential analog by way of
time-dependent covariates.

These works recognize that progression and death are observed in different ways, but the broader
problem of dual censoring has not yet been considered. Methods for time-to-event endpoints that
leave any dependence on time unspecified are generally preferred in practice. However non- and
semi-parametric maximum likelihood estimators require the locations of support for the distribution of
each transition time, and these are ambiguous whenever the progression status is unknown. To address
these issues we develop a sieve estimator for a multistate extension of the Cox model and compare its
numerical performance with routine analysis of imputation-based PFS under a variety of censoring
scenarios.

2 DUAL CENSORING OF THE PROGRESSIVE ILLNESS-DEATH PROCESS

Let Nhj be a one-jump counting process representing the transition from state h to state j (h 6= j) in
the progressive illness-death model and Thj be the corresponding transition time. So T01 is the time to
progression, T02 is the time to progression-free death, and T12 is the time of death following progression.
Over the observation period [0, τ ], τ <∞, suppose that the survival time T02 ∧ T12 is observed up to a
right censoring time D, 0 < D ≤ τ , but progression status 1(T01 ≤ t) is not necessarily known for
all t ∈ (0, V ], V = T02 ∧ T12 ∧D. For example progression may be right-censored at some random
time preceding D. Alternatively progression status could assessed periodically, leading to interval
censoring.

Whatever the form of this inspection process, we presume that it yields a potential censoring
interval (L,R] for the progression time T01. We say “potential” because we may not know with
certainty that T01 ∈ (L,R]. Put ∆2 = 1(T02 ∧ T12 ≤ D) to denote whether or not the survival time is
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Figure 2: Top: A dual right-censored observation in which progression, coinciding here with first SRE,
status is unknown at the last observation time V . Bottom: A dual-censored observation in which lesion
progression status is observed to be positive, but the progression time is known only up to the interval
(L,R].

observed. Let ∆0 = 1 whenever progression status is known to be negative at V and ∆0 = 0 otherwise.
Similarly let ∆1 indicate that progression status is known to be positive at V . So ∆1 = 1 denotes
that, based on the available data, we are certain T01 ∈ (L,R] for some L < R ≤ V . Otherwise either
∆0 = 1, indicating that T01 > V , or progression status is unknown at V . If the status is unknown, then
∆0 = ∆1 = 0 and we cannot rule out the possibility that either T01 ∈ (L,R] or T01 > R.

2.1 EXAMPLE: BONE LESIONS AND THEIR COMPLICATIONS

Dual right-censored data are encountered in cancer trials evaluating the effect of bisphosphonates on
bone metastases and their complications, known as skeletal-related events (SREs). The time of an
SRE is often self-evident, but can otherwise be measured accurately through frequent clinic visits,
so SREs are typically considered subject only to right censoring. Growth of new or existing bone
lesions is assessed by radiographic surveys, which are carried out less frequently. This results in
interval-censored lesion progression times. Standard practice is to evaluate SREs and lesions as
separate endpoints, as SREs provide the most direct measure of clinical benefit. Time-to-event analysis
of either outcome is complicated by the fact that the mortality rate is non-negligible. Use of PFS
can circumvent this issue. However since the treatment is intended to manage symptoms rather than
prolong survival, the measured effect on PFS will likely underestimate any symptom benefit. The
illness-death model offers an alternative that isolates the effect of interest.

A dual-censored observation from this multistate process with first SRE as the intermediate event
is illustrated in the top panel of Fig. 2, where we know that no SREs occurred within an initial loss to
follow-up time and that the subject survived at least up to final right-censoring time D. We cannot
rule out the possibility that progression may have occurred between these two times, so ∆0 = ∆1 = 0.
The censoring interval (L,R] here is indeed “potential” from the observed data because in reality, the
subject did not experience any SREs. The PFS endpoint has no standard definition in this setting.
Practitioners might simply discard all data collected after the initial loss to follow-up time so that PFS
is right-censored early. Alternatively the negative progression status at this earlier right censoring time
could be carried forward to V , giving PFS with a form of last observation carried forward (LOCF)
imputation.

The bottom panel of Fig. 2 considers lesion progression rather than SRE. Here a new lesion
developed some time between the first and second radiographic surveys, which gives a censoring
interval (L,R] that captures the progression time with certainty: ∆0 = 0 and ∆1 = 1. Loss to
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follow-up occurs after the second survey but before death, giving V = D and ∆2 = 0. Guidelines
suggest imputing PFS to the time at which progression is first detected, carrying forward the last known
progression status to death, and sensitivity analysis to examine variations on this imputation scheme
(FDA, 2007, Appendix 2).

Let Yh be the at-risk process for any transition out of state h, so that Yh(t) = 1 if state h is occupied
at time t− and Yh(t) = 0 otherwise. Define the h→ j transition probability Phj(s, t) = Pr(Nhj(t) =
1 | Yh(s) = 1, N(u), u ≤ s), with s ≤ t and N = (Nhj)h6=j . Suppose that the observation scheme
renders the complete data (T01, T02, T12) coarsened at random in the sense of Heitjan and Rubin (1991).
Then the likelihood of a dual-censored observation X = (L,R, V,∆0, ∆1, ∆2) is

(1−∆0)P00(0, L)P01(L,R)P11(R, V )λ12(V )∆2 + (1−∆1)P00(0, V )λ02(V )∆2 , (1)

where Yh(t)λhj(t) is the transition intensity process or instantaneous transition probability at time
t. Whatever model we choose for the transition intensity function λ = (λhj)h6=j , the likelihood a
priori maximizes to infinity; λh2 (h = 0, 1) can be made arbitrarily large at any time we observe
Th2 exactly. The usual way out is to replace λh2 by the jump discontinuity ∆Λh2 in the cumulative
transition intensity function Λh2 =

∫
λh2. However consider an individual with unknown progression

status (∆0 = ∆1 = 0) and known survival time (∆2 = 1). Surely we need Λ02 + Λ12 to increase
at V = T02 ∧ T12, but the observed data are insufficient to jointly estimate ∆Λ02(V ) and ∆Λ12(V ).
Nonparametric maximum likelihood will assign mass to at least one of the two potential transition
times, but the manner in which support is allocated is subject to bias. Since the so-called risk set
for 1 → 2 transitions is empty at t = 0, the likelihood can be increased appreciably by allocating
more mass to potential or observed support for the distribution of T12 early in the observation period.
So the initial increments in the NPMLE for Λ12 will tend to be large in finite samples. All of these
difficulties can be mitigated by maximizing the likelihood with respect to a sieve—a finite-dimensional
approximation to {Λ} whose size increases with n. Such an approach is generally known as the method
of sieves (Grenander, 1981).

3 METHOD OF SIEVES FOR DUAL-CENSORED DATA

Here a sieve is defined for a given random sample Xi = (Li, Ri, Vi, ∆
i
0, ∆

i
1, ∆

i
2), i = 1, . . . , n, of

dual-censored observations. Each element of a sieve corresponds to a piecewise parametric cumulative
intensity function Λn = (Λhj,n)h6=j defined on a data-driven partition of the observation period [0, τ ].
Let L and R respectively denote the set of left- and right-endpoints from the collection of known
censoring intervals I = {(Li, Ri], i = 1, . . . , n : ∆i

1 = 1}. Define U01 as the set of right-endpoints
from the maximal intersections (Wong and Yu, 1999) for I; that is, the set of r from (l, r] such
that l ∈ L, r ∈ R and (l, r] ∩ (Lj, Rj] is either (l, r] or ∅ for every (Lj, Rj] ∈ I. In addition let
Uh2 = {Vi, i = 1, . . . , n : ∆i

h∆
i
2 = 1,

∑n
j=1 Y

j
h (Vi+) > 0}, for h = 0, 1, denote the set of exactly-

observed terminal event times Th2 with known progression status and non-empty h → 2 risk set at
Th2+.

From Frydman (1995a, Theorem 1), the NPMLE for Λ based on the subsample with known
progression status (∆i

0 ∨∆i
1 = 1) can be uniquely defined as the discrete maximizer concentrating its

support on Uhj , h 6= j. This implies that Λhj,n should, at minimum, have support on Uhj . To ensure
that Λ02 and Λ12 are jointly estimable, the sieve partition must not isolate any Vi with ∆i

2 = 1 and
unknown progression status ∆i

0 = ∆i
1 = 0. We can achieve this by defining Λhj,n on a partition

Thj,n = (t0, . . . , tKhj,n+1), such that Khj,n = O(nκ) for 0 < κ < 1, 0 = t0 < t1 < · · · < tKhj,n+1 = τ ,
maxk(tk − tk−1) = O(n−κ), and every subinterval (tk−1, tk] contains at least one point from Uhj . Here
κ is a tuning parameter that determines the rate at which the sieve or partition size Khj,n increases with
n.
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For consistency we need {Λn} → {Λ0} as n → ∞. This can be met if the true parameter Λ0 is
sufficiently smooth and increasing on (σ, τ) and the distribution of the inspection times has positive
support on (σ, τ) for some small 0 < σ < τ . We express these and other assumptions throughout this
paper more precisely in Appendix A of the supplementary material, but essentially this means Uhj
must be dense in (σ, τ) as n → ∞. Such a requirement is stronger than the ones imposed by Joly
et al. (2002) and Frydman and Szarek (2009), which allow for unobservable terminal event times with
negative progression status: U02,n = ∅. A consequence of this is that the support for the distribution of
T02 is not apparent from the available data, so imposing at least a weakly parametric model for Λ02 is
needed to achieve consistency.

Apart from the location of support points, estimation from dual-censored data poses two addi-
tional challenges: (1) inference under convergence rates possibly slower than the parametric rate,
as encountered with various forms of interval censoring, and (2) consideration of Λ12 that depends
arbitrarily on aspects of the event history, such as the duration in state 1. We avoid these complications
by considering a sieve estimator for the Cox model with fixed covariates. This permits inference on
the familiar hazard ratio via Murphy and van der Vaart’s (2000) profile likelihood theory and, barring
the standard Markov assumption, puts little restriction on any dependence with time. A variety of
extensions or alternatives could be considered, but we adopt this model as a starting point.

4 SIEVE ESTIMATION OF THE COX MODEL

Sieve estimators have been previously proposed for interval-censored survival data. Huang and Rossini
(1997) examine the proportional odds model. Zhang et al. (2010) devise a spline-based sieve for the
Cox model. Our setting is complicated by multiple event types and censoring schemes, but these works
provide a useful basis for extension. Herein assume that each Nhj has cumulative intensity function

Λhj(t) exp(Z ′hjθ), (2)

where Zhj is an h→ j transition-type–specific d-vector based on the fixed covariate Z, θ ∈ Θ ⊂ Rd is
a regression parameter, and Λhj =

∫
λhj is now a nondecreasing cumulative baseline h→ j transition

intensity function. Note that the parameter θ is common to each transition type, but Zhj can be suitably
constructed from Z to give type-specific covariate effects (Andersen and Borgan, 1985, pp. 478–480).
For example if we wish to estimate the effect of the scalar covariate Z on each transition type separately,
we may put θ = (θ1, θ2, θ3)

′, Z01 = (Z, 0, 0)′, Z02 = (0, Z, 0)′ and Z12 = (0, 0, Z)′. The effect of Z
on the risk of the 0→ 1, 0→ 2 and 1→ 2 transitions then corresponds to θ1, θ2 and θ3, respectively.

Under (2) the cumulative h→ j transition intensity process YhΛhj exp(Z ′hjθ) depends on only the
current state occupied and thus satisfies the Markov property Phj(s, t) = Pr(Nhj(t) = 1 | Z, Yh(s) =

1, N(u), u ≤ s) = Pr(Nhj(t) = 1 | Z, Yh(s) = 1). So Phh(s, t) = exp{−
∑

j 6=h
∫ t
s
Λhj(du) exp(Z ′hjθ)}

and P01(s, t) =
∫ t
s
P00(s, u)Λ01(du) exp(Z ′01θ)P11(u, t), for any s < t (e.g. Andersen and Borgan,

1985, Theorem II.6.7). Let likθ,Λ(X) denote the likelihood of an observation X given by (1), eval-
uated under these transition probabilities. Then the sieve maximum likelihood estimator (SMLE),
(θ̂n, Λ̂n), corresponds to the maximizer of the log-likelihood function `n(θ, Λ) = Pn log likθ,Λ(X)
over (θ, Λ) ∈ Θ× {Λn}. The sieve {Λn} is defined by its piecewise parametric family and partition
(Thj,n)h6=j . For a sufficiently large partition size, one would not anticipate θ̂n to be particularly sensitive
to the parametric form on the subintervals. This general notion is demonstrated in the survival case by
Huang and Rossini (1997). We defer a discussion on selection of the partition to the end of Section 4.2.
The remainder of this section describes the estimation scheme, with illustrations for the piecewise
exponential sieve. Numerical results for this sieve are examined in Sections 5 and 6.
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4.1 PARAMETER ESTIMATION

Suppose that the cumulative baseline intensity functions from a given sieve {Λn} are specified by the
(finite-dimensional) parameter φ. The piecewise exponential sieve, for example, is characterized by
the piecewise constant values taken by the intensity function. These range through positive values
in (K01,n +K02,n +K12,n)-space. In general, let φhj,k denote the parameters specifying Λhj,n(t) for
t ∈ (tk−1, tk] and k = 1, . . . , Khj,n. Then the SMLE satisfies the score equations ∇θ,φ`n(θ, φ) = 0.
These can be solved using the following self-consistency algorithm, which is akin to the routine
outlined by Frydman (1995b) under the null model with θ fixed at zero and no dual censoring.

STEP 4.1 For chj > 0 and 0 < κ < 1, define Thj,n as a partition of [0, τ) in which each subinterval
contains dnhj/(chjnκ)e points from Uhj . Set r = 0, θ(0) = 0 and φ(0) to some “neutral” value that
ensures Λn is increasing. For example with the piecewise exponential sieve φ(0) = 1/τ .

STEP 4.2 Find a candidate increment η(j) = (η
(j)
θ , η

(j)
φ ). For η(j)θ , apply the Newton-Raphson method:

η
(j)
θ = −∇2

θ`n(θ(j), φ(j))−1∇θ`n(θ(j), φ(j)). Obtain η(j)φ via the self-consistency equations (Turnbull,
1976) that result from re-arranging the score equation ∇φ`n(θ, φ) = 0 to give a recursive expression
for φ. For the piecewise exponential sieve this is loosely:

η
(j)
φhj,k

=
Pn E

(∫ tk
tk−1

dNhj(s)
∣∣X)

Pn exp(Z ′hjθ) E
(∫ tk

tk−1
Yh(s) ds

∣∣X) − φ(j)
hj,k,

where the conditional expectations are evaluated under θ = θ(j) + η
(j)
θ and φ = φ(j). These are equal to

one if X provides (T01, T02, T12) exactly. A precise expression for this ratio is provided in Appendix D
of the supplementary material.

STEP 4.3 Increment θ(j) and φ(j) by η(j)θ /2j and η(j)φ /2j , respectively, with j the smallest nonnegative
integer ensuring no decrease in the log-likelihood. This gives (θ(j+1), φ(j+1)). If, for some small
positive value ε, ‖θ(j+1) − θ(j), φ(j+1) − φ(j)‖∞ < ε then stop. Otherwise set j to j + 1 and return to
Step 4.2.

For each Λ the log-likelihood is concave in θ, which implies that the Newton-Rapshon method
yields a profile maximizer for θ. Similar properties are not readily available for Λ. So the score
equations may neither uniquely characterize the SMLE nor identify global maxima. Multiple (local)
maxima may be detected with different starting values and examination of the profile log-likelihood.
Our experience thus far has uncovered rare instances where the increment-halving procedure in Step 4.3
reduces the first and only candidate increment to its starting value. In this narrow form of local maxima,
the algorithm could be initialized with starting values based on imputed data.

4.2 VARIANCE ESTIMATION

In Appendices B and C of the supplementary material we show that if the rth (r = 1 or 2) derivative
of Λ0 is continuous, positive and bounded on (σ, τ) and some regularity conditions hold, then the
SMLE (θ̂n, Λ̂n) converges to the truth (θ0, Λ0) at the rate OP (min(n(1−κ)/2, nrκ)) with 1/(4r) < κ <
1/2. However θ̂n achieves the semiparametric efficiency bound. Both the limiting distribution of
max(n−(1−κ)/2, n−rκ)(Λ̂n − Λ0) and interval estimation for Λ remain as open problems.

Holding θ(r) fixed in the self-consistency algorithm described in Section 4.1 evaluates the profile
log-likelihood needed to estimate standard error for θ̂n under Murphy and van der Vaart (2000,
Corollary 3), which gives an approximation to the curvature in the profile log-likelihood at θ̂n akin
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to numerical differentiation. This entails successively perturbing the entries in θ̂n by a chosen value
hn = o(1/

√
n). The data-driven procedure outlined in Boruvka and Cook (2015, Section 6) reduces

the choice to specifying typical typ θ and extreme sup θ (absolute) values for any given entry in θ.
Estimation thus entails setting a number of parameters—namely the sieve constants (c01, c02, c12),

sieve rate κ, typical and large values for θ, and the threshold ε. The κ achieving the fastest rate
of convergence is κ = 1/(1 + 2r), although better finite sample properties may be obtained with
a larger sieve. In practice we set κ to the (presumed) asymptotically optimal value for discrete
inspection processes and closer to 1/2 under dual right censoring. We have not formally investigated
performance for different values of chj , but this could be set to some positive value invariant to n
that represents the presumed degree of non-linearity in Λhj relative to the other cumulative transition
intensity functions. Empirical motivation for these choices is provided in Section 5, but further study
is warranted. Our experience suggests that estimates are not particularly sensitive to the choice of
the remaining parameters provided that typ θ is moderately-valued, sup θ is relatively large, and ε
is sufficiently small. In the simulation studies described below we set typ θ = 1, sup θ = 10, and
ε = 10−7 to ensure convergence within a reasonable number of iterations over the censoring schemes
and sample sizes considered.

5 SIMULATION STUDY

Numerical properties of the piecewise exponential SMLE were investigated for right- and interval-
censored variants of dual censoring. In both cases we considered the same model with cumulative h→
j, h 6= j, transition intensity Λhj(t) exp(θ1Z01 + θ2Z02 + θ3Z12), where Λ01(t) = t4/5, Λ02(t) = 3t/4,
Λ12(t) = (3t/2)5/4, Z uniform on {0, 1}, Zhj the product of Z and the h→ j transition type indicator,
θ1 = θ2 = − log(2) and θ3 = 0. Here Z influences only the exit time from initial state 0 and its effect
is the same for each transition type. However neither of these properties were assumed in estimating
θ. Throughout T02 ∧ T12 was right-censored by the fixed time D = τ = 2 representing study closure.
Under these fixed parameters, roughly 56% of subjects in the sample progressed (T01 < T02), 12%
were event-free at τ (T01 ∧ T02 > τ), and 16% survived to study closure (T02 ∧ T12 > τ ).

The censoring scheme acting on the progression status is described in the subsections below, where
we summarize findings from 10,000 Monte Carlo replicates of the sample sizes n = 250, 500, 1000
under four general scenarios: (1) independent dual censoring, (2) independent dual censoring with in-
creased censoring of progression, (3) conditionally independent dual censoring given Z, and (4) depen-
dent dual censoring. The sieve parameters were held fixed at chj = 1, κ = 2/5 for dual right-censored
data, and κ = 1/3 for interval-censored progression. The first scenario was revisited with alternative
values for κ.

In each scenario we also considered estimates of the Cox model obtained by some combination
of early right censoring, mid- or right-endpoint imputation the progression time, or carrying the last
negative progression status forward to the final right censoring time or death (LOCF). Details on these
alternatives and referenced displays can be found in Appendices E and F of the supplementary material.

5.1 DUAL RIGHT CENSORING

To obtain dual right-censored data, an early censoring time C was generated by C = D = τ
with probability 1 − p(Z), logit(p(z)) = β0 + β1Z. Otherwise C followed some distribution with
Pr(C < D) > 0. This gave a dual right censoring scheme in which D coincides with administrative
censoring and C is a dropout time taking place earlier in the observation period. The four scenarios
were respectively specified as: (1) C = ξ ∧D, where ξ is exponential-distributed with mean τ/2 = 1,
eβ0 = 1/2 and eβ1 = 1; (2) C = ξ ∧D, ξ ∼ Exponential(1), eβ0 = 9 and eβ1 = 1; (3) C = ξ ∧D,
ξ ∼ Exponential(1), eβ0 = 1/3 and eβ1 = 3/2; and (4) C = (T02 ∧ T12 − ξ) ∧D, where ξ follows
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Exponential(1) truncated to (0, T02 ∧ T12), eβ0 = 1/2 and eβ1 = 1. The rates of exact observation,
singly right-censored and doubly right-censored data were roughly 70, 15 and 15%, respectively, under
Scenarios 1 and 3. Under Scenario 2 the censoring rates were approximately 15 and 40%. In Scenario 4
these were 25 and 20%.

The SPMLE based on “singly” right-censored data was also considered for three alternative
outcomes given respectively by the observed transition times right-censored by C, PFS right-censored
at C, and PFS with LOCF imputation under exactly-observed survival times with unknown progression
status. These two variants of PFS are depicted in Fig. 2.

Table E.1 summarizes performance in estimating θ. Results for the SMLE support the asymptotic
properties stated in Appendices B and C with average bias generally diminishing in larger samples,
average standard error estimates nearing the Monte Carlo sample standard deviations, and empirical
coverage probabilities of the 95% confidence intervals at or near the nominal level. The SPMLE
from right-censored data at C shows higher variability and lower bias under independent censoring
(Scenarios 1 to 3). Under dependent censoring (Scenario 4), the SPMLE has larger finite-sample
bias. The SPMLE for PFS right-censored at C also performed relatively well under independent
censoring, however its regression coefficient is defined on the basis of the restrictive assumption that
θ1 = θ2 = θ. The PFS variant incorporating LOCF imputation is clearly biased under independent
censoring, particularly when the rate of dual censoring is higher. LOCF imputation fared better in
Scenario 4. This is not surprising since C < T01 ∧ T02 often closely preceded T02 in this dependent
censoring scheme.

Figure E.1 depicts the pointwise average and percentiles of the SMLE Λ̂n under Scenarios 1 to 4
with n = 1000. Estimates appear unbiased, with the exception of overestimates for Λ̂12 early in the
observation period. Results under n = 250 and 500 (not shown here or the supplement) indicate that
bias and variability decreases with increasing sample size, but are otherwise similar. The SPMLE
obtained by right censoring observations at C demonstrate little to no bias under independent censoring.
This is however not the case under the dependent censoring scheme of Scenario 4. Estimates for Λ02

are clearly biased (Figure E.2), with the pointwise 97.5th percentiles consistently smaller than the
truth.

From Table E.2, it is apparent that the largest sieve size (κ = 2/5) achieves the smallest finite-
sample bias with little to no increase in variability compared to the sieves under κ = 4/15 and 1/3. A
larger sieve, sample size or degree of dual censoring increased computational demands for estimation,
but the routine we implemented typically converged within a few seconds in all settings considered
(Table E.3 of the supplementary material).

5.2 INTERVAL-CENSORED PROGRESSION TIMES

To generate interval-censored progression times, status was inspected on the basis of m “scheduled”
visits, evenly spaced on (0, τ). “Actual” visit times followed m independent normal distributions
centered at the scheduled times with common standard deviation σm = τ/(4(m+ 1)) = 1/(2(m+ 1))
and truncated at zero, τ , and the midpoints between consecutive scheduled times. So the inspection
times were continuously distributed on (0, τ) with greater density around the scheduled targets. This
setup is similar to the one in Zeng et al. (2015), however here the spread of the inspection times better
cover (0, τ) so that we can reasonably expect the SMLE to be consistent over the observation period.

Under the independent censoring schemes of Scenarios 1 to 3, every inspection after the first
was missed with probability p(W,Z), where logit(p(W,Z)) = β0 + β1Z. Dependent censoring in
Scenario 4 was obtained by discarding inspections taking place afterD = T02∧T12−ξ. In all scenarios,
the last observation time V = T02 ∧ T12 ∧D offered one further inspection of progression status with
a fixed probability of 0.2. Parameters in each scenario were set to: (1) m = 8, eβ0 = 1/9 and eβ1 = 1;
(2) m = 4, eβ0 = 1/9 and eβ1 = 1; (3) m = 8, eβ0 = 1/4 and eβ1 = 4/9; and (4) m = 8 and ξ follows
Weibull(3/4, 1) truncated to (0, T02 ∧ T12). With eβ0 = 1/9 and eβ1 = 1 the probability of a missing
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inspection was p = 0.1, irrespective of Z. Under eβ0 = 1/4 and eβ1 = 4/9 the probability remained
the same for subjects with Z = 1. With Z = 0, inspections were two times more likely to be missed.
Under Scenario 4, D can be interpreted as a dropout time closely preceding death. In Scenarios 1 and 3
progression status was known by V in just over half of the sample. For Scenarios 2 and 4 this rate was
44% and 40%, respectively. In all four scenarios the rate was 20% among progression-free subjects, so
status was known more often among subjects who progressed.

We also fit the SPMLE to two forms of singly right-censored data. The first arises by midpoint-
imputing progression times if progression status is known to be positive, as depicted in the lower
panel of Fig. 2; otherwise the negative progression status is carried forward to V . The second is
the guideline-based definition for PFS, given by the earliest of progression detection, death, and
right-censoring at D.

From Table F.1 numerical results for the SMLE θ̂n support the asymptotic properties in Appen-
dices B and C with bias generally decreasing with increasing sample size, average standard error
estimates reasonably approximating the Monte Carlo sample standard deviations, and empirical cover-
age probabilities of the 95% confidence intervals close to the nominal level. The SPMLE based on
based on midpoint- and LOCF-imputed data and PFS had, on average, larger finite-sample bias. Bias
in both of these estimators generally did not diminish with increasing sample size.

Pointwise average and percentiles of the SMLE Λ̂n are depicted in Figure F.1. The SMLE
overestimates increments in Λ12 early in the observation period. This pattern persists across scenarios
and sample sizes, but the bias decreases with larger n. The imputation-based SPMLE for Λ is
clearly biased (Figure F.2), with the degree of bias largest under survival-dependent interval censoring
(Scenario 4). Imputation-based estimates for survivor and hazard functions typically exhibit a step
pattern according to the density of the inspection times, as noted by Panageas et al. (2007). For Λ01

this artifact of the observation scheme is a persistent departure from the true shape of the cumulative
intensity function.

On average, a smaller sieve with κ = 4/15 achieved increased bias and similar variability compared
to κ = 1/3 (Table F.2). A larger sieve (κ = 2/5) gave similar variability, but did not always yield an
improvement in average bias. Parameter estimation under interval censoring is more computationally
demanding than under dual right-censored data, with average processing times about 100 times slower
than those seen in Section 5.1 (Table F.3 of the supplementary material).

6 APPLICATIONS

We return to the examples of Section 2.1, which demonstrate two variants of dual censoring—one
arising from loss to follow-up for SREs and the other from periodic assessment for lesion progression.
Data were obtained from similarly-designed trials where SREs were recorded at clinic visits every
three weeks and lesion progression was diagnosed on the basis of radiographic surveys every three
to six months. Actual assessment times roughly followed this schedule, but with enough variation
to justify use of the sieve. Since the assessment times were largely determined by a prespecified
schedule, one might guess that coarsening at random assumption is plausible. However loss to
follow-up for both SREs and lesion progression occurred due to treatment discontinuation and death,
although discontinuation rates were similar in the treatment groups. The simulation study offers
some reassurance that the SMLE performs relatively well under survival-dependent loss to follow-up.
Another consideration is the plausibility of the Markov proportional hazards assumption, though one
could argue that this model offers an adequate tool for detecting a difference in the risk of progression
between treatment groups. Further investigation of the SMLE’s requirements as they relate to the
study design and features of the data is warranted, but out of scope for a simple demonstration of the
proposed estimator.
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Table 1: Regression coefficients for zolendronic acid versus pamidronate specific to first SRE, θ1, death
without SRE, θ2, and death following SRE, θ3.

Early-censored LOCF

SMLE SPMLE PFS PFS

θ1 θ2 θ3 θ1 θ2 θ3 θ θ

Estimate 0.02 0.16 -0.01 0.02 0.16 -0.01 0.03 0.06
SE 0.11 0.19 0.15 0.11 0.28 0.14 0.10 0.09

p-value 0.89 0.40 0.94 0.86 0.58 0.97 0.78 0.51
HR 95% LCL 0.82 0.80 0.74 0.82 0.67 0.75 0.85 0.89

UCL 1.26 1.72 1.32 1.26 2.04 1.32 1.24 1.27

6.1 DUAL RIGHT CENSORING: SKELETAL-RELATED EVENTS

Rosen et al. (2001) reported that two bisphosphonates, zolendronic acid and pamidronate disodium,
showed equivalent efficacy and safety in preventing SREs among patients with breast cancer and
multiple myeloma. This conclusion was partly drawn from the evaluation of time to the first SRE
within nine months of randomization in an international trial of 1,600 patients. Here we evaluate time
to first SRE and death via an illness-death model among the trial’s North American breast cancer
cohort. Within this subsample of 777 patients, the available trial data provide SREs up to 30 months
following randomization. The majority of patients died during this period, so observation of SREs
typically ceased earlier.

Under this three-state outcome (T01, T02, T12) was observed exactly in just over one third of the
sample. Incomplete transition times and known progression status was observed for 28% of the patients.
Almost 15% had unknown progression status but exact survival time, leaving the remaining 23% of
the sample dual-censored. Table 1 and Fig. 3 give the SMLE under chj = 1 (h 6= j) and κ = 2/5.
Estimates obtained from both smaller and larger sieves provide similar results, with changes in θ̂n less
than 0.009. Also depicted is the SPMLE obtained by discarding any observations after the initial right
censoring time. The same conclusion can be drawn from both approaches; under the assumed Markov
illness-death process, any influence of zoledronic acid on the risk of bone interventions and death is not
significantly different from that of pamidronate. The two methods diverge in estimating Λ02 (Fig. 3).
Since patients near death would presumably be unable to attend clinic visits, early right censoring
likely yields underestimates. This may explain why the SPMLE for Λ02 is substantially smaller.

6.2 INTERVAL-CENSORED PROGRESSION TIMES: LESION PROGRESSION

Hortobagyi et al. (1996) showed that pamidronate reduced SREs in a placebo-controlled trial of
380 breast cancer patients with bone metastases. Lesion progression was considered as a secondary
outcome. This was assessed using radiographic surveys scheduled at three- to six-month intervals
over the course of follow-up, rendering the time to lesion progression interval-censored. Surveys
were carried out up to 30 months after randomization, but over half of the patients died during this
observation period. To account for interval censoring and the occurrence of death, we analyze lesion
progression and survival as an illness-death process. Both the progression status and survival time was
observed in 28% of the sample. An additional 13% had known progression status but right-censored
survival time. In the remaining subjects, right-censoring (11%) or survival (48%) took place long after
the last (negative) radiographic survey, resulting in unknown progression status. We defined “long after”
as more than six weeks, which enabled us to carry forward recent lesion status to the last observation
time. Similar results were obtained by carrying forward fewer weeks. This narrow form of LOCF
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Figure 3: The SMLE (solid) and early-censored SPMLE (dotted) for the cumulative baseline transition
intensity functions between study entry (state 0), first SRE (state 1) and death (state 2).

Table 2: Regression coefficients for pamidronate versus control specific to lesion progression, θ1, death
without lesion progression, θ2, and death following lesion progression, θ3.

Imputation-based

SMLE SPMLE PFS

θ1 θ2 θ3 θ1 θ2 θ3 θ

Estimate -0.39 -0.04 -0.05 -0.23 -0.11 -0.03 -0.17
SE 0.18 0.21 0.20 0.17 0.14 0.21 0.11

p-value 0.03 0.85 0.82 0.20 0.42 0.88 0.12
HR 95% LCL 0.47 0.64 0.65 0.57 0.68 0.65 0.68

UCL 0.97 1.45 1.41 1.12 1.18 1.45 1.04

imputation is problematic, but can be avoided when it is possible to randomly assess progression at
death.

Table 2 suggests that pamidronate had no influence on mortality, but there is evidence that the
bisphosphonate reduces the risk of lesion progression. Based on the SMLE with chj = 1 and κ = 1/3,
an individual treated with pamidronate had 0.68 (95% CI 0.47–0.97) times the rate of progression
versus a patient who received placebo. Results obtained under different sieve sizes were similar. The
SPMLE from midpoint- and LOCF-imputed data did not detect any significant treatment effect. The
difference between the SMLE and SPMLE for the cumulative transition intensities is large (Fig. 4)
and likely indicative of bias due to imputation, considering the simulation results in Figure F.2 of the
supplementary material.

7 DISCUSSION

This paper examined dual censoring and its challenges for semiparametric maximum likelihood
estimation. Methods for special cases of dual-censored data have been previously developed, but
the issue of support finding and the resulting imperative for smoothing has not been granted much
attention. Our proposed estimator addresses the problem in a general manner, using a model familiar
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Figure 4: The SMLE (solid) and imputation-based SPMLE (dotted) for the cumulative baseline
transition intensity functions between study entry (state 0), lesion progression (state 1) and death (state
2).

to practitioners. The result gives a multistate alternative to PFS that enables separate assessment
of treatment effect on progression and survival without progression. A primary assumption of the
maximum likelihood approach is that the observation scheme renders the underlying transition times
coarsened at random. The simulation study shows that this requirement implies that the estimator is
robust to survival-dependent censoring of progression provided that the censoring rate for survival is
relatively low.

SUPPLEMENTARY MATERIAL

Details on assumptions, proofs, estimation, simulation results are available in the supplementary
material at the bottom of this document.
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A BASIC ASSUMPTIONS

Let J be a process indicating the times at which progression status is under assessment. Then, for
an observation dual-right–censored by the loss to follow-up times C < D, we have J(t) = 1 for
t ∈ [0, C]. Interval-censored progression times arise when J represents a discrete inspection process
taking the value one only at a random number K of assessment times YK,1, . . . , YK,K . For brevity
here and in the sequel, let S = T01 ∧ T02 be the exit time from the initial state, T = T02 ∧ T12 be
the survival time, αhj(t | Z) = λhj(t) exp(Z ′hjθ), Ahj =

∫
αhj , Fξ is the distribution function of the

random variable ξ. For clarity, we now indicate the dependence of the h → j transition probability
over (s, t] with Phj(s, t | Z).

CONDITION A.1 The distribution of {J(t) : 0 ≤ t ≤ τ} andD are such that the conditional probability
of the events {∆0 = 1}, {∆1 = 1}, {∆0∆2 = 1}, {∆1∆2 = 1}, and {∆0 = 1, S > τ = D} given Z
are almost surely positive and (σ, τ) is a subset of {t ∈ (0, D] : Pr(J(t) = 1 | Z) > 0, almost surely}.

CONDITION A.2 For a random sample of dual-censored observations Xi (i = 1, . . . , n), let n01 =∑n
i=1∆

i
1, n02 =

∑n
i=1∆

i
0∆

i
2 and n12 =

∑n
i=1∆

i
1∆

i
2. There exist πhj > 0, h 6= j, such that

nhj/n→ πhj as n→∞.

CONDITION A.3 Let Θ be a compact subset of Rd and H = (Hhj)h6=j the set of cumulative h→ j
transition intensity functions Λ = (Λhj)h6=j with Λhj(0) ≡ 0, Λhj(∞) ≡ ∞ and 1/M < Λhj(σ−) <
Λhj(τ) < M for some fixed 0 < M <∞. The true parameter (θ0, Λ0) belongs to Θ×H with θ0 an
interior point of Θ and Λ0 having continuous bounded derivative λ0 on [0, τ ].

CONDITION A.4 (Coarsening at random) The observation X is a “coarsening” of (S, T ) arising
from some partially observable random variable G whose conditional distribution given (S, T, Z) is
specified by a parameter distinct from (θ, Λ) and is invariant with respect to all (s, t) compatible with
X . So for each (s, t) such that s ≤ t, s ∈ (L, t] if ∆1 = 0, s ∈ (L,R] if ∆1 = 1, t = V if ∆2 = 1 and
t ∈ (V,∞) if ∆2 = 0. Moreover our ability to observe the progression time exactly ∆11(L = R+) is
conditionally independent of (S, T ) given Z.

Condition A.1 ensures that the times at which we assess progression status become dense in
the observation period. Condition A.4 implies that (S, T ) is coarsened at random in the sense of
? ] and ? , p. 274]. This can be motivated by assuming conditional independence between (S, T )
and ({J(t) : 0 ≤ t ≤ τ}, D) given X . The coarsening element G in the dual right censoring case
corresponds to (C,D). Under interval-censored progression times, G = (K,YK,1, . . . , YK,K , D).

B CONSISTENCY AND RATE OF CONVERGENCE

Consistency of the SMLE follows by way of ? , Theorem 3.4.1], a result commonly used to derive the
global rate of convergence for a sieve maximum likelihood estimator.

CONDITION B.1 The distribution of Z has support on a bounded subset of Rd. For each h 6= j,
Pr(Z ′hja 6= c) > 0 for every a ∈ Rd and c ∈ R.

CONDITION B.2 For k = 1 or 2, the kth derivative of Λ0 continuous, positive and bounded on [σ, τ ].

THEOREM B.3 Let ‖Λ̂n − Λ0‖2 =
∑

h6=j(
∫ τ
σ
|Λ̂hj,n − Λ0

hj|2(u) du)1/2 be the L2-distance between
Λ̂n and Λ0 on (σ, τ). Under the above conditions ‖θ̂n − θ0‖ + ‖Λ̂n − Λ0‖2 → 0 at the rate
OP (max(n(1−κ)/2, nkκ)).



Audrey Boruvka & Richard J. Cook 3

Let (Λ0
hj,n)h6=j = Λ0,n ∈ Hn be the piecewise linear interpolant of Λ0 given by

Λhj,n(t) =
∑

tk∈Thj,n

Ik(t)

{(
1− Lk(0, t)

Lk(0, τ)

)
Λ0
hj(tk−1) +

Lk(0, t)

Lk(0, τ)
Λ0
hj(tk)

}
,

where Ik(t) = 1[tk−1,tk)(t) and Lk(s, t) is the length of [tk−1, tk) ∩ [s, t). Then the distance between
the SMLE (θ̂n, Λ̂n) and the true parameter value (θ0, Λ0) has order

‖θ̂n − θ0‖+ ‖Λ̂n − Λ0,n‖2 + ‖Λ0,n − Λ0‖2. (B.1)

Taylor expansion shows that the third term is O(n−kκ), where k = 1 or 2 as assumed in Condition B.2.
An order for the first two terms is derived by application of ? , Theorem 3.4.1], considering the SMLE as
an M-estimator under the criterion mθ,Λ = log((likθ,Λ + lik0,n)/2) with the subscript 0, n a shorthand
for θ0, Λ0,n. Since the logarithm is concave and the SMLE is a maximizer of the log-likelihood function
nPn log likθ,Λ on the sieve Θ×Hn,

Pn
(
mθ̂n,Λ̂n

−m0,n

)
= Pn log

(
likθ̂n,Λ̂n

+ lik0,n

2 lik0,n

)
≥ 1

2
Pn
(

log likθ̂n,Λ̂n
− log lik0,n

)
≥ 0.

So the SMLE is a “near maximizer” of Pnmθ,Λ.
Let Kn =

∑
h6=jKhj,n. Then from Condition A.3, Θ × Hn is a compact parametric class with

bracketing number
N[ ](ε,Θ×Hn, L2(Pn)) . (diam Θ/ε)d(M/ε)Kn .

The corresponding bracketing integral is

J[ ](δ,Θ×Hn, L2(Pn)) =

∫ δ

0

√
logN[ ](ε,Θ×Hn, Lr(Pn)) dε . δ

√
d+Kn. (B.2)

This is finite, so by ? , Theorem 19.5] Θ × Hn is P -Donsker for each n. The criterion function is
pointwise Lipschitz in the transition intensities, which implies that {mθ,Λ : θ ∈ Θ, Λ ∈ Hn} is also
P -Donsker. Since log a ≤ 2(

√
a− 1) for a ≥ 0,

P (mθ,Λ −m0,n) ≤ 2

∫ √
(likθ,Λ + lik0,n) lik0,n

2
dν − 2

≤ −
∫ (√

likθ,Λ −
√

lik0,n

)2
dν . −‖θ − θ0‖2 − ‖Λ− Λ0,n‖22.

The upper bound in the last inequality corresponds to the negative Hellinger distance between likθ,Λ
and lik0,n, which is zero only if (θ, Λ) = (θ0, Λ0,n) by Lemma B.4 below. From Lemma B.5 we obtain
the inequality up to a constant. Of the remaining requirements for ? , Theorem 3.4.1], we need the
“modulus of continuity” φn(δ) of the centered process

√
n(Pn−P )mθ,Λ over the sieve θ ×Hn. From

(B.2) and ? , Lemma 3.4.2] φn(δ) has order δnκ/2 + nκ/
√
n. We need φn(δn) ≤

√
nδ2n, which is

satisfied with equality by δn = n−(1−κ)/2/2. Returning to (B.1) the rate at which the SMLE converges
to (θ0, Λ0) is thus min(n(1−κ)/2, nkκ).

LEMMA B.4 For every (θ, Λ) 6= (θ0, Λ0,n) on (σ, τ), likθ,Λ 6= lik0,n, almost surely.

Proof. Assume that likθ,Λ = lik0,n, almost surely. Then by Conditions A.1 and A.3 and Duhamel’s
equation [e.g. ? , Theorem 6],

0 =
∣∣P00(0, τ | Z)− P 0

00,n(0, τ | Z)
∣∣ =

∫ τ

0

P00(0, u | Z)
∣∣A00 − A0

00,n

∣∣(du | Z)P 0
00,n(u, τ | Z),
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almost surely. This is satisfied only if A00 = A0
00,n almost surely on (0, τ). Then our assumption

and the same conditions further imply that A02 = A0
02,n almost surely on (0, τ). Put t∗ = inf{σ ≤

t < τ : Λ0
02,n(t) > 0}. Thus eZ′02(θ−θ0) = Λ02(t

∗)/Λ0
02,n(t∗) and Z ′02(θ − θ0) is degenerate. Under

Condition B.1 this implies that θ = θ0 and thus Λ02 = Λ0
02,n. This in turn gives Λ01 = Λ0

01,n and
Λ12 = Λ0

12,n on (σ, τ).

LEMMA B.5 Under the previous conditions
∫

(
√

likθ,Λ −
√

lik0,n)2 dν & ‖θ − θ0‖2 + ‖Λ− Λ0,n‖2.

Proof. Since likθ,Λ + lik0,n can be uniformly bounded under Conditions A.3 and B.1, the Hellinger
distance has lower bound up to a constant∫ (√

likθ,Λ −
√

lik0,n

)2
dν =

∫
(likθ,Λ− lik0,n)2

(
√

likθ,Λ +
√

lik0,n)2
dν &

∫
(likθ,Λ− lik0,n)2 dν.

Let Z denote the support of the distribution. By Conditions A.1 and B.2,∫
(likθ,Λ− lik0,n)2 dν

≥ p02

∫
Z

∫ τ

0,n

(
P00(0, s | z)A02(ds | z)− P 0

00,n(0, s | z)A0
02,n(ds | z)

)2
dFZ(z)

≥ p02

∫
Z

∫ τ

0

(P00 − P 0
00,n)2(0, s | z) dA0

02,n(s | z)2 dFZ(z)

&
∫
Z

∫ τ

σ

(P00 − P 0
00,n)2(0, s | z) ds dFZ(z)

=

∫
Z

∫ τ

0

(∫ s

0

P00(0, s | z)(A00 − A0
00,n)(du | z)P 0

00,n(u, s | z)

)2

ds dFZ(z)

&
∫
Z

∫ τ

σ

(∫ s

0

(A00 − A0
00,n)(du | z)

)2

ds dFZ(z),

≥
∫
Z

∫ τ

σ

(A0j − A0
0j,n)2(ds | z) dFZ(z), j = 1, 2,

where the inequalities up to a constant holds because p02, α0
02,n, Phh and P 0

hh,n are bounded away from
zero on [σ, τ ] and the equality follows from Duhamel’s equation. Similarly∫

(likθ,Λ− lik0,n)2 dν

≥ p12

∫
Z

∫ τ

0

∫ τ

s

(
P00(0, s | z)α01(s | z)P11(s, t | z)A12(dt | z)

− P 0
00,n(0, s | z)α0

01,n(s | z)P 0
11,n(s, t | z)A0

12,n(dt | z)
)2

dFZ(z)

≥ p12

∫
Z

∫ τ

0

∫ τ

s

(
P11(s, t | z)− P 0

11,n(s, t | z)
)2(

P 0
00,n(0, s | z)α0

01,n(s | z)A0
12,n(dt | z)

)2
dFZ(z)

&
∫
Z

∫ τ

σ

∫ τ

s

(
P11(s, t | z)− P 0

11,n(s, t | z)
)2

dt ds dFZ(z)

=

∫
Z

∫ τ

σ

∫ τ

s

(∫ t

s

P11(s, u | z)(A11 − A0
11,n)(du | z)P 0

11,n(u, t | z)

)2

dt ds dFZ(z)

&
∫
Z

∫ τ

σ

∫ τ

s

(∫ t

s

(A11 − A0
11,n)(du | z)

)2

dt ds dFZ(z)
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≥
∫
Z

∫ τ

σ

(A12 − A0
12,n)2(ds | z) dFZ(z).

Let θt = tθ + (1 − t)θ0, Λhj,t = tΛhj + (1 − t)Λ0
hj,n. From the mean value theorem, there is some

t ∈ (0, 1) depending on (y, z, h, j) such that

(Ahj − A0
hj,n)(y | z) =

∂

∂t
Ahj,t(y | z)

= t exp(z′hjθt)
{

1 + z′hj(θ − θ0)t
}

(Λhj − Λ0
hj,n)(y) + t exp(z′hjθt)z

′
hj(θ − θ0)Λ0

hj,n(y).

For (Y, Z) ∼ µ = 1[σ,τ ] × FZ , put fhj,1(Z) = 1 + Z ′hj(θ − θ0)t, fhj,2(Z) = (Λhj − Λ0
hj,n)(Z) and

fhj,3(Z,Z) = Z ′hj(θ−θ0)Λ0
hj,n(Z). So (Ahj−A0

hj,n)(Y | Z) is equal to fhj,1(Z)fhj,2(Y )+fhj,3(Y, Z)
up to the factor t exp(Z ′hjθt), which is bounded away from zero under Conditions A.3 and B.1. Also
by Condition B.1,

(Eµ(fhj,2fhj,3))
2 < Eµ(f 2

hj,2) Eµ(f 2
hj,3).

Since fhj,1(z) is uniformly close to 1 for θ close to θ0 and Λ0
hj,n is bounded away from zero on [σ, τ ],∫

(likθ,Λ− lik0,n)2 dν & µ(fhj,1fhj,1 + fhj,3)
2 & µf 2

hj,3 + µf 2
hj,2 & ‖θ − θ0‖2 + ‖Λ− Λ0,n‖2,

by ? , Lemma A.6].

C ASYMPTOTIC NORMALITY

The following result is a version of ? , Corollary 3] that enables us to consistently estimate the standard
error of θ̂n by approximating the curvature of the profile log-likelihood using tuning parameters specific
to the entries of θ.

CONDITION C.1 There is some y0 > 0 such that L < R− implies R− L > y0, almost surely.

THEOREM C.2 Let k be the order of the derivative ofΛ0 satisfying Condition B.2. If 1/(4k) < κ < 1/2
then, under the above conditions, the sequence

√
n(θ̂n − θ0) is asymptotically normal with mean

zero and variance equal to the inverse of the efficient information matrix Ĩ0. Moreover for any
symmetric matrix d-matrix hn whose entries hijn tend to zero in probability as n → ∞ such that
(hijn
√
n)−1 = oP (1),

1

n(e′ihnei)
2

(
`pn(θ̂n + e′ihnei)− `pn(θ̂n)

)
+

1

n(e′jhnej)
2

(
`pn(θ̂n + e′jhnej)− `pn(θ̂n)

)
− 1

n(e′ihnej)
2

(
`pn(θ̂n + e′ihnej)− `pn(θ̂n)

)
(C.1)

is a consistent estimator for the (i, j)th entry of Ĩ0 (i, j = 1, . . . , d).

To prove that this holds we show existence of a least favorable submodel meeting the requirements
of ? , Theorem 1] under a single covariate d = 1. The same result for d > 1 follows by repeated
application of this special case. The latter assumption in Condition A.4 enables us to consider only the
two extreme forms of dual censoring (namely dual right censoring and interval-censored progression
times). We consider these types of dual censoring separately.
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C.1 DUAL RIGHT CENSORING

Let U = S ∧ C, where C ≤ D is the right-censoring time for S. Then ∆1 = 1(U = S < V ) and
∆0 = 1(U = V ). The log-likelihood of a single realization x can be re-expressed as

`θ,Λ(x) = − A01(u | z)− A02(u | z) + δ1(logα01(u | z)− A12(u, v | z) + δ2 logα12(v | z))

+ (1− δ0δ1) log
(
P01(u, v | z)α12(v | z)δ2 + P00(u, v | z)α02(v | z)δ2

)
− δ0δ2 logα02(v | z).

A score for θ is defined the usual way: ∂`θ,Λ/∂θ ≡ ˙̀
θ,Λ. For Λ, we differentiate with respect to a

d-dimensional submodel t→ Λt that indexes the “direction” in which Λt ∈ Hn approaches Λ0. Since
(4.1) is a multiplicative intensity model, the baseline cumulative intensity functions are variation
independent. Thus we can consider a one-dimensional submodel y → Λhj,y for each h 6= j. For now
we will simply assume that ghj is defined so that ∂/∂y|y=0Λhj,y =

∫
ghj dΛhj . Then, for h = 0, 1,

∂

∂y |y=0

Phh,y(s, t | z) = −Phh(s, t | z)
∑
j 6=h

∫ t

s

ghj(y) dAhj(y | z).

For the 0→ 1 transition probability we have

∂

∂y |y=0

P01,y(s, t | z)

=
∂

∂t |y=0

∫ t

s

P00,y(s, y | z) dA01,y(y | z)P11,y(y, t | z)

= −
∫ t

s

P00(s, u)

(∑
j=1,2

∫ u

s

g0j(y) dA0j(y | z) +

∫ t

u

g12(y) dA12(y | z)

)
g01(u) dA01(u | z)P11(u, t | z)

=

∫ t

s

P00(s, y | z)g01(y) dA01(y | z)P11(y, t | z)−
∫ t

s

P00(s, y | z)P01(y, t | z)
∑
j=1,2

g0j(y) dA0j(y | z)

−
∫ t

s

P01(s, y | z)g12(y) dA12(y | z)

≡
∑
h6=j

∫ t

s

ghj(y)ϕhj(ys, t, z) dAhj(y | z),

where the third equality is obtained by interchanging integrals. Put g = (ghj)h6=j . Then a score function
for Λ is

Bθ,Λg(x) ≡ ∂

∂t |t=0
`θ,Λt(x)

= −
∑
j=1,2

∫ u

0

g0j(y) dA0j(y | z) + δ1

(
g01(u)−

∫ v

u

g12(y) dA12(y | z) + δ2g12(v)

)

+ (1− δ0δ1)
P00(u, v | z)α02(v | z)δ2

(
δ2g02(v)−

∑
j=1,2

∫ v
u
g0j(y) dA0j(y | z)

)
∑

j=0,1 P0j(u, v | z)αj2(v | z)δ2

+ (1− δ0δ1)
P01(u, v | z)α12(v | z)δ2

(∑
h6=j
∫ v
u
ghj(y)ϕhj(ys, t, z) dAhj(y | z) + δ2g12(v)

)
∑

j=0,1 P0j(u, v | z)αj2(v | z)δ2

− δ0δ2g02(v | z).

A score for θ ∈ R has the same form, but with zhj in place of each ghj(·). If B∗θ,Λ is the adjoint of
the score operator Bθ,Λ, then a least favorable direction gθ,Λ satisfies B∗θ,Λ ˙̀

θ,Λ = B∗θ,ΛBθ,Λgθ,Λ, h 6= j.
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Under an information loss model (? , Section 25.5.2; ? , Theorem 4.1) with “unobservable” (S, T ),
the adjoint is the conditional expectation operator given {S = s, T = t}. Under Condition A.4 the
conditional expectation of the score for Λ given {S = s, T = t, Z = z} is

E(Bθ,Λg(X) | S = s, T = t, Z = z)

= −
∑
j=1,2

∫ s

0

g0j(y) dA0j(y | z)F̄C|Z(y | z)

+ 1(s < t)

(
g01(s)F̄C|Z(s | z)−

∫ t

s

g12(y) dA12(y | z)F̄C,D|Z(s, y | z) + g12(t)F̄C,D|Z(s, t | z)

)
+ g02(t)

∫ s

0

P00(c, t | z)α02(t | z)δ2∑
j=0,1 P0j(c, t | z)αj2(t | z)δ2

F̄D|C,Z(t | c, z) dFC|Z(c, d | z)

−
∑
j=1,2

∫ τ

σ

g0j(y) dA0j(y | z)

∫ s

0

∫ τ

c

P00(c, v | z)α02(v | z)δ2∑
j=0,1 P0j(c, v | z)αj2(v | z)δ2

dFC,D|Z(c, d | z)

+ g12(t)

∫ s

0

P01(c, t | z)α12(t | z)δ2∑
j=0,1 P0j(c, t | z)αj2(t | z)δ2

F̄D|C,Z(t | c, z) dFC|Z(c, d | z)

+
∑
h6=j

∫ τ

σ

ghj(y) dAhj(y | z)

∫ s

0

∫ τ

c

P01(c, v | z)α12(v | z)δ2∑
j=0,1 P0j(c, v | z)αj2(v | z)δ2

ϕhj(yc, t, z) dFC,D|Z(c, d | z)

− 1(s = t)g02(t)F̄C,D|Z(t, t | z)

≡ 1(s < t)g01(s)C01(s, t, z) +

∫ s

0

g01(y)Q01(y, t, z) dΛ01(y) +
∑
h=0,1

gh2(t)Ch2(s, t, z)

+
∑
h6=j

∫ τ

σ

ghj(y)Rhj(y, s, t, z) dΛhj(y)

≡
∑
h6=j

Bhj(s, t, z),

where F̄ξ = 1− Fξ. Similarly

E( ˙̀
θ,Λ(X) | S = s, T = t, Z = z) ≡ 1(s < t)z01C01(s, t, z) +

∫ s

0

z01Q01(y, t, z) dΛ01(y)

+
∑
h=0,1

zh2Ch2(s, t, z) +
∑
h6=j

∫ τ

σ

zhjRhj(y, s, t, z) dΛhj(y)

≡
∑
h6=j

Lhj(s, t, z).

Put bhj(s, t) = EZ(Bhj(s, t, Z)) and lhj(s, t) = EZ(Lhj(s, t, Z)). Let ghj,0, h 6= j, denote the solution
to the integral equations b01(s, t) = l01(s, t) on s < t, ∂b01(s, t)/∂s = ∂l01(s, t)/∂s on s = t,
b02(s, t) = l02(s, t), and b12(s, t) = l12(s, t) at the truth (θ0, Λ0). Existence and uniqueness of ghj,0
follows from Fredholm’s first theorem [e.g. ? , p. 48]. Let ghj,0n be the piecewise linear interpolant
having the same knots as Λ̂n. Consider the approximately least favorable submodel Λy = (Λhj,y)h6=j
with

Λhj,y(θ, Λ) =

∫
{1 + (θ − y)ghj,0n} dΛhj

defined so that ∂Λhj,y/∂y|y=0 =
∫
ghj dΛhj , Λhj,θ = Λhj and Λhj,y ∈ Hhj,n for y sufficiently close to

θ. The “no-bias” condition and remaining structural requirements of Λy imposed in ? , Theorem 1]
largely follow by assumption, the proof Theorem B.3 and our restrictions on the size of κ.
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C.2 INTERVAL-CENSORED PROGRESSION TIMES

Let YK,1 < . . . < YK,K denote a random number K of inspection times on (σ, τ) with YK,0 ≡ σ and
YK,K+1 ≡ τ . For j = 0, . . . , K, put

∆K,j = ∆11(YK,j < S ≤ YK,j+1) ∨ (1−∆1)1(YK,j < V ≤ YK,j+1).

Then the log-likelihood of a single realization x is

`θ,Λ(x) =
k∑
j=1

δk,j(−A01(yk,j | z)− A01(yk,j | z))

+ δ1δk,j(logP01(yk,j, yk,j+1 | z)− A12(yk,j+1, v | z) + δ2 logα12(v | z))

+ (1− δ0δ1)δk,j + log
(
P01(yk,j, v | z)α12(v | z)δ2 + P00(yk,j, v | z)α02(v | z)δ2

)
+ δ0δk,j(δ2 logα02(v | z)− A01(v | z)− A02(v | z)).

Here the score for Λ is

Bθ,Λg(x)

= − δk,j
k∑
j=1

∑
h6=0

∫ yk,j

0

g0h(y) dA0h(y | z)

+
k∑
j=1

δ1δk,j

(
δ2g12(v)−

∫ v

yk,j

g12(y) dA12(y | z)

+
∑
h6=l

∫ yk,j+1

yk,j

ghl(y) dAhl(y | z)
ϕhl(y, yk,j, yk,j+1, z)

P01(yk,j, yk,j+1 | z)

)

+
k∑
j=1

(1− δ0δ1)δk,j
P00(yk,j, v | z)α02(v | z)δ2

(
δ2g02(v)−

∑
h6=0

∫ v
yk,j

g0h(y) dA0h(y | z)
)

∑
h=0,1 P0h(yk,j, v | z)αh2(v | z)δ2

+ P01(yk,j, v | z)α12(v | z)δ2

(
δ2g12(v) +

∑
h6=l

∫ v

yk,j

ghl(y) dAhl(y | z)ϕhl(y, s, t, z)

)

+
k∑
j=1

(1− δ0δ1)δk,j
P00(yk,j, v | z)α02(v | z)δ2

(
δ2g02(v)−

∑
h6=0

∫ v
yk,j

g0h(y) dA0h(y | z)
)

∑
h=0,1 P0h(yk,j, v | z)αh2(v | z)δ2

+ δ0

(
δ2g02(v)−

∑
j=1,2

∫ v

yk,j

g0j(y) dA0j(y | z)

)
.

Put Pk(d, z) = Pr(K = k | D = d, Z = z). Under Condition A.4 and Condition A.2, the conditional
expectation of the score for Λ given {S = s, T = t, Z = z} can be written in the form

E(Bθ,Λg(X) | S = s, T = t, Z = z)

= −
∫ s

0

g01(y)

∫ τ

d=σ

∞∑
k=1

Pk(d, z)

∫ s∧d

u=y

∫ τ

s∧d
1(w − u > y0) dF (u,w | k, d, z) dFD|Z(d | z) dA01(y | z)

+ 1(s < t)

∫ τ

σ

g01(y) dA01(y | z)

∫ τ

d=σ

∞∑
k=1

Pk(d, z)

×
∫ s

u=σ

∫ d

s

1(u < y < w)ϕ01(y, u, w, z)

P01(u,w | z)
1(w − u > y0) dF (u,w | k, d, z) dFD|Z(d | z)
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−
∫ τ

σ

g01(y) dA01(y | z)

∫ τ

d=σ

∞∑
k=1

Pk(d, z)

×
∫ s∧d

u=σ

∫ τ

s∧d

1(u < y < v)P00(u, v | z)α02(v | z)δ2∑
j=0,1 P0j(u, v | z)αj2(v | z)δ2

dF (u,w | k, d, z) dFD|Z(d | z)

+

∫ τ

σ

g01(y) dA01(y | z)

∫ τ

d=σ

∞∑
k=1

Pk(d, z)

×
∫ s∧d

u=σ

∫ τ

s∧d

1(u < y < v)P01(u, v | z)α12(v | z)δ2∑
j=0,1 P0j(u, v | z)αj2(v | z)δ2

ϕ01(y, u, t, z) dF (u,w | k, d, z) dFD|Z(d | z)

+
∑
h=0,1

gh2(t)Qh2(s, t, z) +
∑
h=0,1

∫ τ

σ

gh2(y)Rh2(y, s, t, z) dΛh2(y)

≡
∫ s

0

g01(y)Q01(y, s, t, z) dΛ01(y) +
∑
h=0,1

gh2(t)Ch2(s, t, z) +
∑
h6=j

∫ τ

σ

ghj(y)Rhj(y, s, t, z) dΛhj(y),

where F is the conditional distribution function of (Yk,j−1, Yk,j) given (D,Z) unless otherwise in-
dicated. Again the least favorable directions can be obtained as the solution to Fredholm integral
equations. The remainder of the proof now proceeds according to the dual right censoring case.

D SELF-CONSISTENCY EQUATIONS

Under the exponential sieve, φ represents the piecewise constant baseline transition intensities λn
with Λn =

∫
λn. Define a common partition S = (s0, . . . , sJ) from T = (Thj,n)h6=j so that λn is

constant on each (sj−1, sj], j = 1, . . . , J . Consider tk−1, tk ∈ Thj,n, sj−1, sj ∈ S, and any s < t. Let
Lhj,k(s, t) be the length of (tk−1, tk] ∩ (s, t], Ihj,k(s, t) = 1(Lhj,k(s, t) > 0), Lj(s, t) the length of
(sj−1, sj] ∩ (s, t], and Ij(s, t) = 1(Lj(s, t) > 0). For sj−1, sj ∈ S, put

qj(X; θ, φ) = λ01,n(sj)e
Z′01θ + λ02,n(sj)e

Z′02θ − λ12,n(sj)e
Z′12θ,

rhk,j(X; θ, φ) = exp
(
−Lj(L,R)λhk,n(sj)e

Z′hkθ
)
, h 6= k,

p1,j(X; θ, φ) = (1−∆0)Ij(L,R)P00(0, sj−1 ∨ L | Z)P01(sj−1 ∨ L, sj ∧R | Z)

× P11(sj ∧R, V | Z)
(
λ12,n(V )eZ

′
12θ
)∆2

,

r0,j(X; θ, φ) = (1−∆0)Ij(L,R)P00(0, sj−1 ∨ L | Z)λ01,n(sj)e
Z′01θ

r01,j(X; θ, φ)r02,j(X; θ, φ)

qj(Z; θ, φ)

× P11(sj ∧R, V | Z)
(
λ12,n(V )eZ

′
12θ
)∆2

,

r1,j(X; θ, φ) = (1−∆0)Ij(L,R)P00(0, sj−1 ∨ L | Z)λ01,n(sj)e
Z′01θ

r12,j(X; θ, φ)

qj(X; θ, φ)

× P11(sj ∧R, V | Z)
(
λ12,n(V )eZ

′
12θ
)∆2

.

Then it is straightforward to show that

P01(sj−1 ∨ L, sj ∧R | Z) =

∫ sj∧R

sj−1∨L
P00(sj−1 ∨ L, u | Z)λ01(u)eZ

′
01θP11(u, sj ∧R | Z) du

= λ01,n(sj)e
Z′01θ

(
r01,j(X; θ, φ)r02,j(X; θ, φ)− r12,j(X; θ, φ)

qj(X; θ, φ)

)
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and p1(X; θ, φ) =
∑J

j=1 Ij(L,R)p1,j(X; θ, φ) is the likelihood contribution under (θ, φ) through the
states 0→ 1→ 2. Similarly let p2(X; θ, φ) = (1−∆1)P00(0, V | Z)α02(V | Z)∆2 be the contribution
through 0→ 2, under (θ, φ).

In Step 4.2 of the self-consistency algorithm from Section 4, the ratio in the candidate increment
η
(j)
φhj,k

corresponds to a candidate value for λ(j+1)
hj,n (t), t ∈ (tk−1, tk] with tk−1, tk ∈ Thj,n, obtained by

re-arranging the score equation∇φhj,k`n(θ, φ) = 0 to give an expression for φhj,k that we evaluate for
(θ, φ) = (θ(j), φ(j)). Using the convention 0/0 ≡ 0, this gives the candidate values(
Pn

1

likθ(j),φ(j)(X)

J∑
j=1

I01,k(sj−1, sj)p1,j(X; θ(j), φ(j))

)

×

[
Pn

eZ
′
01θ

likθ(j),φ(j)(X)

{
J∑
j=1

p1,j(X; θ(j), φ(j))

(
L01,k(0, sj−1) +

I01,k(sj−1, sj)

qj(Z; θ(j), φ(j))

)

− I01,k(sj−1, sj)r0,j(X; θ(j), φ(j)) + L01,k(0, V )p2(X; θ(j), φ(j))

}]−1
,

for λ(j+1)
01,n (tk) with tk ∈ T01,n,(

Pn
I02,k(0, V )p2(X; θ(j), φ(j))

likθ(j),φ(j)(X)

)
×

[
Pn

eZ
′
02θ

likθ(j),φ(j)(X)

{
J∑
j=1

p1,j(X; θ(j), φ(j))

(
L02,k(0, sj−1) +

I01,k(sj−1, sj)

qj(Z; θ(j), φ(j))

)

− I02,k(sj−1, sj)r0,j(X; θ(j), φ(j)) + L02,k(0, V )p2(X; θ(j), φ(j))

}]−1
,

for λ(j+1)
02,n (tk) with tk ∈ T02,n, and(

Pn
I12,k(0, V )p1(X; θ(j), φ(j))

likθ(j),φ(j)(X)

)
×

[
Pn

eZ
′
12θ

likθ(j),φ(j)(X)

{
J∑
j=1

p1,j(X; θ(j), φ(j))

(
L12,k(sj, V )− I12,k(sj−1, sj)

qj(Z; θ(j), φ(j))

)

+ I12,k(sj−1, sj)r1,j(X; θ(j), φ(j))

}]−1

for λ(j+1)
12,n (tk) with tk ∈ T12,n.

E SIMULATION RESULTS: DUAL RIGHT CENSORING

Reiterating the four simulation scenarios here for convenience, we considered:

(1) Independent censoring: C = ξ ∧D, where ξ is exponentially-distributed with mean τ/2 = 1,
β0 = log(1/2) and β1 = 0.

(2) Increased independent censoring: C = ξ ∧D, ξ ∼ exp(1), β0 = log(9) and β1 = 0.
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(3) Conditionally independent censoring: C = ξ ∧ D, ξ ∼ exp(1), β0 = log(1/3) and β1 =
log(3/2).

(4) Dependent censoring: C = (T02 ∧ T12 − ξ) ∧ D, where ξ is exponential with mean 1 and
truncated to (0, T02 ∧ T12), β0 = log(1/2) and β1 = log(3/2).

Estimators compared to the piecewise exponential SMLE considered (singly) right-censored data
arising four ways:

• SPMLE: Cox-type transition intensity model under right censoring at C, so any information on
survival status observed after C is discarded.

• PFS1: Cox model for PFS right-censored at C.

• PFS2: Cox model for PFS with last (negative) progression status carried forward to V =
T02 ∧ T12 ∧D.

• Latent SPMLE: Cox-type transition intensity model based on the underlying or “latent” data
right-censored at D.

Each of these were fit using ? ] coxph function from the survival package for R [? ]. The SMLE was
fit with an implementation of the self-consistency algorithm described in Section 4.1 provided by the
coxinterval package for R, which is available from CRAN at the following address.

http://cran.r-project.org/web/packages/coxinterval/index.html

http://cran.r-project.org/web/packages/coxinterval/index.html
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SMLE SPMLE PFS1 PFS2 Latent SPMLE
Scenario n θ1 θ2 θ3 θ1 θ2 θ3 θ θ θ1 θ2 θ3

1 250 Mean -0.700 -0.696 0.001 -0.697 -0.698 -0.002 -0.697 -0.663 -0.698 -0.698 -0.002
SD 0.196 0.219 0.206 0.198 0.230 0.208 0.149 0.140 0.186 0.212 0.195

ASE 0.192 0.218 0.199 0.195 0.228 0.200 0.148 0.139 0.183 0.212 0.189
CP 0.947 0.953 0.943 0.946 0.954 0.941 0.952 0.941 0.947 0.953 0.942

500 Mean -0.696 -0.695 0.003 -0.695 -0.697 0.001 -0.695 -0.661 -0.694 -0.696 0.001
SD 0.137 0.154 0.142 0.138 0.162 0.143 0.103 0.097 0.129 0.150 0.134

ASE 0.135 0.154 0.140 0.138 0.161 0.141 0.105 0.098 0.129 0.149 0.134
CP 0.949 0.950 0.948 0.952 0.950 0.947 0.956 0.940 0.951 0.950 0.948

1000 Mean -0.694 -0.694 0.001 -0.693 -0.694 -0.000 -0.693 -0.660 -0.694 -0.694 -0.001
SD 0.097 0.109 0.099 0.098 0.115 0.100 0.074 0.069 0.093 0.106 0.095

ASE 0.096 0.108 0.099 0.097 0.114 0.100 0.074 0.069 0.091 0.106 0.094
CP 0.948 0.953 0.949 0.950 0.949 0.949 0.950 0.921 0.947 0.952 0.952

2 250 Mean -0.703 -0.698 0.004 -0.699 -0.701 0.001 -0.698 -0.582 -0.698 -0.698 -0.002
SD 0.218 0.235 0.229 0.224 0.273 0.235 0.171 0.140 0.186 0.212 0.195

ASE 0.213 0.232 0.220 0.221 0.267 0.225 0.171 0.140 0.183 0.212 0.189
CP 0.948 0.950 0.942 0.952 0.948 0.937 0.951 0.872 0.947 0.953 0.942

500 Mean -0.698 -0.697 0.005 -0.696 -0.700 0.003 -0.697 -0.581 -0.694 -0.696 0.001
SD 0.152 0.165 0.157 0.157 0.191 0.160 0.119 0.098 0.129 0.150 0.134

ASE 0.150 0.163 0.155 0.156 0.188 0.159 0.120 0.099 0.129 0.149 0.134
CP 0.950 0.948 0.949 0.954 0.949 0.947 0.954 0.789 0.951 0.950 0.948

1000 Mean -0.696 -0.694 0.001 -0.694 -0.694 0.001 -0.694 -0.579 -0.694 -0.694 -0.001
SD 0.108 0.115 0.109 0.111 0.134 0.112 0.085 0.070 0.093 0.106 0.095

ASE 0.106 0.115 0.109 0.110 0.133 0.112 0.085 0.070 0.091 0.106 0.094
CP 0.946 0.951 0.951 0.948 0.947 0.949 0.950 0.619 0.947 0.952 0.952

3 250 Mean -0.700 -0.696 0.001 -0.697 -0.698 -0.002 -0.696 -0.661 -0.698 -0.698 -0.002
SD 0.195 0.218 0.205 0.197 0.227 0.207 0.148 0.140 0.186 0.212 0.195

ASE 0.191 0.217 0.198 0.193 0.226 0.199 0.147 0.139 0.183 0.212 0.189
CP 0.947 0.951 0.944 0.948 0.952 0.942 0.950 0.940 0.947 0.953 0.942

500 Mean -0.696 -0.695 0.003 -0.695 -0.697 0.001 -0.695 -0.659 -0.694 -0.696 0.001
SD 0.136 0.154 0.141 0.137 0.160 0.142 0.102 0.097 0.129 0.150 0.134

ASE 0.134 0.153 0.140 0.136 0.159 0.140 0.104 0.098 0.129 0.149 0.134
CP 0.949 0.948 0.949 0.952 0.950 0.948 0.955 0.938 0.951 0.950 0.948

1000 Mean -0.694 -0.694 0.001 -0.694 -0.694 -0.000 -0.694 -0.658 -0.694 -0.694 -0.001
SD 0.096 0.108 0.099 0.097 0.114 0.100 0.074 0.070 0.093 0.106 0.095

ASE 0.095 0.108 0.098 0.096 0.112 0.099 0.073 0.069 0.091 0.106 0.094
CP 0.947 0.953 0.950 0.949 0.949 0.949 0.950 0.918 0.947 0.952 0.952

4 250 Mean -0.704 -0.695 0.004 -0.733 -0.736 -0.014 -0.733 -0.693 -0.698 -0.698 -0.002
SD 0.199 0.225 0.204 0.201 0.263 0.207 0.158 0.139 0.186 0.212 0.195

ASE 0.194 0.223 0.197 0.197 0.261 0.200 0.158 0.139 0.183 0.212 0.189
CP 0.946 0.953 0.942 0.945 0.949 0.941 0.944 0.951 0.947 0.953 0.942

500 Mean -0.698 -0.695 0.006 -0.728 -0.736 -0.011 -0.730 -0.690 -0.694 -0.696 0.001
SD 0.138 0.157 0.140 0.140 0.184 0.142 0.110 0.097 0.129 0.150 0.134

ASE 0.137 0.157 0.139 0.139 0.184 0.141 0.111 0.098 0.129 0.149 0.134
CP 0.948 0.950 0.949 0.944 0.944 0.947 0.942 0.954 0.951 0.950 0.948

1000 Mean -0.696 -0.694 0.004 -0.726 -0.734 -0.012 -0.729 -0.689 -0.694 -0.694 -0.001
SD 0.098 0.111 0.098 0.099 0.131 0.100 0.079 0.069 0.093 0.106 0.095

ASE 0.097 0.110 0.098 0.098 0.130 0.100 0.078 0.069 0.091 0.106 0.094
CP 0.948 0.950 0.950 0.936 0.936 0.950 0.924 0.948 0.947 0.952 0.952

Table E.1: Mean, standard deviation (SD), average standard error (ASE) and coverage probabilities
of 95% confidence intervals (CP) of θ̂n with θ0 = (− log(2),− log(2), 0) ≈ (−0.693,−0.693, 0),
κ = 2/5 and dual right censoring. CPs in boldface are significantly different from 0.95 at the 5% level.
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Figure E.1: True values for Λ (dotted) depicted with the pointwise average and 2.5th percentiles of the
SMLE (solid) under dual right censoring, n = 1000 and Scenarios 1 to 4.
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Figure E.2: True values for Λ (dotted) depicted with the pointwise average, 2.5th and 97.5th percentiles
of the SPMLE right-censored at C (solid) under dual right censoring, n = 1000 and Scenarios 1 to 4.
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κ = 4/15 κ = 1/3

n θ1 θ2 θ3 θ1 θ2 θ3

250 Relative bias 2.65 1.29 4.70 1.47 1.08 1.92
Relative precision 1.00 1.00 0.98 1.00 1.00 1.00

500 Relative bias 3.94 1.29 1.97 2.35 1.18 1.36
Relative precision 1.00 1.00 0.99 1.00 1.00 1.00

1000 Relative bias 5.19 1.73 4.80 2.47 1.25 2.23
Relative precision 1.00 1.00 0.99 1.00 1.00 1.00

Table E.2: Ratio of empirical bias (relative bias) and standard deviation (relative precision) for θ̂n
between the specified κ and κ = 2/5 under dual right censoring Scenario 1.

Scenario κ n CPU time Iterations (j) log10 ‖φ∇
(j)
φ `n(φ

(j))‖∞ Alternate φ(0) Alternate (typ θ, sup θ)

1 4/15 250 0.09 31 -8.40 0 0
1 4/15 500 0.22 30 -8.35 0 0
1 4/15 1000 0.50 30 -7.25 0 0

1 1/3 250 0.12 32 -7.39 0 0
1 1/3 500 0.28 31 -5.12 0 0
1 1/3 1000 0.65 30 -6.53 0 0

1 2/5 250 0.17 32 -6.72 0 0
1 2/5 500 0.41 31 -7.49 0 0
1 2/5 1000 1.17 30 -6.34 0 0

2 2/5 250 0.46 48 -6.75 0 0
2 2/5 500 1.22 48 -5.63 0 0
2 2/5 1000 3.50 49 -7.16 0 0

3 2/5 250 0.16 31 -7.02 0 0
3 2/5 500 0.38 30 -7.78 0 0
3 2/5 1000 1.04 29 -6.55 0 0

4 2/5 250 0.16 34 -8.34 0 0
4 2/5 500 0.38 33 -6.60 0 0
4 2/5 1000 1.03 33 -6.67 0 0

Table E.3: Average processing time in seconds for parameter and variance estimation (CPU time),
average number of iterations to convergence, average maximum norm of the inner product between the
estimate and score function at the estimate in log10 scale, number of replicates associated with alternate
starting value φ(0), number of replicates with alternate variance tuning parameters (typ θ, sup θ)—each
specific to the scenario, sieve size (κ) and sample size under dual right censoring.
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F SIMULATION RESULTS: INTERVAL-CENSORED PROGRESSION TIMES

Reiterating the censoring scenarios considered:

(1) Independent censoring: k = 8, β0 = log(1/4) and β1 = 0;

(2) Increased independent censoring: k = 4, β0 = log(1/4) and β1 = 0;

(3) Conditionally independent censoring: k = 8, β0 = log(1/4) and β1 = log(4/9); and

(4) Dependent censoring: k = 8, ξ follows the Weibull distribution with shape 3/4, scale 1 and
truncated to (0, T02 ∧ T12).

Performance of the SMLE was compared with estimators fit to (singly) right-censored data arising
four different ways:

• Imputation-based SPMLE: Cox-type transition intensity model based on midpoint-imputed
progression times, if status is known, and last negative status carried forward, if status is
unknown.

• PFS1: Cox model for PFS imputed to the first detection time (i.e., right endpoint of the censoring
interval), if status is known, and last negative status carried forward, if status is unknown.

• PFS2: Similar to PFS1, but right-censor at the last assessment that precedes two or more missed
scheduled inspections times.

• Latent SPMLE: Cox-type transition intensity model based on the underlying or “latent” data
right-censored at D.

The above two variants of PFS are based on guidelines [? ? ]. As with the dual right censoring
alternatives, estimates were obtained from the coxph and coxinterval packages.

From Table F.3 note that, of the 180,000 samples generated, 169 (0.09%) converged under the
starting value θ(0) = (1/2, 1/2, 1/2) rather than θ(0) = 0, and 23 (0.01%) needed smaller values for the
tuning parameters in variance estimation. The majority in both of these exceptions were encountered
for samples generated with n = 250 under the dependent censoring in Scenario 4.
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SMLE Imputed SPMLE PFS1 PFS2 Latent SPMLE
Scenario n θ1 θ2 θ3 θ1 θ2 θ3 θ θ θ1 θ2 θ3

1 250 Mean -0.706 -0.690 0.005 -0.685 -0.698 -0.042 -0.688 -0.690 -0.696 -0.695 0.001
SD 0.210 0.248 0.211 0.206 0.192 0.201 0.141 0.142 0.186 0.214 0.194

ASE 0.205 0.247 0.207 0.204 0.190 0.196 0.139 0.140 0.183 0.212 0.189
CP 0.944 0.954 0.950 0.949 0.951 0.937 0.948 0.947 0.949 0.950 0.943

500 Mean -0.699 -0.690 0.004 -0.682 -0.696 -0.041 -0.687 -0.689 -0.693 -0.693 0.002
SD 0.148 0.172 0.146 0.146 0.135 0.139 0.100 0.101 0.131 0.150 0.134

ASE 0.145 0.171 0.145 0.144 0.134 0.138 0.098 0.099 0.129 0.149 0.133
CP 0.946 0.952 0.949 0.947 0.949 0.942 0.946 0.946 0.948 0.951 0.945

1000 Mean -0.697 -0.691 0.000 -0.682 -0.697 -0.045 -0.687 -0.689 -0.693 -0.695 -0.001
SD 0.103 0.121 0.103 0.102 0.095 0.098 0.069 0.070 0.092 0.106 0.095

ASE 0.102 0.120 0.103 0.102 0.095 0.098 0.069 0.070 0.091 0.106 0.094
CP 0.950 0.948 0.949 0.948 0.951 0.928 0.950 0.950 0.952 0.948 0.949

2 250 Mean -0.707 -0.688 0.006 -0.661 -0.700 -0.060 -0.678 -0.680 -0.696 -0.695 0.001
SD 0.232 0.274 0.227 0.225 0.182 0.219 0.142 0.142 0.186 0.214 0.194

ASE 0.224 0.271 0.219 0.222 0.179 0.211 0.140 0.140 0.183 0.212 0.189
CP 0.946 0.953 0.943 0.950 0.948 0.932 0.946 0.946 0.949 0.950 0.943

500 Mean -0.701 -0.687 0.004 -0.660 -0.697 -0.061 -0.677 -0.679 -0.693 -0.693 0.002
SD 0.162 0.189 0.157 0.158 0.128 0.150 0.099 0.100 0.131 0.150 0.134

ASE 0.158 0.186 0.153 0.157 0.126 0.149 0.099 0.099 0.129 0.149 0.133
CP 0.946 0.947 0.946 0.945 0.946 0.934 0.944 0.945 0.948 0.951 0.945

1000 Mean -0.699 -0.689 0.000 -0.658 -0.699 -0.063 -0.678 -0.679 -0.693 -0.695 -0.001
SD 0.114 0.131 0.110 0.111 0.090 0.105 0.070 0.070 0.092 0.106 0.095

ASE 0.111 0.129 0.108 0.111 0.089 0.105 0.070 0.070 0.091 0.106 0.094
CP 0.944 0.948 0.946 0.937 0.951 0.910 0.944 0.947 0.952 0.948 0.949

3 250 Mean -0.706 -0.689 0.005 -0.643 -0.720 -0.022 -0.674 -0.654 -0.696 -0.695 0.001
SD 0.212 0.251 0.212 0.208 0.191 0.202 0.141 0.143 0.186 0.214 0.194

ASE 0.207 0.250 0.208 0.206 0.189 0.197 0.139 0.142 0.183 0.212 0.189
CP 0.944 0.955 0.949 0.941 0.948 0.942 0.947 0.937 0.949 0.950 0.943

500 Mean -0.699 -0.690 0.004 -0.640 -0.718 -0.022 -0.672 -0.653 -0.693 -0.693 0.002
SD 0.149 0.173 0.147 0.148 0.134 0.140 0.100 0.102 0.131 0.150 0.134

ASE 0.146 0.173 0.146 0.145 0.133 0.139 0.098 0.100 0.129 0.149 0.133
CP 0.947 0.952 0.950 0.928 0.943 0.948 0.941 0.926 0.948 0.951 0.945

1000 Mean -0.697 -0.691 0.000 -0.640 -0.718 -0.026 -0.673 -0.653 -0.693 -0.695 -0.001
SD 0.104 0.122 0.104 0.103 0.094 0.098 0.069 0.071 0.092 0.106 0.095

ASE 0.103 0.121 0.103 0.103 0.094 0.098 0.069 0.071 0.091 0.106 0.094
CP 0.951 0.949 0.949 0.917 0.943 0.942 0.943 0.911 0.952 0.948 0.949

4 250 Mean -0.710 -0.692 0.006 -0.648 -0.698 -0.058 -0.720 -0.720 -0.697 -0.698 0.002
SD 0.244 0.289 0.242 0.239 0.177 0.231 0.167 0.167 0.185 0.215 0.194

ASE 0.235 0.280 0.222 0.234 0.174 0.224 0.164 0.164 0.183 0.212 0.189
CP 0.940 0.948 0.941 0.940 0.947 0.937 0.944 0.944 0.950 0.946 0.944

500 Mean -0.704 -0.695 0.010 -0.638 -0.696 -0.062 -0.726 -0.726 -0.695 -0.698 0.001
SD 0.172 0.197 0.164 0.170 0.121 0.165 0.120 0.120 0.129 0.151 0.136

ASE 0.170 0.195 0.158 0.170 0.121 0.161 0.119 0.119 0.129 0.150 0.133
CP 0.945 0.950 0.942 0.937 0.950 0.932 0.939 0.939 0.951 0.952 0.945

1000 Mean -0.700 -0.694 0.009 -0.636 -0.695 -0.062 -0.725 -0.725 -0.694 -0.696 0.000
SD 0.120 0.137 0.113 0.119 0.085 0.114 0.084 0.084 0.091 0.106 0.094

ASE 0.120 0.135 0.111 0.120 0.085 0.114 0.084 0.084 0.091 0.106 0.094
CP 0.948 0.950 0.948 0.922 0.952 0.916 0.933 0.933 0.953 0.949 0.953

Table F.1: Mean, standard deviation (SD), average standard error (ASE) and coverage probabilities
of 95% confidence intervals (CP) of θ̂n with θ0 = (− log(2),− log(2), 0) ≈ (−0.693,−0.693, 0),
κ = 1/3 and interval-censored progression times. CPs in boldface are significantly different from 0.95
at the 5% level.
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Figure F.1: True values for Λ (dotted) depicted with the pointwise average, 2.5th and 97.5th percentiles
of the SMLE (solid) under interval-censored progression times, n = 1000 and Scenarios 1 to 4.
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Figure F.2: True values for Λ (dotted) depicted with the pointwise average and 2.5th percentiles of the
imputation-based SPMLE (solid) under interval-censored progression times, n = 1000 and Scenarios 1
to 4.
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κ = 4/15 κ = 2/5

n θ1 θ2 θ3 θ1 θ2 θ3

250 Relative bias 1.45 1.29 1.37 0.80 0.85 0.93
Relative precision 1.00 1.00 0.99 1.00 1.00 1.01

500 Relative bias 1.58 1.23 1.37 0.85 1.13 0.83
Relative precision 1.00 1.00 0.99 1.00 1.00 1.01

1000 Relative bias 1.51 1.25 7.95 0.86 0.97 -1.95
Relative precision 1.00 1.00 0.99 1.00 1.00 1.00

Table F.2: Ratio of empirical bias (relative bias) and standard deviation (relative precision) for θ̂n
between the specified κ and κ = 1/3 under interval-censored progression times in Scenario 1.

Scenario κ n CPU time Iterations (j) log10 ‖φ∇
(j)
φ `n(φ

(j))‖∞ Alternate φ(0) Alternate (typ θ, sup θ)

1 4/15 250 0.18 47 -8.28 0 0
1 4/15 500 0.42 51 -7.40 0 0
1 4/15 1000 1.14 59 -4.10 0 0

1 1/3 250 0.47 116 -4.70 0 0
1 1/3 500 2.72 314 -6.03 0 0
1 1/3 1000 13.15 677 -4.74 0 1

1 2/5 250 3.20 668 -2.52 1 0
1 2/5 500 19.31 1610 -3.35 0 1
1 2/5 1000 103.17 3123 -1.14 1 0

2 1/3 250 2.51 622 -5.15 4 0
2 1/3 500 12.49 1239 -2.79 1 0
2 1/3 1000 60.05 2363 -2.72 0 2

3 1/3 250 0.56 135 -7.10 0 0
3 1/3 500 2.96 332 -4.19 0 0
3 1/3 1000 15.62 747 -4.61 0 0

4 1/3 250 1.35 270 -3.50 148 18
4 1/3 500 7.89 663 -4.54 14 1
4 1/3 1000 43.81 1443 -4.59 0 2

Table F.3: Average processing time in seconds for parameter and variance estimation (CPU time),
average number of iterations to convergence, average maximum norm of the inner product between the
estimate and score function at the estimate in log10 scale, number of replicates associated with alternate
starting value φ(0), number of replicates with alternate variance tuning parameters (typ θ, sup θ)—each
specific to the scenario, sieve size (κ) and sample size under interval-censored progression times.
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