Towards a Better Understanding of
Variability Evolution

by

Leonardo Passos

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor in Philosophy
in
Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2016

(© Leonardo Passos 2016



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i



Abstract

Highly-configurable software systems often leverage variability modeling to achieve sys-
tematical reuse and mass customization. Although facilitating variability management,
variability models do not eliminate the variability in other artifacts. In fact, evolving a
system’s variability is far from trivial, as variation points spread across different artifacts,
possibly at multiple locations—evolving a single feature may affect many variation points.
To make matters worse, existing approaches for variability evolution have been largely
criticized in practice, as industry-based reports claim them as ineffective.

Ineffective support appears to be a direct consequence of lacking an in-depth under-
standing of how variability evolution happens in practice. For instance, most of the existing
research focuses on variability evolution as it happens in variability models only, ignoring
how its evolution relate to other artifacts (e.g., build and implementation files). Moreover,
when validating new variability evolution approaches, researchers often rely on randomly
generated models, or in some situations, even on fictitious cases. Studies that do account
for variability evolution across different artifacts do so in the context of small systems,
which are unlikely to be representative of the complexity typically found in large-scale
subjects.

Understanding variability evolution is a pre-requisite for properly supporting it in prac-
tice. As the former is yet immature, we seek to advance the existing understanding by
performing an in-depth analysis of variability evolution in large, complex, and real-world
systems in the systems software domain.

As a starting point, we perform an exploratory analysis over a sample of the Linux
kernel evolution, one of the largest and longest-living configurable system. Motivated by
the impact of pattern analysis in modern software engineering (e.g., refactoring patterns),
we set to mine evolution patterns from the Linux kernel commit history. Specifically, our
patterns focus on the variability evolution induced by adding or removing features in the
variability model, capturing how other artifacts (e.g., Makefiles and code) coevolve as a
consequence. We identify 23 variability-coevolution patterns, from which we crosscheck
their properties with the current literature, evidencing limitations in existing approaches,
as well as providing insights for improving existing tools and helping to shape future
ones. Additionally, we also observe how developers implement new features, finding feature
scattering as a recurrent practice. This is particularly interesting, as feature scattering is
often criticized in practice. We argue that scattering is not necessarily bad if used with
care—in fact, as with the Linux kernel case, existing systems have shown that it is possible
to achieve long-term evolution while accepting some level of feature scattering. The limits of
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feature scattering, however, are currently unknown. This is not surprising, as no empirical
study investigates feature scattering across the evolution of large and long-lived software
systems.

From our exploratory analysis of the Linux kernel, we perform further assessments to
strengthen our understanding.

First, we set to increase the external validity of our patterns by validating them in the
context of three other systems: axTLS, Toybox, and uClibc. We find that our patterns
cover as much as 64 % of all feature additions and removal cases across the evolution of
our three chosen subjects—altogether, our validation spans a period of over 20 years of
evolution. Moreover, we find 14 patterns whose use goes beyond Linux. In fact, we claim
them as general cases within the systems software domain.

Second, seeking a better understanding of feature scattering limits, we return our at-
tention to the Linux kernel evolution. Different from the mining of patterns, our analysis
considers the entire snapshot of the Linux kernel commit history, covering almost eight
years of evolution. Scoped to the scattering of device-driver features, the most common
feature type in the Linux kernel, we set to identify empirical limits within the codebase,
including the proportion of scattered features, as well as identifying typical scattering de-
grees. We also note specific feature types which appear to be more prone to scattering.
While we do not claim the limits we find as universal, our study provides evidence that
scattering can go as far as the limits we observe in the Linux kernel implementation.
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Chapter 1

Introduction

Highly-configurable software systems (a.k.a variant-rich) offer a large degree of configura-
bility, allowing users to tailor a target system according to their preferences and needs.
The high degree of configurability arises from the variability of the artifacts of the system,
meaning that they can be configured for use in a particular context [65]. Once configured,
the target system varies its behaviour or structure accordingly, leading to a specific vari-
ant. Examples of such systems span different domains, including database management
systems [14, 76, 113, 114], SOA-based applications [10], operating systems |7, 19, 21|, and
industrial software product lines.!

As large and complex variant-rich systems have considerable numbers of points of vari-
abilities, these systems often describe them in terms of features, employing variability mod-
els to explicitly capture user-relevant features and their associated constraints; when doing
so, these systems become variability-aware. Features, in this case, denote either function-
ality chunks (coarse-grained variability) or fine-grained configuration parameters. Features
declared in the variability model may then be referenced in related software artifacts (e.g.,
Makefiles and C source code) by means of explicit variation points. Examples of variation
points include #ifdef C pre-processor directives (a particular kind of code annotation [7])
and conditional build rules. Feature referencing, in turn, allows different artifacts to vary
according to specific configurations (feature selections and their associated values).

As with other types of software, variability-aware systems must evolve to meet chang-
ing requirements, platforms, and other environmental pressures. In addition to the in-
herent complexity of evolving large systems, variability-aware systems with high number
of features impose yet another challenge: the evolution of their underlying variability.

'http://splc.net/fame.html



Along with the complexity of their variability models, which may include thousands of
features |18, 126], large variability-aware systems have hundreds of variation points spread
across build artifacts, models, source code, and other artifacts.

So far, understanding variability evolution has not been thorough. Most of the existing
knowledge is partial, as many researchers study variability evolution in variability models
only [4, 44, 64, 71, 91, 109, 123, 133], ignoring its connection to the evolution of related
artifacts (e.g., build files and code). Moreover, the validation of variability evolution tech-
niques often relies on randomly-generated variability models or evolution scenarios that do
not come from real-world systems [64, 71, 133|, posing a reliability threat. The few exist-
ing studies aiming to understand variability evolution across different artifacts and in the
context of real subjects rely on small systems, which are unlikely to reflect the complexity
typically found in large systems. For instance, Neves et al. [104| study the coevolution
of variability models and related artifacts in real software product lines (SPLs), but their
subjects have less than 50 features. In addition, their analysis limits to refinement changes
(i.e., changes that do not affect the behaviour of the system). Scoping investigation to
refinement cases, however, is too restrictive in practice; as we discuss later in the text,
feature modification and retirement are too frequent to be ignored.

The lack of a thorough understanding of variability evolution coincides with poor vari-
ability evolution support. As Chen et al. point out [29, 30|, the few existing approaches
claiming to support variability evolution are ineffective in practice. Further triangulation
of data sources confirms such belief [9]:

"Variability evolves as a result of adding, deleting, or updating variation points
and variants. However, we found little support for systematically and suffi-
ciently supporting evolution in variability models and other related artifacts.”

—Babar et al., IEEE Software, 2010.

From the stated sources of evidence, we assume a causal relationship between lacking a
thorough variability evolution understanding and inadequate variability evolution support.
To us, a thorough understanding is the same as understanding variability evolution as it
happens in practice. Hence, we phrase the following assumption.

Main Assumption. Poor variability evolution support follows from a lack of under-
standing of how variability evolution happens in real-world settings.




Upon the validity of our assumption, adequate variability evolution support can only
be achieved if one sets to understand variability evolution as it happens in practice. That
leads to the research goal of this thesis.

Main Research Goal. Advance the understanding of variability evolution as it
happens in real-world settings.

1.1 Main Research Question

To achieve our research goal, we state a broad research question, which we distill in later
chapters.

Main Research Question: How does variability evolution occur in real-world set-
tings?

1.2 Motivating Example

To illustrate variability evolution and what one can learn by studying it, we present an
example inspired by the automotive industry, a domain known for having a complex and
large variability |18, 136]. Our example also sets the basic terminology for the remainder
of this text. The example system comprises a set of features controlling specific hardware
devices in a car, namely braking, stability control, and a yaw sensor. Its structure is given
in terms of a variability model, whose features are realized in implementation artifacts (C
code in our example). A mapping (Makefiles in our case) then associates features to specific
compilation units (.c files). Structuring a system in terms of a variability model, a mapping,
and an implementation space is typical in variability-aware systems, and resembles the
structure of many SPLs [7, 37].2

The variability model describes the common and variable characteristics of different
instances of our car system (see Figure 1.1). Following the FODA-notation, a well-known

2A typical SPL is structured as follows: (i) problem space: captures all features in a target product
portfolio; (ii) solution space: realizes all features in the target SPL; and (iii) mapping: maps features to
their corresponding implementation.



Car
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Figure 1.1: Variability model of the automotive example

representation for variability models [20], features (shown as rectangles) are put in a parent-
child hierarchy, where a child feature always implies the presence of its parent (e.g., ABS
implies the presence of Braking). Features can be made optional-—denoted by an empty
circle—or mandatory, denoted by a filled circle (e.g., every car has Braking, but may not have
StabilityControl). In the example, both Conventional and ABS can be present at the same time,
but Conventional is mandatory, whereas ABS is not. This is due to safety; if both features are
present, and if ABS fails, the car automatically switches to conventional braking. Features
can also be placed in a group. In the example, the sensors YRSModell and YRSModel2 are
in an xor-group stating that exactly one of them can be present at any given time. Both
sensors are based on the same technology, with the difference that YRSModell has yaw-
rate prediction support, whereas the second model has better precision measure, allowing
setting the number of decimal digits (NbrOfPrecisionDigits). In addition to the dependency
constraints imposed by the hierarchy, cross-tree constraints define specific dependencies
across the parent-child hierarchy, and may also define value restrictions involving multiple
features [108|. For simplicity, we have illustrated a special case controlling the value of a
single feature (NbrOfPrecisionDigits).

In addition to the variability model, the system contains Makefiles and C source code
(see Figure 1.2); the latter realizes the system’s features, whereas Makefiles map features in
the variability model to their associated compilation units. To abstract over such rules, we



Variability Model
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Mapping (Makefiles)
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Figure 1.2: Variability model and the related artifacts of the automotive example (snapshot
to)

show these mappings in terms of specific pattern fills (e.g., as feature Conventional binds to
Conventional.c, both share the same background color—light gray). Note, however, that not
all features are completely modularized: the implementation of Conventional has a logic that
enables it as the main braking controller upon the failure of ABS. In that case, the presence
of ABS creates explicit variation points in Conventional.c, causing ABS to be scattered across
Conventional.

Evolution Scenario 1 Due to the cost of maintaining two similar, but independent
yaw-sensors, stakeholders of our example system decide to merge YRSModell into the ex-
isting feature YRSModel2. As such, they copy the prediction code of the former into the
latter, and remove YRSModell from the variability model. This change leads to a new
snapshot of the system (1), shown in Figure 1.3. In order to eliminate the unnecessary
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Figure 1.3: Merge of YRSModell into YRSModel2 (snapshot t;)

chain of mandatory features that start from YawRateSensor, stakeholders lift YRSModel2 to
YawRateSensor, and subsequently rename YRSModel2.c to YawRateSensor.c. Figure 1.4 shows
the resulting snapshot. At each step, the mapping is updated accordingly.

The described evolution scenario highlights the risks of focusing exclusively on the
evolution of the variability model: by comparing the original variability model at snapshot
to and the one resulting from the first change (snapshot t1), one may conclude that the
first sensor is no longer supported. Comparing t, and t, only by diffing their variability
models is even more misleading, as one might conclude that the capabilities of YRSModell
and YRSModel2 no longer exist in ¢5. In contrast, observing the variability evolution across
different artifacts leads to a different picture: since YRSModel2 subsumes YRSModell in
supported capabilities, snapshots t; and £, have the same capabilities as ;.

As this evolution scenario demonstrates, techniques that capture evolution as it occurs
only at the variability model are unlikely to fully reflect the actual evolution of the system.



For instance, existing edit-reasoning techniques [71, 128, 133] do not account for changes in
other artifacts outside the variability model. As such, they are unable to provide a correct
result in the face of changes whose semantics depends on edits in different artifacts. The
same can be said about the recovery and maintenance of traceability links.

As there are many possibilities of how variability may evolve across different artifacts,
studying it in real-world settings helps to understand what evolution scenarios occur in
practice (e.g., a merge), what causes them to occur (e.g., feature similarity), how changes
are made (e.g., merging at the variability model level, and copying code at the imple-
mentation level) and how they impact existing techniques (e.g., edit-reasoning and tracing
techniques). This evolution scenario, in fact, is motivated from our current findings when
conducting case studies of real-world and complex variability-aware systems, which we
report in Chapters 3 and 4.

Evolution Scenario 2 As our system continues to evolve, it incorporates new ABS
controllers. In addition to the ABS controller from snapshots ty—t2, which supports a single
speed sensor, stakeholders of our car system add three new controllers (see Figure 1.5):
ABS2S (ABS with two speed sensors), ABS3S (ABS with three speed sensors), and ABS4S
(ABS with 4 speed sensors). When doing so, stakeholders rename the ABS feature to ABS1S
and add a new abstract feature ABSType to root an xor-group over all four controllers. The
addition of new ABS types affects StabilityControl, as its skid control mechanism depends
on the target ABS kind. Due to prohibitive costs, stakeholders of our car example do
not fully modularize each ABS type; instead, the code of each ABS controller is scattered
across StabilityControl. Compared to alternative solutions (e.g., design patterns, aspects,
etc), scattering does not require knowledge of complex programming language constructs,
in addition to having little upfront investment [7]. Scattering, however, has long been
argued as an undesirable situation |52, 82, 84, 125|; the intermingling of scattered features
with different implementation parts can lead to ripple effects, while requiring developers
to be kept in constant sync, hindering parallel development. Aware of such trade-offs,
stakeholders of our car system still choose the immediate benefits of feature scattering
(e.g., low cost and simple programming language knowledge); by decreasing the immediate
development time compared to adopting a modular solution, engineers release our example
car system according to its planned schedule.

Our evolution scenario exemplifies that scattering is not necessarily bad, provided it
is used with care. Currently, however, there are no empirical studies investigating the
limits of feature scattering in the continuous evolution of large-scale variability-aware soft-
ware systems. Chapter 5 improves the current state-of-affairs with a longitudinal feature
scattering case study.



Variability Model

|Stabi|ityControI | |YawRateSensor |

NbrOfPrecisionDigits

|Conventiona|| |ABS | [int]

StabilityControl - ABS
(Conventionala - ABS) -> - StabilityControl

YawRateSensor <> StabilityControl

NbrOfPrecisionDigits < 5
Mapping (Makefiles)

Vi
B

Conventional.c ABS.c StabilityControl.c YawRateSensor.c

Implementation

Legend:

= Scatteri d b itchi
E==3 Prediction code cattering caused by switching D Source file

to conventional brakingupon ABS failure

= Constantinitialization with the value of NbrOfPrecisionDigits
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1.3 Research Outline

To answer our main research question, we perform an exploratory case study of a real-world
and complex variability-aware software system: the Linux kernel. From our exploratory
analysis, we collect findings for further assessment, leading us to verify our understanding
in three other systems and in Linux itself.

Three reasons justify choosing the Linux kernel as a starting point of investigation:

1. The Linux kernel is one of the largest and longest-living variability-aware system in
existence today, comprising over 13,000 features and more than 10 million source lines
of code (SLOC).? As Table 1.1 shows, such numbers are far beyond the complexity

3SLOC (Source Lines of Code) is given by LOC (Lines of Code) minus the number of empty lines.
LOC, in turn, is given by the total number of lines, including blank ones.
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Figure 1.5: Addition of new ABS-related features (snapshot t3)

of other commonly researched subjects, as reported by the SPL2Go website.* Hence,
in comparison, the Linux kernel is likely to be more representative of the complexity
found in real-world settings than any other subject thus far considered.

2. Structurally, the Linux kernel resembles many other variability-aware systems, in-
cluding both open-source |21, 96, 100| and industrial-based solutions [17, 69]. Hence,
understanding the Linux kernel variability evolution is of potential interest to a whole
set of systems.

‘http://spl2go.cs.ovgu.de



3. Due to the its public evolution history, the Linux kernel as a case study favors inde-
pendent verification of research results, increasing the validity of one’s investigation.

Next, we outline our two major research steps towards our research goal. The dis-
tilling of the main research question and related methodological details are deferred to
Chapters 3, 4, and 5.

1.3.1 Step One: Linux Kernel as an Exploratory Case Study

From the assumption that poor variability evolution support follows from a lack of knowl-
edge of how it happens in practice, we set to understand variability evolution in the context
of the Linux kernel, a real-world example of a large and complex variability-aware system.
To cope with the sheer size of the kernel and its evolution history, we scope investigation
to the cases where variability evolution is induced by the addition of new features or the
removal of existing ones. By sampling the Linux kernel evolution, we observe how de-
velopers add and remove features from the variability model and how they subsequently
change related artifacts (e.g., build files and C source code). Our goal is to mine emergent
variability-coevolution patterns. Emergent, in this case, means that we do not prescribe the
patterns we extract when mining the commit history. Rather, they arise from the context
under analysis [35]. For each pattern we mine, we also track its usage—for instance, by
observing how developers apply the pattern, the variability mechanisms underlying the
pattern usage, and how instances of the pattern relate to the Linux kernel architectural
decomposition.

Our interest in identifying variability-coevolution patterns stems from the practical
impact that pattern research has had in modern software engineering. Patterns have
been used as a main medium for documenting established practices, including reusable de-
sign 58], architectural styles |56, 85, 122|, refactoring opportunities [57], network topolo-
gies [130], security integration strategies [120|, common user interface design [135], etc.
By capturing the practices in a given domain, patterns favor vocabulary standardization,
contributing to better communication and facilitating training. Patterns have also driven
better tool support (as we aim to). For instance, most modern integrated development
environments (e.g., Eclipse,” Netbeans,® and Visual Studio”) automate many refactoring
patterns, such as those in Fowler et al. [57].

Shttp://www.eclipse.org
Shttps://netbeans.org
"https://www.visualstudio.com

10



Our notion of pattern adheres to the Rule of Three, which states that a pattern is
any real-world solution whose application occurs at least three times.® The rule provides
a common ground for operationalizing pattern identification. Many researchers adopt it,
making the rule a well-accepted practice in pattern analysis [57, 85, 103]. To avoid bias, it is
common practice to further restrict the rule to assure three distinct sources of evidence—
e.g., three distinct developers must apply a pattern, or it must appear in the evolution
history of at least three different systems, etc [85]. When mining the Linux kernel commit
history, we only report a pattern when we assure that at least three distinct developers

apply it.

1.3.2 Step Two: Further Assessments

The exploratory analysis of the Linux kernel reveals two main findings: (i) a catalog of 23
coevolution patterns, covering five main evolution scenarios—adding features from com-
pletely new elements, creating features out of existing elements (featurization), renaming
existing features, merging others, and retiring unmaintained and/or buggy features; (ii)
preliminary evidence of feature scattering as common practice in Linux kernel development.

The first finding is of particular interest to tool builders, as our patterns capture evo-
lution cases that other studies in the literature do not report. Moreover, our patterns
evidence changes that cannot be correctly handled by existing variability evolution tech-
niques. Consequently, our catalog serves as an initial benchmark for evaluating existing
tools, or may help devise better ones. From the Linux kernel alone, however, we cannot evi-
dence whether our patterns are general, nor whether they are expressive enough to explain
the variability coevolution in other systems. Hence, a further assessment consists
in validating our patterns in terms of their expressiveness and generality in
systems other than the Linux kernel.

To validate our patterns, we carefully choose three other variability-aware subjects
within the same domain of the Linux kernel—the systems software domain. Our target
subjects are: axTLS (a client/server TLSv1 SSL library), ToyBox (a combination of indi-
vidual command-line utilities), and uClibc (a C library optimized for embedded systems).
To assess expressiveness, we investigate the extent that our patterns explain the coevolu-
tion induced by adding or removing features in the variability models of our three chosen
subjects. By matching patterns against the evolution of axTLS, Toybox, and uClibc, we
find that our patterns explain 64 % of all the additions and feature removals in our scope.
When assessing generality, we restrict the Rule of Three by requiring the evidence that

8http://c2.com/cgi/wiki?Rule0fThree
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at least three distinct developers apply any given pattern, as well as that the pattern ap-
pears in the evolution of at least three systems. We claim each pattern satisfying such a
constraint as a general case within our target domain. If a pattern does not satisfy the
previous constraint, but its inverse pattern does, we also claim the former as general. In
total, we find 14 general patterns.

In the case of our second finding, our patterns suggest scattering as a common practice
in the Linux kernel development. Such finding is of major importance. On one hand,
intermingling features with different implementation parts can harden evolution—e.g., by
causing ripple effects. Consequently, scattered features may significantly increase the main-
tenance effort of a system [7, 112]. In contrast, feature scattering allows developers to
overcome design limitations when extending a system in unforeseen ways [112], or when
circumventing modularity limitations of programming languages, which impose a dominant
decomposition [8, 127, 131]. In other cases, the cost of modularizing features might be ini-
tially prohibitive or simply too difficult to be handled in practice [78]. Feature scattering,
on the other hand, requires little upfront investment [7].

The amount of scattering Linux kernel developers are willing to accept, possible in-
fluencing factors, and how scattering relates to the evolution of the system as a whole
are not known at this point. Such knowledge is key in contributing to widely accepted
practices governing feature scattering. It also advances knowledge towards a general scat-
tering theory, which could serve as a guide to practitioners—for instance, in identifying
implementation decay, assessing the maintainability of a system [55|, identifying scattering
patterns [54], or setting practical scattering thresholds [111]. At the time of this writing, no
empirical study has investigated feature scattering evolution in the context of a large and
long-lived software system. Thus, as a further research step, we analyze scattering
along the Linux kernel evolution, performing a longitudinal analysis of almost eight
years of the kernel’s 20-year history. To handle the Linux kernel complexity, we scope our
analysis to features in the driver subsystem, which we identify as the largest and fastest
growing kernel part.

1.3.3 Research Contributions

Our work provides the following research contributions:

e A methodology to extract patterns from the evolution history of variability-aware
systems. We design our methodology based on the organization of the Linux kernel
around three main artifact types: variability model, build files, and C source code.
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Since other variability-aware systems follow the same organization, including both
open-source [21, 100] and industrial product lines [17], our methodology is likely to
be replicable in the study of other systems.

A detailed study of how variability models coevolve with different artifacts in the
context of a large, complex, and continuously evolving variability-aware software
system: the Linux kernel.

A taxonomy for the observed coevolution, organized as a catalog of 23 variability-
coevolution patterns.

An assessment of the expressiveness of our coevolution patterns.
The identification of 14 general patterns within our original catalog.

A set of principles on how to implement scattered features using C pre-processor
annotations, along with possible alternatives. Altogether, the principles we report
ease maintenance and evolution, while also being beneficial to other variant-rich
systems employing C pre-processor annotations.

Empirical evidence of the limitation of state-of-the-art variability evolution tech-
niques when handling evolution scenarios captured by some of our patterns.

Empirical evidence in favor of a new theory for software-product-line evolution. While
many of our patterns are captured by the existing theory of software-product-line
refinement [22], feature-retirement patterns are not. Since the latter are too frequent
to be ignored, a new theory should be devised to account for feature retirement.

A methodology for identifying pattern instances in the repositories of variability-
aware systems. We successfully apply our methodology to identify pattern instances
across the evolution of axTLS, Toybox, and uClibc.

Three publicly available datasets covering, (i) the mining of patterns in the Linux
kernel sample; (ii) the mining of pattern instances in axTLS, Toybox, and uClibc; (iii)
scattering-related data from almost eight years of Linux kernel evolution. Altogether,
readers may use our datasets as replication packages, as benchmarks for tools, or as
baselines for further analyses.

Descriptive statistics aimed at understanding the state-of-practice of feature scatter-
ing in the Linux kernel.
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e An inspection and classification of 170 scattered device drivers from the Linux kernel,
from which we test hypotheses to verify possible factors influencing where a feature
is scattered across or its scattering degree (a measure of a feature’s spread in code).

e An online appendiz [1] with full access to our datasets, R scripts, and the source
code of all our custom-made tools.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 presents related work
investigating variability evolution. Chapter 3 presents our exploratory analysis when in-
vestigating variability-coevolution patterns in the Linux kernel. Chapters 4 and 5 build on
the findings of the Linux kernel case study. Specifically, Chapter 4 investigates the external
validity of our Linux kernel coevolution patterns, assessing their expressiveness and gener-
ality across the evolution of three variability-aware systems (axTLS, Toybox, and uClibc).
Chapter 5 seeks to better understand feature scattering by performing a longitudinal study
of Linux kernel device-driver features. In particular, we investigate how scattering evolves
over time, whether practical limits exist, possible influencing factors, etc. We present our
final remarks in Chapter 6, as well as outlining a research agenda for future work.

1.5 Conventions

This thesis employs the following language and typesetting conventions:

e When we present summary statistics, the mean should always be understood as the
arithmetic mean. So does the average, a term that we use interchangeably with the
mean.

e Our notion of a feature is always of a configurable option declared in a variability
model.

e When writing code snippets, we use the monotype font.
e When first introducing a term, we write it in italics.

e We typeset references to source code elements (e.g., functions), feature names, and
filenames with Serif font.
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e We generically refer to C pre-processor annotations #ifdef, #ifndef, #if, and #elif
as ifdefs.

1.6 Publications

This thesis contains material from the following publications:

e Leonardo Passos, Leopoldo Teixeira, Nicolas Dintzner, Sven Apel, Andrzej Wasowski,
Krzysztof Czarnecki, Paulo Borba, and Jianmei Guo. Coevolution of Variability
Models and Related Software Artifacts: A Fresh Look at Evolution Patterns in the
Linuz Kernel. In Empirical Software Engineering, Springer, 2015.

e Leonardo Passos, Jesus Padilla, Thorsten Berger, Sven Apel, Krzysztof Czarnecki,
and Marco Ttlio Valente: Feature Scattering in the Large: A Longitudinal Study of
Linuz Kernel Device Drivers. In 14" International Conference on Modularity, ACM,
2015.°

e Leonardo Passos and Krzysztof Czarnecki. A Dataset of Feature Additions and Fea-
ture Remowvals from the Linuz Kernel. In 11'" Working Conference on Mining Soft-
ware Repositories (Data track), IEEE/ACM, 2014.

e Leonardo Passos, Jianmei Guo, Leopoldo Teixeira, Krzysztof Czarnecki, Andrzej
Wasowski, and Paulo Borba. Coevolution of Variability Models and Related Artifacts:
A Case Study from the Linuz Kernel. In 17" International Software Product Line
Conference, ACM, 2013.

e Leonardo Passos, Krzysztof Czarnecki, Sven Apel, Andrzej Wasowski, Christian
Kastner, Jianmei Guo, and Claus Hunsen. Feature-Oriented Software Evolution. In
7" International Workshop on Variability Modelling of Software-intensive Systems,
ACM, 2013.

1.7 Awards

During the development of this thesis, we received two awards at the 14*" International
Conference on Modularity:

9The Modularity conference was previously named AOSD—Aspect-Oriented Software Development.
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e Best research paper.

e Bronze medal in the Student Research Competition. The competition was sponsored
by Microsoft Research.
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Table 1.1: Popular variability-aware research subjects

Name Language Number of features Size (LOC)
Arithmetic Expression Evaluator Haskell 25 460
Battle of Tanks Java 144 1,975
Chat HyperlJ Java 7 758
DesktopSearcher Java 22 3,779
Elevator C C 6 877
Elevator Java Java, AspectJ 6 1,046
Email JML Java, JML 9 1,233
Email System C C 9 258
Email System Java Java, Aspect 9 1,233
FAME DBMS C++ 14 5,000
Graph Product Line Jak, HTML 18 1,350
Lampiro JavaME 11 45,000
Mine Pump C C 7 279
Mine Pump Java Java, AspectJ 7 580
Mobile Media JavaME 14 5,700
Mobile RSS Media JavaME 14 20,000
NetBot C# 6 1,579
Prevayler Java ) 80,000
Prop4J Java 17 2,051
Pynche Python 12 2,400
SQL Parser AntLR DSL 4 60
Tank War Java 37 5,078
Vistex Java 16 2,405
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Chapter 2

Variability Evolution

This chapter summarizes most of the relevant works investigating variability evolution. We
divide presentation according to the evolution of three different spaces (or artifact types),
namely variability model, mapping (e.g., build files), and implementation files (e.g., C
source code). Section 2.1 discusses the works studying variability model evolution, followed
by a presentation of the works targeting the evolution of the mapping (Section 2.2) and
implementation files (Section 2.3). Section 2.4 presents the relevant research focusing on
how variability evolves across different spaces. Section 2.5 concludes the chapter.

2.1 Variability Model Evolution

Most of the existing research on variability evolution focuses on the evolution of variability
models.

Foundational work investigates the semantics of variability models, defining it in terms
of a satisfiability problem [11, 94]. In the case of Boolean variability models, whose fea-
tures users either select or exclude from configuration, researchers translate variability
models into propositional logic formulae or CSP-based specifications, applying SAT, Bi-
nary Decision Diagrams, or CSP solvers to perform different types of analyses as the input
models evolve [16]. Example analyses include consistency checks, dead feature detection,
counting variants, interactive guidance during configuration, or fixing models and config-
urations [16, 143, 145]. Recent configuration fixing approaches also tackle non-Boolean
variability models [142, 149]. Opposed to Boolean variability models, non-Boolean ones
allow features to store numeric or string values. Their analyses, however, require support
for numeric and string theories, generally backed by the use of SMT Solvers.

18



Different techniques aim at supporting variability model changes. Czarnecki et al. de-
fine operations to specialize variability models [38, 39, 83]—a variability model specializes
another if the set of variants of the former is a subset of the latter. Alves et al. [4] investigate
variability model refactorings, presenting a catalog of refactoring templates (operations).
Each template either preserves the original set of derivable variants or increases it with new
variants. In the latter case, the resulting variability model generalizes the one preceding
the template application. Thiim et al. [133| propose an edit-based reasoning technique for
assessing how variability model changes affect the set of possible variants. The authors
classify changes according to four categories: specialization, generalization, refactorings,
and arbitrary edits (none of the previous three). Different from Alves et al., the refactoring
notion of Thiim concerns changes that do not add new variants, nor exclude existing ones.
At the core of their edit reasoning, the authors efficiently translate the original variabil-
ity model, as well as the one resulting from the changes, into a satisfiability constraint
problem, encoding it in conjunctive normal form (CNF). By avoiding an exponential ex-
plosion of CNF clauses, Thiim’s approach handles large models, showing scalability with
randomly-generated models with up to 10,000 features. Moreover, their reasoning does
not require variability models to have the same set of features, as generalization includes
new ones, whereas specialization remove others. This contrasts to previous work analyzing
equivalence or specialization of variability models [71, 128]. Guo et al. [64] define a set
of primitive operations for evolving variability models. Assuming the initial version of
the model to be consistent, the authors propose consistency checks for change requests,
providing additional operations to restore consistency.

Despite the great effort in studying variability model evolution, most techniques lack
empirical validation with realistic models, which are often times unavailable to researchers.
Lacking realistic large scale models, researchers generally resort to using randomly-generated
models—e.g., as in Thiim et al. [133] and Guo et al. [64]. To change figures, She et al. [123]
propose the Linux kernel variability model as a realistic benchmark directly accessible to
researchers. By analyzing various metrics (e.g., branch factor, cross-tree constraint ratio,
depth, etc), the authors show that the Linux kernel variability model surpasses the com-
plexity of most models within the research community. Lotufo et al. [91] extend She’s
work with a longitudinal analysis of the Linux kernel variability model targeting the x86
hardware architecture. The authors also present evolution scenarios and operations that
developers commonly face when evolving the target model. Similarly, Passos et al. [108] an-
alyze the constraints in 116 variability models of the eCos real-time operating system [96],
providing a benchmark for non-Boolean model analyses. Berger et al. [21| compare differ-
ent variability models from real-world systems in the systems software domain, including
the Linux kernel and eCos.
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To better understand the Linux kernel variability model evolution, Dintzner et. al. [44]
propose an approach to extract and classify changes from historical versions of the Linux
kernel variability model. The authors validate their analyses in different versions of the
Linux kernel, targeting 21 different hardware architectures.

2.2 Mapping Evolution

In this thesis, we interpret the mapping as a set of build rules, which associate source files
to a set of enabling features.

Generally, variability in build files follows a simple approach [7]. Exploiting the imper-
ative nature of build files, developers write selection statements or pre-processor directives
to vary build behaviour according to different target configurations. Other systems, how-
ever, prevent developers from doing so. For instance, in systems employing the variability
modeling language of the eCos operating system [142, 149|, developers write build rules
as feature attributes [139]. Upon a feature selection, build rules are put together in a
compositional manner, resulting in a variant-specific build file. Although it is reasonable
to assume that build rules as feature attributes are likely to easy maintenance, empirical
evidence is lacking. This is not surprising, as few researchers set to investigate build files
from a variability perspective. Exceptions, however, do exist, mostly in the context of
Linux kernel Makefiles.

Berger et al. [19] and Nadi et al. [102] parse Linux kernel Makefiles to statically extract
presence conditions of compilation units—a presence condition is a Boolean expression over
feature names [36, 101]; in the case of Makefiles, it controls under what configurations a
file is compiled or not. Connecting the presence conditions stemming from Makefiles to the
propositional semantics of variability models allows detecting build inconsistencies, such
as determining which files will never compile. Makefile parsing often depends on specific
idioms of how developers write build rules. The work of Berger and Nadi are not an ex-
ception. Thus, their results are as good as the extent that developers follow Linux kernel
idiomatic styles. Dietrich et al. |[41] also extract presence conditions of Linux kernel compi-
lation units. The authors, however, do not parse target Makefiles. Instead, their approach
instruments the Linux kernel compilation to enable one feature at a time, keeping track of
the files getting compiled upon each feature selection. While an approximation, avoiding
the parse of Makefiles allows their approach to process different releases throughout the
Linux kernel evolution.

Seeking to statically extract configuration knowledge from Makefiles, Zhou et al. [151]
present an early prototype for determining the presence condition of each compilation unit
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in a target project. Their work builds on top of SYMake [129], which employs symbolic
execution to conservatively analyze all possible execution paths of a Makefile script.

2.3 Implementation Evolution

There are different approaches to encode variability in implementation-based artifacts, each
with different trade-offs. In the following, we summarize the major techniques, along with
related work. For a through comparison among different techniques, we refer readers to
Apel et al [7].

2.3.1 Evolution in Annotative-based Approaches

Annotative approaches are one of the simplest methods for variability encoding. They are
also one of the most widely used mechanisms for creating variable source code. Examples
of annotative approaches include C pre-processor conditionals (e.g., #ifdef) or selection
statements to branch a program’s control-flow. Both approaches are examples of if con-
ditions. Another form of annotation consists in using libraries of compile-time constructs,
written, for example, with meta-programming facilities. In that direction, Czarnecki and
Eisenecker propose different compile-time control structures, implementing them with C+4-+
templates [37].

As an alternative to textual annotations, Késtener et al. [75] propose the use of code
coloring. In their approach, features map to individual colors; using a custom-made tool
(CIDE), users color the lines of code that implement a particular feature. In the case
where a line supports multiple features, all colors apply. In the latter case, distinguishing
combinations of features can be particularly difficult. In [77], Késter et al. evaluate colored-
based annotations when refactoring two existing systems into product lines. From their
evaluation, the authors argue in favor of annotative approaches for developing product
lines whose features associate with fine-grained code fragments. The authors also discuss
facilities in CIDE to aid developers, including feature navigation, projection facilities, and
the exporting of colored code as feature modules.

Unarguably, annotation-based approaches provide a simple mechanism for variability
encoding. In the long-term evolution of a system, however, simplicity may come with a
price. While requiring little pre-planning and upfront investment [7], if not used with care,
annotations may lead to extensive scattering and feature intertwining (a.k.a, tangling) [87,
89]. Scattering and tangling have long been under suspicion to negatively impact quality
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and maintainability—for example, by causing bugs [48, 79| or ripple effects [111]. Others
also argue that annotations decrease program comprehension, as they clutter control-flow
reasoning [51, 75, 86, 125].

To prevent decay due to extensive use of annotations, Queiroz et al. [111] propose the
use of threshold values to keep feature scattering and tangling within acceptable limits.
From the observation that code-related metrics often follow heavy-tailed distributions |15,
92, 110, 144], the authors argue that scattering and tangling thresholds should not be
based on a single limit value (e.g., mean); instead, they should be relative. A relative
threshold for a metric M defines a percentage p and a limit & such that at most p % of
source code entities have M < k [105]. From p, it follows that at most (100 — p) % of code
elements have M > k. Since there are varying levels for p and k, the authors analyze a
corpus of 20 long-lived C pre-processor-based systems from different functional domains,
extracting empirical thresholds for scattering and tangling-related metrics. The authors
find scattering distribution to be highly-skewed, but note that tangling is mostly uniform
across their target subjects. In both cases, the authors report between 80 % and 85 % of
features having low scattering and tangling values, respectively. Thus, the authors argue
that at most 15-20 % of features should be highly scattered or tangled with other features.

Other researchers seek understanding the practice of using C pre-processor annotations
when encoding a system’s variability. Liebig et al. [87, 89] investigate different metrics to
assess the complexity of ifdef annotations in a corpus of 40 systems. Among their findings,
the authors state that most annotations in the source code of their subjects enframe entire
functions or code blocks—e.g., entire selection statements or loops, suggesting that such
annotations could be encoded with alternative techniques favoring better modularity (e.g.,
aspects). Hunsen et al. [69] investigate the complexity of C pre-processor annotations in
both open-source and industrial-based systems. Their research shows that both types of
systems share similar complexity. Hence, studies focusing on the variability complexity as
given by C pre-processor annotations in open-source systems are likely to be representative
to what occurs in industrial settings.

From an engineering perspective, different researchers aim at improving existing tool
support to parse, type-check, and refactor annotative-based variant-rich systems. For in-
stance, Gazzillo et al. |60] provide a complete variability-aware parser that copes with all the
complexity of the C pre-processor. Opposed to other tools that take C pre-processor-based
code as input |24, 59, 62, 106, 141], their solution does not parse source code by processing
one configuration at a time, nor does it rely on heuristics or specific coding idioms. Sim-
ilar to Garrido, Késtener et al. [79] also implement a variability-aware parser, along with
subsequent variability-aware static analyses |80, 90]. Recent advances in variability-aware
refactoring follows directly from better parsing support [88].
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2.3.2 Evolution in Modular-based Approaches

Ideally, all features should be modular, in a one-to-one mapping style. Different approaches
seek such a goal. We explain the main ones in the following.

GenVoca/AHEAD. Batory et al. [14] is among the first ones exploring the ideas of
feature modularity, investigating mechanisms to represent and compose features to derive
specific variants. The authors propose GenVoca, an algebraic model for Feature-Oriented-
Programming [13], later generalizing it into AHEAD—Algebraic Hierarchical Equations
for Application Design [12]. Different from GenVoca, AHEAD works not only with source
code, but with all kinds of software artifacts. Despite their elegance, GenVoca and AHEAD
have been confined to academic realms [7]. Consequently, there are no empirical studies
investigating evolution of real-world GenVoca/AHEAD-based systems.

Aspect-Oriented Programming (AOP). Outside academic setups, researchers at Xe-
rox propose the Aspect-Oriented-Programming paradigm [82].

AOP aims at modularizing so called cross-cutting concerns, which, due to the tyranny
of the dominant decomposition of existing programming languages [8, 127, 131], favor the
modularization of certain concerns in detriment of others [97]. Thus, cross-cutting concerns
are inherently scattered across the code, with varying scattering degrees. It is worth noting
that concerns comprise not only features (in the sense of how we use the term), but also
requirements, design elements, design patterns, and programming idioms [48, 54].

AOP modularizes cross-cutting concerns in the form of aspects, which hook to existing
declarations by adding new elements (e.g., an attribute to a class) or intercepting specific
execution points to add desired functionalities (e.g., validate input parameters before a
method call). In AOP terminology, extensions to existing declarations are called advices
and interceptors are known as pointcuts. Examples of typical cross-cutting concerns include
tracing [25] and exception handling [26].

Compared to other existing compositional approaches, AOP has support across different
languages, such as AspectJ (extends Java), AspectC (extends the C-language), AspectC+—+
(extends C++), etc. Different frameworks also support AOP, including enterprise-based
solutions, such as Spring! and JBoss.?

'http://docs.spring.io/spring/docs/current/spring-framework-reference/html/aop.html
2http://docs. jboss.org/aop/1.3/aspect-framework/reference/en/html_single/
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Different empirical works investigate AOP from a software evolution perspective. For
instance, Késter et al. [76] report their experience in refactoring Berkeley DB into an aspect-
based product line. Opposed to common belief, the authors notice that, as the number
of aspects grow, code readability and maintainability decrease; overall, they argue against
aspect adoption as a mainstream technique for refactoring legacy systems into product
lines. Figueiredo et al. |54] investigate 13 cross-cutting patterns and their impact on the
design stability in seven releases of three target applications, with implementations in Java
and AspectJ. The authors notice that some patterns are not easily expressed with typical
AOP constructs. Moreover, they find certain cross-cutting patterns to strongly indicate
change-proneness of certain classes; for other patterns, such relation is not evident. Apel 6]
investigates 11 AspectJ academic-based systems. In his set of subjects, the author finds
that 2% of the target code requires advanced cross-cutting mechanisms, whereas 12 %
requires basic ones; the remainder 86 % comprises object-oriented code. Thus, Apel argues
that simple AOP language mechanisms are expressive enough to modularize most of the
cross-cutting concerns in the set of studied subjects. Munoz et al. [99] perform a similar
analysis by studying 38 open-source AOP-based systems. The authors also conclude that
AOP-language constructs are underused, while also noting that developers use aspects in
a cautions way.

While striving to achieve better modularity, AOP is not free of criticism. For in-
stance, due to glue-code, optimizations, and/or code obfuscation, debugging is often times
hard [150]. Moreover, aspects may hinder control-flow reasoning, as they may extend a
base code in many and often unknown ways—in AspectJ, for instance, hooking does not
follow pre-defined interfaces. Furthermore, AOP allows violating basic modularity princi-
ples, breaking information hiding and module interfaces [7]. Additional evolution problems
include composition ordering and the difficulty of coevolving pointcuts with base code [97].

Delta-Oriented Programming (DOP). Delta-Oriented-Programming is a recent pro-
gramming paradigm aiming to support the development of software product lines.

In a traditional DOP-lifecycle, developers first create a complete working system—the
core module. Deltas then add or modify programming elements in the core module. Like
the C pre-processor, but unlike aspects, deltas may also remove code.

When deltas inadequately modify the core module, resulting variants may be ill-formed.
Avoiding such problem requires reasoning over separate deltas and the core module, po-
tentially hardening maintenance and programming comprehension [7].

Like GenVoca and AHEAD, DOP does not have significant industrial adoption. Thus,
there is no evidence of its use in building large and complex real-world product lines.
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2.3.3 Others Approaches

In addition to annotative and modular-based approaches for variability encoding and their
different trade-offs, other approaches also exist.

At a basic level, program arguments (e.g., command line parameters) allow users to
vary the behaviour of a given system upon its call. Likewise, configuration files, such as
property files in Java projects, are also an alternative. In either case, variability is diluted
in code, requiring feature location techniques to allow proper variability management |28,
40, 45, 49, 95, 124, 137, 146].

Code cloning is also an alternative for supporting variability. With the aid of a version
control system (e.g., Git,> Mercurial®, or Subversion (SVN)?), developers clone an existing
branch, adapting it according to a set of requirements. As the system evolves and need
dictates, developers may also merge-and-refactor branches |7, 117|. Despite a rapid mech-
anism for developing experimental features, cloning has long been argued to harden soft-
ware evolution—variability management in cloned variants only adds further complexity.
Consequently, existing software product-line-engineering adoption approaches discourage
cloning [66, 72|. Nonetheless, certain industry niches perceive cloning as favorable, mainly
due to its initial low adoption costs and freedom for independent modifications [46]. Ac-
knowledging that some organizations rely on cloning as a mainstream practice, Rubin et
al. [115, 116] propose a framework to organize development, maintenance, and merge-
refactoring knowledge of specific variants and the system as a whole.

2.4 Variability Coevolution

Aiming to combine the flexibility of code-cloning with the benefits of traditional product-
line engineering (e.g., [31]), Antkiewicz et al. [5] propose a virtual platform for incremental
product-line adoption. The platform comprises seven levels of governance, from adhoc-
clown-and-own (L0) to a product line engineering with a fully integrated platform (L6).
As a target systems evolves through different levels, developers coevolve reusable assets,
ultimately, deriving a variability model.

Other researchers set focus on detecting inconsistencies arising from evolving the dif-
ferent spaces of the Linux kernel. For instance, Tartler et al. [132] detect inconsistencies

3https://git-scm.com/
‘http://mercurial.selenic.com/
Shttp://subversion.apache.org/
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between the Linux kernel variability model and ifdefs in code (e.g., an #ifdef whose con-
dition cannot be satisfied given the set of cross-tree constraints). Nadi et al. [102] extend
Tartler’s framework to additionally detect inconsistencies in Makefiles (e.g., a build rule is
dead due to an inconsistency with the constraints in the variability model). Their frame-
work is also more accurate; when detecting inconsistencies in ifdefs in code, they take into
account the constraints in the Linux kernel variability model as well as those in Makefiles.
The works of Tartler et al. and Nadi et al. are one of the few targeting variability co-
evolution in the large. Generally, researchers rely on small target subjects or even employ
artificial examples. Neither approach shall be representative of the complexity of real-world
settings.

Neves et al. [104] manually extract evolution templates (operations) from the commit
history of a small product line (< 50 features), validating their catalog against later releases
of their original product line and in two other smaller systems. Their templates conform to
the refinement theory in [22], assuring that old variants can still be mapped to variants in
the product line resulting from a template application. Refinement changes are behaviour
preserving, allowing systems to safely evolve. Such a notion, however, does not capture
feature retirement, which necessarily shrinks the set of possible variants.

Holdschick [67] presents change operations between variability models and functional
models in the automotive domain, seeking better understanding coevolution challenges.
Similarly, Seidl et al. [121] provide a set of evolution scenarios and mapping operators to
reestablish the correct binding of different spaces in a software product line. In both works,
the authors do not provide empirical evidence supporting the need of their operators nor
scenarios.

Schulze et al. [119] present a catalog of 23 refactoring patterns for evolving DOP-based
product lines. Among other things, their catalog supports the coevolution of variability
models and deltas. Their patterns are based on those from Fowler et al. [57], but adapted
to the context of DOP. From such a lifting, the authors assume that their patterns are
expressive enough to capture refactorings from real-world settings. Ultimately, however, it
is unknown whether the evolution of real-world DOP-based systems resembles the evolution
of object-oriented ones, casting doubt on their catalog expressiveness. Although the authors
provide a prototype to automate their proposed refactorings, they do not test it against
real-world cases.
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2.5 Conclusion

When revisiting related work, we evidence a lack of empirical studies investigating variabil-
ity evolution in the context of large and complex real-world systems. Most of the existing
efforts focus on the evolution of variability models alone, with supporting tools being vali-
dated with randomly-generated models or small case studies. Few studies set to investigate
the mapping evolution—thus, tool support is not yet mature. In contrast, we notice great
advances at the implementation space, notably better support for variability-aware parsing.

In the coevolution arena (our focus), few studies set to investigate how variability
models coevolve with other related artifacts. Hence, mature tool support is still lacking,
as existing tools are backed by little or no empirical evidence supporting them.
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Chapter 3

Linux as an Exploratory Case Study

This chapter discusses the Linux kernel as an exploratory analysis of variability evolution.
Among others, we present the overall structure of the Linux kernel and how we mine
coevolution patterns from the kernel’s evolution history. We mine 23 patterns, detailing
their usage and discussing related findings that we use to guide further investigations,
which we present in later chapters.

Chapter Organization. Section 3.1 explains the Linux kernel structure and how it
links to the notion of a feature. In Section 3.2, we discuss the Linux kernel evolution and
its relation to the evolution of the kernel’s feature set. Section 3.3 presents our research
question and underlying assumption. We detail our research methodology in Section 3.4,
presenting results in Section 3.5. Section 3.6 discusses how our patterns align with our
main research goal, detailing key findings. Section 3.7 argues about possible threats to
validity, followed by our conclusions in Section 3.8.

3.1 The Three Spaces of the Linux Kernel

The Linux kernel is structured in three spaces [19, 42, 101]: (i) it has a variability
model, which explicitly captures user-related configuration options and their associated
constraints; (ii) a mapping, which links features to specific compilation units; (iii) an im-
plementation space, which realizes all the kernel’s features. Such structure is not exclusive
to Linux; rather it is also found in other open-source variability-aware systems [21, 100]
and industrial product lines [17]. Following the steps in Figure 3.1, we describe how each
of these spaces works and how they are connected.
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3.1.1 Variability Model

The Linux kernel variability model comprises a set of files written in the Kconfig lan-
guage [81]. A configurator renders (step 1) a tree of features from Kconfig files that are
available for the user’s platform (i.e., processor family). From it, users select features that
should be present in the resulting kernel (step 2).

As shown in the excerpt in Figure 3.1, the features in the Linux kernel variability model
are generally config declarations (lines vin3 and vmb). In our example, FB (the parent of all
frame-buffer-related features)' and FB_UVESA (a generic frame-buffer driver) are tristate
features (lines vin2 and vm4). They can be absent (n) or present either as dynamically
loadable kernel modules (m) or by being statically compiled into the resulting kernel (y).
Boolean features are also possible (line vin6), assuming either y or n as value. Other types
include integer and strings (not shown).

In Kconfig, features may contain attributes. The prompt attribute is a short text
describing the feature (lines vin2, vin4 and vin6). The configurator uses the prompt to
render feature nodes in the hierarchy (the absence of a prompt makes a feature invisible
to users). A default attribute (not shown) provides an initial value of the corresponding
feature, which can be later changed during configuration. Two specific attributes define
cross-tree constraints: depends on and selects. The depends on attribute (line vm7) is a
dependency condition that, if satisfied, allows users to select the feature with this attribute.
Not all dependencies result in cross-tree constraints, as the Linux kernel configurator uses
some dependencies as a means to define the parent of a feature. A select attribute is a
reverse dependency that enforces the immediate selection of one or more target features.
For example, selecting FB_IMAC causes the immediate selection of FB_ CFB_FILLRECT,
FB_CFB_COPYAREA,andFB_CFB_JMAGEBLH'ﬂthVHBfVHdO)

Once the user finishes selecting features and setting their parameters, the configurator
saves the configuration in a .config file (step 3). The latter is a sequence of feature-name=value
lines; when writing feature names, the configurator prefixes them with CONFIG . Prefixed
names are then referenced in the mapping and source code as a means to react to the
presence of specific features.

'https://www.kernel.org/doc/Documentation/fb/framebuffer.txt
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Figure 3.1: The three spaces in the Linux kernel and their interaction with Kbuild

3.1.2 Mapping

In the Linux kernel, the mapping between features and compilation units occurs mostly
inside Makefiles. Kbuild, the kernel build infrastructure,? controls the whole compilation
process of the kernel. To build a kernel image according to a given configuration, users
invoke make (step 4), which triggers the execution of the top Makefile at the root of the
Linux kernel source code tree (step 5). The top Makefile then invokes config, which in
turn reads the configuration file (step 5.1) and translates it to two other files (step 5.2):
auto.conf, later used by make, and autoconf.h, later used by the C pre-processor (cpp).

The top Makefile controls vmlinux (the resident kernel image) and dynamically loadable

2https://www.kernel.org/doc/Documentation/kbuild/
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Table 3.1: Distribution of source code file types (averages taken from the v2.6.12-v3.9
release range)

File type Mean (%)
C implementation file 43
C header file 39
Assembly 4
Other 14

kernel modules (LKMs), i.e., modules that can be loaded at runtime. To build vmlinux,
Kbuild first builds all the object files stored in core-y, libs-y, drivers-y, and net-y variables, as
stated in the top Makefile:

1 vmlinux := $(core-y) $(1libs-y) $(drivers-y) $(net-y)

s drivers-y += drivers/ main/

These variables denote lists of object files to which further elements can be appended.
When appending directories (line 3 above), Kbuild recursively runs the Makefile in each
of the listed directories and generates all objects of a special list: obj-y (similarly, obj-m is
a list for dynamically loadable modules). Objects are conditionally added to such a list
by replacing y with a feature name. As shown in the Makefile of Figure 3.1 (line m7),
imacfb.o is added to obj-y if FB_IMAC is set to be y in the auto.conf file (the same applies to
FB_EFl and FB_UVESA, lines m8-m9). Kbuild attempts to compile object files by locating
a corresponding C file with a matching name. If such file does not exist, Kbuild uses a
list named after the object file and suffixed with either -y or -objs. In our example, the
FB feature associates with the set of objects in the fb-objs list (lines m2-mb in Figure 3.1);
there is no fb.c file in the Makefile’s directory.

3.1.3 Implementation

The implementation space contains the operating system code, comprising the realization of
the features declared in the variability model, along with supporting code. As summarized
in Table 3.1, the kernel’s code base comprises mostly C implementation and header files.

At the code level, variability is expressed in terms of C pre-processor ifdefs. These
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annotations control the compilation of specific code fragments, henceforth referred as ex-
tensions. The conditions of ifdef annotations are essentially Boolean expressions over
feature names, making the compilation of extensions dependent on specific configurations.
The extensions of a feature trace back to the ¢fdef conditions referencing its identifier;
counting the latter defines the scattering degree (SD) of a feature |7, 87, 89, 111]. The
scattering degree metric is an indirect measure of the number of potential places that a
developer may edit upon changing a feature of interest [111]. A feature is scattered when
its SD-value is at least 2. A single extension (SD = 1) does not qualify a feature to be
scattered, as it has no spread in the source code. In our example, MTRR is a scattered
feature. In release v3.2 of the kernel, in addition to the scattering at line i, it also adds
112 extensions elsewhere. The SD metric falls under the umbrella of absolute metrics that
count the number of source code entities relating to a given feature. In contrast, relative
metrics assess feature-scattering relative to the code size of extensions [47]. Existing re-
search [48] comparing absolute metrics with relative ones shows that the former correlate
better with defects, which justifies our choice for the SD metric throughout this thesis.

Upon a user configuration, Kbuild proceeds to pre-processing the kernel source code.
To do so, Kbuild adds an inclusion directive to autoconf.h in each target source file (step
5.3). Such header file contains definitions for all the features listed in the .config file. In
autoconf.h, Kbuild encodes macros as follows: all features in the .config file result in pre-
processor symbols with the same name; tristate features selected as modules are suffixed
with MODULE; macros of selected Boolean/tristate features are set to 1; integer/string
features, if present, lead to macros whose values match those given during configuration.

Given the macro definitions in autoconf.h, the C pre-processor evaluates all ifdef con-
ditions, deciding which code blocks to include and which to remove (step 5.4). Then,
the C compiler compiles the resulting code (step 5.5). From the example configura-
tion in Figure 3.1, pre-processing uvesafb.c results in a non-empty body of the  devinit
uvesafb_init_mtrr function (lines i6-i42), as CONFIG_MTTR is a defined macro in autoconf.h.

The last step in the compilation process links the object files in obj-y, merging them
into a built-in.o file (step 5.6). The parent Makefile then links the latter into the vmlinux
image. Tristate features set to m, in contrast, are not linked to the final kernel image.
Rather, each object file in the obj-m list results in a dynamically loadable kernel module
(.ko file).
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3.2 Evolution Overview

The Linux kernel evolves continuously. Analyzing a snapshot of the kernel’s Git repository?
evidences such a fact. As shown in Figure 3.2, from June 2005, when the first stable release
(v2.6.12) was put under Git control, to April 2013 (release v3.9), the Linux kernel SLOC
of its C-based implementation? increased by 159 %, with an average growth of 2.6 = 1.5 %
between each consecutive stable release pair. The short-hand 2.6 & 1.5% denotes an
arithmetic mean of 2.6 % with standard deviation of 1.5 %. The kernel’s feature set, shown
in Figure 3.2b, displays a similar trend, and strongly correlates with SLOC growth (Pearson
product-moment correlation 7 = 0.996).° Since v2.6.12, it increased by 177 %, growing
2.8 = 1.4% between stable releases. The latest kernel release in the considered snapshot
(v3.9) contains over 13,000 features implemented in more than 33,000 C files, amounting
to over 10 million SLOC. These C files contain over 34,000 ifdefs that explicitly refer to at
least one feature in the variability model.

3.3 Research Question

Our exploratory analysis of the Linux kernel aims at assessing how variability evolves across
different spaces. Specifically, we want to mine emergent variability-coevolution patterns
from the kernel’s evolution history. Thus, we ask the following research question:

RQ. What variability-coevolution patterns emerge from the Linux kernel evolution?

At the core of our research question lies the assumption that variability-coevolution pat-
terns do exist.

Assumption. There exists variability-coevolution patterns that emerge from the
Linux kernel evolution history.

3git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

4This includes all known C implementation and header files, including non-standard extensions, such
as: .inc. .uc, pge, etc.

5Since the release range v2.6.12-v3.9 is a large subset of the kernel release population, the presented
correlation coefficient is necessarily significant.
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Figure 3.2: Kernel growth evolution

Two main points favor our assumption: (i) as Figure 3.2 shows, feature addition closely
follows SLOC growth. Thus, adding new features is likely to require the variability model
to coevolve with the implementation space; (ii) the Linux kernel has well-known intrinsic
structures, including a plugin architecture [34, 140] and a three-space organization. Thus,
it must be the case that such structures impose a strict mechanism on how developers
add new features to the kernel and how they subsequently remove features later in time.
Hence, some patterns are likely to occur as a by-product of the existing structures.

3.4 Methodology

This section details our research methodology to mine coevolution patterns. We discuss
our scoping decisions and data collection procedure, followed by an explanation of how
we mine patterns, while also inferring others. We also present a notation for representing
patterns.
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3.4.1 Scoping

To cope with the size of the Linux kernel and its long evolution history, we narrow our
investigation to the coevolution induced by the addition and removal of features names. In
particular, we observe how developers coevolve Makefiles and C source code when adding or
removing features from the x86 variability model, mining emergent variability-coevolution
patterns. The choice of the x86 hardware architecture follows from the fact that its vari-
ability model is representative of how the Linux kernel variability model evolves as a whole,
as both display the same growth pattern [91].

To allow mining coevolution patterns, we first collect the entire set of added and re-
moved features from the variability model namespace of the x86 architecture. This is
performed by calculating the feature set difference of the x86 variability models of consec-
utive stable kernel releases.®

To list the features in the variability model of a given release, we adapt the Kconfig
infrastructure shipped in the Linux kernel source code. Such infrastructure, however,
varies across different releases, as the the Kconfig language evolves along the way. We note,
however, a stability period between releases v2.6.26 and v3.3. To facilitate implementation,
we take such release range as our target population, allowing us to have a single Kconfig
parser. Only recently we have been able to parse any Kconfig file; the latest version of our
infrastructure can now process all Kconfig files from release v2.6.12 onwards. Section 4.2.3
provides further details.

3.4.2 Data Collection

From the definition of the target population, we take the union of all added features in the
v2.6.26—v3.3 release range as the additions population; likewise, the removals population
is given by the union of all removed feature names in the given release interval. Between
releases v2.6.26 and v3.3, the number of additions (4,112) is four times bigger than the
amount of removals (1,002). These numbers are consistent with other works [44, 91| show-
ing that feature additions in the Linux kernel exceed feature removals. Given the feature
names in each population, we select two random samples: one comprising 6.5 % (268) of
feature additions, and another with 13 % (132) of feature removals. Such sizes follow from
the effort we can afford when manually analyzing each sample, a cost and labour intensive
activity.

6Unstable releases are suffixed with -rc (e.g., v2.6.32-rc1), whereas stable ones are not.
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Figure 3.3: Database creation process

An entry in the additions sample is a pair of the form (f,r;;1), where r;;; adds a
feature name f that does not exist in the previous stable release r;. An entry (f,r;11) in
the removals sample means that release r;,; no longer contains f, although r; does. A
feature f in either of the entries is referred as primary feature—a primary object in our
investigation.

To obtain the patch adding or removing a primary feature, we must first locate its
corresponding commit, referred to as primary commit. To that end, we use a custom-made
tool to create a relational database from the Linux kernel Git commit history. Figure 3.3
depicts the process to populate our database. First (step 1), we enumerate all stable
releases saved in the commit history, storing them as ordered sequential release pairs of
the form (7;,7;,41). In step 2, we parse all commits between the releases of each release
pair,” storing the commit author name and email, the commit message, the commit hash,
etc. Next (step 3), we parse the patch of each commit from step 2, saving associated
metadata (e.g., the name of the changed file, whether the file is new, removed, or renamed,
etc) and any feature change units. A feature change unit is a change that adds or removes
a feature name in a Kconfig file. For each change unit in our database, we also store the

"If ; and 7;,; are two consecutive releases, git log --no-merges r;..r;, lists all commits between
r; and 741, excluding those that result from merging branches.
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Table 3.2: Commit statistics

Release range: v2.6.26 to v3.3

Nbr. of commits 176,449
Nbr. of commits changing Kconfig files 10,205
Nbr. of commits adding/removing features 5,704

Nbr. of distinct primary commits in our two samples 359

name of the feature it adds or removes. In all steps, we link data accordingly: each patch
metadata and change unit record links to a corresponding commit record, which in turn,
links to a specific release pair.

With the database in place, retrieving the primary commit of a primary feature becomes
a simple matter of issuing an SQL-query: if a feature f is in the feature set difference of
r;+1 and r;, then there exists a primary commit with a change unit adding f. Such commit,
in turn, associates with the release pair (r;,r;41). Likewise, if f is in the difference of the
feature sets of r; and r;,1, then there exists a primary commit with a change unit removing
f. As before, the retrieved commit associates with the release pair (7, 7;41).

In the database, a primary commit associates with one or more primary features. Pri-
mary features may also have two or more associated primary commits, but we restrict it
to be exactly one to facilitate analysis. Taking f as primary feature, we find the following
cases that lead to two or more primary commits in the target population:

T1 In addition to x86, f is also in the namespace of other architectures (e.g., sparc,
powerpc, etc), being declared in Kconfig files specific to such CPUs. Therefore, adding
or removing f happens in all architectures that support it, having different commits
for different architectures (generally, one per architecture type). When facing multiple
commits targeting different architectures, we select the one concerning x86 (our scope
of analysis).

T2 A commit adds f, another removes it (e.g., by reverting the first change), and a third
adds f again. Likewise, a commit may remove f, a second add it, and a third remove
it again. In both cases, we take the primary commit to be the last one in the series,
regardless of which sample f originates from.

T3 A commit adds f to a child Kconfig file. A parent Kconfig file then includes the child
one by means of an include instruction. Later, another commit replaces the inclusion
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T4

T5

T6

instruction by the declaration of f itself (another addition). When having two possible
primary commits as described, we take the first one, as the second does not affect the
namespace; rather, it only relocates f’s declaration.

A commit first adds f, followed by another commit creating an additional configuration
option f (in Kconfig, it is possible for a feature to be declared twice). Similar to the
previous case, the namespace is not changed. As before, we take the first commit as
the primary one.

Due to the distributive nature of the kernel development, patches may be submitted
more than once. Consequently, different commits may have equal patches. For exam-
ple, a patch submitted to the kernel mailing list may be accepted by a developer, who
commits it to his local copy of the kernel repository. Prior to pushing it to the remote
site, the developer pulls from the remote copy to retrieve any updates. Meanwhile,
another developer also accepts the change, and prior to pushing it, he also performs a
pull to fetch any remote updates. Note that both pulls do not retrieve the accepted
change, as it has not been pushed by either developer. Then, the second developer
pushes his changes, followed by the push of the first developer. As a result, the remote
repository now has two exact patches, each with a different commit hash.

There are two or more commits removing f, with each commit holding a different
patch. As an example, consider the case where a commit copies f to a new location in
the repository, resulting in a duplicate declaration. A new feature is then introduced,
generalizing the capabilities of f. As the generalized feature supersedes the original and
the copied features, both must be removed. The developer, however, separates such
removal in two commits. The first one contains the removal of the original feature; the
second commit contains the patch adding the generalized feature, together with the
removal of f’s copy. When facing multiple removals, we take the latest one. Likewise, it
also happens that two different commits add a feature f in distinct ways. For example,
a developer sends to the mailing list a patch adding f, which eventually gets accepted.
Later to his first submission, the same developer re-submits the patch with further
enhancements.

In the kernel repository, feature additions and removals that link to multiple primary

commits are infrequent. In our samples, we only find three additions (two cases of T1 and
one case of T5) and two commits removing the same primary feature (T5).

Forcing a primary feature to have exactly one primary commit means that we work

with the same number of primary commits as our sample sizes; hence, there are 268 and
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132 primary commits relative to added and removed features, respectively. Since some
primary commits concern more than one primary feature, the number of distinct primary
commits (359) is lower than the sum of the two sample sizes. Table 3.2 puts these statistics
into context.® The number of distinct commits in our two samples equals to 6 % of all
commits that either add or remove features in the v2.6.26-v3.3 release range. Commits
adding or removing features in turn, is a subset of the commits changing Kconfig files;
the former represents 56 % of all the commits in the latter set. Commits that necessarily
change Kconfig files are a particular piece of the kernel evolution history, accounting for
approximately 6 % of all commits in the given release range. Overall, the two samples cover
0.2% of all commits between releases v2.6.26 and v3.3.

Knowing all primary commits, we proceed to mine variability-coevolution patterns.

3.4.3 Mining Process

We apply two major steps when mining the coevolution pattern best explaining the ad-
dition or removal of a primary feature: Commit Window Retrieval and Commit Window
Categorization and Clustering. We describe each step in the following.

Commit Window Retrieval. A primary commit only guarantees to retrieve changes
in the variability model. Thus, the induced coevolution of feature additions and removals
may require inspecting other commits to capture related changes outside the variability
model. For that matter, we rely on a commit window to expand the search scope for
changes in related artifacts.

A commit window is a sequence of commits that in addition to the primary commit,
may include commits preceding or following the primary one. To exemplify a commit
window, consider the addition of the CAPTURE _DAVINCI DM64X_EVM feature.” As shown
in Figure 3.4, the primary commit (highlighted in gray and labelled as 12906b) is part of
a sequence of commits changing the V4L and DVB subsystems,'? as stated in the commit
log messages. The primary commit patch is shown in Figure 3.5. A patch is a textual diff
recording added (prefixed with “+”) and removed lines (prefixed with “-”). Lines without
prefix provide context to ease understanding. In the example, the primary commit adds a
Kconfig entry (Figure 3.5, lines 8-11) and a new build rule to compile vpif capture.c (line

8The numbers in the table do not account for commits that merge branches.
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=89803d83
10V4L/DVB: Video for Linux/Digital Video Broadcasting
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V4L/DVB (12997): Add the DTV_ISDB_TS_ID property for ISDB_S
V4L/DVB(12993b): gl860: Prevent a potential risk of zeroing a floating pointer
V4L/DVB (12993a): saa7164: Fix compilation warning on i386

VA4L/DVB (12906d): VAL : vpif updates for DM6467 vpif capture driver
VA4L/DVB (12906c): VAL : vpif capture driver for DM6467

@ Vv41/DVB (12906b): V4L : vpif capture - Kconfig and Makefile changes

@ V4L/DVB (12906a): V4L : vpif display updates to support vpif capture

@ V4L/DVB (12725): v4l: warn when desired devnodenr is in use & add _no_warn function
@& V4L/DVB (12724): v4l2-dev: add simple wrapper functions around the devnode numbers

Time

Figure 3.4: Commit window example

15). Since the feature’s compilation unit is not added in the primary commit, we set to
expand it to the point where such an addition occurs, if at all. The commit following the
primary one (label 12906¢) adds vpif capture.c; thus, we expand the commit window to
include it. The window, however, does not include commit 12906d, as it simply updates
the code of the previously added compilation unit (e.g., changing a static variable to be
extern). The information stemming from the update is irrelevant, as it does not add new
knowledge on the structure of the change in place. Thus, the resulting window comprises
commits 12906b and 12906¢, as shown by the rectangle in Figure 3.4.

Strictly, the boundaries of a commit window are only limited by the total number of
commits in the evolution history. Furthermore, selecting which commits should be part of
a commit window is ultimately a subjective process.

To mitigate subjectivity, we expand a commit window by including commits that have
the same commit message label as the primary one, and that necessarily precede or follow
it. For example, in Figure 3.4, all commits changing the V4L, and DVB subsystems are la-
belled with "VL4/DVB", and thus, are potential candidates to be included in the resulting
commit window. Following sequences of commits sharing the same label, however, does
not necessarily retrieve commits related to the primary feature under investigation (e.g.,
it may include commits relative to a sibling feature of the primary feature, both belonging
to the same part of the kernel). To avoid large windows with unrelated commits, we de-
fine four main expansion rules for including commits sharing the same label of a primary
commit:

El Include commits that add/remove compilation units known to be mapped to the pri-
mary feature.

E2 Include commits whose changes affect files mapped to the primary feature, provided
such changes add relevant information w.r.t. the structure of the change in place.
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drivers/media/video/Kconfig

config DISPLAY_DAVINCI_DM646X_EVM

help
- Support for DaVinci based display device.
+ Support for DM6467 based display device.

+config CAPTURE_DAVINCI_DM646X_EVM

+ tristate "DM646x EVM Video Capture"

+ depends on VIDEO_DEV && MACH_DAVINCI_DM6467_EVM
+

’ drivers/media/video/davinci/Makefile

+obj-$(CONFIG_CAPTURE_DAVINCI_DM646X_EVM) += vpif_capture.o

Figure 3.5: Patch adding the Davinci DM646x EVM driver (primary commit)

E3 Include commits whose changes add/remove compile-time variation points that refer-
ence the primary feature.

E4 Include commits that modify the declaration of the primary feature in the variability
model.

Initially, we apply these rules to expand the commit windows of features in the additions
sample only. Starting with the primary commit, we allow a commit window to grow as
large as needed, but stop its expansion whenever we meet one of the following boundary
conditions: (a) the commits in the current window provide enough context to understand
the changes related to the primary feature. For instance, to understand the addition of
CAPTURE_DAVINCI _DM64X EVM we are only required to extend the commit window up
to the point where vpif _capture.c is added, but not further; (b) we reach a large sequence
of commits that do not share the same label as the primary commit. In this case, we
consider the change of the primary feature to be over. The rationale of first expanding
commit windows of features in the addition sample follows from our assumption that
commit windows of features in the removals sample are likely to be smaller; if true, the
maximum commit window size in the additions sample works as an upper bound for the
commit window size of features in the removals sample. Our assumption relies on the fact
that removing features should be done at once, in a single commit, as developers should
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not leave dead code behind, nor break the system compilation. Additions, on the other
hand, may span more than a single commit, as adding incremental chunks agrees with
Git’s principle commit early, commit often.!!

We find that commit windows of added primary features have at most 28 commits,
although in most cases it has a single one (the primary commit). For defining the commit
windows of removed features, we conservatively increase the 28-limit to 40, as an attempt
to avoid loosing any commits. Upon the validity of our previously stated assumption,
however, commit windows in the removals sample should never reach such a limit. In
fact, they do not. After applying the four expansion rules, while respecting boundary
conditions and a maximum commit window size of 40, we find that almost every commit
window in the removals sample has size one. Few commit windows (6) have more than one
commit; three commit windows have two commits, while the remaining three have four,
five, and 14 commits, respectively. Overall, commit windows are small in both samples
(see Figure 3.6). In the additions sample, an average commit window has 1.9 commits,
whereas in the removals sample, the mean is 1.2.'2 In both samples, the median commit
window size is one. Therefore, in the case of the Linux kernel, determining the size of
commit windows is not difficult, as a typical commit window contains only the primary
commit of the feature under investigation.

Commit Window Categorization and Clustering. Within each retrieved commit
window, we move to manually inspect all the changes it contains, initially categorizing it
as addition, remowal, split, merge, or rename of the primary feature. Windows with the
same category are then clustered together. Note that classifying commit windows require
us to ignore changes unrelated to the primary feature. Lines 5-6 in Figure 3.5 show a
simple example. More complex unrelated changes occur when a commit window contains
patches that, in addition to the primary feature, also add or remove other features. In
this case, we set focus on patch parts that explicitly associate with the primary feature
(e.g., a code fragment guarded by an ifdef condition referring to primary feature, a C file
whose compilation depends on selecting the primary feature, etc), or that relate to it as a
consequence of the change under investigation (e.g., a new ifdef condition is created for a
new feature, which in turn, results from the rename of the primary one).

The relevant changes inside each window are then taken as a whole, which we capture

Uhttp://sethrobertson.github.io/GitBestPractices

I2These values are calculated as follows: for the additions sample, we sum the size of all its commit
windows (502), and divide the result by the number of added primary features (268). Likewise, in the
removals case, we sum the total number of commits in the commit windows in the corresponding sample
(155), and divide it by the number of removed primary features (132).
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Additions sample Removals sample
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Number of commit windows
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
123 457 8 91012131417212728 1 2 3 4 5 7 8 9 1012131417 212728
Commit window size

Figure 3.6: Commit window sizes

as a before-state (what exists before the change) and after-state (what exists after the
change). At this stage, we create specialized subcategories to represent commit windows
with similar before and after states, capturing common characteristics of how developers
modify primary features and their cross-tree constraints. Such characteristics include, but
are not limited to:

a) Visibility: Feature is promptable in the configurator or not.

b) Type: Whether the feature is a switch (i.e., Boolean /tristate) or a value-based feature
(int/string) [21].

¢) Computed defaults.
d) Mandatory.

e) Whether the feature causes the addition of compile-time variation points, and in
which spaces.

f) Whether the feature contains associated compilation units.

g) Whether the feature adds compilation flags.
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We then re-cluster results accordingly and discard clusters with less than three in-
stances, or clusters respecting such threshold, but with less than three distinct contributors.
These two key criteria conform to the Rule of Three, a widely adopted operationalization
for pattern identification [57, 85, 103]. Keeping only the clusters whose changes have
been applied by at least three distinct developers provides three or more distinct sources
of evidence, preventing bias towards an specific developer coding style. Moreover, our
operationalization makes pattern identification independent of a given sample size. To
differentiate among contributors, we use the author’s name and email, as recorded in the
metadata of each commit. Once we cannot further subcategorize clusters, we set to ex-
tract a common structure among the before and after states of all commit windows in each
obtained cluster. Each resulting structure defines a pattern.

In total, we examine 657 commits in all commit windows, where 502 relate to features
in the additions sample and the remaining 155 to features in the removals sample. In some
cases, however, we cannot derive a full understanding of the changes relative to a primary
feature. As an example, consider the addition of the NEED PER_CPU KM feature to the
kernel memory management subsystem.'® Figures 3.7 and 3.8 show the addition’s primary
commit (highlighted in gray) and its corresponding patch fragment, respectively. Since
the newly added feature is computed (it is assigned its default value upon the validity
of its depend on clause) and not visible, users cannot configure it directly. Thus, the
identifier NEED PER_CPU_KM must be referred elsewhere for the feature to be useful.
However, expanding the initial commit window to include commits sharing the same label
of the primary commit (shown as a dashed rectangle in Figure 3.7) does not show any
reference addition. Hence, as we cannot fully understand the change in place, we exclude
NEED PER _CPU_KM from further analysis. Overall, when facing doubt, we exclude 4.5 %
(12) of the features in the additions sample; in the removals sample, the exclusion rate is
8.3% (11).

We execute our mining process in two rounds, having two participants performing the
mining: Py and P,y. Participant Py, the author of this thesis, is a proficient Linux user with
past experience in the analysis of feature evolution in the Linux kernel [107]; participant
P, has expertise in variability model evolution [64].

3.4.4 Review Process

To assure the quality of our results, after each mining round, we perform extensive reviews
to mitigate possible human errors. In addition to P; and Ps, two other participants aid

3http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=bbddf£05
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xfs: Introduce XFS_I0C_ZERO RANGE

i xfs: simplify xfs_gm_dqusage_adjust
xfs: use range primitives for xfs page cache operations

percpu: Optimize __get_cpu_var()
x86, percpu: Optimize this_cpu_ptr
percpu: clear memory allocated with the km allocator
percpu: fix build breakage on s390 and cleanup build configuration tests
percpu: use percpu allocator on UP too

_® _percpu; reduce PCPY MIN UNIT SIZEt032K o oo cceeeeee e .
vmalloc: pcpu_get/free_vm_areas() aren't needed on UP

Figure 3.7: Commits changing the kernel memory-based chunk allocation

reviewing: P3 and P4. Participant P3 has experience in investigating variability evolution in
small-sized real-world software product lines [104]; P4, in turn, has an extensive background
in Linux kernel variability model evolution [44].

During review, at least two participants review the initial mining results, questioning
whatever points they judge necessary. If reviewers raise awareness for a possible error, a
consensus phase follows. In that case, the participant responsible for the mining and the
ones performing the review defend they points, and eventually reach a final agreement.
Table 3.3 summarizes the role of each participant; the assignment of a role to a participant
follows directly from a participant’s availability at the time of this study.

In the first mining round, we analyze 206 additions and 101 removals cases of our
collected sample. At this point, P; and P, are the ones mining coevolution patterns
(indicated with an M’ in the corresponding table cell). Py and Py perform their analysis
while also consulting each other to clarify and discuss arising issues. After completing
their analysis, both participants set to review each other’s work (shown with an 'R’ in
the corresponding table cell). To strengthen our findings, participants Py and P, perform
two additional reviews. As before, potential inaccuracies are spotted and settled based on
argumentation.

In the second round, we analyze the remaining cases in our sample, namely 62 feature
name additions and 31 removals. At this step, only P; mines patterns, followed by a review
of P53 and P4. As before, in the case of inconsistencies, a consensus follows.

In both rounds, the reviews of P53 and P4 evidence few inaccuracies. P3’s review suggests
five errors; three are minor comments, whereas the remaining two do raise suspicion that
two commits might not be instances of the pattern they have been initially assigned to.
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mm/Kconfig

+config NEED_PER_CPU_KM

+ depends on !SMP
+ bool

+ default y
|mm/Makefile

-ifdef CONFIG_SMP
-obj-y += percpu.o
-else

-obj-y += percpu_up.o
-endif

mm/percpu-km.c

-#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
+#if defined (CONFIG_SMP) && \
defined (CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
#error "contiguous percpu allocation is incompatible..."
#endif

Figure 3.8: Patch adding NEED PER_CPU_ KM

Consensus, however, does not confirm such conclusion, and Pj3 is convinced otherwise. The
review of Py, in turn, suggests a 7% and 14 % inconsistency rate in the analysis of the
primary features in the additions and removals samples, respectively. Consensus confirms
them all, leading to a correction of our initial results.

3.4.5 Pattern Inference

When mining coevolution patterns, we assure that each pattern has at least three instances
in our samples and a minimum of three distinct contributors. When we cannot satisfy either
or both of these two conditions, we set to infer patterns. We employ two inference rules:

I1 There exists a pattern adding a given feature, but no inverse pattern exists in the
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Table 3.3: Activities performed by each participant in each sample (M: Mining patterns;
R(P): Review of the patterns mined/reviewed by participant P; R(P, Q): Review of the
patterns mined /reviewed by participants P and Q)

Participant Round 1 Round 2
Additions Removals Additions Removals
(206) (101) (62) (31)

Py M + R(P2) M + R(P2) M M

P, M + R(P;) M + R(Py) - -

Ps R(Pq, P2) R(P1, P3) R(P1) R(P1)

Py R(Py1, P2, P3) R(Py, P2, P3) R(Py, P2, P3) R(Py, P2, P3)

removals sample. From the fact that every added feature should be eventually removed,
and that such removal can be achieved by simply following the opposite steps performed
when adding the feature, we take the inverse of any addition pattern to be an inferred
removal if it is not already in our catalog of patterns.

I2 There exists a pattern in the removals sample, but an inverse pattern is not reported
in the additions sample. From the rationale that a feature can only be removed if it is
first added, and that such addition can be achieved by following the inverse steps of its
removing pattern, we take the inverse of any removal pattern to be an inferred addition
if it is not already in our catalog of patterns.

These rules are not exhaustive, and other patterns can be inferred by additional rules
(e.g., by composing patterns). However, we restrict inference to rules I1 and 12 on the
basis that the existence of their inferred patterns is suggested by the reported inverse non-
inferred patterns. When reporting our patterns, we clearly distinguish which are inferred
and which are not.

3.4.6 Pattern Representation
Each pattern we mine captures a common structure among the before and after states of
all commit windows in a given cluster resulting from our categorization and clustering step.

To facilitate understanding, we represent these structures graphically, devising a special
notation. As an example, consider a particular instance of a merge pattern operating on

47



the two framebuffer-related features presented in Section 3.1: FB_IMAC and FB_EFI. Both
features are children of FB. Due to their similarity, developers decide to merge the two
features, adding the capabilities of FB IMAC into the implementation of FB_EFI. To avoid
capability redundancy, developers remove FB IMAC from the variability model, mapping
and implementation.'* Figure 3.9 captures such a pattern. As the figure shows, a pattern
denotes a transition from a before-state to an after-state, which results from the application
of the prescribed change. The transition is represented by an arrow (shown in the middle);
the before-state is on the left of the arrow; the after-state follows it. In each state, the
pattern captures key characteristics in the variability model, build files, and source code.

We express the variability model in a FODA-based notation, together with the set of
the existing cross-tree constraints (i.e., CTC'). Since FODA [74] is a simple, intuitive and
widespread notation praised by both researchers and practitioners [20], we can abstract
over many specific details of Kconfig, while reaching a larger audience. In the before-
state of Figure 3.9, two optional sibling features exist: f; (matches FB_IMAC) and fo
(matches FB__EFI). To explicitly report that these features are visible (promptable) during
configuration, we use a corresponding attribute (shown inside square brackets).

We capture the mapping M as a sequence of build rules defined by the following syntax:
M = (R")
R := (E,R,R) | object files™ | directory™ | compilation flag® | €
In a conditional build rule (e, ry,r), e is an expression E over feature names; r; is another
build rule R executed in case e evaluates to true; r9 is an alternative build rule if e does
not hold. The shorthand form (e,r;) is used when ry is empty. Unconditional rules are
either a sequence of object files, a non-empty list of directories, one or more compilation
flags, or an empty rule. The pattern in Figure 3.9 shows two build rules: (fi, fi.0) and
(f2, f2.0), stating that the presence of f; and fy triggers the compilation and linkage of
their corresponding compilation units (imacfb.c and efifb.c in the example). For simplicity,
this representation does not distinguish dynamically loadable modules from objects to be
statically linked against the kernel.

Similarly to the mapping space, we capture the implementation (/) as a sequence of
code block triples (e, ¢, ¢2), where e is a macro-based expression over feature names and ¢;
and ¢y are themselves code block triples. As before, simplifications are possible: ¢ denotes
an unconditional code block and (e, ¢;) is a conditionally compiled code block without an
alternative. In case an entire compilation unit implements a feature, we draw a square in
the code space (e.g., matching imacfb.c and efifb.c, respectively).

4 http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=7c08c9ae
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Figure 3.9: Definition of Merge Visible Optional Feature into Sibling (MVOFS)

In all spaces, we use ellipses (“...”) to ignore unrelated elements that do not affect the
features under analysis.

The after-state of the merge pattern in Figure 3.9 removes f; from all three spaces
(removal is generally denoted by omitting elements previously shown in the before-state).
The set of cross-tree constraints is then rewritten (CTC') such that every reference to f
becomes a reference to fo. Besides referential integrity, such rewrite guarantees that all
constraints imposed by f; are now imposed by f> as well (no constraint is lost). Further-
more, the compilation unit of f, continues to support the capabilities of f;, plus its own,
which we denote as fo > fi.

3.5 Results

We find 23 patterns from the analysis of our two samples; of those, 19 are non-inferred,
while four are inferred. Table 3.4 lists all the patterns and their usage frequency. Non-
inferred patterns abstract over the changes in clusters with at least three commit windows;
moreover, the total number of primary commit contributors in the commit windows inside
the cluster of a non-inferred pattern is always greater or equal to three. In the table, non-
inferred patterns are identified by a No-value in the Inferred column. In contrast, inferred
patterns denote the cases where we find a non-inferred pattern, but we lack evidence of
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Table 3.4: Collected patterns and their frequency

Feature additions sample Feature removals sample

Pattern Frequency Inferred? Pattern Frequency Inferred?
1 AVOMF 124 No RVOMF 22 No
2 AVOGMF 11 No RVOGMF 12 No
3 AVONMF 32 No RVONMF 10 No
4 AVOCFF 4 No RVOCFF 0 Yes
5 AVONMCFF 3 No RVONMCFF 0 Yes
6 AVOAF 2 Yes RVOAF 6 No
7 AVMVF 3 No RVMVF 3 No
8 AIMF 12 No RIMF 3 No
9 ACINMF 2 Yes RCINMF 3 No
10 FCUTVOF 10 No MVOFNO 3 No
11 FCFTVOF 4 No MVOFS 3 No
12 RNM 11 No RNM 18 No

Total 218 Total 83

Sample (%)  81% Sample (%)  63%

an inverse pattern in the complementary sample. The inverse pattern, however, is likely
to exist in the Linux kernel evolution. Inferred patterns are identified by a Yes-value in
the Inferred column. To illustrate inference, consider the case where a developer adds a
visible (promptable) feature controlling a specific compilation flag, as prescribed by the
AVOCFF pattern (row 4). Following such addition, it should also be the case that the
same feature should be later removed in the course of evolution, although we may not see
it as part of our removals sample. In the later case, we infer the pattern.

We discuss all the patterns in the following, except for rename (RNM), which we omit
due to its simplicity.'®> We also present a brief discussion over changes that do not lead to
patterns.

15Basically, a rename just updates all references to a given feature name f to a new name fx in all
spaces where f appears. Note that renaming does not cause any behavioural change, nor does it change
the set of cross-tree constraints.
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3.5.1 Non-Inferred Feature Addition Patterns

We find nine non-inferred patterns in the additions sample. They concern two specific
situations: (i) adding a new feature from completely new elements (AVOMF, AVOGMF,
AVONMF, AVOCFF, AVONMCFF, AVMVF, and AIMF); (ii) adding a new feature cre-
ated out of existing elements—featurization (FCUTVOF and FCFTVOF). Altogether, they
capture how the mapping and implementation change upon adding a new feature in the
variability model namespace.

Add Visible Optional Modular Feature (AVOMF)

A visible and optional modular feature increases the user configuration space by providing a
functionality unit that can be optionally present in the resulting kernel. Modularity, in this
case, assures that some of the capabilities of the new feature have their own compilation
unit(s).

As shown in Figure 3.10, the pattern adds a new optional and visible feature f in
the variability model, along with its associated cross-tree constraints (CTCy). A build
rule then relates the feature presence to its compilation units, whose files are added to
the implementation space. The addition of CAPTURE DAVINCI DM646X EVM, previously
discussed in Section 3.4, is an instance of this pattern.

Most primary features in the additions sample (46 %) fit into this pattern. To verify
where the instances of this pattern add features to, we map the primary features of AVOMF
to each kernel subsystem. According to Corbet et al. [33], there are seven subsystems in
the kernel: arch, core, driver, firmware, fs, misc, and net. Greg Kroah-Hartman, the main
developer of the Linux kernel stable branch,'® provides a mapping between files in the code
base of the Linux kernel and the subsystems reported by Corbet et al.!” We take Hartman’s
mapping to be expert knowledge, reusing it without modifications. The mapping between
the kernel source code tree to its associated subsystems is summarized in Table 3.6; a
bullet in a given cell indicates that at least one file in a given folder (row) maps to the
corresponding subsystem (column). By applying Hartman’s mapping to each file in the
Linux kernel source code tree, we take the subsystem of a feature to be the same of its
enclosing Kconfig file. Once we associate each feature with a single subsystem, we count
the number of pattern instances adding primary features to each kernel subsystem (see
Table 3.7). In the case of the AVOMF pattern, its instances add features to the following
subsystems:

Yhttp://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/MAINTAINERS
"https://raw.github.com/gregkh/kernel-history/master/scripts/genstat.pl
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Table 3.5: Description of the top-level folders of the Linux kernel source code tree (based
on |23, 93, 140])

Folder Description

arch Architecture (CPU) dependent code

block I/O scheduling algorithms for block devices

crypto Cryptography-related algorithms

Documentation Brief descriptions of each part of the implemented kernel

drivers Device drivers of different devices classes

firmware Device firmware needed by certain drivers

fs Defines the virtual file system abstraction, along with concrete file systems
include Kernel header files

init Kernel boot and initialization

ipc Support for inter-process communication (IPC)

kernel The main kernel code (architecture independent)

lib Library (helper) routines

mm Memory management support

net Implementation of network protocols

samples Different code examples

scripts Different scripts for building the kernel

security The security framework of the kernel, known as LSM (Linux Security Modules),

supporting different access control models [148§]

sound The Linux sound subsystem and related device drivers

usr Implementation of initramfs, a RAM-based root filesystem required by the
startup process; the first process (init) runs on top of it

tools Tools for building the kernel and helper programs useful for kernel developers

virt Virtualization support

e Device driver (driver): 93.6 % of the instances in this pattern concern the addition of
device drivers (i.e., features that are “plugged-in” to the kernel to support different
hardware). This high frequency is in line with previous work [53, 61, 70, 91] stating
that Linux kernel evolution is mainly driven by the addition of new device driver-
related features.
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Table 3.6: Mapping of the kernel’s top-level directories and its subsystems

Source code folder Subsystems

arch core driver firmware fs misc net

arch °

block °

crypto °

Documentation °
drivers °

firmware °

fs °

include ° ° ° ° °
init °

ipc °

kernel °

lib °

mm °

net °
samples °

scripts °
security °

sound °

usr °

tools °

virt °

e Architecture specific code (arch): 2.4% of the instances of this pattern add modules
that are specific to a given hardware architecture. For example, one instance adds
support for injecting machine checks when testing the kernel for the x86 architecture.
Such functionality is used by kernel developers when performing quality assurance.

e File system (fs): 1.6 % of AVOMF features relate to adding file system functionalities,
including support for integrity tests and compression support (LZO) for the Squash
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Table 3.7: Frequency of non-inferred patterns per subsystem (additions sample)

Pattern Distribution across systems

arch core driver firmware fs misc net

AVOMF 3 1 116 0 2 0 2
AVOGMF 0 0 9 0 0 0 2
AVONMF 7 2 19 0 3 0 1
AVOCFF 0 2 2 0 0 0 0
AVONMCFF 2 0 1 0 0 0 0
AVMVF 0 1 2 0 0 0 0
AIMF 0 0 11 0 0 0 1
FCUTVOF 0 0 10 0 0 0 0
FCFTVOF 0 1 3 0 0 0 0
RNM 0 0 10 0 1 0 0

file system.'®

e Network (net): 1.6% of the features of this pattern provide network capabilities,
such as extending a network protocol with a new functionality. One specific case
adds probing support for incoming SCTP packets.

e Core functionality (core): 0.8% of the features of this pattern add a module to the
core subsystem. An example is self-test for 64-bit atomic instructions.

Instances of this pattern are either tristate (91 %) or Boolean. The dominance of tris-
tate features follows a trend in most of the patterns related to modular features, evidencing
a strong relationship between the two. This association is unlikely to be accidental, as mod-
ular tristate features provide flexibility to cover different requirements and configuration
purposes. For example, in embedded platforms where hardware can be anticipated, tristate
features can be statically linked against the final kernel; in other situations, when hardware
configuration varies, tristate features can be compiled as LKMs and loaded as needed.

It is worth noting that a modular feature can still have extensions elsewhere. Such cases,
however, are not frequent. After checking out the last commit in the commit window of
each AVOMF instance and counting the number of extensions associated with each primary

8http://squashfs.sourceforge.net/
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feature in C header and implementation files, we find only 11 features introducing ifdefs; in
total, we identify 14 extensions. All extensions are disciplined [89], i.e., their ifdefs annotate
code fragments matching entire syntactic units in the host programming language (C).
Similar to previous studies [77, 87|, we also assess the level at which developers write their
extensions. Our analyses show that 64.3% (9) of extensions add code at the global level
(e.g., declaring a new macro, variable, function, structure, etc), while 28.6 % (4) add code
at the function level (e.g., by adding statements inside a function);'® there is a single case
(7.1%) where a feature adds an extension at the type level (e.g., annotating the declaration
of a field within a struct type). The number of extensions per feature is also low: of all 11
AVOMF features with extensions, eight have SD = 1; the remaining three have SD = 2.
Thus, only 2% of AVOMF cases concern scattered features i.e., features with SD > 2. Two
of the three scattered features are locally scattered. Stated otherwise, they are scattered
across the same subsystem as their containing one (driver and fs, respectively). The other
scattered feature, in contrast, is globally scattered—it has at least one extension outside
its containing subsystem (driver). Specifically, we find it to have two extensions in the arch
subsystem.

AVOMF usage suggests that most features in the Linux kernel are completely modular.
When not fully modular, extensions are limited, and so is their scattering degree. The
lack of AVOMF features in fs that are globally scattered outside fs is likely to follow
from the Virtual File System abstraction layer, whose role is to shield other parts of the
kernel against new file systems and their supported feature set. Analogously, device drivers
tend to be fully modular; most tend to be simply "plugged-in" to the system, registering
themselves as handlers to specific events (e.g., hardware interrupts) [34].

Add Visible Optional Guard Modular Feature (AVOGMF)

This pattern is a specialization of AVOMF. However, we distinguish between the two
and count them separately because the structure of AVOGMF plays an important role in
the compilation process. In addition to the changes imposed by AVOMF, the AVOGMF
pattern requires that f acts as a compilation guard over an entire directory, controlling
whether the compilation process should recursively descend to that location. As such, it
contains an additional mapping rule in the parent Makefile:

19The function level also includes the cases where developers annotate elements at specific positions
within an array initialization or fields in the case of struct instantiations.
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Figure 3.10: Definition of Add Visible Optional Modular Feature (AVOMF')

in parent Makefile
N
M=_..(f,f))...(f, fo)...)
~_—
in child Makefile (inside f/)

This rule instructs Kbuild to enter a child directory f upon the presence of that feature.
Once Kbuild enters the f folder, it processes a Makefile with the rule on how to build f
itself. Note that the condition over f.o in the build rule in the child Makefile is redun-
dant. Developers, however, tend to include it to prevent others from interpreting that the
compilation of f.o is not subject to the presence of the f feature. The addition of the de-
vice driver supporting Realtek’s© 8192 network adapter illustrates this (see Figure 3.11):20
in the parent Makefile (top snippet in the figure), Kbuild assesses whether RTL8192SE is
present. If so, it enters the rtl8192se directory and processes the child Makefile there (bot-
tom snippet); in that case, RTL8192SE’s presence enables the compilation of all objects in
the rtl8192se-objs list.

This pattern comprises 4 % of all additions, and two idioms result from its usage: (a)
developers create guard modular features to control the compilation of a single feature,
whose implementation is given by the files in the guarded directory. This represents 82 %
of the instances of this pattern, where all instances add features to the driver subsystem;

2Onttp://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=85e09b40
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’ drivers/net/wireless/rtlwifi/Makefile

+obj-$ (CONFIG_RTL8192SE) += rtl18192se/

’ drivers/net/wireless/rtlwifi/rt18192se/Makefile

+rt18192se-objs := dm.o fw.o hw.o led.o phy.o rf.o \
+ sw.o table.o trx.o
+

+0bj-$(CONFIG_RTL8192SE) += rtl8192se.o0

Figure 3.11: Example of Add Visible Optional Guard Modular Feature (AVOGMF)

(b) a guard modular feature roots a subtree in the variability model with, at least, one
modular descendant feature. All modular features in the subtree reside in the f directory.
All the instances of the AVOGMF pattern that relate to this idiom usage add features to
the net subsystem.

Add Visible Optional Non-Modular Feature (AVONMEF)

This pattern concerns the addition of features that do not fit inside a module, but rather
reside in an existing host code; 12 % of the additions instances match this pattern.

As shown in Figure 3.12, this pattern adds a visible optional feature in the variability
model, while not changing the mapping. The implementation changes by including code
extensions (C) whose compilation depends on f. Alternative fragments, as given by Cs,
may be absent.

This pattern serves the purpose of extending existing capabilities in code. The following
patch snippet illustrates this:2!

+#ifdef CONFIG_SQUASHFS_4K_DEVBLK_SIZE
+#define SQUASHFS_DEVBLK_SIZE 4096
+#else

+#define SQUASHFS_DEVBLK_SIZE 1024
+#endif

21 http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=7657cact
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Figure 3.12: Definition of Add Visible Optional Non-Modular Feature (AVONMF)

If SQUASHFS 4K DEVBLK _SIZE (matches f) is present, the block size of the Squash file
system is set to four kilobytes; otherwise it is set to one kilobyte.

Following the same analysis in AVOMEF, we measure the scattering degree of AVONMF
features and check whether their ifdefs relate to a disciplined usage. We find 62 % (20) of
the instances of this pattern to be scattered features (SD > 1), while the remaining ones
(12) have SD = 1. In total, there are 135 extensions, with a median of two extensions
per feature (min =1, max =36). As it occurs with AVOMF, the extensions of AVONMF
features are disciplined: 40.7% (55) occur at the global level, 39.3% (53) appear at the
function level, while 7.4 % (10) and 11.9% (16) are at the type and block (e.g., adding a
statement to a for loop) levels, respectively. There is a single case of undisciplined usage
(0.7%), where an ifdef guards a piece of a statement. This distribution of disciplined
annotation percentages is similar to the one reported by Liebig et al. when investigating
40 pre-processor-based systems [87]. As we find only one case of a statement annotation,
we strengthen their claim that fine-grained extensions are not frequent in practice. When
investigating scattering location, we find that 60 % of scattered AVONMEF features are
locally scattered, with a maximum SD of eight and a median of three. A lower proportion
(40 %) is globally scattered, although displaying higher scattering degrees (min =2, me-
dian = 5.5, and max = 36). These results suggest that, in the Linux kernel, global scattered
features have higher SD-values when compared to locally scattered ones.

In contrast to modular features, in 94 % of the instances of this pattern, f is a Boolean
feature. Since it does not introduce any compilation unit (and thus, no build rules), it is
not possible to directly control whether f should be statically present in the resulting kernel
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or whether it should be possible to load f dynamically at runtime. The only situation in
which f is tristate is when it contains a reverse dependency to a modular tristate feature
fs; if declared as Boolean, f would cause f; to be statically compiled into the resulting
kernel, and thus, breaking the flexibility of the runtime variability related to f,. However,
visible optional non-modular tristate features are rather infrequent, as only two instances
appear in our sample; one of them has no selection towards another tristate feature, and
thus, provides no benefit over a Boolean declaration.

Most instances of the AVONMF pattern add features to the driver subsystem (59.3 %),
although less frequently than AVOMF instances. In the remaining, 21.9 % relate to adding
features in arch, 9.4 % in fs, 6.3 % in core, and 3.1 % in net.

Add Visible Optional Compilation Flag Feature (AVOCFF)

This pattern captures the addition of features that exist with the sole purpose of enabling
specific compilation flags; it comprises 1% of all additions in our sample. The purpose of
the pattern is to expose a compilation flag that enables specific diagnostic capabilities, such
as profiling and debug messages. Figure 3.13 shows the pattern, and an example is given
in Figure 3.14.22 Selecting USB_DWC3_ VERBOSE, a new feature added to the Kconfig
model (Figure 3.14, lines 3-8), defines the macro symbol VERBOSE DEBUG, which is then
referred in code, controlling whether calls to specific debug routines should be in the post-
processed file. The definition of VERBOSE DEBUG occurs by adding the compilation flag
-DVERBOSE DEBUG to the C flags list (ccflags).

In the investigated sample, half of the AVOCFF instances add features to core, while
the remaining add features to driver.

Add Visible Optional Non-Modular Compilation Flag Feature (AVONMCFF)

This pattern is a composition of AVONME and AVOCFF. It is not accounted in neither
AVONMF nor AVOCFF, as the former does not change the mapping, whereas the latter
does not affect the implementation. To cover both types of changes, we introduce the new
pattern AVONMCEFF, which is equivalent to the composition of the two base patterns.
The result of the AVONMCFF pattern in the after state is a new visible optional feature
in the variability model, and a new compilation flag whose activation is subject to the
presence of the newly added feature, together with ifdefs in code that refer to it. Since the

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=72246da4
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Figure 3.13: Definition of Add Visible Optional Compilation Flag Feature (AVOCFF)

new feature does not hold a compilation unit of its own, it is non-modular. The pattern
has three instances, corresponding to 1% of the additions sample size. All three instances
are Boolean, adding features to arch (2) and driver (1).

Add Visible Mandatory Value-Based Feature (AVMVF)

This pattern, shown in Figure 3.15, covers the addition of a mandatory visible value-based
feature (integer or string). As the feature is just a place-holder for a value, it does not add
any cross-tree constraint, nor any compilation unit, preserving both CTC and M. The fea-
ture is, however, referred in the implementation when initializing specific parts of the code.
Figure 3.16 exemplifies the pattern.?® In the example, developers add RCU BOOST PRIO
as a new feature in the variability model, setting it to depend on RCU_BOOST. Such de-
pendency, however, is not a cross-tree constraint. Rather, the dependency is used by the
Linux kernel configurator to place RCU_BOOST _PRIO as a child of RCU_BOOST. At the
implementation level, RCU_BOOST _PRIO is referred in kernel/rcutiny plugin.h as a means
to properly define a macro with the same name as the feature (lines 20-24), but lacking
the CONFIG _ prefix in code. The defined macro is then referred in kernel/rcutiny.c (line 32)
when initializing a scheduling parameter.

Three instances of our sample (1 %) fall into this pattern, adding features to core (1)
and driver (2).

Zhttp://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=24278d14
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drivers/usb/dwc3/Kconfig

+config USB_DWC3_VERBOSE

depends on USB_DWC3_DEBUG
help

+
+
+
+
+ DWC3 Driver.
+

0 ...

11

-
]

13

-

4

15

16

bool "Enable Verbose Debugging Messages"

Say Y here to enable verbose debugging messages on

|drivers/usb/dwc3/Makefile

+ccflags-$ (CONFIG_USB_DWC3_VERBOSE) += -DVERBOSE_DEBUG

Figure 3.14: Example of Add Visible Optional Compilation Flag Feature (AVOCFF)
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Figure 3.15: Definition of Add Visible Mandatory Value-Based Feature (AVMVF)

Add Internal Modular Feature (AIMF)

Internal modular features are not directly exposed to users during configuration, as they
are invisible (non-promptable). Such features exist to provide a common infrastructure to
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init/Kconfig

+config RCU_BOOST_PRIO

int "Real-time priority to boost RCU readers to"

range 1 99

depends on RCU_BOOST

default 1

help
This option specifies the real-time priority to which
preempted RCU readers are to be boosted. If you are
working with CPU-bound real-time applications, you
should specify a priority higher then the highest-priority
CPU-bound application.

+ + 4+ + + + + + + + o+

kernel/rcutiny_plugin.h

+#ifdef CONFIG_RCU_BOOST

+#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
+#telse /* #ifdef CONFIG_RCU_BOOST */

+#define RCU_BOOST_PRIO 1

+#endif /* #else #ifdef CONFIG_RCU_BOOST */

kernel/rcutiny.c

static int __init rcu_spawn_kthreads(void)
{
+ sp.sched_priority = RCU_BOOST_PRIO;

+ sched_setscheduler_nocheck(rcu_kthread_task, SCHED_FIFQ0, &sp);
return O;

+

Figure 3.16: Example of Add Visible Mandatory Value-Based Feature (AVMVF)
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other features, which in turn select them by means of reverse dependencies. Overall, this
pattern comprises 4 % of all additions in our sample.

This pattern describes how internal modular features are added: as with other modular
features, the variability model, mapping, and implementation change to accommodate the
new feature (referred as f1). However, two key characteristics arise: (i) fi is invisible;
(ii) an additional constraint states that another feature f, selects f; (represented as an
implication). Thus, the cross-tree constraints in the after-state are: CTC’ = CTC U
CTCr, U{fo — f1}.

Except for one feature in net, all other instances of AIMF concern the addition of
driver-related features (92 %).

Featurize Compilation Unit to Visible Optional Feature (FCUTVOF)

Featurization occurs when existing elements are exposed as new features. One specific kind
of featurization is when an existing compilation unit, initially subject to the presence of
a feature p, becomes associated with its own feature, which is in turn created as a result.
Such situation occurs in 4 % of additions.

In the extracted pattern, illustrated in Figure 3.17, a feature p controls a set of object
files fi.0... f,.0. One of these objects, however, is not essential to the functionality pro-
vided by p; rather, its capability is optional. In this case, f;.o is featurized, i.e., a new
feature f; is created to control whether f;.o should be compiled or not. The new feature,
in turn, is placed in the variability model under an existing feature q. Note that features
p and ¢ may or not be the same. Upon the creation of f;, f;.o is then removed from the
list of objects controlled by p. Featurizing f;.o gives users a finer-grained control over the
configuration process, while decreasing the granularity of p. That prevents unnecessary
functionality to be shipped in the resulting kernel, and in turn, improves its memory usage
and boot time. The example shown in Figure 3.18 illustrates the featurization of me4000.0,
previously controlled by COMEDI_PCl_DRIVERS, into the new feature COMEDI_ME4000.%

All 10 instances of the FCUTVOF pattern add features to the driver subsystem.
Featurize Code Fragment to Visible Optional Feature (FCFTVOF)

In this featurization pattern (see Figure 3.19), an unconditional code fragment Cyy becomes
conditionally compiled and bound to the presence of a newly added feature f. To cover

24 http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=f1d7dbbe
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Figure 3.17: Definition of Featurize Compilation Unit to Visible Optional Feature
(FCUTVOF)

the case where f is not present, an alternative piece of code is given (C7). When Cj is
not empty, the goal of the pattern is to provide an alternative behavior to an already
existing implementation. Otherwise, the pattern extracts optional behaviour, decreasing
the footprint of the resulting object code, which improves overall performance.

This FCFTVOF pattern covers 1% (4) of the sampled additions, and for the most part
(3) it concerns the featurization of code fragments in driver-related features. Figure 3.20
provides an example of the featurization of volume-related functions in the subdriver of
the ACPI ALSA driver for ThinkPad(©).?® If THINKPAD ACPI_ALSA SUPPORT is present
(a newly added feature), the volume-subdriver registers support for volume capabilities
(not shown) and successfully initializes, as given by the return value in its init function
(Figure 3.20, line 25); otherwise, THINKPAD ACPI ALSA SUPPORT is not present, and
volume capability-functions are not compiled in the resulting driver, causing the initializa-
tion of the volume-subdriver to fail, as given by the return value one (line 34). The commit
log message of the patch confirms that the featurization is motivated by performance op-
timization:

Phttp://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ff850c33
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drivers/staging/comedi/Kconfig

menuconfig COMEDI_PCI_DRIVERS
tristate "Comedi PCI drivers"

+config COMEDI_ME4000
+ tristate "Meilhaus ME-4000 support"

+ help
+ Enable support for Meilhaus PCI data acquisition cards
+ ME-4650, ME-4670i, ME-4680, ME-4680i and ME-4680

drivers/staging/comedi/drivers/Makefile

-0obj-$(CONFIG_COMEDI_PCI_DRIVERS) += me4000.0
+obj-$(CONFIG_COMEDI_ME4000) += me4000.0

Figure 3.18: Example of Featurize Compilation Unit to Visible Optional Feature
(FCUTVOF)
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Figure 3.19: Definition of Featurize Code Fragment to Visible Optional Feature
(FCFTVOF)

"Allow the user to choose through Kconfig if the Console Audio Control inter-
face (aka "volume subdriver") should be available or not. This not only saves
some memory, but also allows the thinkpad-acpi driver to be built-in even if
ALSA is modular when the console audio control interface is not wanted..."

3.5.2 Inferred Feature Addition Patterns

We infer two patterns in the additions sample: Add Visible Optional Abstract Feature
(AVOAF) and Add Computed Internal Non-Modular Feature (ACINMF). Both inferred
patterns are bellow the threshold of three instances, but they have a corresponding inverse
non-inferred pattern in the removals sample. The existence of an inverse non-inferred
pattern in the removals sample suggests the inferred ones.

Add Visible Optional Abstract Feature (AVOAF)

This inferred pattern concerns the addition of abstract features, i.e., features that are
exclusive to the variability model, and thus, are not referred in other spaces [134]. All the
four cases of adding abstract features in the unexcluded portion of the additions sample
relate to Boolean and optional features, but only half are visible. Thus, this pattern is
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drivers/platform/x86/Kconfig

+config THINKPAD_ACPI_ALSA_SUPPORT

Enables monitoring of the built-in console audio output
control (headphone and speakers), which is operated by
the mute and (in some ThinkPad models) volume hotkeys.

+ bool "Console audio control ALSA interface"
+  depends on THINKPAD_ACPI

+ depends on SND

+ depends on SND = y || THINKPAD_ACPI = SND
+ default y

+ ---help---

+

+

+

drivers/platform/x86/thinkpad_acpi.c

+#ifdef CONFIG_THINKPAD_ACPI_ALSA_SUPPORT

static int __init volume_init(struct ibm_init_struct *iibm)
{
vdbg_printk (TPACPI_DBG_INIT,
"initializing volume subdriver\n");
return O;
+
+#telse /* !CONFIG_THINKPAD_ACPI_ALSA_SUPPORT */

+#define alsa_card NULL
+ ...

+static int __init volume_init(struct ibm_init_struct *iibm)
+{

+  printk (TPACPI_INFO, "volume: no ALSA support...\n");

+ return 1;

+}

+#endif

Figure 3.20: Example of Featurize Compilation Unit to Visible Optional Feature

(FCUTVOF)
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under our set threshold, as it has only two instances. However, as we report an inverse non-
inferred pattern (RVOAF) in the removals sample, we classify these two visible features as
part of an inferred pattern in the additions sample.

Interestingly, all abstract features in the addition sample are leafs in the variability
model (as opposed to being internal nodes). In the cases where these abstract features
are visible, their addition aims at capturing a configuration aspect that other features rely
on. These features, in turn, do affect the mapping and/or implementation. Figure 3.21
illustrates this:2® the addition of the visible optional abstract feature RD XZ in the misc
subsystem (lines 4-12) captures whether users want support for initial RAM disk compres-
sion. An initial RAM disk (initrd) is an initial root file system loaded as part of the kernel
booting process, providing a minimal set of directories and executables that support the
booting process (e.g., the insmod executable will be called to load different kernel modules,
such as device drivers) before the actual file system is mounted. An initial RAM disk
is kept as a compressed file, which is then uncompressed during the boot and placed in
the primary memory (RAM). Upon the selection of RD_XZ, a reverse dependency selects
DECOMPRESS XZ, causing decompress_unxz.o to be compiled in a supporting library for
the kernel (line 20). The other instance of this inferred pattern concerns the addition of
an IPV4 feature in net.

The other two situations of adding abstract features relate to invisible ones. The two
invisible features are capability abstractions [21] over the target hardware architecture for
the kernel. Figure 3.22 illustrates this:*” HAVE_KERNEL GZIP (line 3) abstracts over gzip
compression support of the target kernel image. As this functionality is not specific to x86,
another feature KERNEL GZIP exists, and its selection depends on the existing support of
the target hardware architecture. Hence, x86 explicitly states its supported capabilities by
selecting them, which includes HAVE KERNEL GZIP (line 23). Although this situation is
actually prescribed in the Kconfig manual,?® it was not found recurrent in our sample, and
thus, we do not report it as a pattern. Moreover, it cannot be inferred, as we do not report
an inverse pattern in the removals sample.

Add Computed Internal Non-Modular Feature (ACINMF)

This inferred pattern concerns the addition of a feature that is not promptable, and thus,
it is invisible to users. Its presence is computed from a constraint setting the default value

26 http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=3ebe1243
2Thttp://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=2e9f3bdd
2https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
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10

11

12

13

14

15

16

17

18

19

20

21

22

usr/Kconfig

+config RD_XZ
bool "Support initial ramdisks compressed using XZ"
if EMBEDDED
default !'EMBEDDED
depends on BLK_DEV_INITRD
select DECOMPRESS_XZ
help
Support loading of a XZ encoded initial ramdisk or cpio
buffer. If unsure, say N.

+ + 4+ + + + + + +

|lib/Makefile

+# X7
1ib-$ (CONFIG_DECOMPRESS_LZMA) += decompress_unlzma.o

+1ib-$ (CONFIG_DECOMPRESS_XZ) += decompress_unxz.o
+

Figure 3.21: Example of Add Visible Optional Abstract Feature (AVOAF)
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1 |init/Kconfig

s +config HAVE_KERNEL_GZIP
4+ + Dbool
5 +

7 config KERNEL_GZIP

s - bool "Gzip"

o + depends on HAVE_KERNEL_GZIP

10 help

11 The o0ld and tried gzip compression. Its compression ratio
12 is the poorest among the 3 choices; however its speed

13 (both compression and decompression) is the fastest.

17 |arch/x86/Kconfig

18

o config X86

20 select HAVE_GENERIC_DMA_COHERENT if X86_32
21 select HAVE_EFFICIENT_UNALIGNED_ACCESS

22 select USER_STACKTRACE_SUPPORT

23 + select HAVE_KERNEL_GZIP

24

=

25

Figure 3.22: Example of an invisible optional abstract feature
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of the feature. The added feature is referred in code by means of ifdefs; as it does not
have a compilation unit, the feature is non-modular. Computed internal features exist
to encapsulate specific constraints, which simplifies the encoded variability; instead of
repeating the constraint at each variation point that it is needed, developers encapsulate
it in a single feature, which facilitates later maintenance when updating the constraint.
Two instances of this inferred pattern appear in the additions sample, and both concern
Boolean features being added to arch and core, respectively.

3.5.3 Non-Inferred Feature Removal Patterns

Non-inferred patterns in the removal sample capture how the mapping and implementa-
tion spaces change, if at all, upon the removal of an existing feature in the variability
model. Excluding rename (RNM), we report nine non-inferred patterns in the removals
sample, from which seven capture retirement situations directly matching their counterpart
in the additions sample: Retire Visible Optional Modular Feature (RVOMF), Retire Vis-
ible Optional Guard Modular Feature (RVOGMF), Retire Visible Optional Non-Modular
Feature (RVONMF), Retire Visible Optional Abstract Feature (RVOAF), Retire Visible
Mandatory Value-Based Feature (RVMVF), Retire Internal Modular Feature (RIMF), and
Retire Computed Internal Non-Modular Feature (RCINMF). Among these, retirement pat-
terns removing visible optional features and affecting the implementation space account for
most removal cases. The inverse addition patterns matching these removal patterns show
the same trend. Thus, both trends suggest that the kernel evolution is mainly driven by
adding or removing visible optional features with some associated implementation. More-
over, as observed in the additions sample, most removal patterns relate to features in the
driver subsystem (see Table 3.8).

Kernel maintainers retire features when: (a) the features are under staging (unstable
features) for a long time, and there is no indication that they will gain enough quality to be
merged into the main kernel. Reasons include broken, unmaintained, or buggy features, or
non-adherence to development conventions; (b) the features break due to changes elsewhere
and no effort is put to fixing them; (c) the features are not used and are unmaintained
for a long time; (d) another feature supersedes an obsolete one, causing the latter to be
retired.

Interestingly, 67 % of RIMF and RVMVF, 64 % of RVONMF, 50% of RVOAF, and
27 % of the RVOMF instances are removed as a consequence of retiring the whole subtree
containing them. This suggests that some forms of retirement occur in a coarse-grained
manner and are triggered by the removal of a feature rooting an entire subtree, along with
all its descendants.
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Table 3.8: Frequency of non-inferred patterns per subsystem (removals sample)

Pattern Distribution across subsystems

arch core driver firmware fs misc net

RVOMF 1 1 20 0 0 0 0
RVOGMF 0 0 12 0 0 0 0
RVONMF 0 0 10 0 0 0 0
RVOAF 0 0 4 0 0 0 2
RVMVF 0 0 2 0 0 0 1
RIMF 0 0 3 0 0 0 0
RCINMF 2 0 1 0 0 0 0
MVOFNO 0 0 3 0 0 0 0
MVOFS 0 0 3 0 0 0 0
RNM 0 0 16 0 1 0 1

Non-retirement patterns also exist, and capture cases where a feature is merged into an-
other one. Two such patterns exist: Merge Visible Optional Feature into New One (MVOFNO)
and Merge Visible Optional Feature into Sibling (MVOFS). The instances of each merge
pattern concern the merging of features in the driver subsystem. We present MVOFNO
and MVOFS in the following.

Merge Visible Optional Feature into New One (MVOFNO).

This pattern concerns the creation of a feature from an existing one, which is then enhanced
with new code. Figure 3.23 illustrates the pattern. A feature f; is renamed to f,, and its
set of cross-tree constraints is replaced with a new set C'T'Cy,. Furthermore, all references
to f1 are replaced by references to f; in all spaces. At the implementation level, fo > f;
captures the enhanced code, meaning that fs supports all the capabilities of fi, plus new
ones.

Of all instances in the removals sample, 2% (3) fit into this pattern and often relate to
generalizing drivers to support a set of related hardware family.

As a concrete example, consider the merge of BATTERY PALMTX into the new fea-
ture BATTERY WMO97XX supporting a whole family of chips.?? As shown in the associ-

2http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=4e9687d9
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Figure 3.23: Definition of Merge Visible Optional Feature into New One (MVOFNO)

ated patch (see Figure 3.24), developers drop the original cross-tree constraints and re-
name the previous feature in the variability model and mapping. Moreover, the code is
updated with various information about the new driver (not shown). Note that in the
example, the merge changes the associated help text, but it does not relate the new fea-
ture back to BATTERY PALMTX. Thus, when users migrate towards a newer kernel with
BATTERY WMO97XX, they may incorrectly conclude that BATTERY PALMTX is no longer
supported. Hence, merges can cause the false impression that some features cease to exist.

Merge Visible Optional Feature into Sibling (MVOFS)

This pattern covers the situation in which developers merge a visible optional feature into
its sibling (see Figure 3.9), due to their similarity. The merging of FB_IMAC into FB_EFI,
previously discussed in Section 3.4.6, exemplifies the pattern. This pattern aims at easing
maintenance, as keeping two similar features might require a duplicate effort whenever a
change occurs in either of them. As other merges, this pattern is responsible for 2% (3) of
all removals in the sample.
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drivers/power/Kconfig

-config BATTERY_PALMTX
- tristate "Palm T|X battery"
- depends on MACH_PALMTX
+config BATTERY_WMO7XX
+  bool "WM97xx generic battery driver"
+ depends on TOUCHSCREEN_WM97XX
help
Say Y to enable support for the battery in Palm T|X.
+ Say Y to enable support for battery measured by WM97xx

drivers/power/Makefile

-0bj-$ (CONFIG_BATTERY_PALMTX) += palmtx_battery.o
+obj-$ (CONFIG_BATTERY_WMI97XX) += wm97xx_battery.o

Figure 3.24: Example of Merge Visible Optional Feature into New One (MVOFNO)
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3.5.4 Inferred Feature Removal Patterns

We infer two removal patterns: Retire Visible Optional Compilation Flag Feature (RVOCFF)
and Retire Visible Optional Non-Modular Compilation Flag Feature (RVONMCFF). Op-

posed to the inferred patterns in the additions sample, we do not find any instances of
these two patterns. However, as these feature types are added as seen in the additions

sample, it is reasonable to assume that one way of retiring such features is by performing

the opposite steps of their addition.

3.5.5 Non-Patterns in the Additions and Removals Samples

The patterns reported in Table 3.4 cover most of the additions (81 %) and removals (63 %)
we analyzed. However, not every change results in a pattern. Following the names defined
in the previous section, the additions that do not match a pattern and are not excluded
from analysis (38) fall into the following cases:

e Addition of guard features (5), i.e., features whose sole purpose is to guarantee the
compilation of the content inside a given folder. Although such case respects our
defined threshold of three instances, the changes in this cluster do not stem from
three distinct developers.

e Addition of internal optional abstract features (2).
e Addition of computed internal modular features (2).

e Addition of a computed internal non-modular feature whose extension combines new
code fragments with existing lines of code (1).

e Addition of an internal mandatory modular feature (1).
e Addition of internal mandatory non-modular features (2).
e Addition of internal optional non-modular features (2).

e Addition of a computed value-based feature, i.e., a value-based feature whose presence
is computed (1).

e Different situations of exposing existing code as a feature (15).

e Distinct merge cases (4).
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e Featurization of existing constraints in the variability model (2).

e Combination of the rename of a feature and the split of its compilation unit (1).

In the case of the 38 unexcluded instances in the removals sample that are not put as
part of a pattern, we report the following situations:

Removal of individual cases of internal features (4) not fitting RIMF nor RCINMF.
A concrete example includes the removal of an internal optional compilation flag
feature.

Different cases where a feature becomes an integral part of the code, while being
removed from the variability model (16).

Different merge situations that do not lead to patterns (17).

One split case.

Compared to the additions sample, removals tend to contain more merge-related changes,
with a rich realization that leads to different ways on how to accomplish them. Conse-
quently, few merge patterns arise.

3.6 Discussion

To align our results with our main research goal, we discuss how our variability-coevolution
patterns advance the understanding of variability evolution in real-world settings.

3.6.1 Variability Evolution Support Requires Accounting for the
Coevolution of Variability Models with Related Artifacts

Our patterns provide empirical evidence that any approach claiming to support variability
evolution only at the level of variability models is likely to be ineffective in practice, as
most observed additions and removals cases require changes outside the variability model.
This contrasts with existing research, which has been mostly focused on the evolution of
variability models only (see Chapter 2). Moreover, some changes can only be understood
by inspecting the coevolution with other artifacts (e.g., as in the case of merges).
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To illustrate our point, consider the edit-based reasoning technique proposed by Thiim
et al. [133], a state-of-the-art solution for assessing how variability model changes affect
the set of possible derivable variants. In such approach, changes are classified as:

o (Generalization: The introduced changes in the variability model do not impact pre-
vious valid configurations. Thus, new variants can be derived, while preserving the
original set of variants.

e Specialization: The changes decrease the original set of derivable variants.

e Refactoring: The set of derivable variants resulting from the changes remains the
same.

o Arbitrary edit: None of the above.

Reasoning is performed by efficiently translating both the original variability model and
the one resulting from the changes into a satisfiability problem; by avoiding an exponen-
tial explosion of CNF' clauses, the proposed reasoning has been tested over large models,
showing to scale with randomly-generated models with up to 10,000 features. Moreover,
reasoning does not require variability models to have the same set of features, as general-
ization can include new ones, and specialization remove others. This contrasts to previous
work analyzing equivalence or specialization of variability models with the same set of
features [71, 128].

Despite scalability advances, the work of Thiim et al. is not sound. Specifically, their
approach does not yield correct results if changes affect the feature set, but preserve the
overall functionality with changes in other spaces. The merging of FB_IMAC into FB_EFI,
discussed in Section 3.4.6, illustrates this situation. While FB_IMAC is removed from the
variability model, FB_EFI supersedes the removed feature in the implementation space.
Furthermore, since FB_EFI has the same cross-tree constraints as FB_IMAC, no constraint
is lost (a renaming refactoring updates references to FB_IMAC to become references to
FB_EFI). After the merge, all functionality remains the same, as support for FB_IMAC is
now given by FB_EFI. Hence, the set of variants does not change. In contrast, Thiim’s
edit-reasoning reports such merge as a specialization, indicating a shrink in the set of
variants—an incorrect result. Other reasoning techniques [71, 128] are even more limited,
as they only reason over variability model edits that preserve the feature namespace. As
the Linux kernel case shows, many cases do not fit into such situation.
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3.6.2 New Theories Must Account for Feature Retirement

Our catalog shows that feature retirement comprises most of the patterns in the removals
sample. Thus, removals are frequent in the evolution of the Linux kernel. While the
MVOFS and MVOFNO patterns are captured by the only known theory of software-
product-line refinement [22|, retirement patterns are not. Thus, a new theory of product-
line evolution that covers not only refinement, but also retirement situations is needed. As
our catalog is the first of its kind, our patterns serve as a starting point for understanding
specific types of feature removals that should be accounted by new theories.

3.6.3 High Modularity, Low Scattering Degree, Localized Scatter-
ing, and Disciplined Annotations are Key Evolution Princi-
ples

In our catalog, the two most frequent patterns are AVOMF and AVONMEF, accounting
for 58 % of all investigated feature additions. These two patterns reveal key principles
governing the Linux kernel evolution.

The AVOMF pattern, the most recurrent pattern in our catalog, shows that most ad-
ditions introduce modular features, i.e., features that have their own compilation unit(s).
Moreover, AVOMF features tend to be fully modular, allowing developers to confine their
implementation under well-defined interfaces (e.g., the driver-development API), causing
changes to be localized and fostering parallel development—a key strategy in the dis-
tributed setting in which the kernel is developed. When features are not fully modular,
the extensions they introduce are disciplined, aligning with the syntactic units of the C
language. AVOMF instances introducing extensions are not heavily scattered across the
kernel. Instead, they have low SD (2), with extensions generally placed in files in the same
subsystem as their associated primary features (local scattering). The dominance of the
AVOMF pattern and its localized scattering suggest that the Linux kernel evolution is in
line with the system’s software architecture.

The extensions introduced by non-modular features, as prescribed by AVONMF, are
also disciplined. Like AVOMF, extensions tend to occur at the global and function levels.
As argued elsewhere [87, 89|, disciplined annotations facilitate maintenance activities, such
as refactoring in the presence of ifdefs. Moreover, disciplined annotations at the global level
can be rewritten with constructs of alternative techniques favoring better modularity—e.g.,
by using aspects |2]. In terms of locality, the proportion of locally scattered AVONMF fea-
tures dominates the globally scattered ones; the latter, however, present higher scattering
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degrees. Nonetheless, both kinds have a low median SD-value (< 6).

The dominance of modular features, low SD, localized scattering, and disciplined an-
notations mitigate the challenges imposed by the use of ifdef annotations on program
comprehension [51, 75, 86, 125] and on the potential of introducing bugs [50, 79|. While
modularity is supported by the plugin architecture of the kernel, low scattering and disci-
plined annotations appear to follow directly from coding guidelines related to ifdef use:>

"Code cluttered with ifdefs is difficult to read and maintain. Don’t do it. In-
stead, put your ifdefs in a header, and conditionally define ‘static inline func-
tions, or macros, which are used in the code. Let the compiler optimize away
the "no-op" case.”

The kernel development process also reinforces that understanding:®!

"The C pre-processor seems to present a powerful temptation to some C pro-
grammers, who see it as a way to efficiently encode a great deal of flexibility
into a source file. But the pre-processor is not C, and heavy use of it results
i code which is much harder for others to read and harder for the compiler to
check for correctness. Heavy pre-processor use is almost always a sign of code
which needs some cleanup work [...[ Conditional compilation with #ifdef is,
indeed, a powerful feature, and it is used within the kernel. But there is little
desire to see code which is sprinkled liberally with #ifdef blocks.”

which is further stressed by Linus Torvalds himself when rejecting a contributed patch:32

"Note that there is no way I will ever apply this particular patch for a very
simple reason: #ifdef’s in code [...] And make your #ifdef’s be _outside_ the
code. I hate code that has #ifdef’s. It’s a major design mistake [...] So please
spend some time cleaning it up, I can’t look at it like this."

—Linus Torvalds, Wed, 8 Aug 2001 09:40:07 (fa.linux.kernel newsgroup)

Torvalds continues:

30https://www.kernel.org/doc/Documentation/SubmittingPatches
3lhttps://www.kernel.org/doc/Documentation/development-process/4.Coding
32nttp://yarchive.net/comp/linux/ifdefs.html
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"Having the #ifdef’s outside the code tends to have two advantages:
- 1t makes the code much more readable, and doesn’t split things up.

- you have to choose your abstraction interfaces more carefully, which in turn
tends to make for better code.

Abstraction is nice - _ especially  when you have a compiler that sees through
the abstraction and can generate code as if it wasn’t there.”

—Linus Torvalds, Wed, 8 Aug 2001 12:14:32 (fa.linux.kernel newsgroup)

Localized scattering appears to follow from the design of the Linux kernel software
architecture, which seems able to encapsulate most features in their containing subsystem.
However, the proportion of globally scattered features, as AVONMEF instances indicate,
is not negligible. This leads us to believe that there exists some features that do not fit
well into the Linux kernel layered architecture or that are not easily modularized in the C
language.

3.7 Threats to Validity

Following best practices in case study analysis [147|, we analyze the trustworthiness of our
results according to three threat types: construct, external, and reliability.

Construct Validity. Limiting non-inferred patterns to have at least three instances
raises a threat to construct validity. We argue, however, that our choice guarantees the
inclusion of less frequent patterns, while still defining a minimal threshold. It also prevents
us from reporting non-inferred patterns over extreme outliers, which would represent rare
evolution scenarios. To avoid bias towards personal change styles, the non-inferred patterns
are also required to have three distinct sources of evidence, meaning that the patterns have
been employed by at least three distinct developers. Inferred patterns, in contrast, do not
guarantee the existence of at least three instances, nor three distinct sources of evidence.
Thus, inferred patterns impose an additional threat. We argue, however, that it is logical
to assume the existence of an inferred pattern, as long as we provide evidence that its
inverse pattern is not inferred. The latter follows directly from our methodology. To
prevent readers from interpreting inferred patterns as non-inferred ones, we clearly label
them when reporting frequencies.
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Manually mining patterns is an additional threat. We mitigate this threat by devising
and following a methodology with a well-defined sequence of steps. Some steps, however,
require subjectivity (e.g., defining the size of commit windows and cluster categories).
Following best practices in case study research [118], we mitigate subjectivity by performing
at least three extensive reviews, followed by a consensus analysis to assure consistency. We
also document all the collected data and our analysis, making them publicly available for
independent verification.

Last, but not least, we acknowledge that our patterns result from an indirect observation
of what developers do. As such, despite the fact that we are able to explain most of the
additions and removals in our samples, our catalog may not represent the evolution at
the same abstraction level as perceived by kernel developers. Moreover, as our patterns
directly follow from the analysis of the Linux kernel commit history, they cannot capture
any practice occurring outside what is seen in the source code repository.

External Validity. Our scoping decisions threaten external validity. First, our study
lacks population generalizability. Our analysis is scoped to additions and removals in the
variability model of the x86 architecture, while observing how related artifacts coevolve as
a result. Despite existing evidence that the x86 variability model follows a similar growth
in comparison to the variability model of the whole kernel [91], it is not safe to claim
that our patterns are representative of all hardware architectures supported by the Linux
kernel. Similarly, we cannot claim that our patterns are representative of the entire Linux
kernel evolution. Second, our patterns do not have cross-population generalizability. Stated
otherwise, we cannot claim that our patterns are representative of feature additions and
removals as found in other variability-aware software systems, open-source or not. As a first
study of its kind, our work shall be succeeded by further assessments to verify whether the
reported patterns are exclusive to the evolution of the Linux kernel or whether they are also
found in other systems. Any system organized in terms of a variability model, a mapping,
and source code relying on ifdef annotations, is a prospective candidate. Examples include
other open-source Kconfig-based software systems [21, 100], the eCos real-time operating
system [96], and even industrial software product lines [17].

Reliability Validity. As our methodology requires manual steps and even subjective
judgment, the instructions on how to mine coevolution patterns must be as clear as possible.
Otherwise, if participants have distinct interpretations when applying our methodology to
mine a pattern from a given commit patch, results may not be consistent among different
participants (inter-item reliability threat), or may even differ for the same participant when
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applying the methodology at distinct times (fest-retest reliability threat). To mitigate
reliability threat, we discussed different versions of our methodology with researchers in
the field, collecting feedback and improving the clarity of our instructions. After reaching a
final version of the methodology, we carefully added examples to illustrate specific points,
leading it to its final format presented earlier in this chapter. Having independent reviews—
as performed by participants P3 and P,—allows us to indirectly assess reliability. For
instance, P53 and P, show an agreement rate of at least 86 % with the performed mining
results. These results suggest a low reliability threat for our methodology.

3.8 Conclusion

Mining a sample of the Linux kernel evolution history reveals 23 variability-coevolution
patterns, including 19 non-inferred cases and four inferred ones. Our patterns show a close
relationship between adding and removing feature names and evolving related artifacts.
Some patterns empirically evidence the incorrectness of state-of-the-art approaches when
handling specific evolution scenarios. In other cases, our patterns show the need of a
more general theory of product-line evolution. In the context of the Linux kernel, patterns
are mostly concerned with modular features, although scattering still occurs. The latter,
however, tends to be localized, with low scattering degree values and with a disciplined use
of annotations. Thus, Linux kernel developers seem to keep scattering under control.

Next, we investigate the expressiveness and the generality of our coevolution patterns
(Chapter 4), followed by an in-depth analyses of feature scattering (Chapter 5). In the lat-
ter case, we want to understand the extent of feature scattering, practical limits governing
its evolution, in addition to possible contributing factors.
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Chapter 4

Variability-Coevolution Patterns:
Beyond the Linux Kernel

Our catalog of patterns from Chapter 3 stems from mining a sample of the Linux kernel
evolution history. Despite providing an insightful understanding of how variability models
coevolve with other artifacts in the context of a large and complex real-world system, our
catalog lacks evidence of whether its patterns take part in the evolution of systems other
than Linux. To fill such a gap, this chapter validates our patterns in the context of three
other variability-aware systems: axTLS, Toybox, and uClibc. We choose these three target
systems by sampling well-known systems in the same domain of the Linux kernel-—the
systems software domain. Our validation investigates the expressiveness of our patterns in
covering the induced variability coevolution when developers add or remove feature names
in the variability models of our target subjects, along with the extent that our catalog
generalizes beyond the Linux kernel case.

Chapter Organization. Section 4.1 presents our research questions. Section 4.2 dis-
cusses our methodology, explaining how we select three target subjects. The section also
explains our scoping decisions and data collection procedure, in addition to our data anal-
ysis rationale. Section 4.3 presents our results, followed by some remarks of the patterns
we validate (Section 4.4). We argue about threats to validity in Section 4.5, concluding
the chapter in Section 4.6.
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4.1 Research Questions

To validate our catalog, we ask two research questions. The first focuses on the expressive-
ness of our patterns; the second targets the generality of our catalog.

RQ. 1 Is our catalog of patterns expressive enough to capture the variability coevolu-
tion induced by the addition or removal of features in the variability models of existing
variability-aware sytems?

To answer our first research question, we proceed as follows. Given our three target sub-
jects, we mine all their releases within our scope, listing all the cases where developers add
and remove feature names from the target variability models. For each addition and re-
moval case, we analyze its induced coevolution on related artifacts, counting the number of
cases that match a pattern in our catalog. The percentage of matching cases, i.e., patterns
instances, defines our expressiveness measure.

RQ. 2 From our catalog, what variability-coevolution patterns are general?

At the core of our second question is the notion of generality. We operationalize the
generality of a pattern as a conjunction of three conditions:

G1 A general pattern has at least three instances.
G2 At least three distinct developers author a general pattern.
G3 At least three distinct systems employ a general pattern.
While conditions G1 and G2 borrow from the same constraints in the Linux kernel
case, the third condition allow us to generalize our patterns beyond Linux. Altogether,

our operationalization adheres to the Rule of Three—it requires three distinct sources of
evidence, both in the number of developers as in the number of systems.

When answering our second research question, we assume that our catalog does contain
general patterns. Thus, our question focus on identifying which ones are indeed general.
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Assumption. Our catalog of variability-coevolution patterns contains general pat-
terns.

Our assumption follows from preliminary evidence supporting the generality of AVOMF.
The generality of other patterns, whilst missing empirical evidence, follows from defendable
arguments.

In the case of AVOMF, Neves et al. [104] report a change type whose structure closely
matches our pattern. From the change type, the authors derive a corresponding template—
Add new optional feature. Neves’ templates, however, are not patterns. Opposed to our
generality notion, their templates do not enforce three distinct sources of evidence, defined
both in terms of systems as in terms of developers. Moreover, their templates impose
behaviour preservation; our patterns do not. Nonetheless, it suffices to say that their study
finds Add new optional feature instances in two systems; if we accumulate the evidence we
find from the Linux kernel, we reach a total of three distinct systems applying the change,
providing some evidence towards the generality of AVOMEF.

We also argue for the generality of other patterns, although supporting empirical ev-
idence is currently missing. For instance, consider the RNM pattern. Renaming is of-
ten employed when refactoring different elements (e.g., classes, functions, database table
names, etc) in a given system; since features are also a target for renaming, it is unrealistic
to believe RNM as exclusive to the Linux kernel evolution. The AVONMF pattern is also
a pattern likely to be general, at least in the case of annotative-based variability-aware
systems.

4.2 Methodology

This section describes our methodology in selecting our subjects of analysis, associated
scoping decisions, and our data collection and analysis procedures.

4.2.1 Subject Selection

Our validation focuses on systems in the same domain of the Linux kernel—the systems
software domain. In addition to the Linux kernel, Berger et al. [21]| report 11 other major
open-source and variability-aware systems in the systems software domain. Table 4.1 briefly
describes each system. All systems follow a similar structure as the one in the Linux kernel,
having a variability model, mapping, and implementation.
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We take the systems in Table 4.1 as our target population of subjects. Employing our
methodology to all systems in the table, however, is a daunting task. As we discuss later in
the text, our methodology employs human judgment when matching the before and after
states of commit windows of feature additions and removals against our catalog of patterns;
manually inspecting the commit windows of all addition and removal cases across the entire
evolution of all 11 target systems makes analyses a time-consuming activity, imposing a
high research cost. As a trade-off, we set to collect a sample from the original set of 11
targets.

From the target population, we select three target systems in a non-random manner;
together with the Linux kernel, that leads to a total of four systems to assess pattern
generality, satisfying our third generality condition (G3). Selecting subjects results from
the application of seven filters, which we apply sequentially. Such filters aim at decreasing
the sample space to a final set of three subjects, while eliminating as many sources of bias
and overlapping among target subjects as possible.

Our first filter concerns the target variability modeling language. Since our current
pattern notation directly abstracts Kconfig constructs into a FODA-based representation,
we restrict analysis to systems employing the Kconfig modeling language. From all the
systems in Table 4.1, eCos is the only one not adopting Kconfig; instead, eCos represents
features using the Component Description Language (CDL) [96]. Hence, we exclude eCos
from our final set of subjects.

The second filter we apply selects systems whose source code repository is Git. Our
filtering criterion allow us to reuse much of our existing infrastructure targeting the Git
repository of the Linux kernel. Exceptionally, we also consider SVN-based projects, as their
conversion to Git is allegedly straightforward [27]. Among the target systems, uCLinux
does not satisfy our filter—its source code is in a CVS repository. Thus, we do not consider
uClibc as a subject of analysis.

Third, we discard operating systems as subjects of analysis. Since our catalog stems
from the Linux kernel operating system, subjects whose functionality overlaps with those
in the Linux kernel could result in sample bias. As a conservative measure, we also exclude
systems that deploy an operating system environment. From the third filter, we discard
Fiasco, BuildRoot, EmbToolkit, and Freetz.

In tune with the previous case, our fourth filter eliminates systems with overlapping
functionalities; when conflicting cases exist, we keep a single system within each conflicting
group. From the remaining five systems, we find an overlap between BusyBox and ToyBox.
We are aware that ToyBox is a spin-off of the BusyBox project. The former allegedly has
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Table 4.1: Target population of systems in the systems software domain

System

Description

Repository

axTLS

BuildRoot

BusyBox

CoreBoot

eCos

EmbToolkit

Fiasco

Freetz

ToyBox

uClibc

uClinux

A client /server TLSv1 SSL library with small memory footprint
URL: http://axtls.sourceforge.net

A configurable tool for building a complete and bootable Linux
environment for an embedded device

URL: buildroot.uclibc.org/

A tool to link UNIX® selectable command-line utilities into a
single executable

URL: http://www.busybox.net

An open-source BIOS implementation

URL: http://www.coreboot.org

A real-time operating system with selectable user-space packages
URL: http://ecos.sourceware.org/

A tool for building tool chains for embedded Linux system
development

URL: https://www.embtoolkit.org

An L4 real-time micro-kernel

URL: http://os.inf.tu-dresden.de/fiasco

A firmware-extension for AVM FritzBox routers

URL: http://freetz.org

An alternative implementation of BusyBox, allegedly better
designed and simpler to extend with new command-line
utilities

URL: http://www.landley.net/toybox

A configurable library for C-development in embedded

Linux systems

URL: http://uclibc.org

A port of the Linux kernel targeting CPUs lacking a memory
management unit

URL: http://www.uclinux.org

SVN

Git

Git

Git
CVS/Hg

Git

SVN

SVN/Git

Git

Git

CVS
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Table 4.2: Distribution of source code file types (averages taken from the entire evolution
of the target subjects)

System  File type (Mean %)

C implementation file C header file Assembly Other

axTLS  60.5 26.4 0 13.1
Toybox 87.1 6.5 0 6.4
uClibe 50 39.5 9.9 0.6

a cleaner and simpler implementation. Its creator, Rob Landley, explains:

"When I was maintaining BusyBox there was tons of stuff I wanted to rewrite,
and my goals were to make the code simple, small, fast, and full-featured. In that
order. Simple was more heavily weighted than any other concern, each increase
i speed and features or reduction in size had to justify the added complexity. 1
treated complexity as a cost, and wanted to get the best bang for the buck.

BusyBox has wandered away from that, simplicity is now less important than
small size, increased speed, or added features. They've kept the size under a
megabyte, but the code’s full of magic symbols and #ifdefs. The entry point
to the whole program is now buried in a subdirectory near the end of a large
file inside the #else case of an #ifdef, and that entire main() function doesn’t
contain a single line of code that isn’t inside one of four other #ifdef blocks.

One of my goals with ToyBox is that if you're just learning C programming,
reading ToyBox should be a reasonable real-world introduction to the language. "

Inspecting the posts in LWN.net portal, one of the premier news and information websites
in the open-source community, shows ToyBox to be gaining momentum. In fact, ToyBox is
now part of the Android Open Source Project, replacing Google’s toolbox.?2 BusyBox had
also been considered as an official replacement for toolbox, but licensing proved to be an
issue. Due to its increasing importance and supposedly better implementation, we favor
ToyBox as a target subject.

'http://tinyurl.com/Inside-the-ToyBox-An-interview
2https://lwun.net/Articles/629362/
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Table 4.3: Size of our three subjects of analysis

System SLOC Nbr. of features
min max min max

axTLS 18,516 36,521 74 95

Toybox 10,671 38,846 84 249

uClibc 112,694 263,122 70 297

Our fifth filter aims at eliminating managerial bias. As such, we verify that no two
systems share the same head maintainer; if so, we select exactly one system among con-
flicting ones. This filter has no effect—after inspecting the documentation of the systems
available at this step, we do not find any managerial overlap.

The sixth filter we apply selects systems with at least two stable releases. Our rationale
is as follows. A pair of stable releases (r;,7;4;) allows identifying features in r;, 1, but not
in r;; thus, we can enumerate the corresponding feature addition cases. Likewise, having
at least two stable releases allows identifying removals cases, i.e., the set of features in r;,
but not in 7, ;. CoreBoot fails to satisfy our criterion; at the time of our selection, we only
find version 4.0 in CoreBoot’s master branch.

Lastly, the seventh filter in our selection process guarantees a sample size of three. To
do so, it randomly selects three subjects from the remaining set of systems. This filter,
however, has no effect. The application of the previous six filters already leads to a final
set of three systems. Consequently, our sample is purely non-random.

Similar to the Linux kernel case, all chosen subjects are predominantly written in C (see
Table 4.2), with pre-processor annotations referring to features declared in the variability
model. The chosen subjects, however, are smaller than the Linux kernel, both in terms of
code size as well as in their number of features—see Table 4.3. The target subjects, however,
are considerably higher than the ones in the SPL2Go website, which lists commonly used
research subject snapshots. Contrasting Table 1.1, which provides summary statistics of
the systems in SPL2Go, with the statistics in Table 4.3 shows that axTLS, ToyBox, and
uClibc have at least 89 % more features than 96 % of the systems in the SPL2Go listing.
A similar trend occurs for SLOC; our three chosen subjects have at least 87 % more source
lines of code than the same percentage of the systems in Table 1.1. Altogether, these
statistics reiterate our concern in studying real-software systems, as they seem more likely
to be representative of real-world complexity than often chosen small research subjects.
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Table 4.4: Mapping of axTLS login names to corresponding Git users

SVN login Git user

Name Email

cameronrich Cameron Rich camster444@gmail.com
ehuman Eric Human EHu@directv.com
olereinhardt Ole Reinhardt ole.reinhardt@embedded-it.de

4.2.2 axTLS Conversion to Git

After our filtering process, there is a single non-Git based project in our final sample:
axTLS. Our Linux-based infrastructure, however, only operates on Git-based repositories.
Thus, reusing it requires converting the evolution history of axTLS into Git. To perform
the conversion, we rely on the svn2git tool.? Its use requires mapping each SVN login into a
Git-based user, i.e., a username and email pair. We create such mapping by first collecting
the login names in the axTLS SVN commit history. We then mine the axTLS mailing
list to find names closely matching the login names, extracting the corresponding email
addresses. Table 4.4 shows our final mapping.* With the latter, svn2git successfully creates
a Git repository for axTLS. The resulting repository is available at our online appendix [1].

4.2.3 Scoping

Once all subjects are under Git, we set to inspect all feature additions and removal cases
across consecutive stable releases. As in the Linux kernel, the configuration of each subject
requires setting a target architecture. For consistency, our CPU of scope is the same as
the one we choose for our Linux kernel case—x86.

Another factor influencing scoping concerns the extent that we can generalize our Linux-
based infrastructure to handle the specifics of each of our chosen subjects. After under-
standing the structure of each target subject, we notice that their main differences lie in
their build systems; although closely resembling KBuild, variations exist.

3Conversion command: svn2git http://svn.code.sf.net/p/axtls/code/ -no-minimize-url
-verbose -nobranches -authors axtls.authors

We save our mapping in the axtls.authors file; we use it as an argument to svn2git (see footnote
above).
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Table 4.5: Stable release identification and sorting criteria

System  Stable release identification criteria

axTLS  The project’s website does not provide a list of stable releases. Inquiring the head main-
tainer of the project clarifies the issue; all tags in the project’s SVN repository label stable
releases. We then map each SVN tag to its corresponding one in our Git repository. Tags
in the SVN repository are already sorted according to chronological order

We assume that all the compressed files in the downloads section of ToyBox’s website
are stable releases. We then list all compressed files, sorting them according to their last
modification date. We then map each release file to its corresponding release tag in Git,
obtaining a chronological order of release tags

ToyBox

uClibc  Same criteria as in ToyBox

One variation type regards distinct project conventions and default settings. Examples
include different name referencing schemes (e.g., in uClibe, if FOO is a feature name, refer-
ences in Makefiles and C code are written as  FOO___; in ToyBox, it becomes CFG_FOO),
distinct variability model names (e.g., in axTLS, Kconfig files are named Config.in), different
system paths, particular ways for identifying and ordering stable releases, etc. To handle
the variations as the ones above, we parameterize our tools accordingly.

A second type of variation follows from the different versions of the Kconfig language
in each project and/or release. Our existing Linux-based infrastructure requires parsing
Kconfig files to identify added and removed feature names between stable releases. Its
implementation, however, only parses variability models adhering to the Kconfig language
as given in the v2.6.26-v3.3 Linux kernel release range. To reuse our Linux-based infras-
tructure for axTLS, ToyBox, and uClibc, our existing parser must handle the different
versions of the Kconfig language. There are two major approaches for generalizing our
parser: (i) create a one-size-fits-all parser, whose automaton recognizes a unified version
of the Kconfig language given at each stable release in the evolution history of our three
subjects, or (ii) generate multiple parsers, one for each version of Kconfig within a target
project and release.

In the one-size-fits-all solution, a parser results from the merge of different grammars,
one for each release of Kconfig. Merging also combines associated semantic actions, com-
monly employed in Yacc-like grammars [3], such as Kconfig’s. Merging, however, has
considerable drawbacks: (a) when developers release new versions of Kconfig, one needs to
incorporate changes in the source code of the one-size-fits-all parser, leading to intrusive
maintenance; (b) unifying different Kconfig releases means diffing each grammar snapshot,
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Figure 4.1: Handling the evolution of the Kconfig language

a laborious and error-prone activity; (c) the Kconfig Yacc grammar specification is full of
semantic actions, whose implementation varies across different versions of the language.
Thus, language constructs may have conflicting behaviour across their evolution. Conse-
quently, semantic unification is far from trivial.

The alternative solution is to create many parsers, one for each release of Kconfig. We
favor such approach, as we are able to fully automate it. Figure 4.1 depicts our solution.
Given the target repositories, we list the stable releases of each subject, sorting them in
chronological order (step 1). Table 4.5 summarizes how we identify and sort stable releases.
Following the sorting output, we checkout each release (step 2). Within a release snapshot,
we locate its supporting Kconfig infrastructure, filtering the header files exporting the
Kconfig API (step 3). There exists at most four headers across all releases in our three
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Table 4.6: Releases within our scope of analysis

System  Stable releases

All Supporting Kconfig Releases in our scope Coverage (%)
axTLS  v1.0.0-v1.5.3 v1.0.0-v1.5.3 v1.0.0-v1.5.3 100

(20) (20) (20)
ToyBox v0.2.0-v0.5.1 v0.2.0-v0.5.1 v0.2.0-v0.5.1 100

(10) (10) (10)
uClibe  v0.9.10-+v0.9.33.2 v0.9.16-v0.9.33.2 v0.9.16-v0.9.33.2 85

(41) (35) (35)

target projects. This follows from the fact that the Linux kernel implements its Kconfig
infrastructure in a limited number of files; moreover, their names do not change as the
kernel evolves. As our subjects clone the Linux kernel Kconfig infrastructure and preserve
their filenames, we can promptly identify Kconfig-related source files. From the tracing of
the Kconfig API, we set the header inclusion path of the GNU C compiler accordingly and
invoke the subject’s build system to compile the command-line conf configurator. There
are different ways to generate conf—e.g., by invoking make allyesconfig, which creates a
configuration attempting to select as many features as possible. Building conf generates
two specific object files: conf.o and zconf.tab.o (step 4). The first object (conf.0) contains
configuration logic; the second (zconf.tab.o) implements parsing routines. Altogether, they
realize the functions in the four Kconfig header files. We link the two object files with a
custom-made main parsing function (step 5), producing a release and project-specific parser
matching the same release as those of conf.o and zconf.tab.o. Our custom-made parsing
function calls a stable subset of the Kconfig API, which we determine by experimenting
with different API releases across the Linux kernel evolution.

To facilitate usage, we hide all project and release-specific parsers under a facade. Given
a target project and release of interest, the facade delegates parsing to the corresponding
release-specific implementation.

With our multiple-parser approach in place, we scope analyses to all releases for which
we successfully generate a parser. As Table 4.6 shows, our scope covers all 20 and 10 stable
releases of axTLS and ToyBox, respectively. In the case of uClibc, we support all releases
from v0.9.16, the first uClibc release adopting Kconfig—all six versions (v0.9.10-v0.9.15)
preceding v0.9.16 are not in our scope. In total, given the set of releases of out target
systems, our investigation spans a period of over 20 years of evolution (see Table 4.7).
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Table 4.7: Release time ranges

Release range in our scope Time range

axTLS  v1.0.0-v1.5.1 01 Jul/2006-19 Nov /2014

ToyBox v0.2.0-0.5.1 12 Feb/2012-19 Nov /2014

uClibc  v0.9.16-0.9.33.2 09 Nov/2002-15 May /2012
Total (years) 20.42

Our multiple-parser-based infrastructure overcomes the parsing restrictions of our Linux
kernel analysis, which employs a single parser approach. With the new infrastructure, we
can now parse Kconfig models in all releases from v2.6.12, the first kernel release under
Git, up to v3.9, the last stable release at the time of our experiments in Chapter 3.

4.2.4 Data Collection

Data collection follows the same procedure as in the Linux kernel case (see Section 3.4.2).
In summary, given a target subject, we iterate over its sorted pairs of consecutive stable
releases; for each pair (r;,7;41), we calculate the feature set difference of the two releases,
identifying new feature names along with removed ones. The union of all added features
defines a subject’s additions population; likewise, its removals population consists of all
removed feature names between each consecutive stable release pair. Table 4.8 shows
the size of each subject population. As it happens with the Linux kernel, the additions
population dominates removals; overall, we find five times more additions than removal
cases.

As in the Linux kernel case, we also create a database from the parsing of commit
patches in the evolution history of each target subject. The database stores metadata
of all commit patches, along with the changes adding and/or removing primary features
at specific release pairs. The database allows us to later query the primary commit of a
primary feature.

Different from axTLS and uClibc, the database for Toybox is incomplete. Although the
ToyBox database captures all primary features (cases of feature additions or removals), it
does not store all associated primary commits. Missing data follows from the fact that a
large portion of the ToyBox variability model is dynamic, i.e., some features are generated
when building the system configurator. Thus, parsing changes in commit patches adding or
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Table 4.8: Feature additions and removals population of each target subject

System  Subject’s population size Total

Feature additions Feature removals

axTLS 35 16 ol

Toybox 199 34 233
uClibc 287 53 340
Total 021 103 624

removing features only accounts for the features in the static part of the ToyBox variability
model; all dynamically generated features lack a corresponding primary commit in the
database. To overcome such limitation, we devise a mechanism for retrieving the primary
commits of dynamic features. To understand it, we first explain the ToyBox build system.

In ToyBox, the main unit of extension is a toy, i.e., a command-line utility implementa-
tion. A toy is a single C file in the toys subsystem;® each C-toy file is named after the toy it
implements. As an example, consider the Is toy. Figure 4.2 shows its overall structure. As
lines 4-27 show, each toy contains a header block comment declaring all its configuration
options. When invoking the ToyBox configurator (e.g., make menuconfig), the build system
iterates over all C files in the toys subsystem, collecting all configuration options in all
header comments; the build script then generates a new Kconfig file (generated/Config.in)
containing all collected configuration options. The root Kconfig file, in turn, includes the
generated one. When doing so, Toybox places toys in the variability model by following
their filesystem location. For instance, as the implementation of Is is under the posix folder
in toys, Toybox generates a Posix commands menu entry, adding config LS as its child, along
with all other toys in the posix folder.

In addition to toys, Toybox also supports probe-related features, which result from the
probing of the underlying compilation environment. Toybox uses probing to check support
for specific functions, header files, flags, etc. For each probe, the build system generates
a corresponding probe feature, whose default value stores whether the probe succeeds or
fails. The fragment of the Toybox build script in Figure 4.3 demonstrates such a process.
Probing results from calling the probeconfig function; from its output, the build system
creates the generated/Config.probed Kconfig file (line 26). Executing probeconfig sequentially

5The toy subsystem maps to a folder with the same name under the root directory of the ToyBox source
code.
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toys/posix/ls.c
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1s.c - 1list files

Copyright 2012 Andre Renaud <andre@bluewatersys.com>
Copyright 2012 Rob Landley <rob@landley.net>

E_LS(NEWTOY(1ls, ...))
nfig LS
bool "1ls"
default y
help
usage: 1ls [-ACFHLRSacdfiklmnpqrstuxl] [directory...]
list files
output formats:
-m comma separated

-0 like -1 but no group

sorting (default is alphabetical):
-f unsorted

id 1s_main(void)
char *xs, *noargs[] = ".", 0;

if (CFG_TOYBOX_FREE) free(TT.files);

Figure 4.2: ToyBox: patch adding Is
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scripts/genconfig.sh

probesymbol ()
{
$CROSS_COMPILE$CC $CFLAGS -xc -o /dev/null $2 - 2>/dev/null
[ $7 -eq 0 ] &% DEFAULT=y || DEFAULT=n
rm a.out 2>/dev/null
echo -e "config $1\n\tbool" || exit 1
echo -e "\tdefault $DEFAULT\n" || exit 1

probeconfig()
{
# Probe for container support on target
probesymbol TOYBOX_CONTAINER << EQOF
#include <linux/sched.h>
int x=CLONE_NEWNS|CLONE_NEWUTS |CLONE_NEWIPC|CLONE_NEWNET;

int main(int argc, char *argv[]) return unshare(x);

EOF

probeconfig > generated/Config.probed || \
rm generated/Config.probed

Figure 4.3: ToyBox probing example

probes specific capabilities—for example, container support. To perform a single probe,
probeconfig calls the probesymbol function (line 16), whose implementation is at lines 4-11.
When probesymbol executes, it generates an internal configuration option (in our example,
TOYBOX_ CONTAINER) whose default value matches whether a program argument string
(the probing test), as given in lines 17-21, successfully compiles. After probing all the
capabilities of interest, the root Kconfig file includes generated/Config.probed.

With the knowledge of how Toybox dynamically generates a subset of its features,
we devise a mechanism to retrieve the primary commit of all features in Toybox. Given
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an added or removed feature between two consecutive releases, we first query the ToyBox
database. If the query returns a result, the feature is necessarily part of the static fragment
of the Toybox variability model. If absent, we take the feature to be dynamic. To identify
the primary commit of a dynamic feature, we use a custom-made tool directly querying
Toybox’s Git history. Figure 4.4 shows the resulting query when retrieving the primary
commit adding the LS feature. Our tool generates the query as follows. From a release pair
(r;,riv1) associated with a given primary feature, our tool instructs Git to use r; and ;41 as
release boundaries. In our example, the addition of LS associates with the (v0.2.0, v0.2.1)
release pair, as LS is in the feature set of v0.2.1, but not in the feature set of v0.2.0; thus;
v0.2.1 adds the feature. After defining search boundaries, our tool checks out the release
adding or removing the primary feature of interest—in our example, the tool checkouts
the v0.2.1 release of Toybox. Next, it determines whether the primary feature is a toy or
whether it is a probe-related feature. To be a toy, there must exist a single C file declaring
the feature; otherwise, the feature is probe-related—probeconfig generates it. Knowing the
correct feature kind, our tool extracts the exact string declaring the feature. For toy
features, such string stems from the header block comment in the C file implementing the
toy; otherwise, probeconfig contains the string declaring the feature. In our example, LS
is a toy, as toys/posix/Is.c declares it. Moreover, the header comment block in Is.c declares
the feature as "config LS". From the previous data, our tool builds a Git query to find all
commit patches within the release pair boundaries adding the extracted declaration string.

All queries, regardless if they operate on a subject’s relational database or on the
ToyBox Git repository, may return multiple primary commits. Following the same rules
of the Linux kernel case methodology (see Section 3.4.2), we select exactly one primary
commit. Thus, the number of primary commits equates to the number of added and
removed feature cases. In total, we retrieve 624 primary commits, 521 relative to feature
additions and 103 for removed ones. Since some primary commits associate with more
than a single primary feature, in total, we retrieve 349 distinct primary commits. Table 4.9
contextualizes such statistics. Our coevolution analysis covers approximately 12 %, 14 %,
and 2% of the entire evolution history of axTLS, Toybox, and uClibec, respectively; in
total, our analysis covers 4.4 % of their entire combined evolution.

4.2.5 Pattern Identification Process

At the core of our investigation lies the ability to identify pattern instances. As such, we
devise a manual identification process consisting of two steps: Commit Window Retrieval
and Pattern Matching. We describe each step in the following.
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Figure 4.4: ToyBox: git query to locate the primary commit adding Is

Table 4.9: Commit statistics for our three chosen subjects

System  Nbr. of commits

Entire evolution Adding/removing Distinct primary

features commits
axTLS 205 51 25
ToyBox 1,114 233 161
uClibe 6,620 340 160
Total 7,939 624 346

Commit Window Retrieval. This step follows the same rationale as the Commait Win-
dow Retrieval when mining coevolution patterns from the Linux kernel Git repository (see
Section 3.4.3). There are, however, two main differences:

1. While we follow the same expansion rules E;—E,4 as in the Linux kernel case, we do
not forbid including commits whose label differs from the primary one. Our decision
follows from the fact that developers in axTLS and Toybox do not label commit
messages.

2. When retrieving the commit window of a primary feature, we always limit the number
of commits to at most 40. This contrasts to the commit windows of feature additions
in the Linux kernel, which we allow to grow as much as needed. Our choice of at
most 40 commits follows from our past experience of analyzing patches adding or
removing features to the Linux kernel; generally, we find commit windows to have a
single commit. Our chosen subjects strengthens such understanding. As Figure 4.5
shows, commit windows in axTLS, ToyBox, or uClibc have an average size of 1.24
commits. Within additions (521), only 6 % (32) of commit windows have size greater
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Figure 4.5: Commit window sizes of axTLS, ToyBox, and uClibc

than one; among those, most commit windows (19) have size between two and three.
Large commit windows are rare; a single commit window of size 19 exists in uClibc—
less than half of our 40-commit window size limit. Removals also have small commit
windows, generally of size one (overall mean is 1.4).

In total, we retrieve 624 commit windows, one for each primary feature. Accounting
all the commits within the target commit windows leads to a total of 771 commits—628
relate to feature additions, whereas 143 concern feature removals.

Pattern Matching. After determining the commit window of a primary feature, we
attempt to derive a before and after-state of its changes, from which we set to match
against the before and after states of all applicable patterns in our catalog, seeking the
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Table 4.10: Number of excluded addition and removal cases

System  Excluded cases Total

Feature additions Feature removals

axTLS 0 (0%) 0 (0%) 0 (0%)
Toybox 4 (2%) 10 (29.4 %) 14 (6 %)
uClibe 20 (7%) 1 (1.9%) 21 (6.2 %)
Total 24 (4.6%) 11 (10.7%) 35 (5.6 %)

best fit. There are times, however, that we cannot understand the change in place, and
consequently, we fail to derive a before and after states. In such a case, we exclude the given
commit window from further analysis. Table 4.10 shows the number of commit windows
we exclude. Exclusion ranges from 0% (axTLS) to 29.4 % (uClibc—removals). Overall,
we exclude 5.6 % (35) of all target cases; 4.6 % (24) of all additions and 10.7% (11) of all
feature removals. Thus, we are left with 589 matches to perform.

When choosing applicable matching patterns, we carefully control possible overlaps.
As a driving example, consider a change where developers add a new feature (our pri-
mary source of investigation) to the variability model; at the Makefile level, developers
reassign a compilation unit of an existing feature to the newly created one; developers
also associate new compilation flags to the newly added feature. The latter also controls

new code fragments through ifdefs in code. Given such a description, which pattern best
applies?” AVONMF, AVOCFF, AVONMCEFF, or FCUTVOEFE?

To select a single pattern representing a change, we introduce a priority-based match-
ing scheme. Figures 4.6 and 4.7 depicts the scheme for the additions and removal-based
patterns, respectively.

Our scheme first groups applicable patterns according to the spaces that the target
change affects w.r.t a primary feature. Determining such spaces allows us to select a single
group of possible matching patterns. In our example, the changes that relate to the primary
feature affect the variability model, the mapping, and the source code. Thus, we select
(VM + M + C) as the target group, ruling out AVONMF and AVOCFF as prospective
matches—such patterns belong to other distinct groups.

Each group partitions its patterns in subgroups, which we represent as stacks. Each
subgroup has one or more patterns sharing similar characteristics, such as whether the
primary feature under analysis is added or removed, its kind (optional, mandatory, or
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Table 4.11: Correspondence between participants in the Linux kernel case study and the
ones validating our catalog of patterns

Mining patterns from the Linux Git repository Catalog validation

(Chapter 3) (Chapter 4)
P1 Pl
Pg PS
P4 P2

computed) and visibility (visible or internal), whether the primary feature has associated
code elements, whether it has associated compilation units, etc. Given a target group, we
select the stack whose patterns contain the highest amount of overlapping characteristics
with the target change and its affected spaces. After determining a stack, we attempt to
match the before and after states of the change to the corresponding states of each pattern
in the stack. Determining the before and after states of a given change follows the same
rationale as in the Linux kernel case. Then, matching starts from the top of the stack
towards its bottom; in such traversal, we sequentially test each pattern in the stack until
we find a match or we reach past the bottom. In the latter case, we report NA, meaning
that no pattern applies. Otherwise, we stop as soon as we find the first match, ignoring
elements in the change that could potentially match the structure of patterns lower in
the stack—such elements are irrelevant to the matched pattern. The relationship between
what is central to a pattern and what is ignorable is a key principle of our scheme and the
associated stacks within each group. In our example, after determining (VM + M + C)
as the target group, we find that its left most stack contains the patterns that our change
overlaps the most. When iterating over the target stack, the states of the pattern at the
top (FCUTVOF) matches the states of our example change; consequently, we do not test
other patterns lower in the stack, ruling out AVONMCFF as a matching pattern.

4.2.6 Manual Identification of Patterns

Pattern identification is a manual process. As such, three participants (P1—P3) apply our
process—all three accumulate the experience of also participating in the Linux kernel case
study, which we report in Chapter 3. Table 4.11 shows the correspondence between the
participants in the two studies.
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Figure 4.6: Pattern matching priorities (additions)

4.2.7 Review Process

To mitigate human error and possible subjectivity when applying our identification process,
we perform reviews of all cases we analyze. Whenever one participant retrieves a commit
window, matches an addition or removal case against a coevolution pattern, mark the case
as NA, or exclude it, the other two participants perform a review to assure the correctness
of the results. If a participant reports an inconsistency during review, a consensus phase
follows. During consensus, all three participants discuss the given inconsistency, arguing
in favor of the current result or proposing another one—e.g., expansion or contraction of
the given commit window, an alternative matching pattern or NA, or even the exclusion
of the case under analysis. After we discuss and reach a consensus of all inconsistencies
that reviewers raise, the matches we report capture the common understanding of P,
Py, and P3. Tables 4.12 and 4.13 show the tasks of each participant. Each participant’s
role follows directly from his/her availability at the time of our analyses. Participants P
and P; identify matching patterns for all feature additions and removals cases in axTLS
and Toybox, respectively. In the analyses of uClibc, two participants analyze its feature
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Figure 4.7: Pattern matching priorities (removals)

additions: P, identifies matching patterns for the first 144 cases, whereas P; takes over the
remaining ones; for all the feature removals in uClibe, P3 identifies matching patterns.

Review and consensus play an important role in our methodology. Next, we discuss the
number of inconsistencies when retrieving commit windows and when matching patterns.

Review of Commit Windows. Although most commit windows tend to contain only
the primary commit of the feature addition or removal case under analysis, determining
commit windows is not free of errors. Table 4.14 shows the number of the inconsistencies
we find when reviewing all commit windows. The table also presents percentage values,
which we calculate by taking each cell value and dividing it by the corresponding value in
Table 4.8—henceforth, all tables alike follow the same rationale. In general, our reviews
find 4.3% (27) of the commit windows to be inconsistent, which we fix during consensus.
Percentage-wise, most inconsistencies relate to removal cases in axTLS and Toybox. In
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Table 4.12: Activities performed by each participant in the analyses of axTLS and Toybox
(I: pattern identification; R(P): review of the patterns that P identifies)

Participant axTLS Toybox
Additions Removals Additions Removals
(35) (16) (199) (34)

Py R(P2) R(P2) | |

Ps I I R(P1) R(P1)

P3 R(P2) R(P2) R(P1) R(P1)

axTLS, four commit windows are incorrect; they replicate the same error, as all four share
the same primary commit. The inconsistency follows from the fact that two commits add
the same primary feature; while one relates to the release pair under analysis, the other does
not. The latter, however, was chosen as the correct commit by the participant applying
our identification process; during review, others raised awareness of such a mistake, leading
to four fixes during consensus. Reviewing the results from Toybox led to an increase of
four commit windows, all sharing the same primary commit. Instead of containing only
the primary commit, during consensus, participants agreed to add four other commits to
aid the overall understanding of the change under analysis.

Review of Pattern Matches. The importance of reviews becomes even more evident
in the matching part of our process. As Table 4.15 shows, reviews identify inconsistencies
in almost a fourth of all feature addition and removal cases. Proportionally, axTLS has
the highest amount of inconsistencies (57 %), followed by uClibe (26 %). Higher incon-
sistency percentages occur in systems with more complex structures, which often brings
noise when manually analyzing commit patches. Opposed to axTLS and uClibe, Toybox
displays considerably lower inconsistency percentages. To us, this follows directly from
the project’s architecture controlling how developers add and remove features—toys and
their associated capabilities and parameters. As Figure 4.8 shows, throughout the Toybox
evolution, toys are the dominant feature kind; on average, 74.5 % of all features in Toybox
are toys (min=63.1 %, max=381.4%). Since a toy is a modular feature whose implemen-
tation lies in a single C file in the toys subsystem, adding and removing toys becomes a
matter of either adding or removing a C file. This agrees with the simplicity by design in
Toybox; its head maintainer claims that the Toybox implementation should be understood
by those just starting to learn the C programming language. Simplicity sure contributes
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Table 4.13: Activities performed by each participant in the analyses of uClibe (I: pattern
identification; R(P): review of the patterns that P identifies)

Participant Additions Removals

(1-144)  (145-287) (53)

Py R(Py) 1 R(P3)
Ps I R(Py) R(P3)
P3 R(Pg) R(Pl) I

Table 4.14: Commit window inconsistencies stemming from participants’ reviews

System  Feature additions Feature removals Total

axTLS 2 (5.7%) 4 (25%) 6 (11.8%)
Toybox 4 (2%) 4 (11.8%) 8 (3.4%)
uClibe 8 (2.8%) 5 (9.4%) 13 (3.8%)
Total 14 (2.7%) 13 (12.6%) 27 (4.3%)

Table 4.15: Pattern identification inconsistencies stemming from participants’ reviews

System  Feature additions Feature removals Total

axTLS 22 (62.9%) 7 (43.8%) 29 (56.9 %)
Toybox 2 (1%) 4 (11.8%) 6 (2.6%)

uClibe 72 (25.1%) 16 (30.2 %) 88 (25.9%)
Total 96 (18.4%) 27 (26.2 %) 123 (19.7%)

to our understanding, justifying the lower inconsistency percentages in our analysis. In
contrast, axTLS and uClibc do not impose how developers should add or remove features,
making our analyses more subject to mistakes.
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4.2.8 Generality Inference

When we find patterns that do not conform to our generality constraints, we set to infer
general patterns. Similar to the Linux kernel case, if a pattern does not satisfy either of
our three generality conditions (see Section 4.1), we apply two inference rules:

IG1 There exists a general addition pattern, but its inverse removal pattern is not general.
From the fact that every added feature should be eventually removed, and that such
removal can be accomplished by following the opposite steps when adding the feature,
we take the inverse of any general addition pattern to be an inferred general removal
case if the latter has not yet been claimed to be general, nor inferred.
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IG2 There exists a general removal pattern, but its inverse addition pattern is not general.
From the rationale that one removes a feature only after adding it, and that such
addition can be achieved by following the inverse steps of its removing pattern, we
take the inverse of any general removal pattern to be an inferred general addition case
if the latter has not yet been claimed to be general, nor inferred.

4.3 Results

This section presents the validation results of our catalog of variability-coevolution pat-
terns. Next, we discuss the expressiveness of our catalog (RQ.1), followed by a discussion
of its generality (RQ.2).

4.3.1 Catalog Expressiveness

RQ. 1 Is our catalog of patterns expressive enough to capture the variability coevolu-
tion induced by the addition or removal of features in the variability models of existing
variability-aware sytems?

Overall, we find our catalog to be expressive. As Table 4.16 shows, our catalog covers
two thirds (64 %) of all feature additions and removal cases we analyze. Toybox highly
influences our expressiveness—of all the cases we match against patterns in our catalog
(402), 42.5 % stem from feature additions in Toybox. In the latter case, there is a dominance
of AVOMF instances, which relate to the addition of toys, the most common feature kind
in Toybox (see Figure 4.8). Moreover, as Figure 4.9 shows, the feature additions and
removal cases from Toybox matching a pattern in our catalog total to a handful of patterns.
Nonetheless, they explain as much as 80 % of all feature addition and removal cases in the
evolution history of Toybox. In contrast, the cases we analyze in axTLS and uClibc match
11 and 13 patterns, respectively. Percentage-wise, these patterns cover around 55 % of all
the cases we analyze in axTLS and uClibc. Different reasons explain such differences.

e In Toybox, developers do not interact with the build system; the mapping between
a toy and its implementation occurs by naming a C file after the toy it implements.
Consequently, developers do not create guard features nor introduce compilation
flags, which explains the absence of any patterns of the like—e.g., AVOGMF, AV-
OCFF, AVONMCFF, and their matching removal patterns. The opposite occurs
with axTLS and uClibc.
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Table 4.16: Matching cases among all additions and removals

System  Matching cases Total

Feature additions Feature removals

axTLS 18 (51.4%) 10 (62.5%) 28 (54.9%)
Toybox 171 (85.9%) 16 (47.1%) 187 (80.3%)
uClibe 158 (55.1%) 29 (54.7%) 187 (55.0 %)
Total 347 (66.6 %) 55 (53.4%) 402 (64.4%)

e As we show in Figure 4.8, toys are the dominant feature kind in Toybox. Moreover,
Toybox’s architecture does not allow developers to control where they place toys,
except that it has to be under the toys subsystem—its location within determines
the placement of a toy in the Toybox variability model. Consequently, developers
do not add abstract features. Since toys are always concrete, we do not find any
instances of AVOAF in the evolution history of Toybox. In contrast, axTLS and
uClibc do not enforce where features should be placed, providing developers with
greater freedom to change the variability model hierarchy. Thus, developers may
add intermediate nodes to better structure the hierarchy of features, which explains
the AVOAF instances we find in axTLS and uClibc.

e We do not find featurization pattern instances in Toybox. In axTLS, we find a single
FCFTVOF instance. Among NA cases, there is one featurization in Toybox and three
others in axTLS, but none fits a pattern. This contrasts with uClibc, where we find
33 FCFTVOF instances. Such results suggest that memory footprint is a concern in
uClibe, while less so in the other two projects. By featurizing code fragments, uClibc
developers assure that previously unconditional code snippets can only compile upon
specific feature selections, decreasing the footprint of a subset of variants (those that
do not activate the featurized code pieces). This agrees with the project’s objective,
as stated in the official website of uClibc:

"If you are building an embedded Linux system and you find that glibc is
eating up too much space, you should consider using uClibc"
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4.3.2 Pattern Generality

RQ. 2 From our catalog, what variability-coevolution patterns are general?

Combining the results of the Linux kernel case with the counting of pattern instances we
identify in axTLS, Toybox, and uClibc, we check what patterns are general, i.e., patterns
with three or more instances, whose application occurs in at least three systems, and by
three or more distinct developers. Table 4.17 shows our results. In the table, columns
2-5, which we place under Instances, display the number of pattern instances in each
system (Linux included), while column Developers shows the number of distinct developers
applying each pattern. If we infer a pattern, we mark Yes in its Inferred column cell, or
No otherwise. Similarly, the General column states whether a pattern satisfies our three
generality conditions, in the case of non-inferred patterns, or whether we infer it otherwise.

Among our 23 patterns, nine fully satisfy our generality constraints (AVOMF, AVOGMF,
AVONMF, AVOCFF, AVOAF, AVMVF, FCFTVOF, RNM, and RVONMF); five others
stem from inference (RVOMF, RVOGMF, RVOCFF, RVOAF, and RVMVF)—while they
do not fully comply to our generality conditions, their inverse patterns do. In total, we
claim the generality of 14 patterns, which corresponds to 61 % of our initial catalog of
Linux kernel coevolution patterns.

Note that we do not prove the generality of our merge patterns. In total, we find five
merge cases, excluded those from Linux. From the five cases we find, we match three;
the remaining two we mark as NA. This contrasts to what we observe in Linux, where
we find 27 merge situations—6 fitting patterns. Since merges seek to remove redundancy
between overlapping features, our results suggest that the features in each of our three
target subjects have little redundancy.

4.4 Discussion

When analyzing commit windows and identifying pattern matches in the evolution history
of axTLS, Toybox, and uClibc, we observe some characteristics that further contribute to
a general understanding of how developers apply the patterns of our catalog. We discuss
such characteristics in the following. Whenever possible, we link our findings to those of
the Linux kernel case (Section 3.6).
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Table 4.17: Counting of pattern instances

Pattern Instances Developers Inferred? General?

Linux axTLS Toybox uClibc

1  AVOMF 124 2 148 14 142 No Yes
2  AVOGMF 11 2 0 3 13 No Yes
3 AVONMF 32 4 7 19 38 No Yes
4 AVOCFF 4 1 0 44 16 No Yes
5 AVONMCFF 3 0 0 2 5 No No
6 AVOAF 2 1 0 16 8 No Yes
7 AVMVF 3 2 No Yes
8 AIMF 12 0 0 11 No No
9 ACINMF 2 0 0 2 No No
10 FCFTVOF 2 0 33 12 No Yes
11 FCUTVOF 10 0 0 1 4 No No
12 RNM 29 4 28 33 26 No Yes
13 RVOMF 22 0 0 18 Yes Yes
14 RVOGMF 12 0 0 4 Yes Yes
15 RVONMF 10 7 0 2 10 No Yes
16 RVOCFF 0 1 0 18 2 Yes Yes
17 RVONMCFF 0 0 0 0 0 No No
18 RVOAF 6 0 0 1 7 Yes Yes
19 RVMVF 3 0 0 0 3 Yes Yes
20 RIMF 3 0 0 0 3 No No
21  RCINMF 3 0 0 0 3 No No
22 MVOFNO 3 1 0 0 4 No No
23 MVOFS 3 0 2 0 5 No No

4.4.1 Different Systems May Realize Patterns with Different Mech-
anisms

Across our analyses, we note that subjects realize some of our patterns with different mech-
anisms. In particular, we note differences in how developers apply AVOMF, AVONMF,
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and AVOGMF.

Modular Features May Lack an Explicit Mapping. Different from the other sys-
tems, Toybox does not rely on an explicit mapping between features and compilation units.
Instead, developers follow specific conventions, which the build mechanism enforces when
compiling target variants (e.g., a C file must be named after the toy it implements).

If-Statements are an Alternative to Ifdefs. In Toybox, we also note a difference in
how developers write annotations. Instead of ifdefs, developers favor if-statements.® Fig-
ure 4.10 provides an example from the LSPCI feature. In the implementation of the do_Ispci
function, the if-statement at line 5 conditions the following block (lines 6-7) to the presence
of LSPCI_TEXT. Conditional compilation works as follows. In Toybox, each Boolean fea-
ture that is not selected during configuration results in a #define setting a corresponding
feature macro identifier to zero, or one otherwise (Toybox does not have tristate features).
Pre-processing then replaces feature macro identifiers with their corresponding value. All
if-conditions replacing ifdefs have a special format—they are either a reference to a single
feature identifier or they are a conjunction of an expression over feature macro names with
another Boolean expression (as in the example). After pre-processing selection statements
of the kind, the compiler partially evaluates their conditions. Those which turn into zero
or conjunct with it necessarily guard dead code, which the compiler optimizer removes
from the final binary. In our example, if LSPCI TEXT is not in the final configuration,
its corresponding macro name CFG_LSPCI TEXT is set to zero. Thus, pre-processing the
condition at line 5 results in

0 && (TT.numeric !'= 1)

Since the partial evaluation of the above expression results in false,” the compiler optimizer
removes the entire block that our example condition enframes.

We clearly see advantages of replacing ifdefs with if-statements:

e The use of if-statements do not impose special variability-aware parsing to check the
underlying code. This is particularly useful for performing automated refactorings.

6Given such a preference, when calculating the scattering degree of a feature in Toybox, we account
both the number of ifdefs and if-statements referring to the given feature. For all other systems, we account
only ifdefs.

"In C, the literal 0 in a Boolean expression has the same semantics as the false Boolean literal.
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1

toys/pending/lspci.c

int do_lspci(struct dirtree *new)

if (CFG_LSPCI_TEXT && (TT.numeric '= 1)) {
res = find_in_db(bufs->vendor, bufs->device, TT.db,
bufs->vname, bufs->devname);

Figure 4.10: Selection statement as a replacement for #ifdef

e If-statements allow the compiler to identify syntactic and semantic errors in anno-
tated fragments. The same fragments, if guarded by ifdefs, could hide errors that
would only be reported when compiling specific variants.

e Using if-statements forces developers from writing ifdefs at the level of statements
and expressions, which are undisciplined. At the cost of possibly introducing dupli-
cate code, developers can easily rewrite undisciplined annotations in any control-flow
sequence as if-statements. If duplicate code arises, developers may refactor it (e.g.,
by extracting a function), increasing the overall implementation quality.

While if-statements have clear advantages over ifdefs, they are not universally applica-
ble. Rather, they can only annotate statements that are part of a control-flow, which is not
the case with elements at the global and type levels. For the latter, ifdefs are a good-fit.

Different Makefile Constructs Support AVOGMEF. In case of AVOGMEF instances,
axTLS and uClibc rely on similar, but different mechanisms than those we observe in Linux.

At the Makefile level, axTLS developers use ifdef conditionals over feature names,
guarding recursive calls to make to process specific target directories. In the latter case,
developers set the -C flag, instructing make to change to a target directory before further
processing (see Figure 4.11 for an example).

In uClibc, developers also use Makefile conditionals, but rely on Makefile variables to
store target directories. Asan example, consider the addition of the UCLIBC_HAS WORDEXP
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RELEASE=axTLS-$ (VERSION)

# standard version
target:
$ (MAKE) -C crypto
$ (MAKE) -C ssl

+ifdef CONFIG_AXTLSWRAP
+ $ (MAKE) -C axtlswrap
+endif

Figure 4.11: AVOGMF instance using a Makefile conditional (axTLS)

+ifeq ($(strip $(UCLIBC_HAS_WORDEXP)),y)
+DIRS += wordexp
+endif

Figure 4.12: AVOGMF instance using a Makefile conditionals and a directory variable
(uClibc)

feature.® As Figure 4.12 shows, when coevolving the Makefile, developers add an ifeq-
condition at line 2. Its evaluation first trims the value of UCLIBC_HAS WORDEXP, com-
paring it with y. If the comparison holds, make appends wordexp to DIRS, which stores target
directories to proceed with compilation. Different from the solution in axTLS, setting DIRS
in our example works as a lazy approach, as it does not immediately cause make to change
the current directory.

4.4.2 Feature Modularity Directly Relates to a Project’s Notion
of Feature

In our analyses of axTLS, Toybox, and uClibc, we note a great disparity in their pattern
frequencies. In particular, we note that axTLS and uClibc do not favor the modular
addition of features in the same intensity as Toybox does. As it happens in the Linux
kernel case, the majority of features in Toybox denote coarse-grain functionality units
(toys), which map to entire C files. Thus, 74 % (148) of the feature additions in Toybox

8See commit: 94e3b336
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match the AVOMF pattern. In contrast, a third (96) of the additions in uClibe fall under
three patterns that do not relate to modular extensions: AVOCFF (44), FCFTVOF (33),
and AVONMEF (19). In axTLS, the percentage is 26, with a count of 9 instances: AVONMF
(4), AVMVF (3), FCFTVOF (2). The percentage of AVOMF instances in the latter two
systems is 5% (14) and 6 % (2), respectively. Adding the count of AVOGMF does not
change the prevalence of the dominant patterns.

One could argue that such disparity may result from our manual analyses of commit
patches, followed by manually matching them against patterns in our catalog. When doing
so, we could have incorrectly labelled authentic AVOMEF instances in axTLS and uClibe
as NA or excluded them from further analyses, potentially contributing to the differences
we observe. Such explanation, however, is unlikely to hold, as we consider AVOMF among
the easiest patterns to identify. We are confident that we are not labeling valid AVOMF
instances as NA nor excluding them. Instead, we seek a better hypothesis.

Opposed to Toybox, axTLS, and uClibc are libraries. Thus, their main unit of extension
consists of adding functions. Adding the latter, however, does not favor modularity, as
AVOMF is not dominant in both systems. Wee see three competing explanations:

1. Assuming an alignment between functions and features, files implement more than
a single feature (function). Thus, when developers introduce new features adding
code, they place the latter inside existing files, or add them together with other new
features inside new compilation units.

2. If there is not an alignment between features and functions, features serve the purpose
of controlling the behaviour of functions of the target library, such as (de-)activating
specific capabilities, setting their parameters, or by affecting the compilation process
as a whole.

3. A mix of the previous two cases.

In either case, features in axTLS and uClibe will necessarily differ from those in Toybox
in terms of the elements they control (e.g., controlling functions versus entire C files),
varying purposes (e.g., changing compilation flags versus switching on/off functionality
chunks), or both.

Following the above rationale, lower percentages of modular-related patterns is not
necessarily a bad smell. While certainly favoring overall evolution, a high frequency of
modular-based patterns is directly affected by the system’s notion of a feature and its
primary purpose in configuring target variants. If, at the implementation level, developers
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Table 4.18: AVOMF instances introducing extensions

System Instances  Extensions (total)

axTLS 2 (100%) 9

Toybox 1 (0.7%) 15

uClibc 5 (35.7%) 13
(

Total 8(49%) 37

use features for configuring the internals of compilation units, as we note in axTLS and
uClibc, the amount of non-modular extensions, along with the level that developers add
them, seem more relevant as implementation quality criteria than the number of modular-
based features per se.

4.4.3 There Appears to Exist a Balance Between the Number of
AVOMF Instances Adding Extensions and the Scattering
Degree Values of such Features

When inspecting extensions of AVOMF features across header and C implementation files,
we note that all the instances in axTLS add extensions; in uClibc, the percentage is lower,
but it is not negligible—36 %. Table 4.18 details the results. Altogether, both systems
oppose to what we observe in Toybox and in the Linux kernel. Rather than a coincidence,
the alignments between Linux+Toybox and axTLS-+uClibc are likely to follow from a
dominant notion of how these systems perceive features and how they set to utilize them
(see Section 4.4.2).

In the combined evolution of axTLS, Toybox, and uClibc, most AVOMF instances
adding extensions concern scattered features, i.e., those with SD > 1 (see Table 4.19).
Moreover, as Table 4.20 shows, scattering degrees tend to be lower in uClibc and axTLS
than in Toybox. Such results suggest a balancing force. While Toybox has a single scattered
feature, its scattering degree is as high as 15. axTLS and uClibc, in contrast, have more
instances adding extensions (7 in total), but their SD-values are considerably lower; the
median value in axTLS is 4.5, whereas in uClibc it is one.
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Table 4.19: (Non-)scattered cases among AVOMF instances introducing extensions

System SD =1 SD >1

axTLS 0 (0%) 2 (100%)

Toybox 0 (0%) 1 (100%)

uClibc 3 (60%) 2 (40%)
( (

Total 3 (37.5%) 5 (62.5%)

Table 4.20: SD-values of AVOMF instances introducing extensions

System  SD-values

Min Max Median

axTLS 2 7 4.5
Toybox 15 15 15
uClibe 1 8 1

4.4.4 Most AVONMEF Instances Relate to Scattered Features, but
with Low SD.

Given AVONMF instances, our three target subjects add a total of 117 extensions: 6 in
axTLS, 12 in Toybox, and 99 in uClibc—see Table 4.21.° Similar to what we observe
in the Linux kernel, 70 % of the AVONMF instances in the combined evolution of axTLS,
Toybox, and uClibe concern scattered features (see Table 4.22). Also, the scattering degrees
of AVONMEF instances are low; as Table 4.23 shows, uClibc has a median SD of three, the
highest among our three subjects. In Toybox, typical values range between 1-2, whereas
in axTLS, a typical AVONMF feature introduces a single extension. The distributions of
SD-values in axTLS and Toybox are not skewed, as their median value approximates to
the mean. In contrast, the mean SD-value (5.5) in uClibe is greater than the median,
causing right skewness. This is due to five features whose SD-values range from 9 to 15.

“When analyzing the number of extensions of AVONMF instances, we do not account one instance
in uClibc, as its implementation is in Assembly. Thus, as Table 4.21 shows, the total number of uClibc
instances sums to 18 (95 % of all the AVONMEF features in uClibc). Counting extensions only in C header
and implementation files makes our analyses consistent throughout the thesis, as such files types are the
most common artifact type across all the subjects we analyze.
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Table 4.21: Extensions among AVONMF instances

System Instances  Extensions (total)

axTLS 4 (100%) 6

Toybox 7 (100%) 12
uClibe 18 (95%)* 99
Total 29 (97%) 117

Table 4.22: (Non-)scattered cases among AVONMF instances

System SD =1 SD >1

axTLS 2 (50%) 2 (50%)

Toybox 4 (57.1%) 3 (42.9%)

uClibe 2 (11.1%) 16 (88.9%)
(

Total 8 (30%) 21 (70%)

Table 4.23: SD-values of AVONMEF instances

System  SD-values

Min Max Median

axTLS 1 2 1.5
Toybox 1 3
uClibec 1 15 3

4.4.5 Annotations Tend to be Disciplined

In the analyses of the two most frequent patterns in the Linux kernel, we observe that the
extensions of AVOMF and AVONMF are disciplined, i.e., they align with syntactic units
of the host programming language.

We note the same behaviour across the evolution of axTLS, Toybox, and uClibc. Tables
4.24 and 4.25 show the level at which developers introduce extensions when adding AVOMF
and AVONMF features, respectively. When calculating the percentage values in both
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Table 4.24: Syntactic level of extensions among AVOMF instances introducing ifdefs

System  Granularity of extensions

Global Function  Type Block Statement FExpression Signature
axTLS 4 (445%) 2(222%) 2(222%) 0 (0%) 1(11.1%) 0 (0%) 0 (0%)
Toybox 2 (13.3%) 1(6.7%) 0 (0%) 12 (80 %) 0 (0%) 0 (0%) 0 (0%)
uClibc 4 (30.8%) 5 (384%) 0 (0%) 1 (7.7%)  3(23.1%) 0(0%) 0 (0%)
Total 10 (27%) 8 (21.6%) 2 (54%) 13(352%) 4(10.8%) 0 (0%) 0 (0%)

Table 4.25: Syntactic level of AVONMEF extensions

System  Level of extensions

Global Function Type Block Statement  Expression Signature

axTLS 1 (16.7%) 2 (33.3%) 1(16.7%) 0 (0%) (33.3%) 0 (0%) 0 (0%)

2

Toybox 3 (25%) 4 (33.3%) 0(0%) 5 (AL7T%) 0 (0%) 0 (0%)  0(0%)
uClibe 26 (26.3%) 35 (35.4%) 3 (3%) 12 (121%) 12 (121%) 11 (11.1%) 0 (%)
Total 30 (25.7%) 41 (35%) 4 (34%) 17 (145%) 14 (12%) 11 (94%) 0 (0%)

tables, we take the number of the extensions of the corresponding pattern in a given system
as the target denominator; in the case of total percentages (last row), the denominator is
relative to the total number of extensions that instances of the given pattern introduce.

Different from the Linux kernel, we do not find global extensions as the dominant
kind; rather, we find most annotations of AVOMF instances occurring at the block-level,
whereas those of AVONMF occur at the function-level. Nonetheless, annotations at the
global and type levels, which are suitable to be modularized using alternative techniques
(e.g., by using aspects [2]), represent 32 % of the extensions in AVOMF; in AVONMF, the
percentage is 29 %. Altogether, disciplined annotations are prevalent, capturing 89 % (33)
and 79 % (92) of the extensions in AVOMF and AVONMF, respectively. Interestingly, we
do not find a single extension at the level of function signatures. Although absent from
axTLS and Toybox, undisciplined annotations occur in uClibc—23 % of the annotations
in its AVOMF and AVONMEF instances are not disciplined.

We also find the annotations of FCFTVOF, the most common pattern in uClibc, to be
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disciplined, following a similar distribution to the extensions in AVOMF and AVONMF.

4.5 Threats to Validity

Construct Validity. Our generality operationalization imposes a construct validity to
the identification of general patterns. We argue, however, that our operationalization
simply builds on top of the Rule of Three, a commonly accepted operationalization in
pattern analysis. The extra constraint we impose in comparison to the operationalization
in Chapter 3 is consistent to the level at which we set to identify general patterns, i.e.,
within a single target domain (the systems software domain). Others seeking to validate
our patterns across different domains would apply yet another constraint layer, requiring
the application of patterns across at least three distinct domains.

All the construct validity threats of our Linux kernel case study also apply to our catalog
validation. We do not re-state such threats. Rather, readers should refer to Section 3.7.

External Validity. While our validation increases the external validity of part of our
catalog, we cannot claim that the general patterns we identify extrapolate to domains
different from the systems software. In fact, we do not seek such extrapolation, nor claim
it.

Reliability Validity. Manually performing the steps or our methodology, allied with
human subjectivity when matching patterns, imposes a reliability threat to our results.
To mitigate it, we document our methodology accordingly, providing clear steps on how
to define commit windows, along with a priority-based scheme to guide the matching of
commit windows to a single pattern representing a change. Our results suggest a low
reliability threat when identifying commit windows, as we find inconsistencies in only
4.3 % of all the cases we analyze. Pattern matching, in contrast, presents a higher reliability
threat, as we find inconsistencies in almost 20 % of all the matches we perform. We mitigate
the error-proneness of our matching process by performing reviews among participants’
results, in addition to consensus meetings.
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4.6 Conclusion

The validation of our catalog suggest that our patterns are expressive (RQ.1), at least,
in the context of our three chosen targets (axTLS, Toybox, and uClibc). Our validation
shows that our patterns explain 64 % (402) of all the additions and removals in our scope
of analysis (624 cases). Moreover, our validation identifies 14 general patterns within the
systems software domain (RQ.2), including patterns relative to the addition of features
from completely new elements, featurization of existing code, renaming, and retirement
situations. Currently, however, we cannot prove the generality of merge-related patterns.

Analyzing different pattern instances from distinct target systems reveal some interest-
ing facts. Among others, we note that Toybox developers tend to replace ifdef annotations
with if-statements, allowing the compiler to detect syntactic and semantic errors across all
the branches of code annotations within a control-flow sequence. We also confirm that de-
velopers tend to write code annotations in a disciplined manner; moreover, we find features
to have a low scattering degree.
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Chapter 5

Towards Better Understanding Feature
Scattering: A Longitudinal Analysis of
Linux Kernel Device-Driver Features

The preliminary findings of Chapter 3 suggest that feature scattering is recurrent in Linux
kernel evolution, but it is kept under control—our most frequent addition patterns suggest
that scattering degrees are low and that scattering is predominantly localized. In such
settings, scattering is not necessarily bad; if kept low, developers may benefit from it when
extending the kernel in unforeseen ways, or when circumventing the dominant decompo-
sition of the C language. In general, however, practical scattering limits, as found across
the evolution of long-lived software systems, are yet unknown. Thus, further investigation
of feature scattering across the Linux kernel evolution may shed some light into such lack
of knowledge.

This chapter investigates the empirical limits of feature scattering in the Linux kernel
evolution, in addition to investigating the influence of particular feature kinds on scattering
degree values and scattering location. Specifically, we perform a longitudinal analysis of the
scattering of device-driver features, the most common feature kind in Linux, studying their
evolution in almost eight years of the kernel’s 20-year history. Our goal is not to extract
universal scattering limits, nor general feature kinds. Rather, we seek to provide evidence
that scattering scales up to the limits seen in the Linux kernel evolution, and report features
in the operating system domain that may influence scattering. Knowing practical limits
and influencing features, whilst restricted to a particular system, is a requirement towards
a formulation of a future general scattering theory.
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Chapter Organization. Section 5.1 presents our four research questions. Section 5.2
outlines our methodological steps. By applying our methodology, we collect and analyze
related data, presenting results in Section 5.3. We then argue about possible threats to
validity in Section 5.4, concluding the chapter in Section 5.5.

5.1 Research Questions

As a further assessment of the results of our exploratory analysis in Chapter 3, we aim at
better understanding the evolution of feature scattering. As such, we perform a longitudinal
analyses of the scattering of Linux kernel device-driver features, guiding our investigation
by four research questions. In the following, we enumerate and briefly discuss each research
question.

RQ. 1. How does the growth of scattered features differ from non-scattered ones?

We analyze the relative and absolute growths of scattered and non-scattered features, com-
paring the evolution of the two kinds—for instance, to understand whether the proportion
of scattered features is increasing, decreasing, or stable over time.

RQ. 2. How does the growth of locally scattered features differ from globally scattered
ones?

We analyze the relative and absolute growths of features that are (i) scattered within their
containing subsystem (local scattering), and (ii) of those that are scattered across at least
another subsystem different from its containing one (global scattering). We compare both
growth rates and aim at understanding how scattering is related to the kernel’s architecture.

RQ. 3. How does the extent of feature code scattering evolve over time?

We analyze the scattering degree values, aiming at understanding their underlying distri-
bution and possible thresholds. We also want to assess how the scattering degree relates
to local and global scattering.
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RQ. 4. What are possible factors influencing scattering of feature code?

We formulate and test hypotheses about possible factors influencing scattering. To this
end, we collect and classify a random sample of features, identifying possible characteristics
affecting where a feature is scattered across (local versus global scattering) or leading to
higher scattering degrees.

5.2 Methodology

This section describes our methodology for collecting supporting data for our longitudinal
study.

5.2.1 Scoping

To answer our research questions, we concentrate on device-driver features, that is, features
defined in the driver subsystem of the kernel. This decision relies on the evidence showing
that the Linux kernel evolution is mainly driven by the evolution of its device drivers. Such
evidence includes the fact that most patterns adding features concern device drivers (see
Chapter 3), as well as other results showing device drivers as the most active part of the
Linux kernel evolution [53, 61, 70, 91].

Setting the scope to features in the driver subsystem requires us to distinguish them
from features of other subsystems. Next, we explain how we perform such distinction.

5.2.2 Identifying Driver Features

To distinguish driver features from features of other subsystems, we perform as in Sec-
tion 3.5.1. Using Hartman’s mapping, we assign source files to a single subsystem. We
then consider the subsystem of a feature’s declaring Kconfig file as the feature’s subsys-
tem. It is worth noting that some features in the driver subsystem, although very few
(0.65 £ 0.46 %), are also declared in other subsystem(s)—e.g., inside core. As we cannot
decide the subsystem of such features, we exclude them from our analysis.

After filtering the unique features in each kernel subsystem, we confirm that the Linux
kernel is actually driven by the evolution of driver features. As Figure 5.1 shows, the
driver subsystem is not only the largest in number of features, but also the fastest growing.
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Figure 5.1: Feature distribution per subsystem

5.2.3 Data Collection

Our data analyses is based on longitudinal data from the v2.6.12-v3.9 release range. Fig-
ure 5.2 depicts our data-collection procedure. With a cloned repository of the Linux kernel
source code in place, we query the kernel’s source management system (Git) to list all
release tags. From the listing, we filter the stable release identifiers (step 1). We then
check out each stable release (step 2), setting the repository to a particular release snap-
shot. In the checked-out release, we list all C implementation and header files therein and
clean them by removing empty lines and comments, and by transforming multilines® into
single ones (step 3). We also eliminate strings in the source code as a means to facilitate
pattern matching when mining feature references across the code (step 4). Finally, we
collect metadata of each identified reference (step 5), including the name of the file in
which a feature is referred, the line in which the reference occurs, and the associated ifdef
pre-processor directive. We then store all feature references and their associated metadata
in a relational database. For any given feature reference, there exists an associated file
record in the database, which in turn links to a kernel subsystem in a given stable release.

All steps in our process are fully automated and are currently supported by extensions
made to our pattern analysis toolset.

!Multilines end with the *\’ character. They spread many physical lines, but the C compiler interprets
them as a single one.
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Figure 5.2: Data extraction process

5.2.4 Data Analysis

To answer our research questions, we issue SQL queries through the R statistical environ-
ment, which we connect to our database [32, 63]. Then, we plot the results and perform
different statistical analyses according to each research question (we defer details to Sec-
tion 5.3).

In our analysis, we measure the scattering degree (SD) of a driver feature ft in terms
of its scattering degree at each implementation and header C file f in a set of target
subsystems S, i.e.:

SD(ft.S) => Y SDF(ft. f) (5.1)

seS fes

where SDF(ft, f) is the number of ifdefs (#if, #ifdef, #ifndef, #elif) in f referring to ft.
This is an alternative, yet equivalent, equation to our earlier SD definition in Chapter 2.
As before, we restrict scattered features to those having an SD-value of at least two.

5.3 Results

This section reports the results of four respective research questions, aiming at understand-
ing the evolution of scattered versus non-scattered features (RQ 1), of scattering within
and across subsystem boundaries (RQ 2), of scattering degrees (RQ 3), and possible causes
of the observed scattering and scattering degrees (RQ 4).
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Figure 5.3: Growth of (non-)scattered driver features

5.3.1 Scattered versus Non-Scattered Features

RQ. 1. How does the growth of scattered features differ from non-scattered ones?

To answer this question, we plot the proportion of scattered driver features in each
kernel release, along with their absolute number. In both cases, we compare the growth rate
of scattered driver features with the evolution of non-scattered ones. Figure 5.3 displays
both plots, with summary statistics provided in the Tables 5.1 and 5.2. When applying
Eq. 5.1 to identify scattered features, we take S as the union of all subsystems in the Linux
kernel.

On average, 18 + 1.2% of driver features are scattered in any given release, with a
maximum of 21 % and a minimum of 16 %. The average proportion is stable over time,
although a decreasing trend starts from release v2.6.26. In absolute terms, the number
of scattered driver features grows by 2.5 + 2.4 % between each pair of consecutive stable
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Table 5.1: Summary statistics of (non-)scattered driver features (relative)

Type Min Max Mean Dift Slope

Scattered 16.23% 20.79% 18444+ -3.22% -0.08
1.2%

Non-scattered 79.21% 83.77% 81.56+ 3.22% 0.08
1.2%

Table 5.2: Summary statistics of (non-)scattered driver features (absolute)

Type Min Max Mean Diff Slope

Scattered 471 1,140 819.45+ 142.04% 204
228.88

Non-scattered 1,949 5,880 3,702.87+ 201.69% 114.36
1,280.49

releases. Since the first release under analysis (v2.6.12), the number of scattered driver
features has grown by 142 %, as given by the Diff statistic.? In release v3.9, the kernel has
over 1,000 scattered driver features. The latter, however, grows almost six times slower
when compared to non-scattered driver features, as given by the ratio of their regression
line slope coefficients. Moreover, the absolute growth of scattered driver features is not
monotonic, with three small periods of decrease: v2.6.13-v2.6.14, v2.6.26-v2.6.27, and
v3.0-v3.6.

The data confirms our earlier finding in Chapter 3, showing that the kernel architecture
allows most driver features to be incorporated without causing any scattering. Some driver
features, however, do not fit well into this architectural model and are thus scattered across
the source code. Moreover, the proportion of scattered driver features is nearly constant,
which may indicate that it is an evolution parameter actively controlled throughout the
kernel evolution.

2The percentage difference (Diff) of two non-percentage values x5 and xq is 100 x (z2 — x1)/z1. If 29
and x; are percentages, the Diff-value is simply x5 — 2. When calculating Diff for a given metric (e.g.,
number of scattered driver features), we take x5 to be the metric value at the last inspected kernel release
(v3.9), whereas x; is the metric value for the first release (v2.6.12).
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Figure 5.4: Growth of locally and globally scattered driver features

5.3.2 Local versus Global Scattering

With the next research question, we investigate to what extent the scattering of driver
features is local and to what extent it is global. A globally scattered driver feature has
at least one associated ifdef in an implementation or header C file that is not in the
driver subsystem. In the case of a locally scattered driver feature, referring ifdefs occur only
in source files in the driver subsystem. Ideally, most scattering should be local, contributing
to internal cohesion, while decreasing coupling.

RQ. 2. How does the growth of locally scattered features differ from globally scattered
ones?

The growth of locally scattered driver features varies along the Linux kernel evolution.
Nonetheless, it dominates the growth of globally scattered driver features, both propor-
tionally and in absolute numbers. Figure 5.4 shows the corresponding plots, with summary
statistics provided in Tables 5.3 and 5.4.
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Table 5.3: Summary statistics of locally and globally scattered driver features (relative)

Type  Min Max Mean Dift Slope

Local 56.84% 70.28% 62.13+4.12% -13.43% -0.36
Global 29.72% 43.16% 37.87+4.12% 1343% 0.36

Table 5.4: Summary statistics of locally and globally scattered driver features (absolute)

Type Min Max Mean Dift Slope

Local 331 648 500.08+£110.89 95.77% 9.82
Global 140 492  319.374+118.53 251.43% 10.58

In release v2.6.12, the proportion of locally scattered driver features is 70 %—the highest
across all releases. Immediately after, the proportion follows a steady decrease, which
stabilizes around 57 % from v2.6.38 onwards. In the latest release (v3.9), the percentage
of locally scattered features is 56.8 % (648 absolute). The stabilization of local scattering
causes a stabilization of globally scattered driver features at 43 %. Before stabilization,
however, the graph depicts an increasing trend. In absolute terms, the number of globally
scattered driver features grows at a faster rate than locally scattered ones, as given by their
corresponding slope coefficients. Consequently, their relative difference decreases over time,
resulting in the funnel shape of Figure 5.4a.

The relative and absolute dominance of local scattering contributes to internal cohesion
within the driver subsystem. We conjecture that it eases maintenance, as local scattering
requires less synchronization across subsystems. Nonetheless, it is interesting to see that
the gap between the proportions of locally and globally scattered features is consistently
decreasing, with a growing proportion of globally scattered driver features. Consequently,
there is an increasing dependency from other subsystems to driver features. Although the
latter may indicate an evolution decay, it does not seem to hinder the Linux kernel growth.
As Section 3.2 shows, the kernel grows at a similar pace between each pair of consecutive
releases. Thus, we interpret the stabilization of the proportion of globally scattered driver
features as an effort to control its preceding growth trend. Hence, 43 % seems a current
upper limit kept by Linux kernel developers.
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5.3.3 Scattering Degrees

RQ. 3. How does the extent of feature code scattering evolve over time?

To answer this question, we plot the scattering degrees (SD) of all scattered driver
features at each kernel release. When measuring SD (see Eq. 5.1), we take the target set
of subsystems (.S) as the union of all subsystems in the kernel. The boxplot in Figure 5.5,
which we adjust for skewness [68], shows that 50 % of all scattered driver features have a low
scattering degree, with SD < 4 across all stable releases. Above the 50 % of the distribution,
however, the scattering of features considerably increases. In the third quartile (up to
75% of the distribution), SD-values practically double, lying between seven and eight. In
the remaining 25 %, the highest SD-values that are not outliers range from 34 to 55, as
indicated by the top whiskers. In this range, the average SD-value is 44 £+ 5.3. Above the
top whiskers, outliers (shown as dots) have high SD-values, with a minimum of 35 and a
maximum of 377 (median of 63). As the kernel evolves, outliers grow in absolute numbers
as well as relatively. Figure 5.6 displays the corresponding graphs, with summary statistics
provided in Table 5.5. In absolute numbers, outliers display a 500 % increase, with as little
as 7 features in release v2.6.12 and 42 in v3.9. Relatively, however, the Diff between the
first and last release is only 2.2 %.

The analysis of the SD-values of scattered driver features indicates a skewed distribu-
tion. In the kernel’s evolution, 75 % of SD-values are small (4) to medium (8). A dispersion,
however, occurs in the remaining 25 % (values 34-377), pushing the distribution tail to the
right. Consequently, the distribution is skewed to the right, increasing the difference be-
tween a typical SD-value (4) and the mean (8). In such settings, the mean is a not robust
statistic. Instead, practical scattering limits should be relative (e.g., 75% of the features
should have SD < 8), rather than a single value to which all features would adhere to.

To ascertain the observed skewness, while summarizing how unevenly SD-values are
distributed among scattered driver features, we calculate the Gini coeflicient [138] for each
kernel release. The Gini coefficient is a popular summary statistic in economics, measuring
the inequality of wealth (e.g., the value of a software metric, such as SD) among the
individuals (e.g., features) of a population. Its value is in the range of zero and one; zero
means a perfect equality, where all individuals have the same wealth. A high value, in
contrast, denotes an uneven distribution.

Figure 5.7 shows the evolution of the Gini coefficient in the Linux kernel evolution. The
coefficient follows a decreasing trend in the first 12 releases, meaning that SD is more evenly
distributed. From release v2.6.23 onwards, an increasing trend can be observed, indicating
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Figure 5.5: SD-values of scattered driver features

that SD is more concentrated towards a particular set of features. The absolute difference
between the coefficients in v2.6.23 and v3.9, however, is only 0.06, which indicates that
SD distribution does not vary considerably. At all times, the Gini coefficient is closer to
one than to zero, confirming the observed right-skewness.

Finally, we partition the SD distribution into globally and locally scattered driver
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Figure 5.6: Growth of outlier scattered features

Table 5.5: Relative and absolute growth of scattered outlier features
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Figure 5.7: Evolution of the Gini coefficient of the SD-value of scattered driver features
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Table 5.6: Summary statistics of the average SD-value of scattered driver features

Type  Min Quartile 1 Median Quartile 3 Max

Local 2 2 3 6 84.13
Global 2 2.14 4 7.49 199.5

features. For each feature, we take the average of all its SD-values, accounting each
release containing the feature. We then compare the distributions of the averages in each
partition. As Table 5.6 shows, starting from the median, globally scattered features have
higher average SD-values. Thus, globally scattered driver features do not only affect more
subsystems, but also tend to have higher prospective maintenance costs, given that more
locations in the code base might have to be maintained.

5.3.4 Causes of Scattering

RQ. 4. What are possible factors influencing scattering of feature code?

To answer this research question, we investigate whether specific kinds of features exist
that by their nature affect where a feature is scattered across (local versus global scattering)
or lead to higher scattering degrees. The characteristics we test are the result from past
experience and observations when manually analyzing and classifying features in the Linux
kernel and other systems [108].

The first kind of features we observe relates to so-called platform devices. As opposed
to hotplugging devices, these cannot be discovered by the CPU. An experienced kernel
developer explains:?

"Happily, we now live in the days of busses like PCI which have discoverability
buslt into them; any device sitting on a PCI bus can tell the system what sort
of device it is and where its resources are. [...] Alas, life is not so simple; there
are plenty of devices which are still not discoverable by the CPU. [...] So the
kernel still needs to provide ways to be told about the hardware that is actually
present. ’Platform devices’ have long been used in this role in the kernel."

3Written by Jonathan Corbet, the main author of the Linuz Device Drivers book [34]. See http:
//lwn.net/Articles/448499/
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In the kernel, a platform driver is any driver that instantiates a platform driver C struc-
ture. Since platform devices cannot be discovered by the CPU, the kernel cannot automat-
ically load their corresponding LKMs, as in hotplugging. Instead, board-specific code [73|
instantiates which devices to support for a target CPU, and with which drivers. However,
developers do not instantiate all possible platform devices when porting Linux to a particu-
lar CPU, as only some will be present at all times. In the face of such hardware variability,
it is intuitive to assume that developers will be more prone to introducing extensions out-
side the driver subsystem (e.g., in the arch subsystem, which contains CPU-dependent code),
conditioning them on the presence of specific platform devices and their associated drivers
and capabilities. For non-platform driver features, the opposite should occur; through
hotplugging, devices should be discovered at runtime, triggering the automatic loading of
required LKMs.

The second kind of features concerns domain abstractions, which provide a core in-
frastructure from which concrete drivers are built. These abstractions do not bind to a
specific vendor, but rather represent a generic set of devices and driver-related capabili-
ties. Examples include generic buses (e.g., USB, PCl, and ACPI), drivers declaring specific
device classes (a type of a device, such as an audio or network device),* and hardware-
description frameworks (e.g., OpenFirmware).? Since these features denote abstractions in
the operating-system domain, we assume that they should have a higher likelihood of being
scattered in comparison to non-infrastructure features. In such cases, extensions in code
would check for specific generic functionality and related capabilities, allowing features to
react accordingly.

Next, we investigate whether the kind of a feature affects which subsystem the feature’s
code is scattered across (location) or its scattering degree.

Influence on Scattering Location

We test the effect of being a platform feature on scattering location by first collecting
a random sample of 10% of all scattered driver features (population size is 1,700). We
then manually classify sample features as either platform or not. A platform-driver fea-
ture is either a platform driver (i.e, it has at least one compilation unit instantiating a
platform driver structure) or it is a capability of a container platform-driver feature. For
further details on the classification process, see our online appendix [1].

‘https://www.kernel.org/pub/linux/kernel/people/mochel/doc/text/class.txt
Shttp://www.openfirmware.info/
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With the classified sample, we then perform the x? statistical test at a significance level
of 0.05. Our hypotheses are:

Null hypothesis (Hy): being a platform-driver feature has no effect on scattering
location

Alternative hypothesis (Hy): being a platform-driver feature has an effect on scatter-
ing location

Table 5.7 shows the contingency table we use in the test, along with the resulting 2
statistic and p-value.

We find strong evidence (p = 1.933 x 107> < 0.05) of a dependency between being a
platform-driver feature and scattering location. Thus, we can reject the null hypothesis
in favor of the alternative one. In fact, the analysis of Table 5.7 indicates that platform-
driver features are 2.5 times more likely to be globally scattered than non-platform ones.
Conversely, a non-platform driver feature is 1.8 times more likely to be locally scattered.
In summary, the test confirms our initial understanding: when facing non-discoverable
devices, developers are more likely to introduce ifdefs outside the driver subsystem. For
non-platform devices, the scattering of their driver code is likely local. As Figure 5.8
shows, most globally scattered platform-driver features in our sample are scattered across
the arch subsystem, either only in arch, or in both arch and driver (in the figure, ’either’ is
captured by the '+’ sign, whereas ’and’ is denoted by ’&’). This evidences a tight rela-
tionship between the arch subsystem and platform-driver features; since platform devices
are not discoverable by the CPU, supporting the drivers of some of such devices requires
scattering CPU-dependent code, which is mostly found inside the arch subsystem.

To check the influence of infrastructure features, we perform similar steps as in the
previous test. Using the same sample set of scattered features, we classify them as either
infrastructure or not. We test the following hypotheses:

Null hypothesis (Hy): being an infrastructure-driver feature has no effect on scattering
location

Alternative hypothesis (Hy): being an infrastructure-driver feature has an effect on
scattering location

Here, we do not have a strong evidence suggesting that being an infrastructure-driver
feature has an effect on scattering location. As Table 5.8 shows, running the x? test results
in a p-value greater than the chosen significance level. Thus, we fail to reject the null
hypothesis.

137



Non-platform Platform

754

50+

Nbr. of features

25+

o
1

| ——
1 1 1 1 1 1 1 1
—_ —_ o ®» —_ — L "
9] 9] o 5 5] 9] o 5
=] = = < =] = = <
z = S z z S
o° © E, ° o° ° -S, o
o o3 < o3 o =
5 g 8 5§ g O
o o
8 o 8 o
+ + + +
5 9 5 9
& 8 & 8
Subsystem

Figure 5.8: Scattering location of sampled (non-)platform drivers

Influence on Scattering Degree

In order to verify the influence of being a platform or an infrastructure-driver feature on
scattering degree, we initially calculate the average SD-value of each sample feature across
all releases containing it.

To check the influence of being a platform-driver feature, we split the calculated average
SD-values into those that concern platform-driver features, and those that do not. We then
perform a one-tailed Mann-Whitney-Wilcoxon rank sum statistical test to assess whether
platform-driver features systematically yield higher average SD-values in comparison to
non-platform driver features.® Our hypotheses are:

6Systematically here means that the probability of having an average SD greater than a value X among
platform-driver features is greater than the probability of having an average SD > X among non-platform
ones [98].
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Table 5.7: Relationship between being a platform-driver feature and scattering location

x2 =18.26,p = 1.933 x 107

Is locally scattered?

Is platform? No Yes Total
No 28 93 121
Yes 28 21 49
Total 56 114 170

Table 5.8: Relationship between being an infrastructure-driver feature and scattering lo-
cation

2 =243,p=0.1194

Is locally scattered?

Is infrastructure? No Yes Total
No 44 100 144
Yes 12 14 26
Total 56 114 170

Null hypothesis (Hy): there is no difference in the distribution of average SD-values
of platform and non-platform driver features

Alternative hypothesis (Hy): average SD-values are systematically higher in platform-
driver features

We do not find convincing evidence that average SD-values are systematically higher
in platform-driver features. With a 0.05 significance level, we are unable to reject the null
hypothesis. We also test whether platform-driver features influence the average SD-value of
non-infrastructure features, as we do not classify platform-driver features as infrastructure.
As before, we do not find convincing evidence (p = 0.8496).

There seems to be also no significant influence of being an infrastructure-driver feature
on scattering degree. Running the one-tailed Mann-Whitney-Wilcoxon rank sum statistical
test to compare the average SD-values of infrastructure with non-infrastructure features
only supports the null hypothesis.
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To better understand these results, we place sample features in one of three groups
according to the scattering degree limits reported in RQ 3: low (average SD < 4), medium
(4 < average SD < 8), or high (average SD > 8). The resulting plot in Figure 5.9, which
compares infrastructure and non-infrastructure features, shows that both feature kinds
have a similar proportional contribution to each scattering degree level bin, yielding sim-
ilar outcome probabilities. The same occurs between platform and non-platform driver
features.

In the case of the outliers observed in RQ 3 (see Figure 5.5), however, we do find
some influence of being an infrastructure-driver feature on extremely high SD-values. By
ranking the average SD-value of each outlier feature, we plot the histogram of the number
of features with an average SD-value matching each rank, partitioning the feature set into
infrastructure and non-infrastructure outliers. As Figure 5.10 shows, infrastructure-driver
features are the most scattered features among outliers, with 9 out of the 15 most scattered
driver features in the kernel evolution. Considering the total number of outliers, however,
infrastructure-driver features are out-performed by non-infrastructure ones. Consequently,
most outliers are not infrastructure-related, but are rather narrow in purpose (e.g., target
a specific bus-type or particular hardware manufacturer). Among those (Figure 5.11), we
find that most relate to platform-driver features bound to specific system-on-a-chip devices,
such as serial link devices, general input/output (GPIO) capabilities, and video support.

5.4 Threats to Validity

Next, we discuss the possible threats to the validity of our analyses and results.

External Validity. The largest threat to external validity is that our data are based on
one case study only. Still, it is one of the largest open-source projects in existence today.
Furthermore, our focus on device drivers is justified by the insight that it is the largest
and most vibrant subsystem of the Linux kernel. Despite this focus, we study scattering
not only within this subsystem, but also investigate how device-driver features affect the
other subsystems of the kernel.

To investigate whether two specific kinds of features (platform and infrastructure fea-
tures) impact scattering degrees and lead to global scattering, we perform hypothesis test-
ing based on a sample of 170 scattered features (population size is 1,700), given that it
requires manual classification of features. This sampling is justified, and we rely on stan-
dard p-value limits to test hypotheses. Recall that the investigation of outliers does not
rely on sampling, but on classifying the whole population (54 features).
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Finally, our analysis of code scattering relies on pre-processor directives. However,
variability in the Linux kernel also affects entire files, as their compilation is controlled by
specific features. Thus, we show a partial, yet valid, view of the true story. Of course, our
results should be complemented by studying code scattering on the more coarse-grained
source file level. Using this information, such as from previous attempts to analyze the
Linux kernel’s build system, is left as valuable future work.

Internal Validity. There is always the risk that bugs in our custom-made tools and scripts
impact results. To mitigate this threat, we perform extensive code reviews, including the
author of this thesis and an external collaborator. In total, we expend almost 16 hours of
code reviews. Additionally, we also use a test suite with over 70 test cases.

For all analyses, we exclude features that we cannot uniquely map only to the driver
subsystem. This limitation, however, has no further impact on our results, as only very few
driver features (0.65 + 0.46 % per kernel release) are declared across different subsystems.
We also exclude references to features that occur in strings in the code, assuming that
such references have no impact on maintenance, as opposed to the code parts controlled
by pre-processor-directives, which we analyze.

Construct Validity. To measure scattering of feature code, we rely on a very simple
metric (SD). Since it measures the parts related to feature code as specified by the original
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developers (using pre-processor directives), it is also a very valid measurement of scattering.
In fact, the ability to rely on this information is a major advantage over previous studies,
which need to recover the mapping of features (or concerns, see Chapter 2) to code.

However, it is not completely clear how these syntactic code extensions, which aim at
realizing variability, relate to semantic code extensions, that is, units of functionality from
a domain-oriented view. Understanding this relationship constitutes an interesting future
research question.

5.5 Conclusion

We analyze almost eight years of evolution history of device-driver features in the Linux
kernel, focusing on the feature scattering evolution. Our goal is not to investigate limita-
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tions or maximum degrees of scattering, but to find empirical evidence that scattering can
be handled to the extents we can find in one of the largest feature-based software systems
in existence today.

We learn that the majority of driver features (82 %) can actually be introduced without
any scattering (RQ 1). Classic modularity mechanisms, as employed by the Linux kernel
software architecture, seem to suffice. Yet, the absolute number of scattered driver features
is still higher than our expectations. Proportionally, however, the amount of scattered
features remains nearly constant throughout the kernel evolution. Whether such a limit is
actively maintained by developers remains an interesting open question.

We also find that scattering is not limited to subsystem boundaries (RQ 2). While most
driver features are in fact only implemented in the driver subsystem, a significant proportion
(43 %) of features has extensions in other subsystems. This proportion, however, is stable
in the last third of releases.
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The implementation of the majority (75%) of scattered driver features is scattered
across a moderate number of four to eight locations in code (RQ 3). Moreover, the median
is low and constant across the entire evolution (SD = 4). Yet, the distribution is skewed to
the right, with outliers having scattering degrees up to 377. Thus, the arithmetic mean is
not a reliable threshold to monitor the evolution of feature scattering. Outliers, however,
are limited in number, accounting for less than 4 % of the total number of features in the
kernel; however, their absolute counting and magnitude grow with the system.

We identify and analyze two kinds of features that are prone to scattering (RQ 4).
So-called infrastructure features account for 9 out of the 15 most highly scattered out-
liers in the scattering distribution of driver features, affecting many parts of the code.
So-called platform features in the Linux kernel are more frequently scattered across sub-
system boundaries, but do not necessarily have higher scattering degrees. The cases where
platform-driver features affect scattering degree occur within non-infrastructure outlier fea-
tures, where platform-driver features account for most of the outliers in that group. While
the scattering of platform features across subsystem boundaries can be potentially avoided,
the necessary generalization of code and abstraction layers might be too expensive or dif-
ficult to be achieved in practice, due to hardware detection limitations. Thus, scattering
using pre-processor directives is a natural mechanism in this context, yet facing a potential
maintenance trade-off.
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Chapter 6

Conclusion

6.1 Summary

We build this thesis on the assumption that the existing poor variability tool support
follows from lacking a through understanding of how variability evolution happens in real-
world settings. Thus, as a research goal, we seek to advance such understanding.

We perform our research in two major steps. First, we perform an exploratory analysis
of a large, complex, and real-world variability-aware system: the Linux kernel. In a second
step, we further assess the results of our exploratory analysis by considering three other
variability-aware systems in the same domain of the Linux kernel (the systems software
domain), in addition to the Linux kernel itself.

In our exploratory analysis, we sample a portion of the Linux kernel commit history,
analyzing the variability evolution induced by adding or removing features from the Linux
kernel variability model, tracking how different artifacts coevolve as a result. We report
our findings as a catalog of 23 patterns covering five main evolution scenarios: addition of
new features from completely new elements (9), renaming of features (1), merge cases (2),
featurization (2), and feature retirement situations (9). For each pattern, we crosscheck
specific properties of its instances against evidence from existing literature, in addition
to documenting trends in how developers employ our patterns. Among others, we find
that whenever developers add extensions in code, they do it in a disciplined manner.
Moreover, contradicting best practices of software development, we find feature scattering
to be recurrent in the Linux kernel development.

Following our exploratory research analysis, we seek the validation of our Linux kernel
coevolution patterns in the context of three other subjects in the systems software domain,
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in addition to assessing the extents of feature scattering across an entire snapshot of the
Linux kernel repository.

To validate our catalog, we analyze over 20 years of the combined evolution of three
target subjects: axTLS, Toybox, and uClibc. Overall, we find that our patterns can
express two thirds of all addition and feature removal cases in the evolution of our three
chosen systems. Furthermore, we prove the generality of 14 patterns within our catalog.
Generality, in this case, restricts to the systems software domain.

In the assessment of feature scattering limits, we analyze almost eight years of Linux
kernel development. Our analysis scopes to device-driver features, which stand as the
most frequent kind across the entire Linux kernel evolution. Among others, we show that,
while scattered features are regularly added, their proportion is lower than non-scattered
ones, indicating that the Linux kernel architecture allows most features to be integrated
in a modular manner. The median scattering degree of features is constant and low, but
the scattering-degree distribution is heavily skewed. Thus, using the arithmetic mean is
not a reliable threshold to monitor the evolution of feature scattering. When investigat-
ing influencing factors, we find that platform-driver features are 2.5 times more likely to
be scattered across architectural (subsystem) boundaries when compared to non-platform
ones. Their use illustrates a maintenance-performance trade-off in creating architectures
as for Linux kernel device drivers.

6.2 Future Work (Research Agenda)

From our findings, we define directions for future work. We do it by presenting it as a
research agenda for ourselves, as well as for other researchers.

Other Variability Evolution Cases and External Practices. Since our patterns
cover only a small fraction of the entire evolution history of all the subjects we analyze,
future research shall investigate which other kinds of changes exist outside our scope of
analysis, subsequently mining new patterns. This includes analyzing changes not triggered
by adding or removing features in the variability model, as well as those that occur within
a single space or spanning multiple ones. Outside the systems software domain, it is
fair to assume that some of our patterns apply to other systems, as long as they are
organized in terms of a variability model, a mapping, and an implementation space with
code annotations. Nonetheless, it is currently unknown which patterns of our catalog occur
outside the systems software domain. Future research shall address such direction.
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Also, as our patterns are an indirect observation of what developers do, we aim to
conduct interviews with the developers of our subjects to get further insights on how
they coevolve variability models and related artifacts. Additionally, we seek to assess the
existence of maintenance practices corroborating our patterns.

Further Assessment of Non-General Patterns While we claim the generality of 14
patterns in our catalog, there are nine others for which we do not. Future research shall
investigate their generality.

Pattern-Based Feature Traceability. Our patterns provide a starting point for cre-
ating new feature traceability heuristics in systems that follow a similar structure as found
in the Linux kernel (variability model, mapping, and C code with pre-processor annota-
tions). Although existing feature localization techniques |28, 40, 49, 95, 124, 137, 146| can
relate code artifacts (or fragments of them) to features of the system, enabling the vertical
traceability between features and code, evolution imposes a temporal traceability among
features; to trace a feature from a given point to another back in the evolution history
or forward in time, one must account for changes that occur together with the variability
model. Otherwise, incorrect traces might be reported. To the best of our knowledge, we are
unaware of any existing technique that performs such a holistic analysis. In this case, our
patterns can serve as a starting point for researching pattern-based traceability heuristics.
For example, as reported in our two merge patterns (MVOFS and MVOFNO), the removal
of a feature and its implementation artifacts, together with aiding the implementation of
another feature with the capabilities of the removed one, is likely to characterize a merge
between the two features.

Alternatively, evolution patterns can be incorporated in the evolution process of variabi-
lity-aware systems. Once cataloged (e.g., following our methodology), patterns can be
associated with each new commit, either manually (e.g., by stating such relation in commit
log messages), or automatically. In the latter case, research shall investigate how to detect
whether patches conform to specific patterns. In fact, our research is already fostering
such direction—see [43]. Associating patterns and commit patches are likely to improve
developers’ productivity when revisiting a past change and reduce misinterpretations when
analyzing its structure.

Variability Evolution Algebra and New Product-Line Theories. A natural follow-
up of our work is the decomposition of our patterns into a set of small, but composable
operators to transform the variability model, mapping, and code. The application of a
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pattern, in turn, shall become an application of a sequence of operators. Such operators
could be formalized as an algebra for evolving systems whose structure is similar to the one
in the Linux kernel. Building on top of the evolution algebra, new theories could also be
devised, accounting not only feature refinement (as in [22]), but also retirement situations.

Identify Preferred Mechanisms Supporting Coevolution Patterns. When study-
ing axTLS, Toybox, and uClibc, we note that developers realize some of our patterns
using different mechanisms. Future research shall investigate whether there is a general
preference towards any specific mechanism, or whether preferences exist within particular
communities. Such information is useful for tool builders seeking to automate some of our
patterns.

IDE Support. After devising an algebra for variability evolution and the identification
of preferred mechanisms for realizing our patterns, research shall seek the automation of
patterns in our catalog. For instance, by supporting a variability evolution algebra as a
transformational engine, integrated development environments (IDEs) could automate the
application of existing patterns (e.g., AVOMF, FCFTVOF, RNM, etc), while requiring
user assistance for others (e.g., merges).

Confirmatory Studies for Better Understanding Feature Scattering. As future
work, we aim at studying scattering in a confirmatory manner, running interviews (or
surveys) with kernel contributors and device-driver developers. Specifically, we want to
uncover whether kernel developers consciously manage feature scattering and whether the
limits we find are enforced in practice. We also do not know whether the observed scattering
evolution is a model for other systems. Obtaining a more general picture requires further
case studies.

Another direction concerns the effect of scattering on actual maintenance effort. For in-
stance, are modules with highly scattered features harder to maintain, to what extent, and
are they more error-prone, and how? What is the effect of feature-ownership on mainte-
nance effort, especially when features are highly scattered? A single developer maintaining
a feature is likely most efficient, but given a high number of features and a distributed de-
velopment model, it is unrealistic. Thus, finding an optimal organizational structure in a
project such as the Linux kernel is a difficult problem—solving it requires further empirical
measurements.

Another future work direction concerns the investigation of how scattering could be
reduced with alternative solutions, either by using better languages or designs. In either
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case, we need to know from developers whether such alternatives are suitable to their
development context—if not, the reasons for not adopting them.

Enforcing Scattering Limits One way to ensure low scattering is by documenting
and enforcing guidelines on how to write ifdef annotations. As we show in Chapter 3,
guidelines do exist in the Linux kernel. However, it is currently unknown whether the same
guidelines apply to or are enforced by other projects. Future work shall investigate this.
As for the scattering limits we report, those could be used by the Linux kernel community
as a means to validate patches—for instance, as outlined in Figure 6.1. Such application
depends on whether Linux kernel developers agree with the limits arising from the system’s
evolution. Additionally, one could investigate whether developers tend to reject patches
adding features with higher scattering degrees than those with lower SD-values.
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