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Abstract 
 

A dynamic mathematical model that involves a set of physicochemical parameters can describe a 

dynamic system. Parametric sensitivity analysis studies the effect of changes in these parameters 

on model outputs of interest. If a system is operated within a region of high sensitivity any small 

change in the parameter values drastically affect the output. Hence, it is essential to be able to 

predict this sensitivity when designing, operating or optimizing a system based on the model. 

Dynamical biological models that describe gene regulation, signalling, and metabolic networks 

are strongly dependent on a large number of parameters. Most of these models are highly 

nonlinear and involve a high-dimensional state space. Conventional parametric sensitivity 

analysis that examines the effect of each parameter independently at one specific moment is 

generally inaccurate since it ignores correlations between parameters. Thus, it is very important 

to account for correlations when conducting a parametric sensitivity analysis. 

 

Model parameters are never known accurately and consequently they are typically described by a 

range of values. Some parameters may be measured directly but even for such case they will 

exhibit variability due to noise, e.g. a flow rate that is measured by a noisy flow meter. The 

variability in values of model parameters that cannot be measured directly arises from two main 

sources: i- noise in data and ii- process disturbances that translate directly or indirectly into 

changes in the parameters. In the presence of measurement noise, the identification of model 

parameters from data will result in model parameter values that are known within bounds with 

different levels of confidence. Also, process disturbances may directly affect the value of a 

parameter, e.g. changes in initial conditions of a metabolite concentration in a batch culture, or 

indirectly, e.g. changes in oxygen transfer due to changes in aeration rates.  

 

This thesis focuses on the identification of model parameters for biochemical systems.  Models 

describing such systems are based on the biochemical reactions occurring within an organism 

that are used to produce or consume essential components to grow, reproduce, preserve cell 
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structures, and respond to environmental changes. This group of reactions is collectively referred 

to as a metabolic network.  

 

Dynamic Flux Balance Analysis, a particular modeling method, which is the focus of the current 

work, can be used to study microbial metabolic networks. This type of mathematical model can 

simulate the metabolism of an individual cell by describing the flux distribution inside a cellular 

network. The approach is based on maximizing a biological based objective such as growth rate 

or production of ATP subject to constraints on the rate of change of certain metabolites. Several 

other approaches have been developed in turn to simulate the responses of the cells to different 

stimulus. Nevertheless, Dynamic Flux Balance Analysis compared to other approaches is 

advantageous in terms of the relatively smaller number of parameters that have to be calibrated 

to fit the data thus resulting in lower sensitivity to noise and requiring smaller data sets for 

calibration. In view of its advantages, this thesis focuses on this particular modeling approach, 

which is becoming increasingly popular in the field of biotechnology and systems biology 

disciplines. 

 

The research to be presented will focus on the robust identification of dynamic metabolic flux 

models based on parametric sensitivity analysis. The particular case study that is chosen to 

illustrate the proposed method is Diauxic growth in Escherichia coli in a batch culture. This 

approach intends to show how to identify the model parameters of the dynamic model based on a 

parametric sensitivity analysis that explicitly accounts for correlations in the data. The sensitivity 

is quantified by a parameter sensitivity spectrum. Then, the parameters are ranked based on this 

analysis to assess whether a subset of the parameters can be eliminated from further analysis. 

Finally, identification of the remaining significant parameters is based on the maximization of an 

overall parametric sensitivity measure subject to set based constraints that are derived from the 

available data. The parametric sensitivity method is global in the sense that it examines the 

simultaneous variation of all the model’s outputs instead of focusing on outputs variables one at 

a time.  
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Chapter 1 
 

INTRODUCTION 
 

1.1 RESEARCH MOTIVATIONS 

 
 

Any kind of chemical process involves a series of steps to transform one or more compounds 

into a desired compound. These series of steps conform all together a methodology for the 

process or a system. The transformation can occur spontaneously or may be driven by an 

external force, but in general it involves chemical reactions. Specifically, biochemical processes 

use organisms or biomolecules to perform all the chemical reactions that lead to the production 

of a specific biological compound. Chemical and biochemical processes are governed by 

different physicochemical factors, which affect directly or indirectly the behaviour of the system. 

 

All these systems, and specially the biological ones, are highly complex because they exhibit 

nonlinear dynamic behaviour. This complexity makes them difficult to analyze and control.  

Gaining understanding about a bioprocess is essential for maximizing productivity and 

improving quality of the bio product.  Mathematical models can be used to approximate the 

behaviour of dynamic bio-systems and for predicting their variability with respect to different 

physicochemical factors.   

 

Parametric Sensitivity Analysis (PSA) studies the changes and the system’s sensitivity with 

respect to a specific parameter set. By performing a PSA one will be able to identify the relative 

effect of the set of parameters on the system’s outputs. In particular, one can identify the 

parameters that have very small influence on the system’s outputs so as to simplify the parameter 

estimation procedure. Thus, parametric sensitivity can be used for both studying the sensitivity 

of the system with respect to changes in parameters and for simplifying the parameter estimation 

method.  
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1.2 DYNAMIC BIOLOGICAL MODELS 

 

Biological Systems are highly complex systems that involve a set of biochemical reactions to 

transform nutrients into products.  

 

Experimental studies of biological systems are generally time consuming, expensive and prone 

to contamination problems. Mathematical modelling of dynamic biological models is becoming a 

valuable technique to replicate and study mechanisms used by cells to reproduce and produce 

molecules of therapeutic or industrial use. Thus, mathematical modeling can be used to save 

expensive experimentation time and costs.  By using computational techniques researchers have 

been able to observe and simulate simultaneously the behaviour of dynamic systems and analyze 

the production and consumption of distinct molecular species.  

 

Two new disciplines had emerged in recent years that used mathematical modelling as their basic 

tool: Systems Biology and Synthetic Biology. Systems Biology promotes the use of 

computational tools to characterize the behaviour of biological networks while Synthetic Biology 

focuses on designing and building genetic networks based on genetic models’ predictions. The 

tools developed in these two fields are being implemented in areas of health and disease 

treatment, bioprocess engineering, pharmaceutics and vaccine manufacturing, renewable 

energies, environmental remediation, etc. 

 

The use of dynamic biological models helps quantifying the interactions occurring inside the 

cell. One example could be the binding or unbinding of two species, where we need to provide 

rates associated to either the separation of the molecules and/or the attachment of the molecules 

to each other. There are large databases available that provide information about binding and 

dissociation interactions between species for many types of compounds and organisms (Ingalls, 

2013). 

 



3 

 

 

 

 

 

 

Figure 1.1 Specie A binds reversibly Specie B to create Specie C 

 

1.3 SENSITIVITY ANALYSIS 

 

Dynamic models are used to approximate and study the behaviour of complex systems. 

Sensitivity analysis of a model helps identifying which parameters have most effect on the 

outputs of the system, i.e. which ones contribute the most to the variability of the system’s 

outputs and the correlation among parameters and how that correlation affects the outputs.  The 

less significant parameters can be either eliminated to reduce the complexity of the model or kept 

at a constant arbitrary value without significant effect on the outputs (Iman and Helton, 1988). 

 

Sensitivity analysis typically involves the following steps: -i define the model to be analyzed; ii- 

identify the dependent and independent variables in the model, iii- define an appropriate 

probability function for the input parameter, iv- generate a suitable sampling method for the 

output variables; and v- calculate and analyze the contribution of one or a group of input 

parameters on the set of outputs (Iman et al., 1981a; Iman et al., 1981b; Helton et al., 1985; 

Helton et al., 1986). 

 

There are several techniques to perform sensitivity analysis of parameters affecting dynamic and 

static models. These techniques are generally classified into two main groups: Local Sensitivity 

Analysis, which purpose is to analyze the effect of each parameter on each output; and Global 

Sensitivity Analysis, which looks for the effect of simultaneous variations of parameters. The 

A B C 
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advantage of global sensitivity analysis is that it takes into account the effect of correlations 

among parameters.  

 

 

Figure 1.2 Diagram of the steps to perform a Sensitivity Analysis of a model 
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1.4 PARAMETER ESTIMATION 

 

Parameter estimation is the procedure by which parameter values are calculated by matching the 

values calculated from the model predictions to the corresponding data. The estimation 

procedure typically assumes some knowledge about the statistical distributions of the data and 

the parameters to be estimated   (Michiels et al., 2002). The mathematical approach used to 

calculate the values from the parameters is referred to as the estimator, and its result is defined as 

the estimate. The accuracy of the approximation depends on the value of the standard deviation 

of the estimate (van den Bos, 2007). 

 

Parameter estimation procedures are commonly used to both to calibrate and validate 

mathematical models with data. Most of the observable values contain variability due to noise 

and disturbances.  Experiments always differ from each other even for cases that they are 

conducted at identical measurable operating conditions. This variability is generally 

characterized using statistical methods (Bard, 1974). 

 

There are two main approaches in parametric estimation that depend on the type of model. 

Linear estimation or nonlinear estimation techniques can be chosen for estimating parameters 

depending on the level of nonlinearity of the process under study (Englezos and Kalogerakis, 

2001). 
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1.5 RESEARCH OBJECTIVES 

 

The main objective of this research is to estimate the number of model parameters and their 

values based on the sensitivity analysis of the outputs of a dynamic biological model. A Diauxic 

growth model of E. coli is used as the case study. A parameter estimation procedure with a 

global sensitivity analysis approach is used for this research. 

The purpose of the current research is then summarized as follows: 

 

1. Analyze and understand the behaviour of a Dynamic Biological Model. 

2. Identify the parameter set and the correlation of parameters that highly affect the model’s 

outputs. 

3. Perform model calibration using information from the Sensitivity Analysis. 

 

1.6 OVERVIEW 

 

This thesis includes five chapters. Chapter 2 presents the theoretical framework about kinetic 

modelling, metabolic network modelling, parametric sensitivity analysis, and parameter 

estimation. Chapter 3 covers the methodology implemented in this research and the case study 

that is sued to illustrate the proposed methodologies. In Chapter 4 the results obtained from the 

analysis performed in chapter 3 are presented and analyzed. Chapter 5 contains the final 

conclusions and recommendations for future work. 
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Chapter 2 
 

LITERATURE REVIEW 
 

Chapter Outline This chapter presents a summary of the most important concepts used in 

this thesis.  

 

2.1 KINETIC MODELING 

 

Modelling of chemical and biochemical reactions helps engineers to visualize the transformation 

of compounds involved in these reactions and the interactions between the compounds while 

they are being converted. A model can also predict production and consumption rates thus 

making it a very useful tool when trying to perform optimization. 

 

To formulate a kinetic model for a bioprocess it is necessary to identify the reaction pathways for 

a particular molecule when being transformed into different molecules, and the dynamic mass 

balances described by differential equations based on equilibration of production and 

consumption rates (Rahul, 2012). 

 

The steps involved in the formulation of a dynamic kinetic model are: 

1. Identify the chemical or biochemical pathways, 

2. Assume kinetic expressions and calculate mass balances using these expressions, 

3. Calculate the best numerical values of the kinetic parameters necessary to fit the available 

experimental data. 

 

The information for step 1 can be obtained from experimental data or from databases like 

KEGG, Brenda and EMP. 
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2.1.1 Chemical Reaction Networks 

 

The transformation of one or more chemical reactants into products involves a set of reactions. 

This set constitutes a network that has to be identified in order to formulate a model. This 

network of reactions can be typically represented in graphical form to facilitate understanding of 

the process For example; a set of reactions conforming a network is represented by: 

 

𝐴 + 𝐵 = 𝐶 

𝐶 = 𝐷 + 𝐸 

 

 

 

 

 

 

Figure 2.1 Exemplification of a reaction network. 

 

Where, Figure 2.1 is a graphical representation of the chemical network. 

 

There are two kinds of chemical reaction networks: closed and open networks. Closed networks 

are groups of reactions where the reactants and the products remain within the network. When 

closed networks reach equilibrium or steady state, the reaction rates are zero. Contrarily, open 

networks are groups of reactions that exchange components within and outside the network. 

When open networks reach steady state the system is considered to be in a dynamic equilibrium 

and the inputs’ rates of consumption are equal to the rate of outputs’ production. 

 

A 

B 

C 

E 

D 
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Biochemical processes are typically described by open networks because in such processes 

nutrients are externally supplied, e.g. through feeding of growth media into the system and 

secreting metabolites or wastes outside of the system (Ingalls, 2013). 

 

Another important element to consider when building a biochemical model is the directions of 

the reactions. Chemical reactions can be reversible or irreversible. In reversible reactions reactant 

or reactants will either form a product or they will be formed from that product. On the other 

hand irreversible reactions can only occur in one direction, e.g. certain nutrients can only be 

consumed but cannot be produced. 

 

 

     

 

 

Figure 2.2. Examples of irreversible and reversible reactions 

 

Finally, reaction rates have to be considered and identified for properly describing the dynamic 

evolution of metabolites. The reaction rates are the measure of how fast one or more reactants 

will be transformed into a specific product. The reaction rate or rate of change of one species 

over time can be modeled using an Ordinary Differential Equation (ODE). The ODE is 

formulated by equating the difference between the rates of production minus the rate of 

consumption to the rate of change from each of the compounds in the system. 

 

𝑑
𝑑𝑡
𝐴                                                 =                         𝑘2 𝐴                 −                         𝑘1 𝐴  

 

 

Figure 2.3. Reaction Rate model 

 

A B 

A B 

Rate of Change Production Rate Consumption Rate 
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Since the last equation will typically contain nonlinear terms due to the nonlinearity of reaction 

rate expressions numerical methods will be used for finding approximate solutions. Using these 

methods the only inputs needed are the initial values and the time scale for the reaction rates. 

 

 

 

 

 

 

 

Figure 2.4. Reaction network with reaction rates labelled Vi 

 

To mathematically model a network with all its possible reactions we need to define all the 

reaction rates, represented by Vi in Figure 2.4, that determine the production and consumption 

rates. The differential equations that are used to balance each metabolite in a network will be 

constructed using the production and consumption rates for each of the species using a plus sign 

when the metabolite is being produced and a minus sign when it is consumed. The set of all the 

differential equations can be then simulated for different scenarios such as different nutrient rates 

or different initial conditions to gain understanding about the system’s behaviour. 

 

  

A 

B 

C 

E 

D V1 

V2 

V3 
V4 
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Example of a Reaction Network 

 

Defining Vi for each rate and using figure 2.4: V1=k1, V2=k2, V3=k3[A][B], V4=k4[C]  

𝑑
𝑑𝑡

𝐴 = 𝑘1− 𝑘3 𝐴 [𝐵] 

𝑑
𝑑𝑡

𝐵 = 𝑘2− 𝑘3 𝐴 [𝐵] 

𝑑
𝑑𝑡

𝐶 = 𝑘3 𝐴 𝐵 − 𝑘4 𝐶  

𝑑
𝑑𝑡

𝐷 = 𝑘4 𝐶  

𝑑
𝑑𝑡

𝐸 = 𝑘4 𝐶  

(2.1) 

2.1.2 Biochemical Networks 

  

All biological reactions rely on the action of enzymes. Enzymes are proteins that have the role of 

regulating most of the internal and external processes from cells. The enzymes bind their 

substrates in a lock-key arrangement, due to the specificity of their structure, and catalyze the 

transformation of these substrates into a more useful compound for the cell. The catalytic 

processes regulated by the enzymes can be classified into two main groups: anabolic and 

catabolic reactions. Anabolism is the binding of different substrates into a bigger compound, 

whereas, Catabolism is the decomposition of big structures into simpler ones. Both activities are 

essential for the cell and the coupling of these two reaction mechanisms is essential for 

explaining metabolic phenomena. 

 

 

 

 

Figure 2.5. Enzyme-substrate binding model 
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Enzymes are conformed by long chains of amino acids. Due to the physicochemical properties of 

these chains they can fold in different ways. Folding results in the creation of open spaces within 

the enzyme (blue shape in Figure 2.5), which resemble voids.  The boundaries of these voids 

exhibit electrochemical activity because of the amino acids present at these boundaries. These 

voids are referred to as active sites. The active sites allow molecules called substrates (orange in 

Figure 2.5) to bind with the amino acids in the enzyme thus resulting in conformational changes 

in the structure of the substrate. The shape of the active site has a specific form and only allows 

specific substrates with the same dimensions to bind and interact with the amino acids in the 

enzyme. This specificity of enzymes towards a given substrate makes the reactions that occur 

inside a cell to be very efficient. The direction of these reactions depends on the concentration 

gradients (Figure 2.5).  

 

In 1913 Leonor Michaelis and Maud Menten created a mathematical model to describe the 

dynamics of the enzyme-substrate binding. This kinetic model has helped researchers to 

understand and study the catalytic reaction mechanism used by the enzymes. The Michaelis-

Menten model hypothesizes that the available enzyme in the media binds the substrate creating a 

complex, which is transformed into a product and a remaining quantity of free enzyme. The 

assumption behind the development of the kinetic rate expression is that the product never binds 

back with the enzyme and the reaction is almost instantaneous (Rahul, 2012). On the other hand 

the intermediate step of binding of the enzyme with the substrate described in Figure 2.5 is 

assumed to be reversible. 

 

𝐸 + 𝑆 ↔!!!
!! 𝐸𝑆 →!! [𝑃]+ [𝐸] 

Figure 2.6. Michaelis-Menten kinetic model	
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Applying the law of mass action to the model in figure 2.6 the following system of differential 

equations results: 

 

𝑑
𝑑𝑡

𝐸 = 𝑘!! 𝐸𝑆 − 𝑘! 𝐸 𝑆 + 𝑘![𝐸𝑆] 

𝑑
𝑑𝑡

𝑆 = 𝑘!! 𝐸𝑆 − 𝑘! 𝐸 𝑆  

𝑑
𝑑𝑡

𝐸𝑆 = −𝑘!! 𝐸𝑆 + 𝑘! 𝐸 𝑆 − 𝑘![𝐸𝑆] 

𝑑
𝑑𝑡

𝑃 = 𝑘![𝐸𝑆] 

(2.2) 

Since it is really difficult to measure the amount of free enzyme and the concentration of 

enzyme-substrate compound over time the following equation is used to describe the 

concentration of initial enzyme, which is assumed to be known a priori, 𝐸 + 𝐸𝑆 = 𝐸! . This 

relation can be used for solving the free enzyme concentration over time in the mass balance 

equations. Applying a fast equilibrium assumption whereby the substrate is immediately 

converted to product, solving for the concentration of enzyme and substrate compound and 

substituting the resulting equation in the substrate-enzyme differential equation balance we 

obtain (Ingalls, 2013): 

 

𝐸 = 𝐸! − 𝐸𝑆  

𝑑
𝑑𝑡

𝑆 = 𝑘!! 𝐸𝑆 − 𝑘!( 𝐸! − 𝐸𝑆 ) 𝑆 = 0, 𝐸𝑆 =
𝐸! 𝑆
𝑘!
𝑘!!

+ [𝑆]
 

𝑑
𝑑𝑡

𝑃 =
𝑘! 𝐸! 𝑆
𝑘!
𝑘!!

+ [𝑆]
 

(2.3) 
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Renaming 𝑣 = 𝑑
𝑑𝑡
𝑃 , 𝑉𝑚 = 𝑘! 𝐸! , and 𝐾𝑚 = !!

!!!
 it is possible to obtain the Michaelis-Menten 

expression describing the rate of formation of the product as follows: 

 

𝑣 =
𝑉𝑚 ∗ 𝑆
𝐾𝑚 + [𝑆] 

(2.4) 

The equation above is a good approximation to describe how a microorganism consumes a 

substrate and produces one specific metabolite, but it cannot be used for all cases because many 

enzymes do not behave in this way. For example, some product formation reactions are 

reversible, some reactions involve two or more substrates inside the enzyme, some compounds 

inhibit enzyme activity and the activity of enzymes may vary according to specific regulatory 

mechanisms, e.g. allosteric or cooperatives regulations. Additional information on mathematical 

modeling of biological systems can be found elsewhere (e.g. Ingalls, 2013)  
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2.2 MODELLING METABOLIC NETWORKS 

 

Mathematical modeling is an attractive alternative to experimental techniques due to the 

relatively lower associated costs as compared to experiments. Modelling metabolic networks can 

be, however, a complicated task, mainly because of the vast array of regulatory actions and 

complexity occurring in biological systems. The amount of detail put in the development of 

dynamic metabolic network model will determine its accuracy and reliability. Models that are 

based on the metabolic network can predict the behaviour of a dynamic biological system well. 

 

Different metabolic networks model have been developed depending on the needs of researchers. 

Examples of these methods are Flux Balance Analysis, Elementary Flux Modes Analysis and 

Metabolic Flux Analysis. The intention of these models is to predict the flux distribution 

occurring inside the cell either at steady state or transient state.  Metabolic models use 

stoichiometric information to calculate fluxes that are responsible for the production of a certain 

compound of interest. The requirements of computational data to adjust the model and the time 

required to fit the model are the criteria that makes one method more attractive than another 

(Wang, 2011). 

 

 

 

 

 

 

 

Figure 2.7 Simple Microbial Network 

 

Flux Balance Analysis (FBA) is a constrained steady-state optimization method that can predict 

the consumption and production rates of metabolites in the metabolic network of a 
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microorganism and can predict the distribution of fluxes inside the cell of larger biological 

systems. A flux is the amount of consumed or produced metabolite per unit time and per unit cell 

associated with a particular reaction involving that metabolite. The methodology works by 

optimizing a certain objective function, which in most of cases is the Biomass growth, subject to 

stoichiometric constraints, thermodynamic constraints that determine the direction of the 

reactions and maximum uptake rate constraints (Sharan, 2006). Other objectives have been 

considered such as maximization of ATP productivity or maximization of substrate consumption 

per unit flux (Varma and Palsson, 1994a; Orth et al., 2010). 

 

FBA has become in the last decade one of the most utilized techniques to approximate the 

functioning of metabolic networks. In general it requires less input data since the cell behaviour 

is typically determined by a maximization of an objective subject to a limited number of 

constraints whereas the metabolites that are not constrained can be derived from stoichiometry. 

The fact that it requires less input data and no kinetic information makes it a good alternative to 

experimental approaches (Varma and Palsson, 1994a). Flux Balance Analysis has given 

promising steady state predictions and has been shown to approximate experimental results well 

(Kauffman et al., 2003).  

 

The procedure to perform a Flux Balance Analysis is as follows: 

 

1. Define and construct the metabolic network of the organism that includes all reactions 

and all the metabolites found in the network. Public databases such as the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) can be used to define the network 

(Kanehisa et al., 2010). 

 

2. Create a mathematical representation of the stoichiometry of the metabolic reactions, 

matrix (S), with all the stoichiometric coefficients corresponding to each reaction 

occurring in the network. This is an m x n matrix, where every row (m) represents one 

compound and every column (n) represents one reaction (Figure 2.8). The values entered 



17 

 

in the columns represent the coefficients of the metabolites from each reaction. Negative 

values are used for consumption and positive values for production of metabolites (Orth 

et al., 2010). 

 

Matrix S Reactions 

Metabolites 

𝐴!,! 𝐴!,! … 𝐴!,!
𝐴!,! … 𝐴!,!
: … :

𝐴!,! 𝐴!,! … 𝐴!,!

 

 

Figure 2.8. Stoichiometric Matrix. 

 

3. Define a flux for each reaction in the network. Fluxes are represented with the letter v, 

and have a dimension of n x 1.  The Flux Balance Analysis determines the fluxes inside 

the network and is based on the following equation: 𝑺 ∗ 𝒗 = 𝒃. 

 

4. The next step is determining the objective function to be maximized or minimized. This 

function is typically a linear combination of some fluxes: 𝒁 = Σ  𝐰!"   𝒗! = 𝒘!𝒗, where w 

is the weight contribution vector for each flux. The most common objective function is 

the maximization of the growth rate. The optimization function is subject to constraints in 

the rate of change of metabolites within upper and lower bounds (ai and bj) (Hjersted and 

Henson, 2006; Mahadevan et al., 2002; Orth et al., 2010). 
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max𝒁 = 𝒘!𝒗 

or 

min𝒁 = 𝒘!𝒗 

Subject to: 

𝑺 ∗ 𝒗 = 𝒃 

𝑎! ≤ 𝑣! ≤ 𝑏! 

 (2.5) 

 

 

Figure 2.9. FBA Modeling with Constraints obtained from (Orth et al., 2010). 

 

The disadvantage of classical FBA is that it does not take into account dynamic behaviour. For 

example, Mahadevan et al showed for the diauxic growth in Escherichia coli that the FBA 

incorrectly estimates the time of re-utilization of acetate following glucose depletion 

(Mahadevan et al., 2002; Niklas, et al., 2010). Regular Flux Balance Analysis cannot estimate 

the production or consumption of metabolites over time. Moreover, the genetic regulations of the 

reactions and kinetic rates are not considered in view that FBA is based on the assumption of 

steady state. For these reasons, an extension of the Flux Balance Analysis has been suggested 

that is referred to as Dynamic Flux Balance Analysis (DFBA) (Mahadevan et al., 2002; Hjersted 

et al., 2007; Nowruzi et al., 2008; Budman et al., 2013) which is the focus of the current thesis. 
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Dynamic Flux Balance Analysis can model the dynamics of biological systems by imposing rate 

of change constraints on fluxes at each time interval (Mahadevan et al., 2002). These rate 

constraints are typically expressed with kinetic expressions such as Monod equation as a 

function of the time varying concentrations of substrates and products involved in the reaction 

associated with the constrained flux. The dynamic flux model offers a practical approach to 

develop a full metabolic network model when not enough kinetic data is available (Hjersted and 

Henson, 2006). This methodology is based on the assumption that the concentrations of 

metabolites equilibrate fast in response to disturbances. The kinetic data from the substrate 

uptake and production rates can be incorporated by coupling the dynamic mass balances with the 

stoichiometric model (Stephanopoulos et al., 1998). The metabolites concentrations are typically 

evolved with respect to time according to the equation: 

 

𝑑𝒁
𝑑𝑡

= 𝑺 ∗ 𝒗 ∗ 𝑋 

(2.6) 

 

Where Z is the vector of metabolites’ concentrations, S is the stoichiometric matrix, v is the 

vector of fluxes and X is the biomass concentration. 

 

2.3 PARAMETRIC SENSITIVITY ANALYSIS 

 

Varma et al. (1999) defines the parameters as the physicochemical factors that alter the 

functioning of any type of system. However, since the current thesis focuses on model 

identification, we define the parameters as mathematical variables that have to be calibrated to 

provide good match between model predictions and data. The analysis of the effect of these 

parameters on the model outputs is called parametric sensitivity. 
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Parametric sensitivity analysis may serve for a number of tasks as follows: (Iman and Helton, 

1988; Hamby, 1995): 

 

i. Model reduction where certain parameters are eliminated or fixed at a nominal value 

since they do not affect significantly the output. 

ii. Limiting the calibration of the model with respect to the parameters with the highest 

influence on outputs 

iii. Find the correlations between the parameters involved in the model; and  

iv. Identify the parametric sensitivity region where the parameters have the bigger effect on 

the model outputs.  

 

Several techniques are available (Figure 2.10) to perform sensitivity analysis. These techniques 

can be generally classified into two main groups: local sensitivity analysis and global sensitivity 

analysis. Local sensitivity studies consider independent variations around a determined 

parameter set. Global sensitivity studies take into account larger and simultaneous variations in 

the parameters with the purpose of finding correlations between them (Varma et al., 1999).  

  

 

 

Figure 2.10. Parametric sensitivity approaches. 
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Global	
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simultaneous	
  varia4ons.	
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2.3.1 Local Sensitivity 

 

Local sensitivity analysis studies the effect that individual parameters have on the model outputs 

in a given region of space (i.e. around a nominal value). The analysis involve generating small 

changes in the nominal values of the input parameters one at a time, and then analyze the effect 

of those changes on the output or dependent variables. This analysis can be quantified using 

partial differentiation involving the output variables over time and the input parameters. 

 

Let us define the output variable y that depends on time (t) and the input parameter (x). This will 

result in the following relation: 𝑦 = 𝑦 𝑡, 𝑥 . To perform a local sensitivity analysis, a small 

change in x is generated with respect to its nominal value and the effect that this change has on y, 

𝑦 = 𝑦 𝑡, 𝑥 + ∆𝑥  is calculated. In the limit when ∆𝑥 → 0 the changes in y with respect to 

changes in x can be expressed by the following partial derivative: 

𝑠 𝑦; 𝑥 = lim
∆!→!

𝑦 𝑡, 𝑥 + ∆𝑥 − 𝑦(𝑡, 𝑥)
∆𝑥 =

𝜕𝑦(𝑡, 𝑥)
𝜕𝑥

 

(2.7) 

The equation above is referred to as a first order local sensitivity of the dependent variable (y) 

with respect to the input parameter (x) (Varma et al., 1999). It is also possible to expand the local 

sensitivity analysis by defining local sensitivities based on higher-order expansions of the output 

y with respect to the input x. However most of the local sensitivity applications use the first order 

sensitivity given by equation 2.7. 

 

Mathematical models of complex processes involve many parameters and outputs with different 

magnitudes and different units. For these reasons, when performing sensitivity analysis it is 

important to normalize all variables used in the analysis with respect to their nominal values.  

𝑆 𝑦; 𝑥 =
𝑥
𝑦 !

∗
𝜕𝑦
𝜕𝑥
=

𝑥
𝑦 !

∗ 𝑠(𝑦; 𝑥) 

(2.8) 
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Different types of computational techniques are available to perform local sensitivity of systems. 

Table 2.1 summarizes the three most common local sensitivity computational methods (Varma et 

al. (1999)). 

 

2.3.2 Global Sensitivity  

 

Local sensitivity analysis is sometimes unreliable because it ignores correlations and interactions 

among parameters. Global sensitivity analysis focuses on studying larger and simultaneous 

variations of a subset or all the parameters over the dependent or output variables of the model 

thus accounting for correlations among parameters. Global sensitivity analysis can also be used 

to quantify the uncertainty in parameter values in the presence of correlations (Cacuci et al., 

2003; Saltelli et al., 2004; Campolongo et al., 2007; Saltelli et al., 2008). 

 

Correlations among parameters are especially pervasive in biochemical models such as the ones 

used in this thesis due to the extensive use of Michaelis-Menten kinetics (equation 2.4). In 

equation 2.4 the parameters in the numerator and denominator are highly correlated. For instance 

if the substrate concentration is small, the data will be only informative about the ratio between 

the numerator and denominator parameters and thus it is irrelevant to test the effect of 

independent effect of numerator and denominator parameters on the output as done in local 

sensitivity analysis. Assessing the independent effect of numerator and denominator parameters 

on the outputs may lead to wrong and potentially too conservative or optimistic predictions of 

sensitivity. Thus, local sensitivity analysis cannot provide reliable information about the effect of 

simultaneous changes in parameters on the model outputs (Kitano, 2002; Kitano, 2004a; Stelling 

et al., 2004b). The robustness of biological models has attracted the attention of many 

researchers due to the complexity that these types of mathematical models exhibit (Kitano and 

Oda, 2006; Kitano, 2007a). Understanding the behaviour of these models in the presence of 

uncertainty in model parameters and being able to control them is also of paramount importance. 

Thus, global parametric sensitivity analysis of dynamic biological models is a more suitable tool 

to study robustness as compared to local sensitivity techniques. 
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Table 2.1. Local Sensitivity Computational Methods (Varma et al., 1999) 

LSA Method Algorithm description Applications Disadvantages 

Direct Differential 

Method 

The model and the 

sensitivity equations 

are solved 

simultaneously 

- The number of 

dependent variables is 

smaller than the 

number of input 

parameters. 

- Sensitivities of output 

variables with respect 

to only few input 

parameters. 

Stiffness problems 

might be 

encountered. 

Finite Difference 

Method 

Use of finite 

difference 

approximation to 

solve model 

equations and 

evaluate local 

sensitivities. 

- The number of 

dependent variables is 

large. 

- Solving the model 

and sensitivity equation 

is not tractable. 

- Implicit objective for 

sensitivity analysis. 

Finding a proper 

variation for each 

input parameter. 

Green’s Function 

Method 

Solving first the 

homogenous part, and 

then with the use of 

linear integral 

transformations 

compute the local 

sensitivities. 

- The number of 

dependent variables is 

much larger than the 

number of the input 

parameters. 

- Complete sensitivity 

analysis of all 

dependent variables. 

Stiffness problems 

might be 

encountered. 
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Several approaches involving a series of numerical calculations have been developed to address 

global sensitivity analysis. All of these approaches assume random variability of the parameters 

with a probability and a cumulative density function for each parameter. In this way, it is 

possible to determine which parameters produce the maximum variance in the model outputs. In 

general, global sensitivity analysis proceeds as follows: i- assign a probability density function to 

every parameter; ii- generate samples using a sampling method within the parameter space; iii- 

calculate the outputs of the model on each sample point; and iv- quantify the sensitivity of the 

model based on a specific metric (Rahul, 2012). Global sensitivity methods are based on two 

main approaches, a Regression based method and a Variance based method. These methods are 

further discussed below and a graphical representation is shown in figure 2.11. 

 

 

Figure 2.11. Graphic representation of a Global Sensitivity Analysis obtained from Rahul (2012) 

 

Partial Rank Correlation Coefficient (PRCC) (Draper and Smith, 1998) 

 

This is a regression-based method that uses a stratified sampling approach like the Latin hyper-

cube to perform the analysis. This method is suitable for studying nonlinear models where a 

monotonic relation between inputs and outputs is found. To perform this analysis first the input 

data is ranked according to some criteria in an increasing order and the corresponding outputs are 
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re-arranged accordingly. Then, a regression analysis is done on the ranked information and the 

Pearson rank coefficients are obtained (Blower and Dowlatabadi, 1994). This analysis 

determines how strong a correlation between the input and the output is. An important key 

assumption in this method is that the input variables are independent form each other. 

 

Fourier Amplitude Sensitivity Test (FAST) (Cukier et al., 1973, 1975, 1978; Schaibly and 

Shuler, 1973; Koda et al., 1979; Mc Rae et al., 1982) 

 

FAST is a variance-based method that finds the mean and variance values of the output variables 

and with these values it calculates the contribution that the inputs have on the output variances. 

The FAST method distributes the output’s variances among the inputs and can be used to fix the 

parameters with no influence to their nominal value.  

 

The methodology is based on the first-order parameter sensitivity calculated by the following 

equation (Cukier et al., 1978; Saltelli and Bolado, 1998): 

 

𝑆! =
𝐷!

𝑉𝑎𝑟(𝑌) 

(2.9) 

where the Var(Y) represents the total variance of the output that is decomposed into increasing 

dimensionality terms (Cukier et al., 1978; Saltelli and Bolado, 1998): 

 

𝑉𝑎𝑟(𝑌) = 𝐷!(𝑌)+ 𝐷!"(𝑌)+⋯+ 𝐷!  !…!(𝑌)
!

!!!!!!!

!

!!!

 

(2.10) 
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The terms 𝐷!" are calculated based on Monte Carlo Sampling, and these elements contribute 

jointly to the variance of the model outputs. However those terms are difficult to calculate since 

they require extensive stochastic sampling from the parameter distributions, which is highly 

demanding for problems with many parameters. Consequently, this method was not extensively 

used until recently due to its computational complexity. 

 

Extended Fourier Amplitude Sensitivity Test (eFAST) (Saltelli et al., 1992) 

 

This method is an extension of the traditional FAST model. In FAST and eFAST the frequency 

response of model outputs is calculated with respect to model parameters by using Fourier Series 

representations for both parameters and outputs. The advantage of this method is that it 

calculates the total sensitivities and does not require first order approximations. FAST is only 

able to calculate the first order sensitivities, but by using eFAST we can obtain the total 

sensitivity measures, which is an estimation of the sum all the contributions from all the inputs as 

given by equation (2.11) (Saltelli and Bolado, 1998; Rahul, 2012). The numerator in 2.12 is 

related to the coefficients of the Fourier Expansions of the Output variables.  

 

The whole contribution of the element Xi on the output is calculated with the addition of the first-

order effect and all the rest high-order effects. In the scenario of a two-parameter model, the 

effect of the first element will be calculated as following: 

𝐷!!"! = 𝐷! + 𝐷!" 

(2.11) 

and the total sensitivity will be given as: 

𝑆!! =
𝐷!!"!

𝑉𝑎𝑟(𝑌) 

(2.12) 
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This methodology can be implemented using Monte Carlo sampling of the model parameters’ 

space. 

 

Sobol’s Method (Sobol, 1990a) 

 

This is another variance-based method, which computes an ANOVA-like decomposition of the 

output variance with a Monte Carlo multidimensional integration of the main contributions of the 

parameters, the interactions and the higher order terms by the following equations: 

𝑓 𝑿 = 𝑓! + 𝑓!(𝑋!)+ 𝑓!"(𝑋! ,   𝑋!)+⋯+ 𝑓!  !…!(𝑿)
!

!!!!!!!

!

!!!

 

(2.13) 

and assuming that 𝑓 𝑿  is squared-integrable we obtain to the next expression: 

 

𝑉𝑎𝑟(𝑌) = 𝑓!(𝑿)𝑑𝑿− 𝑓!!
!

!
 

(2.14) 

Then we perform similar tasks as in FAST using the first order sensitivities (𝑆!) to quantify the 

contribution of the individual parameters on the output variables, and the total sensitivities for 

the input parameters of the model (𝑆!") to account for the effect of the correlations on the output 

variables. The measurements are defined as “the fraction of related partial variances to the 

overall variances” (Rahul, 2012). 

 

The main disadvantage presented with this method is the computational challenge to estimate the 

integral in equation 2.14. However, the method is advantageous to the FAST method because of 

its ability to account for higher-order terms in the development of the variance series (Saltelli 

and Sobol, 1997). 
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2.3.3 Graphical Global Sensitivity Method for Cellular Network Dynamics  

 

Biochemical systems are represented by highly regulated networks of large number of 

biochemical reactions.  Correspondingly, the mathematical models needed to describe these 

systems are complex, highly nonlinear and involve a large number of parameters. To make these 

models robust it is imperative to analyze their behaviour with respect to parametric uncertainty 

and it is important to assess which parameters have the most effect on the model outputs. As 

discussed earlier, local sensitivity analysis cannot generally describe the complexity and 

correlated nature of these models. Correlation among model parameters is especially pervasive in 

biological systems due to the particular form of kinetic expressions, e.g. due to parameter 

correlation in Michaelis-Menten expressions, and to the highly interconnected nature of 

metabolic networks Therefore, it is necessary to analyze and understand how these correlations 

between the large numbers of parameters affect the sensitivity of outputs variables with respect 

to changes in model parameters. As explained in section 2.3.2 global sensitivity is needed in 

order to study the effect of simultaneous changes in model parameters on all the system’s 

outputs. 

 

Rand (2008) proposes a global parametric sensitivity analysis of a dynamic cellular network by 

means of two analytical tools: a Sensitivity Heat Map and a Parameter Sensitivity Spectrum. An 

added advantage of these tools is that their outcomes can be plotted thus permitting easier 

visualization of the sensitivity.  Rand’s method can be generalized for oscillatory and dynamical 

models.  

 

The methodology proposed by Rand (2008) consists of a number of steps as follows: 

i- A matrix is constructed with elements calculated from the partial derivatives of each 

output variable with respect to each input parameter at the sampling intervals of a 

given run. The key is that the partial derivatives of all outputs with respect to all 

parameters are considered together in order to account for correlations among 

parameters.  
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𝑴 =

𝜕𝑔1
𝜕𝜂1

𝑡!
𝜕𝑔1
𝜕𝜂2

𝑡! …
𝜕𝑔1
𝜕𝜂𝑗

𝑡!

𝜕𝑔1
𝜕𝜂1

𝑡!
𝜕𝑔1
𝜕𝜂2

𝑡! …
𝜕𝑔1
𝜕𝜂𝑗

𝑡!

⋮
𝜕𝑔1
𝜕𝜂1

𝑡! ⋮ ⋱ ⋮

𝜕𝑔2
𝜕𝜂1

𝑡! ⋮ ⋮

⋮
𝜕𝑔𝑚
𝜕𝜂1

𝑡!
𝜕𝑔𝑚
𝜕𝜂2

𝑡! …
𝜕𝑔𝑚
𝜕𝜂𝑗

𝑡!

 

(2.15) 

ii- The matrix is normalized to ensure independence from the choice of the time interval. 

𝑴! =
∆𝑡
𝑇 ∗𝑴 

(2.16) 

iii- “Thin Singular Value Decomposition” is applied to decompose the control coefficient 

matrix into a product of three matrices. Where U contains the orthogonal unit vectors, 𝝈 is a 

diagonal matrix with non-negative numbers, and VT is an orthogonal matrix transposed. 

𝑴𝟏 = 𝑼  𝝈  𝑽! 

(2.17) 

iv- The sensitivity heat map is obtained by multiplying the diagonal matrix (𝝈) times the 

maximum values of the absolute value of the orthogonal matrix transposed (VT), and 

then times the matrix with the orthogonal unit vectors (U). 

𝑓!,! 𝑡 = 𝜎!   (max! 𝑊!" )   𝑈!,! 𝑡  

(2.18) 

v- The parametric sensitivity spectrum is achieved by applying the logarithm base ten to 

the absolute value of the product of the diagonal matrix (𝝈) times the orthogonal 

matrix transposed (VT=W). 
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𝑆!" = 𝜎!   𝑉!"! = 𝜎!   𝑊!" 

(2.19) 

log!" 𝑆!"  

(2.20) 

 

The sensitivity heat map shows us the contribution of the combination of parameters for each 

output variable over time. The method is analogous to the Principal Components Analysis 

technique where each principal component contains a relative contribution of an input to the 

overall variability of an output. In this method the principal components computed from the SVD 

decomposition compute the relative contribution of each parameter to each principal component 

to explain the change in the output. And the parametric sensitivity spectrum helps us identify the 

input parameters that are significantly large within each principal component involving a 

particular combination of parameters’ contributions.  

 

The results obtained with this approach provide a global presentation of the sensitivity analysis 

by means of a fundamental observation of the variables and the inputs. The sensitivity heat map 

and the parametric sensitivity spectrum can be plotted to facilitate visualization. Also, the 

computational time used for this approach is relatively small and easy to carry out as compared 

to other global sensitivity methods that require extensive Monte Carlo sampling. 

 

The main limitations of the method is that it cannot take into account stochastic statistical 

distributions of the input parameters other than normal and most importantly that the analysis is 

applicable for a particular set of operating conditions. For example, if a batch process is analyzed 

Rand’s method only considers the output values corresponding to this batch operation. However, 

in view that our objective was to perform the sensitivity analysis repetitively within an 

optimization search, Rand’s method was chosen in this thesis due to its relative computational 

efficiency as compared to other global sensitivity methods that require Monte Carlo sampling. 

 



31 

 

2.4 PARAMETER ESTIMATION 

 

Parameter estimation is a process system engineering activity whose goal is obtaining the 

parameter values of the model by matching the values calculated from the mathematical 

approximation function to the set of real data measurements. This approximation relies on 

assumptions related to statistical distribution of the parameters. Parameters may be time invariant 

or time-varying. Also, parameter values may be time invariant along a particular run of a batch 

process but may differ in value for different batch runs. The estimation computes numerical 

values for the parameters based on the data obtained from the observable variables (Dochain, 

2002). The parameter estimation procedure generally provides a mean value of the parameter and 

an associated confidence interval or statistical distribution. In the case of time invariant 

parameters the identified statistical distribution of the parameters results from noise in the output 

data, and model structure errors. On the other hand, for time varying parameters, the identified 

statistical distribution of the parameters results from the combined effects of time variation, noise 

and model structure error. 

 

The function that is used to calculate the values from the parameters by considering these as 

stochastic variables is named an estimator. The result from the estimator is called an estimate. 

The precision depends on the standard deviation of the estimate, because this is the measure of 

the errors caused by the calculation of the parameters and is affected by the fluctuations in the 

results. The bias is defined as “the deviation of the expectation of the estimate from the 

hypothetical true value of the parameter” (van den Bos, 2007). In this case the estimator is 

considered more and more accurate as the bias is reduced. 

 

There are two main approaches for parameter estimation depending on the type of model used. 

Linear estimation is used to characterize approximately linear model functions, and nonlinear 

estimation, which is used to estimate the parameters from nonlinear model functions. The last 

approach is the most common in dynamic chemical and bio-chemical systems due to its inherent 

nonlinear behavior (Englezos and Kalogerakis, 2001; van den Bos, 2007). 
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2.4.1 Formulation 

 

When choosing a parameter estimation procedure there are two main questions to be addressed: 

Which kind of model is more suitable for describing the process to be identified? And what is the 

objective function that is best suited for quantifying the fitting between model predictions and 

experiments? 

 

Parameter estimation problems are generally formulated as optimization problems. In most cases 

the unknown parameters are obtained by solving an optimization problem, which involves 

minimizing or maximizing an objective function. This objective function is a measure of the gap 

between the data and the model (Bard, 1974; Seinfeld and Lapidus, 1974). 

 

There are also two main assumptions that have to be considered during the formulation of the 

problem. First, it is assumed that the model structure is known and can potentially explain the 

data. And secondly, the solution of an optimization problem will result in a suitable parameter 

set where the parameter values do not significantly contradict physical sense or prior knowledge, 

e.g. a thermophysical property cannot be negative (Englezos and Kalogerakis, 2001). 

 

The steps to follow for Parameter Estimation are (Englezos and Kalogerakis, 2001): 

Ø Identify the structure of the model (linear or nonlinear) 

Ø Determine the objective function to quantify the error between model predictions and 

data 

Ø Choose the optimization method to minimize the objective function  

Ø Determine the accuracy of the estimates 

Ø Determine the adequacy of the model from the identified statistical distribution of the 

parameters 

Validate the calibrated model with data that was not used for model calibration 
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The models to be used for parameter estimation are classified into two main groups: Algebraic 

models and Differential Equation Models. 

Algebraic Model (Englezos and Kalogerakis, 2001) are given as follows: 

 

𝑦! = 𝑓 𝑥! , 𝑘 + 𝜀!, 

(2.21) 

 

where yi represents the dependent variables, xi represents the independent variables, k the 

unknown parameters, and 𝜀! is the measurement errors. 

 

Differential Equation Models (Englezos and Kalogerakis, 2001) are as follows: 

 

𝑑𝑥(𝑡)
𝑑𝑡 =   𝑓 𝒙 𝑡 ,𝒖,𝒌     ;   𝒙 𝑡! = 𝒙! 

(2.22) 

𝒚 𝑡 = 𝒉 𝒙 𝑡 ,𝒌 + 𝜺 

(2.23) 

 

where k represents the parameter vector, x the vector with the state variables, x0 the vector with 

the initial conditions, u the vector with the manipulated variables, y the output variables vector, , 

h is a nonlinear function vector that relates the inputs to the output variables, and 𝜺 is the 

measurement error vector. 

 

The objective function quantifies the distance between the model predictions and the data. The 

differences between output predictions and the data are often referred to as residuals and are 

mathematically given as follows (Englezos and Kalogerakis, 2001): 
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𝑒! = 𝑦! − 𝑓(𝑥! , 𝑘)  

(2.24) 

where 𝑓(𝑥! , 𝑘) represents the output evaluation by the model using the estimated parameter 

value. 

According to Englezos and Kalogerakis (2011), parameter estimation methods can be classified 

into two main groups: explicit estimation and implicit estimation. In the explicit estimation class 

the output variables can be explicitly expressed as a function of the inputs and the model 

parameters. On the other hand in the implicit estimation the input, output and the parameters 

values are related to each other through an implicit function. 

 

2.4.2 Parameter Estimation Methods 

 

Several parameter estimation methods have been reported and only the most widely used ones 

are reviewed in the section. More information about parameter estimation can be found in the 

works of Bard (1974), Beck and Arnold (1977), Englezos and Kalogerakis (2001), and van den 

Bos (2007). 

 

Least Squares 

 

This is the simplest and most widely used method in parameter estimation. Its simplicity arises 

from the fact that it can be applied to any model without a priori knowledge about the probability 

distribution that characterizes its variables since this distribution is not used in the methodology. 

The three main assumptions used in this method are: i- the expected value for the error is 0; ii- 

homoscedasticity or same variance of the residuals; and iii- the covariance of the error is 0, 

meaning that the errors have no correlation between them (Brichoff et al., 1991). This method is 
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especially useful for curve fitting problems. The method can be further classified into two 

classes: Unweighted and Weighted Least Squares. 

 

The Unweighted Least Squares methodology does not take into account the different 

dimensions or the units of the measurements and the model. It involves a simple minimization of 

the sum of the squared residual values (Beck and Arnold, 1977). 

 

Φ(𝑘) = 𝑦! − 𝑓(𝑥! , 𝑘) ! = 𝑒!!
!

!!!

!

!!!

 

(2.25) 

The Weighted Least Squares methodology compensates for large differences in magnitude 

between variables by multiplying the residuals by a weight factor (Beck and Arnold, 1977). 

 

Φ(𝑘) = 𝑏!𝑒!
!

!

!!!

 

(2.26) 

Maximum Likelihood 

 

The estimate obtained from the maximum likelihood is the value of the parameters that 

maximizes the likelihood function subject to equality and inequality constraints in the case where 

that value exists. This method is highly recommended when a large sample is available, because 

the variance of their estimates is the least compared to others. Maximum likelihood methodology 

also takes into consideration the distribution that the error follows, whereas the regular 

regression method does not. This way it maximizes the fitting between the data to an assumed 

statistical distribution of the errors. The price of its usage is the assumptions that have to be done 

(Bard, 1974; van den Bos, 2007; Pollock, 2003). 
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The main assumptions used in maximum likelihood estimation are (Pollock, 2003): 

i- Expected value of the error is zero (E(εi)=0). 

ii- Homoscedasticity (Var(εi)= σ2) 

iii- The errors are uncorrelated (Cov(εi, εj)=0) 

iv- The error has a normal distribution  

𝑁 𝜀; 0,𝜎! =
1
2𝜋𝜎!

𝑒𝑥𝑝 −
𝜀!

2𝜎!  

(2.27) 

v- The errors are independently distributed. 

𝑁 𝜀; 0,𝜎!
!

!!!

= (2𝜋𝜎!)!
!
!exp   

−1
2𝜎! 𝜀!

!

!!!

 

(2.28) 

The likelihood function of a sample is (Bard, 1974): 

 

𝐿 𝑘,𝜓 = 𝑝 𝑦 − 𝑓 𝑥, 𝑘 𝜓 = 𝑝 𝜓 𝑘 , 

(2.29) 

where 𝝍 represents the distributions parameters. 

max
!
𝐿(𝑘;𝜓) 

or 

max
!
𝑞 𝑘;𝜓    

𝑞 𝑘;𝜓 = ln 𝐿(𝑘;𝜓) 

(2.30) 

The logarithm of the likelihood function is often used as the optimization objective.  The 

maximization of the likelihood function can sometimes help with parameter reduction problems 

and reduces the computational time (Bard, 1974) because the logarithmic operation transforms 

the product of terms into their summation. Since the logarithm is monotonic with respect to the 
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argument the location of the maximum of the likelihood or the logarithm are identical. Due to the 

use of the logarithm, this method is also known as log-likelihood function (van den Bos, 2007).  

 

Pseudomaximum Likelihood 

 

This method uses the Maximum Likelihood equations for the specific case that the outputs errors 

are assumed to be normally distributed. This assumption serves to simplify the calculation of the 

parameters thus making this technique very popular (Bard, 1974). 

 

Bayesian Estimation Methods 

 

The estimation of a parameter depends on the probability density function used to characterize 

the parameters. This approach calculates parameters’ estimates based on the minimization of a 

risk function of the parameters model (Lehmann and Casella, 1998; Vaseghi, 2000). In contrast 

to the methods previously reviewed, this method requires prior information about the probability 

density function of the parameters.  

The benefits of using this method are that the estimates are physically meaningful since they 

satisfy at least the a priori assumed parameter statistical distribution. Also, the method calculates 

a posterior density function of the parameters and based on this posterior probability it is 

possible to neglect parameters that result in low probability. One of the major problems with this 

method is that it requires a priori knowledge and the computational time due to the need to 

sample the parameter space (Levy, 2012). 
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Monte Carlo Methods 

 

There are very useful methods for nonlinear models where the parameters and the outputs have 

non-normal statistical distributions. Since the Monte Carlo method does not require specific a 

priori assumptions on statistical properties of parameters and outputs it is of very general 

applicability. Accordingly, it can also be used to analyze the properties and accuracy of other 

estimation methods. The Monte Carlo Method involves the following steps (Beck and Arnold, 

1977): 

 

1. Define all the elements in the analysis: model equations, probability distribution for the 

errors and, if applicable, the prior distribution of the parameters. 

2. Sample the independent variables from their corresponding distributions and calculate the 

corresponding outputs variables using the model equations. 

3. Calculate the probability distribution function. 

4. Estimate the parameter values from the samples of the parameters that were used in the 

previous step. 

5. Reproduce the experiments by repeating steps 3 and 4 with a new different set of 

parameter values for N times. 

6. Obtain the mean value of the parameters estimated in all the N times. 

 

This simulation method can be used to obtain the estimates for any linear or nonlinear model. 

(Lehmann and Casella, 1998; Brooks et al., 1995). The main disadvantage of this method is that 

it requires large amount of computation for more accurate results. 
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2.4.3 Parameter Validation 

 

Fisher Information 

 

The objective of any parameter estimation procedure is to search for the parameter set that 

results in the best fit between model predictions with the real measurements. Often, one is 

interested in quantifying the amount of information that an output has about a parameter. This is 

important for assessing the confidence interval of the parameter identified from specific 

measured outputs. The Fisher information helps to solve this problem by measuring the quantity 

of information that each unknown parameter contributes to every random output variable that is 

characterized with a specific probability function. The Fisher information matrix represents the 

variance of the expected observable value information, which is referred to as the Fisher score 

(Lehmann and Casella, 1998). Additionally, the FIM can be used to discriminate the parameter 

set that best fits the model. 

 

The Fisher score vector for a set of parameters is defined as follows (van den Bos, 2007): 

𝒔! =
𝜕  log  [𝐿 𝒚;𝜽 ]

𝜕𝜽  

(2.31) 

 

where y represents the vector of the output variables of the model, 𝜽 is the parameter vector and 

𝐿 𝒚;𝜽  is the likelihood density function of the output variables. 

 

The Fisher information matrix is essentially a weighted covariance matrix (dispersion matrix), 

and can be defined as following: 

𝑭 = 𝑺!   𝚺!!  𝑺 

(2.32) 
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where S is the matrix of the partial differential equations of the outputs at different times with 

respect to each of the parameters, and 𝚺 is the covariance matrix of the measured noise. Both 

matrices are given as: 

 

𝑺 𝑡! =

𝜕𝑦! 𝑡!
𝜕𝜃!

𝜕𝑦! 𝑡!
𝜕𝜃!

…
𝜕𝑦! 𝑡!
𝜕𝜃!

𝜕𝑦! 𝑡!
𝜕𝜃!

⋱ ⋮

⋮ ⋱ ⋮
𝜕𝑦! 𝑡!
𝜕𝜃!

… …
𝜕𝑦! 𝑡!
𝜕𝜃!

 

(2.33) 

𝚺 =

𝑣𝑎𝑟!
𝑣𝑎𝑟!

⋱
𝑣𝑎𝑟!

 

(2.34) 

𝑺 = 𝑺 𝑡!

!

!!!

 

(2.35) 

 

Where equation (2.35) represents a summation of the FIMs defined for each time interval 

necessary to analyze an entire experimental run. The inverse of the diagonal elements of the FIM 

matrix provides a lower bound for the covariance matrix of the errors in the parameter set 

(Walter and Prozanto, 1990) as follows defined as: 

 

𝑑!! = 𝐹!𝟏 𝑖, 𝑖  

(2.36) 
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Confidence Intervals 

 

The parameter estimate is an approximation of a true value. This estimate is very likely to differ 

from the actual true value due to the variability in the outputs and possible variability in 

parameters for time varying systems. When estimating a parameter value it is important to 

quantify by how much the estimated value may differ from the expected value. This can be done 

by estimating upper and lower bounds where the real value of the parameter is located between 

these bounds also referred to as confidence intervals. The confidence intervals are a measure of a 

probability of the occurrence of a particular value of a parameter.  As the confidence interval 

gets smaller the confidence of the estimated mean of the parameter is larger (Beck, 1977; van 

den Bos, 2007). The confidence intervals for a parameter can be defined as a function of the 

inverse of the elements of the FIM (equation 2.36) as follows: 

 

[𝜃! ± 𝑡!!!,!!
𝑑!!] 

  (2.37) 

where 𝑡!!!,!!
 represents the t-distribution with n - p degrees of freedom and a confidence interval 

of 100 (1-  𝛼)% (Smith, 2014; Gallant, 1975). The confidence intervals are often used to describe 

parametric uncertainty in robust control and robust optimization problems.  
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Chapter 3 

 
METHODOLOGY 

 

In this chapter we propose a methodology for model calibration of a Dynamic Metabolic Flux 

model using parameter sensitivity analysis. A simple case study is used to illustrate this 

methodology. An overall parametric sensitivity of the model is quantified by the sum of the 

parametric sensitivity coefficients associated with each output. The coefficients are obtained 

from the global parametric sensitivity analysis proposed by Rand (2008) as reviewed in the 

previous chapter. The calibration of the dynamic metabolic flux model is then based on an 

optimization problem that involves the maximization of the overall parametric sensitivity 

measure.  
 

3.1 DYNAMIC METABOLIC FLUX ANALYSIS ALGORITH 

 

The formulation of the dynamic model from a metabolic flux network is presented here: 

max  
!!

𝑣!(𝑡) 

subject to: 

𝑺 ∗ 𝒗 = 𝒃 

 

𝒗(𝑡) ≥ 0 

 
𝑑𝒈(𝑡)
𝑑𝑡

= 𝑺 ∗ 𝒗 ∗ 𝑋 

 

𝒈(𝑡) ≥ 0 

(3.1) 
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where S represents the stoichiometric matrix m x n, m being the metabolite number and n the 

fluxes number, v represents the metabolic flux vector in the system, b is the vector of 

consumption or production rates of metabolites per unit biomass, and 𝒈(𝑡) is the vector with the 

output concentrations function of time. 

 

The maximization is solved at each time interval and linearization of the mass balance for each 

metabolite is defined as follows: 

 

𝝃!!! = 𝝃! + 𝑺 ∗ 𝒗 ∗ 𝑿! 

(3.2) 

It is generally assumed that bacteria attempt to maximize its growth at all times and therefore the 

objective function in (3.1) is assumed to be the growth rate.  The maximization of the objective 

in (3.1) representing the growth rate is subject to the mass balance constraints and the positivity 

of the fluxes since the correct direction of the reactions is assumed a priori based on information 

from available databases such as the KEGG (The Kyoto Encyclopaedia of Genes and Genomes). 

The optimization is solved at each specific time interval and the optimal values can be used to 

describe the metabolites consumptions and/or productions over time. 

 

3.2 SENSITIVITY ANALYSIS FORMULATION 

 

The Sensitivity Analysis is conducted with the method of Rand presented in the previous chapter 

as per the following steps:  

 

Step 1 Construction of M matrix 

 

The construction of the M matrix containing the sensitivity coefficients from the system is 

obtained from the partial differential derivatives of each metabolite with respect to each of the 
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parameters of interest. A normalization of the parameters is done to avoid problems with 

magnitude orders. 

𝑴 =

𝜕𝑔!
𝜕𝜂!

𝑡!
𝜕𝑔!
𝜕𝜂!

𝑡! …
𝜕𝑔!
𝜕𝜂!

𝑡!

𝜕𝑔!
𝜕𝜂!

𝑡!
𝜕𝑔!
𝜕𝜂!

𝑡! …
𝜕𝑔!
𝜕𝜂!

𝑡!

⋮
𝜕𝑔!
𝜕𝜂!

𝑡! ⋮ ⋱ ⋮

𝜕𝑔!
𝜕𝜂!

𝑡! ⋮ ⋮

⋮
𝜕𝑔!
𝜕𝜂!

𝑡!
𝜕𝑔!
𝜕𝜂!

𝑡! …
𝜕𝑔!
𝜕𝜂!

𝑡!

 

(3.3) 

𝜂! =
𝜕𝑘!
𝑘!

= log 𝑘! 

(3.4) 

where k is the parameter to be examined, η is the normalized term of the parameter, and g is the 

model output at a specific time interval. The rows correspond to the output variables from the 

model at each time interval and the columns correspond to the parameters of the model. 

 

Step 2 Matrix Normalization 

 

𝑴! = (∆!
!
) ∗𝑴;     0 ≤ ∆𝑡 ≤ 𝑇  

(3.5) 

Step 3 Singular Value Decomposition Analysis 

 

𝑴! = 𝑼  𝝈  𝑽!, 

(3.6) 
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  𝑽! =𝑾 

(3.7) 

 

𝑈!,! 𝑡   𝑈!,! 𝑡   𝑑𝑡 =   𝛿!"
𝑻

𝟎

𝒏

𝒎!𝟏

 

(3.8) 

 

where Ui has the same size as M1 (m x n) and these two matrices are orthogonal to each other as 

defined in equation (3.8), σ is a diagonal matrix with non-negative numbers (n x n) and are 

defined as the sensitivity singular values. VT is an orthogonal matrix (n x n). The decomposition 

is needed to obtain the Sensitivity Principal components Uim (t), key elements of this 

methodology (Rand, 2008). 

 

Also a new set of transformed parameters λ is defined where each λ is related to the normalized 

model parameter η according to an orthogonal linear transformation showed in the next equation: 

 

𝜆𝒊 = 𝑊𝒊𝒋𝜕𝜂𝒋𝒋 , 

(3.9) 

The index i corresponds to the transformed parameters λ and the index j corresponds to the 

parameters. 

 

Based on the equations above the deviations in the output variables can be expressed as a 

function of the singular values as follows: 

 

𝛿𝑔 𝑡 = 𝜆!𝜎!𝑈!" 𝑡 + Ο(∥ 𝛿𝜂 ∥!)! . 

(3.10) 
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Combining equations (3.9) and equation (3.10), we can obtain an equation for the parametric 

sensitivity of each output with respect to each parameter as follows: 

𝑆!" = 𝜎!   𝑊!" 

(3.11) 

𝜕𝑔
!"!

= 𝑆!"   𝑈!"𝑺
𝒊!𝟏 . 

(3.12) 

𝑈!,! is defined as the unit vector corresponding to the transformed parameters λi and the output 

m, with a length of !
∆!

. 

 

Step 4 Sensitivity Heat Formulation 

 

From equations (3.11) and equation (3.12), we define the a new unit vector function of time 

(fi,m(t)):  

 

𝑓!,! 𝑡 = 𝜎!   (max! 𝑊!" )   𝑈!,! 𝑡  

 (3.13) 

This unit vector is crucial for the correlation analysis, because it will help identify the 

contribution that the transformed parameters λi have to the outputs m. To identify the correlations 

that are significant to the model we defined a threshold of 5% of the maximum value of 𝑓!,! 𝑡 , 

this way we identify also the outputs with a significant Sensitivity Coefficient and to neglect the 

ones that are not significant according to this criterion. This equation can be plotted as a function 

of time for clearer visualization of the sensitivity results. 
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Step 5 Parameter Sensitivity Spectrum Formulation 

 

In order to perform the Sensitivity Spectrum equation (3.11), 𝑆!" = 𝜎!   𝑊!", is used to graphically 

visualize the sensitivity of the system’s outputs with respect to each specific parameter. 

Following equation (3.12). It is possible to assess the independent effect that 𝑆!" has on the 

overall sensitivity of an output with respect to a parameter, since the 𝑈!"(𝑡)′𝑠 are orthogonal 

matrices. This property makes the 𝑆!" matrix a good indicator of the effect of each parameter j on 

the transformed parameters λi has and with the use of the Sensitivity Heat see the effect on the 

output m in the partial derivatives 𝜕𝑔
!"!

. 

 

The Sensitivity Spectrum consists of the plot of the 3D bar graph log!" S!"  function of the 

transformed parameters λi and the parameters j. From this plot it is possible to identify the 

parameters with the highest influence in the system. 

 

3.3 THE PROPOSED USE OF PARAMETRIC SENSITIVITY 

ANALYSIS IN THE CURRENT RESEARCH 

 

The idea in this research is to use the parametric sensitivity measures proposed by Rand to 

accomplish a number of tasks related to the identification of dynamic metabolic flux models as 

follows: 

 

1- To identify the parameters that does not significantly affect the outcomes of the model. 

2- To identify whether the ranges of parameters of high parametric sensitivity will have a 

significant effect on profit or process constraints. 

3- To identify the relevance of the parametric sensitivity measures on the parameter 

estimation problem.    
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To accomplish tasks 1 and 2 we propose to maximize a lumped measure of the individual 

parametric sensitivity coefficients defined in the previous section subject to set based constraints 

identified from data as follows:  

 

max
!

𝑆!" ∗ 𝑈!,!  

𝑆. 𝑡.      𝑆𝑒𝑡  𝑏𝑎𝑠𝑒𝑑  𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠  𝑓𝑟𝑜𝑚 

𝑡ℎ𝑒  𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐  𝑓𝑙𝑢𝑥 model 

𝜽𝑼 ≥ 𝜽 ≥ 𝜽𝑳 

(3.14) 

 

The key idea behind this equation is to find the maximum of the possible parametric sensitivity 

for all the data available for a particular experiment. Then, using the Sensitivity Spectrum it is 

proposed to neglect parameters that are below certain threshold of significance. The rationale is 

that if for the maximum overall sensitivity it is possible to neglect certain parameters then it is 

expected that these parameters could also be safely eliminated for parameters’ regions of lower 

parametric sensitivity (Task 1 above).  Furthermore, it is important to assess whether the regions 

of maximal parametric sensitivity will affect a worst profit or a constraint since this will have a 

major effect on robust optimization outcomes based on the model under consideration (Task 2 

above). 

Finally, we will assess the relevance of the maximization in 3.14 for the purpose of parameter 

estimation as compared to a minimization of least squares approach. As part of this comparison 

we will propose a modification of the least squares criterion that uses parametric sensitivity 

information. 
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3.3.1 Set Based Constraints 

 

The key idea behind set based constraints is to represent the data by convex sets. To this purpose, 

it is assumed that because of measurement noise or unmeasured disturbances, the metabolites’ 

concentrations are always between upper and lower limits at each time interval for which data is 

collected. For example, typical set constraints for glucose concentrations for a batch of E-coli 

culture with 10% bounds are depicted in Figure (3.1). Metabolites are typically measured by 

HPLC, which exhibit generally a large variability of 10% or more (Dewasme et al., 2010). Also, 

repeatability of cell cultures is not high due to variations in growth media, size and quality of 

inoculum and heterogeneity of the cell culture. All these factors contribute to the data to be 

variable within bounds. Since experimental runs are generally scarce due to experimental costs, 

it is difficult to assign a particular probability to trajectories within these sets. Instead, a uniform 

probability is assumed for each trajectory within the sets (Findeisen et al, 2003). 

 

 

Figure 3.1. Set Based Constraint for Glucose 

 

In the current thesis since the studies were conducted with simulations and experiments were not 

available, the Set Based Constraints where produced by simulations with the dynamic metabolic 
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flux models. The combinations of two sources of variability were assumed for the data: 

unmeasured disturbances and measurement noise. To represent the unmeasured disturbance, 

several simulations were conducted by varying randomly the inputs parameter values between 

physically meaningful maxima and minima. To account for measurement noise, a random 

Gaussian noise was added to each of the output variables. The variations in the output variables 

obtained for simulations conducted with different parameters and noise were calculated and the 

maximum and minimum values at each time interval were assumed to define the bounds of the 

sets: 

 

𝑚𝑖𝑛  𝒁(𝑡) ≥ 𝒁(𝜽, 𝑡) ≥ 𝑚𝑎𝑥  𝒁(𝑡) 

(3.15) 
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3.4 MODEL VALIDATION USING FISHER INFORMATION 

MATRIX AND CONFIDENCE INTERVALS 

 

As reviewed in the previous chapter the elements of the Fisher Information Matrix can be used to 

calculate approximate confidence intervals on the parameters. Then, based on the magnitude of 

these intervals it is possible to assess the reliability of the parameter estimates. Smaller 

confidence intervals indicate higher confidence intervals. Also, if the confidence intervals are 

used to represent uncertainty for robust optimization purposes, then smaller intervals will 

generally result in less conservative optimization results. We will use this calculation to obtain 

the confidence intervals for the parameters estimated. 

 

The formulation of the Fisher Information Matrix is defined as following: 

𝑭 = 𝑺!   𝚺!!  𝑺 

(3.16) 

where S is the matrix of the partial differential equations of the outputs at one time respect to 

each of the parameters and it can be summed for all of the times analyzed, and 𝚺 is the 

covariance matrix of the measured noise. These matrices are given as follows: 

 

𝑺 𝑡! =

𝜕𝑦! 𝑡!
𝜕𝜃!

𝜕𝑦! 𝑡!
𝜕𝜃!

…
𝜕𝑦! 𝑡!
𝜕𝜃!

𝜕𝑦! 𝑡!
𝜕𝜃!

⋱ ⋮

⋮ ⋱ ⋮
𝜕𝑦! 𝑡!
𝜕𝜃!

… …
𝜕𝑦! 𝑡!
𝜕𝜃!

 

(3.17) 
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𝚺 =

𝑣𝑎𝑟!
𝑣𝑎𝑟!

⋱
𝑣𝑎𝑟!

 

(3.18) 

𝑺 = 𝑺 𝑡!

!

!!!

 

(3.19) 

The FIM inverse matrix provides a lower bound for the covariance matrix of the errors in the 

parameter set (Walter and Prozanto, 1990). Where the element of the inverse FIM is defined as: 

𝑑!! = 𝑭!𝟏 𝑖, 𝑖  

(3.20) 

This equation is then used to obtain the two-sided confidence interval for the i-th estimated 

parameter, using the following equation: 

  [𝜃! ± 𝑡!!!,!!
𝑑!!] 

  (3.21) 

where 𝑡!!!,!!
 represents the t-distribution with n - p degrees of freedom and a confidence interval 

of 100 (1-  𝛼)% (Smith, 2014; Gallant, 1975).  
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Chapter 4 
 

RESULTS AND DISCUSSION 

 
4.1 CASE STUDY: Diauxic Growth of E. coli 
 

The formulation of the dynamic model from a metabolic flux network for E. coli Diauxic Growth 

Model is presented here: 

max  
!!

  (𝑣! + 𝑣!+𝑣! + 𝑣!) 

subject to: 

𝑺 ∗ 𝒗 = 𝒃 

𝑣! ≥ 0 

 
𝑑𝑔𝐴𝑐𝑒(𝑡)

𝑑𝑡
= 𝑆!"# ∗ 𝑣 ∗ 𝑋 

𝑑𝑔𝐺𝑙𝑢(𝑡)
𝑑𝑡

= 𝑆!"# ∗ 𝑣 ∗ 𝑋 

𝑑𝑔𝑂𝑥𝑦(𝑡)

𝑑𝑡
= 𝑆!"# ∗ 𝑣 ∗ 𝑋 + 𝑘!𝑎 ∗ (0.21− 𝑂𝑥𝑦𝑔𝑒𝑛) 

𝑑𝑔𝑋(𝑡)
𝑑𝑡

= 𝑆! ∗ 𝑣 ∗ 𝑋 

𝒈(𝑡) ≥ 0 

𝒈𝟎 = [10.8, 0.4  0.21  0.001] 

 

𝑑𝐺𝑙𝑢𝑐𝑜𝑠𝑒
𝑑𝑡

≤
𝑉𝑚 ∗ 𝐺𝑙𝑢𝑐𝑜𝑠𝑒
𝐾𝑚 + 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 

𝑑𝑂𝑥𝑦𝑔𝑒𝑛
𝑑𝑡

≤ 𝑣𝑜 

(4.1) 
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where S represents the stoichiometric matrix m x n, m being the metabolite number and n the 

fluxes number, v represents the metabolic flux vector in the system, b is the vector of 

consumption or production rates of metabolites per unit biomass, km the substrate saturation 

constant, kLa the oxygen transfer coefficient, vo the maximal oxygen uptake, Vm maximal 

glucose uptake, 𝐴𝑐𝑒𝑡𝑎𝑡𝑒,𝐺𝑙𝑢𝑐𝑜𝑠𝑒,𝑂𝑥𝑦𝑔𝑒𝑛,𝑋 are the concentration of the metabolites. 

 

Nominal 

Parameter 

Values 

Km [mM] kLa [hr-1] vo [mmol/gdw hr] Vm  [mmol/gdw hr] 

0.015 7.5 15 10 

Table 4.1. Nominal Parameter Values for Diauxic Growth Model (Mahadevan et al., 2002) 

 

 
Figure 4.1. Metabolite Concentration over Time from Diaxuc Growth Model 

 

 

 

0 1 2 3 4 5 6 7 8 9 10
0

5

Ac
et

at
e 

(m
M

)

Metabolites

0 1 2 3 4 5 6 7 8 9 10
0

10

20

G
lu

co
se

 (m
M

)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

O
xy

ge
n 

(m
M

)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

Bi
om

as
s 

(g
/L

)

Time (Hours)



55 

 

4.2 SENSITIVITY ANALYSIS VALIDATION 

 
The proposed methodology is based on the Jacobian matrix for the model outputs. The matrix is 

obtained by calculating the partial derivatives for each of the outputs with respect to each of the 

parameters. The parametric sensitivity analysis in this section was calculated at nominal values 

of the parameters specified by Mahadevan et al (2002). The outputs in the model were: Acetate, 

Glucose, Oxygen, and Biomass. The parameters used in the analysis were: substrate saturation 

constant (km), oxygen transfer coefficient (kLa), maximal oxygen uptake (vo), and maximal 

glucose uptake (Vm) and their nominal values are presented in the table 4.1. 

 

The output of the model was obtained by running a simulation of a bacterial growth using the 

Dynamic Flux Balance Analysis (DFBA) of a diauxic growth for Escherichia coli, presented in 

the previous section. The evolutions of the metabolites over time during a batch culture are 

shown in Figure 4.1. In this case E. coli starts consuming the Glucose present in the media and 

produces Acetate as a secondary metabolite. Once the Glucose concentration is depleted, the 

uptake of the secondary carbon source, Acetate, starts taking place.  

 

The partial derivatives matrix, M matrix, was calculated with respect to ten percent variations of 

the input parameters and was obtained for each output every two hours. The matrix thus formed 

consists of 20 rows corresponding to each of the four metabolites calculated every second hour 

for the total batch process that lasted ten hours, and 4 columns, which correspond to each of the 

parameters analyzed in the model. 

 

In the next step a parametric sensitivity analysis of the model was conducted using the method of 

Rand (2008) reviewed in the Methodology chapter. First we normalized the elements of the M 

matrix by multiplying each one of them by the square root of the period of time where each 

output in measured, 2 hours, over the total time of the model’s calculation, 10 hours, ( ∆𝑡/𝑇).  

Then, the normalized M matrix was decomposed into a product of matrices by applying the thin 

singular value decomposition. The decomposition produces three matrices U, with the same size 

as M (20 x 4) that contained the Sensitivity Principal components; σ with the size 4 x 4 that with 
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the sensitivity singular values in decreasing order; and the square matrix V with the same 

dimension as the matrix containing the sensitivity singular values (4 x 4). This last matrix helps 

to calculate the correlations and the contributions of the parameters due to the correlations 

among them as explained in the previous chapter. 

 

 
Figure 4.2. Analysis of the Correlation of the Parameters over time from Nominal Parameter set 

 

Subsequently, the Control Coefficients 𝑓!,! were calculated from equation 3.13. This Control 

Coefficients relate the transformed parameters (λi), which characterize the parameter 

correlations, with the observable variables m. This way we capture the correlations among 

parameters with respect to the output variables as explained in the Methodology Chapter. In 

Figure 4.2 we plotted the Control Coefficients (𝑓!,!)  over time for each of the output variables in 

the model (Acetate, Glucose, Oxygen, and Biomass).  Here we can observe that the correlation 

variable (λ) with the highest influence is λ1. This variable has influence on each of the output 

metabolites of the system. λ2 is the second most important transformed parameter variable 

followed by λ3 , where these two latter variables have influence only on Acetate concentrations. 
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Then, a Parametric Sensitivity Spectrum (PSS) was used to identify which parameters from the 

correlations observed in the plots in Figure 4.2 have significant or negligible effect on the 

outputs. Based on the PSS it was possible to rank the parameters with the highest contribution to 

the model outputs, and also we found which parameters had no influence in the model. The 

calculation of the (PSS) was obtained from equation 3.11. 

 

 
Figure 4.3. Sensitivity Spectrum Analysis on the 4 Nominal Parameters 
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parameters (km, kLa, vo, Vm) on the x axis from 1 to 4 respectively, both against their 

contribution value. This approach provides a link between the output variables and the 

parameters thus helping us to identify which parameters have more weight for each of the 

variables λ. The parameter 1 (km) is zero for each of the lambdas, meaning that the substrate 

saturation constant has no influence on the model outputs. Also we can observe that the 
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maximal glucose uptake constant is the parameter most influential in the model since the variable 
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λ1 involves all the metabolites. The second most important parameter is the maximal oxygen 

uptake followed by the oxygen transfer coefficient. 

 

The substrate saturation constant (km) determines the Glucose uptake rate and it is one of the 

elements in the denominator in the Michaelis-Menten equation 2.4. The small effect of this 

parameter can be explained by the fact that the value of this parameter reported in Mahadevan et 

al. (2002) is very small as compared to the glucose concentration during most of the batch and 

consequently it has negligible effect on the overall glucose uptake equation.  In contrast, the 

maximal glucose uptake constant has the highest contribution to the model.  

 

To verify the reliability of the parametric sensitivity analysis we introduced an additional 

artificial parameter (kd) with the goal of testing whether the analysis would lead to conclude that 

this parameter must be zero. The parameter was added into the numerator of the Michaelis-

Menten equation  (equation 4.2). The nominal value used for this artificial parameter to calculate 

its sensitivity was 0.1.  

 

𝑣 =
𝑉𝑚 ∗ 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝑘𝑑
𝑘𝑚 + [𝐺𝑙𝑢𝑐𝑜𝑠𝑒]  

(4.2) 

 

Sum of Sensitivity Coefficients (Objective 

Function) 
Case 

12.273 
Nominal Parameter’s Sum of 

Sensitivity Coefficients 

Table 4.2. Sum of Sensitivity Coefficients of Nominal Parameter set 
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Figure 4.4. Sensitivity Spectrum Analysis on the Nominal Parameters and Artificial Parameter 

 

The same sensitivity analysis was run in the similar conditions as the previous one and the 

analysis showed that the parameters with no influence in the system were substrate saturation 

constant, km, and the faked parameter, kd, which has no sensitivity due to its very small value 
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4.3 IMPLEMENTATION OF PARAMETER SENSITIVITY FOR 

PARAMETER ESTIMATION METHOD 

 

The global sensitivity approach described above is used here to estimate parameters in the model 

in regions of high parametric sensitivity. Towards this goal we maximize the sum of the 

sensitivity contribution from the Parameter Sensitivity Spectrum. The maximization problem is 

given by equation 3.14.  

 

The maximization was subject to set based constraints as explained in the methodology chapter. 

The upper and lower bounds of the sets were defined by positive or negative 10% changes with 

respect to the nominal values used in the study of Mahadevan et al. (2002). These 10% 

fluctuations in model parameters were used to represent unmeasured disturbances in the process. 

These disturbances may arise in a bioreactor due to changes in growth media, variability in the 

inoculums used to start each batch or errors in initial conditions (Dewasme et al., 2010). 

 

In addition Gaussian noise was added to all the outputs to simulate sensor noise. Then, Set Based 

Constraints were obtained from simulations of the model given in equation 4.1 for different 

combinations of parameter values within the 10% bounds. From the resulting simulations we 

obtained a family of trajectories that are presented in the figures 4.5, 4.6, 4.7 4.8. These figures 

show the individual and combined contribution from parameters’ changes and from noise. From 

these families of curves we obtain upper and lower bounds at different time intervals, which 

were used as constraints in the optimization problem. 
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Figure 4.5. Set Based Constraints for Acetate 

 

 

Figure 4.6. Set Based Constraints for Glucose 
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Figure 4.7. Set Based Constraints for Oxygen 

 

 

Figure 4.8. Set Based Constraints for Biomass 

 

A first attempt was made to solve the optimization problem with the function Fmincon in 

Matlab. However, computational time was found to be a key challenge for solving the 

maximization problem in equation 3.14. The optimization requires repeated execution of the 

dynamic metabolic flux model. Each batch simulation of the dynamic metabolic flux model takes 
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between 40 to 60 seconds to complete. Furthermore, the calculation of the M matrix requires the 

calculation of the partial derivatives for each parameter with respect to a deviation in each 

parameter. This requires executing twice the model, to generate each column corresponding to a 

deviation in each parameter. Thus, constructing the M matrix takes more than 90 percent of the 

total computational time of the optimization problem. 

 

In order to reduce the computational time we tested several approaches to accelerate the 

calculation of the M matrix. The first idea was to omit the parameters with no effect on the 

model outputs, and avoid the calculation of its corresponding partial derivatives. In this way we 

could reduce the computational time by avoiding calculations of elements with insignificant 

contribution to the overall sensitivity. 

 

Omitting the partial derivatives with respect to parameters with insignificant effect on sensitivity 

helped reducing the computational time to almost two fifth of the original computation time.  

To further reduce the computational time we investigated the shape of the cost function. We 

found that the parametric sensitivity cost remains almost constant across a relatively wide range 

of parameter values and that is very nonlinear containing several similar minima.  To address 

these issues, we implemented a logical loop of 10 iterations during which we did not change a 

subset of parameters that were found locally to be insensitive. For example if it was found at the 

beginning of a 10 iterations cycle that only 3 parameters out of 5 were important, we conducted 

the 10 subsequent iterations by maximizing with respect to these 3 parameters while the other 2 

parameters were kept constant. At the end of the 10 iterations we optimized again with respect to 

the total number of parameters, find the ones of most effect on the outputs and proceed for the 

next 10 iterations by maximizing with respect to the parameters that their effect was found to be 

significant. 

 

The results obtained using Fmincon always exhibit variability depending on the initial guess. 

This was expected in view that the cost seems to be very flat with several minima. To further 

address the flatness of the optimization cost surface and the occurrence of local minima we 

tested a discrete optimization approach where the parameter space was discretized among 1000 
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different combinations of model parameters and the corresponding parametric sensitivity was 

calculated. 

 

 An initial grid based on parameters’ values corresponding to variations of ±  5% and 

±  10%  with respect to the nominal parameters reported by Mahadevan et al. (2002) and found in 

the table 4.1 was tested. Subsequently, the grid was further refined around the region of highest 

sensitivity found with the initial coarse grid. The refined grid was created by varying the 

parameter values by ±  2.5% and ±  7.5%  around the best solution obtained from the coarse grid. 

The maximum sensitivity value and the parameter set for each of the cases is presented in the 

table below. 

 

Km kLa vo Vm Kd 

Sum of 

Sensitivity 

Coefficients 

Case 

0.015 7.500 15.000 10 0.1 12.273 Nominal Values 

0.015 7.687 13.500 9 0.1 14.525 ±  2.5, 5  , 7.5, 10  𝑝𝑒𝑟𝑐𝑒𝑛𝑡  𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 

0.015 7.125 13.500 9 0.1 14.206 ±  5  , 10  𝑝𝑒𝑟𝑐𝑒𝑛𝑡  𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 

Table 4.3. Comparison of values obtained from discrete analysis by combinations 

 

By pursuing this discrete optimization approach we were able to obtain better outcomes than 

with the Fmincon Matlab optimization function. We can also notice that for the two most 

influential parameters, the maximal glucose and oxygen uptake constants (Vm and vo) remain the 

same for the coarse and the fine grids and only the oxygen transfer coefficient (kLa) varied 

slightly between the two grids. 
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Figure 4.9. Graph Glucose and Oxygen uptake rates against Sum of Sensitivity 

 

 

Figure 4.10. Graph of the Highest Sum of Sensitivity at each Glucose uptake rate variation 

 

The plots in Figure 4.10 show how the model’s sensitivity is mainly controlled by the changes of 

the glucose uptake rate (Vm). The sensitivity changes considerably by approximately 20% with 

respect to the sensitivity corresponding to the nominal value of Vm=10. This corroborates the 

sensitivity analysis results indicating that the model is mainly dominated by variability in this 

parameter. 

 

13.51414.51515.51616.5
9

10
11

8

10

12

14

16

Vm, parameter
vo, parameter

S
um

 o
f 

S
en

si
tiv

ity
 C

oe
ff

ic
ie

nt
s

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 10.8 11
12.5

13

13.5

14

14.5

15

Vm, parameter

Su
m

 o
f S

en
si

tiv
ity

 C
oe

ffi
ci

en
ts



66 

 

4.4 MAXIMIZATION OF SENSITIVITY USING GENETIC 

ALGORITHM 

 

Considering that the discrete approach was superior to a gradient based optimization fmincon) 

for maximizing the sensitivity, we consider using another maximization tool from MATLAB 

(The MathWorks Inc., Natwick, MA) based on a Genetic Algorithm that is also based on a 

discrete optimization approach. This algorithm calculates random initial guesses and selects 

combinations of parameters based on biologically motivated changes such as mutations and 

recombinations of parameter values to maximize a fitness function, which in this case is the 

parametric sensitivity. The outcomes obtained from the maximization of the sensitivity using the 

discrete optimization approach and the results obtained with Genetic Algorithm are compared in 

the table 4.4.  

 

Km kLa vo Vm Kd 

Sum of 

Sensitivity 

Coefficients 

Approach 

0.0150 7.6875 13.5000 9.0000 0.1000 14.5250 Discrete Analysis 

0.0135 7.6091 13.5012     9.0000     0.1051 14.5916 Genetic Algorithm 

Table 4.4. Comparison of Maximization the Sensitivity Approaches 

 

As observed from table 4.4, the results for the maximization were slightly higher using Genetic 

Algorithm, but the results were generally similar. This proves that a discrete based optimization 

approach like Genetic Algorithm is more efficient for this problem as compared to continuous 

gradient based optimization approaches such as the one used by Fmincon. 

 

Subsequently we compared the level of fitting in terms of the sum of square errors and the 

sensitivity coefficients obtained for two cases: i- parameters obtained from the maximization of 
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the sensitivity as obtained from the solution of 4.1 and ii- parameters obtained from a least 

squares regression. The comparison between model predictions and the outputs corrupted by 

noise for these two sets of parameters are shown in Figure 4.11; and the results for the sum of 

square errors and the sensitivity coefficient for these two sets of parameters are presented in table 

4.6 and the parameter sets corresponded to each method is presented in table 4.5. 

 

Km kLa vo Vm Kd 
Curve Fitting 

Method 

0.0135 7.6091 13.5012 9.0000 0.1056 
Sensitivity 

Analysis 

0.0152 6.9099 15.7954 9.5332 0.0602  Least Squares 

Table 4.5. Parameter sets for Sensitivity Analysis and Least Squares Fitting 

 

 

Curve Fitting 

Method 

Sum of 

Squared Error 

Sensitivity 

Coefficient 

Sensitivity Analysis 1084.0631 14.5914 

Least Squares 659.5613 12.7766 

Table 4.6. Sum of Squared Error and Sensitivity Coefficient for both Estimation methods 

 



68 

 

 

Figure 4.11. Curve fitting of Dynamic Model with Maximization of Sensitivity (‘*’) and Least 

Squares Fitting (‘+’) 

 

It is evident from Figure 4.11 that the fitting using the least squares approach is better as 

compared to the fitting obtained with the parameters that maximize the sensitivity in terms of the 

sum of square errors. However the sensitivity coefficient for the Least Squares fitting is 

significant smaller thus resulting in larger confidence intervals as shown below. 

 

The Fisher Information Matrix (FIM) analysis was implemented for the parameter sets of both 

estimation methods. The results from the FIM analysis of the most significant parameters in the 

two scenarios are presented in the table 4.7. It is clear that there is a substantial reduction in the 

magnitude of the confidence intervals: 2 percent for the oxygen transfer coefficient (kLa), 59 

percent for the maximal oxygen uptake (vo), and 52 percent for the maximal glucose uptake 

(Vm). 
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 Sensitivity Analysis Least Squares 

Parameters Mean Variance 

Confidence 

Intervals 

with 

tα,v=1.746 

Mean Variance 

Confidence 

Intervals 

with 

tα,v=1.746 

kLa 7.6091 0.0016 ±0.0701 6.8988 0.0017 ±0.0711 

Vo 13.5012 0.0019 ±0.0761 15.8609 0.0053 ±0.1276 

Vm 9.0000 0.0007 ±0.0447 9.5307 0.0024 ±0.0854 

Table 4.7. Mean, Variance, and Confidence Intervals of the significant parameters for both 

Parameter Estimation methods 

 

One of the key applications of the confidence intervals in process systems engineering is to 

quantify uncertainty to be used for robust optimization. Robust optimization requires calculation 

of two key elements: i- a robust cost, i.e. a cost in the presence of uncertainty and ii- a robust 

gradient of the cost with respect to the decision variables in the presence of uncertainty. 

 

Smaller confidence intervals are preferable since they will typically result in less uncertainty and 

less conservative optimization results. In this case study we assumed that the productivity is 

proportional to the amount of biomass. Although in the current study there was no a particular 

bio-product E. coli cultures will be typically used to produce a biomolecule of therapeutic 

interest. Generally, the amount of product will be proportional to the amount of biomass 

produced. Also, we assumed that the initial glucose concentration could serve as a possible 

decision variable to maximize the end of batch biomass. Thus, the gradient of interest for an 

optimization procedure is the gradient of biomass with respect to changes in initial glucose 

concentration. Then, to test the effect of uncertainty on a possible robust optimization 

formulation we calculated the effect of the parametric uncertainty as described by their 

confidence intervals on the biomass (cost) and on the gradient of biomass with respect to 

changes in initial glucose (gradient of cost with respect to decision variable).  
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First, the confidence intervals obtained from the FIM analysis s were used to generate a 

probability density function of the Biomass concentration based on the assumption that the 

parameters are normally distributed and the parameter variance is equal to the calculated 

confidence interval.  

 

Then, to test the effect of the confidence intervals on the gradient of cost with respect to the 

initial glucose the Biomass concentrations at the time 8 hours for two inlet glucose 

concentration, 10.8 [mM] and 12.8 [mM] were calculated. Then the gradient of the cost with 

respect to the initial glucose was computed from the differences between the two final 

concentrations for Biomass over the two corresponding initial concentrations of glucose. A 

probability density function of the gradient was obtained by calculating this gradient for samples 

of normal distributions of parameters’ combinations. The parameters were assumed to be 

normally distributed with a variance equal to the confidence intervals obtained from the FIM and 

with mean obtained from the least squares regression or from the maximization of the parametric 

sensitivity. 

 

 Sensitivity Analysis Least Squares 

Case 

Mean Biomass 

concentration at 

time 8 hours 

Standard 

Deviation 

Mean Biomass 

concentration at 

time 8 hours 

Standard 

Deviation 

Gradient 0.0541 7.3912e-06 0.0538 7.7579e-05 

Glu0 = 10.8 

[mM] 
0.8028 2.2150e-06 0.8042 1.1045e-04 

Glu0 = 12.8 

[mM] 
0.9110 1.4514e-05 0.9119 1.0306e-04 

Table 4.8. Mean and Standard Deviation of Biomass concentration at time 8 hours for both 

Parameter Estimation methods 
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Figure 4.12. Normal Distribution Histogram of the Biomass Gradients at Time 8 hours for Least 

Squares and Sensitivity Analysis 

 

As we can notice in the figures 4.12, 4.13, and 4.14, the normal distribution histograms for the 

biomass gradient based on the maximization of sensitivity show a significantly narrower curve 

compared to the ones obtained using sum of square errors. This difference between the two 

methods is also presented in the table 4.8 that shows that the standard deviations for all three 

cases using the maximization of sensitivity as proposed in this thesis are smaller. In both cases 

the standard deviation obtained with the maximal parametric sensitivity based solution is almost 

40 percent smaller than the one based on sum of squared errors.  This considerable reduction in 

the probability density function of the gradients of the cost shows the potential of working with 

parameters based on maximal sensitivity for reducing the conservatism of a robust optimization 

solution. 
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Figure 4.13. Normal Distribution Histogram of the Biomass Concentrations at time 8 hours with 

Initial Concentration of Glucose 10.8 (mM) for both Methods 

 

Figure 4.14. Normal Distribution Histogram of the Biomass Concentrations at time 8 hours with 

Initial Concentration of Glucose 12.8 (mM) for both Methods 
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4.5 ASSESSMENT OF SIGNIFICANCE OF MODEL PARAMETERS 

BASED ON MAXIMIZATION OF PARAMETRIC SENSITIVITY 

 

Sum of Sensitivity Coefficients 

(Objective Function) 
Case 

12.2730 
Nominal Parameter’s Sum of 

Sensitivity Coefficients 

14.5914 
Maximized value of the Sum of 

Sensitivity Coefficients 

Table 4.9. Sensitivity Coefficients of Nominal Parameter set and Maximized Parameter set 

 

 

Figure 4.15. Analysis of the Correlation of the Parameters over time 

 

In this section we consider again a set of 5 parameters (km, kLa, vo, Vm, and kd) where kd is an 

artificial parameter that is introduced to test the ability of the parametric sensitivity analysis to 

eliminate this redundant parameter. In this case the set based constraints were created with the 
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actual model of Mahadevan without the parameter kd but the model used to maximize the 

sensitivity included kd. In Figure 4.15 we plotted the Control Coefficients (𝑓!,!)  over time for 

each of the output variables in the model (Acetate, Glucose, Oxygen, and Biomass) using the 

parameter set obtained with the Maximization of the sensitivity method proposed in section 4.3. 

We present in table 4.9 a comparison of the Sum of Sensitivity Coefficients from the result of the 

sensitivity analysis without performing any maximization, as presented in section 4.2, and the 

objective function maximized using the methodology proposed in this thesis and which results 

are shown in section 4.3. Here it is possible to observe again that the correlation variable (λ) with 

the highest influence is λ1 followed by λ2 and λ3 , where these latter two variables have influence 

only on Acetate concentrations and a smaller influence in the Glucose Concentrations. 

 

 

Figure 4.16. Sensitivity Spectrum Analysis on the 5 Maximized Parameter set (km, kLa, vo, Vm, 

and kd) 

 

Figure 4.16 shows the correlation variables (λ) on the y axis numbered from 1 to 5 and the 

parameters (km, kLa, vo, Vm, and kd) on the x axis from 1 to 5 respectively, both against their 



75 

 

contribution value. This plot can be used to rank the significance of the contributions of the 

parameters on the model. The parameters 1 and 5 (km and kd) have zero contributions for each of 

the lambdas, meaning that the substrate saturation constant and the artificial parameter included 

to validate the parametric sensitivity analysis have no influence on the model outputs. Also we 

can observe that the parameter 4 (Vm) is still the parameter with the highest contribution in 

lambda 1, meaning that the maximal glucose uptake constant is the parameter most influential in 

the model since the variable λ1 is present in almost all the metabolites outputs. The second most 

important parameter is the maximal oxygen uptake followed by the oxygen transfer coefficient. 

We can observe also that for λ2 the most influential parameters are parameter 2 and 3 (kLa and 

vo). However, these two parameters have only an effect in the Acetate concentration and a minor 

effect on glucose. This is expected due to the fact that in this model oxygen concentration 

controls the acetate uptake. 
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4.6 A HYBRID PARAMETER ESTIMATION APPROACH 
COMBINING PARAMETRIC SENSITIVITY AND THE SUM OF 
SQUARE ERRORS 
 

The least squares methodology has been widely applied to estimate the parameter sets of many 

mathematical models used in Engineering. However this method is not fully accurate for 

nonlinear models since its accuracy is based on statistical assumptions that are only correct for 

linear systems Since least squares assumed equal importance for the errors, due to nonlinear 

dependence between outputs to parameters some errors may be important than others. In fact 

changes in parametric sensitivity directly reflect the changes in error magnitudes around different 

parameter values For example, in regions of high parametric sensitivity the changes in the 

outputs due to changes in parameters are expected to be larger thus resulting in a better signal to 

noise ratio and consequently smaller confidence intervals. On the other hand the parameters’ 

values in regions of high parametric sensitivity may result in larger sum of square errors. Clearly, 

for models where the outputs are linear with respect to the parameters, the parametric sensitivity 

is uniform for all possible values of the parameters. For this reason, in view that for the model 

under study the outputs are nonlinear with respect to the parameters, we propose to normalize the 

sum of square errors by the sensitivity by dividing the sum by the parametric sensitivity measure 

used in the current study. In this way we expect to achieve a better trade-off between parametric 

sensitivity to sum of square errors. The following equation (4.3) describes the method to be 

implemented and the estimated parameter sets for this approach is presented below. 

min
!

𝐿𝑒𝑎𝑠𝑡  𝑆𝑞𝑢𝑎𝑟𝑒𝑠
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  

or 

max
!

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝐿𝑒𝑎𝑠𝑡  𝑆𝑞𝑢𝑎𝑟𝑒𝑠  

𝑆. 𝑡.      𝑆𝑒𝑡  𝑏𝑎𝑠𝑒𝑑  𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠  𝑓𝑟𝑜𝑚 

𝑡ℎ𝑒  𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐  𝑓𝑙𝑢𝑥 model 

𝜽𝑼 ≥ 𝜽 ≥ 𝜽𝑳 

(4.3) 
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The results of the optimization in (4.3) are shown in table 4.10. It is evident that some of the 

parameters are closer to the values calculated by least squares as compared to the parameters 

obtained with the maximization of sensitivity. Also we were able to increase the sensitivity of the 

model as shown in table 4.11, which will lead to values in the parameter set with higher 

probability than the regular Least Squares approximation. However, there was no considerable 

reduction in the confidence intervals for the parameters calculated with the new methodology, as 

presented in table 4.12. The possible reason will be that in the ratios defined in optimization 4.3 

the Sum of Squares is penalized higher as compared to the parametric sensitivity. A better trade-

off could be achieved by summing up the sum of squares and the parametric sensitivity with 

weights (table 4.13) but this is left for future studies. 

 

Case 
Parameter Set 

km kla vo Vm kd 

Nominal 

Parameters 
0.015 7.5 15 10 0.1 

Least 

Squares 
0.01520 6.9099 15.7954 9.5332 0.0602 

Max PS 0.01350 7.6091 13.5012 9.0000 0.1056 

Min (LS/PS) 0.016407 6.8861 15.1625 9.6584 0.1051 

Max (PS/LS) 0.016384 6.8476 15.6614 9.5476 0.1055 

Table 4.10. Parameter Sets of the Estimation Methods 
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Case Sum of Squared Errors Sensitivity Coefficient 

SSE 659.5613 12.7766 

Max PS 1084.0630 14.5914 

Min (LS/PS) 661.9028 13.3261 

Max (PS/LS) 660.4011 13.3143 

Table 4.11. Sum of Squared Error and Sensitivity Coefficient for Estimation Methods 

 

 Max (PS/LS) Least Squares 

Parameters Mean Variance 
Confidence 

Intervals 
Mean Variance 

Confidence 

Intervals 

kLa 6.8476 0.0017 ±0.0713 6.8988 0.0017 ±0.0711 

Vo 15.6614 0.0052 ±0.1264 15.8609 0.0053 ±0.1276 

Vm 9.5476 0.0024 ±0.0869 9.5307 0.0024 ±0.0854 

Table 4.12. Mean, Variance, and Confidence Intervals of the significant parameters for the 

Maximization of the PS over the LS Method and Least Squares Fitting. 
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 Min (PS/LS) Least Squares 

Parameters Mean Variance 
Confidence 

Intervals 
Mean Variance 

Confidence 

Intervals 

kLa 6.8861 0.0028 ±0.0935 6.8988 0.0017 ±0.0711 

Vo 15.1625 0.0051 ±0.1258 15.8609 0.0053 ±0.1276 

Vm 9.6584 0.0007 ±0.0478 9.5307 0.0024 ±0.0854 

Table 4.13. Mean, Variance, and Confidence Intervals of the significant parameters for the 

Minimization of the LS over the PS Method and Least Squares fitting. 

 

Discussion on the relevance of parametric sensitivity analysis for parameter estimation 

 

A key question is on what is the advantage of finding the maximal sensitivity region as compared 

to the Least Squares solution with respect to the parameters’ estimates, 

The possible advantages of searching for the maximal sensitivity region are as follows: 

1- Results in the parameter with the highest probability provided that it is assumed that each 

trajectory within the set based constraints have equal probability to occur. 

2- It is particularly important if the region of high Parametric Sensitivity affects a worst case 

in terms of optimization, e.g. the region of parametric sensitivity affects the lower bound 

in productivity. 

3- The Maximization of the Parametric Sensitivity solution results in the smallest 

confidence intervals for the parameters and thus may be advantageous for robust 

optimization with respect to decision variables since it is less sensitive to uncertainty 

(smaller uncertainty).  
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Advantage 1: Parameters with the highest probability if the probability of the output’s errors is 

taken into account. 

 

Lets assume a simple nonlinear function 𝑦 = 𝐶 ∗ 𝑓 θ  with high parametric sensitivity at 

particular values of the parameter as shown in figure 4.17 

 

Figure 4.17 Exponential decay function of Theta (θ), which represents the sensitivity of the 

output approaching to high sensitivity parameter value (θ0) 

 

A key premise of least squares solution for resulting in a free bias solution is that the output 

errors are normally distributed. For a linear system if the parameters are normally distributed the 

output errors will be also normally distributed. This is not the case for nonlinear dependencies of 

the outputs with respect to the parameters that have varying Parametric Sensitivity around 

different parameter values, i.e. different values of the slope to the curve for different parameter 

values. 
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Figure 4.18 Uniform Probability of Occurrence of the Output (𝑦 θ ) 

 

 

Figure 4.19 Parameter Probability Incidence 
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For example assume that the parameter is normally distributed about a θ0 where θ0 corresponds 

to a high Parametric Sensitivity region, i.e. distribution is centered on θ0. The output will tend to 

spread in value within the high Parametric Sensitivity region and be more concentrated about a 

particular output value in low Parametric Sensitivity regions (figure 4.19). As a result of that the 

output distribution will not be normal and the Least Squares solution will find an average that 

will be away from the y corresponding to θ0, i.e. the Least Squares solution will not result in the 

actual θ0. The standard assumption when using set based constraints is that each trajectory within 

the sets has equal probability to occur (figure 4.18). In this case, the parameter estimates that 

correspond to the maximal parametric sensitivity will be the most probable parameters, i.e. 

smallest associated confidence intervals. For example, in Figure 4.17, if there is the same number 

of occurrences of s in the region of high sensitivity (e.g. y(θ) = 1) as in the region of low 

sensitivity (e.g. y(θ) = 0.1), the probability of occurrences of θ = 0.01 will be much higher than 

the probability of occurrences of θ = 0.4. The reason is that a much larger set of θ values can 

explain the changes around y(θ) = 0.1 than the range of parameter values explaining the changes 

around y(θ)=1. Since generally output values will not have equal probability to occur within the 

sets, the maximal sensitivity will not be the most probable solution of the parameters. In that case 

we have proposed a hybrid approach where the Parametric Sensitivity values are normalized 

with the Sum of Square Errors. 

 

Thus, the criterion for regression can be changed to a hybrid one resulting in min! 𝐿𝑆  (𝜃)/

𝑃𝑆 𝜃  or alternatively max! 𝐿𝑆  (𝜃)/𝑃𝑆 𝜃  as presented in equation 4.3.  

 

Advantage #2: region of high Parametric Sensitivity corresponds to output values that are 

relevant for optimization 

 

One of the key applications for a model in chemical engineering is for performing model-based 

optimization. In the presence of parametric uncertainty it is often required to calculate a worst 

case. For example, for the E. coli case study one can maximize worst (lowest) productivity thus 

ensuring that the actual productivity will be always larger than the worst optimized case. 
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Identifying that the region of worst productivity corresponds to a region of high Parametric 

Sensitivity is very relevant since small changes of parameters, e.g. due to disturbances, will 

significantly affect the optimized bound. 

 

This situation occurs in our case study where the region of maximal parametric sensitivity 

coincides with the region of lowest productivity. A robust optimization approach will attempt to 

maximize the worst (lowest) productivity. 

 

Advantage 3: Robust optimization in the neighbourhood of an optimized worst bound. 

 

Since the confidence intervals for a particular parameter are proportional to the inverse of the 

sensitivity (through the Fisher Information Matrix) then parameters’ values within regions of 

high Parametric Sensitivity will have small confidence intervals. 

 

Then, if one desires to do robust optimization by using the confidence intervals to quantify 

uncertainty, using parameters in the high PS region will have less associated uncertainty and will 

then result in less conservative predictions of the gradient of the cost with respect to changes in 

the decision variables used for optimization. 
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Chapter 5 

 
CONCLUSIONS AND FUTURE WORK 

 

5.1 CONCLUSIONS 

 

This thesis investigated parametric sensitivity analysis as a tool for identifying a dynamic 

metabolic flux model. A novel approach to parameter estimation is proposed whereby the 

parametric sensitivity is maximized subject to set based constraints that are identified from data. 

Set based constraints are a very natural way to describe the data in biological systems where due 

to noise and disturbances, the experimental data is typically described by convex sets.  

It is possible to conclude that the maximization of the parametric sensitivity of a model by means 

of a global sensitivity analysis subject to set based constraints served to find which parameters 

are not significant and also parameter values with small confidence intervals, i.e. with large level 

of confidence. The significance of the parameters was assessed in the regions of higher 

sensitivity as a way to assess significance in a worst case (highest sensitivity) situation.  

Although the current thesis dealt with a relatively simple example of E. coli growth, dynamic 

metabolic flux models may potentially involve a large number of metabolic reactions thus 

making the identification of these models to be a very challenging task. The parametric 

sensitivity method used in this thesis is particularly effective to deal with parameters that are 

correlated as occurring in typical dynamic metabolic flux models. Correlations are always 

present in metabolic flux models due to stoichiometric relations and to Monod kinetic structures 

where numerator and denominator parameters may exhibit correlations. Thus, considering each 

parameter independent from the other may lead to inaccurate results. For our case we were able 

to identify which correlations were affecting the concentration of each metabolite and since the 

analysis was applied at different time intervals it was possible to identify at which times they 

were more significant. 

 



85 

 

Also, we were able to identify from the correlations discussed above which parameters are more 

influential or which ones have no influence on the model. For example, the effect of substrate 

saturation constant (km) on the growth was found to be negligible within the range of values that 

were analyzed. This lack of significance is due to the low saturation constant value as compared 

to the glucose concentration levels occurring during the batch.  

 

An additional advantage of the parameter estimation via a maximization of the sensitivity was to 

minimize the uncertainty of the parameters’ estimates. Since higher parametric sensitivity 

translates into smaller confidence intervals, parameters’ estimates in regions of high parametric 

sensitivity have larger probability (smaller confidence intervals).  We have shown that estimating 

parameters in regions of high parametric sensitivity may be advantageous for robust optimization 

since the associated uncertainty for the estimated parameters is less conservative. This reduction 

of conservatism is especially important in terms of the gradients of the cost function with respect 

to changes in the decision variables that have to be used in robust optimization.  

 

On the other hand the parameter estimates that maximize the sensitivity do not necessarily result 

in good fitting to data in terms of the sum of square errors. Thus, there is a trade-off between 

finding estimates of high probability via maximization of parametric sensitivity versus finding 

estimates with lower probability but better fitting via the minimization of the sum of square 

errors. To address this trade-off we have proposed a hybrid parameter estimation method where 

the parametric sensitivity normalized (divided by) the sum of square errors is maximized subject 

to the set based constraints. This hybrid approach is shown to achieve a trade-off between the 

two criteria, i.e. parametric sensitivity versus sum of square errors. 
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5.2 FUTURE WORK 

 

A major challenge in the maximization of the sum of sensitivity coefficients was the 

computational time. The most time consuming step in this procedure is the calculation of the M 

matrix that is based on the partial derivatives of the outputs with respect to each parameter. A 

possible way to solve this difficulty would be to create a large look up table of partial derivatives 

and to apply a continuous gradient seeking optimization method based on interpolated values of 

derivatives from the look up table 

 

 

In addition it is proposed to extend this methodology to a larger dynamic metabolic flux model. 

For example, a model for yeast growth is currently available that involves a 100 reactions. The 

methodology proposed in the current work will be instrumental to calibrate such model. 

 

Finally it is proposed to use the current methodology to perform robust optimization based on a 

dynamic metabolic flux model. In the previous chapter it was shown that working with 

parameter estimates with smaller confidence intervals may be advantageous since it may reduce 

the conservatism of robust optimization solutions.   
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APPENDIX A 

%% Robust Identification  

function coef_min_biomass_gen_alg_20cases 

A = []; 

b = []; 

Aeq = []; 

beq = []; 

 lb = [0.0135   6.75   13.5    9   0.09]; 

 ub = [0.0165   8.25   16.5    11  0.11]; 

optionsga=gaoptimset('PopulationSize',10,'Generations',10,'Display','iter'); 

% Fmincon 

% teta = 
fmincon(@for_loop_model_kd_auto_genetic_20cases,teta0,A,b,Aeq,beq,lb,ub,@nonl
inc,options); 

% Genetic Algorithm 

[teta,fun] = 
ga(@for_loop_model_kd_auto_genetic_20cases,5,A,b,Aeq,beq,lb,ub,@nonlinc,optio
nsga); 

fprintf('The best function value found was : %g\n', fun); 

disp('Result teta'); 

disp(teta); 

end 

 

 

function fun=for_loop_model_kd_auto_genetic_20cases(p) 

teta = p; 

%% SSE calculation 

theta_input=teta;  

 [H]=growthModel_drv2(theta_input); 

metabolites_noise_disturbances 

SSE_total = 0; 

for i=1:20 

    SSEace=sum((Acetate(i,:)-H(1,:)).^2); 

    SSEglu=sum((Glucose(i,:)-H(2,:)).^2); 

    SSEoxy=sum((Oxygen(i,:)-H(3,:)).^2); 

    SSEbio=sum((Biomass(i,:)-H(4,:)).^2); 

    SSE_sum = SSEace + SSEglu + SSEoxy+ SSEbio; 
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    SSE_total = SSE_total + SSE_sum; 

end 

%% Sensitivity Analysis calculation 

Param=[]; 

for ip=1:length(teta) 

    par=teta(ip)*1.1;par2=teta(ip)*0.9; 

    Param=[Param;par;par2]; 

end 

km_mat = []; 

dkm_mat = []; 

i_teta=1; 

i_teta2 = 0; 

for i_param=1:length(Param) 

    teta_input=teta; 

    teta_input(i_teta)=Param(i_param); 

    [F]=growthModel_drv1(teta_input); 

            km_mat = [km_mat F]; 

    i_teta2 = i_teta2 + 1;   

    if i_teta2 == 2 

        i_teta = i_teta + 1; 

        i_teta2 = 0; 

    else 

    end 

end 

%for Matrix M 

Mr=[];  iteta=1; jteta=2; kteta=1; 

[row,column]=size(km_mat); 

for i_k=1:2:column 

    input_teta=teta; 

    input_param=Param; 

% number 5 is from the division of 1/0.2 from the percentages of the model + 
and - 10% of the value of the parameter     

     ks=5.*abs(km_mat(:,iteta)-km_mat(:,jteta));  

    iteta=iteta+2; jteta=jteta+2; kteta=kteta+1; 

    Mr=[Mr ks]; 

end 

% Calculation of the Matrix M for SVD 
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% Normalization of M to ensure that in the limit delta t --> 0 the singular 

% value decomposition of M is independent of the choice of the time 

% discretization delta t = ti+1 - ti 

delta_t = 2;              % interval of time desired in hours 

Time = 10;                % Total time of the process 

M1r=(sqrt(delta_t/Time)).*Mr; 

Mdot1=(sqrt(delta_t/Time)).*Mdot;  

% Calculation of the Singular Value Decomposition 

 [U,sigma_i,V]=svd(M1r,0); 

W=transpose(V); 

% Sensitivity heat map analysis 

%fim = sigma_i * (max abs(Wij)) * abs(Uim(t)) Rand, 2008 

maxSij=sigma_i*transpose(max(abs(W))); 

fim=[];  

for i_sij=1:length(maxSij) 

    fi_m = maxSij(i_sij).*abs(U(:,i_sij)); 

    fim=[fim fi_m]; 

end 

% lambda elimination fim 

% threshold for fim is set to be 5% of the global maximum of the fim(t) 

alpha=0.05*max(max(fim)); 

n_outputs = 5; 

D2=[]; 

[row_f,column_f]=size(fim); 

for j_f=1:1:column_f 

    D1=[]; 

  i_step=1;j_step=n_outputs;   

for i_f=1:n_outputs:row_f 

    F_im=fim(i_step:j_step,j_f); 

     if max(F_im)<alpha 

         Fim=zeros(n_outputs,1); 

     else 

         Fim=F_im; 

     end 

     i_step=i_step+n_outputs; 

     j_step=j_step+n_outputs; 

     D1=[D1;Fim];   
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end 

    D2 = [D2 D1]; 

end 

% Calculation of Sij matrix for parameter discretization 

% Sij = sigma_i * Wij 

Sij=sigma_i*W; 

G=(abs(Sij)); 

% Row elimination 

 [row_g,column_g]=size(G); 

uf=[]; i_g_step=1; 

for i_g=1:1:row_g 

if D2(:,i_g_step) == 0 

    M1=zeros(1,column_g);    

else 

    M1=G(i_g_step,:); 

end 

i_g_step=i_g_step+1; 

uf=[uf;M1]; 

end 

%threshold for columns in Sij (parameter reduction) 

beta=0.05*max(max(uf)); 

 [mpar,npar]=size(uf); 

D4d=[]; 

for j=1:npar ; 

    for i=1:mpar 

    B4d=uf(i,j); 

    if (B4d<beta) 

        C=0; 

    else  

        C=B4d; 

    end 

    D4d=[D4d C]; 

    end 

end 

  u=reshape(D4d,[mpar,npar]); 

%for a general analysis of all the metabolites and at all the times 

n_outputs = 5; %number of outputs over time z(t1), z(t2), z(t3), ..., z(tn) 
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[row_u,column_u]=size(u); 

[row_U,column_U]=size(U); 

S_A_k_complete_mat = []; 

for j_u=1:n_outputs:row_U 

    S_A_k_mat = []; 

for i_u_step=1:1:column_u 

j_u_step=j_u; 

 z_u_step=j_u+n_outputs-1; 

 S_A_k=zeros(n_outputs,1); 

for i_u=1:1:row_u 

    S_A_k_vec=u(i_u,i_u_step).*abs(U(j_u_step:z_u_step,i_u)); 

    S_A_k = S_A_k + S_A_k_vec; 

end 

S_A_k_mat = [S_A_k_mat S_A_k]; 

%j_u_step=j_u_step+1; z_u_step=z_u_step+n_outputs; 

end 

S_A_k_complete_mat = [S_A_k_complete_mat; S_A_k_mat]; 

end 

Sum_g_teta=sum(S_A_k_complete_mat); 

% disp('S A K mat'); 

% disp(S_A_k_complete_mat); 

%Percentages of the contribution of each parameter to the system 

q=[]; 

[row_g_teta,column_g_teta]=size(Sum_g_teta); 

eta=0.1; 

for i_g_teta=1:1:column_g_teta 

    q1=(Sum_g_teta(i_g_teta)/sum(Sum_g_teta)); 

    if q1<eta; 

        q1=0; 

    else q1=1; 

    end 

            q=[q q1]; 

end 

No=sum(q); 

%objective function to be maximized not considering SSE analysis  

%fun= - ( ((sum(Sum_g_teta))/No)); 

%objective function to be minimized  
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% fun= ( SSE_total / ((sum(Sum_g_teta))/No)); 

%objective function to be maximized  

% fun= - ( ((sum(Sum_g_teta))/No) / SSE_total ); 

end 

 

% Diauxic Growth Model Script to Drive the Simulation in A Matlab-based 
Diauxic Growth Model 

function [F,J]=growthModel_drv1(Param_vec); 

% 

global optoA optoAeq optonvar optobnd optoBeq optob optoLB optoUB optof optox 
constrX constrY 

global constrT optooptions 

global convf vglcxt vo  storeV flagSim optoexitflag optooutput optolambda KLA 
Km vmax Vm Va vAc teta 

% 

% obtain stoichiometry matrix 

% 

%            v1      v2     v3       v4 

% Ac      -39.43       0    1.24   12.12 

% Glcxt        0  - 9.46   -9.84  -19.23 

% O2        - 35  -12.92   -12.73   0 

% X            1    1       1      1 

% 

A = [-39.43,    0.0,     1.24,   12.12; 

       0.0,   - 9.46,   -9.84,  -19.23; 

     -35.0,   -12.92,   -12.73,    0.0; 

       1.0,      1.0,    1.0,     1.0]; 

M     = A'*A; 

[R,L] = eig(M); 

  

optoA = A; 

clear A; 

%parameter assignment 

convf     = [25.59331, 180.16 31.99886 60.05]; % g/mol [biomass glucose O2 
acetate] 

Km        = [0.015];                           % mM 

KLA       = [7.5];                             % 1/h 

% 
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% Simulation 

% ---------- 

% 

[nspecies,nreactions] = size(optoA); 

% 

SINIT      = [0.40 10.8 0.21 0.001];       % mM  [10.8 0.4 0.21 0.001]; 

% 

TINIT      = 0;                           % inital time for solution 

Tend       = 12.1;                          % end time for simulation 

dt         = 1e-2;                        % 1e-3; %Euler step 

nsteps     = ceil(Tend/dt);               % number of Euler steps 

constrT    = dt; 

% 

s          = SINIT; 

t          = TINIT; 

store_s    = []; 

store_t    = []; 

store_dsdt = []; 

store_v    = []; 

% 

for (istep=TINIT:dt:Tend), 

    % 

    [dsdt]     = growthModel_system1(t,s,Param_vec)'; % time derivatives of 
states 

    % 

    store_s    = [store_s;s]; 

    store_t    = [store_t;t]; 

    store_dsdt = [store_dsdt;dsdt]; 

    store_v    = [store_v; optox']; 

    % 

    s       = s + dsdt*dt; % Euler integration of states 

    t       = t + dt; 

end; 

A=interp1(store_t,store_s,[2  4  6  8  10]); 

 F=reshape(A,[20,1]); 
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function [dy] = growthModel_system1(t,y,Param_vec); 

global optoA optoAeq optonvar optobnd optoBeq optob optoLB optoUB optof optox 
constrX constrY 

global constrT optooptions 

global convf vglcxt vo  storeV flagSim optoexitflag optooutput optolambda KLA 
Km vmax Vm Va vAc teta 

Ac           = y(1); 

Glcxt        = y(2); 

O2           = y(3); 

X            = y(4); 

vglcxt          = (Param_vec(4)*(Glcxt)+Param_vec(5))/(Param_vec(1)+(Glcxt)); 

vo              = Param_vec(3); 

constrY         = y'; % stored past Y for constraint 

% call to optimization routine 

growthModel_opto1(); 

rates           = optoA*optox; % stoichiometric matrix times flux 

% 

dAcdt           = (X)*rates(1); 

dGlcxtdt        = (X)*rates(2); 

dO2dt           = (X)*rates(3) + Param_vec(2)*(0.21-O2); 

dXdt            = (X)*rates(4); 

% 

dy = [dAcdt,dGlcxtdt,dO2dt,dXdt]'; 

 

 

function growthModel_opto1(); 

global optoA optoAeq optonvar optobnd optoBeq optob optoLB optoUB optof optox 
constrX constrY 

global constrT optooptions 

global convf vglcxt vo  storeV flagSim optoexitflag optooutput optolambda KLA 
Km vmax Vm Va vAc teta 

% Solve 

%    min optof'*optox 

%     x 

%  s.t. 

% 

%    M*optox <= bndM 

%    optoLB<=optox<=optoUB 
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% objective weights 

% 

optof   = -1*[1 1 1 1]';            % objective function coefficients 

optobnd = 100; 

optob   = optobnd+zeros(4,1); 

optoBeq =[]; 

optoLB  = -1E-6+zeros(4,1);    % lower bound on fluxes 

optoUB  = 100+zeros(4,1);      % upper bound on fluxes 

m1   = -1.*optoA;     % budman Yk+1 = Yk + AjXkT > 0 

m2   = -1*optoA(2,:); % Glcxt uptake vglcxt = 10*Glcxt/(Km+Glcxt); 

m3   = -1*optoA(3,:); % O2 uptake    vo     = 15; 

 m4   = -1*optoA(1,:);       % budman       Aj     <= dY/dt upper bound 

b1   = constrY./(constrY(end)*constrT);  % budman Yk+1 = Yk + AjXkT >= 0 -->  

b2   = 1.0*vglcxt; % Glcxt uptake Aglucxt*v <= 10*Glcxt/(Km+Glcxt); 0.01 

b3   = vo;                                % O2 uptake    AO2*v     <= 15; 

 b4   = vAc;                               % budman       Aj        <= dY/dt  

M    = [m1; 

        m2; 

        m3]; 

bndM = [b1; 

        b2; 

        b3]; 

optooptions = optimset('TolFun',1E-8,'MaxIter',5E6,'Display','off'); 

[optox,optoF,optoexitflag,optooutput,optolambda] = 
linprog(optof,M,bndM,[],[], ... 

optoLB,optoUB,[],optooptions); 

 

% Set Based Constraints 

function [c,ceq] = nonlinc(teta) 

 [Eval]=growthModel_drv(teta);  

Acet=Eval(1,:); 

Gluc=Eval(2,:); 

Oxyg=Eval(3,:); 

Biom=Eval(4,:); 

metabolites_noise_disturbances 

Bio_up= max(Biomass); 

Bio_low= min(Biomass); 
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Glu_up= max(Glucose); 

Glu_low= min(Glucose); 

Oxy_up= max(Oxygen); 

Oxy_low= min(Oxygen); 

Ace_up= max(Acetate); 

Ace_low= min(Acetate); 

 

c(1) = Acet(1,5) - Ace_up(1,5);  

c(2) = -Acet(1,5) + Ace_low(1,5); 

c(3) = Acet(1,9) - Ace_up(1,9);  

c(4) = -Acet(1,9) + Ace_low(1,9); 

c(5) = Acet(1,13) - Ace_up(1,13);  

c(6) = -Acet(1,13) + Ace_low(1,13); 

c(7) = Acet(1,17) - Ace_up(1,17);  

c(8) = -Acet(1,17) + Ace_low(1,17); 

c(9) = Acet(1,21) - Ace_up(1,21);  

c(10) = -Acet(1,21) + Ace_low(1,21); 

  

c(11) = Gluc(1,5) - Glu_up(1,5);  

c(12) = -Gluc(1,5) + Glu_low(1,5); 

c(13) = Gluc(1,9) - Glu_up(1,9);  

c(14) = -Gluc(1,9) + Glu_low(1,9); 

c(15) = Gluc(1,13) - Glu_up(1,13);  

c(16) = -Gluc(1,13) + Glu_low(1,13); 

c(17) = Gluc(1,17) - Glu_up(1,17);  

c(18) = -Gluc(1,17) + Glu_low(1,17); 

c(19) = Gluc(1,21) - Glu_up(1,21);  

c(20) = -Gluc(1,21) + Glu_low(1,21); 

  

c(21) = Oxyg(1,5) - Oxy_up(1,5);  

c(22) = -Oxyg(1,5) + Oxy_low(1,5); 

c(23) = Oxyg(1,9) - Oxy_up(1,9);  

c(24) = -Oxyg(1,9) + Oxy_low(1,9); 

c(25) = Oxyg(1,13) - Oxy_up(1,13);  

c(26) = -Oxyg(1,13) + Oxy_low(1,13); 

c(27) = Oxyg(1,17) - Oxy_up(1,17);  

c(28) = -Oxyg(1,17) + Oxy_low(1,17); 
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c(29) = Oxyg(1,21) - Oxy_up(1,21);  

c(30) = -Oxyg(1,21) + Oxy_low(1,21); 

  

c(31) = Biom(1,5) - Bio_up(1,5);  

c(32) = -Biom(1,5) + Bio_low(1,5); 

c(33) = Biom(1,9) - Bio_up(1,9);  

c(34) = -Biom(1,9) + Bio_low(1,9); 

c(35) = Biom(1,13) - Bio_up(1,13);  

c(36) = -Biom(1,13) + Bio_low(1,13); 

c(37) = Biom(1,17) - Bio_up(1,17);  

c(38) = -Biom(1,17) + Bio_low(1,17); 

c(39) = Biom(1,21) - Bio_up(1,21);  

c(40) = -Biom(1,21) + Bio_low(1,21); 

ceq = []; 

end 

 


