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Abstract

The pfaffian is a classical tool which can be regarded as a generalization of the

determinant. The hyperpfaffian, which was introduced by Barvinok in [3], generalizes

the pfaffian to higher dimension. This was further developed by Luque and Thibon

in [15] and Abdesselam in [1]. There are several non-equivalent definitions for the

hyperpfaffian, which are discussed in the introduction of this thesis. Following this

we examine the extension of the Matrix-Tree theorem to the Hyperpfaffian-Cactus

theorem by Abdesselam, proving it without the use of the Grassman-Berezin Calculus

and with the new terminology of the non-uniform hyperpfaffian. Next we look at the

extension of pfaffian orientations for counting matchings on graphs to hyperpfaffian

orientations for counting matchings on hypergraphs. Finally pfaffian rings and ideals

are extended to hyperpfaffian rings and ideals, but we show that under reasonable

assumptions the algebra with straightening law structure of these rings cannot be

extended.
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Chapter 1

Introduction

1.1 Outline

The pfaffian is the signed sum over perfect matchings in the way the determinant is

the signed sum over permutations. It is in fact a generalization of the determinant,

as will be described in the next section. It has been used in many fields, including

combinatorics. The hyperpfaffian generalizes the pfaffian to partitions of {1, . . . , n}

with blocks of size other than two. These were first introduced by Barvinok in [3]

who created a hyperpfaffian for partitions into blocks of size k where k is even. A

new definition was created by Luque and Thibon in [15] which worked for even and

odd k. Abdesselam in [1] proved a result which used a structure which is effectively

a hyperpfaffian over partitions into sets of non-uniform even size. In this thesis we

shall attempt to generalize some results of the pfaffian in combinatorics to results for

the hyperpfaffian. These different definitions of the hyperpfaffian will be described

later on in this introduction.

The first result we examine is the Hyperpfaffian-Cactus theorem, proved by Abdes-

selam in [1]. It is a generalization of Masbaum and Vaintrob’s Pfaffian-Tree theorem

in [16], which is in turn based on the classical Matrix-Tree theorem. This theorem

constructs a structure, similar to the Kirchoff matrix , from which the hyperpfaffian

generates all the spanning trees (or cacti) of a hypergraph. In chapter two we prove

this result without the use of the Grassman-Berezin Calculus used by Abdeselam.
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The second topic is the construction of Hyperpfaffian orientations. The pfaffian

orientation has seen significant study. The idea is to orient a graph so that the signed

sum of its perfect matching becomes the unsigned sum of its perfect matchings. For

reasons of computational efficiency, this is a preferable method of counting the number

of such matchings. Only certain graphs admit such orientations, such as planar

graphs. In fact many of the results in this subject have to do with embedding graphs

in surfaces. In chapter three we adapt these results on the embedding of graphs

in general to finding orientations of hypergraphs which make the hyperpfaffian an

unsigned sum.

The final topic we examine is that of pfaffian rings and ideals. The idea of chapter

four is if one takes the standard antisymmetric matrix of invariants, and creates

an ideal generated by pfaffian minors of this matrix in the k-algebra generated by

the invariants, one can get a quotient ring with interesting combinatorial structure.

Many of the results relating to this are based around the algebra with straightening

law structure of the pfaffian minors, or at least slightly weaker versions of this. In

this thesis we prove that there is no “reasonable” way of putting this structure on

the similarly defined hyperpfaffian rings with the uniform hyperpfaffian, and that the

structures of the non-uniform hyperpfaffian rings are trivial.

1.2 The Pfaffian

The pfaffian is the lesser known cousin of the determinant. It was first invented by

Johann Friedrich Pfaff in 1815, who used it to solve systems of partial differential

equations. It was given its name (after Pfaff) by Cayley in 1849, at which time

Cayley also proved its relation to the square root of the determinant (which we will

see shortly). It has applications to many subjects, such as the enumeration of plane

partitions, trees, and perfect matchings.

There are many ways to define the pfaffian. Here we first consider one given by

Stembridge in [20]. In this definition we work with a sum over the set of perfect

matchings or one-factors on {1, . . . , n}. This is the set of partitions of {1, . . . , n} into

two-element sets. For example {1, 3}, {4, 7}, {2, 5}, {6, 10}, {8, 9} is a perfect match-

ing on {1, . . . , 10}. Note that no such matchings exist if n is not even. Throughout
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this thesis we shall assume n is even.

Two elements of the matching, {i, j} and {k, l}, are said to cross if i < k < j < l.

This can be visualized by writing out the numbers in order on a line, and connecting

paired elements with half circles above the line. These half circles cross if and only if

the pairs they represent cross. Another way to see these crossings visually is to place

the numbers in order around a circle and draw straight lines connecting matched

pairs. The lines again cross exactly when the pairs they represent cross. The crossing

number of a perfect matching is the number of crossing pairs, and the signum of the

matching is then (−1)c where c is the crossing number of the matching. We denote

this signum by sgn.

Considering the matching above, we can represent it in either of the ways given in

Figure 1.1. From these diagrams we see that it has three crossings. Thus its signum

is negative.

Figure 1.1: Two types of crossing diagrams for a matching

Our first definition of the pfaffian acts on an upper triangle, which we shall define

as follows:

Definition 1.1. An upper triangle, Λ, of order n is a function on the two element

subsets of {1, . . . , n}.

This can be considered to be the strict upper triangle of a matrix, where the ij

entry of the matrix is Λ({i, j}) for all i < j and zero otherwise.
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If we take a graph with vertices 1, . . . , n and no multiple edges or loops, then it

can represent the upper triangle which maps sets of two vertices to the edge that

connects them, or a label given to it (zero if there is no edge connecting the two

vertices). The perfect matchings on this graph correspond to the perfect matchings

in our sum (with zero terms corresponding to perfect matchings involving missing

edges). For this reason we shall often talk of an upper triangle as a graph (as any

upper triangle can be represented this way). We shall then refer to the pfaffian of a

graph and to the pairs in matchings as edges.

Definition 1.2. Let Mn be the set of perfect matchings on {1, . . . , n} and Λ be our

upper triangle. Then the pfaffian of Λ is:

pf (Λ) =
∑

M∈Mn

sgn(M)
∏

{a,b}∈M

Λ ({a, b}) .

Consider the example where we set n = 6 and define Λ({i, j}) = xij for i < j.

This corresponds to the complete graph on six vertices where the edge connecting i

to j for i < j is labelled xij. We can see that there are fifteen perfect matchings on

six elements:

({1, 2}, {3, 4}, {5, 6}) , ({1, 2}, {3, 5}, {4, 6}) , ({1, 2}, {3, 6}, {4, 5}) ,

({1, 3}, {2, 4}, {5, 6}) , ({1, 3}, {2, 5}, {4, 6}) , ({1, 3}, {2, 6}, {4, 5}) ,

({1, 4}, {2, 3}, {5, 6}) , ({1, 4}, {2, 5}, {3, 6}) , ({1, 4}, {2, 6}, {3, 5}) ,

({1, 5}, {2, 3}, {4, 6}) , ({1, 5}, {2, 4}, {3, 6}) , ({1, 5}, {2, 6}, {3, 4}) ,

({1, 6}, {2, 3}, {4, 5}) , ({1, 6}, {2, 4}, {3, 5}) , ({1, 6}, {2, 5}, {3, 4}) .

If one checks the signs of these matching one sees that they alternate between positive

and negative. In fact when Pfaff first defined the pfaffian this is how he defined the

sign of a matching, he put the terms in lexicographical order and assigned signs

alternating along this order. The pfaffian is then the following:

x12x34x56 − x12x35x46 + x12x36x45 − x13x24x56 + x13x25x46

− x13x26x45 + x14x23x56 − x14x25x36 + x14x26x35 − x15x23x46

+ x15x24x36 − x15x26x34 + x16x23x45 − x16x24x35 + x16x25x34.
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Another common definition of the pfaffian comes from the theorem proved by

Cayley. Here we consider the pfaffian to act on an antisymmetric matrix (recall this

is a matrix such that xij = −xji and thus xii = 0). Though this sounds different

from the upper triangle we used in the previous definition, if we start by using our

upper triangle as the strict upper triangle of our matrix, we determine the rest of the

matrix by antisymmetry. Thus we define the antisymmetric matrix A from the upper

triangle Λ in the following way:

Aij =



















Λ({i, j}) i < j

−Λ({i, j}) i > j

0 i = j

.

So the antisymmetric matrix from the previous example is:























0 x12 x13 x14 x15 x16

−x12 0 x23 x24 x25 x26

−x13 −x23 0 x34 x35 x36

−x14 −x24 −x34 0 x45 x46

−x15 −x25 −x35 −x45 0 x56

−x16 −x26 −x36 −x46 −x56 0























.

Definition 1.3. The pfaffian of an antisymmetric matrix A is defined by the following

relation:

pf(A)2 = det(A),

where we choose the positive or negative square root to match our previous definition.

We shall next prove a lemma from [20] that will be useful in proving that this

definition is consistent.

Lemma 1.4. Take a perfect matching π such that {i, j} and {k, l} are in π and not

equal. If neither of i nor l are between j and k, then the matching created by replacing

these two pairs in π with {i, k} and {j, l} has the opposite signum from π.

Proof. To prove this consider which edges gain or lose crossings by this switch. Since

only two edges change, only crossings with at least one of these two edges can change.

Aside from the edges {i, j} and {k, l} themselves, any other edge which gains or loses
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crossings must have one end between j and k, and the other not. An edge {e, f} with

both e and f between j and k, does not cross either the new or the old edges. This

is because none of i, j, k, l are between e and f , so they can’t cross it. Only ends in

between j and k have a different order relative to {i, j} and {i, k} or {j, l} and {k, l},

so edges without such an end cannot gain or lose crossings.

Take an edge {e, f} where e is between j and k, and f is not. This edge crosses

only one of {i, j} or {i, k}. Since e is between j and k, it is between exactly one of

the pairs {i, j} and {i, k}. Since the end f is not between j and k, it is either between

both or neither of these pairs. Thus {e, f} crosses either {i, j} or {i, k}, not both.

Similarly it crosses exactly one of {k, l} and {j, l}. This means our crossing number

has changed by two or zero, and either way its parity remains the same.

The last remaining crossing to check is between {i, j} and {k, l}. It is routine to

check that {i, j} and {k, l} cross if and only if {i, k} and {j, l} do not cross. This gives

us a change of one in the crossing number, thus a change in parity, and a reversal of

the signum of the matching.

Equipped with this lemma, we are now prepared to prove the following theorem:

Theorem 1.5. If Λ is an upper triangle, and A is the antisymmetric matrix it defines,

using our original definition of pfaffian (Definition 1.2), then:

pf(Λ)2 = det(A).

Proof. Here we give a proof based on that in [20]. Our first step will be to show that

in the standard permutation expansion of this determinant, the contribution of those

permutations containing odd cycles is zero.

We shall construct a sign reversing involution on the terms coming from permuta-

tions with odd cycles. Given such a permutation choose the odd cycle which has the

smallest minimal element. Now replace that odd cycle with its inverse. For example if

we had the permutation (125)(34678) we get the permutation (521)(34678). Since the

elements in the cycles have not changed, if we apply the involution again we choose

the same cycle, and thus we return to our original permutation.

The sign of the permutation does not change, since its cycle type remains the

same. Taking the inverse of the cycle replaces Aiσ(i) with Aiσ−1(i) for each i in the
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cycle. Reordering the product by σ we see that this is the same as Aσ(i)i for each i

in the cycle. The antisymmetry of the matrix implies we have replaced Aiσ(i) with

−Aiσ(i) for each i in the cycle. Since there is an odd number of elements in the cycle,

this reverses the sign of the term. Note that aside from the sign the term has not

changed, and thus we have a sign reversing involution. For example, the contribution

of the permutation (125)(34678) to the pfaffian of A is:

A12A25A51A34A46A67A78A83.

After applying our involution we get:

A52A21A15A34A46A67A78A83 = (−A25)(−A12)(−A51)A34A46A67A78A83.

We can see this is the negative of our first term, and thus they cancel.

Next we shall show that there is a bijection between the set of permutations

containing no odd cycles and the set of ordered pairs of perfect matchings. From any

even cycle of σ we construct two matchings of its elements. For a cycle C of length

d with lowest element i we construct our matchings in the following way:

πC,1 =

{

{σ2j−2(i), σ2j−1(i)} : 1 ≤ j ≤
d

2

}

,

πC,2 =

{

{σ2j−1(i), σ2j(i)} : 1 ≤ j ≤
d

2

}

.

Each element of the cycle occurs exactly once in each of the two matchings (noting,

σ0(i) = σd(i) = i). Thus these are indeed perfect matchings. We combine the

matchings for the cycles of the permutation to get a pair of matchings for the whole

permutation, setting π1 = ∪CπC,1 and π2 = ∪CπC,2. This gives us a pair of matchings

on the whole set. For example, for the permutation σ = (3481)(27)(56) we obtain the

matchings:

π1 = ({1, 3}, {4, 8}, {2, 7}, {5, 6}), π2 = ({3, 4}, {1, 8}, {2, 7}, {5, 6}).

To show this is a bijection we shall give the inverse function. All of the vertices

of the union of these two matchings (π1, π2), considered as a graph, have degree 2.
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Thus it is a union of disjoint cycles. Since each vertex must have exactly one edge

from each matching, all the cycles must be even. These cycles can then be formed

into the cycles of the permutations by mapping each element to the next element in

the cycle. The only problem is that there are two ways of traveling around a cycle,

and thus two ways of defining the permutation for each cycle. Fortunately we know

that if we take the lowest element in the cycle we must travel in the direction of the

edge from π1 attached to this vertex. It is then easy to check this is the inverse of

our previous function.

Since each ordered pair of perfect matchings (π1, π2) represents a term in the

square of the pfaffian and each permutation represents a term in the expansion of the

determinant, we would like to show that the terms corresponding under our bijection

are the same. Specifically we would like to show:

sgn(π1)sgn(π2)
∏

{i,j}∈π1

Λ({i, j})
∏

{i,j}∈π2

Λ({i, j}) = sgn(σ)

n
∏

i=1

Ai,σ(i),

for (π1, π2) → σ in our bijection.

Every pair i, σ(i) appears as {i, σ(i)} in exactly one of π1 and π2. We also know

that if i < σ(i) then Aiσ(i) = Λ({i, σ(i)}) and otherwise −Aiσ(i) = Λ({i, σ(i)}). From

this we see:

(−1)dsgn(π1)sgn(π2)
n
∏

i=1

Ai,σ(i) = sgn(σ)
n
∏

i=1

Ai,σ(i),

where d is the number of pairs i and σ(i) such that σ(i) < i. So we need only show

that

(−1)dsgn(π1)sgn(π2) = sgn(σ).

To do this we shall first show that both sides of this equation are invariant under

conjugation of σ, and then that the equation holds for at least one element of each

conjugacy class.

Since any permutation can be written as the product of cycles of the form (i, i+1),

we need only show that this relation is invariant under conjugation by permutations

of this form. Since conjugation preserves cycle type, we know it does not change the

signum of the right side. Conjugation by (i, i + 1) replaces all occurrences of i with

i+1 and vice versa in the permutation, and thus also in the matchings. Take σ ′, π′
1, π

′
2
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to be the conjugated permutation and corresponding matchings. On the left side we

have three cases to consider.

Case 1: The pair{i, i + 1} is in neither matching.

This means that we can apply Lemma 1.4 to both π1 and π2. Since {i, i + 1}

is not in either, they both give distinct edges, and since nothing can be between i

and i + 1 the other condition holds. This gives us that sgn(π1) = −sgn(π′
1) and

sgn(π2) = −sgn(π′
2), and so sgn(π1)sgn(π2) = sgn(π′

1)sgn(π′
2).

Also since {i, i+1} is not in either matching it means σ(i) 6= i+1 and σ(i+1) 6= i.

Thus σ(i) < i if and only if σ′(i + 1) < i + 1 since there is nothing between i and

i + 1. Similarly σ(i + 1) < i + 1 if and only if σ′(i) < i. Thus d remains the same.

Therefore the left side remains the same.

Case 2: The pair {i, i+ 1} is in exactly one of the matchings.

This means we can apply Lemma 1.4 to only one of the matchings. The other

remains unchanged as the edge {i, i + 1} goes to {i + 1, i}. So sgn(π1)sgn(π2) =

−sgn(π′
1)sgn(π′

2).

However this means either σ(i) = i + 1 or σ(i + 1) = i, but not both. In the

former case we know i < σ(i) but σ′(i+ 1) < i+ 1 and i+ 1 < σ(i+ 1) if and only if

i < σ′(i). So the parity of d is reversed. The latter works in the same way. Thus we

obtain:

(−1)d′sgn(π′
1)sgn(π′

2) = (−1)d+1(−sgn(π1)sgn(π2)) = (−1)dsgn(π1)sgn(π2).

Thus our left side remains unchanged.

Case 3: The pair {i, i+ 1} is in both matchings.

This means that π′
1 = π1 and π′

2 = π2. It also means that σ(i) = i + 1 and

σ(i + 1) = i and thus σ = σ′. Thus the conjugation had no effect, and so this cer-

tainly remains the same.

All that remains to be shown is that our equation holds for one element of each con-
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jugacy class. Conjugacy classes are determined by cycle type, and we have restricted

ourselves to permutations whose cycles are all even. We choose the representative

of each conjugacy class in the form (1, , , n1)(n1 + 1, . . . , n2), . . . (nm−1 + 1, . . . , nm).

Note that there are then m cycles, and nm = n. Since all even cycles have negative

signum, the right side of our expression is (−1)m

Looking at the left side, (−1)dsgn(π1)sgn(π2), we see that d = m since i > σ(i)

only for i = nj for some 1 ≤ j ≤ m. The matchings for any (nj−1 + 1, . . . , nj) are:

π1 = ({nj−1 + 1, nj−1 + 2}, {nj−1 + 3, nj−1 + 4}, . . . , {nj − 1, nj})

and

π2 = ({nj, nj−1 + 1}, {nj−1 + 2, nj−1 + 3}, . . . , {nj − 2, nj − 1}).

The only pairs in these matchings which do not consist of adjacent elements are of

the form {nj, nj−1 + 1}. Thus these are the only edges which can cross. However

none of these cross each other, as there is no element of the form nj or nj +1 between

nk−1 + 1 and nk. Thus there is no crossing and sgn(π1) = sgn(π2) = 1. Thus the left

side of the expression is (−1)dsgn(π1)sgn(π2) = (−1)m.

The left and right sides match, and our statement holds.

Since there are well established ways of computing the determinant, this theorem

gives us ways to compute the pfaffian.

Another way the pfaffian can be defined is as follows:

Definition 1.6. For an 2n× 2n antisymmetric matrix A the pfaffian is:

pf(A) =
1

n!2n

∑

σ∈Sn

sgn(σ)

n
∏

i=1

Aσ(2i−1)σ(2i) .

This definition is equivalent to our previous two, if we work over a field of char-

acteristic zero. In this case we are representing the matchings as permutations. If

a permutation is written as a sequence, then the first and second elements of the

sequence are paired, followed by the third and fourth, and so on, to obtain a match-

ing. For example if we had the sequence 123654, then we would get the matching

{1, 2}, {3, 6}, {4, 5}. Aside from the coefficient, the term given by this permutation
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is the same as the term given by the matching formed this way (including sign). On

the other hand, there are many permutations which represent the same matching.

For example the permutation given by the sequence 215436 gives the same matching

as the one mentioned above. For a given matching there is one permutation for each

choice of order for the edges and for the vertices of each edge. Since each edge has

two orders for its vertices, and there are n edges, we have 2n possible vertex orders

for the set of edges. Since there are n edges there are n! ways to order them. This

gives us n!2n permutations representing any given matching. This is why we place
1

n!2n as a coefficient of each term. As a side effect we have to restrict this definition

to work only when the characteristic of the field is zero.

A very similar definition is the following:

Definition 1.7. Define E2n ⊆ S2n to be all σ ∈ S2n such that σ(i) < σ(i + 1) and

σ(i) < σ(i + 2) for all odd i. For an 2n× 2n upper triangle Λ the pfaffian is:

pf(Λ) =
∑

σ∈En

sgn(σ)

n−1
∏

i=0

Λ ({σ(2i+ 1), σ(2i+ 2)}) .

This is like Definition 1.6, except that we have chosen a canonical representation

of each matching. Our canonical representation has the vertices of each edge in

increasing order (enforced by σ(i) < σ(i + 1)) and the edges in increasing order of

minimal element (through σ(i) < σ(i + 2)). By using this canonical order we have

one permutation for each matching. This means we no longer need to divide by 2nn!,

and so this removes the restriction on the characteristic of our field.

We have shown that the pfaffian can be expressed as the square root of a determi-

nant, but it is also true that any determinant can be expressed in terms of a pfaffian.

If we have an n × n matrix M , then we can create a 2n × 2n upper triangle Λ to

represent it. To make this easier to see we replace the usual 1, . . . , 2n labelling for the

elements of the upper triangle with 11, 21, . . . , n1, n2, (n− 1)2, . . . , 12. Then we set:

Λ(e) =







Mij e = {i1, j2}

0 e = {i1, j1} or {i2, j2}
.

For example if we wanted to express the determinant:
∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

,
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as a pfaffian, we would use the following upper triangle:













0 b a

d c

0













.

Checking this we see the pfaffian is:

ad− bc.

Proposition 1.8. For a matrix M and upper triangle Λ defined from M as above,

we have detM = pfΛ.

Proof. Let X be the set of indices with subscript one and Y be the set with subscript

two.

Any matching in the expansion of the pfaffian which gives a non-zero term must

have all its edges connecting an element of X to an element of Y . If we think of the

graph corresponding to this upper triangle, it is the bipartite graph with bipartition

X and Y .

Take a matching π which gives a non-zero term. Let π ′ be the associated permu-

tation in the form of Definition 1.7 (i.e. π′(2i−1) < π′(2i) and π′(2i−1) < π′(2i+1)

for all 1 ≤ i ≤ n, and if a and b are matched in π, a ≤ b then π′(2i − 1) = a and

π′(2i) = b). The term from this matching is then:

sgn(π′)
n
∏

i=1

Λ({π′(2i− 1), π′(2i)}).

Since any member of X is less than or equal to any member of Y , and each matching

edge contains one of each, then π′(2i− 1) ∈ X and π′(2i) ∈ Y for each 1 ≤ i ≤ n.

Since each π′(2i− 1) < π′(2i+ 1) and both are in X we know that π(2i− 1) = i1

for all 1 ≤ i ≤ n. So we can reduce this term to:

sgn(π′)
n
∏

i=1

Λ({i1, π
′(2i)}).

12



We would like to show that a matching (which gives a non-zero term) corresponds to

the permutation which maps i to j for each i1 matched to j2. Let σ be the permutation

corresponding to π in this way. Then we can rewrite our term as:

sgn(π′)

n
∏

i=1

Λ({i1, σ(i)2}).

Through our choice of Λ this reduces to:

sgn(π′)

n
∏

i=1

Miσ(i).

If sgn(π′) = sgn(σ) then this is the term from the determinant.

Since π′ considered as a sequence is 11σ(1)221σ(2)2 . . . n1σ(n)2 the same rearrange-

ment which converts σ to the identity converts π′ to 11122122 . . . n1n2. Denoting this

by e′, we have sgn(π′) = sgn(σ)sgn(e′).

The permutation e′ can be rearranged to the identity by starting with n2 and then

descending down Y , shifting each element to the end in turn. Each i2 has to cross

each j1 and j2 for each j > i. Since this is an even number of elements, doing so does

not change the signum. So sgn(e) = 1 and thus sgn(π′) = sgn(σ) and so we have a

map of each non-zero term in our pfaffian to a term in the determinant.

To check that this is a bijective correspondence, note that every permutation σ

can be represented uniquely in the form 11σ(1)221σ(2)2 . . . n1σ(n)2.

If we consider the pfaffian to act on a graph, then we can now consider the deter-

minant to be the special case where that graph is bipartite. For this reason it is often

suggested that pfaffians are in fact more general than determinants (such as in [14]).

1.3 Hyperpfaffians

We are now ready to start looking at generalizations of these concepts to higher

dimensions. The determinant and the pfaffian are both restricted to two dimensional

arrays. Here we would like to consider extending them to higher dimensions. The

focus of this thesis will be on the hyperpfaffian, which is the analogue of the pfaffian

for higher dimensional arrays.

13



Before we can generalize the pfaffian, we shall first need to define our analogues

of the antisymmetric matrix and the upper triangle. We can generalize Definition 1.1

of the upper triangle fairly easily.

Definition 1.9. A k-dimensional upper triangle of order n is a function on the k-

element subsets of {1, . . . , n}.

The analogue of the antisymmetric matrix is only slightly more complicated.

Definition 1.10. A k−dimensional alternating tensor of order n, is a function Λ on

{1, . . . , n}k with the following restriction:

Λ(i1, . . . , ik) = sgn(σ)Λ(iσ(1), . . . , iσ(k)),

for any σ ∈ Sk and 1 ≤ i1, . . . , ik ≤ n.

One can check that this is exactly the restriction on an antisymmetric matrix

when k = 2. One can also see that if ia = ib for any a 6= b then this will be zero.

As with the antisymmetric matrix and upper triangle, we obtain a k-dimensional

alternating tensor Λ from a k-dimensional upper triangle Γ as follows:

Λ(i1, . . . , ik) =







sgn(i1, . . . , ik)Γ({i1, . . . , ik}) ia 6= ib, ∀a 6= b ∈ {1, . . . , k}

0 otherwise
.

Once again we can describe these as graphs, or in this case hypergraphs. We shall

examine hypergraphs more carefully in the next section, but for now we just need

to know that they are graphs where edges can have more than two vertices. So our

hypergraph with edges containing k vertices corresponds to our k-dimensional upper

triangle just as it did in the two dimensional case.

As in the two dimensional case, our hyperpfaffian will be a sum over perfect

matchings of this graph. It is harder to describe the sign in this sum in terms of

crossing number, as hyperedges may cross in many different ways; some we do not

want to consider to be crossings, but others we do. We instead use the analogue of

the permutation form of the signum from Definitions 1.6 and 1.7, which we shall see

when we define the hyperpfaffian.

14



Like the pfaffian, there are several ways of defining the hyperpfaffian. Unlike the

pfaffian, they are not all equivalent. The definition which will be considered the

standard definition of the uniform hyperpfaffian in this thesis is that given by Luque

and Thibon in [15].

Definition 1.11. [Hyperpfaffian, Luque-Thibon [15]] Let Ekm,k ⊆ Skm be the set of

permutations σ such that σ(ki + j) < σ(ki + j + 1) and σ(ki + 1) < σ(k(i + 1) + 1)

for all 0 ≤ i < m and 1 ≤ j ≤ k. Then for a k−dimensional upper triangle Λ of order

km , we define the hyperpfaffian of Λ to be:

pfk(Λ) =
∑

σ∈Emk,k

sgn(σ)
m−1
∏

i=0

Λ({σ(ki+ 1), . . . , σ(ki+ k)}).

This definition most closely resembles Definition 1.7 of the pfaffian. One can check

that it is in fact the same if k = 2. As in that definition it chooses a canonical permu-

tation to represent the matching so that there is only one permutation per matching.

As before it orders the vertices in each edge in increasing order, and it orders the edges

by increasing lowest element. Note that the k-dimensional hyperpfaffian is denoted

by pfk. We shall refer to this definition of the hyperpfaffian as the Luque-Thibon

definition of the hyperpfaffian, or the Luque-Thibon hyperpfaffian.

This was not the first definition of the hyperpfaffian. Luque and Thibon refer to

[3] where Barvinok introduced the hyperpfaffian. However Barvinok’s definition was

slightly different, and not equivalent. We shall refer to this as the Barvinok definition

of the hyperpfaffian or the Barvinok hyperpfaffian.

Definition 1.12. [Hyperpfaffian, Barvinok [3]] For a k−dimensional alternating ten-

sor Λ of order n, where n = mk, we define the hyperpfaffian of Λ to be:

pfbk(Λ) =
1

m!

∑

σ∈Sn

sgn(σ)

m−1
∏

i=0

Λ(σ(ki + 1), . . . , σ(ki+ k)).

This is very similar to Definition 1.6 of the pfaffian. Unlike in the Luque-Thibon

definition, the Barvinok hyperpfaffian differs from the pfaffian in the case of k = 2. It

only differs by a constant factor (depending on the size of the matrix). For a 2m×2m

antisymmetric matrix, the relation is:

1

2m
pfb2(A) = pf(A).

15



While the Luque-Thibon hyperpfaffian can be non-zero for any dimension k ≥ 2, the

Barvinok hyperpfaffian is zero for all odd dimensions. We can see this by putting a

sign reversing involution on the terms of its expansion. By switching the first pair of

edges represented by the permutation, since each has an odd number of vertices, we

reverse the signum of the permutation. Aside from that, the term remains unchanged,

and thus these all cancel. For even k, switching these edges has no effect on the

signum.

For example, consider the four dimensional alternating tensor of order eight de-

fined by

Λ(i, j, k, l) = xijkl, 1 ≤ i < j < k < l ≤ 8.

The rest of the entries are defined by antisymmetry. Using the Luque-Thibon defini-

tion we get:

x1234x5678 − x1235x4678 + x1236x4578 − x1237x4568 + x1238x4567

+ x1245x3678 − x1246x3578 + x1247x3568 − x1248x3567 + x1256x3478

− x1257x3468 + x1258x3467 + x1267x3458 − x1268x3457 + x1278x3456

− x1345x2678 + x1346x2578 − x1347x1258 + x1348x2567 − x1356x2478

+ x1357x2468 − x1358x2467 − x1367x2458 + x1368x2457 − x1378x2456

+ x1456x2378 − x1457x2368 + x1458x2367 − x1467x2358 + x1468x2357

+ x1478x2356 − x1567x2348 + x1568x2347 − x1578x2346 + x1678x2345

The same terms appear in the Barvinok definition, but they each appear multiple

times. More precisely they appear 2 ·4!2 times each, corresponding to the two ways of

ordering the edges and 4! ways of ordering the vertices within each of the two edges.

Each of these terms has a coefficient of 1
2
, meaning, when all 2 · 4!2 are summed, we

end up with a result that is 4!2 times the Luque-Thibon hyperpfaffian. For any even k

we see that the Barvinok hyperpfaffian is k!m times the Luque-Thibon hyperpfaffian,

where k is the dimension and mk is the order.

Barvinok comments that the hyperpfaffian of an integer valued alternating tensor

is an integer under his definition. This is true, but in fact the Barvinok hyperpfaffian

of an integer valued alternating tensor is a multiple of (k!)m. We instead prefer to

add the stronger condition that the hyperpfaffian of the general alternating tensor of

indeterminates is a monic polynomial. It would also be preferable to bring this more
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in line with both the standard pfaffian and the Luque-Thibon hyperpfaffian, so we

introduce the reduced Barvinok definition of the hyperpfaffian:

Definition 1.13. [Hyperpfaffian, Reduced Barvinok] For a k-dimensional alternating

tensor Λ of order n = mk, we define the reduced Barvinok hyperpfaffian of Λ by

pfk(Λ) =
1

k!m
pfbk(Λ).

This has value zero for any odd k, but when k is even it agrees with the Luque-

Thibon hyperpfaffian (hence we will use the same notation), and thus with the pfaffian

when k = 2. It is worth noting that the Barvinok and reduced Barvinok hyperpfaffian

will only be well defined when dealing with a field of characteristic zero, because of the

coefficient used to normalize them. The Luque-Thibon hyperpfaffian is not restricted

this way.

At first it seems very important that the Luque-Thibon hyperpfaffian can handle

odd k. However this has some problems. In the even case the Luque-Thibon definition

agrees with the reduced Barvinok definition of the hyperpfaffian because for any choice

of order for the edges, the permutation representing them will give the same signum.

While different orders of the vertices in the edges will change the signum of the

permutation, this will be countered by the antisymmetry of the tensor. On the other

hand, edge ordering does affect the signum for odd k. Selecting an order for it is

somewhat arbitrary. Having to use this order makes the definition harder to work

with.

For this reason, despite its apparent improvement, it is rare that the k odd case

yields interesting results. Even so, the Luque-Thibon is our most flexible definition,

as it does not restrict characteristic or parity of k and it agrees with the reduced

Barvinok definition whenever the latter is defined.

Like the pfaffian, the determinant can also be generalized to higher dimension. The

hyperdeterminant is a much older definition, introduced by Cayley in the nineteenth

century. It acts on a k-dimensional tensor, like the Barvinok hyperpfaffian, but

without the antisymmetric restriction. The tensor is just a function on {1, . . . , n}k.

Definition 1.14. For a k-dimensional tensor Λof order n, the hyperdeterminant of
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Λ is:

detk Λ =
1

r!

∑

σ1,...,σk∈Sr

(

k
∏

i=1

sgn(σi)

)(

r
∏

i=1

Λ(σ1(i), . . . , σk(i)

)

.

One can note that if k = 2 then Λ is a matrix and this becomes:

det2 Λ =
1

r!

∑

σ1,σ2∈Sr

sgn(σ1)sgn(σ2)

(

r
∏

i=1

Λ(σ1(i), σ2(i)

)

=
∑

σ2∈Sr

sgn(σ2)

(

r
∏

i=1

Λ(i, σ2(i)

)

,

which is the determinant of the matrix.

Like the Barvinok Hyperpfaffian, this is zero if k is even. If instead of switching

the first pair of edges one switches σi(1) and σi(2) for each i it has the same effect.

Since k is odd this has an effect of reversing the signum once. The terms remain

otherwise unchanged, and so they cancel. As with the pfaffian and the determinant,

we can represent any hyperdeterminant as a hyperpfaffian. If we take a k-dimensional

order r tensor Γ, where k is even, then we need to create a k-dimensional order kr

alternating tensor. We index our alternating tensor in the following way:

11, 21, . . . r1, r2, (r − 1)2, . . . , 12, 13, 23, . . . . . . rk, (r − 1)k, . . . , 1k.

Let Xi be the set of indices with subscript i. Define:

Λ(x1, . . . , xk) =







sgn(σ)Γ(xσ(1), xσ(2), . . . , xσ(k)) ∃σ ∈ Sk, xσ(i) ∈ Xi, ∀1 ≤ i ≤ k

0 otherwise
,

where we assume the arguments of Γ ignore subscripts. Here we have set each entry

which does not have a member from each of the sets Xi, i = 1, . . . , k to zero. The

entries which do have one of each are given the entry from Γ corresponding to their

indices ordered by subscript.

Proposition 1.15. The hyperpfaffian (reduced Barvinok or Luque-Thibon) of Λ equals

the hyperdeterminant of Γ.

Proof. Start by looking at the reduced Barvinok expansion of the hyperpfaffian:

pfk(Λ) =
1

r!(k!)r

∑

σ∈Srk

sgn(σ)

r−1
∏

i=0

Λ(σ(ki+ 1), . . . , σ(ki+ k)).
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To make this a little simpler, we can canonically order the vertices within the edges,

so let Frk be the permutations where σ(ki + 1) < σ(ki + 1) < · · · < σ(ki + k) for all

0 ≤ i ≤ r − 1. Each of these terms covers (k!)r terms in our original expansion (all

of which were equal), so we get:

pfk(Λ) =
1

r!

∑

σ∈Frk

sgn(σ)
r−1
∏

i=0

Λ(σ(ki+ 1), . . . , σ(ki+ k)).

For a term to be non-zero in this expansion, we need each edge in the correspond-

ing matching to have one vertex from each of the X1, . . . , Xk. Since each edge is

represented with vertices in increasing order, that means σ(ki + j) ∈ Xj for any

i = 0, . . . , r − 1 and j = 1, . . . , k. Let F′
kr be the permutations restricted in this way

(thus merely eliminating zero terms). Then for any σ ∈ F′
kr, define σj(i + 1) = l so

that σ(ki + j) = lj for each i = 0, . . . , r − 1 and j = 1, . . . , k. Our expansion now

becomes:

pfk(Λ) =
1

r!

∑

σ∈F′

rk

sgn(σ)

r−1
∏

i=0

Γ(σ1(i + 1), . . . , σk(i+ 1)).

Next we shall show that sgn(σ) =
∏k

j=1 sgn(σj). The subsequence of σ composed

of the jth element of each k-tuple is the sequence σj (with a subscript of j). Thus

reordering σ to 1112 . . . , 1k, 21, . . . rk is equivalent to reordering each σj to the identity.

Thus sgn(σ) times the signum of this permutation equals
∏k

j=1 sgn(σj). Now we need

only show that this has the same signum as the identity. This can be checked fairly

quickly by first moving the elements of Xk to the end starting with rk and continuing

down to 1k. Then the Xk−1 are moved to just before the block of Xk we have just

created at the end. For these we start with 1k−1 and move up to rk. We continue this

process until the sequence is sorted. Each step of this moves each element past an

even block, and thus has no effect on the signum. So 1112 . . . , 1k, 21, . . . rk has signum

1.

Since the the signum is the same, we can observe that the permutations in F′
rk are

completely and uniquely described by the sets of σis. Thus we get the final expansion:

1

r!

∑

σ1,...,σk∈Sr

(

k
∏

i=1

sgn(σi)

)(

r
∏

i=1

Γ(σ1(i), . . . , σk(i)

)

.

This is the expression for the hyperdeterminant.
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1.4 The Non-Uniform Hyperpfaffian

Our definitions of the hyperpfaffian from the previous section work only over parti-

tions of uniform size (hence we referred to them as uniform hyperpfaffians). When

considered as a hypergraph, using these partitions means we are dealing only with

hypergraphs whose edges all have the same number of ends (which are called uniform

hypergraphs). This seems like a reasonable generalization of the pfaffian, but in many

circumstances we could use an even more flexible tool. Our goal in this section will

be to develop a hyperpfaffian which acts on non-uniform upper triangles, which we

define as follows:

Definition 1.16. A non-uniform upper triangle of order n is a function on the non-

empty subsets of {1, . . . , n}.

We saw that k-dimensional upper triangles, from Definition 1.9, correspond to

hypergraphs whose edges all have the same number of vertices. This upper triangle

corresponds to arbitrary hypergraphs. In a similar way we can define a non-uniform

analogue of an alternating tensor:

Definition 1.17. An antisymmetric tensor algebra Λ of order n is a function on finite

non-empty sequences of elements of {1, . . . , n} such that

Λ(i1, . . . , ik) = sgn(σ)Λ(iσ(1), . . . , iσ(k)),

for any σ ∈ Sk.

As with alternating tensors and k-dimensional upper triangles, we can define an

antisymmetric tensor algebra Λ from a non-uniform upper triangle Γ in the following

way:

Λ(i1, . . . , ik) =







sgn(i1, . . . , ik)Γ({i1, . . . , ik}) ij 6= il∀1 ≤ j, l ≤ k

0 otherwise
.

Similarly we define an even non-uniform upper triangle to be an non-uniform upper

triangle acting only on the even cardinality subsets of {1, . . . , n}. We define an even

antisymmetric tensor algebra to be one which acts only on even length sequences.
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Based on the results in [1] using the Grassmann-Berezin calculus, we can create

a hyperpfaffian which works over these objects.

We begin by letting Pn be the set of partitions of {1, . . . , n} into non-empty

disjoint subsets. Let En ⊆ Pn be the set of such partitions of {1, . . . , n} into non-

empty disjoint even cardinality subsets. Note this is empty if n is not even.

As with our perfect matchings, we can define sequences or permutations to rep-

resent these partitions in En. As with matchings we have a sequence represent a

partition if it can be divided up into blocks which are the sets of the partition.

We say it strictly represents a partition if within the blocks the elements are in in-

creasing order. Thus if we have the partition {1, 3, 5, 6}, {2, 10}, {4, 7, 8, 9}, then the

sequences 1, 3, 5, 6, 2, 10, 4, 7, 8, 9 and 4, 7, 8, 9, 1, 3, 5, 6, 2, 10 would both strictly rep-

resent this, and 3, 4, 6, 1, 4, 7, 8, 9, 2, 10 would represent it, but not strictly. Note,

unlike with matchings, a sequence may represent more than one partition. For

example the first sequence mentioned above also strictly represents the partition

{1, 3}, {5, 6}, {2, 10}, {4, 7, 8, 9}.

Using this representation we can define the signum of a partition in En.

Definition 1.18. For a partition π ∈ En, and sequence σ which strictly represents

it, we define the signum of π to be sgn(σ).

Note that since π ∈ En this is well defined. All sequences which strictly represent

a partition are the same up to the order of the sets in the partition. Since all the

sets are of even size, this does not change the signum of the sequence. Looking at the

example used above, we see that {1, 3, 5, 6}, {2, 10}, {4, 7, 8, 9} has signum negative

one.

So we can now define our non-uniform hyperpfaffian:

Definition 1.19. Given an even non-uniform upper triangle Λ of order n then the

non-uniform hyperpfaffian of Λ is:

pf∗(Λ) =
∑

π∈En

sgn(π)
∏

X∈π

Λ(X).

This definition is very similar to our first definition of the pfaffian, Definition 1.2.

We have extended it to partitions of all even sizes, not just size k. If we would prefer
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to use an antisymmetric tensor algebra, the non-uniform hyperpfaffian can be defined

equivalently as follows:

Definition 1.20. Let Nn be the set of strictly increasing sequences of even numbers

between 1 and n ending with n. Given an even antisymmetric tensor algebra Λ of

order n, the non-uniform hyperpfaffian of Λ is:

pf∗(Λ) =
∑

σ∈Sn

∑

q∈Nn

sgn(σ)
1

|q|!

|q|
∏

j=1

1

(qi − qi−1)!
Λ(iσ(qi−1+1), . . . , iσ(qi)).

where q1, . . . , q|q| is the sequence q, q0 = 0 and |q| is the length of the sequence q.

Here we use the sequence of even numbers to represent the different ways of

breaking up a sequence into even blocks. Thus the second sum is effectively over all

members of En which σ represents (non-strictly).

This definition resembles Definition 1.6 of the pfaffian or the reduced Barvinok hy-

perpfaffian (Definition 1.13). In fact if one restricts the even sequence to the sequence

k, 2k, 3k, . . . , n one gets exactly the reduced Barvinok definition of the hyperpfaffian.

We can then see that if we restrict our upper triangle or antisymmetric tensor algebra

to uniform even size sets we have the Luque-Thibon or reduced Barvinok hyperpfaf-

fian.

One can adjust our definitions to cover the odd case. Our antisymmetric tensor

algebra form can be modified simply by removing the restriction that we use even

valued sequences. However, like the reduced Barvinok hyperpfaffian, this gives zero

for all non-even partitions. If we use our non-uniform upper triangle version we need

only find a way to define a signum on elements of Pn.

To do this we simply need to further restrict what sequences represent a given

partition. In addition to the requirements of the strict representation before, that

within the blocks the elements of the sequence are increasing, we also require that

the blocks are ordered so their first elements are increasing. This could also be phrased

as ordering the edges in increasing order of lowest element. We can then define the

signum of π ∈ Pn to be the signum of the permutation representing it in this manner

(note there is now only one permutation for each partition, though there may be more

than one partition for a given permutation).
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We can then define the non-uniform hyperpfaffian in the following way:

Definition 1.21. Given an non-uniform upper triangle Λ of order n then the non-

uniform hyperpfaffian of Λ is:

pf∗(Λ) =
∑

π∈Pn

sgn(π)
∏

X∈π

Λ(X).

This suffers from the same problems as the odd case for the Luque-Thibon hyper-

pfaffian, with which it agrees if we restrict to a partition of uniform size. The need

for specific edge order means we shall almost always restrict to the even case.

1.5 Hypergraphs

Since hyperpfaffians are taken over matchings in a hypergraph, hypergraphs will come

up many times in this document, mostly in Chapters 2 and 3. For this reason it will

help to give a little background on hypergraphs before we begin.

Definition 1.22. A hypergraph is a pair of sets (V,E), where V is the set of vertices

and E is the set of edges and where each edge has a corresponding set of vertices.

Let us denote the set of vertices corresponding to an edge e by V (e). This set of

vertices is the set of ends of the edge, which in the case of a standard graph is a set

of size two. So we have defined this to be a graph where edges may have any number

of ends. Note that if |V (e)| = 2 we have a standard multigraph with no loops. If we

only require |V (e)| ≤ 2 then we have a multigraph which allows loops. We shall refer

to |V (e)| as the degree of the edge e.

Definition 1.23. A simple hypergraph is a hypergraph (V,E) where if for any e, f ∈ E

V (e) = V (f) then e = f .

Note then that a simple graph is a simple hypergraph with all edges of degree

two.

Definition 1.24. A uniform hypergraph of degree k is a hypergraph (V,E) such that

for every e ∈ E then |V (e)| = k.
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Thus all graphs (without loops) are uniform hypergraphs of degree two. The

uniform hyperpfaffian pfk acts on a hypergraph which is uniform of degree k.

We draw hypergraphs in one of two ways. Vertices are represented by dots as

with graphs, but edges have two forms, depending on our purposes at the time. The

first is to draw lines from each vertex to all meet at a point, like standard edges to

an imaginary vertex. The other is to draw arcs connecting the vertices of this edge

in a cycle. These enclose a face which we are not allowed to draw any further edges

through. Figure 1.2 shows an example of these. In Section 3.2 we shall discuss more

formally how to embed hypergraphs in surfaces.

Figure 1.2: Representations of a hyperedge of degree 5

Definition 1.25. Define a walk of length n in a hypergraph (V,E) to be a sequence

v1, e1, v2, e2, . . . , en, vn+1 where v1, . . . , vn+1 ∈ V and e1, . . . , en ∈ E, where vi, vi+1 ∈

V (ei) for all 1 ≤ i ≤ n.

This corresponds exactly to a walk in a graph if we restrict to standard graphs.

From this we can define a path:

Definition 1.26. We define a path of length n in a hypergraph (V,E) to be a walk,

where none of the vertices or edges are repeated.

Note, unlike in the case of a graph, we must specify that both the edges and

vertices are distinct, since neither condition implies the other. We can now use this

to define cycles, connectedness, and trees much as we have before:

Definition 1.27. A cycle of length n of a hypergraph is a walk v1, e1, v2, e2, . . . , en, vn+1

where all the edges and vertices are distinct, except that vn+1 = v1.

Definition 1.28. For a hypergraph (V,E) a pair of vertices v, w ∈ V are connected if

there is a path with first vertex v and last vertex w. We call a hypergraph connected

if every pair of its vertices are connected.
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Definition 1.29. A hypergraph is a tree if it has no cycles and is connected.

These are all defined in essentially the same way as they are for graphs, and

they have many of the same properties. Next we list a few convenient results about

hypergraphs (taken from [4]), which are similar to those for graphs.

Proposition 1.30. For a hypergraph (V,E) with c components, n vertices, and no

cycles we have:
∑

e∈E

(deg(e) − 1) = n− c.

Proposition 1.31. A hypergraph with c components has exactly one cycle if and only

if:
∑

e∈E

(deg(e) − 1) = n− c+ 1.

Definition 1.32. A simple cycle in a hypergraph is a cycle where for any edge e in

the cycle it has only two vertices which are in other edges of the cycle. We call these

vertices the shared vertices of the edge.

This means that if we take the subgraph which contains only the edges of the cycle

and the associated vertices there is only one cycle. It also means the walk generating

the cycle is uniquely defined up to direction and starting point. For example in Figure

1.3 we see a simple cycle and one that is not. Using Proposition 1.5 we see:

Proposition 1.33. A cycle in a hypergraph of length l, composed of edges e1, . . . , el

is a simple cycle if and only if:

l
∑

i=1

(deg(ei) − 1) = n

Equipped with these basics, we are now ready to proceed.
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A Simple Cycle A Non−Simple Cycle

Figure 1.3: A simple cycle and a non-simple cycle
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Chapter 2

The Hyperpfaffian-Cactus

Theorem

2.1 The Matrix-Tree Theorem

The Matrix-Tree theorem is a very important classical result in combinatorics. To

begin let us define the matrix involved (called the Kirchhoff matrix ), for the undi-

rected graph version of the theorem. For a graph G with vertices labelled from 1 to

n, assign each edge e of the graph an indeterminate ye. Define an n×n matrix K(G)

by assigning each of its each non-diagonal entries as follows:

K(G)ij = −
∑

e∈E(G)
{i,j}=V (e)

ye.

This is the negative sum of all the edges connecting i and j. If we do not allow

multiple edges then K(G)ij = −yij. For the diagonal entries we assign the following:

K(G)ii =
∑

e∈E(G)
i∈V (e)

ye.

This is the sum of all the edges which have i as an end. Denote the minor of this

matrix obtained by removing the row and column for vertex v by Kv(G).

The Matrix-Tree theorem (from [21]) states:
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Theorem 2.1 (Matrix-Tree Theorem, undirected version). For a graph G with

Kirchhoff matrix K(G), let T be the set of spanning trees of G. Then we have:

det(Kv(G)) =
∑

T∈T

∏

e∈T

ye.

For the directed version of the theorem, we define a very similar matrix. For a

digraph D with n labelled vertices, we define an n × n matrix K(D). We set its

non-diagonal entries to be:

K(D)ij = −
∑

e∈E(D)
i=h(e),j=t(e)

ye.

This is basically the same as in the undirected case, except that we require i to be

the head (and thus j the tail). We define the diagonal entries similarly:

K(D)ii =
∑

e∈E(D)
i=h(e)

ye.

Once again our only change is to restrict it so that i is the head. We shall again use

the minor of K(D) taken by removing the row and column representing the vertex v,

and denote it Kv(D).

An arborescence rooted at v is defined to be a tree with all its edges directed away

from v. Denote the set of all spanning arborescences rooted at v by Tv. We can now

state the directed version of the theorem:

Theorem 2.2 (Matrix-Tree Theorem, directed version). For a digraph D with

Kirchhoff matrix K(D),

det(Kv(D)) =
∑

T∈Tv

∏

e∈T

ye.

The undirected version follows from the directed version by considering the di-

graph which has an edge oriented each way corresponding to each edge of the undi-

rected graph. Then there is an arborescence directed away from each vertex for each

spanning tree.

These theorems give us an easy way to get the generating series for all the spanning

trees (or arborescences) for a graph (or digraph). By substituting in 1 for every ye

we get the number of such trees.
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Figure 2.1:

Let us now look at an example. Take the graph D given in Figure 2.1. We can

construct the Kirchoff matrix for this as follows:

K(D) =























0 0 0 0 0 0

−yb yb + yf + yh 0 −yf −yh 0

−ya −yc ya + yc 0 0 0

−ye 0 0 ye + yg −yg 0

−yd −yi 0 0 yd + yj + yi −yj

0 0 −yk 0 0 yk























.

Eliminating the first row and column we get:

K1(D) =

















yb + yf + yh 0 −yf −yh 0

−yc ya + yc 0 0 0

0 0 ye + yg −yg 0

−yi 0 0 yd + yj + yi −yj

0 −yk 0 0 yk

















.

Expanding the determinant we get:

det(K1(D)) = (yb + yf + yh)(ya + yc)(ye + yg)(yd + yj + yi)yk

− yf(−yc)(−yg)(−yj)(−yk) − yf(ya + yc)(−yg)(−yi)yk

− (−yh)(−yc)(ye + yg)(−yj)(−yk) − (−yh)(ya + yc)(ye + yg)(−yi)yk.

Substituting 1 into the above expression we get 3 · 2 · 2 · 3 − 1 − 2 − 4 − 2 = 27, so

there are 27 spanning arborescences rooted at vertex 1. If instead of substituting we
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reduce the full expression we get:

= ykybyayeyi + ykybyayeyd + ykybyayeyj + ykybyaygyi + ykybyaygyd + ykybyaygyj

+ ykyfyayeyi + ykyfyayeyd + ykyfyayeyj + ykyfyaygyd + ykyfyaygyj + ykyhyayeyd

+ ykyhyayeyj + ykyhyaygyd + ykyhyaygyj + ykybycyeyi + ykybycyeyd + ykybycyeyj

+ ykybycygyi + ykybycygyd + ykybycygyj + ykyfycyeyi + ykyfycyeyd + ykyfycyeyj

+ ykyfycygyd + ykyhycyeyd + ykyhycygyd.

Each of these terms represents one of the 27 spanning arborescences of the graph

rooted at vertex 1.

2.2 The Pfaffian-Tree Theorem

We shall next discuss an extension of the Matrix-Tree theorem that was proved by

Masbaum and Vaintrob in [16], called the Pfaffian-Tree theorem. This uses the pfaf-

fian of a matrix to obtain the generating series for all spanning subtrees of a hyper-

graph of uniform degree three. Before we can understand this extension, there are

two things we should examine. The first is the orientation of hypergraphs.

Definition 2.3. An orientation on a hypergraph is an assignment of an ordering of

the vertices of each edge up to even permutation.

The first thing to note about this definition is that it specializes to our definition

of an orientation on a standard graph. In a standard graph we assign one vertex of

each edge to be the head and the other to be the tail. This effectively assigns an order

to the vertices, and the only even permutation on two elements is the identity. Thus,

in our standard case we have effectively set one ordering to be positive and one to be

negative. For hypergraphs we have chosen a whole set of orderings to be positive and

another set to be negative.

We can define an orientation on any set in the same way, by giving the set an

order up to even permutation. The orientation of a set with odd cardinality can be

represented in another way, as a cyclic permutation. For an order of the set we use

the cyclic permutation on this set which maps each element to the next element in the
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order, and the last one to the first. Since the number of elements is odd, any other

ordering which gives the same cyclic permutation (i.e. one that has the same order

but starts in a different place) is an even permutation of this ordering and thus is

equivalent. Permuting the original order by π is equivalent to conjugating this cyclic

permutation σ by π, so we consider these cyclic representations to be equivalent up to

even conjugation. Thus we are representing our orientation as an assignment of one

of two conjugacy classes of the group of even permutations (noting that our original

element was an odd cycle and thus in this group, and that conjugation preserves cycle

type).

For example, if we have the ordering 3, 2, 1, 5, 4 we denote this by the permutation

which in cycle form is (32154). Our orientation is then the conjugacy class containing

this in the group of even permutations A5.

Next we must define the orientation of a tree induced by the orientation of its

edges. Like the edges, an orientation on a tree is an ordering of its vertices up to even

permutation.

Definition 2.4. The orientation of a tree induced by its edges (all of which must

have odd degrees) is represented by the cyclic permutation given by the product of

the cyclic permutations representing the orientations of its edges.

There are three things to check to prove that this is well defined: that this prod-

uct gives a cyclic permutation, that the order of the product does not change the

orientation, and that the representative of the conjugacy class for each edge does not

affect the conjugacy class of the product. These are our next three results.

Lemma 2.5. For a tree composed of odd degree edges in an oriented hypergraph there

is a choice of order for the edges e1, . . . , en with cyclic representations πe1
, . . . , πen

so

that
∏n

i=1 πei
is a cyclic permutation on all the vertices of the tree.

Proof. We shall use an order which starts with an arbitrary edge, then is chosen so

that each subsequent edge shares a vertex with an edge prior to it in the order. Since

the tree is connected such an order exists.

We can think of this as constructing the tree by adding each edge in this order.

This builds our tree so that each step is a connected graph. The result is that no edge
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shares more than one vertex with the edges added prior to it. This is because any

two vertices already added are connected, so connecting them again with this edge

creates a cycle. Since trees have no cycles this isn’t possible.

Since the product of two cycles which have only one element in common is a cycle

of the union of their elements, we can see by induction that each partial product in

this order is a cycle of the vertices thus far added. So our final product is a cycle of

all the vertices of the tree.

Lemma 2.6. If the choice of representatives of the orientations of the edges of a

hypergraph does not change the conjugacy class of our product, then the order of the

product also does not affect its conjugacy class.

Proof. If we have our product AπeπfB for some edges e and f we see that:

AπeπfB = Aπfπf−1πeπfB.

Noting that πf−1πeπf is a conjugate of πe, and since conjugation of an edge does not

change the conjugacy class of the product, AπfπeB must be a conjugate of AπeπfB.

Thus we can switch any adjacent pair of edges, and reorder however we like.

Proposition 2.7. The orientation of a tree induced by that of its edges is well defined.

Proof. We shall show by induction on the number of edges in the tree that our choice of

representative of the conjugacy class for each edge does not alter our tree orientation.

This holds trivially in the case of one edge.

For our induction hypothesis we assume that for any tree of fewer than k edges,

choice of representative of the edge does not change the conjugacy class of the product.

From Lemmas 2.5 and 2.6 above we see that this further implies that the order chosen

does not affect the conjugacy class either, and that the permutation is cyclic.

Take any pair of cyclic permutations sharing only one vertex c. Represent each

cycle as πa = (c, a1, . . . , an) and πb = (c, b1, . . . , bm). Then we have:

πaπb = (c, b1, . . . , bm, a1, . . . , an).

If these are both odd cycles (making their product also an odd cycle), then their

conjugacy class is determined by the signum of the order in that representation.
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Conjugating πa, where we restrict to permutations of {c, a1, . . . , an}, gives us another

permutation π′
a = (c, aσ(1), . . . , aσ(n)) for some even σ. The order given by the new

product π′
aπb = (c, b1, . . . , bm, aσ(1), . . . , aσ(n)) is an even permutation of that given by

πaπb, and thus they are in the same conjugacy class. This works for πb in exactly the

same way. Thus the conjugacy class of the product of two odd cycles sharing only

one element is invariant under the conjugation of the original cycles (as long as the

conjugation is only amongst elements in the cycles).

Take a tree T with k edges. Choose an order for the edges e1, . . . , ek, and rep-

resentatives π1, . . . , πk for the orientations of these edges. Then choose an arbitrary

edge ej, for which we choose a second representative π ′
j. We need to show that:

k
∏

i=1

πi

is a conjugate of:
(

j−1
∏

i=1

πi

)

π′
j

(

k
∏

i=j+1

πi

)

.

To do this we choose a leaf el (since we dealt with the base case we can safely assume

there are at least two leaves and thus l 6= j). For convenience we assume that j < l

but the proof works in the same way if l < j.

Then we can write the first product as AπjBπlC and the second as Aπ′
jBπlC

where A,B, and C are even permutations. Since

AπjBπlC = C−1CAπjBπlC,

this is a conjugate of CAπjBπl. Let T ′ be the tree created by removing el from T .

Since this has only k−1 edges, the induction hypothesis implies that any ordering and

choice of representatives of its edges gives a cyclic permutation of the same conjugacy

class in AV (T ′). Two such choices are CAπjB and CAπ′
jB.

Since el is a leaf it shares only one vertex with the rest of the tree, and thus πl

shares only one element with CAπkB. By the above paragraph this means that since

CAπjB and CAπ′
jB are conjugates and cyclic, so are CAπjBπl and CAπ′

jBπl. We

have already shown the former is a conjugate of AπjBπlC, and in the same manner

the latter is a conjugate of Aπ′
jBπlC.
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Thus by induction we prove our choice of representative of the orientation of the

edges does not affect the conjugacy class of the product. Applying Lemmas 2.5 and

2.6 again finishes our proof that the definition of tree orientation works.

Using this definition of tree orientation we can refer to a tree as positive or negative

with respect to an ordering of the vertices in the hypergraph. We say the sign of the

tree is positive if the order of the vertices agrees with the orientation of the tree, and

negative otherwise. As an example, consider the tree in Figure 2.2.

1 2
3

4

5
6

7
8 9

10

11
13

14

15
16

17 20

21

22

23

24

25

12

18

19

Figure 2.2: Example of Tree Orientation

We orient each edge according to its label order. The product of cyclic permuta-

tions representing the orientation of the edges is:

(1, 2, 23, 24, 25)(3, 4, 5, 6, 25)(7, 15, 20, 21, 23)

(9, 10, 11, 18, 22)(8, 13, 14, 15, 22)(12, 16, 17, 19, 20).

Carrying out this multiplication we get:

(1, 2, 23, 7, 15, 9, 10, 11, 18, 22, 8, 13, 14, 20, 12, 16, 17, 19, 21, 24, 25, 3, 4, 5, 6).
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Since the signum of this sequence (not this permutation) is negative, it disagrees

with the vertex order, so the tree is negatively oriented with respect to the vertex

labelling. Note that this is not the signum of the cyclic permutation, as that is always

even (since all odd cycles are even). Also note that it is not an even permutation

of the labelling of the vertices despite the fact that it was created from edges which

were all oriented with that labelling.

We are now ready to set up the matrix which we are going to use for the Pfaffian-

Tree theorem. Take a uniform degree three hypergraph G = (V,E) with n vertices

labelled from 1 to n. Represent each edge by a variable ye. Define:

(Λ)ij =
∑

k∈V \{i,j}

∑

e∈E
V (e)={i,j,k}

sgn(ijk)ye, i 6= j, 1 ≤ i, j ≤ n.

Since we want an antisymmetric matrix we must let (Λ)ii = 0 for all 1 ≤ i ≤ n.

This is an n × n antisymmetric matrix. Its entries are the signed sums of the

edges containing the two vertices represented by its column and row. If there are any

spanning trees at all, then the graph must have an odd number of vertices, since a

tree in a uniform degree three hypergraph must have one more than twice as many

vertices as edges (noting that each edge adds two vertices, and we start with one). To

have a non-trivial pfaffian we must have an even dimensional anti-symmetric matrix.

As in the Matrix-Tree theorem, we delete the pth row and column for some p. Denote

this minor by Λp. This also means that the terms of our pfaffian have the desired

number of edges.

Theorem 2.8. Consider a uniform degree three hypergraph oriented according to its

vertex labels and the antisymmetric matrix Λ described above. Let T be the set of

spanning trees of the graph. Then:

(−1)p−1pf(Λp) =
∑

T∈T

o(T )
∏

e∈T

ye,

where o(T ) is the sign of the orientation of the tree T with respect to the vertex labels.

We shall not prove this here, as its proof will follow from the more general version,

Theorem 2.9 in Section 2.3.
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This theorem has one major property which is not as convenient as the Matrix-

Tree theorem; the generating series here is signed. While the generating series in the

Pfaffian-Tree theorem does give us every spanning tree, because it is signed we cannot

count them by substituting 1 for the yes as we did with the result of the Matrix-Tree

theorem.

Let us try an example using the graph shown in Figure 2.3. Start by orienting

Figure 2.3: Example Graph

each edge according to the vertex labels. We can then define our Λ(G) to be:

Λ(G) =



























0 ya + yf −yf 0 0 −ya + yg −yg

−ya − yf 0 yf + yb −yb + yc 0 ya − yc 0

yf −yb − yf 0 yb + ye −ye 0 0

0 yb − yc −yb − ye 0 ye + yd yc −yd

0 0 ye −ye − yd 0 0 yd

ya − yg −ya + yc 0 −yc 0 0 yg

yg 0 0 yd −yd −yg 0



























.

Then if we choose to eliminate the first vertex we get:

Λ1(G) =























0 yf + yb −yb + yc 0 ya − yc 0

−yb − yf 0 yb + ye −ye 0 0

yb − yc −yb − ye 0 ye + yd yc −yd

0 ye −ye − yd 0 0 yd

−ya + yc 0 −yc 0 0 yg

0 0 yd −yd −yg 0























.

Taking the pfaffian of this gives us:

pf(Λ1(G)) = yfyeyg + yeygyc − yfycyd − ybydya + yfygyd + ygydyb

36



We can see this agrees with the only six possible spanning trees of the graph.

2.3 The Hyperpfaffian-Cactus Theorem

Abdelmalek Abdesselam generalized the pfaffian tree theorem in [1] using the hyper-

pfaffian to handle trees (which he calls cacti) of hypergraphs whose edges all have

odd degree. While his result is given in terms of the Grassmann-Berezin Calculus,

he does note it specifies to the hyperpfaffian in the uniform case. We now look at

this in terms of the non-uniform hyperpfaffian (whose definition is equivalent to his

Grassmann-Berezin result).

Initially we should define the antisymmetric tensor algebra that corresponds to

the Kirchhoff matrix or the antisymmetric matrix for the Pfaffian-Tree theorem. Take

a hypergraph G = (V,E) on n vertices with edges all of odd degree greater than one,

oriented by o. As usual we label the vertices from 1 to n and assign the indeterminate

ye to each edge e.

For any sequence σ of distinct elements of the set {1, . . . , n}, define our antisym-

metric tensor algebra Λ(G) of order n as follows:

Λ(G)(σ) =
∑

p∈V
p/∈σ

∑

e∈E
σ∪{p}=V (e)

sgno(σ + p)ye,

where σ + p is the sequence σ with the vertex p appended to the end. The signum

denoted by sgno(σ + p) is the sequence’s signum with respect to the orientation of

the edge (i.e. negative if it agrees with the orientation and positive if not). It is

easy to see that this tensor algebra is antisymmetric, as reordering σ only alters the

signum, and thus works exactly as required. Denote the antisymmetric tensor algebra

restricted to disallow the use of v in any sequence by Λv(G).

Theorem 2.9 (The Hyperpfaffian-Cactus theorem). Consider an oriented hy-

pergraph all of whose edges have odd degree greater than one, and the antisymmetric

tensor algebra Λ(G) described above. If T is the set of spanning trees of the hyper-

graph, then

pf∗(Λv(G)) = (−1)v−1
∑

T∈T

o(T )
∏

e∈T

ye,
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where o(T ) is the sign of the tree orientation with respect to the vertex labels.

Proof. To prove this result we are going to put a sign reversing involution on all the

terms of the expansion of the hyperpfaffian (using Definition 1.20) which represent

graphs containing cycles. Let us look at what types of terms are produced by this

hyperpfaffian. The first thing to note is that for each term composed of q indetermi-

nates e1, . . . , eq,
∑q

i=1(deg(ei)−1) = n−1. This is because the partition of n−1 that

generates that term is composed of q sets corresponding to the edges, each having one

fewer element than the degree of that edge. By Proposition 1.30 all spanning trees

have this property. Also any graph with this property which is not a spanning tree

is not connected, and has at least one cycle.

Each term derives from a particular partition of {1, . . . , v − 1, v + 1, . . . , n}. For

each set of size k in this partition there is a (k + 1)−edge from our graph containing

the k vertices from the set. We can then refer to an edge in a term with respect to a

partition as corresponding to a set in the partition. We also refer to its other vertex

as its non-partition vertex.

This means that any component of a graph generated by a term in our hyperpfaf-

fian must contain at most one cycle. In fact each component not containing v contains

exactly one cycle and the component containing v is a tree. The latter can be seen

quickly from the fact that if this component contains edges e1, . . . , eq, it must have at

least
∑q

i=1(deg(ei)−1)+1 vertices (this is because each partition set must contribute

its edge’s degree minus one vertices plus it contains v). Since it is a component it is

connected and thus cannot have more than this many vertices. Thus by Proposition

1.30 it is a tree.

Any other component is composed of only the vertices of the partition sets of its

edges, since if it contains another vertex it would be connected to any edge containing

that vertex, and thus the other vertices of its partition set. This means it must have
∑q

i=1(deg(e)i)−1) vertices, and so cannot be a tree, which implies it has a cycle. Take

that cycle and ignore the other edges. If there are q ′ edges in the cycle, e1, . . . , eq′

then it must contain at least
∑q′

i=1(deg(ei − 1) vertices. If it had more vertices it

would be a tree since it is connected. Thus it has exactly this many vertices, and

thus is a simple cycle (Definition 1.32).
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Take any component e1, . . . , ej of the subgraph created by taking our original

component and removing the edges of the cycle. It must have at least
∑j

i=1(deg(ei)−

1) + 1 vertices, since it must have its own partition sets and at least one more vertex

from the cycle. This is the most it can have and be connected, and thus it must be

a tree. Therefore all the components not containing v are simple cycles with trees

attached.

To define our sign reversing involution first select one component with a cycle of

each non-tree graph arising as a term in our hyperpfaffian. It does not matter how

this cycle is chosen, only that it is a unique choice for any given graph. Refer to this

cycle as the special cycle of that graph.

Consider any term t = ± 1
(deg(e1)−1)!...(deg(em)−1)!m!

ye1
. . . yem

not representing a span-

ning tree in the expansion of our hyperpfaffian. Let σ be the sequence and π be the

partition from which it arises. Let H be the graph it represents. Look at the special

cycle of the H. There are exactly two different partitions of that cycle which can

give rise to it. The partition is determined by the choice of non-partition vertex for

any given edge. The non-partition vertex of each edge of the cycle must be a shared

vertex, otherwise the non-partition vertex is not in any partition set, since it is in no

other edge in the cycle. This means the other shared vertex is a partition vertex for

that edge. This forces the choice of partition vertices for the edge sharing that vertex.

Each forced choice then forces the next choice along the cycle. This continues until

we return to the first edge. Since there are two initial choices there are two different

partitions.

For an example of this, see Figure 2.4. Looking at the left partition, by choos-

ing {1, 2, 3, 4} we must pick {21, 22, 23, 24}, those are all the remaining vertices for

that edge. This in turn forces the choice {17, 18, 19, 20}. This process continues giv-

ing us {13, 14, 15, 16}, {9, 10, 11, 12}, and {5, 6, 7, 8}. The right partition shows the

other choice, {1, 2, 3, 5}, which forces a different partition. These are the only two

possibilities.

Let π′ be the partition which is similar to π, but where we replace the sets covering

the special cycle of H with the other choice for this cycle. There are many sequences

which correspond to π′, but we choose σ′ to be the one which is identical to σ except

for at the shared vertices of the cycle. For each block of the sequence representing a
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Figure 2.4: The two possible partitions for a simple cycle.

partition set corresponding to an edge e, replace the non-partition vertex of e with

respect to π′ in σ with the non-partition vertex of e with respect to π. Thus σ differs

from σ′ in only one vertex for each partition set corresponding to an edge in the

special cycle.

Note that our choice of π′ means that σ′ gives rise to a term t′ which represents

the same graph as t. We define our involution to map t to t′. Since t was arbitrary

this defines our involution. To check that it is indeed an involution, note since t′

represents the same graph it has the same special cycle. This means that changing

our choice of partition π′ along this cycle gives us π. The reverse replacements on σ ′

are then made to give us back σ and thus the term t.

Next, to prove that this involution reverses sign, note that applying the permuta-

tion which maps each vertex to the next vertex along the cycle (the direction is from

the one in π to the one in π′ for the first edge, and then so on) to σ gives σ′. Thus

the change in the signum in front of the term from the hyperpfaffian corresponds to

the number of edges in the cycle. An even cycle changes this signum, an odd cycle

does not. For each ye we have switched the vertex which is not in the sequence with

the other shared vertex, and otherwise left the order the same. This is a single trans-

position to the sequence, which then reverses its signum. Thus in our new term ye is
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replaced by −ye. Since this is done to each edge in the cycle it reverses the sign of

the term if the cycle is odd, and not if it is even. Thus if the cycle is odd the sign is

reversed by the change of sign of the ye’s, and if it is even the sign is reversed by the

signum of the sequence. Thus in both cases the sign is reversed.

Before we continue with the proof, consider an example of how this involution

works. Let us say we have a term:

−
1

(24)12(12)!
yaybycydyeyfygyhyiyjykyl

generating the graph in Figure 2.5, with the edges oriented according to their labels.

Let us say we have chosen v = 1 and this term came from the sequence (which we’ll

group in fours representing the partition):

(7, 15, 20, 21), (12, 16, 17, 19), (13, 8, 14, 22), (9, 10, 11, 18),

(3, 4, 5, 6), (2, 23, 25, 26), (28, 27, 30, 49), (29, 31, 32, 33),

(34, 35, 36, 37), (38, 39, 42, 40), (41, 43, 44, 45), (24, 46, 48, 47).
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Figure 2.5: Example graph

This sequence has negative parity, and each edge is positive with respect to it.

Since there is only one cycle, we know that this is our special cycle. We switch each
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non-partition vertex in each edge of the cycle with its other shared vertex resulting

in the sequence:

(7, 15, 20, 21), (12, 16, 17, 19), (13, 8, 14, 22), (9, 10, 11, 18),

(3, 4, 5, 6), (2, 23, 25, 26), (28, 27, 29, 49), (34, 31, 32, 33),

(38, 35, 36, 37), (41, 39, 42, 40), (46, 43, 44, 45), (24, 30, 47, 48).

This has been an application of the permutation (46, 30, 29, 34, 38, 41) to our original

sequence. Since this is an even cycle, it changes the parity of the sequence to positive.

For the edge d we use the sequence (24, 30, 48, 47, 46) which does not match the

orientation of the edge, so this contributes −yd to our product. The same thing

happens to each other edge in the cycle. From this sequence we get the term:

1

(24)12(12)!
(−ya)(−yb)(−yc)(−yd)(−ye)(−yf)ygyhyiyjykyl.

This term is identical to our original one, except with opposite sign.

Equipped with our sign reversing involution we can now return to the proof. This

involution causes all our unwanted terms to cancel, but we must now show that we

have all the required terms. To do this we shall use the expansion of the non-uniform

hyperpfaffian from Definition 1.19, which uses canonical representations of partitions

as sequences. We have established that we have no extraneous terms, so we need only

show that all the terms we want remain and have the correct sign.

To do this we shall show that there is only one partition that gives rise to any given

tree. Construct our tree from the vertex v down. Clearly any edge which contains

v must choose its other vertices for the partition. This defines all partition sets for

these edges. Then any edge connected to these first edges must have all of its other

vertices chosen as its partition set. We can continue these forced choices for all edges.

We can always choose these partition sets, since if more than one vertex was already

taken we would get a cycle. An example of this is shown in Figure 2.6. Since we then

have a unique partition for each spanning tree, we have a unique term representing

each spanning tree. Thus all the required terms do appear.

Finally we need to show that the sign matches that of the tree orientation in the

appropriate way. Here we return to the Definition 1.20 expansion of the non-uniform
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v

Figure 2.6: The forced matching on a tree

hyperpfaffian. Using this we see that each term representing a given tree has the same

sign, so we need only check one. Once again we construct our tree edge by edge.

From its definition we can construct a representative of our tree’s orientation by

starting with an edge containing v, and write it as (v, a1, . . . , ak), then at each stage

we add an edge which contains exactly one vertex already added. For this choose a

representative of the orientation of each edge so that its non-partition vertex is last

(note when this is added the non-partition vertex is the already added vertex). Each

time this inserts b1, . . . , bj somewhere within the cycle. We can shift this even block

without changing conjugacy class, since the blocks are even (since its conjugacy class

is determined by the signum of the sequence representing the cycle). We move this

block to the end (note that these blocks correspond to the matching component of

the edge).

As a result of this, we end up with v inserted at the beginning of a sequence which

corresponds to the partition for this tree. Thus this partition gives a term with the

signum of this sequence, which is thus (−1)v times the signum of the orientation of

the tree. Since each block was chosen so that when its final vertex is added it is a

representative of the orientation of the edge, the term is composed of the product

of positive signed indeterminates ye. Thus the sign of the term is the same as the

signum of the sequence.
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Now for an example of the Hyperpfaffian-Cactus theorem we examine Figure 2.7.

Noting that only two partitions give non-zero terms, we get the following for the

Figure 2.7: Example Graph

hyperpfaffian on the alternating tensor with the vertex 1 eliminated:

pf∗(Λ1(G)) = (ycya + ycyd) + (−ycyd + ybyd)

= ycya + ybyd.

Here we can see that these correspond to the only two spanning trees.

2.4 The Even Case

A weakness of the Hyperpfaffian-Cactus theorem is that it does not cover hypergraphs

containing edges of even degree. Here we shall discuss a few methods I have considered

unsuccessfully to solve this problem. For simplicity we restrict to the uniform case,

allowing us to use the Luque-Thibon and Barvinok definitions of the hyperpfaffian.

Certainly if it works for the non-uniform case it must work for the uniform case.

The two basic approaches are either to use the Luque-Thibon definition of the

hyperpfaffian (Definition 1.11) which allows for odd dimensioned hyperpfaffians or

to use the hyperdeterminant, whose dimension matches the degree of the graph it

describes.

We first look at using the Luque-Thibon hyperpfaffian. It would seem fairly

natural to define our tensor in the same way as before, only with odd dimension, and
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apply this hyperpfaffian. Our proof that all the terms representing spanning trees

appear in this expression still holds. However we need to be more careful with the

sign reversing involution. The proof we gave of the hyperpfaffian-cactus theorem used

the version of the non-uniform hyperpfaffian which resembles the Barvinok definition

of the hyperpfaffian (Definition 1.13), however with only slight modification this could

be done using the Luque-Thibon definition, except for one clause. The two factors

which allow the involution to be sign reversing (the signum of the edge, and the

sign of the matching) still acts in an identical way and thus leave the involution sign

reversing. However there is now a third factor in determining the sign of the term;

the order of the edges in the partition or matching. As mentioned when discussing

the differences in our definition of the hyperpfaffian, in the odd dimensional case the

order of the matching matters. When we apply the cycle to our matching, we may

change which vertex is first, and thus the order of the edges, thus further changing

the sign. If it does cause a change, our involution is no longer sign reversing.

There is clearly no way around this problem in general, since we are stuck with

extra terms when applying the hyperpfaffian at least to the complete graph working

over a field of characteristic zero. However there are two ways of restricting our

problem to make this work. We can either restrict our graph to a class of graphs

which do not have this problem, or restrict our field.

First we look at which graphs give no extra terms. The most precise characteri-

zation of these graphs can be made by taking the hyperpfaffian of Λ for the complete

graph on an appropriate set of vertices. If our graph does not contain at least one

edge from every one of the extraneous terms of this hyperpfaffian then the theorem

holds for this graph. While this is a precise characterization of which graphs work, it

is one basically by definition, so we would like to find a more useful condition.

To find this it is important to note that the extra terms of a graph depend on its

labelling. As such we may try to find which graphs can be labelled in such a way

that they have no residual terms. What we find is that any cycle can be labelled

in a “good” way or a “bad” way (see Figure 2.8). A “good” way is one where if we

switch partitions representing the cycle our involution is sign reversing. Looking to

the example on the right we see that the two valid sequences are:

(1, 2, 13), (3, 12, 18), (4, 5, 14), (6, 7, 15), (8, 9, 16), (10, 11, 17)
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and

(1, 3, 12), (2, 13, 14), (4, 5, 15), (6, 7, 16), (8, 9, 17), (10, 11, 18).

Note that since we are using the Luque-Thibon definition, Definition 1.11, there is

only one sequence per matching. Now because the order of the first two edges is

reversed, we have an additional sign change. Before this change we had applied an

even cycle to our sequence, thus changing its sign, and made a single flip on the six

edges. Any change in sign from reordering the vertices of a matching (to make them

increasing as per the Luque-Thibon definition) is manifested in a sign change in both

the sequence’s signum and that of the edge, and thus has no effect. This means we

have exactly one too many sign reversals, leaving us with a term of the same sign as

our original.

If we instead look at the left side of Figure 2.8 we see that no edge has its lowest

labelled vertex as a shared vertex. This means that changing these vertices does not

change the edge order. If a cycle does not have this property it is hard to tell if it is

“good”. Even if the change from taking a different vertex does not upset the order of

the cycle, it may be interfered with by other edges in the graph. If there are multiple

cycles, flipping them may change whether the cycle is “good” or “bad”.

Figure 2.8: “Good” and “Bad” labellings of a cycle

We need only know that any subgraph generated by partitions (i.e. those ones

with the appropriate number of edges, and components described above) contains at

least one “good” cycle. We can then choose this as the special cycle, and our theorem

will be proved in the same manner as before, with the exception of the requirements

on the sign of the terms. Note that we only have tree orientation defined for odd
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degree hypergraphs, so we cannot expect ours to match this. The easiest class of

graphs to describe with this property are those in which each edge contains at least

one vertex which is not a shared vertex in any cycle. For each edge label this vertex

lowest among the edge. This makes every cycle good.

As mentioned before, instead of restricting our graph we can instead restrict to a

field of characteristic two. The involution is still an involution, and thus any of our

bad terms has an even coefficient, while the terms we want remain with coefficient

one. Thus we would get the answer we desire, but certainly we have lost a lot by

this restriction (note since we must be using the Luque-Thibon definition, it is not

a problem to use non-zero characteristic). One does see in general that this theorem

looks simpler in characteristic two, as we are no longer troubled by the differing signs

of the terms, and so we can drop our orientation.

Our second approach is to use the hyperdeterminant. In this case we look to

extend the Matrix-Tree theorem instead of the Pfaffian-Tree theorem. Since in the

determinant case we use graphs of the same degree as the dimension of the tensor, it

seems as if it might work. However this idea quickly shows its failing when we note

that the number of edges does not scale in the appropriate way. If we construct our

matrix as before, with n − 1 of the n vertices, we see that the hyperdeterminant of

dimension k gives us terms of degree n− 1, representing hypergraphs of n− 1 edges.

On the other hand to form a tree in a degree k uniform hypergraph we need to have

only (n− 1)/(k − 1) vertices. So this certainly does not work.
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Chapter 3

Hyperpfaffian Orientations

3.1 Pfaffian Orientations

Since the pfaffian is a sum over perfect matchings, it is natural to think that one

might use it to count the perfect matchings of a graph. However it quickly becomes

apparent that the signs in the sum interfere with this. In fact the direct tool to use

for this is called the hafnian.

Definition 3.1. Let Mn be the set of perfect matchings on {1, . . . , n}, and take an

upper triangle Λ on {1, . . . , n}. Then the hafnian is:

hf(Λ) =
∑

M∈Mn

∏

{a,b}∈M

Λ({a, b}).

This definition resembles Definition 1.2 for the pfaffian. It is the unsigned sum

over perfect matchings, rather than the signed sum. Introduced by Caianiello in 1953,

the hafnian is to the pfaffian as the permanent is to the determinant (recall that the

permanent of a matrix is the unsigned sum over the permutations in the way that

the determinant is the signed sum). The hafnian of a matrix is not the square root of

the permanent of a matrix, as with the pfaffian in Theorem 1.5, but the permanent

can be expressed as a hafnian, as the determinant is in Proposition 1.8. The proof of

this is exactly the same as for Proposition 1.8, only without the need to check that

the signs match.
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The hafnian is exactly the tool to count the perfect matchings of a graph. Un-

fortunately, as pointed out in [17], there is no known way of calculating the hafnian

efficiently. In fact it is known that calculation of the permanent is #P complete, even

when restricted to matrices containing only zeros and ones. As we have mentioned,

we can calculate the permanent from the hafnian, so it must also be at least #P

complete.

To find a better way of counting perfect matchings, we turn to Kasteleyn who in

[13] created the pfaffian orientation. In a pfaffian orientation the graph is directed in

such a way that all the terms of the pfaffian are positive, like the hafnian. Since the

pfaffian is the square root of the determinant of the antisymmetric matrix it can be

computed efficiently (for numeric valued matrices).

For an undirected graph G = (V,E) we have defined its antisymmetric matrix to

be:

Aij(G) =



































∑

e∈E
V (e)={i,j}

ye i < j

−
∑

e∈E
V (e)={i,j}

ye i > j

0 otherwise

.

For a directed graph D = (V,E) we now define its antisymmetric matrix to be:

Aij(D) =



















∑

e∈E
h(e)=j
t(e)=i

ye −
∑

e∈E
t(e)=j
h(e)=i

ye i 6= j

0 otherwise

.

Here we use h(e) to denote the head of e, and t(e) to the tail.

Figure 3.1:
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For example if we look at the graph in Figure 3.1, considered as an undirected

graph G, its corresponding antisymmetric matrix is:

A(G) =













0 yb ye ya

−yb 0 yc yf

−ye −yc 0 yd

−ya −yf −yd 0













.

When considered as a digraph D, it corresponds to:

A(D) =













0 yb ye −ya

−yb 0 yc −yf

−ye −yc 0 yd

ya yf −yd 0













.

The matrix for our undirected graph G would then be the same as the matrix for

the digraph D obtained by directing every edge of G from lower to higher labelled

vertex. We can define this for an upper triangle in the same way, using the upper

triangle corresponding to this matrix. In terms of the upper triangle, we have used a

negative value for each edge directed from higher to lower labelled vertex. Thus we

can think of edges as positive or negative, based on whether the orientation agrees

with the vertex order or not. We define the pfaffian of a digraph to be the pfaffian of

this antisymmetric matrix.

So the pfaffian of the digraph in Figure 3.1 is:

pf(A(D)) = sgn(1234)ybyd + sgn(1324)ye(−yf ) + sgn(1423)(−ya)yf

= ybyd + yeyf − yayc.

If we look at the pfaffian of this considered as an undirected graph we would get

instead:

pf(A(G)) = sgn(1234)ybyd + sgn(1324)yeyf + sgn(1423)yayc

= ybyd − yeyf + yayc.

Definition 3.2. A permutation σ which represents a matching π in the manner of

Definition 1.6 is said to respect orientation if in it each adjacent pair representing a

matching edge is ordered tail first, head second.
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For example if we again refer to Figure 3.1, and consider the matching {1, 2}, {3, 4}.

Then 1243 or 4312 are permutations for this matching which respect orientation. On

the other hand 2143 does not, since the edge 12 must be given in that order.

For a matching π of a digraphD we see that the sign of the term corresponding to π

in the pfaffian of D is the same as the signum of any permutation σ which represents π

and respects orientation. If we look at the expansion of the hyperpfaffian in Definition

1.6, we see that each edge e in the matching π is taken in the term of the expansion

corresponding to σ as Λ(t(e), h(e)) and thus we get ye not −ye. Thus the term’s sign

is determined only by the signum of σ. Since all terms in the expansion representing

a given matching have the same sign, this is the same as the sign of the complete

term representing the matching.

Definition 3.3. A pfaffian orientation of a graph is an assignment of direction to

each edge of the graph so that every term of the pfaffian of the digraph is positive.

If all the terms are positive we can count the matchings, as we would with the

hafnian (thus the pfaffian of the directed graph would equal the hafnian of the undi-

rected graph). Since the sign of a term corresponding to a matching π has the same

sign as the signum of any permutation representing it and respecting orientation, to

show something is a pfaffian orientation we need only show that each matching has

such a permutation with positive signum.

For an example of a pfaffian orientation, look at the left side of Figure 3.2. The

Figure 3.2: An example of a graph oriented two ways, one pfaffian
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antisymmetric matrix which this defines is:

A(G) =























0 −ya 0 −ye 0 yf

ya 0 yb 0 0 −yg

0 −yb 0 yc yj −yi

ye 0 −yc 0 yd 0

0 0 −yj −yd 0 −yh

−yf yg yi 0 yh 0























.

If we take the pfaffian of this we get:

ygyeyj + ydybyf + yaydyi + yhybye + yayhyc.

All terms of this pfaffian are positive, so this is indeed a pfaffian orientation. If we

look at the graph on the right of Figure 3.2 we see that the only difference is that the

edge a is oriented oppositely. This means by replacing ya with −ya in the pfaffian of

the graph on the left we obtain the pfaffian of the graph on the right:

ygyeyj + ydybyf − yaydyi + yhybye − yayhyc.

Here we see a mixture of positive and negative signs, so this is not a pfaffian orienta-

tion.

We would like to know when it is possible to find such an orientation. One of the

most fundamental results on this subject was proven by Kasteleyn in [13], which is:

Theorem 3.4. Any planar graph has a pfaffian orientation.

Here we shall give a proof based on that from [11].

Proof. We orient the graph so that every internal face has an odd number of coun-

terclockwise edges (note with respect to a cycle or face in a planar embedding of a

graph each edge has a counterclockwise and a clockwise direction). We shall prove

that all planar graphs can be oriented this way by induction on the number of edges.

Since a graph with no edges has no internal face the base case is trivial.

If we take any planar graph and remove an edge e on the outer face, we obtain a

graph of fewer edges which is still planar. By the induction hypothesis we can orient
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this graph in the manner described above. When we add e again, we know e is in

at most two faces. By our choice of e one of these is not internal, so it is in at most

one internal face. We direct e so that its internal face has an odd number of counter-

clockwise edges, or arbitrarily if there is no such face. All other internal faces remain

unchanged, and thus have an odd number of counterclockwise edges. So by induction

an orientation of this type exists. Next we need to show that this orientation is a

pfaffian orientation.

To prove this is a pfaffian orientation, we only need to show that with this orien-

tation any two matchings give terms of the same sign. If all terms are negative we

can reverse all the edges around a given vertex. Since exactly one of these edges is in

any matching, this reverses the sign of every term, giving us all positive terms.

To show that any two terms have the same sign, start by observing that the

symmetric difference between any two perfect matchings is a graph where each vertex

has degree either two or zero. This means that it is a collection of isolated points

and disjoint cycles. We also know that the edges are two colourable (coloured by

which matching they came from), and thus these are even cycles. We call these cycles

transition cycles.

Taking the symmetric difference of a perfect matching and one of its transition

cycles gives a new perfect matching. Applying each transition cycle of the symmetric

difference of two perfect matchings M and M ′ in sequence creates a sequence of

perfect matchings each one transition cycle different from the previous one, starting

with M and ending with M ′. Thus it suffices to prove that the terms corresponding

to any two matchings whose symmetric difference is a single transition cycle have the

same sign.

For example if we have the graph on vertices {1, . . . , 10} and the two matchings:

π1 = {1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 10},

π3 = {1, 2}, {3, 4}, {6, 7}, {8, 9}, {5, 10}.

Then their symmetric difference is the two transition cycles 1,2,6,7 and 3,4,8,9. Ap-

plying the first cycle to π1 gives the perfect matching:

π2 = {1, 2}, {6, 7}, {3, 8}, {4, 9}, {5, 10}.
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Applying the other transition cycle to π2 we get π3. In two steps we can go from π1

to π3 where each step is a perfect matching one transition cycle away. If π1 gives a

term of the same sign as π2 which gives a term the same sign as π3 then π1 has the

same sign as π3.

We are next going to show that every transition cycle has an odd number of

counterclockwise edges in a graph oriented in this way. To show this we shall show

that for an even cycle C and G′ the subgraph obtained by removing everything outside

of C, the number of counterclockwise edges in C has opposite parity of the number

of vertices in G′. Let f be the number of faces enclosed by C (the number of internal

faces of G′). Let v and e be the number of vertices and edges of G′, respectively, and

let m be the length of C.

Number the internal faces from 1 to f . Let ci be the number of counterclockwise

edges for face i. Let c0 be the number of counterclockwise edges of C. Note that

every internal edge of G′ is counterclockwise in one face and clockwise in one face.

Thus the sum of the the counterclockwise edges of the internal faces is the sum of the

internal edges, plus the counterclockwise edges of C. Then we have:

f
∑

i=1

ci = e−m + c0.

Since ci is odd for each i = 1, . . . , f and m is even, then taken modulo two this is:

f ≡ e+ c0.

By Euler’s formula we know (since f does not include the outer face)

f − e+ v = 1.

Combining these equations we see that

v + 1 ≡ c0.

Thus we see that the number of counterclockwise edges in C has opposite parity of

the number of vertices of G′.

For example if we look at Figure 3.3 we have that our sequence of ci’s starting

with c1 is 3, 1, 1, 1, 1, 3, 1, 3. There are 17 edges, and the cycle is of length 6 with 3
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counterclockwise edges, so we see:

f
∑

i=1

ci = 14 = 17 − 6 + 3 = e−m+ c0.

The sum of the ci is 14, which equals the 8 internal faces mod two. There are three

counterclockwise edges and ten vertices, which we see have opposite parity. By the

Figure 3.3:

planarity of the graph, we know that no edge can cross C. Thus internal vertices of

G′ cannot be connected to vertices outside of C. This means in any perfect matching

internal vertices of G′ must be matched to vertices of G′. If C is a transition cycle of

M and M ′, then the vertices of C are all matched to each other, and thus the internal

vertices must all be matched with each other in both M and M ′. Thus G′ must have

an even number of vertices. This means that any transition cycle has an odd number

of counterclockwise edges.

Consider two perfect matchings M and M ′ of G with a symmetric difference of

a transition cycle C. Take a permutation σ representing the matching M which

respects the orientation. We need to show that σ has the same signum as such a

permutation for M ′. Let σ1 be the permutation which is the same as σ, except that

all edges of C ∩M are ordered clockwise (relative to C) instead of tail before head.

Let a be the number of edges in C ∩M which were oriented counterclockwise. Then

sgn(σ1) = (−1)asgn(σ).

Let γ be the permutation that is the clockwise cycle C (i.e. it maps each vertex

of C to the vertex next in counterclockwise order in C, and leaves the other vertices
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unchanged).

Then γσ1 is a permutation representing M ′. This is because if we have an edge

in M which is not in M ′, then it must be in C. If it is u, v ordered clockwise, then

σ1(2i− 1) = u and σ1(2i) = v for some i. Since these are in clockwise order γ(u) = v

and γ(v) = w where w is the vertex clockwise from v in C. This means that vw is in

M ′. Since γ(σ1(2i − 1)) = v and γ(σ1(2i)) = w, these are matched in γσ1. This is

true for all edges of C. The other edges remain unchanged, and thus remain ordered

correctly.

In γσ1, every edge is in orientation order except those edges in C ∩M ′, which are

in clockwise order. Define σ2 to be the same as γσ1, except that the edges of C ∩M ′

(and thus all edges) are in orientation order. Let b be the number of counterclockwise

edges of C ∩M ′, then sgn(σ2) = (−1)bsgn(γσ1). Since σ2 is now a permutation which

represents the matching M ′ and respects orientation, it only remains to be shown

that sgn(σ2) = sgn(σ).

Since γ is an even cycle, we know that sgn(γ) = −1 and thus we see:

sgn(σ2) = (−1)bsgn(γσ1) = (−1)b+1sgn(σ1) = (−1)a+b+1sgn(σ).

Since a is the number of counterclockwise edges in M ∩ C and b the number in

M ′ ∩ C, and since every edge of C is in exactly one of M or M ′, a+ b is the number

of counterclockwise edges of C. Since all transition cycles have an odd number of

counterclockwise edges in this orientation, sgn(σ2) = (−1)a+b+1sgn(σ) = sgn(σ).

Therefore this is a pfaffian orientation.

One can check that the graph from Figure 3.2 is oriented in the manner described

in this proof. In fact the inductive argument can be converted into an algorithm

for constructing a pfaffian orientation. The method of showing that every transition

cycle has an odd number of counterclockwise edges is so common that it is often used

as a definition of pfaffian orientation. In [18] they define a pfaffian orientation to be

one where every central even cycle is oddly oriented. A subgraph H of a graph G is

said to be central if there is a perfect matching of the graph G\H.

It is worth showing that not all graphs have pfaffian orientations. An example of

a graph that does not is K3,3.

57



Proposition 3.5. There is no pfaffian orientation of K3,3.

Proof. If we label one partition 1, 2, 3 and the other 4, 5, 6 we can see the pfaffian of

the undirected graph is:

pf(K3,3) = −y14y25y36 + y14y26y35 + y15y24y36 − y15y26y34 − y16y24y35 + y16y25y34.

A pfaffian orientation on this is a choice of sign for each indeterminate. Since each

edge, and thus each indeterminate, is in exactly two matchings, each indeterminate

chosen as negative reverses the sign in exactly two terms. This means no matter how

many we choose, it results in an even number of sign changes (note sign changes can

cancel each other, but only in even pairs, and thus the number of terms with different

signs is always even). However to make all these terms positive, we need exactly three

sign changes, which is not even.

It is stated in [18] that:

Theorem 3.6. A bipartite graph has a pfaffian orientation if and only if it does not

“contain” K3,3.

Define G to contain H if G has a central subgraph H ′ such that H ′ is an even

subdivision. By an even subdivision of H we mean we can replace the edges of H

with vertex disjoint odd length paths (thus adding an even number of vertices) to get

H ′.

This reminds us of Kuratowski’s theorem:

Theorem 3.7 (Kuratowski). A graph is non-planar if and only if it has a graph

that is an edge subdivision of K5 or K3,3

This shows a link between planarity and pfaffian orientability, since if a graph

contains K3,3 it has a subgraph which is an edge subdivision of K3,3. “Contains” has

the two additional clauses, that the subgraph is central, and that the subdivision is

even, so the implication is one way. The graph K5 does not cause the same problem,

since it has an odd number of vertices. Thus it has no perfect matchings, and its

pfaffian is trivial. The exact relation is unclear, but many of our results on pfaffian

orientations are related to embeddings of the graphs in surfaces. For example in [10]
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they proved that a graph which can be embedded in a genus g surface can be oriented

so that the hafnian is a linear combination of 4g pfaffians.

3.2 Hypergraph Embeddings and Orientations

Our goal is to extend the theorems about pfaffian oriented graphs to hyperpfaffian

oriented hypergraphs. To do so we should first discuss hypergraph embeddings, as

most of our results on pfaffian orientations are based on embeddings of the graph.

Following that we shall examine how to represent hypergraph orientations in these

embeddings.

As we mentioned in Section 1.5, we use two methods of drawing hypergraphs, as

shown in Figure 3.4. We should now discuss more formally how these work. Naturally

Figure 3.4: Representations of a hyperedge of degree 5

we embed vertices in a surface in the same way as for a standard graph in either

method. For the style on the left, we embed an edge of k vertices in a surface by

adding an imaginary vertex for the edge. Then we draw a standard edge connecting

each of the k vertices of the hyperedge to this imaginary vertex. As usual we do not

allow lines to cross. Call this the point embedding of the hypergraph.

The form on the right is slightly more complicated. Here we we start by embedding

a standard k cycle of the vertices of the hyperedge. The cycle must enclose a standard

face. This means we may not put another part of an edge through this region and

the region enclosed must be homotopic to a disc. It may make more sense to fill in

this face, as nothing may cross it, as in Figure 3.5. Call this the cycle embedding of

the hypergraph.

We define planarity or embeddability into any surface in the same way as we have
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Figure 3.5: Filled cycle embedding of a hyperedge

done with standard graphs using these techniques. It is easy to check that these

methods are equivalent, as the first comes from shrinking the face of the second down

to a point.

Moving on we shall now discuss how to represent orientations of these graphs.

As mentioned in Chapter 2 in Definition 2.3, we consider the orientation of an edge

of a hypergraph to be an order of its vertices up to even permutation. In that

chapter we dealt almost exclusively with odd degree hypergraphs, and represented

the orientation with cyclic permutations. In this chapter we shall instead be dealing

almost exclusively with even degree edges. Here we cannot use the cyclic permutation

representation, as even cycles are odd permutations. This means that the ordering

1234 is not an even permutation of 2341. These give identical cyclic permutations.

Instead we use the cycle embedding to give us a representation. If we look at this

embedding, we can direct the edges of the cycle representing the hyperedge. Let us

start by only directing every other edge in the cycle, as shown in Figure 3.6. Thus

every vertex is adjacent to one directed edge of the cycle. This specifies an orientation

Figure 3.6: Half directed cycle embedding of a hyperedge

for the hyperedge, by ordering each pair of its vertices. Each directed edge gives an

order for its vertices. By placing the pairs in any order, but requiring the defined
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order within the pair, we define an orientation on the hyperedge. Choosing a different

order of pairs only alters this by an even permutation, so this gives us a well defined

orientation on the hyperedge. Thus Figure 3.6 represents the orders 215634 or 562134,

or several others. Note that not all representatives of this orientation are given by

this drawing, but all orders given by this drawing are representatives of the same

orientation. For example 251364 is a representative of the same order, but it does

not correspond to the diagram.

We may want to direct every edge in the cycle, in which case we need the restriction

that the cycle has an odd number of counterclockwise edges (and thus an odd number

of clockwise as well). Figure 3.7 shows an example of doing this correctly, and of doing

this incorrectly, from the graph in Figure 3.6. Using this representation we can then

Figure 3.7: Fully directed cycle embedding of a hyperedge, correct and incorrect

take our choice of matching for the cycle to generate our order. Our restrictions on

the parity of counterclockwise edges ensures that we get a consistent orientation from

both choices. Note in Figure 3.7 on the left we see that if we take the other matching

we generate the order 325461, which one can check is an even permutation of the

order 215634 we had previously acquired. On the other hand if we look at the one

on the right of Figure 3.7, choosing the other matching gives us the order 324561,

which is not an even permutation of the first. Thus this does not consistently define

an orientation.

To see that the restriction on the number of odd cycles ensures consistency, start

by defining σ to be the sequence listing the vertices in clockwise order starting at a

given vertex v. Let M be the matching of this cycle containing vu where u is the next

vertex clockwise around the cycle from v. Let M ′ be the other matching, which starts

with the edge clockwise from u. Thus both M and M ′ define an orientation, and we
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want to show these are the same orientations. Note the signum of the sequence σ

differs from that of the orientation given by M by a factor of (−1)c where c is the

number of counterclockwise edges in M . Then if we apply the even cycle moving the

vertices one step clockwise to σ, we obtain the clockwise sequence starting from u.

Similarly it differs from the sequence given by M ′ by a factor of (−1)c′ where c′ is

the number of counterclockwise edges in M ′. Applying the even cycle reverses the

signum. This means the signum of the sequence for M differs from that of M ′ by

(−1)d where d is the number of counterclockwise edges in the cycle plus one. So the

two orders differ by an even permutation if and only if there is an odd number of

counterclockwise edges.

Using this representation, there is only one orientation from a given representa-

tion, but there are certainly many representatives of any given orientation. Note

that any two edges in the same matching of a cycle representing a hyperedge can be

reversed without changing the orientation.

Based on our need for only half the edges of the cycle embedding to represent the

orientation of a graph, we now define the pair-graph of a hypergraph.

Definition 3.8. A pair-graph P = (V,Ep) of a hypergraph G = (V,E) whose edges

have all even degree is defined to be a multigraph on the same set of vertices, where

for each edge e of degree 2k in E there are k edges in Ep which cover all the vertices

of e.

A hypergraph does not have a unique pair-graph, as for every even hyperedge of

degree greater than two there are multiple choices of how to pair the vertices of this

edge. A pair-graph with a fixed grouping of edges by hyperedge defines a unique

hypergraph. Figure 3.8 shows a hypergraph and one of its pair-graphs.

We can then represent an orientation of our hypergraph in its pair-graph by di-

recting the pair-graph. As with the cycle embedding, putting an order on pairs of

vertices of a hyperedge defines an ordering up to even permutation of those vertices.

Any choice of direction for the pair-graph corresponds to some orientation of the

hypergraph, and any orientation of the hypergraph gives such an orientation of the

pair-graph (though not a unique one).
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Figure 3.8: A hypergraph and a corresponding pair-graph

Figure 3.9 shows a hyperedge and two directed pair-graphs of it inducing the same

orientation on it. That orientation is 16325478.

Figure 3.9: A hyperedge and two oriented pair-graphs of it

We call a hypergraph pair-embeddable in a surface if it has a pair-graph which

is embeddable in this surface (and pair-planar if it can be embedded into a plane).

It is easy to check that this is a strictly weaker condition than embeddability of the

hypergraph.

3.3 Hyperpfaffian Orientations

Now that we have described how to relate orientations and embeddings of hyper-

graphs, let us see how they affect hyperpfaffians. In Section 3.1 we saw how to define
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the pfaffian for a directed graph. We shall now do the same for an oriented hyper-

graph. For a non-oriented hypergraph G = (V,E) whose edges all have even degree,

we have defined its antisymmetric tensor algebra Λ to be:

ΛG(i1, . . . , ik) =
∑

e∈E
V (e)={i1 ,...,ik}

sgn(i1 . . . ik)ye.

For an oriented hypergraph D = (V,E) whose edges all have even degree, we can

define its alternating tensor algebra as follows:

ΛD(i1, . . . , ik) =
∑

e∈E
V (e)={i1,...,ik}

sgno(e)(i1 . . . ik)ye,

where sgno(e) of a sequence is positive if the sequence is a representative of the orien-

tation of e, and negative otherwise. This is exactly the same as replacing ye with −ye

when the orientation of the edge is against the order of the vertices. We define the

hyperpfaffian of an oriented hypergraph to be the hyperpfaffian of this alternating

tensor algebra.

Definition 3.9. We say an orientation of a hypergraph G is a hyperpfaffian orien-

tation if the non-uniform hyperpfaffian of the oriented hypergraph G has all positive

terms.

It was established in [3] that the k dimensional hyperpfaffian on a tensor of order

n can be computed in O(2nnk+1) arithmetic operations (for fixed k). This is expo-

nential, so unfortunately it may not represent a great improvement in efficiency. The

computation of the non-uniform hyperpfaffian and the hyperhafnian have not been

studied. However the problem is still interesting for its own sake.

Once again we can define what it means for a permutation representing a matching

to respect orientation.

Definition 3.10. A permutation σ representing a matching π on an oriented hyper-

graph whose edges all have even degree is said to respect orientation if each block of

σ corresponding to an edge in π has its vertices ordered in a representative of the

orientation of that edge.

For example if we have the matching {1, 2, 4, 6}, {3, 8}, {5, 7} with orientations

1462, 83, 57, then the permutation 83416257 is a permutation which represents this
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and respects orientation. On the other hand 12463857 is a permutation which repre-

sents the matching, but it does not respect orientation.

The sign of the term given by this matching agrees with the signum of any per-

mutation representing it which respects orientation. To see this, examine the terms

of the expansion:

pf∗(Λ) =
∑

σ∈Sn

∑

q∈Nn

sgn(σ)
1

|q|!

|q|
∏

j=1

1

(qi − qi−1)!
Λ(iσ(qi−1+1), . . . , iσ(qi)).

If σ respects orientation then each Λ(iσ(qi−1+1), . . . , iσ(qi)) = ye, since

sgno(e)(iσ(qi−1+1), . . . , iσ(qi)) = 1.

This means the sign of the term is determined only by the signum of σ. So to show

that an orientation is a hyperpfaffian orientation we need only show that every perfect

matching has a permutation representing it which respects orientation with positive

signum.

The following theorem will allow us to adapt most of our pfaffian orientation

results to work for hyperpfaffian orientations.

Theorem 3.11. Take a hypergraph G whose edges all have even degree. If its pair-

graph P has a pfaffian orientation then G has a hyperpfaffian orientation, and a

pfaffian orientation of P defines a hyperpfaffian orientation of G (though not neces-

sarily the other way around).

Proof. Let e1, . . . , en be the edges of G. Then let ei,1, . . . , ei,ki
be the edges of P

corresponding to ei. Take a pfaffian orientation of the pair-graph P . Orient G as

defined by this orientation on P . If we take any perfect matching π = {ei1 , . . . , eim}

of G, this translates to a perfect matching π′ = {ei1,1, . . . , ei1,ki1
, ei2,1, . . . , eim,kim

}.

Let σ be a permutation representing π′ which respects orientation and has the

edges ordered so that the edges are grouped by the hyperedges they represent. Since

we are using a pfaffian orientation of P , the signum of σ is one.

Since the edges of P are grouped according to their edges of G, this is also a

permutation representing π. Since each pair of vertices in π is ordered according to
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the orientation of P , they are in the order defined by P on G. Thus σ respects the

orientation of G.

Since sgn(σ) = 1, each perfect matching of G has a permutation representing it

which respects orientation and has positive signum. Therefore this is a hyperpfaffian

orientation.

Corollary 3.12. Any pair-planar, and thus any planar hypergraph whose edges all

have even degree has a pfaffian orientation.

Using Theorem 3.11 we can convert almost any result about pfaffian orientations

using embeddings to results about hyperpfaffian orientations (on hypergraphs of even

degree edges) with pair-embeddings.
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Chapter 4

Hyperpfaffian Rings and Ideals

4.1 Pfaffian and Determinantal Rings and Ideals

Determinantal and pfaffian ideals and rings are objects whose study has been impor-

tant in commutative algebra, algebraic geometry, and combinatorics. For this reason

we are going to look at extending these concepts to the hyperpfaffian.

Let us start by considering the k-algebra k[xij ]1≤i<j≤n. Let A be the n×n antisym-

metric matrix defined by Aij = xij, i < j and Aij = −xji, j < i, Aii = 0. We denote

a minor of A by [q1, q2, . . . , qt], 1 ≤ q1, q2, . . . , qt ≤ n defined by [q1, . . . , qt]ij = Aqiqj
,

where 1 ≤ i, j ≤ t. We say a minor is represented in standard form if q1 < q2 < · · · <

qt.

If qi = qj for some i 6= j then the pfaffian is zero, because it implies the ith and jth

rows of [q1, . . . , qt] are the same. This implies that the determinant of the matrix is

zero, and thus so is the pfaffian (its square root). Also of note is that for any σ ∈ St,

pf([q1, . . . , qt]) = sgn(σ)pf([qσ(1), . . . , qσ(t)]).

This can be verified fairly easily from Definition 1.6 for the pfaffian. This means that

any non-zero pfaffian minor is the same as a minor in standard form, up to sign.

Definition 4.1. A pfaffian ideal of even order t, denoted by Pt, is the ideal of

k[xij]1≤i<j≤n generated by the set:

{pf([q1, . . . , qt]) : q1, . . . , qt ∈ {1, . . . , n}} .
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One could add the restriction that the minors be in standard form without chang-

ing the ideal. We define the pfaffian ring in the following way:

Definition 4.2. The pfaffian ring of order t is the quotient ringRt = k[xij]1≤i<j≤n/Pt.

For example, if we look at the pfaffian ideal of order two, we see that our set

is {xij, i < j}, which generates the ideal of the elements of k[xij]1≤i<j≤n with no

constant term. Thus R2 is k. We define the empty minor [∅] to have a pfaffian of 1.

This means P0 = k[xij]1≤i<j≤n and R0 = {0}.

We define the determinantal ideal in a similar manner to the pfaffian ideal. For

determinants we work over the k-algebra k[xij]1≤i,j≤n and we use the n × n matrix

M defined by Mij = xij. We then denote a minor by [a1, . . . , at|b1, . . . , bt]. This is

defined by [a1, . . . , at|b1, . . . , bt]ij = Maibj
. Once again we define a minor to be in

standard form if a1 < a2 < · · · < at and b1 < b2 · · · < bt. As before we see that if

any ai = aj or bi = bj for i 6= j, then the minor has determinant zero. Also it is well

known with determinants that for any σa, σb ∈ St:

det[a1, . . . , at|b1, . . . , bt] = sgn(σa)sgn(σb) det[aσa(1), . . . , aσa(t)|bσb(1), . . . , bσb(t)].

So again any non-zero determinant minor is the same as one in standard form, up to

sign.

Definition 4.3. A determinantal ideal of order t, denoted by Dt, is the ideal in

k[xij]1≤i,j≤n generated by the set:

{det[a1, . . . , at|b1, . . . , bt], a1, . . . , at, b1, . . . , bt ∈ {1, . . . , n}} .

As before we can restrict our set to those in standard form. We define the deter-

minantal ring in a similar fashion to the pfaffian ring.

Definition 4.4. The determinantal ring of order t is the quotient ring

St = k[xij ]1≤i<j≤n/Dt.

For example, if we take t = 1, D1 is the set of all members of k[xij]1≤i,j≤n without

a constant term. Thus S1 = k. This can be shown in the same way as for P2 and R2.
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Many interesting results relating these pfaffian and determinantal rings to combi-

natorics have been studied. For example in [12] and [9] they relate the dimension of

the homogeneous degree n elements of the determinantal and pfaffian rings (known

as the Hilbert function of these rings) to sets of non-intersecting lattice paths. Most

of these results are based around the structure put on these rings, referred to as an

algebra with straightening law or an ordinal hodge algebra. So in the next section we

shall review these concepts.

4.2 Algebras with Straightening Law

A very important property of determinantal and pfaffian rings is that they are what

is referred to in [6] as an algebra with straightening law , or ASL. This is referred to

as an ordinal hodge algebra in [7].

Definition 4.5. A graded ring R is a ring which can be decomposed into the direct

sum of abelian groups (additive) as follows:

R = R0 ⊕ R1 ⊕ . . . ,

with the condition that ri ∈ Ri and rj ∈ Rj implies rirj ∈ Rij.

One of the most common examples of a graded ring is the ring of polynomials,

where Ri is the set of homogeneous polynomials of degree i. We define the homoge-

neous elements of grade i to be the elements of Ri.

Definition 4.6. For a k-algebra A, and a partially ordered finite subset Π of A, we

say A is an algebra with straightening law if the following conditions hold:

1. A = A0 ⊕ A1 ⊕ . . . is graded with A0 = k. A is generated by Π as a k-algebra.

Every element of Π is homogeneous of positive grade.

2. We define the standard monomials, M , to be the product of chains in Π (with

respect to its partial order), where the empty chain is 1 ∈ k. The standard

monomials must be linearly independent.
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3. For any a, b ∈ Π, then ab can be expressed as a linear combination (over k) of

standard monomials, where each monomial has a factor which is less than or

equal to both a and b (note this is trivial if a and b are comparable).

It is easy to check using condition 1 and 3 that the set of standard monomials

spans A as a module, and by the second condition the standard monomials are linearly

independent. Thus the standard monomials form a basis of A as a module. ASLs are

often interesting because they let us examine the structure of an algebra in terms of

a finite poset.

A very simple example of an ASL is the ring A = k[x1, . . . , xn], graded by degree,

and Π = {x1, . . . , xn} equipped with a total order. Then condition 1 is trivial, as the

algebra is defined to be generated by Π. Condition 2 is also easy to check, since the

standard monomials are the monomials of this algebra. Condition 3 is again trivial,

as there are no incomparable elements, so the product of any two elements of Π is a

standard monomial.

It is shown in [6] that the algebra k[xij]1≤i,j≤n with the set Π of determinant

minors in standard form is an ASL. Here the partial order is defined by the relation

[a1, . . . , at|b1, . . . , bt] ≤ [c1, . . . , cu|d1, . . . , du] if and only if t ≥ u and ai ≤ ci and

bi ≤ di for all 1 ≤ i ≤ u. Note it is important that the minors are in standard form

for this comparison.

Using this partial order we can find a correspondence between the standard mono-

mials and Young bitableaux.

Definition 4.7. A standard Young tableau is an assignment of positive integers to:

a1,1 a1,2 . . . a1,k1

a2,1 a2,2 . . . a2,k2

...

am,1 am,2 . . . am,km

.

with the property that k1 ≥ k2 ≥ · · · ≥ km and ai,1 < ai,2 < · · · < ai,ki
for all

1 ≤ i ≤ m and a1,i ≤ a2,i ≤ . . . for all 1 ≤ i ≤ k1.

A standard Young bitableau is an ordered pair of standard Young tableaux of the

same shape. The shape of a Young tableau is the sequence k1, . . . , km. A bitableau
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({aij}, {bij}) corresponds to the standard monomial:

m
∏

i=1

[ai,1, . . . , ai,ki
|bi,1, . . . , bi,ki

].

One can check that the restrictions k1 ≥ k2 ≥ · · · ≥ km and a1,i ≤ a2,i ≤ . . . for all

1 ≤ i ≤ k1 corresponds exactly to the restriction of comparability under our partial

order. Young bitableaux have seen a great deal of study in combinatorics, so this

relation leads to many interesting results.

Using the straightening law relation, we can see more of the structure of the ring

St. The ideal Dt is then the span of all the standard monomials which contain minors

[a1, . . . , am|b1, . . . , bm] where m ≥ t. Thus St is spanned by the standard monomials

which are the product of minors of the form [a1, . . . , am′ |b1, . . . , bm′ ] with m′ < t.

Considered as bitableaux these can be counted using the Gessel-Viennot method,

which relates this basis to sets of non-intersecting paths.

In the case of the pfaffian minors in standard form, it is claimed in various pa-

pers that these also form an ASL, under the very similar partial order [a1, . . . , at] ≤

[b1, . . . , bu] if and only if t ≥ u and ai ≤ bi for all 1 ≤ i ≤ u. However I have been

unable to find a proof of this. In [8] they do prove that the standard monomials

defined by this order form a basis for the algebra. This property is enough to get

many useful results, even without the full straightening properties. To prove that the

standard monomials form a basis we begin with a few lemmas on pfaffian minors.

Lemma 4.8.

[a1, . . . , at][b1, . . . , bu] =

t
∑

h=1

[a1, . . . , ah−1, b1, ah+1, . . . , at][ah, b2, . . . , bu]

+

t
∑

k=2

(−1)k[bk, b1, a1, . . . , at][b2, . . . , bk−1, bk+1, . . . , bu]

This is proved in [8] as Lemma 6.1 through elementary properties of the pfaffian.

Lemma 4.9. For integers a1, . . . , ai, x1, . . . , xu+1, and bi+2, . . . , bt, then
∑

σ∈Su+1

sgn(σ)[a1, . . . , ai, xσ(1), . . . , xσ(u−i)][xσ(u−i+1), . . . , xσ(u+1), bi+2, . . . , bt]

where u > i, can be expressed as a linear combinations of terms µψ where µ and ψ

are minors and µ has more than u indices.
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Proof. This proof is taken from [8].

We shall prove this by induction on i. The base case of i = 0 is Lemma 4.8.

Let us assume this holds for i− 1, and then use Lemma 4.8 to see:

∑

σ∈Su+1

sgn(σ)[a1, . . . , ai, xσ(1), . . . , xσ(u−i)][xσ(u−i+1), . . . , xσ(u+1), bi+2, . . . , bt]

=
∑

σ∈Su+1

sgn(σ)

(

i
∑

h=1

[a1, . . . , ah−1, xσ(u−i+1), ah+1, . . . , ai, xσ(1), . . . , xσ(u−i)]

· [ah, xσ(u−i+2), . . . , xσ(u+1), bi+2, . . . , bt]

+
u
∑

h=i+1

[a1, . . . , ai, xσ(1), . . . , xσ(h−i−1), xσ(u−i+1), xσ(h−i+1), . . . , xσ(u−i)]

· [xσ(h−i), xσ(u−i+2), . . . , xσ(u+1), bi+2, . . . , bt]

+

i+1
∑

k=2

(−1)k−1[xσ(u−i+k), xσ(u−i+1), a1, . . . , ai, xσ(1), . . . , xσ(u−i)]

· [xσ(u−i+1), . . . , xσ(u−i+k−1), xσ(u−i+k+1), . . . , xσ(u+1)]

+

t
∑

k=i+2

(−1)k−1[bk, xσ(u−i+1), a1, . . . , ai, xσ(1), . . . , xσ(u−i), bi+2, . . . , bt]

·[xσ(u−i+1), . . . , xσ(u+1), bi+2, . . . , bk−1, bk+1, . . . , bt]
)

.

To clean this up a little, let R be the terms above which contain a minor of more

than u elements and let S be the left hand side. This leaves us with:

S =
∑

σ∈Su+1

sgn(σ)

(

i
∑

h=1

[a1, . . . , ah−1, xσ(u−i+1), ah+1, . . . , ai, xσ(1), . . . , xσ(u−i)]

· [ah, xσ(u−i+2), . . . , xσ(u+1), bi+2, . . . , bt]

+

u
∑

h=i+1

[a1, . . . , ai, xσ(1), . . . , xσ(h−i−1), xσ(u−i+1), xσ(h−i+1), . . . , xσ(u−i)]

·[xσ(h−i), xσ(u−i+2), . . . , xσ(u+1), bi+2, . . . , bt]
)

+R.
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Let us next examine the group of terms:

S =
∑

σ∈Su+1

sgn(σ)
i
∑

h=1

[a1, . . . , ah−1, xσ(u−i+1), ah+1, . . . , ai, xσ(1), . . . , xσ(u−i)]

· [ah, xσ(u−i+2), . . . , xσ(u+1), bi+2, . . . , bt].

=
i
∑

h=1

(−1)u−h(−1)t−1
∑

σ∈Su+1

sgn(σ)[a1, . . . , ah−1, ah+1, . . . , ai, xσ(1), . . . , xσ(u−i+1)]

· [xσ(u−i+2), . . . , xσ(u+1), bi+2, . . . , bt, ah],

since we can reverse the order of the summations and reorder the elements in the

minor.

We can see this is of the same form as our original summation, but with i replaced

by i − 1, and still having the same value for u. Thus by the induction hypothesis

we can express this as a linear combination of terms each containing a minor of size

greater than u. Call this R′. Thus we are left with:

S =
∑

σ∈Su+1

sgn(σ)

u
∑

h=i+1

[a1, . . . , ai, xσ(1), . . . , xσ(h−i−1), xσ(u−i+1), xσ(h−i+1), . . . , xσ(u−i)]

· [xσ(h−i), xσ(u−i+2), . . . , xσ(u+1), bi+2, . . . , bt] +R +R′.

If we reverse the order of the sums, and let γh be the permutation which is the

transposition of h− i and u− i+ 1, we get:

S =

u
∑

h=i+1

∑

σγh∈Su+1

sgn(σγh)[a1, . . . , ai, xσ(1), . . . , xσ(h−i−1), xσ(h−i), xσ(h−i+1), . . . , xσ(u−i)]

· [xσ(u−i+1), xσ(u−i+2), . . . , xσ(u+1), bi+2, . . . , bt] +R +R′.

= −(u− i)
∑

σ∈Su+1

sgn(σ)[a1, . . . , ai, xσ(1), . . . , xσ(u−i)]

· [xσ(u−i+1), . . . , xσ(u+1), bi+2, . . . , bt] +R +R′.

Since γh is a single transposition, its signum is −1.
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Then we can see this summation is a multiple of our original expression, so moving

it to the other side we see that our final expression is:

∑

σ∈Su+1

sgn(σ)[a1, . . . , ai, xσ(1), . . . , xσ(u−i)]

· [xσ(u−i+1), . . . , xσ(u+1), bi+2, . . . , bt] =
1

u− i + 1
(R +R′).

This proves the lemma by induction (since u > i implies that u− i+ 1 6= 0).

Lemma 4.10. The standard monomials of pfaffian minors are linearly independent.

Proof. This proof is adapted from that in [6] for the determinantal case. Using the

terminology of that proof we refer to a pair of positive integers (i, j) as a special pair

for a minor in standard form [a1, . . . , am] if i < j and there exists ak = i but no

ak = j. The pair is called extra special if it is the lexicographically least special pair

for that minor. We then define a pair to be special for a standard monomial µ if it is

special for some minor which is a factor of µ. We define a pair to be extra special for

µ if it is the lexicographically least special pair for µ. We further define a pair to be

extra special for a set of standard monomials if it is the lexicographically least extra

special pair of the standard monomials of the set.

We next prove the linear independence of the standard monomials by downward

induction on the extra special pairs for sets of standard monomials. Here we do not

allow the empty minor. Since every other standard monomial is homogeneous of

degree greater than zero it is linearly independent from the rest.

The highest possible extra special pair for a standard monomial is (n− 1, n+ 1),

since we must have at least two indices in some minor between 1 and n, and n + 1

is not a valid index for a minor. This is then the index for our base case. The only

minor for which this is extra special is [n−1, n] and thus a set of standard monomials

for which (n − 1, n + 1) is extra special must be a set of powers of [n − 1, n]. Since

this is clearly linearly independent, our base case holds.

For our induction hypothesis, assume that any set of standard monomials with

extra special pair greater than (i′, j ′) is linearly independent.

Let us define the function Φi,j to act on a minor by replacing i with j if (i, j) is

special for the minor and as the identity otherwise. Then have it act on a standard
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monomial by acting on each of the minors composing it. For a standard monomial µ,

define the function vi,j(µ) to be the number of factors of µ for which (i, j) is a special

pair.

We claim that if we have minors α ≤ β for which (i, j), with i < j, is less than

or equal to their extra special pairs, then Φi,j(α) ≤ Φi,j(β). To prove this claim

note that if (i, j) is not special for α then this is trivial. If it is special for α then

it must be extra special, since it is less than or equal to its extra special pair. Let

α = [α1, . . . , αt] and β = [β1, . . . , βu] in standard form. Since α ≤ β then t ≥ u. As

(i, j) is extra special for α we know that α1 = i, α2 = i + 1, . . . , αj−i = j − 1 since

there cannot be a lower index than i and there can’t be a missing index between i

and j. Since it is missing j then αj−i+1 > j (or does not exist).

Case 1: i is in β.

Since (i, j) is also less than or equal to the extra special pair of β, then if β

contains i it must also have the elements β1 = i, β2 = i + 1, . . . , βj−i = j − 1. Since

α ≤ β then βj−i+1 ≥ αj−i+1 > j (if j − i+ 1 ≤ t, otherwise u ≤ t < j − i+ 1 so there

is a βj−i+1). Thus (i, j) is special for β. Thus Φi,j(α)1 = Φi,j(β)1 = i + 2 and this

continues up to Φi,j(α)j−i = Φi,j(β)j−i = j. Beyond that Φ(α)k = αk ≤ βk = Φ(β)k,

so Φi,j(α) ≤ Φi,j(β).

Case 2: i is not in β.

Then β1 ≥ i + 1, since otherwise it would have a lower special pair than (i, j).

Thus βq ≥ i + q = Φ(α)q for all 1 ≤ q ≤ i − j and βq ≥ αq = Φ(β)q for all other q.

Since (i, j) is not special for β, Φ(β) = β. Thus Φi,j(α) ≤ Φi,j(β).

Using this result we see that if we choose (i, j), i < j less than or equal to the

extra special pair for a standard monomial µ then Φi,j(µ) is also standard.

Next we claim that if we have standard monomials µ 6= ψ and (i, j) which is

less than or equal to the extra special pairs of µ and ψ such that vi,j(µ) = vi,j(ψ)

then Φi,j(µ) 6= Φi,j(ψ). Let µ1 ≤ µ2 ≤ · · · ≤ µr be the minors composing µ and

ψ1 ≤ ψ2 ≤ · · · ≤ ψs be those composing ψ.

As before, note that since (i, j) is less than or equal to the extra special pairs

of µ and ψ, if (i, j) is special for any ψi or µi they are extra special for it. If (i, j)
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is not special for any minor in µ or ψ then Φi,j is the identity on µ and ψ, thus

Φi.j(µ) 6= Φi,j(ψ).

Let µt be the first (lowest t value) so that (i, j) is extra special for µt, and u for ψu

be similarly defined. Let q = vi,j(µ) = vi,j(ψ). Now if µp ≥ µt and (i, j) is not special

for µp, then the first i − j elements of µp must be greater than or equal to those of

µt, which are i, i+ 1, . . . , j − 1. If µp starts with i it must have a j (since (i, j) is not

special for it), but this is forbidden by µp ≥ µt as in the first case of our previous

claim. So the first index of µp must be greater than i, which implies that nothing

greater than µp may have (i, j) special. Thus the minors for which (i, j) is special

must occur in blocks of the chain. So they are µt, . . . , µt+q−1 and ψu, . . . , ψu+q−1.

One can check that restricted to minors for which (i, j) is special Φi,j is a bijection,

since it is restricted to the complement of this set. Thus if t = u and µ 6= ψ then there

is some µk 6= ψk, which means Φi,j(µk) 6= Φi,j(ψk), and thus Φi,j(µ) 6= Φ(i, j)(ψ).

If t 6= u then without loss of generality assume t < u. Now Φi,j(µt) must start

with an i + 1 since µt started with an i and (i, j) is special for it. However since

ψt < ψu it must start with i (if it started with something lower, it would have a

lower extra special pair than (i, j)). Since (i, j) is not special for ψt (as t < u),

Φi,j(ψt) = ψt 6= Φi,j(µt). Thus Φi,j(µ) 6= Φi,j(ψ). This proves our claim.

Now consider the algebra homomorphism Γi,j : k[xij ]1≤i<j≤n → k[xij]1≤i<j≤n[w]

defined by the following:

Γi,j(xst) =



















xst, s 6= i, t 6= i

xst + wxjt, s = i

xst + wxtj, t = i

.

If the above gives xjt where j < t then we mean −xtj and if t = j then we mean zero.

Now if we consider this as acting on a minor [a1, . . . , am] then if i 6= ak for all k it acts

as the identity. If ak = i then it maps this to [a1, . . . , ak−1, j, ak+1, . . . , ak]. Note this

is zero if j is also in the minor. Thus if (i, j) is less than or equal to the extra special

pair for a minor a then Γi,j(a) = a± wΦi,j(a) if (i, j) is special for a and Γi,j(a) = a

otherwise.

Consider the set S of standard monomials, where (i′, j ′) is extra special for the

set. For any µ ∈ S we see Γi′,j′(µ) = wvi′,j′ (µ)Φi′,j′(µ) +R where R is of lower degree
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in q than wvi′,j′ .

Assume for contradiction that S is linearly dependent. Then we have non-zero cq

such that
∑m

q=1 cqµq = 0, for µq ∈ S. Then Γi′,j′

(

∑m
q=1 cqµq

)

= 0. Then consider

v = max{vi′,j′(µq)}. The term of degree v in w of Γi′,j′

(

∑m
q=1 cqµq

)

is

∑

k

±cqk
Φi′,j′(µqk

) = 0,

where the qk are those such that vi′,j′(µqk
) = v. This implies the set of Φi′,j′(µqk

) are

linearly dependent. However, Φi′,j′(µi,j) altered all the minors for which (i′, j ′) was

extra special to have a higher extra special pair, and the rest already did. Thus the

set must have an extra special pair (i′′, j ′′) such that (i′′, j ′′) ≥ (i′, j ′). This means we

can apply the induction hypothesis to get a contradiction.

Theorem 4.11. The standard monomials of pfaffian minors of order n form a basis

for k[xij]1≤i<j≤n.

Proof. To prove this we need only show that the standard monomials span this space,

since Lemma 4.10 shows they are linear independent.

Since it is clear the minors generate the algebra, we need only show that any

pair of incomparable minors can be expressed as a linear combination of standard

monomials.

If we have two minors, a = [a1, . . . , as] and b = [b1, . . . , bt] where s ≥ t, then we

refer to their incomparability index as the ordered pair (s− t, i) where i is the lowest

value such that ai > bi. If none such exists then use n + 1 for i. We shall then use

downward induction on incomparability index, ordered lexicographically, to show we

can express these minors as a linear combination of standard monomials.

For our base case, note the highest possible incomparability index is (n, n + 1).

In this case the two minors must be comparable, since they in fact are for any (n, i)

or (i, n + 1), since in the former there is only one minor and in the latter the larger

minor has all corresponding elements lower (and thus by definition is lower itself). For

our induction hypothesis, assume that any product of minors ab with incomparability

index greater than (u, v) is expressible as a linear combination of standard monomials.
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Then take ab with incomparability index (u, v). By Lemma 4.9 we see that if we

let xi = ai+v−1 for 1 ≤ i ≤ s− v + 1 and xi = bi−s+v−1 for s− v + 2 ≤ i ≤ s+ 1, then

we obtain:

∑

σ∈Ss+1

sgn(σ)[a1, . . . , ai, xσ(1), . . . , xσ(s−v+1)][xσ(s−v+2), . . . , xσ(s+1), bv+1, . . . , bt] = R,

where R is a sum of terms composed of one factor with size greater than a and the

other of size less than b. The terms of R then have a higher incomparability index,

since their first coordinate will be larger. Any permutation in the sum which can be

decomposed into a permutation on 1, . . . , s− v + 1 and one on s− v + 2, . . . , s gives

a term of ab. Thus we have:

(s− v + 1)!v!ab = −R

−
∑

σ∈S′

s+1

sgn(σ)[a1, . . . , ai, xσ(1), . . . , xσ(s−v+1)][xσ(s−v+2), . . . , xσ(s+1), bv+1, . . . , bt],

where S′
s+1 is the set of permutations on s+ 1 which map at least one element from

1, . . . , s− v+ 1 to s− v+ 2, . . . , s+ 1. Note that b1 < · · · < bv < av < · · · < as. Take

the term

[a1, . . . , av−1, xσ(1), . . . , xσ(s−v+1)][xσ(s−v+2), . . . , xσ(s+1), bv+1, . . . , bt],

and put in standard form as

[a′1, . . . , a
′
u][b

′
1, . . . , bt].

Then a′i ≤ ai for all 1 ≤ i ≤ v − 1, since a1, . . . , av−1 are all in the left minor. Each

a′i must be chosen from a1, . . . , as and b1, . . . , bv. The only members of this set which

are larger or equal to av are av, . . . , as. Since this permutation is in S′
v+1 we know

at least one of the av, . . . , as must not be in the left minor. Thus a′v < av, and since

av−1 ≤ bv−1 < bv this means a′v ≤ bv. The indices b′1, . . . , b
′
v are taken from b1, . . . , bt

and av, . . . , as. The lowest possible values for these are b1, . . . , bv, and so b′i ≥ bi for

1 ≤ i ≤ v. Putting this together we see a′i ≤ ai ≤ bi ≤ b′i for all 1 ≤ i < v and

a′v ≤ bv ≤ b′v. Since the size of our minors has not changed, our incomparability index

is then (u, v′), where v′ > v.

Applying our induction hypothesis we can replace the right side with a linear

combination of standard monomials and our proof is complete.
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This is very similar to the proof in [6] that the determinantal minors form an

ASL. For determinantal minors there is a result similar to Lemma 4.9 which has zero

instead of R. This allows us to keep the additional requirement that each term in the

expansion of ab has a factor less than or equal to a, since this is true of every one of

the other terms. Unfortunately this is not necessarily true with the terms of R so we

cannot retain this information.

This does at least give us the result that the standard Young tableaux with rows

of even length form a basis in this manner. This property was used in [12] and [2] to

prove some interesting results.

4.3 Hyperpfaffian Rings

The definitions of pfaffian ring and pfaffian ideal can be extended fairly easily to

the hyperpfaffian. The minor of an alternating tensor can be defined in the same

way as an antisymmetric matrix. The minor [q1, . . . , qt] of Λ is the map which takes

(i1, . . . , ik) to Λ(qi1, . . . , qik). We define standard form as before.

Definition 4.12. For k and t a multiple of k, the uniform hyperpfaffian ideal of

dimension k and order t, denoted Pk,t is the ideal in A = k[xi1,...,xk
]1≤i1<i2<···<ik≤n

generated by the set

{pfk([q1, . . . , qt]) : q1 < · · · < qt ∈ {1, . . . , n}} .

Definition 4.13. For k and t a multiple of k, we define the uniform hyperpfaffian

ring of dimension k and order t to be Rk,t = A/Pk,t.

Since most results on pfaffian rings and ideals are based around the ASL structure

of the pfaffian minors in standard from, or at least the fact that they are a basis for

the algebra, we would like to prove a similar result for the hyperpfaffian ring. Since

minors can be described in the same way (though with the restriction that they have

a multiple of k elements, rather than two, to be non-trivial), our first thought is to

use the same partial order. Unfortunately it is easy to show this does not work. If we

take the minors [1, 4, 5, . . . , k+2] and [2, 3, 4, . . . , k+2] we see these are incomparable,

yet they are the only possible way of producing the term x1,4,...,k+2x2,3,...,k+2.
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So our next thought is to try a different partial order. Unfortunately for sufficiently

large n, no “reasonable” partial order exists that makes the hyperpfaffian minors in

standard form of dimension k > 2 form basis of A. We now discuss what we mean

by “reasonable”.

Definition 4.14. We define a partial order 4 on the set of hyperpfaffian minors in

standard form to be label independent if the relation [i1, . . . , il] 4 [j1, . . . , jm] depends

only on the order on the indices i1, . . . , il, j1, . . . , jm, not on their actual values.

For example if we have a label independent partial order 4 then [1, 2, 3, 4] 4

[5, 6, 7, 8] if and only if [5, 6, 7, 8] 4 [9, 10, 11, 12], since the second pair is the same

as the third pair shifted by four. It does not have to be a uniform shift, in fact

[1, 2, 3, 4] 4 [5, 6, 7, 8] if and only if [i1, i2, i3, i4] 4 [j1, j2, j3, j4] for every choice of

i1, . . . , i4, j1, . . . , j4 such that ia < jb for all a, b = 1, . . . , 4, as these are all relabellings

of the same order (it is assumed that i1 < · · · < i4 and j1 < · · · < j4 since we are

dealing only with minors in standard form). On the other hand, [1, 2, 3, 4] 4 [5, 6, 7, 8]

implies nothing about the relation of [1, 2, 3, 5] and [4, 6, 7, 8] as in the former i4 < j1,

whereas in the latter i4 > j1.

One can see that our order on the standard pfaffian minors has this property, as

it is defined only in terms of the order on the indices and the number of indices. This

restriction ensures that all the subalgebras of A defined by restricting the indices are

identical (for a given size) with respect to the order of their minors.

A partial order which is label independent can be described by defining the relation

on diagrams which gives the order of the indices in the minors. Our diagrams has

rows representing the minors being compared, with columns representing the indices

in increasing order. For example if we have the minors [1, 4, 5, 6, 8] and [2, 3, 8, 9] we

would use the following diagram:

a a a a a

b b b b
.

An a has been placed in the first row for each column representing an index of

[1, 4, 5, 6, 8] and a b has been placed in the second row correspondingly for [2, 3, 8, 9].

Through label independence, we know that [1, 4, 5, 6, 8] 4 [2, 3, 8, 9] if and only if
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[i1, . . . , i5] 4 [j1, . . . , j4] for all choices of i1, . . . , i5, j1, . . . , j4 so that:

i1 < j1 < j2 < i2 < i3 < i4 < i5 = j3 < j4.

This is exactly the information in the diagram. Any choice of labelling of the columns

of the diagram, such that the labels increase from left to right, gives a pair of minors

with this relation. We can then think of a partial order as an assignment of ≺,�,=,or

./ to each diagram of this type (note we use ./ to denote incomparable elements).

Certainly not all such assignments are partial orders, but all label independent partial

orders define such an assignment. If such an assignment does define a partial order,

then that partial order is label independent.

Definition 4.15. For a monomial
∏m

i=1 xai,1 ,...,ai,k
∈ A we define its content to be an

index of the number of aij = q for each integer q.

So for example x2
1,2,3,4x3,5,7,8 has content 12, 22, 33, 42, 51, 71, 81 since it has two 1’s,

2’s, and 4’s, three 3’s, and one 5,7, and 8.

Definition 4.16. For a product of minors
∏m

i=1[ai,1, . . . , ai,k] ∈ A we define its content

to be an index of the number of aij = q for each integer q.

So if we had [1, 2, 3, 4]2[1, 2, 3, 5, 7, 8] its content is 13, 23, 33, 42, 51, 71, 81. A product

of hyperpfaffian minors with content C is homogeneously composed of monomials of

content C.

Theorem 4.17. There is no label independent partial order on the hyperpfaffian

minors of dimension k ≥ 3 so that the standard monomials under that order form a

basis for A.

Proof. Assume for contradiction that 4 is such a label independent partial order.

Let us first look at the space spanned by the monomials of content 11, 21, . . . , (2k)1.

The monomials that span this can be identified with partitions of {1, . . . , 2k} into two

sets A and B of size k by xAxB. The products of minors with this content (which

have non-trivial hyperpfaffian) are either of the form [A][B] above, or [1, . . . , 2k]. Thus

there is exactly one more minor with this content than the dimension of the space, so

the partial order must exclude exactly one of these. This cannot be [1, . . . , 2k] since

any single element is a chain in any partial order.

81



If we look at any xi1,...,ikxj1,...,jk
where |{i1, . . . , ik, j1, . . . , jk}| < 2k (i.e. one where

there is at least one pair a, b such that ia = jb), then any product of minors with the

same content must be the product of at least two minors. Since there are only 2k

elements, it must be the product of exactly two. Thus we can see specifically that

the only product of minors generating this term is [i1, . . . , ik][j1, . . . , jk]. We see that

any two minors of length k sharing at least one element must be comparable in 4.

In terms of our diagrams, that means that any diagram with fewer than 2k columns

and k elements in each row must be comparable. Only one diagram (and the diagram

which is a vertical flip of it) with exactly k columns is incomparable. Our goal is to

show that the transitivity of 4 does not allow this diagram to exist.

To do so we are going to construct an algorithm to place a minor between the

two incomparable minors. To do so first construct the incomparable diagram, with

one minor labelled a the other c. In this diagram we refer to positions as points

between columns, and at the beginning or end. We then place new elements b in

positions (inserting a column between two existing columns) to form a new minor.

The algorithm is as follows:

Step 1 : Set positions p1 and p2 to be the start.

Step 2 : Set x to be a and y to c if the element following p1 is an a and x to c

and y to a otherwise.

Step 3 : Let q be the number of x’s following p1 before the first y. Set p2 to be

the position prior to that first y.

Step 4 : Add q b’s at p2, set p1 to immediately follow the b’s.

Step 5 : Set p2 to be the first position such that there are q y’s after p1 and

before p2.

Step 6 : let q be the number of x’s between p1 and p2.

Step 7 : Add q b’s at p2, set p1 to immediately follow these b’s (or to p2 if q = 0).

Step 8 : If p2 is the end of the diagram STOP.

Step 9 : If q = 0 go back to Step 2, otherwise go back to Step 5.
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This algorithm places a new minor b of length k between a and c in this diagram. The

new diagram restricted to a over b is the same as the diagram restricted to b over c.

We added k b’s, as they are always added in correspondence with both the a’s and the

c’s. We always place as many b’s in front of the next batch of c’s as the number of a’s

we had just passed, and then continued past that many b’s. This ensures that there

are as many a’s before the first b as there are b’s before the first c. It also ensures

there are as many c’s after the first block of b’s as there are b’s after the first block of

a’s. Then by adding as many b’s as a’s that were passed, we ensure that the second

block of b’s with respect to the c’s is the same size as the second block of a’s with

respect to b’s. Continuing in this way we ensure that the relation is as we desire.

For example, consider applying the algorithm to the diagram:

a a a a

c c c c
.

Step 1 has us place p1 and p2 at the start. Then in step 2 we set x = a and y = c,

and p1 is then placed after the second a. There are two leading a’s, so q is set to 2 in

step 3 and p2 is set to p1. In step 4 we then insert two b’s after the first two a’s and

before the first c giving us the diagram

a a a a

b b

c c c c

.

We then progress past two c’s and place p1 at the end of these for step 5. In doing so

we move past one a, so in step 6 we set q = 1. So for step 7 we insert one b after the

second c, giving us

a a a a

b b b

c c c c

.

We then return to step 5, and move past one c. We have then passed no a’s on the

way, so q = 0 and we go back to step 2. This time x = c and y = a. There is one

leading c, so we set q = 1 and advance past it, and insert a b, giving us

a a a a

b b b b

c c c c

.

83



We then advance past our one a, and stop as we are at the end of the diagram. Now

if we look at the two restrictions of our diagram we get

a a a a

b b b b
,

b b b b

c c c c
.

We see these are the same diagrams.

Since these relations are the same, we know that if a ≺ b then b ≺ c and thus by

transitivity a ≺ c. Similarly if a � b then a � c. But since a ./ c we know a ./ b and

b ./ c. Thus this the digram for a over c must be the same as the diagrams for a over

b and b over c, since there is only one diagram of this size which is incomparable. It

cannot be the reverse since the first b comes before the first y and the first x comes

before the first y.

Assuming this has happened, we can further adjust our b’s if there are two or more

b’s in a row. In that case take the first b in this block and switch it with the index

before it. Take the last b in the block and switch it with the one after it. Moving the

b back a step exchanges the order of the first b in a group with that of the last a (or

c but WLOG choose a and c so that the group is preceded by a’s), and since we have

the same relation all the way down, we know that this group of a’s corresponds to

the group of b’s with relation to c ending with this group of a’s, thus advancing the

b one provides the corresponding change to the other diagram. Since this is a new

diagram, it implies a ≺ b or a � b and thus by transitivity as before a ≺ c and a � c.

Since we haven’t changed the relationship of a and c this contradicts a ./ c.

For example take the diagram

a a a a

c c c c
.

Then applying the algorithm we get

a a a a

b b b b

c c c c

.
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We see that all three relations are then the same so we have to adjust this. Moving

the first and third b back and forward gives us

a a a a

b b b b

c c c c

.

We can see here that the restricted diagrams are

a a a a

b b b b

and
b b b b

c c c c
.

These are clearly the same diagram, and not the same as a over c.

Our final case is that we have the same diagram for a over c, a over b, and b over

c and there are no two b’s in a row. For this to happen q must always be one or zero.

Thus there must be one leading term followed by a b inserted, then the other term,

then repeat. Thus it must be some sequence of the following diagrams:

a

b

c

or

a

b

c

It is here we are going to rely on k > 3. We have shown that a partial order of this

type does exist for k = 2, so we must use this fact somewhere. The incomparable

diagram for k = 2 is

a a

b b
.

When our algorithm is applied to this diagram we get more of the same diagram,

with no more than one b in a row. We now examine the following diagram, to show

that this final case does not lead to a partial order if k ≥ 3:

a a a

b b b

c c c

d d d

. (4.1)

85



This is composed of three diagonal blocks. The direction of the diagonal does not

affect us, and if there are more treat them exactly like the last block. We start by

choosing new b and c minors, as in the following diagram:

a a a

b b b

c c c

d d d

. (4.2)

The diagram of a over b is the same as that of c over d, and since this relation has

fewer than k indices it is not incomparable. Similarly the diagram of b over c cannot

be incomparable. To avoid transitivity causing a and d to be comparable, the relation

of b over c must be opposite to a over b. Let us say that a ≺ b WLOG, and thus

b � c.

While keeping the relation of a over b and c over d the same, we can adjust the

relation of b over c in the following way:

a a a

b b b

c c c

d d d

. (4.3)

Since their relations are unchanged, we know a ≺ b and c ≺ d. This means to maintain

the incomparability of a ./ d we must have b � c in this diagram. Readjusting a and

d with respect to b and c respectively we get the following diagram:

a a a

b b b

c c c

d d d

. (4.4)

This diagram restricted to a over b is the same as the relation of b over c in diagram

4.2. This implies a � b and c � d. From diagram 4.3, which had the same diagram

of b over c as this one, we know b � c. Thus by transitivity a � d, so we have a

contradiction, and no such order exists.

The unfortunate result of this is that very little of what has been shown about

pfaffian rings can be converted to the hyperpfaffian case. There may still be interesting
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structure here, since it is clearly different from the pfaffian ring, but it is less obvious

how to approach it.

4.4 Non-Uniform Hyperpfaffian Rings

We can also define hyperpfaffian rings and ideals in terms of the non-uniform hyper-

pfaffian. Here we use [q1, . . . , qt] to denote the minor of the antisymmetric tensor

algebra Λ to be the map on the sequences i1, . . . , ik which map to Λ(qi1 , . . . , qik).

Definition 4.18. The non-uniform hyperpfaffian ideal of order t, denoted by P∗,t is

the ideal in k[xI ]I⊆{1,...,n} generated by the set

{pf∗([q1, . . . , qt]) : q1 < · · · < qt ∈ {1, . . . , n}} .

Note that here we use the non-uniform hyperpfaffian that includes the odd sized

tensor algebra of Definition 1.21. The results hold in exactly the same way if we use

the even dimension only tensor algebra.

Definition 4.19. We define the non-uniform hyperpfaffian ring of order t to be

R∗,t = k[xI ]I⊆{1,...,n}/P∗,t.

Unlike the uniform hyperpfaffian, the non-uniform hyperpfaffian minors do form

an ASL. Unfortunately it is a rather trivial one. Our grading of k[xI ]I⊆{1,...,n} is

going to have to be slightly different. Instead of grading by degree we are going to

give the term
∏m

i=1 xIi
the grade of

∑n
i=1 |Ii|. Note for the uniform case this is like

assigning a grading of k times the degree instead of the degree. This grading makes

the hyperpfaffian minors homogeneous, whereas degree does not.

Theorem 4.20. The k=algebra k[xI ]I⊆{1,...,n} graded as above with the set Π of non-

uniform hyperpfaffian minors totally ordered forms an ASL

Proof. Let us first check the first condition, that the algebra is graded, Π generates

it, and the elements of Π are homogeneous. We have just established the grading,

and the homogeneity of Π, so we need only check Π generates the algebra. If we

look at the algebra generated by Π, we see first that it must contain all the single
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content monomials, since x{i} = [i]. Then it must contain any two element monomial

since x{i,j} + R = [ij], where R is composed of monomials composed of products of

single content monomials. We can continue this inductively to show we have all the

indeterminates and thus the entire algebra.

The second condition requires that the standard monomials are linearly indepen-

dent. To see this we construct a linear operator which maps the monomials
∏m

i=1 xIi

to the standard monomials. Note that

m
∏

i=1

[Im] =

m
∏

i=1

xIi
+R,

where R is composed of higher degree (not grade) terms. We order the basis of

monomials of the form
∏m

i=1 xIi
by degree, ordering monomials of the same degree

arbitrarily. Consider the linear transformation which maps
∏m

i=1 xIi
to
∏m

i=1[Ii]. With

respect to this basis, it is lower triangular with 1s down the diagonal. Thus this is

invertible, and so the standard monomials must be linearly independent.

Finally the third condition holds trivially, as there are no incomparable elements

in Π.

From this we get a good description of the structure of the non-uniform hyperp-

faffian ring. We see that R∗,t is isomorphic to k[xI ]I⊆{1,...,n}/Xt where Xt is the ideal

generated by {xI : |I| = t}. This means that little of the structure of the pfaffian is

involved. For this reason it is unlikely we shall find any interesting results using this

ring.
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algebra with straightening law, 69

alternating tensor, 14

antisymmetric matrix, 5

antisymmetric tensor algebra, 20

even, 20

arborescence, 28

ASL, 69

bad cycle, 45

central, 57

connected, 24

contain, 58

content

minor, 81

monomial, 81

cross, 3

cycle embedding, 59

cycle, of hypergraph, 24

determinantal ideal, 68

determinantal ring, 68

extra special pair, 74

good cycle, 45

graded ring, 69

hafnian, 49

homogeneous elements, 69

hyperdeterminant, 17

hypergraph, 23

hyperpfaffian

Barvinok, 15

Luque-Thibon, 15

non-uniform, 21–23

reduced Barvinok, 17

uniform, 15

hyperpfaffian ideal

non-uniform, 87

uniform, 79

hyperpfaffian orientation, 64

hyperpfaffian ring

non-uniform, 87

uniform, 79

incomparability index, 77

Kirchhoff matrix, 27

label independent, 80

minor, 67, 68

alternating tensor, 79

antisymmetric tensor algebra, 87

ordinal hodge algebra, 69

orientation

hypergraph, 30

induced on a tree, 31

pair-embeddable, 63
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pair-graph, 62

pair-planar, 63

path, of hypergraph, 24

perfect matching, 4

permanent, 49

pfaffian, 4, 5, 10, 11

pfaffian ideal, 67

pfaffian orientation, 52

pfaffian ring, 68

point embedding, 59

respect orientation, 51, 64

shape, Young Tableau, 70

shared vertices, 25

sign

of a tree, 34

signum

matching, 3

partition, 21

simple cycle, 25

simple hypergraph, 23

special cycle, 39

special pair, 74

standard form, 67

standard monomials, 69

standard Young tableau, 70

subdivision,even, 58

transition cycles, 54

tree, 25

uniform hypergraph, 23

uniform hyperpfaffians, 20

upper triangle, 3, 14

even non-uniform, 20

non-uniform, 20

walk, of hypergraph, 24
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