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Abstract

In my thesis, I describe new results in the thermodynamics of black holes in two gravita-
tional scenarios: spacetime anisotropy and higher curvature gravity. I focus on classifying
the critical point of "Large Black Hole / Small Black Hole" phase transitions in higher cur-
vature gravity in various dimensions, for both numerical and analytic black hole solutions.
Special emphasis will be placed on five-dimensional cubic and quartic quasitopological grav-
ity. I cover the motivation and document a number of higher curvature black hole solutions
as well as the thermodynamic behaviour of these black holes when they are asymptotically
Lifshitz symmetric (a form of anisotropy). I describe the methodology used to construct
the set of thermodynamic potentials for black holes with general asymptotics from a collec-
tion of well-justified conjectures, followed by the development of procedures to numerically
and analytically determine unknown quantities such as mass and thermodynamic volume
from these conjectures. I will complete this thesis by extracting the critical exponents and
thereby finding the universality class of the critical behaviour for a number of black hole
solutions. This work has implications for the study of the gauge/gravity duality as well as
for the dynamical behaviour of black holes.
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Chapter 1

Introduction

In this thesis I will attempt to achieve two goals. The first will be to give a clear outline
of the development of higher dimensional anisotropic black hole thermodynamics, in a way
that is consistent and understandable. The second will be to summarize my contributions
to this field in a way that is also consistent and with a high degree of detail, to make
any future work on these topics as easy and straightforward as possible. Therefore, I have
spent time unifying the notation of numerous papers, so you may notice some differences
between the variables of this thesis and the sources referenced. Furthermore, in the interest
of pedagogy I have provided a number of new illustrative examples that elucidate behaviour
that either is relevant and important but uncommonly discussed (for example, the effect of
choice of cosmological constant in higher curvature gravity (2.18)), is algebraically lengthy
(like the details of the shooting method in section 3.5), or is conceptually interesting but
to date has not yet yielded novel results (such as the content of section 4.3).

Contentwise, I will spend the second and third chapters on higher curvature and
anisotropic theories of gravity respectively, particularly focusing on black holes and their
thermodynamics, followed by a fourth chapter discussing the unification of these two ideas
into “higher curvature anisotropic black holes”, the relationship of these black holes to
thermodynamic universality, and a presentation of some related new results and methods.
Much is currently understood about the solutions that completely obey various simple
background symmetries, but this thesis will emphasize solutions that only asymptotically
obey said symmetries in order to achieve more complicated behaviour (primarily thermo-
dynamical behaviour). Sometimes algebraically sizeable exact solutions have been found,
which I will present. Numerical methods are also used to probe scenarios for which we do
not have exact solutions, and I will detail those as well.



The core of this thesis will be the work published over the course of my PhD which
focuses on black hole thermodynamics. In particular, the thesis comprises the background
and better part of my work on five-dimensional numerical Lifshitz symmetric quartic qua-
sitopological black hole thermodynamics [1], criticality and the universality class of cubic
quasitopological black holes in five dimensions [2], and the determination of mass and
volume from a conjectured Smarr relation and a power series expansion of entropy and
temperature |3]. These research papers build substantially on some of my previous work,
namely the numerical Lifshitz symmetric cubic quasitopological black hole of [1] and the
exact charged five-dimensional cubic quasitopological black hole solution found in [5]. Be-
cause this research has not yet been related to the studies of quantum detectors and
temperature performed in |6, 7] (though this relationship may be examined in the fore-
seeable future, as an extension to background black hole metric functions is feasible and
interesting), and to the topos quantum physics in [3], these other works will not be featured
in this thesis, even though the papers [0, 7| were published over the course of my PhD.

Much of the work involved in writing this thesis consists of unifying the relatively
different notation of the aforementioned articles, and of cataloguing the relevant knowledge
in a way that is easy to read and understand. This thesis also features a pedagogical exercise
in numerically obtaining the universality class of a black hole, in the hope that the ease of
this approach is recognized and used towards a better understanding of thermodynamics
and holography in scenarios where exact solutions to the Einstein Field Equations are not
known (which is unfortunately a rather common scenario).

To complete this introduction I will discuss two of the fundamental ideas required to
motivate and form a background for the work in this thesis: the anti-de Sitter spacetimes
(and asymptotically anti-de Sitter spacetimes) and the gauge/gravity duality. The Lifshitz
symmetric spacetimes will be introduced as spacetimes that break the symmetry of anti-
de Sitter spacetime in a special way, while the study of higher curvature and Lifshitz
symmetric solutions are both motivated here by the gauge/gravity duality.

1.1 Anti-de Sitter Spacetimes

An important aspect of the gauge/gravity duality, and a common asymptotic symmetry
of many of the spacetimes described in this thesis, is the anti-de Sitter symmetry. In this
section I will provide a brief outline of anti-de Sitter (AdS) spacetimes, primarily following
more detailed illustrations such as [9].

Anti-de Sitter spacetimes begin with the embedding of a spatial hyperboloid surface,



which at constant time slices obeys
- 22+ X2+ Y? 4+ = -LX(T) (1.1)
into a flat spacetime;
ds* = —dT? - dZ* + dX* +dY? + - ~T? -7+ X2+ Y? 4+ =17 (1.2)

is the metric and constraining equation where L is a lengthscale for the hyperbolic space-
time. I will relate it to the “AdS lengthscale” or “cosmological lengthscale” in this thesis.

In order to obtain the form of the metric that I will use in this thesis (2.63), I will need
to perform a coordinate transform which combines three of the coordinates (here T, Z, X)

into two new coordinates (t,r) by using the constraint on the squares of the coordinates
from (1.2). The substitution

T=%(—t2+fj—;+L2+y2+m)
X:#(—t%f—;—ﬁwh..-) (1.3)
Tt
I
y="Y
L

is performed. This coordinate transform is smooth and invertible for positive radius r, i.e.
it is a diffeomorphism, and will not alter the curvature (1.7).

This ultimately yields a line element

r? L2dr?  r?
ds* = —ﬁahf2 e ﬁdﬁ%—z,o (1.4)
which we can see takes the form of (2.63) for f(r) - 1 and g(r) - 1. This yields the k=0
case of the constant curvature hypersurface, defined by

D-2i-1
A% = doy? + k' sin? (V6 ) (d922 + 3 [[sin? ejdeg) (1.5)
i=3 j=2

The essential property of this spacetime is its constant negative curvature. We can
show this by computing the Ricci scalar; the only nonzero Christoffel symbols (see (2.6))

3



are

.3 .1 , 1
V=77 Tw =2 L =--
1 r3
ri-- rr=-1 1.6
Tt r 1 L2 ( )

where the indices ¢ are the complete set of spacetime indices excluding {r,t¢}.

Then, the curvature scalar can be computed (the Ricci scalar is given by the equations
(2.3)-(2.5)) as
W) D-1)
12
where D is the total number of spacetime dimensions in (1.4). Thus, the AdS spacetime

is said to have constant negative curvature, where the curvature is inversely proportional
to L2.

R= (1.7)

Finally, since this is a constant curvature solution, the AdS spacetime is a solution to the
vacuum Einstein field equations when a cosmological constant A = - (D —1) (D -2) /2L?
is added to the action:

S - m%dem\/—_g(R—M) (1.8)

The AdS spacetime has a number of useful properties. Important here is that the nature
of the negative curvature acts in a confining manner; light rays following null geodesics will
reach the spatial boundary (located at r — o0) in finite coordinate time, and so boundary
conditions need to be imposed in order to have a well-posed initial value problem.

Interpreting this type of confinement as a gravity theory with some external pressure
will also give rise to the extended phase space thermodynamics that I discuss for various
theories, starting in 2.1.3.

Finally, the notion of asymptotically anti-de Sitter spacetimes is relevant to this thesis.
When I use the words asymptotically AdS, I mean a spacetime whose line element becomes
equal to (1.4) as r - oo. The boundary is assumed to be Rx8P-2, though few results in this
thesis are dependent on this assumption. Studying spacetimes that are only asymptotically
AdS allows for more complicated, thermodynamically interesting solutions than restricting
ourselves to pure AdS, such as the AdS-Schwarzschild black hole in arbitrary dimension.
The higher dimensional Schwarzschild black hole is commonly termed the Tangherlini black
hole; in this thesis we will be mostly concerned with higher dimensional AdS-Schwarzschild
black holes in addition to their extensions to theories with higher curvature, anisotropy, or
Maxwell charges.



To obtain this solution we promote the metric (1.4) to a more general form with metric

functions ) 22
r 9 r r2

-— dt
L2f (r)dt”+ r2f2(7“) L2

where the constant curvature hypersurface is given by (1.5). The specific transformation
used on pure AdS (1.2) to obtain these constant-curvature spatial slices is given by the

transformations
r2
T=I\/1+ kﬁ cos(Vkt)
r2 .
Z=L\/1+kﬁsm(\/Et) (1.10)

cos(Vkb;)
VE

s1n(\/_ 91
VB

dQD 2k (1.9)

X=r

0w =y 0)Hsm€

Q(D-1) _ sm(\\//__el H sin

where Y = ©®@) | for example, and i ranges from 2 to D — 2, where as is convention in this
thesis, D is the number of dimensions of the resultant metric (1.9).

This line element can describe an exact black hole solution; in this case the metric
function f2(r) in (1.9) takes the form [10]

L? 2A _(m)D_?’ (1.11)

2
Sl
)=k s - oD
where m is a term proportional to the black hole’s mass.

In this solution, we now have the appearance of an event horizon with a temperature
that we can compute. We will develop the procedure to do this, and to describe the
thermodynamics of black holes like this, beginning in section 2.1.1.

1.2 Gauge/gravity duality

One of the motivations for a large portion of the work done in this thesis is the concept
of a gauge/gravity duality, a general conjecture that a gravity theory (perhaps a string
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theory, or maybe some theory that is classically approximated by Lovelock gravity) has
non-perturbative relationships between the correlation functions of the local operators of a
gauge theory (the “dual theory”) and the partition function of fields in the gravity theory.

This relationship has now been studied extensively, both in the original context of an
N = 4 super-Yang-Mills theory (a conformal field theory) and a five-dimensional gauged
supergravity theory (which is asymptotically AdSs) [1 1], and in a wide variety of spacetimes
[12]. The most typical statement is that the asymptotically AdSp gravity theory is dual
to a conformal field theory on the boundary (in one fewer dimension), R x 872,

This is made more concrete through the GKP-Witten relation [9]
ZoFTy = Zadsp (1.12)

which states that the conformal field theory partition function is equivalent to that of the
string theory in asymptotically AdS spacetime in one greater dimension |13, 11].

Commonly, solutions are known to a classical gravity theory, and in this case a limit
of the string theory is taken which corresponds to a large number of colours in the gauge
theory (N.). The so-called “holographic dictionary” of relationships between parameters
in the CF'T and bulk classical gravity theory is constructed, and can be used to examine
quantities in one theory that are difficult to compute in the other.

For example, the strongly coupled gauge theory’s partition function is challenging to
evaluate due to a breakdown in perturbation theory, but if this corresponds to a classical
gravitational theory, we can perform computations in the bulk which will correspond to
quantities in the gauge theory. An example of this application is the computation of the
shear viscosity in the N' = 4 Super-Yang-Mills plasma, using the AdS/CFT holographic
dictionary [15].

In this thesis I will not go into detail on much of the specific and detailed work that
has been done on the AdS/CFT correspondence, because it is voluminous and because
the amount of required background would be burdensome. Instead, I am concerned with
examining a broader concept, the idea that the relationship between gravitational theories
and gauge theories can extend beyond conformal field theories and asymptotically anti-de
Sitter gravity.

In addition to AdS/CFT, there has been plenty of interest in the extension to a dS/CFT
correspondence, where the de Sitter spacetime (with a constant positive curvature) is hoped
to show correspondence with a conformal field theory in one fewer dimension [16, 17, 15].
The move to de Sitter spacetimes adds challenges; for example, a black hole in asymptot-
ically de Sitter spacetimes has a complicated thermodynamic relationship with the cos-
mological horizon; the expectation that both horizons have a temperature lead them to



form a system that is not necessarily in thermodynamic equilibrium, which makes study-
ing the relationship between thermal conformal field theories and black holes challenging.
Nonetheless, this research does provide evidence that a relationship between these theories
is plausible.

Other proposed dualities abound in recent years, such as the relationship between near-
horizon extremal Kerr black holes and CFTs [19], the relationship between asymptotically
flat spacetimes and conformal field theories [20], and various extensions of AdS/CFT to
physical systems such as superconductors [21] and ideal fluids [22].

Grouping these studies together comprises the conjectured gauge/gravity duality. Es-
sentially, when it comes to gravity theories, the search is on for their corresponding dual,
and for insights from exotic spacetimes or condensed matter physics that can be applied
to give a deeper understanding of the precise mathematical relationship between such dis-
parate theories.

This thesis is concerned with what could be viewed as a coarse-graining of the gauge/gravity
duality. Instead of finding a gauge theory which exactly corresponds to the partition func-
tions of whichever gravity theory, I instead discuss and develop techniques to relate these
theories only in certain locations of thermodynamic parameter space.

The tool I use to do this is universality, a feature exhibited by systems at Thermody-
namic criticality , and so I focus on the classification of criticality of gravitational systems,
and on developing tools to simplify identifying criticality and obtaining the corresponding
universality classes. Critical points are properties of many thermodynamic systems with
phase transitions. The phenomenon is associated with the indistinguishability of phases; a
critical point will end a line of phase transitions. A number of curious features emerge near
criticality, such as correlations being formed over diverging lengthscales [23]. As criticality
is approached the theory therefore becomes spatially non-local. Other properties of the
system will also diverge, and the nature of these divergences is what will allow us to clas-
sify the systems into universality classes. Near criticality the macroscopic thermodynamic
phenomena are the same for theories of the same universality class.

Knowing the universality class is an important step to understanding the gauge/gravity
duality. If a black hole solution has a universality class that isn’t shared with any known
condensed matter systems, then there exists a very interesting question to pose: has holog-
raphy broken down? Can it be salvaged? Or could this be a path towards uncovering
interesting new models in condensed matter physics?

This approach is relatively young, but in this thesis I will outline some of the preliminary
work that has been done on the topic of understanding universality in the context of the
gauge/gravity duality.



1.3 Conventions

Briefly, it is important that I make a short note about the various conventions used in this
thesis. Numerical quantities will be in standard equation-face, e.g. a. Operators and other
quantities which may not commute (such as matrices) will be written using a boldface, e.g.
a. Blackboard bold face typesetting will be used as in standard mathematics to represent
mathematical entities like such as the set of complex numbers C or the set of real numbers
R. In a small divergence from standard notation, the curly typeface 8 is used to represent
the sphere, since S will be used for the entropy and & will be used for the action.

For D—-dimensional manifolds, I will use Greek indices which range over every dimension
D, while Latin indices will be used for quantities on lower-dimensional submanifolds. For
example, working in a 5-dimensional spacetime, Greek indices o will run from 0 to 4, while
on a 4-dimensional hypersphere embedded in the spacetime, Latin indices ¢ will be used,
and will run from 0 to 3.

The metric sign convention will be the usual one used in general relativity: (=, +,+,-, +).
The standard conventions for partial and covariant derivatives will be used:

0
%Ty = 8MT,, = Tl/,,u
where partial derivatives can be represented by tensor indices following a comma (and
covariant derivatives following a semicolon).

I will generally refer to horizons in this thesis, keeping in mind that there are many
different notions of a “horizon” in general relativity. Unless otherwise indicated, when I use
the term horizon, it will denote the event horizon of the black hole - the bifurcate Killing
horizon formed by the D -2 dimensional surface on which the timelike Killing field’s norm
is zero; i.e. the Killing field becomes null [241].

The horizon radius will be denoted by r,. In most of the content, the general notation
for a lengthscale will be [, while the lengthscale generated by the cosmological constant
will be L. However, to agree with conventions in the literature, in much of chapter 3,
the opposite notation will be used; [ for the cosmological lengthscale and L for a general
dimension of “length”.

I shall attempt to consistently keep Planckian natural units. Thus, c=h =G = kg =
k. =1 for the majority of numerical quantities in this thesis.

The area of a unit hypersurface will be denoted wp  where D is the dimension of the
hypersurface and k is the topology. Here k€ {-1,0,1}, where —1 is a hyperbolic surface, 0
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is planar, and 1 is spherical. Since the context of this work does not require regularization
of these surface areas, I will occasionally explicitly evaluate wp; but I will leave this area
symbolic when k& = —-1,0. In the spherical case, this evaluates to

9 (D+2)/2

TT(2+1)

I’(2+1)E/mdx~xl2je_x
2 0

This variable will also be used to represent the hypervolume of the unit sphere in D
dimensions, which is given by wp.11/27.

(1.13)

Wp,1

The hypersurface area will often arise in this thesis as the result of the integral

W = fE@ (1.14)

where /0y, is the square root of the determinant of the metric tensor of the hypersurface
and Y, is the hypersurface.

Finally, computational algebra software was used for a number of high-level compu-
tations in this thesis. For compatibility and algorithm documentation, the versions used
were Maxima 5.34.1 [25], Maple 13 [26], and Mathematica 10.4 [27].



Chapter 2

Higher Curvature Gravity Theories

In this chapter I will elaborate on the reasons for studying various classes of higher curva-
ture black hole solutions, and I will encapsulate my work on black hole thermodynamics
in higher curvature gravity.

To attain higher curvature solutions, we begin with a modification of the Einstein-
Hilbert action, which consists of the Ricci scalar £; = R coupled to the square root of
the determinant of the metric tensor, by adding terms which are higher (and lower, in the
case of a cosmological constant) in powers of the tensorial expressions of curvature for the
manifold:

S- %/d% /=5 (=2A + L1 + F (R, Ry, Ryvos)) (2.1)
m

_ % [ de\/—_g(—ZA % Mizi) (2:2)

where D is the number of spacetime dimensions, A is the cosmological constant, £; is the
Ricci scalar, g is the determinant of the metric tensor g,,,, and the function F (R, R, Rvas)
is some scalar combination of the Ricci scalar, Ricci tensor, and Riemann tensor. We can
group this function into combinations of terms that are linear in curvature (e.g. the Ricci
scalar), quadratic in curvature (e.g. the square of the Ricci scalar) and so on, with a cou-
pling constant p; for the terms that are of i*” order in curvature. These curvature tensors
are built from the theory’s metric tensor as

o _ o o o A o TA
R/Wp —&,Fup—8MFVP+FAVFW—FMFVP (2.3)
R/W = R,u)\u)\

R=g¢g"R,,
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and the Christoffel symbols are given by [25]
I = lgu)\ (aga)\ i 8g>\l/ _ agua)
ro 2

orv Oz~  Ox*
where g, is the metric tensor.

(2.6)

In the case when no higher curvature terms are added to the action, and only the Ricci
scalar, cosmological constant, and matter terms are used, I denote these as the Einsteinian
solutions. In this thesis I will focus on the development of solutions to the Einstein field
equations when higher curvature terms are present.

First, I’ll motivate these types of solutions. The addition of higher curvature terms in
this form may be pathological, since if time derivatives higher than second order appear
in the field equations, the theory will likely suffer from an Ostrogradski instability [29].
This completely classical instability is particularly toxic to canonical quantization, yielding
negative energy modes that can cause the theory to suffer from uncontrollable particle
production [30]. At the level of the Hamiltonian, the instability arises because of the
appearance of terms linear in canonical momenta, which makes the Hamiltonian unbounded
from below. There are some caveats and this stability can be ‘cured’; we are free to explore
functions F which avoid this instability, or specific solutions that may result in a bounded
Hamiltonian.

This basis for studying modifications to general relativity has had broad success for a
wide variety of functions F. One popular example is when F = f(R), a function of only
powers of the Ricci scalar. This is popularly termed f(R) gravity, and has been employed
in inquiries into inflation and dark energy [31]. It is able to avoid instabilities through
a degeneracy which appears when only powers of the Ricci scalar (and not Riemann or
Riccei tensor, for example) are considered. There is also a wealth of work in modifying
the gravitational action in other ways; a few examples include dRGT massive gravity [32],
and generalized Brans-Dicke theory [31]. However, none of these models will be explicitly
considered in this thesis. Instead we will look at higher curvature terms that eliminate
third order and higher derivatives from the field equations.

Another justification for the introduction of higher curvature modifications is the hy-
pothesis that we know about the low-energy sector of gravity, and so Einsteinian gravity
forms a good low-energy limit but especially in higher dimensions, it seems natural to
continue adding the Euler invariants to the theory, as we appear to observe both possible
invariants in our four-dimensional theory of gravity [33, 34]. This line of reasoning shares
overlap with pursuits of the quantum gravity community, and there have been indications
that paths towards theories of quantum gravity can yield higher curvature terms, for ex-
ample |35, 30|, or even semiclassical arguments from one-loop contributions of matter fields
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to the effective action [37]. I shall discuss some of these concepts in more depth later on
in this thesis as I examine solutions in higher curvature theories of gravity.

Finally, in the context of gauge/gravity duality, it is expected that these higher cur-
vature modifications in the bulk have substantive impact on the dual theory, such as the
dual theory having a finite number of charges, or the expansion of the parameter space and
therefore an expansion of the potential dual theories that can be studied [38, 39, 10, 11, 12].

I shall work on the quasitopological theories, which are similar to the Lovelock theories
that will be described below. Both of these theories work by adding specially chosen terms
to the action which, in the right combinations, remove any higher order derivatives in
the field equations. This ensures that the theory’s behaviour arises from at most a set
of coupled second order nonlinear partial differential equations, avoiding Ostrogradski’s
instability.

My motivation for considering these theories in particular is because in addition to
being conceptually simple in their avoidance of instabilities, they show similarity with terms
from string theory, namely the quadratic Gauss-Bonnet term. These terms are therefore
somewhat natural in their extension of Einsteinian gravity to high-curvature (potentially
quantum gravity) scenarios.

2.1 Gauss-Bonnet and Lovelock Black Hole Thermody-
namics

To motivate my work and for some historical background, a potential avenue around the
problems introduced by generic higher curvature terms is the specific combination of terms
that will maintain field equations which are always at most second-order in the metric
tensor. These terms are built from lower-dimensional Euler characteristics, and are denoted
Lovelock terms.

The Lagrangian densities for these characteristics have a relatively elegant expression,

1 epi 1 2 \ Bo;
L= O e R R (27)
AR

B2i
Q102:02i-102i = ot .

B1B2:+-B2i-1B2i (28)

Qg S
551 65%

where 07 is the Kronecker delta function [13, 14].
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Counterterms were proposed in |11] and are applied in, for example, [15]. Here I ignore
these terms, though they will later reappear in my discussion of black hole mass.

Each term has a dimension below which it is a topological invariant, contributing only
to the action as a total derivative. The it term will contribute to the equations of motion
in spacetime dimensions D > 2¢. This implies that in 341 dimensions, the only contributing
Lovelock term is £; = R. Further, in 4+1 dimensions, the second Lovelock term contributes;
this term is known as the Gauss-Bonnet term: £y = R? + R“VaﬂRWag 4R R,,,.

In this subsection I will examine the Gauss-Bonnet term in a pedagogical way. Most of
what is said will generally apply to higher curvature theories, and extending the concepts
here to higher curvature will become more clear when I discuss quasitopological gravity.
The action for this theory with a cosmological constant and Gauss-Bonnet term can be
written

o= % f dD$H (_2A + R+ (R2 + R/waﬁRyuaﬂ B 4RMVR;U/)) (29)

This gravitational action formed from the two Lagrangian densities £, £, is also some-
times known as the Lanczos, Gauss-Bonnet, or Lanczos-Gauss-Bonnet action, due to its
initial publication by Lanczos in the 1930s [10]. It became a hot topic when it was impli-
cated as the appropriate ghost-free low-energy limit of heterotic Eg x Fg superstring theory
[17]. There, it was also suggested that higher order Lovelock terms have a place in this
low-energy limit.

The context of this thesis is on the implications of higher curvature terms on gauge /gravity
dualities. It is currently expected that this type of duality should also hold for higher di-
mensional, higher curvature theories, but the exact details of the gauge theory that would
correspond to a five-dimensional Lanczos-Gauss-Bonnet gravity theory are not yet well
understood [15].

To this end, one direction we can take from the gravity side is to push the boundaries
of what is known, and work towards extending the thermodynamic picture of the theory.
Black holes in Lanczos-Gauss-Bonnet gravity have been known since at least the late 1980s
to exhibit interesting behaviour, including the effect whereby Lovelock terms allow black
holes with zero temperature at finite mass [34]. The entropy of these black holes also
no longer obeys the standard relationship (where it is directly proportional to the event
horizon area), and it is instead corrected by a term proportional to the coupling constant
for the Gauss-Bonnet term that appears in the action.

Hyperbolicity of the theory has been directly studied in recent years [19] and while
the theory does not always possess a well-posed initial value problem, the black holes we
consider in AdS will be protected from the breakdown of hyperbolicity by the conditions on
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positivity of energy flux in the dual CF'T. It is highly likely that the quasitopological black
holes introduced in section 2.2 will have similar behaviour since they share field equations
with the Lovelock theories. For the higher curvature anisotropic black holes considered in
this thesis, hyperbolicity remains an open question.

The relative simplicity of the black hole thermodynamics allows us to characterize
the thermodynamic phase space of exact and numerical solutions in the theory, and this
inches us closer to understanding the nature of the gauge/gravity duality in this context.
Phase transitions and criticality in five-dimensional Lanczos-Gauss-Bonnet gravity can give
insight into whatever thermodynamic behaviour the 4 dimensional gauge dual will exhibit,
possibly even predicting new behaviour in a strongly coupled dual theory.

We therefore want to find the thermodynamic potentials, such as the Gibbs free en-
ergy, and examine thermodynamic stability, phase transitions, and critical points. In the
interest of providing a reference that can be used to learn about holography, it is impor-
tant to clearly document the variety of scenarios that we encounter: positive and negative
cosmological constant, different branches of solution of the metric functions, asymptotic
behaviour, et cetera.

We will examine the thermodynamics of higher curvature asymptotically AdS theories
by interpreting the mass of the black hole as an enthalpy as per [50]. Here the cosmological
constant will generate a thermodynamic pressure term P = —A/8w. The justification for
this specific form of the pressure will be detailed in 2.1.3.

The holographic dual to the Lanczos-Gauss-Bonnet gravity theory was published in
2009 [51], establishing a dictionary and constraints on the theory. The major constraint is
the positivity of the energy flux in the dual CFT, which ultimately results in a constraint
on the values of the coupling us:

_BD-1)(D-3) _(D-3)(D-4) _(D-3)(D-4)(D*-3D+8)

< < 2.10
4(D +1)? L2 4(D? - 5D +10)* (2.10)

where D is the total number of dimensions of the theory. In this thesis, I will be careful to
remain within positivity bounds for higher curvature coupling constants, as I will always
want a well conditioned dual theory.

Black holes may be found in these theories with a static and spherically symmetric

metric ansatz,
2

d
ds? = —f2(r)dt? + 927(;)

+1r2dQ%_, (2.11)
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where dQ2D—2,k is the line element of a D -2 dimensional hypersurface of constant-curvature
(spherical, hyperbolic, planar) topology when k is (1,-1,0):

=3 j=2

D-2 -1
A% = d0y? + k' sin? (VD)) (d922 + 3 [[sin? ejdeg) (2.12)

Exact solutions can be found for Gauss-Bonnet, third-order, and fourth-order Lovelock
theories; in Gauss-Bonnet gravity with the action (2.9), one exact solution takes the form

[52, 53]

r2

2(D=3)(D-4)ps
(1 . \l |, 1287%(D - 3)(D )M 8(D -3)(D - 4)M2A) (21

) =62 = ks

(D-Dwp L (D-1)(D-2)

where M is a constant of integration that equals the mass (discussed later in 3.1.4). Gen-
eralization of the exact solutions to higher order Lovelock gravity can be performed, but
the metric functions will arise as solutions of a higher-degree polynomial, and no closed
radical solution can be given for theories that are higher than quartic in higher curvature
couplings. Furthermore, each new term places a lower bound on the dimension of the the-
ory; fifth order Lovelock gravity would require D > 11. Partly because of this, and partly
because of a lack of convincing motivation to study these solutions at the moment, most
work remains at quartic order or below.

Commonly, a redefinition of A = po(D - 3)(D - 4)/L? is performed, which simplifies
the resulting expressions for metric functions as well as thermodynamic quantities. The
solution (2.13) asymptotically (at large ) becomes

) r2 SANL?
P~ 53 (1_\/“(1)—1)(1)—2)) (2.14)

We can simplify this upon substitution of a specific value of the cosmological constant;
for asymptotically AdS this choice typically takes one of two values; the first is the standard
for asymptotically AdS Einsteinian gravity, A = —(D-1)(D-2)/2L2. This is chosen because
it allows one to compare the higher curvature theories directly with Einsteinian gravity a
little more easily; the action for the theories is the same aside from the higher curvature
terms [5]. One potential pitfall of this convention is that the asymptotics of the metric
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function can behave unexpectedly, asymptotically depending on the value of the higher
curvature coupling. For example, in this case the metric function is asymptotically

foo(1) = 2;; [1 V1 —4)\] (2.15)

which implies that our metric has an effective cosmological constant

1-vV1+4\

Aeff - _
202\

(2.16)

In order to easily compare solutions with the same asymptotics, which becomes more
important when they vary such as in Lifshitz symmetric spacetimes, another convention is
to fix the cosmological constant to guarantee that

lim f(r)=r?/L? (2.17)
The cosmological constant will then take the form [1]

_ (D*-3D+2)
A= (1) (2.18)

We can most easily derive this from the characteristic polynomial of the Lovelock so-
lutions. This polynomial, arising as a solution of the field equations, gives all branches of
this family of exact Lovelock solutions [18, 15]. For Lanczos-Gauss-Bonnet, it is

—oA+ (k_f;(r)) k=) 2 M

! = - 55 (2.19)
Asymptotically, the solution for f2(r) — r2/L? is
A=t (1)) (2.20)
- 212 '

In order to fix our effective cosmological constant to (D - 1)(D —2)/2L? we only need to
add this dimension dependent prefactor to this solution for A.

While this type of approach is useful for comparing the metric functions for different
values of the higher curvature terms, it is important to take into consideration the ef-
fect that a cosmological constant that is dependent on higher curvature couplings has on
the thermodynamics. The solutions for different values of the parameter A, for example,

16



will have different temperatures and so for examining the thermodynamic behaviour be-
tween different values of the higher curvature parameters, it is often best to use a fixed
cosmological constant for all solutions.

Before turning to the thermodynamics of this solution, we need to discuss the possible
branches. A more comprehensive examination of the Lovelock solutions |18 is needed
to completely understand the relevant asymptotics. The characteristic polynomial (2.19)
clearly has two solutions, only one of which we examined. This is a general feature of the
Lovelock characteristic polynomial; i*" order Lovelock will have 7 branches of solution for
the metric functions, and in each case one of these branches will not generally reduce to
the set of solutions in (i — 1) order Lovelock gravity as the coupling constant p; — 0.

In this case I discussed the branch that does reduce to the ps = 0 solution, but in this
thesis I will typically allow for any possible solutions that have the correct asymptotics.
The other branch (with a plus sign in front of the square root) will diverge like r2/pusL?
with small ps.

There are a few important points to mention: first, the thermodynamics of the solutions
can be computed from the level of the characteristic polynomial and so our thermodynamic
description will encompass all of the branches. This means that at the level of this thesis,
aside from when we specify exact solutions, we are looking at the stability of any of the
branches. If there is a horizon radius that only one branch can reach, the thermodynamics
at that horizon radius will then reflect the thermodynamics of only that branch.

A careful analysis [18] is able to distinguish between branches, which is important
when considering stability with respect to the vacua for example, or extended phase space
thermodynamics where the branches are deviating from one another considerably, but from
a numerical context we are unable to study individual branches and so I instead work in
a regime where continuity is paramount. Here the horizon radius is varied smoothly as
long as the temperature function is smooth, and if it becomes discontinuous, the numerical
procedure halts. This helps to ensure that we remain on a single branch.

The second point is that the thermodynamics’ agnosticism to the branches of solutions
is a mixed blessing; as can be seen from (2.16), the higher curvature terms produce an
effective cosmological constant, and this “constant” differs depending on the branch that is
considered. While we can group all of the branches under the same thermodynamics, we
need to ensure that our solutions have the asymptotics that we expect (and that we may
require). Accidentally making conclusions in an AdS scenario when the asymptotics are
in fact de Sitter creates a large pitfall as thermal effects from the de Sitter cosmological
horizon would then need to be considered in a proper thermodynamic analysis.

This is another benefit for the “unifying” cosmological constant approach - if we use a
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cosmological constant like (2.18), we can manifestly guarantee that our solutions always
have the correct asymptotics. When this becomes relevant I will discuss it later in this
thesis. In the following subsection on thermodynamics as well as the section on quasitopo-
logical gravity, I will show plots of both conventions of cosmological constant to show the
different effects on the thermodynamic behaviour.

First, before I explore the thermodynamics, I will describe the methodology used to
obtain a temperature and an entropy for these black holes.

2.1.1 Temperature and Euclidean Periodicity

To facilitate the determination of the temperature of these black holes, we can employ the
relationship between the statistical partition function and the path integral for gravity.
This relationship agrees with other methods of determining temperature, for example, the
Hawking temperature defined by the surface gravity s

Ty = — (2.21)
27

and therefore this method is widely used [54].

The Matsubara finite-temperature field theory partition function is the same as the
path-integral quantum field theory partition function if the QFT imaginary time coordinate
has periodicity equal to the inverse temperature of the thermal field theory. Extending this
to static relativistic theories, the inverse temperature can be associated with the periodicity
of the Euclidean time coordinate multiplied by the square root of the g;; component of the
metric tensor. The condition of regularity in the Fuclidean metric is used to obtain this
temperature.

An important comment is that this component varies with position, and so naturally
(due to redshift) the temperature of black holes is dependent on the position of the space-
time observer. The convention for framing black hole thermodynamics in asymptotically
flat spacetimes is to evaluate g;; at infinity. In the case where we have non-asymptotically
flat solutions, the radius at which we define temperature is the Tolman radius [55, 56]. It is
outside of the scope of this thesis but the notion of an observer for the spacetime thermo-
dynamics fixes a coordinate system in which we can evaluate a temperature and a volume;
these are the quantities that appear in the first law. This notion remains compelling but
is not fully understood, especially for stationary (rather than static) spacetimes. I intro-
duce this concept here to point out that we must be careful regarding observer-dependent
quantities in black hole thermodynamics.
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Begin by considering an asymptotically flat, static, Euclideanized black hole spacetime
[54, 57|, where the time coordinate of (2.11) has been Wick-rotated under the operation
t— 1=t

2 2 o, dr? 2 1092
dSE = f (T)dT + m +7r dQD—2,k (222)

Since this is an asymptotically flat spacetime as r — oo, the metric (2.22) becomes
dsy| . ~dr?+dr® +77dQ], (2.23)

which has an R2 x 8P-2 topology, but when the Wick rotation requires periodicity of 7, the
topology is R x 8~2 x 8. Near-horizon, assuming the periodicity of 7 to be «, the metric
(2.22) takes the form

«

2
dsg| . ~ (%) R?d6* + dR* + r3dQ3,_, (2.24)
after redefining the radial coordinate by

dr
R= / ———— (2.25)
g (r)
and the time coordinate by 0 = 277/, and after applying the regularity conditions (given

in equation (12.5.8) in [54]). This derivation is performed in detail for an anisotropic
spacetime below, and it directly applies to this case as well, so I will not go into detail yet.

The metric (2.24) is the metric of a cone [58] but if a = 27 we obtain a R x 872 x 8!
space. In order to avoid a conical singularity and to be able to compare theories in this
spacetime with the thermal field theory partition function, we set o = 27 which will let us
compute the temperature. In this case the periodicity of the Euclidean time coordinate
means we have a cylinder, both near the horizon and asymptotically, which is the type
of spacetime desired; it is the one under which the spacetime partition function can be
interpreted as that of a thermal field theory.

For the case in which we are interested, with AdS-like asymptotics, we can build on
this approach. The Euclideanized metric looks like

L2dr?
r2g*(r)

for some constant exponent z (required later, for the anisotropy we introduce in sec-
tion 3), and we can expand near-horizon by transforming the radial coordinate r - R =

ds? = (%)22 f2(r)dr? +

+72d0%, (2.26)
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[ Ldr[r\/¢*(r), because we are interested in computing the temperature at a horizon,
when f2(ry) = 0. To first order in (r—ry,), f2(r) ~ (r—rn) f2(ry), ¢>(r) =~ (r —=rp)g*(rp),
and

R 2BV (o) (2.27)
Vg ()
Then, (2.26) becomes
,2(z+1) )
ds% ~ R (mf(rh)fz(rh) dr® + dR? + (r(R))*dQ%,_y (2.28)
which, after a final change of variable
el .
S (2 ng(rh)f(m)) r
becomes
dsh, ~ R*d0 + dR? + (r(R))*dQ7_, (2.29)

which means 6 must have periodicity 2z for regularity.

The periodicity of 7 corresponds to the inverse temperature, so the inverse temperature

of this spacetime is therefore
N 47-‘-LZ+1

= _ .30
3 () (2:30)

and so the temperature is given by

1 rh z+1
T-—(=2 2(r) g% (rn)’ 2.31
(%) VEGYEmY) (2.31)
where the prime denotes the derivative of the function with respect to r. This last rela-
tionship holds since

F2(r) = (r=r) f2(rn) + O((r = 1))
and so
df*(r)
dr

= f2(rn) + O(r = 11)rery = F2(rn) (2.32)

T=Th

This expression is quite general and will be used throughout this thesis; in this section
we apply it to the Gauss-Bonnet metric functions (2.13), where z =1 and f(r) = g(r).
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For this solution, the temperature evaluates to

23 + L2kry — 2053
7= St T 2T, (2.33)
2L%m (r? + 2L%kN)

when A =-6(1-)\)/L?, and
2r3 + L2kry,

B 2027 (Ti + 2L2k:)\)

(2.34)

when A = -6/L2.

2.1.2 Entropy as a Noether Charge

The entropy of black holes has also featured strongly in the development of black holes as
useful thermodynamic objects in relativity. For non-extremal black holes, the entropy is
not typically a controversial issue as semiclassical approaches usually agree with Noether
charge methods [1&] though there are occasional discrepancies [59].

A semiclassical approach derives entropy from the partition function, which arises from
the Euclidean action of the black hole. The thermodynamic formula for the entropy is
given by [60]

0

S=—{f=—-1)log(Z 2.35
(755 -1)ros(2) (2.35)
where [ is the inverse temperature T-1, the partial derivatives are taken at fixed pressure,

volume, charge, etc. [61], S is the Euclidean action, and Z is the partition function
Z=| DUeSnes (2.36)

8 1

S=p0H- Z‘A (2.37)

In addition, H is the Hamiltonian of the theory and A is the area of the black hole’s event
horizon. The method of steepest descent is used to approximate the integral (with measure
DV over all Euclidean configurations with periodic imaginary time, as in 2.1.1).

A number of other approaches in the Fuclidean action regime have been compared with
the Wald method, such as pair creation and boundary term methods, in [61].

In this thesis I will employ the Wald entropy formalism [62], which is defined by a
Noether charge arising from the diffeomorphism invariance of the Lagrangian. In particular,
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the simplest derivation is to take the Riemann tensor as some independent field in the
Lagrangian, and the field equation from the variation of the Lagrangian with respect to
the Riemann tensor is first obtained:

oL
waf —
Y " ORap

(2.38)

I do not have a good interpretation for the geometric significance of the variation of with
respect to the Riemann tensor other than the fact that this approach yields a compact
expression for the conserved current arising from diffeomorphism invariance.

The expression (2.38) is used to construct a covariant quantity called the symplectic
potential form [24|, which is utilized to build a current that is conserved under diffeomor-
phisms. From this current, the Iyer/Wald entropy can be defined by the integral over a

closed surface as
S=-2n 95 P20 [GYPte e s (2.39)

where g is the induced metric on the horizon and €,4 is the binormal to the horizon, defined
when ¢, is a Killing field normal to the horizon and 7, is is the unit normal to the horizon:
€ap = &ang [02). This entropy has been shown to obey the first law of thermodynamics
(which I will elaborate upon later in this thesis).

In practise the Wald entropy turns out to be an easily calculable quantity for a variety
of solutions that arise from the same action because for the higher curvature spacetimes
considered here, it is proportional to the area of the horizon, with “correction” terms that
appear due to the higher curvature couplings.

In Gauss-Bonnet gravity, the general Wald integral simplifies to [53]

S = }L g AP0/ (1 + 202 R) (2.40)
h

where R is the Ricci scalar of the D — 2 dimensional horizon metric. Similar approaches
have extended this to Lovelock couplings [63].

For the constant curvature horizon topologies considered here, when A = -(D-1)(D -
2)/2L2, this simplifies even further to yield

S=§(1+2“2k(D_22)(D_3)) (2.41)
Th,
T QZD‘“ (1 N 2A(]€1§2—(£ ;;)) (2.42)
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which is the expression for the entropy of the black holes of horizon radius r, with a
Gauss-Bonnet term.

Briefly, I should comment on the negativity of entropy. Commonly, negative entropy is
ignored, such as in [2]. This need not be done, as discussed in [53]. Redefining the entropy
to give a lower bound of zero is possible, and it ends up with a scenario where black holes
with finite horizon area have a non-zero entropy, since in this case the negative Gauss-
Bonnet parameter also yields a finite size black hole with zero mass. In this thesis, the
critical points that we need occur at horizon radii where the entropy is always positive, and
so we do not need to concern ourselves with the appearance of negative entropy; typically
we use the standard definition (2.41) and do not plot black holes with negative entropy.

2.1.3 Thermodynamics

Continuing to build the structure that I will use later in this thesis, the next step is to
completely describe the thermodynamics of the Gauss-Bonnet black hole. Ultimately we
will want expressions for the thermodynamic potentials, but for those we will need the
mass, described in section 3.1. So, for this chapter, we will be satisfied with the quantities
that are easily calculable from the temperature, entropy, and pressure. As a sanity check,
we can ensure that the first law of thermodynamics is satisfied (it must be, since the Wald
entropy is constructed to explicitly obey this relationship):

dM =TdS + ®dQ (2.43)

This first law is a product of the revelation that various black hole parameters obey simple
relationships analogous to the laws of thermodynamics; here M is the mass of the black
hole (which can be a troublesome concept, as we shall later see), @) is the Maxwell charge
of the black hole, and ® is the electric potential of the Maxwell charge, taken to be at
the horizon [3]. In general, ®d(Q can be extended to any “work terms” that will appear by
adding, e.g. magnetic fields, to the thermodynamic system.

Historically, this relationship with the first law of thermodynamics was identified in
the early 1970s. The Euler integral of the first law expression (2.43) was discovered for
Kerr black holes [64] (this Euler integral is therefore referred to in this thesis as the Smarr
relation), followed by the discovery of the relationship between the differentials of black
hole quantities and the thermodynamic potentials [65].

However, we can immediately spot a parameter that is conspicuously missing from
the relationship (2.43) - the cosmological constant. Its absence isn’t coincidental; if the
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cosmological constant were to appear as an additional term in the first law, the differential
nature of the relationship means that if we don’t consider a variable cosmological constant,
we will never uncover the additional term.

There are good reasons to expand our thermodynamic considerations to include a vari-
able cosmological constant. It is wise to be wary of this scenario, because a time-varying
cosmological constant has wide implications in the observable cosmology |66, 67, 68]. Espe-
cially important for this thesis is the observation that a time-varying cosmological constant
would spoil our notions of temperature, entropy, and mass, making it more challenging to
understand the system’s thermodynamics. Fortunately, extending the thermodynamics to
allow for a cosmological constant term does not require the cosmological constant to vary
within the gravity theory. I will consider an ensemble of spacetimes, and so I can formu-
late a complete thermodynamic description, including the traversal through this ensemble,
which is not performed in coordinate time. This not only lets us build the thermodynamic
potentials in a way that is consistent with dimensional scaling of (2.44), but it also yields
a framework for those who may wish to (carefully) explore theories with a time-varying
cosmological constant.

The current understanding of mass as a thermodynamic quantity in black hole space-
times with a cosmological constant is that it is not the internal energy of the spacetime,
but instead it is the enthalpy [50]. Treating the cosmological constant as a thermodynamic
variable [69] can be done in a way that yields a thermodynamic volume which agrees, in
the simplest static cases, with the volume of the black hole as observed by a freefalling
observer with zero velocity at the Tolman radius [56]. Questions still remain about how
general this statement is; for rotating black holes, the spacetime is no longer static but it
is stationary, and the relevant observer that yields this volume is an open question [70].

Overall, understanding the thermodynamics of spacetimes with a cosmological constant,
where the cosmological constant acts as a pressure, has blossomed into a very active area of
research in recent years |71, 72, 73, 74, 75, 70, 76, 76, 77, 78, 79, 80, 81, 82, 83, 45, 84| and
it is hoped to yield insight into thermodynamics in general relativity with non-Minkowski
asymptotics, which is relevant to understanding both the the gauge/gravity duality as well
as the thermodynamics of our own universe.

An intuitive argument for why the first law without a pressure is insufficient arises
from the lengthscale generated by having a cosmological constant [50]. We can regard the
first law as a relationship between the mass, entropy, and (perhaps) pressure. Eulerian
scaling means that if a function obeys the scaling relationship f(a?z,ady) = o” f(x,y) on
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its dependent variables, we must have

Tf(x40==pg£1*+qggy (2.44)

by taking partial derivatives with respect to the “lengthscale” «, and then setting o = 1.

This argument can be applied to the thermodynamics of more typical systems, but be-
cause normally the entropy is extensive and additive, it obeys the relationship S(AU, AV, AN) =
AS(U,V,N), and the Eulerian scaling in (2.44) just yields p = ¢ = r = 1. For black holes,
entropy is related to the area rather than the volume, and so the scaling in the Smarr
relation is unusual. This makes it an interesting relationship to study.

We have a good idea what the scaling of mass, entropy, and pressure should be. The
area-law interpretation of entropy in section 2.1.2 indicates that [S] ~ [{]P~2, where [ is
some dimensionful unit of length. We saw that additional higher curvature terms did
not spoil this relationship; the cosmological lengthscale or the lengthscale of the coupling
constant combines with that of the horizon radius to yield the same overall scaling as the
area term. If the pressure is proportional to the cosmological constant, it should scale like
[P] ~ [1]72, because it adds to the Ricci scalar in the action, which has spatial second
derivatives of the (dimensionless in length) metric tensor. Finally, an argument for the
scaling of mass is the dimensionality of the gravitational constant G which appears in
front of the action (though we normalize it to 1 here). Keeping ¢ =1, G ~ [{]/[M] and the
integral in the action should have dimensionality [I]P/[l]? so for a dimensionless action

[M] ~[1]P72.

In this case, a = [ for the Eulerian scaling relationship and we find, using f = M (S, P),
that

oM oM
D-3)M=(D-2)|—= 2= P 24
(D=9 =(0-2)(F5) s (ap)s (249
where pressure is defined by [50]
p- A (2.46)
8T

The constant factor used here is the one which gives agreement between the expected
thermodynamic volume of the D = 4 Schwarzschild black hole (a spatial sphere of size
equal to the horizon radius) when the temperature uses the horizon temperature in the
coordinate system of an infalling observer with zero velocity at infinity (the rain observer).
Remember that the volume is not a covariant notion and will differ depending on the
coordinates of chosen observer.
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Varying the cosmological constant needs to yield an extended first law; in the form that
is compatible with this Smarr relation it suggests that the mass is related to the enthalpy
of the black hole;

dM =TdS +VdP (2.47)

(5,7 ()

so the extended Smarr relation for uncharged black holes with a cosmological constant
takes the form

Then,

(D-3)M =(D-2)TS - 2PV (2.49)

If we were to add a Maxwell charge, for example, the Smarr relation and first law would
respectively be

dM =TdS + VdP + ®dQ (2.50)
(D-3)M =(D-2)TS -2PV + (D - 3)®Q (2.51)

Here I need to give some additional background about the origin of this relationship, and
some alternative methods of obtaining a thermodynamic construction like this. I choose to
use a relatively general scaling argument, relying on the knowledge of the dimensionality
of the thermodynamic properties I define. This is not the only way - the work in [50], for
example, uses a geometrical derivation of the Smarr relation, relying on a Komar integral
as well as the known fall-offs of metric functions in asymptotically anti-de Sitter space [35].

This geometric approach should be applicable here; however, the reason that I primarily
rely on a scaling argument is discussed in the section on Lifshitz black holes 3. The fall-
off behaviour is more complicated while the dimensional scaling of the thermodynamic
quantities is not, so the scaling approach should apply without modification to spacetimes
with more complicated fall-off behaviour.

While my approach in this thesis does ascribe significance to the first law, I merely apply
these thermodynamic concepts to build a method for studying black hole thermodynamics
in a way that easily handles a variety of asymptotic behaviour. At this point I do not
assert that this technique is any more fundamental than the geometric nature of general
relativity, since much of the interpretation here will rely on a good understanding of the
Einstein Field Equations. There does exist independent work examining whether general
relativity can emerge from thermodynamic principles, c.f. [30].

I will focus on the known phase transition in higher dimensional spherical AdS black
hole spacetimes. This is similar to the Hawking-Page transition [37]. There exist two black
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holes with the same temperature, but they have different horizon radius (and different
mass), and the larger can be thermodynamically preferred. The question of whether it is
thermodynamically preferred to the thermal vacuum has been addressed by examining the
free energy of both solutions [18]. It can be seen that the larger AdS spherical black hole
is thermodynamically preferred for Lovelock theories of gravity. In this situation if a black
hole is to exist, the smaller black hole will phase transit to the larger via tunneling or some
other physical process.

With the quantities we have already computed, the quickest way to observe this be-
haviour is by computing the specific heat. Recall from the second law of thermodynamics

S(T):[Tjdt-?: TOTC(t)% (2.52)

where Tj is some reference temperature (defining our point of reference for the entropy).

Then,
s

d(log(T))
so we can determine the sign of the specific heat (and therefore the stability) knowing only
the temperature and the entropy.

=C(T) (2.53)

Note that when I say stability here, I mean local stability. We have not completely
calculated what the black hole becomes - it may be thermodynamically favourable to phase
transit to a larger black hole or it may radiate away, or it could radiate to a smaller black
hole that is stable. The precise scenario we are interested in is the phase transition to an-
other black hole, so I will generally ignore the possibilities of a non-black hole background
in this thesis. We do know from previous work, however, that in the simple spherical Love-
lock context, the large black hole is thermodynamically preferred to the vacuum and to the
small black hole [18]. T will work through the tools we need to compute the thermodynamic
potentials in section 4.2, and that is when we can ultimately compute the free energy and
determine stable solutions.

For the black holes with a Gauss-Bonnet coupling, we therefore plot entropy and tem-
perature of these black holes on a log-log scale (for readability) and observe that when
the slope of the curve is negative, the specific heat is also negative. This means that a
decrease in entropy will correspond to an increase in temperature, and in similar fashion
to the four-dimensional Schwarzschild black hole, these black holes will be unstable.

The log of the temperature is plotted versus the log of the entropy for the five-
dimensional asymptotically AdS Gauss-Bonnet black hole of (2.19) in figure 2.1 for topolo-
gies k =-1,0,1. Here a specific value of the Gauss-Bonnet coupling is used, A = 0.04. We
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observe that there is a region of stable and unstable black hole solutions for the spherical
topology for the dashed solution (when A =0, i.e. the Einsteinian case), while hyperbolic
and planar topologies all have positive specific heat. This is indicative that in the k£ =1
case, there is a phase transition between the small and large black holes for five-dimensional
Einsteinian AdS black holes.

Here, A = 0.04 is large enough to remove the instability and create spherical black holes
which are stable for all radii. Smaller values of A, for example, A = 0.01 are sufficient to
still observe a region of instability.

Furthermore, one can note that the asymptotic behaviour is different for different so-
lutions by examining the right-hand side of the figure 2.1. This is because here, the cos-
mological constant was A = —6(1 — \)/L? with L =1 (for future reference, numerical plots
will be in units of L, with the entropy also being written in units of the unit hypersurface
(1.13), since in this thesis I do not attempt to define a regularization scheme for k = -1,
for example). Had we used A = —6/L2, all of the lines would converge to the same value
for large black holes. This is indicative of the effect of the higher curvature Gauss-Bonnet
term: it contributes primarily in the strong gravity regime (small black hole horizons will
have higher surface gravity).

There exist constraints on the value of this coupling |38, 89, 11| due to holographic
considerations. In five dimensions, these constraints (2.10) become [90)]
7 9
- —= <AL — 2.54
36 100 ( )

which are important to consider when adding the higher curvature terms. In addition,
we also consider only the black hole solutions that have positive entropy, and finally, we
ensure that the horizon radius is real and positive (no naked singularities) and that the
asymptotics are as desired (AdS in this case).

Because we have an exact solution (2.19), we can examine the thermodynamic effect of
the Gauss-Bonnet term analytically [5]. Taking D =5, k=1, and A = —6/L?, the specific
heat takes the form

r(3r2 + 312k) (r2 + 20k L2)
" AR2LAN + 2472k - 2k L2772 + 4r
which exhibits discontinuities due to roots in its denominator for certain values of A and
Th.

Cp

(2.55)

In this case, the easiest way to obtain the specific heat exactly is from the interpretation

of the mass as enthalpy; then
oM

Cp - (a_T)P (2.56)
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Figure 2.1:  The log-log plot of temperature versus entropy for asymptotically anti-de
Sitter Lanczos-Gauss-Bonnet Black Holes in five dimensions for k£ = -1,0,1 (red, blue,
black). Here the higher curvature coupling is given by A = 0.04, while the cosmological
constant is fixed at A = -6(1 - \)/L? which does not ensure that the thermodynamics has
the same asymptotic behaviour. The dashed solution is Einsteinian for comparison; A = 0

in that case.
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CP (arh )l(a’/’h)l ( 57)

In fact our mass M is not exactly equal to the mass of this black hole, merely proportional;
this approach still works to identify the divergences of the specific heat. Applying this
method here yields

N 167 L2r (37",% + %L%) (TZ + 2AkL2)2

2.58
AR2LAN + 2472k - 2k L2 + 4r} ( )

P
This also tells us the relationship between the mass M and our mass parameter M. Being
comfortable using mass parameters instead of the mass, and even more importantly using
only other quantities like entropy and temperature, is crucial for when we will move to
numerical black holes. In these cases we only have control over horizon radius and cos-
mological lengthscale so obtaining a mass parameter is challenging, let alone knowing the
exact mass.

From observing the specific heat (2.55), we can see that it has zeroes for the k = -1
black holes, which turn out to be where the temperature would change sign to a negative
temperature (which we do not consider here).

The singularities in the specific heat should correspond to a phase transition in the
thermodynamic system, and so we can identify roots of the denominator;

T = §\/1—12A+¢144A2—40A+ 1 (2.59)

is an example of one of the roots. For the Lanczos-Gauss-Bonnet black hole we can con-
ceivably have two real roots. These locations are important to identify, since I shall be
concerned with finding critical points in section 4.1 and I will do this making use of the
knowledge of where the specific heat is singular, as we expect that one of these singular
points (on the edge of where singularity occurs) will correspond to place where the ther-
modynamic potentials will have a finite first derivative, though in a numerical context this
behaviour will have to be extracted from numerical data.

2.2 Quasitopological Gravity

The quasitopological gravity theories were first introduced in 2010 [91], followed shortly by
an independent discovery featuring a presentation of the couplings and their holographic
implications [90, 12].
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The appeal of the quasitopological terms in this context is that they maintain field
equations that are second order in terms of derivatives of the metric functions. We do
not get something for nothing - this holds only in the case of spherical symmetry and if
we break this symmetry we will have a theory with third order field equations. However,
an added benefit is that these terms, unlike the Lovelock terms, are no longer topological
invariants. That is, they impart nontrivial effects in dimensions lower than the Lovelock
terms. In particular, the third and fourth order quasitopological terms have an effect in
D =5, while the only nontrivial Lovelock term in this dimension is the second order Gauss-
Bonnet term. This nature will be exploited later on, because of the way holography is so
intimately related to dimension.

The characteristic polynomial given from the equations of motion is the same up to
conventions as that of Lovelock gravity of the same order, so in the context of the metric
functions and the thermodynamics, the interesting avenue of research in quasitopological
gravity is in dimensions in which the Lovelock terms are topological invariants, which
amounts to studying the Lovelock solutions when their coupling parameter is appropriately
redefined to absorb the dimensionally-dependent terms that go to zero in the Lovelock
action [4].

In this thesis I will use the quasitopological terms primarily in five dimensions, to give
additional complexity (and interesting behaviour!) to the (thermodynamic) parameter
space of general relativity. Spherical symmetry will always be imposed. Much of the
analysis of Lanczos-Gauss-Bonnet and Lovelock black holes will apply to the solutions
that we discuss here.

Let us consider a general dimensional action with the third and fourth order quasitopo-
logical terms as an extension of the Lanczos-Gauss-Bonnet action (so D >5): (2.9)

1 1
S = W [ dD.CE\/—g (-2/\ + El + ,LLQEQ + M3X3 + ILL4X4 — ZFIWFHV) (260)
™

where F),, is the electric field strength for a Maxwell field which we have added in order
to obtain charged black hole solutions.

The cubic quasitopological term takes the form

1 3(3D -8)
Xs = v B VTO' Tua ( » -
3 RMRﬁRU+(2D_3)(D_4) T R R R
- 3(D - 2)Raws " R + 3D R0, s R R*P
D-4 D
+6(D -2)R,“R."R," - %RHO‘RQ“R + %m) (2.61)
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while in the quartic term the constant coefficients are [92]

c1=—-4(D - 4)(2D% - 32D% + 195D* - 581 D% + 876 D* - 596 D + 118)
co =8(D-2)(D"-11D%+30D° + 102D* - 810D + 1959D? — 2113 D + 860)
cg=—(D~-2)(D"-9D% + 5D° + 245D* — 1234 D3 + 2644 D* - 2724 D + 1108)
cy = 16(D - 2)?(2D* - 34D3 + 183D? - 389D + 274)
cs = 64(D - 3)(D -2)*(4D? - 30D? + 75D - 58)
cg =—96(D —2)(D-3)(2D* - 15D + 37D* - 31D +4)
c; = —64(D - 2)(3D* - 14D + 14)(D* - 5D + 7)
cg = -32(D - 2)*(D - 4)*(3D? - 14D + 14)
co=16(D - 1)(D -2)(D -3)(D -4)(3D? - 14D + 14)
c10 = D% - 36 D* + 302D3 — 1060D? + 1683 D — 980
c11 = 56D° — 656 D* + 3032D% - 6848 D? + 7448 D - 3104
c12 = 160D5 — 1776 D* + 7808 D3 — 17008 D? + 18336 D — 7808
c13 = 12D% —206D° + 1512D* - 5712D3 + 11816 D? — 12738 D + 5568
c14=-D%+14D" - 82D% + 276 D° - 684 D* + 1527D? — 2741 D? + 2929D - 1292

and the quartic term takes the form

X, = ClRwaﬁRaﬂ%RMvéRM”V + CQR#VQBRWa,BRvaé + CgRRWR“aRaV + C4(R#VQ5RWO"8)2
+e5 Ry R Rog RPY + co RR,ap R R + c7RWa5R“O‘RWR57 + 08Rwa5R“°”‘SR’C/R65
+09R/WaﬁR'uaR75RVWB5 + 610R4 + CHRZRMVO[/QR‘LWCM + 012R2RHVR‘MV
+c13Ruap R Rys Y RPF + c1aRypas ' Ry s R™A (2.62)

Here, because the results will be directly extended to Lifshitz asymptotics as well, the

static, spherically symmetric metric ansatz has the scaling behaviour brought outside of
the metric functions, taking the form

Ldr
r2g?(r) L?

2
ds? = —% F2(r)dt? + 03, , (2.63)

where for AdS asymptotics the metric functions f(r),g(r) - 1 as r - oo and the hyper-
surface line element is again given by equation (2.12).

Numerical solutions up to the quartic case were described in [I|. In this section T only
consider exact solutions, and the numerical work will be presented in the more general
context of asymptotically Lifshitz spacetimes, in section 3.5.
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We found an exact black hole solution in the case where D = 5; this is a cubic qu-
asitopological black hole with a Maxwell charge, known as the Reissner-Nordstrom Cu-
bic Quasitopological black hole [5]. In this work we extracted some dimensional- and
lengthscale-dependent coefficients from the higher curvature couplings for simplicity in
some computation. The new coupling parameters are

AL? 16D - 24) ulL*
= s . (3 2“ = s (2.64)
(D-3)(D-4) (3D7 — 42D + 205D — A14D + 288)
where in D =5 the constant prefactors simplify to 1/2 and —7/4, respectively. Commonly,
p — —p is used, for example in [12] and [5] but here I will attempt to keep to the convention
n (2.64).

The field equations, after substituting the ansétze f2(r) = N?(r)g?(r) and A, = gz h(r),
and performing a functional variation of the action with respect to g(r), N(r),h(r) (c.f.
Appendix A), become

(=1 +2)% - 3ur2) N’ = 0 (2.65)
(3r4 [—%L2 - K+ A% - /Mc?’])l = @ [( (T]}\?),)Q] (2.66)
(T—; (m)’)/ _0 (2.67)

where k = (¢2(r) - f—jk) It can be checked with some algebra that these equations have a
solution

92(7“):]{—[;2+_—>\+ﬁ|:(\/f‘+ﬂ(7" +J(7“))é (\/F+J2(7“ J(r))

W=

] (2.68)

r 3
J(r) = 36( —442AL? - 8 Tﬁf +2Q—2—8 A+ 196)\) (2.69)
. —(16(3u +A2))? (2.70)
Q2\/_L7"2 (2.71)
N=1 (2.72)

where M and @) are dimensionful constants from integration that are related to the mass
and charge of the black hole, respectively, and @) is proportional to ¢, from the previous
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ansatz for the vector potential. This is only a specific branch of the general solution; the
complete set of solutions is made up of three branches, as roots of the cubic equation
M Q?

A 2 2 3
—gL - K+ AR — UK :ﬁ_24fr6 (273)

Discussing the various branches of the characteristic polynomial is important at this
stage. In particular, it is necessary to note that the principal solution and the real solution
are no longer synonymous for the metric function solutions to cubic and higher polynomi-
als. Above we have chosen the typically real valued solution of the cubic where no complex
values appear in the solution. Of course, for various values of the parameters this solu-
tion is not guaranteed to remain real, but more importantly here, the solution may not
be one of the two [one| which reduce(s) to the quadratic (Lanczos-Gauss-Bonnet) [linear
(Einsteinian)| solution(s). In fact the solution we have selected does not reduce to either
of the Lanczos-Gauss-Bonnet solutions as p — 0.

When not fixing the asymptotic behaviour of f(r), care must be taken that the solution
has the expected asymptotics; in this case different branches of the solution can have non-
AdS asymptotics, and the convenient Table 1 in [90] can be used to determine the valid
black hole solutions; the solution presented in this section is guaranteed to avoid ghosty
AdS vacua and has black hole solutions for p, A > 0 (i.e. vacua where the kinetic term for
the graviton has the incorrect sign).

The metric function g2(r) is plotted for this solution in figure 2.2 5], for a horizon radius
rp = 2.0 and charge parameters of Q) =0, Q) = 6, and ) = 12. Note that the asymptotic value
of the metric function is unity due to our choice of the cosmological constant. Further,
note that these charged black holes have metric functions which cross zero twice; it will be
important when we develop a numerical procedure for finding similar black holes that we
are careful to compute quantities at the outer horizon.

In the case of quasitopological gravity, as in that of higher dimensional Lovelock gravity,
the constraints on the parameter space become richer. In cubic quasitopological gravity,
holographic considerations of positivity of energy fluxes in the dual CFT yield a constraint
similar to (2.10) [12]:

1-10fA=189f2 11> 0
1+2f oA +855f2 >0
1+6fo)—1317f2 >0 (2.74)

where fo, = foo (A, 1) is a function of the higher curvature couplings A and p - this derivation
was performed in the situation where the cosmological constant is fixed at —6/L2. This
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Figure 2.2:  Cubic quasitopological black hole solutions for k£ = 1, r, = 2.0, A = 0.04,
@ =0.001, where ) = 0,6,12 are in red, green, and blue, respectively. The cosmological
constant is given here by A = —6(1 — A+ u)/L?. The dotted solutions are quasitopological
while the solid solutions are Einsteinian (u = A = 0).
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contrasts with the general formalism where the cosmological constant is allowed to vary
(and therefore here becomes a function of A, ) while the asymptotic behaviour of the
metric functions is fixed. Nonetheless both approaches are equivalent and will result in
the same constraints on p, A: 1— foo + Af2 — puf2 =0 and since the constraints limit u, A to
small values, f., will remain close to one and its principal value can be found, allowing us
to graphically view the constraints. This is shown in figure 2.3.

We discuss the thermodynamic behaviour of the solution (2.73) at length in [5], and
we also present a general solution for higher order (K* order) quasitopological curvature

terms, which takes the form
K " D2 Q \?
(TD 1];)/%/{]“) = [(TD_Q) (2.75)

(-1+2\k = 3ux*)N' =0 (2.76)

((D—z)rD-l [—(D_1)/\(D_2)2L2—K+AK2_MK3]) _ q2r2D—2 [((Tﬁ) ) ] (2.77)

(rm (rh)'), -0 (2.78)

from the field equations

N
and typically the cosmological constant is taken to be A = (D —1)(D -2)/2L2.

2.2.1 Entropy and Temperature

The entropy of the quasitopological black hole is obtained in a very similar way to the
Lanczos-Gauss-Bonnet and Lovelock black holes. Following a similar Wald/Iyer entropy
approach to section 2.1.2; the entropy is given by [90]

_ 2 _ 2174
A(1+2(D 2)\kL?  3(D 2)uk;L)

=7 D-49r7  (D-6)t (279)

The temperature of these black holes is found in a manner completely analogous to
section 2.1.1, by using the metric function in the expression (2.31). It is

1 (D-1)r;
T =

Ar (7} + 2kAL2r2 + 3k2ult) | L2
. (D-T)k3ul* (D - 3)@2]

+(D- 3)kr;°’l

+(D - 5)k*\L*r, o 509 (2.80)
h
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Figure 2.3: A plot of the parameter space for cubic quasitopological gravity’s higher cur-
vature couplings. The region interior to the red, blue, and green lines satisfies the cubic
quasitopological energy flux positivity constraints (2.74).
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2.2.2 Thermodynamics

In this section we use the convention for the cosmological constant, as discussed in section
2.1.3 to ensure that our solutions are always asymptotically AdS. In this specific five-
dimensional case this amounts to

6(1-A+p)

A= 72

(2.81)

We can investigate the phase behaviour of these black holes by plotting the temperature
and entropy on a log-log plot, as done in the Gauss-Bonnet section 2.1. In this case we
see that certain values of the coupling parameters will yield the removal of the unstable
small spherical black hole - all black holes will be stable. For the parameters A = 0.04,
p = 0.001, we can see this stability in figure 2.4 [5] for multiple values of charge. Larger
positive values of p along with larger positive values of A will remove the instability that
is seen in the Einsteinian case.

We can also perform a comparison to the Einsteinian and Lanczos-Gauss-Bonnet the-
ories. This plot, in figure 2.5, was generated using the numerical procedure later detailed
in section 3.5.2, but comprehensively checked for consistency with the exact solutions pre-
sented in this section. We can see again how the cubic quasitopological term directly has
an effect similar to A in removing the phase transition. This is sufficient to identify the
magnitude of terms and their general effect, which we will need to examine universality,
but to go further we can look at the specific heat.

The specific heat can again be examined analytically, as we have the exact solution
(2.73). In the k = 0 case, the specific heat has one real root at

Q1/3
= 481/6

Th (2.82)
when A = -6/L? (where here I have gone back to the regime where asymptotics vary based
on A, it). This is not unexpected; the thermodynamics of the planar k£ = 0 case are the same
as those of the non-higher curvature solutions, since the higher curvature contributions to
the entropy vanish when k = 0.

However, it is important to note that this root of the specific heat corresponds to the
case where the Kretschmann scalar RaﬁWSRaﬁ,ﬂ; diverges at the black hole horizon; this
condition suggests that a curvature singularity is about to appear at the horizon, i.e. the
black hole is extremal.
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Figure 2.4:  The log-log plot of temperature versus entropy for asymptotically anti-de
Sitter cubic quasitopological Reissner-Nordstrom Black Holes of @@ = 6 (dotted), @ = 3
(dashed), @ = 0.5 (dash-dot), @ = 0.1 (long-dash), and @ = 0 (solid) for k = -1,0,1 (red,
blue, green). Here the higher curvature couplings take the values A = 0.04, = 0.001, while
the cosmological constant is fixed at A = —=6/L? in order to ensure the same asymptotic
behaviour of the thermodynamics.
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Figure 2.5: The log-log plot of temperature versus entropy for asymptotically anti-de Sitter
{cubic quasitopological - dotted, Gauss-Bonnet - solid, Einsteinian - dashed} uncharged
black holes where k = -1,0,1 (teal, red, brown). Here the higher curvature couplings take
the values A = 0.04, = 0.001 (when they exist), while the cosmological constant is fixed at
A =—-6(1-A+p)/L? in order to ensure that the metric functions have the same asymptotics,
and so that all solutions see the same effective cosmological constant.
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Since I am interested in non-extremal black holes, the conditions I use to probe the
extremal values are not a guarantee of extremality but instead are devised to avoid ex-
tremal behaviour out of an abundance of caution. That said, examining the solutions
graphically leads us to the conclusion that the behaviour we are excluding is indeed a
naked singularity produced from moving past extremality. This ultimately amounts to
examining the characteristic polynomial (2.73) and using the condition that the maximum
value of M /[3r% - (Q?/24r6 is equal to the characteristic polynomial evaluated at g(r) = 0.
Doing this can be related to the divergence of the Kretschmann scalar and qualitatively,
it corresponds to the turning point of the function g which occurs when g(r) = 0. This is

because .
o d OW|[k]T
Dor = drwm[ L ] (2.83)

where W{k] is the characteristic polynomial, equal to the right hand side of (2.73).

The resultant extremality condition amounts to

16
Q= 3 ripM (2.84)
where for the planar black hole,
Q2
M=3r|1 2.85
7ah’( " 24r9 (2.:85)

SO
6 _@(E_E)ZQ_Z
16 24) 48

Th-Bx = 3
and we see that the singularity in the planar case actually cannot exist as the transition
in the specific heat occurs at extremality.

In the k£ =1 case, the specific heat given by (2.57) is

(2.86)

1270 (—48 76 — 2474 L2 + 24 L6 + Q2) (—r* = 2 Ar2L2 - 3 uLt)>
r(J —487rSAL* = 336 r4pu LS —3Q2puLl* — 48110 + 2478 L2 + 72 2 L10 — 5 QQ2r?)
J = 2888 \L2 — 72078 Lt — 144 pu A r2LS — 8 Q* N\ r2L?

Cp (2.87)

up to a constant of proportionality, since here M is a mass parameter rather than the exact
mass.

The form of the specific heat reveals that the cubic quasitopological term appears to
have an interesting impact on the zeroes of the specific heat, however, this is a red herring
as the zeroes of the specific heat occur where temperature becomes negative.
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The structure of roots of the specific heat creates a fifth order polynomial in 7}, meaning
we have potentially a very rich phase diagram for these black holes. Specific values of charge
which yield a divergence in the specific heat, i.e. a phase transition, were found in [5].

2.2.3 Quartic Quasitopological Gravity

Finally, a quartic quasitopological term can be added to the action which yields a solu-

tion very similar to (2.68) [1]. The quartic quasitopological term yields the characteristic
equation, in the uncharged case (the only one which was studied),
—%Lz—l{+)\l€2—ul€3+fli4 = 37{\1{1 (2.88)
with two solutions being
2
2/ N r noo1 1
£2(r) —k+l—2(—E+§Ri§E) (2.89)
where
w2 2 (DD
| _=22 . = A — VA 2.90
3(452 3€+(2+ ) +(2 ) ) , (2.90)
2 _ 37\ /2
:(%_%_32_L[ﬂ_§+”’_]) (2.91)
4 € 4ARL & ¢ &
and
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In a manner much the same as for cubic black holes, the temperature and entropy can
be computed; for A = -6/L? in five dimensions,

2r8 — 2L8KAE — LOK3pury + L2kr?
T =
2027 (r] + 2L2kNr) + 3LAK2pur + 4LSk3Ery, )

(2.93)
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while the higher curvature entropy is

A (1 L o(D=2AKL> (D -2)pk*L*  4(D - 2)k§L6) (2.94)

5= (D-4r2  (D-6)t (D-8)r®

As before, one has control over the stability of the black hole by adjusting the quartic
coupling parameter. We can see this in figure 2.6, where a sufficiently positive parameter
ensures that the instability disappears. Therefore, the quartic quasitopological coupling
can be used to obtain and remove first order phase transitions in these black holes, and
it acts as yet another five dimensional thermodynamic parameter. These results indicate
that future work in extended phase space, where the higher curvature parameters vary as
thermodynamic quantities, may also yield critical behaviour.

2.3 Discussion

The focus in this chapter was on presenting a background for studies in higher curvature
gravity. I began by introducing higher curvature terms to the Einstein-Hilbert action, first
by discussing general terms and then by motivating the special set of terms that allow the
field equations to remain second-order in derivatives of the metric tensor.

I showed how solutions in these scenarios could be obtained, first with a discussion
of holographic constraints on higher curvature couplings, followed by a short analysis of
Lovelock black holes, with specific focus on black holes in spacetimes with the second-order
Lanczos-Gauss-Bonnet term.

I described a number of methods for obtaining temperature and entropy, and detailed
the methods that are used in this thesis. Importantly, the section on Gauss-Bonnet black
holes features a strong introduction to the use of the cosmological constant as a thermo-
dynamic pressure term - I show the history of this usage and the restrictions on defining a
pressure in black hole thermodynamics, namely the construction of a Smarr relation and
first law, and how Eulerian scaling (one among a number of reasons) is used to formulate
the “extended phase space thermodynamics”. I also briefly discuss how thermodynamic
volume will act as a conjugate quantity to the pressure, how it fixes the constant factors
in the pressure, and how its non-covariance means that care must be taken to specify the
observer when formulating the thermodynamics of a black hole.

In the section on quasitopological gravity, we saw how curvature terms could be added
which are not the Lovelock topological invariants but still allow for second-order field
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Figure 2.6: The log-log plot of temperature versus entropy for asymptotically anti-de
Sitter quartic quasitopological black boles in five dimensions for £ = -1,0,1 (red, blue,
black). Here the higher curvature coupling is given by £ = 0.0006 (solid) and & = —=0.0001
(dashed), while the cosmological constant is fixed at A = —6/L? which ensures that the
thermodynamics has the same asymptotic behaviour.
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equations in certain scenarios. Namely, the quasitopological terms give this desired feature
for spherically symmetric solutions. Essentially, these terms allow us access to the extra
parameter space of cubic and higher Lovelock gravity while remaining in five dimensions,
a prudent scenario for exploring gauge/gravity holography with physical, four-dimensional
gauge theories.

I showed the effects of these quasitopological terms on black holes and presented ex-
act solutions for cubic and quartic quasitopological gravity, with an explanation of the
characteristic polynomial and the various branches of solution.

The research into Lovelock and quasitopological gravity will be further justified later
in this thesis, where we use the expanded parameter space to examine interesting thermo-
dynamic behaviour in five dimensions, including a critical point that does not require a
Maxwell charge to exist.
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Chapter 3

Lifshitz-symmetric Black Holes

As terminology in modified gravity, Lifshitz scaling is an anisotropy in the time coordinate.
In particular, it is usually defined as the scaling [93]

t=XNt, r->X'r, - \r (3.1)

The parameter z controls the degree of the anisotropy, where z = 1 corresponds to the
usual anti-de Sitter scaling. Typically values of z =2, 2 =3, or z = D are considered.

Work featuring this metric symmetry can be justified on group theoretic grounds. For
example, when z = 2 the metric features symmetries from the Lifshitz or Schrédinger
group [94]. The Schrédinger group is the most symmetric, obtained [95] by combining the
Galilean algebra (spatial translations P?, rotations M, Galilean boosts K, and temporal
translation H)

[Meab, Med] = ( §ac ) gbd 4 sbd ppac _ sad prbe _ she Mad)
[Meb, pe] = ( sacpb _ (5bcpa) (3.2)
[Me, <] = (5ach 5ch(z)
[K* H] =

with the additional anisotropic structure which corresponds to a central charge (“non-
relativistic mass”) m along with a dilatation D which generates the scaling (3.1) and
a special conformal transformation C; these extra symmetries manifest in an SL(2,R)
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algebra

[D, P%] = —iP®
[D, K] =iK®
[P, K] = —i§%m (3.3)
[D,H]=-2iH
[D,C]=2iC
[H,C]=iD

Through the relationship between SL(2,R) and SL(2,C) (the universal cover of the
Mobius group), one might notice that by motivating the Schrodinger group in this manner
we are constructing the non-relativistic form of the conformal group, in a similar fash-
ion to how the conformal group is often built from the symmetries corresponding to scale
invariant theories with Poincaré symmetry (see, for example, [96, 97]).

In my research I consider only the Lifshitz symmetry which possesses the SL(2,R)
component (3.3) (the anisotropy) and not the Galilean boost symmetries.

These types of spacetimes are interesting for a number of reasons. One paper of sub-
stantial impact to the quantum gravity community was due to Horava [95]. He showed
that a specific example of these spacetimes, now known as Horava-Lifshitz gravity, was
power-counting renormalizable. Appearing to have potential viability for a unified theory,
this flavour of modified gravity has been well studied.

In this thesis, I shall focus on another motivation: the holographic correspondence
with anisotropic gauge theories. It is expected that the varying anisotropy will manifest
dynamic critical behaviour, evidenced by the quantity of research on models for dynamic
universality. For example, work on the z ~ 3 dynamical universality class of the critical
point in QCD [99] or the z = 2 directed percolation models [100] provide models where dy-
namic universality classes may be investigated. Experimental evidence of non-equilibrium
phenomena is challenging to obtain; however, suggestive behaviour has been observed, for
example, for directed percolation [101]. We expect that an anisotropic gravitational theory
will feature some effect from the anisotropy, and the hope is that this can be related to
known behaviour of anisotropic condensed matter systems.

So, the idea behind breaking this scaling symmetry in the temporal direction is to
examine a dynamical scaling in relativity. In condensed matter physics this anisotropy
is theoretically better understood, and it is usually mentioned with regards to critical
slowing down or dynamic critical phenomena [23]. The scaling parameter z relates to the
equilibration of the system over some timescale; near criticality the amount of time needed
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to reach equilibrium is typically divergent (as it is related to the correlation length which
diverges), and this equilibration time can be characterized by a dynamical critical exponent
which turns out to be z; w™ ~ £* where w is the characteristic frequency of the model [23].

The holographic interest therefore originally motivated work in constructing gravita-
tional (bulk) metrics which manifest this type of symmetry, as an approach towards holo-
graphically studying gauge theories with these symmetry groups. Most importantly, the
Schrodinger group received attention, where the approach was to take the 3-dimensional
Schrodinger group corresponding to a gas of fermions at unitarity (a specific condition on
the scattering cross-section), and through a series of embeddings, relate it to a relativistic
toy gravity theory with this symmetry [95]. In addition, it was shown [102, | that the
Lifshitz symmetry alone is enough to obtain a Schréodinger symmetry on the boundary of
the theory, which means we can remain hopeful that our Lifshitz symmetric bulk can be
used to model Schrodinger symmetric gauge theories.

In this thesis and in my research, I have worked on the development of tools to examine
whether the dynamical critical exponent z acts in the same way with respect to black hole
criticality.

For my work on this topic, I primarily consider the case where the Lifshitz symmetry
is supported by a Proca field (a massive spin-1 field), though there are a number of ways
to recognize the asymptotically Lifshitz spacetimes. In the former case, the general higher
curvature action will then be

1
S= F/dDZL’\/—g(—2A+/:,1+,LL2£2+,LL3X3+M4X4
s

1 L1 1 )

- ZFWF“ - imzAuA“ - Z—l}"w,]-"“ ) (3.4)
where F,,, is the electric field strength for a Maxwell charge, while F},, is the field strength
(with corresponding vector potential A,) of the Proca field.

Here, because the results will be directly extended to Lifshitz asymptotics as well as
pure Lifshitz spacetimes, the static, spherically symmetric metric ansatz has the scaling
behaviour (3.1). The ansatz is then

r\* L2dr?
ds? = - (E) PN + s 1% (3.5)
where as before, dQp_, is given by (2.12), and the limiting behaviour is f(r)|,_ . =1 and

9(r)|,_o = 1. The fall-off behaviour of these metric functions is important in understanding
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traditional derivations of mass for these black holes, for example. In this thesis I am mostly
concerned with application to numerical solutions, and no assumptions on falloff behaviour
are made beyond the condition that at very large r (on the order of r = 108), the metric
functions are equal to unity within ten digits of precision. The fall-off can be examined
exactly from order-by-order solutions to the equations of motion from a large-r series
expansion; I will discuss this in section 3.5. Because sub-leading terms can become next-
to-leading order terms when z is varied, the discussion of fall-off is relatively complicated.

Note that for the remaining sections, excluding the numerical solutions in section 3.5,
I will denote the cosmological lengthscale as [ rather than L - the capital L will be used
to refer to a general dimension of length, in keeping with the published work on this topic

[3]-

3.1 Mass

The most immediate obstacle in describing the asymptotically Lifshitz black holes ther-
modynamically is the lack of an agreed-upon mass for the numerical solutions. Numerous
attempts have been made to identify inconsistencies in the various techniques that are used
to obtain a mass, focusing on the results for exact solutions. Unfortunately, these exact
asymptotically Lifshitz black holes are often unusual beasts, with strong restrictions on
parameters that are usually independent, such as the cosmological constant and the hori-
zon radius. For example, work has been done [104, | to understand Hamilton-Jacobi
variations in these theories, reaching the conclusion that the traditional quasilocal tech-
niques are not acceptable in all cases because the asymptotics can fix values of fields in the
theory, and the loss of independence of these fields has to be handled carefully.

With our asymptotically Lifshitz black holes and the thermodynamic work of sections
2.1.1 - 2.1.3, we are in a position where the entropy, temperature, and pressure are com-
putable via holographic or scaling arguments, but it initially appears that without a well
defined mass (and therefore enthalpy) the thermodynamics cannot be fully specified.

However, we found in a previous paper that the Smarr relation is robust enough to be
trustworthy insofar as describing black hole thermodynamics. In [3] we observed that the
D—-dimensional Smarr relation remains the same when higher curvature terms are added
to the action, even when they modify the asymptotics to be anisotropic. In this context
we found that given a convergent power series expansion of the temperature, entropy,
and pressure, the Smarr relation can be used, along with the first law of thermodynamics
and the set of independent lengthscales, to fix all remaining thermodynamic quantities.
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Therefore, the “thermodynamic” mass and volume can be found algebraically from the
temperature, pressure, entropy, and its derivatives.

In this section I will present our thermodynamic approach towards finding a mass
and volume, and then in section 3.2, I will analyze its results in comparison to the various
previous attempts at obtaining a mass in exact asymptotically Lifshitz black hole solutions.

3.1.1 Smarr Relation

The first step in understanding the thermodynamics of asymptotically Lifshitz black holes
is to examine the algebraic relationship between the functions appearing in the first law
(2.50), known as the Smarr relation [(4]. Because the Proca charge ends up fixed by the
asymptotics in both the exact and numerical solutions, we conjecture [3] that the only
quantities which appear in the Lifshitz Smarr relation will be related to the number of
independent lengthscales at the level of the action. Therefore, a Maxwell field will generate
a lengthscale, as well as the coupling constant for higher curvature terms. Since we do not
consider the thermodynamics of varying ps or ps in this thesis, we will ignore the latter
set of terms, and our Smarr relation will be the same as justified earlier in (2.51).

The form of the Smarr relation is not entirely trivial; there exists an alternative Smarr
relation for Lifshitz black holes which depends on the critical parameter z [100, , ,

Y Y Y ]
(D+z-2)M =(D-2)TS (3.6)

and initially it appears that this is in disagreement with equation (2.51). Primarily, the
mass appears to have a lengthscale that is dependent on the critical parameter, and there
is an absence of any pressure or volume terms. We will later show in section 3.3 that (3.6)
is a specific case of the Smarr relation (2.49) when k£ = 0 and the temperature takes a
simple form.

We then ask whether, given the Smarr relation (2.51) and the first law of thermody-
namics (2.50), we can constrain the mass and volume if the temperature, entropy, and
pressure are known.

3.1.2 Conditions on the Mass

There are a number of small details which must be dealt with before the Smarr relation
and first law can yield a “thermodynamically consistent” mass and volume.
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First, a difficulty appears when fundamental lengthscales become dependent in the
black hole solution. For example, if r, = r, (1), the conjectured scaling of the mass means
that [M] =1(P-3) so the first law (2.50) yields only one equation,

() (35) - ()

which can be simplified to (neglecting @) for now)

(D-3)¥:(D-2)TTS-2¥ (3.8)

which we can see does not yield an independent equation from the () = 0 Smarr relation
(2.49).

The only constraint that the algebraic Smarr relation provides is that there exists a
one-parameter family of solutions, M (1), V (), or equivalently M (V'). In [3], we proposed
a number of approaches that can be used to define a mass; currently no consensus exists on
the correct methodology in all cases, however, future numerical and analytical work may
be able to build on our inquiry and elucidate the masses for these asymptotically Lifshitz
black holes with dependent lengthscales.

1. The first approach suggested is to introduce a fictitious mass parameter. This di-
mensionless parameter m will appear in the metric function to artificially separate
the lengthscales [ and rj, until the mass is determined, after which the limit m — 0
can be taken. The choice of the exact form of the term

1\P
;)
r
by selecting a value of p will specify which solution along the one-parameter family
we will take. We can then compare p with some expected values; for example p =
(D -1) corresponds to the common scaling of the mass term in the metric function,
while p = (D + z — 2) is a plausible ansatz based on some exact Lifshitz symmetric
solutions. We can determine the mass for a number of guesses for p, and compare
with other methods to try to understand how this term should behave. Furthermore,
this approach could be used to match an exact solution with some limit of a numerical

solution, and while this will not be done in this thesis it remains an interesting avenue
for future work.
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2. The other approaches involve making a more strict assumption about the thermo-
dynamic ambiguity. The second approach involves taking 7, and [ as independent
quantities until the thermodynamics are specified. That is, we apply a modified first
law

OM (rp,1
M(T’h,l) /dh 8(:: )

/ dT‘hT(T‘h, l) aS(Th)

(3.9)

to obtain M, holding [ fixed. We then vary M with respect to [ to obtain an equation
which can be solved for the volume,

aM(Th, l)
ol

This amounts to supposing that S = .S(r;,) and P = P(l) until the solution for M,V
is obtained, as in this case the first law (2.50) becomes

apa)

=V(rn,l)—F%— (3.10)

oM T@S oM V@P

ory,or, ol ol

and the part of the first integral which only depends on [, M;(l), is assumed to be
zero since as r, - 0, we want M — 0.

3. Thirdly, we can assume a fixed value for a thermodynamic parameter. This comes
from the interpretation that terms added to the action contribute towards new length-
scales in the thermodynamics, and therefore towards a new parameter in the Smarr
relation.

This is related to why, for example, we do not introduce a charge and potential for
the Proca field in Lifshitz spacetimes into the Smarr relation and first law. The
charge of the Proca field is fixed by the Lifshitz asymptotics and so it is not pro-
ductive to add a new term to the Smarr relation which is completely dependent on
the entropy and pressure. This term would only make a conceptual distinction be-
tween the Proca charge and the mass or volume, for example, since the dependence
means that a “Proca potential” could be grouped into another term. If we find that it
greatly simplifies interpretation, then it is probably a good idea to separate the con-
cepts, but until that situation occurs it is much simpler to consider only independent
lengthscales.
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In this context, if the Ricci scalar corresponds to the lengthscale r,, and the cosmo-
logical constant corresponds to [, then when 7, = r,(1), the most compelling decision
will be to eliminate S, M, or V from the Smarr relation and first law. Since we
have an independent and trusted expression for S in these cases, we will typically
experiment with enforcing M =0 or V =0 and examining the outcome by looking at
the remainder of the thermodynamics.

There is a more general approach, which is to consider the single lengthscale (say, r,)
as contributing towards both M and V' in some way; this turns out to be conceptually
equivalent to the first approach mentioned, where the choice of p is a decision that
splits up the temperature-entropy term’s contributions among M and V.

Ultimately, these approaches are all very ad-hoc; the hope is that through using these
guesses, some pattern can be gleaned from the thermodynamics that indicates the correct
course of action for dealing with these highly constrained black holes. It may be that their
thermodynamics is simply ill-posed, since in this case we have an entropy that is dependent
on volume, but we will do our best to study how the thermodynamics may appear in the
case that it may agree with some independent results.

3.1.3 An Expression for the Mass

Here I present the main result of [3], the expression for the thermodynamic mass from
the power series expansion of the temperature, pressure, and entropy of black holes with
Lifshitz or AdS asymptotics.

The insight here is to use a power expansion of the thermodynamic quantities M, V',
T, ®, and S, in each of the lengthscales. The reason for doing this is that in general the
equations given by the first law and Smarr relation are nonlinear, and a series expansion
turns out to yield an exact solution. The mass and volume for the black hole solutions we
consider below will feature expressions for these quantities which are conducive to a series
form.

The convention we use for the expansion in the charge parameter(s) ¢, is given by the
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following set of expressions:

U Ny
M(T‘h, l, qu) = Mo + Z Z Miu(’l"h, l)qzi, Mw = Z Mijkurzjku lajk", (311)
u=1i=1 3k
U N, .
T(rnlqu) =To+ >, > Tua(ra, 1), T3S = Y TijuSox 77" 1% (3.12)
u=11i=1 gk
U Ny .
V(rnbgu) = Vo+ 30 Y Viu(rn Dag ViuP =3 ViguPoy )™ 1% (3.13)
u=1i=1 Jk
U N, .
=3 0 (1, 1)gh By = ) Bigpy 7" 10k (3.14)
u=1i=1 Jk

where My, V and T} satisfy the uncharged Smarr relation. The exponents a; are the power
of ¢, in this series expansion, N is the number of terms in this expansion, U is the number
of charge parameters in the metric function (in the case where we might add two Maxwell
fields to the action, for example), and the exponents 7k, d k. correspond to the powers of
rp and [ in the corresponding series expansion in these variables. More explicitly,

TiuS = Y. Tigury 17 g Sorr 1 (3.15)
J

where oy, + a = Yjkw and Bju + Bi = Ojku-

Because of the way the solution is structured, it is easiest to perform the series expansion
in both 7, and [ together - the reason that these variables are grouped together is because
we want to allow S = S(r,,1), whereas in this framework we do not allow ¢, to appear in
any of the dynamical first-law quantities S, P, or Q4.

This is tantamount to the expression

OM,
OQu

arising from the first law; we do not in general assume that a similar expression holds for
T,S,r, and V, P, 1.

Finally, the terms M;jxu, Tiju, Viju, Pok, Sok, and @y, are constant coefficients - they
do not depend on the dynamical variables ry, I, or g,. Since [¢u'] = a;(D = 3), Vjku + djku =
—(a; - 1)(D -3).
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With this series expansion, the Smarr relation and 1%*-law will break into

0P .
(D -3)M;, = (D - 2)T3,,S - 2Vi, P+ (D - 3) “;Q“‘ (3.17)
_ 3.18
(D =3)My = (D -2)TyS - 2V, P (3.19)
dMy = TydS + Vod P (3.20)

where the first pair of equations holds for i # 0.

We initially solve the i = 0 case, and then show that the ¢ # 0 case is solved in exactly
the same way. First, create the series expansions of My, Ty, Vy in (3.13), such that for
example

Moo = ZMOjkOTijOZ(;jkO
ok
Notice that for the correct scaling on Moo, vjx + djx = (D — 3). Taking partial derivatives
of the uncharged first law (3.20) yields the set of two equations

oM, _ 0S oM, .. 9S . 0P
-T2 IR Pl
o or, o~ Togy +Vog;

(3.21)

At this point we assume that the series expansion for P only contains one term, so the
index k is unnecessary in the V;, P expansion. In keeping with the “cosmological constant
as pressure”’ paradigm, [P] ~ 1/I2.

Then, through some algebra and the series expansion, the partial derivatives can be
evaluated and the powers of r,l can be eliminated to produce a set of linear equations
with the solutions

To:05La
Mojro = —0]70 'kz b (3.22)
Vi
ThinS 5
Voko = =228 (D = 2)j00 — (D - 3)é) (3.23)
2Pyjk0

where @y, is the power of r;, appearing in the entropy term S; in its series expansion (3.15).

One point of note is that this solution does not hold when 7;, = 0. In this case, the
scenario appears to be rather pathological as the mass will not tend to zero as r, — 0.
For these terms, it is possible to make progress with assumptions about their form; for the
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exact solutions considered below we need not worry. Some examples where consideration
of these terms may be necessary are in soliton solutions or in a series expansion about
numerical Lifshitz solutions [1 13, 114, 115].

This result is very interesting - for uncharged black holes with a cosmological constant,
some plausible assumptions about the form of the Smarr relation are enough to tightly
constrain the thermodynamics, even when the cosmological constant is interpreted as pres-
sure (without a pressure term, the Smarr relation (D - 3)M = (D —2)T'S trivially yields
mass from temperature and entropy).

The next step is to find a solution that applies to the charged case as well. Conveniently,
substituting (3.18) into the first Smarr relation (3.17), we obtain a Smarr relation very
similar to (3.19);

(D =3)(1 = a3) My = (D = 2) T3, S = 2V, P

where we have successfully eliminated ®,, Q. This expression is also subject to two first-
law equations similar to (3.21).

Therefore, essentially the same set of equations results, and solutions can again be ob-
tained in the fashion of (3.22) and (3.23), but where the relationship between the powers y
and ¢ now features a;,. This generalizes the power series method to a larger thermodynamic
context with an arbitrary set of independent work terms.

The Maxima code to solve for thermodynamic mass and volume, given a simple series
expression for the metric function and the entropy and cosmological constant, is shown in
Appendix C.3.

3.1.4 Various Definitions of Mass

Here I will outline a few of the alternative formulations of mass in Lifshitz symmetric
spacetimes which I will compare with the thermodynamic mass of section 3.1.3.

The difficulty of defining a mass in general relativity has led us to a veritable zoo of
masses, obtained by exploiting symmetries of the spacetime, Hamiltonian foliations and
counterterm methods, and gauge invariance. I will therefore only list a few of the potential
contending approaches to a “Lifshitz mass”, in order to compare them to results that we
obtain by constraining solutions thermodynamically. Note that this list is by no means
exhaustive, and future study might indicate that a suitable mass exists which was not
considered here.
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Komar Mass

The Komar mass [1106, , 28, 118] is generated by the timelike Killing vector of a space-
time; it takes the form

1
O T T — (3:21)

where 6 make up the angular coordinates on the boundary sphere (taken to spatial infinity)
S8e, 0 is the determinant of the metric on this surface, £ is the timelike Killing vector for
the spacetime, n is the timelike normal to the hypersurface 8., and r is the spacelike
normal.

This mass requires an asymptotically timelike Killing vector, so it applies to stationary
spacetimes. We only consider these spacetimes in this thesis but mention this because
it is potentially restrictive, and because our thermodynamically inspired mass could be
applicable to nonstationary spacetimes if thermodynamic equilibrium can be maintained.

Arnowitt-Deser-Misner Mass

The Arnowitt-Deser-Misner (ADM) mass [119, 28, 120, 118] is computed in (3+1) dimen-
sional asymptotically flat spacetimes via an integral of extrinsic curvature over a spherical
two-surface at infinity:

1
Mapur = 3 fs d*0\/o (K - Ky) K=0"PK,p (3.25)

where K is the extrinsic curvature of the two-sphere S, as embedded in flat spacetime, and
the coordinates A, B take two values as they correspond to the coordinates of the induced
metric on 8., (which has determinant o), df4.

K is used to subtract the infinite contribution from flat spacetimes; this is the extrinsic
curvature of S.,, Kp = na;ﬂeje% where n,, is the spacelike unit normal to the two-sphere,
as for the Komar mass, and €9 are the tangent vectors on 8.

Because we deal with non asymptotically-flat spacetimes in this thesis, the ADM for-
malism does not directly apply, but I will refer to an approach towards finding the exact
mass as “ADM-like” when it uses a similar formula, evaluating the extrinsic curvature of
a hypersurface at infinity in time and one spatial coordinate. If the selection of the back-
ground spacetime yielding K is nonstandard the particular background used should be
specified.
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Brown-York Mass

The Brown-York (BY) mass [121, 56, 105] provides a quasilocal formalism for the mass of
these black holes. It requires the computation of the Brown-York boundary stress tensor

[ ]7

1 4§
T =T < 3.26
B T A A 57 (3.26)
where the stress-energy-momentum tensor is defined by [62]
-2 matter
T = OSmatt (3.27)

V= og"

and where the last term in (3.26) contains a functional derivative of the action counterterms
(see the note below on counterterms) with respect to the metric after ADM decomposition,
ds? = —=N2dr? + ry,,, (da# + Nrdr) (dz” + N7dr). The first term arises from the canonically
conjugate momentum to 7,,, and the mass is integrated from the proper energy density

Mpy = f P0/a N TEY) (3.28)
b

where 3 is the boundary two-surface (which we may generalize to higher dimensions) and
n is again the timelike normal of this surface.

Note that the canonical momentum part will integrate to a form similar to (3.25),

1
Mpycn = "% /; d*0\/o (K - Ky) K=0PK,p (3.29)

which becomes the ADM mass when we evaluate on the surface at spatial infinity; > — 8.

In this thesis, I will be interested in these quasilocal masses when evaluated at spatial
infinity, so be aware that when I attach a number to the “Brown-York Mass” I am referring
to a mass obtained using the Brown-York formalism evaluated on a surface at spatial
infinity.

Hollands-Ishibashi-Marolf Mass

The Hollands-Ishibashi-Marolf (HIM) mass [123] is another quasilocal formalism that uses
Hamiltonian methods. It was reached through a deeper look at the counter-term subtrac-
tion that makes the Brown-York approach tick. It was seen [124] that if non-metric fields
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are nonzero at the spatial boundary, a generalization of counter-term subtraction should
be used. This yields a quasilocal mass similar to, but not the same as, the Brown-York
mass. This method of obtaining this mass is rather involved, and its machinery is not
directly relevant to this thesis, so I will exclude a complete derivation.

The essential difference from the Brown-York mass is that the functional variation is
taken with respect to a set of asymptotic frame fields which handle the nonzero values of,
say, a Proca field, when we consider Lifshitz symmetric spacetimes. This ultimately causes
T(“ é'y) = T(“ I}'IM) except for the case where = v = t. The application of this approach in
asymptotically Lifshitz spacetimes was studied in [105].

Wald Formula

The Wald formula can be used to find a 1%¢-law mass [62, 24, , , | by examining
the Lagrangian under diffeomorphisms exactly as in section 2.1.2. Here a quantity 0H
(which is quite involved and out of context to elaborate upon in this thesis) is defined by
using 0L, the variation of the Lagrangian under a diffeomorphism, such that 6%,, (the
aforementioned quantity evaluated on the horizon) yields T'9S and 6H,_ . is interpreted
as the mass. This approach yields a first law which is then integrated to give a mass. For
further details on this method see section 2.1.2.

Counterterms

This suffices as a brief summary of the methods mentioned in this thesis, but a number of
other techniques are used (sometimes partially) to specify a mass. My list is by no means
exhaustive and additional methods, especially Hamiltonian methods, have been applied to
the AdS background context [123].

I should also comment that as typically implemented, Wald and the other Hamil-
tonian methods mentioned above require counterterms for a well-defined action. These
counterterms are not unique and must be decided upon. See, for example, the work in
[127, , |. The decision for the Lifshitz symmetric spacetimes that we shall consider
is not universally agreed upon, and for this reason often authors will use the validity of
the first law of thermodynamics to fix the counterterms and obtain a mass, as performed
in [130] for example.

The way in which the thermodynamic framework which we propose goes beyond these
methods is that it utilizes a consistent Smarr relation to obtain the mass. However, we
would not expect to disagree with those approaches which fix the counterterms except in

99



cases where the lengthscales are not independent. This is for the same reason that we
would not expect to disagree with any work that proposes a mass which agrees with the
first law - our thermodynamic description finds the only mass that satisfies that relation,
while the “unknown counterterm” approaches fix the counterterm(s) to agree with the first
law.

3.2 Exact Solutions

The problem of finding exact solutions to the Einstein Field Equations is challenging, and
it remains difficult even when constraining the problem to feature asymptotically Lifshitz
symmetry. Nonetheless, a number of exact solutions have been found, some of which
feature horizons and are termed Lifshitz-symmetric black holes. Typically the solutions are
obtained through a massive simplification by imposing strong symmetries (spherical, static,
and the like) as well as by fixing the Lifshitz critical exponent z to take a specific value
(commonly z =2, z =3, or z = D), and finally through intense and skilful mathematical
scrutiny of the resultant field equations.

In this thesis, I use the exact solutions that are known in order to learn about the
thermodynamics of Lifshitz-symmetric black holes. The ideal testbed would be a Lifshitz-
symmetric exact solution with a mass parameter m, a Maxwell field of charge parameter ¢,
and an entirely unconstrained Lifshitz critical exponent z. Unfortunately, no such solution
is yet known.

In this section I will collect and describe the set of solutions that have been found
exactly, and I will make comments on their thermodynamics. Later, I will discuss an
interesting relationship that we have found these black holes break, called the reverse
isoperimetric inequality [70].

Below, I will classify these solutions based on z, D, and k. I will use the method of
section 3.1.3 to find the thermodynamic mass and volume, which I will compare with the
results of other methods.

3.2.1 z=2,D=4,k=-1

The first exact Lifshitz black hole I will discuss is that which was discovered in 2009 [131],
a “topological” Lifshitz black hole. It has a constant negative curvature horizon topology,
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and the metric functions of (3.5) are

l2

M)y =¢*(r)=1-— 3.30
PO =) =1 o (3.30)
where for this black hole, z =2, D = 4. It follows from the action
S:L[d“x\/—g R—2A—1F F“"—LH H“"T—Le“”aﬁB F, (3.31)
167 4mm 1277 N ptan '

which we can see has no higher curvature components but does have two fields added;
a fairly unusual field configuration is used to obtain this exact solution with the z = 2
Lifshitz asymptotics, known as the Background Field model, where a two-form gauge field
is “topologically coupled” to a so-called axion potential. These fields have historically been
of interest as they are the basis for a topological quantum field theory [132], but in this
thesis they are of interest only insofar as they are able to produce the required Lifshitz
asymptotics, as noted in [93].

This black hole constrains parameters in the action to be dependent, therefore, some
of the simplifying assumptions made above cannot be used to determine the mass. As is
usual for the Lifshitz symmetric black holes, the cosmological constant and the coupling
constant C' are fixed as

22+ 2z+4 5
A= g 2z =(Cl)~. (3.32)
while the gauge fields are
r .
E, = 2l—2, H,ps = 2rsinhf. (3.33)

The cosmological constant in this specific dimensionality with z = 2 is A = =5/I1%. From
the metric (3.33) and the cosmological constant (3.32), the thermodynamic variables are
calculated as

1 r? 12 5

S = — Wy -1 = ZW2 -1, P=— (334)

T=—
4rl’ 4 8 8?2

where 7, = ﬁ is found from the equation f(ry) =0.

Attempts at studying the thermodynamics of this black hole have been made [131].
Because the exact black hole has only a single free parameter (), it is challenging to make
a meaningful analysis. However, a numerical solution was found [131] from which plots of
entropy versus temperature can be generated and stability can be investigated.

Mass was not computed in the original work, though it was suggested that the mass
may be zero, due to similarities that this black hole shares with the topological AdS black
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hole 133, |. In that research, the mass of the topological black holes was computed via
the ADM-like method (3.25).

Later, for this z = 2 solution, the Brown-York and Hollands-Ishibashi-Marolf masses
were computed in [105]. This work uses conventions, including a coordinate system chosen
for constant r foliation, which are different than those used here. This makes their masses
slightly tricky to compare with ours, but we can convert their solutions by redefining their
free parameter [ in order to make their horizon radius agree with ours;

~

l [

Th=—F7==—

VB V2

such that [ = 21. Their masses are, for v? = 87,

while for minimal surface terms in the action (where coefficients have been fixed by impos-
ing a set of conditions such as finiteness of the on-shell action and conserved charges)

3[&)27_1 _ 3[0&}27_1

Muiv = =575 = Tosa

and using an extended action (where additional surface terms were added to allow in-
dependent variations of the asymptotic behaviour of the metric function and the gauge
field),

lwa 1
My = 2=t
HIM = 1987
The premise of [105] was that in the minimal action context, asymptotically Lifshitz space-

times have problems with the Brown-York approach because the Proca field is fixed by the
Lifshitz asymptotics and its contribution to the energy cannot be considered independently
from those of the metric. Ultimately this problem with Hamilton-Jacobi analysis of asymp-
totically Lifshitz spacetimes needs to be understood to be confident in the mass of this
class of black hole [104].

A final comparative approach involves taking the limit of m = 0, D = 4 of the dilaton
solution in section 3.2.5 to guess at the mass for the solution (3.30). The dilaton solution
would have My = 0 in this case. Of course, this is at best a guess since this solution
requires the dilaton to exist for z = 2 (it is specified for z = 4). For this dilaton solution,
we can see that M =0 and V = 3w, _1/48, and were we able to substitute of D = 4 and
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z =2 and redefine [ such that the metric function (3.57) agrees with equation (3.30). This
is only suggestive, since the dilaton theory requires z = D =4, but it is plausible that mass
could behave in a similar fashion.

We now apply our thermodynamic technique to constrain the mass. We note that the
lack of independent lengthscales means that we consider one of the options in section 3.1.2.
Dimensionally, the expression for the mass must take the form

mltdg -1

M=— 3.35
327 ( )

where m is a dimensionless constant. The Smarr relation then becomes

mlwy 1 ( lwa 1 ) Y
— = (D-2)T'S-2PV =2 : -2 %4
327 ( ) 327 &2
yielding
I3

V= (2 - m)—OJQ -1 (336)

40 7
for the thermodynamic volume.

For comparative purposes, the Brown-York mass (1 = 1), the Hollands-Ishibashi-Marolf
(HIM) mass (m = 3/4), its value from the extended action (1 = 1/4), and zero mass (m = 0)
constitute previously known values for the mass. The volume for any of these approaches
can be determined from (3.36).

Applying the first of our approaches to handle dependent lengthscales, we add a ficti-
tious term to the metric function to yield

fA(r)=1-— +m— (3.37)

where p will be selected based on guesses for the falloff. The power p = D—1 = 3 has the same

falloff as the AdS-Schwarzschild case, yielding 7 = 1/4, while a power of p=D +2 -2 =4

agrees with the form of the mass term in the dilatonic solution [135], and yields 7 = 0.
We can assume independence at the action level, following the second of our dependent

2
Th

lengthscale techniques. The entropy will be given by S = -

wa,—1 and we find that m = 1.

A final possibility is to fix V' =0, yielding m =2, or M =0, yielding m = 0. In order for
the thermodynamic volume and mass to remain positive, we find the condition 0 <m <2
must be true.

More suggestive is the agreement with the extended action Hollands-Ishibashi-Marolf
approach. The suggested (D - 1) scaling for the mass is in agreement with this result,
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method m
Brown-York 1
HIM 3/4
HIM-extended 1/4
p=(D-1) 1/4
p=(D+z-2) 0
M=0 0
V=0 2
rh, [ independent | 1

Table 3.1: Values of the mass parameter m for various methods of obtaining mass for the
z = 2 solution (3.30).

indicating that an action that allows for the independent variation of the Proca field and
metric tensor may be the most compatible with the correct (D — 1) scaling of mass. Inter-
estingly, the Brown-York mass, which ignored any problems with independent variation,
returned a result in agreement with our method of assuming that r, and [ are independent
until the thermodynamics were computed.

In order to confirm our supposition, comparison with the HIM mass for additional
Lifshitz black holes remains for future work. The results from this subsection are tabulated
in table 3.1.

3.22 z=4, D=4, k=210

Next, we consider an asymptotically Lifshitz black hole with a Maxwell charge. The action,
auxiliary fields, and metric function take the form [107, 130]

S—Lfd‘*:c\/_— (R-2A- L™ g2 Lpe (3.38)
" 167 g 1 27 ] '
R TR
f2(r)292(7’):1+ar—2—67—ﬁ (339)
3rd 72
Bt = El—4f(T), At = l_3q (340)

where A = —12/12. The coeflicients are fixed by a = 1/10,b = 3/400. Note that as in the
previous example, the cosmological lengthscale and horizon radius are not independent.

The case where k£ =0 and ¢ = 0 is a valid solution, but there is no horizon; it is pure
Lifshitz, so while we detail its thermodynamics, we remain interested in k& = +1, where k
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indexes the topology of the horizon as in 1.3. When charge is considered k£ = 0 will also
become important.

This black hole has the temperature, charge, entropy, and pressure of

1 2 q> 1 q
T=—(-aklsopr?+ L - [ -k 3.41
27rl( W ’ " 2 )’ @ i) " o 2k (341)
2
T, 3
- _h P=— 42
o il 27l? (342)

and the horizon is located at

akl 1 2
=1 (_7 " \/Za2k212 k22 + %) (3.43)

Here we were unable to find any previous derivations for the mass of this black hole.
We therefore present a number of plausible scenarios for the mass which result from our
thermodynamic method, without any comparative study.

The ansatz for mass in section 3.2.1 becomes more complicated in theories with a
Maxwell charge, and we now need to use two parameters m and w, where these parameters
are still dimensionless but can be composed of powers of ¢/l and r,/l. We find that the
expressions for thermodynamic mass and volume are then

_hlwy g Wr3qPwa

M = 3.44
8007 | 4Pr (3.44)

2 4 3 2,.2
_ (327 _oopTh i | B2k L 4 1) L2
V= (Bk 2 20k 7 m) 5400 +(w+1) 197 (3.45)

Since we have used an integration approach to obtain the charge (by integrating the
Maxwell field strength), we can exactly obtain the electric potential in terms of the charge
parameter ¢ and the other lengthscales,

®="— =iy (3.46)

There are a number of ways in which we can plausibly examine the parameters w and
m. The first is to use a fictitious scaling p = (D + z — 2), but we also examined the case
where b in the metric function f2(r) is no longer a fixed parameter but instead a variable,
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because this term in the metric function shares the same falloff as the M term in the D =4
Reissner-Nordstrom black hole, and so it may be reasonable to check whether it can behave
similarly here. Finally, we also consider r},[, ¢ independent at the level of the action, and
treat these quantities independently in the entropy and temperature through the first law,
until we finally substitute their dependence into the results.

For the purposes of reference, we reproduce the table of these results in table 3.2. We
find that in the uncharged case, the power scaling p = (D + z—2) case yields a mass of zero,
which is plausible since at least from the level of background subtraction this black hole
has no free parameters and the correct Lifshitz background to subtract may simply be the
solution itself.

We also find that treating b as a free parameter yields a finite mass, and most interest-
ingly, this approach yields zero electric potential at the horizon. If this is later shown to
be a reasonable claim for this type of black hole, then the scaling of a fictitious mass in the
metric function of power scaling p =4 = D (equivalent to treating b as a free parameter)
may be justified.

method Q k m w
0 1, -1 0 0
p=(D+Z—2) 7 ¢%r2 L
q 17 _17 0 50 1[4 1
0 1 ¥ 0
b=>b(rp,l,q,a) 0 -1 5 0
¢ | L1 | 5(kE+R%)| 0
rn, [, q independent q 0 0 %

Table 3.2: Parameter values for the ansatz (3.44) for the z = 4 solution (3.39).

3.23 2=2, D=5 k=0

For more diversity we can move to asymptotically Lifshitz black holes with actions that
have higher curvature terms. In fact, there is a specific combination of higher curvature
terms that can be used to satisfy the Lifshitz asymptotics without the need for a Proca
field [137], and the next two black holes will use this type of action.
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In five dimensions, a k = 0 black hole can be found using the action [135]

S= % f dPx\/=g ([R-2A]+aR?+bR"R,,
s
+¢[Ryuvpe R**° — AR, R" + R*]) (3.47)

ml5/2)

P =) = (1 2 (3.9

where the specific couplings are ‘tuned’ to take the values a = —=1612/725, b = 158412/13775,
¢ =221112/11020.

For this solution, the entropy, temperature, and pressure can be computed as

~ 39673 Tws o

S el (3.49)
512 2197
I'= 83’ 4408712 (3.50)

Note that this solution is the first asymptotically Lifshitz black hole that we will consider
that has two independent lengthscales, [ and r,. The thermodynamic approach we have
proposed therefore yields a single mass and volume which agree with the Smarr relation
and first law; this yields

1782 9 TWs 0 ( 2197lws o )_ 297 Twsg (3.51)
© 2197 | 3x2204w2) 1102 I3 '
5r2 1188mriws 5 -2197\7"
= 3 Th(—?)) (—2—)
8l 551 wl? 2204
1782 7’271'&)30
=— . h 7 52
2197 l (3.52)

A Brown-York method has been applied to compute the mass of this black hole, but as
discussed in section 3.1.4, counterterms were required to finish this computation, and they
are not uniquely known. In [130], the counterterms were fixed by a first-law method, so it
is expected that the mass determined in [135]| through this approach will agree with (3.51)
(and indeed, it agrees!). Nevertheless, we have obtained the same mass independent of any
of the quasilocal formalism used in [135], and our approach is very easy and straightforward
to implement. What is more, we have obtained the thermodynamic volume, which will
later be useful in any examination of the universality class of these types of black holes.
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324 2=3,D=3,k=0

In three dimensions, a planar black hole exists similar to the one presented in section 3.2.3,
with the action (3.47) but the metric function and cosmological constant [139, 135]

£ =57 = (1-m) 359
A =-13/21*

and the coefficients a = -312/4, b =22, and ¢ = 0.

The temperature and entropy can be computed for this solution as
S=2mr,  P=13/16x* T =r;/2nl* (3.54)
This solution has two independent lengthscales, and so we compute the thermodynamic
mass and volume in a similar fashion to section 3.2.3, yielding

M - rfl _ 87rr;‘;
4 1312

(3.55)

Similar to section 3.2.3, the mass was computed up to counterterms which were fixed
via a first-law [138], and this computation agrees with our expression (3.55).

So far we have seen two asymptotically Lifshitz black holes which have independent
horizon radius and cosmological length, and our thermodynamic method has successfully
obtained a mass that agrees with alternate derivations.

3.25 z=D,k=1,0

This exact solution was found in Einstein-Dilaton-Maxwell gravity, where the action has a
dilaton added as well as a set of N Maxwell fields which couple to the dilaton [135]. The
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particular action and solution found is

T dex\/_[R 2A - —(a¢ - —Ze 2 (3.56)
™
D-3 N-k q72“u‘\/ (D—_21)) l2z

l2
=kl ———| — —z Z -2(D+z-3)
f(r)_k(D+z—4) Lo mrt 22(D—2)(D+z—4)7"w ’ (3:57)

r2

Apy =172(D+ 2= 2)(z - V0P, (3.58)
_[2(z-1)
A;n = ot V 0-2) 3-D- Z (359)

V2k(D-2)(D-3)(z-1) __@

AQ,N - iz \/m ‘/2(D—2)(z—1)7~D+Z—5’ (3.60)
e = prV2AD-2 (D) (3.61)

where there are N Maxwell fields A;,, coupled to a scalar ¢ (the dilaton). We can see that
a number of the Maxwell fields are fixed in order to obtain the solution; the free fields are

€[2,N -k], when N >2+k, and in addition all of the \; couplings between the Maxwell
fields and the dilaton are fixed by the field equations. The additional field for k£ = 1 as
opposed to k = 0 is because an extra gauge field is needed to support the near-horizon
geometry; the first field is used to give the Lifshitz asymptotics. As a final note, k = -1
is allowed as a solution but has an imaginary charge density unless z = 1, so we do not
consider it here.

The temperature, entropy, and pressure can be computed via the usual methods,

i I2(D-3)2
T=h [(D4z-2) 1k Z ")
47TZZ+1(( MR r2(D+z-4)
2(z-1)
N D 2=
qn i -2(D+2z-3
"L 5oy | ))’ 0
S :“va’“r,?-z, (3.63)
(D+2z-2)(D+2z-3)
p- - (3.64)

and we comment that the computation of the Maxwell charge can be performed to yield

1 ¢ qiWp-2 klz*l
= — z F = — .
©i= T6x / cr 167 (3.65)
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so we can obtain the electric potential with our method, in this case.

The metric function has N + 1 -k independent lengthscales; ¢, as well as [ and r;,. The
Smarr relation (2.51) and first law (2.50) constrain the thermodynamic mass, volume, and
electric potential to be

(D - Q)WD_Q k (D - 3)2l2 —2-1 D+z—
M = ) 1+k I~ +2-2
167 " (D+2z-4)%r3 Th

2(z-1)
(D-2)

+ Uit S} (3.66)
£ 2D-2)(D+2-4)

= (D - Q)WD_M (Z - 1) +k (D _ 3)2(2 _ 1)12 [1-zpD+z=2
" (D+2-3)(D+2-2) 2 2(D+z-4)%r? h

N-k

Nk (z- 1)q2,u7V 7?(17:213
- n [#HphD== (3.67)
= 4(D-2)(D+z-4) ’
=
dn W } 4-D—z
b, =—-——— . 3.68
(Dtz-4) " (3.68)

In fact, this mass is simply obtained by solving f(ry,) = 0 for m; then the mass is

M = 022k -1-2 (D 9) (3.69)

167
This result, along with our electric potential from (3.68), agrees with those found in [135]
and [106]; [135] computed mass through a Komar prescription whilst [106] used a Wald

method for the k£ =0 case.

3.2.6 z=2(D-2), k=0

The final case we shall consider here is a planar black brane solution in arbitrary dimension
[136, |. This solution is interesting because it requires a the Maxwell field, a cosmological
constant, and a Proca field to support a single exact solution with only one free parameter.
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The action and solution is

1 1 1 1
=— [ dPx/=g| R-2A - -H?> - —m?B? - —[? 3.70
167 f ! g( S M ) (3.70)

2[2

=]1]-— 3.71
f(T) Q(D_Z)QTZ ( )
Bt _ / 2(22_ 1) ,;_Zf(r)7 FTt — qll—zT—D+z+1 (372)
(3.73)

where the solution is found for z = 2(D - 2), and H is the Proca field strength while F is
the Maxwell field strength.

The temperature, entropy, and pressure of this black hole are

i T 20 (3.74)
47r(D 2)’ 4 ’
2 _
_ 7D 127(3112) + 32, (3.75)
and the Maxwell charge can be found from an integral
Q = i[ I = i0JD—2,0 (3.76)
4 4

This solution is particularly difficult to constrain thermodynamically, because we again
have a dependence among our lengthscales. We choose ¢ as the completely independent
parameter in order for our method of splitting charge apart from the r,,l power series
to apply, leaving r, = r, (1), and we make use of the aforementioned techniques to make
some educated guesses at a thermodynamic mass and volume. There are not yet any
unambiguous alternative derivations of the mass for this black hole, so while we can make
suggestions about this black hole’s mass we cannot find another work with which to agree
or disagree.

Using the fictitious mass approach, where the metric function is

f2(r) = 1+m(%)p— m

2l2

(3.77)
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yields

(6(D -2) - 2p)wp_ooryP~°

M =
487 (?P-3
PV = (6D2 -27D + 30 + 2p(3 - D))WD_Z()T?LD%S
487 [2P-3

so we can see that for p= (D +2-2), M =0.

The other interesting case, when r, and [ are assumed to be independent in the entropy
and temperature, gives a mass that is finite for nonzero 7, and ¢, and obeys

1
M=-d
5 Q@

which seems sensible because it simply reflects the fact that this solution necessarily re-
quires a finite Maxwell field in order to generate a black hole solution; linking the mass and
charge in this manner is plausible. If we were to neglect entropy and pressure as dynamical
thermodynamic variables, the Eulerian scaling argument on the remaining lengthscale [¢]
would give us this relationship.

3.2.7 Summary

The table 3.3 shows the Lifshitz black holes we have considered in this section, where the
masses were thermodynamically ambiguous, and it counts the instances in which other ap-
proaches’ masses agree with our approaches. Interestingly the HIM mass with the extended
action returns the same result as assuming a fictitious mass term with the dimensional scal-
ing that is conjectured in (2.45). Further study might give better insight into exactly why
this is, but on the surface it seems plausible that a method designed to carefully build in-
dependence of the various lengthscales in the problem should agree with a thermodynamic
approach that is carefully designed to also allow for complicated relationships between
lengthscales.

In addition, in the instances when the mass was not thermodynamically ambiguous, our
approach has agreed with multiple methods, including the Wald, Komar, and Brown-York
methods.

Apparently the task of varying the Proca field independently of the metric tensor yields
problems only when additional lengthscales are mixed, such as those of the horizon radius
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method p=(D=-3) | p=(D+2-2) | M =0| ry,1 independent
Brown-York 0 0 0 v
HIM 0 0 0 0
HIM-extended v 0 0 0
Topological (zero mass) 0 vV vV 0

Table 3.3: Comparison of alternative methods of obtaining the mass in section 3.1.4 with
our thermodynamic methods of section 3.1.3 for the solutions considered here.

and cosmological constant. When these lengthscales are independent, counterterms can be
fixed using the thermodynamics, and this gives a prescription for mass that always agrees
with ours. To strengthen this conclusion, applying the HIM and Brown-York methods to
some of the black holes considered here remains an interesting endeavour.

3.3 A Specific Smarr Relation

Here I show a derivation of the Smarr relation (3.6) as arising from the more general
Smarr relation (2.51). The former is an alternative Smarr relation for anisotropic black
holes which depends on the critical parameter z [106, , , , , , | and
appears to hold. The question is whether and how this Smarr relation is related to (2.51),
and which of them is more fundamental. As shown below, our relation (2.51) can be shown
to simplify to (3.6) in some specific cases, such as when k = 0 for some planar Lifshitz black
holes. We propose |3] that the relation (3.6) be used instead, as it is more widely applicable.

In order to show equivalence, we have to make a number of restrictive assumptions,
which is why this former Smarr relation is less general than (2.51). First of all, we assume
that the parameters [ and r, are independent and that the thermodynamic parameters
S =S5(r,) and P = P(l). The latter is an important restriction as it does not necessarily
hold when higher curvature terms are added to the action, for example in (2.40). If the
higher curvature couplings are made dimensionless by adding them to the action in a
way that depends on the cosmological lengthscale, one then has an entropy that is not
independent of [, and in the context of an extended Smarr relation the entropy can take
the form S = S(rp, A, 1, ).

Nonetheless, with this assumption the first law of thermodynamics greatly simplifies,
yielding two equations

oM _ 0P M __0S
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We then make the simplification that the entropy depends only on 7",? ~2. Since the cosmo-
logical constant [A] = 1/12, (3.78) simplifies to

oS oP 2P
Tha_Th = (D—Q)S W ——T (379)

Finally, we assume that the temperature depends on the horizon radius and cosmo-
logical lengthscale in a very simple way, namely that the dimensionality of temperature
1s

Tk

[T] = (3.80)

- lz+1

This tends to hold for simple forms of the metric function f2(r), usually just for planar
black holes (when k = 0), as then the metric function takes the form

l —_
=1+ -
f)=tem|(%)
for some constant power =, which yields temperatures of the form (3.80) when the formula
(2.31) is applied.
The dimensional scaling of the mass in this case is
z+D-2

[M]="% (3.81)

lz+1

and the relevant equation for the thermodynamic mass is

T 08 (D-2)

M B 87’h_(D+Z—2)

TS (3.82)

We therefore see that in these specific contexts the Smarr relation may appear to be
dependent on the Lifshitz parameter z when in fact a more general interpretation where
the asymptotic behaviour is accounted for as a pressure term will yield a Smarr relation
that is more similar to the traditional form.

3.4 The Reverse Isoperimetric Inequality

One question which this work enables us to answer is whether the reverse isoperimetric
inequality holds for asymptotically Lifshitz symmetric black holes. Fundamentally a ge-
ometric relationship between the area and volume of a closed surface, the isoperimetric
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inequality says that the ratio

R = (M)D{l (%)D (3.83)

Wp-2.1 A

is less than or equal to one for a connected domain in Euclidean space, where V is the
volume enclosed by the subject and A is its surface area |70].

For black holes in general relativity, however, the relationship is reversed, and it was
conjectured [70] that instead, a reverse isoperimetric inequality will hold for black holes.
For example, the Schwarzschild-AdS black hole saturates the inequality, with R = 1, while
Kerr-AdS black holes have R > 1, with saturation only when non-rotating.

The Lifshitz case was examined in [3] and we found that for a number of z > 2 black
holes (all of them for which we computed this quantity), the isoperimetric inequality can
be violated (R < 1) in certain regimes. Furthermore, we showed that increasing the charge
of the black hole can act to increase the isoperimetric ratio, eventually yielding R > 1.

These results join another work on “super-entropic” black holes [33] in providing exam-
ples where the reverse isoperimetric inequality is violated. This leads us to believe that
this relationship is more complicated than previously thought. Because volume is not a
covariant quantity, it is likely possible to better understand this inequality by carefully
studying prescriptions for volume in asymptotically Lifshitz symmetric spacetimes.

3.5 Numerical Solutions

Numerical methods are quite important in the study of these anisotropic black holes be-
cause as we have seen, the exact solutions often have parameters which are not independent,
making the thermodynamics challenging to interpret.

The first step in tackling this problem is in obtaining the field equations given a spher-
ically symmetric metric ansatz. The method of Appendix A will be used to perform a
functional variation of the action (3.4) under the metric (3.5).

In this description of the method, I will use a cubic quasitopological theory without a
Maxwell field to discuss the details, and then I will examine the thermodynamics from this
theory (in subsection 3.5.2) followed by a discussion of the changes that need to be made
to account for a quartic quasitopological term (in subsection 3.5.3). The Maxwell field can
be added with relative ease; its field equation can be solved and its contributions to the
field equations accounted for; no substantial changes to the methodology are required.
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The current state of GRTensor [1/11] does not yet provide an easy method for obtaining
dimension-independent quantities in general relativity, so for each dimension the variation
of the action with respect to the metric functions N, g, and h is performed. These results
were checked by hand for a dimension-independent calculation in order to obtain the di-
mensionally independent field equations, which are related to the equations (2.65)-(2.67),
but with modifications due to the Lifshitz parameter and the mass of the Proca field; for
example, the field equation (2.66) is

D-1 —2AL* A 5 B4 I / 2 27272
[(D—2)r ((D_12)(D_2)—l€+ﬁli—%/€ )]:q2N2 [((rh) +2zh) +mLh]
(3.84)

where the coupling constants of (3.4) are redefined in order to produce a simplification of

the field equations:

(3D% - 42D3 + 205D2 — 414D + 283)
(16D - 24)

A= (D-3)(D-4)py  fi= 143

and k = (¢%(r) - f—; ). In the numerical work provided in this thesis, we use redefinitions

1= aL* and A = AL? to remove dimensionality from the higher curvature coefficients. How-
ever, for complete extended phase space thermodynamics (as mentioned in 4.2), the above
definitions are required, so the implementation of this method will be performed using the
dimensional definitions fi, . Furthermore, the extension to quartic quasitopological terms
is algebraically very lengthy, so it is discussed in section 3.5.3.

In order to replicate these results without relying on symbolic algebra packages, it is
often useful to simplify the action before the functional variation;

1 D fort D-1 Ao oy ,
LZ+1/d ZL’\/;W ({(_D—Q)T 1—Ii+ﬁli —ﬁli (385)

+7“D_2% {[(rh)' +2h]* + m2L2h2})

S~

which is a lengthy algebraic procedure; the easiest approach is to expand the derivatives
in the integrand of this action and compare term-by-term with the action (3.4) after using
the integration by parts utility from appendix A to remove all second order derivatives in

f(r) and g(r).
Adding a Maxwell field yields an additional set of terms; the same ansatz as for the
Proca field means the terms are the same up to a substitution h(r) — v(r) although there
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is no mass term present for the Maxwell; inside the round brackets of (3.85) the additional
terms will appear as

2
rD_4Q— [(ry) + 277 (3.86)
2f
An ansatz is made for the vector potential of the Proca field, implicitly bringing out
the scaling that it requires to form an interesting numerical solution [108],
/r-Z
A= qﬁh(r) (3.87)

where a r - oo, h(r) - 1. The higher curvature terms do allow for an asymptotically Lif-
shitz solution to be obtained when h(r) vanishes, but this is typically a highly constrained
type of solution and is not thermodynamically interesting; the cosmological constant and
higher curvature couplings are fixed in terms of a single parameter, and the equations of
motion are solvable to yield an exact solution for ¢g2(r) [4, 108, 142]. T will not consider
these solutions any further here.

The decision for the cosmological constant typically amounts to ensuring that the metric
functions are asymptotically equal to one, which makes the numerical procedure much
easier. The case when we are in D =5 yields a solution

4871z —32L2N 224+ 16 L4 % — 16 X 22L2 - 24 i 22 — A8 L2\ + T2 L* + 8 L4 22

Asp = -
P 165
(3.88)
while the case of D =4 yields
1(-4-2-22)
Ayp==——-—""= 3.89
ap =3 Iz (3.89)

where it should be noticed that since we are in four dimensions, the quasitopological and
Gauss-Bonnet term are not active, so the cosmological constant is only dependent on the
Lifshitz parameter z.

In addition, the asymptotic requirements that f2(r), ¢?(r), h(r) all equal one also pro-
vides restrictions on the Proca field’s mass and charge. These turn out to be

2(z=1) (1 -2X+3u) 3z
2= 2= = 3.90
q s m 72 ( )

We now have a coupled set of nonlinear differential equations, which are first order in
f(r) and g(r) (asimple substitution j(r) = dh(r)/dr yields completely first order equations
at the cost of one additional equation). This problem is well posed when the horizon
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boundary condition is interpreted as an initial value, which is evolved out to infinity by
setting up a discretization in the radial direction, and evolving the metric functions with a
finite difference form of the differential equations. The free parameters are tuned to obtain
convergence to the appropriate asymptotics. The metric functions f(r) = g(r) = 0 at the
horizon rj, (more importantly, they are regular and linearly go to zero the horizon, so that
f2(r) = (r = rp) f(r) and g2(r) = (r = 73,)g§(r) imply finite and nonzero f(r),§(r) - this
ensures that the expected sign change in the metric functions occurs across the horizon).

Note that there exists the possibility of allowing for solutions where the metric functions
do not go to zero linearly, but instead with some power, provided that the horizon is only a
saddle point. This scenario is not considered in this work since, within numerical error, it is
likely that both ansétze for the near-horizon metric function will yield the same convergent
numerical solution.

The series ansatze can be formed:

fA(r)=h {(7” —ro) + fo(r—ro)* + f3(r—ro)* + } )
G2(r) = g1(r=ro) + ga(r —10)* + gs(r —70)* + ..., (3.91)
h(r) = £ {ho + ha(r —70) + ha(r —10)? + ha(r —10)* + ...}

The complete series expansion of these metric functions is given by first checking that
after substitution of the cosmological constant, Proca mass, and charge, the field equations
are all solved when the metric functions equal one. Two of the field equations reduce to
the same condition, that

6(2-1)fihd(-1+2X-pu)r§=0 (3.92)
which is satisfied by having the Proca field potential linearly tend to zero at the horizon,
ho = 0

The differential equations are then solved to first order in (r —ry,) = € by taking deriva-
tives with respect to € and then setting € = 0, yielding one nontrivial equation
¢ 1 1

Ji(l 1 2
<122 (316 D (- + A=) - oot -5

((—%+g)\—u)22+(§)\—2u—g)z—3+2)\—,u)

3
2rS — L Mkzgyry + L?karg - §L4uk:22'gl7’8 + z((—u)LGk)) =0 (3.93)

78



which is an expression in fi, hy, g1, and has a solution in g;. We find that this coefficient
can be fixed in terms of the other two, as

g1 = —% (12L2kré + 22278 — 422 Mr§ — 6(—p) 21§
—82Ar§ = 12(—pu) 2r§ + dzrl + 18r§ = 12r§ A = 6r§(—p) + 12(-p) L°k)
x (r§(=3zrg — 6L2Akzrg — hirdz + 2h3rg 2\ + 3hirg(—p) =
+h3rd = 2h3rg\ = 3h3ry (—p) + 9L4(—u)/€22))_1 (3.94)

If a Maxwell field is added for charged solutions, a new field equation is obtained from
the Maxwell potential ansatz

A= () (3.95)
which takes the form . Qf ()
7¢(T) +r7 (P'(r)) = g (r) (3.96)

where () is a constant of integration (related to the Maxwell charge) and new expressions

for (3.93), (3.94) are required:
£ (1 1 2 1 1
- 12;1 (5%(2 - g (—g + §>\ - M) o~ 52917"5 )

1 4
((—§+§/\—u)22+(§)\—2u—%)z—3+2/\—u)

2rs — L*ANkzgyry + L?kzrg — §L4uk2zg1r8 +2((—=p) Lok - 1—12622)) =0 (3.97)
g1 = —g (12L%krg + 22°r§ — 42°Ar§ — 6(—p) 22r§
—82\r§ — 12(—p)2r§ + 42l + 18r§ — 12r§A — 61§ (—p) + 12(-p) Lk - Q%)
x (r§(=32rg — 6L Nkzrd — hirgz + 2h3r§z\ + 3hirg (—p)
+h2r3 = 2h2rEN = 3B (—p) + OLA (—p)k22)) (3.98)
It can be seen that the Maxwell field does not qualitatively alter this method.

In the case where there is no Maxwell field, the second order near-horizon field equations
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can be solved for solutions for fs, gs, ho yielding
2 2 1 1
Ja= (—6917“08 (z ()\91 - —h12L0) + —h12Lo) +12zr," (2 (91 + _LOhlz) + §91 - —L0h12)
3 3 2 4 4
1 2 1 1
+18271,° (§L022 + §Loz + §L0 + (—,u)L2k;g12) + 24k L2 g1 \zry® (z - Z)

-36k*L*gy2(—p)ro® (z - Z) + 242(—u)L6k3)
X (7”0 (L0h12g17”08 - 927’0791 - ZT’06 (L022 + 2L02 + 3(—/JJ) + 6\ — 9)
~182AL2kgimo® + 62 L2 kro* + 2TL K (—p) zro® g1 + 62(—M)L6k3))_1

go = (2917“012 (Lo (g1 + hy? (z2 + 1) LO)
+z (—3912/\ - 2h1291L0 - 2h14L02)) - 3zqirott (z (291 + 5L0h12) -13g1 + 5h12L0) +
+70" (=22*Lo (g1 + ha®Lo) + 22°Lo (291 — 71> L)
+ 22 (4LoL*kAhi® 12 + g1 (42(—p) + 20X +2) + 211> Lo (3(—p) =21 + 7))
+2 (691 L%k (=31 — 2A%) = 8Lk Ay *g1° Lo
+g1 (—24p+ 48X\ = 72) + 6h1° Lo (—pu + 2X — 3) ) + 4L%kAhy * :1° L)
—6L%kzgi \ry° (z (491 + 5h12L0) —22g1 + 5h12)

- 4L2]§T08 (24/\91[/0 - 223/\91[/0 + 22 (—gﬂL2kh12g12L0 + g1 (—3 -A- 10)\2 + 21/\#) - 3h12L0)
27
+2 (—3/{L2913A(—u) = 3Lo(—p) L%khi® g1 + 3g1 (=8A% = 4(—p)A + 120 + 3) + 3h12L0)
3
+§L0(—M)L2kh12912)

+9L 2k g17m" (z (gl (4(—,u) - g)\z) + 5(—u)h12L0) +01 (—18(—u) + 12)\2) - 5(—u)h12L0)
+ 6L 2k gimo® (2% (=) Lo — 222 (—p) Lo + 2 (—21(=p)% = (=) = LOA(—p) +4))
—OkL*(—p)2g1? = 12(—p)? + (—p) (36 — 24X) — 12))
+36(—p) L2k 12 Arg® (22 = 7) = 12(—p) L2k ro* (2 (291 — Lohi?) — 8¢ + hlzLo)
+27(=p)? L8 2k g1 %ro® (22 = 5) + 24291 (—p) L3k Aro? (2 = 1) = 36291 (- ) L*OK® (2 - 1))
x (ro (—r04 —2AL%kry? + 3L4k2(—u)) (—Logl (2 =1) hy?ro® + 9zg17r”
+ 218 (22L0 +22L0 -3 -9+ 6)\) + 182AL2kgi7ry® — 62L%kro* + 27TL K uzro gy + 62uL6k3))_1
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hg = —hl (T05 (Z (—291 - h12L0) - 391 + hlzLo) + 32’7“()4 - 4L2kgl)\7“03 (22 + 3)
+62AL2kro? + 3(—p) L*k?giro (22 + 3) = OL K2 (~pu) 2)
- (r02g1 (—27’04 —ANL2kry? + 6L4/’<;2(—u)))_1

where we define the constant Ly = —1 + 2)\ — 3 for a bit of algebraic simplicity. After
substituting the solution for g; from equation (3.94), we notice that these expressions
become dependent only on fi, hy.

The procedure is performed yet again to solve for f3, hs, g3 and ultimately these solutions
are found in terms of fi,h;. This forms a third order near-horizon series expansion that
we can use to set up initial conditions for the shooting method, given free parameters f,
L, rg, and hq.

The remaining boundary condition is much easier; the metric functions must all ap-

proach unity as r — co. Reducing the field equations (3.84) to first order requires a new
parameter

() = )

and comes at the cost of one additional equation to numerically solve.

(3.99)

Upon making this substitution, as well as the substitution of the cosmological constant,
Proca charge, and mass, our set of first order differential equations is (under the simplifying

notation f = f2(r), g = ¢%(r), h=h(r), and j = j(r))
dj _2h(3-2g)—z*hg-rjg (22 +3) 7 r2h? (zh+rj)(z-1)
dr gr? 0 fgH

a1

P A LR RN ECAL T
+ 320t [S3k(-p) L* (42 - 2) + (42)N?] f?
=321 [3(22 = 2)k* (~p) + 42RAL*r? + (22 +2)1%] fg
—2(-) {[3(z = 1) + 12210 — 6k L} f
—2 At {[2(2 - 1)? + 8z +4]r'} f
+2rd {[(z -1)2+42+8]r? + 6kL2} f
¢ (2= D Lor"[(sh -+ )9 - 320
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dg_ 1
dr  3zr3fH
= 32r? [ARAL*r? + 4r*] fg
—2(-p) {[3(z - 1) + 122]rS - 6k*LO} f
— 2 At {[2(2 - 1)? + 8z +4]r'} f
+2r {[(2 - 1)? + 42 + 8]r? + 6k L?} f

+(z- 1)L0r6[(2h+7’j)2g+3zh2}} (3.100)

{122(_M)7"6f93 +3zr? [—6L2]g(_lu) n 4)\7“2] fg?

with the simplifying substitutions

Lo=-1+2)\-3u
H=rt+ 202 (KL - r%g) + 3u (kL? - r2g)’

We now have a well-posed first order boundary-value problem and so I will outline how
it can be numerically solved in the following subsections.

3.5.1 Shooting Method

To solve these equations, we use a shooting method [113]. This is a very simple numerical
method for solving nonlinear boundary value problems. If the numerical algorithm is
appropriately chosen, the error in the numerical approximation to the metric functions
will be bounded. In practise, we do see some numerical issues with this method, but in our
approach to the black hole thermodynamics the simple shooting method is able to yield
solutions which are enough to properly describe the interesting behaviour.

Furthermore, the simplicity of this method means that we can flexibly handle singular
differential equations; we expect that our set of metric functions become singular as the
horizon radius goes to zero as the temperature should diverge, but we also know that
the metric functions will have zeroes on the horizon and so the coupled set of differential
equations should be singular there as well. We can simply avoid this region in the shooting
method by setting up our boundary sufficiently far from the horizon so that the seed values
for the free parameters will hopefully generate a physical solution.

The most pressing problem that this approach suffers from is the potential lack of a
solution for poor initial guesses. A nonlinear initial value problem may only have a solution
on a subset of the radial coordinate domain, which means our numerical evolution towards
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r — oo could fail for poor initial guesses. There are a number of ways to mitigate this;
many solutions require the introduction of substantially more complexity and sometimes
they imply substantially more computational time, even in the case when solutions can be
readily obtained via the simple shooting method. This is especially true when dealing with
the lengthy and complicated coupled differential equations which we have obtained.

For reference, some of the techniques that could be used to tackle these issues include
the bidirectional shooting, multi-shooting and stabilized marching methods [113]. In this
thesis I will focus on solving this problem with the simple shooting method alone.

We first have to identify our initial conditions. The boundary conditions for this prob-
lem are the series solutions to the differential equations to third order (O3(e) where the
boundary is rp, + €). The fourth-order and higher series solutions can be readily built from
these equations but we find that the third order solution is enough for good numerical
behaviour. Because this is a first order set of differential equations, we need only the value
of these metric functions at 7, + € to generate a solution.

The free parameters that remain from this procedure can be seen in (3.93) and they are
the derivative of f(r) at the horizon (f;) and the derivative of h(r) at the horizon (h;);
these relate to the lengthscale of the horizon radius and the strength of the Proca field. We
make an initial guess at these values and update the guess with the asymptotic behaviour
of the numerical solution.

Then, the exact equations are solved using Maple’s dsolve:
dsolve(diffeqns union IVs,numeric,output=listprocedure,maxfun=mffun):

This uses a Runge-Kutta method to evolve the initial conditions from the horizon radius
to a very large radius in a convergent and stable manner, specifically, the default is the

RKF45 method.

The functions f2(r), g%(r),h(r) are then evaluated at a very large radius and the free
parameters are tuned using this value in an iterative manner, until the metric and gauge
field functions converge to unity. Typically this tuning is performed through a Newton-
Raphson method or the like, but in practise for the z = 2 Lifshitz symmetric black holes
simply dividing the derivatives at the horizon by the evaluation of the functions f2(r), h(r)
at large radius results in convergence within three iterations if the initial guesses are well
chosen.

Generally we can not expect that both of the parameters f; and h; will always converge
to values that yield a valid solution; for this reason deeper analysis is required when
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convergence is not obtained. Fortunately, it was shown that in z = 2 Einsteinian gravity,
the large-radius expansion of the field equations features modes that are all decaying when
D > z+2 [144]. This was further discussed for the higher curvature solutions in [115] and in
the appendix of [4]. In this case, the functions f; and h; together yield the horizon radius,
with an additional degree of freedom allowing for a family of black hole solutions.

In the case where z = 3, D =5 we have a zero mode that can be problematic |11, |.
This results in a fine-tuning problem where h; will need to take certain specific values,
and a family of z = 3 solutions will arise which correspond to the values of f; that satisfy
asymptotics for a given h;. For this reason it is quite uncommon to see z > 2 considered in
the literature. In [1411], it was seen in the Einsteinian case that the two needed degrees of
freedom could be separated from one another, and one could be used to correctly fix the
asymptotics while the other could be used to set the horizon radius.

The aforementioned analysis involves an expansion

f=1+¢fna
1
=— 3.101
g 1+6gL1 ( )
}Nl= 1+€hL1
j=1+€jn

that is performed to first order in € after a redefinition of h,j so that the falloff of all
functions is the same, and they can be compared to one another in the same matrix
expression. The field equations become a matrix equation relating the derivatives of the
vectors of (fr1,9r1,hr1,jr1) to the values (fr1,9r1,hr1,7r1). This matrix is diagonalized
to yield a set of solutions

spi=c-eM” (3.102)

for i € {1,2,3,4} and some constant c¢; the sign of the eigenvalues determines the stability
of the mode. It ends up being slightly more complicated than this, as the eigenvalues are
dependent on r, so integrating the resultant differential equation can have solutions with
a different form such as sy; ~ r for example, but ultimately the stability is determined by
examining whether the resultant solution set decays or grows at large r. Growing solution
modes will, pending appropriate free parameters, require a degree of freedom to fix to zero.

The more challenging aspect of the numerical technique when z = 2 is evaluating the
metric functions at small horizon radius with fixed precision. The seed values for the free
parameters must be chosen correctly to yield a reasonable initial guess at the solution,
otherwise we may accidentally guess at a large black hole, where the differential equations
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are singular in our domain because ry, + € is smaller than 7}, the horizon radius of the black
hole solution in the seed values. The way in which we solve this problem is somewhat
empirical, and it is done by setting the constants to values proportional to the inverse of
the initial horizon radius. Provided that we are able to evaluate solutions at a small enough
radius to yield the interesting thermodynamics, we are satisfied with this approach.

Although this is ultimately just a guess, we can provide some physical justification -
when we study small black holes, and the temperature rises with a small horizon radius,
we will typically have a larger derivative at the horizon for smaller black holes. We want
to underestimate the size of the black hole slightly, while still being able to handle black
holes for which the temperature increases with horizon radius, so multiplicative factors are
guessed at until the algorithm runs properly over the range of horizon radii in which we
are interested.

To achieve autonomous operation as well as substantial speedup, try and catch state-
ments are used to handle cases where the horizon radius is too small to find a convergent
numerical solution. When probing the parameter space (running this routine multiple
times for varying higher curvature coupling constants, other horizon topologies, or dif-
fering cosmological constants), this minimum convergent radius is re-used to avoid the
massive slowdown that occurs when dsolve begins seeing divergent functions.

3.5.2 2z =2 3" order quasitopological black hole

In [1] we obtained solutions for Lifshitz symmetric black hole solutions with cubic qua-
sitopological terms. Recall that the cubic terms are given by (2.61).

The (higher dimensional AdS Schwarzschild) Einsteinian solution as well as the exact
Gauss-Bonnet black hole solution for z = 1 were used in comparison with the numerical
method to provide a careful test that we were converging to good solutions. In addition,
the exact cubic quasitopological solution later published in [5| was used to perform a check
of the z = 1 quasitopological terms. Finally, since the numerical routine was independently
written, results were compared with those of [I411] to ensure that the z = 2 Einsteinian
behaviour was accurate.

For example, the cubic quasitopological D = 5 solution from section 2.2.2 with k =
0,7, = 0.9,\ =0.04, 4 = 0.001 was compared to the output of the numerical solver and it
was found that values for the metric functions were identical to within 1077,

Then, new results showing how the quasitopological term affects the thermodynamic
stability in asymptotically z = 2 Lifshitz spacetimes were obtained. It was seen that the
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cubic quasitopological term acts similarly in z = 2 to z = 1: if the negative slope on
a temperature-entropy plot is indicative of a valid phase transition, the quasitopological
term can act to control the radius at which this phase transition can occur. This effect is
apparently analogous to the charge in the AdS Reissner-Nordstrom black hole, where an
uncharged spherical D =4 black hole solution will always have a phase transition at some
finite radius, but where introducing a charge means that there are some temperatures for
which no phase transition will ever occur. Of course, further investigation is required (and
will be performed in this thesis) to see that this is indeed the case - for now it is only
suggestive. Knowing where phase transitions occur is an important step in identifying the
critical point.

In figure 3.1 we see that at the level of small r; to which our numerical routines can probe
(smaller ry, corresponds to the left-hand side of the figure), there is not yet any evidence
of instability for the spherical black holes, while figure 3.2 shows that for a slightly smaller
value of the cubic quasitopological coupling constant, we can recover the instability (and
therefore phase transition) that occurs in the Einsteinian solution, at a small black hole
horizon radius.

3.5.3 z =2 4! order quasitopological black hole

In [I] we published thermodynamics for asymptotically Lifshitz symmetric solutions with
the quartic quasitopological terms. In these cases the quartic term is given explicitly by
(2.62).

For these solutions we define the coupling constants in a similar fashion to (3.5), with
the extension

LS¢

" (D-1)(D-2)(D-4)(D-8)(D-3)2(D? - 20D* + 142D3 — 472D2 + 743D — 436)
(3.103)

M

This solution yields the most general expression for the cosmological constant presented
in this thesis;

1

A=——0
I

[(1-2X2-3p-48) (D*+ (2 -4) D+ 22 =32 +4) + (D - 1) (D -2) (A +2u+3¢)]
(3.104)
which we can see simplifies in the case of p=¢=0and D=5 to —6(1 - \)/L? as desired.

The numerical procedure illustrated above is followed for D = 5 solutions here, obtaining

86



Figure 3.1:  The log-log plot of temperature versus entropy for asymptotically anti-de
Sitter cubic quasitopological uncharged numerical black holes where k = -1,0,1 (pink,
blue, brown). Here the higher curvature couplings take the values A = 0.04, 1z = 0.001, while
the cosmological constant is fixed using (3.88) in order to ensure that the metric functions
have the same asymptotics.
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Figure 3.2:  The log-log plot of temperature versus entropy for asymptotically anti-de
Sitter cubic quasitopological uncharged numerical black holes where k = -1,0,1 (pink,
black, brown). Here the higher curvature couplings take the values A = 0.04, 1 = 0.0003,
while the cosmological constant is fixed using (3.88) in order to ensure that the metric
functions have the same asymptotics.
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values for the Proca charge and mass of

2(z=1) (1 -2\ +3u—-4¢) 3z
2 2

= =— 3.105

q > m L2 ( )
which allow the correct asymptotics, and the first, second, and third order series expansions
in the metric functions are performed. Again, f; and hy are the free parameters that are
found using a shooting method.

We can plot the results of this routine to show that the effect of the quartic qua-
sitopological term is as expected. From figure 3.3, we can see that there is a very subtle
instability for small horizon radius; probing this small of a radius was challenging and
computationally slow. This leads us to suspect that, as with the cubic quasitopological
black holes, the phase transition can survive with small quartic quasitopological terms,
and so the additional parameter space gained by adding a quartic term could also be used
to formulate a richer, more complex thermodynamic model.

3.6 Discussion

In this chapter we have examined black hole thermodynamics in a wide variety of cases
where the spacetime asymptotically obeys Lifshitz symmetries.

In order to do this, we needed to develop an array of specific techniques for dealing
with these solutions. There are relatively few exact solutions in asymptotically Lifshitz
gravity, and in order to perform an exploration where the parameters z, L, and rj, are
relatively unconstrained, we had to introduce the numerical apparatus of 3.5 in order to
find numerical solutions to these black holes. The development of these approaches has led
to an understanding about how the critical exponent z influences the stability of shooting-
method approaches to numerically solving the field equations.

Another glaring obstacle that needed to be overcome was the lack of an agreed-upon
mass for asymptotically Lifshitz solutions. Various methods were illustrated for a number
of exact solutions, and ultimately we developed the thermodynamic method of obtaining a
mass in 3.2, which has the benefit of being easily applicable to numerical solutions as well
as exact ones. I highlighted the weaknesses as well as the strengths of this method, impor-
tantly, its inability to deal with constrained scenarios where the cosmological lengthscale
is tied to the horizon radius. Understanding these problematic solutions remains an open
problem in determining a mass for Lifshitz black holes.
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Figure 3.3:  The log-log plot of temperature versus entropy for asymptotically anti-de
Sitter five-dimensional quartic quasitopological uncharged numerical black holes where
k=-1,0,1 (red/solid, green/dashed, blue/dotted, respectively). Here the higher curvature
couplings take the values \ = 0.04, u = 0.001, & = 0.0003, while the cosmological constant is
fixed using (3.104) in order to ensure that the metric functions have the same asymptotics.
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This endeavour has helped us set the stage for future investigations into Lifshitz ther-
modynamics. In the next section, I will build up the background needed to find the
universality class of black hole critical behaviour. This section provides the necessary in-
gredients to apply both numerical and analytic techniques of extracting critical exponents
to Lifshitz black holes, as long as they have independent lengthscales. As such, finding the
universality class of the numerical solutions presented here is now theoretically possible
although it has not yet been done because in practise, the venture is predicted to be time
consuming, as many numerical solutions are required to identify the critical point and to
obtain high quality, convergent Padé models for the temperature.
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Chapter 4

Universality Classes and Black Holes

4.1 The Universality Class

The universality class is studied here as an avenue to understanding the gauge/gravity
correspondence. If this conjecture holds, thermodynamic quantities in the gravity bulk
will be analogous to thermodynamic quantities in some gauge theory. The universality
class can be thought of as a coarse-grained test of the gauge/gravity correspondence.

The key observation inspiring renormalization group theory and critical exponents was
that systems near criticality obey characteristic behaviour, namely the divergence of various
derivatives of their thermodynamic potentials. Upon further inspection, it was found that
disparate materials could be grouped into relatively few “universality classes” based on the
set of exponents which characterize the divergence of their thermodynamic properties.

For the purpose of holography, if a bulk theory experiences criticality and shares its
thermodynamics (namely its temperature, entropy, etc.) with a gauge theory, we expect
that the two theories will fall into the same universality class. Because of the maturity
of the condensed matter physics, and the development of powerful renormalization group
techniques like the lattice methods of Kadanoff (c.f. [23]) and the divide-and-conquer
approaches of Wilson (for example, [117]), universality classes of many gauge theories have
been calculated, so when we write down the universality class of the gravity theory it is
plausible that we can immediately identify the group of potential gauge theories to focus
on as gravitational duals.

Only recently, with the description of the cosmological constant as a thermodynamic
pressure, has the field of black hole thermodynamics started seeing success in the computa-
tion of the universality class of asymptotically AdS black holes. Studying this relationship
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may yield insight on both sides of the duality; for example, higher dimensional black holes
have been shown to have a critical point with the same universality class as D =4 charged
black holes |2], which is somewhat counterintuitive given the strong dependence of the
universality class on dimension in, for example, the Ising model [23]. Understanding this
more deeply could yield insight into exactly what dimension the “boundary theory” must
take in general, for some theory of gravity. More study on the black hole side may also
yield a relationship to the higher-dimensional Ising system (for reasons we shall later see),
which would be a substantial contribution to the condensed matter physics community as
computations of e.g. critical exponents in three-dimensional Ising models are challenging
in a computational sense [145].

4.1.1 Critical Exponents and Universality

The essential principle is to begin with an action or Hamiltonian that describes a physical
system.

Since we do not focus strongly on lattice-spin systems in this thesis, I will not spend a
lot of time on the Kadanoff scaling or renormalization group. For a review of the theory
behind these universality classes see any good textbook on condensed matter physics,
such as [23]. Instead, I will focus on obtaining the critical exponents supposing we have
a complete thermodynamic potential (internal energy, enthalpy, Gibbs free energy, etc.)
along with an equation of state. As is well known, we then have access to all of the
remaining thermodynamic potentials.

The critical exponents arise as the only relevant lengthscale becomes the correlation
length of the theory; when the theory approaches criticality the renormalization group
becomes an important tool as the theory is otherwise scale invariant. The thermodynamic
functions for the theory will have scaling based on this lengthscale; in practise it is common
to express the scaling of the main group of critical exponents as a function of reduced
temperature, (T —T.)/T. or (T.-T)/T., depending on whether criticality is approached
from the disordered (7' > T,) or ordered (71" < T,) phase.

Essentially this amounts to examining the power-law scaling of the expansion of ther-
modynamic functions near criticality, to first order. For example,

(M

where « is the critical exponent corresponding to the divergence of the specific heat.
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Common critical exponents are denoted «,3,7,v and correspond to the power-law
behaviour of the specific heat C, order parameter (¢), susceptibility of an external field
X, and correlation length &. Additionally, critical scaling can also be seen precisely at the
critical temperature, when other thermodynamic quantities are not at their critical values,
if this is allowed by the degrees of freedom of the system. A common critical exponent
at the critical temperature is that of the order parameter at constant temperature while
approaching criticality through changing some external field; in practise this exponent
is denoted ¢ and is related to the scaling of the order parameter with reduced pressure,
(P.- P)/P..

The precise relationships are, for Tr = (1. - T)/T. and Pg = (P.- P)/P.:
Cn (Tr)™  (D)reg, ~ (PR X~ (TR)™ (9) ~ (Tr)° (4.2)

I will note that using a zero for a critical exponent is the convention given when the
function of interest has a discontinuity at the critical point, or when it has a logarithmic
divergence [119].

Later 1 will provide a table of some common values of these critical exponents, for
comparison with the black hole results.

4.1.2 Application to the Van der Waals Model

In section 4.1.3 we shall see why I chose the Van der Waals gas as the subject of renor-
malization group scaling, but for now we treat it as an entirely pedagogical example. The
Van der Waals gas is typically described by an equation of state such as [150, 78|

(r+ %) -0 -7 (4.3)

where p and v are the pressure per particle and volume per particle of the gas. The
parameter a empirically measures the attraction between gas particles, while b is related
to the size of the particles. Both are dimensionful lengthscales in the theory of the Van der
Waals gas. The use of the specific pressure and volume, as opposed to ‘regular’ pressure
and volume, will not affect the universality class.

The extreme popularity of this model arises from its simplicity, combined with the
appearance of a critical point between what are denoted as “liquid” and “gas” phases.
In the Van der Waals model the critical point will exhibit scale invariance, namely, the
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equation of state at the critical point should have quantities defined by Tg, and these
quantities will be independent of the lengthscales generated by the parameters a and b.

With some algebra, the equation of state (4.3) becomes [7§]

v3—(b+z)02+gv+a—b:0 (4.4)
p p p

and at criticality, v = v, so (v—-1v.)? = 0 which expanded, means

v® - 3v%0, + 3vv? - v = 0 (4.5)

so by comparison, the critical parameters are found by solving the equations

pev> = ab 3p.v? = a 3vepe = bpe + T, (4.6)
and therefore
_a _ 8a
- 27h? ©27h
from which we can substitute the reduced temperature T, specific pressure pg, and specific

volume vg into the equation of state to obtain a scale-independent equation (featuring only
Pr, Tr,vg With no a,b in appearance), as expected.

ve=3b P (4.7)

The Helmholtz free energy of the Van der Waals gas is known to be [151, 152]

v->0 a
dew =-T [log (w) + 1] - ; (48)

which yields the Gibbs free energy through G = H - TS = F' + Pv of |78]
v->b a
Gude—T[IOg(W)"‘l]—;"'PU (49)

These potentials can be used to extract the critical exponents; for example, to obtain
the isothermal compressibility, one knows that

’F 1
(_8 ) _ (_31’) b (4.10)
V2 T ov T VFLT
and we can evaluate the scaling of this term by examining

02F T
Z - = _ 4.11
(aL 2)T,V_VC E1 EQ ( )
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critical exponent | value

SR )
W R~ O

Table 4.1: A table of critical exponents, computed for the Van der Waals gas.

where £; and &, are constants independent of temperature (in this case they are somewhat
messy functions of V' =V,). This implies that

kp ~ T - T.™! (4.12)

since the expression (4.11) will have a zero, corresponding to the divergence of the isother-
mal compressibility, when T =T, = €, - £ = 2a(v. — b)?/v2.

Similar analysis is performed in [78] to ascertain the critical exponents of the Van der
Waals gas, illustrated in table 4.1. In this context the order parameter is the difference
between the volume of the gas phase and liquid phase; (¢) = v, —v;. The critical exponents
therefore take the form

Co~ [T =T (¢)~|T-TJ
Ky ~|T =T |P=P~v-v] (4.13)

In the following, I will try to identify similar sets of critical exponents for black hole
systems. At the moment, it is relevant to note that the critical exponents for the Van
der Waals gas are equal to those for the Ising model in four spatial dimensions. This is
also the mean-field theory, where only one-body interactions are allowed. I will discuss the
implications of this on gravitational systems in 4.2.

4.1.3 AdS Reissner-Nordstrom Black Hole
In 3+1 dimensions, the AdS Reissner-Nordstrom black hole has the solution with no higher

curvature coefficients (pg = pg = -~ = 0) and one Maxwell field, but with a cosmological
constant A = -3/[2, meaning the pressure from (2.46) is

P=_—_" (4.14)



The metric functions from the ansatz (3.5) are explicitly

9 5 l2 l2 212
fAr)=g*(r) = 1=k =2m + ¢ (4.15)

where k =1, z = 1 for the solution we consider. Here m is a parameter related to the mass of
the black hole while ¢ is the parameter corresponding to the Maxwell charge. This solution
can also be obtained by the D = 4 simplification with ps = A = 0 of the Gauss-Bonnet exact
solution presented in (2.13).

The temperature and entropy of this solution can be computed in the manner of sections

2.1.1 and 2.1.2:
37"h k’ q2 B (.L)ij’f’i

S

= —+ —
4l Ay, 4w 4

(4.16)

We can solve for the mass through our thermodynamic method from section 3.1.3 and
obtain a thermodynamic mass and volume of
w2 krf{ kw2,k7"h q2w2,k

My = 22 Vi = 22 417
BN = T T s 8ary RN = 5 (4.17)

Following the same procedure as for the Van der Waals gas, the Gibbs free energy is
now defined (since M is interpreted as the enthalpy) by

G- b TS = R Pean (S k@) war (4.18)
8ml? 8 8y, Aml?  Awry, 4wy 4
3 2
Wiy, kwarrn  qPwag
- _ + 2 d 4.19
16712 167 1671y, ( )
while the Helmholtz free energy is
5 3k 2
F=G-py=-22kn Tokn | T2k (4.20)
1672 167 1677y,

Since this function depends on r, and [ rather than 7',V in order to find the isothermal
compressibility we are better off performing the derivative

(5)

oV )r

directly; since P = P(l) and V' = V(r,) we can substitute these functions into (4.16) to
obtain an equation of state. This yields

_ W2,k _ _3/2 203 27,13 | 92/31., 1/3v,2/3
P_(24 €/§7rv4/3)( 120V = V3w VI + 3k V2P (4.21)
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which we can differentiate to find

2/3
ik (—2\3/§k,3/%k va-gnr ()7 3q2)

oP
— = 4.22
(OV )T 72mV?2 ( )
from which we see that kr = ¢|T — T,|™! where T, is given by the zero of (4.22),
23k )2 - 3¢
T.= —— 7 (4.23)
Ve
4. 32/371' (m)
Other critical exponents can be computed in a similar fashion [78], and they take the

exact same values as table 4.1, the table of critical exponents for the Van der Waals gas.

This relationship between the Van der Waals gas, mean field theory, and AdS Reissner-
Nordstrém black hole was first noticed in the late 1990s [153, 151] where charge was varied
(with no pressure) to obtain criticality. However, this approach required treating extensive
variables as intensive variables and vice versa, which is an issue that was resolved by
treating pressure as a dynamical variable. In this case, criticality was found to occur in
closer correspondence to the Van der Waals system as volume, entropy, and charge are all
treated extensively [75].

4.1.4 Techniques for Numerical Black Holes

In this subsection the procedure of obtaining the universality class of a simple numerical
black hole is developed. The general outline of this procedure is to take a set of tempera-
tures for different values of the horizon radius and cosmological constant and fit them onto
some function that closely matches the analytic expression for the temperature; because
of singularities in the temperature the Padé approximant is used as a model function (this
can be thought of as an extension of power series to rational functions).

Then, the model function can be used to generate an accurate power series near the
point where criticality is expected to occur. The other thermodynamic quantities such as
mass and volume can be generated from this power series using the method introduced in
3.1.3.
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Padé Approximants

A much more well suited function to fit to a temperature (as compared to a series in
r,L) is a Padé approximant. This is because the Padé approximants can handle singular
functions much more readily than a polynomial series expansion, due to the possibility for
their denominator to have roots. The temperature is expected to have divergent behaviour
for small r, and one can check for oneself that the fit to a polynomial will be ill-behaved
for the region in which we are interested.

The Padé approximant is canonically defined as a function

ag + arr + agr? +-aprk
L+ b7+ bor? + -+ byyrM

PA(T) = (4.24)
where a notational convention commonly used is simply [L/M] [155]. For this thesis, my
notation indicates that A(r) is the function we are interested in approximating, and we
assume that A also has a power series expression

[e9)

A(r) =) et (4.25)

1=0

The Padé approximants have a number of highly useful mathematical properties which
make them popular in a broad array of disciplines. Given a truncated power series, a con-
version into a Padé approximant can have surprisingly improved accuracy in representing
a function using the same number of coefficients as the power series.

Particularly relevant is their use in finding a critical point and identifying critical ex-
ponents. The Padé approximants remain quite feasible as an improvement to the standard
series expansions and linear fitting that can be used to extract the power of divergence of
a function. It is relatively simple; D-log type Padé approximants are used when there is
an expectation that the function for which you have a truncated series expansion takes a
specific form, e.g.

oo T)7 (4.26)

T)=A(T (

£y = aqr) (=
where A(T") does not change rapidly at the singularity compared to the term in brackets.
In this case a specific set of Padé approximants can be used to obtain information about

v and T, [155, |. Since we will eventually produce a truncated series expansion of the
Gibbs free energy, this method should be highly applicable.
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Nonlinear Fitting

From our shooting method, in order to obtain a temperature from the numerical data we
require a fitting method. As justified in section 4.1.4, I have made the choice to fit to a
Padé approximant model. Because this is not a simple linear fit we need to apply some
methods that are more complicated than linear regression (commonly with a least-squares
fit). For the purposes of this work, the Automatic specification in Mathematica’s Nonlin-
earModelFit package was sufficient; this chooses between a number of nonlinear methods
including (conjugate) gradient, (quasi) Newton, and interpolations between the two, like
the Levenberg-Marquardt methods [157, |. In the case of the models we fit to, the
automatic choice is Levenberg-Marquardt which has performed well.

The Levenberg-Marquardt method [159] falls into the field of nonlinear regression meth-
ods for rational function modelling. The details of this method focus on the update step
of an iterative least-squares fit, where from our set of numerical data we have N equations

vi = f(:,6) (4.27)

The objective is to minimize the least-squares error for our best guess at the model pa-
rameters 6*,

S(6%) =i(y@- - f(2:,6%)) (4.28)

We make use of the Jacobian matrix of the function f(Z,6) where derivatives are taken
with respect to elements of «9 define this matrix when evaluated at 6* to be simply denoted
F.

Then, an exact solution to the linear least-squares error equation S (é*) =0 is given by
(F'F) 'FTé=0 (4.29)

where € = § - f(6%), f(0) = (f(ml,é),---,f(xN,é))T, and F7 is the transpose of F. For
further details, see the Appendix B.

This is an equation which we can attempt to solve for nonlinear models in an iterative
fashion. One method (the Gauss-Newton method) takes a linearized Taylor expansion of
the function f, and uses (4.29) as an solution to the least-squares minimization, updating
the guess for 0 correspondingly. Other methods, like steepest descent, compute gradients
of the least-squares minimization (4.28) and update §* along that direction such that (4.28)
is minimized.
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For the method I describe here, the replacement of é{z) with a better guess é(*z +1) 8OV-
erned by the equation

~ - -1
Olieny =003y + <FZ,~)F(¢) - 77(2')]1) Fi€ (4.30)
which is the Levenberg-Marquardt method. There, T is the identity matrix.

The method essentially interpolates between the Gauss-Newton method and the method
of steepest descent (a gradient method), and 7 is a parameter that is updated between each
step which governs this interpolation. The exact algorithm used to update this parameter
varies, and in the Mathematica implementation we use it is proprietary.

Extraction of Critical Exponents

The critical exponents can finally be extracted. Naively one can apply a simple linear
regression least-squares fit to the logarithm of the data of interest, near criticality. The
slope of this line yields an approximation of the critical exponent. However, this is highly
undesirable! Most importantly, the logarithm of the data is linear only as we are approach-
ing criticality. This means that a finite grid over the initial input r,,[ will be stretched
out considerably when the logarithm is taken and criticality is approached, and so the
resolution of the data may make an accurate fit unachievable.

As mentioned in section 4.1.4, this can be improved through the clever use of Padé
approximants. [ will show in section 4.3 how these tools can be applied to probe the
nature of the divergence in the functions of interest, extracting the information about the
power of the divergence from the series expansion, where the said information is ‘hidden’
because of the poor fit of the polynomial to the singular behaviour.

First, we will examine a more complicated exact solution, before we apply these nu-
merical methods. This will give us a sense of the algebraic complexity that the numerical
procedure will eventually need to be able to handle.

4.2 An Exact Quasitopological Black Hole

As an example of the power of this technique we examined |2| the universality class of the
exact quasitopological black hole with a Maxwell charge in multiple dimensions, as first
derived in [5]. The thermodynamics of this black hole has been discussed in 2.2.2. In this
thesis I will use the solution given there, with the added constraint of
(D-1)(D-2)
2172

A= (4.31)
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and the quasitopological and Gauss-Bonnet couplings are defined so that their lengthscale
is implicit;
A B (16D - 24) i
(D-3)(D-4) ™ (3D'—42D%+205D2 — 414D + 288)

= H3 (4.32)

This is important for any future extensions to extended-phase-space thermodynamics
where the couplings may be varied to generate new thermodynamic potentials. Further-
more, it is useful to use this convention as it makes this work comparable to the cubic
Lovelock gravity thermodynamics investigated in [160, 161].

As in the case of the Van der Waals fluid, we begin by finding the equation of state
and thermodynamic potentials of the black hole. Using our thermodynamic temperature
and entropy (2.2.1), the mass and thermodynamic volume can be computed through the
technique from section 3.1.3.

The extended first law and Smarr relation are given by

dM =TdS + VdP + ®dQ + Usd\ + U dji (4.33)
(D=3)M = (D -2)TS - 2PV + (D - 3)®Q + 2\ U5 + 41V, (4.34)

where the latter has been obtained using Eulerian scaling justifications, and where the
conjugate potentials to the higher curvature couplings are

wpok(D-2), ps ( 87?7"hT) wp-2k(D=2) 5 px ( 127rrhT)
Uy=—"—"kFk k- ——— Vv, =——Fk k-
g 160 D-4) g 167 " D-6
(4.35)
In this study we did not consider the thermodynamic details of the variation of ji or A so
we set di and d\ to zero.

Some fi-dimensionless thermodynamic quantities are introduced for ease of computation
as well as for comparison with other works. The association of these quantities to “specific
volume”, “specific charge”, “specific temperature”, and “specific pressure” will be used to
form an equation of state where i has been scaled out. The rescalings we have performed
here take the positive signs for positive values of i while for negative values of g we
perform the sign flip # — —fi, allowing the rescalings to stay real and allowing us to

examine thermodynamics in all regimes of the higher curvature parameter space shown in
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figure 2.3.
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As has been the trend in this field, the specific volume is not actually proportional to the
thermodynamic volume V. This originated with the work in [78], where the specific volume
was defined proportional to the horizon radius because it facilitates comparison with the
Van der Waals thermodynamics. This does not affect the results we obtain regarding the
universality class.

The equation of state is found by substituting these redefinitions into the expression
for the temperature (2.80). This yields

t_(D-2)(D-3)k 2kta (D-2)(D-5)ka 3k

v 4dp? v3 Aot v
(D-2)(D-"7)k q2
- Aot + D) (4.37)

in the case where i > 0 and

_t_(D=2)(D-3)k  2kta (D-2)(D-5)ka 3k

v 4Ap? v3 Aot v
(D-2)(D-"7)k q2
+ o D3 (4.38)

when ji < 0. To find the Gibbs free energy, the mass is obtained most easily from the cubic
equation (2.73), which now takes the form

3 , i 3_mL2 G2 L2
1—/£+ﬁ/<a —ﬁ/ﬁ = D1 209

(4.39)
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as we have explicitly fixed A, have altered the dimensionality of u, A, and have redefined
parameters ¢,m (which are not exactly equal to the mass and Maxwell charge of the
solution). Solving for the mass and evaluating G = M — T'S yields

o 1 _3(D-2)kvP T 3(D -2)(D -8)awPs . 4(D + 3)kovP-3
9= 7167 (01 + 2akv? + 3) (D -6) (D-6)(D-4) D-6
_2(D-2)aPkvP? (D -8)vP ! . 60mpvP-1
D—4 D-4 (D-1)(D-6)
D+1 D+3
_ppD*L 24makpu N 4dmpv
(D-1)(D-1) " (D-1)(D-2)
2 Z 5 ) _ 2 _
. q (2D -5)v .\ 2(2D - T)akv . 3(2D -9) (4.40)
4(D - 3) (v* + 2akv? + 3) vP3 D-2 D-4 (D -6)
when i > 0 and
o 1 _3(D - 2)kvP T . 3(D-2)(D-8)avP5  4(D +3)kvP3
9= 7167 (vh + 20k0? - 3) (D -6) (D-6)(D-4) D-6
_2(D-2)a?kvP? (D -8)oPt 60mpuP!
D-4 D -4 (D-1)(D-6)
D+1 D+3
koD 4 24makpu N dmpo=*
(D-1)(D-1) " (D-1)(D-2)
2 _ B )y _ 2 _
. q (2D -5)v .\ 2(2D - T)akv*  3(2D-9) (4.41)
4(D - 3) (vt + 2akv? - 3) vP3 D-2 D-4 (D -6)

when 71 < 0.

These expressions are rather tedious to deal with, and the relevant paper on the sub-
ject is long and sufficiently elaborates on the required considerations in ensuring that the
solutions are asymptotically AdS - essentially we have to carefully work only in regions
where the solutions we obtain are guaranteed to have AdS asymptotics because checking
this requirement for all parameters is very arduous. While the form of the metric that we
used here was required to compare with the Lovelock solutions [160], this trouble moti-
vates future use of a cosmological constant that ensures the correct asymptotics such as
(2.81), though I should mention that the metric function is then a function of the higher
curvature couplings, and in that case it is not entirely clear to me how the extended phase
space thermodynamics should be phrased since A now mixes together L, \, u, et cetera.
Either the cosmological constant is to be associated with the pressure, or the lengthscale
generated by the cosmological constant L is directly associated with the pressure.
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We also discuss restricting the solutions to positive entropy, and cover some very inter-
esting thermodynamic behaviour which had been observed in higher dimensional Lovelock
gravity, but which was observed for the first time in five dimensional quasitopological grav-
ity. Cataloguing the thermodynamic phase structure is important because it can further
narrow our investigations into how a holographic dual theory should behave.

The phase transition can be seen through a plot of the Gibbs free energy versus tem-
perature, where we look for the key “swallowtail” that vanishes at the critical point. An
example, for a« =4, q =0, k =1, D =5 can be seen in figure 4.1. This particular phase
transition is quite interesting, since first of all it culminates in a critical point which occurs
for uncharged black holes, whereas in the four-dimensional Reissner-Nordstréom black hole
of section 4.1.3, we saw that the critical point requires a finite charge to exist. That the
critical point does not require a charge is also a feature of other higher curvature theories
such as Lovelock gravity [160]. However, it is not so general as to survive for all higher cur-

vature theories; we find that for negative fi, for example, a value of a < /225 + 120/15/9
means that no critical point(s) can exist.

Secondly, this phase transition is actually part of a larger phenomenon called a reentrant
phase transition [$1], where one can observe the swallowtail crossing over from the lower
to the upper branch of the Gibbs free energy, resulting in a combination of two phase
transitions - the system will undergo a first transition to a different state, and then it can
undergo a second, different, phase transition which returns it to the original phase.

In this thesis we are interested in the universality class at the critical point in k =1
five-dimensional quasitopological gravity; we investigated this in scenarios with a nonzero
Maxwell charge, by requiring that the first and second derivatives of the pressure with
respect to the volume are both zero:

op d*p

ov ov?
These two equations can be readily solved using the equations of state (4.37) and (4.38)
to yield the critical values t., p., v..

=0 (4.42)

The expansion of the equation of state can then be made in terms of ¢z, p,, vg as per
(4.2), to yield
Py + Atg + Btpug + Cv% + O(tgv, vh) (4.43)
Pe
in the limit near criticality. Then, to compute the critical exponent of the isothermal

compressibility (4.10), for example, we take

(@) NBtR-FO(URtR,U?{) (444)
81) t
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Figure 4.1: A plot of the p-dimensionless Gibbs free energy ¢ versus p-dimensionless
temperature ¢t where p is negative. In this figure, we are in five dimensions, looking at a
set of spherical uncharged black holes, with the parameter o = 4. We see a characteristic
“swallowtail” on the lower branch of the free energy, corresponding to a phase transition.
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which, when evaluated at v = v., becomes

(@)t ~ Btp (4.45)

ov
and therefore v = 1 for this black hole. A similar procedure can be performed for the other
critical exponents |2, 160] which again yields the universality class of table 4.1.

The interesting result here is that the universality class is the same for arbitrary dimen-
sion. Since having all higher dimensional gravity theories dual to gauge theories of a single,
fixed dimension runs counter to the general holographic proposal that the D—dimensional
bulk theory corresponds to a (D — 1)—dimensional gauge theory, it is much more likely is
that the static, higher curvature, higher dimensional black holes that we have examined
all are governed by a mean field theory [119] near criticality. In retrospect this may not
be unexpected; I should not overspeculate but it is indeed possible that the upper critical
dimension of four spatial dimensions implies that the mean field theory is quite plausible as
the descriptor of our black hole systems, provided that there is no spontaneous symmetry
breaking. That said, it should not be this simple - there is evidence of a gravitational
critical point that does not share the Van der Waals universality class [101]; a similar point
also occurs in these quasitopological solutions but for parameters which make the black
hole unphysical. In addition, holography suggests that a three-dimensional gauge theory
should have a dual four-dimensional gravitational theory; if we want to extend this rela-
tionship to generic field theories on the boundary, where non-mean-field-theory criticality
has been observed, how can we make this change in the gravitational theory? Not through
higher curvature corrections alone, it would appear!

4.3 A Numerical Black Hole

Due to the results in section 3.5.2 indicating interesting phase behaviour and potential
criticality with anisotropy, I have also been motivated towards investigating other types of
gravitational theories to try to obtain a black hole with a different universality class. The
one that was the most relevant to my work is the asymptotically Lifshitz black hole; its
anisotropy should certainly have an effect on the criticality of the system. In condensed
matter physics, we expect that this only manifests itself in the dynamic universality class,
so our expectation would be to initially obtain the same universality class as that of section
4.1.

In order to find the universality class of an asymptotically Lifshitz black hole, I turned
to the numerical solution found in [1]. I chose this solution because known exact asymp-
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totically Lifshitz black holes often have a dependency of lengthscales which makes their
thermodynamic parameters difficult to separate [3].

Furthermore, these numerical solutions are easy to modify by adding a Maxwell charge
or alternative higher curvature terms, which means that the methodology proposed here
is applicable to a very broad set of solutions.

My path here involves extracting the form of the Gibbs free energy from the numerical
solution, then identifying a critical point along the line of phase transitions. Another reason
for choosing this black hole solution is that the phase transition we are interested in has
been observed in [1|. After identifying this critical point, derivatives of the free energy are
taken to obtain the specific heat and the thermal compressibility. Taking the logarithm
of these quantities near criticality, a linear fit will then yield the critical exponent as its
slope.

In principle this formalism is well defined when the metric functions are exactly known.
However, in this context an approximating polynomial is used and so we will need to
characterize the error that this introduces and show that it does not affect this final result.

Difficulties arise, however, particularly when modelling the profile for the temperature,
as obtaining good convergence without a sensible ansatz can be difficult when fitting non-
linearly. In addition, the amount of time required to generate numerical data means that
this work is not yet finished. Therefore, below I present a proof of concept, a numerical
derivation of the universality class for the Reissner-Nordstrom black hole.

Note that here I again use the conventions of section 3.1 for the cosmological lengthscale
(L—=1).

We begin with the equations of motion for the D = 4 Reissner-Nordstrém black hole.
The exact solution is given by (4.15), but we can obtain a numerical solution through our
shooting method of section 3.5 as a specific case of the z = 1, D = 4 simplification of the
equations (3.84) with the higher curvature terms and Proca charge set to zero.

I first checked that the numerical method yields the same solution as the exact case, and
then in the interest of computation time I created a mock dataset from the exact metric
function, exactly as we obtain from the numerical method - it consists of the horizon radius,
cosmological lengthscale, temperature, entropy, and derivative of the entropy.

In Mathematica this can be achieved with

rnKlD4Data =
Table[{cosmLength, horRad,
temperatureRN /. {1 -> cosmLength, rh -> horRad, k -> 1},
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entropyRN /. {rh -> horRad, omegak2 -> 4 \[Pi], k -> 1},
diffEntropyRN /. {rh -> horRad, omegak2 -> 4 \[Pi], k -> 1},
3/(8 \[Pi]*cosmLength”2)}}, {cosmLength,

2.01, 9, 0.05}, {horRad, 0.01, 15, 0.05}];

In fact, we generate two datasets, the first using the ¢ = 0 case and the second with charge;
in this example I use ¢ = 1.0:

rnK1lD4DataQ =
Table[{cosmLength,
horRad, (temperatureRN + temperatureRNQ) /. {l -> cosmLength,
rh -> horRad, k -> 1, q -> 1.0},
entropyRN /. {rh -> horRad, omegak2 -> 4 \[Pi], k -> 1},
diffEntropyRN /. {rh -> horRad, omegak2 -> 4 \[Pi], k -> 1},
3/(8 \[Pi]*cosmLength”2)}}, {cosmLength,
2.01, 9, 0.05}, {horRad, 0.01, 15, 0.05}];

where temperaturerN is the Reissner-Nordstrom black hole temperature (4.16) with ¢ = 0
and temperatureRNQ is the temperature (4.16) when ¢ = 1.0 minus the temperature when
q =0 (it is the “charge part” of the temperature).

This data is generated with an evenly spaced grid of size 0.05; the procedure below
is completely independent of this spacing size and so once we obtain a critical point and
begin attempting to extract critical exponents, we will want a higher resolution dataset
with rp,, [ taking values near criticality. Obtaining the location of this critical point is part
of the challenge here; an initially broad sweep over many values of r;,l may be required.

We then strive to compute the Gibbs free energy numerically. Because we emulate the
scenario where we do not exactly know the mass of the black hole, we must implement
the procedure in section 3.1.3. This requires a power expansion of the temperature and
entropy. The entropy is exactly known (as is assumed for the Lifshitz case as well), so we
only need the temperature’s expansion.

Taking only the temperature subset of our datasets, we fit constant coefficients to a
Padé approximant (with the dynamic dimensionless variable of r,,/l). Note that we can
use a general form for the temperature; with an uncharged black hole, each term in the
metric function is dimensionless so the temperature must have a dimensionality of 1/L;
this means that we can consider terms of 7./l only. For nonzero ¢, we understand that
typically the term(s) added to the metric function go as ¢?, so there is an added 1/L?
in the approximant (as the numerical method takes ¢ to be a dimensionless constant).
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The approximants are in the canonical form, but there is an overall prefactor of C/r?
where C' and D are dimension- and charge-dependent constants, which we absorb into the
denominator of the approximant.

temperatureDataForFit = Flatten[rnKlD4Data, 1][[All, {1, 2, 3}1]1;
temperatureDataForFitQ = Flatten[rnKlD4DataQ, 1][[All, {1, 2, 3}]1];
nlmCoeffsPade = {{a, 1.0}, {b, 0.0}, {c, 0.0}, {d, 1.0}, {e, 0.0}};
fitModel = (a*x/y + b + cxx"2/yr2)/(d*x + e*x"2/y);
fullFit =
FindFit[temperatureDataForFit, fitModel, nlmCoeffsPade, {y, x},
MaxIterations -> 5000];
fullFitNLM = fitModel /. fullFit
fitModelQ = (a*x/y + b + c*x"2/y"2)/(dxy*xx"2 + e*x"3);
fullFitQ
FindFit[temperatureDataForFitQ, fullFitNLM + fitModelQ,
nlmCoeffsPade, {y, x}, MaxIterations -> 5000];
fullFitNLMQ = fitModelQ /. fullFitQ

Each fit uses only four parameters. In this case we already have a good idea for initial
values for the coefficients, where a,d are set to unity while the rest are zero as a starting
value. However, in general this needs consideration. Fortunately, when fitting to a rational
model such as this, it is known that a good choice of initial values for the Padé expression
[162] is to first perform an initial linear least-squares fit on the model,

T x?
TRN-Pade = (a— +b+ 0—2) ~ TRN-Pade (d:r:2y + 6.7}3) (4.46)
Y Y
to obtain initial guesses for {a,b, -, e}.
After fitting, the temperature approximants are

(6.75801;10‘1)952 B (5.07022x10717)z +9.95267 x 10-1

_ Y Y
TRN—Pade|q:0 - 2830791 — (9.17017210*16)352 (4'47>
%1012 xB . %1012 $2
. . _(1.71879y310 ) N (1 75748y210 )z 3.59126 x 10-1 s
v-Padelg-1.0 = TrN-Paelyo = 4.5129123 + (6.78043 x 10-20) yz2 (4.48)

We can ensure that these approximants are good by examining both the numerical
evaluation of these temperature approximants and the original values, as well as through a
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Figure 4.2: Three plots of Try_pade When ¢ = 0 (solid blue) compared with the dataset gen-
erated from the exact temperature (4.16) (dashed green). The horizontal axis is the horizon
radius 7, and the plots encompass values of [ = 3.66, [ = 8.56, and [ = 6.46 respectively.
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plot of both quantities over the regions of interest. We see from figure 4.2 that in the ¢ =0
case, these two functions have very good overlap; the same is true for the ¢ = 1.0 solution.

In order to apply our thermodynamic method to obtain a mass, it is easiest to use a
series solution for the temperature. We have extracted the usefulness of the Padé method
by requiring a relatively small number of fit parameters, and now we can use a (potentially
much) larger series expansion in order to obtain a mass in powers of rj, and .

fullFitNLMSeries =
Normal[Series[
Series[fullFitNLM /. y -> 1/yinv, {x, 0, 10}], {yinv, 0, 4}]1] /.
yinv => 1/y;
fullFitNLMSeriesQ =
Normal[Series[
Series[fullFitNLMQ /. {y -> 1/yinv, x -> 1/xinv}, {xinv, 0,
20}], {yinv, 1, 15}]1] /. {yinv -> 1/y, xinv -> 1/x};
Block[{r, 13},
TemperatureFunctionQO[{r_, 1_3}] = fullFitNLMSerdies /. {y -> 1, x -> r};
TemperatureFunctionQ[{r_, 1_}] = fullFitNLMSeriesQ /. {y -> 1, x -> r};
]
tempListQO® = List @@ Expand[TemperatureFunctionQ0[{r, 1}]1];
tempListQ = List @@ Expand[TemperatureFunctionQ[{r, 1}]];

Because we seek expansions that are accurate for relatively large numerical values of
[ (we know from [78] that the criticality should be somewhere near [ = 6), we expand in
powers of the inverse of the cosmological lengthscale.

We therefore now have a series function for the ¢ = 0 and ¢ part, as well as a list of
each of these terms. The list form will be very useful in our thermodynamic method, as
each of the terms in the power series is processed individually.

We must also check the goodness-of-fit of our series solution to the original data. This
is plotted for the entire temperature function (¢ = 1.0) in figure 4.3.

In our last step manipulating the temperature, we map the temperature over the values
of r, and [ in the dataset, discretizing this series approximation. We can again check that
there is very good overlap.

TemperaturelListQ® = Map[TemperatureFunctionQ®, temperatureDataForFit[[All, {2, 1}]11]1;
TemperaturelListQ = Map[TemperatureFunctionQ, temperatureDataForFitQ[[All, {2, 1}]1]1]1;
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Figure 4.3: Three plots of the series expansion of Try_pede When ¢ = 1.0 (solid red) com-
pared with the Try_page (solid blue) and the dataset generated from the exact temperature
(4.16) (dashed green). The horizontal axis is the horizon radius rj, and the plots encompass

values of [ = 3.66, [ = 8.56, and [ = 6.46 respectively.
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Using the method provided in Appendix C.3, we obtain a list of mass values as well
as thermodynamic volume. We can again check that there is good overlap between the
numerically determined mass and the mass of the exact solution.

Next, the Gibbs free energy is computed from G = M - T'S. Here we build a function
and map it over the dataset, similar to temperature. Having a functional form is important
because the derivatives of the free energy are useful in obtaining the universality class.

The Gibbs free energy can be parametrically plotted against the numerically obtained
temperature for ¢ = 1.0 as seen in figure 4.4. We can see the swallowtail behaviour of a
critical point in great detail, and we can see from higher resolution in [ that criticality
occurs somewhere around 6.00.

Now, we extract the critical exponents. First, we plot the Gibbs free energy in much
higher resolution to obtain a value of [. ~ 6.005. As a pedagogical example, here we will
focus on the critical exponent corresponding to the isothermal compressibility,

1 (oV
R = —V (a_P)T (449)

We first need to convert this expression to a form that we can work with - remember
that I only have V = V(r,,l). We can make use of the pressure depending on only one
lengthscale, P = P(l), such that

oV ov
oT oT

dl = (a—m)ld’f’h*—(ﬁ)rh dl (451)
0P

dP - (W) dl (4.52)

This means that we can expand

TN [

which allows us to compute the isothermal compressibility directly:

dvVolumedPressure[r_, 1_] := ((1/D[pressure[lvar], lvar] )*(D[VolumeFunctionQ[{r, lvarl}], ~/
& 1lvar]
- D[VolumeFunctionQ[{rvar, 1}], rvar]*D[TemperatureFunction[{r, lvar}], lvar] /
D[TemperatureFunction[{rvar, 1}]1, rvar])) /. {lvar -> 1, rvar -> r};
\[Kappa]T[r_, 1_] := -(1/VolumeFunctionQ[{r, 1}])*dVolumedPressure[r, 1];
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Figure 4.4: Two plots of the Gibbs free energy (obtained from numerical data) versus the
series expansion of the temperature. On the top we have a larger range of cosmological
constant considered, where the values of [ are in the range {5.0, 5.5, 6.0, 6.5, 7.0} ({Red,
Blue, Green, Black, Orange}) while the figure on the bottom has [ taking the range {6.01,
6.03, 6.05, 6.07, 6.09}, with the same colour profile.
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Figure 4.5: The analytic (blue, solid) and series (red, dashed) inverse of (9V/OP), is
plotted versus [ when V' =V,. We see a very good match near the critical point (when the
inverse reaches zero).
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Since we have an exact solution, we can compute this derivative exactly and ensure that
our series expansion remains accurate near criticality (where the inverse of this function
will reach zero). Plotted in figure 4.5 is the inverse of (0V /OP), versus [ when 7, = 7’,(10)

(the horizon radius takes its critical value, i.e. V =V, in this context).

Now, near criticality the isothermal compressibility is expected to take the form
kr = c|T =T, (4.54)

where 7 is the critical exponent for the isothermal compressibility and c is some constant.
This limit is taken by varying temperature while holding V' constant, V = V.. We can
exploit the knowledge of the singular structure to extract both the critical exponent and
the critical cosmological length.

Asin [155, , 163], consider a function
f(z)=A(z)(1-uz)" + B(2) (4.55)

where 2z is the dynamical parameter of interest (in this context it is the temperature), an
A(z), B(z) are some functions that are not singular at z = u~!. Then,

d(log f(2)) _ =
dz 1-u

(—u) + nonsingular terms (4.56)
z

Furthermore,

1
(u’1 - z) w =~ + terms multipled by zero (4.57)
2

If we were to take the [1/1] Padé approximant of the left-hand side of (4.56), we can
obtain unbiased values of both v and u. Using u as a refinement of the inverse critical
temperature, we can take the [1/1] Padé approximant of the left-hand side of (4.57), which
will give a biased estimate of the critical exponent.

For our case, the parameter T = T'([), since we have evaluated temperature at fixed
horizon radius (since V' =V (ry)) and so we can develop the method of obtaining a critical
exponent.

Suppose instead of (4.56), we therefore have

d(log f(T()) _  — (_u)(a_T
dl 1-uT(l) ol

) ot nonsingular terms (4.58)
TRET)

We can modify this to give an estimate of the critical exponent by taking

(T.-T(1)) (%—?) o d(log ];(ZT(Z))) = (4.59)
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Perhaps a deeper understanding of the proper boundaries for black hole thermodynam-
ics in anisotropic spacetimes will yield notions of volume that only depend on the horizon
radius of the black hole. In principle this will mean that the above method will be directly
applicable to e.g. Lifshitz solutions. Otherwise, more analysis is needed to determine the
appropriate expression to convert to a Padé approximant in order to extract the critical
cosmological lengthscale and the isothermal compressibility’s critical exponent.

In this case, however, computing the critical exponent is as simple as evaluating

PadeApproximant[(1/dTempPadeCritRh)*(criticalTemperature - tempPadeCritRh)x*
D[Log[dVolumedPressure[criticalHorizon, 111, 1], {1, 5, 0}]

which yields v = 0.99998, in agreement with the theoretical value of v = 1.0 for the D =4
Reissner-Nordstrom black hole, after equation (4.58) was used to refine the critical tem-
perature (in precise agreement with the analytic solution).

Due to the impressive performance of this model, future work involves the extension to
other critical exponents in a wide variety of numerical black hole spacetimes. Namely, an
interesting problem is to use this procedure to find the previously-undiscovered universality
class of the D =5 numerical cubic quasitopological asymptotically Lifshitz black hole of
section 3.5.2.

4.4 Discussion

In this section I began by presenting the universality class as motivated by thermodynamics
of simple physical theories that arise from a Hamiltonian. The Van der Waals gas was
used as an example; after writing down the equation of state, I showed how to find critical
behaviour, and how the thermodynamic potentials can be used to obtain quantities which
diverge at criticality. I used the isothermal compressibility x7 as our quantity of interest,
and found the related critical exponent ~, ultimately finishing by presenting the other
common critical exponents for this system.

Then, I presented the first gravitational analogue of the Van der Waals gas, the four-
dimensional Reissner-Nordstrom black hole. I showed how the universality class could be
found for this system, including an explicit derivation of the isothermal compressibility,
when the cosmological constant is interpreted as a pressure.

The universality class of a five-dimensional exact cubic quasitopological black hole was
presented, both with and without Maxwell charge. This was used to show how the extended
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phase space thermodynamics can yield new behaviour through the additional parameter
space arising from the quasitopological terms that were added to the action.

The compelling result was that the universality class of the main large black hole - small
black hole phase transition remains the same as that of the four-dimensional Reissner-
Nordstrom black hole, even though new features such as reentrant phase transitions and
isolated critical points emerge. This has exciting implications for holography, namely the
relationship of all of these black hole solutions to mean field theory thermodynamics.

I also provided an introduction to computational techniques that can be of assistance
when finding the universality class of numerical black holes. The application of nonlinear
fitting methods and Padé approximants was then shown to be effective in an example
whereby a mock dataset was constructed for the D = 4 AdS Reissner-Nordstrom black
hole whose universality class we already extracted. A complete derivation of the critical
exponent for the isothermal compressibility was detailed, when the only prior data were
tuples consisting of the cosmological constant, horizon radius, temperature, and entropy.

This approach is essentially the culmination of this thesis; it is applicable to the higher
curvature theories and makes use of the insights into thermodynamics from studying black
holes with AdS asymptotics. Studying asymptotically Lifshitz black holes has given us
a technique for determining mass and volume from the power series for temperature and
entropy, which is crucial to this numerical procedure, and this method of numerically
obtaining the universality class applies directly to the output from the aforementioned
shooting method numerical solutions. For an accurate result, finding the universality class
numerically also required the use of the computational techniques described above.

This section also leads us to a set of important questions regarding the universality
class of black holes, and presents us with some ideas of where to turn. An obvious next
step is to obtain the universality class for the asymptotically Lifshitz black holes. If the
Lifshitz parameter does turn out to be the dynamic critical exponent, this represents an
important verification of what was hoped to be true with the introduction of anisotropy in
this fashion. Primarily, I posit that the asymptotically Lifshitz black holes are likely to be
models of mean field theory criticality with different dynamical universality classes. This
represents the first step of fine-graining that we can do after formulating the universality
class.
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Chapter 5

Conclusion

This thesis examined the thermodynamic behaviour of higher curvature and anisotropic
black holes in five dimensions. Higher curvature theories were motivated by the desire to
keep the resultant field equations to second derivatives of the metric tensor or fewer, and
both the Lovelock theories and the quasitopological theories were examined.

I presented the general Lovelock theory, and examined the second-order Lovelock grav-
ity (arising through the addition of the Lanczos-Gauss-Bonnet term to the action). Black
hole solutions in this theory were studied, and seen to offer a more rich solution space than
in the D = 5 Einsteinian case; in particular, there existed two valid black hole solutions,
each of which have the same temperature and entropy, along with a new parameter cor-
responding to the Lanczos-Gauss-Bonnet term which affects the asymptotic behaviour of
solutions of the theory.

The Euclidean regularization technique was presented as a framework to obtain a tem-
perature of black holes in this theory, as well as the use of the Wald method to obtain an
entropy for these black holes. The higher curvature contributed to nontrivial corrections
to the entropy.

Quasitopological theories were introduced, which allow us the benefit of the higher
dimensional Lovelock theories (second order field equations) in only five dimensions, at
the cost of requiring spherical symmetry. To explore gravity theories that should have
a four-dimensional dual, this was a trade that we were willing to make. It was seen
that these theories have solutions that are very similar to the Lovelock theories; the field
equations change only in terms of constants proportional to the number of dimensions.
Furthermore, the temperature and entropy were computed using the same methodology as
for the Lovelock case.
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Holographic arguments were presented which guide us into a range of parameters that
allow for positivity of energy flux in the dual field theories and contribute to the stability
of the bulk theory (essentially the higher curvature couplings are constrained to be suffi-
ciently small). The extended phase space thermodynamics was applied, which interprets
dimensional parameters in the action as new thermodynamic quantities. For anti-de Sit-
ter spacetimes, the Eulerian scaling argument was used to justify using the cosmological
constant as a pressure, since mass has dimensionality to the power (D - 3) while entropy
is like an area, of dimensionality (D —2). Intuitive notions of volume allows the remaining
constant factor needed to specify the pressure term completely to be fixed.

Then, we were able to begin the thermodynamic examination of black hole solutions
in these theories. The temperature and entropy can be used to graphically see transitions
in the sign of the specific heat via the second law of thermodynamics, and plots were used
to show that higher curvature terms can be used to control the stability of the black hole
solutions. An intuitive notion of the way higher curvature terms affect thermodynamic
behaviour is important in investigations into deeper concepts like the universality class,
because knowing which sign and magnitude of coupling constants will correspond to black
holes with a critical point allows one to more quickly home in on criticality (or even gives
insight into whether criticality exists), especially for black holes which can only be obtained
numerically.

A Maxwell charge was then introduced into the cubic quasitopological solution, and
we were able to see its effect from both plots of temperature and entropy as well as from
looking at the specific heat itself. Some important possible pitfalls were discussed - for
example, it appears that the charge can cause instability in the otherwise-stable planar
black hole from looking at the specific heat. However, an examination of the conditions
for extremality in these higher curvature solutions (the algebraic complexity makes this a
greater challenge) showed that such a transition in the sign of the specific heat will not
take place for non-extremal black holes.

The Lifshitz symmetric black holes were discussed next, which arise by breaking the
usual scaling of time and space through the introduction of a parameter which governs
“how much more” time will scale by. This type of modification was motivated in this
thesis by the predicted dynamical scaling that it will induce in the theory, which splits the
universality class into a set of dynamical universality classes.

In order for these black holes to be thermodynamically useful, however, we needed a
notion of mass (as enthalpy) which obeys a first law and Smarr relation. For some time we
worked to understand how mass should scale in anisotropic spacetimes, and here I presented
the result of that work, through a plausible Smarr relation whose scaling depends only on
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the dimensionality (not the Lifshitz exponent z) and reduces to forms of the Smarr relation
that have been previously used in the literature (presumably found by comparison with
non-anisotropic solutions, but presented without justification, and specific to the parameter
z and the topology of the black hole k). That is, all other Smarr relations can be regarded
as special cases of the one which we proposed.

The knowledge of the Smarr relation turned out to be enough to specify most of the
thermodynamic quantities of the system, given a certain number of independent parameters
for the solution. We proposed a method to yield mass, volume, and work terms given the
temperature, entropy, and pressure of any solution in a power series, and I presented that
method in this thesis, along with some analysis for a set of exact Lifshitz solutions.

The attempt was designed to allow for solutions where the lengthscale from the cos-
mological constant was mixed with lengthscale of the horizon radius in a nontrivial way,
and to build a method to obtain a mass and volume that was robust to that. Ultimately
this was not successful as solutions where the cosmological constant and horizon radius
are completely dependent result in a reduction of rank in our set of equations, and we
were not able to propose a single method that explained the results of all of the other
approaches towards obtaining a mass. However, our method was shown to perform well for
black holes where horizon radius and length are independent, and new lengthscales (such
as a dimensionful charge from a Maxwell field) remain independent as well.

In addition, the method did offer insight into the differences between the Brown-York
and Hollands-Ishibashi-Marolf masses in asymptotically Lifshitz spacetimes. The HIM
approach with an action that was constructed to allow for independent variation of param-
eters such as the metric tensor and Proca field agreed with a fictitious approach that had
a mass term with (D — 1) scaling, the form of the scaling that we conjecture in our Smarr
relation. Conversely, the Brown-York mass agreed with our thermodynamic mass when we
ignored the dependence of the cosmological lengthscale on the black hole horizon.

A clear path of development for this method was towards the numerical Lifshitz so-
lutions, so the five-dimensional cubic and quartic quasitopological asymptotically z = 2
Lifshitz numerical black hole solutions were presented. No exact solution is known for an
anisotropic black hole that is quite this general, with control over the parameter z (frac-
tional powers could be examined if desired) as well as independence of the horizon radius
and cosmological lengthscale. The entropy and temperature of these solutions were plotted
to examine whether they had suitable phase transition behaviour for studying potential
criticality and it was seen that indeed, there is evidence that there are unstable and sta-
ble black holes, and a divergent specific heat, for certain values of the higher curvature
couplings.
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The endgame of this thesis was then presented - the black hole universality class.
This allowed us to characterize an entire ensemble of black holes (of varying cosmological
constant, horizon radius, and charge) by a set of a few parameters corresponding to the
power with which a set of functions describing the system thermodynamically diverge, as
a critical point is approached.

The basic procedure to find these parameters was shown for the Van der Waals gas as
well as for the four-dimensional asymptotically AdS Reissner-Nordstrom black hole. The
latter is an important case study as it was the first black hole found to share its universality
class with the Van der Waals gas.

I presented the procedure used to find the universality class of the five dimensional
asymptotically AdS cubic quasitopological black hole, upon which it was seen that it falls
into the same universality class as the Van der Waals gas. Other works provide additional
evidence that this is not coincidental, that the mean field theory critical exponents describe
all of these theories for a reason, though the physics that explains this reason remains to
be completely understood.

In light of this, I presented techniques which could be used to eventually examine
the universality class of numerical black holes, in the hopes that they can lend insight
into the nature of the universality class. On the one hand, if time is playing a role in the
thermodynamics, causing the mean field theory to be applicable to the black hole criticality
for D > 4, the Lifshitz anisotropy should represent a substantial change to the behaviour
of the universality class. On the other, if as expected the Lifshitz critical exponent will
correspond to the dynamic universality class only, then perhaps it can be used as a more
finely grained gauge/gravity duality. Either way, the result is interesting.

Therefore, a method using data from numerical solutions needed to be developed. Here
it was tested for the simplest case, a D = 4 asymptotically AdS Reissner-Nordstrém black
hole. It was seen that through careful use of the Padé approximant and series expansions,
a rational function model of temperature could be constructed that yields a correct mass
and volume via our thermodynamic method. Close agreement with the exact solution was
ensured at each step of this process. The critical exponent for the isothermal compressibility
was extracted and found to agree with the exact analysis.

A driving goal of theoretical physics is to take the complexity that we observe and
reduce it to models which are well understood and have predictive power. In that sense,
this thesis is very representative of this goal. Beginning with the algebraically complex
higher curvature gravity, we have taken a journey through black hole thermodynamics
that ultimately allowed us to develop a set of numerical methods that reduce all of the
complexity of these theories to an important single number, and that number happens to
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be 1. Beautiful!

The promise of this method means that future work with the goal of obtaining the
universality class for the asymptotically Lifshitz black holes is coming in the near future.
My hope is that this approach is able to play a part in the final understanding of the
gauge/gravity duality and the deep mathematics that this conjecture surely represents.
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Appendix A

Obtaining the Einstein Field Equations

Substituting a metric function ansatz before functional variation of the action to obtain
field equations is a technique to simplify Einstein’s Field Equations for a theory in which
the metric is restricted to obey certain symmetries. In some cases this method obtains a
simpler set of coupled differential equations than substituting the form of the metric into
the general Einstein Field Equations [25]

1

RW—2

Rg;w + Aguu = 87TT/“, (Al)

where the stress-energy-momentum tensor needs to be computed from the matter part of
the action as

1 Sy
Ty = - A2
"8/ g 09 (4.2)

where Sy, is the matter part of the action, and g is the determinant of the metric tensor.

Our approach, made straightforward through computerized algebra software, will be
to:

e compute the Ricci tensor and metric determinant for a specific form of the metric;
here we will always assume static, spherically symmetric solutions so all dynamical
functions will be functions of the radial coordinate only

e perform integration by parts in order to obtain the lowest-order differential equations
possible

e propose an ansatz for the matter fields in terms of dynamical functions
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e perform a functional variation of the expanded action in terms of the dynamical
functions named above

e set these equations equal to zero and simplify; these are the Einstein Field Equations,
constrained to the form for our particular metric

The functional variation and integration by parts go a little beyond the capability of
most built-in CAS routines, so in C.1 I provide a set of Maple packages which will do this
task.

The snippet of code below will show these packages in practise. Here we find the field
equations for third-order asymptotically Lifshitz quasitopological gravity in five dimen-
sions, with a Maxwell field, with just a few Maple commands and the GRTensor package
[141]. This method is simple to use for the reduction of a wide variety of algebraically
lengthy actions to a set of differential equations when they are constrained by the metric
(for example, to spherical symmetry).

Suppose we begin with the action after being constrained to the desired metric form;

grdef(‘action:=sqrt(-detg)*(-2xLambda+Ricciscalar+lambda/(dd-3)/(dd-4)*L2
-mu/(dd-3)/(dd-6)*L3 - 1/4%xFa{a b}xFa{?a Ab} - 1/4%*Ha{a b}xHa{”a b}
- 1/2xm*2xB{a}*B{"a}) ‘);

actionInsideIntegral:=grcomponent(action);

This command has approximately fifteen lines of output (which I will not show here).

We can directly obtain the field equations with the commands

physicsdiff(actionInsideIntegral,h(r),r):ibp(%,2,r):
feqgHr:=simplify(simplify(expand(simplify(

subs(phi=Pi/2,theta=Pi/2/sqrt(k),%x(k)),size)),size))
assuming k>0, r>0, L>0, z>0;
physicsdiff(actionInsideIntegral,f(r),r):ibp(%,2,r):
feqFr:=simplify(simplify(expand(simplify(

subs(phi=Pi/2,theta=Pi/2/sqrt(k),%x(k)),size)),size))
assuming k>0, r>0, L>0, z>0;
physicsdiff(actionInsideIntegral,kappa(r),r):ibp(%,2,r):
fegKr:=simplify(simplify(

expand (simplify(subs(phi=Pi/2,theta=Pi/2/sqrt(k),%*x(k)),size)),size))
assuming k>0, r>0, L>0, z>0;
physicsdiff(actionInsidelntegral,g(r),r):ibp(%,2,r):
feqGr:=simplify(simplify(
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expand(simplify(subs(phi=Pi/2,theta=Pi/2/sqrt(k),%*x(k)),size)),size))
assuming k>0, r>0, L>0, z>0;

We can illustrate this method by focusing on the field equation for f(r), given by
feqfFr. To obtain this quantity, the first command performs a functional variation of the
action with respect to f(r), and the second performs the necessary integration by parts
(with respect to the dynamical variable r) to eliminate any second order derivatives in
the expression. In order to obtain a field equation that agrees with the form (2.65),
we evaluate the angular components at specific values (they can be grouped out of the
expression because we have spherical symmetry, and then integrated over even though we
didn’t perform this part of the integral in the action, so they do not contribute to the
equations of motion).

The equation obtained through this method yields the output

foqFr = - (7270 (o0 020 185710 (o)) a0
7G]

~1447° f(r) ( g(r)) L2g(r)pk + 48r° f(r) (—g(r)) LYk + 2477 £ (1) (—g(r)) L
+72r3 f (1) ( g(r)) LYK+ 418 Lg(r) ( /{(r)) +8rTLAg(r)zk(r) (%/{(r))

+4r8 LA g(r)¢? (d%l"h(r))Q +8r"Lg(r)g*zh(r) ( h(r)) +96f(r)rSqg3(r)p

—96.f(r)L*r8¢*(r)\ = 144 f (r)L?r* ¢? (r) uk + 96 f () L*7g(r) + 96 f (r) L7 g (r) kX
+16 f(r)LOAr® — 48 F (r) LSk + 48 f (r) LSk i + 4L %22 g (r) ¢*h* (1)

+4L*7%22g(r)K2(r) + 4L°r5m2¢*h (1) )rz_4L_z‘5)

Evidence that this expression matches results derived by hand can be see through some
simple substitutions. For example, when f(r) = g(r) = 1 and x(r) = 0,k = 0,¢ = 0, we
expect a solution that is AdS (we have evaluated the asymptotic behaviour when ¢ = 0,
i.e., there is no Proca field). The terms corresponding to the Maxwell field x have a faster
falloff, along with those corresponding to k, so we set those to zero as well. This yields

— (6 =6 LA +6L* + LOA) r#*2 L7775
which has the solution
w— L2\ + L4
_6T
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Since this field equation used the definition of x from [2], as well as the higher curvature
terms being left dimensional, this is equivalent to (2.81) in the notation of this thesis.

Similar simplifications can be performed on these general field equations to show agree-
ment with other works (at least with cubic quasitopological terms, this method has been
extensively tested, c.f. |4, 5, , 145]).

These field equations can then be solved asymptotically for the completely general
conditions on A, ¢, and m, and then they can be brought into a near-horizon series or a
first order ODE form by using the procedures described in section 3.5.
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Appendix B

Nonlinear Regression

We desire the minimization of the function

S(6%) = Z;(y - f(z:,0M))°

(B.1)

in the context of a linear least squares problem for some guess of parameters 6*. Since the

problem is assumed to be linear in the coefficients 0, perform a series expansion of

Yi = f(l'“é) = f(xhé*) + (9j _‘9]*) (a%f(mzaé))
J

Here, the Jacobian for the function f is defined

<af(a:1,é)) (8f(x1,5)) (6f(x1,5))

391ﬁ G0+ 892ﬂ G=G* 89]ﬁ G-~

F = (w)ee (%)a_eﬁ (aféz?e))a:a*
(%97:5) )gzg* (%é;:é))é:é* (afgg;]j’é) )é:é*

and so the equation (B.2) can be represented as

E=F(6-0v)

0;=0

(B.2)

(B.4)

where € = - f (é*) It is important to realize that in the linear case the Jacobian takes
the same values no matter where it is evaluated, but in the nonlinear case we make the
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approximation that the Jacobian does not change (while recomputing it at each iteration)
in the linearization of the system.

To account for errors in the data (or nonlinear functions f), we need to additionally
impose minimization of (B.1), which means

O g o 2(F (- ) -0 (B5)
0,
and since o o . L.
(5-f0))=¢e+(f(O")-f(0)=€¢-F(6-6") (B.6)

we can obtain the equation obeyed by linear least squares as well as the iterative Gauss-
Newton method by seeing that (B.4) satisfies the equation from substituting (B.6) into
(B.5):

(F'F)'Fe=6-0" (B.7)

which is the basis for the iteration in the Gauss-Newton method.

The gradient method, instead of linearizing the function f, takes the approach of ap-
proximately solving (B.5) by minimizing fT at each step, using a gradient descent

—

0=0"-nFT (B.8)

which has strong guarantees on convergence for many problems when the matrix n is
correctly determined at each step (with a line search approach), but the actual speed of
convergence can be very slow since the line of descent can wind around the minimum, or
when the model function is very flat around the minimum (having small derivatives).
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Appendix C

Code

The following features some code snippets and complete routines for the work of this thesis.

C.1 Maple Packages

The first package is called with the command physicsdiff(expression, f(r), r) which will
perform a functional differentiation of expression with respect to the function f(r). It is
able to handle derivatives with respect to f(r) through an integration by parts followed by
a differentiation.

global MAXIMUM_NUMBER_OF_DERIVATIVES := 10;

_physicsdiff_term := proc(expr,function,term,dparam)
local counter,counter2,tmp,retterm,_physicsdiff_innervar;

retterm := 0;

if is(op(0,dparam)=°‘1list‘) then
for counter from 1 to nops(dparam) do
for counter2 from 1 to MAXIMUM_NUMBER_OF_DERIVATIVES do
tmp := subs(diff(function,dparam[counter]$counter2)=_physicsdiff_innervar(dparam[ <

 counter]),term);
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retterm := retterm + (-1)7(counter2)xdiff(subs(_physicsdiff_innervar(dparam[/
s counter]) =
diff(function,dparam[counter]$counter2),Physics:-diff(tmp,
& _physicsdiff_innervar(dparam[counter]))),dparam[counter]$counter2);
end do:
end do:
RETURN(retterm);
else
for counter2 from 1 to MAXIMUM_NUMBER_OF_DERIVATIVES do
tmp := subs(diff(function,dparam$counter2)=_physicsdiff_innervar(dparam),term);
retterm := retterm + (-1)”(counter2)*diff(subs(_physicsdiff_innervar(dparam) =
diff(function,dparam$counter2),Physics:-diff(tmp,_physicsdiff_innervar(dparam)) v
 ),dparam$counter2);

end do:
RETURN (retterm);
fi:
end proc:
physicsdiff := proc(expr,function,dparam)

local expr2,newexpr,exprlength,term,tmp,counter;

description "This Maple procedure will perform a physicists’ functional differentiation,
 neglecting boundary terms and integrating by parts to functionally vary an /
& expression with respect to a function, even if it contains powers of first

 derivatives of that function. Written by W. Brenna, Sept 3 2012. Version 0.3.";

if not(is(op(0,f(r)xg(r))=“*¢)) then
print("Error: Conflicting package detected! The ‘x¢ declaration has been redefined and V
 results are therefore unreliable. Make sure you have loaded physicsdiff before V
& running with(Physics).");
RETURN (expr) ;
fi:
if assigned(makeg) then
print("Error: Conflicting package detected! GRTensor overwrites a number of variables
& that can cause physicsdiff to perform 1in unstable ways. Please use physicsdiff /
 before running grtw().");
RETURN (expr);
fi:

expr2 := expand(expr);
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exprlength := nops(expr2);

newexpr := 0;

if is(op(0@,expr2)=¢+¢) then
for counter from 1 to exprlength do
term := op(counter,expr2);

#This just does the first order integration by parts.

newexpr := newexpr + _physicsdiff_term(newexpr,function,term,dparam):
end do:
else
term := expr2;
newexpr := newexpr + _physicsdiff_term(newexpr,function,term,dparam):

fi:
#Finally, we do the regular differentiation by parts to build up the final
#terms.

RETURN (newexpr + Physics:-diff(expr2,function));

end proc:

This second package performs integration by parts, neglecting boundary terms. It is
called with ibp(expression, 2, r, [f(r), g(r)] and will integration expression by parts
to remove all derivatives of power 2, where the functions f(r), g(r) are the ones whose
second order derivatives will be integrated out.

#This maple procedure will integrate an algebraic function by parts, neglecting

#boundary terms

#First, the helper procedures
_ibp_solveeqn := proc(outexpr,oldterm,ibpcoeff,derivterm,dparam)
local newterm, counter, myinteger;
#outexpr is the full expression that is returned by this procedure.
#oldterm 1is the original term that we are integrating by parts
#ibpcoeff is the coefficient which we treat as V in VvduU
#derivterm is the term to integrate out...it needs to be in the form
#diff(f(x),x$n)
#where n is some integer!
newterm := expand(diff(ibpcoeff,dparam)*op(l,derivterm));
if is(op(0@,newterm) = ‘+¢) then

for counter from 1 to nops(newterm) do:
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if dis(op(counter,newterm)/oldterm,real) then
#If there exists a term in the IBP expansion equal to the original term up to a constant,

#solve the equation to get a closed-form solution for oldterm.

myinteger := op(counter,newterm)/oldterm;
newterm := ( newterm - myintegerxoldterm)/(l+myinteger);
break;
fi:
end do:
fi:
RETURN (outexpr - oldterm - newterm);
end proc:
_ibp_specifiedfn := proc(functions,newexpr,term,dparam,power,tryhard)

local function, j, localexpr,exitparam, tmp, thecoeff, derivterm;
exitparam := false;
localexpr:=newexpr;
for function in functions do
if (has(term,diff(function,dparam $ power)) and
not(has(term,diff(function,dparam $ power+1))) ) then
if dis(op(0,term)=‘*x¢) then
for j from 1 to nops(term) do
tmp := op(j,term);
if (has(tmp,diff(function,dparam $ power)) and
not(has (tmp,diff(function,dparam $ power+1))) )
then
if dis(op(0,tmp) = “2¢) then
thecoeff := coeff(term,diff(function,dparam $ power)”rop(2,tmp))*diff(/
 function,dparam $ power)” (op(2,tmp)-1);
if dis(tryhard=false) then
exitparam := true;
fi:
break;
elif is(op(0,tmp) = ‘diff¢) then
thecoeff := coeff(term,diff(function,dparam $ power));
break;
else
print("Error - could not determine power of term.'");
RETURN (localexpr);
fi:
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fi:
end do:
if is(exitparam = true) then
break;
else
derivterm :=term/thecoeff;
localexpr := _ibp_solveeqgn(localexpr,term,thecoeff,derivterm,dparam);
break;
fi:
else
#Do nothing - this 1is a lone term!
#Unless it is a power of derivatives!
#In this case we can get a higher power derivative, (if we tryhard)
if(op(0,term)=~¢) then
tmp := op(l,term);
if dis(op(0,tmp) = “diff¢) then
if ((tryhard)) then
thecoeff := tmp?(op(2,term)-1);
derivterm :=term/thecoeff;
localexpr := _ibp_solveeqn(localexpr,term,thecoeff,derivterm,dparam);
else
RETURN (localexpr);
fi:
else
print("Error - could not parse the term",term,".");
RETURN (localexpr);
fi:
fi:
fi:
fi:
end do:
RETURN (localexpr);

end proc:

ibp := proc(expr,power,dparam,functions:=[],tryhard:=false)
local expr2,newexpr,exprlength,termlength,term,thecoeff,i,j,tmp,counter,derivterm;
description "This utility integrates an expression by parts, picking out the terms of

 power \’power\’ and differentiating with respect to the other terms. Boundary
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 terms are always neglected. Arguments are: the expression, the power of derivativey/
& you wish to lower, the variable with respect to which you differentiate, a list ~
 of the functions which possess the higher derivatives which you wish to integrate v
& (optional), and a boolean determining whether we integrate expressions inside of V
 powers or not (optional - default no). If you do not specify the final option, I V
& will assume you want to +integrate all function that have a derivative of order \’/
 power\’. Written by W. Brenna, Aug 14 2012. Version 0.5 - modified January 27, ~

& 2013.";

expr2 := expand(expr);

exprlength := nops(expr2);
newexpr := expr2;

#Make sure we have a reasonable power.
if not(power > 0 and is(power,integer)) then
print("Error! Currently fractional or negative powers are unsupported.");
RETURN (expr2);
fi:

if not(is(functions=[])) then
if is(op(0,expr2)=¢+¢) then
for i from 1 to exprlength do
term := op(i,expr2);
newexpr := _ibp_specifiedfn(functions,newexpr,term,dparam,power,tryhard):
end do:
else
term := expr2;
newexpr := _ibp_specifiedfn(functions,newexpr,term,dparam,power,tryhard):
fi:
else
#populate the list of functions to be "all functions", if none were specified
if is(op(0,expr2) = ‘+¢) then
for i from 1 to exprlength do
term := op(i,expr2);
termlength := nops(term);
for j from 1 to termlength do
if is(op(0,0p(j,term)) = diff) then
if dis(op(2,0p(j,term)) = dparam) then
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tmp := op(j,term);
for counter from 1 to power+l while is(op(0,tmp) = diff) do
tmp := op(1l,tmp);
if dis(counter = power) then
if dis(op(0,tmp) = diff) then
print("Warning: you have a derivative higher than the power you V
s specified. It was dignored.");
else
#bonus code to perform 1infinite integration by parts!
thecoeff := coeff(term, op(j,term));
derivterm := term/thecoeff;
newexpr :=
_ibp_solveeqgn(newexpr,term,thecoeff,derivterm,dparam);
fi:
fi:
end do:
fi:
fi:
end do:
end do:
elif is(op(0,expr2) = “A¢) then
#This is a lone term.
print("This is a lone term. You need to specify tryhard=true and explicitly give V

 functions in order to solve this.");

else
term := expr2;
termlength := nops(term);
for j from 1 to termlength do
if is(op(0,op(j,term)) = diff) then
if dis(op(2,0p(j,term)) = dparam) then
tmp := op(j,term);
for counter from 1 to power+l while is(op(0,tmp) = diff) do
tmp := op(1l,tmp);
if dis(counter = power) then
if dis(op(0,tmp) = diff) then
print("Warning: you have a derivative higher than the power you V
s specified. It was qignored.");
else

thecoeff := coeff(term, op(j,term));

151



derivterm := term/thecoeff;
newexpr :=
_ibp_solveeqgn(newexpr,term,thecoeff,derivterm,dparam);
fi:
fi:
end do:
fi:
fi:
end do:
fi:
fi:
RETURN (simplify(newexpr,size));

end:

C.2 Lifshitz Quasitopological Thermodynamics

This program, given a set of first order differential equations (the spherically symmetric
field equations) and near-horizon expansions, will perform a shooting method to numeri-
cally yield the metric functions of the black hole. This is repeated for a range of horizon
radii, and for each horizon radius the temperature and entropy of the black hole is com-
puted.

The series expansion of the metric functions must be provided in a save file seriesexpansion-
5d.m, where the variables defined in this file are fs3, gs3, hs3 corresponding to the third
order series expansions of f(r),g(r),h(r) near the horizon ry.

The set of first order ODEs must be given in firstorderodes-5d.m using the variable
names DFR, DGR, DHR, which respectively correspond to the right hand size of the ODEs
df(r)/dr =--,dg(r)/dr =, dh(r)/dr = .

The remaining input is specified within the routine itself, allowing customization of
values of z,rp,[, higher curvature parameters, horizon topologies, and so on. This can
be easily wrapped into more complicated routines, allowing one to probe a wide range of
parameters space.

Output is saved as a text file in the data/ subdirectory, with one file for each range of
horizon radii considered. The files can be straightforwardly concatenated over a range of
lengthscales to allow for a substantial dataset, which I use to render visualizations of the
black hole thermodynamics.
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restart;

Digits:=350:
kernelopts(printbytes=false):

#First we can load 1in the series solutions and the differential equations
read ‘seriesexpansion-5d.m¢;

read ‘firstorderodes-5d.m¢;

#These give us fs3,hs3,gs3 and DFR,DGR,DJR, respectively

#Enter the number of dimensions here, for computing the area and entropy:

#If you change this value, you must also change cosmConst’s expression and ensure the v
s series expansion and odes are also fixed!

nDims:=5;

cosmConst:=-(1/16)* (-48*MU*ZZ - 32xLLA2%xLAMBDA*ZZ + 8xLL"4%ZZ"2 - 48%LLA2xLAMBDA - 24xMU*ZZ/
& A2 - 16%LAMBDAXZZA2%LLA2 + 16xLLA4%xZZ - 24%MU + T72xLLA4)/LL"6;

# We need the working series solution to perform this type of solution (and it has to be V
& first order).

with(plots):

ZZ:=2:MU:=-.0003:LAMBDA:=.04:0Q:=0.0:LL:=2.00:

large_RO:=1e35:K_init:=1:K_final:=1:

g_fact:=1.0:f_fact:=1.0:h_fact:=1.0:

large_radius:=0.45:res:=0.001:

small_radius:=0.020101:1initial_point_scale:=1.000015:

mffun:=100000:

HAHAHHAHARHHHHAHHAHARHHAHS

#Code follows:

HAHAHHAHARHHHHHAHHAH AR HHAHS
set_lambda:=LAMBDA:set_ZZ:=ZZ:muparamresscale:=MU:KK:=0:

small_radius_save := small_radius:

init_time:=time():

print(init_time);

for set_KK from K_init to K_final do

printcounter:=1l:oldprintcounter:=50:
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small_radius := small_radius_save:

whileFlag := true;
for obj_radius from small_radius by res while whileFlag do
h_seed:=1/(obj_radius)/.38/4:f_seed:=h_seed*4/3:
dd:=initial_point_scale:R0O:=obj_radius:Hl:=h_seed:Fl:=f_seed:KK:=set_KK:ZZ:=set_ZZ:MU:=/
s muparamresscale:LAMBDA:=set_lambda:
icp := {g(RO*dd)=g_fact*subs(L=LL,Q=QQ,r0=R0O,h1=H1,f1=F1,k=KK,mu=MU,lambda=LAMBDA, r=R0x*
 dd,z=2Z,gs3),
f(ROxdd)=f_fact*subs(L=LL,Q=QQ,r0=R0O,h1=H1,f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=ROxdd,z=
& 2z,fs3),
h(RO*dd)=h_fact*subs(L=LL,Q=QQ,r0=R0O,h1=H1,f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=ROxdd,z=
& 2Z,hs3),
j (RO*dd)=subs (L=LL,r0=R0,Q=QQ,h1=H1, f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=RO*dd,z=2Z,diff
& (hs3,r))}:
diffequations := {diff(g(r),r)=subs(L=LL,Q=QQ,k=KK,mu=MU,lambda=LAMBDA,z=7Z,DGR),
diff(f(r),r)=subs(L=LL,Q=QQ,k=KK,mu=MU, lambda=LAMBDA,z=72Z,DFR),
diff(j(r),r)=subs(L=LL,Q=QQ,k=KK,mu=MU, lambda=LAMBDA,z=ZZ,D3JR),
diff(h(r),r)=j(r)}:
diffsoln := dsolve(diffequations union icp,numeric,output=1listprocedure,maxfun=mffun):
dph:=subs(diffsoln,h(r)):dpf:=subs(diffsoln,f(r)):dpg:=subs(diffsoln,g(r)):dpj:=subs (<
& diffsoln,j(r)):

try:
tmpl:=dpf(large_RO*RO) ;tmp2:=dph(large_ROxR0O);
catch:
small_radius := obj_radius + res;
large_radius := large_radius + res;
print("Increasing small_radius...");

print(small_radius);
next;

end try;

dd:=initial_point_scale:R0O:=obj_radius:Hl:=h_seed:Fl:=f_seed/tmpl:KK:=set_KK:ZZ:=set_zZZ/
s :MU:=muparamresscale:
icp := {g(Roxdd)=g_fact*subs(L=LL,Q=QQ,r0=R0O,h1=H1,f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=R0x*
 dd,z=77,gs3),
f(ROxdd)=f_fact*subs(L=LL,Q=QQ,r0=R0O,h1=H1,f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=ROxdd,z=
& 2Z,fs3),
h(ROxdd)=h_fact*subs(L=LL,Q=QQ,r0=R0O,h1=H1,f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=R0Oxdd, z=
s ZZ,hs3),
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j (ROxdd)=subs(L=1,r0=R0,Q=QQ,h1=H1,f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=Re*dd,z=2Z,diff(/

& hs3,r))}:

diffequations := {diff(g(r),r)=subs(L=LL,Q=QQ,k=KK,mu=MU,lambda=LAMBDA,z=77,DGR),
diff(f(r),r)=subs(L=LL,Q=QQ, k=KK,mu=MU, Lambda=LAMBDA ,z=2Z,DFR) ,
diff(j(r),r)=subs(L=LL,Q=QQ,k=KK,mu=MU, lambda=LAMBDA,z=7Z,DJR),
diff(h(r),r)=j(r)}:

diffsoln := dsolve(diffequations union [dcp,numeric,output=listprocedure,maxfun=mffun):

dph:=subs(diffsoln,h(r)):dpf:=subs(diffsoln,f(r)):dpg:=subs(diffsoln,g(r)):dpj:=subs(/

& diffsoln,j(r)):

try:
tmp22:=dph(large_ROxR0O) ;tmpll:=dpf(large_RO*R0O);
catch:
small_radius := obj_radius + res;
large_radius := large_radius + res;
print("Increasing small_radius...");

print(small_radius);
next;

end try;

dd:=initial_point_scale:R0O:=obj_radius:Hl:=h_seed/tmp22:F1l:=f_seed/tmpl:KK:=set_KK:ZZ:=/
s set_ZZ:MU:=muparamresscale:
icp := {g(Roxdd)=g_fact*subs(L=LL,Q=QQ,r0=R0O,h1=H1,f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=R0x*
 dd,z=77,gs3),
f(ROxdd)=f_fact*subs(L=LL,Q=QQ,r0=R0O,h1=H1,f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=ROxdd,z=
 zz,fs3),
h(ROxdd)=h_fact*subs(L=LL,Q=QQ,r0=R0O,h1=H1,f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=ROxdd,z=
& ZZ,hs3),
j (RO*dd)=subs (L=LL,r®=R0,Q=QQ,h1=H1,f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=RO*dd,z=27,diff./
& (hs3,r))}:
diffequations := {diff(g(r),r)=subs(L=LL,Q=QQ,k=KK,mu=MU, lambda=LAMBDA,z=72Z,DGR),
diff(f(r),r)=subs(L=LL,Q=QQ,k=KK,mu=MU, lambda=LAMBDA,z=72Z,DFR),
diff(j(r),r)=subs(L=LL,Q=QQ,k=KK,mu=MU, lambda=LAMBDA,z=ZZ,DJR),
diff(h(r),r)=j(r)}:
diffsoln := dsolve(diffequations union icp,numeric,output=listprocedure,maxfun=mffun):
dph:=subs(diffsoln,h(r)):dpf:=subs(diffsoln,f(r)):dpg:=subs(diffsoln,g(r)):dpj:=subs (v
& diffsoln,j(r)):

try:

tmp23:=dph(large_ROxR0O) ;tmpl3:=dpf(large_RO*R0O);
catch:

small_radius := obj_radius + res;
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large_radius := large_radius + res;
print("Increasing small_radius...");
print(small_radius);

next;

end try;

dd:=1initial_point_scale:RO:=obj_radius:Hl:=h_seed/tmp22:Fl:=f_seed/tmpl/tmpl3:KK:=/
s set_KK:MU:=muparamresscale:
icp := {g(Roxdd)=g_fact*subs(L=LL,Q=QQ,r0=R0O,h1=H1,f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=R0x*
$ dd,z=7zZ,gs3),
f(ROxdd)=f_fact*subs(L=LL,Q=QQ,r0=R0,h1=H1,f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=R0xdd, z=
 z2z,fs3),
h(ROxdd)=h_fact*subs(L=LL,Q=QQ,r0=R0,h1=H1,f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=ROxdd,z=
 ZZ,hs3),
j (RO*dd)=subs (L=LL,r0=R0,Q=QQ,h1=H1, f1=F1,k=KK,mu=MU, lambda=LAMBDA, r=ROxdd ,z=2Z,diff
& (hs3,r))}:
diffequations := {diff(g(r),r)=subs(L=LL,Q=QQ,k=KK,mu=MU, lambda=LAMBDA,z=727,DGR),
diff(f(r),r)=subs(L=LL,Q=QQ,k=KK,mu=MU, lambda=LAMBDA,z=7Z,DFR),
diff(j(r),r)=subs(L=LL,Q=QQ,k=KK,mu=MU, lambda=LAMBDA,z=2Z,DJR),
diff(h(r),r)=j(r)}:
diffsoln := dsolve(diffequations union [dcp,numeric,output=listprocedure,maxfun=mffun):
entropy := rA(nDims-2)/4/1x(1 + 6xlambdaxk*xLA2/r 2 + 9xmuxk"A2xL"4/r"4):
diffEntropy := diff(entropy,r);
tempera := rA(z+1)/4/Pi/LM(z+1)*sqrt(Flxsubs(Q=QQ,hl=H1,gll)):

pressure := -1/8/PixcosmConst:

datapointproc := proc(i) local pointval; global set_KK,ZZ,MU,LAMBDA,areaCoeff;
pointval:=i%1.0001;
RETURN ([

(evalf(pointval,90)),

(evalf((subs(r=pointval,lambda=LAMBDA,mu=MU,k=set_KK,L=LL,z=ZZ,entropy)),90)),

(evalf((((subs(r=pointval,r@=pointval,k=set_KK,z=ZZ,mu=MU,lambda=LAMBDA,L=LL,
 tempera)))),90)),

(evalf((((subs(r=pointval,r@=pointval,k=set_KK,z=ZZ,mu=MU, lambda=LAMBDA,L=LL,F1)
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$))),90)),
(evalf((((subs(r=pointval,r@=pointval,k=set_KK,z=ZZ,mu=MU, lambda=LAMBDA,h1=H1,L=/
& LL,Q=QQ,811)))),90)),

(evalf((((subs(r=pointval,r0=pointval,k=set_KK,z=ZZ,mu=MU,lambda=LAMBDA,L=LL, v
s pressure)))),90)),

(evalf((subs(r=pointval,lambda=LAMBDA,mu=MU,k=set_KK,L=LL,z=2Z,diffEntropy)),90) v
$)
IDN

end:

mydatapoint[floor ((obj_radius-small_radius)/res+.0001)]:=datapointproc(obj_radius):
dataptlist[floor ((obj_radius-small_radius)/res+.0001)]:=obj_radius:
if(floor (n(printcounter)) <> floor(ln(oldprintcounter)))
then
print(printcounter,time()-init_time,obj_radius,evalf(H1,10),evalf(F1,10),evalf(y/
s datapointproc(obj_radius)));
print("Final values of f(r) and h(r):");
print(dpf(large_RO*R0O)) ;print(dph(large_RO*R0));
oldprintcounter:=printcounter:
fi:

printcounter:=printcounter+1:

if(obj_radius > large_radius)
then

whileFlag := false;
fi:

end do:

dataset_list[set_KK+2] := [seq(mydatapoint[i],i=0..((large_radius-small_radius)/res))]:
filename2:=cat("data/stapplotdata-Q",convert(QQ,string),"-Z",convert(ZZ,string),"-1",/
& convert(evalf(LL,3),string),"-L",convert(evalf(LAMBDA,3),string),"-M",convert (¥
 evalf(muparamresscale,3),string),"-r0",convert(evalf(small_radius,3),string),"-rf"/
 ,convert(evalf(large_radius,3),string),"-k",convert(set_KK,string),".txt"):
writedata(filename2,dataset_list[set_KK+2],float);
end do:
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C.3 Thermodynamic Mass and Volume

This program is written in Maxima; given an input of the metric function, the entropy, and
the number of dimensions of the black hole spacetime, it will return the thermodynamically
determined mass and volume of the black hole.

The prompts should be suitable to guide you through using this software.

/* Maxima file to solve for the mass given a metric function,

dimension, and z.

W. Brenna
June 15, 2014
*/

nDims:read("Enter the number of dimensions:");

nZ:read("Enter the Lifshitz parameter z.");

nFr:read("Enter the metric function f(r) from ds?2 = -(r/1)"(2z) * f(r) x dth2 + ...");

nEntropy:read("Enter the entropy of the solution as a function of r and 1. Use %pi for Pi."/
S5

nCosmo:read("Enter the cosmological constant as a function of 1.");

nParam:read("Enter the name of a mass parameter for the metric function.");
P: -nCosmo/8/%pi;
dP: -diff(nCosmo,1)/8/%pi;

dSr: diff(nEntropy,r);

/* This gives the parameter in terms of horizon radius. */

nParamSolve: solve(nFr=0,nParam);

temperature: subst(nParamSolve, (r/1)A(nZ+1)/4/%pi *x diff(nFr,r));

/* Express temperature as a sum of terms in length parameters: */

if sequal(string(reveal(reveal(expand(temperature),1),1)), "Sum") then tLength: length(/
 expand(temperature)) else tLength : 1;

if sequal(string(reveal(reveal(expand(nEntropy),1),1)), "Sum") then tLength2: length(expandy
& (nEntropy)) else tlLength2 : 1;

tLengthTot: tlLength*tlLength2;
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array(alphaArr,tLengthTot);
array(betaArr,tLengthTot);
array (tempArrEntropy,tLengthTot);
array (tempArrdEntropy,tlLengthTot);

/* Expand the temperature in a series and store powers in arrays */

tmpVariableForLogExpand: logexpand;

logexpand: super;

/* Modded x/

if (tLength > 1 and tLength2 > 1) then for i:1 thru tLength step 1 do ( for j:1 thru V

 tlLength2 step 1 do (tempArrEntropy[(i-1)*tLength2+j]: part(expand(temperature),i)*y
 part(expand(nEntropy),j), tempArrdEntropy[(i-1)*tLength2+j]: part(expand(temperaturey
) ,1)*diff(part(expand(nEntropy),j),r), betaArr[(i-1)*tLength2+j]: coeff(expand(log(/
 part(expand(temperature),i)*part(expand(nEntropy), j))),log(r)), alphaArr[(i-1)*/

& tLength2+j]: coeff(expand(log(part(expand(temperature),i)x*part(expand(nEntropy), j))
& ),log(l)))) else if (tLength = 1 and tLength2 > 1) then for j:1 thru tlLength2 step 1/
& do (tempArrEntropy[j]: (expand(temperature))x*part(expand(nEntropy),j), ¥
 tempArrdEntropy[j]: (expand(temperature))xdiff(part(expand(nEntropy),j),r), betaArr[
& j]: coeff(expand(log((expand(temperature)*part(expand(nEntropy), j)))),log(r)),
 alphaArr[j]: coeff(expand(log((expand(temperature)x*part(expand(nEntropy), j)))),log(¥
& 1)) else if (tLength2 = 1 and tLength > 1) then for i:1 thru tlLength step 1 do (/

s tempArrEntropy[i]: part(expand(temperature),i)x*(expand(nEntropy)), tempArrdEntropy[i s
& ]: part(expand(temperature),i)*diff((expand(nEntropy)),r), betaArr[i]: coeff(expand (¥
& log((part(expand(temperature),i)*(expand(nEntropy))))),log(r)), alphaArr[i]: coeff(/
 expand(log((part(expand(temperature),i)=*(expand(nEntropy))))),log(l))) else (/
 tempArrEntropy[1]: expand(temperaturexnEntropy), tempArrdEntropy[1]: expand(/
 temperaturexdSr), betaArr[1]: coeff(expand(log(expand(temperaturexnEntropy))),log(r) <
& ), alphaArr[1]: coeff(expand(log((expand(temperaturexnEntropy)))),log(l)));

logexpand: tmpVariableForLogExpand;

print("Temperature (array):", expand(temperature));

print("Total number of dtems in TxS: ", tLengthTot);
print("Temperature * Entropy (array):", listarray(tempArrEntropy));
print("Temperature * dEntropy (array):", listarray(tempArrdEntropy));
tmp: listarray(alphaArr);

print("Alpha Array: ", tmp);

tmp: listarray(betaArr);

print("Beta Array: ", tmp);
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/* Use the computation derived for mass and volume (unique) x*/

mass: 0;

volume: 0;

for i:1 thru tLengthTot step 1 do (if(betaArr[i]=0) then print("Warning, betaArr is zero Z
& for some terms.") else mass: mass + tempArrdEntropy[i] * r / betaArr[i]);

for i:1 thru tlLengthTot step 1 do (if(betaArr[i]=0) then garbage: 3 else volume: volume + (V
& tempArrEntropy[i] * (nDims-2) x rA(betaArr[i]-1) * betaArr[i] - tempArrdEntropy[i] */
& (nDims-3) % rA(betaArr[i]) ) / betaArr[i] / 2 / P / rr(betaArr[i]-1));

print("Mass:", mass);

print("Volume:", volume);

/* Check the reverse isoperimetric inequality for these bodies */

area: (nDims-1)*%pi?( (nDims-1)/2)/gamma( (nDims-1)/2 + 1)*r*(nDims-2);
isOmega: 2x%pi”( (nDims-1)/2)/gamma( (nDims-1)/2);

isoper: ((nDims-1)*volume/isOmega)”(1/(nDims-1))*(isOmega/area)”(1/(nDims-2));

print("Isoperimetric Parameter R:",isoper);

test:read("Do additional computations? (y/n)");

if sequal(string(test), "n") then quit();
rhorizon:read("Enter the horizon radius in terms of 1.");
mparamSol: solve(subst(r=rhorizon,nFr),nParam);

mass2: subst(r=rhorizon,mass);

volume2: subst(r=rhorizon,volume);

print("Mass:", mass2);

print("Volume:", volume2);

print("Isoperimetric parameter:", subst(r=rhorizon,isoper));

/* Now to find the charge-potential term Phi*Q x*/

test:read("Continue to find charge? (y/n)");

if sequal(string(test), "n") then quit();

newFr:read("Enter the part of f(r) depending on charge q, where q scales as L*(D-3).");

newParamSolve: solve(nFr+newFr=0,nParam);

newTemp: subst(newParamSolve, (r/1)A(nZ+1)/4/%pi * diff(nFr + newFr,r)) - subst(q=0,subst(¥
& newParamSolve, (r/1)A(nZ+1)/4/%pi * diff(nFr + newFr,r)));

STQ:nEntropyxnewTemp;

if sequal(string(reveal(reveal(expand(STQ),1),1)), "Sum") then tLength: length(expand(STQ)) ¥
 else tLength : 1;

array(stqArray,tLength);
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array(stqArraycoeff,tLength);

array(stgArrayellcoeff,tLength);

if sequal(string(reveal(reveal(expand(STQ),1),1)), "Sum") then for i:1 thru tLength step 1 V/
& do (stgArray[i]: part(expand(STQ),i), stqArraycoeff[i]: hipow(part(expand(STQ), i),q¥
§ ), stgArrayellcoeff[i]: hipow(part(expand(STQ), i),1)) else for i:1 thru tLength
& step 1 do (stgArray[i]: expand(STQ), stqArraycoeff[i]: hipow(expand(STQ),q), ¥
 stgArrayellcoeff[i]: hipow(expand(STQ),1));

print("You entered the q temperature terms as: ", collectterms(ratsimp(newTemp),q));
print("You entered the q temperaturexentropy terms as (array): ", listarray(stgArray));
print("The coefficients of ell in these terms are: ", listarray(stqArrayellcoeff));

print("The coefficients of g in these terms are: ", listarray(stqArraycoeff));

phiQ: 0;

tmpMass: 0;

tmpVol: 0O

tmpExpr: 0;

for i:1 thru tLength step 1 do (tmpExpr: (nDims-2) * stgArray[i] / ( (nDims - 3) * (1 - /
 stgArraycoeff[i]) - stqArrayellcoeff[i]),tmpMass: tmpMass + tmpExpr,phiQ: phiQ +
 stgArraycoeff[i]*tmpExpr,tmpVol: tmpVol - stqArrayellcoeff[i]*tmpExpr/2/P);

mass: mass + ratsimp(tmpMass);

mass2: mass2 + ratsimp(tmpMass);

volume: volume + ratsimp(tmpVol);

print("The mass is now:",mass,"and the PhixQ term 1is",phiQ, "while the volume 1is:",volume);

/*x If mass is fixed we can solve for q in terms of rh x/

gsqSoln: solve(subst(g=sqrt(qgsq),subst(mparamSol,nFr+newFr)),qsq);

print("Equivalently, the mass might now be:",subst(gsqSoln,subst(g=sqrt(qgsq),mass)),"and ~
& the Phi*Q term",subst(gsqSoln,subst(gq=sqrt(qgsq),phiQ)));

/* Finally, the 1isoperimetric parameter. */
isoper2: subst(gsqSoln,subst(gq=sqrt(qsq),isoper));

print("The +disoperimetric parameter has become: ",isoper2);
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