
Resource Management for Delivery of Dynamic

Information

by

David Evans

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2005

c©David Evans 2005

Author’s Declaration for Electronic Submission of a Thesis

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Information delivery via the web has become very popular. Along with a grow-

ing user population, systems increasingly are supporting content that changes fre-

quently, personalised information, and differentiation and choice. This thesis is

concerned with the design and evaluation of resource management strategies for

such systems. An architecture that provides scalability through caching proxies is

considered. When a cached page is updated at the server, the cached copy may

become stale if the server is not able to transmit the update to the proxies im-

mediately. From the perspective of the server, resources are required to transmit

updates for cached pages and to process requests for pages that are not cached.

Analytic results on how the available resources should be managed in order to min-

imise staleness-related cost are presented. An efficient algorithm that the server

can use to determine the set of pages that should be cached and a policy for trans-

mitting updates for these pages are also presented. We then apply these results

to page fragments, a technique that can provide increased efficiency for delivery of

personalised pages.

iii

Acknowledgements

Completing a Ph.D. is a bit like being a teenager. You feel utterly alone, are plagued

with doubts, and think that you are the only person suffering these problems.

That’s not typically true, of course. All graduate students—well, the honest ones—

experience the same feelings of loneliness, inadequacy, and anxiety. It would have

been impossible for me to survive this on my own and so I have many people to

thank for as many different reasons.

My supervisor, Professor Johnny Wong, has provided invaluable advice, knowl-

edge, and experience. This thesis is the better for his insightful comments and

criticisms. I also wish to thank the members of my examining committee, Pro-

fessors Jay Black, Ken Salem, Sherman Shen, and Michael Bauer. Lindsay Chen

implemented the simulator used in Chapter 6. Terry Lau, Don Bourne, Darl Crick,

Weidong Kou, and everyone else I worked with at the IBM Toronto Lab have

given me insight into the sorts of scalability problems faced in industry and the

approaches taken to solving them. My research was financially supported in part

by the Canadian Institute for Telecommunications Research under the Networks

of Centres of Excellence programme of the Government of Canada, the IBM Cen-

tre for Advanced Studies at the IBM Toronto Lab, and the IBM Ph.D. Fellowship

Programme.

iv

I thank my parents for, long ago, helping me choose the path that has lead me

to where I am today.

And, finally, I thank my friends. Without their cleverness, companionship, and

love I would have been lost long ago. Such success as I have I owe to you: Ambles,

Andrew, Billy, Carlos, Chris, Claus, Dana, Doug, Ellen, Fei, Gabe, Hugh, Jacob,

Joanna, Jerry, Keith, Kelly, Lisa, Michael, Nicky, Niel, Olga, Paul, Rick, Rob,

Ruth, Scott, Seb, Stefanus, Steve, Tim, Wendy, Will.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 7

1.3 Thesis Organisation . 9

2 Related Work 11

2.1 Early Information Delivery Systems 12

2.1.1 One-way Broadcast . 12

2.1.2 Two-way Schemes . 15

2.2 User Behaviour: Caching and Prefetching 18

2.3 The Web . 21

2.3.1 Push for Web Page Delivery 22

2.3.2 Web Caching . 27

2.3.3 Page Timeliness . 32

vi

2.4 Conclusions . 38

3 System Model 39

3.1 System Architecture . 39

3.2 Server/Proxy Interaction . 42

3.2.1 Proxy Operation . 43

3.2.2 Server Operation . 45

3.3 Performance Model . 48

3.4 A Definition of Staleness . 50

3.5 Concluding Remarks . 51

4 Optimal Page Delivery: Single Page Case 52

4.1 Preliminary Observations . 53

4.2 Staleness-Related Cost . 54

4.3 Minimisation of Cost . 57

4.4 Cost/Resource Consumption Tradeoff 58

4.5 Where to Cache the Page . 61

4.6 Concluding Remarks . 68

5 Optimal Page Delivery: Multiple Page Case 69

5.1 Optimisation Problem . 71

vii

5.2 Determining Transmission Attempt Rates 72

5.3 Selecting Cached Pages . 76

5.3.1 Cost Analysis . 77

5.3.2 Heuristic Algorithm I . 80

5.3.3 Heuristic Algorithm II . 82

5.3.4 Examples . 86

5.4 Concluding Remarks . 87

6 Page Fragments 89

6.1 How Page Fragments Work . 90

6.2 System Architecture . 93

6.3 Performance Model . 93

6.3.1 Staleness-Related Cost . 96

6.4 Simulator Description . 98

6.5 Simulation Results and Discussion 101

6.6 Concluding Remarks . 111

7 Summary and Future Work 112

7.1 Summary of Contributions . 112

7.2 Future Work . 114

viii

A Derivation of Equation 4.4 118

B Summary of Notation 121

Bibliography 123

ix

List of Tables

4.1 Parameter values used to illustrate the cost/resource consumption

tradeoff . 59

5.1 Parameter values used to compute the numerical results 75

5.2 Page request rates and corresponding transmission attempt rates for

RA = 50 . 76

5.3 Parameter values used in our experiments 81

5.4 Results for heuristic I . 82

5.5 Results for heuristic algorithm II 85

5.6 The two heuristic algorithms for large N 85

5.7 Examples illustrating the solutions found by the page selection heuristic 88

6.1 Simulation inputs when fragments are cached 98

6.2 Simulation inputs when pages are cached 100

6.3 Levels of the five factors for the 25 · 10 factorial design 103

x

6.4 Parameter values used to test for the effect of fragment transmission

attempt order . 106

6.5 Results for the 25 · 10 factorial design 107

6.6 Parameter values used in our numerical examples 108

6.7 g versus N . 108

6.8 g versus J . 110

6.9 g versus F . 110

xi

List of Figures

1.1 A schematic view of web caching 3

2.1 Why timeliness may be unobtainable 35

3.1 The system’s logical architecture 40

3.2 Messages used in the server–proxy protocol 43

3.3 Definition of staleness . 51

4.1 L transmission attempts in time T 55

4.2 Optimal cost . 60

4.3 Resource consumption . 61

4.4 The tradeoff between resource consumption and cost 62

4.5 The tradeoff between resource consumption and cost, bi = 5 63

5.1 The effectiveness of the approximation used to determine ni 74

5.2 Cost versus resource consumption 77

xii

5.3 Heuristic algorithm I . 81

5.4 Heuristic algorithm II . 84

6.1 Sample layout for a personalised page 91

xiii

Chapter 1

Introduction

1.1 Motivation

Access to information via the world wide web is extremely popular, spanning a

wide variety of application areas including electronic commerce, news, and delivery

of financial and weather information. In these applications, users submit requests

and the system responds with the requested pages. From the user’s perspective, an

important requirement is good response time.

The system’s response time has two main components: delay at the transport

network (the Internet, in the case of the web) and delay at the web servers. The

Internet today provides best-effort service; its delay performance is good when the

traffic is light. However, its delay characteristics are poor when the level of traffic

1

CHAPTER 1. INTRODUCTION 2

increases or when the number of users is large. It is possible that future routers will

support service guarantees so that the transport network component of the overall

response time is more predictable.

This thesis will focus on the server delay. As the number of users accessing the

pages stored at a server increases, the aggregate rate of requests directed to that

server will increase. For a server with a given capacity, an elementary queueing

analysis tells us that an increase in request arrival rate will lead to an increase in

response time. The server will not be able to scale to large user populations while

maintaining acceptable response time performance.

Scalability can sometimes be achieved by increasing the rate at which the server

can process requests. This approach has been used from the early stages of web de-

velopment. Techniques that have been employed include the use of faster machines,

multi-processors, and improvements to the HTTP protocol (such as fetching mul-

tiple items using the same TCP connection). However, the first two techniques are

constrained by hardware availability and all three do little to alleviate the increased

traffic that must be carried by the network.

An alternate approach to reducing response time is to use proxy servers and

distribute the user requests among them such that each proxy is able to process

its share of requests while delivering satisfactory response time. This reduces the

load on the server because fewer requests are received for processing. If the proxies

CHAPTER 1. INTRODUCTION 3

Server

Proxy

User User

Proxy

Figure 1.1: A schematic view of web caching

are placed at judicious points in the network, a reduction in traffic can also be

realised. By directing a user’s requests to a proxy that is close in terms of the

network topology, these requests and the information sent in reply will consume

fewer network resources than if the requests were sent directly to the server.

In the context of the web, proxies are commonly used to implement caching [1–

4]. This is illustrated in Figure 1.1. All pages are stored at the web server. Proxy

servers are placed in the network and a subset of the web pages is cached at each

proxy. User requests are directed to these proxies rather than to the web server.

CHAPTER 1. INTRODUCTION 4

Each proxy can be viewed as a site-wide cache for a community of users. These

communities may be organised according to geographic location, position within

the network topology, or commonality of desired content. As the number of users

in a community increases, its proxy might experience heavy load and become a

bottleneck. Typically, this problem is resolved by splitting the community and dis-

tributing the load to more proxies. One can further organise proxies in a hierarchical

manner, where proxies share cached information with those that are nearby.

Caching at proxy servers brings with it the problem of update consistency.

Suppose that all page updates are made at the web server. When a page is updated,

cached copies at the proxies become stale or out-dated. Strong consistency—that

is, an assurance that users are always provided with the most up-to-date version

of a page—can be provided if the proxies verify the validity of a cached page for

every access. Such an approach requires server resources for the processing of every

request and is not a scalable solution. Scalability can be improved if the requirement

of strong consistency is relaxed. This is done by techniques such as time-to-live,

polling, and invalidation [1, 5, 6]. For these techniques, there is a tradeoff between

resource consumption and the staleness of the information delivered to the users.

For example, the time-to-live parameter should be kept small if one wishes to reduce

the frequency of delivering outdated information. However, a small time-to-live also

means that more requests will be forwarded to the server. Similarly, in polling, if

CHAPTER 1. INTRODUCTION 5

the poll is performed more frequently, it is more likely that the information in the

cache will be up-to-date.

With web caching, pages can be classified according to whether a page is fre-

quently requested or not and whether a page is frequently updated or not. Each

class might favour a different strategy for delivery to the users. Our classification

is described below, together with delivery strategies appropriate to the classes.

Class 1: Page is infrequently requested If pages are infrequently requested,

they may be served without consuming significant resources. This suggests

that it is not necessary to cache pages in this class.

Class 2: Page is frequently requested but changes rarely For this type of

page, cache refresh ceases to be an issue. We may cache all such pages and

select a time to live such that the impact on the web server is not significant.

Class 3: Page is frequently requested and changes frequently Popularity

makes caching appealing but frequent page updates imply the need for fre-

quent cache refreshes if the cached page copies are to be kept up to date.

In this thesis, we focus on pages in Class 3. Our emphasis is on the questions of

which pages should be cached and how page updates should be transmitted in order

to achieve the best page timeliness for a given resource availability.

CHAPTER 1. INTRODUCTION 6

In our analysis, we consider an approach where updates to cached pages are

transmitted (or “pushed”) to the proxies by the server. This approach allows the

server to maintain a high degree of consistency if resources are sufficient to transmit

each update without delay. For pages in Class 3, this will be resource intensive as

these pages are updated frequently and it may not even be possible if the updates

occur at a rate faster than the server can transmit them. In case the server does not

have the resources (or does not wish to expend the resources required) to transmit

all updates immediately, the cached pages may become stale. Our study focuses on

this scenario. Using push for web page delivery is not a new idea [7–10]. What is

novel is our mechanism for managing the resources available for delivery such that

the pages delivered to the users are as timely as possible.

It has been suggested that another way to enhance the scalability of web caching

is by organising pages as a number of fragments [11–15]. The same fragment may

be used in a number of pages. Scalability is improved because, when a fragment

common to many pages changes, only the fragment in question is affected. Conse-

quently, if the fragment is cached, the server only needs to transmit the update of

this fragment. On the other hand, if fragments are not used, each page containing

the updated information will become out of date. If these pages are cached, con-

siderable resources are required to transmit updates for each page when compared

to those required to transmit the one fragment update. We will investigate the

CHAPTER 1. INTRODUCTION 7

conditions under which the use of fragments will lead to improved performance.

1.2 Contributions

This thesis represents a significant step in the understanding of the resource man-

agement issues inherent in designing information delivery systems for pages that

are popular and that change frequently. Specifically, the main contributions of this

thesis are as follows:

Characterisation of staleness and resource consumption

We present a new measure of staleness, taking the position that the server

is responsible for keeping the pages up to date. Any staleness is caused by

the server not being able to transmit updates promptly. This approach is

different from those provided by Cho and Garcia-Molina [16, 17], Dingle and

Partl [18], Wolf et al. [19], Coffman et al. [20], and Edwards et al. [21].

Optimal strategy for transmission of updates

We consider an architecture where pages are cached at proxy servers and page

updates are pushed to these proxies using a mechanism called “transmission

attempts”. A staleness-related cost is defined, based on our measure of stal-

eness. We develop analytic results that describe how the available resources

can best be used to transmit page updates. Specifically, we show that the

CHAPTER 1. INTRODUCTION 8

staleness-related cost is minimised when transmission attempts are made at

regular intervals, regardless of the values of the page request rate and page

update rate.

Optimal strategy for caching pages

We further show that for a given page, the staleness-related cost is minimised

if the page is either cached at all of the proxies or at none of the proxies,

depending on the amount of resources available.

Heuristic algorithms for page delivery

We focus on the case where the page update rates are at least two times faster

than the transmission attempt rate. Two heuristic algorithms are developed

that determine, for a given resource availability, which pages should be cached

(at all the proxies) and which pages are to be retrieved from the server,

along with the transmission attempt rate for each cached page, such that the

resulting staleness-related cost is close to optimal. We are not aware of any

prior algorithms that accomplish this task in the context of web caching.

Page delivery using fragments

Fragments have been suggested as a means for improving system scalability.

We extend our system architecture to include fragments and obtain simulation

results that characterise the conditions under which the use of fragments

CHAPTER 1. INTRODUCTION 9

is beneficial in terms of reducing the staleness-related cost. These results

significantly enhance understanding of the benefits from using fragments.

1.3 Thesis Organisation

The remainder of this thesis is organised as follows.

Chapter 2 examines relevant work that has been done in information delivery

system design, including analysis of broadcast-only systems, push for the world wide

web, and web caching. This provides a context for the contributions described in

the following chapters.

Chapter 3 presents our proposed architecture, including the details of server–

proxy interaction. It also introduces our performance model and defines what we

mean by staleness. This definition is different from those of others and, we feel,

more appropriate when the system attempts to maintain consistency by pushing

page updates to proxies where copies of these pages are cached.

In Chapter 4 we begin our investigation of optimal page delivery by considering

the case of a single page. We define a staleness-related cost which is used in our

analysis of optimal page delivery strategies. Following this, we focus on solving the

following two problems:

1. For a given limit on resource availability, determine the strategy that the

CHAPTER 1. INTRODUCTION 10

server should use to transmit page updates in order to minimise the staleness-

related cost.

2. Determine the set of proxies such that caching the page at these proxies would

lead to minimum staleness-related cost.

In Chapter 5 we extend our investigation to the general case of multiple pages

and develop heuristic algorithms to determine which pages should be cached at

which proxies. We also address the question of how the available capacity should

be expended to transmit updates of the various cached pages. We thus end up with

a complete picture of how the server should manage its resources so as to attain

the minimum staleness-related cost for a given resource availability.

Chapter 6 extends our architecture to the case where pages are divided into

fragments. We extend our performance model to describe the use of fragments and

use simulation to study, in the context of frequent updates, the conditions under

which the use of fragments would lead to a reduction in staleness-related cost.

Conclusions and suggestions for possible future work are summarised in Chap-

ter 7.

Chapter 2

Related Work

In this chapter we review some of the work that has been done in designing in-

formation delivery systems. We first examine early approaches, some of which use

one-way broadcast to deliver pages and some of which have two-way communication

with the users. We then summarise efforts to analyse user behaviour in the context

of caching and prefetching. This is followed by an overview of research concerning

the web, including using push for web page delivery, web caching, and management

of web page timeliness.

11

CHAPTER 2. RELATED WORK 12

2.1 Early Information Delivery Systems

2.1.1 One-way Broadcast

Early examples of information delivery systems are television and radio. Servers

(stations) provide information in the form of programmes to users by means of one-

way broadcast. These programmes are transmitted at pre-determined times and

multiple programmes may be transmitted simultaneously if more than one broad-

cast channel is available. The users learn of the transmission schedule, defining

what channels are used for what programmes at what time, by means of an out-

of-band directory. Users’ interaction with the system consists of tuning in to the

channel carrying the desired programme at the appropriate time. Such systems are

said to be push-based, relying on server-initiated delivery of content.

It is somewhat problematic to define interesting performance metrics for radio

and television. The systems make continual use of a broadcast channel, making

resource consumption highly predictable. The response time for the system could

be viewed as the length of time between the user’s wish to watch a programme

and the time that the broadcast of the programme commences. As there is no

interaction between the users and servers the resource consumption and response

time are very predictable and are independent of the number of users. This pro-

vides excellent scalability when faced with user population growth. However the

CHAPTER 2. RELATED WORK 13

system does not perform as gracefully when required to deliver large numbers of

programmes, assuming that the capacity of the channel is fixed. The number of

programmes transmitted can be increased by using more broadcast channels. This

would result in an increase in the resource requirements of the system. If the ad-

dition of broadcast channels is not possible, the transmission schedule must be

adjusted to accommodate more programmes, resulting in a longer wait before a

desired programme is transmitted.

One-way broadcast can also be used to deliver pages of information. The defi-

nition of what constitutes a page is application-specific but examples include pages

of a book, images, sections of a map, etc. Suppose that a server possesses N pages,

numbered 1 through N . They can be repeatedly transmitted over a broadcast chan-

nel using a transmission schedule. When a user desires one of the pages, his or her

client can simply monitor the channel until the page of interest is received. Sys-

tems like this are referred to as teletext [22]. They share with television and radio

the property that their behaviour is independent of the number of users. However,

teletext user requests are far better defined than those for television and radio since

a user interaction results in the need for a particular page. This allows us to define

response time as the time from when a user requires a page until the time that

the page’s next transmission has completed. A thorough characterisation of this

response time may be found in [23]. These results show that, if page requests arrive

CHAPTER 2. RELATED WORK 14

according to a Poisson process, transmitting pages in a cyclic manner is optimal

with respect to minimising the mean response time over all users. In [23–25] a

scheme is presented that can produce such cycles yielding optimal or near-optimal

mean response time. While this scheme designs the cycle off-line, Su and Tassiulas

advocate an approach where the next page to transmit is selected at each transmis-

sion opportunity [26, 27]. This approach has the advantage of requiring no off-line

computation and can produce transmission schedules that provide a response time

very close to the minimum predicted in [24]. Bar-Noy et al. propose an efficient

scheme to implement periodic transmission schedules like those generated by the

algorithms above [28].

Clearly a server that follows the one-way broadcast model must transmit all of

the pages in its possession as there is no way of knowing which pages are required

and which are not. This means that teletext faces the same response time/channel

use tradeoff experienced by radio and television. Increasing the number of pages

reduces the frequency of each page’s transmission, resulting in longer mean response

times. Response time can be improved by using a faster channel or a larger number

of channels. Datacycle, a relational database, explored the use of increased channel

capacity to solve this problem [29, 30]. The Datacycle server operates by repeatedly

transmitting its database over one or more broadcast channels. Applications pass

database queries to a “record access manager” (at the application’s host computer)

CHAPTER 2. RELATED WORK 15

which translates these queries into filtering specifications. These specifications are

presented to custom VLSI devices that passively and independently observe the

broadcast channels, extracting records that match the filtering criteria. In terms of

performance, the authors observe that reducing the response time requires either a

shorter transmission cycle (requiring faster transmission) or additional transmission

channels.

2.1.2 Two-way Schemes

The lack of upstream communication in one-way schemes means that the system

must anticipate all users’ page requirements, resulting in poor scalability as the

number of pages becomes large. The availability of a reverse channel allows users

to notify servers of the pages that they require. This is a pull model of information

delivery, in contrast to the push model used by one-way systems. An early example

of this type of system is videotex, described by Gecsei in [22]. In this system a

reverse channel allows users to deliver page requests to the server, whereupon the

server prepares the pages in question for transmission. Gecsei describes a range

of systems, some of which (like INDAX) broadcast responses to all users. Others

(such as PANDA, the Bildschirmtext commercial network, the Télétel network,

and CAPTAIN) transmit a page to its intended recipient only. An analysis of

CHAPTER 2. RELATED WORK 16

the performance of videotex can be found in [23, 31], user response time being the

metric of interest. That study focused on broadcast-only videotex as well as systems

that use broadcast for information pages and unicast for customised pages (such as

when placing an order with a retailer, retrieving private information such as bank

balances, etc.). Hybrid systems using both broadcast and unicast were shown to

be able to handle higher traffic intensities than systems using only unicast. Further

consideration is given to the performance of these systems in [32, 33] where the idea

of on-demand multicast is introduced. It operates as follows. The server maintains

a queue of pages to transmit. If an arriving request is for a page that is already

queued for transmission then the sender of the request is added as a recipient for

the transmission. Otherwise an entry for the page in question is placed in the

queue. The scheduling algorithm used to select pages from the transmission queue

may influence the response time of the system [33–35]. When the request rate is

low, the scheduling algorithm has little impact on the response time. As the load

increases, the Most Requests First algorithm yields the best response time for equal

page request probabilities. If the request probabilities are unequal then the Longest

Wait First algorithm is preferred.

An early example of a system that uses the hybrid broadcast-unicast technique is

the Boston Community Information System [36]. A set of servers manages a group

of databases; query routers make the servers appear as a single system image. User

CHAPTER 2. RELATED WORK 17

terminals, the clients in the system, possess small local databases and are equipped

with two-way channels to communicate with the servers. They also possess a radio

receiver capable of capturing broadcast transmissions from the servers. Users begin

their use of the system by specifying a set of queries, known as the “filter list”, that

is used to populate their local databases. Queries from the user may be processed

locally if the relevant information resides in the local database. Otherwise the query

will be forwarded to the appropriate server, which responds thereafter. Servers

broadcast new data via the radio link. Users monitor these broadcasts for records

matching their filter list and may update their local database with such records. The

work is focused on the system’s architecture rather than on performance evaluation.

The Boston Community Information System uses a wireless network for infor-

mation delivery. More recent work has been done to support portable wireless

devices which frequently depend on exhaustible power sources [37]. Reception of

information is costly because the incoming packets must be examined by the CPU

or equivalent hardware, placing a high demand on the device’s energy supply. Min-

imising the frequency and extent of communication is therefore crucial to power

conservation. These problems are outlined in detail in [37–39] and mechanisms for

designing wireless broadcast schedules are presented in [39]. The idea is to inter-

sperse the data itself with index information. The transmission is structured such

that retrieving a given page requires a device to listen to the channel (known as

CHAPTER 2. RELATED WORK 18

“tuning”) for a short length of time. Indices may be complex in structure but all

consist of pointers to either more refined indices or pages. The pointers can be used

to determine the length of time until the indicated information will appear in the

broadcast. Based on these indices the user only needs to tune in for several short

sessions, each time retrieving either an index or the required data. The parameters

of these indices can be adjusted to provide an appropriate balance between user

response time and energy consumption.

2.2 User Behaviour: Caching and Prefetching

Initial studies on optimising the response time of teletext and videotex systems

used the mean response time over all user requests as their performance metric. It

is reasonable to expect that the performance experienced by individual users may

differ from this average. Furthermore the inability to evaluate an individual user’s

response time makes it difficult to assess user-based optimisations. These issues

were addressed for teletext in [40]. The request pattern of an individual user is

formulated as a discrete state Markov chain. Analytic results for the mean response

time of each user under a given broadcast cycle were obtained. These results are

used to evaluate the benefits of prefetching, whereby the teletext terminal, under

no instruction from the user, retrieves certain pages from the broadcast and stores

CHAPTER 2. RELATED WORK 19

them locally. The pages to store are selected based on the belief that they will

be required by the user in the near future. The scheme proposed in [40], called

“linked pages”, assumes that each page carries with it a list of the pages that are

most likely to be requested next. The terminal will fetch and store these pages up

to the limit of its local storage. Clearly this operation must be performed on a

user-by-user basis as the decisions made depend on the particular pages the user

retrieves. The reduction in response time using this scheme is evaluated for various

capacities of local storage and is found to be substantial.

Per-user behaviour has also been considered in the context of “broadcast disks”

[41–45]. The design goal of broadcast disks is similar to that of teletext. A one-

way broadcast channel is used to disseminate a set of pages to a (potentially large)

number of users. The composite access probabilities for each page, over all users,

are known and are used to construct a broadcast cycle emulating a set of disks. The

deviation of per-user request probabilities from the average is investigated and user-

based solutions in the form of prefetching and caching are considered to be the best

tools for reducing individual user response time. In [46] it is reported that cache

maintenance based on techniques like the least-recently-used (LRU) algorithm may

not be attractive as the time penalty for cache misses is not uniform for all pages.

If the broadcast cycle was tuned to a particular user then that user could simply

cache its hottest pages (i.e., those that the user requires most frequently). However

CHAPTER 2. RELATED WORK 20

this is not possible for every user when the user population is large.

Franklin et al. claim that, under certain conditions, the optimal cache replace-

ment strategy is one that replaces the page with the lowest ratio of probability of

access (P) to its frequency of broadcast (X), i.e., the page with the lowest value

of P/X [41]. This strategy is referred to as PIX and, while it performs well,

it is not practical to implement. It depends on keeping cached pages sorted by

P/X value and, furthermore, requires perfect knowledge of request probabilities.

Approximations to PIX are presented that exhibit only a slight degradation in

performance [41]. In these studies, the cost function of a particular schedule is the

expected waiting time for the users. Bar-Noy et al. examine the case where the

cost is a polynomial function of the waiting time [47]; this can be used to model a

page transmission cost that changes over time.

The above page replacement algorithms were initially studied in the context of

clients that perform no prefetching. In this context pages are only inserted into

the cache when they are requested. We have seen that prefetching of pages is

beneficial for teletext users, so it is no surprise that this technique is also applicable

to broadcast disks. In [44] the “value” of a page is defined as the product of

its probability of access (P) and the amount of time until it will next be seen

(T) in the broadcast cycle. The PT algorithm is proposed where the value of

the page being broadcast is compared with the least valuable page residing in the

CHAPTER 2. RELATED WORK 21

cache. If the page being broadcast is more valuable, it will be captured, replacing

the page in the cache. PT is found to provide lower latencies than systems that

populate their cache solely on requests and use an approximation to PIX as a

replacement strategy. Prefetching is therefore considered a valuable addition to

a one-way broadcast delivery system, a conclusion that agrees with those made

in [40].

2.3 The Web

The World Wide Web’s core architecture is client/server in nature, with web

browsers acting as clients that forward requests over an IP-based network to web

servers [48]. As with the information delivery systems we have seen, information is

organised into pages, forming the basic unit of addressability. Web servers face the

scalability problems common to all client/server systems. An elementary queueing

analysis shows that user response time increases dramatically as the request arrival

rate approaches the request processing rate. The finite space allocated to the re-

quest queue can also lead to rejection of incoming requests when the server is very

busy.

There are several solutions to this scalability problem. The most obvious is

to use faster web servers, including the use of multi-processors. This increases

CHAPTER 2. RELATED WORK 22

the request service rate, thereby supporting a higher request arrival rate before

saturation takes place, but processing capacity is still limited by the service rate of

the server. Multiple servers can also improve scalability if they are supported by an

effective load sharing mechanism. Another approach to improving scalability is web

caching, where proxy servers are placed at judicious points in the network and user

requests are directed to these proxies rather than to the web server. The following

discussion will not examine load sharing techniques. Rather it will concentrate on

work done to increase scalability via the use of push and the management of caches.

2.3.1 Push for Web Page Delivery

Most of the schemes that have been proposed to deliver web pages via push have

made use of IP Multicast. The original Internet Protocol was not designed to

deliver packets to more than one recipient [49]. This capability was later added [50,

51]. The functionality, though not necessarily the mechanism, is as follows. Hosts

subscribe to multicast group addresses. IP datagrams destined for such a group

address will then be delivered to the hosts that have subscribed to the group. With

proper group management, multicast groups can be used in similar ways to the

broadcast channels discussed so far.

The implications of using push for web pages are discussed in [7]. The authors

CHAPTER 2. RELATED WORK 23

claim that the lack of acceptance of push delivery for the web is caused by the

conception of the web as a pull-based system and the worry that mechanisms to

implement push entail too much overhead to attain any advantage. The authors

proceed to present an architecture that is conceptually similar to videotex systems

equipped with point-to-point and multicast facilities [7]. Pages are divided into

three categories. Those that are extremely popular are delivered via cyclic multi-

cast push where the pages are continually transmitted to a multicast group address.

Those that are not frequently requested are transmitted using traditional unicast

means. The remaining pages that are “reasonably popular” are delivered via on-

demand multicast. Performance results suggest that multicast can be very effective

in reducing the network resources consumed by a demanding user population as

well as reducing server processing time. Similar conclusions are reached in [8].

In [9], a method that hashes URLs into multicast addresses is proposed, providing

users with a straightforward method of subscribing to the multicast addresses ap-

propriate to the pages that they have requested. Attempts are made to quantify

the minimum number of recipients for which multicast may provide a savings of

resources. Experiments suggest that groups of size greater than 3 may benefit. Lit-

erature argues that if multicast-like schemes are to be effective, the server should

consider the link dependencies among pages [52].

Some of the above schemes require that the available pages be classified accord-

CHAPTER 2. RELATED WORK 24

ing to their popularity. This can be done via user profiles or request rate estimates

or, as in [53], by monitoring the request stream of infrequently requested pages and

promoting a page as its popularity increases. A quantitative analysis of these types

of approaches is given in [54].

Page classification is also key to the design of “Asynchronous Multicast Push” or

AMP [10]. As in [7], data are classified by popularity and delivered by unicast pull,

on-demand multicast, or cyclic multicast. The bandwidth reduction that multicast

can provide is quantified, resulting from eliminating redundant transmissions along

a given network link (“spatial” overlap) and by aggregating requests for the same

page that arrive over a short interval (“temporal” overlap). In [55], Chuang and

Sirbu claim that the ratio of the length of a multicast distribution tree to the

mean length of a unicast routing path is approximately equal to N0.8 where N is

the number of members of the multicast group. This can be used to estimate the

expected degree of spatial overlap. Nonnenmacher and Biersack evaluate AMP’s

potential gain from temporal overlap by constructing a probabilistic model of the

number of requests for a popular page issued per minute throughout the day. For

busy periods the potential gain can be large even if requests are aggregated over a

short period of time. As expected, when the aggregation period is lengthened the

gain increases.

The reliable delivery of pages is critical to the successful use of multicast for

CHAPTER 2. RELATED WORK 25

information dissemination on the Internet. Core IP multicast does not ensure de-

livery of datagrams and many schemes designed for continuous media, such as

RLM [56], only attempt to reduce packet loss. A summary of the difficulties inher-

ent in reliable multicast and indications why traditional reliable unicast approaches

are not appropriate can be found in [57]. For example, straightforward application

of acknowledgements as used in protocols like TCP is not feasible because of the po-

tentially large number of recipients and the resulting feedback implosion problem.

This may be alleviated by relying on a small set of nodes to represent those nodes

that are experiencing packet loss due to congestion [58, 59]. Other approaches to

reducing the amount of acknowledgement information have been proposed. Con-

cast allows aggregation of responses sent towards a common destination [60]. The

continuous-media monitoring scheme implemented in the IVS conferencing sys-

tem [61] uses probabilistic probing to solicit feedback information and to gauge the

size of the multicast group. In [62, 63] Grossglauser attempts to carefully set NACK

timeouts such that, in the face of bounded jitter, the volume of feedback is also

bounded. This idea is taken further in [64] where the nodes cooperate to main-

tain state information and manage error recovery. Birk and Crupnicoff propose a

scheme that uses erasure-correcting codes to facilitate reliable transmission of bulk

data via multicast while avoiding feedback implosion [65].

Once client feedback has been summarised and aggregated a mechanism is

CHAPTER 2. RELATED WORK 26

needed to deliver the missing packets to the appropriate recipients. “Scalable Re-

liable Multicast”, as presented in [57], relies on recipients to transmit packets to

others that have experienced losses. Repair requests are transmitted to the entire

multicast group; any node capable of responding may do so. In order to avoid im-

plosion, requests and responses are randomly delayed. Nodes suppress their request

or response if they see a similar message during the delay.

Cyclic transmission provides its own resilience to packet loss at the expense

of latency—users can simply wait until the corrupt data are once again transmit-

ted. The effectiveness of this approach is analysed in [66] where simulation results

show that for 50 users and a packet loss probability of 0.2, over 95% of the users

can be assured of correctly receiving a page after 8 complete transmissions of the

packets that make up the page. Note that on-demand multicast cannot benefit

from this. Another approach to reliability uses parity packets, allowing complete

reconstruction of a group of packets at a receiver if the fraction of packets received

correctly is greater than or equal to a given value (such as k out of n) [10]. This is

significant because different recipients may lose different packets. As long as each

recipient correctly captures k or more packets, each can reconstruct the page. This

can result in bandwidth savings over retransmitting the entire page if data are lost.

A similar approach using forward error correcting codes is described by Rizzo and

Vicisano [67].

CHAPTER 2. RELATED WORK 27

2.3.2 Web Caching

Web caching has been a very popular technique to reduce response time. Hosts

other than web servers, called proxy caches, maintain copies of popular web pages.

Users then submit their requests to these proxies rather than to the web servers.

Such hosts can collectively serve a larger number of users than could the server

on its own, assuming that the users’ requests are sensibly distributed amongst the

proxies. A tremendous amount of work has been done in this area; what follows is

not an exhaustive survey.

The central issues in cache design are cache placement (where the proxies should

be placed within the network topology), cache population (which pages are placed

in the cache and how they are obtained), page replacement (which pages should

be evicted when more space is required in the cache), and cache consistency (how

pages in the cache are managed when they are updated at their server).

A hierarchical arrangement of caches is generally suggested. This allows mul-

tiple users at one location to share the use of a cache, nearby locations to share a

higher-level cache, and so on. Gwertzman et al. suggest that web servers be mod-

ified to monitor the popularity and access history of their documents [3]. When

a document’s popularity increases beyond a certain threshold, a copy of it is sent

to a cache (caches are populated individually). The cache is chosen based on the

CHAPTER 2. RELATED WORK 28

document request history with the goal of minimising the bandwidth spent serving

requests for the page in question. Geographical proximity is used as a predictor

of network proximity. These ideas are further explored in a quantitative manner

in [68]. Hierarchical caching is also advocated in [8]. No guidelines are provided for

automated cache placement, however; institution- and ISP-centric hierarchies are

suggested. Furthermore it is recommended that these hierarchies be no more than

three levels deep [8, 69].

It is generally believed that caches should contain popular pages. A straightfor-

ward approach to cache population is to simply place pages in the cache as they are

requested and, as cache space is finite, remove pages whose request frequencies are

low. This is the Least Frequently Used, or LFU, algorithm. Alternatively, when

the cache becomes full, we can remove pages that have not been requested for a

long time. This is the Least Recently Used, or LRU, algorithm. A cache is more

effective, however, if it can be “pre-loaded” with pages in anticipation of users’

requests. It is crucial to accurately predict the pages that will be required. Cohen

et al. propose a solution to this problem that makes use of scheduled broadcasts

from the server to the proxy caches [70].

An important observation about web traffic is that page requests from a fixed

population (such as the users of a single cache) follow a “Zipf-like” distribution [71].

Zipf’s law suggests that the number of requests for the ith most popular page

CHAPTER 2. RELATED WORK 29

is proportional to 1/i, meaning that the probability that a given request is for

page i is G/i, where G is a normalisation constant [72]. Almeida et al. indicate

that page selection probabilities follow this distribution precisely [73]. However,

they also found that synthetic workloads generated according to a Zipf distribution

yield higher cache hit ratios than those observed in reality. They conclude that

this is caused by the Zipf distribution’s failure to capture temporal and spatial

locality of reference and proceed to construct a model capable of capturing these

characteristics.

Breslau et al. found that the frequency of requests for the ith most popular web

page is proportional to 1/iα, where α is a constant that varies from observation

to observation [71]. Specifically, they found α values ranging from 0.64 to 0.83,

representing a nontrivial deviation from the Zipf distribution (indeed Marshall and

Roadknight show that α varies considerably from one user to another [74]). A re-

lated observation is that less than a quarter of web documents are accessed multiple

times but that requests for such documents can make up half of the requests [75].

Breslau et al. also conclude that there is little correlation between a document’s

popularity and its size and that there is a small but noticeable correlation between

a document’s popularity and the frequency of updates to that document; Douglis et

al. suggest that these correlations depend on the type of pages being observed [75].

Cho and Garcia-Molina agree with this observation [76].

CHAPTER 2. RELATED WORK 30

In addition to the page request probability, the temporal pattern of page re-

quests has also been investigated. The request stream produced by a single user

can be modelled as a two state process [77]. While in the “on” state the user

requests pages with an inter-arrival time that follows a Weibull distribution; no

requests are made while in the “off” state that represents the user think time. The

times spent in these two states are described by heavy-tailed Weibull and Pareto

distributions, respectively. These distributions are explained by the fact that many

page requests are not initiated by the user. In-line images and other embedded ob-

jects are fetched by the web browser with no human intervention, resulting in bursts

of requests following a user’s selection of a page. The superposition of many such

“on”/“off” processes with heavy-tailed periods results in self-similar traffic [78, 79].

The implication of this self-similarity is that burstiness is observed in the traffic

at many different time scales—no smoothing is observed by averaging over a suffi-

ciently long period. Self-similar traffic is also long-range dependent, meaning that

observed behaviour at any time instant is typically correlated with all future be-

haviour. The degree of self-similarity of a series of observations may be captured

by the Hurst parameter, H, 1/2 < H < 1 (the degree increases as H approaches

1). Estimates of H for various web traces were found to be significantly different

from 1/2, suggesting self-similar behaviour [77].

Marshall and Roadknight plotted histograms of users’ request rates observed at

CHAPTER 2. RELATED WORK 31

a popular web cache and determined that there were few cache users who rarely

made requests, suggesting that cache analysis can concentrate on those users who

produce higher request arrival rates [74]. Barford et al. examined web traces from

1998 and 1995 and found that the effectiveness of caching had dropped over time

and that size-based cache replacement policies were becoming less effective [80].

It is also important to note that packets making up the request stream from

a given user are not independent; their inter-arrival time depends on the perfor-

mance of the server [81]. Khaunte and Limb analyse the packet output of individual

web users with the goal of modelling the utilisation of the upstream channel from

a user. Results include characterisation of connection setup time, HTTP request

packet size, parsing time, upstream IP packet size, and user think time. These re-

sults were then used to construct a simple finite state machine capable of simulating

a web browsing session. The knowledge gained from user behaviour characterisa-

tion has been used to construct synthetic workloads for the evaluation of caching

proxies, including Surge [82], the Wisconsin Proxy Benchmark [83], the SPE ar-

chitecture [84], and TPC-W [85].

CHAPTER 2. RELATED WORK 32

2.3.3 Page Timeliness

The timeliness of cached pages is also of concern to cache users. Wessels recom-

mended server-initiated call-back invalidations as a solution [2]; a survey of other

early approaches can be found in [5]. Three common mechanisms used to ensure

cache consistency are Time-to-Live (TTL) fields, client polling (or “proxy polling”),

and invalidation protocols. TTL fields are used by web servers to instruct a proxy

to dispose of pages after a pre-set timer has expired. When this happens, the next

request for that page that arrives at the proxy will result in a query to the web

server and thus the retrieval of the most recent version of the page. This technique

is most suitable for pages that change on a regular basis and where the periods

of the changes are known a priori. The performance of TTL has been studied in

detail by Jung et al. [86].

With proxy polling a caching proxy periodically consults the web server to

determine whether the cached content is up-to-date. Stale cache entries are re-

moved. If polling is done when a page is requested, the user will have to wait

for the proxy cache to hear from the server before the request can be processed.

Cohen and Kaplan explore methods whereby the cache can perform such polling

pro-actively [87, 88]. Gwertzman and Selezer recommend a version of client polling

where the frequency of polls is determined by a threshold parameter and the length

CHAPTER 2. RELATED WORK 33

of time the page has been in the cache [5]. Invalidation protocols, such as the Web

Content Distribution Protocol [6], require servers to keep track of cache contents,

i.e., which caches hold copies of their pages, and transmit updates to these caches

when required. Hybrid systems are also possible; Fei suggests that the server should

select between invalidation and update-propagation for each document [89]. HTTP

supports a complex caching architecture that makes use of many of the ideas that

we have discussed so far [1].

Reddy and Pletcher argue that caching schemes should attempt to predict the

future value of stored pages [90], such as by estimating the time until the next re-

quest for each page. Krishnamurthy and Wills attempt to provide cache coherency

using “piggyback validation” [91]. Each time a cache needs to communicate with a

server, it includes a list of pages that it thinks may be stale. The server, in conjunc-

tion with satisfying the request, indicates to the proxy which pages on the list have

actually been changed. Krishnamurthy and Wills subsequently find that, for large

caches, the cache coherency scheme has a strong influence on resource use (defined

as a function of the number of requests that reach the server, network bandwidth,

and latency) while the cache replacement policy has a larger effect for caches that

are small [92]. Yu and Breslau provide a good overview of three basic consistency

methods (TTL fields, invalidation messages, and leases) and then present a rather

complex consistency scheme based on multicast invalidation messages and hierarchi-

CHAPTER 2. RELATED WORK 34

cal caches [4]. Yin et al. explore the use of invalidation messages when a significant

fraction of the web pages delivered by the server are generated dynamically [93],

while Li and Cheriton construct a system using invalidation messages delivered via

multicast [94]. Deolasee et al. have designed protocols that attempt to satisfy user

timeliness requirements [95]. Some of these techniques are evaluated by Mikhailov

and Wills [96].

Very few of the above techniques purport to offer strong consistency—indeed

providing this is difficult without the use of a locking mechanism [4] or leases [97, 98].

It may also be impossible to ensure that cached pages are completely up-to-date

even when the server transmits updates of cached pages to the proxies immediately

after the updates are made. To see why this is so, consider the situation shown

in Figure 2.1. Here a page, say page i, is updated at time t0. At this time the

server begins the process of sending the update to the proxies. At time t2 the

proxies receive the updated page and make it available to their users. Queueing

and processing at the server, transmission time in the network, and processing at

the proxies may all contribute to the delay between t0 and t2. If page i is updated

between t0 and t2, such as at t1, then the proxies will hold a version of the page

that is not up-to-date, even though the server has transmitted the update at t0

promptly.

Measures in connection with the degree of consistency that a system can provide

CHAPTER 2. RELATED WORK 35

Update

Update

Server

Proxies

t0 t1 t2

Figure 2.1: Why timeliness may be unobtainable

have been investigated. Our early research, described in [99], advocates measuring

the length of time that a cached copy of a page differs from the copy stored at

the server. Cho and Garcia-Molina have undertaken a study of web crawlers. Like

caching proxies, crawlers store copies of pages at a location other than the server

at which the pages are maintained [16, 17]. These copies are typically indexed,

allowing users to perform searches over the pages that have been collected. It is

important to ensure that searches return results that are currently valid. Cho and

Garcia-Molina define two metrics, “freshness” and “age.” A copy of a page is said

to be “fresh” (and its freshness is equal to 1) if it holds the same content as the

corresponding page stored at the server. Otherwise the page’s freshness equals 0.

CHAPTER 2. RELATED WORK 36

“Age” represents the time since the page was last fresh, or 0 if the page is currently

fresh—this is essentially the same as the measure defined in [99]. Averages of these

quantities over a set of stored pages can determine the aggregate freshness or age

of the set.

In [16], update schedules suitable for minimising age or maximising expected

freshness are presented. A similar staleness metric is suggested by Wolf et al.

and is used as the basis for an optimisation problem to determine when pages

should be crawled [19]. Coffman et al. consider a measure similar to Cho and

Garcia-Molina’s average freshness. They conclude that if page inter-update times

are exponentially distributed then the times between successive crawler visits to

a given page should be as equal as possible [20]. Edwards et al. construct a web

crawler by formulating the minimisation of the number of “obsolete” pages as a

nonlinear minimisation problem [21]. Yu and Vahdat have defined a metric similar

to “age” but in the context of generic replicated systems [100]. Labrinidis and

Roussopoulos similarly define staleness in the context of rendering web pages from

content stored in a database, but they include the processing time at the server in

the staleness computation [101, 102]. Dingle and Partl also use a similar definition

of staleness, measuring it as the time elapsed since the “last-good time”, or the

last time that the page’s content was identical at the server and at the cache in

question [18]. Brewington and Cybenko argue for page inter-update times being

CHAPTER 2. RELATED WORK 37

exponentially distributed and devise a metric they call “(α, β)-currency” that may

be used to guide web crawler sampling processes [103].

Some other results concerning caching are worth mentioning. Liu et al. have

found that at least 25% of the response time for retrieving a web page is com-

prised of connection setup and, furthermore, poor proxy cache design can increase

the response time experienced by users [104]. An early study performed in 1995

used client instrumentation and found that 52% of all document requests were re-

trieved via hyperlinks (presumably including those embedded in a page and fetched

automatically by the browser), 41% via the browser’s “back” command, and the

remaining small number by direct keyboard entry of URLs [105]. This suggests that

users rarely know of the location of a document beforehand. Furthermore, only 2%

of the documents requested were saved or printed. In [106] several web traces are

used to evaluate cache performance with the conclusions that caches with sizes of

2 GB to 10 GB can yield hit ratios of between 24% and 45% with 85% of these

hits being due to sharing amongst different users. We have not emphasised cache

replacement algorithms, such as those described in [107–109]. While the necessarily

finite size of caches makes this an important research area, it is beyond the scope

of this thesis.

CHAPTER 2. RELATED WORK 38

2.4 Conclusions

From our investigation we conclude that little attention has been paid to the de-

livery of popular pages that change frequently. The high request rates for such

pages make caching attractive while their volatility compels the design of a robust

staleness management architecture. Such an architecture is required because server

and network resources must be expended to update pages stored by proxy caches.

While staleness has been defined in several contexts, little attention has been paid

to its impact on the quality of proxy responses. It is therefore appropriate to define

the cost associated with staleness and use this definition to investigate the tradeoff

between staleness-related cost and resource consumption.

Chapter 3

System Model

In this chapter we present in detail the architecture of the information delivery

system under study. Sections 3.1 and 3.2 explain how the system operates, in-

cluding the algorithms used by the system’s components as well as the messages

the components use to exchange control information and page data. This will be

followed in Section 3.3 by a description of our performance model. We also include

in Section 3.4 our definition of staleness.

3.1 System Architecture

The logical architecture of our system for the case of a single web server is shown

39

CHAPTER 3. SYSTEM MODEL 40

Server

Proxy

User User

Proxy

Figure 3.1: The system’s logical architecture

in Figure 3.1. (Our architecture can easily be extended to systems with multiple

servers.) The server provides content and is where pages are updated. A proxy

can be viewed as a site-wide cache for a community of users. Each proxy caches a

subset of the pages. Requests for cached pages are served from the copies at the

proxy’s cache. Pages that are not cached must be retrieved from the server.

For cached pages, updates made at the server are “pushed” to the proxies.

Each proxy captures the updates that are transmitted to it, using them to refresh

the copies of pages residing in its cache. We consider applications where a proxy

CHAPTER 3. SYSTEM MODEL 41

requires only the most recent update to a page in order for its copy of that page to

be up-to-date. In other words, if a page is updated twice before the server has a

chance to transmit the update, only the second update needs to be sent. Examples

of applications where this approach can be used include delivery of current weather

conditions and traffic information. Decisions on which pages are to be cached at a

given proxy are made by the server. Specifically, the server may instruct the proxy

to start caching a page that is not currently cached. Once the proxy has cached

this page, the page will remain unchanged in the cache until the reception of the

next update or until the server instructs the proxy to cease caching the page. We

assume that proxies have enough space to cache all pages that may be required.

We do not consider page replacement strategies in our study.

Each proxy keeps track of the rate of requests it receives for each page and pe-

riodically notifies the server of these request rates. The server monitors the update

rate for each page. These update rates along with the request rate information re-

ceived from the proxies will be used to determine which pages should be cached at

which proxies and how the available resources should be used to transmit updates

to the cached pages.

CHAPTER 3. SYSTEM MODEL 42

3.2 Server/Proxy Interaction

We now describe the interaction between the proxies and the server. We assume

that each proxy has a proxy ID, allowing that proxy to be addressed individually.

Each user is likewise assumed to have a unique identifier, called a user ID . Fur-

thermore, each page is assumed to be assigned a unique and permanent page ID .

This allows users, proxies, and the server to unambiguously and consistently refer

to a particular page. Finally, we assume that the server, the proxies, and the users

have a reliable means of communication.

A summary of the messages used by the proxies and the server is presented in

Figure 3.2. REQ RATES messages are sent by proxies to the server at regular

intervals. Each such message contains a proxy’s estimate of page request rates

for a set of pages. A proxy will send a PAGE REQ message when it needs to

retrieve from the server a page that is not cached. The server will respond to such a

request with a PAGE REPLY message. The server transmits a PAGE UPDATE

message to a proxy in order to update the copy of a page that is in the proxy’s

cache. Each such message contains a page ID and updated content for the page.

A PAGE ADD or PAGE REMOVE message is sent by the server to a proxy to

instruct it to start or cease caching the specified page, respectively.

CHAPTER 3. SYSTEM MODEL 43

REQ RATES

Number of records in this message
Page ID

Page request rate
Page ID

Page request rate
· · ·

PAGE REQ

Page ID

PAGE REPLY

Page ID
Page content

PAGE UPDATE

Page ID
New content

PAGE ADD

Number of records in this message
Page ID
Page ID
· · ·

PAGE REMOVE

Number of records in this message
Page ID
Page ID
· · ·

Figure 3.2: Messages used in the server–proxy protocol

3.2.1 Proxy Operation

At initialisation, a proxy creates and initialises the following data structures:

• The page cache, which is an array that maps page IDs to the contents of the

cached pages;

• an array of counters, indexed by page ID, used to count page requests; and

• an array l of lists of user IDs, indexed by page ID, used to store the intended

recipients of non-cached pages while waiting for them to be retrieved from

CHAPTER 3. SYSTEM MODEL 44

the server.

The proxy also starts a timer, referred to as the request timer, by setting its value

to req timer interval. This timer is used to collect page request counts.

The proxy’s actions upon receiving a page request are as follows. Suppose this

request is for page i and is from user j. The proxy first increments the counter

associated with page i. If this page is cached, the cached copy is transmitted to

user j. Otherwise, the proxy checks the list of users contained in l[i]. If this list is

empty, it means that the proxy is not currently waiting for the server to respond to

a previous request for page i. In this case, a PAGE REQ message is constructed

and sent to the server and the user ID j is appended to l[i]. If, on the other hand,

the proxy finds l[i] to be non-empty, then the proxy is already waiting for page i

to be transmitted by the server. In this case, user ID j is simply appended to l[i].

When a PAGE REPLY message for page i is received from the server, the

proxy will send the retrieved page to each user in l[i]. Following this, l[i] will be

set to empty.

From time to time, the proxy receives PAGE UPDATE messages from the

server. When such a message is received, the proxy uses the supplied page ID and

new content to update the cached copy of that page.

CHAPTER 3. SYSTEM MODEL 45

Also from time to time, the proxy receives PAGE ADD or PAGE REMOVE

messages from the server. When such a message is received, the pages listed in the

message are added to or removed from the cache as appropriate.

The proxy is responsible for the collection and reporting of page request rates.

This is done whenever the request timer expires, which triggers the following op-

erations. The proxy sends a REQ RATES message to the server; this message

reports the request rates for all pages that have been requested since the last report.

The request rate for a given page, say page i, is given by the request counter value

for the page divided by the value of req timer interval. The request counters

are reset to zero and the request timer is restarted.

request timer interval is a tunable parameter. It should be large enough

to accumulate a sufficient number of requests for the page request rates to be

estimated with accuracy. However, if the timer interval is too large, the proxy may

report the rates to the server too infrequently to reflect changing user behaviour.

3.2.2 Server Operation

At initialisation, the server creates and initialises the following data structures:

• An array of counters, indexed by page ID, to count page updates;

CHAPTER 3. SYSTEM MODEL 46

• an array u, indexed by page ID, to store the computed page update rates;

• an array to store, for each page, the proxies that cache the page;

• an array a, indexed by page ID and proxy ID, to store the page request rates

received from the proxies.

The server also starts a timer, referred to as the update timer, and sets its value to

update timer interval.

Recall that when a proxy receives a request for a page that is not cached, it will

send a PAGE REQ message to the server to retrieve that page. Upon receiving

such a message, the server transmits the required page to the requesting proxy in

the form of a PAGE REPLY message.

When the server receives page request rates from a proxy in the form of a

PAGE UPDATE message, it updates the array a using the page IDs and page

request rates contained in the message. More specifically, suppose the message is

from proxy j. For each page ID i contained in the message, the content of a[i, j]

is updated using the page request rate for page i. For those pages that are cached

at proxy j but not mentioned in the message, the corresponding a[i, j]s are set to

zero.

Each time a page is updated, the update counter associated with that page is

incremented by one. When the update timer expires, the server examines each page

CHAPTER 3. SYSTEM MODEL 47

i in turn. If the reported count for page i is greater than zero, the update rate of

this page is computed by dividing the counter value by update timer interval;

otherwise, the update rate is zero. The update rate is stored in u[i] and the counter

for page i is reset to zero. Once the page update rate of every page has been

computed, the update timer is restarted.

The server uses the data in the arrays a and u to determine (i) the set of

pages that should be cached at each proxy and (ii) the strategy for transmitting

updates to these pages. How to do this will be explained in Chapters 4 and 5.

For a given proxy, the server compares the set of pages that should be cached

with the set of pages that are currently cached. This yields the pages that should

be added to or removed from the cache and the corresponding PAGE ADD and

PAGE REMOVE messages are sent to the proxy. When a page update is to

be transmitted the server sends a PAGE UPDATE message with the new page

content to all proxies at which the page is cached.

It is worth noting that in this section we have described a simple method for

computing the page request rates and page update rates. Specifically, each of these

rates is computed using observations made during the last measurement interval.

The system architecture is flexible and other approaches are possible. For exam-

ple, the server could maintain a moving average for each request and update rate,

thereby applying smoothing to the measured values. The proxies and the server

CHAPTER 3. SYSTEM MODEL 48

may also perform pre-processing of the raw measurement data. Exploration of the

these approaches is beyond the scope of our study.

3.3 Performance Model

In this section, we describe the performance model used in our investigation. The

features of the model are as follows:

System size We consider a system with one server providing N pages that are

frequently updated. There are M proxies, each supporting its own community

of users. The pages are assigned IDs 1, 2, . . . , N while the proxies have IDs

1, 2, . . . ,M .

Page updates We assume that the time between updates to page i follows an

exponential distribution with mean 1/ui. This is consistent with previous

measurements [16]. It follows that the update rate for page i is ui.

Page requests We use aij to denote the rate at which requests for page i arrive

at proxy j. This represents the combined rate of requests for page i from all

users served by proxy j.

Processing of requests for non-cached pages In this investigation, we focus

on resource requirements at the server; resource consumption within the net-

CHAPTER 3. SYSTEM MODEL 49

work and at the proxies is not taken into consideration. We assume that at

the server, the processing of each request for a non-cached page requires one

unit of resources.

Transmission of Updates The processing required to transmit an update to a

cached page is assumed to consume P resource units.

Resource availability We assume that the server resources available to deliver

frequently-updated pages amount to R resource units per second. These

resources will be used to process requests for non-cached pages and to transmit

updates to cached pages.

Note that we do not model the server’s processing of the server-proxy messages

described in Section 3.2. Instead, we assume that the capacity required for such

processing has been deducted from the total system capacity when R is defined.

Furthermore, we do not consider the resources required for proxies to process user

requests. This is because more proxies can be added if the user request load becomes

too high.

System performance will be evaluated based on the following metrics:

Cost of page delivery We assume that users would like to receive data that are

current but that they may tolerate pages being somewhat out-of-date. We

CHAPTER 3. SYSTEM MODEL 50

provide a definition of page staleness in Section 3.4. Our focus, however, is

on the cost resulting from the delivery of pages that are out of date. This

cost will be defined in Section 4.3.

Resource usage In developing strategies for selecting pages to cache and for

transmitting page updates, R resource units per second are available.

3.4 A Definition of Staleness

We now present our definition of staleness. Consider the example shown in Fig-

ure 3.3. At time t0 an update to a page, say page i, is transmitted to the proxies.

This page is not stale at time t0 because the update has just been transmitted by

the server. Suppose page i is updated at times t1 and t2, but an update is not

transmitted until t3. Page i is considered to be stale from t1 to t3. The staleness of

page i, denoted by Si, is defined to be the fraction of time that page i is stale [110].

Our definition is different from others [16, 18–21, 99] in the sense that the server

is viewed as being responsible for keeping the pages up to date. Any staleness is

caused by the server not being able to transmit updates promptly.

If a page is not cached, it is retrieved from the server on-demand; as a result,

the page transmitted by the server is always up-to-date. In this case, we say the

staleness of the page is zero.

CHAPTER 3. SYSTEM MODEL 51

Transmit Transmit

Update Update

Page i is stale

Server

t0 t1 t2 t3

Figure 3.3: Definition of staleness

3.5 Concluding Remarks

In this chapter we have described the architecture of the system under study and

discussed how such a system might operate. We have also presented the perfor-

mance model that will guide our subsequent explorations. From this point onwards

we will concentrate on answering the questions of which pages should be cached at

which proxies and how the available resources should be used to transmit updates

to cached pages.

Chapter 4

Optimal Page Delivery: Single

Page Case

In this chapter we consider the delivery of a single page. This consists of determining

when the server should transmit page updates and deciding which proxies should

cache the page. The results presented in this chapter will be used in Chapter 5 to

show how the server should manage multiple pages. In the discussion that follows,

we will refer to a page that is not cached as a page delivered via “pull” because

such a page is retrieved from the server when required.

The chapter is organised as follows. Section 4.1 introduces the conditions under

which page staleness will be incurred, while Section 4.2 introduces the notion of

transmission attempts and defines a staleness-related cost. Section 4.3 shows that

52

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 53

cost is minimised if the transmission attempts for a cached page are equally spaced.

This is followed in Section 4.4 by an illustration of the cost/resource consumption

tradeoff. Finally, in Section 4.5, we show that the page should be cached at either

all of the proxies or at none of the proxies.

4.1 Preliminary Observations

Consider the delivery of a single page, say page i. Let Ri be the number of resource

units per second devoted to page i. Also let bi =
∑M

j=1 aij be the total arrival rate

of requests for page i among all the proxies. It is obvious that if bi ≤ Ri, then page

i should be delivered via pull for all proxies because there is sufficient capacity to

handle the requests. The resulting staleness will be zero. On the other hand, if

bi > Ri, some proxies must cache page i. Let Gi be the set of these proxies. It

follows that the rate of requests for page i that are served via pull is

yi = bi −
∑
j∈Gi

aij (4.1)

If Ri − yi ≥ Pui there are sufficient resources to transmit all updates to page i

immediately and the resulting staleness is also zero. Otherwise, immediate trans-

mission of all page updates is not possible and the cached copies of the page may

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 54

become stale.

4.2 Staleness-Related Cost

In this section, we focus on how updates should be transmitted when it is not

possible to transmit them immediately. A staleness-related cost is also defined.

We consider an approach where the status of page i is checked at selected time

instants. If this page has been updated since it was last checked, then the update

is transmitted to the proxies in Gi; otherwise, no transmission is made. We refer

to such an action as a transmission attempt. Note that the rate of transmission

attempts is an upper bound on the rate at which updates are transmitted. The

resources required to transmit updates can therefore be lowered by reducing the

rate at which transmission attempts are made.

Consider a time interval of length T during which L transmission attempts for

page i are made. Without loss of generality we assume that at the beginning of

this interval, or at time 0, page i is not stale. Let x1 be the time until the first

transmission attempt and xk be the time between the (k−1)th and kth transmission

attempts, k = 2, 3, . . . , L (see Figure 4.1). We refer to the time between the (k−1)th

and kth transmission attempts as “interval k.” Within interval k, let wk be the

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 55

amount of time that page i is stale. The staleness of page i is then given by

Si =
1

T

L∑
k=1

wk

k − 11 k L

x1 xk

0

T

Transmission attempts

Figure 4.1: L transmission attempts in time T

In our study, the cost of page i being stale (denoted by qi) is defined to be

qi = (bi − yi)Si

(
T

L

)
(4.2)

qi can be interpreted as follows. bi − yi is the total arrival rate of requests for page

i at those proxies where page i is cached (see Equation (4.1)) and Si is an estimate

of the probability that such requests will find that page i is stale. (bi − yi)Si is

therefore an estimate of the rate at which requests for page i are served with stale

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 56

copies of the page. T/L is the mean time between transmission attempts for page

i, and a larger mean implies that page i could be stale for a longer period of time.

Our cost function qi captures the combined effect of these two factors.

To compute qi, we first rewrite Equation 4.2 as follows.

qi =
bi − yi

L

L∑
k=1

wk

To obtain wk, we condition on t, the time after the (k− 1)th transmission attempt

at which the first update to page i occurs. We thus have

wk | t =

0 if t > xk

xk − t if 0 ≤ t ≤ xk

Recall that the time between updates is exponentially distributed. We remove the

condition on t to yield

wk =

∫ xk

0

(xk − t)uie
−uitdt

=
e−uixk + uixk − 1

ui

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 57

The cost qi is therefore given by

qi =
bi − yi

L

L∑
k=1

e−uixk + uixk − 1

ui

4.3 Minimisation of Cost

Suppose that the server performs, on average, ni transmission attempts per second

for page i. ni is given by L/T . We thus minimise

qi =
bi − yi

niT

niT∑
k=1

e−uixk + uixk − 1

ui

(4.3)

subject to
niT∑
k=1

xk = T

This problem can be solved by using the technique of Lagrangian multipliers as

illustrated in Appendix A. The solution is

xk =
1

ni

(4.4)

for all k. This result implies that, over the long term, transmission attempts for

a given page should be equally spaced in order to minimise cost. This property is

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 58

not affected by the rate at which the page is updated. (Coffman et al. have arrived

at a similar conclusion in the context of web crawler design [20].) Substituting

Equation (4.4) into Equation (4.3), the optimal cost for page i (denoted by Ci) is

given by:

Ci =
bi − yi

ui

(
e
−ui

ni +
ui

ni

− 1

)
(4.5)

We next determine the relationship between ni and Ri, the resources available

to deliver page i. Based on our solution in Equation (4.4), a transmission attempt

for page i will be made every 1/ni seconds. Each such attempt will result in the

transmission of an update with probability 1 − e
−ui

ni . This is because the time

between updates to page i is exponentially distributed. We thus have:

Ri = yi + Pni

(
1− e

−ui
ni

)

This equation allows us to determine ni such that the available server capacity will

be fully used to transmit updates.

4.4 Cost/Resource Consumption Tradeoff

We now present a numerical example that illustrates the tradeoff between resource

consumption and cost for the single page (page i). The parameters used in this

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 59

M Number of proxies 1
bi Rate of requests for page i 1 request per second
P Cost to transmit one page update to the proxy 1 resource unit

Table 4.1: Parameter values used to illustrate the cost/resource consumption trade-
off

example are shown in Table 4.1. Note that because the page is cached at the proxy,

yi = 0.

In Figure 4.2, Ci is plotted against ni for ui = 1, 2, 5, 10, and 100. We observe

that cost is a decreasing function of ni. This is as expected—more transmission

attempts per second should lead to lower cost. The rate of decrease, however, is a

decreasing function of ni. There is therefore a diminishing rate of return if we try

to further reduce cost. For a given value of ni, higher values of ui result in higher

cost. More frequent updates means there is a greater chance that the cached page

has become stale since the last transmission attempt.

In Figure 4.3 ni is plotted against Ri, the available resources for the delivery of

page i. As expected, more frequent transmission attempts require higher resource

expenditure. The additional resources required is more dramatic at ui = 5 or

ui = 10 when compared to ui = 1 or ui = 2. This is due to the fact that at high

update rates an update transmission is more likely at each transmission attempt.

When ui = 100, the update rate is so high that every transmission attempt results

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Ci

ni

ui = 1

4

4
4 4 4 4 4 4 4 4

4
ui = 2

+

+

+
+ + + + + + +

+
ui = 5

2

2

2
2

2 2 2 2 2 2

2
ui = 10

×

×

×
×

× × × × × ×

×
ui = 100

4

4

4
4

4 4 4 4 4 4

4

Figure 4.2: Optimal cost

in a transmission. This results in a plot of ni vs. Ri that is essentially linear.

Figure 4.4 shows a plot of Ci vs. Ri using the results from Figures 4.2 and 4.3.

It provides valuable insight into the tradeoff between resource consumption and

cost. Once again, we observe that there is a diminishing rate of return in terms of

decreased cost as more resources are made available to transmitting page updates.

Also, with a higher update rate, more resources are required if we want to maintain

the same cost.

It is worth noting that there is a simple relationship between cost and bi, the

arrival rate of requests for page i. From Equation (4.5) we can see that Ci is a linear

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 61

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

ni

Ri

ui = 1

4

4

4

4

4

4

4

4

4

4

4
ui = 2

+

+

+

+

+

+

+

+

+

+

+
ui = 5

2

2

2

2

2

2

2

2

2

2

2
ui = 10

×

×

×

×

×

×

×

×

×

×

×
ui = 100

4

4

4

4

4

4

4

4

4

4

4

Figure 4.3: Resource consumption

function of bi. An increase in bi leads to a corresponding increase in cost for the

same resource availability. Compared to Figure 4.4, the results in Figure 4.5 show

a five-fold increase in cost when bi is set to 5 while keeping the other parameters

unchanged.

4.5 Where to Cache the Page

In this section, we investigate the problem of determining Gi (the set of proxies

where page i is cached) such that the cost is minimised. As discussed previously,

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 62

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

Ci

Ri

ui = 1

4

4
44444444

4
ui = 2

+

+

+
+++++++

+
ui = 5

2

2

2
2
222222

2
ui = 10

×

×

×
×
××××××

×
ui = 100

4

4

4
4
4 4 4 4 4 4

4

Figure 4.4: The tradeoff between resource consumption and cost

if bi ≤ Ri then setting Gi = ∅ will yield zero staleness and therefore zero cost. We

also noted that if Ri−yi ≥ Pui, there is sufficient resources to transmit all updates

immediately. We can therefore attain zero cost by setting Gi = {1, 2, . . . ,M}. In

what follows, we consider the case where bi > Ri and

Ri − yi < Pui (4.6)

We also require Ri > yi; otherwise, the server does not have sufficient capacity for

the pulled pages.

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 63

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8 9 10

Ci

Ri

ui = 1

4

4
44444444

4
ui = 2

+

+

+
+++++++

+
ui = 5

2

2

2
2
222222

2
ui = 10

×

×

×
×
××××××

×
ui = 100

4

4

4
4
4 4 4 4 4 4

4

Figure 4.5: The tradeoff between resource consumption and cost, bi = 5

We now show that the cost is minimised when page i is cached at all proxies.

This is substantiated by the following theorem which implies that Ci is minimised

when yi = 0, i.e., if we select Gi = {1, 2, . . . ,M}:

Theorem For P constant, we have dCi

dyi
> 0 for all yi ∈ [0, Ri).

To prove this theorem, we first prove the following lemma.

Lemma Let f(x) = x + 1− ex. If x > 0 then f(x) < 0.

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 64

Proof: Using the Taylor expansion of ex, f(x) can be rewritten as

f(x) = x + 1−

(
1 + x +

∞∑
i=2

xi

i!

)

= −
∞∑
i=2

xi

i!

From this we can clearly see that f(x) < 0 if x > 0. �

Proof of theorem: For ease of exposition, we drop the index i in our proof. Rewriting

Equation (4.5) with the index i removed, we have

C =
b− y

u

(
e−

u
n +

u

n
− 1
)

(4.7)

Since the time between updates to the page is exponentially distributed, the rate

at which updates are transmitted is n
(
1− e−

u
n

)
. We select n such that all of the

available capacity for the page is used, and thus have

Pn
(
1− e−

u
n

)
= R− y (4.8)

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 65

From Equation (4.7) and Equation (4.8) we get

C =
b− y

n

(
y −R

Pu
+ 1

)
(4.9)

Differentiating both sides of Equation (4.9) with respect to y yields

dC

dy
=

(
− 1

n
− b− y

n2

dn

dy

)(
y −R

Pu
+ 1

)
+

b− y

n

(
1

Pu
− y −R

P 2u

dP

dy

)
(4.10)

Since P is constant, dP
dy

= 0 and Equation (4.10) is reduced to

dC

dy
=

(
− 1

n
− b− y

n2

dn

dy

)(
y −R

Pu
+ 1

)
+

b− y

Pun
(4.11)

After some algebra, Equation (4.11) can be rewritten as

dC

dy
=

1

n

[
b− y

Pu
+

R− y

Pu
− b− y

n

dn

dy

(
1− R− y

Pu

)
− 1

]
=

1

n

[(
R− y

Pu
− 1

)(
1 +

b− y

n

dn

dy

)
+

b− y

Pu

]

or

dC

dy
=

1

n

[(
R− y

Pu
− 1

)
g +

b− y

Pu

]
(4.12)

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 66

where

g = 1 +
b− y

n

dn

dy
(4.13)

Note that b−y
Pu

> 0 because b > R > y. Also, from Equation (4.6), we have R−y
Pu
≤ 1.

We therefore conclude that dC
dy

> 0 if g < 0.

We next show that g < 0. Differentiating both sides of Equation (4.8) with

respect to y, and recognising that dP
dy

= 0, we get

P
dn

dy

(
1− e−

u
n − u

n
e−

u
n

)
= −1

Solving for dn
dy

and substituting the result into Equation (4.13) we have

g = 1 +
b− y

Pn
(
e−

u
n

(
1 + u

n

)
− 1
)

= 1 +
b− Y

Pue−
u
n − Pn

(
1− e−

u
n

) (4.14)

Substituting Equation (4.8) into Equation (4.14), we get

g = 1 +
b− y

Pue−
u
n − (R− y)

=
Pue−

u
n + b−R

Pue−
u
n + y −R

(4.15)

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 67

The numerator is positive because b > R. We can therefore conclude that g is

negative if the denominator of Equation (4.15) is negative. Let

h = Pue−
u
n + y −R

Using Equation (4.8), h can be written as

h = Pu
[
e−

u
n +

n

u

(
e−

u
n − 1

)]

Let x = u
n
. We have,

h = Pu

[
e−x +

1

x

(
e−x − 1

)]
= Pu

[
e−x

x
(x + 1− ex)

]
.

Applying our lemma we can see that h < 0 since x > 0. By Equation (4.15) this

means that g < 0 and our theorem holds. �

Consider page i again. Our theorem tells us that when bi > Ri, Ci is an

increasing function of yi for yi in the interval [0, Ri). This means that the cost of

page i is minimised if yi = 0, i.e., Gi = {1, 2, . . . ,M}. In other words, the lowest

cost is achieved if page i is cached at every proxy. On the other hand, if bi ≤ Ri then

CHAPTER 4. OPTIMAL PAGE DELIVERY: SINGLE PAGE CASE 68

all requests for page i can be serviced directly by the server using pull, resulting in

zero cost. We conclude that any page should either be cached at all proxies or at

none of the proxies, depending on the resources available.

4.6 Concluding Remarks

This chapter has established the following important results regarding the delivery

of a single page:

• If there is sufficient capacity, the page should not be cached at any of the

proxies.

• If resources are insufficient for the server to process all requests via pull,

staleness-related cost can be minimised as follows:

1. the page should be cached at all proxies; and

2. transmission attempts for the page should be equally-spaced, where the

rate of transmission attempts depends on the resources available.

Although our study is focused on pages that are frequently updated, the above

results are rather general in the sense that they are accurate regardless of the value

of the page update rate.

Chapter 5

Optimal Page Delivery: Multiple

Page Case

In this chapter we consider the case of multiple pages and show how the server can

arrive at a near-optimal strategy for page delivery.

We assume that the system has a total capacity of R which is used to service

all pages. From our results presented in Section 4.5, we know that each page

should be either cached at all proxies or at none of the proxies. Let A be the

set of pages that are cached and B be the set of pages that are not cached. We

have A ∪ B = {1, 2, . . . , N} where N is the total number of pages. Obviously, if

R ≥
∑N

i=1 bi, then all pages should be retrieved directly from the server (i.e., A = ∅)

because the resulting staleness, and therefore the cost, would be 0. However, when

69

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 70

R <
∑N

i=1 bi, some pages must be cached. If R ≥ P
∑N

i=1 ui then the server has

sufficient capacity to transmit updates to all pages immediately. In this situation,

all pages should be cached (i.e., A = {1, 2, . . . , N}) and the resulting cost will be

0. On the other hand, if R < P
∑N

i=1 ui, then we need to determine the pages

that should be cached and the rate of transmission attempts for each of the cached

pages.

In this chapter we formulate an optimisation problem that can be used to de-

termine the optimal page delivery strategy, i.e., the strategy that would lead to

minimum staleness-related cost. In general, an exact solution to this problem is

very difficult to obtain. Our approach is to construct a near-optimal solution in

two steps. In step 1, we determine, for a given set of cached pages, the rate of

transmission attempts for each of these pages. Step 2 involves the development of

heuristic algorithms to find the set of pages that should be cached.

In Section 5.1 we present the formulation of our optimisation problem. Sec-

tion 5.2 is concerned with step 1 of our solution method where we use an approxi-

mation technique to obtain the rate of transmission attempts for each cached page.

Section 5.3 describes our heuristics for determining which pages should be cached.

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 71

5.1 Optimisation Problem

Recall that A is used to denote the set of cached pages. Let

CA = staleness-related cost associated with the cached pages

RA = resources available for servicing the cached pages

When transmission attempts for page i are made regularly at rate ni we have, from

Equation (4.5),

CA =
∑
i∈A

bi

ui

(
e
−ui

ni +
ui

ni

− 1

)

where ui and bi are the update rate and total request arrival rate for page i, re-

spectively. We have also shown that the resources required for a cached page, say

page i, is Pni

(
1− e

−ui
ni

)
. RA is therefore given by

RA = P
∑
i∈A

ni

(
1− e

−ui
ni

)
(5.1)

For the pages that are serviced via pull (denoted by the set B), the staleness-related

cost is zero and the resource requirement is given by

RB =
∑
i∈B

bi (5.2)

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 72

We now present our optimisation problem which can be used to determine the

optimal page delivery strategy.

Given R, P , ui, and bi, i = 1, 2, . . . , N

Determine A and ni for each i ∈ A such that

CA =
∑
i∈A

bi

ui

(
e
−ui

ni +
ui

ni

− 1

)

is minimised subject to

R = P
∑
i∈A

ni

(
1− e

−ui
ni

)
+
∑
i∈B

bi

An exact solution to this problem is difficult to obtain. We therefore focus on an

approximate solution method that yields near-optimal results.

5.2 Determining Transmission Attempt Rates

In this section we describe step 1 of our solution method. We determine for a given

set A the best value of ni for each page i in A. The corresponding optimisation

problem is

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 73

Given A, RA, P , ui, and bi, i ∈ A

Determine ni for each i ∈ A such that

CA =
∑
i∈A

bi

ui

(
e
−ui

ni +
ui

ni

− 1

)
(5.3)

is minimised subject to

RA = P
∑
i∈A

ni

(
1− e

−ui
ni

)

Determining the ni’s exactly is made difficult by the presence of e
−ui

ni in Equa-

tion (5.3). However, given that the pages in A are updated frequently relative to

the available server resources R, ui

ni
is likely to be large. In what follows, we present

an approximate analysis based on the assumption that updates to pages in A are

sufficiently frequent that e
−ui

ni is negligible for all i ∈ A. To assess the accuracy of

this assumption, consider Figure 5.1 which shows plots of e
−ui

ni + ui

ni
− 1 and ui

ni
− 1

versus ui

ni
. The error introduced by our approximation when ui

ni
= 3 is 2.4%. We

can see that as ui

ni
increases, the error is reduced further.

Using the assumption that e
−ui

ni = 0, the optimisation problem is reduced to

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 74

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 1.5 2 2.5 3 3.5 4 4.5 5
ui

ni

e
−ui

ni + ui

ni
− 1

ui

ni
− 1

Figure 5.1: The effectiveness of the approximation used to determine ni

Minimise

CA =
∑
i∈A

(
bi

ni

− bi

ui

)
(5.4)

Subject to

RA = P
∑
i∈A

ni (5.5)

Noting that bi/ui is constant, this optimisation problem is similar to that inves-

tigated by Ammar and Wong [24]. Using the results from [24], the total cost is

minimised when

ni = K

√
bi∑

k∈A

√
bk

(5.6)

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 75

|A| Number of pages in A 10
M Number of proxies 1
P Cost to transmit one page update to the proxy 1 resource unit

Table 5.1: Parameter values used to compute the numerical results

where

K =
∑
i∈A

ni =
RA

P
(5.7)

This result indicates that the rate at which transmission attempts for page i are

made should be proportional to the square root of bi. This relationship will be used

in our heuristic for selecting pages to be included in A.

We next present numerical results that show the tradeoff between resource avail-

ability and cost when multiple pages are handled by the server. These results are

based on the parameter values shown in Table 5.1. For each page in A, say page

i, the total request arrival rate bi was selected randomly between 1 and 100. The

bi’s obtained are shown in Table 5.2. The corresponding transmission attempt rate

ni for RA = 50 was then computed using Equation (5.6) and the results are also

shown in Table 5.2.

As to the page update rate, we assume its value is the same for all pages in A

and is given by u. For the above selection of parameters and u = 25, ui

ni
> 3.97

for all i, meaning that our approximation method introduces little error. Note that

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 76

i 1 2 3 4 5 6 7 8 9 10
bi 58 75 17 8 87 67 74 75 74 92
ni 5.00 5.68 2.71 1.86 6.12 5.37 5.64 5.68 5.64 6.29

Table 5.2: Page request rates and corresponding transmission attempt rates for
RA = 50

smaller values of RA or larger values of u will result in an even larger value for ui

ni
.

In Figure 5.2 we plot the staleness-related cost CA against the resource availability

RA for different values of u. In this figure u ≥ 25 and the range of RA considered

is from 10 to 50. As expected, when the system has few resources available, the

cost CA is relatively high. As we allocate more resources, the staleness-related cost

decreases.

5.3 Selecting Cached Pages

In this section, we consider the problem of finding the set of pages to place in A that

leads to minimum cost. This is step 2 of our solution method. One possibility is to

perform an exhaustive search of all elements of the power set of {1, 2, . . . , N} but

this is difficult to compute when N is large. Our approach is to obtain heuristic,

near-optimal solutions that are computationally efficient.

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 77

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40 45 50

CA

RA

u = 254

4

4
4
4 4 4 4 4 4

4
u = 50

+

+

+

+
+

+ + + + +

+
u = 75

2

2

2

2
2

2 2 2 2 2

2
u = 100

×

×

×
×
× × × × × ×

×

Figure 5.2: Cost versus resource consumption

5.3.1 Cost Analysis

We first analyse the impact on cost when a page, say page j, is moved from set A

to set B. A− {j} and B ∪ {j} are the sets resulting from this move. Let f be the

difference in cost. Since pages in B are served via pull, they do not incur any cost.

f is therefore given by

f = CA − CA−{j} (5.8)

If f > 0 then moving page j from A to B would lead to a reduction in cost.

To determine f , we again assume that e
−ui

ni is negligible. Suppose the rate of

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 78

transmission attempts for page i is ni when the set of cached pages is A and mi when

the set of cached pages is A−{j}. Substituting Equation (5.4) into Equation (5.8)

and simplifying, we get the following expression for f :

f =
∑

i∈A−{j}

bi

(
1

ni

− 1

mi

)
+ bj

(
1

nj

− 1

uj

)
(5.9)

We have from Equation (5.6) that ni (or mi) should be proportional to the square

root of bi. We can therefore write:

ni =
K
√

bi

X
(5.10)

where K =
∑

i∈A ni and X =
∑

i∈A

√
bi. Similarly,

mi =
Kj

√
bi

Xj

(5.11)

where Kj =
∑

i∈A−{j} mi and Xj =
∑

i∈A−{j}

√
bi.

Substituting Equations (5.10) and (5.11) into Equation (5.9) and simplifying,

we get

f =
∑

i∈A−{j}

√
bi

(
X

K
− Xj

Kj

)
+

X
√

bj

K
− bj

uj

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 79

Since X = Xj +
√

bj we have

f = Xj

(
Xj

K
+

√
bj

K
− Xj

Kj

)
+

Xj

√
bj

X
+

bj

K
− bj

uj

= Xj

(
2
√

bj

K
+

Xj

K
− Xj

Kj

)
+

bj

K
− bj

uj

=
2Xj

√
bj + X2

j + bj

K
−

X2
j

Kj

− bj

uj

(5.12)

We now determine expressions for K and Kj. Recall that the resource requirements

for the pages in A and B are RA = P
∑

i∈A ni and RB =
∑

i∈B bi, respectively.

(see Equations (5.5) and (5.2)). Since the system has total capacity R, we have

RA + RB = R. Using Equation (5.7), it follows that

K =
R−RB

P
(5.13)

Similarly,

Kj =
R−RB − bj

P
(5.14)

Substituting Equations (5.13) and (5.14) into Equation (5.12) yields

f = P

(
2Xj

√
bj + X2

j + bj

R−RB

)
−

PX2
j

R−RB − bj

− bj

uj

(5.15)

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 80

Note that the cost savings f , as given by Equation (5.15) above, can be computed

efficiently. It will be used as the basis for our first heuristic.

5.3.2 Heuristic Algorithm I

Our first heuristic algorithm makes use of the cost analysis presented in the previous

subsection. We begin by placing all pages in A. A page in A is called a “candidate”

page if (i) there are cost savings in moving this page to B, and (ii) the total resource

requirement after the move is not more than R. We then find the candidate page

that yields the largest cost savings and move that page to B. This step is repeated

until no candidate pages remain in A. Pseudocode for this algorithm is shown in

Figure 5.3.

We next evaluate the merit of heuristic algorithm I. Our evaluation is based on

(i) accuracy and (ii) efficiency in terms of the amount of computation required. We

first note that the optimal solution for the set A can be obtained by exhaustive

search. In our investigation, the accuracy of heuristic algorithm I is assessed by

comparing its result to this optimal solution.

We ran experiments for a range of values of the number of pages N . For a given

value of N , the input parameters are determined as summarised in Table 5.3. These

parameter values were selected such that e
−ui

ni is negligible for all i, meaning that

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 81

Heuristic I(a, u, P, R)
A← {1, 2, . . . , N}
B ← ∅
repeat

candidatefound← false
fbest← 0
for each j in A
do if R−

∑
i∈B b[i]− b[j] > 0 and f(A− {j}, B, j) > fbest

then fbest← f(A− {j}, B, j)
jbest← j
candidatefound← true

if candidatefound
then A← A− {jbest}

B ← B ∪ {jbest}
until candidatefound = false

return A

Figure 5.3: Heuristic algorithm I

our approximation introduces little error. In each experiment, the best cost found

by heuristic algorithm I is compared with the optimal cost found by exhaustive

search. The difference between the two, expressed as a percentage of the optimal

cost, is then calculated. The above procedure was replicated 10000 times and the

bi Randomly selected between 1 and 100, i = 1, 2, . . . , N
ui Randomly selected between 1000 and 10000, i = 1, 2, . . . , N
P Randomly selected between 1 and N
R Randomly selected between 1 and 50N

Table 5.3: Parameter values used in our experiments

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 82

N p d
10 0.19% 0.5%
15 0.27% 0.3%
20 0.18% 0.4%
25 0.17% 0.2%

Table 5.4: Results for heuristic I

results are summarised in Table 5.4.1 In this table, p is the percentage of replications

where heuristic algorithm I did not find the optimal cost. Of those replications, d

is the mean percentage difference between the two costs. We observe that heuristic

algorithm I yields good results. In most cases, it selects the best pages to place in

A and when it does not, the increase in cost is low.

As to efficiency, heuristic algorithm I is expected to examine O(N2) possible

sets A. The computational requirement may be excessive if the number of pages N

is large.

5.3.3 Heuristic Algorithm II

In this subsection we develop a second heuristic algorithm, referred to as heuristic

algorithm II, that has lower computational requirements than those of heuristic

algorithm I. This heuristic is motivated by the observation that for most solutions

1Because of computational complexity, we were only able to obtain results for exhaustive search
for N ≤ 25.

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 83

found by heuristic algorithm I, the pages in A are requested more frequently than

those in B. (This is true for the results shown in Table 5.4 and for other values of

N > 25 where it is not possible to obtain results using exhaustive search.) This

implies that the smallest request rate among the pages in A is greater than the

largest request rate among the pages in B. This observation suggests the existence

of a threshold value H such that bi > H for all i ∈ A and bi < H for all i ∈ B.

We note that analytic results for H are difficult to obtain. Heuristic algorithm II

is designed to use this threshold property to determine A efficiently as follows. All

pages are initially placed in A. Let Ek (k = 1, 2, . . . , N) be the cost, as given

by Equation (5.4), when the k least popular pages are moved to B. Let Ekmin
be

the smallest value among the Ek’s. Heuristic algorithm II places the kmin least

popular pages in B, provided that the total resource requirement is not larger than

R. The details of this algorithm are illustrated in Figure 5.4. The computational

requirement is in general O(N log N), which is an improvement over the O(N2)

required by heuristic algorithm I.

We next evaluate the merit of heuristic algorithm II. The approach is the same as

that used when heuristic algorithm I was investigated and the results are shown in

Table 5.5. We observe that heuristic algorithm II also yields good results. Although

it is slightly inferior to heuristic algorithm I in terms of the fraction of replications

where it finds the best solution, the resulting costs tend to be closer to optimal

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 84

Heuristic II(a, u, P, R)
for j ← 1 to N
do

B[j]← j
Sort-By-Increasing-b(B, b)
Y ← 0
cbest←∞
kbest← 0
for k ← 1 to N
do

Y ← Y + b[B[k]]
if R− Y < 0

then break
if C(B, k, a, u, P, R) < cbest

then cbest← C(B, k, a, u, P, R)
kbest← k

A← {1, 2, . . . , N} − {B[1], B[2], . . . , B[kbest]}
return A

Figure 5.4: Heuristic algorithm II

than those provided by heuristic algorithm I.

So far, only results for N ≤ 25 have been presented because of the consid-

erable resources required to do the exhaustive search. We have run experiments

comparing the performance of the two heuristic algorithms for larger N , N =

50, 100, 500, 1000, 10000. The results are summarised in Table 5.6. In this table p′

is the percentage of replications where the two algorithms did not find the same

cost, d′ is the maximum percentage difference between the two costs, and t is the

execution time of heuristic algorithm II expressed as a fraction of the execution

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 85

N p d
10 0.42% 0.2%
15 0.48% 0.1%
20 0.45% 0.2%
25 0.46% 0.08%

Table 5.5: Results for heuristic algorithm II

N p′ d′ t
50 0.38% 0.039% 0.52
100 0.34% 0.014% 0.39
500 0.61% 0.0036% 0.50
1000 0.61% 0.0029% 0.51
10000 0.49% 0.000014% 0.54

Table 5.6: The two heuristic algorithms for large N

time of heuristic algorithm I. We can see that the results found by the two heuristic

algorithms are very similar, suggesting that they lead to similar solutions. Table 5.6

also confirms that heuristic algorithm II has noticeably faster execution time than

heuristic algorithm I.

Based on the results in this subsection, heuristic algorithm II should be the

preferred algorithm because it yields similar solutions to those found by heuristic

algorithm I but is noticeably faster in terms of execution time.

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 86

5.3.4 Examples

We now present some examples illustrating the details of the solutions found by

our heuristic algorithms. For these examples, N was set to 10 and M was set to

1. Table 5.7 shows the values of P , R, bi, and ui for each example, along with the

resulting set A. The results found by our two heuristic algorithms are identical and

match the optimal solutions found by exhaustive search.

The results in Table 5.7 show that most pages will be placed in A and cached

at the proxies. This suggests that although non-cached pages have zero cost, the

server capacity required for their delivery is usually better spent reducing the cost of

cached pages by means of more frequent transmission attempts. This is supported

by comparing Example 5 with Example 6 in Table 5.7. They share the same page

request and update rates but differ in availability of server resources. In Example 5,

R = 100 and seven out of the ten pages are cached. However, if we reduce R to

10 as in Example 6, all ten pages are cached. Comparing Examples 5 and 6 with

Examples 7 and 8 suggests that the above observation is not affected by P , the cost

of transmitting a page update.

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 87

5.4 Concluding Remarks

In this chapter we have presented two heuristic algorithms that determine which

pages should be cached at the proxies and find the rate of transmission attempts for

cached pages. Both algorithms are for the case where e
−ui

ni is negligible and, under

this condition, they yield near-optimal staleness-related cost. Heuristic algorithm II

should be the preferred algorithm when one takes into consideration computational

complexity.

The results presented in this chapter allow us to fill in the following pieces of

the system operation described in Section 3.2:

• The results presented in Section 5.2 allow the server to determine when to

transmit page updates to the proxies.

• Our page selection heuristics, explained in Section 5.3, allow the server to

determine which pages should be cached by the proxies.

These are significant results because they, in conjunction with the framework out-

lined in Chapter 3, provide a complete description of the server’s operation. A

server implemented following these guidelines will be able to effectively allocate its

processing resources so as to deliver pages with near-minimal staleness-related cost.

CHAPTER 5. OPTIMAL PAGE DELIVERY: MULTIPLE PAGE CASE 88

Example P R 1 2 3 4 5 6 7 8 9 10

1 1 100
86 99 77 75 1 2 48 66 12 60 bi

42 57 96 24 25 94 20 27 51 7 ui

{1, 2, 3, 4, 7, 8, 9, 10} A

2 1 100
36 17 67 88 5 57 86 21 81 96 bi

85 100 11 80 45 27 88 97 11 49 ui

{1, 2, 3, 4, 6, 7, 8, 9, 10} A

3 1 100
4 32 60 91 27 61 19 62 91 25 bi

12 59 8 16 18 41 20 54 32 58 ui

{2, 3, 4, 5, 6, 7, 8, 9, 10} A

4 1 100
51 61 3 97 92 54 15 71 54 94 bi

10 61 89 75 55 29 24 73 71 92 ui

{1, 2, 4, 5, 6, 7, 8, 9, 10} A

5 1 100
5 89 7 73 6 69 9 85 73 69 bi

94 55 70 56 13 55 32 66 47 70 ui

{2, 4, 6, 7, 8, 9, 10} A

6 1 10
5 89 7 73 6 69 9 85 73 69 bi

94 55 70 56 13 55 32 66 47 70 ui

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} A

7 10 100
5 89 7 73 6 69 9 85 73 69 bi

94 55 70 56 13 55 32 66 47 70 ui

{2, 4, 6, 7, 8, 9, 10} A

8 10 10
5 89 7 73 6 69 9 85 73 69 bi

94 55 70 56 13 55 32 66 47 70 ui

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} A

Table 5.7: Examples illustrating the solutions found by the page selection heuristic

Chapter 6

Page Fragments

In the previous two chapters, we have obtained the following results that can be

used to develop strategies for delivering frequently-updated web pages such that

the staleness-related cost is close to optimal:

• For a page that is cached, transmission attempts should be made at regular

intervals.

• Any given page should either be cached at all proxies or at none of the proxies.

• Two heuristic algorithms have been developed that decide which pages to

cache, and for each cached page, the rate at which transmission attempts

should be made.

89

CHAPTER 6. PAGE FRAGMENTS 90

These results were developed for the case where updates are made on a per-page

basis.

It has been suggested that efficiency can be improved by organising pages as a

number of fragments [11–15]. In this chapter, we apply the above results to the

case of page fragments with a view of understanding the conditions under which

the use of fragments will lead to a reduction in cost.

This chapter is organised as follows. In Section 6.1 we describe how page frag-

ments work and give an example of how they can be used. In Section 6.2 we extend

the architecture described in Section 3.2 to include fragments. Section 6.3 shows

how our performance model can be adjusted to accommodate this extended archi-

tecture. Section 6.4 describes our discrete event simulation used to evaluate the

performance gain from using fragments. In Section 6.5 we present our simulation

results, together with a discussion of these results.

6.1 How Page Fragments Work

Page fragments can best be explained by means of an example. Consider the

delivery of personalised pages. In its most basic form, this involves customisation

of the page content based on the requesting user and is increasingly common in

applications like electronic commerce and sports event reporting [11]. An example

CHAPTER 6. PAGE FRAGMENTS 91

Weather Banner

Menu

User information

User-selected content

Figure 6.1: Sample layout for a personalised page

of a personalised page is illustrated in Figure 6.1. This page consists of weather

conditions in the upper left corner; a banner to indicate the page’s purpose; a

section specific to the requesting user (containing, for example, a greeting); a menu

listing the options from which the user may select; and a section that shows contents

selected by the user, e.g., news, sports, traffic conditions, or financial information.

The above elements are referred to as fragments. In general, each fragment is

used in the construction of one or more pages. A page therefore consists of its

corresponding set of fragments.

Use of fragments may lead to improved efficiency. This is substantiated by the

following observations, in the context of our example of a personalised page:

1. Personalised pages are constructed by the system in response to a request

made by a user. If the concept of fragments is not used, each page may

CHAPTER 6. PAGE FRAGMENTS 92

only be of interest to a single user, reducing the effectiveness of the proxy

caches. With page fragments, the same fragment may be used in multiple

pages, representing a form of aliasing [111]. This suggests that caching of

fragments could lead to improved scalability.

2. When a fragment common to many pages changes, only the fragment in ques-

tion is affected. Consequently, if the fragment is cached at a proxy, the server

only needs to transmit the update of this fragment. The situation is quite

different if fragments are not used. Consider the example in Figure 6.1. The

weather conditions are used in many different pages. Each page containing

this information will change when the weather information is updated. If

these pages are cached, considerable resources are required to transmit up-

dates for each page when compared to those required to transmit fragment

updates.

Various studies have explored caching of fragments, instead of pages, at the proxies

as a means of providing scalable delivery of personalised content [11–15]. The

proxies assemble the fragments to construct the pages that are requested by the

users. We refer to pages assembled in such a fashion as “assembled pages”.

CHAPTER 6. PAGE FRAGMENTS 93

6.2 System Architecture

In this section we extend the architecture described in Section 3.2 to include frag-

ments. All fragments are stored at the server and are updated by an external

process. Each user sends page requests to its proxy. Periodically each proxy no-

tifies the server of the aggregate request rate of each fragment, defined to be the

sum of the request rates for pages that use that fragment. Once again we focus on

fragments that are updated frequently.

The server determines which fragments should be cached at which proxies. For

those fragments that are cached, updates at the server are transmitted to the prox-

ies. Upon receiving a request for a page, a proxy assembles the requested page using

the required fragments and transmits it to the requesting user. During assembly,

any required fragments that are not cached at the proxy are retrieved from the

server.

6.3 Performance Model

To model the system that caches fragments at the proxies, we modify the model

introduced in Section 3.3 as follows. There are F fragments in the system that are

frequently updated. These fragments are used to construct N pages. We assume

that the time between updates to fragment f follows an exponential distribution

CHAPTER 6. PAGE FRAGMENTS 94

with mean 1/υf . The amount of server resources devoted to delivering frequently-

updated fragments is R units per second.

We define a function φ that describes the set of fragments that make up each

of the N pages. For page i,

φ(i) = {f | fragment f is used to construct page i}

We also define the function π where

π(f) = {i | f ∈ φ(i)} (6.1)

i.e., π(f) is the set of pages that contain fragment f . Note that one can determine

π when φ is specified and vice versa. We may therefore use whichever is convenient

to refer to a specific page-fragment mapping. For fragments that are cached, the

server uses transmission attempts to send updates to the proxies.

For the case where fragments are updated frequently, it may not be possible to

push fragment updates to the proxies immediately. This means that the fragments

stored at the proxies may become stale. We use the same definition for the staleness

of a fragment as we have already introduced for the staleness of a page. Specifically,

a fragment is stale if it is cached and the server is not able to transmit updates

CHAPTER 6. PAGE FRAGMENTS 95

promptly to the proxies. The staleness of a fragment is the fraction of time that it

is stale. A fragment that is not cached is never stale.

An assembled page is said to be stale if any of its constituent fragments is stale.

The staleness of an assembled page is the fraction of time that it is stale.

Transmission attempts are used to keep the fragments that are cached at the

proxies up to date. We note that the request rate of a given fragment is equal to

the sum of request rates for those pages that contain the fragment. Let the request

rate for fragment f be βf . βf is given by

βf =
∑

i∈π(f)

bi (6.2)

where bi is the request rate for page i over all proxies as defined in Section 4.1. βf

will be used to compute the rate of transmission attempts for each fragment using

the results outlined in Section 5.2.

Once again we focus on the resource requirements at the server. We assume

that at the server, the processing of a request for a fragment that is not cached

requires γ units of resources. Correspondingly, the processing required to transmit

an update to a cached fragment is assumed to consume γP resource units.

CHAPTER 6. PAGE FRAGMENTS 96

6.3.1 Staleness-Related Cost

In this section, we define staleness-related cost in the context of pages that are

assembled from fragments. For the case where fragments are not used, the staleness-

related cost was defined in Section 4.2. Specifically, the cost for page i is given by

Equation (4.2), i.e.,

qi = (bi − yi)Si

(
T

L

)

where (bi − yi) is the rate of requests for page i that arrive at those proxies that

cache page i, Si is the staleness of page i, and T/L is the average time between

transmission attempts for page i.

Consider now the case of assembled pages. Similarly to the case of non-assembled

pages, the staleness-related cost of page i is defined to be:

C ′
i = (bi − y′i)S

′
i

T

L

where y′i is the sum of arrival rates of requests for page i at those proxies where

none of the fragments belonging to page i are cached and S ′
i is the staleness of

assembled page i as defined earlier in this section. T/L is the average time between

transmission attempts for page i. We note that, for an assembled page, transmission

attempts are defined at the fragment level and not at the page level. An estimate

CHAPTER 6. PAGE FRAGMENTS 97

of T/L is therefore required.

In estimating T/L, our goal is to use an estimate that would lead to a fair

performance comparison between when fragments are used and when fragments

are not used. We note that when transmission attempts for page i are made at

the page level, page i is known to be not stale immediately after each transmission

attempt—either page i is not stale because no update has been made, or an update

has been made and the update is transmitted. The latter case is more likely because

page i is frequently updated. When fragments are used, a transmission attempt for

a fragment belonging to page i may result in page i being not stale. If this is indeed

the case, then we refer to such a transmission attempt as a pseudo transmission

attempt for page i. We therefore re-write our definition for C ′
i as follows:

C ′
i = (bi − y′i)S

′
iEi (6.3)

where Ei is the average time between pseudo transmission attempts for page i.

Finally, the staleness-related cost, over all pages, can be written as:

C ′ =
N∑

i=1

C ′
i (6.4)

An analytic characterisation of S ′
i and Ei is extremely difficult. However, they

CHAPTER 6. PAGE FRAGMENTS 98

υf The update rate for fragment f
bi The request rate for page i

φ(i) The fragments contained in page i
R The capacity of the server used for

frequently-updated fragments
γ The relative cost of fragment delivery
A′ The set of fragments that are cached

Table 6.1: Simulation inputs when fragments are cached

can be obtained by simulation. The details are described in the next section.

6.4 Simulator Description

We have used discrete event simulation to evaluate the performance gain from

using fragments. Two simulators have been developed, corresponding to whether

fragments or pages are cached at the proxies, respectively.

We first describe the case where fragments are cached at the proxies. The inputs

to the simulation are listed in Table 6.1. Using Equations (6.1) and (6.2) along with

the inputs bi and φi, we can calculate βf , the fragment request rate of fragment f ,

and π(f), the set of pages that contain fragment f , f = 1, 2, . . . , F . The availability

of βf allows us to determine the transmission attempt rate of f (denoted by ωf)

from Equation (5.6), for each fragment that is cached (i.e., for each f ∈ A′).

The υf ’s and ωf ’s are the parameters needed to generate events that correspond

CHAPTER 6. PAGE FRAGMENTS 99

to updates and transmission attempts for each of the fragments. When these events

are processed, data will be collected for S ′
i and Ei (the staleness and the average time

between pseudo transmission attempts for page i, respectively), i = 1, 2, . . . , N .

Our approach to data collection is as follows.

During the simulation, we can keep track of, for each fragment, whether the

fragment is stale or not. Let the set of fragments within page i that are stale be Di.

Clearly Di ⊆ φ(i). When a fragment within φ(i) becomes stale, this fragment will

be added to Di and |Di| is increased by one. On the other hand, when the server

makes a transmission attempt for a fragment within Di, this fragment is removed

from Di and |Di| is decreased by one. Recall that page i is not stale when none of

its constituent fragments are stale. Therefore, a pseudo transmission attempt for

page i occurs when a fragment transmission attempt results in |Di| being reduced

from 1 to 0. In the simulation, the number of occurrences of pseudo transmission

attempts for page i is recorded. The data collected allows us to compute Ei. We

also collect data that allows the computation of S ′
i, the staleness of page i. This is

given by the fraction of time that |Di| > 0.

S ′
i and Ei can then be used in Equations (6.3) and (6.4) to determine the

staleness-related cost.

Consider now the case where pages are cached instead of fragments. To provide

a fair comparison, we stay with a structure where each page has a number of

CHAPTER 6. PAGE FRAGMENTS 100

υf The update rate for fragment f
bi The request rate for page i

φ(i) The fragments contained in page i
R The capacity of the server used for

frequently-updated pages
A The set of pages that are cached

Table 6.2: Simulation inputs when pages are cached

fragments and updates are made at the fragment level. The difference, however,

is that when a fragment is updated, all pages that contain this fragment will be

affected, and these pages are considered as being updated at the same time.

The inputs to this simulation are listed in Table 6.2. Once again, π(i) can be

computed from φi using Equation (6.1). Because a page is updated each time one

of its constituent fragments is updated, the update rate of page i, i = 1, 2, . . . , N ,

can be computed as follows:

ui =
∑

f∈φ(i)

υf

The request arrival rates for the various pages are given by the bi’s and are used to

determine the transmission attempt rate of each cached page i (denoted by ni) using

Equation (5.6). The υf ’s and nf ’s are then used to generate events that correspond

to fragment updates and page transmission attempts, respectively. When these

events are processed, the total time that page i, i = 1, 2, . . . , N , is stale is collected.

This allows us to compute Si, the fraction of time that page i is stale. Si can then

CHAPTER 6. PAGE FRAGMENTS 101

be used to compute the staleness-related cost for page i.

6.5 Simulation Results and Discussion

We now present simulation results to illustrate the conditions under which the use

of fragments will lead to a reduction in cost. This is accomplished by comparing

the staleness-related cost when fragments are used to that when fragments are not

used.

In our simulation, we consider the case where the system has a total of N

pages and F frequently-changing fragments. Because these fragments are updated

frequently, we assume that the update rate of each fragment is sufficiently high that

e
−

υf
ωf = 0 for f = 1, 2, . . . , F . We further assume that each fragment has an update

rate of υ.

We generate φ mappings as follows. Let ri be the number of constituent frag-

ments in page i, i = 1, 2, . . . , N . ri is selected according to a uniform distribution

between 1 and 2J − 1 (the mean is J). The ri fragments in the page are then

selected randomly from the F fragments in the system. This process is repeated for

all N pages. If in the resulting φ every fragment is not used in at least one page,

a new φ is generated. This process is repeated until every fragment is used in at

least one page.

CHAPTER 6. PAGE FRAGMENTS 102

Recall that π(f) is the set of pages that contains fragment f . Also, for a given

φ, one can determine π. From π we can determine the number of pages that use

fragment f . Let m be the average of |π(f)| for f = 1, 2, . . . F . We have

m =
1

F

F∑
f=1

|π(f)|

m represents the amount of fragment sharing among the pages. In general, a higher

value of m means more sharing of fragments among pages.

We set γ, the relative processing cost of delivering a fragment, to 1/J . This is

based on the assumption that delivering a page’s worth of data requires the same

amount of processing no matter how many fragments are used to construct the

page. P , the relative processing requirements for push, was set to 1.

The following metric will be used in our evaluation:

g =
C

C ′ =
cost when fragments are not used

cost when fragments are used

g can be interpreted as follows. If g > 1, the use of fragments will lead to a lower

cost. Our focus is on conditions under which g > 1. In each of the experiments that

follow, ten φ mappings were generated using the procedure described above and C ′

and C were collected for each, yielding ten g values. The mean of these ten runs

CHAPTER 6. PAGE FRAGMENTS 103

Factor Label Low Level High Level
N A 250 500
F B 100 200
J C 4 8
υ D 80 120

Request rate distribution E Uniform Zipf-like (α = 0.25)

Table 6.3: Levels of the five factors for the 25 · 10 factorial design

is used as the result of the experiment. Each simulation was terminated after 30

seconds of simulated time. This run length was sufficient to give a 95% confidence

interval width for g that was less than 0.1% of the mean when 10 replications were

examined.

Our first experiments consist of a 25 · 10 factorial design to determine the ef-

fects on g of various factors [112]. The factors and levels under consideration are

presented in Table 6.3. The rationale behind our choices is as follows.

The number of pages, N If fragments are not used, the server must split its

available capacity between all of the cached pages. If there are many such

pages, this can lead to infrequent transmission attempts for each page. How-

ever, if fragments are used, the total number of pages does not directly affect

the server’s resource use. This suggests that g will be influenced by N . We

select 250 and 500 as sizes representing small to moderate page populations.

The number of fragments, F When there are many fragments, the server will

CHAPTER 6. PAGE FRAGMENTS 104

have only a small amount of capacity to devote to each, meaning that their

transmission attempt rates may be low. This will affect C ′. However, F has

no direct effect when fragments are not used. We select 100 and 200 as levels

representing small to moderate numbers of fragments, respectively.

The mean number of fragments per page, J For a given number of pages

and a given number of fragments, the more fragments that appear in each

page, the more pages will contain each fragment. In other words, for a fixed

N and F , a higher value of J will result in a higher value of m. This means

that there will be more sharing of fragments between pages. If many pages

share a fragment, transmission of that fragment has the potential to make all

those pages no longer stale. However, more fragments in a page may make

it less likely that a fragment transmission reduces |Di| from 1 to 0. This

would tend to increase the time between pseudo transmission attempts. We

therefore expect J to have a significant impact on g. Levels of 4 and 8 are

chosen to represent pages made of moderate to high numbers of fragments

The page request rate, bi The page request rates will directly influence the frac-

tion of server capacity allocated to each page or fragment (see Equation (5.6)).

Because the transmission attempt rate of a page or fragment will have an ef-

fect on that page or fragment’s staleness, the request rates of the different

CHAPTER 6. PAGE FRAGMENTS 105

pages, given by the bi’s, may affect g. A uniform distribution for the bi’s is

a simple baseline reference case, while a Zipf-like distribution which assigns

page i a request rate proportional to 1/iα represents a better match to real

web traffic [71, 73, 74]. α was chosen to be 0.25, ensuring that, while there is

variety in the page request rates, no page is requested extremely rarely. For

the case of a uniform distribution, bi = U/N where U is the total request rate

for all pages. When the Zipf-like distribution is used, the page request rates

are scaled so that the total rate of requests is also equal to U . Hence,

bi = G
1

iα

where

G =
U∑N

k=1
1

kα

The fragment update rate, υ The update rate of the fragments may have an

effect on g. We have selected 80 and 120 as levels for υ because they represent

a range of update rates for fragments that are updated frequently. Using these

values of υ, over 90% of the values of
υf

ωf
in these experiments were greater

than 2.5. This means that our approximation method in Chapter 5 introduces

little error.

CHAPTER 6. PAGE FRAGMENTS 106

N Number of pages 250
F Number of fragments 100
J Mean number of fragments per page 4
R Server capacity 500 units per second
bi Request rate for page i 50 requests per second
υi Update rate for fragment i 80 updates per second

Table 6.4: Parameter values used to test for the effect of fragment transmission
attempt order

We first confirm that the order in which fragment transmission attempts are

scheduled does not affect our estimate of g. To do this, the first transmission

attempt for fragment f , f ∈ A′, is scheduled at a random time between the start

of simulation and 1/ωf . We ran 100 simulations using the parameter values shown

in Table 6.4 and the values of g were recorded. The width of the 95% confidence

interval of these values was found to be less than 0.1% of the mean. This suggests

that using a random offset for each initial transmission attempt will not have a

significant impact on the value of g.

We now present our results for the 25 · 10 factorial design. The mean value of

g over all replications of all experiments was found to be 3.799203. In Table 6.5

we show the fraction of variation in g explained by the various factors and their

interactions. The corresponding coefficients are also shown [112]. We can see

that the number of fragments F contributes most to the variation, followed by

the number of pages N . The effect of the interaction between N and F is also

CHAPTER 6. PAGE FRAGMENTS 107

Factors Coefficient Contribution Factors Coefficient Contribution
A 1.252775 0.341664 ABD 0.052217 0.000594
B -1.554833 0.526286 ABE 0.011425 0.000028
C 0.371620 0.030064 ACD -0.021273 0.000099
D -0.226941 0.011212 ACE 0.001593 0.000001
E -0.046193 0.000465 ADE -0.001348 0

AB -0.518832 0.058601 BCD 0.056208 0.000688
AC 0.121309 0.003204 BCE 0.006591 0.000009
AD -0.073185 0.001166 BDE -0.001926 0.000001
AE -0.041538 0.000376 CDE -0.001483 0
BC -0.259662 0.014678 ABCD 0.010022 0.000022
BD 0.144116 0.004521 ABCE -0.000143 0
BE 0.011165 0.000027 ABDE 0.006141 0.000008
CD -0.093376 0.001898 ACDE 0.001384 0
CE 0.000153 0 BCDE -0.003436 0.000003
DE -0.000915 0 ABCDE -0.007569 0.000012

ABC -0.088818 0.001717

Table 6.5: Results for the 25 · 10 factorial design

significant. This is followed in importance by J , the number of fragments per

page. Neither the fragment update rate nor the request rate distribution make a

strong contribution to the observed variation in g. The fraction of variation that is

unexplained by the factors, and is therefore attributed to errors, was computed to

be 0.002656. This does not represent a significant contribution to the variation in

g.

Based on this analysis, we select N , F , and J for further exploration. Be-

cause the page request distribution does not make a significant contribution to the

variability of g, we use the same page request rate for each page. Unless stated

CHAPTER 6. PAGE FRAGMENTS 108

R Server capacity 1000 units per second
b Request rate of each page 50 requests per second
υ Update rate of each fragment 100 updates per second

Table 6.6: Parameter values used in our numerical examples

F = 100 F = 200
N m g m g
100 3.93 0.716 — —
150 5.87 0.838 — —
200 8.08 0.957 — —
250 9.92 1.10 5.05 0.255
300 12.0 1.23 6.05 0.303
350 14.1 1.36 7.02 0.343
400 16.0 1.50 8.05 0.371
450 18.3 1.55 9.02 0.419
500 20.0 1.79 9.96 0.467

Table 6.7: g versus N

otherwise, the parameter values shown in Table 6.6 will be used for the simulations

that follow. In the experiments that follow, 75% of the
υf

ωf
values are greater than

2.5.

Table 6.7 shows simulation results for various values of N , the total number

of pages. The mean number of fragments per page, J , was set to 4, while results

were obtained for F (the total number of fragments) equal to 100 and 200. We

observe that a large N tends to favour the use of fragments. This can be explained

as follows. In our selection of parameters, increasing N when F and J are fixed

CHAPTER 6. PAGE FRAGMENTS 109

will result in an increase in m, the number of pages that use each fragment. The

benefit of using fragments is seen when m ≥ 9.92 and F = 100. This indicates the

level of fragment sharing required to realise a performance gain.

As to the interaction between N and F , we observe that for a given N , an

increase in F from 100 to 200 results in less benefit from using fragments. This

is due to the fact that a larger F leads to less sharing of fragments and fewer

resources being available per fragment, thereby reducing the attractiveness of using

fragments.

We next explore the effect of J , the mean number of fragments that are contained

in each page. Table 6.8 shows g for various values of J and various combinations

of N and F . We observe that an increase in J tends to decrease the attractiveness

of fragments. This is because the presence of more fragments within a given page

means that more fragments may become stale and the time between pseudo trans-

mission attempts for the page may be increased. This is the case even if there is

extensive sharing of fragments.

Finally, we examine the effect of the number of fragments F . Results for the

cases of N = 300 and N = 500 are shown in Table 6.9. We observe that the

attractiveness of fragments may be reduced if the total number of fragments F is

large, an observation that can be confirmed by examination of Tables 6.7 and 6.8.

This is because the more fragments the server must deliver, the fewer resources will

CHAPTER 6. PAGE FRAGMENTS 110

F = 100 F = 100 F = 300
N = 100 N = 300 N = 300

J m g m g m g
2 — — 6.11 1.99 — —
3 3.04 0.750 9.01 1.45 — —
4 4.12 0.630 12.0 1.18 — —
5 4.91 0.643 15.2 1.15 4.95 0.248
6 5.930 0.563 17.7 1.19 5.80 0.293
7 6.950 0.558 21.1 1.21 7.05 0.311
8 8.02 0.571 23.5 1.37 8.01 0.330

Table 6.8: g versus J

N = 300 N = 500
F m g m g
50 23.9 11.6 40.4 18.3
100 11.9 1.28 19.9 1.87
150 7.92 0.454 13.4 0.667
200 6.00 0.311 9.99 0.469
250 4.74 0.257 8.05 0.387
300 — — 6.64 0.351

Table 6.9: g versus F

be available for each. This leads to increased fragment staleness and thus increased

staleness-related cost for the assembled pages. The interaction between F and N

is consistent with that observed in Table 6.7.

CHAPTER 6. PAGE FRAGMENTS 111

6.6 Concluding Remarks

In this chapter we have applied our architecture to the delivery of pages that are

assembled from fragments. We have shown that the use of fragments can lead to

savings in staleness-related cost if the following conditions are met:

Sharing of fragments between pages In general, the more pages that contain

a given fragment, the greater the potential benefit from using fragments.

Small number of fragments per page The more fragments that are contained

in any given page, the greater the chance that at least one of them will be

stale. This means that the page is more likely to be stale and its staleness-

related cost will rise.

Total number of fragments is small If there are too many fragments, the server

will have insufficient resources to transmit each promptly. This will lead to

increased staleness of the assembled pages.

Chapter 7

Summary and Future Work

7.1 Summary of Contributions

This thesis has focused on resource management issues inherent in designing in-

formation delivery systems for pages that are frequently requested and frequently

updated. Our investigation has been based on an architecture where pages are

cached at proxy servers and page updates are pushed to these proxies.

We began by presenting a measure of staleness and defining the cost of pages

being stale. Our approach differs from others in that we take the position that the

server is responsible for keeping the pages up to date. Any staleness is caused by

the server not being able to transmit updates promptly. Our definition of staleness-

related cost takes into account the rate at which requests are serviced with pages

112

CHAPTER 7. SUMMARY AND FUTURE WORK 113

that are out of date as well as the amount of time that the pages could be stale.

Using our definition of staleness-related cost we obtained analytic results de-

scribing how the available resources can best be used to transmit page updates to

the proxies. Specifically, we defined a mechanism to transmit page updates to the

proxies called “transmission attempts.” We showed that the staleness-related cost

for a page is minimised if transmission attempts for the page are made at regular

intervals. Furthermore, we proved the important result that the cost for a page is

minimised if it is cached at all of the proxies or at none of the proxies, depending

on resource availability. This result is valid regardless of the values of the request

arrival rate or page update rate.

We next focused on the case where the ratio of page update rate to transmission

attempt rate for each page i (i.e., ui

ni
) is sufficiently large that e

−ui
ni is negligible. We

developed two heuristic algorithms that determine, for a given resource availabil-

ity, which pages should be cached at the proxies, which pages should be retrieved

directly from the web server, and the transmission attempt rate for each cached

page such that the resulting staleness-related cost is close to optimal. By compar-

ing with the optimal solution obtained by exhaustive search, we found that both

algorithms yield accurate results. Heuristic algorithm II is more efficient in terms

of computational requirements, so it should be the preferred algorithm.

Page fragments have been suggested as a means of improving system scalability.

CHAPTER 7. SUMMARY AND FUTURE WORK 114

We have extended our architecture to include fragments and used simulation to

study the conditions under which the use of fragments is beneficial in terms of

reducing staleness-related cost. These results provide valuable insights into the

utility of fragments.

Taken together, the above contributions significantly advance our understanding

of the resource management issues inherent in the delivery of dynamic information.

7.2 Future Work

Areas for future work include the following.

Page inter-update time distribution

In Section 4.2 our analytic results on the staleness of page i and the optimal

delivery of page i are based on the assumption that the time between updates

to this page is exponentially distributed. This assumption may not be valid

for all classes of pages. For example, stock price information may be updated

at regular intervals. It would be fruitful to explore the effects of pages with

different inter-update time distributions and investigate how our analysis may

be modified to provide optimal staleness-related cost for such pages.

Proxy capacity and response time

The details of the proxy servers have not been included in our investigation.

CHAPTER 7. SUMMARY AND FUTURE WORK 115

In general, each proxy server has finite processing resources which are used

to service user requests and to capture page updates from the server. The

portion of server capacity available for servicing user requests will have an

impact on the system’s response time. Furthermore, user requests that can

be served from the cache have different resource requirements from those that

are forwarded to the web server. A performance model should be developed

to study the tradeoff between response time performance and the amount of

resources required to process page updates.

Optimal page delivery strategies

In general, finding an optimal page delivery strategy involves solving the

optimisation problem presented in Section 5.1. This is a very difficult task.

We have described a two-step solution relying on approximation techniques

that produces good results when ui

ni
is large enough for e

−ui
ni to be negligible.

Further work should be done to find efficient solutions that are applicable to

situations where e
−ui

ni is not negligible.

Average versus individual staleness-related cost

Our definition of staleness-related cost reflects the impact of staleness on the

requests serviced by all of the proxies. Our optimisation problems are defined

in this context. We have found that, from the perspective of a given proxy,

CHAPTER 7. SUMMARY AND FUTURE WORK 116

when the server’s delivery strategy is tuned to serve the average requirements

of all the proxies, the resulting cost is higher than that of a strategy designed

to meet the requirements of that proxy alone [110]. These are preliminary

results only. Further investigation is required to gain a full understanding

of how one may construct delivery strategies that are tailored to individual

proxies.

Different classes of users

Our optimisation of staleness-related cost is based on the assumption that

there is only one class of requests (or users) served by all of the proxies. The

issue of different classes of users has not been considered. In some cases, we

may wish to give preferential treatment to one class of users and provide opti-

mal page delivery to this class. This will have a negative impact on the other

classes. Investigation into this topic should provide a good understanding of

how the available resources can best be allocated to serve different classes of

users.

Fragment layout guidelines

While we have shown the conditions under which page fragments can pro-

vide reduced staleness-related cost, we have made no suggestions about how

one could automate page layout so as to best take advantage of this. For a

CHAPTER 7. SUMMARY AND FUTURE WORK 117

given set of pages that contain common data, methods for designing the page

fragments should be explored.

Appendix A

Derivation of Equation 4.4

The optimisation problem is to minimise

qi =
bi − yi

niT

niT∑
k=1

e−uixk + uixk − 1

ui

(A.1)

subject to
niT∑
k=1

xk = T (A.2)

Applying Equation (A.2) and after some manipulation, qi can be rewritten as

qi =
bi − yi

uiniT

(
niT∑
k=1

e−uixk + uiT − niT

)

118

APPENDIX A. DERIVATION OF EQUATION 4.4 119

Ignoring the terms that are constant, minimising

f =

niT∑
k=1

e−uixk (A.3)

will also minimise qi.

Using the technique of Lagrangian multipliers we define the function h as follows:

h =

niT∑
k=1

e−uixk − λ

(
niT∑
k=1

xk − T

)

We now minimise the unconstrained function h by setting its partial derivatives to

zero, yielding

−uie
−uixk − λ = 0 ∀k (A.4)

and

T −
niT∑
k=1

xk = 0

From these two equations, we obtain

λ = −uie
−ui/ni (A.5)

APPENDIX A. DERIVATION OF EQUATION 4.4 120

Substituting Equation (A.5) into Equation (A.4) and simplifying, we get:

xk =
1

ni

Finally, we show that the inflection point at xk = 1/ni is a minimum for qi [113].

Let ~v be a unit vector in RniT and let

f = ~v · ∇[~v · ∇qi] (A.6)

Substituting qi from Equation (A.1) into Equation (A.6), after some manipulation

we obtain

f = ~v · ∇

[
bi − yi

uiniT

niT∑
k=1

vk

(
−uie

−uixk + ui

)]

=
bi − yi

uiniT

niT∑
k=1

v2
ku

2
i e
−uixk

Clearly v2
k ≥ 0. Furthermore, at least one of v1, v2, . . . , vniT must be nonzero because

|~v| = 1. This means that there exists at least one value of k such that v2
k > 0. Note

that bi − yi > 0 and because ui > 0, u2
i e
−uixk > 0. Therefore f > 0, qi is convex,

and xk = 1/ni is a global minimum for qi.

Appendix B

Summary of Notation

Symbol Interpretation
A The set of pages that are cached at the proxies
A′ The set of fragments that are cached at the proxies
aij The arrival rate of requests for page i at proxy j
B The set of pages that are not cached at the proxies

bi

∑M
j=1 aij

C ′ ∑N
i=1 C ′

i

Ci The staleness-related cost for page i assuming regular transmission
attempts

C ′
i The staleness-related cost for assembled page i

CA

∑
i∈A Ci

F The number of frequently-updated fragments stored at the server
Gi The set of proxies that cache page i
J The mean number of fragments per page
K

∑
i∈A ni

M The number of proxies in the system
m The mean number of pages that use each fragment
N The number of frequently-updated pages stored at the server
ni The transmission attempt rate for page i
ui The update rate for page i
P The resources required to transmit a page update to the proxies

121

APPENDIX B. SUMMARY OF NOTATION 122

Symbol Interpretation
R The server capacity in resource units per second
Ri The capacity devoted to page i
yi bi −

∑
j∈Gi

aij

βf

∑
i∈π(f) bi

γ The relative resources required to transmit a fragment
π(f) The pages that contain fragment f
φ(i) The fragments used to construct page i
υf The update rate for fragment f
ωf The transmission attempt rate for fragment f

Bibliography

[1] R. Fielding, J. Gettys, J. Mogul, H. Frystk, L. Masinter, P. Leach, and

T. Berners-Lee, “Hypertext transfer protocol – HTTP/1.1.” RFC 2616, 1999.

[2] D. Wessels, “Intelligent caching for world wide web objects,” in Proceedings

of INET’95, 1995.

[3] J. S. Gwertzman and M. Seltzer, “The case for geographical push-caching,”

in Proceedings of the 1995 Workshop on Hot Operating Systems, 1995.

[4] H. Yu, L. Breslau, and S. Shenker, “A scalable web cache consistency archi-

tecture,” in Proceedings of ACM SIGCOMM, pp. 163–174, September 1999.

[5] J. S. Gwertzman and M. Seltzer, “World wide web cache consistency,” in

Proceedings of the 1996 COMPCON, February 1996.

[6] R. Tewari, T. Niranjan, and S. Ramamurthy, “WCDP: A protocol for web

123

BIBLIOGRAPHY 124

cache consistency,” in Proceedings of the 7th International Web Content

Caching and Distribution Workshop, 2002.

[7] M. H. Ammar, K. C. Almeroth, R. J. Clark, and Z. Fei, “Multicast delivery of

web pages or how to make web servers pushy,” in Proceedings of the Workshop

on Internet Server Performance, Madison, Wisconsin, June 1998.

[8] P. Rodriguez, K. W. Ross, and E. W. Biersack, “Improving the WWW:

Caching or multicast?,” in Proceedings of the 3rd International Web Con-

tent Caching and Distribution Workshop, June 1998.

[9] R. Clark and M. H. Ammar, “Providing scalable web service using multicast

delivery,” Computer Networks and ISDN Systems, no. 29, pp. 841–858, 1997.

[10] J. Nonnenmacher and E. W. Biersack, “Asynchronous multicast push: AMP,”

in Proceedings of the International Conference on Computer Communications,

pp. 419–430, November 1997.

[11] J. R. Challenger, P. Dantzig, A. Iyengar, mark S. Squillante, and L. Zhang,

“Efficiently serving dynamic data at highly accessed web sites,” IEEE/ACM

Transactions on Networking, vol. 12, pp. 233–246, April 2004.

[12] G. v. Bochmann, J. W. Wong, D. Evans, T. C. Lau, D. Bourne, B. Kerhervé,

BIBLIOGRAPHY 125

M.-V. M. Salem, and H. Ye, “Scalability of web-based electronic commerce

systems,” IEEE Communications Magazine, vol. 41, pp. 110–115, July 2003.

[13] J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and P. Reed, “A publishing

system for efficiently creating dynamic web content,” in Proceedings of IEEE

INFOCOM, pp. 844–853, 2000.

[14] C. Yuan, Y. Chen, and Z. Zhang, “Evaluation of edge caching/offloading for

dynamic content delivery,” in Proceedings of the 12th International World

Wide Web Conference, pp. 461–471, May 2003.

[15] W. Shi, R. Wright, E. Collins, and V. Karamcheti, “Workload characteri-

zation of a personalised web site—and its implications for dynamic content

caching,” in Proceedings of the 7th International Web Content Caching and

Distribution Workshop, 2002.

[16] J. Cho and H. Garcia-Molina, “Synchronizing a database to improve fresh-

ness,” in Proceedings of ACM SIGMOD, pp. 117–128, 2000.

[17] J. Cho and H. Garcia-Molina, “Estimating frequency of change,” ACM Trans-

actions on Internet Technology, vol. 3, pp. 256–290, August 2003.

[18] A. Dingle and T. Partl, “Web cache coherence,” in Proceedings of the 5th

International World Wide Web Conference, May 1996.

BIBLIOGRAPHY 126

[19] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen, “Op-

timal crawling strategies for web search engines,” in Proceedings of the 11th

International World Wide Web Conference, pp. 136–147, 2002.

[20] E. G. Coffman, Jr., Z. Liu, and R. R. Weber, “Optimal robot scheduling for

web search engines,” Journal of Scheduling, vol. 1, pp. 15–29, June 1998.

[21] J. Edwards, K. McCurley, and J. Tomlin, “An adaptive model for optimiz-

ing performance of an incremental web crawler,” in Proceedings of the 10th

Annual World Wide Web Conference, pp. 106–113, May 2001.

[22] J. Gecsei, The Architecture of Videotex Systems. Prentice-Hall, 1983.

[23] M. H. Ammar, Performance Analysis of Information Systems Using Broad-

cast Delivery. PhD thesis, University of Waterloo, 1985.

[24] M. Ammar and J. W. Wong, “The design of teletext broadcast cycles,” Per-

formance Evaluation, vol. 5, pp. 235–242, December 1985.

[25] M. Ammar and J. W. Wong, “On the optimality of cyclic transmission in

teletext systems,” IEEE Transactions on Communications, vol. 35, pp. 68–

73, January 1987.

[26] C.-J. Su and L. Tassiulas, “Broadcast scheduling for information distribu-

tion,” in Proceedings of IEEE INFOCOM, 1997.

BIBLIOGRAPHY 127

[27] L. Tassiulas and J. S. Chi, “Optimal memory management strategies for a

mobile user in a broadcast data delivery system,” IEEE Journal on Selected

Areas in Communications, vol. 15, pp. 1226–1238, September 1997.

[28] A. Bar-Noy, V. Dreizin, and B. Patt-Shamir, “Efficient periodic scheduling

by trees,” in Proceedings of IEEE INFOCOM, pp. 791–800, 2002.

[29] G. Herman, G. Gopal, K. C. Lee, and A. Weinrib, “The Datacycle archi-

tecture for very high throughput database systems,” in Proceedings of ACM

SIGMOD, pp. 97–103, May 1987.

[30] T. F. Bowen, G. Gopal, G. Herman, T. Hickey, K. C. Lee, W. H. Mansfield,

J. Raitz, and A. Weinrib, “The Datacycle architecture,” Communications of

the ACM, pp. 71–81, 1992.

[31] J. W. Wong and M. H. Ammar, “Response time performance of videotex

systems,” IEEE Journal on Selected Areas in Communications, pp. 1174–

1180, October 1986.

[32] J. W. Wong and H. D. Dykeman, “Architecture and performance of large scale

information delivery networks,” in Proceedings of the International Teletraffic

Congress, pp. 4.4B.4.1–4.4B.4.7, 1988.

BIBLIOGRAPHY 128

[33] J. W. Wong, “Broadcast delivery,” Proceedings of the IEEE, vol. 76, pp. 1566–

1577, December 1988.

[34] J. W. Wong and M. H. Ammar, “Analysis of broadcast delivery in a videotex

system,” IEEE Transactions on Computers, vol. C–34, pp. 863–866, Septem-

ber 1985.

[35] H. D. Dykeman, M. H. Ammar, and J. W. Wong, “Scheduling algorithms

for videotex systems under broadcast delivery,” in Proceedings of the Inter-

national Conference on Communications, pp. 1847–1851, June 1986.

[36] D. K. Gifford, R. W. Baldwin, S. T. Berlin, and J. M. Lucassen, “An archi-

tecture for large scale information systems,” in Proceedings of the 10th ACM

Symposium on Operating System Principles, pp. 161–170, 1985.

[37] T. Imielinski and B. R. Badrinath, “Mobile wireless computing: Solutions

and challenges in data management,” Communications of the ACM, vol. 37,

pp. 28–28, October 1994.

[38] B. R. Badrinath, A. Acharya, and T. Imielinski, “Impact of mobility on

distributed computations,” ACM Operating Systems Review, vol. 27, pp. 15–

20, April 1993.

BIBLIOGRAPHY 129

[39] T. Imielinski, S. Viswanathan, and B. R. Badrinath, “Energy efficient index-

ing on air,” in Proceedings of ACM SIGMOD, pp. 25–36, 1994.

[40] M. H. Ammar, “Response time in a teletext system: An individual user’s per-

spective,” IEEE Transactions on Communications, vol. 35, no. 11, pp. 1159–

1170, 1987.

[41] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast disks: Data

management for asymmetric communication environments,” in Proceedings

of ACM SIGMOD, pp. 199–210, 1995.

[42] S. Zdonik and M. Franklin, “Are “disks in the air” just pie in the sky?,” in

Proceedings of the Workshop on Mobile Computing Systems and Applications,

1994.

[43] M. Franklin and S. Zdonik, “Dissemination-based information systems,”

IEEE Data Engineering Bulletin, vol. 19, September 1996.

[44] S. Acharya, M. Franklin, and S. Zdonik, “Prefetching from a broadcast disk,”

in Proceedings of the International Conference on Data Engineering, February

1996.

[45] S. Acharya, M. Franklin, and S. Zdonik, “Dissemination-based data delivery

BIBLIOGRAPHY 130

using broadcast disks,” IEEE Personal Communications, vol. 2, pp. 50–60,

December 1995.

[46] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast disks: Data

management for asymmetric communication environments,” Tech. Rep. CS-

94-43, Brown University, 1994.

[47] A. Bar-Noy, B. Patt-Shamir, and I. Ziper, “Broadcast disks with polynomial

cost functions,” in Proceedings of IEEE INFOCOM, pp. 575–584, 2000.

[48] T. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Pollermann, “World-Wide

Web: The information universe,” Electronic Networking: Research, Applica-

tions and Policy, vol. 1, no. 2, pp. 52–58, 1992.

[49] J. Postel, “Internet protocol.” RFC 791, 1981.

[50] S. E. Deering, “Host extensions for IP multicasting.” RFC 1112, 1989.

[51] W. Fenner, “Internet group management protocol, version 2.” RFC 2236,

1997.

[52] V. Liberatore, “Multicast scheduling for list requests,” in Proceedings of IEEE

INFOCOM, pp. 1129–1137, 2002.

[53] K. Stathatos, N. Roussopoulos, and J. S. Baras, “Adaptive data broadcast

BIBLIOGRAPHY 131

in hybrid networks,” in Proceedings of the 23rd Annual Conference on Very

Large Data Bases, pp. 326–335, 1997.

[54] P. R. Rodriguez and E. W. Biersack, “Continuous multicast push of web

documents over the internet,” IEEE Network, vol. 12, pp. 18–31, March–

April 1998.

[55] J. C.-I. Chuang and M. A. Sirbu, “Pricing multicast communication: A cost-

based approach,” in Proceedings of the INET’98 Conference, 1998.

[56] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered multi-

cast,” in Proceedings of ACM SIGCOMM, pp. 117–130, August 1996.

[57] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang, “A reliable

multicast framework for light-weight sessions and application level framing,”

in Proceedings of ACM SIGCOMM, pp. 342–356, August 1995.

[58] D. DeLucia and K. Obraczka, “Multicast feedback suppression using repre-

sentatives,” in Proceedings of IEEE INFOCOM, 1997.

[59] S. Paul, K. K. Sabnani, J. C. Lin, and S. Bhattacharyya, “Reliable multicast

transport protocol (RMTP),” IEEE Journal on Selected Areas in Communi-

cations, vol. 15, pp. 407–421, April 1997.

BIBLIOGRAPHY 132

[60] K. L. Calvert, J. Griffioen, A. Sehgal, and S. Wen, “Concast: Design and

implementation of a new network service,” in Proceedings of the International

Conference on Network Protocols, pp. 335–344, November 1999.

[61] J.-C. Bolot, T. Turletti, and I. Wakeman, “Scalable feedback control for mul-

ticast video distribution on the internet,” in Proceedings of ACM SIGCOMM,

pp. 58–67, September 1994.

[62] M. Grossglauser, “Optimal deterministic timeouts for reliable scalable multi-

cast,” in Proceedings of IEEE INFOCOM, 1996.

[63] M. Grossglauser, “Optimal deterministic timeouts for reliable scalable multi-

cast,” IEEE Journal On Selected Areas In Communications, vol. 15, pp. 422–

433, April 1997.

[64] R. Yavatkar, J. Griffioen, and M. Sudan, “A reliable dissemination protocol

for interactive collaborative applications,” in Proceedings of ACM Multimedia,

pp. 333–344, 1995.

[65] Y. Birk and D. Crupnicoff, “A multicast transmission schedule for scal-

able multi-rate distribution of bulk data using non-scalable erasure-correcting

codes,” in Proceedings of IEEE INFOCOM, pp. 1033–1043, 2003.

[66] K. C. Almeroth, M. H. Ammar, and Z. Fei, “Scalable delivery of web pages

BIBLIOGRAPHY 133

using cyclic best-effort (UDP) multicast,” in Proceedings of IEEE INFOCOM,

March 1998.

[67] L. Rizzo and L. Vicisano, “A reliable multicast data distribution protocol

based on software FEC techniques,” in Proceedings of the HPCS’97 Work-

shop, June 1997.

[68] J. S. Gwertzman and M. Seltzer, “An analysis of geographical push-caching,”

in Proceedings of the 17th IEEE International Conference on Distributed

Computing Systems, 1997.

[69] A. Chankhunthod, P. B. Danzip, C. Neerdaels, M. F. Schwartz, and K. J.

Worrell, “A hierarchical internet object cache,” Tech. Rep. CU-CS-766-95,

Department of Computer Science, University of Colorado – Boulder, 1995.

[70] R. Cohen, L. Katzir, and D. Raz, “Scheduling algorithms for a cache pre-filling

content distribution network,” in Proceedings of IEEE INFOCOM, pp. 940–

949, 2002.

[71] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and

Zipf-like distributions: Evidence and implications,” Tech. Rep. 1371, Com-

puter Sciences Department, University of Wisconsin-Madison, 1998.

BIBLIOGRAPHY 134

[72] G. K. Zipf, Human behavior and the principle of least effort; an introduction

to human ecology. Addison-Wesley, 1949.

[73] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira, “Characteriz-

ing reference locality in the WWW,” Tech. Rep. TR-96-11, Department of

Computer Science, Boston University, 1996.

[74] I. Marshall and C. Roadknight, “Linking cache performance to user be-

haviour,” in Proceedings of the 3rd International Web Caching Workshop,

June 1998.

[75] F. Douglis, A. Feldmann, and B. Krishnamurthy, “Rate of change and other

metrics: A live study of the world wide web,” in Proceedings of the USENIX

Symposium on Internet Technologies and Systems, pp. 147–158, December

1997.

[76] J. Cho and H. Garcia-Molina, “The evolution of the web and implications

for an incremental crawler,” in Proceedings of the 26th Annual Conference on

Very Large Data Bases, pp. 200–209, September 2000.

[77] S. Deng, “Empirical model of WWW document arrivals at access link,” in

Proceedings of IEEE ICC, 1996.

[78] M. E. Crovella and A. Bestavros, “Explaining world wide web traffic self-

BIBLIOGRAPHY 135

similarity,” Tech. Rep. TR-95-015, Computer Science Department, Boston

University, 1995.

[79] M. E. Crovella and A. Bestavros, “Self-similarity in world wide web traf-

fic evidence and possible causes,” in Proceedings of ACM SIGMETRICS,

pp. 160–169, May 1996.

[80] P. Barford, A. Bestavros, A. Bradley, and M. Crovella, “Changes in web client

access patterns: Characteristics and caching implications,” Tech. Rep. BUCS-

TR-1998-023, Computer Science Department, Boston University, 1998.

[81] S. U. Khaunte and J. O. Limb, “Statistical characterization of a world wide

web browsing session,” Tech. Rep. GIT-CC-97-17, College of Computing,

Georgia Institute of Technology, 1997.

[82] P. Barford and M. Crovella, “Generating representative web workloads for

network and server performance evaluation,” Tech. Rep. BU-CS-97-006, Com-

puter Science Department, Boston University, 1998.

[83] J. Almeida and P. Cao, “Measuring proxy performance with the wiscon-

sin proxy benchmark,” in Proceedings of the 3rd International Web Caching

Workshop, June 1998.

BIBLIOGRAPHY 136

[84] B. D. Davison, “Simultaneous proxy evaluation,” in Proceedings of the 4th

International Web Caching Workshop, March 1999.

[85] Transaction Processing Performance Council, “TPC Benchmarktm W,”

2001.

[86] J. Jung, A. W. Berger, and H. Balakrishnan, “Modelling TTL-based internet

caches,” in Proceedings of IEEE INFOCOM, pp. 417–426, 2003.

[87] E. Cohen and H. Kaplan, “Refreshment policies for web content caches,” in

Proceedings of IEEE INFOCOM, pp. 1398–1406, 2001.

[88] E. Cohen and H. Kaplan, “Ageing through cascaded caches; performance

issues in the distribution of web content,” in Proceedings of ACM SIGCOMM,

pp. 41–53, 2001.

[89] Z. Fei, “A novel approach to managing consistency in content distribution

networks,” in Proceedings of the 6th International Web Content Caching and

Distribution Workshop, 2001.

[90] M. Reddy and G. P. Pletcher, “Intelligent web caching using document life

histories: A comparison with existing cache management techniques,” in Pro-

ceedings of the Third International Web Caching Workshop, June 1998.

BIBLIOGRAPHY 137

[91] B. Krishnamurthy and C. E. Wills, “Study of piggyback cache validation for

proxy caches in the world wide web,” in Proceedings of the USENIX Sympo-

sium on Internet Technology and Systems, December 1997.

[92] B. Krishnamurthy and C. E. Wills, “Proxy cache coherency and

replacement—towards a more complete picture,” in Proceedings of the 19th

IEEE International Conference on Distributed Computing Systems, June

1999.

[93] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar, “Engineering server-driven con-

sistency for large scale dynamic web services,” in Proceedings of the 10th

Annual World Wide Web Conference, pp. 45–57, May 2001.

[94] D. Li and D. R. Cheriton, “Scalable web caching of frequently updated ob-

jects using reliable multicast,” in Proceedings of the USENIX Symposium on

Internet Technology and Systems, October 1999.

[95] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy,

“Adaptive push-pull: Disseminating dynamic web data,” in Proceedings of

the 10th International World Wide Web Conference, pp. 265–274, May 2001.

[96] M. Mikhailov and C. E. Wills, “Evaluating a new approach to strong web

BIBLIOGRAPHY 138

cache consistency with snapshots of collected content,” in Proceedings of the

12th International World Wide Web Conference, pp. 599–608, May 2003.

[97] V. Duvvuri, P. Shenoy, and R. Tewari, “Adaptive leases: A strong consistency

mechanism for the world wide web,” in Proceedings of IEEE INFOCOM,

pp. 834–843, 2000.

[98] A. Ninan, P. Kulkami, P. Shenoy, K. Ramamritham, and R. Tewari, “Co-

operative leases: Scalable consistency maintenance in content distribution

networks,” in Proceedings of the 11th International World Wide Web Con-

ference, pp. 1–12, May 2002.

[99] J. W. Wong, D. Evans, and A. K. Kock, “Caching and multicast delivery,”

in Electronic Commerce Technology Trends: Challenges and Opportunities,

pp. 29–40, IBM Press, 2000.

[100] N. Yu and A. Vahdat, “Design and evaluation of a continuous consistency

model for replicated services,” in Proceedings of Operating Systems Design

and Implementation, October 2000.

[101] A. Labrinidis and N. Roussopoulos, “Webview materialization,” in Proceed-

ings of ACM SIGMOD, pp. 367–378, May 2000.

[102] A. Labrinidis and N. Roussopoulos, “Update propagation strategies for im-

BIBLIOGRAPHY 139

proving the quality of data on the web,” in Proceedings of the 27th Annual

Conference on Very Large Data Bases, pp. 391–400, September 2001.

[103] B. E. Brewington and G. Cybenko, “How dynamic is the web?,” in Proceed-

ings of the 9th International World Wide Web Conference, May 2000.

[104] B. Liu, G. Abdulla, T. Johnson, and E. A. Fox, “Web response time and

proxy caching,” in Proceedings of WebNet98, November 1998.

[105] L. D. Catledge and J. E. Pitkow, “Characterizing browsing strategies in the

world-wide web,” Computer Networks and ISDN Systems, vol. 27, pp. 1065–

1073, April 1995.

[106] B. M. Duska, D. Marwood, and M. J. Feeley, “The measured access character-

istics of world wide web client proxy caches,” in Proceedings of the USENIX

Symposium on Internet Technologies and Systems, December 1997.

[107] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,” in Pro-

ceedings of the USENIX Symposium on Internet Technologies and Systems,

pp. 193–206, December 1997.

[108] J. Shim, P. Scheuermann, and R. Vingralek, “Proxy cache design: Algo-

rithms, implementation and performance,” IEEE Transactions on Knowledge

and Data Engineering, vol. 11, pp. 549–562, July–August 1999.

BIBLIOGRAPHY 140

[109] O. Bahat and A. M. Makowski, “Optimal replacement policies for non-

uniform cache objects with optional eviction,” in Proceedings of IEEE IN-

FOCOM, pp. 427–437, 2003.

[110] J. W. Wong, D. Evans, and M. Kwok, “On staleness and the delivery of web

pages,” Information Systems Frontiers: A Journal of Research and Innova-

tion, vol. 5, pp. 129–136, April 2003.

[111] T. kelly and J. Mogul, “Aliasing on the world wide web: Prevalence and

performance implications,” in Proceedings of the 11th International World

Wide Web Conference, pp. 281–292, May 2002.

[112] R. Jain, The Art of Computer Systems Performance Analysis. New York:

Jon Wiley & Sons, 1991.

[113] W. Kaplan, Advanced Calculus. Reading: Addison-Wesley, 1952.

