Social Choice for Partial Preferences
Using Imputation

by

John A. Doucette

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2016

(© John A. Doucette 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

Within the field of multiagent systems, the area of computational social choice consid-
ers the problems arising when decisions must be made collectively by a group of agents.
Usually such systems collect a ranking of the alternatives from each member of the group
in turn, and aggregate these individual rankings to arrive at a collective decision. How-
ever, when there are many alternatives to consider, individual agents may be unwilling, or
unable, to rank all of them, leading to decisions that must be made on the basis of incom-
plete information. While earlier approaches attempt to work with the provided rankings
by making assumptions about the nature of the missing information, this can lead to un-
desirable outcomes when the assumptions do not hold, and is ill-suited to certain problem
domains. In this thesis, we propose a new approach that uses machine learning algorithms
(both conventional and purpose-built) to generate plausible completions of each agent’s
rankings on the basis of the partial rankings the agent provided (imputations), in a way
that reflects the agents’ true preferences. We show that the combination of existing social
choice functions with certain classes of imputation algorithms, which forms the core of our
proposed solution, is equivalent to a form of social choice. Our system then undergoes
an extensive empirical validation under 40 different test conditions, involving more than
50,000 group decision problems generated from real-world electoral data, and is found
to outperform existing competitors significantly, leading to better group decisions over-
all. Detailed empirical findings are also used to characterize the behaviour of the system,
and illustrate the circumstances in which it is most advantageous. A general testbed for
comparing solutions using real-world and artificial data (Prefmine) is then described, in
conjunction with results that justify its design decisions. We move on to propose a new
machine learning algorithm intended specifically to learn and impute the preferences of
agents, and validate its effectiveness. This Markov-Tree approach is demonstrated to be
superior to imputation using conventional machine learning, and has a simple interpreta-
tion that characterizes the problems on which it will perform well. Later chapters contain
an axiomatic validation of both of our new approaches, as well as techniques for mitigat-
ing their manipulability. The thesis concludes with a discussion of the applicability of its
contributions, both for multiagent systems and for settings involving human elections. In
all, we reveal an interesting connection between machine learning and computational social
choice, and introduce a testbed which facilitates future research efforts on computational
social choice for partial preferences, by allowing empirical comparisons between competing
approaches to be conducted easily, accurately, and quickly. Perhaps most importantly, we
offer an important and effective new direction for enabling group decision making when
preferences are not completely specified, using imputation methods.

111

Acknowledgements

I thank my supervisor, Professor Robin Cohen, for her advice, guidance, and knowledge,
which were instrumental to this thesis, and invaluable for my academic career besides.
Robin’s concern for her students is exceptional, and serves as an example for how an
adviser’s interest can enhance the success of her students.

I thank the members of my committee. Professors Kate Larson and Daniel Lizotte pro-
vided valuable feedback and criticism throughout my doctoral studies, as well as essential
knowledge and instruction. Professors Paul Thagard and Toby Walsh offered compelling
questions and suggestions on the final manuscript that were greatly appreciated. Professor
Marc Kilgour also provided deep insights into the thesis.

The efforts of university staff members helped me to navigate the complex university
bureaucracy, and remained familiar faces amid an ever changing population of students
and faculty. I especially thank Wendy Rush, Margaret Towell, Neoma Power, and Jessica
Miranda for their assistance.

Throughout my doctoral studies, visits, outings, and correspondence with friends and
family, both near and far, have helped me to remain focused and engaged with my work.
Foremost, I thank my spouse, Catherine Holloway, for her support and companionship
throughout our academic journey. I also thank my family, especially Sally, Glenn, Zoe
and Clara for their support, and my grandfather Tony Erskine for his correspondence and
understanding. My close friends Elliot Snow-Kropla, Michael Todd, Jake Summers, and
Colin Conrad provided the occasional escape from academia, and the accompanying shift
in perspective, that was a great source of relaxation during my doctoral studies.

Closer to home, Alan Tsang, Hadi Hosseini, Cecylia Bocovich, and Tariq Elahi became
collaborators as well as friends, broadening the scope of my studies and providing the in-
tellectually stimulating conversations that make the academic environment so compelling
in the first place. John Champaign, Lachlan Dufton, Graham Pinhey, Dean Shaft and
Shengying Pan kept our shared office a lively and thought provoking place. Noel Sardana,
Vijay Menon, Michael Cormier, Dan Ricoskie, Rhiannon Rose, and Adam Hartfiel culti-
vated a similar atmosphere in the Al Lab at large. Friends and classmates Sarah Kaiser,
Erinn Atwater, Yuval Sanders and Steven Casagrande commiserated or celebrated as our
shared times in academia demanded.

Finally, I acknowledge the generous financial support of the Vanier Canada Graduate
Scholarship program, the Natural Science and Engineering Research Council of Canada,
the David R. Cheriton Scholarship program, the Ontario Graduate Scholarship program,
the GO-Bell Scholarship program, and the University of Waterloo.

v

Dedication

I dedicate this thesis to my wife and partner in life, Catherine Holloway. Without her love,
support and friendship my doctoral studies would not have been possible.

Table of Contents

List of Tables
List of Figures

1 Introduction

1.1 Thesis Statement

2 Background

2.1 What is Social Choice?
2.1.1 A Brief History of Social Choice
2.1.2 Voting Rules Used in this Thesis

2.1.3 Axiomatic Social Choice and Impossibility Results

2.1.4 Measuring Similarities Between Rankings

2.1.5 Artificial Preference Distributions
2.2 What is Machine Learning? L.

2.2.1 The Basics

2.2.2 Relevant Learning Algorithms
2.2.3 Multiclass Classification
2.2.4 Feature Selection

2.3 Summary

vi

xi

xviil

3 Problem Statement 34

3.1 Social Choice with Partial Preferences 35
3.1.1 Motivating Example o000 36
3.2 Formal Problem Statement 40
3.2.1 Formalization of the Motivating Example 41
3.2.2 The Definition of a “Good” Decision 43
3.2.3 Problem Statement oL 47
3.3 Existing Approaches 47
3.3.1 Maximum Likelihood 0oL 48
3.3.2 Minimax Regreto 50
3.4 Summary 51
4 An Imputation-Based Approach 52
4.1 Solving the motivational example L. 53
4.1.1 Free Lunches in Social Choice? 56
4.1.2 The Relationship Between Preference Learning and Group Decision
Making o7
4.2 A General System 58
4.2.1 Informal Description L. 58
4.2.2 Example 61
4.2.3 Formalized System oL 62
4.2.4 Conventional Machine Learning as Social Choice 67
4.3 An Initial Implementation 75
4.3.1 Algorithm Selection 75
4.3.2 Feature Construction 7
4.3.3 Model Selection 80
4.4 SUMMATY o vt e e 83

vii

5 Feasibility Study 84

6

5.1 Motivation 85
5.1.1 Measuring Problem Difficulty 86
5.1.2 Empirical Results 91

5.2 Experimental Design 96
5.21 Data o 96
5.2.2 Problem Generation 98
5.2.3 The Imputation Based Approach 102
5.2.4 Competitors 104

5.3 Results. 108
5.3.1 Results Overview 109
5.3.2 Single Winner Performance 121
5.3.3 Ranking Performance 123

5.4 Classifier Error Rates oo 133

5.5 Discussion 139

5.6 Summary . . oL ... e 140

Prefmine Experimental Testbed 141

6.1 The Prefmine System 142
6.1.1 System Design Lo 144
6.1.2 An Algorithmic Description of Prefmine 145
6.1.3 Using Prefmine 153
6.1.4 Dataset Generation 153
6.1.5 Imputation Modes 159
6.1.6 Voting Rules 163
6.1.7 Performance Measures 165
6.1.8 Extending the System L. 168

6.2 Lessons for Practitioners 169

8

6.2.1 Experimental Robustness. 169

6.2.2 Feature Selection and Algorithm Choice 170
6.3 Summary 177
Markov Tree Approach 180
7.1 Motivation 181
7.2 Ballots as Sequences 185
7.2.1 An Interpretation of the Markov Trees 188
7.3 Learning Markov Models Lo 190
7.3.1 Convergence Rates 197
7.4 Consistency Results 201
7.5 Convergence to Artificial Distributions 208
7.6 Empirical Results 212
7.6.1 Bias 223
T7 SUMMATY . . o v ot s e e 223
Axiomatic Analysis 228
8.1 Formal Problem Statement 231
8.2 Methods Under Consideration, 232
8.3 Axioms for Imputation Methods 236
8.3.1 Discussion 238
8.4 Axiomatic Assessment of Imputation Algorithms 239
8.4.1 Hot Deck Classifier 240
8.4.2 Plurality Classifier 243
8.4.3 The Proportionate Classifier 248
8.4.4 First Order Markov Tree 253
8.4.5 Discussion 259
8.5 Combinations 259
8.6 Summary 261

X

9 Manipulation Analysis

9.1 Motivation

9.1.1 Why Worry About Manipulation?
9.2 Addressing Manipulation with Differential Privacy
9.3 Robustness of Imputations L.

9.4 Discussion

10 Conclusion and Future Work
10.1 The Coordination Example

10.2 Conclusion and Discussion
10.3 Related Work
10.4 Future Work s,

10.5 Summary

References

262
263
267
269
274
275

277
278
282
284
286
291

293

List of Tables

2.1

3.1

3.2

3.3

3.4
3.5
3.6

4.1

4.2

4.3

Data for an example classification problem. The matrix of exemplars is
shown on the left, with four named features corresponding to the time (in
hours) that each student spent doing different tasks during the first week of
an online course. The vector of labels is shown on the right. 25

The Borda Count scores assigned to each alternative in the Martian Swarm
Example. 38

The Borda Count scores assigned to each alternative in the Martian Swarm
Example, if Ares transmits incomplete information, and only transmitted
information is used in scoring.o 39

The Borda Count scores assigned to each alternative in the Martian Swarm
Example, if Ares transmits incomplete information, and an average score is

assigned to missing entries.o 40
Notation used in the modelling of an election. 42
A formalized version of the true preferences in the motivational example. . 42

A formalized version of the revealed preferences in the motivational example. 42

The Borda Count scores assigned to each alternative in the true preference
profile from Figure 4.2.o o 5%)

A table showing a representation of the preferences ¢; = ¢o ~ ¢4 > c3 as a
series of binary features.o oo 79

A table showing four example ballots that are used in the full featurization
example. The ballots each express a partial order over four candidates ¢y, ..., ¢4. 80

el

4.4

5.1

5.2

2.3

5.4

3.5

Two tables showing a full featurization example, representing the ballots
from Table 4.3 as a matrix of features. The lower table is a continuation
of the upper, which is too wide for the page. Each column corresponds
to one of the features discussed in the text (from left to right: indicators
for presence on the ballot; position on the ballot; pairwise indicators; and
pairwise differences). A dummy column with value 1 for every ballot is
placed on the extreme left, to find the model intercept.

Table showing the mean SWW, MWW and FE ratings of 10,000 social
choice with incomplete information problems generated on the basis of 10
real world datasets, computed with respect to the K- Approval social choice
function, with L@J The reported measurement errors are the sample stan-
dard deviations. Measurement errors are omitted when all measurements

were identical.

Table showing the mean SWW, MWW and FE ratings of 10,000 social
choice with incomplete information problems generated on the basis of 10
real world datasets, computed with respect to the Borda social choice func-
tion. The reported measurement errors are the sample standard deviations.
Measurement errors are omitted when all measurements were identical.

Table showing the mean SWW, MWW and FE ratings of 10,000 social
choice with incomplete information problems generated on the basis of 10
real world datasets, computed with respect to the Copeland social choice
function. The reported measurement errors are the sample standard devia-

93

tions. Measurement errors are omitted when all measurements were identical. 94

Table showing the mean SWW, MWW and FE ratings of 10,000 social
choice with incomplete information problems generated on the basis of 10
real world datasets, computed with respect to the Veto social choice func-
tion. The reported measurement errors are the sample standard deviations.
Measurement errors are omitted when all measurements were identical.

Summary of the datasets used in the initial evaluation of the system, in-
cluding the number of ballots, number of candidates, percentage of missing
data, and type of election. L

xii

95

2.6

2.7

2.8

5.9

5.10

5.11

5.12

5.13

Table showing the mean SWW, MWW, and FE measures for the instan-
tiation of the imputation-based approach using logistic regression on the
K-Approval social choice function. Reported values are the mean over
many problem instances, and reported measurement errors are the sample
standard deviations.

Table showing the mean SWW, MWW, and FE measures for the instan-
tiation of the imputation-based approach using logistic regression on the
Borda social choice function. Reported values are the mean over many
problem instances, and reported measurement errors are the sample stan-
dard deviations.

Table showing the mean SWW, MWW, and FE measures for the instan-
tiation of the imputation-based approach using logistic regression on the
Copeland social choice function. Reported values are the mean over many
problem instances, and reported measurement errors are the sample stan-
dard deviations.

Table showing the mean SWW, MWW, and FE measures for the instan-
tiation of the imputation-based approach using logistic regression on the
Veto social choice function. Reported values are the mean over many prob-
lem instances, and reported measurement errors are the sample standard
deviations.

Table showing the mean SWW, MWW, and FE measures for the Minimax
Regret approach on the K-Approval social choice function. Reported val-
ues are the mean over many problem instances, and reported measurement
errors are the sample standard deviations.

Table showing the mean SWW, MWW, and FE measures for the Minimax
Regret approach on the Borda social choice function. Reported values are
the mean over many problem instances, and reported measurement errors
are the sample standard deviations.

Table showing the mean SWW, MWW, and FE measures for the Minimax
Regret approach on the Copeland social choice function. Reported values
are the mean over many problem instances, and reported measurement errors
are the sample standard deviations.

Table showing the mean SWW, MWW, and FE measures for the Minimax
Regret approach on the Veto social choice function. Reported values are
the mean over many problem instances, and reported measurement errors
are the sample standard deviations.

Xlil

5.14

5.15

5.16

5.17

6.1

6.2

Table showing the mean SWW, MWW, and FE measures for the Random
Imputation approach on the K-Approval social choice function. Reported
values are the mean over many problem instances, and reported measure-
ment errors are the sample standard deviations.

Table showing the mean SWW, MWW, and FE measures for the Random
Imputation approach on the Borda social choice function. Reported values
are the mean over many problem instances, and reported measurement errors
are the sample standard deviations.

Table showing the mean SWW, MWW, and FE measures for the Random
Imputation approach on the Copeland social choice function. Reported
values are the mean over many problem instances, and reported measure-
ment errors are the sample standard deviations.

Table showing the mean SWW, MWW, and FE measures for the Random
Imputation approach on the Veto social choice function. Reported values
are the mean over many problem instances, and reported measurement errors
are the sample standard deviations.

A summary of the results from the preliminary experiment comparing fea-
ture selection methods and classifiers for use with the imputation based
approach to resolving social choice with incomplete information. Perfor-
mance is reported under the Borda Error measure, which is related to the
classifier’s accuracy in imputing ballots. Performance which is statistically
indistinguishable from the best on any given dataset has been rendered in

A summary of the results from the preliminary experiment comparing fea-
ture selection methods and classifiers for use with the imputation based
approach to resolving social choice with incomplete information. Perfor-
mance is reported under the Bias measure, which is the correlation between
the classifier’s error in imputing a given candidate and the popularity of
that candidate. Performance which is statistically indistinguishable from
the best on any given dataset has been rendered in bold.

X1v

7.1

7.2

7.3

7.4

7.5

7.6

Tables showing an example of the probability distributions used in a first-
order Markov Tree. The distribution over initial states R; is shown on the
left, while the transition probabilities (i.e. the distribution of R; given R; ;)
are shown in the table on the right. The red numbers correspond to the
probabilities that are re-normalized and used to determine a voter’s third
preference, given that their first preference was co, and their second was c.

Tables showing the prior observations for an example First-Order Markov
Tree before being updated with training data. The model can be viewed as
five categorical distributions, one in the table on the left, and four in the
table on the right. Rather than showing the proportions in the distribution,
the number of observations for each of the candidates is shown.

Tables showing the posterior observation counts and parameter estimates
for an example First-Order Markov Tree after being updated with training
data. The model can be viewed as five categorical distributions, one in the
table on the left, and four in the table on the right.

Table showing the mean First Error Location, Single Winner Error, and
Kendall correlation for a Markov Tree of order 3, averaged across many
runs on each of ten different datasets under the K-Approval voting rule.
The ranges shown with + are the sample standard deviations for these per-
formance measures. The number of candidates in the election, and the
percentage of data that is missing are also shown for reference.

Table showing the mean First Error Location, Single Winner Error, and
Kendall correlation for a Markov Tree of order 3, averaged across many runs
on each of ten different datasets under the Borda voting rule. The ranges
shown with £ are the sample standard deviations for these performance
measures. The number of candidates in the election, and the percentage of
data that is missing are also shown for reference.

Table showing the mean First Error Location, Single Winner Error, and
Kendall correlation for a Markov Tree of order 3, averaged across many
runs on each of ten different datasets under the Copeland voting rule.
The ranges shown with + are the sample standard deviations for these per-
formance measures. The number of candidates in the election, and the
percentage of data that is missing are also shown for reference.

XV

192

7.7 Table showing the mean First Error Location, Single Winner Error, and

8.1

Kendall correlation for a Markov Tree of order 3, averaged across many runs
on each of ten different datasets under the Veto voting rule. The ranges
shown with 4+ are the sample standard deviations for these performance
measures. The number of candidates in the election, and the percentage of
data that is missing are also shown for reference.

A summary of the axiomatic properties that are and are not satisfied by
each of several different imputation methods.

Xvi

List of Figures

1.1
1.2

1.3

2.1
2.2
2.3
24

2.5

An example vote vector.

An example preference profile illustrating the difficulties inherent in making
principled group decisions.o

A preference profile illustrating the difficulties of group decision making with
incomplete information.o L

Borda’s example preference profile.
Condorcet’s example preference profile.
Example Single-Peaked Preferences

Some example logistic regression models. The horizontal axis corresponds
to the values of a feature, while the vertical axis corresponds to the value of
the labels. Points indicate examplars. A curve with a larger positive weight
will be steeper than one with a smaller positive weight

A depiction of the optimization problem solved by a support vector machine
classification algorithm. The colours of different point correspond to their
classes. The learned plan lies equidistant between the nearest points from
each class. The figure was released into the public domain for the purpose
of illustrating support vector machines, and the creator is known only by a
pseudonym “Cyc”. It is reproduced here from https://en.wikipedia.org/
wiki/File:Svm_max_sep_hyperplane_with_margin.png

xXvil

https://en.wikipedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png
https://en.wikipedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png

2.6

3.1

3.2

3.3

3.4

4.1

4.2

4.3

An example showing the power of the kernel trick. In the original feature
space the points belonging to the two classes cannot be separated with a
plane (left). After projecting them into a space with an additional dimen-
sion based on the distance of points from the origin, the points are easily
separated (right). Note that the figure on the right shows only two of the
three dimensions involved (the horizontal axis from the left figure, and the
new feature based on distance from the origin).

A map depicting the agents and alternatives involved in Martian Swarm
Example.0

A preference profile from the Martian Swarm example, used to illustrate the
difficulties of group decision making with incomplete information.

An incomplete preference profile from the Martian Swarm example, after
the preferences of Ares are ablated.

An example where the maximum likelihood approach to voting selects a
Condorcet loser as the winner of the election. The upper portion of the
figure shows the true and expressed preferences of the voters, while the
lower portion show the weighted majority graph for the election.

A reproduction of true (left) and expressed (right) preferences from the
motivational example of Chapter 3.

Example true (left) and expressed (right) preference profiles where the com-
bination of Imputation Plurality and Borda Count makes an incorrect
decision.

A graphical depiction of a general approach to combining social choice and
machine learning. Incomplete expressed preferences (ballots) are passed
to a machine learning algorithm (1), which outputs a model (2) capable
of predicting true preferences from expressed preferences. The incomplete
ballots are then passed to the model (3), producing a set of complete ballots.
Complete ballots are passed to a social choice or social welfare function (4),
which outputs a decision (5). To the extent that the model is a true mapping
from expressed to true preferences, the complete ballots will match the true
preferences of the voters, leading to a decision that closely approximates the
correct decision.

XVviil

o4

4.4

4.5
4.6

0.1

5.2

2.3

5.4

A depiction of a chained classifier model, as output by Algorithm 2. The
output model m is a list of classifiers, {my, ..., mc|}. Model m; predicts the
ith preference of a given ballot.

64

Example preferences used to elaborate on the process described in Algorithm 2. 65

A visual depiction of logistic regression with one dependent variable. The
data consist of points labelled 1 (red squares) and 0 (blue circles). The y-
axis shows the label of each data point, while the x-axis shows the value of
the single feature. The top-left figure depicts a reasonable logistic curve fit
to this data. By changing the co-efficient of w;, the weight applied to the
single feature, the steepness of the curve can be changed (top-right figure).
By changing the intercept weight wy, the curve can be translated to the left
or right (bottom figure). The optimal combination of weights minimizes the
square of the distance between each point and the curve.

Two example voting problems with incomplete information. The top pair of
preference profiles depicts a case where a Condorcet winner is present in the
true preferences of voters (left), and is implied by their expressed preferences
as well (right). The bottom pair of preference profiles also has a Condorcet
winner in voters’ true preferences (left), but the revealed preferences are
consistent with many possible winners (right).

Two probability density functions for exponentially distributed preference
truncation points in top-orders are shown with dashed lines. The observed
density function for the preference truncation point in top-orders is shown
as a solid line. Neither of the exponential distributions are able to fit the
observed rates at both the top and bottom effectively.

The three cases to consider when maximizing the regret for picking one
candidate (a) over another (w), reproduced from [Lu and Boutilier, 2011b].
In the first case (left), a comes before w. In the second (middle), a comes
after w, and in the third case, a and w are incomparable. The various
bubbles represent sets of candidates, and under a given voting rule, these
sets must be ordered differently in the regret maximizing completion. See
text in this chapter for an example. L.

Figure comparing Winner Determination Performance of the imputation-
based approach with logistic regression to MMR, random imputations, and
worst-case imputations, under the K- Approval social choice function. Bars
show mean SW Error, and whiskers show one standard deviation.

Xix

78

87

101

108

2.5

0.6

2.7

2.8

2.9

5.10

5.11

5.12

Figure comparing Winner Determination Performance of the imputation-
based approach with logistic regression to MMR, random imputations, and
worst-case imputations, under the Borda social choice function. Bars show
mean SW Error, and whiskers show one standard deviation.

Figure comparing Winner Determination Performance of the imputation-
based approach with logistic regression to MMR, random imputations, and
worst-case imputations, under the Copeland social choice function. Bars
show mean SW Error, and whiskers show one standard deviation.

Figure comparing Winner Determination Performance of the imputation-
based approach with logistic regression to MMR, random imputations, and
worst-case imputations, under the Veto social choice function. Bars show
mean SW Error, and whiskers show one standard deviation.

Figure comparing correlation of the imputation-based approach with logis-
tic regression to MMR, random imputations, and worst-case imputations,
under the K-Approval social choice function. Bars show mean Kendall
Correlation, and whiskers show one standard deviation.

Figure comparing correlation of the imputation-based approach with logistic
regression to MMR, random imputations, and worst-case imputations, under
the Borda social choice function. Bars show mean Kendall Correlation, and
whiskers show one standard deviation.,

Figure comparing correlation of the imputation-based approach with logistic
regression to MMR, random imputations, and worst-case imputations, under
the Copeland social choice function. Bars show mean Kendall Correlation,
and whiskers show one standard deviation.

Figure comparing correlation of the imputation-based approach with logistic
regression to MMR, random imputations, and worst-case imputations, under
the Veto social choice function. Bars show mean Kendall Correlation, and
whiskers show one standard deviation.

Figure comparing first error location of the imputation-based approach with
logistic regression to MMR, random imputations, and worst-case imputa-
tions, under the K- Approval social choice function. Bars show mean loca-
tion of the first ranking error, and whiskers show one standard deviation.

XX

131

5.13

5.14

5.15

5.16

5.17

Figure comparing first error location of the imputation-based approach with
logistic regression to MMR, random imputations, and worst-case imputa-
tions, under the Borda social choice function. Bars show mean location of
the first ranking error, and whiskers show one standard deviation.

Figure comparing first error location of the imputation-based approach with
logistic regression to MMR, random imputations, and worst-case imputa-
tions, under the Copeland social choice function. Bars show mean location
of the first ranking error, and whiskers show one standard deviation.

Figure comparing first error location of the imputation-based approach with
logistic regression to MMR, random imputations, and worst-case imputa-
tions, under the Veto social choice function. Bars show mean location of
the first ranking error, and whiskers show one standard deviation.

Boxplots showing the observed distribution of bias for each candidate in
the Dublin North election when the imputation-based approach was used
to decide the election. Each boxplot shows the median, and first and third
quartiles of the magnitude of the bias in that candidate’s score as a pro-
portion of their total score, with whiskers showing the locations of the most
extreme values within 1.5 times the height of the main box. The popularity
of candidates increases from left to right.

Plot of the mean bias for each candidate with candidates again sorted in
order of their Borda scores on the ground-truth data. The solid red line
shows the linear least squares regression on the points, using their ranks
as the dependent variable. The dashed black lines show a 95% confidence
interval for the slope of the line.

poel

132

6.1

6.2

6.3

6.4

6.5

A graphical depiction of the data flow in Prefmine, with example input
arguments. Light blue boxes denote algorithms, presented in full in the
text. Orange cylinders show external data stores. Green squares denote
immutable internal data stores, output by one of the system’s algorithms.
Green ovals show the system’s final output. Processing begins with the
leftmost algorithm (the Dataset Loader), which downloads data from the
Preflib repository, and then formats it as an immutable database. The
immutable datasets are then passed to the middle algorithm (The Experi-
mental Loop), which runs experiments on them according to its other input
parameters, producing an immutable results database. The rightmost al-
gorithm (The Analysis Toolkit) can be used to generate human readable
and Latex-formatted tables by querying the results database. Queries are
constructed from the input parameters. Existing valid parameter settings

are discussed later in the text, but most parameter sets are easily extensible. 147

The initial Prefmine window, from which users can launch a new experiment,
or run the analysis toolkit. L

The experiment configuration window in Prefmine, from which the user can
configure input parameters for both the Dataset Loader and Experimental
Loop portions of the system.

An example of an experiment configured using Prefmine’s experiment con-
figuration window. The experiment will run over the seven Debian datasets
from the Preflib repository. Logistic Regression and a Worst Case Imputa-
tion approach will be applied to each problem instance, and the Copeland
voting rule will be used to decide outcomes. Performance will be assessed un-
der the Single Winner Error, First Error Location, and Kendall Correlation
(1) performance measures. 5 replications will be performed, and the out-
put database will be stored in /tmp/, overwriting any existing results there.
Since more than one dataset is being processed, the output filename param-
eter is ignored. The parameters below the output textbox (“Waiting...”) are
used to configure synthetic data generators or imputation methods that are
not used, and so are ignored. Pressing the “Create” button will start the
experiment. e e e e

An example of a Prefmine experiment in progress, using the settings from
Figure 6.4. Note the progress bars showing the fraction of datsets processed
(top) and runs completed on this dataset (bottom). The Textbox summa-
rizes progress, including runtimes required to complete each dataset.

xxil

157

6.6

6.7

6.8
6.9
6.10
6.11

7.1

7.2

7.3

7.4

7.5

7.6

The Prefmine analysis window. The window is similar to the experiment
window, but with a reduced set of options, and larger space to view the
output. Lo

The location of the dataset selection dropdown menu in Prefmine’s experi-
ment window.

The Imputation Method selection box in Prefmine’s experiment window.
The Voting Rules selection box in Prefmine’s experiment window.
The Performance Metric selection box in Prefmine’s experiment window.

Empirical cumulative density functions for unique ballots in Dublin North
and Dublin West. The x-axis shows the ranking of ballots from most to
least common. The y-axis shows the cumulative proportion of voters who
cast each ballot.o

A graphical representation of first, second, and third order Markov Models
for a sequence of length six. Each node corresponds to the state of a random
variable at the corresponding step in the sequence. An edge from R; to R;
shows that the probability distribution for R; depends on the value of R;.
Gray shaded nodes have identical probability distributions (by the Markov
assumption).

A graphical representation of a second order Markov Tree. The internal node
of the tree (the root) stores information about the distribution of values for
R, and R,, while the leaves store information about the distribution of R;
given the previous k£ = 2 values of the variable, for every ¢ > k.

A preference profile to be used in the example training of a First Order
Markov Tree.

Convergence of M PS|c|(T') of Markov Trees of different depths to the centroid of
a Mallows distribution with |C| = 5 and e~® = 0.5 as more data is drawn from
the Mallows. e

Convergence of M PS|c|(T) of Markov Trees of different depths to the centroid of
a Mallows distribution with |C| = 5 and e~® = 0.65 as more data is drawn from
the Mallows. o

Convergence of M PS|¢|(T') of Markov Trees of different depths to the centroid of
a Mallows distribution with |C| = 5 and e~® = 0.8 as more data is drawn from
the Mallows. e

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

Convergence of M PSc((T') of Markov Trees of different depths to the centroid of
a Mallows distribution with |C| = 10 and e~® = 0.5 as more data is drawn from
the Mallows. o . o e

Convergence of M PS¢(T) of Markov Trees of different depth to the centroid of
a Mallows distribution with |C] = 10 and e~® = 0.65 as more data is drawn from
the Mallows. e

Convergence of M PS|c((T') of Markov Trees of different depths to the centroid of
a Mallows distribution with |C| = 10 and e~® = 0.8 as more data is drawn from
the Mallows. o . o e

Convergence of M PS|¢|(T) of Markov Trees of different depths to the centroid of
a Mallows distribution with |C| = 20 and e® = 0.5 as more data is drawn from
the Mallows. e

Convergence of M PSc((T') of Markov Trees of different depths to the centroid of
a Mallows distribution with |C| = 20 and e® = 0.65 as more data is drawn from
the Mallows.

Convergence of M PS|c|(T') of Markov Trees of different depths to the centroid of
a Mallows distribution with |C| = 20 and e® = 0.8 as more data is drawn from
the Mallows. e

Convergence of M PS|¢|(T') to the induced ranking of a RUM with 5 candidates.
Number of rankings drawn increases along the x-axis, while the y axis shows the
normalized Kendall-Tau distance between the M PS and the induced ranking. Dif-
ferent lines correspond to different values of £ (i.e. model depth) for the Restricted
Markov Tree.

Convergence of M PS|¢((T') to the induced ranking of a RUM with 10 candidates.
Formatting is identical to Figure 7.13.

Convergence of M PS|c|(T) to the induced ranking of a RUM with 20 candidates.
Formatting is identical to Figure 7.13.o

Summary of performance for the Markov Tree Learner compared with three
competitors and the worst case model. (Top): Single Winner Error (inverse
scale). Higher values indicate better performance, 0 is the best possible.
(Bottom): Kendall Correlation. Higher values indicate better performance,
11is the best possible. L

XxXiv

213

214

215

7.17

9.1

9.2

10.1

10.2

The candidate logos from the Debian Logo election. The logos are quite
different from each other, and it is not at all clear how candidates might
collectively view them within the same space. Logos were recovered from the

Debian project’s website: https://www.debian.org/vote/1999/vote_0004.227

An example of an election with a profitable manipulation for voter v, under
the plurality system. Initially all candidates are tied, but tie-breaking is
lexicographic. c; is the winner. If vy changes their reported preferences to
vy then ¢z wins instead.o oo

Violin plots showing the distribution of the margin of victory under the
Borda voting rule (left) and K-Approval voting rule (right). Dashed red
lines show the maximum decrease in the margin that could be achieved by
replacing the removed subset of the ballots adversarially.

Improvement in Kendall Correlation from using the imputation-based ap-
proach in the coordination example problem under the Borda voting rule.
Box plots show the distribution of advantage over 100 problem instances for
different numbers of companies. Notches indicate a 95% confidence interval
for the median [Chambers, 1983]. L.

Improvement in Kendall Correlation from using the imputation-based ap-
proach in the coordination example problem under the K-Approval vot-
ing rule. Box plots show the distribution of advantage over 100 problem
instances for different numbers of companies. Notches indicate a 95% con-
fidence interval for the median [Chambers, 1983]. Note the change in the
limits of the vertical axis..

XXV

https://www.debian.org/vote/1999/vote_0004

Chapter 1

Introduction

I consider it completely unimportant who in the party will
vote, or how; but what is extraordinarily important is
this—who will count the votes, and how.

Boris Bazhanov | |, attributed to Joesph Stalin

We will make every vote count.
We are committed to ensuring that 2015 will be the last federal
election conducted under the first-past-the-post voting system.

Liberal Party of Canada [2015]

Fundamentally, this thesis is about voting, as studied from the perspective of artificial
intelligence. To say more than this requires some shared context between the reader and the
author, so the first order of business must be to circumscribe the fields of study involved,
at a high level.

Artificial intelligence (AI) is the subfield of computer science concerned with making
programs or systems that behave intelligently, typically to the benefit of a human user or

!Translated. Original text: "3uaere, Tosapumu, — rosoput CTaamH, — 4TO & LyMalo TI0 STOMY TOBOJLY:
sl CUMTAI0, YTO COBEPIIEHHO HEBAYXKHO, KTO M Kak OyJleT B MapTHHU I'OJOCOBATH; HO BOT YTO UPE3BbIYAiiHO
Ba’KHO, 9TO — KTO U Kak OyJieT cantaTh rosoca"

users. These programs are called “Agents”. A somewhat broader definition of an agent
is given by Russell and Norvig | , |, which can also encompass
intelligent human actors. We adopt this definition throughout this thesis:

An agent is anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through effectors. A human agent
has eyes, ears, and other organs for sensors, and hands, legs, mouth, and other
body parts for effectors. A robotic agent substitutes cameras and infrared range
finders for the sensors and various motors for the effectors. A software agent
has encoded bitstrings as its percepts and actions.

Agents can work alone, or in groups, and group interactions bring with them a wide
variety of new and interesting problems. When the agents involved are human beings,
the problems posed by these interactions fall under the purview of the social sciences. In
contrast, when they involve software or robotic agents (acting on behalf of human users),
the Al sub-field of multiagent systems is used. A mixture of human and software agents is
also possible, and the line between multiagent systems and the social sciences (especially
economics) is not always clear. [| suggest a fairly broad
definition:

Multiagent systems are those systems that include multiple autonomous entities
with either diverging information or diverging interests, or both.

Their definition is well suited to the problems and systems discussed in this thesis.

Example applications of multiagent systems research are quite varied, and include both
competitive and cooperative groups of agents. Many different problems fall under the
domain of automated resource allocation or matching, where a set of agents must be
assigned a set of resources or items, to maximize the collective well-being of the agents.
The United States National Kidney Exchange program uses multiagent systems research
to automatically find assignments of donors (those willing to give a kidney) to recipients
(those in need of one) |) |. This system allows donors who are poor
biological matches for their preferred recipient to swap recipients with others in similar
situations, leading to improved outcomes for all.

Multiagent systems are also used to defend important targets from attackers, finding
optimal strategies to protect airports, or prevent the poaching of endangered animals |
, ; , |. In this domain, different models of attacking groups can

be compared, and the resources required to optimally counter the threats posed by these
groups can be computed, allowing for improved security, reduced costs, or both.

As a final example application, multiagent systems research can be used to coordinate
a team of robotic soccer players that have been designed by different researchers, and that
operate autonomously | , |. The agents involved were judged both by the
final score of their team, and by their “sportsmanship”, a quantified measure of how well
they played as a team member (e.g. passing the ball to teammates, not colliding with
friendly players).

The model of a “rational” agent has long been used in a number of different problem
domains in economics | , | as an approximation of human behaviour. One such
domain is the study of group decision making, called social choice | , |.
Social choice problems involve decisions (choices) made collectively by a group (society) of
agents. Although agents may have dramatically different views about what constitutes a
favourable decision, all agents are subject to the outcome selected by the group. For ex-
ample, agents might decide whether or not to build a public works project like a swimming
pool. Even agents who vote against the construction may be required to pay for a share of
the construction. Similarly, in a federal election, Canadians collectively decide which party
or parties should govern our country in the coming years. Although many members of the
electorate may disagree with the outcome of the election, all must abide by the decision.

Within multiagent systems, the study of collective or group decision making is conse-
quently referred to as “computational social choice” (COMSOC). The forthcoming Hand-
book of Computational Social Choice |) | defines the field as comprising
two related research areas:

First, researchers seek to apply computational paradigms and techniques to
provide a better analysis of social choice mechanisms, and to construct new
ones. Leveraging the theory of computer science, we see applications of com-
putational complexity theory and approximation algorithms to social choice.
Subfields of artificial intelligence such as machine learning, reasoning with un-
certainty, knowledge representation, search, and constraint reasoning have also
been applied to the same end.

Second, researchers are studying the application of social choice theory to com-
putational environments. For example, it has been suggested that social choice
theory can provide tools for making joint decisions in multiagent systems, which
are populated by heterogeneous, possibly selfish, software agents. Moreover, it
is finding applications in group recommendation systems, information retrieval,

and crowdsourcing. While it is difficult to change a political voting system,
such low-stake environments allow the designer to freely switch between choice
mechanisms, and therefore provide an ideal testbed for ideas coming from social
choice theory.

This thesis primarily concerns the first area, though naturally the new social choice
techniques that are developed could find applications in the second.

An early example of computational social choice research included the use of computa-
tional complexity theory to study and circumvent impossibility results relating to strategic
voting | , : , |. More recent projects in-
clude the computational analysis of combinations of voting systems | , ;

, |, and the use of techniques from optimization and statistics
to decide elections with incomplete information generated under different models |
, 2008; 7 |-

A concrete example will aid the reader’s appreciation of the difficulties that arise when
making group decisions, and also allow the introduction of a visual representation of votes
common throughout the remainder of the thesis. The preferences of a group of n identical
agents are represented by a “vote vector”, adopting Borda’s notation, reproduced from

[1958]. The vertical arrow shown in Figure 1.1 below depicts an ordering over a set
of four alternatives. Alternative a is ranked first (highest; best), while alternative d is
ranked last (lowest; worst). The n placed below the vector indicates that there are n
agents who order the four candidates in this way. The preferences of other agents may be
represented with adjacent vote vectors showing other orderings, along with the number of

agents expressing these orderings.
A

a -

dL

Figure 1.1: An example vote vector.

As a full example, consider a “preference profile”, depicting the preferences of a group
of agents deciding between alternatives a through d. Each vote vector in Figure 1.2 shows

4

the preferences for a group of agents. The 15 leftmost voters rank alternative a highest,
then d, then ¢, and finally b. In contrast, the 10 voters represented by the arrow second
from the right think alternative c is best, then b, then d, and finally rank a last of all.

A common, and perhaps natural, way to reach a group decision given a preference profile
of this kind would be the Plurality system, familiar to the reader through exposure to
North American politics, committee meetings, or popular talent contests like “Canadian
Idol” 2. In Plurality, each voter assigns a single point to their most preferred candidate
(i.e. the one ranked highest in their preferences). This might be done with a show of hands,
the casting of a ballot, or a phone call. The candidate receiving the greatest number of
points is declared the winner. In the preference profile above, note that although a receives
the largest number of votes when Plurality is used, a substantial majority of the electorate
(68%) prefer every other candidate to a. This suggests a is a poor choice to be the winner

of the election: most voters think a is the worst choice possible.

A A A A

al bL ck dl
dF ¢k bF ct
ct dF dr bFE

bk ab ab al
15 12 10 11

Figure 1.2: An example preference profile illustrating the difficulties inherent in making
principled group decisions.

If a is thought to be a poor or unfair choice, then the system must pick another winner
instead. Supporters of candidate ¢ might note that ¢ appears in the highest average position
across the ballots, and this is the argument for legitimacy underlying the Borda system.
Supporters of d would notice that a strict majority of voters prefer d to ¢, and indeed, a
majority prefer d to each of the other candidates, when they are considered one at a time.
This argument underlies the Condorcet system. Although the Condorcet argument is
compelling, not every election has a winner that satisfies this condition. The reader should
now have a taste of the difficulties inherent in making principled group decisions, and these
are discussed more formally in later sections.

2Provided that viewers are limited to one vote each.

Machine learning (ML) is another subfield of Al research. While the subfield of mul-
tiagent systems focuses on the interactions between agents, machine learning research
concerns the automatic construction of a predictive model of some environment or process
by a computational agent, using data or observations taken from that environment. There
are many machine learning techniques, and many different problem areas, but a common
theme involves phrasing the act of learning as an optimization problem, wherein salient
features of the observations are mapped to different labels or actions to minimize error or
maximize reward. Examples applications of machine learning at large include automated
speech and language processing (e.g. | : |), the automated recommendation of
films and television shows to users based on their past ratings of other content (e.g. |

, |), and learning the parameters of a probabilistic model of user rankings selected
from a known family (e.g. | ,]). Some of these applications will be
discussed in more detail later in the thesis.

1.1 Thesis Statement

The definitions above provide the context necessary to state the fundamental question
addressed within this thesis: Can existing techniques from machine learning be
used in a novel way in order to provide improved computational social choice
solutions and hence, to better make group decisions in multiagent systems?
Answering this question reduces to answering three related ones, sometimes in several
different ways, or by considering several competing approaches.

The first sub-question is simply, how exactly should existing machine learning tech-
niques be applied to problems in group decision making? Chapters 3 and 4 provide an
answer to this question. Existing ML techniques can be applied to help make better group
decisions via voting when agents have incomplete information. An example that illustrates
the difficulties inherent in these problems is the preference profile shown in Figure 1.3.

The set of preferences represented by the vote vector second from the right is incomplete,
and does not specify the relative ordering of candidates a, ¢ and d. This is denoted with
the ‘77 symbol in vector. A natural way to treat this missing information is to ignore it
in the calculation of the winner. If the Borda method is applied to these ballots, and
missing information is ignored, a will be found to appear in the highest average position.
However, much like how different voting systems lead to more or less principled decisions,
different treatments of the missing preference information can lead to more or less principled
decisions. In particular, there are reasonable ways of treating the missing information from
this example under which ¢ is the winner (imputing missing information with that of similar

6

Figure 1.3: A preference profile illustrating the difficulties of group decision making with
incomplete information.

voters) and under which d is the winner (there exists a completion under which d wins by
the largest margin). Deciding how to treat missing information can impact the quality of
group decisions to much the same extent as deciding which voting system to use, and is a
challenging question to address.

This problem is described in detail in Chapter 3, where the shortcomings of existing
approaches are presented using examples. Chapter 4 then proposes a new approach, based
on using conventional machine learning algorithms intended for use in automatic classifi-
cation, to tmpute missing information. The new approach is justified philosophically by
showing that an idealized learning algorithm will cause decisions made by the system to
match those in an idealized election. This philosophical justification is supported at length
by validations in subsequent chapters using real-world data.

The second sub-question concerns whether the proposed system is useful. In particu-
lar, does the proposed system actually work? Does it make group decisions that are fairer,
more reasonable, or otherwise “better” than existing systems meant for the same purpose?
When decisions are made with incomplete information, exactly what constitutes the “right”
decision is not always clear, or even knowable. Chapter 5 answers these questions affir-
matively using a novel experiment design based on ablation, and repeated trials, applied
to a number of large real-world datasets from the Preflib repository | ,

|. Chapter 6 builds on this initial experiment with a robust experimental testbed,
allowing for a wide range of empirical questions to be answered using the same basic ex-
perimental design. Later chapters evaluate refinements of the initial technique using this
testbed, and it could be used much more broadly by other social choice researchers in the
future. Chapter 7 proposes a refinement using machine learning algorithms for predicting
sequences rather than classification.

The third and final sub-question is: Which machine learning algorithms are “fairest”
for use in group decision making? This is a deceptively simple question, and cannot be
answered empirically without first specifying what it means for a learning algorithm to
be “fair”. Chapter 4 co-opts theoretical results from social choice proper by showing that
many machine learning algorithms can be mapped directly to voting systems, and studied
in that context. Building on longstanding results from the study of fair voting systems,
the question is answered with the non-sequitur “None.”. Chapter 8 builds on this idea by
proposing a refined set of axioms specifically for use with learning algorithms, and also
examines the axiomatic properties of combinations of learning algorithms and voting rules.
Chapter 9 assesses machine learning algorithms for their propensity to induce voters to
lie by casting strategic ballots rather than stating their true opinions, and proposes some
techniques to allow voting systems to resist this behaviour.

Surrounding these components, Chapter 2 presents relevant background material from
computational social choice and machine learning required for the reader to follow the
remaining chapters. Chapter 10 ends the thesis by providing a discussion of the broader
implications of the work, and what conclusions can be drawn, as well as avenues for future
work, building upon the results presented here. The chapter also shows an example appli-
cation domain for imputation-based social choice, in which the proposed approach offers
marked advantages. Finally, the chapter contextualizes the results from other chapters
alongside related work from the field, although more detailed comparisons with related
works can be found throughout the thesis in the appropriate chapters.

Overall, the thesis offers a new way to approach social choice with incomplete infor-
mation. It advances the state of the art in terms of empirical performance, theoretically
connects machine learning to social choice in a surprising way, and provides a compre-
hensive testbed system, providing value to researchers in the computational social choice
community. Further, its techniques are broadly applicable to problems in multiagent sys-
tems, and to low-stakes human electoral contests, where they facilitate better decision
making with minimal human efforts. Finally, the thesis may offer value to researchers in
the social sciences, as an extension of the idea of voting correctly | ,],
or because of the theoretical connection between social choice and machine learning.

Chapter 2

Background

Today’s posterior distribution is tomorrow’s prior

Dennis Lindley [1970]

Before proceeding, it may be useful for readers to review relevant background material,
to familiarize themselves with the fields of computational social choice and machine learning
in greater detail than was provided in the introduction. These two fields are discussed at
some length over the course of this chapter, including important work related to the general
topics addressed in subsequent chapters. Although more detail is provided for complex
topics in later chapters, introductory topics and some notation are defined only here.

2.1 What is Social Choice?

To function in everyday life, a person or an agent must make decisions. One must decide
whether to got to get out of bed, or to press the snooze button; whether to walk to work
or to drive; and whether to pack a lunch or to buy one. In addition, most of us also make
daily judgements: Does an employee’s work merit a raise or special recognition? Has a
ball rolled out of bounds, or is it still in play? Is this thesis well written, or is it difficult
to understand?

In the examples given above, the judgements and decisions are generally made on an
individual basis: individuals decide for themselves whether to get out of bed or to press
the snooze button. However, people often make decisions as a group, rather than alone.

Friends deciding where to eat a meal all have their own opinions as to which location would
be best, but nonetheless, all would prefer to eat together than to eat alone. Members of
a hiring committee may have different opinions about which candidate would be the best
to fill a new role, but ultimately they must hire only one person — they cannot each hire
their favourite. On a larger scale, voters in a national election may have radically different
views on which party should form the government, but all must actually live with the
government selected (barring a revolution). All of these are examples of situations where
a social choice or group decision (rather than an individual choice or decision) must be
made.

Social choice then, is the field of study concerned with group decision making. While
such studies are obvious intimately concerned with the fields of political science and eco-
nomics, of late they have been of increasing interest to computer scientists as well, as will
be explained later in this section. The set of problems considered by social choice is any
situation where a group of entities (people, or models of people, in the social sciences, but
often abstract rational or computational intelligences in computer science) with differing
individual preferences must reach a collective decision or judgement.

Although at first glace social choices may not seem more complex than individual
choices, there are in fact many problems that arise when making decisions that a group
must abide by collectively. Returning to the familiar example of selecting a restaurant to
eat at as a group, one can imagine many different systems for reaching a group decision, all
of which have their own advantages. A simple system might involve a form of dictatorship,
where each participant may name any restaurant of their liking, and where the group’s
decision is based on a random selection of one such opinion. Although simple, this solution
could lead to poor outcomes. For example, the dictator’s preference might be for sushi
when no one else eats fish. Although all the individuals have stated their individual choices,
nearly no one is made happy by the group decision.

For this reason, most social choice systems require more detailed information about
the preferences of the agents involved. One general framework, which is the focus of this
thesis and to which we shall return in greater detail and formality in subsequent sections,
is voting based on ranked preferences. In this framework, the voting system is operated by
an abstract centre (i.e. a central person, agent, or system). The centre presents the agents
with a list of alternatives or candidates: the different decisions or judgements they can
make. The agents then each provide to the centre a ranking or ordering of the alternatives,
and the centre selects the group decision on the basis of these orderings. For example,
friends deciding where to eat might decide to pick from among a finite set of restaurants,
and would each indicate which restaurant they thought was best, second best, third best,
and so on. The centre could then select a restaurant that everyone thought was acceptable,

10

if not their most preferred, by any number of sensible systems; several are discussed later
in this chapter.

Throughout this work, we will operate within the above framework. It is worth men-
tioning that this is not the only way to make social choices. An immediate drawback is
that it does not allow voters to express the raw intensity of their preferences. That is,
while one can rank sushi restaurants last on their ballot, one cannot indicate whether this
is because they would rather eat elsewhere, but would tolerate it, or because they have a
deadly fish allergy and would die upon entering the building. One reason for preferring a
system that does not extract this sort of information is that such facts are difficult to pin
down the value of quantitatively. If one adopts subjective, individual, scales then saying
one likes sushi “-1,000” might mean a deadly allergy for one person, and or simply great
disgust for another. Further, even if a uniform scale is defined that agents share, then
someone must define it, and implicitly, must define value relationships for the agents that
may not be universal. For example, if a designer says that a liking sushi “-1,000” points
means it will kill the agent to eat it, and liking it “-100” points means the agent thinks sushi
is disgusting, the designer is implicitly saying that disliking something is about one tenth
as bad as dying. These sorts of judgements seem dubious in general, and only become
more complex as domains contain more varied alternatives. Consequently, the thesis is not
concerned with more complex frameworks here (more formally, it assumes only subjective,
and not objective, utilities, can exist, so that only relative rankings of alternatives can
have external validity)?.

Central to the conventional social choice framework is the formal idea of a ranking.
Although the term ‘ranking’” will be used somewhat loosely throughout the thesis, it will
always refer to some form of ordering over the set of alternatives. Formally, a total or
linear ordering =? is a binary relation defined on members of a set C' = {cy, ..., ¢} that
is transitive (i.e. ¢, > ¢, Acy = ¢, <> ¢; > ¢;), antisymmetric (i.e. ¢ > ¢; < ¢ ¥ ¢
unless ¢; = ¢;), and reflexive (i.e. ¢; > ¢;), as well as being defined for every member
of C' with respect to every other member (i.e. total). Less formally, these conditions
correspond to the idea that a total ordering of the candidates ranks all candidates into an
ordered list. Naturally every candidate needs to come either before or after every other one
(antisymmetry and totality), a candidate has the same ranking as itself (reflexivity), and

'However, the tools and techniques outlined in the thesis could be adapted to work with cardinal
utilities, by using regression techniques instead of classification techniques, and in some domains (like
medical decision making | ; , ;

; , |), interpersonal comparlsons of utility are used effectively, though not always Wlthout
controversy.

2> may be read as “is preferred to”, although this semantic meaning doesn’t quite hold when the
reflexive property is taken into account.

11

Figure 2.1: Borda’s example preference profile.

the order is self-consistent so if a candidate comes before some other candidate, it must
also come before everything that follows that candidate (transitivity). For now, ‘ranking’
will be used to refer to a total ordering over the candidates, but in other parts of the thesis,
it may refer to a partial ordering, in which not every candidate needs to be ranked relative
to every other one (i.e. dropping the totality requirement). The term ranking is often used
synonymously with preference in the thesis (e.g. “a voter’s preference over the candidates”
or “a voter’s ranking of the alternatives”), following convention. A set of rankings is often
referred to as a preference profile.

2.1.1 A Brief History of Social Choice

3 Systems for making social choices are ancient and myriad, but the study of such systems
in a formal way did not begin until more recently. Some of the earliest attempts are made

known to us through the work of [|, who recovered and popularized the
early work of Borda | : | and Condorcet | : |. Although earlier
formal work on voting exists (see | : |), the efforts of Borda and

Condorcet are widely considered the first serious foray into the theory of social choice.

Borda was first to consider this topic in his 1770 presentation to the French academy
of Sciences entitled ¢ Sur la Forme des Elections ’, which was later published? as a paper
in 1781 | , |. The paper describes Borda’s rule, a member of the now widely
used family of election systems known as positional scoring rules described later in this
section. Borda’s line of reasoning began with the recognition that merely asking each voter

3Some portions of this section are based on text which appeared in the author’s comprehensive exami-
nation document.
4 Apparently through the efforts of Condorcet, as a strawman with which to contrast his own work. |
) , Introduction]

12

in an election for their most preferred candidate (a system denoted Plurality, and widely
used in Borda’s time as well as our own) could produce undesirable outcomes. He gives
an example of a election with 3 candidates, shown in Figure 2.1°. Each vector depicts an
ordering over the three candidates X, Y, and Z. The number at the bottom of a vector
denotes the number of electors casting their ballots thus. For instance, the leftmost vector
denotes 8 voters who have ranked X first, and who have no particular preference over the
other candidates. The middle vector denotes 7 voters who rank Y before Z, and Z before X.
Such orders were assumed to be transitive. The paradox in the example ballots lies in the
fact that under the Plurality rule, candidate X is elected, even though a majority of the
electorate prefer any alternative to X. Borda held that the correct treatment would be to
elect one of Y or Z instead in this case. His proposed rule was to treat each vote as stating
that a candidate has defeated everyone below it, and to assign a candidate p points for
each such victory, and a base of ¢ points for appearing in last place in the ranking®. This
leads to a family of (equivalent) voting rules. A Borda rule is any voting rule such that
a candidate receives np + ¢ points for appearing ahead of n other candidates on a given
ballot, for some positive value of p and non-negative value of ¢q. All rules make identical
decisions, independent of what values p and ¢ are adopted, so for the remainder of the
thesis, p = 1 and ¢ = 0 are used. The candidate to receive the largest number of points
across all rankings is the winner. This amounts to selecting the candidate that appears in
the highest average position across all the rankings”.

Borda’s work was quickly followed by that of Condorcet | : I :
|. Condorcet was interested in constructing a theory of voting derived from the theory
of probabilities. Initially, Condorcet considers the problem of a jury deciding upon the

Sreproduced from | , |, with Borda’s original notation, but the names of the candidates
changed.

SFor example, with p = 1 and ¢ = 0, candidate X would receive a score of 8 x 2+ 7 x 0+ 6 x 0 under
the rankings in Figure 2.1.

"As an aside, Borda’s justification for this choice of function, where the differences between the scores
assigned to any two adjacent positions in the scoring vector are identical, provides an early glimpse of a
justification for the use of ordinal preferences (i.e. asking each voter for a ranking, rather than an intensity
for each candidate), later utilized independently by Arrow | , |]. An ordinal preference relation is
just one based on a binary relation over the set of candidates, exactly as defined above. Ordinal preferences
are contrasted with real-valued or utilitarian preference relations, which map each candidate to a wutility
corresponding to the intensity with which a given voter prefers a given candidates, and where a ballot
takes the form of a specification of the utility a voter would derive from each candidate. Since the only
information given when the centre is presented with an ordinal ballot X = Y = Z is that X is preferred
to Y, and Y preferred to Z, and nothing about the relative magnitude of that preference, Borda proposes
the adoption of something akin to a uniform prior over the relative differences in the individual’s perceived
desire for the different candidates to win. Precisely the same concept is utilized as part of Arrow’s later
arguments in favour of using ordinal preferences.

13

17 15 1

Figure 2.2: Condorcet’s example preference profile.

innocence or guilt of some party. Individual members of the jury may decide the case
rightly or wrongly, but, provided that the probability they decide rightly exceeds 0.5,
adding more members to the jury will produce an increase in the probability that the jury
collectively arrives at the correct decision®. In this case, the correct decision corresponds
to a truth about the external world. For example, in a trial, the accused either truly is, or
truly is not, guilty, so there is a correct answer to the question of their guilt. Supposing
that the probability of a juror giving the correct answer is v, and the incorrect answer is
e (and v + e = 1)°. Then, observing h jurors in favour of conviction and k against, the
likelihood that a guilty verdict is incorrect is given by 7. Moving from the realm
of juries into the realm of elections, Condorcet first notes the same problem as Borda with
respect to the Plurality rule, and refines this by showing that X loses in a runoff election
to every other candidate in the election. This property would become known as being a
Condorcet Loser. Following on this, Condorcet suggested that one should view an election
as a set of binary decisions over each pair of candidates. For instance, in an election
with three candidates, C' = {X,Y, Z}, there are really three questions being considered.
Respectively, these questions consist of whether X =Y, Y = Z, and X > Z, where > is
used in this case to denote the aggregate views of the electorate in each binary contest. If
each question is treated separately, then the problem looks very much like that of the jury
described above. The electorate’s votes can simply be interpreted as approximations of the
truth or falsehood of propositions about the pairwise orderings of the candidates. That is,
in much the same way as the question of the accused’s guilt in a trial has a correct answer,
the question of whether X > Y is assumed to have a correct answer. Condorcet assumed
again that individual preferences take the form of linear orders over the candidates, so one

8 Condorcet did not consider the possibility that the jurors’ individual decisions might be correlated,
but this area has since been developed more richly, e.g. | , ; , ;

9And that the jurors’ probabilities are independently and identically distributed.

14

can infer an individual’s opinion on any pairwise comparison using transitivity. To select
a winner with this approach, the propositions are treated as independent events, and one
multiplies together the likelihoods derived for each via the jury procedure. Unfortunately
this approach does not yield sensible results. Condorcet constructs an example, which
is illustrated using Borda’s notation in Figure 2.2. In this example the proposition that
X =Y is true is inferred be true with likelihood —“—, since the margin of victory for X
over Y is 3 votes in total (18 rank X >~ Y, 15 rank Y > X). Similarly, the likelihood that
X = Z is computed to be —— o5 The joint likelihood of X being the ‘correct’ candidate in

every pairwise contest then, is The same computation for Y yields a likelihood

6
e
of being the ‘correct’ candidate of —; +U31:;i233631 o However, recall that the probability
v is not known apriori, and Condorcet has only assumed it exceeds 0.5. If v ~ 1, then X
has a higher total likelihood of being the ‘correct” winner. On the other hand, if v ~ 0.5,
Y’’s likelihood is higher!?. The selection of the correct winner will thus depend on how well
the electorate approximates the ‘correct’ knowledge of which candidates are better than

each other (v), which is unknown to the centre.

At this point, Condorcet abandons the probabilistic approach, and asserts using ‘straight-
forward reasoning’ that X should be chosen, as a majority of voters support X > Y and
X > Z, which matters more than the margin of victory. This concept in turn became
known as the Condorcet Winner — a candidate which wins all pairwise contests against
others in runoff elections. Interestingly, the winner selected if v is close to 0.5 will corre-
spond to the Borda winner instead | , , introduction|, which Condorcet had
dismissed at the beginning of his argument. Condorcet would later claim that his method
was to be preferred instead on the basis of the independence of irrelevant alternatives axiom
which Arrow formalized much later (discussed at some length later in this thesis), which
his own method satisfies but which Borda’s does not.

2.1.2 Voting Rules Used in this Thesis

This thesis makes use of a number of different voting rules, which are presented formally
here for reference. There are a great many other voting rules that are not presented. Some
of these may be mentioned elsewhere in the text, but will be accompanied by a reference if
further clarification is needed. The systems are presented somewhat informally here, and
more formal structures are constructed later in the thesis when greater detail is required,
as in the theoretical analysis of Chapter 8.

OTncidentally, the same principle underlies ensemble methods used in machine learning |

I ? I]

15

The first voting rule presented is Plurality. The Plurality system is likely to be
familiar to readers, as it continues to be very widely used, and is often the system used in
informal contexts when a group decides to put an issue to a vote. Within the framework
for voting discussed earlier in this chapter, Plurality operates by having each voter submit
a ranking of the candidates. A voter’s most preferred (i.e. top-ranked) candidate receives
a single point. The candidate that receives the most points is the winner. Formally, given
a set of rankings B over a set of candidates C,

; _ . /
Plurality(B) = arg max Z I(c=;d ¥ eC\c)

—;,€B

where I is a indicator function (1 if the argument is true, 0 otherwise). As outlined in the
previous section, Plurality can make problematic selections if a decision is being made
over a set of more than two candidates.

An alternative way to represent Plurality is via a 1 x|C/| scoring vector, s = {1,0, ..., 0}.
The behaviour of the rule can then be written:

Plurality(B) = ,
urality(B) argrileacg(Zsh,c

—;,€B

where s, . is the component of s corresponding to the location of candidate ¢ in ranking >;.
This approach allows for easy representation of several other rules, by using different scoring
vectors, but identical formulations. For instance Borda’s rule, discussed in the previous
section is identical, but with a scoring vector Sporaa = {|C], ..., 1}. Rules of this form are
called positional scoring rules, since they give different scores to candidates depending on
their positions in each ranking. There are two other positional scoring rules not previously
mentioned in the thesis, but used widely in later chapters. The first is Veto, which uses
the scoring vector Syero = {1,...,1,0}. Effectively, this allows each voter to vote against a
single candidate, but not in favour of any particular candidate (the opposite of Plurality).
The second is K-Approval, which is a family of positional scoring rules, where the first
k elements of s are set to 1, and the remainder are set to 0. Effectively this gives each
voter the ability to pick their k£ most preferred candidates, and give one point to each. The
thesis will generally be concerned with [@]-Approval, where voters sort the candidates
into equally (or nearly-equally) sized groups, those that are “above average” (awarded one
point each), and those that are “below average” (awarded no points).

The only other voting rule used widely in the thesis is the Copeland voting rule,
which is not a positional scoring rule. Copeland is based on Condorcet’s idea of pairwise

16

contents. Informally, the rule holds a pairwise contest between each pair of candidates.
The winner of the contest receives one point, while the loser receives zero. The handling
of ties can have important implications | , |. The version used in this
thesis is called Copeland,, in which no points are awarded to either player in the event
of a tie, the other common variant being Copeland:, where each participant in a tie gets
half a point. Obviously Copeland will output the Condorcet winner when one exists, but
as a Condorcet extension, the rule can also select a winner in some other circumstances.
However, it is very prone to ties when no Condorcet winner exists.

2.1.3 Axiomatic Social Choice and Impossibility Results

Following Condorcet, there was little work on social choice until the emergence of axiomatic
social choice and the impossibility results of the next section. The efforts of Laplace,
Nanson, Galton, and Dodgson are notable exceptions | , |. The revitalization
of the field, in its modern form, appears to have been spurred by increasing interest in the
problem of corporate governance and committees in general. Like Borda and Condorcet
before them, the scholars of this era would realize the problems inherent in plurality voting,
but they would also go further than earlier authors toward resolving the issue. The two
most important authors from this era are Black and Arrow.

Black’s interest in social choice came in part from a desire to create a ‘pure science
of politics’ | , , introduction|. His work ‘The Theory of Committees and
Elections’ | , | constitutes significant progress toward this goal. The theory
supposes that a committee (a group of electors) will consider a series of binary issues,
perhaps mediated by a chair. Black supposed that a series of binary issues would be
sufficient to represent an issue with more than two alternatives, by treating one of the
alternatives as a ‘bill’ or ‘motion’ put to the electorate. Each of the other alternatives
may be viewed as an amendment to such a bill, which can either be passed or rejected.
If passed, it replaces the original bill, and may be subject to further amendments (i.e.
binary contests with the remaining candidates). Eventually, when no other amendments
are put forward, the bill is voted on in its current state, which can be viewed as a binary
contest with just one more alternative (i.e. the status quo). This process is sometimes
called sequential plurality voting.

Black first noticed that, in the case where the set of alternatives can be ordered, and
where there are no external factors to consider, the procedure above will actually produce
a reasonable result, independent of the order in which the proposals are considered. For
example, imagine a committee deciding where to set the minimum wage. Individual com-
mittee members will each have a most preferred value for the minimum wage. The closer

17

A\ /

RN

i AN

) | | | I\ |
$10 $20

Figure 2.3: Example Single-Peaked Preferences

a proposed value is to their preferred value, the more willing they are to accept it, and
vice versa. If we plot the preferences of voters across the candidates, assigning a value
of |C| to the voter’s first preference, and |C| — k to their (k — 1) preference, we would
thus expect to see something like the graph in Figure 2.3. The dashed blue line shows a
voter who prefers a minimum wage that is as low as possible. The red line shows a voter
with the opposite preference ordering. The lighter green line shows someone with more
complex preferences, preferring a value in the middle, and in general preferring a value
higher than their preferred one to a value less than their preferred one. Notice that, when
plotted against increasing minimum wage, all three preference functions are convex. Such
preference profiles are called single-peaked.

Black observed that, when a preference profile is single-peaked, the most preferred
value of the vote with the median peak will defeat all alternative candidates in pairwise
plurality elections, making them a Condorcet winner. The median peaked vote is the one
about which the set of votes would be equally partitioned if it were sorted according to
the location of the most preferred candidate on each ballot (i.e. the peak on each ballot)
in the ordering under which the preferences are single-peaked. In the preceding example,
this is the voter represented by the green line.

It is easy to see why the first preference of the median peak ballot (C,,) will defeat
all other candidates. Let m, be the ordering over C' such that the preferences are single
peaked, and suppose that C,, faces a candidate such that m,(Cp,) > 7o (C*) (that is, a
candidate C* to the left of C,, under 7,). All voters with peaks to the right of C,, have
preference relations such that C,, = C*, by definition of single-peakedness. The number
of such voters is > @ — 1. Since the median peak ballot also has C,, = C*, it follows
that C,, defeats C* in a binary contest under plurality, and a similar argument can be
made for candidates such that 7,(C,,) < mA(C*). Unfortunately Black also discovered,
‘with something akin to physical sickness’ | , , introduction|, that when the

18

preference profile is not single-peaked, the winner selected via sequential plurality voting
will be dependent on the order in which the alternatives are considered, which would seem
to yield unfair results.

This in turn leads us to Arrow’s theorem, and the beginnings of axiomatic social choice.
Arrow independently considered the problem of decision making in committees, and ar-
rived at conclusions identical to those of Black, only to read of Black’s results shortly
afterwards | , , introduction|. A natural subsequent question was whether
there was an alternative voting system to the sequential plurality supposed by Black, under
which sensible winners might be selected. In his doctoral thesis Social Choice and Indi-
vidual Values | , |, Arrow outlines four axioms which he believes any reasonable
voting system must satisfy, given below:

e Non-dictatorship: The voting system must not function as a dictatorship — the
outcome must depend on more than a single elector’s opinion.

e Universality: There must be no apriori restriction on the preferences a voter may
specify. Note that this prevents us from requiring preferences to be single-peaked.

e Independence of Irrelevant Alternatives (ITA): Whether C; defeats Cy in the
election should not depend on whether or not a third candidate C5 exists (i.e. no
chance of vote splitting).

e Unanimity: If all the voters prefer C'; to (5, then C5 cannot defeat C) in the
election.

Arrow proved that there exists no voting system which can satisfy all four crite-
ria simultaneously. A brief form of the argument is provided by Geanakoplos’s modern
proof | , |. Since the four criteria appear to be vital for any fair voting
system!!, this poses a significant challenge to the design of such systems. There are several
approaches to getting around Arrow’s theorem. First, for many domains universality may
not be required. As in the example used by Black, some issues may really have single-
peaked preferences. Alternatively though, some criticisms of the theory include Black’s
contention | , | that the conditions suggested by Arrow may not be good criteria
on which to judge a voting system. A system in which only motions receiving unanimous
support are adopted essentially satisfies Arrow’s conditions, but is highly dysfunctional in

HThough some authors dispute this, see e.g. | ,]

19

practice. Similarly, if one allows for the possibility of intransitive social outcomes (presum-
ably with some other mechanism for resolving them), then Arrow’s theorem need not apply.
The axiomatic study of social choice systems is discussed in greater detail in Chapter 8.

An important theorem very similar in form to Arrow’s is the Gibbard-Satterthwaite
Theorem | , ; , |. Many voting systems suffer from the prob-
lem of strategic voting, or manipulation. Ideally, voting systems are supposed to aggregate
the rankings of the group to reach a consensus decision. However, under Plurality, for
example, voters can often obtain outcomes that are favourable to them and are (perhaps)
less reflective of the group’s preferences, by submitting an insincere ranking to the cen-
tre. For example, consider the ballots in Figure 2.1 near the start of the chapter. Under
Plurality, any two of the six voters casting ballots that rank C' first could instead submit
an insincere ballot ranking B first. This would cause B to win the election. However, it
violates the spirit in which the decision was being made (i.e. that the candidate that is
the favourite of the largest number should win). A system in which no voter can benefit
by submitting an insincere ballot is said to be strategy-proof. The Gibbard-Satterthwaite
Theorem adds an axiom to the set that any reasonable voting system should satisfy:

1. Strategy-Proofness: No voter can benefit by reporting an untruthful ranking to the
centre.

The theorem shows that a deterministic voting system (i.e. one that does not rely on
randomness) that always picks a unique winner (i.e. no ties) cannot satisfy Universality
and Strategy-Proofness unless it is also Dictatorial. As dictatorial voting systems are not
very representative of the group’s preferences, circumventions of this result are the subject
of a great deal of study. This topic is covered in much greater detail in Chapter 9.

2.1.4 Measuring Similarities Between Rankings

A recurring topic in the thesis is the measurement of how similar two rankings are. These
problems arise, for instance, when two competing voting systems have output rankings over
the same set of alternatives, and a quantitative measurement is required to determine how
much they differ from one another. The primary application of this measurement in the
thesis is in assessing the performance of different voting rules empirically, when a collective
ranking of candidates output by a particular system can be compared to a “correct” ranking
by measuring the distance between them.

Perhaps the simplest such measurement is the Kendall Correlation | , |,
denoted 7, and sometimes called Kendall’s Tau. The Kendall correlation is proportionate

20

to the smallest number of pairwise swaps of adjacent candidates required to transform
one ranking into another. A pairwise swap of adjacent candidates consists of finding two
candidates that are positioned one after another in a ranking, and swapping their positions.
The count of such swaps is normalized by the maximum number possible, and scaled to lie
between —1 (one sequence is the other backwards), and 1 (the two sequences are identical).
More formally, the Kendall Correlation is given by:

T(>1,>2) = =1 \C] Z Z (=1 Ne=a)V (d =1ecNd =5 0))
CECCEC\C

—I((c=1 N =20)V(d =1cNe=od)))

The Kendall Correlation is a useful estimate of how closely two rankings are correlated,
but it is not the only such measurement. Spearman’s Footrule distance |
, ;) | is a common alternative, which counts the distance between
the position of each candidate in ranking > and its position in 5, rather than the overall
number of swaps that might be required to transform one order into the other. Formally,
this is given by

|C|
dsr(>1,>2) Z|Pos —1,¢i) — Pos(-2, ¢;)|

where in this case, Pos(>;, ¢;) denotes the number of candidates that follow candidate c;
in ranking >;.

Other distance measures of this kind weight the candidates based on some measure of
their importance when computing the similarity of the rankings. For example, one possible
weighting for the Kendall Correlation would be:

2

) = e e 2

Z (I((c=1d Ne=o)V (K =1 cNd =5 0))
ceC\C

—I((c=1 N =20)V(d =1cNec=yd)))

under which candidates that are ranked higher in ranking >; contribute more to the
correlation measure than other candidates do. Many other weightings are also possible.

21

2.1.5 Artificial Preference Distributions

The thesis will occasionally make use of two families of artificial preference distributions.
These are described briefly here, and expanded upon later as needed.

An artificial preference distribution is a statistical process for generating the preferences
of voters'?. A very simple distribution (not used in the thesis) would be the uniform
distribution, under which a ranking of the candidates is sampled uniformly at random
from the set of all possible rankings. For instance, if there were three candidates (¢,
¢o, and c¢3), then there are 6 possible total orderings of the candidates, and a uniform
distribution would assign each of them to a given voter with probability %.

A widely used artificial preference distribution is the Mallows model | : |.
The Mallows model assumes that there is an objectively “correct” total ordering over the
candidates, >=*, and that voters’ preferences are “noisy” impressions of this correct or-
dering. The probability of assigning a ranking > to a particular voter is proportionate
to e~®20=") where A is the Kendall distance (not Kendall correlation), computing the
number of pairwise adjacent swaps needed to convert > to >=*. ¢ is called the dispersion
parameter, and 0 < e=? < 1. At e=? = 1, the Mallows model selects rankings uniformly at
random. At e=® ~ 0, the model will output only >=* with high probability. In between, as
¢ decreases, and e~? increases, rankings that are increasingly far from =* will be output
with higher and higher probability. In this respect, ¢ acts very much like the standard
deviation o of a Gaussian distribution, while >=* acts very much like the mean.

The other artificial preference distribution used in this thesis is the Random Utility
Model, or RUM | , : , ; , |. In this family of distri-
butions, each candidate is assigned a “true” utility with respect to the group, that is, the
real utility the candidate would provide collectively to the group, which is a well defined
quantity for some problem domains. Individual agents are assigned individual utilities for
a given candidate sampled from a probability distribution in the exponential family (e.g.
Gaussians) with mean equal to the candidate’s true utility, and a candidate-specific vari-
ance. Thus, each voter has a “noisy” impression of the true social utility of each candidate.
Voters rank candidates in order of the individual voters’ impressions of the candidates’
utilities. The family of distributions is quite varied, but in general if two candidates have
similar true utilities, and have large enough variances in the distributions of their individual
utilities, voters will be more likely to disagree on which candidate is best. In contrast, if
one candidate has a much larger true utility than another, and the variances are relatively
small, nearly all of the electorate will agree on their relative order.

12For example, to create an artificial election for testing purposes.

22

2.2 What is Machine Learning?

As outlined in Chapter 1, this thesis is concerned with the application of techniques from
machine learning to work in the area of computational social choice. Having covered
the background material for computational social choice, we now move on to provide an
introductory view of machine learning in general, and the specific machine learning tools
that will be most relevant to the content of subsequent chapters.

2.2.1 The Basics

Although there is debate about its precise scope, at the broadest possible level, machine
learning is the area of artificial intelligence research that is concerned with developing
algorithms that can autonomously learn. This is the definition adopted by the Encyclopedia
Britannica | , |. More precisely, machine learning might be described as the study
of algorithms that learn by experiencing or interacting with the world | ,

|. Naturally, this is a very broad area, including applications that range from training
robots to move or behave in a certain way via punishment and reward signals, through to
simply finding (i.e. learning) statistical patterns in a database.

This thesis is concerned with problems that fall within the machine learning topic of
supervised learning, in which some external signal is available to provide an algorithm
with feedback on whether the patterns it has learned are more or less correct. Supervised
learning stands in contrast to unsupervised learning, where no feedback is provided, and
the algorithm simply looks for “interesting” patterns in the data. The analogous distinction
in human learning would be between searching for an object while a peer indicates whether
you are “hot” or “cold” (supervised learning), versus trying to find an object based only on a
vague description of it (unsupervised learning). An example supervised learning application
is classification. In classification, an agent or algorithm is given some example objects or
data points, and told which class each belongs to. The algorithm then constructs a theory
describing how the properties of the objects map to membership in different classes. The
quality of the theory is known more or less exactly, because the algorithm’s supervisor has
told it the correct label for each object. In contrast, an unsupervised machine learning task
like clustering involves having an algorithm find a set of k groups of objects such that the
objects inside a group are similar to one another. The algorithm does not know whether
it has discovered a “correct” partitioning of the objects, because no one has told it what
a correct partitioning would look like precisely. The specific problem of interest in this
thesis is in fact the classification problem mentioned above. A more formal description of
classification will now be presented.

23

In a classification problem, a classification algorithm is given a set of ezemplars X, and
a corresponding set of labels Y, such that |X| = |Y| (i.e. each label is paired with one
exemplar). Typically an exemplar z; € X is a numerical vector of a constant length (i.e.
x; is the same length as z; for all ;,z; € X), so that X takes the form of a matrix. Each
row of the matrix describes a particular exemplar, and each column is called a feature. A
classification algorithm’s goal is to find a mapping f, from exemplars to labels, such that
f(z;) = y;. Ideally such a mapping is general, and so can be applied to predict the labels
of other exemplars that the algorithm has not seen before.

A concrete example might consist of a pedagogical classification task. For example,
suppose one were teaching an online class to thousands of students. It is very easy to
gather information about the students’ interactions with course content through their web
browsers. On the other hand, it is quite hard to predict in advance which students are
going to fail the course'®. Nonetheless, after the course has been completed, it is known
which students passed and which students failed. A interested instructor might then want
to develop a way to predict in advance whether a student will pass or fail, based on
their behaviours early in the course. To accomplish this, the instructor might then gather
statistics regarding the browsing behaviours of each student, and create a matrix of them,
which would serve as the exemplar matrix X. The label vector Y would have value 1 if the
corresponding student passed the course, and 0 otherwise. An example of such a problem
is shown in Table 2.1.

In the example data, the instructor has gathered four features for each of four students.
For example, the instructor has measured that the student corresponding to exemplar z;
spent 5 hours reading the course textbook during the first week of the class, and 6 hours on
Facebook, a popular social media website the instructor suspects students are using when
they ought to be studying. In contrast, the student corresponding to exemplar x5 spent no
time at all reading the course textbook, but 8 hours working on homework, and 4 hours
watching the course lectures. Both students passed the course, indicated by their labels
y1 and yo having value 1. The classification problem here is to find a mapping from the
times students spent doing various tasks (their features) to whether or not they eventually
passed the course (their labels). Collectively, X and Y are said to be the data for this
classification problem instance. If the instructor gathered the same measurements (i.e. the
same features) from a different class of students, the classification problem would be the
same, but the problem instance (and corresponding data) would be different, since the
students in the other class are unlikely to have exactly the same values.

A classification algorithm for the purpose of this thesis is any function that accepts

13This is often surprisingly hard when teaching in person, let alone online!

24

- &
SIS &
&L S N Q//
NN %"
&‘Q . 960&2» ‘D’GQJ&C\)Q}, 4 /Q{bfo
ngb’ Qo\ o Q® \}/
(%) (%] (%) (%) “QQ}
& S ®
1] 515 16]0 b
2] 0 | 8 |2 y2 | 1
zs] 2 | 3183 ys | 0
1214103 Y |0

Table 2.1: Data for an example classification problem. The matrix of exemplars is shown
on the left, with four named features corresponding to the time (in hours) that each student
spent doing different tasks during the first week of an online course. The vector of labels
is shown on the right.

the data for a classification problem instance, and outputs a predictive model. A model is
function f that accepts an exemplar as input, and produces a label as output. An effective
classification algorithm should output a model such that f(x;) = y; all or most of the
time. Even better, if a new exemplar is created after the model has been learned (z*),
then ideally the model should be able to deduce its correct label as well (i.e. f(z*) = y*).

The term “model” is used because in practice classification algorithms usually do not
learn the true underlying pattern that caused certain labels to be assigned to certain
exemplars. Instead, they learn some approximation of this pattern, which could be viewed
as a model of the true process. For example, an algorithm applied to the data in Table 2.1
might learn two rules to describe the behaviour of students: first, that students who spend
more than 6 hours a week on Facebook will fail the course, and second that students who
spend more than 8 hours a week doing homework will fail the course. The model then
consists of a function:

1 ifz;3<6AxZ2<8

0 otherwise

where z; ; corresponds to the value of the feature in the j” column of exemplar z;.

The patterns described by this model are present in the exemplars that were provided,

25

but the model is probably too simple to be an accurate representation of reality. An
exceptionally skilled student might be able to finish their homework very quickly, and then
choose to spend many hours on Facebook, for instance. This pattern of behaviour is not
captured by the simple model that was learned. Nonetheless, models can be useful without
being fully correct. The simple model described above would certainly be able to correctly
identify many students in need of early intervention, and could form the basis of a simple
automated system to alert the instructor when students are at risk of falling behind.

In this example, the classification problem involved selecting between only two classes
(students who passed and students who failed). More complex problems might involve
finding models that map from a vector of features to many different classes. For example,
the instructor might wish to learn a model that predicts not only whether students passed
or failed, but what their grades will be (i.e. A, B, C, D, or F). In this case the instructor
might gather the same features as before, but the label vector would now have 5 possible
values, perhaps 0, 1, 2, 3, 4, corresponding to the students’ grades.

2.2.2 Relevant Learning Algorithms

There are a great many classification algorithms available for use. One reason for this is that
different algorithms may learn models with very different forms, and some forms may be
better suited to certain types of tasks. For example, some algorithms like the C4.5 decision
tree learner | : , | are designed to learn models that are (comparatively)
easy for humans to understand. Their behaviours can be simplified down to a fairly simple
rules, and parameters allow the user to force the algorithm to prioritize simpler or more
complex rules. In contrast, the models produced by algorithms that generate artificial
neural networks | , | tend to be opaque and very difficult for humans to
understand. However, opaque models can often provide more accurate predictions than
more easily interpretable ones.

Another reason for the wide range of learning algorithms may be the No Free Lunch
Theorems | , : , |, which are discussed in greater
detail later in the thesis. The core statement of the no Free Lunch Theorems amounts to the
claim that there is no single “best” classification algorithm. An algorithm can only perform
better than other algorithms in certain types of classification problems by performing worse
in other types. Despite this, there are certainly algorithms that most practitioners would
agree are objectively worse than others. This is because the sorts of problems humans are
interested in solving have some commonalities, and so an algorithm might work better on
these sorts of classification problems, and worse on very odd kinds of problems that are
not especially interesting.

26

In this chapter, several algorithms are presented at a high level, with descriptions of
the kinds of models they learn, and the general approach that is taken to learning them. In
later chapters more details are provided for specific models as they come up. The interested
reader is referred to [1995] part vi for a more detailed treatment, or to
the papers cited during the discussion of each method.

Perhaps the simplest method for solving classification problems, though also a very in-
accurate one, is to simply count the number of labels for each class and ignore the features
entirely. The model that is output is either f(xz) = 1 or f(z) = 0, depending on which
class appeared more often in the input. Besides being ineffective on many problems, this
approach has a rather uninteresting interpretation. Since the model contains no informa-
tion about, for instance, which features are more or less predictive, it does not tell the user
anything about the data. This model is not used in the thesis, but is included as a simple
example.

Another comparatively simple model is the venerable logistic regression algorithm, orig-
inally due to [|, building on the earlier approach of [|. The approach
is intended to solve only binary classification problems (i.e. problems with exactly two
classes). Logistic regression assigns values of 0 and 1 to the labels that are used for the
classes, and then outputs a model of the form f(z) = m, where w is a column vector
of weights. The model will thus take the form of a multi-dimensional sigmoid function.
Each feature z; in « is multiplied by a corresponding weight w;, and the resulting products
are summed. A bias term b is added. When the sum is higher, the model outputs a value
closer to 1. When the sum is lower, the model outputs a value closer to 0. The user is left
to interpret the outputs, but often output values greater than 0.5 are assumed to predict
membership in class 1, and values less than 0.5 to predict membership in class 0. Some
example sigmoid curves are shown for a problem with only one feature in Figure 2.4. A
much more detailed description of logistic regression appears near the end of Chapter 4.

A more complex classification algorithm is the Support Vector Machine learner, orig-
inally proposed by [|. Like logistic regression, support vector
machines are intended to learn solutions only to binary classification problems. A support
vector machine learns a model based around the idea of a “maximum-margin separating
hyperplane”. Essentially, if each exemplar is taken to be a point in a space defined by the
features, various planes could be drawn through the space to partition it into two pieces
(a plane in more than two dimensions being called a “hyperplane”). If a plane can be
drawn that puts all the members of one class on one side of the plane, and all the members
of the other class on the opposite side, then the plane is a reasonable predictive model
(predictions about the class of a new point can be made based on which side of the plane
it falls on). However, if such a plane exists in a real-valued space, there will also be an

27

Figure 2.4: Some example logistic regression models. The horizontal axis corresponds to
the values of a feature, while the vertical axis corresponds to the value of the labels. Points
indicate examplars. A curve with a larger positive weight will be steeper than one with a
smaller positive weight

infinite number of variations on the plane which still separate the two classes. The support
vector machine will attempt to pick the plane that sits equidistant between points of the
two classes, maximizing the “margin” between the observed distribution of the points of
each class and the plane itself, according to the equation:

1
argmin)\||w||2® Z max(0, 1 — wy,;x;)

z;€X

where w is a vector of weights, one per feature of exemplar x; (plus a bias term), label y; is
one of two possible values (1 or -1), and A is a tuned parameter that controls the tradeoff
between the size of the margin and the number of points that end up on the wrong side
of the plane. The margin is maximized in the belief that future exemplars would have
to be very dissimilar from their true class to end up on the wrong side of such a plane,
and putting the plane equidistant between the two classes minimizes the risk of this for
either class. Finding such a plane amounts to an optimization problem where, as in logistic
regression, a vector of weights w and a bias term b are found. This process is depicted in
Figure 2.5.

Additionally, support vector machines are capable of learning more complex partitioning
surfaces by recourse to the so-called “kernel trick”. Via the kernel trick, exemplars are
projected from points in the original feature space (where there may not exist a hyperplane
that separates them neatly into two classes) into a larger feature space where such a

28

X_ A
2 7
7o 5
N/ %,
o N %
o o
o o ,
o 4 Y /7
’ G
<Y IN
17
° K 5
7 /4\
7/
, 4 /O
, o o
/ 7/
7/ 7/ ©) @)
/ /
O
/ /® O
/ /
A ,
X
28
/;,> / 1

Figure 2.5: A depiction of the optimization problem solved by a support vector machine
classification algorithm. The colours of different point correspond to their classes. The
learned plan lies equidistant between the nearest points from each class. The figure was
released into the public domain for the purpose of illustrating support vector machines,
and the creator is known only by a pseudonym “Cyc”. It is reproduced here from https:
//en.wikipedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png

29

https://en.wikipedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png
https://en.wikipedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png

separation might exist. As a simple example, reproduced from [],
consider a problem where points are distributed such that the points of one class form
a ring around the points of another class (see Figure 2.6). Obviously there is no way to
draw a line (i.e. a 1-dimensional plane) that separates the two classes. However, if a third
feature is added corresponding to the distance of each point from the origin, then such a
plane is quite easy to draw. Support vector machines can optimize efficiently over points
embedded in a variety of feature spaces that are more complex than the original space,
because they only use the products of pairs of points in their optimization, which are readily
replaced by more complex functions over the pairs that correspond to projection into larger
feature spaces (i.e. kernels)!. In contrast, other approaches may become much slower when
operating over a larger feature space. Common kernels include polynomial combinations
of the original features, and the radial basis function or RBF kernel, which computes
the distances between pairs of points using Gaussian functions, and which corresponds to
projecting points into an “infinite dimensional” feature space in the sense that the distance
is described by an infinite series. Support vector machines are used in Chapter 6, but are
not described in greater detail there. A reader requiring more details should refer to one
or more of the references | , ; , |.

The final classification algorithm described here is the Naive Bayes algorithm. This
algorithm outputs a conditional probability distribution for P(y|x), under the assumption
that the values of the features are conditionally independent of each other, given the label
y, which is often clearly incorrect. By Bayes Theorem, the probability of y given z is
proportionate to

P(yle) o< [Pla;ly)

T;ET

This leads to the “Naive” name, because the model cannot properly encode the effect of
interactions between features on the label. For example, suppose that if a student spends
a lot of time reading the textbook, and views the lecture, the probability of them doing
well is much higher than if they do either of these things alone. Since Naive Bayes assumes

P(y = pass|read book, saw lecture) = P(y = pass|read book)P(y = pass|saw lecture)

the model cannot encode this kind of non-linear relationship. Despite this, the Naive Bayes
algorithm has many advantages. Models can be produced after a single pass through the
data, whereas the optimization process for logistic regression and support vector machine

14The precise runtimes may vary, but will take between O(kl) and O(knl), where k is the number of
iterations (typically small), [is the number of exemplars, and n is the number of features | ,

|-

30

| O
O © © e :
o A
A A A O AA aa
A ré
............ OA A
A,
o ©
0

Figure 2.6: An example showing the power of the kernel trick. In the original feature space
the points belonging to the two classes cannot be separated with a plane (left). After
projecting them into a space with an additional dimension based on the distance of points
from the origin, the points are easily separated (right). Note that the figure on the right
shows only two of the three dimensions involved (the horizontal axis from the left figure,
and the new feature based on distance from the origin).

learning may (and often does) require many such passes (depending on the number of iter-
ations needed to solve the optimization problems). The model is also easy to understand.
P(y = pass|saw lecture) indicates an estimate of the probability that a student passes
the course, given that they saw the lecture, for example. If this value is higher, then the
instructor might reasonably infer that students who do not attend the lecture should be
encouraged to seek additional help, or to study more vigorously. Estimates of the proba-
bilities used in a Naive Bayes model are typically obtained by counting observations of the
data. For example, if 4 students are observed who saw the lecture and failed, and 5 students
are observed who saw the lecture and passed, a typical Naive Bayes learner would output a
value of P(y = pass|saw lecture) = g, or perhaps 1% if common smoothing techniques (see
| : |) have been used. This makes it very easy to extend Naive Bayes
to solve classification problems with more than two classes. The resulting model simply
includes estimates for the probabilities of each class. Naive Bayes is not used directly in
the thesis, but a Bayesian algorithm is used in Chapter 7, which is similar in principle, but
makes less extreme assumptions about the probability distributions it is modelling.

31

2.2.3 Multiclass Classification

Although several of the classification algorithms described earlier in this chapter were
not intended to solve classification problems with more than two classes, most of the
classification tasks considered in this thesis involve many classes, often between 7 and 20,
because the classes correspond to the set of candidates in an election. A classification
algorithm intended for use with binary classification problems can be converted into an
algorithm that can address problems involving more than two classes, and there are a
number of different strategies for doing so. Perhaps the most common approach, and the
one adopted by this thesis in most cases, is “one-versus-all” or OVA classification |

, |. In OVA classification, a classification problem with & different classes
(i.e. unique labels) is converted into k separate binary classification problems. In the i
such problem, members of class i are re-labelled to have label 1, and all other classes are
re-labelled with value 0. A binary classification algorithm is then used to solve each sub-
problem in turn, yielding k separate models, each of which has learned to differentiate one
class from the rest. To make a prediction about the class of a new, previously unseen,
exemplar, the exemplar is provided to each model, which will output a label (1 if the
model predicts that the new exemplar belongs to its target class, 0 otherwise). If only one
classifier (i.e. model) predicts a value of 1, then the new exemplar is readily labelled with
the class associated with that model. Otherwise, various other techniques can be used to
pick a label. Models like the support vector machine and logistic regression learners are
capable of outputting a “confidence” value between 0 and 1, rather than just a binary label.
A common approach is to pick the class corresponding to the classifier with the highest
confidence.

Although | | argues compellingly for the use of OVA classifica-
tion over competing methods, these other methods will be mentioned briefly for complete-
ness. The natural alternative to OVA is “one-versus-one” classification. In this scheme, a
separate model is trained for every pair of classes, and various schemes are used to combine
the outputs of these models. For example, | | suggests that outputs be
combined by applying a logical AND to the output of every model that involved a given
label. If all such models agree that the exemplar belongs to a given class, it is then as-
signed to that class. Alternatively, | | suggests a similar scheme
where the exemplar is assigned to the label with the largest fraction of classifiers agreeing
with the assignment. More complex schemes also exist (e.g. | , ;

, |). A one-versus-one approach is used in the experiments near the end of
Chapter 6, but nowhere else in this thesis.

32

2.2.4 Feature Selection

While techniques like the support vector machine classification algorithm are able to op-
erate efficiently over very large feature spaces, other algorithms are not. Feature selection
techniques can be applied to reduce the size of a large feature space to a smaller one that
contains only the most predictive features. As with classification itself, there are many
different feature selection techniques. This thesis makes use of only two techniques.

Principal components analysis (PCA) | , | finds linear combinations of
the original features that effectively encode (most of) the same information in a lower
dimensional space. It is widely applied as both an analysis and compression technique in
addition to its application in feature selection. PCA is used only briefly, near the end of
Chapter 6.

The other feature selection technique used in this thesis is Information Gain (IG)-
based feature selection | , ; , |. This approach ranks
features by the decrease in the entropy of the labels that would result from partitioning
the exemplars about different values of the feature. For example, suppose that all students
who saw a particular lecture passed the course, and all who did not see it failed. If the
students are partitioned based on who did or did not see this particular lecture, then
the resulting subsets will have no entropy at all (their labels will be homogeneous). In
contrast, the full population of students might have quite a lot of entropy (their labels
might be very heterogeneous). The reduction in entropy determines the importance of the
feature corresponding to attendance at the lecture in question. IG-based feature selection
is described more formally near the end of Chapter 6, but is used throughout the thesis.

2.3 Summary

This chapter provided a brief survey of topics relevant to the thesis, to ensure the reader
has a basic understanding of the background material. In subsequent chapters, these topics
will be expanded upon in greater detail as needed. The reader may be referred back to
this chapter for reference however.

33

Chapter 3

Problem Statement

There are known knowns. These are things we know that we
know. We also know there are known unknowns; that is to say
we know there are some things we do not know. But there are
also unknown unknowns — the ones we don’t know we don’t
know.

Donald Rumsfeld [2002]

What he forgot to add was the crucial fourth term: the
“unknown knowns”. These are the things that we don’t know
that we know.

Slavoj Zizek

While Chapter 1 provided an overview of the thesis, and some examples outlining
the problems to be addressed, the core problem of the thesis has been described only
informally, through examples and prose. Taking as given that the reader is now familiar
with the background material discussed in Chapter 2, the problem can now be presented
in greater detail, and expressed formally. This chapter mixes formal problem descriptions
with concrete examples, and concludes with a discussion of current approaches. A more
detailed motivational example is used throughout, and described early in the chapter.
Subsequently, Chapter 4 proposes a new approach to solving the problem.

34

3.1 Social Choice with Partial Preferences

In Chapter 1, the core problem addressed by this Thesis was “Can existing techniques
from machine learning be used to better make group decisions in multiagent
systems?”. To answer this question concretely, it must first be carefully framed. How
precisely might machine learning techniques be able to improve group decision making?
What part (or parts) of group decision making could benefit most from their application?
A good candidate area is the problem of making group decisions with limited information.

As discussed in Chapter 2, voting is a process by which a group of autonomous agents
can coordinate their actions. Ranked ballot voting systems like the Borda Count or
Single Transferable Vote function' by eliciting preferences from each voter, and ag-
gregating these preferences to produce a collective outcome. The availability of complete
preference information allows these systems to avoid making “poor” or “unfair” group de-
cisions according to various more precise definitions of those terms. For example, Single
Transferable Vote will never pick a Condorcet loser as the winner of an election (i.e. a
candidate that a strict majority of voters believes is the worst possible), while systems like
Plurality can easily pick such candidates?®.

Although ranked ballot voting systems are powerful, and “fairer” according to many
criteria (e.g. never picking a Condorcet loser), much of this power comes from the extra
information that ranked ballot systems have access to. In the example preference profile
from Chapter 1 reproduced below, a simple rule like Plurality picks Condorcet loser a as
the winner (since a is the most preferred candidate of 15 voters) because it does not know
(or request) information about the candidate each voter liked least. In contrast, any rule
that does request such information can (at least in principle) avoid picking a.

A A A A

al bk ¢k dR
dF ¢k bF ct
ct dF dF bF

bt ab alb at
15 12 10 11

L A ranked ballot system which simulates a number of rounds of Plurality-like contests, dropping the
weakest candidate in each round, and reassigning their supporters to other candidates.
2See the example in Chapter 1.

35

Since the power of ranked ballot voting systems comes in part from having access to
complete information about voters’ preferences, the power of such systems could be signif-
icantly reduced if voters cannot or will not provide the necessary preference information.
An obvious example is that if voters reported only their top preferences in the above profile,
then exactly the same set of problems that plague Plurality will affect many other voting
systems. For example, if only first preferences are specified, then the principle underlying
Borda Count becomes nonsensical: the candidate with the highest average position is
simply the one with the most first place preferences, exactly the winner Plurality would
select.

There are many ways in which the available information could be reduced. In a robotic
swarm, some agents may have unreliable sensor information, or could experience limitations
on their communication with the entity responsible for aggregating their preferences. In a
group recommendation system like Netflix, users may not have enough information about
the various alternatives to rank them. In a hiring committee, human agents might decline to
publicly announce their preferences, to avoid offending their peers. Similarly, if preference
information is a valuable secret, as might be the case when aggregating the preferences of
corporate entities or strategically motivated software agents, voters may attempt to reveal
as little information to the system as possible. Consequently, in many practical applications
of ranked ballot voting systems, the preferences provided by voters will be incomplete.

3.1.1 Motivating Example

Although it may be apparent that extreme information deprivation (such as limiting agents
to reporting only their first preferences) may introduce challenges, it is perhaps less obvious
that the removal of smaller amounts of information can have a significant impact on the
outcome of an election. To demonstrate this, consider a whimsical scenario taking place
on the surface of Mars. Robotic swarms, comprised of many small, weak machines, are
retrieving mineral samples on behalf of different prospectors. Four small swarms meet, but
each is too small to retrieve an adequate sample on its own, and the groups must work
together to prospect four potential mining sites, sharing the mineral rights between their
owners.

The largest swarm, belonging to Space Mining Inc., acts on behalf of a prospector
interested primarily in distant and dangerous location a, while MarsMetal Corp. prefers
the closer but less geologically promising sites like b and ¢. Ares and Boone Prospectors
operate smaller swarms, and also prefer to minimize risk. The three risk-averse companies
each prefer the safe sites closest to their headquarters to sites further away (See Figure 3.1).

36

To facilitate prospecting, the companies have agreed on a coordination protocol to
allow smaller swarms to cooperate. Each member of the swarm will submit a preference
(ranked ballot) summarizing the prospecting preferences of its company to a voting system.
The swarms collectively agree to prospect the site selected by the voting system. The
prospectors agree to use the Borda Count system, under the belief that it will select
compromise missions for their swarms, rather than recklessly risking robots on the hunch
of another company.

Boone

Figure 3.1: A map depicting the agents and alternatives involved in Martian Swarm Ex-
ample.

Suppose that the preference profile for the various members of the swarm are as given in
Figure 3.2, with the leftmost preferences belonging to the 20 robots of Space Mining Inc.,
the 5 second from the left belonging to the robots of MarsMetal, the 10 third from the left
to Ares, and the remaining 4 to Boone Prospectors. Location a is not a Condorcet Loser in
this profile, but nontheless, a is a divisive choice because of the high risks involved. If the
Borda Count system is applied with a scoring vector of § = {3,2, 1,0}, then alternative ¢
is selected as the winner, as summarized in Table 3.1. This is not unreasonable, as ¢ does
appear in the highest average position across the preferences of the companies, weighted
by the resources invested in this particular swarm.

37

Figure 3.2: A preference profile from the Martian Swarm example, used to illustrate the
difficulties of group decision making with incomplete information.

3-20 =60
3-154+2-4=053
1-20+2-15+3-4=062
2:-20+1-19=59

[oN NeN Ron)

Table 3.1: The Borda Count scores assigned to each alternative in the Martian Swarm
Example.

Suppose however, that the situation were different, and that the prospectors at Ares
are a new entry to the market. So far, the company only has good knowledge of location
b, and is unsure about the relative risks involved in exploring the other locations. They
program their robots to communicate this information to the voting system, trusting that
the robots will be used in a safe and reasonable fashion based on the information they are
able to provide. The resulting preference profile appears in Figure 3.3.

How should the voting system treat the missing information transmitted by Ares’
robots? As a natural first step, the system might assign 0 points to each unranked can-
didate on each of the 10 ballots submitted by Ares’ robots, effectively using the scoring
vector s = {3,0,0,0} for the incomplete ballots. This amounts to using only the infor-
mation that was explicitly given: b is the most preferred alternative of the Ares company.
The Borda scores resulting from this decision are shown in Table 3.2. Several things have
changed. Now a has the highest total score. Further, while previously the overall ranking
of the alternatives was ¢ > a > d > b, when the missing information is treated this way,
the Borda Count instead ranks the alternatives a > b > d > c. b has become the second
highest ranked alternative, despite being ranked last when all preferences were known. c,
the winner when all preferences were known, is now ranked last.

38

Figure 3.3: An incomplete preference profile from the Martian Swarm example, after the
preferences of Ares are ablated.

3-20 =60
3-15+2-4=53
1-204+2-5+43-4=142
2:20+1-9=149

Ao |Tw

Table 3.2: The Borda Count scores assigned to each alternative in the Martian Swarm
Example, if Ares transmits incomplete information, and only transmitted information is
used in scoring.

This shift in the outcome of the vote is not merely the result of preferences being
unspecified by Ares, but also of the decision that the voting system made about how to
treat this missing information. Suppose that instead of assigning no points, the system
assigns all three unranked candidates the average of the points they could have received
under a randomly selected ranking. On each of Ares’ ballots, one candidate would have
gotten two points, another would have received one point and the third no points, if
information on the three unranked candidates were included. This suggests each of the
three candidates should be assigned % = 1 point per Ares ballot, effectively using the
scoring vector s = {3,1,1,1}. Table 3.3 shows the Borda scores obtained if this process is
followed instead. Again, a is the winning alternative, but now the orderingisa > d = b > c,
inverting the overall ranks of d and b.

39

3-204+1-10="70
3-154+2-4=053
1-30+2-54+3-4=52
2:-20+1-19=159

Ao |Tw

Table 3.3: The Borda Count scores assigned to each alternative in the Martian Swarm
Example, if Ares transmits incomplete information, and an average score is assigned to
missing entries.

3.2 Formal Problem Statement

If the treatment of missing information can affect the outcome selected, then this element
of a voting system’s design must be carefully considered. In formally describing this aspect
of decision making, there are both modelling and evaluation decisions that determine the
exact nature of how missing information ought to be treated. In this section, a formal model
of group decision making under incomplete information is specified, with justification for
the modelling decisions following.

An election with incomplete information is modelled by a set of agents A = {ay, ..., a,}
of total size n, deciding among a set of outcomes O = {0y, ..., 0,,}. Each voter has a true
preference over O, denoted by =;€>, and an ezpressed preference (ballot) b; € B, over the
set of candidates C' = {¢y, ..., ¢t }. Additionally, if x b; y, then x >; y for all z,y € C' and
a; € A (i.e. voters report their preferences honestly).

A preference is a binary relation over C, that is reflexive, transitive and antisymmetric,
but not necessarily total (i.e. a partial order). The set of all permissible preference relations
over a set C'is denoted by P(C). x =; y is written to indicate that z precedes y in a true
preference order >=;. © ~; y <> x ¥, y Ay #; v is written to indicate that the order >; does
not define a relationship between x and y. Analogously, for expressed preferences x b; y is
written to indicate that z precedes y, and = ~% y to indicate that no relation between
and y was expressed. This notation is summarized in Table 3.4 for reference.

This model contains a non-standard component. It defines explicitly separate true
and expressed preferences for voters. In social choice it is typically assumed | ,
| that voters express exactly their true preferences. A notable exception to this is
when considering strategic voting behaviours like ‘manipulation’, where one of the voters
expresses preferences that differ from their true preferences | , ; ,
|. This formalism will allow clear expression of different models of incomplete expressed
preferences. The assumption that voters do not cast strategic ballots is preserved via the

40

restriction that a voter’s true preferences must be a consistent extension of their expressed
preferences®. That is, if x b; y, then =; y for all z,y € C and a; € A. This does
not model the case where voters are misinformed (i.e. where their expressed preferences
explicitly contradict their true preferences), only the cases where voters are uninformed
(i.e. where their expressed preferences contain a subset of the information encoded in their
true preferences) Some of the proposed voting systems for this model of election, discussed
later in the thesis, are able to function even when voters are misinformed, however.

The reason that a separate outcome set is used is to allow the model to capture both
elections to pick a single winner, and elections to rank the entire set of candidates. In the
latter case, O = L(C), where L(C) is the set of all linear orders over C.

An election is decided by a social choice function®. A social choice function S : P(C)" —
O maps from a preference profile (i.e. a set of preferences for every member of a group
or community) to an outcome. Throughout, only social choice functions that operate
identically for different values of n are considered, and that break ties by drawing lots (i.e.
uniformly at random).

3.2.1 Formalization of the Motivating Example

Formalizing the motivating example from the previous section will provide a concrete
instantiation of the abstract model described above. In this formal model, there exists a
set of agents

A= {CLl, ...,agg}

where a; to asy correspond to the robots of Space Mining Inc., as; to ass correspond to
those of MarsMetal Corp, asg to ass to those of Ares, and asg to asg to those of Boone
Prospectors. The set of alternatives is given by

C ={a,b,c,d}

and is identical to the set of possible outcomes O = C' if the robots will visit only one of
the locations. If instead the robots will visit more than one location, and the vote is to
determine the order they will be visited, then O = £(C') instead.

The robot’s true preferences are summarized in Table 3.5, while their revealed prefer-
ences are summarized in Table 3.6.

3i.e. Voters may lie by omission, but do not contradict their true preferences.
4The term is used in this model to refer to both social choice and social welfare functions.

41

A A set of agents

a; An element of the set of agents

n Total number of agents; | A|

@) A set of outcomes

0; An element of the set of outcomes

m The total number of outcomes

C The set of alternatives

C; An element of the set of alternatives

k The total number of alternatives

>~ The true preferences of agent ¢; A partial ordering over C

b; The expressed preferences of agent i; A partial ordering over C

- The set of true preferences

B The set of expressed preferences
L(C) The set of linear orders over C
P(C) The set of partial orders over C

S A social choice function

Table 3.4: Notation used in the modelling of an election.

=1t0=9 |a=d>=c+b
=91 tO o5 | b=c>=d = a
=06 t0 =35 | b=c>=d > a
=36 t0 =39 | c>=b>=d > a

Table 3.5: A formalized version of the true preferences in the motivational example.

bltObQo a-d=c>b
b21t0b25 b=c=d=a
bog to b3s | b=c~d~a
bagtobsg | c=-b>=d = a

Table 3.6: A formalized version of the revealed preferences in the motivational example.

42

The Borda Count maps from the expressed preferences of the voters (i.e. B = {b1, ..., b39})
to either C' or L(C), again depending on whether the robots are interesting in selecting
only one location to visit, or in ordering the entire set of locations, to visit them one after
another. If O = C, then the Borda voting system with scoring vector s = {3,2,1,0} is
defined by:

BordaScore(B, ¢) = Z s(Pos(c, b;))

b;eB

Borda(B, C') = argmax BordaScore(B, ¢)
ceC

where Pos(c;, b;) returns the position of ¢ on ballot b; (i.e. the number of candidates ¢ such
that ¢ > ¢ in b;, or |C|—1 if ¢ is not defined on b;) and s(i) returns the value of the scoring
vector at position i. Otherwise, if O = £(C'), then the Borda Count is instead given by:

BordaRank(B, C') =>,€ L(C)s.t.c =; ¢ — BordaScore(B, ¢) > BordaScore(B,)

The two Borda definitions above are consistent with the example voting systems that
ignored missing information entirely, and did not assign any of the missing points. If
a definition that assigned average points were desired, a different definition of the Pos
function could be provided:

Nb
Pos(c, b;) chbc 02)
ceC\c

where I(z) is an indicator variable, with value 1 iff z is true.

3.2.2 The Definition of a “Good” Decision

The motivating example in the preceding sections illustrates that the way in which missing
information is treated can have a significant impact on the decision reached by a voting
system. Different decisions were reached when different extensions of the Borda system
were used. If the purpose of a good voting system is to make decisions that reflect the
will of the electorate, then some of these decisions must be better (i.e. more reflective)

43

than others. This section provides further justification for using separate true and revealed
preferences, and philosophical motivation for performance measurements used to assess the
quality of decisions made in subsequent sections. The next section contains a discussion of
existing systems, and why they may make poor decisions, as assessed by these measures.

Philosophically, the approach to voting proposed in this thesis is an outgrowth or
extension of an older idea within political science: Voting Correctly. Classical models
of democratic behaviour from the enlightenment era (e.g. | , ; , :

, |) assume the existence of a rational electorate, where individual voters are
civic-minded, politically engaged, and able to determine the policies that benefit them
maximally. If the agents are rational, and the system sound (e.g. if the system picked
a Condorcet winner), then the selected choice must be truly reflective of the will of the
people. In practice however, most voters are not very politically engaged. Indeed, attempts
to measure the level of knowledge and engagement of human voters on political issues
reveal a great disparity between the theorized model of human behaviour, and the reality
of human disinterest in political matters. Lau and Redlawsk |) |
describe the state of research in the 1997:

Five decades of behavioural research in political science have left no doubt,
however, that only a tiny minority of the citizens in any democracy actually live
up to these ideals [i.e. of rational, fully informed voters|. Interest in politics is
generally weak, discussion is rare, political knowledge on the average is pitifully
low, and few people actually participate in politics beyond voting (e.g |

Y Y))) Y)])'

And what good is even voting if for so many it is based on so little information?

Within political science, Lau and Redlawsk describe a division in how the gap between
theory and practice ought to be interpreted, with some experts characterizing democratic
decisions as having false legitimacy (because the reality theories of legitimacy are predicated
on does not exist), and others revising the theories to better match the data. Lau and
Redlawsk’s Voting Correctly is a new approach to addressing the gap, that instead attempts
(in a sense) to revise the data to better match the theory. The authors claim that, in
fact, despite being so ill informed, a large majority of voters are casting “correct” ballots,
providing reasonable legitimacy to democratic decisions.

For the purpose of this thesis, it is the notion of “correctness” used by proponents of
Voting Correctly that matters most. There are many reasonable ways to define correctness.
A technocratic approach to correctness would assume that a correct vote reflects some
objective relationship between the voter’s beliefs, social class, aspirations, or values, and

44

some similar set of measurements about the candidates. In contrast, an purely egalitarian
approach to correctness might assume that a vote is always correct, as it reflects the
intention of the voter, no matter how misinformed or misplaced. Lau and Redlawsk suggest
instead a normative definition of correctness: a correct vote is one that an individual
voter considers correct ex-post, when they are provided with full information in an easily
digestible format. Stated more concisely, a correct vote is the one a voter would have cast
with complete information, as judged by the voter themselves.

Lau and Redlawsk use this notion of correctness to empirically assess the extent to
which voters cast correct ballots on political issues | , |. Voters were
provided with a simulated election, and noisy or confusing sources of information about the
candidates. After gathering information from these noisy sources, voters cast ballots under
the Plurality system. They were then given a “cheat sheet”, summarizing the positions of
the candidates on various issues in a concise, easily comparable, format. After considering
the summary, voters were asked to assess whether they had voted correctly (i.e. whether
they would change their vote). Approximately 30% of voters admit to making the wrong
choice, a figure since replicated on a much larger array of electoral groups | ,

]. This provides compelling evidence for the idea that voters may express preferences
for candidates that differ from their true preferences (i.e. the preferences they would express
if they had better information).

Following Lau and Redlawsk, the definition of a “good” group decision, in the context
of this thesis, is one that is “correct” in the normative sense proposed above. A deci-
sion made with voters’ expressed preferences is a good decision only to the extent that it
approximates the decision voters would have made, had they voted with complete informa-
tion (i.e. the decision voters would have made if their expressed preferences were exactly
equal to their true preferences). Formally, this idea can be expressed in conjunction with
different distance pseudometrics applied to the space of outcomes (which can be either
individual winners, or orderings over the set of alternatives). Suppose that a function
0 : O x O — R defines distances between elements of the outcome set of an election, with
the usual properties of a pseudometric | , |:

e §(0;,05) >0

o 5(01,0) =0

e 0(0;,0i) = 0(0;,0:)

o 0(0s,05) < 8(04, 0) + 6(0x, 0;)

45

Then, in the context of this thesis, a good decision minimizes 6(S(B),S(>)) (i.e. the
distance between the outcome under voters’ expressed preferences, and the outcome under
their true preferences).

Example: Continuing with the motivational example from earlier in the chapter, if
the outcome space was the set of candidates (i.e. the robots only plan to explore one
location; O = ('), then the distance over the set of points in the outcome space could be a
function of ordering of the candidates under the scores assigned to different outcomes by
the BordaScore function, under the voters’ true preferences:

d.(0;,0;) = |BordaScore(>, 0;) — BordaScore(>, 0;)]

The quality of a decision made using ballots B would then be given by:

ds (Borda(B), Borda(>))

The totals from the earlier example show that if Borda is used, a is selected as the winner
using B, but ¢ as the winner using >. ¢ beat a by two points in the election with complete
information (see Table 3.1), so the decision is characterized as being two points from
optimal. Alternatively, if a variant of Borda that picked b as the winner were used, it
would be 9 points from optimal.

Alternatively, if the robots intended to visit all the locations, and are voting to deter-
mine the order in which they should be visited (i.e. O = L£(C)), then instead a pseudo-
metric defined over linear orders of candidates is used. For example, one might elect to
use Kendall’s Tau correlation, which returns a real value between -1 and 1 indicating the
similarity of two ordinal sequences, by measuring the number of adjacent pairwise swaps
needed to convert one sequence into the other. In this case, the pseudometric is defined as
a transform of the correlation to ensure a positive distance value:

6(0i,05) = —(7(04,05) — 1)

Recall that the outcome when all voters expressed preferences that were identical to
their true preferences was ¢ > a > d > b (see Table 3.1), and, when the expressed
preferences of Ares were reduced to just reporting b as a first preference, the outcome was
a > b= d > c (see Table 3.2). Four swaps are needed to convert the latter sequence to the
former (b <> d; ¢ <> b; ¢ <> d; ¢ <> a). There are a total of 473 = 6 possible inversions of

the candidates, so the Kendall Correlation is 7 = 26%4 = —%. Consequently,

46

1 4

d(BordaRank(B), BordaRank(>)) = —(—§ —-1)= 3

In contrast, if the Borda extension that assigns average scores to missing candidates is

used, then the order a > d > b > c is selected (see Table 3.3). Converting this order to the
one reference order produced by the voters’ true preferences requires just 3 swaps (¢ <> b;
¢ <> d; c 4> a), so it has a Kendall Correlation of 0. It follows that, under this extension:

d(BordaRank(B), BordaRank(>~)) = —(0—1) =1

3.2.3 Problem Statement

Informally, the topic addressed by this thesis was Can existing techniques from ma-
chine learning be used to make better group decisions in multiagent systems?
The content of the preceding two subsections provide enough information to make this
statement more formally.

The topic addressed by this thesis is the application of existing techniques from ma-
chine learning to make group decisions that are close (in the sense of a problem-specific
pseudometric) to the decisions voters would have made using a voting system, if their true
preferences matched their expressed preferences. This is inspired by the philosophy of Vot-
ing Correctly, and could be interpreted as constructing systems to help groups vote more
correctly, using the normative definition of correctness discussed in the previous section.

3.3 Existing Approaches

In the first section of this chapter, a motivating example showed why members of a mul-
tiagent system might need to vote with a ranked-ballot system; why some members might
be unable to cast a complete ballot; and that decisions made when some ballots are incom-
plete can be quite different from the decisions voters might prefer. The chapter’s second
section then presented a formal model of an election with incomplete information, and
an approach to measuring the quality of decisions made with incomplete information. In
this section, two existing approaches to voting with incomplete information are discussed,
along with examples of situations where existing approaches make decisions that could be
improved.

47

The existing approaches considered here were constructed with different philosophies,
and should not be expected to perform well when assessed according to the measures
proposed in this thesis. This in no way invalidates the existing approaches, which perform
well with respect to the goals of their designers. Instead, it highlights a different problem
area within group decision making, and shows the need for new techniques to address these
problems.

3.3.1 Maximum Likelihood

If a voting system has no external information about the true preferences of voters, and
the expressed preferences are incomplete, then a natural approach to aggregating the given
information is to assume that all completions of the ballots are equally likely. Philosoph-
ically, such a system is fair in the sense of being unbiased (i.e. it treats all candidates as
equally likely to appear ahead of each other).

Xia and Conitzer | , | propose such a system, based on the idea that
votes are independent observations of a globally correct ranking. Voters’ observations are
modelled as partial orders derived from the globally correct ranking via a stochastic process.
The set of stochastic processes considered assumes that, P(c; > ¢;|o*) is independent for
every pair ¢;, ¢; (except with respect to the requirement for a transitive ordering overall),
where 0* is the globally correct outcome.

The technique’s performance is validated theoretically, in terms of consistency with dif-
ferent axiomatic properties, and computational complexity of inference in different models.

The technique is interesting in that it provides many general extensions of existing
voting systems to domains with partial preferences. However, the voting rules proposed
ignore missing data entirely when calculating the likelihood that ¢; > ¢; in the global
ranking. As an example, depicted in Figure 3.4, consider the proposed extension based on
the weighted majority graph. In this graph vertices are candidates, and directed edges are
weighted according to the margin by which voters that ranked two candidates prefer the
source to the destination. Consider an election between two mainstream alternatives (I
and ¢) and one lesser-known extremist party (e). Suppose that the extremist party has 100
dedicated supporters who rank e > [~ ¢. [and ¢ each have n £ 40 ill-informed supporters
who express only [> ¢, or ¢ > [, and express no information about e, save perhaps some
small minority (say 20 each).

Consider the pairwise contest between e and [. Since 100 voters rank e > [, and only 20
rank [> e, the assumption that the remaining votes are distributed uniformly at random
means that e prevails over [by a margin of 80. By similar argument, e prevails over ¢ by

48

A A A A A A A A

et ek L} ct eb el L L

Il F ¢k ¢+ I} Il F ¢k I+ ¢}

ckF Il F el el ckF Il F ¢cF | F

50 50 n n + 40 50 50 n n + 40
100 100

Figure 3.4: An example where the maximum likelihood approach to voting selects a Con-
dorcet loser as the winner of the election. The upper portion of the figure shows the true
and expressed preferences of the voters, while the lower portion show the weighted majority
graph for the election.

a margin of 80. Since ¢ and [have a similar number of total supporters, one will prevail
over the other, but by a margin of at most 80. e must be declared the winner, since it
dominates both other candidates by the widest observed margins. However, by making the
assumption of pairwise independence, the system has ignored the observed pattern that
everyone ranking one of ¢ or [first ranks e last. If the true preferences of the electorate at
large rank e last en mass, then a very poor decision has been made (the worst possible: a
Condorcet loser).

The above example explicitly violates the independence assumption of Xia and Conitzer’s
model, so it is not surprising that a poor decision was made. However, it does illustrate
the need for a new approach when pairwise independence does not hold.

49

3.3.2 Minimax Regret

Lu and Boutilier | , | adopt a similar problem model to the one out-
lined in this chapter, implicitly assuming different revealed and true preferences. However,
rather than trying to pick the most correct alternative, their approach focuses on picking
the one with the least potential to be the worst alternative, given the information voters
provided. The technique was designed to be used to incrementally and strategically elicit
further information from voters, improving the lower bound on decision quality by the
maximum amount possible with each elicitation.

The proposed approach is called “minimax regret” (MMR). The regret associated with
a decision is the distance between the outcome selected and the outcome selected in reality,
according to some distance pseudometric (e.g. the distance between two candidate’s Borda
scores). This is much the same as in the model proposed in this chapter. For each candi-
date ¢, MMR computes the adversarial preference profile that is both consistent with the
expressed preference profile, and where ¢ is the greatest distance possible from the winner.
MMR declares the winner to be the candidate which is closest to winning under its own
adversarial preference profile. More formally, given a social choice function S, distance
metric d, and expressed preferences B:

MMR(B, C) = argmin argmax d, (S (7), ¢)

ceC mell

where II is the set of all ballots that are extensions of B, and d, is a distance function in
terms of some 7 € II, not >.

Lu and Boutilier | , | show both that the technique is computa-
tionally tractable for some voting rules (e.g. Borda), but not others (e.g. Copeland) where
the set of possible profiles must be enumerated in the worst case, and is exponentially
large in the number of candidates and agents. They also evaluate MMR empirically by
showing the change in the regret for the selected candidate decreases rapidly as additional
information is elicited, during simulated elections on the Dublin North dataset |

Y]

Although MMR/’s conservative nature provides a clear prioritization for eliciting new
information from voters, it can lead the technique to make choices that are cautious, but
improbable. For example, consider the motivational example used throughout this chapter.
If the ballots belonging to Ares in Figure 3.3 were completed b > ¢ > d > a, then a would
be defeated by just 2 points. The completion b > d > ¢ > a would allow d to defeat a
by 9 points. Therefore, the maximum regret for picking candidate a is 9 points. However,

50

if they are completed as b > a > d > ¢, then alternative a will beat alternative ¢ by 38
points, so the maximum regret for candidate c is at least 38 points. Therefore candidate
a will be the winner picked by MMR by quite a wide margin. Nonetheless, although a
is a safer choice, it is incorrect in the example, in the sense that a is in fact a Condorcet
loser under voters’ true preferences. Further, it should be apparent that a is likely to be
incorrect by looking at the preferences of similar voters (e.g. those of MarsMetal, which
also rank b first).

3.4 Summary

This chapter described a more formal version of the problem addressed in this thesis, and
provided a detailed motivational example. A discussion of what constitutes a good decision,
including both philosophical justification and a formal definition in terms of pseudometrics,
facilitated a more careful description of the goal of the thesis: finding voting systems that
can make decisions that are close (under a problem-specific pseudometric) to those that
would be made with complete information. The final portion of the chapter discussed
two existing approaches to similar problems, explained the different modelling assumptions
made, and provided short examples of problems where violations of the existing approaches’
assumptions led to bad (i.e. far from optimal) decisions. The next chapter proposes a new
approach to solve these problems based on existing machine learning techniques.

ol

Chapter 4

An Imputation-Based Approach

That the sun will not rise tomorrow is no less intelligible a
proposition, and implies no more contradiction, than the
affirmation, that it will rise. We should in vain, therefore,
attempt to demonstrate its falsehood. Were it demonstratively
false, it would imply a contradiction, and could never be
distinctly conceived by the mind.

David Hume [1739]

Our passional nature not only lawfully may, but must, decide
an option between propositions, whenever it is a genuine
option that cannot by its nature be decided on intellectual
grounds; for to say under such circumstances, “Do not decide,
but leave the question open,” is itself a passional decision—just
like deciding yes or not—and is attended with the same risk of
losing truth.

William James [1399]

In Chapter 3, a formal problem was posed: how can we design systems to make group
decisions with incomplete preferences, such that the decision made is as “close” as possi-
ble to the “correct” decision? Closeness was assigned a problem specific meaning, defined

o2

in terms of a distance pseudometric tailored to the goals of the agents making the deci-
sion. Correctness was assigned the normative definition proposed by Political Scientists
working on the problem of “Voting Correctly” | : | . Several existing
approaches to making group decisions with incomplete preferences were considered, and
some situations in which these systems make decisions that are “far” from “correct”, under
the definitions adopted by this thesis, were highlighted.

This chapter proposes a new approach to solving social choice problems with incomplete
information, based on the application of conventional machine learning techniques. The
first section demonstrates how machine learning can be used to solve the motivational
example of the previous chapter, and make better decisions in the example problems that
were used to illustrate weaker areas for existing systems. In addition, it discusses the
inherent weaknesses of a machine learning approach, and justifies the approach in spite of
this. In the second section, the approach is presented more formally, and is shown to be a
sort of social choice function in its own right, an important result returned to in Chapter 8.
The final section of the chapter discusses the various implementation details that need to
be considered for a realization of the general framework proposed in the second section. A
realization of the approach is implemented and validated subsequently in Chapter 5.

4.1 Solving the motivational example

Chapter 3 used a recurring motivational example to illustrate the difficulty of making good
group decisions with incomplete information. Although various techniques were proposed
for deciding where the robot swarm should prospect, none of the suggested solutions picked
the outcome produced by the voters’ true (rather than expressed) preferences. The true
and expressed preferences from the example are reproduced in Figure 4.1. In the example,
the Borda Count voting system was applied to the true preferences of the voters, where it
selected the election of candidate ¢ as the winning outcome. However, various reasonable
extensions of the Borda system to accommodate partial preferences were shown to pick
other candidates as the winner. For example, the extension where missing candidates on
a ballot are ignored (assigned no points) selects a as the winner. a was also the candidate
selected by the alternative minimax regret approach | , |.

Although these techniques for making decisions with partial information are intended
to be fair (i.e. to treat candidates equitably), they are in some sense perhaps too fair. In
many domains, like the motivational example, voters’ true preferences are not distributed
uniformly at random, and not all outcomes are equally likely. Assumptions about the

93

A A A A A A A A
afb bE bE ch afb bE bE ch
dr cpF cpF b dr cF- F bF
cr dpr dr dr cr dr r dr
bt af afb af bt at - aft
20 5 10 4 20 5 10 4

Figure 4.1: A reproduction of true (left) and expressed (right) preferences from the moti-
vational example of Chapter 3.

symmetry of missing information® are still assumptions, and in fact, many problem domains
do have asymmetric structures that can be exploited. For instance, in the Martian swarm
example, voters’ preferences were derived from a combination of the locations and priorities
of their associated companies. Knowing this, and knowing that location b is nearest to
location ¢, location d is slightly further, and location a furthest, both in terms of geography
and risk, one might reasonably infer that voters ranking b first will tend to rank ¢ second,
and so on. Indeed, this ranking corresponds directly to the true preferences of the voters.

While a voting system that simply imposed such an ordering on voters’ preferences
might perform well in this problem domain, it would not adapt well if the environment
changes. For instance, what if mineral deposits are confirmed at location a, making further
prospecting there less risky than location d, despite the slightly greater distance. Voters’
preferences would change, but the system would still assume a was a worse choice than d for
risk-averse voters. Instead, to be fair and adaptive, a voting system that exploits structure
in voters’ preferences should infer that structure from the preferences themselves.

As a simple example, suppose voters have submitted top-orders for their preferences,
and the missing information is imputed with the most popular suffix? of voters’ specified
preferences (e.g. in Figure 4.1, imputing the 10 ballots with missing information via with
the ordering over the unranked candidates ¢, d, and a that is most popular among the other
voters that ranked b first). This technique makes a very strong assumption on the structure
of voters’ true preferences: those with incomplete information have identical preferences to
those who voted most similarly to them. However, compared with the symmetry assump-

! As with the maximum likelihood approach to voting | , |, for instance.
2i.e. impute voters’ preferences with the preference of the most common complete ballot that is consis-
tent with the preferences they have specified.

54

3-204+1-10=70

3-154+2-4=053
1-204+2-54+3-4=42

2-304+1-19=179

Qoo

Table 4.1: The Borda Count scores assigned to each alternative in the true preference
profile from Figure 4.2.

tions of other approaches (that voters’ preferences are drawn uniformly at random |
, | or that worst case completions are likely completions |
|), this does not seem outrageous. Throughout the example this approach will be
referred to as Imputation Plurality®.

In Figure 4.1, the incomplete ballots all start with prefix b (they rank b first). There
are only 5 other ballots ranking b first in the voters’ expressed preferences, and all of them
also rank ¢ second, d third, and a fourth. If the expressed preferences are imputed in this
fashion, the true preference profile is recovered. Therefore, imputing the expressed profile,
and applying the standard Borda Count to the completed preferences would yield the
same decision as applying Borda Count to the true preferences of voters. The combination
of a very simple learning algorithm and a standard voting rule yields the correct decision.

The motivating example was constructed to be easily solved with this approach. It
is not difficult to construct preference profiles where the proposed technique makes an
incorrect decision, and in fact, even arbitrarily incorrect decisions. For example, consider
the true and expressed preference profiles in Figure 4.2. Here the true preferences (left)
of the 10 voters who only expressed a first preference are radically different from those of
the 5 voters who also rank b first. The 10 voters who expressed incomplete preferences
rank d second, a third, and c last, while the 5 voters who expressed complete ones use
the an entirely different ranking for their true preferences. Table 4.1 shows the Borda
Count scores for each candidate under this true preference profile. The combination of
Imputation Plurality followed by Borda Count will reproduce the true preferences
from the original example (Figure 4.1), under which ¢ is declared the winner. However, ¢
has the lowest Borda score in the true preferences of Figure 4.2, and is therefore the least
correct choice under any reasonable distance pseudometric.

The reason for this failure is that the patterns in the true preference profile did not

3This is not the same as the Plurality social choice function. Rather, it is an imputation approach
that is analogous to the social choice function of the same name.

95

A A A A A A A A
at bF b} ct at bF b} ct
dr cpF drF b dr cF- F bF
cr dr apr dr cr dr r dr
bt afF cF af bt at - aft
20 5 10 4 20 5 10 4

Figure 4.2: Example true (left) and expressed (right) preference profiles where the combi-
nation of Imputation Plurality and Borda Count makes an incorrect decision.

match the assumptions of the (simple) learning algorithm. Voters with similar first prefer-
ences did not in fact have similar second, third, or fourth preferences. This is a fundamental
limitation of any technique that makes assumptions about the way missing preference in-
formation is distributed, but note that it is not inherently better or worse than assuming
preferences are distributed at random; it is simply suited to resolving a different set of
problems than a technique with with different or fewer assumptions about the nature of
the data. This thesis adopts a pragmatic approach to the question of whether assump-
tions are reasonable or valid: the assumptions made by a decision making system are
reasonable and valid insofar as they make better decisions in the real world. If real world
electoral problems have relatively homogeneous preferences, then techniques like Impu-
tation Plurality would be expected to produce more correct outcomes than if they have
highly heterogeneous preferences, for example.

4.1.1 Free Lunches in Social Choice?

The No Free Lunch (NFL) Theorem |) | provides a more formal perspective
for discussing the validity of different modelling assumptions when constructing machine
learning algorithms (as well as algorithms for other AI purposes, like optimization and
local search more generally). The NFL Theorem basically concludes that the quality of
an algorithm depends entirely on how likely it is to face problems that match its own

biases, versus problems that do not | , |. Stated more strongly, the essential
feature is that, averaged across the set of all possible problems, all supervised learning
algorithms | , | have identical performance, under any performance measure one

might choose. For example, in supervised machine learning, a problem consists of some true
function (not fully known, and thus to be learned) mapping inputs to outputs, and some

o6

revealed (incomplete) mappings from a subset of inputs to outputs. A learning algorithm
generates a hypothesis for the true function on the basis of the revealed mappings. However,
the set of all problems includes a set of problems where identical revealed mappings are
presented to the algorithm, but different true functions are used. Regardless of how the
algorithm picks the mapping it will use, it will be better on some problems and worse on
others. The NFL theorem says that average performance will actually be identical across
different algorithms, provided that problems are sampled uniformly at random.

The astute reader may spot a close analogy to the problem considered in this thesis.
A “true” mapping from voters (inputs) to preferences (outputs) defines the true preference
profile. The revealed preference profile is a partial mapping: for any pair of candidates in
C x C' and any voter, a relationship might be defined in the revealed preference profile, or
not. A social choice function operating on partial preferences, when averaged over the set
of all possible problems, then also ought to perform the same on average. For example,
consider again the true and expressed preferences in Figures 4.1 and 4.2. The two different
preference profiles are both extensions of the same expressed preference profile. If both
true profiles are equally likely to appear, then no social choice method can hope to perform
better than any other, on average, when given this set of expressed preferences: A method
that picks d as the winner may be as correct as one that picks ¢ as the winner, because
there exist true preferences consistent with the expressed preferences under which either d
or ¢ wins.

However, different social choice methods make different assumptions about the probabil-
ity that certain true preference profiles are present, conditioned on the observed expressed
preferences. Imputation Plurality assumes the true profile is going to be very homo-
geneous, on average. That is, it assumes that incomplete preferences are just truncated
versions of similar preferences. In contrast, MMR implicitly assumes that misleading
problems, where true preferences are radically different from expressed ones, are common
enough to be the focus of its decision making. Clearly on problems that are not so mis-
leading, the imputation-based approaches might be expected to perform better.

4.1.2 The Relationship Between Preference Learning and Group
Decision Making

Social choice with incomplete information is highly similar to the related field of preference
learning. Preference learning tries to infer an individual’s preferences, perhaps to make
a product recommendation (e.g. |) ;)). In domains like
this, performance often focuses on making reasonable recommendations. For example, one

57

might want to infer which movies a customer would like to watch next on the basis of
movies they have enjoyed in the past, and perhaps also on the basis of what other viewers
like them have enjoyed. In a domain like this one, a reasonable performance measure might
include the fraction of top results that interest the user | , |. Further,
guesses at the preferences of individual users matter a great deal. If a; prefers ¢; to co,
then imputing the opposite ordering does not constitute good performance.

In contrast, when making social choices, one cares much more about the aggregate
results than about the imputation of individual voters’ preferences. In particular a voter
with preferences ~; ranks c¢;>;c, and another voter with preferences >; ranks co>~;c; but
the opposite set of relationships are imputed for those two voters, the mistakes will (for
most social choice rules) cancel out in the aggregate, since one mistake benefits ¢; and
hurts co, while the other benefits ¢, and hurts ¢;. Social choice also tends to be more
concerned with the accuracy of the entire sequence of alternatives. While imputing a
single poor recommendation at the top of a sequence in a recommender system would not
be especially bad, provided that reasonable recommendations were still highly ranked on
the whole, in social choice such a mistake could be catastrophic.

Although techniques from preference learning can indeed to be used for social choice,
this thesis is concerned explicitly with the learning of preferences for applications in social
choice, and so will prefer to select techniques that are better tailored to this goal. Often
this will mean selecting techniques that have some theoretical grounding for social choice
applications.

4.2 A General System

The previous section showed how a very simple learning approach could be used to resolve
the motivational example from Chapter 3. Although it was able to resolve the example,
there were still problems on which this technique made incorrect decisions. The section
wrapped up with a discussion of the No Free Lunch theorem, explaining that no approach
to social choice with incomplete information can perform better than others, except on
specific subsets of the space of possible decision problems.

4.2.1 Informal Description

Machine Learning-, or Imputation-based approaches to the problem of social choice with
incomplete information are a promising avenue for creating a method with a bias toward

o8

voters having homogeneous opinions, or at least opinions with consistent patterns. There
are good reasons to believe that many elections will have homogeneous preferences. For
example, in political contests, candidates are often arrayed on a left to right political spec-
trum, and the preferences of voters tend to reflect this. There are typically few voters who
would rank both extreme left- and extreme right-wing parties high on their ballots. In
problems like a hiring committee, although voters might have individual preferences, there
is likely to be an overall trend among the candidates, with some objectively worse than
others for the position. In problems like controlling a robotic swarm on Mars, individual
opinions will often be a product of common environmental factors and attitudes to risk,
which again, lead to a very small range of true preferences. Indeed, single-peaked prefer-
ence domains, a nearly degenerate case of homogeneous preferences where all voters rank
candidates relative to their opinions on a single issue, like the left-right political spectrum
(i.e. voters view the candidates as embedded in a one-dimensional space), was described as
“the canonical setting for models of political institutions” by prominent political scientists
as recently as 2008 | : .

In this section, a general framework is proposed for using machine learning algorithms to
address social choice problems. The framework is parameterized by a pair (S, M) consisting
of a voting rule S and a learning algorithm M. The selection of effective combinations of
voting rules and learning algorithms is considered in detail in later chapters. The system
is described at an higher (i.e. more abstract) level first, before more specific versions are
shown later in the section.

The overall system is depicted in Figure 4.3. Given a set of incomplete expressed
preferences, the system applies a machine learning algorithm M to learn a model m that
predicts true preferences (i.e. complete preferences) from expressed ones (i.e. incomplete
preferences). The resulting model is then used to generate a guess at the true preferences
of the voters, completing the expressed preferences. This guess is then passed to a social
choice function S, which selects an outcome on that basis.

It should be apparent that if M learns the correct mapping from incomplete to com-
plete preferences, then the guess at the true preferences will be correct. For example, if
Imputation Plurality were given the expressed ballots in Figure 4.1 (right), it would
output a learned model that maps from the ballot b > a ~c~d to b > c > d > a. Since
this mapping is correct, ballots imputed by this model will be identical to the true prefer-
ences of voters, and the social choice function will make the correct decision. Likewise, if
the mapping learned by M is close to correct, then the guessed preferences will be a close
approximation of the true preferences. This is the intuitive justification behind the system.
As outlined above, if there is no clear relationship between revealed and true preferences,
this technique may fail to produce a good approximation of the voters’ true preferences.

29

Complete Outcomes
Ballots

Incomplete
Ballots

SCH(...)

ML Alg. (M) Model (m)

Figure 4.3: A graphical depiction of a general approach to combining social choice and
machine learning. Incomplete expressed preferences (ballots) are passed to a machine
learning algorithm (1), which outputs a model (2) capable of predicting true preferences
from expressed preferences. The incomplete ballots are then passed to the model (3),
producing a set of complete ballots. Complete ballots are passed to a social choice or
social welfare function (4), which outputs a decision (5). To the extent that the model is
a true mapping from expressed to true preferences, the complete ballots will match the
true preferences of the voters, leading to a decision that closely approximates the correct
decision.

60

Even if there is a relationship, if M is not well suited to discovering relationships of the
type that are present, the guessed preferences may be far from correct. The choice of M
will be central to the success of the approach.

4.2.2 Example

As a concrete example?, ballots might be completed using Imputation via Classification.
Imputation is the process of replacing missing data (i.e. “missingness”) with a carefully
selected guess at the missing value | , |. For instance, if a person’s age is
missing from an otherwise complete questionnaire, a very simple imputation technique
would replace the missing age with the average age of the other questionnaire-takers. A
more sophisticated technique would be to use the age of another questionnaire-taker with
similar demographic characteristics, especially those known to be correlated with age.

Classification algorithms operate over a data matrix X and label vector Y, with an
equal number of rows. The algorithm finds a model (a function) m such that m(X) is
a vector of labels, and a cost function G(m,m(X),Y’) is minimized. The set of possible
functions from which m may be selected is called the hypothesis space, and is restricted
in a way intended to ensure that m captures general patterns in the data that will allow
it to accurately predict the labels of previously unseen datapoints in future. G often has
some related component based on the structure of m as well as the number of differences
(errors) between m(X) and Y. For instance, G might penalize functions which are not
very “smooth”, meaning those that are highly sensitive to small changes in the values of x.

This example will assume that ballots are top-ordered, for simplicity. The votes are
indexed such that B is the 5 most preferred candidate of voter i . If voter i has specified
only j preferences, then B;r = 0,Vk > j. A given ballot b; € B thus represents a total
ordering over an arbitrary subset of the set of the candidates, C'. The elements of C' that
are not on the ballot are of lower rank in the voter’s preferences than those candidates
that were ranked. Finally, the vote matrix formed by the first j preferences of each ballot
is denoted with B;. For instance, B; denotes the first preferences of every ballot, while B,
denotes the first and second preferences of every ballot.

To impute the missing information in B, a classification system might begin by ex-
tracting B,, the first and second preferences of every voter’s ballot. Some ballots may
state only a single preference, while others state two. Taking the subset of By which is
complete (B, = {b € By| |b| = 2}), a classification algorithm M is used to train a classifier

4This example is based on text from the author’s published work | ,]

61

me = M(B,,), which predicts the second preference of each ballot from their first prefer-
ences. The data matrix X used for classification is some function ® of the first preferences
on every ballot in B.,. The label vector Y is the second preference of every ballot in B,,.
Once msy has been computed, it is used to impute By \ B,,, generating a complete ballot
matrix of two columns. This imputed ballot matrix is called Bj.

The process is then extended to the next set of preferences in B. The ballot matrix
of the first, second and third preferences (Bs) is taken and build a classifier m3 on B,,.
ms can then be used to impute all missing second preferences, and mg to impute Bs \ B,
and generate Bj. This process can then be iterated until the generation of B|/c = B’, an
imputation of the entire ballot matrix. A winning outcome can then be selected by applying
any standard voting rule S to the imputed matrix to select a member of the outcome set
O (typically either a candidate, or a linear ordering over the candidates): S(B’) = o',

The described process works only for top orders, but should be easily understood as a
basis for the technique. Next, a description of a more general approach to using machine
learning algorithms to impute missing ballots and thus decide an election with incomplete
information is described. The approach described is conceptually similar to the one for
top orders discussed in this example, but works for any set of partially ordered ballots,
and can use learning algorithms that are not explicitly intended for classification, or that
impute preferences in a different order than the way described here.

4.2.3 Formalized System

More formally, the system is described in a very general way in Algorithm 1. The system
can use any machine learning algorithm M capable of learning a mapping from partial to
complete preferences. M is applied to the ballots (expressed preferences) of the electorate,
producing a model m, which can then be used to impute the original ballots. The imputed
ballots are then used to select an outcome® via voting rule S. The runtime of Algorithm 1
depends entirely on the runtimes of its parameters, and is in O(M (B)+m(B)+S(m(B))).
For instance, if model selection is done using logistic regression with k features, and there
are |C| candidates, then the runtime of M(B) is in O(lk|B||C|?), where [is the number
of iterations needed, and m(B) is in O(k|B||C|?). If Borda is used for S, then S is in
O(|C||BY]), so the overall runtime of a system that used logistic regression with k features
would be dominated by the training cost of the models. In contrast, if a more computation-
ally expensive voting rule like Kemeny-Young were used (which requires O(|C|!|B||C1)

5 Alternatively, a multiple-imputation approach | , | could be used to provide an estimate of
the uncertainty in the decision, rather than a simple point estimate of the outcome.

62

work when computed naively), then the total runtime would be dominated by S instead.

Algorithm 1 An algorithmic formulation of the proposed system for applying conventional
machine learning algorithms to social choice problems with incomplete information. Given
machine learning algorithm M a social choice function for complete preferences S, and a
set of ballots (expressed preferences) B over candidates C, the algorithm returns a member
of output set O.

procedure IMPUTATION-ELECTION(M,S,B, O, C)

let m = M(B) be a model s.t. m : P(C)Bl — £(C)I5.
return S(m(B))
end procedure

Although Algorithm 1 is very general, it does not provide a clear road-map for using
existing machine learning algorithms. How exactly should a model that maps incomplete to
complete preferences be produced? In later chapters, some new domain-specific algorithms®
are considered, but for now, an approach that allows any supervised learning algorithm to
be applied to the problem is specified instead. Algorithm 2 describes a machine learning
algorithm that wraps any standard supervised learning algorithm capable of multi-class
classification, and allows the production of an imputation model using partial ballots. Each
candidate in C' is treated as a possible label (class) for a partial ballot. The supervised
learning algorithm is used to find a mapping between incomplete ballots and their next
preference (which will be one of the possible labels in C'). Like Algorithm 1, the runtime
of Algorithm 2 depends almost entirely on the choice of M. and F, and is in O(|C|(|B| +
F(X)+ M.(X,Y)).

The algorithm starts with an empty list of sub-models, m. Then, for each possible
position in a ranking of candidate set C' (i.e. there are 1 to |C| positions to rank a candidate
from among a set of |C| candidates), a classifier m; is trained, and added to m. The
resulting list of classifiers that is returned by Algorithm 2 contains one classifier for each
ballot position.

The training of each classifier consists of first filtering out just those ballots that rank
a single candidate in position i. This could occur if voters provided a top-t style ranking
(listing their ¢ most preferred candidates and leaving the remainder tied for last place),
as seen in the motivational example of Chapter 3. It could also occur with more general
partial preferences if there are clear constraints present in the ballot. For instance, if there

6i.e. designed to address the problem of completing ballots with missing information.

63

Algorithm 2 A general algorithm for converting any supervised learning algorithm to an
imputation algorithm suitable for use in social choice with incomplete information. The
algorithm iteratively learns sub-models that predict i*" preferences of voters on the basis
of whatever preferences have been provided by the voter, or specified by earlier models.
procedure IMPUTATIONMODEL(M,, B, C)
let m <+ 0
for 1<i<|C|do
let B; be the subset of B with a specified i*" preference
let Y; be the i*" preferences of every ballot in B;.
let X; be B; \'Y;
let ¥ : P — R?* be a featurization function, mapping partial ballots to a z-
dimensional real-valued feature space.
let m < {m,m;}
end for
return m
end procedure

m; ms ms my eoe m‘c|_1 m|c|

Figure 4.4: A depiction of a chained classifier model, as output by Algorithm 2. The
output model m is a list of classifiers, {my, ..., m|c|}. Model m; predicts the i preference
of a given ballot.

64

A A A A A A A A
at bF b} ct at bF b} ct
dt- cF cF bF d+ ct+ - b
ctr dr dr dfr ¢t - - -
bt at ab afp b - - -
20 5 10 4 20 5 10 4

Figure 4.5: Example preferences used to elaborate on the process described in Algorithm 2.

is a unique candidate that is preceded by ¢ — 1 others, then that candidate has effectively
been ranked in i** place, even if the ballot does not specify a total ordering on the i — 1
candidates that precede it. For example, the preferences ¢; ~ ¢y ~ ¢3 = ¢4, do not specify
any relationship between c¢; through c3, but does state that all are preferred to ¢y. There is
no definite candidate in places 1 through 3, but there is a definite candidate in position 4,
so this ballot would be included in By, the subset of B in which all voters specify a definite
fourth preference.

Once the ballots have been filtered to include only those with a definite i*" preference,
they are further partitioned. The i** preferences of each ballot are split off into the label
set Y;. For each element b; € B;, a label y; € Y; denotes their ith preference. Removing all
information about y; from b; yields the corresponding input preference z; € X;. This is
now a supervised learning task: to find a mapping from X; to Y;. X; can then be featurized,
converted to a matrix representation, and the matrix can be augmented by Y; to create a
canonical representation of a classification task, suitable for use by any supervised learning
algorithm. The algorithm M is then applied to the problem to produce a classifier m;.

As a more detailed example, consider the preferences in Figure 4.5. To train classifier
my, the subset of ballots with a definite first preference, B;, is determined. This is the
complete set of ballots, because every voter has specified a unique first preference. The
labels Y] would comprise 20 elements with value a, 15 with value b, and 4 with value c.
The input data X; would be 20 ballots specifying d > ¢ = b, but not (explicitly) whether a
was first; 5 stating only that ¢ was second; 10 blank ballots, and 4 ballots ranking b second
and stating no other information. X; is thus the original set B;, but with all information
on first preferences suppressed (i.e. X7 is By \ V7). The classification algorithm will learn
a sub-model m; that maps from X; to Y;. Then By will be computed, containing all the
ballots except the 10 that are missing a definite second preference. The set Y; will be 20
elements with value d, 5 elements with value ¢, and 4 elements with value b. The set X

65

will contain twenty elements with values a > ¢ > d (associated with label b); five with
b= ¢~ d~ a (associated with label ¢); and four elements with label ¢ > d ~ b ~ a
(associated with label b). The machine learning algorithm M will output a classifier my
that maps from X5 to Y5.

Although a list of models in the form produced by Algorithm 2 is a valid output, it is
not immediately clear how it should be used to complete an incomplete ballot, or even that
it is a reasonable way to convert a classification algorithm to an imputation algorithm for
this domain. Algorithm 3 describes the process of imputing a ballot using a model of this
form. The ballot is iteratively imputed. Its highest ranked missing preference is selected
on the basis of any ballot information that is provided, and then the next highest on the
basis of both the original information and the imputation made by the first model. This
process is repeated until the ballot is completed. There are a few oddities in the algorithm
itself. In particular, a perfectly valid sub-model may predict that the correct candidate
for a given location is one that has already been assigned to another location. To prevent
this, the algorithm imputes the candidate to which the submodel m; assigns the highest
confidence, from among the set of valid candidates that could be imputed at this location.
For example, suppose b; expresses the relation ¢; ~ ¢y ~ c3 > ¢4. Algorithm 3 will first try
to impute position 1, and uses model m; assign it to candidate c;, yielding the preferences
c1 > ¢y ~ c3 = c4. Model my is then applied, but predicts that ¢ is also the best choice for
position 2. The algorithm will compute the set ¢ = {¢g, c3} of valid alternatives that can
be assigned to this position, and selects the element of ¢ to which msy assigns the highest
confidence’. As with the two earlier algorithms, the runtime of this algorithm depends
mostly on the runtime of parameter m, and is in O(|C| + |C]*m(x)).

It is worth noting that there exist other approaches to converting standard classifica-
tion algorithms into algorithms suitable for the kind of structured imputation that must
occur in social choice with incomplete information. A reasonable alternative might be to
create a much larger set of models, each of which answers the question “c; > ¢?”, rather
than the models from Algorithm 2 which answer the question “Which candidate should
be imputed at position 77”. Such an approach would have the advantage of phrasing a
simple binary question. However, this arrangement becomes problematic when applying
the resulting model to impute an incomplete ballot. For instance, suppose a ballot ex-
presses the preferences ¢; ~ ¢ ~ ¢3 = ¢4 again. The model imputes that ¢; > ¢y, and
that c3 > c1, but also that ¢y > c3. By the transitive property of a partial order, it cannot
be the case that c3 > ¢ > ¢ and ¢y > c¢3. This is similar to the problem addressed in
Algorithm 3 where models for two different positions both express the highest confidence

"This convention is adopted because not all supervised learning algorithms output confidence measures
that are interpretable across models.

66

Algorithm 3 An algorithm describing how models created using the ImputationModel
procedure of Algorithm 2 can be used to convert an incomplete ballot (i.e. expressed
preference) to a complete ballot (i.e. imputed preference). The algorithm iteratively fills
in the ballot from highest-ranked to lowest-ranked preference by using the appropriate
sub-model for each position.
procedure IMPUTEBALLOT(m, b;, C)
for 1 <i<|C|do
if b; has a unique candidate ranked at position ¢ then
//Do nothing.
else
Let ¢ « mz(F(b]))
//c(ck) is m;’s confidence ¢ belongs at ¢ in b;.
Let ¢ < {c € C|(Pos(c,b;) < i+ [s]) A (Pos(c,b;) >i—1)}
Set position i on b; to argmax,._c
end if
end for
return b;
end procedure

in the same candidate. Since the candidate cannot be in two positions on the ballot at
once (in a total ordering), it is assigned to the higher position, and the lower position
is assigned to the candidate the second model is second most confident about. However,
the problem appears greatly exacerbated in this alternative representation, as many more
models must be compared, and more importantly, it is not clear what order they should
be compared in. In Algorithm 3, picking a position to impute first (e.g. the first position
on a ballot) is unbiased with respect to the set of candidates. Before seeing the data (ex
ante), all candidates are equally likely to benefit from this arrangement. However, in the
alternative pairwise representation, each model has been assigned to just two candidates,
and producing something that closely resembles Condorcet’s paradox | , ;

, |, since the order in which candidates are compared determine the order
they appear on in the ballot.

4.2.4 Conventional Machine Learning as Social Choice

The previous subsection describes a general approach to resolving social choice problems
with incomplete information using machine learning algorithms to impute missing prefer-

67

ence information. The next chapter offers an empirical validation of this idea, comparing
performance against state-of-the-art-competitors, and the first section of this chapter out-
lined the ability of this technique to solve problems that were difficult for existing tech-
niques. Now this section offers a theoretical connection between the proposed technique
and social choice techniques in general. The result is interesting because it provides a
means of viewing supervised learning algorithms as social choice functions, allowing them
to be studied with a rather different set of tools. For instance, if a supervised learning
algorithm is equivalent to some kind of social choice function, it becomes reasonable to ask
questions about how fair the algorithm is. It also allows for direct theoretical comparisons
between different combinations of voting rules and machine learning algorithms, and be-
tween with other ways of deciding an election with partial information, a topic addressed
in detail in Chapter 85.

The section begins by showing that any supervised learning algorithm that learns a
deterministic mapping from partial ballots to complete ballots on the basis of other voters’
ballots is equivalent to a social choice function, though one that operates over a somewhat
strange domain. Conversely, it is straightforward to convert any social choice function
into a supervised learning algorithm for this domain, by using the ordering the algorithm
outputs as a basis for imputation.

Consider a learning algorithm M that learns to impute the i*" position on partial ballots
over a set of k candidates C', on the basis of a set of n incomplete ballots B. The algorithm’s
output is a policy m; : P—; — P;, where P-; is an partial order in which no candidate has
exactly i — 1 candidates preceding it, and |C| — ¢ following it, and P; is the set of ballots
that do have such a candidate. Call such an algorithm a “classifier”. That is, a classifier is
a function mapping from ballots that do not have an explicitly stated i*" preference, to a
version of that ballot that does.

Lemma 1. Any classifier is equivalent to a social choice function.’

Proof. A social choice function in this context is any function mapping a set of complete

8 A simplified version of these results appeared in | , |. However, while those results
showed that every classifier or chained classifier was a social choice function over some output space, here
the author also explicitly shows that chained classifiers are subject to Arrow’s Theorem | , | and
the Gibbard-Satterwaithe Theorem [, ; , |. The earlier publication stated
that chained classifiers were subject to both theorems simply by virtue of being members of a general
family of social choice functions. This was correct, since the social choice functions were not over the same
set of alternatives as in in the original problem, but did not show clearly the applicability of important
possibility results, which are proven here.

9This proof is reproduced from | ,] with alternations in notation (for consistency),
and an elaboration on the importance of the mapping function f.

68

orderings over some finite set of outcomes O, to a single outcome. A classifier that predicts
missing values in the i"* candidate on n ballots over |O| candidates functions by selecting
and then applying a policy. Note that, if there are N, ballots that do not specify a it"
preference in B, and the preceding ¢ — 1 preferences on each ballot have all been imputed
by other means, then there fewer than (|O| — i + 1) possible imputations that could be
created (each row has i — 1 elements already specified, out of |O| outcomes, and in the
worst case every ballot is unique). Call this the outcome space O;ppure Of the classifier,
and note that this space is finite.

Note that, although orderings over O are not complete orderings over Ojmpute, it is
possible to automatically define an onto mapping from partial orders over O;,puze to partial
orders containing at least 7 — 1 elements of O. This automatic construction could be
incorporated into a social choice mechanism. If |P(Ompute)| > |P(O)|, arbitrary onto
mappings can be constructed automatically. However, for some problems Ojpue Will be
smaller than O, and consequently, constructing an onto mapping becomes more complex.
In these cases, a chain of mappings f = {fi,..., fn} is relied on. Ballots over Ojppue are
sorted (via any comparison function ¢, as long as identical ballots are adjacent), and the
first copy of each possible ballot is mapped to a ballot over O according to mapping f.
The second copy is mapped according to f,, and so on. The resulting chained mapping is
still deterministic.

Represent the process of selecting an imputation policy m from the completed votes as a
function M, and note that this function is deterministic and produces exactly one output
(M is a deterministic model selection algorithm for classification). Define meundgidate =
M (B.) as the policy selected by applying M to the ballots in B to select an imputation
policy, and Beandidate = Meandidate(Bic) as the N;. x 1 vector produced by the application
of this policy to the ballots not specifying a i*" preference (B;. = B\ B.).

Then a scoring function S; that maps from sets of preferences over Ojppute, called
Birpute, to elements of Ojypure can be defined:

Sj(Bimpute; 0) = =AM (f(q(Bimpute))) (f(q(Bimpute))) 0)

where A is the number of vector components in which the two vectors have different
values (i.e. the sum over component-wise delta functions)!®. A social choice function over
Oimpute that selects the outcome with the highest score in \S; will produce identical output

10Note that if ¢ has re-ordered the ballots, than o must be re-ordered correspondingly (i.e. if ballot
b; was imputed with the value at position o;, then the element of M (f(¢(Bimpute)))(f(q(Bimpute))) that

corresponds to the original j** ballot must be compared to 0j)

69

to a classifier selected via M, and thus, is equivalent. Note that ties are not possible for
this rule, since there exists a unique member of Ojppute With score 0 under Sj. O

Although the resulting social choice functions might have very strange properties, there
can be no doubt that a classifier is effectively aggregating the opinions of voters on how
ballots should be imputed. The mapping f is a slightly odd component, but ultimately
there exist voting rules like Plurality that function similarly, effectively mapping richer
preferences to a simplified space before making a decision. Arguably rules that make de-
cisions on partial ballots directly are performing the opposite mapping (at least in some
cases), implicitly converting voter preferences that were specified in a small space to pref-
erences in some larger space. For instance, Borda applied to a set of ballots that each only
specify preferences about two favourite candidates (i.e. a top-2 preference) from a set of a
hundred is implicitly mapping preferences sampled from a small preference space ((130))
to a much larger one (100!).

Theorem 1. Fvery chained classifier is equivalent to a social choice function.

Proof. The proof is by induction on the number of candidates.

It is easy to show using Lemma 1 that if |C'| = 2, any chained classifier has an equivalent
scoring function and thus an equivalent social choice function. There is only one decision
to make (since imputing one candidate fully determines the position of the other one), and
Lemma 1 shows that a classifier that imputes just one position is equivalent to some social
choice function.

From this, it is possible to define a scoring function for larger values of |C|. Here
Biypute 1s defined as being preferences over the set of possible imputations of the entire set
of missing preferences in the ballots, rather than just over the set of missing i** preferences.
This outcome space is necessarily larger than the one used in Lemma 1, so an analogous
onto mapping f can be constructed. o is analogously defined to be a member of the set
of possible imputations of the entire set of missing preferences in B. M; is defined as a
classification algorithm used to select a policy for the i** position on the ballots, and o; as
the portion of o consisting of the definite assignment of candidates to position 7. A social
choice function can then be recursively defined using the recurrence:

Si(Bimpute, 0) = =A(M;i(f(¢(Bimpute))) (f (@(Bimpute))) 0i) + Siw1 (Bimpute 0)

with the base case that So(Bimpute,0) = 0. The rule Sic|(Bimpute, 0) is then equivalent
to a chained classifier that uses algorithms {Mj, ..., M|} to learn to impute i preferences.
]

70

Impossibility Results for Classifiers

Theorem 1 shows that the process described in Algorithm 3 is equivalent to some form of
social choice function. The status of the method as a social choice function implies that
important results like Arrow’s Theorem | , ; , | and the Gibbard-
Satterwaithe Theorem | , ; , ; , | apply (modulo
their more modern augmentations to cope with partial orders). However, the proof of
Theorem 1 relies on mapping the learning process onto social choice functions with a
different domain and range than the original problem. One might wonder then whether
the algorithms are subject to the results of Arrow and Gibbard-Satterwaithe with respect
to the original problem domain. That is, if voters cast a ballot over the original set
of candidates |C/|, then is a method that is used to impute ballots on the basis of this
information subject to these impossibility results?

Recall that Arrow’s Theorem demonstrates the mutual incompatibility of four criteria
in elections with at least 3 alternatives:

1. Transitivity: If the system ranks a > b, and b > ¢, then it must also rank a > c.
2. Unanimity: If every voter ranks a > b, the system does as well.

3. Independence of Irrelevant Alternatives: If the system ranks a > b, then it does so
whether or not a third candidate c is present in the election.

4. Non-dictatorship: There exists no voter v; such that if a >; b, then the system also
ranks a > b, regardless of the preferences of other voters.

Unanimity is violated by chained classifiers, because they act as deterministic mappings
between incomplete and complete ballots. If voters simply provide rankings over the set
of candidates, there is no way for a voter to specify that they prefer an outcome where
two identical ballots are imputed in very different ways, for instance. However, such an
outcome is possible, and might even be desirable if the voter prefers to split the support for
a popular candidate, or considers two options equally good. Thus, even if all voters prefer
it, it can never be achieved. More intuitively, if the set of candidates is smaller than the set
of possible imputations, than clearly there is not an onto mapping from voters’ individual
preferences to the space of preferences over outcomes, even if (as shown in Lemma 1) there
is a mapping to any possible profile. Effectively, voters are restricted to self-consistent
preferences: if they prefer a to b, then the also prefer that a > b as often as possible on

71

imputed ballots. The next two proofs show that this constraint (perhaps surprisingly) does
not impact the applicability of the aforementioned impossibility results.

First, some logical extensions of Arrow’s axioms to this slightly different domain are
required. An imputation is said to be elementwise transitive if, when imputing a particular
ballot, ranking a > b and b > ¢ among the imputed preferences implies that it has also
ranked a > c. It is said to be elementwise unanimous if, given that every voter ranks a > b,
then when imputing a given ballot it also ranks!! a = b. It is said to possess elementwise
I.I.A. if when the system ranks a > b during the imputation of a single ballot, it does so
independent of whether any other single candidate is present in the election. Finally, the
system is said to possess elementwise non-dictatorship if there exists no voter v; such that
if a >; b, then the system also ranks a > b, regardless of the preferences of other voters.
A voter is said to be an elementwise dictator if its existence violates the elementwise non-
dictatorship property. A global dictator is an elementwise dictator for every decision about
the relative ordering of a pair of candidates.

Lemma 2. If an imputation method satisfies elementwise transitivity, unanimity, and
LI.A., then there exists a voter v; who is an elementwise dictator for any single imputation
decision involving at least three alternatives.

Proof. Consider the case where only 1 ballot contains missing information, and it has left
the relative order of at least three candidates indeterminate. By the elementwise [.I.A.
property, only the preferences expressed by voters over these indeterminate candidates can
be considered. The system is making a decision over a domain consisting of orderings over
the candidates, using partial ballots expressed over those candidates. By assumption the
method satisfies elementwise transitivity, unanimity and I.I.A. When making decisions over
a domain consisting of orderings of candidates using partial ballots expressed over candi-
dates, elementwise transitivity, unanimity and [.I.A. are identical to the non-elementwise
versions of these axioms. Three of the four conditions of Arrow’s Theorem (for partial
ballots | : |) are thus satisfied, therefore non-dictatorship cannot also be
satisfied. O

Theorem 2. If an imputation method satisfies elementwise transitivity, unanimity, and
LIA., then there ewists a voter v; who is an elementwise dictator for every imputation
decision involving at least three alternatives (i.e. a global dictator).

Proof. First, consider the case where there exists a ballot b; that is missing every candidate
(i.e. a completely empty ballot). By Lemma 2, there is a dictator for this imputation

' Note that following such an imputation, this property would still hold for all voters that rank a relative
to b.

72

decision. Call this voter v;, and denote their preferences ;. Assume without loss of
generality'?that »; is a total order, and therefore that b; was imputed with exactly ;.
The order imputed to ballot b; is called >;.

Now suppose there exists some other ballot to be imputed by. If the ballot is missing
every candidate, then the imputation decision is made over the same set of outcomes as for
b1, and using the same set of preferences. Since the imputation rule creates a deterministic
policy, it must impute by, with exactly the same ordering, >;, the preferences of the dictator
for by. So v; is a dictator for by also.

Suppose by is missing fewer candidates than |C|. By elementwise I.I.A., if the system
ranks a > b when the imputation decision is an election over the entire set of candidates, it
must also rank a > b when the decision is an election over some subset of them. However,
it has just been shown that v; is a dictator for any election involving the entire set of
candidates. Therefore, a >; b in such an election if and only if a >; b. It follows that in
this smaller election, a =4 b if and only if a >; b also. Therefore v; is a dictator for this
election also. O]

This result shows that imputation methods must violate one of Arrow’s criteria. Very
simple imputation approaches like hot-deck imputation (i.e. simply selecting the preferences
of a single voter with a total ordering and using them to impute all missing information)
are obviously dictatorial. However, most methods appear to fail the I.I.A. criteria. For ex-
ample, the logistic regression method described in the next section uses information about
which candidates a voter has already ranked to determine how their preferences should be
imputed. Intuitively it is not even clear that elementwise I.I.A. is a desirable property for
imputation systems to possess. For example, if a voter ranks the Socialists first on their
ballot, then a very different relative ordering for the Liberals and Conservatives might
be computed than would be if the voter had not ranked the Socialists at all. Although
unaminity in general is violated, if voters are limited to self-consistent preferences, un-
aminity within this restricted domain seems important to preserve, and transitivity and
non-dictatorship both seem vital. It is not therefore so concerning that I.I.A. is the axiom
that imputation methods seem predisposed to violating.

A very similar result can be derived for the Gibbard-Satterwaithe Theorem. An impu-
tation method is defined as elementwise incentive compatible if a voter that prefers a to b
and reports preferences >; in a single imputation decision where the system imputes b > a
cannot reverse the imputation decision by instead reporting preferences >/.

12Tf v; does not rank some candidates, it is easy to show by elementwise I.I.A. that v; is still a dictator
for the relationships between all the candidates it does rank.

73

Lemma 3. If an imputation method satisfies elementwise incentive compatibility and can
return at least three alternatives for any elementwise decision with at least three alternatives
(when provided with some set of preferences), then there exists some voter v; that is a
dictator for any elementwise decision.

Proof. Consider the case where only 1 ballot contains missing information, and it has left
the relative order of at least three candidates indeterminate.

If the imputation method satisfies elementwise incentive compatibility it must also sat-
isfy elementwise I.LI.A.. By the elementwise I.I.A. property, only the preferences expressed
by voters over these candidates can be considered. The system is making a decision over
a domain consisting of orderings over the candidates, using partial ballots expressed over
only those candidates. Since there is only one element, the elementwise version of incen-
tive compatibility is identical to the general version of that axiom. Since by assumption
the imputation method also satisfies the ability to output at least three alternatives for
this decision, then it must be subject to the Gibbard-Satterwaithe theorem (for partial
ballots |)]), so non-dictatorship cannot also be satisfied. O

Theorem 3. If an imputation method satisfies elementwise incentive compatability, and
can return at least three alternatives for any elementwise decision with at least three al-
ternatives (when provided with some set of preferences), then there exists a single voter v;
that is a dictator for every elementwise decision (i.e. a global dictator).

Proof. First, consider the case where there exists a ballot b; that is missing every candidate
(i.e. a completely empty ballot). By Lemma 3, there is a dictator for this imputation
decision. Call this voter v;, and denote their preferences ;. Assume without loss of
generality'3that >=; is a total order, and therefore that b; was imputed with exactly ;.
Call the order imputed to ballot b; 1.

Now suppose there exists some other ballot by requiring imputation. If the ballot
is missing every candidate, then the imputation decision is made over the same set of
outcomes as for by, and using the same set of preferences. Since the imputation rule
creates a deterministic policy, it must impute by with exactly the same ordering, >;, the
preferences of the dictator for b;. So v; is a dictator for by also.

Suppose by is missing fewer candidates than |C|. By elementwise I.I.A., if the system
ranks a > b when the imputation decision is an election over the entire set of candidates, it
must also rank a > b when the decision is an election over some subset of them. However,

13If v; does not rank some candidates, it is easy to show by elementwise I.I.A. that v; is still a dictator
for the relationships between all the candidates it does rank.

74

it has just been shown that v; is a dictator for any election involving the entire set of
candidates. Therefore, a >; b in such an election if and only if a >; b. It follows that in
this smaller election, a =4 b if and only if a >; b also. Therefore v; is a dictator for this
election also. O]

Given the applicability of Arrow’s result, the Gibbard-Satterwaite result is not surpris-
ing. However, it does imply that voters will have incentives for strategic behaviour when
they submit information to an imputation method. Chapter 9 discusses this problem in
greater detail, including possible remedies.

4.3 An Initial Implementation

While Section 4.1 showed how machine learning could be used to solve the motivational
example, and argued that the assumptions underlying such a system were reasonable,
and Section 4.2 formalized a general system for applying machine learning to problems
in social choice with incomplete information, this section will discuss the finer-grained
implementation details of the first version of such a system. While the system will conform
to the general model from Section 4.2, there are many important details that were not
specified in that section, including the choice of learning algorithm, what features should
be extracted from an incomplete ballot to best facilitate learning, and how to trade off
model complexity and model performance in a system that imputes its own training data.
The section describes a complete implementation, which is then evaluated empirically in
the next chapter.

4.3.1 Algorithm Selection

The core learning algorithm used in the initial experiments was Lo Regularized Logistic
Regression. Logistic Regression is a simple supervised learning algorithm originally devel-
oped by statisticians in the 1950’s [Cox, |- [1989] provide a
good modern overview of the model.

Given a n x k matrix of k features over n data points, X, augmented with a n x 1
column vector of all ones; and a column vector Y of n binary labels, logistic regression
finds a k£ x 1 column vector of k£ weights W according to the optimization problem:

1

1
mvzvxx;log(l + exp(—a:iW)KY;) - 1+ exp(—xZ-W))I(_‘Yi)) (4.1)

75

where || - || is the Euclidian norm function (i.e. the square root of the dot-product of the
vector with itself), and the other arithmetic operations are performed element-wise. This
amounts to maximizing the sum of the likelihood of each binary label y; € Y given x; € X
under the assumption that W has taken on a given value.

Figure 4.6 shows a pictorial representation of the optimization problem for 1-dimensional
data, along with several different models fit to the data. In this example problem, the data
are given by:

t1 11 1 1r 1 1 1 1 1 1 1 1

T _
£ = -6 —-52 —45 -38 -28 —-18 —-12 05 1 21 28 39 58

(4.2)

Y ={0,0,0,0,0,1,0,1,1,1,0,1,1}" (4.3)

Note that the leftmost column of X is a set of dummy variables that are used to fit the
intercept of the model, exactly as in standard linear regression. The model is comprised
of two weights, W = {wq,w;}T. wy contributes the same value for every point, and has
the effect of controlling the position of the curve, translating it along the z; axis. w;’s
contribution depends on the value of the second column of X, and has the effect of making
the curve steeper or less steep along that axis. The same effects generally hold for logistic
regression problems in higher dimensions. Each weight controls the steepness of the curve
along one dimension, and wq controls the offset of the curve. The predictions made by
the model correspond directly to points on a logistic curve. For example, suppose that
wo = 0 and w; = 1, corresponding to the curve depicted in Figure 4.6 (Top-Left). The
model predicts a value of 1+exp(—(%)+1><—6)) = 0.002 for the first point in X, very close to

the labelled value of 0. On the other hand, the 6" point does not fit very well, with a
predicted value of ; +exp(—(01+1><—1.8)) = 0.14, which is very far from the labelled value of 1.
The predictions generated by a logistic regression model correspond to an estimate of the
conditional probability that a given point has label 1 and not label 0 given the value of x.

Standard logistic regression predicts only binary labels, but in the imputation-based
approach to social choice, one must predict which of several candidates will come next on
a ballot. If there are more than two possible alternatives, one logistic model can be created
for each class in the One-Versus-All style of multiclass classification. Every model is trained
on the same matrix X (the details of X’s construction are provided in the next section), but
a model trained to predict whether the next candidate should be ¢; or not uses a label vector
Y which has value 1 only for votes that did rank ¢; as the next candidate. When predicting

76

which candidate should be ranked next for an ballot that is missing information, each of the
models (one for each candidate) predicts whether or not this ballot should be completed
with ¢;. Since the outputs of the models correspond to estimates of the probabilities that
the ballot should be completed with each candidate, the label corresponding to the model
that outputs the highest value is then selected. In the event of a tie, a decision is made
uniformly at random from among the tied candidates.

Logistic regression is used in initial experiments because it is a relatively simple model,
with few parameters that need manual configuration, and because it is easy to interpret.

4.3.2 Feature Construction

This section discusses the construction of a numeric matrix X from a partial order, in a
way that will facilitate the application of logistic regression to the problem. A reasonable
starting point is to represent a ballot by a set of pairwise comparisons. These columns of
X encode three-valued indicator variables showing whether ¢; > ¢; or not for every pair of
candidates. These columns (features) are denoted with I, .., . A value of 1 indicates that
¢; > ¢k, a value of —1 indicates that ¢; > ¢;, and a value of 0 indicates that ¢; ~ ¢ (i.e.
that the ordering of the two candidates is unknown). For example, ballot ¢; > ¢y ~ ¢4 > 3
could be encoded in the fashion shown in Table 4.2. This encoding is relatively compact
(O(|C?)), and the coefficients of a logistic regression model trained on a dataset of this
form have a straightforward meaning. For example, if a logistic regression model trained to
predict whether c5 should be imputed at position 6 has a large positive co-efficient on the
feature corresponding to I, ..,, then the model has learned that the probability of c; being
present at position 6 is higher when ¢; precedes ¢, and lower when the opposite is true.
A large negative co-efficient has the opposite interpretation. A small co-efficient indicates
that the relation of ¢; to ¢y is not very predictive of whether c5 belongs at position 6.

Using only pairwise indicator variables as features does not allow the model to clearly
express the idea that omitting information about a candidate is predictive of one candidate
or another being ranked next on the ballot, because a value of 0 will not contribute anything
to the dot-product of a given row vector (representing the feature values of a new data
point) and the weight vector, and so effectively only a value intermediate between those
for the different settings of the indicator variables is permitted. It also does not allow
explicit expression of the idea that ranking a candidate higher or lower in absolute position
(regardless of where they sit relative to another candidate) is predictive. For this reason,
two additional sets of features are included. The first is a set of binary indicator variables
I.,, that take on value 1 if candidate ¢ is present on a ballot, and 0 otherwise, for every

77

o
w

4
[A.L/ P J [-5 I | J
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
B lEE.=--B. =

/
+-0.5
/
/
7/
/
7/
//
I~ Piat 5)
—6 -4 -2 0 2 4 6

Figure 4.6: A visual depiction of logistic regression with one dependent variable. The
data consist of points labelled 1 (red squares) and 0 (blue circles). The y-axis shows the
label of each data point, while the x-axis shows the value of the single feature. The top-left
figure depicts a reasonable logistic curve fit to this data. By changing the co-efficient of
wy, the weight applied to the single feature, the steepness of the curve can be changed
(top-right figure). By changing the intercept weight wy, the curve can be translated to the
left or right (bottom figure). The optimal combination of weights minimizes the square of
the distance between each point and the curve.

78

Feature | Value
Icl -C2]—
]cl ~c3 1
I c1>-cq 1
Icg ~c3 1
[cz —C4 0
1 c3>=C4 -1

Table 4.2: A table showing a representation of the preferences ¢; = c3 ~ ¢4 > c3 as a series
of binary features.

candidate c;. The second is a set of integer-valued variables Pos,,, again one for every
candidate ¢;. The integer-valued features take on a value equal to the position of the
corresponding candidate ¢, on the ballot, if ¢, has been assigned a definite position.

A final set of useful features is the magnitude of the pairwise differences between the
positions of candidates. If two candidates have a defined relationship on the ballot, and
both have definite positions Pos(c;) and Pos(c) respectively, then the value of feature
Diff,, ., is Pos(c;) — Pos(cx) (i.e. the number of positions by which ¢; follows ¢, on the
ballot; negative if ¢; precedes).

To recap then, four sets of features are used in the example implementation: I...,, I,
Pos(c;) and Diff., ., . These four features each allow a logistic regression model to express
different relationships between the information present on a ballot, and which candidate
should be imputed next. To further facilitate the reader’s understanding, the section closes
with a complete example of converting several ballots to a matrix of features, extending
the one from Table 4.2.

The example uses four ballots, by, ..., by over four candidates, and are shown as prefer-
ence relations in Table 4.3. The resulting data matrix X is shown in Table 4.4. The first
three ballots show the same preference, but with the names of the candidates permuted.
The corresponding change in the features provides some intuition for the reader about
how the features change in response to changes in preferences. The final ballot encodes no
information at all, and the resulting feature set can be contrasted with the other ballots.
Note that missing information is always encoded with the value zero, and that the first
column of the feature matrix contains a set of dummy variables used to find the intercept
of the regression model.

79

Ballot Name Relation
by Cl ™ Cy ~ C3 > Cy4
b C4 ™= C3~ Cy ™= C1
b3 Cy = C1L ~ Cq = C3
by C3 ~ Cy~Cp ~Cy

Table 4.3: A table showing four example ballots that are used in the full featurization
example. The ballots each express a partial order over four candidates cy, ..., c4.

4.3.3 Model Selection

Supervised learning methods have an inherent tradeoff between bias and variance. Bias is
the extent to which a learning method makes an assumption about the world that may be
untrue, while variance is the extent to which a learning method can learn patterns that are
not really present in the data, resulting from excessive sensitivity to the shape of the data.
In logistic regression, model bias manifests from the linearity of the sigmoid. Although the
sigmoid is a non-linear function, the choice of whether or not a given data point is classified
as high or low comes down to whether it has a value above or below a fixed threshold!* in
the learned model. The set of points with values lying exactly at this threshold will form a
line, plane, or hyperplane in the feature space, so if the true decision boundary is actually
non-linear, the model’s error due to bias will be large.

To reduce the model’s bias, more features can be added, as illustrated in Figure 2.6 of
Chapter 2. For instance, if the decision boundary is thought to be quadratic, then new
features can be created from the products of pairs of existing features. In the previous
subsection, this was done by adding information on pairs and distances, broadening the
class of relationships that the regression can model. However, decreasing the model’s bias
must increase its variance, which manifests as extremely large weight values in the case of
logistic regression. To more carefully control the bias-variance tradeoff, L, regularization is
used | , ; , | to enforce a bias toward simpler models. Instead
of minimizing only the error of the model, weights are selected to minimize a joint function
of error and the sum of the squared elements in the weight vector:

1
1 1(Y; 1—-
m&X; Og(l + exp(—x;W) (¥) +(1+ exp(—x;W)

JI(=Y) = AW (4.4)

14 0Often 0.5, but other values can be used if the costs of making an classification error are higher for one
class than for the other.

80

1deo1our [opowr oY) puUY 0} ‘}JO[dWDIIXD 9} U0 pade[d ST J0[[eq AIoAd I0J T oN[eA
I umm[od Awwmnp y - (seousIofip osimired pue isiojeorpurl asimired jofreq oYy uo uorisod :jofreq oY) uo
oouaseld 10J SI0)edIPUT :JYSLI 0) 3Jo] WIOIJ) 1X) 91} Ul PISSNOSIP SoInjes] o) JO U0 0} SPUOdSIIIOD UN[0D
yoer o8ed o) 10 opim 00} ST oIyM ‘Toddn o) Jo uorenuruod e SI 9[qe) JoMO[S], ‘SoInjes) JO XLIYRUL
' Se ¢'f 9[qr], WO} sjo[[eq oy} Surjuesardor ‘ojdurexe uoryezimiesy [[nJ ® SUIMOYS SO[qR) OMT, :F'§ O[RI,

0 0 0 0 0 0 q

0 0 ¢- 0 0 0 £q

0 0 0 e 0 0 °q

0 0 0 e- 0 0 Iq

R | PEa | Tea | e | Pea | 7P | sorred
0 0 0 0 0 0 0 0 0 0 0101010 I q
I- T T 0 T 1- 0 4 1 0 O] T | T1T1]0 I £q
1- 1- 0 I- I- I- T 0 0 i4 T 1001 T q
T T 0 T T T i4 0 0 T T 100 |1 T 19
wo.AmoN wo.ANUN mU.ANUN wo.AGN mU.AGN NU.AGN Awbvmom AmbvaﬁH ANUVmOﬁH AHvaOﬁM wu&. moN mo&. GN %Eaﬁg wozdm

81

Compare this with Equation 4.1, which minimizes only the error. Equation 4.4 contains
a parameter \ that provides direct control over the bias-variance trade-off of the regression,
under a given feature set. At A = 0, the selected model will minimize error on the training
data, regardless of complexity. At A = oo the selected model will set every element of the
weight vector to 0, regardless of the error on the training data. In between these extremes,
a value of A = 1 requires the model to justify increased complexity with proportionate
increases in performance (i.e. reducing the total error of the model’s predicted values for
the training data by exactly the amount that parameter values increase by). Higher values
penalize complex models more severely, while lower values penalize incorrect models more
severally.

Although the addition of regularization provides a means to control the bias-variance
trade-off of logistic regression, it still does not provide a means of determining how to
configure that tradeoff. As discussed earlier in the chapter, the No Free Lunch theorems
mean no single choice will be suitable for every problem. To find reasonable values of A,
parameter tuning is conducted using cross-validation on every problem to which logistic
regression is applied. In this process, the training data is partitioned into n “folds” (i.e.
subsets) of equal size (throughout the thesis 10 folds are used during parameter selection,
for every machine learning method that requires parameterization). The quality of a given
parameter setting is estimated by learning a model under those settings on every combi-
nation of n — 1 of the folds, and then measuring error on the fold that the model was not
trained on. If training and test data points are sampled at random from the same overall
population, and each fold is selected uniformly at random from the training data, then
the error measured on the holdout fold should be drawn from the same population as the
error on the test data will be | , |. Repeating the experiment for each fold
and taking the mean value gives a bootstrapped estimate of the generalization error under
those parameter settings, though the estimate’s validity is predicated on the training and
test populations being similar, and the error in the estimate may be substantial. Although
the estimate is by no means perfect, it does provide a reasonable heuristic for selecting
model parameters, and should avoid selecting parameters that are exceptionally poor.

Note especially that the use of cross-validation for the selection of model parameters
relies on the assumption that the training and test data are drawn from the sample pop-
ulation. In the application of social choice with incomplete information, this manifests as
a very specific assumption about the relationship between true and expressed preferences.
For example, imagine a classifier that predicts whether candidate ¢, is at position 3 in the
true preferences of voters. The training data is the set of expressed preferences that rank
some candidate at position 3, whether it is ¢; or not. The test data is the set of voters who
did not rank a definite candidate at position 3. If there is a strong relationship between

82

whether a voter definitely expresses a third place preference or not, and whether the voter
expresses a preference for ¢; at position 3, then cross-validation will not give a reasonable
estimate of the generalization capabilities of the model. This is not necessarily an idle
concern. In politics, voters with more information might well have a strong preference for
one party over another, which would induce a bias of exactly the sort just described. The
motivating example of the Martian swarm imagined a world where richer companies are
both better informed (more funds to spend gathering information), and have a greater risk
tolerance (more funds to absorb losses with). The experiments in the next chapter show
some evidence of this phenomenon, and a discussion there considers ways to avoid it, and
its relation to a more common problem in supervised learning called class imbalance.

4.4 Summary

This chapter showed how the motivational example from Chapter 3 could be addressed
with machine learning techniques, and discussed the inherent tradeoff between different
approaches to social choice problems with incomplete information in the context of the No
Free Lunch Theorems. A formal system for solving social choice problems with incomplete
information by leveraging machine learning was presented, and it was shown that at least
some variations of the system are theoretically equivalent to a form of social choice function.
Further, such variations are subject to Arrow’s Theorem and the Gibbard-Satterwaith
Theorem, both important impossibility results in social choice. The chapter concluded with
a more detailed example showing one possible instantiation of the system, and discussing
the many design decisions that an implementation entails.

Chapter 5 continues by performing an empirical evaluation of the initial system, com-
paring it to existing techniques for social choice with incomplete information.

83

Chapter 5

Feasibility Study

Those among us who are unwilling to expose their ideas to the
hazard of refutation do not take part in the scientific game.

Karl Popper [2005]

This chapter attempts to answer the question of whether real-world social choice prob-
lems are more consistent with the assumptions of the model from Chapter 4, or with the
assumptions of competing models. The chapter opens with a discussion of the motivations
behind the different validation studies contained within the chapter, and some empirical
results characterizing the scope of the difficulty of making social choices with incomplete
information, particularly the extent to which poor decisions are even possible. The latter
item is evaluated by examining real-world electoral data. Section 5.2 then describes the
experiment design in detail, and discusses what it can and cannot show regarding the rel-
ative performance of different models on real world data. Limitations and assumptions of
the experiment design are also addressed by examining the experimental data. Following a
discussion of the design, a long section covers the results of many different variations on the
core experiment, and drills down to answer questions about why some models performed
better or worse than others. The chapter concludes with a discussion of the results, putting
them in context.

Chapter 6 continues with this theme, describing a general purpose testbed, and ex-
panding on the results of this section, using similar experimental designs. Chapter 7 then
discusses a new machine learning algorithm for this application, which is evaluated via the

84

testbed framework, and compared with these earlier results. This chapter assumes famil-
iarity with the content from Chapters 2-4, but is largely independent of the content in
chapters following Chapter 7, and so the reader may skip ahead to that content if desired.

5.1 Motivation

As explained in Chapter 4, there is no general theoretical basis for preferring one method
of solving social choice problems with incomplete information to another | , .
Instead, the question is whether real-world problems of this kind will tend to be more
consistent with the assumptions underlying one model than another. While one can spec-
ulate about whether certain assumptions are more or less reasonable then others, we know
already that even expert assessment of what is common within a given problem domain
can often be incorrect. The results from voting correctly | , ;

, | indicate that prior to an empirical assessment of the question “Are voters
casting ballots that are inconsistent with their intentions?” much expert knowledge and
attention was invested in the design of models that were resistant to inconsistent voter be-
haviours, or in criticism of models that relied on consistent behaviours. Lau and Redlawsk
showed that the problem was not nearly as large in reality as had been supposed in theory.
This illustrates that theoretical assumptions about the nature of voting problems can be
wrong in unintuitive ways. The only way to know for sure whether an assumption (and by
extension, a model) is valid or reasonable is to check it.

The results of this chapter are at base, a sort of “sanity check”, though the experimental
design developed here will be reused in later evaluations as well. The core idea is to
demonstrate that the system outlined in the previous chapter is up to the challenge of
deciding between competing preference outcomes at all, regardless of whether it does a
particularly good job of it. As such, the validation will consider only a small number of
datasets, a single voting rule, and a single competitor, though several different machine
learning algorithms are considered. The next chapter greatly expands on these results,
considering performance over many different voting rules, a larger number of datasets
(including synthetic data), and a larger number of competitors.

Before preceding to the experimental design however, it is worth addressing the question
of scale: how often do real world social choice problems with incomplete information offer
the potential for making bad decisions, and how bad exactly can those decisions get? As an
example, consider the four preference profiles depicted in Figure 5.1. The profiles on the
left correspond to the true preferences of two different groups of voters, while the profiles on
the right are the expressed preferences of the groups. In the top set of preference profiles, b

85

is a Condorcet winner | , | in voters’ true preference profile, and a Condorcet
winner in their expressed preference profile. No fancy methods are needed to decide the
election with incomplete information, as candidate b is strongly preferred in the expressed
preferences, and there is no completion under which that fact would change (assuming
voters have expressed top preferences, as depicted). In the bottom election, b is once again
a Condorcet winner in voters’ true preferences. However, in voters’ expressed preferences,
there is no Condorcet winner. a and b tie, with an equal number of first place votes.
Voters true preferences are unknown, and there are many possible preference profiles that
could have led to the expressed profile that has been observed. It is possible to construct
a profile under which any of the four candidates is the winner (under Borda Count) that
is consistent with voters’ expressed preferences. Here it is possible to make arbitrarily bad
decisions (i.e. to pick candidates that are arbitrarily distant from the true winner under a
problem specific pseudometric, like Borda Count distance). The question then is whether
real world electoral datasets look more like the top set of preference profiles (i.e. they have
definite winners, or at least, voters’ expressed preferences limit the scope of possible choices
to candidates that must be reasonable choices), or more like the bottom set of profiles (i.e.
there are few constraints on who can win, and so bad decisions are possible to make).

5.1.1 Measuring Problem Difficulty

There are a number of ways to measure the potential for poor decisions in a given set of
ballots, and to assess the scope of the problem in real world data. Some natural starting
points are the number of possible winners (as a proxy for the complexity of the decision),
how bad the worst possible winner can be (as a baseline for poor performance), expressed
as a function of the problem specific distance pseudometric. All of these approaches rely
on determination of whether or not there exists a completion of the ballots under which
a given candidate would win, a problem called Possible Winner Determination (PW).
However, PW is known to be NP-Complete for many voting rules | ,

|. Whether or not a candidate is a possible winner of an election with partial ballots
cannot be computed in polynomial time for voting systems including Copeland, Borda,
and a variety of other scoring rules (including approval voting but not Veto), supposing
P # NP. The intuition behind the difficulty of this problem is that making one candidate
win may entail making many others lose simultaneously. While it is easy to construct a
completion of a profile that makes a particular candidate’s Borda score as high as possible,
its score still needs to exceed those of other candidates, and ranking some of the other
candidates lower may necessitate ranking others higher. Ruling out a set of preferences
that balance these competing needs can be computationally challenging.

86

15 5 10 4 15 5 10 4

d- afF af at - - - -
15 5 10 4 15 5 10 4

Figure 5.1: Two example voting problems with incomplete information. The top pair of
preference profiles depicts a case where a Condorcet winner is present in the true preferences
of voters (left), and is implied by their expressed preferences as well (right). The bottom
pair of preference profiles also has a Condorcet winner in voters’ true preferences (left),
but the revealed preferences are consistent with many possible winners (right).

87

To address this, a heuristic approach to completing a worst-case profile is adopted. In
the experimental setup adopted here, and in subsequent chapters, voters’ true preferences
are known as well as their expressed preferences. This allows for easy measurement of
performance, but it also allows for the construction of imputations that are maximally
inconsistent with voters’ true preferences. Suppose that, in aggregate, voters rank ¢; before
c; on average. If those voters’ expressed preferences do not specify an ordering on ¢; and
¢;, a maximally inconsistent ordering is to impute that c¢; > ¢;, that is, to impute an
ordering that is the opposite of the true preference of the group. If this is done for every
pair of unordered candidates, on every ballot in a profile of expressed preferences, the
resulting profile will tend to yield decisions that are maximally distant from the true profile.
Although the distance between the aggregates of the two profiles may not be maximal
(e.g. if the voting rules are non-monotonic), this allows for straightforward computation
of lower bounds on several interesting measurements. Algorithm 4 describes the process
of generating this approximation of the maximally inconsistent profile from a profile of
partial preferences. The runtime of the algorithm as written is in O(|BJ||C|?), provided
that the result of calling Borda is cached. This heuristic is used because for rules like
Copeland, the computation of the maximally inconsistent profile is not computationally
straightforward.

Given a maximally inconsistent profile B, and true preferences >, three measurements
can be computed with respect to a voting rule S, that outputs orderings (i.e. rankings) over
a set of candidates ', and the voting rule S that returns the set of top ranked candidates
in the order output by S, (i.e. the first place candidates). Different distance metrics o
correspond to the different methods of quantifying the difficulty of a voting problem with
incomplete information. First, if S is used only to pick a winning candidate, what is the
distance from the winner under the maximally inconsistent profile to the winner under the
true preferences? As a starting point, one might consider what the rank of the selected
winner is under voters’ true preferences. However, a somewhat more complex expression
is needed, because of the potential for ties. If two candidates are tied for first place
under voters’ true preferences, but not under the maximally inconsistent profile, then a
penalty 0.5 candidates is used instead. Similarly, if there is a tie under the maximally
inconsistent ordering, but not under the ground truth, then a distance penalty of 0.5 is
applied. Formally, this results is the following distance measure:

dw(01,00,¢") = [{c € Clc oy " }HH0.5(|{c € C|c ~y, "N 0oc}|+[{c € Clc ~,, ¢* N 01¢}])
(5.1)

where o7 is an ordering, and ¢* is a single element of that ordering. Effectively this returns

38

Algorithm 4 An algorithm for computing the maximally inconsistent profile B from an
expressed profile B and true preference profile 7, both over candidate set C'. The output
profile is consistent with B, but yields decisions that are far from >7. The algorithm is
used to empirically assess the potential for making poor group decisions on a given profile

B.
procedure MAXIMALLYDISTANTPROFILE(B, >, C)
let B + B.
for all b, € B do
Let 6 = Borda(>;) be the ordering of C' when Borda is applied to voters’ true
preferences.
Let b; € B be the ballot in B corresponding to b;.
for all (¢j,cx) € C x C do
if —(¢; b; cx) A =(ck b; ¢;) then /* If neither is ranked on b; */
if ¢; 0 ¢; then
Set ¢ b; c;
else
Set ¢; b; ¢
end if
end if
end for
end for
return B
end procedure

89

the rank of ¢* in 0y, along with a penalty for ranking ¢* ahead of candidates in o5 that it is
tied with in o;. A distance of zero is obtained if and only if ¢* is in the winning set of oy,
and the winning sets of 0; and oy are equal. The Single Winner Distance or SWW can
then be defined as:

ZCES’F(B) 5w(S7“(>_T)7 S?“(B)’ C)

SWW = !
|5-(B)]

(5.2)

which is the average position of candidates who won the election under the maximally
inconsistent profile, in the overall ranking produced by the election with voters’ true pref-
erences. If SWW is large, then this means it is possible for very low ranked candidates to
win the election outright, suggesting the decision problem is difficult. If SWW is small, the
problem can still be difficult however. For instance, there may be other profiles that are
not as inconsistent with >, but that exhibit extreme bias towards a particular candidate,
for instance. Effectively SWW puts an upper bound on the quality of the worst possible
decision that could be made. Note that the average over the set of winners that is output
is used because certain voting rules like Copeland are very prone to ties. The penalty for
inconsistent ties between members of the winning set is used to ensure that this average
has an appropriate meaning.

A natural extension of the SWW measurement is the multi-winner worst distance
MWW | which is simply the Kendall 7 rank correlation coefficient between the two rank-
ings. A pseudometric wrapper is not used, so that the presented values serve as simple
correlations between the sequence output by S, under voters’ true preferences, and under
B. Formally, this is given by

MWW = T(Sr(>T>7 S’I’(B)) (53>

MWW effectively puts an upper bound on the Kendall-tau distance between the ground
truth ranking and the worst possible ranking. Low (i.e. more negative) values of MWW
indicate that there is great potential to make poor decisions in the problem, but yet poorer
decisions may still be possible.

The final measurement considered is First Error distance (FE), which measures the
location of the first (i.e. highest) rank at which the decisions made on the ground truth
preference profile =7 and the maximally inconsistent profile B first differ. On some prob-
lems, SWW may have value 0 (indicating that the correct winner is in some sense “easy”
to pick), but MWW may have a value much less than 1.0 (indicating that the order of the
other candidates may be difficult to determine). The FE distance gives some indication of

90

how much of a ranking is “easy” to determine. For instance, a FE score of 5 would indicate
that the order of the top 5 candidates is invariant even if voters’ unexpressed preferences
are imputed with values opposite those of their true preferences. Formally,

6FE(01; 02) = argmax‘v’j < 1, 01,5 = 025 (54)

7

and the reported values of FE correspond to dpg(S,(>=1),S,(B)).

Collectively, these three measurements will provide a means to compare the performance
of various algorithms, to provide insights into which algorithms are best used in which
problem domains. When examining worst case performance, these measures further provide
information about how difficult a problem domain might be, or at least, how much potential
for making a poor decision a given problem may provide.

5.1.2 Empirical Results

To empirically assess the difficulty of making good decisions in social choice with incomplete
information, the three measurements described above were collected on a large number of
problems generated using real-world election data, from ten different elections. All of the
measures in question are expressed in terms of voters’ true preferences. However, in data
from a real world election where voters can elect to express partial ballots, true preferences
are unobserved, and therefore are unavailable. Consequently, to measure the difficulty of a
typical problem requires that only the ballots of voters that did specify a complete ordering
are used. These ballots are collected, and then ablated in a way that is representative of the
distribution of missing data in the original set'. Ballots from ten different elections were
considered, drawn from the contests in three counties of the 2002 Irish national elections,
and the elections of the Debian foundation during the years 2002-2012. This included
6 leadership elections, and one election to determine the logo of the organization. All
elections required voters to specify a partial ranked ballot, in a top-t format (i.e. voters
submit a total order over any subset of the candidates, and any un-ordered candidates are
assumed to be tied at the bottom of the ranking). The raw data for each election was taken
from the preflib.org repository | , |. For each dataset, 10,000 problems
were generated using the method from Algorithm 7. A maximally inconsistent completion
was then computed for each problem, from which the FE, SWW and MWW scores were
determined under four different voting rules (K-Approval, Borda, Copeland, , and

IThe precise process used is documented in the next section, as part of a general description of the
experimental design that has been adopted.

91

FE SWW [MWW [[C][% Missing

Debian 2002 | 4.00 £0.00 [0.00 £0.00 [1.00+0.00 | 4 11.9
Debian 2003 | 5.00 £0.02 | 0.00£0.00 | 1.00£0.00 | 5 13.6
Debian 2005 | 6.134+1.10 [0.00£0.01 | 0.96£0.05 | 7 15.5
Debian 2006 | 5.28 £2.94 | 0.00+0.00 | 0.96£0.04 | 8 14.8
Debian 2007 | 7.17 £1.57 | 0.01£0.08 | 0.92+0.03 | 9 19.1
Debian 2010 | 5.00 £0.01 | 0.00+0.00 | 1.00+0.00 | 5 11.0
Debian 2012 | 4.00 £0.00 | 0.00 £0.00 | 1.00+0.00 | 4 13.2
Debian Logo | 3.27 £ 1.18 | 0.00£0.07 | 0.66 £0.17 [8 40.0
North 2002 [1.00 £0.00 [2.00 £0.00 | 0.15+£0.01 | 12 | 585

West 2002 | 1.00 +0.00 [2.03+£0.17 [—0.16 £0.04 | 9 50.8
Meath 2002 [1.00 £0.00 | 5.00£0.05 | 023 +£0.01 [14 | 668

Table 5.1: Table showing the mean SWW, MWW and FE ratings of 10,000 social choice
with incomplete information problems generated on the basis of 10 real world datasets,
computed with respect to the K-Approval social choice function, with L%J . The reported
measurement errors are the sample standard deviations. Measurement errors are omitted
when all measurements were identical.

Veto). Tables 5.1-5.4 show the mean value of each measurement over all 10,000 problems,
for each of the 10 datasets. For reference, the tables also show the number of candidates
in each election, and the average percentage of candidates that were left unranked on each
ballot. The datasets vary from 5 to 14 candidates, and from 11-66% missing data. Recall
that, for an election with |C| candidates, scores for FE will range from 0 (bad; the first
candidate was always incorrectly ranked) to |C| (good; all candidates were always correctly
ranked), scores for SWW will range from 0 (good; the correct winner was always picked) to
|C'| — 1 (bad; the true last place candidate was always picked as the winner), and scores for
MMW will range from -1 (bad; the relative ordering of all candidates was always reversed)
to +1 (good; all candidates were output in the correct order).

The results in Table 5.1 summarize the mean difficulty of social choice problems with
incomplete information on under the K-Approval voting rule, with k = @ The winner
of the election under this rule is the candidate that appears most often in the top half of
voters’ preferences. Since voters’ preferences are top-orders, and the imputation-based ap-
proach to social choice assumes voters’ true preferences are consistent with their expressed
preferences, on many of the ballots the maximally inconsistent imputation still amounts

only to rearranging candidates on the second half of the ballot, who do not receive any

92

FE SWW | MWW [[C[] % Missing

Debian 2002 [4.00 £0.00 | 0.00£0.00 | 1.00£0.00 [4 11.9
Debian 2003 | 5.00 £0.07 | 0.00£0.00 | 1.00£0.01 [5 13.6
Debian 2005 | 6.56 £1.42 | 0.00£0.04 | 0.99+0.03 [7 15.5
Debian 2006 | 6.24 +0.77 | 0.00£0.00 | 0.94+0.03 | 8 14.8
Debian 2007 | 5.41+2.31 | 0.01£0.09 | 0.85+0.05 [9 19.1
Debian 2010 | 4.96+0.34 | 0.00£0.00 | 1.00£0.02 [5 11.0
Debian 2012 | 4.00 £0.00 | 0.00£0.00 | 1.00£0.00 [4 13.2
Debian Logo | 2.80 £0.74 | 0.00+0.02 | 057+0.12 | 8 40.0
North 2002 [1.00£0.00 [1.55£0.50 | —0.27£0.03[12 [585

West 2002 | 1.00 +0.00 | 5.01+0.08 | —0.04 +£0.06 | 9 50.8
Meath 2002 [1.00 £0.00 | 11.60 £ 0.51 [—0.63+0.03 | 14 [66.8

Table 5.2: Table showing the mean SWW, MWW and FE ratings of 10,000 social choice
with incomplete information problems generated on the basis of 10 real world datasets,
computed with respect to the Borda social choice function. The reported measurement
errors are the sample standard deviations. Measurement errors are omitted when all mea-
surements were identical.

points, regardless of their order. Even when a voter specifies the order of fewer than @ top
candidates, only a few of the candidates will be imputed into the wrong half of the ballot.
Consequently, we observe that there is not much potential for making poor decisions on
the smaller Debian datasets. On Debian 2006 and 2007, there are occasional errors in the
ordering of low ranked (unimportant) candidates, and Debian Logo often contains errors
in the middle of the overall ordering, but the correct winner is picked in essentially every
one of the 10,000 sample problems. The Irish sets have much greater potential for the gen-
eration of difficult problems. The FE measure indicates that in every generated problem
from the 10,000 sampled, it was possible to pick an incorrect winner, a finding borne out by
the SWW measurements, where the true third place (or sixth place in the case of Meath)
candidate could be selected as the winner in every run. On North the worst case overall
ordering was virtually uncorrelated with the true ordering, as shown by the MWW scores.
On West and Meath, MWW actually shows a slightly negative correlation. Overall, the
table shows a trend toward harder problems on sets with greater amounts of missing data.
In fact, all sets with less than 14% missing data yielded pre-determined outcomes in every
problem, while all those with greater than 14% missing data had at least some problems
where sub-optimal decisions were possible.

93

FE SWW | MWW []|C]]| % Missing

Debian 2002 [4.00 £0.00 [0.00+0.00 [1.00+0.00 | 4 11.9
Debian 2003 | 4.56 +0.61 [0.01+0.10 | 0.91+£012 | 5 13.6
Debian 2005 [6.50 £1.63 | 0.084+0.27 | 0.994+0.03 | 7 15.5
Debian 2006 | 6.00 +0.00 [0.00£0.00 | 0.93+0.00 | 8 14.8
Debian 2007 | 2.09 +0.51 [0.00£0.00 | 0.70£0.03 | 9 19.1
Debian 2010 [3.05+1.37 | 0.00+0.00 | 0.82+0.14 | 5 11.0
Debian 2012 [4.00 £0.00 | 0.00+0.00 | 1.00+0.00 | 4 13.2
Debian Logo | 3.81£1.48 [0.00£0.00 | 0.53+0.11 [8 40.0
Dublin North [1.14+0.35 | 0.43£0.17 | —0.48£0.01 | 12 58.5
Dublin West [1.14 £0.35 | 6.45+0.35 | —0.28 £0.07 | 9 50.8

Meath 1.00 £0.00 [10.02+0.62 [—0.90£0.01 | 14 [66.8

Table 5.3: Table showing the mean SWW, MWW and FE ratings of 10,000 social choice
with incomplete information problems generated on the basis of 10 real world datasets,
computed with respect to the Copeland social choice function. The reported measure-
ment errors are the sample standard deviations. Measurement errors are omitted when all
measurements were identical.

The results under the Borda social choice function, summarized in Table 5.2, are
similar to those under K-Approval, but there is slightly more potential for making poor
decisions overall. The proportion of missing information in the data still exhibits a strong
relationship with the potential to make poor decisions, and the Irish West and Meath sets
not permit maximally inconsistent orders that are significantly anti-correlated with the
true ordering of the candidates. On Meath it is now possible to select the 12! or 13
placed candidates as the winner on nearly every problem set, and on West the 6th place
candidate can be made to win. Although the Debian sets still typically allow only one
possible winner, there is a slightly greater potential for poor orderings of the lower-ranked
candidates to be generated.

Table 5.3 summarizes the same set of results for the Copeland voting rule. Copeland
appears more open to poor decision making, with both the Debian 2003 and 2010 sets
having poor performance here in the multiwinner case, unlike under the Borda and K-
Approval rules. This is likely because if two unpopular candidates are unranked on
a majority of ballots, it is easy to construct a completion where the more unpopular
one wins the pairwise contest between them. When elections have many such unpopular
candidates, then quite low ranked candidates can be made to win a large number of pairwise

94

FE SWW | MWW [[C[] % Missing

Debian 2002 | 4.0040.04 [0.00£0.01 | 1.00+0.00 [4 11.9
Debian 2003 [2.71£1.98 | 0.57£049 | 0.88£0.10 [5 13.6
Debian 2005 | 1.01£0.09 | 3.57+£0.67 | 035+0.12 [7 15.5
Debian 2006 | 1.91+0.84 | 051 +£0.72 | 0.70+0.09 | 8 14.8
Debian 2007 | 1.10 £0.30 | 1.56 £0.69 | 0.68+0.08 | 9 19.1
Debian 2010 | 1.29+1.03 | 1.11+£0.50 | 0.78 £0.10 [5 11.0
Debian 2012 | 3.98+0.18 | 0.00£0.00 | 1.00£0.03 [4 13.2
Debian Logo [1.00 £0.06 [5.76 £1.36 | —0.44+0.21 | 8 40.0
North 2002 | 1.00 £0.00 | 11.00 £0.00 | —0.61+0.04 | 12 [585
West 2002 | 1.00 +0.00 | 8.00 +0.00 | —0.13+0.03 | 9 50.8
Meath 2002 [1.00 £0.00 | 11.00 £0.00 | 0.03+£0.03 | 14 [66.8

Table 5.4: Table showing the mean SWW, MWW and FE ratings of 10,000 social choice
with incomplete information problems generated on the basis of 10 real world datasets,
computed with respect to the Veto social choice function. The reported measurement
errors are the sample standard deviations. Measurement errors are omitted when all mea-
surements were identical.

contents. Many of the Debian sets now permit significant mistakes, including very low
MWW correlations on Debian 2007 and 2010, as well as errors in the selected winner on
Debian Logo. The three Irish sets now permit overall orderings that are almost entirely
opposite the true ordering of the candidates (i.e. anti-correlated), and it is possible to select
very low ranked candidates as the winner on Dublin West and Meath.

Finally, Table 5.4 summarizes the results for the Veto voting rule, which is in some
sense a pathological case for top-ordered ballots. Veto picks the candidate that is ranked
last on the fewest ballots. However, only about 6 or 7% of voters specified a total order on
large sets like North and Meath, meaning that as much as 90% of the ballots can be assigned
to candidates as far as possible from the ones voters would truly prefer. Interestingly, on
the Debian 2002 and 2012 sets, this hardly seems to matter, and there is still virtually no
potential to pick the incorrect candidate. Perhaps this is because most voters have ranked
the true winning candidate somewhere higher in their preferences, meaning the maximally
inconsistent ordering cannot assign it to the last place on any ballots. However, on most
sets, there exists the possibility for very poor decisions indeed. On North and West, the
last place candidate can be made to win, and the orderings are anti-correlated with the
ground truth overall. Surprisingly, even the Debian 2005 set, which otherwise was nearly

95

impossible to generated difficult decision problems from, now has a relatively low MWW
correlation, and virtually every sample problem permits someone other than the true first
place candidate to be chosen as the winner.

Overall these results suggest that the Debian 2002 and 2012 sets can be omitted from
subsequent experiments, since there exists no voting rule under which they provide inter-
esting problem instances. However, the other eight sets do offer various degrees of potential
for making poor decisions. In particular, the three Irish sets and Debian Logo are reliably
difficult across all of the four voting rules considered, and Debian 2007 is the hardest among
the other sets. This finding provides some calibration for the interpretation of further ex-
perimental results: a method that fails on Debian 2003, 2006, or 2010 is interesting insofar
as failure is quite difficult (though not impossible) to achieve on these sets. In contrast,
perfect (or nearly perfect) performance on the Irish sets is quite a strong result, since many
of the problems there offer the potential for a very large set of possible outcomes.

5.2 Experimental Design

The previous section showed that there exist real-world problems where it is possible to
make decisions that are inconsistent with voters’ true preferences. This is especially true
when voters specify relatively few preferences, or when there are many candidates in the
election, as happens when using voting rules that place great emphasis on the pairwise
ordering of all candidates (e.g. Copeland), or on ballot positions that most voters do
not assign a definite candidate to (e.g. Veto with top-ordered preferences). This section
explains how the problems used in that evaluation were generated, and then describes a
comparison between the example logistic-regression based imputation system from Chap-
ter 4, the Minimax Regret approach | , |, and a method that imputes
the order of candidates uniformly at random, approximating the maximum likelihood ap-
proach | , |. The comparison results appear in the next section.

5.2.1 Data

As explained in the previous chapter, the question of whether a particular social choice
function is effective or not in practice is not one that can be answered without recourse
to empirical performance on test problems that we have strong reason to believe will be
representative of future applications. In the case of voting systems, there is no especially
compelling reason to suppose that preferences drawn from an artificial data distribution

96

like a Mallows model | , | or Random Utility Model | , ; :

| are representative of future preference distributions. These models are theoretically
compelling, and are reasonably descriptive of some domains, but the symmetry assump-
tions they make are quite strong. In contrast, more complex models like Mixtures of Mal-
lows | : |, Generalized Random Utility Models | :

| or Generalized Riffle Insertion Models | , | can represent ex-
tremely broad classes of preferences, at least some of which we might reasonably expect to
be representative of human (or agent) behaviours in future elections. However, if we were
to generate data from such a model, it would need to be parametrized in some fashion,
which requires either a symmetry assumption (i.e. some default set of parameters), or an

empirically motivated one, based on real data (in which case the data itself ought to be
used).

If claims are to be made about future performance of a method with respect to the
class of problems comprising social choice with incomplete information, then the most
representative problems would be sampled directly from that class. However, generally
voters cast ballots only once on a given issue, and their “correct” preferences are thus
neither revealed, nor recorded (nor perhaps, even known to themselves). Consequently, the
author is not aware of ranked ballot data for any large scale real world election that includes
both a revealed and “correct” component?. Without “correct” preference information the
quality of any decision is in a sense subjective: it could be the case that voters truly prefer
radically different candidates from what their expressed preferences suggest.

Consequently, a validation approach is adopted that uses problem instances generated
from real world data that are similar to (and based upon) said data. Although these
problems may not be identical to real world data, grounding the problems in real world
data at least constrains the extent to which they can differ from the real set of problems
to which they are to be applied in the future.

A large repository of real world electoral data is provided by preflib.org |

, |, and the evaluation conducted in this chapter uses eight of them, comprising
the portion of the 10 mentioned briefly in the previous section under which there was any
potential for poor decision making. Table 5.5 summarizes the properties of the different
datasets. Seven of the datasets are taken from the Debian Project’s elections. The Debian
Project is the group of software developers responsible for the creation, maintenance, and
improvement of the Debian free and open source operating system, and its elections are
notable for being of a medium size (hundreds, but not thousands, of votes), and for being
cast by voters operating under the Schulze Method voting system, a ranked ballot system

2Though Chapter 10 discusses the process of creating some in the future.

97

allowing incomplete preferences (recorded as top orders). The elections stored within
preflib.org include six votes for the leader of the organization, and one to change the
organization’s logo, with between 4 and 9 candidates, and between 400 and 500 ballots
(with the exception of the Logo election). The goal in each electoral contest was to select
a single winner.

The other three datasets considered in this chapter are much larger, and are drawn
from preflib’s collection of Irish electoral data. Each dataset contains ballots from one
constituency in Ireland’s 2002 national election. Ballots were recorded as top orders, and
the original elections took place under the Single Transferable Vote voting system®. The
top three candidates were returned as winners in the original election, and the elections
involve a very large number of votes, and between 9 and 14 candidates. In contrast to the
Debian elections, they have a much higher proportion of missing data, which (as discussed
in the previous section) tends to increase the potential for making poor decisions.

The experiments in this chapter used Debian 2003-2010 leadership elections, Debian
Logo, and the three Irish sets. Debian 2002 and Debian 2012 were not used because there is
essentially no potential for mistakes on those sets: voters preferences are very well defined
(i.e. there are few missing preferences), the number of candidates is very small, and the
margin of victory between candidates is large enough that there is already an effectively
unique winner, as shown by the analysis in the previous section.

5.2.2 Problem Generation

As mentioned earlier, the model adopted by this thesis and outlined in Chapter 3 is dif-
ficult to evaluate directly on real-world data. Social choice with incomplete information
is modelled as the process of mapping from a set of incomplete preferences to some ap-
proximation of voters’ true preferences (i.e. the preferences they would express if they had
better or more complete information about the candidates). However, in typically elec-
toral datasets, the expressed preferences of voters are recorded, and the true preferences
are neither elicited nor, perhaps, even known to the users. How then can the correctness
of different approaches to resolving the election be compared? Since the true preferences
of voters are generally unknown, it is not possible to compute the true outcome, and so no
distance measure can be effectively applied.

However, in many electoral datasets, even if most voters do not specify a total ordering
of the candidates, some subset will. For example, in the Dublin North County ballots

3 A ranked ballot system which simulates a number of rounds of Plurality-like contests, dropping the
weakest candidate in each round, and reassigning their supporters to other candidates.

98

Name # Ballots | |C| | % Missing Type
Debian 2002 475 4 11.9 Leadership
Debian 2003 488) 13.6 Leadership
Debian 2005 504 7 15.5 Leadership
Debian 2006 421 8 14.8 Leadership
Debian 2007 482 9 19.1 Leadership
Debian 2010 436 5 11.0 Leadership
Debian 2012 403 4 13.2 Leadership
Debian Logo 134 8 40.0 Logo (Single Winner)
Dublin North | 43,942 12 58.5 Multiwinner
Dublin West 29,988 9 50.8 Multiwinner

Meath 64,081 14 66.8 Multiwinner

Table 5.5: Summary of the datasets used in the initial evaluation of the system, including
the number of ballots, number of candidates, percentage of missing data, and type of
election.

from the 2002 Irish national election, about 7% of voters ranked all 12 candidates. Since
there are tens of thousands of ballots, this actually yields a reasonably sized set of ballots
that attempted to rank all candidates. Lau and Redlawsk | ;

) | find that information voters provide is correct about 70% of the time, and
it is not unreasonable to speculate that in elections where voters are permitted to omit
candidates from their rankings, the voters who do rank every candidate are (on average)
even better informed than a typical participant. On this basis, it is reasonable to think that
the voters who did rank every candidate have expressed some approximation of their true
preferences. Considering just this subset of the ballots from a large collection of electoral
data then yields a problem with a well defined ground truth (i.e. the true preferences of
voters are known), but no missing information (since the expressed preferences of every
voter in this subset are a complete ordering of the candidates). This set is called >.

The original set of ballots from an election with partial information may not contain
clear information about the true preferences of most voters, but they do contain information
about the distribution of missing preferences. For example, it is easy to answer questions
about the average number of candidates ranked by each voter, or whether certain candi-
dates are more or less likely to be ranked than others. By answering these questions, an
empirically-parametrized model of the missing information, called N, can be constructed
from a profile of ballots. Provided that the model can be used to predict missing prefer-

99

ences, it can then be applied to the subset of ballots for which voters’ true preferences are
known, to produce an ablated set of “expressed” preferences. These preferences are not
the ballots voters actually cast, but, provided the model of missing information is accu-
rate, they will be representative of how fypical voters expressed information. The ablated
version of & is called B. Together = and B form a social choice problem with incomplete
information, exactly as mandated by the model adopted in this thesis.

The ablation model N can be constructed in different ways, and the extent to which
it generated realistic ablations of the data have direct implications on the generalizability
of the results observed on these problems to true real-world problems. Since the datasets
of interest are typically comprised of top-ordered ballots, the problem can be simplified to
finding a model that selects the point at which a ballot should be truncated. Perhaps the
simplest such model is to assume that the probability of specifying one more preference is
independent of the number of preferences specified already and of which candidates were
specified. This model needs just one parameter, p, the probability of specifying one addi-
tional preference, and the probability of specifying y preferences would be proportionate
to pY. However, this model does not agree very well with the empirical distribution of the
truncation points on top-ordered ballots, at least in the datasets considered. In particular,
while the model prescribes a smooth exponential distribution, the observed distributions
on sets with many alternatives is actually shaped like a sigmoid, wherein voters are unlikely
to cast a ballot with more than a few alternatives on it at all, but once they’'ve ranked
most alternatives, they were much more likely to rank the remainder than this model would
predict. Figure 5.2 illustrates this difference.

Instead, a model could be learned with independent parameters for the probability of
the truncation point being at each location. This distribution would exactly match the
observed distribution with respect to the total amount of missingness per ballot, but would
not capture relationships between the amount of missing information and preferences for
certain candidates. For example, if voters that supported more radical candidates were
more likely to rank the entire set of candidates in the original set of ballots B, such a
model would not ensure this relationship was preserved in that ablated ballots B. The
initial experiments conducted in the thesis use this model, but Chapter 7 considers more
complex models, which can depend on the choice of candidate. Empirically, there was
good agreement between the distribution of expressed preferences for each candidate on
the original (B) and ablated (B) ballots when this method was used however. Algorithm 5
explains the process for learning ablation models of this kind, and runs in O(|C||B]|) time,
assuming that the i’* position on a ballot can be queried in constant time, which can be
achieved by storing ballots as hashmaps. Algorithm 6 shows how an existing model can be
used to stochastically ablate a given (complete) ballot. Each sub-model n; of the learned

100

Probability a Ballot has at Least X Prefereces

- = Exp(0.5)
Exp(0.95)
== Emperical

P(Truncated after X)

Figure 5.2: Two probability density functions for exponentially distributed preference trun-
cation points in top-orders are shown with dashed lines. The observed density function
for the preference truncation point in top-orders is shown as a solid line. Neither of the
exponential distributions are able to fit the observed rates at both the top and bottom
effectively.

ablation model encodes n; = P(|b;| > i+ 1 | |b;| > i). To sample a truncation point
from this model, one starts with the truncation point at location 0 (i.e. all preferences
are unspecified), and simply generates a uniformly distributed random number u over the
unit interval. If u < ny, then the truncation point is incremented, and a new uniformly
distributed random number is generated, which is compared to ns, and so on. Eventually,
either u > m, for some i, or there are no more sub-models. The process stops there, and
outputs a ballot that is identical to b; prior to the truncation point, but for every pair of
candidates ¢, ¢; to the right of the truncation point, the output ballot ranks ¢ ~ ¢;. This
algorithm runs in O(|C?) time.

Algorithm 7 details the process of constructing a sample problem using the approach
outlined above. Given a set of incomplete expressed preferences B over a set of candidates
C, it first learns an ablation model N from B. B is then reduced to = by filtering out all
ballots that are incomplete. B is then generated from = by applying the ablation model N
to each ballot in turn, and generating a partial preference that is consistent with said ballot.
The total runtime is in O(|B||C|?). Note that although the applications of the algorithms
considered in this chapter and Chapter 6 are concerned entirely with top-ordered ballots,
the algorithm is general provided that an ablation model suitable for general partially
ordered ballots is provided.

101

Algorithm 5 An algorithm for learning an ablation model from a set of top-ordered ballots
B over a set of candidates C. The model is composed of sub-models n;. The parameter
stored in model n; is P(|b;| > i+ 1 | |b;| > ¢). If the truncation point is exponentially
distributed, than every submodel should learn (approximately) the same parameter.
procedure LEARNTOPORDERABLATIONMODEL(B, C)
let N < ()
let By + B
for 1 <i<|C|do
let B; be the subset of B with a specified i*" preference
let n; + “g”
0l
let N < {N,n;}
end for
return N
end procedure

5.2.3 The Imputation Based Approach

The imputation-based approach selected for initial validation is very similar to the one
described as an initial implementation near the end of Chapter 4. However, since the data
take the form of top orders and not arbitrary partial orders, some alterations are necessary
in the selection of features.

The features used were the four sets described in the initial implementation: indicator
variables showing whether or not a candidate was present on the ballot; the numeric
location of each candidate; indicator variables showing whether one candidate comes before
or after another; and the distance between the positions of any two candidates. However,
when a feature set was generated for a classifier that was intended to impute the missing
preferences at position ¢, only information about each voter’s top ¢+ — 1 ranked candidates
was used to generate these features. Since in this problem any ballot that needs its i
preference imputed has no preferences beyond the i — 1** (because ballots are top orders),
any method that relies on information from preferences beyond the i** is prone to failure.
As an example, a ballot a > b > ¢ > d > e when used as input to a learner trying to infer
voters’ second preferences would be replaced with the ballot a = b > ¢~ d ~ e.

Additionally, Information Gain-based feature selection was used to reduce the features
to smaller (and more predictive) subset. In this approach, the information gain of each
feature with respect to the label set Y is computed. The top 30 features were used in each
run. To reduce the overfitting of the model L1 Regularization was used with a constant

102

Algorithm 6 An algorithm for learning applying an ablation model N to a totally ordered
ballot b over candidates C, producing ablated top-ordered ballot b. The algorithm first
samples a truncation point ¢, and then returns a copy of b with all candidates past position
t assigned indeterminate orders relative to each other.
procedure TOPORDERABLATION(N, b, C)
let b+ 0
let t <— 0 be the truncation point.
for 1<i<|C]do
if unif(0,1) < n; thent«t+1
else
break
end if
end for
for all (¢;,¢; inC x C do
if [ceClcbe| >t Nee Clebe| >t then
Set ¢; ~ ¢; in b.
else
if C; b Cj then
Ci[A?Cj
else
Cj l; C;
end if
end if
end for
return m
end procedure

103

Algorithm 7 An algorithm for generating problem instances from real world datasets.
Given ballots B over candidates (', and ablation model learning algorithm NN, this algo-
rithm first trains an ablation model n over B, then reduces B to the subset of complete
ballots, which becomes the true preference of voters in this problem, =. Each ballot in B
is then ablated using n, to produce a corresponding ballot in B , the expressed preferences
of voters in this problem.

procedure IMPUTATIONMODEL(N, B, C')

Let n < N(B)
Let B « B\ Bi,
Let B < 0
Let =« 0
for all b; € B do
>:i — bj
B « B U TopOrderAblation(n, b;, C)
end for

return (=, b)
end procedure

value of A = 10. This value was selected on the basis of small scale experiments, rather
than full cross validation on each problem, to keep experimental runtimes small. Using the
same constant value across all datasets also ensures that model selection will favour less
detailed (smoother) models on sets with fewer examples, and more detailed models when
there is more data to justify their refinement.

5.2.4 Competitors

The initial validation was conducted by comparing against the Minimax Regret algo-
rithm | , | or MMR. As described in Chapter 3, MMR operates by
computing the profile of completed ballots under which each candidate receives the lowest
possible ranking under whatever voting rule is being used. This is the mazimum regret
that could be experienced on the part of the electorate if a given candidate was elected. If
the election is merely to select a winner, than the candidate with the minimum maximum
regret is declared the winner. If the election is to order the set of candidates, then they are
output in order of ascending maximum regret. More formally, MMR for the single-winner
case was defined as:

104

MMR(B, C) = argmin argmax d,(S(7), ¢)

ceC mell

where 6, was the distance from ¢ to the winner of the election under m, in the ordering
produced by deciding the election using the extension 7.

The set of all possible completions of ballots is very large, and so enumerating it to find
the completion that maximizes regret for a given candidate is infeasible. Fortunately, under
many voting systems, it is possible to find this profile much faster. [|
provide a simple approach to computing the maximum amount that a candidate c;’s score
can exceed that of a candidate ¢ under any positional scoring rule. This includes rules like
Borda, Veto and K-approval. The algorithm is based on the idea that for each ballot,
one of three possible cases holds, and in each, there is a straightforward way to maximize
the margin by which candidate ¢; defeats candidate c;. Each partial ballot contains one
of the situations depicted in Figure 5.3. In the figure, the rounded boxes show sets of
candidates, and their relation to the two candidates of interests a and w. For example, in
the leftmost case, A is the set of all candidates that appear before candidate a, D is the
set of all candidates that appear after candidate a, but have an undefined order relative to
candidate w. B is the set of all candidates appearing between a and w.

Under the Borda and Veto rules, the completion of a ballot is readily determined
by categorizing it according In the leftmost case of Figure 5.3, the ballot used will be
A=a>=U» D> B> C > w»> X. In the rightmost case, a and w are incomparable,
and the order harming w most is A = E > a > U > C = D = w > X = F. In the
middle case, where w precedes a, the order is A = w = B = E = a = F = U = W.
The K-Approval rule is slightly more involved (because the sizes of the sets matter), but
can still be computed very quickly by considering at most |C| possible sizes for the set of
candidates to place between a and w.

The Copeland rule is more complex, and for general partial orders it is NP-Complete |

, ; , | to find the maximum regret for a given
candidate. However, for top orders, it is possible to compute maximum regret efficiently,
via a new approach, presented here as Algorithm 8. The algorithm operates on the idea
that, if some candidate c¢; has lost to some other candidate ¢y by the widest possible margin
under Copeland, than c¢; has lost the largest number of contests possible, and ¢y has won
the largest number possible. Fortunately, in a top-order, these two criteria are always
achieved by the same completions of each ballot. To show this, consider several cases:

Case 1: A ballot b; ranks both ¢; and ¢y, and is a top-order ranking k£ candidates in
all. Regardless of how b; is completed, ¢;’s position is fixed, and ¢,’s position is also fixed,

105

relative to both every ranked and every unranked candidate (since the unranked candidates
come after every ranked candidate). Therefore all completions of b; have the same effect
on the pairwise contests between c; and any other candidate ¢;, and between ¢y and c¢;.

Case 2: A ballot b; ranks c;, but not ¢y and is a top-order ranking k& candidates in all.
By definition of a top order, ¢; already wins pairwise contests on this ballot with every
unranked candidate. Therefore, all rankings of the unranked candidates will have identical
effects on the Copeland score of ¢;. If ¢y is ranked first among the unranked candidates, it
wins the largest number of pairwise contests possible on this ballot. Therefore, any ranking
that puts ¢y as the k+ 1 candidate will maximize the Copeland score of ¢y, and minimize
the Copeland score of c¢;.

Case 3: A ballot b; ranks ¢, but not ¢; and is a top-order ranking k candidates in all.
By definition of a top order, ¢, already wins pairwise contests on this ballot with every
unranked candidate. Therefore, all rankings of the unranked candidates will have identical
effects on the Copeland score of ¢o. If ¢; is ranked last among the unranked candidates, it
loses the largest number of pairwise contests possible on this ballot. Therefore, any ranking
that puts ¢; as the |C|" candidate will maximize the Copeland score of ¢y, and minimize
the Copeland score of ¢;.

Case 4: A ballot b; ranks neither ¢ nor ¢, and is a top-order ranking k candidates
in all. By definition of a top order, both candidates have already lost pairwise contests on
this ballot with every ranked candidate. Ranking ¢, first, and ¢; last among the unranked
candidates will then maximize the number of pairwise contests won by ¢y on b;, and lost
by ¢; on b;.

Since Algorithm 8 always ranks c; last if possible, and always ranks ¢, as high as
possible, it is therefore maximizing the number of pairwise contests won by ¢y on each
ballot, and minimizing the number won by c¢;. Over the entire profile, this will produce
the largest number of pairwise victories possible for ¢, and the smallest number for c¢;.
This is by definition the maximum regret of picking candidate ¢; instead of ¢y under the
Copeland rule. One (or more) of the candidates in C'\ ¢; will have largest regret, and this
is the maximum regret possible for picking ¢; at all. The algorithm performs a constant
time operation on each ballot for every pair of candidates, so it runs in O(|C|*N) time.

In addition to MMR, a comparison is made against a competitor that was constructed
specifically for the purpose of these experiments, a “random” imputation method, that
imputes each ballot with a suffix selected uniformly at random from the set of possible
suffixes (i.e. the suffixes that do not contain any candidates that were already ranked
on the ballot). This technique is similar in spirit to the maximum likelihood approach
to voting with partial ballots | , | introduced in Chapter 3 because,

106

Algorithm 8 An algorithm for computing the maximum regret of a candidate ¢* under
the Copeland voting rule, with a set of top-ordered ballots B over a set of candidates
C. The algorithm is facilitated by two helper algorithms, which respectively answer the
question of whether or not a candidate ¢; must win a pairwise contest with candidate ¢,
under any completion of the ballots B, and whether there exists a completion under which
¢ beats co.
procedure COULDWIN(cy,c2, B)
Let counter=0
for all b; € B do
if ¢1 bj co or ~(c1 bj ¢ or 3 bj ¢1) then
counter = counter + 1
end if
end for
return [(counter > @)
end procedure

procedure MUSTWIN(¢y,c2, B)
Let counter=0
for all b; € B do
if C1 bj Co then
counter = counter + 1
end if
end for
return [(counter > @)
end procedure

procedure MAXREGRETCOPELAND(c*, B, (')
Let MaxRegret = 0 and WorstOpponent = null
for all ¢; € C'\ ¢* do
Regret = CouldWin(cy,c*, B)
for all o, € C'\ {¢*,¢41} do
Regret = Regret + CouldWin(cy, c2, B) - MustWin(c*, ¢z, B)
end for
if WorstOpponent == null or Regret > MaxRegret then
MaxRegret = Regret and WorstOpponent = ¢;
end if
end for
return MaxRegret
end procedure

107

‘
a

- 0 -

- 5 -=—
° a
°

>°

\
AN

)
N

6
5
AN
o)
K

ea
'

0o

- S -—
- O -

°
a

Q

\
S

5

\2
Q

5
[}
0
£

Figure 5.3: The three cases to consider when maximizing the regret for picking one can-
didate (a) over another (w), reproduced from | , |. In the first case
(left), a comes before w. In the second (middle), a comes after w, and in the third case,
a and w are incomparable. The various bubbles represent sets of candidates, and un-
der a given voting rule, these sets must be ordered differently in the regret maximizing
completion. See text in this chapter for an example.

since all completions are equally likely under the maximum likelihood model, the decisions
reached via random imputations will be similar in aggregate (but much easier to compute).

5.3 Results

Results were produced by generating a number problem instances using the approach
described in the previous section. For the smaller sets (All Debian sets and Dublin West),
1,600 problems were generated. 550 problems were used for Dublin North, and 100 for
Meath. 1,600 runs were selected because this was the number required to obtain 95%
confidence intervals with a width of £0.1 of a standard deviation, given the large number
of individual hypotheses that were to be assessed. The two larger sets used a smaller
number of problems because some of the methods under evaluation have runtimes that
are quadratic in the number of candidates. For instance, 100 runs on the Meath dataset
takes longer than 1,600 runs on each of the Debian sets. The exact numbers used for the
two larger sets were selected on the basis of being the largest round number that could be
obtained in approximately 24 hours of computation.

108

For each problem instance, the imputation based approach (using L1-regularized logis-
tic regression, and the feature set described in the previous section) was applied to the
expressed preferences, followed by the application of each of the four voting rules (@-
approval, Borda, Copeland, and Veto), resulting in a total ordering of the alternatives.
MMR was separately applied to the expressed preferences to obtain an ordering of the
candidates in terms of their minimax regret under each of the voter rules. The three
performance measures described in the first section of this chapter were then computed
for MMR and the imputation based approach across each of the problem instances. The
mean performance measures for each of the two methods, on each of the four voting rules,
are then summarized in Tables 5.6 to 5.13, along with information about each dataset
for reference. In each case, the mean value along with the standard deviation of each
method is reported. Figures 5.4- 5.15 provide a visual comparison between MMR and the
imputation-based approach across the datasets under each of the different measures and

each of the different voting rules.

5.3.1 Results Overview

The results in this section are presented in terms of three measurements, all similar to the
distances used in the worst-case method’s evaluation earlier in this chapter. The Single
Winner Error measurement (abbreviated Single Winner in the tables) corresponds to the
number of candidates that precede the winner selected by a given method in the ground
truth ordering. Like the SWW measurement, if there are multiple candidates tied for
the winning position, then it takes the average score over all of them. For example, if
MMR picked the candidate that finished 2"¢ under voters’ true preferences, it would have
a Single Winner Error of 1 (one candidate precedes its choice in the ground truth ordering).
If it picked the 4" place candidate, it would have a Single Winner error of 3 (since three
candidates precede its choice in the ground truth ordering). If there was a tie under voters’
true preferences, and the winning set contained two candidates, then if MMR picked one of
the two as a unique winner, and ranked the other in second place, it would have a distance
of 0.5 (see Equation 5.2 above).

In addition to the Single Winner Error measurement, it is important to know how
close a given method was to recovering the entire ordering of a set of candidates. Under
voters’ true preferences there will exist candidates that finished second, third, fourth,
and so on. In some contests the entire ordering is relevant (for example, if the vote is
to prioritize the order in which mining sites are to be prospected, even though all will
eventually be explored). In other votes there may be interest in only the top k candidates
overall. For instance, political elections that use multi-member districts, like the Irish

109

system, would require an accurate ordering of the top candidates, but possibly not the
remainder. To capture these two distinct needs, two additional measurements are taken.
The 7 measurement is the Kendall correlation | : | between the order a voting
rule S returns when given voters’ true preferences, and the order returned by a system of
interest when provide with voters’ expressed preferences. This measure ranges from —1
to 1, and is proportionate to the number of pairwise orderings that agree between the
two rankings. For instance, if one order ranks ¢; > ¢z, but the other ranks ¢, = ¢, then
the rankings have lower Kendall correlation than if they agree on the relative ordering of
those two candidates. To capture the idea that higher ranked candidates may be more
important, the First Error measurement corresponds to the location of the first incorrectly
ranked candidate in the ordering output by a given method. For example, if a method
picks not only the correct winner, but also the correct second and third place finishers (i.e.
the second and third place finishers in the ordering obtained from voters’ true preferences
match those output by the method when supplied with voters’ expressed preferences), it
has a First Error score of at least 4 (the first error is not at position 1, 2, or 3).

The presentation of the results begins with a discussion of the overall performance of
each method, and a summary of the results in tabular form to facilitate reference or dis-
cussion of the exact numeric values. Although the performance of the imputation-based
approach is contrasted with the two comparison methods and the worst-case results, the
results are compared only qualitatively. Following the presentation of all results, a quanti-
tative comparison is performed, including statistical analysis and facilitated by graphical
depictions of the results from earlier tables. Note that the redundancy in the presentation
of the results (i.e. both graphical and tabular presentations) is to allow the reader to com-
pare the approaches visually (i.e. with graphs), while retaining the precise details of the
results (i.e. in the tables).

Tables 5.6 to 5.9 summarize the results for the imputation based approach on the four
voting rules considered. Under the K-Approval rule, the system uniformly selects the
correct winner, an encouraging result. Results under the Kendall Correlation (7) are also
promising, with high correlations across the board. The First Error measure reveals that
when the method makes a mistake, it seems to do so consistently. For instance, on Debian
2007 and Dublin West, the mistakes are consistently located at the 2"¢ position. However,
mistakes are rare on the whole.

Results under the Borda voting rule (Table 5.7) are broadly similar. Although the
correct single winner is recovered nearly all the time, on Debian 2007, 17% of runs picked the
true second place candidate as the winner. Despite this, Kendall Correlations were general
higher than under K-Approval, and the location of the first error in the ranking was
also improved, except for the Meath dataset where the incorrect candidate was routinely

110

selected for second place (though the high value of 7 indicates that most of the correct
ordering was still recovered there). Borda on the whole appears to be slightly easier for
the imputation based approach than K-Approval, despite being slightly harder according
to the worst-case method. Possibly this is because errors around the @th candidate have
a sharp cost under K-Approval, while costs are uniform throughout for slight errors in a

candidate’s position under Borda.

The Copeland rule was found via the worst-case imputation method to be harder still
than Borda. Results for the imputation-based approach are summarized in Table 5.8.
Overall Single Winner selection is still extremely strong. A consistent error is made on the
Meath dataset, where either the true third or fourth place (of 14) candidates is selected
routinely. Performance on Dublin West is quite good however. The performance in terms
of the entire ordering is also strong. The four harder sets (Logo, North, West, and Meath)
all have lower values of 7 than under the earlier rules, but the orderings are still strongly
correlated with the ground truth ranking. First Error measurements support this idea, as
the first four candidates on Dublin North and West are usually recovered in the correct
order. The bulk of the correct ordering was also recovered on Debian Logo . Although
performance under the Copeland rule is clearly lower than under K- Approval or Borda,
it is still far superior to the worst-case performance measured earlier in the chapter.

Last to consider in the results for the imputation based approach is the Veto rule. This
is a pathological voting rule when used in conjunction with logistic regression or another
classifier, because to correctly impute the final position on a ballot, a chained classifier
must correctly impute all preceding positions. In contrast, under Borda, a minor error in
the position of a single candidate is less concerning, since it will have only a small impact
on that candidate’s vote total. The results for the imputation based approach using a
chained classifier based on logistic regression are summarized in Table 5.9. As expected,
performance is markedly worst, but on the whole still not unreasonable. On the Debian
sets, the correct single winner is obtained much of the time, and even when it is not, the true
second or third place candidate is usually selected (indicated by the low standard deviation
in the measured Single Winner Error). Kendall Correlations are also very high across all of
these sets except Debian Logo, and although the correct winner is sometimes not picked,
the First Error results (with high standard deviation) show that when the correct winner
is picked, most of the remainder of the order is recovered as well. Performance on the Irish
sets was less good. While the correct winner is usually recovered on Meath, as well as the
bulk of the overall ranking (7 = 0.62), performance on the North and West sets is poor,
and the true 5" place candidate is usually picked as the winner. Despite results being less
than ideal, they are still quite good considering the pathological nature of this combination
of voting rule and learning algorithm.

111

\ First Error \ Single Winner \

T

| # Candidates | % Missing |

Debian 2003 | 5.00 £0.00 | 0.00£0.00 | 1.00 % 0.00 5 13.6
Debian 2005 | 7.00 £0.00 | 0.00£0.00 | 1.00 % 0.00 7 15.5
Debian 2006 | 6.55 +2.51 | 0.0040.00 | 0.98 £0.04 8 14.8
Debian 2007 | 2.09£0.73 | 0.00£0.00 | 0.89 +0.04 9 19.1
Debian 2010 | 5.00£0.00 | 0.00£0.00 | 1.00 % 0.00 5 11.0
Debian Logo | 2.16 £0.64 | 0.00£0.00 | 0.77 £ 0.10 8 40.0
Dublin North | 5.77£2.03 | 0.00£0.00 | 0.9440.03 12 58.5
Dblin West | 2.07£0.25 | 0.004+0.00 | 0.84 £0.01 9 50.8
Meath 3.00+£0.00 | 0.00£0.00 | 0.74£0.00 14 66.8

Table 5.6: Table showing the mean SWW, MWW, and FE measures for the instantia-
tion of the imputation-based approach using logistic regression on the K- Approval social
choice function. Reported values are the mean over many problem instances, and reported
measurement errors are the sample standard deviations.

’ ‘ First Error ‘ Single Winner ‘ T ‘ # Candidates ‘ % Missing ‘
Debian 2003 | 5.00 £0.00 | 0.00+0.00 | 1.00 £ 0.00 5 13.6
Debian 2005 | 6.93£0.59 | 0.004+0.00 | 1.00+£0.01 7 15.5
Debian 2006 | 7.94 £0.36 | 0.00+=0.00 | 1.00 £ 0.01 8 14.8
Debian 2007 | 7.55£3.07 | 0.17+0.37 | 0.99£0.02 9 19.1
Debian 2010 | 5.00 £0.00 | 0.004+0.00 | 1.00 £ 0.00 5 11.0
Debian Logo | 5.056 £2.75 | 0.00£0.00 | 0.93 %+ 0.06 8 40.0
Dublin North | 4.254+0.43 | 0.00£0.00 | 0.83+0.01 12 58.5

Dublin West 2 | 2.00 +0.00 | 0.00£0.00 | 0.89 &£ 0.00 9 50.8
Meath 2.00£0.00 | 0.00+0.00 |0.7540.01 14 66.8

Table 5.7: Table showing the mean SWW, MWW, and FE measures for the instantia-
tion of the imputation-based approach using logistic regression on the Borda social choice
function. Reported values are the mean over many problem instances, and reported mea-
surement errors are the sample standard deviations.

112

\ First Error \ Single Winner \

T

| # Candidates | % Missing |

Debian 2003 | 4.94+£0.49 | 0.01+0.12 | 0.99 +0.07 5 13.6
Debian 2005 | 7.00 £0.00 | 0.00£0.00 | 1.00 % 0.00 7 15.5
Debian 2006 | 6.35£0.76 | 0.00£0.00 | 0.94+0.03 8 14.8
Debian 2007 | 9.00£0.00 | 0.00£0.00 | 0.90 £ 0.08 9 19.1
Debian 2010 | 5.00£0.00 | 0.00£0.00 | 1.00 £ 0.00 5 11.0
Debian Logo | 5.18 £1.36 | 0.00£0.00 | 0.75+0.11 8 40.0
Dublin North | 4.01 £0.07 | 0.00 £ 0.00 | 0.85=£0.01 12 98.5
Dublin West | 3.85£1.88 | 0.824+0.38 | 0.81+£0.06 9 90.8

Meath 1.00+£0.00 | 3.54£0.32 | 0.74+£0.02 14 66.8

Table 5.8: Table showing the mean SWW, MWW, and FE measures for the instantia-
tion of the imputation-based approach using logistic regression on the Copeland social
choice function. Reported values are the mean over many problem instances, and reported

measurement errors are the sample standard deviations.

‘ First Error ‘ Single Winner ‘

T

| # Candidates | % Missing

Debian 2002 | 4.00 £ 0.00 | 0.00£0.00 | 1.00 £ 0.00 4 11.9
Debian 2003 | 2.24 £1.85 | 0.58£0.43 | 0.86 +0.09 5 13.6
Debian 2005 | 2.98 £2.16 | 0.25+0.49 | 0.88 +0.09 7 15.5
Debian 2006 | 2.18 £1.55 | 0.43£0.60 | 0.83 +0.09 8 14.8
Debian 2007 | 3.45+£2.81 | 0.31£0.50 | 0.91=+0.06 9 19.1
Debian 2010 | 4.59+1.21 | 0.06+0.19 | 0.98 £ 0.06 5 11.0
Debian 2012 | 4.00 = 0.00 | 0.004£0.00 | 1.00 £ 0.00 4 13.2
Debian Logo | 2.004+0.93 | 0.15£0.25 | 0.53+0.12 8 40.0
Dublin North | 1.00 £0.00 | 3.924+0.51 | 0.28£0.03 12 98.5
Dublin West | 1.00 £0.00 | 3.78 £0.53 | 0.54 £ 0.06 9 50.8

Meath 1.87+0.34 | 0.11£0.30 | 0.62+£0.02 14 66.8

Table 5.9: Table showing the mean SWW, MWW, and FE measures for the instantiation of
the imputation-based approach using logistic regression on the Veto social choice function.
Reported values are the mean over many problem instances, and reported measurement
errors are the sample standard deviations.

113

Tables 5.10-5.13 similarly summarize the performance of the Minimax Regret approach
across the same three performance measures: Single Winner Error (denoted Single Win-
ner), Kendall Correlation (denoted 7), and First Error Location (denoted First Error).
Table 5.10 shows the results on under the K-Approval voting rule. Immediately no-
ticeable is that while the imputation-based approach selected the correct winner uniformly
under this rule, MMR makes occasional mistakes on the Debian 2007 and Dublin West sets,
and consistent mistakes on the Meath set. On Meath, MMR consistently picks the true
second place candidate as the winner. However, Kendall Correlation is actually slightly
higher on many of the sets, and the First Error measure reveals that when MMR manages

to pick the correct winner, it usually also recovers the bulk of the sequence®.

A similar pattern is found under the Borda rule, with results summarized in Table 5.11.
MMR makes consistent errors in selecting the winner on both the Dublin West and Meath
sets under this rule, and actually selects the true third place candidate as the winner rou-
tinely on Dublin West. The Kendall correlations for MMR are quite strong under Borda,
and as with K- Approval, when MMR picks the correct winner, it usually recovers the bulk
of the correct sequence too. However, since the imputation-based method’s performance
under Borda was actually slightly better than under K-Approval, the two methods score
similarly here in terms of their Kendall correlations.

In contrast to the first two voting rules, where performance for MMR and the imputation
based method were similar, the results under the Copeland rule show a marked diver-
gence. Under Copeland MMR's single winner performance is comparable to that of the
imputation-based approach, apart from doing somewhat better on Meath. However, the
Kendall correlation results show the limitations of MMR’s worst-case approach, with ex-
tremely low values on Meath and Dublin North, the elections with the largest amount of
missing data, and the largest number of candidates (i.e. the hardest sets). This is probably
because of the large number of “fringe” candidates in these elections, that were unranked
on many ballots. Since the order of these candidates is indeterminate with respect to each
other, MMR declares a large multi-way tie. However, such a tie is actually quite unlikely,
leading to the very low correlations with the ground truth ranking. Although returning an
outcome of “Undecidable” is not unreasonable, it does indicate the importance of further
elicitation to MMR’s strategy. In some application domains, eliciting further preferences
from the electorate is not possible. For example, when a robotic swarm submits its ballots,
the robots may have no easy way of obtaining additional information from their owners (the
owners may not know themselves, or the robots might be out of direct communication).
In a non-secret ballot vote, some voters may be unwilling to reveal complete information,

4Some of the performance differences here are not statistically significant, and are intended to provide
only a qualitative view. A more statistically rigorous comparison is made in the next section.

114

\ First Error \ Single Winner \ T \ # Candidates \ % Missing

Debian 2003 | 5.00 & 0.00 0.00 = 0.00 | 1.00 £ 0.00 5 13.6
Debian 2005 | 6.94 4+ 0.56 0.00 £ 0.02 | 1.00 £ 0.01 7 15.5
Debian 2006 | 5.17 4+ 2.95 0.00 = 0.00 | 0.96 £ 0.04 8 14.8
Debian 2007 | 7.95+1.71 0.01 £0.08 | 0.98£0.03 9 19.1
Debian 2010 | 5.00 4+ 0.00 0.00 £ 0.00 | 1.00 £ 0.00 5 11.0
Debian Logo | 3.75 £ 1.74 0.00+£0.02 | 0.87£0.08 8 40.0
Dublin North | 10.66 +2.99 | 0.00 £0.00 | 0.99 + 0.01 12 58.5
Dublin West | 1.97 +0.17 0.03+0.16 | 0.89£0.01 9 50.8

Meath 1.00 £ 0.00 1.00£0.00 | 0.914+0.01 14 66.8

Table 5.10: Table showing the mean SWW, MWW and FE measures for the Minimax
Regret approach on the K-Approval social choice function. Reported values are the mean
over many problem instances, and reported measurement errors are the sample standard
deviations.

even if it would significantly alter the outcome. In application domains where elicitation is
not possible, or is undesirable, the method clearly suffers from serious deficiencies. Empir-
ically, the initial results suggest these become pronounced when somewhere around 50%
of preference information is missing. This is consistent with the idea of a multi-way tie: if
c1 and ¢y are unranked relative to one another on at least half of the ballots, then MMR
will consider either victory possible, effectively declaring a pairwise tie.

Finally, Table 5.13 summarizes the results for MMR under the Veto voting rule. Under
Veto MMR practically amounts to counting the number of ballots on which each candidate
is unranked, and picking the candidate about whom there is greatest uncertainty (i.e. the
one ranked on the fewest ballots), with a slight bias toward candidates that are never
ranked last on the few complete ballots that exist in most of the sets. Perhaps surprisingly,
this is not an especially good heuristic for Veto. MMR picks the correct winner more often
than the imputation-based approach on just four of the nine datasets, and just two of the
four difficult datasets, even though Veto is a pathological voting rule for the imputation-
based approach. Kendall Correlation is higher for the imputation-based approach in the
same fraction of the sets, and the imputation-based approach has a higher (i.e. better)
average First Error Location on six of the sets, though on one of these the difference is
very small.

The final set of results to be presented are those based on imputations selected uniformly
at random. As discussed above, this provides an easily computable approximation of the

115

‘ First Error ‘ Single Winner ‘

T

| # Candidates | % Missing |

Debian 2003 | 5.00£0.00 | 0.00£0.00 | 1.00 % 0.00 5 13.6
Debian 2005 | 6.90 £0.70 | 0.00£0.03 | 1.00 £ 0.01 7 15.5
Debian 2006 | 7.97£0.33 | 0.00£0.00 | 1.00+0.01 8 14.8
Debian 2007 | 7.97£2.16 | 0.00£0.04 | 0.98 +0.03 9 19.1
Debian 2010 | 5.00£0.11 | 0.00 £0.00 | 1.00 £ 0.01 5 11.0
Debian Logo | 4.40 +2.00 | 0.00£0.00 | 0.89 £ 0.08 8 40.0
Dublin North | 7.87 £2.87 | 0.00+0.00 | 0.96 £ 0.01 12 98.5
Dublin West | 1.00£0.00 | 1.99+0.11 | 0.86 £ 0.03 9 50.8

Meath 1.00£0.00 | 1.00£0.00 | 0.91+£0.01 14 66.8

Table 5.11: Table showing the mean SWW, MWW, and FE measures for the Minimax
Regret approach on the Borda social choice function.
over many problem instances, and reported measurement errors are the sample standard

deviations.

Reported values are the mean

\ First Error \ Single Winner \

T

| # Candidates | % Missing |

Debian 2003 | 4.40+0.84 | 0.02£0.09 0.90 £0.11 d 13.6
Debian 2005 | 6.57 +£1.54 | 0.04 £0.13 0.99 £+ 0.02 7 15.5
Debian 2006 | 6.00 +£0.10 | 0.00 £ 0.00 0.93 £ 0.00 8 14.8
Debian 2007 | 2.05+0.37 | 0.00 £ 0.00 0.87 £ 0.03 9 19.1
Debian 2010 | 3.04 +1.39 | 0.00 £ 0.00 0.82+0.14 D 11.0
Debian Logo | 5.44 4+1.00 | 0.00 = 0.00 0.74 £0.12 8 40.0
Dublin North | 3.98 £0.14 | 0.00 £0.00 | —0.09 £ 0.03 12 98.5
Dublin West | 3.00£0.00 | 0.724+0.13 0.52 £ 0.05 9 20.8

Meath 297£0.17 | 0.00+£0.00 | —0.46£0.04 14 66.8

Table 5.12: Table showing the mean SWW, MWW, and FE measures for the Minimax
Regret approach on the Copeland social choice function. Reported values are the mean
over many problem instances, and reported measurement errors are the sample standard
deviations.

116

’ First Error \ Single Winner \ T \ # Candidates \ % Missing
Debian 2003 | 5.00 +£0.00 | 0.00+£0.00 | 1.00 4 0.00 5 13.6
Debian 2005 | 2.91 +£1.00 | 0.00£0.04 | 0.854+0.05 7 15.5
Debian 2006 | 1.00 +0.00 | 2.804+0.39 | 0.72£0.03 8 14.8
Debian 2007 | 1.01 £0.12 2.39 £ 0.66 0.64 £ 0.05 9 19.1
Debian 2010 | 1.00 +0.00 | 1.004+0.00 | 0.80 £ 0.00 5 11.0
Debian Logo | 1.034+0.18 | 1.96 £0.89 | 0.58+0.10 8 40.0
Dublin North | 7.68 = 1.09 | 0.00 +0.00 | 0.88 +0.02 12 58.5
Dublin West | 2.08 £0.44 | 0.06 +0.24 | 0.58 +0.04 9 50.8

Meath 1.00£0.00 | 3.004+0.00 |0.1240.01 14 66.8

Table 5.13: Table showing the mean SWW, MWW and FE measures for the Minimax Re-
gret approach on the Veto social choice function. Reported values are the mean over many
problem instances, and reported measurement errors are the sample standard deviations.

performance obtained by maximum-likelihood approach to voting | , |,
which also assumes unranked ballots are distributed uniformly at random (i.e. contribute
no net value to the aggregates computed). The results are summarized in Tables 5.14-
5.17. Table 5.14 shows the results under the K-Approval voting rule. The randomly
generated imputations led to the selection of the correct winner on most of the datasets,
illustrating (much like the worst-case results above) that there is relatively little room
for poor decision making under the K-Approval rule on these sets. Interestingly, the
method does exactly as well as MMR on the Meath dataset, consistently selecting the true
second place candidate as the winner. This illustrates again the presence of real patterns
in the expressed preferences of voters: a randomized imputation method that ignores these
patterns fares worse than one that attempts to exploit them. Apart from this, the results
are broadly similar to those for MMR. It appears that a random imputation has slightly
better Kendall Correlation than the logistic regression-based approach on some of the sets,
though the difference is not very large®.

The results for the random approach under the Borda rule are summarized in Ta-
ble 5.15. As under the K-Approval rule, the random approach makes mistakes that

5A possible explanation for this is that low-ranked preferences in these sets were in fact distributed
nearly at random, making the rankings consistent with the assumptions of the random approach. If
preferences really were expressed randomly, then random imputations would actually form an upper bound
on performance for the low-ranked candidates on some sets. The result may thus reflect a limitation of
the data that was used.

117

are effectively identical to those of MMR when selecting the winner of the election. On
the Dublin West and Meath sets, the true third and second place candidates are respec-
tively selected as the winner. Again, this mistake illustrates the presence of patterns for
the (non-random) imputation-based approach to exploit. Clearly the assumption that
unstated preferences are distributed uniformly at random is false, and better results are
obtained via the observation of patterns in the stated preferences. The results for the
random approach in terms of Kendall Correlation are very similar to those of MMR, and
thus also, those of the imputation-based approach. The notable exception is on the Dublin
North set, where imputations drawn uniformly at random recover the entire ordering most
of the time. This is slightly surprising, as it suggests that voters’ preferences were actually
quite heterogeneous on this set. Further evidence of this heterogeneity is explored briefly
near the end of the next chapter.

In contrast to MMR, the random approach also performs reasonably well under the
Copeland rule (Table 5.16). Like MMR it routinely selects the correct winner, except on
Dublin West where the third place candidate is picked instead. Kendall correlations are
reasonably high, and comparable to those under the Imputation-Based approach, while the
first error location is sometimes a little worse than MMR. This suggests the approach is
recovering the correct ordering of the less popular candidates better than MMR by picking
some ordering of the unpopular candidates, rather than assuming all orderings are equally
likely. Again, this highlights the importance of elicitation to MMR/’s strategy. If no further
information can be extracted from the voters, than picking an ordering conservatively can
be detrimental.

To complete the tabular summary of the results, Table 5.17 displays the results for the
random approach under the Veto voting rule. Interestingly again, the method performs
worse than the imputation-based approach when picking the winner of the election on
most sets, though not Dublin North or Dublin West. The Kendall Correlation results and
First Error Location tell a similar story, with numbers that are broadly similar to those
for MMR, and slightly worse than the imputation-based approach.

This concludes the presentation of the results for each of the models on each of the
datasets. The next section provides a direct statistical comparison between the results
summarized in tabular form here, and presents the same results graphically so that the
viewer can more easily process them.

118

’ ‘ First Error ‘ Single Winner ‘ T ‘ # Candidates ‘ % Missing ‘

Debian 2003 | 5.00 &+ 0.00 0.00 = 0.00 | 1.00 = 0.00 5 13.6
Debian 2005 | 6.94 +0.55 0.00£0.00 | 1.00=+0.01 7 15.5
Debian 2006 | 5.21 +2.95 0.00 £0.00 | 0.96 &£ 0.04 8 14.8
Debian 2007 | 7.99 +1.68 0.01 £0.07 | 0.98£0.03 9 19.1
Debian 2010 | 5.00 £ 0.00 0.00£0.00 | 1.00 £ 0.00 5 11.0
Debian Logo | 3.73 £ 1.66 0.00£0.02 | 0.86 =+ 0.08 8 40.0
Dublin North | 10.36 +£3.23 | 0.00£0.00 | 0.99 +0.01 12 58.5
Dublin West | 1.98 +0.16 0.02£0.13 | 0.89 £0.01 9 50.8

Meath 1.00 £ 0.00 1.00 £0.00 | 0.91£0.01 14 66.8

Table 5.14: Table showing the mean SWW, MWW, and FE measures for the Random
Imputation approach on the K-Approval social choice function. Reported values are
the mean over many problem instances, and reported measurement errors are the sample
standard deviations.

| | First Error | Single Winner | T | # Candidates | % Missing |

Debian 2003 | 4.98 + 0.23 0.00 +0.01 1.00 £0.01) 13.6
Debian 2005 | 6.71 +1.18 0.00 £ 0.04 0.99 + 0.02 7 15.5
Debian 2006 | 7.93 4+ 0.52 0.00 £ 0.00 1.00 + 0.01 8 14.8
Debian 2007 | 7.64 4+ 2.40 0.00 + 0.04 0.98 +0.03 9 19.1
Debian 2010 | 4.95 4+ 0.37 0.00 4+ 0.00 1.00 £+ 0.02 5) 11.0
Debian Logo | 4.29 £+ 1.94 0.00 4+ 0.00 0.89 + 0.08 8 40.0
Dublin North | 7.81 + 2.89 0.00 4+ 0.00 0.96 + 0.01 12 58.5
Dublin West | 1.00 + 0.00 1.95 £+ 0.22 0.87 £0.03 9 50.8

Meath 1.00 4 0.00 1.00 = 0.00 | 0.91 £0.00 14 66.8

Table 5.15: Table showing the mean SWW, MWW, and FE measures for the Random
Imputation approach on the Borda social choice function. Reported values are the mean
over many problem instances, and reported measurement errors are the sample standard
deviations.

119

‘ First Error ‘ Single Winner ‘

T

| # Candidates | % Missing |

Debian 2003 | 5.00£0.00 | 0.00£0.00 | 1.00 % 0.00 5 13.6
Debian 2005 | 7.00 £0.00 | 0.00£0.00 | 1.00 £ 0.00 7 15.5
Debian 2006 | 7.17£0.99 | 0.00£0.00 | 0.97+0.04 8 14.8
Debian 2007 | 7.18 £2.18 | 0.00£0.00 | 0.97 +£0.03 9 19.1
Debian 2010 | 4.98 £0.27 | 0.00£0.00 | 1.00 & 0.02 5 11.0
Debian Logo | 5.08 £0.48 | 0.00£0.00 | 0.76 £ 0.08 8 40.0
Dublin North | 4.01 £0.25 | 0.00+£0.00 | 0.91 £ 0.00 12 98.5
Dublin West | 3.00£0.00 | 1.00+£0.02 | 0.72+£0.02 9 50.8

Meath 2.00£0.00 | 0.00+£0.00 |0.93£0.01 14 66.8

Table 5.16: Table showing the mean SWW, MWW, and FE measures for the Random Im-
putation approach on the Copeland social choice function. Reported values are the mean
over many problem instances, and reported measurement errors are the sample standard

deviations.

\ First Error \ Single Winner \

T

| # Candidates | % Missing |

Debian 2003 | 3.89 £1.79 | 0.25£0.42 | 0.94 +0.09 5 13.6
Debian 2005 | 2.46 £1.17 | 0.23+0.48 | 0.82+0.07 7 15.5
Debian 2006 | 1.00£0.04 | 2.73£0.54 | 0.70 +0.06 8 14.8
Debian 2007 | 1.60 +0.88 | 0.914+0.87 | 0.76 £ 0.06 9 19.1
Debian 2010 | 1.02+0.26 | 1.00£0.10 | 0.80 £ 0.02 5 11.0
Debian Logo | 1.034+0.26 | 2.22£0.93 | 0.61+£0.10 8 40.0
Dublin North | 7.44+1.39 | 0.00+0.00 | 0.88£0.01 12 98.5
Dublin West | 1.89 £0.54 | 0.214+0.42 | 0.57£0.04 9 90.8

Meath 1.00 £0.00 | 3.00£0.00 | 0.12+£0.01 14 66.8

Table 5.17: Table showing the mean SWW, MWW, and FE measures for the Random
Imputation approach on the Veto social choice function. Reported values are the mean
over many problem instances, and reported measurement errors are the sample standard
deviations.

120

5.3.2 Single Winner Performance

Figures 5.4— 5.7 provide graphical comparisons of the performance of MMR and the worst-
case, random, and imputation-based models’ performance across the four voting rules
under the Single Winner Error measure. The results presented in these figures are based
on those from the tables in the previous subsection, but should be easier for the reader to
compare across models. Each figure summarizes data for one voting rule. Figures show
a cluster of bars for each dataset, one bar for each model. The height of the bar shows
the Single Winner Error of that method on the candidate — the mean value reported in
the corresponding table. The error bars (sometimes called “whiskers” to distinguish them
from the main bars of the plot) show a 95% confidence interval for the mean, assuming a t-
distribution based on the appropriate number of samples and adjusted using the Bonferroni
correction | : ; , | for the fact that 3 x 4 x 9 x 6 = 648 hypotheses
are being tested (3 performance measures, 4 voting rules, 9 datasets, and 6 tests between
the 4 different methods for each treatment). This means there is at least a 95% chance that
every true mean value falls between its corresponding set of bars. If the confidence intervals
for two methods do not overlap, then a statistically significant difference is present between
the methods’ performance. When the intervals for two methods do overlap, a statistically
significant difference may not be present. However, since the difference in such cases is
vanishingly small for the data present here, no additional testing was performed, and for
the purpose of assessing these results, such instances will be considered effectively equal.

Unsurprisingly, given the comparative ease of the decision problems generated, the K-
Approval and Borda data summarized in Figures 5.4 and 5.5 is not especially interesting.
All methods manage to recover the true winner on every one of the Debian sets, modulo
some tiny errors on the Debian 2007 set under Borda. MMR (orange) and the random
approach (green) make minor errors on the Meath and Dublin West sets. The worst-
case approach is show in red, and demonstrates that the three Irish sets at least have
some potential for poor decision making here, so it is encouraging that all perform well.
The imputation-based approach appears to perform best overall. Figure 5.6 shows the
performance of the four methods under Copeland’s rule. Here performance is again
essentially perfect under the Debian sets, with a tiny error on the 2005 set. All three
approaches sometimes make small mistakes on Dublin west, with MMR making statistically
significantly fewer mistakes than either of the other two methods, and the imputation-based
approach making fewer than the random imputation approach. On Meath the imputation-
based approach makes consistent mistakes, selecting either the true fourth or fifth place
candidate as the winner, MMR appears to perform best here, but not by a wide margin.

Results under the Veto rule, summarized in Figure 5.7, has much more varied results,

121

since errors are possible on every set. Notable here is that the heuristic used to find the
worst-case performance (described in Section 5.1) is actually inaccurate under veto. The
truly worst candidate may not be a member of the possible winner set, but the heuristic
will generate an imputation assigning the last position to this candidate wherever possible.
This leads to odd looking results for the Debian 2005 and 2007 sets in particular, so the
reader is reminded that the worst-case results are in fact the product of a heuristic, and so
constitute a lower bound on the true worst case. On Debian 2005, 2007, 2010, and Logo,
and on Meath, the imputation-based approach is a clear winner, despite the pathological
nature of the voting rule. On Debian 2003 and 2005 it does slightly worse than competing
approaches, but is still picking the correct winner much of the time. Only on the Dublin
North and West sets does performance appear to suffer relative to the competitors.

In support of the visual results, a statistical analysis was performed. The data were
analyzed with a three-factor analysis of variance (ANOVA) test, where the factors were the
dataset, voting rule, and method. Only MMR, the imputation-based approach, and the
random imputation approach were used as methods in the analysis. The null hypothesis was
that all combinations of methods, datasets, and voting algorithms have equal performance.
The null hypothesis was rejected and the test found that the method choice factor was a
statistically significant predictor of performance even controlling for the presence of the
other factors and their combinations.

Followup pairwise testing with Welch’s t-tests was used to holistically assess the sig-
nificance of differences between each method (i.e. across all datasets simultaneously). The
difference in single winner error between the imputation-based approach with logistic re-
gression and MMR had a 99.99% confidence interval between 0.067 and 0.10, favouring
the imputation-based approach. A similar advantage was found for the imputation-based
approach over random imputations, with a 99.99% confidence interval of 0.055 to 0.088
for the mean difference, again favouring the imputation-based approach. Interestingly,
the difference between MMR and the random imputation approach was only significant
at a 0.99% level (despite being based on more than 11,000 data points). A 0.99% confi-
dence interval for the difference between means is 0.001 to 0.0027 in favour of the random
approach.

Results under individual voting rules have somewhat larger (and therefore perhaps
somewhat more informative) effect sizes. While the advantages in K-Approval are very
small (about 0.01 in favour of the imputation-based approach), the imputation-based ap-
proach offers a mean advantage of 0.18 to 0.21 over MMR under Borda, and of 0.17 to 0.21
over random imputations. Under Copeland there was no significant difference between
the imputation-based and random methods, and MMR offered an advantage of about 0.01
points of single winner error. Under Veto the imputation-based approach was best on

122

Single Winner Error Under K-Approval

B Imputation
MMR

B Random

W Worst

Single Winner Error

BT

Deb 03 Deb 05 Deb 06 Deb 07 Deb 10 Deb Logo North West Meath

Dataset

Figure 5.4: Figure comparing Winner Determination Performance of the imputation-based
approach with logistic regression to MMR, random imputations, and worst-case imputa-
tions, under the K-Approval social choice function. Bars show mean SW Error, and
whiskers show one standard deviation.

average again, with a 99.99% confidence interval for the mean advantage over MMR of
0.21 to 0.097, and over the random approach of 0.14 to 0.023.

On this basis, it is reasonable to conclude that the imputation-based approach is most
likely to pick the true winner of the election, though only by a modest amount. On the
Borda and Veto rules its performance amounted to picking a candidate one position closer
to the true winner about 20% more often than the other approaches. On K-Approval the
imputation-based approach picks a candidate one position closer to the true winner only
about 1% more often, while under Copeland MMR picks a candidate one position closer
about 1% more often.

5.3.3 Ranking Performance

The performance of the three methods of interest alongside the worst-case method’s perfor-
mance is now analyzed in terms of Kendall Correlation, a measure of their overall abilities
to recover the correct ordering of all the candidates in an election. The results are sum-
marized in Figures 5.8- 5.11, which respectively show the Kendall correlation under each
of the four different voting rules considered in the experiment. As with the results for

123

Single Winner Error Under Borda

2 Imputation

MMR
Random
Worst

10

Single Winner Error

0 -

Deb 03 Deb 05 Deb 06 Deb 07 Deb 10 Deb Logo North West Meath

Dataset

Figure 5.5: Figure comparing Winner Determination Performance of the imputation-based
approach with logistic regression to MMR, random imputations, and worst-case imputa-
tions, under the Borda social choice function. Bars show mean SW Error, and whiskers
show one standard deviation.

Single Winner Error Under Copeland

10 Imputation
MMR
Random

Worst

Single Winner Error

Deb 03 Deb 05 Deb 06 Deb 07 Deb 10 Deb Logo North West Meath

Dataset

Figure 5.6: Figure comparing Winner Determination Performance of the imputation-based
approach with logistic regression to MMR, random imputations, and worst-case imputa-
tions, under the Copeland social choice function. Bars show mean SW Error, and whiskers
show one standard deviation.

124

Single Winner Error Under Veto

Imputation
MMR
Random
Worst

10

Single Winner Error

Deb 03 Deb 05 Deb 06 Deb 07 Deb 10 Deb Logo North West Meath

Dataset

Figure 5.7: Figure comparing Winner Determination Performance of the imputation-based
approach with logistic regression to MMR, random imputations, and worst-case imputa-
tions, under the Veto social choice function. Bars show mean SW Error, and whiskers
show one standard deviation.

Single Winner Error above, each figure shows a set of coloured bars clustered together for
each dataset. The height of the bar corresponds to the Kendall-Tau correlation between
the ranking output by a method and the ground-truth ranking. The error bars show a
95% confidence interval, corrected for the extremely large number of multiple comparisons
being made in exactly the same way as in the Single Winner Error comparisons. Note that
while high Single Winner Errors indicted a method was performing badly, high correla-
tion is actually indicative of the opposite (i.e. methods with higher Kendall correlation are
performing better than those with lower Kendall correlation).

Figure 5.8 shows the results under K-Approval. There appears to be a consistent trend
for the imputation-based approach to perform very slightly less well than the competing
approaches, with the exception being a small advantage for the imputation-based approach
on the Debian 2006 set. Interestingly, the competitors exhibit very similar performance to
each other on all the sets, appearing to be essentially indistinguishable from one another.
This effect is also visible under Borda in Figure 5.9, but here the imputation-based ap-
proach out-performs its competitors as often as it is beaten by them. In all cases on both
sets, performance for all the methods is very high.

Figure 5.10 shows the much more varied results present under the Copeland rule. Here

125

performance for the imputation-based approach and the random approach is similar, but
MMR is noticeably worse, and is even anti-correlated with the ground-truth ordering on
the North and Meath sets. As discussed earlier, this is due in part to MMR’s tendency
to declare ties under Copeland, although a cursory probe of the results indicated that it
also does make some genuine mistakes in the ordering. The imputation-based approach
appears to be equal to the random approach with near perfect or perfect correlation in the
Debian 2003, 2005, 2006 and 2010 sets It is slightly worse in the Debian 2007, North, and
Meath sets, and slightly better in the West set. The two methods are tied in the Logo set
as well, but with less than ideal correlations of around 0.6. It certainly appears safe to
conclude visually that both methods are superior to MMR under this rule.

Results under Veto are rather similar to those under the first two rules, with all methods
performing reasonably well. The imputation-based approach performs notably better on
the Meath set, and on Debian 2005, 2006, 2007, and 2010, but slightly worst on Debian
2003, and Logo, and on the West set. A fairly large deficiency is present on the North set.

As before, a series of ANOVA tests, followed by pairwise hypothesis testing with Welch’s
t-tests, was used to verify whether there was an overall advantage for any of the three
methods, and how large the advantages were in general and on each dataset. The first
ANOVA had as the null hypothesis that all blocks in a three-factor design had the same
mean performance, with the factors being respectively the datasets, the methods, and the
voting rules used. The test indicated that model choice was a highly significant factor,
even in the presence of the dataset and voting rule factors, and the combinations of said
factors (p < 2e — 16). Followup testing found an overall advantage for the imputation-
based approach over MMR, with a 99.99% confidence interval for the mean difference in
the mean Kendall correlation lying between 3.0 and 3.7 percentage points. Surprisingly,
the random imputation method was found to offer a small advantage over the imputation-
based approach under the Kendall correlation measurement. However, the mean Kendall
correlations of the two methods were 0.09173 and 0.09138 respectively, with a 99.99%
confidence interval for the gain of using the random approach of just 0.00053 to 0.0066.
The difference is significant, but extremely small. It corresponds to approximately one
pair of adjacent candidates being flipped for every 2.5 runs on the most complex dataset
(Meath), which has 14 candidates. In contrast, the advantage of using either the random
approach or the imputation-based approach over MMR corresponds to approximately 3
such flips per run.

As before, the advantages on individual rules are also examined. Under the K- Approval
rule, both competing approaches offer a performance advantage of about 2.5% over using
the imputation-based approach. Under Borda all three methods are tied, with less than
a 1% difference in mean performance. Under Copeland a large advantage is present for

126

Kendall Correlation Under K-Approval

B Imputation

E MMR

0.8 B Random
0.6 B Worst

0.4

0.2

Kendall Correlation

-0.2
Deb 03 Deb 05 Deb 06 Deb 07 Deb 10 Deb Logo North West Meath

Dataset

Figure 5.8: Figure comparing correlation of the imputation-based approach with logis-
tic regression to MMR, random imputations, and worst-case imputations, under the K-
Approval social choice function. Bars show mean Kendall Correlation, and whiskers show
one standard deviation.

random over MMR (10.5 to 12.2 percentage points), and the imputation-based approach
(9.7-11.5 percentage points). Using the random approach then offers a performance gain
of between 1.1 and 0.1 percentage points). Under the Veto the imputation-based method
offers a small advantage of 0.7-2.4 percentage points over the random method, and 4.5-6.2
percentage points over MMR. All reported values are 99.99% confidence intervals for the
mean difference.

On the basis of these results, it must be concluded that minimax regret has substantially
less ability to recover the entire sequence than either of the other two methods. Poor
performance is especially notable on the Veto and Copeland rules, perhaps because the
less popular candidates place very few constraints on the potential regret associated with
each other. Interestingly, this analysis must also conclude that the randomized approach
is at least a reasonable alternative to the imputation-based approach when ordering all
candidates, even if it works less well when selecting only the winner. Possible reasons for
this are discussed nearer the end of the section, in conjunction with the results under the
First Error Location measurement.

Analysis under the First Error Location measurement was performed in much the same
fashion as for the other two. The results are presented visually in Figures 5.12- 5.15. Again,
each plots shows a cluster of bars for each dataset, with different colours corresponding

127

Kendall Correlation Under Borda

1 B Imputation
® MMR

5 B Random
W 0.5 B Worst
£

o
v}
T 0
o

C

@
b

-0.5

Deb 03 Deb 05 Deb 06 Deb 07 Deb 10 Deb Logo North West Meath

Dataset

Figure 5.9: Figure comparing correlation of the imputation-based approach with logistic
regression to MMR, random imputations, and worst-case imputations, under the Borda
social choice function. Bars show mean Kendall Correlation, and whiskers show one stan-
dard deviation.

Kendall Correlation Under Copeland

B Imputation
E MMR

B Random
| |

0-3 Worst

Kendall Correlation
[=]

Deb 03 Deb 05 Deb 06 Deb 07 Deb 10 Deb Logo North West Meath

Dataset

Figure 5.10: Figure comparing correlation of the imputation-based approach with lo-
gistic regression to MMR, random imputations, and worst-case imputations, under the
Copeland social choice function. Bars show mean Kendall Correlation, and whiskers
show one standard deviation.

128

Kendall Correlation Under Veto

Imputation
MMR
Random
Worst

0.5

Kendall Correlation

-0.5
Deb 03 Deb 05 Deb 06 Deb 07 Deb 10 Deb Logo North West Meath

Dataset

Figure 5.11: Figure comparing correlation of the imputation-based approach with logistic
regression to MMR, random imputations, and worst-case imputations, under the Veto so-
cial choice function. Bars show mean Kendall Correlation, and whiskers show one standard
deviation.

to the different methods under consideration. In addition to the familiar four methods,
a fifth bar has been added to each cluster corresponding to the number of candidates in
the corresponding dataset, which is the upper bound for the worst possible First Error
Location. As with Kendall correlation, higher bars indicate better method performance,
since more of the highly ranked candidates from the ground-truth ordering have been or-
dered correctly. As before, whiskers show a 95% confidence interval under the conservative
Bonferroni correction.

Figure 5.12 shows the results under K-Approval. Again, note that the worst-case
method has used a heuristic approach, and may not always be a reliable bound. Overall
it appears that the three methods of interest have similar performance under the Debian
2003, 2005, and 2010 sets, as well as under Dublin West. The imputation-based approach
offers an advantage on Meath and Debian 2006, but has significant performance issues
on Debian 2007, Logo, and Dublin North. The performance of MMR and the random
approach appears identical throughout.

Figure 5.13 shows the results for the Borda set. A small performance advantage is
present for the imputation-based approach on Debian 2005, and Logo, Dublin North, and
Meath, while it performs somewhat less well on Dublin North. A few of the sets exhibit
rather large whiskers. Readers may choose to interpret these as statistically significant

129

differences even if they overlap, because of the highly conservative nature of the Bonferroni
correction (in effect, the bars are all twice as wide as if only a single hypothesis were being
tested). It is likely that they would be significant if tested with Holm’s correction, for
instance.

Figure 5.14 shows performance under Copeland’s rule. As with the Kendall correla-
tion, here MMR appears to perform noticeably worse than the other methods on several
of the sets. It offers a small advantage on Meath, but is far behind on Debian 2007 and
2010, and still worse than the other two methods on Debian 2003, 2005, 2006 and Dublin
West. Also notable here is a modest advantage for the imputation-based approach, which
does markedly better than both its competitors on Debian 2007 and Dublin West.

Finally, Figure 5.15 shows the results under the Veto rule. Immediately obvious is
the difficulty of the rule, with all methods performing fairly poorly compared with the
best-case performance shown in purple. The imputation-based approach does very well
here, with advantages on Debian 2005, 2006, 2007, 2010, and Logo, as well as the Meath
set. Interestingly, there is even one set (Debian 2006) where the competitors do worse than
the ‘worst case’ approach, which as mentioned above, is a heuristic estimate of worst-case
performance.

As before, the results in the graphs are supported by a more detailed statistical analysis.
A three factor ANOVA (over the method, voting rule and dataset factors) again found that
the choice of method was a highly significant factor in determining First Error Location
(p < 2e—16). Pairwise hypothesis tests performed using Welch’s t-tests found an advantage
to using the imputation-based approach instead of MMR of between 0.25 and .15 points
of First Error Location, (99.99% confidence interval for the difference in means), but also
found that the random approach was preferred to the imputation-based one by between
0.0036 and 0.072 points of First Error Location, though this difference was only significant
at the 99% level. The random approach also significantly outperformed MMR overall, with
an advantage of 0.18 to 0.29 points of First Error Location.

Drilling down to look at performance on each voting rule individually, MMR offered
a performance gain of 0.70-0.90 points over the imputation-based approach under K-
Approval, and the random approach offered an identical gain. MMR and the random
approach were not significantly different at the p = 0.95 level on under this rule. Under
Borda however, the imputation-based approach performed better, with a 99.9% confidence
interval for the difference between the means of 0.17 to 0.0035 over the random model, and
statistically identical performance to MMR. Under Copeland however, the imputation-
based approach was the best by a wide margin, with a 1.06 - 1.21 point advantage over
MMR, and a 0.12 to 0.27 point advantage over the random approach, both at the 99.99%

130

First Error Location Under K-Approval

14 Imputation
MMR
Random
Worst

Num Candidates

First Error Location

Deb 03 Deb 05 Deb 06 Deb 07 Deb 10 Deb Logo North West Meath

Dataset

Figure 5.12: Figure comparing first error location of the imputation-based approach with
logistic regression to MMR, random imputations, and worst-case imputations, under the
K-Approval social choice function. Bars show mean location of the first ranking error,
and whiskers show one standard deviation.

confidence level. A similarly large margin is present under Veto, where the imputation-
based approach wins by a margin of 0.28-0.44 over the random approach, and 0.36-0.52
over MMR. Thus, somewhat counter intuitively, the imputation-based approach did best
under Copeland and Veto, tied for best under Borda and did worst under K-approval,
but overall was still slightly worse under the First Error Location measure than the random
approach. As with the Kendall Correlation results, it is reasonable to conclude that MMR
has performed less well on the whole than the other two rules. The difference between the
random model’s performance and the imputation-based approach’s performance is small
here, like with the Kendall correlation results. Again, for comparison, taking the mean
differences, using the imputation-based method instead of the random method would result
in getting the top k41 candidates correct instead of the top k approximately once in every
twenty elections. In contrast, using MMR instead of the imputation-based approach would
result in an improvement of this kind in one in every five elections.

Overall the results suggest that the imputation-based approach should be preferred to
its two competitors. It demonstrates significantly better performance than MMR overall
under all three measurements (Single Winner, 7, and First Error), although on certain
voting rules this advantage is small, or even slightly negative. Oddly however, although
single winner performance is better for the imputation-based approach than for the ran-

131

First Error Location Under Borda

Imputation

MMR

Random

Worst

Num Candidates

First Error Location

0

Deb 03 Deb 05 Deb 06 Deb 07 Deb 10 Deb Logo North West Meath

Dataset

Figure 5.13: Figure comparing first error location of the imputation-based approach with
logistic regression to MMR, random imputations, and worst-case imputations, under the
Borda social choice function. Bars show mean location of the first ranking error, and
whiskers show one standard deviation.

First Error Location Under Copeland

14 Imputation
MMR
Random
Worst

Num Candidates

12

10

First Error Location

0 Deb 03 Deb 05 Deb 06 Deb 07 Deb 10 Deb Logo North West Meath

Dataset

Figure 5.14: Figure comparing first error location of the imputation-based approach with
logistic regression to MMR, random imputations, and worst-case imputations, under the
Copeland social choice function. Bars show mean location of the first ranking error, and
whiskers show one standard deviation.

132

First Error Location Under Veto

ot

Deb 03 Deb 05 Deb 06 Deb 07 Deb 10 Deb Logo North West Meath

Imputation

MMR

Random

Worst

Num Candidates

First Error Location

Dataset

Figure 5.15: Figure comparing first error location of the imputation-based approach with
logistic regression to MMR, random imputations, and worst-case imputations, under the
Veto social choice function. Bars show mean location of the first ranking error, and
whiskers show one standard deviation.

dom approach, the multiwinner results show a (very small) advantage to using random
imputations. The next section provides an analysis of this phenomenon, and suggests both
possible explanations and remedies.

5.4 Classifier Error Rates

The results in the previous section showed that although the imputation-based approach
sometimes does perform better than its competitors, it appears to be highly comparable to
using random imputations when measuring the recovery of the entire aggregate ranking.
This is a rather unintuitive result, and so requires a compelling explanation.

As a first step toward explaining the phenomenon, it will be useful to develop an
analytical model for the failure or success of the imputation-based model when ordering
candidates. This model is based on the concept of the expected e-case damage to the
“correct” outcome of the election, which is denoted ED(c,¢€), where ¢ € C' is the winning
candidate, and ¢ is a real valued parameter in (0,1). ED(c,¢€) is defined as the expected
total decrease in the score assigned to a candidate under a scoring-based voting rule S to
candidate ¢’s under an imputation that places ¢ at a fraction e positions from the worst

133

possible position on each ballot where ¢’s position was not defined. Intuitively, this is
somewhat similar to the idea behind minimax regret, but with greater continuity. Using
¢ = 1 will compute the maximum distance that a candidate can be moved from its true
position to one lower in the ranking. Using € = 0 computes the maximum distance that
a candidate can be moved from its true position to one higher in the ranking. Using
e = 0.5 will compute the distance a candidate will be moved by a random imputation (in
expectation) for rules like Borda, although this is not exactly the same for other voting
rules. More formally, suppose that the set of ballots B is generated by some process N
generates top-ordered ballots from total orders > over C' by sampling a truncation point,
and deleting all information about the relative ordering of candidates below that point.
Suppose that an imputation method is then applied to B to produce >, such that c is
placed, on average a fraction € of possible positions below the maximum possible position
on each ballot where it has been ablated. Then the expected e-case damage to ¢ under
process N is given by:

ED(c,e) = E[S(c, =) — S(c,>ce)]

For example, suppose that a candidate has Borda score 100 under the ground-truth
data, and an average Borda score of 75 under random imputations after being ablated
with a process N that ablates ballots according to a distribution of missingness learned
from a more complete set of preferences (as in the experiments above). Then ED(c, €) will
have value —25.

Let N(j) be the probability that a total order is truncated at or before location j on
a ballot by process N. If a positional scoring rule S assigns scores using scoring vector
{s1,...,5/c|}, and total orders are generated by some process that assigns candidate ¢ to
position P with probability P(Pos(c, ;) = k), then it is easy to show that

|C| k
. , 1
ED(c,e) =Y P(Pos(c,) = k) > (N() =N (G +1))(sx — 5 (8rder+a-as1 + Sider+a-as))
k=1 j=1
The expected e-case gain to a candidate ¢ (EG(c,¢€)) is the expected total increase in

the score of ¢’ if B is imputed to increase the score of ¢’ in a manner inverse to that of the
expected e-case damage above. That is,

ED(c,e) = E[S(, =5) — S(c/,-)]

134

where > _is the imputation after > is ablated by A that places ¢’ a fraction epsilon of
possible positions higher than the worst case on every ballot where it was ablated. For
position score rules, this can be written

] K
/ / . . 1
EG(d,e) =Y P(Pos(d, =) = k) > (N(j) = N(G+1))(st = 5 (S0-0)Cl+e) + S| (=0 Cl+i))

, 2
k=1 j=1

The e-case margin of an election between ¢ and ¢’ after ablating = with A is defined as

S(c,=)+ ED(c,e) — (S(¢, =) + EG(c,€))

When the margin is negative, the ablation is expected to cause enough damage that a
systematic error favouring ¢’ and harming ¢ of € per ballot in a candidate imputation will
cause selection of the incorrect winner. For example, when € = 0.5, a negative margin indi-
cates that an imputation generated uniformly at random is expected to result in selection
of the wrong winner under rules like Borda. If ¢ = 1.0, then a negative margin indicates
that a worst-case imputation of the data would cause selection of the wrong winner in
expectation. The bias of a classifier m with respect to a candidate ¢ is defined as

IC| IC]

bias(o,c) = Z P(Pos(c, ;) = k)N (k) Z P(Pos(¢',m(B;)) = j)(sk — ;)

k=1

where P(Pos(¢/, m(B;)) = j) is the probability that m assigns a candidate ¢’ to position j
when imputing ballot B; (under the assumption that imputations are done independently).
That is, the bias of m with respect to ¢’ is the expected change in the score of ¢ in the ballots
ablated by A and then imputed by m, relative to the ballots originally generated. The bias
of a classifier with respect to two candidates bias(c,c’,m) is just bias(c,m) — bias(c’,m).

With all of these definitions recorded, it is now possible to describe the circumstances
under which a classifier m will cause the incorrect candidate to be selected as the winner in
expectation. Under Borda and other monotonic positional scoring rules this occurs when
—bias(c,’,m) < the 0.5-case margin between ¢ and ¢ for any ¢ € C. Interestingly, this
explains the small error made by the imputation-based approach when picking the winner
under Borda on the Debian 2007 dataset. On this set the Borda scores of the winning

135

and second place candidates differ by just 0.002%. A classifier that imputed the second
place candidate 1 position higher than its correct location on just 10 ballots would thus
cause the selection of the incorrect winner.

It is also apparent that classifier accuracy is thus most important in general when
unpopular candidates are being imputed. Unpopular candidates will tend to have relatively
small differences in their scores, since they will both tend to be ranked near the end of
ballots, and thus near each other. They will also tend to have greater potential for damage
and gain because they are more likely to be ablated on ballots than popular candidates are.
However, the imputation-based approach will tend to have larger errors in the accuracy for
imputing candidates that are unpopular because there is less training data to work with
(again, because the candidates are more likely to have been ablated from ballots by N).

Evidence supporting this hypothesis was found via a separate experiment that used
only data from the Dublin North set. The imputation-based approach was run with logistic
regression as the based classifier, and using only the Borda voting rule. The bias of the
resulting imputations was measured for each of the twelve candidates over 100 problem
instances generated using the approach described in Algorithm 7 above. Figures 5.16
and 5.17 summarize the results of this experiment. There is a clear trend to produce
proportionately higher bias for candidates that have lower overall scores (i.e. for candidates
that are less popular).

As further evidence of the bias toward more popular candidates, data from the original
experiment was collected using a fourth performance measure, a weighted version of the
Kendall correlation:

Tw(01,02) Z(|C’| — Pos(¢;, 01) Z I(c; o1 ¢j N oy c;) +1(cj o1 ¢ Nej og ¢;))

c;eC c;€C\cy

Under this measure, the imputation-based approach had statistically identical performance
to the random imputation-based approach (ANOVA+t-tests, p > 0.13), despite the exis-
tence of a modest advantage in favour of the random approach using the unweighted
Kendall correlation. This supports the idea that the imputation-based approach is favour-
ing popular candidates, and that it is making mistakes about the order of less popular
ones, rather than more popular ones.

136

Distribution of Classifier Bias by Candidate

0.08

0.06

A I

Lo - e ‘
" E 3 : E B

0.00

+
|

Sargent,T.G.P. }m#

Boland,C.,FG. -
Davis,M.,S.F. -

Daly,C..S.P. A
Owen,N.,FG. -

Ryan,S.Lab m JE——
g
el +1T]
L1
L]

Glennon,J..FF.

t

t

t
Whight G.V.FF m.p

t

t

t

KennedyM.,FF. 4

Quinn,E.,Non-P |)-[I] e oo

Goulding,C.,Non-P |
Walshe D.H.,C.C. CSP |

Figure 5.16: Boxplots showing the observed distribution of bias for each candidate in the
Dublin North election when the imputation-based approach was used to decide the election.
Each boxplot shows the median, and first and third quartiles of the magnitude of the bias
in that candidate’s score as a proportion of their total score, with whiskers showing the
locations of the most extreme values within 1.5 times the height of the main box. The
popularity of candidates increases from left to right.

137

Distribution of Classifier Bias by Candidate

Bias
0.015 0.020

0.010

0.005

2 4 6 8 10 12

Figure 5.17: Plot of the mean bias for each candidate with candidates again sorted in order
of their Borda scores on the ground-truth data. The solid red line shows the linear least
squares regression on the points, using their ranks as the dependent variable. The dashed
black lines show a 95% confidence interval for the slope of the line.

138

5.5 Discussion

The high performance of the imputation based approach clearly demonstrates its potential
for use on real-world problems. The method was more effective than either competitor
in picking the correct winner of an election, and was more effective than minimax regret
when recovering the entire sequence. Oddly, the imputation-based approach performed
very slightly worse than the random imputation approach in recovering the entire sequence
however. This appears to be the result of a bias in the imputation-based approach toward
more popular candidates. This is both because more popular candidates will tend to have
larger margins between their scores and those of their neighbours (in absolute terms, for
monotonic scoring rules), and because there are fewer observations of ballots that rank
unpopular candidates (by definition).

There is a close parallel between this behaviour and the problem of class imbalance in
classification. This problem arises when one of the classes in a dataset appears far more
often than others do. For example, a dataset of liver function measurements collected
at an ordinary hospital will tend to have many examples of patients with normal liver
function, and very few with abnormal liver function. If the patients with abnormal liver
function are subdivided further into classes based on the precise nature of their malfunction,
then the ratio of the number of normal examples to the number of examples belonging to
any of the abnormal classes individually may become enormous. If a binary classifier
is trained to differentiate between two of these classes, extremely high accuracy can be
obtained from obviously incorrect models. For example, a model that labels every patient
as having normal liver function might accurately predict the labels of 99% of patients, even
though such a model is essentially useless. Many classification algorithms perform poorly

when the data exhibit class imbalance | , | and the problem appears
most often when the amount of data is small, the degree of imbalance is high, and the
patterns in the data are complex | , |. Interestingly, these

are precisely the conditions that are likely to be presented when learning to impute the
orderings of unpopular candidates. Such candidates may not appear on many ballots,
leading to a shortage of data. In fact, on many of the datasets only around 10% of
voters rank a substantial portion of the candidates at all, and typically only a few “serious”
candidates are commonly ranked (perhaps because of strategic voting), meaning the degree
of imbalance may be exceptionally high. Finally, quite complex patterns may be present
regarding the ordering of unpopular candidates. For example, in a political contest, such
candidates might represent special interest parties that are located outside the normal
political spectrum. In something like a robotic mining swarm, such alternatives might
be sites that no companies have prospected in detail, leading to high variation in the

139

assessments of the companies involved. There are a number of ways to address the class
imbalance problem that could be used to improve the performance of the imputation-
based approach. These include oversampling the minority class (i.e. adding extra copies
of ballots that rank unpopular candidates until they appear roughly equal in popularity
to more popular ones, but only when training the classifier); undersampling the majority
class (erasing some fraction of the ballots ranking popular candidates until the classes are
approximately balanced); and changing the cost function so that errors in minority class
are viewed as more expensive, in proportion to the degree of class imbalance (e.g. in logistic
regression, penalizing an error in the classification of unpopular candidates by more than
an error in the classification of popular ones during training). These techniques are not
explored in detail in the thesis, as the later model proposed in Chapter 7 provides a more
elegant way to control the bias.

5.6 Summary

This chapter set out to answer the question of whether real-world social choice problems
were more consistent with the assumptions of the imputation-based approach, or the as-
sumptions of competing models. Answering this question involved the construction of an
experiment design that used real-world data as the basis for the generation of many dif-
ferent problem instances for which the ground-truth (i.e. the true preferences of voters)
was known. The imputation-based approach was compared to an implementation of the
minimax regret algorithm | , |, and to a random imputation approach
intended to mimic the maximum-likelihood approach to voting | , |.
The imputation-based approach outperformed both models overall in terms of determining
the winner of the election across a wide range of problems. It also outperformed MMR sig-
nificantly in recovering the overall ordering of the candidates. However, the random model
had a very small, though significant, advantage over both MMR and the imputation-based
approach when inferring the entire ordering. This issue was explained in terms of the bias
of the imputation-based approach, which causes it to make larger mistakes in inferring
the positions of unpopular candidates. The bias problem was related to the issue of class
imbalance in more general machine learning, but was not explicitly addressed within this
chapter.

140

Chapter 6

Prefmine Experimental Testbed

Man is a tool-using animal ... Without tools he is nothing,
with tools he is all

Thomas Carlyle [1393]

Chapter 5 provided some detailed results showing the feasibility of using the imputation-
based approach to decide the outcome of elections with incomplete information. Although
the experimental framework used was described at a high level, the framework is in fact a
highly robust and flexible testbed system. The system could be used by other interested
researchers and practitioners to evaluate new methods, to find patterns in new electoral
datasets, or even to decide elections using any of the methods described in this thesis.
The chapter contains several sections. Section 6.1 describes the testbed system in detail,
serving both to situate it within the growing set of tools for working with electoral data,
and as a simple user manual for the system. Potential improvements to the system, and a
discussion of the extensible framework that was used are found near the end of the section.
Section 6.2 contains a discussion of the problems that may occur when processing electoral
data with a system that was not constructed as carefully as the testbed system described
in Section 6.1, as well as a further analysis of different classifiers that could be used to
instantiate the imputation-based approach, and an explanation of why the testbed system
contains the specific algorithms that it does, and not others. The chapter is followed by
Chapter 7, in which a new learning algorithm is proposed and evaluated thoroughly using
the features of the testbed system.

141

6.1 The Prefmine System

The results in Chapter 5 involved 100 repetitions of experiments with 4 voting rules, 11
electoral datasets containing tens of thousands of ballots in total, and 4 different systems
for deciding the outcome of an election. In total 4,400 decision problems were considered,
and 17,600 decisions were made. When performing experiments on this scale, it pays to
have a reliable system, in which one can be certain of the integrity of the data, exper-
imental methodology, and results. Such a system was constructed largely from scratch,
but in a carefully tested and designed fashion. The resulting system has several features
that may be of great interest to practitioners and to other researchers. First, since the
system contains implementations of the imputation-based approach to social choice under
several classification systems, and also of the Minimax Regret approach | ,
|, a worst-case approach, and several other algorithms, it can serve as a ready means
of comparison for practitioners interested in evaluating their own approaches, or in making
electoral decisions. Researchers may also be interested in the system as an independent im-
plementation of existing algorithms for social choice, given that typical scientific software
has disagreement in the output results on the order of 10% between different implemen-
tations of the same algorithm | , ; , |, perhaps because
of poor testing practices adopted in the development of most scientific software |
, |. By comparing the results of several independent implementations,
researchers can be surer of their results, and uncover issues in their own implementations.
Second, the system contains implementations of four voting rules, and is readily extensi-
ble to accommodate many more. Practitioners interested in using the system to decide
elections can compare the results under several different voting systems, with or without ad-
ditional systems like MMR or the imputation-based approach augmenting them. Further,
the implementations of these systems adopt a simple parallelization strategy to provide
quick evaluation. Finally, other researchers may be interested in the experimental design
adopted by this thesis, which leverages real world datasets to create plausible problems
where the ground truth is known, but concealed from the algorithms under evaluation.
This could be a very potent evaluation tool for other new algorithms intended for the same
problem domain.

The testbed system is called “Prefmine”; since it facilitates data mining over the Pre-
flib repository of datasets | , | (although the system could be readily
extended to work with other online repositories). Prefmine is not the first system intended
to mine preference data, though it fulfills a different niche than other methods. Web-based
social choice systems like Pnyx | , |, Spliddit |

142

: |, Whale?® |], Democratix | : | and RoboVote!
provide user friendly implementations of social choice functions that may be difficult to im-
plement or operate correctly, to assist with popularizing these techniques. Ordinary users
can submit preferences to the systems and obtain results from sophisticated Condorcet
extensions or other rules that are automatically selected according to expert knowledge, in
order to fit the users’ problem domain. The systems each offer some specialized benefits.
For example, Democratix implements answer set programming | , ;

, | to select winners using voting rules that are NP-Complete, while
Whale? boasts an extremely simple user interface. Preflib itself provides a set of associated
tools for generating synthetic data for social choice | |, as well as data for matching
domains |) .

Additionally there are several frameworks designed to facilitate machine learning over
preference data. LPCforSOS | , | implements a binary
classification approach similar to the one adopted in the initial implementation of the
imputation-based approach to social choice (i.e. in Chapter 5). The more mature SVM-

rank toolkit | , , | provides a means to apply the popular Support Vector
Machine algorithm | , | to learning rankings. There are also more
general frameworks that allow the application and integration of several approaches, includ-
ing tge Preference Learning Toolbox | , |, a recent Java-based toolkit,
and WEKA-LR | |, an extension for the popular Weka machine learning
toolkit | , | that allows models to output rankings instead of classes during
classification.

Prefmine should be understood as an integrated framework offering the features of
a preference mining toolkit (i.e. learning algorithms capable of dealing with rankings)
alongside features more typical of a toolkit for computational social choice (i.e. efficient
implementations of voting rules, synthetic data generation routines). In this respect, it is
novel compared with the approaches described above. Prefmine implements a combination
of machine learning approaches similar to the label-ranking algorithms of LPCforSOS,
alongside more general learning algorithms, and problem specific approaches like MMR that
do not use machine learning, and instead optimize the social choice decision process directly.
Additionally, Prefmine provides efficient implementations of several voting systems, and an
extensible framework for implementing many more, alongside algorithms for the generation
of synthetic data according to several common preference distributions. Prefmine should
be viewed as complementary to existing systems, bringing together two different sets of
functionality in a single package, while simultaneously providing seamless access to the
data stored in Preflib itself.

LA forthcoming system with anonymous authors. See robovote.org.

143

robovote.org

6.1.1 System Design

Prefmine is designed both to facilitate experiments, and to ensure that they are conducted
correctly. This broad design goal can be expanded into six objectives:

1. Data should be seamlessly obtained from Preflib, or other online repositories with
similar formats.

2. The system should store the original data in a read-only format, so that experimenters
cannot accidentally change it.

3. Problem instances should be easy to generate from both real-world and synthetic
data.

4. It should be easy to run arbitrary combinations of social choice algorithms on a given
problem instance, and easy to collect arbitrary performance measures.

5. The system should make use of all available computational resources (to avoid having
experimenters implement their own error-prone parallelism).

6. The system should be easy for a new user to apply.

Seamlessly obtaining data from Preflib entails both fetching the desired datasets in a
straightforward manner, and processing them from their current format in a representation
more suitable for the imputation-based approach to social choice. It is important that this
process be automated to ensure consistency, because manual processing can very easily
introduce errors into the source data. For this reason also, Prefmine dynamically fetches
data from the Preflib repository each time a new experiment is run, rather than storing it
locally where it might be subject to (inadvertent) corruption by the experimenter. This is
marginally slower than storing the data on a local disk, but the datasets on Preflib, and
indeed, most social choice sets in general, are relatively small. They contain on the order of
tens or at most hundreds of thousands of votes, and at most dozens of candidates. Preflib
also uses a simple compression format to store the data more efficiently. The result is that
fetching the data is a rapid step when modern network connections are utilized, lasting no
more than a second or two.

Once the data has been obtained from Preflib, Prefmine stores it as an immutable
data structure, using a language with true immutability (the D programming language).
It is therefore not possible for an experimenter’s own (novel) social choice algorithm to
inadvertently modify the data, as attempting to do so will trigger a fault. This ensures

144

that, for example, performance measures based on aggregates over a ground-truth ordering
are never computed over data that has been modified by the methods under assessment.
It also facilitates parallel processing of the original dataset, because there is no chance of
race conditions arising from data being mutated.

Prefmine adopts an extensible framework to allow easy incorporation of new problem
generation algorithms, social choice functions, imputation algorithms, and performance
measures. The system uses a plugin-style architecture, where new features can be added
without changing the core experiment, analysis, and data loading code at all, preserving
the integrity of these components. The system also boasts a simple user interface featuring
both a graphical mode and “headless” operation via the commandline. The interface also
makes use of the plugin architecture, allowing users to seamlessly access newly developed
functionality through the graphical interface.

Prefmine also seeks to use all computational resources available on the system upon
which it is run. Modern commercial desktop computers, as well as servers, typically feature
a multi-core architecture in which properly parallelized code can run an order of magni-
tude faster than code which runs sequentially. Importantly, parallelization is a highly
error-prone process, and the subtle bugs it produces can yield slightly (or wildly) incorrect
computations without giving off overt signs to the user like a program crash. Indeed, many
development versions of Preflib exhibited these properties. With this in mind, Prefmine
seeks to minimize the need for experimenters to consider parallelism when adding ex-
tensions to the system (e.g. new imputation methods, voting rules, etc.), and instead to
parallelize the process inside the core experimental setup, making maximal use of com-
putational resources. Although many of the results in this thesis were generated using
a parallel version of Prefmine, recent updates to the core design of the D programming
language (in which Prefmine is implemented) have necessitated a rewrite of the parallel
processing code?. As a result, the current version of Prefmine uses only one CPU core at
a time, and is significantly slower.

6.1.2 An Algorithmic Description of Prefmine

The previous few pages situated the Prefmine system within the context of other similar
systems, and outlined the broad design goals of the system and the reasoning behind them.
This subsection provides an algorithmic description of the core Prefmine system, the main
experiment loop. The loop operates over a large set of parameters, which will be described

?In particular, the removal of semi-immutable maps has rendered much of the core Prefmine code
non-threadsafe.

145

first. The remainder of this section within the chapter is dedicated to a “user manual”-style
description of Prefmine, including both examples showing how the system is to be used, and
explaining all of the possible settings present in the current version of the system. In many
cases these settings are simply instantiations of algorithms presented earlier in the thesis,
or in the existing research literature. A reader interested only in the general design of the
system can safely skip Subsection 6.1.4 through to the start of Section 6.2. Later chapters
may refer the reader back to these subsections when discussing the parameterization of
subsequent experiments.

Prefmine’s core consists of three components: a system for loading electoral data in .soi
format | , | (i-e. one of several format’s available for data from the
Preflib repository, and a common native format for ballots) and storing them immutably;
An experimental loop which can dynamically generate new problem instances from stored
datasets, decide them using arbitrary combinations of imputation algorithms and voting
rules, or using comparison algorithms like Minimax Regret, and assess the quality of the
resulting decisions relative to the ground truth data; and an analysis toolkit that can
produce both human readable and KTEX-formatted summaries of the results from running
the experimental loop. The three components are depicted together in Figure 6.1.

The Dataset Loader component of Preflib is summarized in Algorithm 9. The loader
accepts a string corresponding to the name of a dataset, and looks up the appropriate URL
on the Preflib website, obtaining a .soi file. The .soi format is a Strict Order, Incomplete
list representation of the ballots in an election. The start of the file contains metadata:
the number of candidates, a mapping from candidate names to numbers, and information
about the total number of ballots in the set. After this, the file contains one line per
unique ballot in the election. The first number on a line indicates the number of voters
who cast this ballot. The remainder of the line is a comma-separated list of numbers,
which are mapped to candidates according to the mapping in the metadata. Candidates
that appear earlier (i.e. closer to the start of the line) in this list strictly precede those who
come later. The list need not contain every candidate. The interpretation of unranked
candidates depends on the election, but in many cases the original ballots were effectively
interpreted as top orders. In its current implementation, Prefmine interprets all datasets
obtained in .soi format as top orders. The runtime of the Dataset Loader algorithm is in

o(|Bllc])

After obtaining a .soi file, the loader processes it into an immutable datastore. Candi-
date mapping is stored as an immutable hashmap. Each line is converted into a “Datum”
data structure. A Datum is a map from positions to sets of candidates. If and only if the
(partial) ordering implied by a given line could be completed such that a candidate ¢; were
placed in a position p;, will the corresponding Datum structure return a set of candidates

146

"9[qISUR)Xd AJISEO OIR S90S IojomreIed SO JNQ ‘)Xo YY) UL I9JR[POSSNOSIP oIe SSUI}}0S
Iojourered prrea Sunsxy ‘siojotrered jndul o) WOIJ POJONIISUOD ST SILIANY) aseqriep S)NSal o) Surdronb
Aq s9[qr) PoJRULIO}-XaJe] PUR J[(RPESI URWINY 9)RISUSS 0) Pasn aq Ued (II[0Q], SISA[eUY oY],) WILIOS[
JSOWYSLI Y], "dseqe)ep s)nsal o[qeinuul ue umnpord ‘sojeurered jndur I97jo) 03 SUIPIOOIR WS[)
uo sjuemiLodxe sunt Yo ‘(door] [ejuemutiodxy oy J,) WILIOS[R o[ppil oY) 0} possed ULl oIe sjoseiep
O[qRINIWIL O], "OSRYRIRD S[(RINUWIWI UR S 11 SJRULIOJ UaY) pue ‘A103150do1 qIo1d o) WOIJ RIRD SPRO[UMOP
YOI ‘(IoprOT j9seIR(] 9Y)) WYILIOS[R ISOWS] o) [IM SUIFa(SuIssedold dino [euy s, wo)sAs o) Moys
S[RAO UQOIY) “SUWIILIOS[R S UWISAS oY) JO ou0 Aq INdino ‘se10)s ejep [RUISHULI S[(RINUIUIL 9)OUIP SoIenbs
U99IL) "S9I0)S RJRD [RUIIXS MOUS SIOPUI[AD dFueI() ")X0) o) Ul [[IJ Ul pajussald ‘SWILIOSR 9J0Uap S9X0(
onyq sy ‘syuwowngre jndur ojdurexo yim ‘ourmuiol Ul MOf rjyep oyj) jo uorpordop reorqdersd y :1°9 2Ingig

a4 108"

{qyeid} (1'9 wyLoBly)
J1apeoq jesejeq

(29 wysu0By)
doo
|ejuawiadxy

(g°9 wyyLoB)Y)
wilooy siskjeuy

TN

610 quRId I

Bay Jsem unang ou3 Js1 d AN, _ ndu|

A0NF18H4, pugpadop, “UOISSY d ang, ou3 jsid, .puejadoo, WAS, Jsep uang, nauj

_Joulip aibuIs, osibo, YMON unang, Jauuip ajbuig, .eplog, uoissaiBay onsibo, «uoneiqy (eoudus3, .UuoN ungng, rduexg
sainseapy /Ny wyyuobly saweN sainseajy swyjuob|y 3pon saweN

soueulopad Bunop | 3d10YJ [e100S | jeseleq @ouewiopad sa|ny Buop 2210y [e190S uone|qy | josejeq SdAT Indu|

147

containing ¢; when queried with key p;. The loader’s immutable datastore is called a “Data”
instance, and contains metadata (the total number of ballots; the Candidate mapping),
and a list of Datum structures corresponding to the list of orderings from the original .soi
file. The entire Data instance is output as an immutable structure, meaning none of the
components can be changed in any way. Data can only be read, not written.

Once the Dataset Loader has completed its task, the Experimental Loop algorithm
(described in Algorithm 10) takes over, and performs a series of repetitions according to an
experimental design specified by the passed parameters. Each iteration of the outermost
loop is a single repetition of the experiment. A new problem instance is generated by
making a mutable copy of the complete rows from an immutable Dataset instance that was
generated by the Dataset Loader (Algorithm 9), and then ablating it according to the single
Ablation Mode parameter’s setting. This parameter can currently be configured to either
ablate the data according to a distribution learned from the corresponding immutable
Dataset instance, or a user-specified vector of probabilities. Both modes are discussed in
the next subsection, along with examples of their use.

After the new problem instance has been generated, each member of the list of Social
Choice Algorithms is given a deep copy of the problem instance. If the method relies on
the generation of imputations, it generates an imputation, and each of the listed Voting
Rules is run on the resulting imputation to generate a set of orderings (one per voting rule).
If the method does not rely on the generation of an imputation (e.g. Minimax Regret),
then it is instead called with each voting rule in turn as an argument to obtain these
orderings. Subsection 6.1.5 discusses the implementation details of this part of the system
and shows example uses. Additionally, each of the listed voting rules is run once on the
true-preferences of the problem instance to obtain the “correct” orderings. Finally, every
member of the list of Performance Measures is applied, comparing each ordering produce by
a Social Choice Algorithm under each voting rule, to the corresponding “correct” ordering.
The results are stored in an immutable database under a composite key that encodes the
dataset, Social Choice Algorithm, Voting Rule, and Performance Measure that were used,
as well as the repetition number from the main loop. The entire main loop is then repeated.
In the final step of the algorithm, the output database is rendered immutable in the final
step to ensure that the data are not tampered with by the system inadvertently®. The
total runtime of the algorithm is highly dependent on the runtimes of the parameters it
is passed. If k datasets, all smaller than |B| ballots over |C| candidates are passed, and [
voting rules, all taking less than O(S(B)) time to evaluate over the most complex dataset,
and m Social Choice Algorithms all taking less than O(M (B)) time, and n performance

3In practice the database is written to disk, and the files marked as read only after the run is complete.

148

Algorithm 9 An algorithmic description of the Dataset Loader component of the Prefmine
system. The Dataset Loader accepts a string corresponding to the name of a dataset, and
then downloads the corresponding .soi file from the Preflib repository | ,
|. The file is then processed into an immutable Data instance which is produced as
output.
procedure DATASETLOADER (DatasetName)
Let url < lookupURL(DatasetName)
Let S be a stream obtained by opening url.
Let |C| < S.nextLine()
Let CandMap = ()
fori=0;i<|CJ; i++ do
Let {key, name} = split(S.nextLine(),",")
Let CandMap|key| = name
end for
// The last line of the metadata contains the number of ballots.
Let |B| < split(S.nextLine(), ",")[0]
Dataset output = ()
while S.hasNextLine() do
//Each remaining line is parsed into a top order.
tokens <«— split(S.nextLine(),",")
numBallots <— tokens|0]
Datum d = ()
notAssigned = CandMap.keys()
for i=1; i < |tokens|; i++ do
d[i| = tokensli]
notAssigned \ = tokensli]
end for
for i= |tokens|; i < |C|; i++ do
d[i] = notAssigned
end for
for i = 0; i < numBallots; i++ do
output < append(output, d.duplicate())
end for
end while
return cast(Immutable Dataset) output
end procedure

149

measures, all taking less than O(P(01,02)) time, are passed, then the total runtime will be
in O(NumReps - k(ablate(B) + mi(S(B) + M(B) +n)))

The final component of the Prefmine system is the Analysis Toolkit, an algorithm that
allows the analysis of results generated by the Experimental Loop. The toolkit allows the
user to specify an output database from a run of the Experimental loop, a social choice
algorithm and a voting rule, as well as a list of performance measures. The toolkit then
generates a tabular summary of the mean performance of that social choice algorithm under
that voting rule, with respect to each performance measure. Sample standard deviations
are also reported. The table is output both in a human-readable format, and as a Latex
tabular environment that can be dropped into a document with minimal editing. The
Analysis Toolkit’s behaviour is summarized in Algorithm 11. The algorithm’s runtime is
in O(NumReps-kn), where k£ is the number of datasets, and n is the number of performance
measures, assuming that printing is a constant time operation, and NumReps is the largest
number of entries in the database for any single key.

This concludes the presentation of the Prefmine system at a high level. Note that the al-
gorithms as presented contain some inefficient components to facilitate their presentation.
For example, Algorithm 10 repeatedly recomputes Alg(Problem.expressedPrefs.copy()),
when in practice this is computed once and cached. Additionally, the algorithms are all
presented as sequential when (at least in earlier versions of the system) parallel processing
took place. In the past, parallel processing took place within individual algorithms. For
example, when training a chained classifier based on logistic regression, many classifiers
could be trained in parallel from the same dataset. After changes in the implementation
language took place during 2015, this feature ceased to function properly and was removed.
Future versions of Prefmine will likely include parallelism in the outermost loop of Algo-
rithm 10 (i.e. the Reps loop) instead. Although this is not always maximally efficient, it
will ensure thread safety and should produce a significant speedup when the slowest social
choice algorithms are run. Additional parallelism was previously present in the compu-
tation of the social choice functions, which adopted a map-reduce paradigm |

, | to efficiently compute the outcome.

The remainder of this section serves as a reference manual for Prefmine, describing its
use, features, and how to extend the existing code base, with examples. The features and
usage are both presented via the graphical user interface.

150

Algorithm 10 An algorithmic description of the Experimental Loop component of the
Prefmine system. The Experimental Loop accepts an Immutable Dataset (produced using
Algorithm 9), an ablation mode, a list of social choice algorithms (e.g. imputation-based,
Minimax Regret), a list of voting rules (e.g. Borda, Copeland, a list of performance
measures (e.g. Single Winner Error, First Error Location), and a number of repetitions for
the experiment. For each repetition of the experiment, a new problem instance is generated
using the specified ablation mode. Then every social choice algorithm is run under every
voting rule to produce an outcome. The outcome is compared to the ground truth outcome
for the voting rule under consideration using every performance measure. The results are
written to an output database, which is rendered read-only as the final step.
procedure EXPERIMENTALLOOP(ImmutableDatasets, AblationMode, ListOfSCAlgs,
ListOfVotingRules, ListOfPrefMeasures, NumReps)
Let Output = 0
for Rep = 0; Rep < NumReps; Rep++ do
for all Dataset in ImmutableDatasets do
Let Problem = AblationMode(Dataset.copy())
for all Alg in ListOfSCAlgs do
for all Rule in ListOfVotingRules do
if Alg uses Imputation then
Outcome = Rule(Alg(Problem.expressedPrefs.copy()))
else
Outcome = Alg(Problem.expressedPrefs.copy(), Rule)
end if
CorrectOutcome = Rule(Problem.truePrefs)
for all Measure in ListOfPerfMeasures do
Key = concatenateNames(Dataset, Alg,Rule,Measure,Rep)
Output|Key| = Measure(Outcome, CorrectOutcome)
end for
end for
end for
end for
end for
return cast(Immutable) Output
end procedure

151

Algorithm 11 An algorithmic description of the Analysis Toolkit component of the
Prefmine system. The Analysis Toolkit accepts an output database produced by the
Experimental Loop component of the system (Algorithm 10). The user also specifies a
particular social choice algorithm and voting rule, as well as a list of datasets and perfor-
mance measures. The toolkit computes a table where each row corresponds to a dataset,
and each column to a performance measure. The value in a particular table cell will be the
mean and standard deviation of the selected social choice algorithm under the selected vot-
ing rule, with respect to the corresponding performance measure (i.e. column) and dataset
(i.e. row). The resulting table is then output both in a human readable format and as a

Latex tabular environment.
procedure ANALYSISTOOLKIT(OutputDatabase, SCAlg, VotingRule, ListOfPrefMea-
sures, ListOfDatasets)
Let Table = ()
for all Dataset in ListOfDatasets do
for all Measure in ListOfPerfMeasures do
Key = concatenateNames(Dataset,SCAlg, VotingRule,Measure, *)
Results = OutputDatabase|key|
Mean = computeMean(Results)
Stdev = computerStandardDeviation(Results)
Table|Dataset|[Measure|["mean"| = Mean
Table|Dataset|[Measure||"stdev"| = Stdev
end for
end for
Print(Table)
PrintLatex(Table)
end procedure

152

6.1.3 Using Prefmine

Prefmine is implemented in the D programming language. To compile Prefmine, users must
install the Digital Mars D compiler dmd*, and the dub package manager®. After obtaining
the Prefmine source code from the author, users can run dub in the top-level directory
of the project source to compile and execute the code. dub will automatically fetch and
install all other required libraries. dub will produce an executable named prefmine in the
top-level directory of the project source code after a successful compilation. Running the
prefmine executable will open a small window, shown in Figure 6.2. Users can elect to
either start a new experiment or run the analysis toolkit, by selecting the corresponding
options from the drop down menu, as shown.

Starting a new experiment will display the window shown in Figure 6.3, which allows
the user to configure which datasets will be loaded, and to configure the inputs to both
the Dataset Loader and Experimental Loop portions of the system. The configuration of
the experiment is detailed later in this section. Additionally, the user can configure the
directory to write the experimental loop’s output database to, and indicate whether to
overwrite or append to any existing database present at that location. After selecting the
settings they prefer (e.g. Figure 6.4), the user presses the “Create” button. Datasets are
loaded, and the experimental loop begins running. Two progress bars in the lower right
indicate the progress of the experimental loop, and the large textbox provides a summary
of this progress (Figure 6.5). When the experiment is complete, the user should close the
application.

The process for analysis of the data is similar. Instead of selecting “Experiment” from
the File menu at the start, one selects “Analysis”. A very similar window will be con-
structed, displayed in Figure 6.6. Radio buttons limit the user to the selection of a single
imputation method and a single voting rule, while the familiar checkbox-style interface
allows the selection of multiple performance measures. All datasets stored in the results
database at the specified path will be presented in the results table.

6.1.4 Dataset Generation

In Prefmine, the selection of datasets for the Dataset Loader to fetch is accomplished
through a dropdown menu at the top of the experiment window, as seen in Figure 6.7.
The menu is used to avoid any possible confusion on the part of the experimenter about

4http:/ /www.digitalmars.com/d /1.0 /dmd-linux.html
5For Debian-based operating systems: http://d-apt.sourceforge.net/

153

File

New I Experiment
Quit Ctrl-Q analysis

Figure 6.2: The initial Prefmine window, from which users can launch a new experiment,
or run the analysis toolkit.

which dataset an experiment is being run on: selection of the specified name ensures that
data is fetched from the corresponding URL. The menu is populated dynamically from
the Preflib repository’s website, so all available datasets are listed®. In addition to each
individual set of electoral data, it is possible to run a Prefmine experiment on any set
of related elections at one, if they are stored together on Preflib as a single collection of
data. For example, the 7 Debian elections and 3 Irish elections are grouped together, and
so experiments can be run on these 3 or 7 sets all at once. Additionally, two synthetic
dataset generators are listed in the dropdown menu: RUM and NoisedMallows. The RUM
option is an implementation of a Random Utility Model | , | for generating problem
instances, based on [|. This model assumes that each voter’s utility for a
given candidate is sampled from a Gaussian distribution. All voters sample utilities from
the same Gaussian distribution for a particular candidate, but each candidate has its own
distribution. The Gaussian distribution for each candidate has mean sampled uniformly
from (0, |C|), and standard deviation equal to the RUM_sigma parameter setting, which
is configured near the bottom of the experiment window. A voter’s true preferences are
implied by the utility they have sampled for each candidate: the candidate with the highest
sampled utility is ranked first, and the candidate with the lowest sampled utility is ranked
last.

The other synthetic data generator is simply a standard Mallows model | , |.
The central ordering is a permutation of the candidates selected uniformly at random. The
dispursion parameter ¢ is set using the mallows_phi parameter near the bottom of the

61n the example windows, this feature has been disabled by the author to avoid searching through such
a large list.

154

Experiment Creator

[Select Dataset -
Select Imputation Mod
[all [logres [swm
| MarkovMedel [mmr [sww
[best [~ random [~ worst
[~ binsvm ™ raw [~ worsttau
: Select Voting Rule—————
[all [~ copeland

[~ MallowsVR [kapprove
[~ RUMVR [~ veto

[" borda
Select Performance Metric
[Al [” macroAvg [~ tau
[firstError [~ margin [~ weightedFootrule
[footrule [~ microAvg [weightedTau
[~ impMargin [~ singleWinner
. # Runs ‘5
Qutput Directory ftmp/ Open...
Output name ‘result

[overwrite existing output files?

Create

Dataset Progress: ’7
Runs Progress: ’7
Waiting...
mallows_phi 0.1
RUM_sigma 1.0
ad_eta 1.0
ad_num_cands 10
ad_num_ballots 100
MarkovMedelDepth 2

Figure 6.3: The experiment configuration window in Prefmine, from which the user can

configure input parameters for both the Dataset Loader and Experimental Loop portions
of the system.

155

File |

Experiment Creator

debian - All]
Select Imputation Mod
[Al M logres [~ swvm
[~ MarkovModel [~ mmr [sww
[best [~ random W worst
[binsvm [~ raw [worsttau

Select Voting Rule—————————————
Al M copeland
[MallowsVR M kapprove
[T RUMVR [veto
[borda

Select Performance Metric

[al [” macroAvg N tau
M firstError [” margin [~ weightedFootrule
[footrule [microAvg [~ weightedTau
[impMargin N singleWinner
: # Runs 5
Qutput Directory fempf Open...
Output name result

M overwrite existing output files?

Create
Dataset Progress:
Runs Progress:

Waiting...

mallows_phi 0.1
RUM_sigma 1.0
ad_eta 1.0
ad_num_cands 10

ad_num_ballots 100
MarkovModelDepth 2

Figure 6.4: An example of an experiment configured using Prefmine’s experiment config-
uration window. The experiment will run over the seven Debian datasets from the Preflib
repository. Logistic Regression and a Worst Case Imputation approach will be applied to
each problem instance, and the Copeland voting rule will be used to decide outcomes.
Performance will be assessed under the Single Winner Error, First Error Location, and
Kendall Correlation (7) performance measures. 5 replications will be performed, and the
output database will be stored in /tmp/, overwriting any existing results there. Since
more than one dataset is being processed, the output filename parameter is ignored. The
parameters below the output textbox (“Waiting...”) are used to configure synthetic data
generators or imputation methods that are not used, and so are ignored. Pressing the
“Create” button will start the experiment.

156

Experiment Creator

|debian - All -
Select Imputation Mod
[all N |ogres [swm
| MarkovMedel [mmr [sww
[best [~ random W worst
[~ binsvm ™ raw [~ worsttau
: Select Voting Rule————
[Al M copeland

[MallowsVR M kapprove
[~ RUMVR [~ veto

[" borda
Select Performance Metric
[Al [” macroAvg N tau
W firstError [~ margin [~ weightedFootrule
[footrule [~ microAvg [weightedTau
[~ impMargin M singlewinner
. # Runs ‘5
Qutput Directory ftmp/ Open...
QOutput name ‘result

W overwrite existing output files?

' Create i

Dataset Progress: []
Runs Progress: [

Set processed in 2 seconds.
Now processing dataset:

http://www.preflib.org/data/election/debian/ED-00002-00000002. 501
Set processed in 5 seconds.

mallows_phi 0.1
RUM_sigma 1.0
ad_eta 1.0
ad_num_cands 10
ad_num_ballots 100
MarkovMedelDepth 2

Figure 6.5: An example of a Prefmine experiment in progress, using the settings from
Figure 6.4. Note the progress bars showing the fraction of datsets processed (top) and
runs completed on this dataset (bottom). The Textbox summarizes progress, including
runtimes required to complete each dataset.

157

Experiment Analyzer

—Select Imputation Mode
- Al # logres " svm
™ MarkovModel ™ mmr T SWW

- hest “ random “ worst

P

binsvm - raw - worsttau
—Select Voting Rule
- All " copeland
- MallowsWR ¥ kapprove
- RUMVR " weto

~ borda
—5elect Performance Metric
[All [macroAvg W tau

M firstError [margin [weightedFootrule
[footrule [microAvg [~ weightedTau
[impMargin N singleWinner

Qutput Directory |,."tmp,'1 Open...

Assess

Waiting...

Figure 6.6: The Prefmine analysis window. The window is similar to the experiment
window, but with a reduced set of options, and larger space to view the output.

158

experimenter window. Synthetic ballots are sampled from the Mallows model using a
re-implementation of the efficient algorithm from |) .

Both the Mallows and RUM synthetic data generators share a number of parameters
set within the Prefmine experiment window. Collectively these are called the artificial data
parameters, and are denoted with the prefix ad_. All artificial data parameters must be
set in order to use a synthetic data generator. The ad_num_cands and ad_num_ballots
parameters respectively specify the number of candidates who will compete in the synthetic
election, and the number of ballots that will be cast in the election. The ad_eta parameter
allows the construction of simple top-ordered ballots, rather than the totally-ordered ballots
that are generated by the two methods. The probability of generating a top-ordered ballot
of length at least k is given by 7*~! (i.e. in expectation a fraction n of ballots rank at least
two preferences, n? rank at least 3, and so on).

In addition to selecting datasets, Prefmine offers two methods for ablating datasets to
generate problem instances”. In the first, a user specifies a cumulative density function
for the probability that a ballot has at least k& candidates ranked, for every 1 < k < |C],
and the system ablates the ballots such that this distribution is observed in expectation.
In the other, such a distribution is learned empirically from the original dataset, and the
ablation process is identical.

6.1.5 Imputation Modes

After selecting a dataset or synthetic data generation method, the Prefmine user should
select one or more “Imputation Modes” from the array of checkboxes located directly be-
neath the dataset selection menu. To select more than one imputation mode at a time, the
user simple checks the boxes beside multiple methods. Figure 6.8 shows a closeup of the
array of checkboxes, which currently includes twelve different methods. Some of these are
actually comparison algorithms and do not use imputation, despite the name. The details
of the methods are itemized below.

e All: Behaves identically to selecting every other checkbox in the array.
e MarkovModel: This is the Markov-Tree based approach described in Chapter 7.

e best: The “best case” imputation method. The method peeks at the true preferences
of users, and imputes each expressed ballot with the correct values. It can be useful

"The interface shown in this chapter does not allow selection between them, as this created additional
clutter. The choice is easily made using the commandline interface to Prefmine.

159

Experiment Creator

Select Dataset

Select Dataset

NoisedMallows

RUM

debian - All

debian —- Debian 2002 Leader
debian — Debian 2003 Leader
debian —~ Debian 2005 Leader =
debian — Debian 2006 Leader
debian — Debian 2007 Leader
debian — Debian 2010 Leader e

[MallowsVR [kapprove
[RUMVR [~ veto

]«

[" borda
Select Performance Metric
[Al [” macroAvg [~ tau
[firstError [~ margin [~ weightedFootrule
[footrule [~ microAvg [weightedTau
[~ impMargin [~ singleWinner
. # Runs ‘5
Qutput Directory ftmp/ Open...
QOutput name ‘result

[~ overwrite existing output files?

Create

Dataset Progress: ’7
Runs Progress: ’7
Waiting...
mallows_phi 0.1
RUM_sigma 1.0
ad_eta 1.0
ad_num_cands 10
ad_num_ballots 100
MarkovMedelDepth 2

Figure 6.7: The location of the dataset selection dropdown menu in Prefmine’s experiment
window.

160

—Select Imputation Mode

T All " logres [svm

[MarkovModel | mmr [sww

[best [random [worst

" binsvm [raw [worsttau

Figure 6.8: The Imputation Method selection box in Prefmine’s experiment window.

to detect whether ties are present in the orderings produced by the true preferences

of users, an especially common problem when the Copeland voting rule is used.

e binsvm: The standard imputation-based approach to social choice described in
Chapter 4, using a binary Support Vector Machine | , | as
the base classifier. A set of SVMs are learned to predict the candidate that should be
imputed at each position. Since this is a multi-class classification problem, one SVM

is trained to predict membership in each class, a one-versus-all approach |

, |. Contrast with the svim option, which uses a one-versus-one approach.
The individual SVM models are trained using the popular libsvmm C++ implemen-
tation | , |, which is linked directly with Prefmine’s D code via a
custom interface. Parameters for the SVM are selected using cross validation, with
Linear, Polynomial (degree 3), and Radial Basis Function kernels considered along-
side every combination of parameter values for C' € (27°,2'%) and v € (271°,2%),

spaced at equal factors of 2¢ (i.e. 271%, 2711 277

, and so on). In the current imple-

mentation this can take a tremendous amount of time compared with other impu-
tation methods. A subsampling approach maybe implemented in future to remedy

this.

e logres: The standard imputation-based approach to social choice described in Chap-
ter 4, using logistic regression as the base classifier. This is identical to the model
described in Chapter 5, including the choice of features, feature selection algorithms,
and parameterization. The implementation is a custom version of the conjugate gra-
dient descent algorithm | , | designed to operate efficiently

over the standard Prefmine data format.

e mmr: An implementation of the Minimax Regret algorithm |

|, used as a comparison method and described in Chapter 5. This implemen-

161

tation handles partial orders when used with scoring vector-based voting rules (e.g.
Borda), but only with top-orders on Copeland.

random: The randomized imputation approach described in Chapter 5, in the spirit
of the MLE approach | : |. Starting from the top of the ballot,
each position that could be held by more than one candidate is considered (i.e. each
position n where the voter has not definitely ranked a candidate in n'* place). A
candidate is selected uniformly at random from the set of candidates eligible for this
position, and this candidate is ruled out for all other positions. The process is then
repeated until every candidate has been assigned to a position. For top-orders, this
selects a suffix for each ballot uniformly at random.

raw: No imputation is performed. The ballots are passed directly through to the
voting rules, in their original, incomplete, forms. This is useful primarily when
testing a new ablation model, but could also be used to decide elections directly as
a comparison.

svm: As binsvm above (including parameter selection procedures and runtimes), but
using libsvm’s default one-versus-one approach to multiclass classification instead of
the one-versus-all approach used by binsvm and logres.

SWW: Single Winner Worstcase: A comparison method like MMR that computes
the set of possible winners, per | , |, and assigns a score of 1 to
members of the set, and 0 to all other members. Essentially it computes an upper
bound on the worst possible single winner distance. Current implementations work
only for monotonic scoring rules, since other voting rules are NP-Hard to compute
possible winners for.

worst: Peeks at voters’ true preferences, and imputes the reverse ordering (i.e. each
candidate goes as far from its true position as possible, while still producing an
ordering consistent with the voter’s expressed preferences).

worsttau: The system used as a benchmark for the difficulty of different datasets
in Chapter 5. It imputes each ballot with the opposite of the correct aggregate
ordering under Borda. That is, with the opposite of the ordering that is returned
by Borda under consideration when run on the true preferences of the voters, which
the method peeks at. Contrast with worst and SWW above. This creates a profile
where candidates that were ranked highly on average are ranked low consistently,
and vice-versa. It is a good heuristic approximation of the SWW method for many
voting rules, and is a lower-bound on the worst possible distances, rather than an

162

—Select Voting Rule
T All ' copeland

' MallowsVR | kapprove
' RUMVR ' veto
' borda

Figure 6.9: The Voting Rules selection box in Prefmine’s experiment window.

upper bound (i.e. there may exist profiles that are even worse, especially for non-
monotonic rules).

Extending the set of “Imputation Methods” is a straightforward proposition. An impu-
tation method must accept a profile of incomplete ballots and produce a completed one.
A comparison method must accept both a profile of incomplete ballots and a list of voting
rules. It must output a score for each candidate under each rule, such that candidates
with higher scores under a given rule come before those with lower scores. In both cases,
after writing a function satisfying the above constraints, users can add its name to a list
which is used to dynamically generate the box depicted in Figure 6.8. The system will
automatically generate appropriate calls to the function in the experimental loop, storage
of its results, and so on.

6.1.6 Voting Rules

After picking one or more imputation methods, Prefmine users should pick one or more
voting rules for their experiments. The Voting Rule selection box is an array of checkboxes
directly below the Imputation Methods box. The current implementation of Prefmine
contains seven voting rules, two of which are used only for synthetic data. As with the
Imputation Method box, a user who wants to sequentially run several voting rules on the
same data simply checks more than one box. The Voting Rule selection box is shown in
Figure 6.9. The various options are itemized below.

163

All: Equivalent to checking all other boxes.

MallowsVR: A “voting rule” to use in conjunction with synthetic data generated by
the Mallows Model. When selected, models with the ability to estimate aggregated
rankings directly (like the Markov Model of Chapter 7, or MMR) will have their
estimated rankings directly compared to the true central ranking of the Mallows that
was used to generate the current problem instance, rather than using an ordinary
voting rule. Activating this function when a dataset other than NoisedMallows is
selected will trigger a fault.

RUMVR: A “voting rule” to use in conjunction with synthetic data generated by the
Random Utilty Model. When selected, models with the ability to estimate aggregated
rankings directly (like the Markov Model of Chapter 7, or MMR) will have their
estimated rankings directly compared to the true central ranking of the RUM that
was used to generate the current problem instance, rather than using an ordinary
voting rule. Activating this function when a dataset other than RUM is selected
will trigger a fault.

borda: An implementation of the Borda count voting rule. A candidate receives
exactly k£ points for appearing ahead of k other candidates on a ballot.

copeland: An implementation of the Copeland voting rule. A candidate receives
1 point for each pairwise runoff contest it wins against other candidates.

kapprove: An implementation of %—approval. A candidate receives 1 point for
appearing in the top half of the positions on a ballot (round down), and 0 otherwise.

veto: An implementation of the Veto voting rule. A candidate receives 1 point for
every ballot on which it is not ranked last.

Note that none of these voting rules express behaviour in the case of ties. This is because

when Prefmine is used for experimental purposes, detection of ties is important (e.g. if the
correct ordering contains no ties, but the winning candidate selected by an imputation
method was tied with someone else, then this result may have a different interpretation
even if the method has picked the correct winner via tie-breaking). Additionally, all voting
rules assign a score to each candidate. This is to facilitate measurement of the errors in
candidate’s scores under rules like Borda. Voting rules that are not based on assigning
a score to each candidate can simply assign each candidate a score equal to the number
of candidates behind them in whatever ranking is decided upon. Indeed, this is precisely
what is done for the current implementations of the MallowsVR and RUMVR rules.

164

Additionally, note that the implementations of these rules use a simple Map-Reduce |

, | approach for the borda, kapprove, veto, and Copeland options. In
each case, since the ballots in a profile express independent information, the set of ballots
can be partitioned into independent subsets, one for each available CPU core. Aggregate
scores can be computed (in the case of Copeland, these are computed for a given pair-
wise contest, not the overall ranking) by separate threads for each subset. The aggregate
scores for each thread can then be combined to obtain the final result. This feature was
present in an earlier version of Prefmine, but has been disabled following changes in the
implementation language in 2015.

As with the addition of new Imputation Methods, Prefmine’s plugin-style architecture
allows users to readily add new voting rules of their own. A voting rule must accept
a profile of complete ballots (i.e. total orderings). It may optionally accept a profile of
partial orderings as well. It must produce a mapping from each candidate to a score, such
that candidates with higher scores are ahead of those with lower scores.

6.1.7 Performance Measures

After selecting the desired dataset, imputation methods, and voting rules, the user need
only select one or more performance measures before starting the experiment (other param-
eters have functional defaults). Prefmine currently implements eleven different performance
measures. Users select desired performance measures from the Performance Metric selec-
tion box, located directly below the Voting Rule selection box in the experiment window.
This box is pictured in Figure 6.10. As with the other selection boxes, the Performance
Metric selection box contains an array of checkboxes. Users can click on a checkbox to
select a performance measure. Clicking on multiple checkboxes allows the user to select
several methods. Note that although the name of the box suggests that all options are
Metrics, this is not formally true. For example, the tau options is a correlation. The
eleven possible options are summarized below. Throughout the summary, o; is the overall
ordering of the candidates under an imputation method of interest, and o, is the ordering
under the true preferences of voters. Additionally, S; and Sy are used to denote the scores
for the candidates, as output by the voting rules described in the previous subsection.

e All: Equivalent to selecting all other options simultaneously.

e firstError: The First Error Location measurement, defined as dpg(01, 02) = argmax;
Vj < 4,01, = 02;. Returns the location of the highest ranked candidate in o; that
has been placed in an incorrect position. Proportionate to the length of the prefix

165

—Select Performance Metric

- All | macroAvg [tau

[firstError [margin ' weightedFootrule
| footrule | microAvg ' weightedTau

| impMargin | singleWinner

Figure 6.10: The Performance Metric selection box in Prefmine’s experiment window.

under which two sequences agree. This measurement is useful in conjunction with
measurements like tau below, which give an overall view of the similarities between
two sequences.

e footrule: Computes Spearman’s Footrule distance [Diaconis and Graham, 1977;
Spearman, 1906], the underlying (but un-normalized measurement used in the non-
parametric Spearman correlation. Formally, this is dgp(01,02) = Zli'l |Pos(o01, ¢;) —
Pos(02, ¢;)|, the summed number of positions between where a candidate ought to be
placed (i.e. the position of the candidate in sequence 0y), and where the candidate
has actually been placed (i.e. its position in o7). This is also similar to the Single
Winner Error, but computed for every candidate, not just the winner. It is a less

commonly used alternative for 7.

e impMargin: Computes the margin by which the winner picked by the imputation
method loses to the true winner, in the ground truth elections. That is: d7p(01,S2) =
argmax, . S2(c) — S2(01). Used to measure the margins of victory, which are predic-
tors of performance for some imputation methods.

e macroAvg: Computes the average percentage error in the score of a candidate:
Omac(S1,52) = ﬁ Y ecc |(S1(c)/Sa(c)) = 1|. Can be used to compare the average bias
towards different candidates, independent of their popularity.

e margin: As impMargin above, but instead computes the margin by which the true
winner has lost to the winner picked by the imputation method, in the imputation
method’s election. That is: dprarg(S1, 02) = argmax, ;, S1(c) —S1(02). Used to mea-
sure the margins of victory, which are predictors of performance for some imputation
methods.

166

e microAvg: Computes the overall percentage error in the scores of candidates collec-

tively:
2cec 91(¢) = Sa(¢)]
2eec S1(¢)

Can be used to compare the total error in the imputation, but will favour meth-
ods that are more accurate on popular candidates (which will have much higher
scores) even if they are less accurate on unpopular candidates (which will have smaller
scores).

6mic(Sla SQ) -

e singleWinner: Computes the Single Winner Error for the imputation method: the
rank of the winner chosen by the imputation method in the ground truth election.
dw(01,02) = |{c € C|c 03 01(1)}, where 0y(1) is the candidate ranked first in the
imputation method’s ordering.

e tau: Computes the Kendall Correlation 7 between the two outcome orderings |

!

Doeiec 2uesecne L((ci o1 ¢) = (ci 02 ¢5) AN(¢j o1 ¢i) = (¢ 02 ¢7))
Ic|(C]—1)

7'(01, 02) =

where [is a binary indicator variable. This measures the fraction of pairwise com-
parisons on which the two orders agree.

e weightedFootrule: A variant of footrule above, where errors are weighted by the
(correct) position of each candidate. This effectively penalizes methods that make
mistakes in highly ranked candidates, and benefits those that make mistakes only in
the ordering of lower ranked candidates. Formally: dgr(01,09) = Zlgl |Pos(o01, ¢;) —
Pos(0, ¢;)| x Pos(og, ¢;).

e weightedTau: A variant of tau above, where errors are weighted by the position of
each candidate.

7(01,092) =
D e eseox(ove) L(ci o1 ¢j) = (ci o2 i) AN(cj o1 ¢i) = (¢j 02 ¢;)) X Pos(or, ¢;)

[clder = nael+1)

2

As with the other features of Prefmine, the set of performance measures is easily ex-
tended. A performance measure must accept a mapping of candidates to scores, as output

167

by a voting rule, and must output a scalar value. The code base readily facilitates conver-
sion between scores and orderings. After writing a new performance measure, adding it to
the user interface simply entails adding its name to a list, which will be used to populate
the Performance Metric selection box at runtime.

6.1.8 Extending the System

Prefmine is envisioned as an experimental platform for other researchers to extended, facil-
itating the application of machine learning algorithms to the extensive Preflib repository.
At present there are no plans to add further imputation methods, voting rules, or per-
formance measures to Prefmine, although these additions would be easily accomplished.
Instead, future work will focus on adding additional features to the software, to further
streamline its application and to improve runtimes.

At present, users of Prefmine may add new approaches written in the D programming
language directly. C and C++ code can also be linked directly to Prefmine, but requires
users to write a simple interface file. Automating the construction of such an interface
would broaden the appeal of Prefmine significantly, as C and C++ are much more com-
monly used languages.

Prefmine also lacks graphing capabilities, requiring users transport their results to ex-
ternal software in order to visualize the differences between the different methods. Adding
in direct support for graphing through a third-party application like the plot.1ly cloud
service or Python’s matplotlib could allow users to quickly compare the results of different
methods, and perhaps even construct custom graphs in inside a Prefmine instance.

Finally, Prefmine currently lacks proper parallel processing facilities, and consequently
is much slower than it ought to be. While in the short term this will be addressed by en-
abling parallel repetitions of the experiment, in the longer run general purpose frameworks
like OpenCL | , | could be incorporated into Prefmine, allowing much faster
computation.

Prefmine is not currently available to the public, pending further improvements to the
user experience and the reintroduction of parallel processing. Interested parties should
contact the author®.

8i3doucet@uwaterloo.ca

168

6.2 Lessons for Practitioners

The previous section described the Prefmine experimental testbed, which was used to gen-
erate most of the results presented in this thesis. The testbed was carefully constructed to
minimize the potential for experimental error, and to streamline the addition of new impu-
tation methods, voting rules, and performance measures. Prior to the creation of Prefmine,
experiments were performed using a multi-part experimental framework, which performed
many of the same steps, but which also suffered from systematic problems with the repli-
cation and storage of results and data, parallel processing of data, and extensions of the
system to incorporate additional techniques. Despite this, these earlier systems provided
a number of important findings that were later incorporated into Prefmine, particularly
the choice of learning algorithms available in Prefmine (logistic regression and two SVM
variants), as well as the internal algorithm for feature selection (information gain with a
fixed feature set size). This section describes first the deficiencies of the earlier experi-
mental setup that were solved by Prefmine (briefly), and then the experiment design and
results that were used to select the learning and feature selection algorithms used within
the Prefmine system.

6.2.1 Experimental Robustness

A major advantage of Prefmine over the earlier system is the experimental robustness. The
earlier system relied on a large number of modular programs written in three languages,
and invoked by a series of interconnecting scripts. The result was a brittle system, where
changes in one component often produced subtle errors in other, distantly related, parts.
The lack of a comprehensive testing framework meant that often errors were uncovered
only longer after their introduction, invalidating a large number of earlier runs. Prefmine
overcomes this deficiency by combining a plugin-style architecture with integrated unit tests
in the core experimental framework, incorporating the lessons learned during the initial
system’s development. The plugin-style architecture is also the feature that facilitates
Prefmine’s extensability, allowing it to support many times more experimental settings
than the earlier system, and to easily integrate yet more.

The earlier system also taught important lessons regarding data integrity. Since the
system worked on locally cached copies of the Preflib datasets, and since the introduction of
new features frequently produced incorrect behaviour in unrelated parts of the system, data
were often corrupted without the experimenter’s knowledge. Eventual discovery of these
errors necessitated rerunning earlier experiments, and dramatically increased development

169

times. In contrast, Prefmine stores no data locally: fresh copies are procured from the
Preflib repository at the start of each experiment. Additionally, the first step in any
experiment is to render the stored copied of the data immutable (i.e. read-only). The
last step is for all results to be written out into an immutable database. This prevents
systematic corruption of the data, and further de-couples the different components of the
system. Each algorithm is provided with its own read-write copy of a problem instance,
which ensures that when a new algorithm is developed, the benchmark results from older
ones are not influenced, even if the new algorithm is corrupting its own data. As a result,
development times are greatly reduced, and adding new features to the system has taken
less (rather than more) time as the capabilities of the framework have expanded.

The earlier system also provided lessons in the importance of integrating parallelism
directly into the experimental system, rather than adding it piecemeal throughout its
components. The original system frequently suffered race conditions resulting from the
use of multiple components accessing the same (mutable) datasets simultaneously, and the
only parallelism that was manageable in later versions of the system was through entirely
separate installations that were started as separate processes. In contrast, Prefmine was
implemented in a language that supported extensive static analysis, immutable data types,
and simple parallel structures (D), which facilitated simple, error free, parallel processing
in earlier Prefmine versions (though not in the current version).

Although these lessons seem relatively obvious in retrospect, they constitute an im-
portant reason for future experimenters to consider using (or extending) Prefmine, rather
than constructing their own testbeds. At present there is no unified testbed for use with
Preflib, and correctly managing the data can be a laborious process, prone to many of the
issues outlined above. By extending Prefmine, practitioners instead can jump straight to
the implementation of their new algorithm or voting rule, confident in the integrity and
efficiency of the resulting experiment design.

6.2.2 Feature Selection and Algorithm Choice

Although the earlier system was error-prone and laborious to construct, it was used for
a number of initial experiments on the imputation-based approach to social choice, some
of which have not since been replicated with the more reliable Prefmine system. The
experiment most likely to be of interest to readers is one that set out to answer the ques-
tions “Which conventional machine learning algorithm is best suited to predicting voters’
unstated preferences?” and “How large should the feature set for the imputation-based
approach to social choice need to be, and how should it be selected?”. The results from

170

this experiment later influenced the choice of classification algorithms, feature sets, and
feature selection algorithms used in Prefmine’

To answer these questions, an experiment design much like the one used in Prefmine
was adopted. 10 datasets were selected (the eight Debian sets from Preflib, and Dublin
North and West from the Irish sets). These sets were picked for the same reason they were
used in the experiments of Chapter 5. They represent real-world preferences that humans
expressed as top-orders for use in a ranked ballot voting system. Chapter 5 provides details
of the datasets in question. Problem instances were generated by discarding incomplete
ballots, and then ablating the completed ones in a fashion consistent with the distribution
of missingness in the original dataset, exactly as is done in Prefmine’s standard ablation
mode. Only the Borda voting rule was considered in these experiments.

The experiments of Chapter 5 measured performance in terms of the correctness of the
outcomes, which was a sensible choice for comparing dissimilar approaches like MMR, and
the imputation-based approach. However, since this is essentially comparing competing
variants of the same approach (i.e. variants of the imputation-based approach with different
classifiers used), a different set of measurements were adopted. Two measurements were
used. The first was the error in the Borda scores of the candidates after the imputation
took place, a measurement that amounts to the microAvg setting in Prefmine, discussed
above. Let) and S be vectors indexing candidates to Borda scores (i.e. positive integers).
The Borda Count Error (BCE) of S; with respect to Sy is given by:

2 cec |91(¢) = 55(¢)]
2 ecc S2(c)

If the Borda scores (i.e. average ballot positions) are computed for an imputed prefer-
ences of voters, and for the voters’ true preferences, then the BCE of the scores for the
imputed preferences with respect to the scores for the true preferences is a measure of how
accurately the imputation method has predicted the preferences of voters. Note that there
exist other methods, like simply counting the error rates of the classification methods, that
could be adopted instead. However, a classifier making errors that cancel out in aggregate
is generally preferable to one with a lower absolute error rate making errors that do not
cancel out, a concept captured nicely by looking at the errors in the aggregate totals, rather

BCE(Sl, 52) -

9The content of this section is based on an earlier technical report drafted by the author for Dan
Lizotte’s graduate Applied Machine Learning Seminar. Some details of the experiment design, and the
results, are reproduced verbatim, or with only minor adjustments for consistency with the notation of the
thesis.

171

than on individual ballots. For succinctness, BCE(Sy, Sp) will be written simply as BCE,
denoting the error between the aggregates of a method and the ground truth preferences.

Related to this preference for methods that are less biased in the mistakes they make,
the second measurement used in this experiment is the popularity bias of the methods, a
feature that was found to be problematic in some earlier, smaller scale, experiments. In
particular, earlier experiments indicated that imputation-based methods tended to under-
estimate the aggregate scores for unpopular candidates, and overestimate them for popular
ones. If a method tends to make errors that penalize unpopular candidates, then even if
it performs well, its use might be questionable when the goal is to make “fair” decisions,
because candidates will be treated unequally by the system, not merely by voters. Of course,
this is a matter of degree. Certainly unpopular candidates may also view Plurality as a
system that discriminates against them, though in a rather different manner.

In some cases bias of this kind may be a desirable feature: candidates none of the
voters know much about may after all be a poor choice. However, in other applications
the fact that voters do not know much about a given alternative is coincidental. For
example, in the case of the robotic mining swarm, firms that do not know about a given
region may do so because they are recent entrants to the area, not because the region is a
fringe or undesirable alternative. In any case, methods with less bias clearly ought to be
preferred to those with more, since the former are usable in a broader class of applications.
Formally, bias is defined as the Pearson Correlation between the true (i.e. “correct”) scores
of a candidate, and the error in the candidate’s score:

Bias(Sl, 52) = COl"(Sl — SQ, SQ)

that is, the correlation between the elementwise difference (n.b. not the absolute value of
the difference) of the two scoring vectors, and the second scoring vector. Again, Bias is
frequently used without arguements to denote Bias(Si, S2), where S is the Borda scores
of the candidates under the imputed preferences, and S5 is the true Borda scores of the
candidates.

The experiment compared three different imputation algorithms, each under three dif-
ferent feature selection treatments. The three algorithms were a multinomial logistic re-
gression model, a support vector machine, and a Naive Bayes model. The multinomial
regression model works much like logistic regression, but with a multinomial output in-
stead of a binary one. It trains a single multinomial log-linear model using a neural network
from the nnet package in R | , | The model has no important pa-
rameters to tune, and operates more or less automatically. Predictions from the model were

172

generated with the predict function in R, using the undocumented type="prob" argument
to provide a distribution over all the classes for each record.

The second model was a simple Naive Bayes classifier, taken from the e1071 package
inR |) |. The model was configured to use Laplace smoothing with
value 1, and predicted new values using the R predict function, with the type="raw"
argument. To ensure the creation of a valid model, several additional preprocessing steps
were performed before providing data to Naive Bayes. First, a second copy of every record
was added, to avoid the situation where a class has only one example, which produced
strange behaviours. Second, a very small amount of uniformly random noise (€ +1074)
was added to every feature for every ballot. This avoided the situation where attributes
had nonzero variance overall, but zero variance when conditioned on a particular class,
which produced unhandled exceptions in the model. We selected this model because of its
extreme simplicity, and also because of the intuitive notion that models based on effectively
counting the votes were likely to produce a good performance. This thought was eventually
borne out in the Markov Tree models of Chapter 7, though in a rather more principled
way, by designing a model that learns patterns in the votes by counting them, but with a
clearer semantic meaning to the counts.

The final model was the support vector machine (SVM), using the libsvm implementa-
tion | , |. The standard svm-train and svm-predict tools were wrapped
with a Perl script. The script performed a search over the SVM parameter space for each
training set, and then produced a model using the parameterization with the highest cross
validation accuracy. The search used the polynomial (degree 3), RBF, and sigmoid ker-
nels. For each kernel, the search performed a grid search over the parameter space of
C € (275,21) and v € (2715,27°), in steps of 2* . A large step size was used because
of limited computational resources. Parameter selection used a randomly selected sub-
set of 500 data points to improve run times. Additionally, the Perl script monitored the
polynomial kernel, which failed to converge on certain datasets. Experimentation with
the parameter ranges did not change this behaviour, so the script was configured to stop
searching with the polynomial kernel after the first instance where it failed to converge on
any given dataset. This provided approximately a twenty-fold decrease in run times for
the SVM. Overall, this method served as the inspiration for the svm Imputation Method
in Prefmine (not binsvm). There are slight differences in the Prefmine implementation
however.

Since all three learning algorithms were to be used in the imputation-based approach
to social choice, features over the ballot needed to be constructed. The base feature set for
every run was very similar to the set described in the example near the end of Chapter 3.
Features included the rank (position) of each candidate on the ballot, if known; a three

173

valued indicator variable for each pair of candidates (i, 7), indicating whether i appeared
before j, after j, or the ordering of the two candidates was unknown; and a set of variables
indicating the magnitude of the difference in position of two candidates on the voter’s
ballot. For instance, if candidate i is the voter’s fifth preference, and candidate j is the
voter’s eighth preference, then the distance between them was 5 — 8 = —3. Features were
generated using a number of Perl and bash scripts that operated over the ballots'®. Files
containing the resulting features were stored for later use.

Two alternative feature sets were generated as well. The first set was constructed
by running principal component analysis (PCA) on the original feature set | ,

|. PCA is a dimensionality reduction technique, in which the original feature set is
compressed into a smaller set of features, each of which is a linear combination of the
original feature set. Using PCA allows much (often most) of the original feature set’s
information to be represented in a smaller set of features, which can in turn reduce the
runtime of classification algorithms applied to the data.

Before applying PCA to a dataset represented using the original feature set, values that
indicated missing data were replaced with the mean of the column in which they appeared.
This is a standard stem to avoid bias. If a column was entirely comprised of missing values,
or if it had variance 0, it was removed entirely prior to performing PCA, to avoid faults
in the PCA implementation that was used. For each training file, all components with
magnitudes at least 10% of the first principal component (i.e. containing at least 10% of
the information content of the most informative component) were captured, and created
an alternative file containing only the reconstructions of each row within the resulting
subspace. The PCA calls subtracted the mean from each column automatically, and also
normalized the data prior to computing the components. R was used | , | for the
preprocessing described in this step, and the R prcomp implementation of PCA was then
applied.

The second feature set was obtained by applying an information gain filter to the data,
and selecting just the ten most predictive features under this metric, using the FSelector
package in R | , |, and with the same preprocessing steps as the PCA feature
selection. In a classification context, the information gain of a feature is the change in
entropy produced by partitioning the data on that feature. It is based on the Kullback-
Leibler divergence measure | : |. Let H(Y') be the overall entropy
a dataset with features X and labels Y!'!. Then the information gain of feature Xj is:

0T hese scripts were highly error prone, and produced different representations of the same data for
different methods.
i e. a measure of how much variety there is in the labels of the dataset: higher if the dataset is split

more or less evenly among all the classes, lower if one class dominates the set.

174

H{z; € X[Xy = v}
| X

IGX, X, Y)=H(Y) - > H({y € Y|Xi; =v)})

vEvalues(X;)

The 10 original features with the highest information gain were selected and used as
the third feature treatment. This constant size set of features was included to explore the
possibility of speeding up the machine learning algorithms with a greatly reduced version
of the original feature space, rather than trying to construct new features as with the
PCA approach. An advantage of the information gain approach is that, since the original
features already had clear human-interpretable meanings, models learned from subsets of
this set of feature ought to be easy to interpret as well. In contrast, models learned using
the PCA feature set might be more difficult to interpret. As a final step before providing
data to a classifier, any remaining missing values were imputed with the mean of the
corresponding column. The data were also centered and normalized, and any columns
with 0 variance were dropped. These steps were taken to ensure that the classifiers were
able to process the data, as the support vector machine proved especially temperamental
when given datasets that violated any of the mentioned properties. These techniques were
automatically integrated into the support vector machine implementation that appears in
Prefmine.

Each of the three algorithms (SVM, Naive Bayes, and Multinomial Logistic Regression)
was run under each of the three feature treatments for each of the ten datasets considered.
Every combination of dataset, feature set and algorithm was run with ten different problem
instances. This small number of replications was used because the system was very slow
(especially when PCA was used, and because of the parameter selection component of the
SVM). Performance is summarized in Tables 6.1 and 6.2. Bold values indicate the best
performance under each dataset. If there are multiple bolded values for a single set, this
indicates that the two values are statistically indistinguishable. To compare measurements
between two machine learning methods, a Student’s t—test was used over the paired dif-
ferences between the value of the measurements for the two methods on the same training
and test data, with the null hypothesis that the mean difference between the measurements
is zero. It was not immediately clear that the assumptions required for use of the t-test
would be satisfied with such a small dataset. In particular, the normality assumption was
not assured. To mitigate this, a Shapiro-Wilk test was applied to the distribution of dif-
ferences, prior to analysis, and a non-parametric test was used instead if the data were not
consistent with a normal distribution.

In terms of the Borda Count Error, the combination of the SVM and information
gain feature selection method appears best. The SVM has statistically significantly better

175

SVM NB MN
PCA | IG plain | PCA | IG plain | PCA | IG plain
Deb. 2002 | 0.008 | 0.007 | 0.008 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003
Deb. 2003 | 0.009 | 0.005 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009
Deb. 2005 | 0.014 | 0.013 | 0.016 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031
Deb. 2006 | 0.013 | 0.013 | 0.015 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031
Deb. 2007 | 0.033 | 0.031 | 0.033 | 0.043 | 0.043 | 0.043 | 0.043 | 0.043 | 0.043
Deb. 2010 | 0.004 | 0.004 | 0.004 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005
Deb. 2012 | 0.011 | 0.011 | 0.011 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003
Deb. Logo | 0.006 | 0.008 | 0.006 | 0.011 | 0.011 | 0.011 | 0.011 | 0.011 | 0.011

North 1.084 | 0.923 | 1.08 1.546 | 1.546 | 1.546 | 1.546 | 1.546 | 1.546

West 0.549 | 0.458 | 0.575 | 0.654 | 0.654 | 0.654 | 0.654 | 0.654 | 0.654

Table 6.1: A summary of the results from the preliminary experiment comparing feature
selection methods and classifiers for use with the imputation based approach to resolving
social choice with incomplete information. Performance is reported under the Borda Error
measure, which is related to the classifier’s accuracy in imputing ballots. Performance
which is statistically indistinguishable from the best on any given dataset has been rendered
in bold.

performance than the other two methods on every set except Debian 2002 and Debian
2012, which were both shown to have minimal room for errors in any case in Chapter 5.
The SVM performance using the information gain selected features was generally at least
as good as using the other two sets, and on Dublin North and Debian 2003, was statistically
better. This was true despite the information gain feature set requiring the lowest runtimes
overall, on account of having the smallest feature spaces.

The Bias results in Table 6.2 provide an interesting contrast. The non-SVM methods
consistently exhibit lower bias than the SVM across the easy Debian sets, though they are
not statistically different on the Debian Logo and Dublin North sets. The SVM results
are better on Debian West. Bias also appears to be slightly worse for the SVM when used
with the information gain feature sets. It appears the SVM+IG combination is imputing
with a bias for more popular candidates, which leads to a more accurate imputation over
all. It is also interesting to note that Dublin North in general exhibits much higher bias
values than any of the other sets. Performance when ordering the less popular candidates
on this set was also lower for the imputation-based approach than for other methods in the
experiments of Chapter 5. It appears that the patterns present in the data lead methods

176

1 =—— Dublin West -
= = Dublin North -

1.0

06 08

P(ballot)

04

02

0.0
o

5000 10000 15000 20000
Rank(ballot)

Figure 6.11: Empirical cumulative density functions for unique ballots in Dublin North
and Dublin West. The x-axis shows the ranking of ballots from most to least common.
The y-axis shows the cumulative proportion of voters who cast each ballot.

to impute more popular candidates. This is further illustrated by measuring the diversity
of the sets of ballots in Dublin North and Dublin West, shown in Figure 6.11. The ballots
of the Dublin North set exhibit much more diversity of opinion, meaning more patterns
must be learned to impute them accurately.

Overall, these results suggested only a small number of features were needed to ensure
good performance from machine learning models, and that using information gain to select
them was a reasonable approach. As a result, all classifier-based imputation methods in
Prefmine use information gain feature selection, though with a value of 30 rather than 10,
since this is still adequately fast for most applications, and provides a slight performance
boost on some sets. SVM was added to Prefmine, while the Naive Bayes classifier and the
multinomial model were not, on the basis of these performance results.

6.3 Summary

This chapter described the Prefmine system, a general testbed for evaluating different
approaches to the problem of social choice with partial information. The testbed system
implements many different approaches to this problem, many different voting rules, and
many different performance measures, allowing practitioners to easily evaluate algorithms

177

SVM NB MN
PCA | IG plain | PCA | IG plain | PCA | IG plain
Deb. 2002 | 0.151 | 0.155 | 0.159 | 0.109 | 0.109 | 0.109 | 0.109 | 0.109 | 0.109
Deb. 2003 | 0.08% | 0.030 | 0.051 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009
Deb. 2005 | 0.255 | 0.182 | 0.309 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031
Deb. 2006 | 0.171 | 0.040 | 0.203 | 0.011 | 0.011 | 0.011 | 0.011 | 0.011 | 0.011
Deb. 2007 | 0.280 | 0.170 | 0.296 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065 | 0.065
Deb. 2010 | 0.078 | 0.162 | 0.064 | 0.099 | 0.099 | 0.099 | 0.099 | 0.099 | 0.099
Deb. 2012 | 0.34 0.35 0.32 0.12 0.12 0.12 0.12 0.12 0.12
Deb. Logo | 0.056 | 0.034 | 0.026 | 0.007 | 0.007 | 0.007 | 0.007 | 0.007 | 0.007

North 0.331 | 0.323 |0.322 | 0.391 | 0.391 | 0.391 | 0.391 | 0.391 | 0.391

West 0.020 | 0.101 | 0.026 | 0.041 | 0.041 | 0.041 | 0.041 | 0.041 | 0.041

Table 6.2: A summary of the results from the preliminary experiment comparing feature
selection methods and classifiers for use with the imputation based approach to resolving
social choice with incomplete information. Performance is reported under the Bias measure,
which is the correlation between the classifier’s error in imputing a given candidate and
the popularity of that candidate. Performance which is statistically indistinguishable from
the best on any given dataset has been rendered in bold.

178

on their own datasets. Additionally, the system’s plugin-style architecture allows future
experimenters to easily add a new approach to Prefmine, and then compare it with existing
methods, without needing to implement their own, error-prone, code to obtain, pre-process,
or evaluate data. Prefmine also provides intuitive and easy to read results summaries for
the user, and efficiently makes use of parallel computing resources.

In addition to showcasing Prefmine, the chapter contains a detailed description of the
system, including descriptions of all user settings, and pictures illustrating how to use
Prefmine. An initial study described near the end of the chapter demonstrates the benefits
of many of Prefmine’s features, and provides insights into the design of Prefmine, and why
future users might prefer it to creating their own systems.

Prefmine was used to generate the results described in earlier chapters of the thesis,
but later chapters also use Prefmine with the same experimental designs. For simplicity,
future chapters may simply describe the parameter settings used in a Prefmine experiment,
rather than describing the experiment design in full detail. The interested reader can then
consult the user manual portion of this chapter for details on the meanings of each specified
parameter setting.

While Chapter 3 described the problem to be addressed, and Chapters 4 and 5 outlined
and benchmarked an initial version of the imputation-based solution, in the next chapter
(Chapter 7) a novel learning algorithm tailored specifically to the problem is presented, and
evaluated within the Prefmine framework. This algorithm maintains many of the qualities
that made the imputation-based approach appealing in the previous chapter, including a
very accurate selection of the true winner in elections, but improves on these approaches
by providing both rapid runtimes and an improvement in the ability to predict the orders
that less popular candidates should appear in.

179

Chapter 7

Markov Tree Approach

Trees sprout up just about everywhere in computer science...

Donald Knuth [2013]

This chapter presents a new algorithm for predicting and imputing the preferences of
voters, based on Markov Trees. It is intended to address the problem of social choice
with incomplete preferences, as discussed in Chapter 3, and can be used as part of the
imputation-based approach described in Chapter 4. However, unlike the systems described
earlier in this thesis that used ordinary classification algorithms, the Markov Tree approach
can also be used to select the outcome of the election directly, if desired, in a principled
fashion. The Markov Tree approach is also efficient, highly parallelizable, and supported
by theoretical guarantees on its performance, both in terms of its convergence rate, and
via eventual consistency with two commonly used preference distributions. The Markov
Tree approach is also readily interpreted, and can provide useful information about the
behaviours of the voters in a given set.

This chapter begins by highlighting the need for a customized learning algorithm to use
when imputing voters’ preferences. It then introduces the idea of different degrees of detail
when modelling voter preferences, and shows how a Markov Tree of variable depth can rep-
resent more or less detailed distributions. The remainder of the chapter develops this idea
in detail, showing how to learn such models effectively, providing consistency guarantees
for the convergence rate and consistency properties of the algorithm, and showing empiri-
cally that the use of Markov Trees offers a performance improvement over the approaches
discussed earlier in the thesis on the real-world voting data that is considered. As discussed

180

in Chapter 4, other learning algorithms, used in conjunction with the imputation-based
approach, may be better suited to other problems, but there are reasons to suppose many
real world problems align well with the assumptions made by the Markov Tree approach.

7.1 Motivation

As discussed in Chapter 4, deciding on the outcome of a social choice problem with in-
complete preferences is analogous to machine learning. The extent to which a method
performs well depends on the agreement between the method’s underlying assumptions,
and the actual behaviours and desires of the voters. The imputation-based approach at
large assumes voters are similar to one another, and that trends in the missing informa-
tion are easily learned from the information that is present. The results from Chapter 5
demonstrated that these assumptions are reasonably consistent with the data, especially
with respect to selecting the overall winner of the election. However, the resulting models
also made occasional mistakes, notably in the selection of the winner on the Meath set
under the Copeland voting rule, and in the selection of the overall ordering on several
datasets under rules like Borda and K-Approval. On these sets the imputation-based
approach performed well, but not quite as well as competing approaches.

One possible reason for the shortcomings of the classification-based models is that they
are not modelling an explicit distribution of preferences, but instead try to solve a number
of simple classification tasks and merge the results together. To avoid this, one might prefer
a model designed explicitly to learn the full distribution of preferences. In particular, such
a model should be able to capture arbitrary dependencies in the ordering of the candidates
on different ballots. For example, imagine that if a voter ranked ¢; = ¢y = c¢3 = ¢4, then
the probability of ranking candidate c5 at the end of their ballot is reduced or increased
by a specific amount, and that this pattern turns out to be quite important in imputing
the missing information on other ballots. Clearly an effective learning method must be
able to identify the pattern in question, but these sorts of complex relationships are not
well captured by the features that were used in the classifiers of the earlier chapters.
Unfortunately, there is an inherent tradeoff between the level of detail such a model can
learn and the amount of data needed to ensure that the learned model is reasonably correct.

The least restrictive way to model the distribution of all voters’ preferences is to assume
that they are drawn from an arbitrary joint distribution over the set of possible preference
profiles. This model is quite appealing, because it can capture arbitrary relationships
in the data. However, although this model is powerful, it is not at all useful for tasks
like the imputation-based approach to social choice, because only one profile pertinent to

181

the task at hand is observed, while there are an enormous number of possible preference
profiles. This means there is not enough data to learn anything meaningful. Further,
as voters are individuals, it is not unreasonable to suppose that their preferences are
generated independently of one another. Certainly in something like the Debian or Irish
national elections, which can contain thousands or tens of thousands of voters, any two
voters selected at random are unlikely to have influenced each other directly. A reasonable
simplifying assumption then is to assume that voters’ ballots were generated independently
and identically from a distribution of some kind.

Among distributions over (complete) preferences, the most straightforward and non-
restrictive model is a general joint distribution over the set of possible total orderings.
Voters’ preferences are modelled as a set R of random variables Ry, ..., R|c|, which all have
domain C, the set of candidates or alternatives, and which take on mutually exclusive
values (i.e. R =c+< R; # ¢, V1 <i#j<|C|). If in a voter’s preferences, candidate
c is preceded by exactly ¢« — 1 candidates, then in the corresponding assignment of values
to the random variables in R, R; = c¢. The model is defined by a probability distribution
P(Ry, ..., Ric)) over possible ballots. Given such a model, it becomes very easy to impute
voter’s preferences. For example, if a voter states that they like ¢; the most, and ¢, second
most, one could simply consult the model, find the most common completion of ballots
that started with ¢; and ¢y, and impute that completion. If the model was learned from
actual ballots, following the imputation-based approach described in Chapter 4, then this
idea amounts to the notion of looking for other voters who also ranked c¢; and cs first, and
imputing based on the preferences of these other voters. In fact, this is the method labelled
Imputation Plurality in that chapter. Although the algorithm for accomplishing this in-
ference is straightforward, the size of the input to the algorithm can be prohibitively large,
because the probability distribution may contain enormous amounts of detail. There are
|C'|! possible ballots, and in theory, the probabilities for each can be separately encoded.
If most of the ballot is incomplete, then reasoning over the set of possible completions is
similarly difficult.

In addition to the problem of reasoning over the joint distribution, learning the dis-
tribution in the first place is a difficult task. If the distribution makes no simplifying
assumptions, and encodes a separate and unrelated probability for every possible ordering,
then a vast number of parameters must be learned (|C|!), and a similarly vast number
must be processed to impute votes. For example, the model must represent the proba-
bility of generating a ballot that begins ¢; = ¢o = c3 = ¢4 > ¢5, and one that begins
€1 > ¢y = c3 = ¢35 = ¢4, and so on for every permutation. Doing this will clearly require
at least one observation for each permutation, and perhaps many more. Thus an election
with 10 alternatives would need millions of ballots to learn a full joint distribution of this

182

kind, which is clearly infeasible for most applications. If there are not enough data to learn
a reasonable estimate of the parameters in a full joint distribution (i.e. P(Ri, ..., Riq))),
then imputations generated from the estimated distribution will be inaccurate even if it is
computationally tractable to compute them. The combination of the difficulties in learn-
ing and imputation stem from a problem known as the “curse of dimensionality”. As the
number of candidates (i.e. random variables) in the model increases, the complexity of the
resulting joint distribution increases exponentially, rendering it impossible to use or learn
from.

Despite the intractability of learning high quality, accurate, joint distributions like the
Imputation Plurality model, the key idea of the model (filling in ballots by looking at what
completions were most common) is sound. If a voter states that ¢; is their first preference,
and ¢y their second, then in many domains they really have provided enough information
to complete the remainder of their preferences. If some further assumptions can be made
on the structure of the joint distribution, then this idea can be maintained, but in a form
that is tractable to learn and reason over.

An extremely strong simplifying assumption in the distribution of preferences would be
to assume that the variables Ry, ..., B¢ are in fact independent of each other, apart from
the constraint that they must have mutually exclusive values. This model is equivalent
to orderings produced under Luce’s axiom | ,]!, and the model is a zeroth-order
version of Plackett’s model, often called Plackett-Luce | , |. The probability of
of assigning a given element of the R to candidate ¢; from among the candidate set C' is
given by

We,

7

ZcGC\Rl ,,,,, ; We

PRy =c¢i|Ry,.; ={Rj|1 <j<k}) =

where w; is some weight or value associated with candidate ¢;, that is independent of
the position in which ¢; is being assigned. Luce’s model is perhaps the simplest model
satisfying the independence of irrelevant alternatives criterion: The probability of picking
some candidate ¢; instead of some other candidate c; does not depend on what other
candidates are present in the set C'\ Ry __; that is to be chosen over.

In this greatly simplified model, the joint distribution is decomposed according to the
following equation:

1Luce’s Axiom is essentially a restatement of the I.I.A. criterion, that whether or not a voter prefers a
to b ought not to depend on whether or not some alternative c is also available.

183

- (7.1)

PR) {HRkeR P(R{{R;|L< j<k}) Ry # Ry, VI<k#j<|C

0 otherwise
which is to say, simply the product obtained from first drawing one candidate according
to Luce’s model (for position R;), and then another applying the model but over the set
of remaining candidates (i.e. C'\ R;), and so on until all candidates have been picked. To
impute a ballot that starts with candidates ¢; and ¢ (i.e. in which Ry = ¢; and Ry = ¢3),
one simply samples from P(Ry = ¢;|{R;|1 < j < k}) repeatedly until the voter’s entire
ranking is completed.

This model assumes that the probability of candidates appearing in different places on
the ballot is independent of the positions of the other candidates (except insofar as they
have already been selected), which means it cannot model concepts like even a standard left-
right political contest. For example, in many contests it might be expected that P(R; =
Conservatives, Ry = Socialists) < P(R; = Conservatives) P(Ry = Socialists), that is, a
voter who ranks the Conservative candidate highly tends not to also rank the Socialist
candidate highly, even though both candidates are popular overall (i.e. a high share of the
electorate rank either of them highly). In exchange for the extreme simplicity of the model
however, comes extremely simple learning and reasoning tasks.

This chapter adopts the idea that the order in which candidates should be imputed on
a ballot should be one that maximizes the product of a set of probabilities corresponding to
the probability of generating contiguous sub-sequences of the candidates. A sub-sequence
of candidates is simply a group of candidates that appear next to one another in a voter’s
ranking (e.g. the i) i 4+ 1" and i + 2"¢ most preferred choices of the voter). Under Luce’s
model, the probability of any sub-sequence appearing in a voter’s ranking is simply the
product of |C| copies of re-normalized versions of the same categorical distribution. The
model has only |C| parameters we,, ..., W, to learn, and inference is straightforward (the
most probable sequence always being the one that places candidates with higher weight
earlier than those with lower weight). Luce’s model is thus easy to apply, and requires
a very small amount of data to learn, provided that the set of candidates is not large.
However, the model may not have much predictive power because even if the model’s
parameters are learned on plenty of data, it is not capable of modelling realistic nuances
of real world preference profiles, like left-right political spectra.

In between the two extremes of the fully joint distribution, with millions of parameters
to learn, and Luce’s model, with only |C|, there already exist a number of alternative

184

models, including mixtures of simple models, and nested models. Most notably, Plack-
ett | , | shows that a nested series of logistic models can be used to learn higher
order sequences of patterns, an idea very similar to the one adopted in the Markov-Tree
learner later in this chapter. A number of other authors consider efficient ways of learning
the parameters of a Plackett-Luce model, under different assumptions about the distribu-
tions of the parameters of the model (e.g. | , : , :

, : , : ,). Some of these mod-
els, notably those of Azari-Soufiani et al., assume that individual voters will have different
subjectively-drawn impressions of the qualities of the candidates, and then attempt to infer
the means of the distributions in question, as a way of deciding the outcomes of the elec-
tions. This represents a simplified version of Plackett’s nested models, which were capable
of capturing distributions in which voters did not rank candidates on a single-dimension.

There is also a considerable amount of work on mixtures of Mallows models.
[2010] describe an algorithm for learning several Mallows models |) |
simultaneously to model more complex preference distributions, while
| | generalize the Mallows to a “Riffle Insertion Model”, which, much like Plackett’s
nested model, can be expanded to provide greater detail in some parts of the distribution
than in others.

7.2 Ballots as Sequences

One way of representing a probability distribution over a sequence of values for random
variables is with a Markov Model, which stores a probability distribution for the next
value in the sequence given some number of previous values, as well as a distribution over
starting values for the sequence. A Markov Model assumes that the value of the variable
at the present step is dependent only on the value of the variable in the previous step of
the sequence, or perhaps in some (finite) number of additional sequence steps in the past.
This assumption allows it to factor the joint distribution over a sequence of values R into
a series of simpler distributions. For example, a first-order Markov Model computes the
probability of a sequence as:

P(R) = P(Rl) H P(RilRi_l)
i€2,...,|R]

where P(R;) is a distribution over the value of the first variable in the sequence, and
P(R;|R;_1) is the probability of the next variable in the sequence taking on value R; given

185

that it had value R;_; in the previous step.

The relationships between elements of the sequence in a Markov Model can be presented
pictorially using the standard notation for Bayesian Networks. Figure 7.1 shows several
examples of such figures for different values of k, the number of previous steps on which
future steps depend. All of the models are over sequences of length exactly 6, and the
six nodes shown correspond to the value of the variables in the sequence at each of six
steps. Edges show dependencies between the nodes. A probability distribution is needed
at each node, showing the probability for the value of the sequence at this step, given the
node’s parents, P(R;|R;_j, ..., Ri—1). The grey nodes in each model all share a probability
distribution, since they all have the same number of parents. The assumption that all
nodes beyond the j" share a probability distribution is called the Markovian assumption.

A Markov Tree is a particular way of storing, representing, and utilizing the probability
distributions that are contained in a Markov Model. In a Markov Tree, the root stores the
probability distribution over values of the initial variable R;, much like the first node in
a Markov Model. Both the root of a Markov Tree, and the first node of a Markov Model
store the probability distribution P(R;). The root of a Markov Tree has one child for each
possible value that the variable could take initially. For example, in a second-order Markov
Tree, each node at the second level of the tree stores the probability distribution for Rs
given that R; took on a specific value in the previous step (i.e. P(Rs|R; = x) for some x),
and likewise has a child for each possible value that Ry could take on. Collectively, all the
nodes at the second level of the tree store the information contained in P(Rs|R;), which
is the probability distribution stored at the second node in a Markov Model. Similarly,
subsequent non-leaf levels of the tree will collectively store the distributions of subsequent
nodes in a Markov Model. For instance, in a third-order Markov Tree, the third level of the
tree collectively stores P(Rs| Ry, R2). Each node will store P(R3|Ry = x, Ry = y) for some
specific values x and y. The leaves of the tree are special, and correspond to the entire
set of grey nodes shown in Figure 7.1. In a Markov Tree of order k (i.e. a tree modelling
a distribution where the i'* preference depends on the preceding k preferences), each leaf
of the tree stores a distribution P(R;|R;_g, ..., Ri_1 = S) where S is a sequence of length
k and i > k, meaning the leaves® collectively store the distribution P(R;|R; g, ..., Ri_1).
Figure 7.2 shows a Markov Tree that encodes all the information required to represent
a second-order Markov Model assuming that the variables can take on only 3 distinct
values at each step, denoted {cy, ¢a, c3}. Markov Trees are used in this chapter to represent
Markov Models, because a special restriction must be applied to a Markov Model in order

2Because of the Markov assumption, the distribution stored at each of the grey nodes is identical, and
so only needs to be recorded once in a generic form, and can be reused when reasoning about all values of
R; for i > k.

186

B B = B

Figure 7.1: A graphical representation of first, second, and third order Markov Models
for a sequence of length six. Each node corresponds to the state of a random variable at
the corresponding step in the sequence. An edge from R; to R; shows that the probability
distribution for R; depends on the value of ;. Gray shaded nodes have identical probability
distributions (by the Markov assumption).

187

to represent distributions over ballots, and this restriction is more easily encoded into a
Markov Tree. These restricted Markov Trees are discussed formally and at length in the
next section.

7.2.1 An Interpretation of the Markov Trees

Before proceeding, it may be useful to discuss one possible interpretation of the vote
generating process modelled by a Markov Tree. This does not concern the actual use of
the Trees in the imputation-based approach, but may offer insights into what the Trees
represent, and where they will and will not work effectively, a topic that comes up later in
the chapter.

One possible way to view a voter’s ballot is as a trajectory through a space in which
the candidates are embedded. The notion of embedding candidates in a space is a very
natural one in some domains. For example, in politics, candidates can often be sorted into
a 1D (the left-right spectrum) or 2D (the economic/social policy axes) space such that
nearly every voter agrees on the positions of the candidates in the space, if not on which
candidates are best. The starting point for a trajectory through this space is the location of
a voter’s first, or most preferred, alternative. The trajectory then proceeds to the location
of the second most preferred alternative, and so on, forming a series of linear segments
in the space in which the candidates are embedded. Intuitively, if the earlier portions
of a trajectory are known, later portions might reasonably be inferred via extrapolation.
Insofar as some trajectories are more common or popular than others, the relative quality
of different imputations of the candidates can then be inferred.

From a generative perspective, this could model the idea that ranked data are produced
based on the candidates a voter has thought about in the recent past. This would be
applicable to domains where human voters are confronted with excessive amounts of choice,
like ordering the set of all possible films, or all possible meals. In practice, such a voter
probably does not construct a full ranking of the alternatives in their head. Instead, the
voter will first rank a few options that come to mind immediately. Thinking of these
options will suggest certain successors, which in turn will suggest other successors. More
formally, assume voters’ preferences begin with a seed ranking of size k, a top order drawn
from a distribution over the set of top-k rankings of C'. Following that, a voter’s next most
preferred alternative is drawn from a distribution that depends only on the immediately
preceding k items. The process is then repeated, with some probability of stopping at each
step, to yield a top-order over some (potentially large) set of candidates.

A Markov Tree of order k is nearly (though not quite) sufficient to represent the process

188

. Y < 1 AI9AD I0J ‘O[(RLIRA 91} JO SoN[RA g = ¥ SNOIASId 97} USAIS *Y JO UOIINLIISIP 97} Jnoqge
! [YRULIOJUL ©I0)S SOARS[O} S[IYM Ty pue Ty I0J sonfea Jo UOIINGLIJSIP) INOqe quwEH&S.mSBm (y001
1) 921} 8} JO 9POU [RUIIUL 9], "991], AOYIRJ\ I9PIO PUO0ILS ® Jo uoljejussardar [eoryders < 177, 2INSIy

(0 =2y
€ =1y 'y)d

(0 =2ty
@ =1y y)d

(0 =2ty
L =T1"ty[Y)d

(%0 = Tyl d

(80 =Ty |8q)d

189

for generating trajectories of candidates in the fashion mentioned above®. Since a Markov
tree is fairly compact, provided that k is small, and has a readily interpretable representa-
tion, it may be a useful and informative alternative to more complex existing models for
learning user preferences, at least in domains with fairly homogenous preference trajecto-
ries (i.e. where the candidates are embedded in a low-dimensional space). The problem
with using a Markov Tree to generate a trajectory of candidates is that a voter’s trajectory
is in fact a permutation over the set of candidates, implying that the values taken on by
a variable R; must be mutually exclusive with those of of all other variables R; in the
sequence. Another way of looking at this is that a valid trajectory passes through each
candidate exactly once. This is a clear violation of the Markovian assumption, because the
probability of selecting a particular candidate will depend on all of the previous nodes in
the sequence. To address this, a simplifying assumption is made via Luce’s axiom, detailed
in the next section.

7.3 Learning Markov Models

This section will show a restricted version of a Markov Tree, capable of imputing voters’
preferences, and how it can be learned from incomplete preference profiles. Once a Tree
has been learned on the basis of a set of ballots, it can be used to impute any missing
preferences in that set, per the imputation-based approach described in Algorithm 1 of
Chapter 4. The section begins with a formal, mathematical description of the family of
models that could be learned, and the algorithm that is used to estimate the parameters
of such models. The learning, imputation, and generation processes are then described
algorithmically using pseudocode in Algorithms 12-14. Algorithm 12 corresponds to the
parameter M of Algorithm 1 from Chapter 4, while Algorithm 13 corresponds to m(B) in
that algorithm.

Formally, the proposed model is to use a restricted Markov Tree, in which a voter’s
7™ most preferred alternative is modelled as a discrete random variable R; with domain
equal to the set of alternatives that are to be ranked, C'. R; is distributed according
to a categorical distribution with parameters dependent on k preceding variables R; for
j —k <1 < j, and conditionally independent of the votes of any other voter given the
parameters of the model itself (i.e. votes are drawn i.i.d.). As mentioned above, a Markov
tree is not quite capable of modelling the generative process that was described. This is
because each candidate can be ranked only once, whereas in a true Markov tree of order k,

3Note: a tree of order k has depth k + 1.

190

the k+2"¢ candidate cannot depend on the first. To address this, the following constraints
are imposed: P(R; = c|R, =cANy # j) =0, and also P(R; = c{R, | y < j AR, # c})
= P(R; =c{R, | j — k <y < j}) where k is said to be the order of the restricted tree.
The resulting model is a Markov Tree of order k, but with mutual exclusivity constraints
encoded. Such a model can be compactly represented as an ordinary Markov tree of order
k. When reasoning about R;, one only needs to restrict the domain of I?; to those elements
of C' that did not appear previously in the ranking, renormalizing the probabilities of the
remaining elements of C' in accordance with Luce’s axiom.

The parameters of the model are encoded in several sets. The first set corresponds to the
leaves of the tree, and are used to impute the k + 1% candidate given a list of & candidates
that are ranked already. For a given sub-sequence S of k candidates drawn from C, g ;41
denotes the value of the parameter corresponding to P(R; = c[{Ry = Sy_(j—ry+1 | 1 — k <
y < j}), for any j > k. P(fscx+1) is then the prior probability distribution over values
of 0g k41 in the model, and the complete set of parameters corresponding to multinomial
distribution over values of R; given the observation of each possible sub-sequence S is
denoted with Oc i1 = {lscrs1 | S € p(C,k) AN c € C}, where p(C, k) is the set of all
permutations of k elements of C'. Additionally, the model will have £ — 1 further sets of
parameters for the initial levels of nodes in the Markov tree, corresponding collectively
to the joint distribution over the first k£ candidates ranked, which naturally cannot be
predicted by a distribution that requires k prior rankings. These parameters are denoted
with ©cy = {0s.cy | S € p(C,y) Ac € C}, and are defined for every 1 <y < k. Each of the
parameters g, corresponds to P(R; = c[{R; = Se—(j—y)11 | 1 —y < @ < j}), predicting
the y** candidate on the basis of the preceding y — 1. Thus, for example, a first order tree
has two sets of parameters, O¢ 2, stored in the leaves, and O¢, stored in the root node.
In a slight abuse of notation, the set of all parameters for a complete k** order model is
denoted with ©, 7. Throughout, there are occasional abuses of notation by treating S as
though it were a set. S is always a sub-sequence rather than a set, but S\ s may be used
to indicate the sequence with its last element (s) truncated. Similarly, |S| may denote the
length of S.

Consider for example a first order model (i.e. k& = 1) describing the distribution over
a set of four candidates C' = {cy, ¢z, c3,¢4}. The model will have four parameters in O¢
and 16 in ©¢y (4 in each of the 4 leaf distributions). Example values for the parameters
are summarized in Table 7.1, which provides some intuition about the notation used in the
model. The left hand table shows the distribution over initial elements of the sequence, in
this case, over voters’ most preferred candidates. The right hand table shows the distribu-
tion of a voter’s second preference, conditioned on their first. A voter’s third preference will
obey an identical distribution, conditioned on their second, but re-normalized to remove

191

S| c| Osco | Value
G| 661,01,2 0
Co 001,02,2 0.4
c3 | Ocesn | 0.3
Cy 90170472 0.3
Cy C1 00270172 08
¢ | 0sc1 | Value o | Ocpcn2 0
C1 ‘9(2),c1,1 0.1 C3 602’6372 0.2
Co 0@,02,1 04 Cy 902,04,2 0
C3 0@76371 0.4 C3 | C1 003,01,2 0.1
Cy 9@704’1 0.1 Co 00370272 0.1
C3 603,03,2 0
Cq 60376472 0.8
Cq4 | C1 904,01,2 0.2
Co 004,02,2 0.5
C3 90470372 0.3
Cq 904,04,2 0

Table 7.1: Tables showing an example of the probability distributions used in a first-
order Markov Tree. The distribution over initial states R; is shown on the left, while the
transition probabilities (i.e. the distribution of R; given R; 1) are shown in the table on the
right. The red numbers correspond to the probabilities that are re-normalized and used
to determine a voter’s third preference, given that their first preference was ¢y, and their
second was cs.

their first preference from consideration. For example, suppose that a voter’s first prefer-
ence is ¢, and second preference is c3. Looking in the right hand table, the probability of
selecting c; as the voter’s third preference is 0.1, given by 0., ., ». Likewise, the probability
of selecting ¢4 as the voter’s third preference is 0.8, as indicated by 6, ., 2. Since c; has
already been assigned as the voter’s first preference, these probabilities do not sum to 1. By
applying Luce’s Axiom, the probabilities are renormalized, reflecting the idea that, apart
from the mutual exclusivity constraint, the distribution depends only on the immediately
preceding preference. Therefore, ¢4 will be selected as the voter’s next preference with
08

probability 57755 ~ 0.89 and ¢; will be selected with probability % ~ 0.11.

Having described the model, it now remains to describe how its parameters should be
learnt. Learning the parameterization of ©¢, is the most difficult. This requires a set of

192

contiguous partial rankings over the subsets of k£ candidates in C'. A contiguous ranking
over a set C'is defined by a successor function >contig such that vV a,b € C, a =contig b <=
rank(b) < rank(a) A A c € C s.t. rank(b) < rank(c) < rank(a), where rank(z) is the
number of candidates that are preceded by x in the ranking. That is, it is a partial ordering
where certain pairs (those where a >contig b is defined) are known to be contiguous in the
ranking, independent of the fact that certain other candidates may be unranked. Although
the same symbol (>) is used, this should not be confused with the more general ideas of
a partial or total order. This restriction at first appears substantial, but note that any
total order over the candidate set can be represented with a contiguous ranking, and so
can any top-k orders, and partial orders in which relatively few pairs of candidates are
incomparable (e.g. a = b = ¢ > (d ~ e) is a contiguous ranking where a, b, and ¢ appear
contiguously in the first three positions, ahead of d and e, but the relative order of d and
e is undetermined).

Given a single total ordering of the candidates >, learning proceeds by splitting the
ordered list corresponding to > into a series of sub-sequences, used as observations to adjust
the parameters of © . The candidate ranked first S is an observation for R, = 51, which
consequently influences the posterior distribution of 0y g, ;. Similarly, the first j ranked
candidates serve as an observation of R; = S;|{R; = S;,i < j} for each j < k, which
influences the posterior distribution of s, ;| s, ;. After the first k candidates ranked in
>, each subsequent ranked candidate defines an observation of R; = S;|{R; = S;,j — k <
i < j}. Given a contiguous ranking that is not total, a similar process is followed. All
contiguous subsequences of length k£ + 1 can be extracted and used as observations of
R; = S;{R; = Si,j —k < i < j}, and any top-order of length j < k can also be
used to provide observations for the other model parameters. Collectively, these sequences
constitute the training data. To estimate the parameters from the training data, standard
statistical estimation techniques are adopted. In particular, given a set of ballots that all
begin with the same sub-sequence S and rank at least one more candidate ¢; following
S, the parameters in {fg, s | c; € C'\ S} can be learned via the Maximum Aposteriori
estimate for a categorical distribution:

@; + N, |s|

éS ci,|S| —
> eecns @+ Nsey s

where Ng, |s| is the number of observations which contain sequence S followed by ¢;, and
«; is the number of prior observations of ¢; following S (i.e. v collectively parameterize a
Dirichlet prior for the categorical distribution defined by g, g for every ¢; € C'\ S).

For example, suppose that a first order Markov Tree over four candidates C' = {¢y, ¢o, ¢3, ¢4}

193

is to be trained. Initially the model effectively consists of 5 categorical distributions, respec-
tively modelling P(R;) for the root, and for the leaves, P(R;|R;_1 = ¢1), P(R;|Ri—1 = ¢2),
P(R;|R;—1 = ¢3) and P(R;|R;_1 = ¢4). Suppose we begin with the assumption of a single
observation for each candidate in each distribution. The resulting Dirichlet distributions
are summarized in Table 7.2. Suppose that the training data consist of the sequences in
Figure 7.3. These are converted into observations as follows. For the P(R;) distribution,
there are 9 observations of sequences that start with ¢, 4 that start with ¢y, 12 that start
with ¢3, and 8 that start with ¢4. For distribution P(R;|R;_1 = ¢1), there are 17 observa-
tions of ¢y (contributed from the two middle sets of ballots), and no other observations at
all. For the distribution P(R;|R;_1 = cg) there are 21 observations of ¢4, and 4 observations
of ¢3. For the distribution P(R;|R;_1 = c3), there are 12 observations of ¢s, 8 of ¢1, and 4 of
¢y. Finally, for P(R;|R;_1 = c¢4), there are 16 observations of ¢; and 17 of ¢3. Adding these
totals to the initial counts yields the observation totals for each parameter. Normalizing
by the sum of the observations in each of the categorical distributions then produces an
estimate of the parameters, as shown in Table 7.3.

A A A A

C3 C4F C1F CofF
Co- C3 Co- C3f
Ca- C1[T Cc4I- 4

CiF Co C3r C1f
12 8 9 4

Figure 7.3: A preference profile to be used in the example training of a First Order Markov
Tree.

It is easy to see that a tree of this class, properly parameterized, can generate any se-
quence of alternatives. The full distribution over the first k candidates is represented fully,
and with proper parameterizations, it can generate any initial sequence. The remainder of
the sequence will be sampled from the k + 1** node, which will initially assign probabili-
ties to each previously unranked candidate. After selecting a candidate, the distribution
conditional on the second through k + 1" candidate will be renormalized by restricting all
k + 1 candidates thus far selected. This will proceed until the final candidate is selected,
provided that all candidates have non-zero probabilities of appearing in all conditionings
of the k + 1** node. The distribution as represented is not proper, because the represen-
tation is compact. If the tree were expanded out fully, so that each node beyond the k"

194

S | ¢ | Parameter | Obs
c1 | ¢ Ocy.c0.2 1
C3 96170372 1
ca | Ocpes2 1
cy | C 0 1
¢ | Parameter | Obs 21" €2,01,2
0 1 C3 Ocs .2 1
&1 0,c1,1 0 1
0 1 C4 €2,¢c4,2
Ca 0,c2,1
C3 0@,03,1 1
0 1 C3 | C1 903,01,2 1
Cq 0,cq,1 0 1
C2 €3,2,2
Cq 003704,2 1
Cq C1 004,01,2 1
Co 804,02,2 1
C3 864,6372 1

Table 7.2: Tables showing the prior observations for an example First-Order Markov Tree
before being updated with training data. The model can be viewed as five categorical
distributions, one in the table on the left, and four in the table on the right. Rather than
showing the proportions in the distribution, the number of observations for each of the
candidates is shown.

195

S | ¢ | Parameter | Obs | 60

C1 | Co 9C1,5272 1+]_7 18

20
1
C3 001,03,2 1 20
1
Cy 901,04,2 1 20
1
~ Cy | C1 ch,cl,Q 1 28
¢ | Parameter | Obs .
) 144 | 2
ol 6 119 | L0 @ | Deaes R
,c1,1 37 29
Cy 902’04’2 1+21 28
c 0 1+4 | 2
2 0,c2,1 37
13
C3 (9@’6371 1+12 37 9
0 c3 | Ocy 12 148 | 5=
Cy 9@,0471 1+8 37

C2 Ocs.c0.2 1+12 %

Cy 803,84,2 1+4 =

cy | Oy 12 1+16 | &2

36

1

Ca 9@;,(:2,2 1 36
18

C3 90475372 1+17 36

Table 7.3: Tables showing the posterior observation counts and parameter estimates for
an example First-Order Markov Tree after being updated with training data. The model
can be viewed as five categorical distributions, one in the table on the left, and four in the
table on the right.

196

corresponds to a particular restriction of the k' node, then a proper distribution could be
obtained. As it is, if the compact distribution is sampled from with appropriate restric-
tions, then the product of the renormalized parameters used at each sampling step will
yield a proper probability, even if the raw parameter values would not.

Once a model has been learned, it is a straightforward process to impute a ballot. A top-
order S can be extended by sampling a candidate from C'\ S from the appropriate learned
categorical distribution. For instance, using the model from the previous example, given
a top-ordered ballot b; = () that ranks no candidates at all, then after learning has been
completed, the model will extend the ballot by imputing the Voter’s first preference as ¢;
with probability 12 37, C2 With probability 2 37, €3 With probability i3 37, and ¢4 with probability
%. If b; already contains at least one candidate, and the last candidate ranked on b;
is ¢;, then the sequence is extended by sampling from the categorical distribution with
parameters 0., .. o2, for all values of j such that c¢; is not ranked on b;. For example, if
b; ranks ¢y first, and ¢y second, then the model imputes c3 with probability 2%, and ¢y
with probability 2?, the renormalized values for 0., ., » and Ocy, ¢4, 2 from Table 7.3*. The

imputation of a partial order can be accomplished using this method as well.

7.3.1 Convergence Rates

Suppose a set of rankings are generated from a restricted Markov Tree of order k with
unknown parameter values. It is reasonable to suppose that another restricted Markov
Tree of order k could be constructed, and that by observing the rankings generated from
the first tree, could be trained to have parameter estimates that would converge to those
of the original tree as more data was observed. A bound on the amount of data required
to learn the parameters of the above model to within a given tolerance ¢ would be useful
however. For simplicity, the learning process analyzed to develop a bound is maximum
likelihood estimation rather than maximum aposterori estimation.

Theorem 4. Given a set of candidates C' and a restricted Markov Tree T of order k
describing a distribution over candidate sequences of C, the error in a learned estimate
HAS,C,‘S‘ of a parameter g s in a second restricted Markov Tree T' for a given sequence
S € CF and ¢ € C is in O(0s,.,s\/€) with probability at least (1 — a)* after observing

N = Zlale/ICD) [locjcr U5y, 1.5, (1 — 44/€) ") sequences drawn from T.

0s.c,|5|

4 Alternatively, instead of imputing values according to their probabilities, the candidate with the high-
est number of observations can be picked directly to yield the (locally) most probable completion. Alter-
natively, the globally most likely completion completion can be found via the application of a standard
variable elimination algorithm, though not necessarily efficiently (because the tree is restricted, the Markov
property assumed by more efficient algorithms like the Vitirbi algorithm, does not hold).

197

The gist of the proof is that for parameters in the top level of the tree (e.g. 0p.1),
Quesenberry and Hurst’s bound for the distribution of a multinomial proportion® |
, | can be used to guarantee that é5707|5‘ lies within an interval
centred at fg. s with probability (1 — «). The interval can be expressed using Alzer’s
inequality | , | for the x? cumulative density function in a closed form depending
only on the values of €, 05,5 and N. Some algebra then yields the desired bound. For
parameters lying deeper in the tree, the same approach is used, but only the subset of
the rankings drawn that begin with sequence S can be used to learn the value of deeper
parameter 0. |s). This results in a blowup of [],_; . (0s, ,_,.5;,;,(1—4y/€)~") in the amount
of data needed to produce the same bound as in the data for the parameters at the top
level, and this is shown inductively.

Proof. Suppose that N data points (i.e. total orderings) are sampled from a restricted
Markov Tree T of order k£ as described above, parameterized with @Ck Let N.; be a
random variable representing the number of rankings sampled from T that rank candidate
c highest. Let 0y ., be the parameter in 7" corresponding to the true probability of gen-
erating a sequence that starts with ¢. Now, N.;/N = 9@;,1 is effectively distributed as
a multinomial proportion. By Quesenberry and Hurst’s (conservative) bound on the dis-
tribution of of a multinomial proportion | , |, with probability
1—aq,

NC71 c 29@,0,1]\[+ Xia/|C\ + ﬁ

where

V= X3 ap10| G agic) + ANOpca1 (1 — Op)

and where x7 Jicl 18 the value at which the probability mass in the right tail of a x?
distribution with 1 degree of freedom is exactly a/|C|. It follows that:

New Oper + X Mol 1 | /5 [(AN?)

N 1 _|_ Xlgx](/JC|

5i.e. the expected proportion of samples taking a specific value drawn from a multinomial

198

y . . —In((a/|C])?
Alzer’s inequality | : |, states that Xia/lC\ < —2In((a/|C])?). Let 5 = - ((z\ﬂ %)
Then, with probability (1 — «):

Nc,l c 9@,0,1 + ﬁ + \Vi 7/(4]\[2)

N 1+ 3

from which it is easy to show that:

N1 Ny
— — 0Oy 1———) &£ 4N?
ol Gen € A1 - S & /5 /(AND)
N1 N1
— — Oy 1-——= 4N?
|2 — Gyeal < B = =) + VATEND)
N.i .
2L — G| < B+ /7 (AN?)

Now, assume that 8 < ey 1, which will be true for some 0 < € < 1 for large enough
N. Then:

N,
|]\/:1 o 9@,c,l| < 69@70,1 + \/6295,0,1 + 269%,031(1 N ew’c’l)
N,
| N,l . 9@767” < €lpeq + 9@76716% \/e +2(1 - 9@,c,1)
N,
|]V,l . 0®7671| < 4(9@7071\/2

which shows the desired bound for the case of the P(R;, 1).

The general case is now proven inductively. Suppose that the desired bound holds for
a parameter 0g\, 1. The goal is to show that it also holds for a parameter fg ., where
c € C'\ S is some other candidate. Let Ng be the total number of rankings drawn that
begin with sequence S. By the inductive hypothesis,

N,
‘HS\s,s,kfl - N & ’ < 495\5,3,]4:71\/E
S\s

199

with probability at least (1 — «)*~1, for some];Slil(e(z—\/wli)l < e. It follows that:

N,
QS\s,s,kfl - NS:? S j:495\s,s,k71\/g
N
N & € ieS\s,s,kfl(Zl\/g - 1)
S\s

Ng <]\75\3195\5;,5,1&71(4\/E —1)

Ng > NS\SHS\S,S,k—l(]‘ - 4\/E>

with probability (1 — «)*! also. Following the argument for the basecase above, if it is
allowed that 5 < €fg ., then |0g.p — NAS,:C| < 405 . 1+/€ with probability at least (1 — a)*.
Since Ng > Ng\sOs\s55-1(1 — 41/€) it follows that N (the total number of sequences

sampled) must also be larger by a factor of at least m than was required for
the bound to hold for fg\. .5 1. -

]

In more concrete terms, this result indicates that the total number of samples that must
be drawn to accurately infer the true parameters of T grows exponentially in the depth of
k, but linearly in the total number of parameters (i.e. in |90,E|)‘ Further, errors will be
concentrated in the least common sequences, which are unimportant for many applications.

It may be helpful to see an example that illustrates the orders of magnitude for the
data requirements. Suppose a second order Markov Tree is to be trained on ballots for
an election with 10 candidates. It is expected a priori that all candidates have at least
a 5% chance of following any two other candidates in a given ranking, and that ballots
were generated by a second order Markov Tree or a similar process. If the error in the
estimate of any parameter’s value is desired to be at most 1% with probability 95%, then
data requirements would be:

— In(0.005%)
(0.05)%(1 — 44/0.01) "1
or about 7,000 example sequences of length £+ 1. This corresponds to about 875 complete

rankings drawn from 7', because a complete ranking of 10 candidates contains 8 subse-
quences of length 3. However, if some of the sequences are much more likely than others,

200

these more likely sequences could be learned with far less data (since those sequences will
appear disproportionately often in the data).

The runtime for parameter estimation is linear in the amount of data given (i.e. the
number of contiguous subsequences provided), but there may be an enormous number of
parameters in a deep model, such that simply enumerating the parameters requires more
time than a pass through the data. To avoid this, the implementation renders training time
independent of the total size of the tree being represented via the use of lazy evaluation
and hash maps. The Markov Tree is represented as a nested data structure. The root holds
a hashmap from C' to the values of 0y, , for all ¢; € C. Additionally, it holds a map from
C to instances of the data structure that store distributions for the second candidate in
sequence. Each of those nested data structures holds a mapping to distributions over the
third candidate selected, and so on up to the k. However, vitally, the nested structures are
only constructed if actual data is observed that necessitates their construction. Otherwise,
they can be left un-constructed, and during inference and generation, an interchangable
uniform distribution can be substituted anywhere that an undefined value is used. Since
constructing a new node is a constant-time operation, even in the worst case, the total
time required to construct and learn a model is linear in the number of observations
(i.e. O(kn) if n subsequences of length k are available for training). This process is
summarized in Algorithm 12. The generation and imputation processes for top-orders
using data structures of this form are described in Algorithms 14 and 13, with runtimes
that amount to O(k|B||C]), or a constant cost of k per preference imputed. The result is
that learning the model can be an exceptionally fast process. Contrast this with approaches
that need to solve complex optimization problems when used with some voting rules |

, |, or need to make multiple passes through the data like logistic regression
(i.e. during each iterative update of the model’s weights). Note also that the structure can
be readily parallelized by placing a locking semaphore on each TreeNode structure. If the
model is deep then the chance of collisions should be very low.

7.4 Consistency Results

The results of the previous section demonstrate consistency in the limit between a learned
restricted Markov Tree T of order k, and a distribution from the same family, since with
enough (i.e. infinite) data, the error between the estimated and true parameter values will
go to zero with probability 1. There are reasons to suppose at least some natural processes
generate rankings in this manner. As mentioned earlier, if voters are confronted with a large
set of objects, they might order a few that immediately come to mind (i.e. the first k), and

201

Algorithm 12 An algorithmic description of the learning process for the Markov Tree
model of a sequences of length k over a set of candidates C', using a set of ballots B. Note
the use of lazy evaluation to avoid building out parts of the tree that are not required.
procedure TRAINMARKOVTREE(C, k, B)
Let a TreeNode be a structure containing two hash maps: 6 : C' — N and Children :
C — TreeNodes, with both maps being initially empty.
Let T; = new TreeNode()
for all b€ B do
for i =0;i <|C|—k;i++ do
Let T; =Ty
for j=i7<i+k;j++ do
Let ¢; be the candidate ranked j on b
if ¢; & T;.0.keys then

T;.0lc;] =1
T;.Children[c;] = new TreeNode()
end if

T;.0[c;] = T;.0[c;] + 1
T; = T;.Children|c;]
end for
end for
end for
return 7)
end procedure

202

Algorithm 13 An algorithmic description of the imputation process for a top-order ballot
b using a Markov Tree model 77 of sequences of length k£ over a set of candidates C.
The main MarkovTreelmpute procedure first computes the members of candidate set that
remain to be imputed, and uses the Trace procedure to find the distribution that ought
to be used for the first step. Then it repeatedly samples a candidate, and updates the
remaining candidate set before finding the distribution parameters to use for the next
sample.
procedure TRACE(T;, S)
for i =1;i <|S];i++ do
Let ¢; be the candidate ranked i*" in S
if T; is NULL or ¢; € T;.0.keys then
T, = NULL
else
T; = T;.Children|c;]
end if
end for
return 7;
end procedure

procedure MARKOVTREEIMPUTE(C, k, T3, b)
Let S be the top-order sequence over candidates implied by b.
Let |b| be the length of S.
Set C + C\ S
if |S| > k, set S to the last k elements of S
Let T; = Trace(T}, S)
fori=1b|+1;:<|C|;i++ do
if T; is NULL then
Let ¢; be sampled from Categorical(Uniform(|C|))
else
Let ¢; be sampled from Categorical(7;.6)
end if
Cc—C \ C;
Set the candidate ranked i** on b to ¢;.
Set S = S.¢;, and truncate S to the last k elements of S.
Set T; = Trace(T7, S)
end for
return b
end procedure

203

Algorithm 14 An algorithmic description of the generation process for a top-order ballot
b using a Markov Tree model 77 of sequences of length k£ over a set of candidates C'.
The process simply generates a ballot containing a top-order of length 1 by sampling a
candidate from the distribution stored at the root of the tree. It then imputes the ballot
using Algorithm 13.
procedure MARKOVTREEGENERATE(C, k, T})
Let b be an empty ballot.
Let the first position on b be sampled from Categorical(T}.0).
return MarkovTreelmpute(C,k,T7,b)
end procedure

then select the next highest ranked object based on the ones they have recently considered
(i.e. selecting the k41" object on the basis of the preceding k). However, the Markov Trees
are also capable of correctly learning distributions that were generated by other common
processes that are simpler than it is. To demonstrate this, eventual consistency will be
shown between the “most probable sequence” (MPS) in a learned restricted Markov Tree
and two common families of ranking models, the Mallows Family and the subset of the
RUM Family with identical variances across utility distributions.

The “most probable sequence” can be thought of as the sequences most likely to be
generated by a model T" when Algorithm 14 is applied to it. The sequence is defined in
terms of the “most probable alternative” at a given node of T reached by traversing the tree
with sequence S. The “most probable alternative” is given by c¢g = argmax..s 0s.;, and
the most probable sequence for T" at depth j to be M PS;(T) = MPS; 1(T),cumps, (1),
with M PS,(T) = ¢.

Theorem 5. Let M be a Mallows model with centroid ranking p = p, ..., pyeo) and dis-
persion parameter ¢. As the number of total orders sampled from M goes to infinity, the
most probable sequence M PS|c|(T) of a restricted Markov Tree T of order k trained on the
drawn rankings converges to u, provided 0 < e~ < 1

Proof. The parameters at the first node of T' correspond to the proportions of observed
rankings that begin with each candidate C'. By definition of the Mallows Model, the total
density of rankings that start with p; is equal to ZSEL(C\W) %e*‘ﬁd({‘“’s}’“), where d is the
Kendall-Tau distance between the two rankings, and Z is a normalization constant. Note
that

204

1 _¢T({ ivS}?)
Lserown 7€ T

ZSGL(C\M) %e*¢7({uj,5},#)

Therefore, given an infinite sample of rankings drawn from M, a proportion ranking
first is at least a factor e~? larger than the proportion ranking any other candidate first.
Therefore, in the estimates of 6 ,, ;1 must also be at least a proportion e~ larger than the
proportion ranking any other candidate first, in expectation, by the central limit theorem®.

The remainder of the proof proceeds by induction. Suppose that T’s most probable
sequence is fiy, ..., jj. It will be shown that the j + 1" element of the most probable
sequence will be p;41. There are two cases.

In the first case, j + 1 < k. It is easy to show that, if the first j candidates are fixed
to the correct ordering, then by exactly the same line of argument used in the basecase
above, candidate j1;,1 will appear in the j + 1 position a proportion e~ more often than
other candidates. Observe that,

l —(]57'({[1, yeees Mg Mg 75}7M)
ZSGL(C\{#L--AM}) 7° o — Pli+1-9)

%€*¢T({#l7-~~:vaﬂlys}7ﬂ)

ZSeL(c\{m,.-.,uj,m})

where g is here any candidate other than p;1; that has not already appeared in the most
probable sequence. As before, j;,1 will be observed at least a multiple e=® more often
than any other candidate, and so is the most probable continuation of the most probable
sequence.

The second case occurs when j + 1 > k. This case is the most complex. The proof of
this case relies on a slightly different formulation of the Mallows model. | |
notes that an alternative system for sampling candidates from a Mallows distribution is to
sample a ranking by pairwise relations. In the sampled ranking, a pair of candidates ¢y, co
are ordered such that ¢; = co with probability p if ¢; = p;, and ¢o = p; such that j7 > 4, and
probability 1 — p otherwise. p > 0.5 by assumption. If an intransitive ranking is sampled,
it is rejected and a new ranking is sampled in its place. | | shows this to be
equivalent to sampling from a mallows distribution with the same central ordering p, and
a dispursion parameter ﬁ =e 9.

First, consider the case with a first-order model £ = 1. By the inductive hypothesis,
assume that more instances of p; have been observed than of any other for the start

6Note that this holds if o; is any finite value for all in the prior parameter distribution, since with
enough data the proportions will still converge to within e~? in expectation.

205

of the sequence. For the base case in this inner induction, it will be shown that the
subsequence ;1; 11 occurs more often in the ballots sampled from the Mallows than any
other subsequence p;py; for [# i+ 1.

Suppose that a partial sequence has been sampled from a Mallows distribution via the
pairwise sampling process described above, and that the order of every candidate apart from
some candidate p; has been fixed with respect to every other. The order of p; with respect
to every other candidate will now be sampled. Suppose there exist exactly y candidates p;
such that either p; > p; and p; > pj or else p; > pj and p; > p; (i.e. y candidates which
lie between the py and p; in the ground truth ordering). Then the probability of sampling
the orderings for p; such that p; will immediately follow p; in the sampled ordering is given

by

ICl—y y
2| 2 (|C|i_ y)pm(l —p)Cmv (Z(p(l —p))y>

where z = p if [> ¢, and p — 1 otherwise. The intuition for this probability is that
will follow p; in the sequence if and only if they have identical pairwise orderings with
respect to all the other candidates. The first bracketed term is the probability of the two
candidates having identical pairwise orderings over the set of candidates that lie in front of
or behind both of them in the ground truth. The second bracketed term is the probability
of them having identical pairwise orderings over the set of candidates that lie in between
them in the ground truth ordering. z is the probability that y; follows p;. The summations
in this expression have closed forms, and so the probability can be simplified to

z- (1= 2p+2p° — p*)€v(2p — 2p?)
Note that if
(1—2p+2p* —p*) > (2p — 2p°)
then this equation is maximized when y = 0, and when z = p. However, the equation

(1—4p+4p*—p°) =0

has only one real root, at p = 1, and has value 1 at p = 0. Therefore, for all permitted
values of p, the equation is maximized when y = 0 and z = p. This occurs for exactly one

206

candidate, p;1;1 (the only candidate both adjacent to and following y; in the ground truth
ordering).

An identical argument can be used when k£ > 1. In this case, an the sequence of interest
is X = pi_gr1pt;. Again, the goal is to show that p,;; will be sampled as a completion
of this sequence more often than any other candidate,in expectation. Once again, assume
that a partial sequence has already been sampled that contains X, but that has not yet
defined any pairwise relationships for some candidate p;. The probability of sampling the
pairwise relationships for y; such that y; is placed immediately after X is then

ICl—y—IX]

X Z (|C| YT ‘X’>p2i(1 — p)H(Cl-y=IxXI=) (i(p(l - p))y>

i=0 Jj=0

Here z = pif [> 4, and 1 —p if [< i — k + 1 (note that one of these must be
true). Although the quantities have changed slightly, the closed forms for the bracketed
expressions are identical:

(1= 2p + 2p? — p?) v (2p — 2p?)

so the probability is again maximized when y = 0, and when z = p. Once again, this
occurs only when p; = p;11. O]

Theorem 6. Let M be a Random Utility Model where the utility of candidate c¢; is dis-
tributed as a Gaussian with mean n; € 17, and standard deviation o, subject to the constraint
that n; # n; for all candidates c; # c;. The set of means 1] induce a ranking over the can-
didates pi = py, ..., pyc|, such that if p; = ¢; and p = ¢, and @ < I, then n; > n. As
the number of sample rankings drawn from M goes to infinity, the most probable sequence
MPS\c|(T) of a restricted Markov Tree T' of order k trained on the drawn rankings con-
verges to p.

Proof. The proof proceeds by induction. First, consider the distribution of first preferences
among rankings drawn from M. For any p; # 1, the amount by which the subjective utility
of ;1 exceeds the subjective utility of y; during the generation of a particular ranking is a
random variable distributed as N (n; — n;, 20). Since, by definition, 7; > 7, this amount is
always positive in expectation, so M PS1(T') will converge to 1; with infinite data.

Now, suppose that M PS;(T) = p1;,¥0 < j < j+ 1. It will be shown that M PS;1(T) =
fir1. All gy # pjqq that have not yet been fixed in M PS;(T") have the property n, < 7;41.

207

If j+1 < k, then the amount by which the subjective utility of y;4, exceeds the subjective
utility of y; during the generation of a particular ranking is a random variable distributed
as N(nj+1 — m,20), always positive in expectation. O

An interesting implication of both results is that a Markov Tree of any order k£ > 1 will
eventually converge so that its most probable sequence matches the centroid of a Mallows
or the induced ranking of a RUM, although potentially large amounts of data will be
required if there are many candidates involved because the proofs assume infinite data.
In the Mallows model for example, with finite data there will be some probability that a
candidate other than the correct one appears after some subsequences of the MPS more
often than the correct one. If there are many candidates, then the probability that all
such candidates appear less often than the correct one will be small for small amounts of
data. The amount of data needed corresponds to the convergence rate estimated earlier in
the chapter, but cannot be determined analytically, because computing the marginals of a
Mallows distribution given some evidence is # P-Hard | , |.

7.5 Convergence to Artificial Distributions

The parameter £ in the Markov Tree model, which represents the length of the sub-sequence
that is used as the basis for imputation, provides explicit control over complexity (i.e. the
number of parameters, and the amount of training data needed). As such it is expected
that increasing k& will allow the model to fit data more precisely, but will also increase the
potential for overfitting. In general this parameter must be set according to the difficulty
and size of the problem under consideration, but assessing the impact of the parameter on
the model in advance will facilitate the configuration of the model in subsequent experi-
ments, and may also provide insights for future practitioners.

To evaluate the impact of k, a number of experiments were performed on synthetic
data generated from Mallows Models and RUMs. These experiments used the artificial
data generation capabilities of the Prefmine experimental testbed, described in Chapter 6.

Figures 7.4- 7.12 show the Kendall Correlations between the centroid of a Mallows
distribution, and the MPS of Markov Trees trained on samples drawn from the distribution.
Each point is the average of 400 trees of the same depth, trained on the same number of
points drawn from different Mallows models. The horizontal axis shows the number of
data points that were drawn (logarithmic scale), and the vertical axis shows the Kendall
Correlation. Error bars are not shown, but the largest 95% confidence intervals would have
a width of 0.001, which would not visible on the graphs in any case.

208

Figures 7.4, 7.5 and 7.6 show the convergence results for Mallows distributions with 5
candidates, and e=® = 0.5, 0.65, and 0.8 respectively. Each graph shows the convergence
for four different values of k (1,2,3, and 4), starting with just 10 sequences drawn, and
ending with a thousand or more after all or most of the models have fully converged. The
figures are best viewed in colour. Figure 7.4 shows a very rapid convergence for all of
the models when ballots are drawn from a fairly homogeneous population with a small
number of candidates. Simpler models perform less well when there is insufficient data,
but converge faster (likely because they have fewer parameters, and because they are able
to sample more ballots per sequence). Figure 7.5 shows a similar trend when the ballots
are less homogeneous, though more data is required for convergence, and simpler models
do not converge as quickly as before. The trend is brought to its logical conclusion in
Figure 7.6, where even more data is required for the convergence of the simpler models,
and their convergence rates are even slower. However, a clear trend toward convergence is
present even in the simplest (i.e. first and second) order models, bearing out the findings
in Theorem 5.

Figures 7.7-7.9 display the convergence results for ballots sampled from Mallows dis-
tributions with ten candidates instead of 5, for the same parameter settings of e~ as in
the previous three figures. Five different model depths (1-5) are used. Convergence is
much like the cases with 5 candidates. When the dispersion is low (0.5) convergence oc-
curs rapidly. Simple models converge faster, but have lower initial performance than more
complex models. When dispersion is higher and the sampled preferences are thus more
heterogeneous, as in Figure 7.9, convergence is slower, and the difference in convergence
rates is smaller. Also notable in this figure a non-monotonic improvement in performance
for the two simplest models considered. This trend is observed much more often when even
larger values of |C| are used, and explanations are offered alongside those results.

Figures 7.10-7.12 show similar convergence results when 20 candidates are used. Here
models of depth 1,2,3 and 5 are used as in the earlier experiments, as well as much deeper
models (19 in the experiments with e=® = 0.5, 10 in the others). In the simplest case with
the most homogeneous preferences, the models appear to converge at rates more akin to
the more difficult cases with 10 candidates. It is interesting to note that model depths
beyond 5 do not appear to have any meaningful impact on the convergence rates of the
model, and even the model of depth 3 appears nearly indistinguishable from these much
more complex models. As in the other experiments, the two simplest models started out
weakest, but also appear to learn faster than the others. The results for less homogeneous
preferences are more surprising. In both sets, the three simpler (i.e. lowest depth) models
actually experience performance degradation as more data is added initially, up to a point
after which they appear to converge very rapidly, actually reaching the correct MPS before

209

Convergence to Centroid of Mallows, |C| = 5, Phi = 0.5

AW N =

0.875 .

0.75 .

Kendall Correlation

0.625

0.5
25 5 7.5 10

Draws (log2 scale)

Figure 7.4: Convergence of M PS|¢|(T) of Markov Trees of different depths to the centroid of a
Mallows distribution with |C] = 5 and e~® = 0.5 as more data is drawn from the Mallows.

the more complex models. One possible explanation for this behaviour is that when few
ballots are drawn, short sub-sequences are unlikely to appear more than once unless they
are correct. However, since the ballots have many possible errors, as more ballots are drawn,
there are 20 — k possible candidates that might precede the correct one at the end of each
portion of the MPS, and the probability that the correct one appears more often then all
of the others in the sample is low, even though is expected to appear more often than
any individual sequence (i.e. suppose that the probability of the correct ending appearing
more often than a particular incorrect one is . Then the probability of appearing more
often than all other endings is something more like (1 — a)/“/=* though o may improve
rapidly as more data is drawn). More complex models may avoid this problem because the
probability of longer sequences that are incorrect being preserved is exponentially lower
than that of shorter sequences. Note that some of the graphs do not run until complete
convergence. This is because the larger models can be very time consuming to generate

210

Convergence to Centroid of Mallows, |C| =5, Phi = 0.65

1 .] e 1
. ° ‘ e 2
3
P L)
e 4
S 0.75 .
=
.
6 .
O 0.5] ®
=
G
o .
c
L]
X 0.25
0
3 6 9 12

Draws (log2 scale)

Figure 7.5: Convergence of M PS|¢|(T) of Markov Trees of different depths to the centroid of a
Mallows distribution with |C] = 5 and e~® = 0.65 as more data is drawn from the Mallows.

data for, since the data generation algorithm used is quadratic in the number of candidates.

Finally, Figures 7.13-7.15 show similar convergence result for data sampled from random
utility models with different numbers of candidates. As before, the number of rankings
is shown in a log scale on the horizontal axis, and the Kendall correlation between the
ground-truth ranking and the MPS of various Markov Tree models is shown on the vertical
axis. Different lines show the convergence of models of different depths. Convergence
appears very similar to the Mallows results, validating the results of Theorem 6 as well.

On the basis of these convergence results, it seems reasonable to suggest a model
depth of 3 for use by practitioners with fewer than 10 or 15 candidates. In all experiments,
moving to models that were significantly deeper than this does not appear to provide a
very substantial advantage (especially considering the much larger number of parameters,
and the much larger memory requirements that can accompany this). Although simpler
models (k = 1, k = 2) appear to make better use of the data and converge faster in some

211

Convergence to Centroid of Mallows, |C| =5, Phi = 0.80

1 . e 1
™ e 2
3
.
e 4
g 0.75) o
=
e L]
o
)
O 0.5 . .
=
3 : :
c °
q) []
X 0.25 8 .
[]
0
4 8 12 16

Draws (log2 scale)

Figure 7.6: Convergence of M PS||(T') of Markov Trees of different depths to the centroid of a
Mallows distribution with |C] = 5 and e~® = 0.8 as more data is drawn from the Mallows.

conditions, they also have much worse performance than a model of depth 3 when the
amount of data available is too small. To confirm this, a few trial runs were made with
models of different depths on problems generated from each of the Debian and Irish datasets
from Preflib | , |. The performance gain for increasing model depth
beyond 3 was non-existant for all sets except Debian Logo, a result discussed in detail in

the next section.

7.6 Empirical Results

To evaluate Restricted Markov Trees’ potential as an imputation method for social choice
with partial information, a replication of the experiment design used in Chapter 5 was
performed, using the Prefmine system described in Chapter 6. As before, the model was run

212

Convergence to Centroid of Mallows, |C| =10, Phi = 0.5

A 1
.,.o-// e 2
H 3
L]
e 4
.5 0.75 s . J
)
©
— []
(]
= .
8 0.5
= .
©
e
c
LH)
X 0.25
0
25 5 75 10

Draws (log2 scale)

Figure 7.7: Convergence of M PS||(T) of Markov Trees of different depths to the centroid of a
Mallows distribution with |C] = 10 and e~® = 0.5 as more data is drawn from the Mallows.

on each of four voting rules (K-Approval, Borda, Copeland, and Veto), and as before
performance was measured in terms of the Single Winner Error, Kendall correlation with
ground-truth ranking, and First Error Location measurements. For each of the Debian sets,
1,600 problem instances were generated by ablating the complete ballots from each set of
electoral data in a fashion that was consistent with the distribution of missing information
in the original ballots. 1,600 instances were also generated for the Dublin West set, but
only 550 instances for Dublin North, and 100 instances for the Meath set, because of the
large number of candidates which made certain parts of the system slower (for instance, the
implementation of the Copeland rule scales quadratically in the number of candidates).
A model depth of k = 3 was used for all experiments, as well as a uniform Dirchlet prior
for the multinomial distributions at each node in the tree, with a single observation for
each candidate. Results are presented in two forms. Tables are used to show the exact
values obtained for each performance measure on each dataset, and a statistical analysis

213

Convergence to Centroid of Mallows, |C| =10, Phi = 0.65

2]

1
) ¢ 2
3 : :
4
o ™
S 0.75 . s . 5
) > L]
B
= ' ‘
O
O 0.5 . L o
=
G
2 .
O
X 0.25 .
0
4 8 12 16

Draws (log2 scale)

Figure 7.8: Convergence of M PS|¢((T) of Markov Trees of different depth to the centroid of a
Mallows distribution with |C] = 10 and e~® = 0.65 as more data is drawn from the Mallows.

provides a definitive comparison between the different methods.

The mean and standard deviation of the observed performance of the Markov-Tree
model under each dataset is summarized in Tables 7.4-7.7. Table 7.4 shows performance
under the K-Approval voting rule. Notable here are a very small number of mistakes
when picking the winner on the Debian Logo, Meath, and Debian 2005 sets. In com-
parison, the logistic regression method made no errors are all under this rule, while the
two comparison methods (MMR and the random imputation method) made systematic
mistakes on one set. Kendall correlation is also very high, except under Debian Logo. A
similar pattern is present under the Borda rule results, shown in Table 7.5, where single
winner errors are again slightly more frequent than they are when using logistic regression
(though much better than the competitors), and the Kendall correlations are all very high,
except for Debian Logo, which is lower. Table 7.6 shows a similar pattern, except here
single winner performance is actually rather better than logistic regression, which made

214

Convergence to Centroid of Mallows, |C| =10, Phi = 0.8

[

0.75

0.5

Kendall Correlation

0.25

4 8 12 16

Draws (log2 scale)

Figure 7.9: Convergence of M PS||(T) of Markov Trees of different depths to the centroid of a
Mallows distribution with |C] = 10 and e~® = 0.8 as more data is drawn from the Mallows.

some substantial mistakes under this rule, particularly on the Meath set. Again, Debian
Logo has the lowest Kendall correlation by a significant margin, lower even than the values
of sets that are generally harder, like the three Irish sets. Results under Veto, shown in
Table 7.7, preserve this pattern, with a small advantage in single winner performance, and
generally strong Kendall correlations, except for Debian Logo. Although Meath has lower
Kendall correlation here than Debian Logo, Meath is also a much harder dataset (i.e. more
candidates, greater missingness, and lower worst-case performance possible, as summarized
in Chapter 5).

As in Chapter 5, a statistical analysis was performed to determine whether there was
a general advantage to using the Markov Tree models instead of the earlier logistic regres-
sion models, or either of the two competitors (minimax regret and the random imputation
model). For each measurement (Single Winner Error, Kendall correlation, and First Error
Location), an analysis of variance (ANOVA) was performed over data from the Markov

215

Convergence to Centroid of Mallows, |C| = 20, Phi=0.5

1 H .

o 1
= . * e 2
. L ! 3
. e 5

c
:'9‘: 0.75 . . 19
©
~ .
1] .
5
O 0.5 -
=
3 v
c
L]
X 0.25

0

4 8 12 16

Draws (log2 scale)

Figure 7.10: Convergence of M PS|c|(T') of Markov Trees of different depths to the centroid of a
Mallows distribution with |C] = 20 and e® = 0.5 as more data is drawn from the Mallows.

Tree’s runs, and the runs using logistic regression, minimax regret, and random imputa-
tions. Three factors were used: the choice of method for deciding the election, the voting
rule used, and the dataset on which the runs were performed. Additionally, interactions be-
tween all factors were considered. In the presence of the other factors (and the interaction
terms), there was a highly significant effect from the choice of method (p < 2e — 16). Fol-
lowing a detailed exposition of the statistical analyses, a figure is presented to summarize
the findings.

For the Single Winner Error measurement, the Markov-Tree method was found to
have the lowest error overall, corresponding to an advantage of 0.025-0.056 points over the
logistic regression approach, an advantage of 0.097-0.13 points over the random imputation
approach, and an advantage of 0.11-0.14 points over minimax regret (all ranges are 99.99%
confidence intervals for the mean difference in performance across all datasets and all
voting rules). These values correspond to picking the correct winner instead of the second

216

Convergence to Learned Centroid of Mallows, |C| = 20, Phi=0.65

1
e 2
® . 3
L L]
5
c . . .
:.9.: 0.75 . e T * . 10
3
t L]
8 0.5
»
= .
3 *
c
L] .
X 0.25
L]
0
5 10 15 20

Draws (log2 scale)

Figure 7.11: Convergence of M PS|c|(T) of Markov Trees of different depths to the centroid of a
Mallows distribution with |C] = 20 and e® = 0.65 as more data is drawn from the Mallows.

place candidate about 1 in 25 elections more often than the logistic regression approach,
1 in 10 elections more often than the random approach, and 1 in 8 elections more often
than MMR. In terms of the results on individual voting rules, under K-Approval the
Markov Tree approach does slightly worse than logistic regression, with 99% confidence
interval of 0.0066-0.013, making its performance identical to that of random or MMR.
Under Borda it’s 0.16-0.18 points better than MMR, 0.15-0.17 better than the random
random method, but 0.026-0.034 worse than using logistic regression. Under Copeland
the Markov Tree approach comes into its own, with an advantage of 0.037-0.051 points over
logistic regression, 0.015-0.026 points over MMR, and 0.038-0.050 over the random random
approach. Finally, under Veto the Markov Tree approach has a very large advantage of
0.13-0.18 over logistic regression, 0.29-0.34 over MMR, and a modest advantage of 0.022-
0.026 over the random approach. In addition to besting the other methods overall, it is
interesting to note the largest advantage for the Markov Tree approach in picking the winner

217

Convergence to Learned Centroid of Mallows, |C| = 20, Phi=0.8

0.8 o 1
e 2
3
5
c . ¢
;‘_9-_, 0.6 . : . . 10
s — :
[}]
5
O 04 -
= ™
3 - b
c
L) . .
X 0.2 ®
[]
® ®
0
0 4 8 12 16

Draws (log2 scale)

Figure 7.12: Convergence of M PS|c|(T') of Markov Trees of different depths to the centroid of a
Mallows distribution with |C] = 20 and e® = 0.8 as more data is drawn from the Mallows.

of the election is to be found under the harder Copeland and Veto rules, which are less
forgiving of errors in imputed ballots than Borda or K-Approval are. To impute ballots
correctly under Veto, the Markov Tree approach needs to correctly impute all of the missing
information. Note also that although the absolute magnitude of the advantage for using the
Marove Tree approach may seem small (only about 4% of a point over the logistic regression
approach, for instance), this is actually a rather large fraction of the potential improvement.
The comparison methods all have reasonably high average performance already, with the
logistic regression approach having a mean Single Winner Error of just 0.22 per run. An
advantage of 0.04 points is thus 18% of the maximum possible improvement, a significant
gain.

Results in terms of the Markov Tree’s ability to recover the entire sequence have a
very interesting component in the form of the Debian Logo set. As noted earlier, the
Kendall correlation of the model on the Logo set is consistently worse than on other sets.

218

Correlation with Learned Centroid of RUMs
with 5 Alternatives

s 1
o 2
. 3
c: s 4
o) 0.875 :
] . * 5
V] ®
.-63 L]
S .
O 0.75
= o
]
"{3 []
% 0.625
N .
.
0.5
2 4 5] 8

Draws (log2 scale)

Figure 7.13: Convergence of M PS|¢|(T) to the induced ranking of a RUM with 5 candidates.
Number of rankings drawn increases along the x-axis, while the y axis shows the normalized
Kendall-Tau distance between the M PS and the induced ranking. Different lines correspond to
different values of k£ (i.e. model depth) for the Restricted Markov Tree.

Reasons for this will be discussed at the end of the section. When Debian Logo is included
in the analysis, the Markov Tree approach scores 1.8%-2.6% better than MMR but is
worse than the random and logistic regression approaches overall by 1.2%-1.9% 0.9%-1.6%
respectively (all reported ranges are 99.99% confidence intervals for the mean difference
over all datasets and voting rules). Under K-Approval, performance is 0.5%-1.4% worse
than logistic regression, 3.2%-3.9% worse than random, and even 0.32%-0.4% worse than
MMR, an astonishingly poor performance. Under Borda the Markov Tree approach is
about 1% worse than all three competing methods. Under Copeland however the model
does a bit better than all three competitors, outperforming logistic regression by 0.02%-
1%, MMR by 10%-12%, and the random imputation approach by 0.36%-0.65%. Finally,

219

Correlation with Learned Centroid of RUMs
with 10 Alternatives

e 1
s 2
H 3
S 0.9 2 © 4
> | : . . s
m []
o
L
g L] L]
O 0.8
S— []
— .
G
o
% 0.7
AV ' . °
0.6 »
2.5 5 7.5 10

Figure 7.14: Convergence of M PS|¢|(T) to the induced ranking of a RUM with 10 candidates.
Formatting is identical to Figure 7.13.

under Veto the method again does worse than the random imputation approach by 0.62%-
2.4%, worse than the logistic regression approach by 2.2%-4.2%, and better than MMR by
1%-3%. This is a somewhat surprising result, as one might intuitively expect the Markov
Tree approach to do better than the classifier approach in terms of recovering the entire
sequence. Most advantage for competing approaches seems to be from the K-Approval
rule, while the Markov Tree approach actually performs best of all on Copeland, which
is a harder rule as demonstrated by MMR’s very poor performance.

Important for later discussion is the finding that if the results for Debian Logo are
omitted from the analysis, the Markov Model instead comes within a mean value of 0.002
(i.e. 0.2%) of the random imputation and logistic regression models overall. Although
this difference is still statistically significant, it is extremely small, corresponding to a
difference of about one extra inversion in the order of adjacent candidates over every
five runs on datasets with 14 candidates, and an even smaller effect on sets with fewer

220

Correlation with Learned Centroid of RUMs
with 20 Alternatives

s]
s 2
o 3
c : 4
]
O 0.875 3 .
=S * e
0 ®
‘-\6 L
- .
&)
O 0.75
:: . L]
1]
‘c .
% 0.625
N .
[]
0.5
2 4 51 8

Draws (log2 scale)

Figure 7.15: Convergence of M PS|¢|(T') to the induced ranking of a RUM with 20 candidates.
Formatting is identical to Figure 7.13.

candidates. This suggests that apart from the Debian Logo set, the Markov Tree
approach has substantially better performance when selecting the winner of the
election, and essentially identical performance to the best performing methods
when ordering the candidates overall, and should therefore be preferred if the poor
performance on Logo can be explained. Figure 7.16 provides a visual summary of these
conclusions, showing performance measures averaged across all datasets except Debian
Logo, and all voting rules.

Interestingly, there is a plausible explanation for why performance was lower on the
Debian Logo set than on the others. While for all other sets, decreasing or increasing k
from 3 reduced overall performance on the provided data, this was not true on the Debian
Logo set. On Debian Logo performance increases as k is increased up to 3, but then
continues increasing (slowly) with & until reaching a Kendall correlation of 0.89 at k = 6,

221

| First Error | Single Winner | T | |C] | % Missing

Debian 2002 | 4.00 = 0.00 | 0.00 £ 0.00 1.00£0.00 | 4 11.9
Debian 2003 | 5.00 +0.00 | 0.00 £ 0.00 1.00£0.00 | 5 13.6
Debian 2005 | 6.89 +£0.80 | 0.02£0.12 1.00£0.01 | 7 15.5
Debian 2006 | 6.90 £1.34 | 0.00£0.00 | 0.974+0.04| 8 14.8
Debian 2007 | 2.73+£1.84 | 0.00£0.00 |0904+0.04| 9 19.1
Debian 2010 | 5.00£0.00 | 0.00£0.00 | 1.00+0.00 | 5 11.0
Debian 2012 | 4.00 = 0.00 | 0.00 £ 0.00 1.00£0.00 | 4 13.2
Debian Logo | 2.24 +0.85 0.07 £ 0.26 0.71+0.11 | 8 40.0
Dublin North | 4.024+0.17 | 0.00+0.00 | 0.89£0.02 | 12 58.5
Dublin West | 2.51 £1.02 | 0.004+0.00 |0.82+£0.09 | 9 50.8

Meath 2.80 £0.55 0.08 =£0.31 0.82£0.04 | 14 66.8

Table 7.4: Table showing the mean First Error Location, Single Winner Error, and Kendall
correlation for a Markov Tree of order 3, averaged across many runs on each of ten different
datasets under the K-Approval voting rule. The ranges shown with + are the sample
standard deviations for these performance measures. The number of candidates in the
election, and the percentage of data that is missing are also shown for reference.

after which it falls slightly to a correlation of 0.85 for the full tree, which has depth equal to
the number of candidates (this final fluctuation maybe random). This is suggests that the
sequences in the Debian Logo set cannot be embedded in a smaller dimensional space very
readily: to predict the next candidate in a sequence, all preceding candidates are required.
A probable reason for this is because the candidates in this contest are potential logos
for the Debian project, and could be ordered on any number of different axes depending
on the subjective tastes of the electorate. For example, while it is easy to believe that
in political contests the electorate might agree on a 1 or 2 dimensional embedding of the
candidates, it is not at all clear what it would mean for voters to agree that ‘Vase’ is to the
left of ‘Spiral’ (two example candidates, shown in Figure 7.17. Thus, it is to be expected
that the Markov Tree would struggle with learning the order of candidates on this set.
In contrast, political contests like the other Debian sets and the Irish sets, tend to have
relatively low-order embedding, as candidates differentiate themselves on a small number
of issues, in a fairly clear fashion. This explains the high performance of our model on
those sets. This affirms the idea that the dimensionality of voters’ collective preferences
should guide practitioner’s parameterization of the Markov Tree approach. For example, if
the preferences of the Martian mining companies are thought to be related to the position

222

| First Error | Single Winner | T | |C] | % Missing

Debian 2002 | 4.00 & 0.00 | 0.00 £ 0.00 1.00£0.00 | 4 11.9
Debian 2003 | 5.00 £ 0.00 | 0.00 £ 0.00 1.00£0.00 | 5 13.6
Debian 2005 | 6.12+1.90 | 0.00 £ 0.02 0.98£0.04 | 7 15.5
Debian 2006 | 6.82+£2.34 | 0.00£0.00 |0.98+0.03 | 8 14.8
Debian 2007 | 5.34 £3.87 | 045£0.56 |097+0.04| 9 19.1
Debian 2010 | 5.00£0.00 | 0.00£0.00 | 1.00+0.00 | 5 11.0
Debian 2012 | 4.00 & 0.00 | 0.00 £ 0.00 1.00£0.00 | 4 13.2
Debian Logo | 2.774+1.30 | 0.00£0.06 |0.794+0.10 | 8 40.0
Dublin North | 4.20 £0.48 | 0.00+0.00 | 0.88£0.04 | 12 58.5
Dublin West | 2.35£1.51 | 0.00+0.00 |0.93+£0.03| 9 50.8

Meath 2.05£0.38 0.01 £0.10 0.84£0.04 | 14 66.8

Table 7.5: Table showing the mean First Error Location, Single Winner Error, and Kendall
correlation for a Markov Tree of order 3, averaged across many runs on each of ten different
datasets under the Borda voting rule. The ranges shown with 4+ are the sample standard
deviations for these performance measures. The number of candidates in the election, and
the percentage of data that is missing are also shown for reference.

of each mining site (a 2-dimensional property) and the quality of the site (a 1 dimensional
property, say), it would be reasonable to consider a model that uses at least k = 3.

7.6.1 Bias

An interesting property of the Markov Tree approach is that it has a built-in way to
mitigate the problems of bias against less popular candidates, via the choice of prior. In
the experiments used in this chapter, the prior was always uniform, and used just one
sample per candidate. However, if bias is a concern, then a stronger prior, with more
observations per candidate could be used to reduce the impact of observing lots of data.

7.7 Summary

This chapter proposed a new machine learning algorithm for use imputing the preferences
of voters. The algorithm is based on the idea of learning restricted Markov Trees from

223

| | First Error | Single Winner | T | |C] | % Missing

Debian 2002 | 4.00 = 0.00 | 0.00 £ 0.00 1.00£0.00 | 4 11.9
Debian 2003 | 4.85+0.75 | 0.04£0.19 |098+£0.11| 5 13.6
Debian 2005 | 6.97£0.39 | 0.00£0.07 | 1.00+£0.01 | 7 15.5
Debian 2006 | 6.92+1.00 | 0.00£0.00 | 0.96+0.04| 8 14.8
Debian 2007 | 6.49+2.00 | 0.00£0.00 |0.954+0.05| 9 19.1
Debian 2010 | 5.00£0.00 | 0.00£0.00 | 1.00+0.00 | 5 11.0
Debian 2012 | 4.00 = 0.00 | 0.00 £ 0.00 1.00£0.00 | 4 13.2
Debian Logo | 4.90£0.80 | 0.00£0.00 | 0.68+0.09 | 8 40.0
Dublin North | 5.70 £3.01 | 0.02+0.13 | 0.91£0.06 | 12 58.5
Dublin West | 4.25£2.06 | 0524+049 |0.84+£0.10| 9 50.8

Meath 2294139 | 0.2940.45 0.84£0.04 | 14 66.8

Table 7.6: Table showing the mean First Error Location, Single Winner Error, and Kendall
correlation for a Markov Tree of order 3, averaged across many runs on each of ten different
datasets under the Copeland voting rule. The ranges shown with + are the sample
standard deviations for these performance measures. The number of candidates in the
election, and the percentage of data that is missing are also shown for reference.

data, and is able to efficiently learn the preferences of voters from data, provided that
voters collectively view the candidates as embedded in a low dimensional space. The
proposed implementation of the model uses lazy expansion of the tree and hash maps
to minimize memory usage and maximize speed. The algorithm is also straightforward
to run in parallel. The proposed model has a theoretically bounded convergence rate,
and was shown to converge to the central rankings of Mallows and RUM distributions
when provided with enough preferences sampled from such a distribution. The model was
empirically shown to perform better in terms of deciding the outcome of the election (i.e.
Single Winner Error) than any competing approach, but was less good at recovering the
entire ordering of candidates. The reason for this was demonstrated to be the result of
one of the datasets involved (Debian Logo) not having a low-dimensional embedding of
the candidates. It is therefore reasonable to conclude that the Markov Tree learner should
be preferred to competing approaches provided the candidates can be embedded in a low
dimensional space.

224

| | First Error | Single Winner | T | |C] | % Missing

Debian 2002 | 4.00 £0.00 | 0.00 £ 0.00 1.00 £0.00 | 4 11.9
Debian 2003 | 3.55+1.92 | 0.30£042 |093+£0.10| 5 13.6
Debian 2005 | 1.77+1.19 | 0.83+1.10 |0.75£0.13| 7 15.5
Debian 2006 | 2.01 +1.67 | 0.74 4+ 0.80 0.82+0.10 | 8 14.8
Debian 2007 | 2.08 & 1.53 0.78 £1.05 0.79£0.10 | 9 19.1
Debian 2010 | 4.34 +1.49 0.13 £0.31 0.97£0.07 | 5 11.0
Debian 2012 | 4.00 £0.00 | 0.00 £ 0.00 1.00 £0.00 | 4 13.2
Debian Logo | 1.15 4 0.50 2.23+1.65 0.43+0.18 | 8 40.0
Dublin North | 2.82+£1.09 | 0.18 £0.49 0.49 £0.09 | 12 58.5
Dublin West | 1.98£0.46 | 0.124+0.36 |0.49+0.11| 9 50.8

Meath 1.00 £ 0.00 5.03£1.57]041+£0.09 | 14 66.8

Table 7.7: Table showing the mean First Error Location, Single Winner Error, and Kendall
correlation for a Markov Tree of order 3, averaged across many runs on each of ten different
datasets under the Veto voting rule. The ranges shown with + are the sample standard
deviations for these performance measures. The number of candidates in the election, and
the percentage of data that is missing are also shown for reference.

225

Mean Single Winner Errors for the Markov Tree Learner

B Markov Tree
B Logres
® MMR
a 02 B Random
g— B Worst
o
4
[
>
£
v -04
o
c
]
el
a
o
a
£os
=
2
=2
=
[}
& -08
[}
=
-1
Markov Tree Logres MMR Random Waorst
Method
Mean Kendall Correlation for the Markov Tree Learner
1
B Markov Tree
B Logres
® MMR
0.95 B Random
B Worst
0.9

Kendall Correlation
o
@
o

o
@

0.

o
o

Marlkov Tree Logres MMR

Worst

Random

Method

Figure 7.16: Summary of performance for the Markov Tree Learner compared with three
competitors and the worst case model. (Top): Single Winner Error (inverse scale). Higher
values indicate better performance, 0 is the best possible. (Bottom): Kendall Correlation.
Higher values indicate better performance, 1 is the best possible.

226

Proposed Debian Official logo Prmco Debsan Open Use logo

L Y SHSEP O

DEBIAN/GNU W
LIN O : Lot) L] ol e

1 ®:0

oficial debian's sal ol approvall forRoemi vt Debian GNU/Linux

®
L

Figure 7.17: The candidate logos from the Debian Logo election. The logos are quite
different from each other, and it is not at all clear how candidates might collectively view
them within the same space. Logos were recovered from the Debian project’s website:
https://www.debian.org/vote/1999/vote_0004.

227

https://www.debian.org/vote/1999/vote_0004

Chapter 8

Axiomatic Analysis

If we exclude the possibility of interpersonal comparisons of
utility, then the only methods of passing from individual tastes
to social preferences which will be satisfactory and which will
be defined for a wide range of sets of individual orderings are
either imposed or dictatorial.

Kenneth Arrow [2012]

As established in previous chapters, one can view imputation-based social choice meth-
ods, which are compositions of imputation algorithms and conventional social choice func-
tions, as “black-box” social choice functions for use in deciding elections with partial ballots,
that is, as social choice functions that map from a set of partial ballots to an outcome.
Knowing that such techniques are social choice functions gives rise to the question of
whether they are fair social choice functions. That is, whether the decisions they make are
typically (or consistently) representative of the will of the electorate.

Chapters 2 discussed prior work characterizing the “fairness” of different electoral sys-
tems using an axiomatic approach. Axiomatic approaches begin by specifying a set of
mathematically rigorous properties that would seem to be required to make an electoral
system fair. The fairness of a particular system can then be expressed as the extent to
which it is capable of upholding the axioms in question, especially as compared to other
systems of interest. There are three significant sets of axioms to consider. First, Arrow’s
axioms constitute a minimal set of criteria which any sensible electoral system should
satisfy. Namely (and informally):

228

1. Non-Dictatorship: The outcome must depend on at least two voters’ preferences

2. Non-Imposition: For any number of voters, there exists some set of ballots that voters
could submit to produce any particular outcome®.

3. Monotonicity: If a voter moves a candidate X higher in their (complete) ballot, then
X’s overall position cannot worsen in the outcome.

4. Universality: Any (complete) ordering of the candidates must be an acceptable ballot
for any voter to cast.

5. Independence of Irrelevant Alternatives: The position of candidate Z on a ballot
must not affect the relative ordering of candidates X and Y in the outcome.

The closely related Gibbard-Satterthwaite Axioms are similarly meant to constitute a
minimal set of requirements for any voting system when voters behave strategically. They
are Axioms 1 and 2 of Arrow’s set above, along with

6. Strategy-Proofness: No voter can bring about a more-preferred outcome by reporting
a (complete) ordering of the candidates that differs from their true preferences.

The proofs of both the Gibbard-Satterthwaite and Arrow’s theorems, which show that
the sets of axioms proposed by the authors in question are mutually incompatible, assume
that voters have all specified complete preference information. That is, the voting systems
considered by these theories assume that a ballot is a complete linear ordering of the set of
alternatives. It is not immediately obvious that a system operating on incomplete prefer-
ences should be subject to these constraints, and indeed, the question was not considered
in full detail until rather recently. In a generalization of Arrow’s theorem, [2009]
show that allowing both the votes and the outcomes to be selected from the space of partial
orders over the candidates does not provide a circumvention of Arrow’s theorem. A similar
result by [| shows that the Gibbard-Satterthwaite theorem holds under even
very weak orders over the candidates, including a system where ballots consist of just a
Top-2 ordering.

! Arrow’s theorem can be expressed using two different sets of axioms. The set in Chapter 2 included
the Unanimity axiom. Here, Non-Imposition and Monotonicity are used. A method that satisfies both of
these and I.I.A. will always also satisfy Unanimity. The larger set of axioms is used here because it has a
more natural mapping to the axioms defined for imputation rules later in this section.

229

In addition to considering fairness criteria for complete ballot systems in a partial ballot
context, one might reasonably suppose that there exist properties important only (or at
least, primarily) to the fairness of electoral systems that operate over partial ballots, and
not to the fairness of systems that utilize complete ballots. Woodall’s axioms | ,

| , | serve this purpose by considering a number of specialized monotonic-
ity properties focused on top ordered preferences. These criteria are important particularly
in the context of voting systems like the popular Single Transferable Vote, which do
not satisfy Arrow’s montonicity in general, but which do satisfy many important sub-
types of monotonicity. Many of the imputation algorithms considered in this thesis can
respond to preferences in a non-monotonic fashion, so extensions of Woodall’s axioms may
be important when comparing them.

Finally, an important question, explored later in this chapter, follows from past work
combining either several voting rules together or several classifiers together. Both efforts
have led to the surprising result that combinations can be more (or less) than the sum
of their parts. In the voting context [2012] and
| | show that combinations of voting rules that are not computationally strategyproof
(i.e. in which computing a strategic ballot requires a polynomial number of operations) can
yield voting rules that are difficult to manipulate. In the learning context, meta-classifiers
like Boosting |) | and Bootstrap Aggregation |) |
techniques rely on the insight that averaging the outputs of many simple classifiers trained
with the same algorithm, but with different subsamples of the input data, can provide
better performance than training a single (complex) classifier on the input data as given.
Such meta-classification approaches can even be used to combine disparate classifiers that
have been trained on entirely separate views of the same data | , |-

In all of these works, combinations of voting systems or combinations of classifiers al-
lowed for systems which exhibited properties beyond those of the individual components. It
is therefore natural to suppose that combinations of voting systems and classifiers can pro-
duce the same result. For instance, combining a certain imputation system with any voting
rule might yield a joint system that will not satisfy Arrow’s monotonicity requirements.
Alternatively, perhaps systems that are computationally vulnerable to manipulation could
be protected by combining them with a more complex or stochastic machine learning al-
gorithm. General questions of this nature are considered near the end of the chapter.

230

8.1 Formal Problem Statement

This chapter is concerned with electoral systems that decide the outcome of partial ballot
elections. It does not assume any particular underlying model for the production of these
ballots.

A partial ballot election consists of a set of ballots (votes) V' belonging to a set of
voters A and a set of candidates C'. Each voter casts a single ballot, and the ballot of voter
A; is denoted by b; € B. Importantly, the way in which ties are broken can be pivotal
in axiomatic analysis. In this chapter, it is assumed that ties are broken using a unique,
lexicographic ordering over C', such that candidates appearing earlier in the order win ties
over those who appear later in the order.

A ballot takes the form of a top order over C, rather than a total order or a partial
order. This is done both to simplify analysis, and because the data used in the empirical
validations of earlier chapters came in the form of top orders. A top order is defined as a
tuple (L, G, C), where C is the set of candidates that could appear in the order, G C C
is the ground set, the set of candidates that do appear in the order, and L is a linear
order over the ground set G. L is treated as both a binary relation over G (e.g. zLy
means z precedes y in L), and as a list to which items may be appended (an appended
candidate ¢ comes after every candidate that was defined in the original ordering). The
set of permissible ballots is defined recursively, where 7(C); is the set of all ballots that
rank just one candidate, and 7 (C'); is the set of all ballots that rank exactly ¢ candidates:

T(C) = {(e, {c}, O)|e € C}

TC)yi={(L-¢,GUc,C)(L,G,C) e T(C)iysNc&€GANceC}

where L - ¢ implies concatenation of ¢ onto L. The set of permissible ballots is given by
Ui<i<io) T(C);. It is said that a candidate a precedes a candidate b on a top-ordered ballot
ifae GAbEZ G,ora e GAb€E GANaLb. For conciseness, a ballot b; is often treated as
having an associated binary relation »;, such that if aL;b or a € G; A b & G, then a >; b.

Less formally, if a candidate is in the ground set of the ordering, then the voter has
indicated that they prefer the candidate to all candidates not in the ground set, and also
to any of the other candidates in the ground set that appear after it in the linear order L.
This limits voters to specifying one or more top choices, which must be ordered relative to
each other, while leaving the remaining candidates unordered (tied) at the bottom of the
ballot.

231

A partial ballot election is decided (in this chapter) by a social choice function
S:T(C):g‘ — O, mapping the set of possible ballots the voters could collectively produce
onto the set of outcomes O. O could be either C'| if the function will only pick a winner, or
the set of all possible linear orders over C', £(C'), if the function will rank all the candidates.

The family of social choice functions considered in this chapter is comprised of pairs of
imputation methods and social choice functions for complete ballot elections. An
imputation method is a mapping I : T(C’):él‘ — L(C)Al] with the property that its output
set is a consistent extension of its input. That is, for every x,y € C, if k ballots b; € B
have = >; y, then at least k ballots b; € I(B) also rank a >; b. A social choice function
for complete ballot elections is given by S : £(C)4 — O. Tt should be apparent that
for any combination of imputation method and social choice function for complete ballots,

S(I(B)) is a social choice function for partial ballot elections.

It will occasionally be useful to write about pairs of imputation methods and social
choice functions in a way that unambiguously shows we refer to their combination, but
without reference to a set of ballots. In this case, given social choice function S and
imputation method I, S & I is used to indicate the name of the combined function that
produces S(I(B)) on a ballot set B.

8.2 Methods Under Consideration

The chapter will consider the properties of several simple imputation methods and several
common social choice functions for partial ballot elections. Some further notation is re-
quired to describe the imputation functions under consideration. First, a top-order ballot
b; = {L;,G;,C} is said to be a prefix of another top-order ballot b, = {L;, G;,C}, if and
only if G; C Gj and Va,b € G;, alL;b — alL;b. To indicate that b; is a prefix of b;, the
notation b; = b; is used, which may be read as “b; models b;”, or “b; extends b;” . Finally,
Pos(bj, x) denotes the candidate a such that for exactly = other candidates b in G;, bL;a,
that is, the candidate that is outranked by exactly = others on ballot b;.

The imputation methods that will be considered (which indicate how values will be
imputed if voters have not indicated preferences) are:

e Hot Deck Classifier: This method picks a single ballot, which is denoted b; without
loss of generality, and imputes every other ballot according to the ordering specified
by by (effectively behaving like a dictatorial voting rule). b; is imputed according

232

to the lexicographic tie-breaking order if necessary. Then every other ballot b; is
imputed as follows:

Lo - |HD({L;z,G; Uz,C}) otherwise

where

x = argmin Pos(by, j) € G;

0<5<|C]

Plurality Classifier: This method extends ballots using the most common exten-
sions found in the input set, or via the lexicographic ordering of C' if more than one
candidate is tied for the most common extension. Formally, for every ballot b; € B,
the Plurality Classifier’s output set will contain a ballot given by the recurrence:

j if . ,
PC(b; = {L;,G;,C}) = b; i Va,b'e C,a=;borb=;a
PC({L;z,G; Ux,C}) otherwise
where

x = argmax [{b;|(b; € B) A (b; |= b;) A Pos(by, |Gi]) = c}|
CEC\GZ‘

and, in the event that multiple elements of GG; are maximal, the one appearing first
in the lexicographic tie-breaking ordering over C' is selected.

Proportionate Classifier: This method extends ballots in a fashion proportionate
to the distributions of extensions found in the input set, rather than assigning all
ballots to the most common extension. Formally, let B be the multi-set of original
ballots. B can be partitioned into subsets of ballots with identical length, X; = {b; =
{L;,G;,C}b; € BN |G,| =1i}. Portions of these subsets X; can then be imputed
using particular subsets Y, as described below.

For every pair of candidates (a,b), let X, = {b; = {L;, G, C}|b; € X1 APos(b;,0) =
a},Ys, ={b; ={L;,G,;,C}b; € XoAPos(b;,0) = a}and Ys,p, = {b; = {L;,G;,C}|b; €
Y5, A Pos(b;, 1) = b}.

233

The proportionate classifier imputes the second candidate on each ballot in X; in
proportion to the fraction of extensions observed that rank each of the different can-
didates in second place. This is slightly complicated by the discrete number of ballots
that can be imputed, an issue addressed by ordering the candidates according to the
lexicographic tie-breaking order, such that ¢; € C precedes i — 1 candidates in the
order, and preferentially imputing completions that come higher in the order. More
formally, the number of ballots in X; that rate that aLc; following the imputation of
a second candidate is given by:

|}/2,a70|c|,1 | —‘

n\C\—l = ’V‘Xl,a |}/2 ’
,a

for the top candidate in the tie-breaking order, and for the others:

’}/2,0/701‘

1,0)
|Y2,a| - Z\C|>j>z‘ |Y2,a70j|

n; = max([(| Xial = Y ny)

|C|>j>i

After X, has been imputed, the Proportionate classifier proceeds to impute all third
preferences, then all fourth preferences, and so on. More formally, for imputations
of subsequent candidates, the Proportionate Classifier imputes the sets Z; = X; U
I(Z;_1), where Z; = X; in exactly the same fashion. For every ordering over i
candidates L* and every candidate b € C'\ L*, we let Z; 1« = {b; = {L;,G;,C}|b; €
Z; N Lj = L*}, }/i-i—l,L* = {bj = {Lj,Gj,CHbj € Xi—l—l N Lj = L*} and Y;—&—l,L*,b =
{b; ={L;,G;,C}bj € Yit1,- NPos(bj, i) = b}.

The Proportionate Classifier imputes Z; by ordering the candidates according to the
lexicographic tie-breaking order, such that ¢; € C' precedes ¢ candidates in the order.
The number of ballots in Z; ;- that rate that Pos(b;,i) = b following imputation is
given by:

for the top candidate in the tie-breaking order, and for the others:

1,0)

n; max(l’(l 1L n]) |}/2,L* - Z|C|>j>i |}/27L*,Cj|

|C|>5>i

234

e 1% Order Markov Tree: This is the model described in Chapter 7, with depth
parameter £ = 1. It imputes ballots according to the recurrence:

MT(b_{L el C})_ b; if‘v’a,beC’,a>iborb>ia
Lo | MT({ Lz, G;Uz,C}) otherwise

where

r = argmax |[{b;|b; € BA30 < h < |C|—1 s.t. Pos(b;, h) = Pos(b;, |G;|—1)APos(b;, h+1) = c}|
CEC\Gi

Having described the four imputation methods addressed in this chapter, it remains to
describe the set social choice functions for complete ballot elections that will be considered.
However, no concrete voting rules are analyzed, only families of rules that satisfy different
axiomatic properties. It may assist the reader’s understanding of this chapter’s notation
to see some example voting rules expressed using it however, so three are presented briefly
below:

e Plurality: The plurality winner is the candidate that appears in the highest position
on the greatest number of ballots. Formally, the plurality winner is:

Plurality(B) = argmax Z 1 iff Pos(b;,0) = ¢

ceC b;eB

e Borda: A candidate c receives x points from each ballot b; where Pos(b;, z) = ¢. The
candidate with the lowest point total across all ballots is output as the winner. More
formally, the Borda winner of an election with complete ballots B and candidate set

C is:

Borda(B) = argmax z s.t. Pos(bj,) = ¢
ce
bjeB

e Veto: A candidate ¢ receives 1 point from each ballot b; where Pos(b;, |C| — 1) # c.
The candidate with the highest point total across all ballots is output as the winner.

235

8.3 Axioms for Imputation Methods

It is possible to specify a series of axioms for imputation methods that correspond in some
respect to the axioms 1-6 for social choice functions that were given above. These axioms
will be useful for characterizing the behaviour of combinations of imputation methods and
social choice functions in general terms. Further, these axiomatic properties are more
relevant for imputation algorithms than the original set of axioms, since they concern
broader properties of the fairness of the imputation, rather than the selection of a specific
imputation (i.e. a specific outcome).

Strong Imputation Non-Dictatorship is possessed by an imputation method I if
when |B| > 3 and |C] > 3, there exists no single ballot b; € B such that Va,b € C, if b,
ranks a >; b, and there exists subsets X = {b; = {L;,G;,C}|b; € BAa & G; \Nb & G},
and Y = {b; ={L;,G;,C}bi € BANa € G; N (b¢& G;VaL;b)} such that in I(B), at least

[‘)T]'glrw + |Y'| ballots rank a > b, regardless of the constitution of the remainder of B.

Weak Imputation Non-Dictatorship is possessed by an imputation method I if
when |B| > 3 and |C] > 3, there exists no single ballot b; € B such that Va,b € C, if b,
ranks a >, b, and there exist subsets X = {b; = {L;,G;,C}|b; € BAa & G; Nb ¢ G}, and
Y ={b;={L;,G;,C}b; e BANae GA(b& G;VaL;b)} then in I(B), exactly |X|+ |Y]|
ballots rank a > b, regardless of the constitution of the remainder of B.

Weak Imputation Non-Imposition is possessed by an imputation method I if for
every pair a,b € C, there exists a set of ballots B in which at least one of a and b
are in ground set of at least one ballot in B, such that after partitioning X = {b;, =
{Li,G;,C}bie BANa & GiNb¢g G}, and Y = {b; = {L;,G;,C}|b € BANa€ G;N(b¢&

G;VaLib)}, in I(B) at least [FH] 4 [Y| ballots rank a - b.

Strong Imputation Non-Imposition is possessed by an imputation method I if
for every pair a,b € C, there exists a set of ballots B in which at least one of a and
b are in ground set of at least one ballot in B, such that after partitioning X = {b; =
{Li,G;,C}bie BANa & GiNb¢g G}, and Y = {b; = {L;,G;,C}|b € BANa€ G;N(b¢&
G;ValL;b)}, in I(B) exactly | X| + |Y| ballots rank a > b.

Imputation Monotonicity is possessed by an imputation method I if for every set
of ballots B, every pair of candidates a,b € C, and for every ballot b, € B, if a >, b,
then if B is partitioned into X = {b; = {L;,G;,C}b; € BANa & G; Nb ¢ G;}, and
Y = {b; = {Li,Gi,C}|b; € BAa € GiA(b & G;VbL;a)}, let the ballot set B* = (B\ b;)Ubj;
where b7 has b € G} and bL}a or a ¢ G} , and suppose I(B) ranks b = a on |[Y| + z ballots
for some 0 < z < |X|, then I(B*) ranks b > a on at least |Y| + z + 1 ballots.

236

Imputation Neutrality? is possessed by any imputation method for which permuting
the names of the candidates (and thus effectively swapping their positions on ballots) must
produce a completion of the ballots that is the corresponding permutation of the imputation
method’s output. Formally, suppose that for any permutation (i.e. bijective mapping)
p: C — C, the corresponding permutation of the partial ballots is p(B) = {p(b;)|b; € B},
and the permutation of an individual ballot is p(b;) = {p(L;), p(G;),C}, where p(G;) =
{p(9)lg € G;}, and p(a)p(L;)p(b) <> aL;b Ya,b € G;. A neutral imputation method I
satisfies the property that, for every permutation p and set of ballots B, I(p(B)) = p(I(B)).

Imputation I.I.A. is possessed by an imputation method I if the following conditions
are satisfied. For all pairs of pairs of candidates ((a,b), (¢,d)) such that a,b,c € C, a # b,
and d € C'\ {a,b,c}, and every set of ballots B, for every ballot b; € B that has a € G}
and b € G or aL;b, given ballot set B* = (B \ b;) Ub} where b} has b € G and bLja, if in
I(B) exactly z ballots rank ¢ > d, then in I(B*) exactly z ballots rank ¢ > d.

Strong Imputation L -Strategy-Proofness is possessed by an imputation method
if there exists no set of ballots that contains an L -manipulation with respect to 1. A set
of ballots B contains an L -manipulation with respect to an imputation method I if there
exists some ballot b; = {L;,G;,C'} € B and some pair of candidates a,b € G; so that
al;b, and a ballot b5 = {L},G;,C}, such that if I(B) contains z ballots ranking b >~ a,
then I((B \ b;) Ub}) contains at least z + 1 ballots ranking b >~ a.

Weak Imputation L -Strategy-Proofness is possessed by an imputation method
if there exists no set of ballots that contains an L -manipulation such that for every pair
of candidates (¢, d) € C' x C'\ (a,b), if cL;d and cLja, if I(B) contains z ballots ranking
d = ¢, then I((B\b;)Ub}) contains at least z ballots ranking d = ¢ also. More informally, a
weak L -manipulation is one where a voter can increase the number of ballots that impute
b over a, without harming the chances of candidates that the voter likes more than a.

Strong Imputation GG -Strategy-Proofness is possessed by an imputation method
if there exists no set of ballots which contains a G -manipulation with respect to I. A set
of ballots B contains a G -manipulation with respect to an imputation method I if there
exists a ballot b; = {L;, G;,C'} € B such that for some pair of candidates a,b € G; ranked
al;b and a ballot b7 = {L},G%,C}, such that if I(B) contains 2z ballots ranking b > a,
then I((B \ b;) Ub}) contains at least z + 1 ballots ranking b >~ a.

Weak Imputation G -Strategy-Proofness is possessed by an imputation method
if there exists no set of ballots which contains a G -manipulation such that for every pair

2Neutrality | ,] is used instead of universality because voters have already been restricted to
casting top-ordered ballots.

237

of candidates (¢,d) € C' x C'\ (a,b), if cL;d and cLja, then if I(B) contains z ballots
ranking d = ¢, then I((B \ b;) U b}) contains at least z ballots ranking d > ¢ also. More
informally, a weak G -manipulation is one where a voter can increase the number of ballots
that impute b over a, without harming the chances of candidates that the voter likes more
than a.

8.3.1 Discussion

Although the axioms defined above are logical analogs of those used by Arrow’s theo-
rem and the Gibbard-Satterwaithe theorem, it is worth considering the design question of
whether they are also axioms (i.e. essential properties) in the context of imputation meth-
ods. The motivation behind the design of the original axioms was to specify a minimal
set of properties that any sane social choice system should possess. However, imputation
models, even in a voting context, need not satisfy the same requirements. The motiva-
tion behind the new axioms defined in this chapter are now discussed, along with the
implications of an imputation method violating them.

An imputation method that fails to satisfy Weak Non-Dictatorship is likely inap-
propriate for use in a social choice context, insofar as it can assign massively dispropor-
tionate power to the dictator (i.e. the pivotal voter). A method that satisfies Weak
Non-Dictatorship, but not Strong Non-Dictatorship is still problematic, but perhaps less
so in the event that the assignment is close to the lower bound implied, which is simply
proportionate to the rate at which those who express a preference with respect to a and b
preferred b to a.

The strong and weak Imputation Non-Imposition also seem necessary. If there is no
input under which the classifier will adopt the policy of imputing ballots so that a given
candidate is at least not disfavoured, then the imputation method is clearly unusably biased
against that candidate, and cannot be deployed to a social choice setting. Strong imposition
at first appears vital, but an imputation policy that adopts a smoothing approach, and
always assigns some (perhaps infinitely small) set of ballots to a disfavoured outcome is
actually not an unreasonable construction, at least for social choice over very large ballot
sets.

Imputation Monotonicity may not actually be an essential axiom for imputation meth-
ods, but was included for completeness. Reasonable imputation methods might impute
ballots based on the similarity of two voters’ preferences. If a voter raises a candidate on
its ballot, it may become dissimilar to voters with many unspecified preferences, and so
have less of an impact on the election. Such methods should not necessarily be ruled out.

238

However, a sensible similarity-based imputation method that rates incomplete ballot b; as
similar to more complete ballot b; ought to also impute b; in a manner consistent with the
preferences of b;. If b; ranks aL;b, or b € G; but a € G, then it is the case that a similarity-
based imputation method ought to impute aL;b to the extent that it uses information from
b; to determine the imputation of b;. However, after the positions of a and b are reversed
on b;, either b; is now dissimilar to b;, and so no longer affects the imputation (which ought
only to improve the chance that bL;a), or b; still affects the imputation of b;, but will now
contribute information that should favour bL;a. This suggests that monotonicity may be
satisfied by most imputation methods after all.

Imputation Neutrality is a clearly necessary axiom, insofar as a non-neutral imputation
method is, by definition, favouring some candidate based only on its name.

Imputation I.I.A. is interestingly, not essential, and perhaps even detrimental, for an
imputation method to possess. L.LI.A. requires that methods not use information provided
by the relative ordering of candidates on voters ballots, a property which is perhaps un-
desirable. For instance, imagine that voters’ preferences are drawn from a domain like
the left-right political spectrum. A ballot that lists only two choices, first Conservatives
and then Socialists, should probably be imputed with right-leaning parties first, and then
left-leaning ones. If the order of the two expressed preferences is swapped however, then
the order of the imputed parties ought to switch as well.

Imputation Strategy-Proofness is defined in several parts. The definition used here
is necessarily different from that adopted by Reffgen’s work | , | on strategy-
proofness for top-ordered ballots. This is because Reffgen’s proof holds for sets of ballots
where all voters express the same number of preferences, but the results of this chapter
must hold for sets where voters may express any number of preferences up to |C|, and may
express different numbers of preferences. Two types of strategic behaviours are considered.
In the first case, it is assumed that each voter ranks all the alternatives for which they
know the ordering (i.e. G; is fixed, but L; may be misreported). In the second, voters are
allowed to misreport both G; and L;, provided that the reported L; is a total ordering
of the reported GG, and no other elements of C. These forms are respectively referred to
as L-strategy-proofness and G-strategy-proofness. Both appear to be necessary, but it is
possible to imagine imputation algorithms that satisfy one, but not the other.

8.4 Axiomatic Assessment of Imputation Algorithms

This section provides proofs showing which of the Imputation Axioms are satisfied by each
of the imputation methods listed in the previous section. This both provides support for

239

X Q O&Q N
o & S s .
& S T E
Hot Deck X 4 v v v v v
Plurality v v v v X X X
Proportionate v 4 v v X X X
Markov Tree v 4 X v X X X

Table 8.1: A summary of the axiomatic properties that are and are not satisfied by each
of several different imputation methods.

the sensibility of the axioms, by showing the circumstances in which they do and do not
hold, as well as offering circumstantial evidence for the existence of an impossibility result
similar in form to Arrow’s Theorem or the Gibbard-Satterthwaite Theorem. The results
are summarized in Table 8.1.

8.4.1 Hot Deck Classifier

Theorem 7. The Hot Deck Classifier does not satisfy Strong or Weak Imputation Non-
Dictatorship.

Proof. By definition of the Hot Deck Classifier, if ballot b; ranks any pair (a,b) € C' x C'
such that a > b, then exactly | X |+ |Y| ballots will rank a > b in the output. Therefore by
is a dictator.]

Theorem 8. The Hot Deck Classifier satisfies both Strong and Weak Imputation Non-
Imposition.

Proof. The proof is by construction. Given a pair of candidates (a,b) € C' x C, and that
|B| > 2, a set of ballots will be constructed where a >; b. The remaining ballots are given
..... 8] = {L,C \ {a,b},C}, where L is any top-order over C'\ {a,b}. The Hot Deck
Classifier will impute all ballots that do not assign an ordering to a and b to have a > b,
which is sufficient to satisfy both forms of non-imposition. m

Theorem 9. The Hot Deck Classifier satisfies Imputation Monotonicity

240

Proof. Given a set of ballots B, let b; € B be a ballot, and (a,b) € C' x C' be any pair
of candidates such that a >; b. Let X = {b; = {L;,G;,C}|b € BAa & GiNb & G},
Y = {bz = {L“GZ,C}“)Z € BANaeG; A (b ¢ G; Vv ale)} and Z = {bz = {LZ,G“C}V)% c

If b; = by, then by definition of the Hot Deck Classifier, the total number of ballots
ranking b > a in I(B) is |Z|. If b; is swapped for b} = {L*,G*,C} such that b € G* and
either bL*a or a ¢ G*, then the total number of ballots ranking b > a is now |Z| + | X|+ 1.

If b; # by, then by definition of the Hot Deck Classifier, the total number of ballots
ranking b > a in [(B) is either |Z| or |Z| + |X|. Note that b; € Y by assumption. If b; is
swapped for b7 = {L*,G*, C'} such that bL*a and a,b € G* then no change is made in the
number of ballots that are imputed with a > b, by definition of the Hot Deck Classifier,
but b7 € Z not Y, so the total number of ballots ranking b = a in I(B) is now either
|Z] +|X| + 1 or|Z] + 1, and in either case, 1 greater than before. O

Theorem 10. The Hot Deck Classifier satisfies Imputation Neutrality.

Proof. Suppose for contradiction that there exists a set of ballots B, over candidate set C,
and a permutation p over C, such that I(p(B)) # p(I(B)). Denote the imputation of a
particular ballot b; that is part of a set of ballots B by I(b;, B).

There must therefore exist some ballot b; such that I(p(b;), p(B)) # p(I(b;, B)), which
implies there exists some pair of candidates (a,b) € C'xC such that a >=; bon I(p(b;), p(B)),
but b >=; a on p(I(b;, B)). Assume without loss of generality that a beats b in ties, and
thus also that p(a) beats p(b) in ties.

If a € Gy and b & G; or aL;b, then I(b;,b) must have aL;b. Therefore p(I(b;, B)) must
also rank p(a) before p(b) by definition. However, p(b;) must either not rank p(b), or must

rank p(a)L;p(b), so I(p(b;), p(B)) must do so as well. A symmetric argument can be made
for b € Gj, so it follows that a ¢ G; and b € G.

Now, consider the behaviour of the Hot Deck Classifier in imputing b;. If b; = by, then
since a € G; and b € G, it follows that b; is imputed with the tie-breaking ordering of a
and b, so that a =; b. However, under the permutation p, b; does not rank p(a) or p(b),
and is imputed with the tie breaking order, giving that p(a) >; p(b). Therefore, b; # b;.

If b; # by, and a € G; and b & G;, b; then if by ranks either a or b, b; is imputed with
a >; b <> a1 b. However, in this case, p(b;) ranks p(a) and p(b), and p(b;) ranks neither,
causing the imputation p(a) >=; p(b) <> p(a) =1 p(b). So by must not rank a or b. However,
in this case, b; is imputed with the tie-breaking ordering of @ and b prior to the imputation
of b;, and an identical argument can be used to the one presented for the case where by did

241

rank a or b. The assumption that b; exists is contradicted, so the Hot Deck Classifier must
satisfy Imputation Neutrality.

O
Theorem 11. The Hot Deck Classifier satisfies Imputation I.1.A.

Proof. Suppose for contradiction that the Hot Deck Classifier does not satisfy Imputation
L.I.A. Then there must exist a pair of candidates (a,b) € C' x C'\ a and a set of ballots B
under which for some ballot b; € I(B) and pair of candidates (c,d) € C' x (C'\ {a,b,c}),
such that if some ballot b; € B ranks a >=; b, then replacing b; with a ballot b* that is
identical to b;, but swaps the order of @ and b (b >* a), causes d >; ¢ in I(B\ b; Ub*), even
though ¢ >; d in I(B).

Note if non-adjacent candidates in a top-order are swapped, the relative order of other
candidates must necessarily change (e.g. if a > b > ¢, then swapping to ¢ > b > a
necessarily changes the relative orders of a and b, and of ¢ and b. Therefore b* represents
the top order of b; with a single adjacent pair swapped. Further, note that b; must rank
neither ¢ nor d.

Under the Hot Deck Classifier, the imputation of b; is deterministic, and cannot be
affected by changing the order of candidates on any other ballot (it is just the tie-breaking
order). Therefore, b; cannot be b;. Additionally, for any ballot other than b;, the imputa-
tion of the ballot is affected only by the ordering present on b;. Therefore by = b;.

Given any b; # by, b; is imputed with d >; c only if d >, c. However, d # b. Since only
the relative ordering of a and b has changed in by, therefore ¢ >; d if and only if ¢ >* d. It
follows that b; cannot be imputed with d >; c.

]
Theorem 12. The Hot Deck Classifier satisfies both Strong and Weak L-Strategy-Proofness

Proof. It is necessary to consider only whether b; has the opportunity for an L-manipulation,
because no other voter’s ballot influences the imputation. Suppose for contradiction that
there exists a pair of candidates (a,b) € C' x C such that a € G; and b € G, and (without
loss of generality) alL,b, but that there exists some ballot b* = {L}, G, C} such that in
I(B\ by Ub*) more voters rank a > b than in I(B). Since the Hot Deck Classifier satisfies
Imputation I.I.A.; only changing the relative order of @ and b on b* can alter the fraction of
ballots imputed with a > b. Since the Hot Deck Classifier satisfies Imputation Monotonic-
ity, lowering the position of b relative to a can only decrease the fraction of votes imputed
with a > 0. But a > b by assumption. Therefore, no Strong L-manipulation exists which
implies no Weak L-manipulation exists either. O]

242

Theorem 13. The Hot Deck Classifier satisfies both Strong and Weak G-Strategy-Proofness

Proof. Tt is necessary to consider only whether b; has the opportunity for an G-manipulation,
because no other voter’s ballot influences the imputation. Suppose for contradiction that
there exists a pair of candidates (a,b) € C' x C such that a € G; and b € Gy, and (without
loss of generality) al,b, but that there exists some ballot b* = {L*, G*,C'} such that in
I(B\ by Ub*) more voters rank a > b than in I(B). Since the Hot Deck Classifier satisfies
Imputation I.I.A., only changing the relative order of a and b on b* can alter the fraction
of ballots imputed with a > b. Therefore adding candidates to (G; cannot change the
fraction of ballots imputed with a > b, nor can removing candidates that are neither a nor
b. Removing b does not change its relative position to a. Removing a causes b* to rank
b >=* a, and since the Hot Deck Classifier satisfies Imputation Monotonicity, lowering the
position of b relative to a can only decrease the fraction of voters imputed with a > b.
Therefore, no such G* exists and no Strong G-manipulation exists which implies no Weak
G-manipulation exists either. O

8.4.2 Plurality Classifier

Theorem 14. The Plurality Classifier satisfies both Strong and Weak Imputation Non-
Dictatorship.

Proof. Suppose for contradiction that |B| > 3, and that ballot b, is the dictator for every
pair of candidates (a,b). Suppose that aL;b, and that a loses ties to b. The set of possible
ballot sets must include at least one set where every ballot b; for 2 < i < |B| — 1 consists
of identical preferences such that b; = {L*, C,C}, where L* is any ordering over C' such
that Pos(b;, |C| —2) = b, and Pos(b;, |C| — 1) = a. The remaining ballot is given by
bpg = {L,C \ {a,b},C}, where L' is L* with a and b truncated (i.e. b = b;). Since
|B| > 3, at least one complete ballot other than b; is a prefix of byp|, and ranks bL*a. As
a loses ties to b, the Plurality Classifier will impute b with bL'a. Therefore, b, is not a
weak dictator for a over b. Since 100% of imputed ballots were imputed counter to the
expressed preferences of by, by is not a strong dictator either. An identical argument holds
for every other ballot, and for every other pair of candidates.]

Theorem 15. The Plurality Classifier satisfies both Strong and Weak non-imposition.

Proof. The proof is via construction. Given a pair of candidates (a,b) € C' x C, and that
|B| > 2, a set of ballots is constructed where bi...bjp—1 are identical, complete, ballots of

243

the form b; = {L*, C, C'}, Pos(b;, |C|—2) = b, and Pos(b;, |C|—1) = a. The remaining ballot
is given by bjp = {L',C \ {a,b},C}, where L' is L* truncated in the last two positions.
The plurality classifier will impute all ballots that do not assign an ordering to a and b to
have a > b, which is sufficient to satisfy both forms of non-imposition. O

Theorem 16. The Plurality Classifier satisfies Imputation Monotonicity.

Proof. Let B be any set of ballots over a set of candidates C', imputed to the ballot set
I(B). Suppose for contradiction that there exists a ballot b; € B and a pair of candidates
(a,b) € C x C such that aL;b, but that swapping the positions of a and b on b; to yield
the ballot set B* reduces the total number of ballots that rank a after b in I(B*).

If for every ballot b;, at least one of b € G; or a € (G is true, then no imputation occurs
for the relationship between a and b. Adjusting one ballot so that b is now above a must
therefore increase the total number that rank b above a. So there must be at least one
ballot in the set X of ballots that rank neither a nor b, and this ballot must be imputed
such that a > b when it is imputed alongside B, but b > a when imputed alongside B*.
Call this ballot bpivot-

Suppose that bpivor ranks no elements. Then the plurality classifier imputes it with the
most common first preference among the other votes. The most common first preference
in B cannot be a, or bpivt’'s imputation would rank a above b. If it is b under B, then it
must change to a under B*. However, since b; has increased the position of b relative to a,
b cannot be a less common first preference among voters in B* than it is among voters in
B. Therefore bpivor must not rank a or b as its first preference.

Suppose that byt has |Gpivot| = k elements with defined ranks, either specified by the
voter or imputed by the plurality classifier thus far, and that neither a nor b has yet been
ranked.

When deciding which candidate to assign to the next rank, the plurality classifier will
impute the most common k + 1'* preference among ballots that are consistent extensions
of bpivot- 1f b; is not consistent extension of byivet, then swapping the positions of a and b on
b; cannot make it a consistent extension either, and so the plurality classifier must make
the same decision for the imputation of byt under both B and B* here. Therefore, b; is
a consistent extension of bpivot.

Since b; is a consistent extension of bpivot, and bpiver ranks neither a nor b, b; does not
rank either a or b before position k.

If the k + 1" position of b; is neither a nor b, then swapping a and b to produce b;
cannot alter the imputation decision for the & + 1! preference of bpivot- Therefore the
k + 1% position of b; must be either a or b.

244

The k + 1" position of b; cannot be b by assumption that a precedes b on b;. Therefore
it is a.

If the k + 1™ position of b; is a, then the same position is b in b;. However, this means
that more ballots which are consistent extensions of byivor rank b in the k + 1*" position
under B* than under B, and fewer rank a in that position, so the plurality classifier cannot
impute with b in B and a in B*. This is a contradiction. O

Theorem 17. The Plurality Classifier satisfies Imputation Neutrality.

Proof. Suppose for contradiction that there exists a set of ballots B, over candidate set C,
and a permutation of C' p, such that I(p(B)) # p(I(B)). The imputation of a particular
ballot b; that is part of a set of ballots B is denoted by I(b;, B).

There must therefore exist some ballot b; such I(p(b;), p(B)) # p(I1(b;, B)), which im-
plies there exists some pair of candidates (a,b) € C' x C such that a >=; b on I(p(b;), p(B)),
but b >; a on p(I(b;, B)).

If a € Gy and b ¢ G; or aL;b, then I(b;,b) must have aL;b. Therefore p(I(b;, B)) must
also rank p(a) before p(b) by definition. However, p(b;) must either not rank p(b), or must
rank p(a)L;p(b), so I(p(b;), p(B)) must do so as well. A symmetric argument can be made
for b € G, so it follows that a € G; and b & G.

Now, consider the behaviour of the plurality classifier in imputing b;,. Suppose that
b; ranks no candidates at all. The plurality classifier will impute the most common first
preference in B, which will be labelled ¢p,.x. However, when imputing p(b;) in conjunction
with p(B), the plurality classifier will impute the most common first preference in p(B),
which by definition must be p(cipax). Therefore Pos(I(p(b;), p(B)),1) = p(Pos(I(b;, B), 1))

Inductively, suppose that for all 0 < j < k, Pos(I(p(b;), p(B)),j) = p(Pos(I(b;, B),7))-
The plurality classifier will impute Pos(I(p(b;), p(B)), k) with the most common k' pref-
erence among the set of ballots X for which the current partial imputation of b; is a prefix.
Call this candidate ¢yay. Via the inductive hypothesis, p(X) is the set of ballots for which
the partial imputation of p(b;) is a prefix. Therefore, the most common k" preference
among p(X) is p(cmax). S0 Pos(I(p(b;), p(B)), k) = p(Pos(I(b;, B),k)). This contradicts
the initial assumption. O

Theorem 18. The Plurality Classifier does not satisfy Imputation I.1.A.

Proof. The proof is via counter-example.

Suppose an election is held over 4 candidates C' = {a,b,c,d}, and (without loss of
generality) that ¢ precedes b in the tie-breaking ordering, and that there are 4 voters, with
preferences:

245

b1 by b3 by

Ballot b3 is a prefix of all other ballots. The most common second preference is b, so
bs’s second preference will be b. It is then a prefix of only ballots b; and by, so its final
imputation is as a copy of b;.

Suppose that ballot by swaps the locations of a and b to yield the ballots:

A A A A

ab al alb b

bF ¢k 7F al

by by by b

Now b3 is a prefix of only b; and by. Both b and ¢ are tied for most common second
preference in this set, but ¢ wins ties, and the second preference ¢ is imputed. After this
step, bs will only be a prefix of by, and so the final result is that a copy of b, is imputed.
Therefore, swapping the positions of candidates a and b on by has caused the imputed
ordering of b and ¢ to be reversed on b3. Since b3 is the only ballot that is imputed, a
different number of ballots rank b > c¢ in the imputation with b4 than in the imputation
with b}, and the plurality classifier does not satisfy imputation I.I.A.

O
Theorem 19. The Plurality Classifier does not satisfy Strong or Weak L-Strategy-Proofness.

Proof. The proof is via counter example.

Suppose that there exists an election over 4 candidates C' = {a,b,¢,d}, and (without
loss of generality) that a precedes ¢ in the tie-breaking ordering, and that there are 4 voters,
with preferences:

246

b1 by b3 by

If by reports their preferences truthfully, then b3 and b, will both be imputed with by’s
preferences, which notably rank a after b. However, if b; misreports with the ballot b7:

A A A A

di- dl dF d}

alF ¢k 7+ 7}

then, as a beats c¢ in the tie-breaking ordering, both b3 and b4 will be imputed with
by’s ordering, which ranks b after a. Therefore, a > b once in the profile with b;, and
thrice in the profile with bj. Since b; ranks no candidates above a, Weak-Imputation
strategy-proofness is not satisfied, which implies the Strong version is not satisfied either?.

]

Theorem 20. The Plurality Classifier does not satisfy Strong or Weak Imputation G-
Strategy-Proofness.

Proof. The proof is via counter example.

Assume an election over 4 candidates C' = {a,b, ¢, d}, and (without loss of generality)
that a precedes ¢ in the tie-breaking ordering, and that there are 4 voters, with preferences:

3Although this example may not seem especially useful, consider the case where these ballots are a
subset of a close election between b and a. b; helps their most preferred candidate a most in this contest
by ranking a second, as shown.

247

b1 by b3 by

If by reports their preferences truthfully, then b3 and b, will both be imputed with by’s
preferences, which notably rank a after b. However, it b; misreports with the ballot b7:
A A

A A

db dfF di d}l

alF ¢k 7+ 7}

then, as a beats c in the tie-breaking ordering, both b3 and b, will be imputed with 0]’s
ordering, which ranks b after a. Therefore, a > b once in the profile with b;, and thrice in
the profile with b7. Since b; ranks no candidates above a, no candidate that b; prefers to a
is harmed, and Weak-Imputation G-strategy-proofness is not satisfied, which implies the
Strong version is not satisfied either?. n

8.4.3 The Proportionate Classifier

Theorem 21. The Proportionate Classifier satisfies Strong and Weak Imputation Non-
Dictatorship

Proof. Suppose for contradiction and without loss of generality that there exists a finite
set of ballots B, |B| > 3, and b; € B is a dictator such that for every pair (a,b) € C' x C,
if a 1 b, then, if X = {bz = {Ll,G“C}‘bZ € BAa g G,L ADb ¢ Gz}, and Y = {bz =

4Although this example may not seem especially useful, consider the case where these ballots are a
subset of a close election between b and a. b; helps their most preferred candidate a most in this contest
by ranking a second, as shown.

248

{L;,G;,C}bie BANae G N(b¢g G;VaL;b)} at least a fraction HX]%W + Y] of ballots
rank a > b in I(B).

Define the remainder of B such that for all 2 < ¢ < |B| -1, b; = {L*,C,C?}, and
bg = {L',C\ {a,b},C} where L’ is L* with a and b removed, and L* is any ranking
ending in b > a, such that by [~ bjp|. Since by...bjg—1 = byp|, the proportionate classifier
will impute b; such that b > a. Therefore, only |Y| ballots in I(B) rank a > b, and both
Weak and Strong Imputation Non-Dictatorship are satisfied. O

Theorem 22. The Proportionate Classifier satisfies both Strong and Weak Imputation
Non-Imposition.

Proof. The proof is by construction. For any two candidates (a,b) € C' x C, let B be a set
of ballots over C' such that in by, aL1b, but for every other ballot b; # by, b; = {L;,0,C}.
By definition by | b; for all i, and b; is not a prefix of any other ballot in B. Therefore,
the proportionate classifier will impute aL;b in every b;. O

Theorem 23. The Proportionate Classifier satisfies Imputation Monontonicity.

Proof. Let B be a set of ballots, and (a,b) € C' x C be a pair of candidates. Let b; =
{L;,G;,C} such that aL;b or b € G;, and let b* = {L*,G*,C}, such that for any pair
of candidates (c,d) € (C x C)\ (a,b), cL;jd <+ cL*d, and for any candidate ¢ € C'\ q,
c€Gj <> ce G and be G* and either bL*aNa € G* or a ¢ G* (that is, let b* be b; with
the relationship between a and b reversed). Assume for contradiction that I(B) contains
fewer ballots that rank a > b than I(B \ b; U b*) does.

Note that b; only has an impact on the imputation of ballots b; such that b; = b,
by definition of the proportionate classifier. However, if b; ranks either a or b, then by
definition of a top order, b; cannot influence the order of a and b on b;. Therefore, there
must exist some ballot b; such that b; = b; and a € G; Ab & G;. Note that since b; does not
rank a or b, switching the relative order of @ and b cannot change whether or not b; has an
impact on the imputation of b;. Further, not that b; will be imputed identically under B
or B\ b; Ub* up to position k£ = miny Pos(b;, k) = a A Pos(b*, k) = b.

When the imputation decision is made at position k, since there is one fewer ballot
ranking a at position k, the proportion of ballots the Proportionate Classifier assigns
to a cannot increase, it can only decrease or remain unchanged, which contradicts the
assumption that the Proportionate Classifier satisfies Imputation Monotonicity. O

Theorem 24. The Proportionate Classifier satisfies Imputation Neutrality.

249

Proof. Suppose for contradiction that there exists a set of ballots B, over candidate set C,
and a permutation over C' denoted p, such that I(p(B)) # p(I(B)). Denote the imputation
of a particular ballot b; that is part of a set of ballots B by I(b;, B).

There must therefore exist some ballot b; such I(p(b;), p(B)) # p(I(b;, B)), which im-
plies there exits some pair of candidates (a,b) € C' x C such that a >=; b on I(p(b;), p(B)),
but b >; a on p(I(b;, B)).

If a € G; and b ¢ G; or aL;b, then I(b;,b) must have aL;b. Therefore p(I(b;, B)) must
also rank p(a) before p(b) by definition. However, p(b;) must either not rank p(b), or must
rank p(a)L;p(b), so I(p(b;), p(B)) must do so as well. A symmetric argument can be made
for b € Gj, so it follows that a € G; and b € G.

Now, consider the behaviour of the Proportionate Classifier in imputing b;. Suppose
that under 1(b;, B), a is the first candidate that was imputed into b;. There exists a set of
ballots B* C B, such that for every b; € B*, b; = b;. There may be z copies of b; in B. Of
these, by definition of the Proportionate Classifier, exactly n; are assigned to a for some
0 <1< |C|—1. nis determined by the proportion of B* that rank the candidate that
is [in the tie-breaking order at position |G;| + 1, as well as the value of I. Note that if
n; votes are assigned to a under I(b;, B), then under I(p(b;, B)), n; votes are assigned to
p(a). This is because the candidate at location [in the tie-breaking order under p is by
definition p(a), p(B*) is precisely the set of ballots that will be used to impute p(b;), and
the same number of members of p(B*) rank p(a) at position |G;| + 1 as members of B*
ranked a there. Therefore p(a) must be imputed ahead of p(b). It follows that a cannot
have been the first candidate imputed on b;. Since a >; b under I(b;, B) by assumption, b
has not yet been imputed either.

However, suppose that neither a nor b have been imputed on b; after 1 < k positions
have been imputed. Suppose that a is to be imputed at position £ + 1 on b;. By precisely
the same argument used above, neither a nor b can be imputed at position k+1 (the set B*
will differ, but the form of the argument is identical). This means a can never be imputed
on b;, which is a contradiction. O

Theorem 25. The Proportionate Classifier does not satisfy imputation I.1.A.

Proof. The proof is via counter-example, and very similar to the form used for the Plurality
Classifier, modulo some details concerning the behaviour of the Proportionate Classifier in
the event of a tie.

Consider an election over 4 candidates C' = {a,b,c,d}, suppose (without loss of gen-
erality) that ¢ precedes b in the tie-breaking ordering, and that there are 4 voters, with
preferences:

250

b1 by b3 by

Ballot b3 is a prefix of all other ballots. The most common second preference is b, so
bs’s second preference will be b. It is then a prefix of only ballots b; and by, so it’s final
imputation is as a copy of b;.

Suppose that ballot by swaps the locations of a and b to yield the ballots:

A A A A

ab al alb b

bF ¢k 7F al

by by by b

Now b3 is a prefix of only b; and by. Both b and ¢ are tied for most common second
preference in this set, but ¢ wins ties. This means that n; for ¢ is computed before n; for
b. Since there is only one ballot to impute, n; will assign the ceiling of the ratio of the
number of ballots that impute ¢ here to all ballots that = b3. This ratio is 0.5, so the
single ballot is assigned second preference c. After this step, b3 will only be a prefix of bs,
and so the final result is that a copy of by is imputed. Therefore, swapping the positions
of candidates a and b on by has caused the imputed ordering b and ¢ to be reversed on bs.
Since b3 is the only ballot that is imputed, a different number of ballots rank b > ¢ in the
imputation with b4 than in the imputation with b}, and the Proportionate Classifier does
not satisfy imputation [.I.A.

]

Theorem 26. The Proportionate Classifier does not satisfy Strong or Weak L-Strategy-
Proofness.

251

Proof. The proof is via counter example, and again, is very similar in form to the corre-
sponding proof for the Plurality Classifier.

Suppose that there exists an election over 4 candidates C' = {a, b, ¢, d}, and that there
are 4 voters, with preferences:

b1 by b3 by

If b, reports their preferences truthfully, then b3 and by will both be imputed with
by’s preferences, which notably rank a after b, because only by = {bs,bs}. However, if b
misreports with the ballot b7:

b by by by

then one of b3 and by will be imputed will be imputed with b]’s ordering, and the other
with by’s ordering. Since b}’s ordering ranks b after a, a > b once in the profile with by,
and twice in the profile with b]. Since b; ranks no candidates above a, Weak-Imputation
Strategy-Proofness is not satisfied, which implies the Strong version is also not satisfied.

]

Theorem 27. The Proportionate Classifier does not satisfy Strong or Weak Imputation
G-Strategy-Proofness.

Proof. The proof is via counter example, again just a slight variant on the proof for the
Plurality Classifier.

252

Assume an election over 4 candidates C' = {a, b, ¢, d}, and that there are 4 voters, with
preferences:

T aF TF ?TF
by by b3 by

If by reports their preferences truthfully, then b3 and b, will both be imputed with by’s
preferences, which notably rank a after b. However, if b; misreports with the ballot b7:

A A A

di- dl db d}

A

alF ckF 7+ 7}

then, as in the previous proof, one of b3 or b,y will be imputed with the preferences of
b, which ranks b after a. Therefore, a > b once in the profile with by, and twice in the
profile with bj. Since b; ranks no candidates above a, no candidate that b, prefers to a
is harmed, and Weak-Imputation G-strategy-proofness is not satisfied, which implies the
Strong version is not satisfied either. O]

8.4.4 First Order Markov Tree

Theorem 28. The First Order Markov Tree Classifier satisfies Strong and Weak Imputa-
tion Non-Dictatorship.

Proof. Suppose for contradiction and without loss of generality that there exists a finite set
of ballots B, |B| > 3, and that b; € B is a dictator such that for every pair (a,b) € C' x C,
if a 1 b, then, if X = {bz = {Ll,Gl,C}‘bl € BAa ¢ Gl Ab ¢ Gz}, and Y = {bl =

253

{L;,G;,C}bie BANae G N(b¢g G;VaL;b)} at least a fraction HX]%W + Y] of ballots
rank a > b in I(B). Assume without loss of generality that a beats b in the tie-breaking

order.

Define B\ b; such that for all 2 < i < |B| -1, b; = {L*,C,C}, and b = {L',C \
{a,b},C} where L’ is L* with a and b removed, and L* is structured so that a > b. For
all by...bjg|—1, Pos(b;, |G| — 1) = Pos(bp|, |G|5 — 1| and Pos(b;, |G|5||) = a, so there is at
least one ballot in B that counts toward imputing b with a = b. Since there is a most
one ballot that counts toward imputing bz with b > a (i.e. b;), and a wins ties over b, the
first order Markov Tree will impute a > b on |X| ballots. Therefore b; is not a Strong or
Weak dictator for a over b.]

Theorem 29. The First Order Markov Tree Classifier satisfies both Strong and Weak
Imputation Non-Imposition.

Proof. The proof is via construction. Given an arbitrary pair of candidates (a,b) € C' x C'
such that a # b, the First Order Markov Tree Classifier is non-imposing if there exists at
least one set of ballots B such that X = {b; = {L;,G;,C}|b; € BANa & G;Nb & G},
|X| > 1 and 3b; € B such that a € G; Vb € G;. Such a set consists of a ballot b; ranking
only a >; b, and some arbitrary number of empty ballots. O]

Theorem 30. The First Order Markov Tree Classifier does not satisfy Imputation Mono-
tonicity.
Proof. The proof is by counterexample.

Assume an election over 4 candidates C' = {a, b, ¢, d}, and that there are 3 voters, with
preferences:

A A A
ck db d|
alF 7TF 7k
dr 7+ 7F
b ?27F 7F

by by b3

Under these preferences, by and b3 will both be imputed with d = b = a > ¢, or
d > b > ¢ > a, depending on the tie-breaking ordering for a and c¢. Note that both orders
rank b ahead of a. However, if by raises the position of b on its ballot resulting in b7:

254

A A A
cl dl dl
bl 2L 2L
dF 2} 7k
al 2L 7L
b by b

then by and bs will be imputed with either d > a > c > bor d > a > b > ¢, depending
on the tie-breaking ordering for b and c¢. Note that both orderings rank a ahead of b.
Therefore, swapping the positions of candidates a and b on b; caused 2 fewer ballots in
the resulting imputed preferences to rank b ahead of a, and the First Order Markov Tree
Classifier does not satisfy Imputation Monotonicity.

]

Theorem 31. The First Order Markov Tree Classifier satisfies Imputation Neutrality.

Proof. Suppose for contradiction that there exists a set of ballots B, over candidate set C,
and a permutation of C called p, such that I(p(B)) # p(I(B)). Denote the imputation of
a particular ballot b; that is part of a set of ballots B by I(b;, B).

There must therefore exist some ballot b; such I(p(b;), p(B)) # p(I(b;, B)), which im-
plies there exits some pair of candidates (a,b) € C' x C such that a >; b on I(p(b;), p(B)),
but b >; a on p(I(b;, B)).

Ifa € G;and b ¢ G; or aL;b, then I(b;,b) must have aL;b. Therefore p(I(b;, B)) must
also rank p(a) before p(b) by definition. However, p(b;) must either not rank p(b), or must
rank p(a)L;p(b), so I(p(b;), p(B)) must do so as well. A symmetric argument can be made
for b € G, so it follows that a € G; and b ¢ G,.

Now, consider the behaviour of the First Order Markov Tree Classifier in imputing b;.
Suppose that under I(b;, B), a is the first candidate that was imputed into b;, and that b;
ranks no candidates at all. Then by definition of the First Order Markov Tree Classifier,
it must be the case that a is the most common first preference among ballots in B. If a is
the most common first preference in B (or wins a tie for most common), then p(a) is by
definition the most common first preference in p(B) (or wins a tie for the most common),
meaning that p(a) will be imputed ahead of p(b). Therefore a cannot be imputed first on
an empty ballot.

255

Suppose that a is imputed first on a ballot b; that is not empty, and, without loss of
generality, that Pos(b;, |G;| — 1) = ¢. It follows that in B, a must be the most common (or
win a tie among the most common) candidates that immediately follow ¢ and are not in
G;. By definition then, in p(B), p(a) must be the most common (or win a tie among the
most common) candidates that immediately follow p(c) and are not in p(G;). Therefore
p(a) is imputed ahead of p(b).

Suppose that a is imputed after k other candidates have been imputed on b;. This is
treated identically to if a were imputed first on a ballot that ranked k additional candidates
in the imputed order. Therefore, the argument above applies equally well, and a cannot be
imputed at any location on b;, which is a contradiction. Therefore, the First Order Markov
Tree satisfies Imputation Neutrality. O]

Theorem 32. The First Order Markov Tree Classifier does not satisfy Imputation I.1.A.

Proof. The proof is via counterexample.

Assume an election over 4 candidates C' = {a,b,c,d}, and that there are 3 voters.
Without loss of generality, assume a tie-breaking order such that a = b > ¢ > d. Voters
have initial preferences:

A A A
ol df} db
b7k 2k
ct TF 7k
db 7k 7t
b by b

Under these preferences, b, and b3 will both be imputed d = a > b > ¢. Note that both
imputed ballots therefore rank ¢ after a. However, if b; swaps the positions of d and ¢ on
its ballot resulting in b3:

A A A
al dl dL
bl 2Lk 2L
dF 2} 7k
ck ?2b 7L
b by b

256

then by, and b3 will be imputed with either d > ¢ > a > b instead, which ranks ¢ above
a. Therefore, swapping the order of candidates ¢ and d on b; caused 2 fewer ballots in
the resulting imputed preferences to rank a ahead of ¢, and the First Order Markov Tree
Classifier does not satisfy Imputation I.I.A. O]

Theorem 33. The First Order Markov Tree Classifier does not satisfy Strong or Weak
Imputation L-Strategy-Proofness.

Proof. The proof is via counter example, and again, is very similar in form to the corre-
sponding proof for the Plurality Classifier.

Suppose that there exists an election over 4 candidates C' = {a, b, ¢, d}, with tie-breaking
order a > b > ¢ > d, and that there are 4 voters, with preferences:

A A A A
at diF d} d}
bF ¢t 7+ 7TF
ckF b ?7F ?TF
d+ aF ?7F 7k
b1 by b3 by

If b; reports their preferences truthfully, then b3 and by will both be imputed with by’s
preferences, which notably rank a after b. This is because the only candidate to follow d
on any ballot is c¢. There is a tie for candidates that follow ¢ between b and d, but since d
is already in the ground set of b3 and by, b is imputed. However, if b; misreports with the
ballot b7:

| \ | \
di- dfF d} d}
at cpF TR 7TFH
br bF ?7F 7F
ck apF TF 7FH

bt by by by

then both b3 and by will be imputed will be imputed with b}’s ordering. Since b’s
ordering ranks b after a, a > b once in the profile with b;, and thrice in the profile with

257

bi. Since b; ranks no candidates above a, Weak Imputation L-Strategy-Proofness is not
satisfied, which implies the Strong version is also not satisfied. n

Theorem 34. The First Order Markov Tree Classifier does not satisfy Strong or Weak
G-Strategy-Proofness.

Proof. The proof is via counter example, and again, is very similar in form to the corre-
sponding proof for the Plurality Classifier.

Suppose that there exists an election over 4 candidates C' = {a, b, ¢, d}, with tie-breaking
order a > b > ¢ > d, and that there are 4 voters, with preferences:

A A A

afb dfb di d}l

A

br- cF ?7F 7k

b1 by b3 by

If by reports their preferences truthfully, then b3 and b, will both be imputed with by’s
preferences, which notably rank a after b. This is because the only candidate to follow d
on any ballot is ¢, and the only candidate to follow ¢ is b. However, if b; misreports with
the ballot b7:

b by by by

then both b3 and by will be imputed will be imputed with b]’s ordering. Since bj’s
ordering ranks b after a, a > b once in the profile with b, and thrice in the profile with
bi. Since b; ranks no candidates above a, Weak Imputation G-Strategy-Proofness is not
satisfied, which implies the Strong version is also not satisfied. O

258

8.4.5 Discussion

The proofs in the preceding section show the versatility of proposed set of axioms, and
demonstrate how they could be used to describe and compare the properties of different
algorithms used as part of the imputation-based approach to social choice. It is inter-
esting to note that of the systems considered, only the dictatorial Hot Deck Classifier is
strategy-proof. It is also the only method to satisfy the I.I.A. criterion. Similarly, it is
perhaps surprising that the First Order Markov Tree Classifier does not satisfy Imputation
Monotonicity. Although not shown in detail here, it appears that the monotonicity of the
technique is tightly related to the order of the tree. For instance, it is possible to show that
the swapping of single pair of adjacent candidates in a voter’s ballot will monotonically
improve the fraction of votes imputed with the new ordering of the candidates, even though
swaps over larger distances (or multiple swaps) may decrease it instead. The Markov Tree
also provides a reasonable argument against the current Imputation Monotonicity axiom,
or perhaps against monotonicity entirely in the imputation context. The Markov Tree
Classifier is not monotonic because it tries to impute ballots with the completions used
by similar voters. Raising a candidate in one’s ranking might make one very dissimilar to
other voters, and so an imputation method should perhaps avoid using the altered ranking
to impute votes.

It seems probable that variants of Arrow’s Theorem and the Gibbard-Satterthwaite
Theorem could be proven for these sets of axioms, but such proofs remain open questions
at this time.

8.5 Combinations

The final results presented in this section concern the combination of voting rules and im-
putation systems, and the extent to which reasonable axiomatic properties are preserved or
harmed following their combinations. A preliminary study of the problem was conducted,
which shows that there is much interesting work to be done in the future.

The interesting property of combining voting rules | , ;

: | is that combined rules can be both better (i.e. fairer, more strategy-proof)
or worse (i.e. less fair, more vulnerable to manipulation). The first result below demon-
strates that combining a non-dictatorial voting rule with a dictatorial imputation method
does not produce a dictatorial voting rule overall.

Theorem 35. If S is a non-dictatorial voting rule and I is an imputation algorithm,

259

than S @ I is a non-dictatorial voting rule, even if I does not satisfy Imputation Non-
Dictatorship.

Proof. The proof is by contradiction. Suppose without loss of generality that b; € B is
a dictator for every pair of candidates (a,b) € C' x C such that a # b, under voting rule
S @ I. Then by definition it must be the case that under S(1(B)), a > b if aL;b, regardless
of the composition of the remainder of B.

By assumption, S is non-dictatorial. Therefore, there exists some profile B* under which
by is not pivotal for a > b under S(B*). Since S is defined to operate only over complete
ballots, B* must be complete. However, then I(B*) = B*, and therefore S(I(B*)) = S(B*),
so since by is not a dictator for (a,b) under S(B*), by is not a dictator for (a,b) under S I
either. O

In contrast, the second result shows that if the imputation method is manipulable,
then the combined rule is manipulable, even if the voting rule is strategy-proof. This proof
relies on the concept of Anonymity for an imputation method. Anonymity is analogous
to Neutrality, but for the names of the voters rather than the names of the candidates.
It says that if the names of the voters are permuted, but the set of ballots is otherwise
unchanged, the behaviour of the imputation algorithm should not change.

Theorem 36. If I does not satisfy Imputation G-Strategy-Proofness, but satisfies Impu-
tation Neutrality and is Anonymous then S & I is not a strategy-proof voting rule if S is
Non-Imposing.

Proof. Suppose for contradiction that S @ [is strategy-proof.

If S is not strategy-proof, then there must exist some complete set of ballots B such
that S(B) returns outcome oy, but under B* = B\ b; U b}, S(B*) returns some other
outcome o0y such that oL;0;. Since B* is complete, S(I(B)) # S(I(B*)) as well, and S& [
is not strategy-proof, regardless of the behaviour of I. Therefore, S must be strategy-proof.

If S is strategy-proof, it must violate one of Non-Dictatorship or Non-Imposition, by the
Gibbard-Saterthwaite Theorem (since S is resolute and deterministic by the definition of
a voting rule used here). S is Non-Imposing by assumption. Suppose that S is dictatorial,
and that b; is the dictator (without loss of generality). By definition of Imputation L-
Strategy-Proofness, there exists a profile B where for some pair of candidates (a,b) € C'xC,
a # b, I(B) ranks a = b on z ballots, but for some B* = B\ b; U b} such that al;b, I(B*)
ranks a > b on at least z + 1 ballots. Therefore, at least two ballots were imputed with
a > b under B* that were imputed with b > a under B. Without loss of generality, let one

260

of these be by (The rankings can be permuted because I is anonymous). Assume without
loss of generality that b is ranked first on b; after imputation under B (the candidates can
be permuted because I is neutral). Then, the first ranked candidate under S(I(B)) is b,
but b is ranked after a under S(I(B*)). Therefore S does not satisfy Non-Dictatorship.
This is a contradiction, so S & I must not be Strategy-Proof. O]

8.6 Summary

This chapter provided a reasonable set of axioms for use in analyzing and comparing the
performance of competing imputation methods, as part of the imputation-based approach
to social choice with incomplete information. The axioms are logical extensions of the
canonical axioms used in the analysis of voting systems, but are tailored to the imputa-
tion domain. An analysis was performed over four simple imputation methods. It was
also demonstrated that combinations of voting rules and imputation methods may exhibit
properties of either method.

Overall, the proposed axioms and corresponding analysis offer a compelling avenue
of future study integrating machine learning and social choice. This area shows great
promise in the further development of the imputation-based approach, providing strong
theoretical characterizations of competing algorithms, and providing insights into which
learning algorithms might work most effectively with which voting rules.

261

Chapter 9

Manipulation Analysis

DON'T MAKE A STATEMENT, MAKE A DIFFERENCE!

strategicvoting.ca, site motto

Chapter 4 showed that in general, imputation-based voting systems are subject to
the Gibbard-Satterwaith theorem | , ; , |, while Chapter 8
explored this in greater detail, with an expanded set of axioms that captured the spirit of
the Gibbard-Satterwaith theorem for imputation algorithms. These results suggest that the
imputation-based approach to social choice incentivizes users to misreport their preferences
in order to achieve more desirable outcomes. Since the imputation algorithms themselves
can be directly influenced by manipulations of this kind, the problem is perhaps even more
concerning than with conventional social choice algorithms, since a manipulation can cause
other voters” ballots to be imputed incorrectly as well. This chapter considers different
strategies for mitigating the impact of manipulation on imputation-based approaches to
social choice, with a focus on approaches to reduce the expected benefits of misreporting
one’s preferences in the first place. An existing approach from the literature is integrated
into the Prefmine testbed, and evaluated. The central finding is that there is little to no
impact on the system’s performance when using the approach, even though the incentive
to manipulate is greatly reduced.

262

strategicvoting.ca

9.1 Motivation

As described briefly in Chapter 2, manipulation problems arise in social choice when vot-
ers can change the outcome of the election by casting a ballot which they know to be
an inaccurate reflection of their preferences. As a simple illustrative example, consider
the election in Figure 9.1, which involves four voters (vy,...,v4) casting ballots over four
candidates (cy,...,c4), and using the Plurality system to decide the election. Ties are to
be broken lexicographically (i.e. ¢; > ¢ > ¢3 > ¢4). When voters express their true pref-
erences, there is a multiway tie between all four candidates in the election, which causes
¢ to win via the tie-breaking rule. However, if v, instead casts the ballot denoted v} in
Figure 9.1, swapping the order of candidates c3 and ¢y, then c¢3 will now win the election
outright. Since v, prefers c3 to ¢q, there is a good reason for v, to misreport its preferences.

A A A A A
C3 C4F C1F Cof C3
G ar Cr G Com
CoIm CoIm Cu” C4f” Cal”
Ci- C3F C3 i c1r

vy V2 U3 U v}

Figure 9.1: An example of an election with a profitable manipulation for voter v, under
the plurality system. Initially all candidates are tied, but tie-breaking is lexicographic. c¢;
is the winner. If vy changes their reported preferences to v} then c3 wins instead.

It may not be immediately obvious why this behaviour is undesirable. If ballots are
supposed to be a reflection of a voter’s desires, and v, would rather have c¢3 win the election,
then why should v, cast a ballot that does not cause c3?7 A careful inspection of the ballots
shown in Figure 9.1 will reveal that c; is actually a Condorcet winner, if it wins ties in the
pairwise contests. Even if ¢; does not win ties, ¢y is the only other candidate to win any
pairwise contests outright, and ¢ is the first or second most preferred candidate for three
fourths of the electorate. The manipulation performed by v, has moved the winner from a
more popular candidate to a less popular one.

Note that the example above assumes both that v, has enough information to vote
strategically (i.e. they know that a tie will occur between ¢; and c3), and that the other
candidates are not going to cast a strategic ballot (for instance, if vy moves ¢; to the top

263

of their ballot in anticipation of v,’s vote). This is the canonical setting for the study of
manipulation, and there are certainly scenarios to which it is applicable. For example,
on a small ad hoc committee, an especially astute member may have determined the
vote counts in advance, while other members have not. It is also a reasonable worst-
case position, because if no manipulations are possible even when a voter has complete
information about its peers, then clearly no worthwhile manipulations exist at all. There
do however exist other approaches to modelling manipulation which may be more realistic
for the behaviours of larger groups of voters. For example, much work has been done on
iterative voting dynamics, where voters repeatedly observe the ballots of their peers and
update their votes (e.g. | , : , ; ,
|. Findings in this domain often more closely mirror empirical

7 Y

results showing that strategic voting is rare | , ; , | or has
minimal impact | , ; , | in real world elections, or even show
some positive benefits to strategic voting | , |. Despite this, reducing the

ability of voters to manipulate elections seems a worthy goal. If the voters would not have
engaged in strategic behaviours anyway then (provided any decrease in system performance
is small) there is no drawback. On the other hand, if voters would have engaged in strategic
behaviours, they will no longer have the opportunity to do so, allowing the system to select
winners that are truly representative of the collective preferences of the voters.

An early approach to circumventing the Gibbard-Satterthwaite theorem’s results fo-
cuses on imposing a “quasi-linear” preference structure on voters. In this structure, voter
utility functions must take the form of a function with exactly one local maxima over a
common ordering of the outcome space (i.e. they must be single-peaked) | ,

|. The canonical example of quasi-linear preferences is a vote on how to set the tem-
perature on a thermostat for a room with several people in it. Each person has a preferred
temperature, and their utility declines monotonically at some rate to either side of it. If the
centre knows the ranking dimension that voters are collectively using for the candidates
(e.g. if the centre knows that voters all agree 20 degrees is hotter than 19 degrees), then
the median rule consists of asking each voter for their most preferred alternative (as with
Plurality), sorting the reported values according to the known ordering along the dimen-
sion voters are using, and selecting the median value after sorting. Moulin showed that
this is a strategy-proof social choice function when all voters have quasi-linear preferences
| , : , |. However, this applies only when voters collectively rank
candidates on a single dimension. In many applications this is not the case. For example,
in the Martian swarm problem of Chapter 3, the quality of different mining sites depends
on at least two factors (a two-dimensional location, and a risk/reward tradeoff).

There is a long history within computational social choice of attempts to circumvent the

264

Gibbard-Satterwaithe theorem by designing voting rules that are protected from manipula-
tion via computational complexity. Gibbard-Satterwaithe says, in essence, that any voting
rule under which every candidate is able to win, and that is sensitive to the preferences
of at least two voters, must provide opportunities for manipulation. However, the proof is
not constructive, and does not specify exactly what ballot a particular voter should cast
to manipulate the outcome. One possible circumvention of the theorem is then to design
voting rules for which the problem of determining what ballot a given voter should cast to
cause a particular candidate to win is computationally hard. This approach began in the
early 90’s with Batholdi et al.’s work | , : ,

|, which demonstrated that the problem of manipulations in Single Transferable
Vote was NP-Hard. A large body of work has since emerged showing the computational
hardness of manipulation and other related problems for a variety of different voting rules
and preference models | , ; , ;

I Y) Y) Y

b Y I) b) Y]'

However, protecting elections from manipulation via computational complexity requires
that finding manipulations should be a difficult task most (or ideally all) of the time. Since
complexity results typically consider only the worse-case analysis, it is unclear whether the
offered protections are significant. Recent work by Isaksson et al. casts doubt on the
idea that this approach to circumventing the constraints of the Gibbard-Satterthwaite the-
orem is reasonable | , |. The authors provide a quantitative proof of
Gibbard-Satterthwaite, and conclude that a random vote submitted by a manipulator has
a probability that is lower bounded by a polynomial in the size of the election (i.e. the
number of voters and the number of candidates) of successfully manipulating the outcome
of a given election. A voter interested in manipulation can simply use a Las Vegas algo-
rithm to manipulate the vote, trying preferences at random, computing the outcome of
the resulting vote profile, and repeating until his desired outcome is returned. The ex-
pected work done is polynomial. Isakson et al.’s result builds on extensive earlier work
showing similar results | : ; , ;

, ; , |. Walsh also finds that truly difficult
manipulation problems are uncommon | , , |, questioning the resistance of-
fered by computational hardness. On this basis, further examination of the computational
hardness of imputation-based approaches is avoided, but might be an interesting avenue of
future work. In particular, obtaining an empirical estimate of the true probability of ma-
nipulation should be possible for specific imputation methods, and might allow for robust
strategy-proofness through computational hardness.

A final approach to circumventing the Gibbard-Satterwaithe theorem is to use a ran-

265

domized voting system, rather than a deterministic one. A randomized or stochastic voting
system selects an outcome from some probability distribution over the candidates that is
a function of the voters’ preferences. | | showed that it was possible to cre-
ate randomized mechanisms that were strategy-proof, but that the only such mechanisms
were those constructed entirely of “unilateral” (i.e. dictatorial) mechanisms and “duple”
mechanisms (i.e. votes over just a single pair of the candidates). An example of such a
mechanism is the class “Random Dictator”, which picks an outcome by first sampling a bal-
lot at random, and then selecting the outcome that is specified by that ballot. Voters have
no incentive to misreport their preferences because if their ballot is not drawn, there is no
effect, and if their ballot is drawn they get exactly what they want by being truthful. An
example of a mechanism based on duple rules would be one that sampled two candidates
uniformly at random, and then held a pairwise runoff between them using the Majority
rule, selecting the winner of this contest as the outcome of the election. Voters should
submit an accurate ranking of their preferences because any information about candidates
that are not selected for the runoff is unused, and voters cannot help the candidate they
prefer in the runoff by ranking them lower than the candidate they dislike.

Although | | showed that the only strategy-proof voting rules were triv-
ial, there has been considerable recent interest in creating voting systems that leverage
stochastic approaches to mitigate the impact of manipulation, and it is this trend that
will be drawn on to reduce manipulation’s impact on the imputation-based approach. An
approach that is particularly appealing is based on the idea of approzimations of voting
rules, original proposed by [2010], and extended by [2011]. The
core idea underlying such schemes is to construct rules that are strategy-proof, but that
produce outputs that are “close” to more conventional rules that are not strategy-proof.
Procaccia’s approach to approximating a scoring rule, for example, is to sample a ballot
uniformly at random, but then to sample a candidate from the ballot with probability pro-
portionate to the score that each candidate receives from the ballot. For example, under
Borda, the candidate at the top of the sampled ballot would be selected with probability

Cl
Y

Procaccia shows that the Borda score of the candidate that is selected as the winner by
this scheme is within a small bound of the score of the true winner, in expectation. Birrill
and Pass adopt a slightly different framework, which is better suited to the experiments
that are performed in this thesis. However, Procaccia’s approach could also be adopted.
There have also been a number of papers extending the work of Birrill and Pass [Lee, ;

, 2014]

266

9.1.1 Why Worry About Manipulation?

As discussed earlier, a consequence of every classifier being a social choice function is
that every classifier is subject to the Gibbard-Satterthwaite theorem | : I

, |. This theorem states that every social choice function over a C' such
that |C| > 2 is either manipulable, dictatorial, non-resolute or imposing. Formally, these
properties are defined for a social choice function S as follows:

1. S is manipulable if ex post facto, a single agent ¢ could switch their ballot from b; to
b,, and S(B_;,b;) »=; S(B). That is, if an agent with knowledge of all other votes
can change the outcome in truthful equilibrium to an outcome they prefer more by

changing only their own vote.

2. S is dictatorial if there exists some ¢ such that for every valid set of ballots B,
S(B) = S(B;). That is, the outcome is always selected by exactly one vote, always
from the same voter.

3. S is non-resolute if for some vote profile B, |S(B)| > 1. That is, there exists a vote
profile for which S cannot break a tie.

4. S is imposing if there exists some outcome o € O such that for every valid set of
ballots B, S(B) # o. That is, there is some outcome that no profile of votes can
produce.

Although the imputation-based approach to social choice is subject to the Gibbard-
Satterthwaite Theorem, it is not immediately apparent that this should be concerning.
For instance, if imputation-based approaches generally did not need to avoid imposition,
then perhaps they could be readily made strategy-proof without needing to circumvent
the theorem in a more creative fashion. It is also unclear whether all of these properties
are even desirable in the context of the imputation-based approach. However, if all of
them are important, then other methods must be adopted to circumvent the theorem. For
this reason, the importance of each property in the context of imputation is now briefly
considered.

Clearly manipulation is something which must be avoided by an imputation-based
voting policy. If the policy is manipulable then a shrewd voter can change the imputed
votes of other players. Since these votes are then used to compute the election results this,
at minimum, this yields a manipulable election. This is especially disconcerting because

267

a single voter is potentially changing many votes (not just his own). Therefore, a direct
compromise on manipulability is not possible.

Another possibility is a dictatorial imputation method. In the context of imputation,
if a classifier were dictatorial then the selection of imputation policy would have to depend
on the preference profiles of a single specific agent alone. While this would rule out most
complex imputation methods, this constraint could be relaxed if a variant of ‘hot-deck’
imputation were used, where the imputed values for B are simply all set to the value of
e.g. by (i.e. the first completed ballot). This approach seems quite undesirable however,
since it makes no effort to impute the actual values agents would have specified for the
missing components - the imputed values will be essentially meaningless. This gives the
dictator exceptional power for many partial vote profiles, and thus will often transform
the election as a whole into a choice by the dictator. In such a case there is no reason to
use imputation - one can simply ask the dictator for her preferences directly and pick a
winner on that basis. More complex dictatorial methods are also possible, but all suffer
from the same basic weakness. Therefore, dictatorial methods are not suitable for selecting
an imputation policy.

Resoluteness also seems a natural requirement of any imputation system. If an im-
putation method is not resolute then it returns more than one imputation of the partial
preference profiles in B. Since these profiles are used to select a winner in the election,
this is equivalent to holding two elections, with possibly different outcomes, which either
results in two different winning outcomes or requires some method of choosing between
them.

Imposition is the most promising avenue for avoiding concerns about the Gibbard-
Satterthwaite Theorem. Formally, a classifier is non-imposing if, for any set of partial
orders B, and a valid completion of those orders (i.e. one which produces only total orders
that are consistent with B), B, there exists a set of completed orderings B such that
I(B) = B. Essentially every classifier is impositional in the sense that it consists of
picking a policy - a deterministic mapping from partial preferences to full preferences. This
means that any two identical partial ballots in B must be completed in exactly the same
way. A voter who prefers outcomes in which the imputed ballots are distributed in some
other way cannot realize their preference. This is certainly not an implausible preference.
For instance, if two preferences are nearly tied in the completed ballots, but the imputation
algorithm fills all incomplete ballots with the more popular of the two, then those voters
disadvantaged by this arrangement may prefer a distributional system instead. However,
lifting this restriction would require voters with identical partial preferences to be treated
differently, which may also be undesirable.

268

If avoiding imposition is desirable, then deterministic mappings that specify a distribu-
tion over the outcome space of the entire election (O) for each possible input, and impute
accordingly, could be allowed. This might be preferable in settings where the imputed
votes have low variability relative to their total number, but would be non-imposing and
thus vulnerable to manipulation. It would be easily implemented with something like the
Markov Tree approach presented earlier in Chapter 7. However, it might still be preferable
to avoid manipulation entirely designing a strategy-proof version of the imputation-based
approach. This is the topic of the remainder of the chapter.

9.2 Addressing Manipulation with Differential Privacy

In their 2011 work “Approximately Strategy-Proof Voting”, | | show
that a voter’s ability to manipulate an election can be reduced by introducing a randomized
component into the ballots, rather than into the voting rule itself. This is an elegant
construction from the perspective of the imputation-based approach, because one of the
features of the approach was the ability for users to make use of existing and popular rules
intended for total orders. As an example to demonstrate the intuition behind this approach,
suppose that the votes are to be counted by hand, and that hand counting is unreliable.
Even if a voter knows exactly what ballots all other voters will cast, and knows how to cast
a ballot to manipulate the outcome, these small errors in counting may reduce or eliminate
the advantage of casting a manipulative ballot. As a more concrete example, return to
the ballots in Figure 9.1. Suppose that hand counting will introduce an error in the ballot
counts with probability 0.5. The error will favour one of the candidates, increasing their
tally by a single point, and reducing the score of some candidate by the same amount.
Effectively the voting system will first of all select ¢; outright with probability % (since
there is a 0.5 chance that no corruption will occur and ¢ is the current winner). v is
randomly selected as the vote to be corrupted with probability %. Suppose this is the
selection; then c3 will lose a point, since v; ranks cg first. One of the 4 candidates is
selected to gain a point. If this turns out to be ¢; or c3, then ¢; will still be the winner.
If this turns out to be cg, then it will be the winner (and likewise for ¢;). Thus, once vy
has been selected for corruption, ¢; wins with probability 0.5, and each of ¢, and ¢4 with
probability 0.25. Similar logic applies to each of the other ballots that could be corrupted.
Therefore, the overall probability distribution is:

1.1 3

P(cz) = P(c3) = Ples) = g(?)z) =%

Now if v, casts ballot v}, the probability distribution over the winner changes so that c;

wins outright with probability % If either of the votes for c3 are randomized than there is

a ;21 chance of ¢; being declared the winner, and a % chance of c3 being declared the winner.

If the vote for ¢; is randomized, ¢35 wins with certainty. If the vote for ¢4 is corrupted there

is a i chance of ¢; winning, and a % chance of ¢3 winning. Therefore the new distribution
over the winners will be given by

1,2 1 5
Pla) =33+ =5
1 1,2 4 3 27
Plo) =5t 5@t it =5

Introducing the potential for errors in counting has thus reduced the potential benefits
of casting a manipulative ballot, provided that v, is risk-neutral or risk-averse. This is
because in the original election, v, was already more likely to get someone they preferred
to ¢; elected, and in the election with the manipulating ballot, vy, is less likely then before
to avoid having ¢; elected. The resulting rule could be implemented by selecting a ballot
uniformly at random before the voting rule is applied, and replacing that ballot with one
generated uniformly at random®.

On its own, the observation that the randomization of some of the ballots in an election
reduces the potential gain for a manipulator is not especially useful. If the gain is still
positive, the manipulator will be undeterred. The other observation made by Birrell and
Pass is that strategic behaviour often has an associated cost. For example, finding a
manipulation (or even determining whether one exists) might be computationally expensive
(even if it is not intractable). Social pressures in a public ballot might make casting a
strategic ballot damaging to one’s reputation?. In domains where partial preferences are
permitted, a voter might even have to expend considerable effort just to determine whether
a strategic vote is a good idea. If the expected benefits of casting a manipulative ballot are
low, and the costs are sufficiently high, then a rational voter would choose not to invest

'If a manipulator has risk-seeking preferences, they might derive extra utility from taking big gambles,
and so might prefer to manipulate even if their expected payoffs are reduced.

20bserve for example, the response from members of Canada’s New Democratic Party to the strategic
voting in a recent election | , ; , ; ,]. The author has also observed much
more radical statements made by friends and acquaintances on this issue.

270

the effort in casting a strategic vote. Similarly, if a coalition of voters wants to sway the
outcome of an election, the coordination costs may exceed the expected gains.

The main results demonstrated by Birrill and Pass show that it is possible to build
reasonable approximations of voting rules that prevent any manipulations that have higher
expected value than some constant e. Voters are permitted to have any utility functions
satisfying the modest constraints that the utility for having any given candidate win must
be a real-value between 0 and 1, and that if a voter prefers a candidate ¢; to some other
candidate c;, then the voter receives at least as much utility from ¢; winning as from c¢;
winning. Under this utility model, € can be understood as the largest amount any voter
can hope to gain in expectation by submitting a manipulating ballot. A voting rule that
satisfies this property is called e-strategy-proof.

Rephrasing the results from [| into the notation of this thesis, the
corruption distance between a ballot profile B and an outcome o is the minimum number
of votes that would have to be corrupted (i.e. changed to an arbitrary preference ordering)
for voting rule S to return o. Formally, this is defined as:

((B,o,S) = . mé?B) A(B,B')
! s.t. M=o

where A is a component-wise delta function over the two sets of ballots (i.e. a count of
the number of ballots that differ between the two sets). The corruption distance between
two distinct social choice functions S and S’ is analogously given by

dy((B,5(B)), (B, 5'(B))) = [((B, S(B), 5) = £(B, 5'(B), 5')|

where the first term will always reduce to zero (since ming:ss.s(py=sB)A(B, B’) = 0).
The second term thus measures the number of votes that would have to be corrupted for
S(B) to return the same result as S'(B) on a complete set of ballots B. Finally, S is said
to be a d-approximation of S’ if their corruption distance is less than ¢ for every preference
profile input B. Note that if S’ is stochastic, this must hold for every possible outcome S’
could produce on a given profile.

The primary result of [2011] can now be stated formally as follows:
Given a social choice function S, it is possible to create a d-approximate voting rule (where
0= w —1) that is e-strategy-proof for any € > 0, where ¢ is the corruption distance
between the approximation and S, and € > 0. In practice, this mechanism functions by

sampling an outcome ¢ with probability proportionate to

271

€

Cl(C+1+¢)

maz(1 d,((B,5(B)), (B, ¢))),0)

One problem with the proposed mechanism is that it is not a very good approximation
when the number of ballots cast is small relative to the number of candidates. In particular,
unless |B| > @, the true winner will need to win by a landslide to be picked with high
probability. In practice, one might expect a value of € near 0.01 to be reasonable, since
a vote who can gain at most one part in a hundred of their maximum utility from a
manipulation is unlikely to consider it worth the effort. In an election with 14 candidates
like the Meath set however, this would require a candidate to lead by an amount requiring
the corruption approximately 18,000 ballots before they would be certain of victory, and
even a lead requiring the corruption of 9,000 ballots would only make them about twice as
likely to win as other candidates. Clearly this is a low-fidelity approximation.

Fortunately, Birrell and Pass address this possibility as well, via the incorporation of
techniques from differential privacy - the field of anonymizing data in a way that preserves
the aggregates with high probability | , |. This should seem a
natural extension, since a social choice function can be viewed as an aggregate computed
over votes. Before discussing this secondary result, more notation from
| | must be provided. A voting rule S’ is said to be a (d, u)-approximation of S if
it returns an answer more than a corruption distance of § from S, with probability no
greater than p. For instance, a (2,0.25) approximation returns an answer equivalent to one
produced by the corruption of at most 2 votes at least % of the time. The secondary result
of [2011] is then as follows (with adapted notation):

Theorem 37. For any deterministic voting rule S and any € > 0, 6 > 0, S has an
e-strategy-proof (8, p)-approzimation S', where p = LCJ+1
(e+1)Z) +[C]-1
The precise details of this mechanism involve selecting an outcome ¢ with probability
proportionate to:

In(e+ 1)

5 — (Bl = du((B,5(B)), (B, ¢)))

exp(

To demonstrate the precise value of the mechanism, suppose it is desired that e = u =
0.01. Solving for d produces

((1*M)(|C*1))

S

272

2log

So substituting the values from the Meath example,

§ =2 log((1 —0.01)(14 — 1)/0.01)/1log((1.01)) — 1 ~ 1,428

which implies that the outcome selected will be within a corruption distance of 1,428
with probability 0.99, and the mechanism does not allow manipulations that result in a
gain of more than 0.01 points of subjective utility for any agent. These quantities appear
workable. Additionally, the mechanism exhibits a very rapid decrease in the probability
of picking other candidates. For example, a candidate that wins by a margin of say, 100
ballots, under a mechanism with e = 0.01 will be nearly three times as likely to be chosen
as the winner. If e = 0.02 is used, then this increases to a factor of more than 7. At
e = 0.03, the ratio is nearly twenty to one. The exact choice of ¢ will naturally depend
on the application domain under consideration. If manipulations are of great value or are
very easy to compute and execute, then lower values of € must be used. If the election
is expected to be tight, (i.e. a small margin of victory), then instead a higher value of €
should be used, to ensure recovery of the correct winner with high probability.

Birrell and Pass do not discuss how the corruption distance ¢ should actually be com-
puted, and for certain voting rules this appears to be a computationally difficult problem,
since it amounts to asking whether there exists a subset of the electorate who could ma-
nipulate the outcome. However, even ignoring the results discussed earlier in the chapter,
which suggest such manipulation problems are often not very challenging, there are many
voting rules for which the problem is immediately tractable. For example, under Borda,
suppose that ¢* has won the election with a Borda score x points higher than some other
candidate c. For a given ballot, it is easy to compute contribution of the ballot to the
Borda score advantage of ¢* over ¢, which is just the number of positions ¢* appears ahead
of ¢ by (it will be negative if ¢ is ranked higher on a given ballot). If the ballots are sorted
according to this measurement, then the ballots giving the highest advantage to ¢* over ¢
can be removed, and replaced with a ballot that ranks ¢* last and ¢ first. This process can
be repeated until ¢* no longer has a higher Borda score than ¢, and the number of ballots
that were replaced will clearly yield the correct corruption distance. A similar process can
be performed for any monotonic scoring rule.

In the case of the imputation-based approach however, this problem is greatly com-
pounded because ¢ is the minimum number of (partial) ballots in the input that must be
corrupted to cause a given classification algorithm to output a completion that is in turn
interpreted by a voting rule as providing a different outcome. Computing how a given
learning algorithm will respond to arbitrary changes to subsets of its inputs is not straight-
forward, and while robust classification algorithms exist (e.g. | ,]), they are

273

robust only in the sense that adding at most some number of adversarial ballots will not
change the estimates of the model too much. However, since computing ¢ involves corrupt-
ing arbitrary subsets of the data, this approach would not provide an effective guarantee.
Earlier approaches to adversarial classification | , | provide protection even
against adversarial replacement of exemplars, but are tailored to specific classifiers like
Naive Bayes.

9.3 Robustness of Imputations

Although it is not straightforward to compute the distance measure ¢, it is still possible to
provide some empirical support for the idea of e-strategy-proof versions of the imputation-
based approach to social choice, by assessing the robustness of the imputation-based ap-
proach when many ballots are corrupted. To accomplish this, the proportion of problem
instances where changing the output of the learning algorithm on a subset of the bal-
lots changes the outcome of the election is assessed empirically. In reality, ¢ requires the
computation of the effect of any such subset, so these results provide only an exploratory
and somewhat informal assessment of the values of ¢ that might be present in real world
datasets. It may be useful to future researchers when considering avenues of research
into which combinations of imputation algorithms and social choice functions are easy to
manipulate.

In the experiment, a modified version of the Prefmine testbed system 6 was created.
Following the imputation step, a subset of the completed ballots was sampled uniformly at
random and removed entirely. The aggregate scores of each candidate were then computed
under each of several scoring rules, and the margin of victory between the candidate with
the highest score and the runner-up was measured, and then compared to the maximum
change in the margin that could be achieved by replacing the removed ballots adversar-
ially. The Markov Tree learner from Chapter 7 with a model depth of k£ = 3 was used.
Experiments were performed on 100 problem instances generated from each of the three
Irish datasets (Dublin North, Dublin West, and Meath). The number of ballots that were
replaced adversarially was determined by the formula

1
2 % log((1 — 0.05)(|C] — 1)/0.05)/ log(1 + W) -1
because an outcome requiring the corruption of fewer than this many ballots would be
selected 95% of the time in a ﬁ approximation of the imputation-based voting rule, as
discussed in the previous section (i.e. this is the value of ¢ when p = 0.05 and € = %)

274

The results of these experiments are summarized in Figure 9.2. Each figure shows three
violin plots, one for each of the Dublin North, Dublin West, and Meath datasets®. Each
violin plot shows the distribution of the margin of victory that was observed after removing
a subset of the ballots. Note that these margins are actually much smaller than what
might be expected in elections of this size, because only about 10% of the original ballots
are complete in each election. A dashed red line through each plot shows the maximum
change in the margin of victory that could be achieved by replacing the removed ballots
adversarially. Overall the results suggest that both Borda and K-Approval are usually
difficult for a randomly selected subset of voters to manipulate, and consequently that they
would be fairly easy to protect using an approximately strategy-proof mechanism. The
majority of runs under both Dublin North and Dublin West were not manipulable even by
an adversary with the power to replace more than 100 ballots adversarially. On both rules,
Meath was more difficult to protect completely. Note however that even if the outcome can
be changed, an approximately strategy-proof system will prefer (by exponential factors)
outcomes that are closer to the winner.

9.4 Discussion

The most promising route toward making a strategy-proof version of the imputation-based
approach to social choice appears to be via the e-strategy-proof approach.

| | suggests that for any combination of voting rule and imputation algorithm, an
approximately strategy-proof rule exists, but it is defined in terms of /¢, a distance measure
that is not straightforward to compute for the imputation-based approach. Interestingly
however, if an efficient algorithm (or approximation algorithm) does exist for finding ma-
nipulations for a given combination of voting rule and imputation method, then such an
algorithm can be used straightforwardly to compute ¢ for that combination, and thus cre-
ate an e-strategy-proof version of the method. The construction and characterization of
such algorithms is left to future work however.

Despite the difficulty of computing ¢, a small experiment was performed to assess the
potential of the approximately strategy-proof voting to work with the imputation-based
approach. It was found that under Borda and K-Approval, the margins of victory in real
world elections were often large enough that the implementation of the system would have

3A violin plot is comprised of a box plot (black, middle of each violin), with a smoothed histogram
to either side. They show a more complete shape of the distribution than a box-plot alone |

» 1998]

275

Effect of Manipulations Under Borda Effect of Manipulations Under K-Approval

o
S |
o
o
]
° _
o | ©
[Te)
N
o
> Q2 2
S R 9
S g g
> > !
Y— N ~
o 8 (=}
£ o0] £
[=2] — [=2d
1S <
I <
= =
o
S
=1 s |
N
o
S
wn
o o
I I I I I I
North West Meath North West Meath

Figure 9.2: Violin plots showing the distribution of the margin of victory under the Borda
voting rule (left) and K-Approval voting rule (right). Dashed red lines show the maximum
decrease in the margin that could be achieved by replacing the removed subset of the ballots
adversarially.

very little impact on the choice of outcome. Assessing the performance of a strategy-proof
version of the imputation-based approach remains an open problem.

276

Chapter 10

Conclusion and Future Work

Now this is not the end. It is not even the beginning of the
end. But it is, perhaps, the end of the beginning.

Winston Churchill, | |

In the first chapter of this thesis, the overarching goal of the research contained herein
was described as answering the question: Can existing techniques from machine
learning be used in a novel way, in order to provide improved computational
social choice solutions and hence, to make better group decisions in multiagent
systems? The question was broken down into three sub-parts, which respectively con-
cerned how exactly machine learning techniques ought to be used; whether the techniques
were effective or not in the chosen application; and whether there was a principled way
to compare the “fairness” of different machine learning algorithms that might be applied.
Over the past seven chapters, these questions have been answered in detail, with the pre-
sentation of a new approach to the problem of social choice with incomplete information,
called the imputation-based approach. The proposed system was validated using a novel
experiment design on real world electoral data, and found to offer substantial advantages
over modern competitors. As well, a framework for representing and analyzing machine
learning algorithms as social choice functions, or as part of composite social choice func-
tions, provided an interesting theoretical connection between computational social choice
and machine learning, and provided a new set of tools to help to answer the question
of which algorithms were best suited to applications in social choice. The proposal of a
new learning algorithm that was intended specifically for use with the imputation-based

277

approach, and the creation of the carefully designed Prefmine testbed system, are other
significant contributions.

This chapter serves to summarize the contributions of the thesis, to provide direct
contrast with related work, including some that has not yet been discussed, and to propose
future research directions that build upon the work contained in the thesis. The chapter
begins with a brief example of an artificial application domain in multiagent coordination,
wherein the advantages of the proposed approach are elegantly highlighted. The core
contributions of the thesis are then summarized, and contrasted with some additional
related work. The final section provides ideas for future work.

10.1 The Coordination Example

As emphasized near the end of Chapter 5, the experimental design adopted in this thesis,
although based on real-world data, required the use of assumptions about how missing in-
formation was to be distributed. In the interest of fairness to competing methods, a neutral
distribution was picked. There was no direct correlation between the candidates a voter
ranked highly and the probability that a vote ranked very few candidates overall. Although
the imputation-based approach offered performance advantages even under these quite re-
strictive assumptions, the advantages were not as large as those that would be present
when the data are better aligned with the assumptions of the imputation-based approach.
In effect, this experiment design matched the assumptions of the random competitor.

In many situations, the candidates a voter prefers may be intimately linked to the
voters’ general knowledge about the candidates, especially in applications that are further
removed from political contests, like multiagent coordination. As a concrete example,
let us return to and expand the Martian swarm scenario described in Chapter 3 and 4.
In this scenario, mining sites and the headquarters of various mining companies were
distributed on a two-dimensional grid. The companies wanted to mine resources from the
sites, but are required to coordinate, and to operate their robots as a team or swarm.
It is riskier to operate one’s robots further from one’s headquarters, but each company
values the risk differently. Companies have different information about the quality of
different sites. Suppose that viable mining sites are modelled as points distributed on
the grid according to a two-dimensional Gaussian, centered at the origin, but that mining
companies’ headquarters are distributed uniformly at random throughout the space. Each
site has an expected profit that will be received from mining it. The probability that a
company knows enough about the site to estimate its expected profit is proportionate to
the true value of the site, divided by distance between the company’s headquarters and

278

the site!. This creates a scenario where companies with headquarters near the origin will
have lots of information, but companies further away will have much less.

In this scenario, there is a strong correlation between the candidates voters prefer
and the number of candidates voters will be able to rank. Those with headquarters near
the origin will have information about many different candidates. Those located further
away will have information about only a few. However, the ordering of those few points
will tend to provide a great deal of information about how the company would value the
various unranked points near the centre, because both valuations are dependent on the
position of the company relative to the origin.

An implementation of the above problem domain was made within the Prefmine testbed
system. In this implementation, a space consisting of real-valued numbers between (—5, 5) x
(—5,5) was used for the grid. Mining sites were sampled from a Gaussian distribution with
mean (0,0), and standard deviation of 1.5 along each major axis, with no covariance. If
two sampled sites were within a Euclidean distance of 0.1 units of each other, one of the
sites was re-sampled. The locations of company headquarters were sampled uniformly at
random, with the constraint that no company could have headquarters within a Euclidean
distance of 0.1 units of a mining site, or of any other company’s headquarters. Each com-
pany had a utility function that placed the expected value of mining a site at r_lw where
r was the company’s risk parameter, sampled from an exponential distribution with pa-
rameter A = 0.5, and J was the Euclidean distance between the company’s headquarters
and the mining site. A company knows the (correct) quality of the closest mining site
with certainty. Given that a company knows the quality of the k closest sites already,
it knows the quality of the next nearest site with probability H% For simplicity, no
company knows the quality of more distant sites without also knowing the quality of less
distant ones. Each mining company operates 1 robot for simplicity. A company’s ballot
ranks a mining site only if its quality is known. Candidates are ranked according to the
company’s utility function. A third order Markov Tree was used to impute the ballots for
the imputation-based approach. The Markov Tree was selected because this is clearly a
domain where the candidates can be embedded in a low dimensional space, so the model
is expected to perform well, as discussed in Chapter 5. The Borda and K-Approval
voting rules were used to decide the election. All experiments used 15 mining sites, and
the number of companies varied between 100 and 6400, with 100 problem instances being
generated for each number. Results were also collected for MMR and the random ap-
proach. Figure 10.1 shows the advantage in Kendall Correlation for the imputation-based
approach over each competitor under Borda, while Figure 10.2 shows the same measure-

IThis corresponds to the notion that information about more valuable sites will spread further than
information about less valuable ones, all else being equal.

279

Kendall Correlation Advantage over MMR

1.0

0.5
I I

Kendall Correlation Advantage
0

-0.5
I

LS

100

200

400

T
800

T T
1600 3200 6400

Samples

Kendall Correlation Advantage

<
—

-0.5 0.0 0.5

-1.0

Kendall Correlation Advantage over Random

T

100

200

400

T
800

T T
1600 3200 6400

Samples

Figure 10.1: Improvement in Kendall Correlation from using the imputation-based ap-
proach in the coordination example problem under the Borda voting rule. Box plots
show the distribution of advantage over 100 problem instances for different numbers of
companies. Notches indicate a 95% confidence interval for the median | , .

ment under K-Approval. The advantage is the Kendall Correlation between the outcome
using the imputation approach and the ground truth, less the Kendall Correlation between
the outcome using each competitor and the ground truth, on each of the 100 problems for
each parameter setting. Values greater than 0 indicate advantage for the imputation-based
approach.

The advantage of the imputation-based approach is very pronounced in this example
application, and for the 6,400 company case, begins to approach the distance between the
correct outcome and an outcome sampled uniformly at random. Indeed, examining the raw
results, the competing methods are often selecting outcomes that are worse than randomly
selected ones. The reason for this is that the problem domain produces (by design) ballots
with very extreme and asymmetric missingness. Most ballots will rank only one or two of
the 15 candidates. The exception to this is for voters located near the centre of the grid,
who will be close to many candidates, and so will rank many candidates. In the case of
MMR, the extreme missingness gives wide latitude to make nearly any candidate win the
election. This problem is not helped by having a larger number of ballots to work with,
since these ballots are also highly incomplete, and while any candidates they order provide

280

Kendall Correlation Advantage over MMR Kendall Correlation Advantage over Random

n [Te}

— 7 7 .

= = T i
o I O I : ; .
8 —_ 8 - T ; : : :
c —_ c ! | | | |
: 8 S I N AR Jes i
2w 2w | i ‘ 8 3
: 8 - — |
N
< © ; ; : ' -
© g ° : ' ; 8
= o = o : : : : : !
8 o L 8 o7 ; ‘ e e
3 — 5 - -
T w0 S
X ? — X ? —

o o

— —

! T T T T T T T ! T T T T T T T

100 200 400 800 1600 3200 6400 100 200 400 800 1600 3200 6400
Samples # Samples

Figure 10.2: Improvement in Kendall Correlation from using the imputation-based ap-
proach in the coordination example problem under the K-Approval voting rule. Box
plots show the distribution of advantage over 100 problem instances for different numbers
of companies. Notches indicate a 95% confidence interval for the median | , .
Note the change in the limits of the vertical axis.

281

MMR with some information to constrain its selection of the winner, this is outweighed
by the unconstrained choices for the ordering of the remaining candidates these extra
ballots do not order. In essence, additional ballots add more degrees of freedom than they
subtract, and MMR is picking a winner by solving a nearly unconstrained optimization
problem. The random approach (the author’s casting of the MLE competitor |

, |) also fares rather poorly for this reason. There is a lot of noise in the
relative positions of the candidates using only the given preferences. In contrast, the
imputation-based approach utilizes features in the given ballots to determine how voters
would have voted very efficiently. If two voters rank the same candidate highly, they must
be close to one another in the grid, and so will have correlated opinions about more distant
candidates. Effectively, each ballot improves the quality of the machine learning model,
without increasing the complexity of the imputation task significantly. Given enough data,
the Markov Tree will be able to predict a voter’s preferences with a great deal of accuracy,
given only their first few preferences. The example illustrates the great strength of the
imputation-based approach in domains where voters’ preferences truly do exhibit structure

of this kind.

10.2 Conclusion and Discussion

As outlined in the introduction of this chapter, the thesis has made a number of distinct
contributions that were presented over the previous seven chapters. The precise nature of
each contribution is expanded upon here, providing both the details of the contribution’s
scope, and a suggestion of which communities might find the results most useful.

The core contribution of the thesis is the design and validation of a new approach to
the problems of group decision making with incomplete information, one that is predicated
on leveraging machine learning and imputation to address missingness in a manner that
aligns with users’ true preferences. These problems arise in many contexts, ranging from
political contests to coordination problems in multiagent systems, and the demonstrated
performance of the new imputation-based approach ensures that practitioners in these areas
will have a powerful new tool for making better group decisions. As shown by the Martian
swarm example in the previous section, and as discussed in Chapter 4, if the problem
domain is more consistent with the assumptions made by the imputation-based approach
then the performance gains can be pronounced, while the results of Chapter 5 demonstrate
that the approach performs well even when the problem domain is more neutral.

In addition to providing improved performance, the new system offers a tangible connec-
tion between the fields of machine learning and computational social choice. The demon-

282

stration in Chapter 4 that the imputation process itself is a form of social choice is the key
avenue for this conclusion. In addition, the axiomatic analysis of Chapter 8 that provided
a means to assess the axiomatic fairness of machine learning algorithms as well as com-
positions of learning algorithms and social choice functions, also serves to provide a new
bridge connecting the fields, and fertile ground for theorists from either domain to obtain
more refined answers to the question of which learning algorithms are best suited to social
choice problems. The analysis of the best way to create strategy-proof approximations of
imputation-based voting systems introduced in Chapter 9 further contributes a compelling
problem area for future theoretical study.

The Prefmine testbed system, described in Chapter 6 offers researchers in computa-
tional social choice a straightforward way to validate new techniques for social choice
with incomplete information, using the experimental methodology described in Chapter 5,
namely learning a distribution of missingness from real world data, and then using that
model to ablate ballots for which the ground truth was known to create realistic problems.
This methodology allows experimenters to make more realistic datasets than might other-
wise be available, and so may facilitate the design of more practical systems in the future.
The careful construction of the system also provides assurances against experimenter er-
ror, and enables replication of existing results with ease. As a complement to the work
of others in the computational social choice community which provide collections of real
world data |) |, the testbed system will allow this data to be used in
a consistent fashion. Further, the testbed system provides a direct means for practitioners
to analyze data, or to implement the techniques developed in this thesis for use in any
social choice domain. Researchers in areas like recommender systems might also be inter-
ested in the Prefmine testbed, as it provides a simple way to evaluate their algorithms in
a somewhat different context (group decision, instead of individual recommendation).

Finally, the development of a learning algorithm tailored specifically to the imputation-
based approach provided somewhat better decision making performance than conventional
machine learning models (offering further gains to potential practitioners), as described in
Chapter 7. The Markov Tree Learner also provided more robust theoretical guarantees
about the behaviour of the imputation-based approach, both with respect to the amount
of data needed for convergence to a reasonable imputation model, and with respect to the
ability to learn the parameters of artificial data distributions. The learner was also efficient
and the models it produced had an intuitive interpretation (modelling a trajectory through
the space in which candidates are embedded), which could help guide practitioners in the
parameterization of the learner.

Taken together, these contributions substantially advance the state of the art in the
problem of social choice with incomplete information, as well as helping to connect machine

283

learning and computational social choice closer together, and offering powerful new tools
for practitioners and experimentalists. It is therefore concluded that existing techniques
from machine learning can indeed be used in a novel way, in order to provide improved com-
putational social choice solutions, and hence to make better group decisions in multiagent
systems.

10.3 Related Work

There are a number of recent works that are tangentially related to topics covered in
the thesis, or that study the same general area without studying the specific problems
considered by the thesis. This section will briefly summarize these works, and contrast
them with the results of the thesis to provide more contextualization.

The approach adopted in the thesis toward the creation and analysis of social choice
mechanisms is conceptually similar to Xia’s recently proposed Generalized Decision Scor-
ing Rule (GDSR) framework [Xia, |, in which mechanisms are “designed by social
choice, evaluated by statistics and computer science”. Like in the GDSR framework, the
imputation-based approach attempts to minimize the distance between an objectively cor-
rect outcome and the outcomes produced by different mechanisms. A key difference be-
tween the two approaches is that the GDSR framework has thus far been used to charac-
terize asymptotic performance of broad classes of mechanisms, while the imputation-based
approach have been evaluated primarily through empirical tests against real world data.
Additionally, GDSRs are axiomatically characterized in terms of a property called “local
consistency”, which requires that for any two sets of ballots By, By over the same set of
alternatives, if I(By) = I(Bs), then I(By U By) = I(By) = I(B3), where I is a voting
procedure. That is, if two sets of ballots produce the same outcome, their union must
also produce that outcome. The imputation-based approach does not have this require-
ment, and it is actually rather easy to imagine learning algorithms such that this property
would not hold. For example, suppose that B; contains many incomplete ballots that are
similar to a small set of complete ballots in By, but dissimilar to every complete ballot
in By. and vice versa. A sensible imputation algorithm might impute the ballots in each
subset very differently from the ballots in the whole, and this behaviour does not appear
to be undesirable in the context of the imputation-based approach. Consequently, a dif-
ferent set of axioms, and different corresponding statistical analysis, is required for a full
characterization of the imputation-based approach in the abstract.

[| considers the problem of determining the winner (i.e. top ranked
candidate) in elections containing only partial ballots under both Schulze’s rule | ,

284

| and a Tree-based approach wherein a number of pairwise contests are held. Like the
imputation-based approach to determining the winner, the raw ballots are used, and no
further elicitation occurs (in contrast to say, the approach suggested by
| |). However, unlike the imputation-based approach, it is not assumed that voters
with similar preferences regarding the ranking of some candidates will also have similar
preferences regarding the ranking of others, and the problem studied concerns primarily
the computational efficiency of determining the winner under these systems, rather than
the quality of the decisions under some objective measure. More generally, two problems
are considered at length: determining whether a unique winner exists that must win (re-
gardless of how preferences are completed), or determining the composition of the set of
possible winners (i.e. candidates that could win, under some completion) when performing
social choice with incomplete preferences. Both problems have received a great deal of
study | , ; : ; , , ;

, |. The imputation-based approach will always (by definition) select

a possible winner of the election, since it imputes ballots in a fashion that is consistent
with the expressed preferences of voters. However, it also (for better or for worse) will
select a unique winner, corresponding to the assumptions embedded in whatever imputa-
tion algorithm was used, even if there are several possible winners. Results in Chapter 5
demonstrate that this approach is quite effective on real world data, and intuitively, it will
be effective whenever there are clear patterns in voters’ preferences, and there is enough
data to learn them.

| | develop a framework for eliciting probabilistic statements
from voters regarding their preferences (i.e. rather than asking whether a is preferred to b,
the algorithm can ask voters for the probability that they will prefer a to b), and efficiently
aggregates these sorts of probabilistic preferences to determine an ordering that is close to
a central ranking. The techniques were evaluated by starting with data from Preflib |
, |, and generating a probability distribution for each vote via a Mallows
model with a central ranking equal to the vote itself. The approach appears to work well
in practice, and is supported by strong theoretical bounds. The main differentiating fac-
tors between the model described in the paper and the imputation-based approach are
that the imputation-based approach can work with whatever precise relationships voters
are willing to provide, whereas the paper’s approach works by eliciting probabilistic in-
formation. Depending on the problem domain, either option might be preferable. For
example, when working with human voters, eliciting (accurate) probabilistic information
might not be straightforward, while when working with software agents it might be quite
easy. | | propose the use of minimax regret for selecting multiple
winners as well as single winner | , |, described at some length in

285

Chapter 5. This approach addresses the same problem as the imputation based approach,
and is likely preferable when working in domains where voters can be queried for more in-
formation, because it provides powerful heuristics for the order in which further preference
information should be elicited. If little information is given and no more can be elicited,
the approach can make conservative decisions even in domains with strongly structured
preferences, however.

A number of different authors study the problem of inferring an objective central rank-
ing from ‘“noisy” ballots | , |, that is, ballots
which order candidates correctly with hlgher probablhty than they are ordered incorrectly.
These include algorithms for efficiently learning the central ranking of Mallows distribu-
tions | : | or mixtures of several Mallows distributions |

, |, and effectively learning random utility models | , :

, |, as well as a much longer literature going back to [1959] (with
notable recent developments in this vein including the empirical studies of
| |). First-order Markov Chains have been considered for the purpose of aggregating
partial orders of candidates recently |?|, but the model proposed in Chapter 7 can learn
higher order models, and can be used to impute preferences as well as to learn a central
ranking, as demonstrated in Sections 7.5 and 7.6. Interesting recent work also includes
finding voting rules that are “consistent in the limit” with many different statistical pref-

erence models simultaneously. For example, | | show that picking
the modal ranking from an infinitely large set of ballots will yield the correct ordering in
expectation for an enormous family of distributions. [| shows a similar

rule for distributions where noise might be inserted adversarially. The primary difference
between these approaches and the imputation-based approach is the assumption of an ob-
jectively correct central ranking. The imputation-based approach does not assume that
such a ranking exists, and instead assumes only that individual voters have underlying cor-
rect rankings, which might be generated from any number of different, unrelated processes.
While the techniques described in this paragraph could be used as part of the imputation-
based approach (e.g. as imputation algorithms themselves), they are best understood as
examining a closely related but complementary problem domain.

10.4 Future Work

As the epigraph for this chapter asserts, this thesis does not constitute the end of the
research project that was undertaken, but only the end of the beginning of that project.
There remain many interesting and exciting avenues for future work at the intersection

286

of machine learning and computational social choice, building upon the imputation-based
approach proposed here. This section ends the thesis by listing a number of such avenues.

One area with great potential for future work is improving the realism of the exper-
imental design used in the Prefmine testbed system. Although the current experimental
design is based on real-world data, the ablation models used assume there is no relation-
ship between which candidate a voter has expressed a preference for, and the amount of
information the voters have. It also does not provide a straightforward means to generate
partial preferences that are not top-orders over the candidates. The example presented
earlier in this chapter demonstrates that asymmetric distributions of missingness favour
the imputation-based approach, and there are application domains in which such distribu-
tions are eminently reasonable. One possible way to generate preferences with asymmetric
missingness would be to learn (via the algorithms described in Chapter 7) a variant of a
Markov Tree with order k = |C|. The tree would also learn the point at which a given
sequence ends, and could then be used to generate artificial rankings with similar statisti-
cal properties to the original dataset, or to ablate ballots from the original set in a more
asymmetric manner. A carefully constructed variant of the Markov Tree learner could also
be used to generate arbitrary partial orders, rather than only top orders, provided that a
set of partial orders was available to learn from.

Chapters 5 and 6 also included a discussion of the problem of bias in the imputation
method, and how it relates to the problem of class-imbalance in machine learning more
generally. When some candidates are not ranked at all, or are ranked by very few voters,
classification models will tend to have larger errors in their estimates of the candidate’s
position on a ballot than for candidates about which the models have lots of data. There
are a number of interesting potential avenues for addressing this issue. Standard tech-
niques from machine learning for addressing the class-imbalance can be incorporated into
the imputation-based approach, perhaps including approaches like dynamic subset selec-
tion | , ; , |, applied in Algorithm 2.
Since such techniques can sometimes also improve training performance, the could be
especially effective in this problem domain, given that the imputation-based approach
sometimes trains a number of models that is quadratic in the number of candidates.

Chapters 5 and 6 considered a number of different learning approaches, but one ap-
proach that was not considered was the application of a meta-classification technique |
; , | to the imputation-based approach directly. Instead of
training a single model to generate a single imputation of the ballots, several different mod-
els could be trained, each resulting in (via variation in the composition of their training
sets) a different imputation and a different resulting decision. Some averaging over the
different decisions output by the different models could provide more robust performance,

287

and might also provide some increased resistance to manipulation (since the manipulator
may be unable to influence every classifier effectively by using a single ballot).

The data used in the thesis for experimental validation in Chapter 5 and 7 is drawn
from Preflib | , |, but perhaps better data could be obtained, and
then contributed back to the broader community. For example, the experiments with the
Veto voting rule used data from elections that were conducted under rules in which the
last preference on a ballot has minimal impact. Consequently, voters may not have given
great thought to their final preferences. However, under Veto, the last preference has
great importance, since it is the only one that influence the outcome. Running electoral
experiments on a platform like Amazon’s Mechanical Turk could perhaps allow for the
collection of a large dataset under the Veto rule, with more representative values for
voters’ final preferences. Preflib now also contains a number of other electoral datasets
for municipal elections that could be good sources of data to expand on the experiments
conducted in the thesis.

Another advantage of gathering electoral data directly from controlled experiments is
that it would be more effective to differentiate between a voter’s ignorance and ambivalence
using such data. The ranked ballot data contained in Preflib is reflective of most high
stakes electoral systems, where voters are not permitted to indicate that they think two
candidates are tied except perhaps by refusing to order them, which is indistinguishable
from being unable to order them due to ignorance. In the context of the imputation-based
approach, these two positions have dramatically different meaning. If two candidates are
actually tied in the voter’s view, then their ordering should not be imputed. In contrast,
if the order of two candidates is unknown, the order must be imputed. Collecting data
directly would allow voters to express whether they were unsure about the order of two
candidates, or certain that they were equally good, and would reveal empirically how
often voters are ignorant of the distinctions between two candidates. Interestingly, such
experiments could be followed up in the manner proposed by | |, by
providing voters with much more targeted and useful information after their initial ballot,
to produce datasets that had precise indications of which information was missing, and
what the correct imputations would be (i.e. what voters’ true preferences were).

Although the imputation-based approach to social choice is subject to Arrow’s Theorem
and the Gibbard-Satterthwaite Theorem, the original axiom sets were not quite ideal for
the imputation-based approach, which is why new axioms were proposed specifically for
the domain in Chapter 8. However, the results of the analysis in Chapter 8 suggest that
there is a similar set of impossibility results lurking in this set of axioms, as all of the
classifiers studied apart were either dictatorial, or violated several of the other axioms.
Proving this would lend additional legitimacy to the new axioms, and would perhaps also

288

expedite the analysis of other imputation algorithms.

The axiomatic analysis of additional imputation algorithms could provide further in-
sights for practitioners into the appropriate algorithms to use in different situations. Logis-
tic regression or another method based on features derived from voters’ preferences would
be a useful starting point, since the choice of features seems to exert significant influence
over the behaviour of the algorithm. It would be interesting to show that certain features
are required for a classification algorithm to satisfy a certain axiomatic property. It would
also be interesting to do a more thorough analysis of combinations of voting systems and
imputation algorithms, along the lines used by | |.

As discussed briefly in Chapter 9, there appears to be a close connection between the
problem of designing strategy-proof imputation-based voting systems, and the problems
studied in adversarial classification | , |. Exploring this topic more fully
could provide an interesting avenue for making the imputation-based approach strategy-
proof, that complements the approximation approach based on the work of
| |. It would also be interesting to compare the two approaches empirically, and see
which one offers a better approximation of the performance of the raw imputation-based
approach.

On a more applied note, the Prefmine testbed described in Chapter 6 could be expanded
to include more voting rules. In particular, adding Single Transferable Vote, quadratic
scoring rules, and several other Condorcet extensions would improve the versatility of the
system. The Prefmine user interface could also be improved, perhaps by integrating graph-
generating software and other customized outputs, which would streamline the analysis of
preliminary experiments. Providing integrated facilities for statistical analysis, and for
viewing the data generated for different problems directly, would also improve the user
experience. Further, Prefmine’s parallelism features could be restored? to greatly boot
performance. This would allow more ambitious and complex experiment designs to be
constructed easily. The addition of a means to accept data in formats other than .soi
would also broaden the appeal of the system.

The Prefmine system could be applied in the context of many practical applications. For
example, it might be useful as a tool for medium-stakes voting, where many organizations
still use poorly constructed or ad hoc systems. As an illustration, communities like Guelph,
Ontario, have recently allocated funds for community development in part based on popular
vote. Since candidate projects could be proposed by as few as three citizens, there were
a very large number of alternatives, and partial ranked ballots were elicited from voters.

2Recall, they were disabled due to a change in the experimental programming language that was used
for implementation.

289

However, the aggregation of the ballots was conducted using an ad-hoc variant of the
Borda rule®. Although online systems exist to aid in deciding elections of this kind,
such systems are not well suited to a medium-stakes application of this kind due to privacy
concerns®. In contrast, Prefmine processes data locally, and has a pass-through option that
would allow direct application of rules like Borda. Alternatively, with small modifications
expanding on the raw option described in Chapter 6, Prefmine could accept partial ballots
and output a decision directly using one or more of the techniques described in this thesis,
rather than performing ablation experiments. This capability could be very useful to
practitioners.

More speculatively, the imputation-based approach might be useful in multiagent co-
ordination contests, like the recent contests to coordinate ad hoc teams in robotic soc-
cer | , |, as illustrated in the coordination example near the start of this
chapter. A feature of the approach is that it allows members of a cooperative team to
propose votes over arbitrary alternatives, and can assist the team in making decisions that
are a reasonable approximation of the group’s consensus even if not all group members
have evaluated all alternatives.

Finally, a common question with reference to this work is whether the system could
(or should) be deployed for higher stakes political contests, for example, the election of
a national government. Although in principle the imputation-based approach could scale
to a national level, political contests are a unique application domain, because the goal
of a political contest is not necessarily to make the “best” or most representative decision.
Rather, a good system for political contests must also convince voters (especially voters
who do not like the outcome) that the outcome was selected in a fair and reasonable man-
ner. An advantage of the Plurality system is that it is extremely simple and easy to
explain to laypeople: the winner was the favourite candidate of the largest group. Voters
who are displeased with the outcome have voted for a candidate that was favoured by a
smaller group. As a proxy for other means of making the decision (e.g. force of arms), it
is easy to understand and accept that the side with more supporters has defeated one’s
own side. Ranked ballot systems require more nuanced explanations. Voters must un-
derstand why a given candidate is the winner, and must be convinced that the system
has made a reasonable choice. Clearly it is possible to convince voters of this, as even
fairly complex systems like Single Transferable Vote have been adopted at the national
scale in countries like Australia and Ireland. Iceland and the tiny island nation of Nauru

3The author learned this via private correspondence with one of the members of the committee that
allocated funds.

4Voters are often uncomfortable with the idea that their private ballots might be given to a third-party
website.

290

use variants of Borda. However, more complex systems like Schulze’s method | ,

| have not yet been adopted by any national assembly. Under this method, victory
involves reasoning over paths between candidates in a weighted graph. Explaining such
a system to laypeople, and convincing them that its decisions are fair and correct, is not
a straightforward proposition, even if the system has been readily adopted by technically
savvy societies like the Debian Project, an organization primarily comprised of software
engineers. Even much simpler systems have failed to be explained adequately to the pub-
lic. In Ontario, which uses district-level Plurality to elect its provincial legislature, a
2007 referendum to elect some of the members via an exceedingly simple provincial-level
proportionate scheme (which did not even require the use of a ranked ballot), failed to be
adopted, with one of the most common reasons given by voters being a lack of information
about how the system would work | , |. Explaining the imputation-based
approach, and its advantages, to a large group of laypeople seems unlikely to succeed,
which precludes the use of the system in large scale, high stakes, applications, even if it
were found to make high quality decisions there. It might be interesting to design vari-
ations on the imputation-based approach that were more easily explained to voters. For
example, a multi-round protocol where voters cast initial ballots, and then are shown the
imputation of their ballot that the system would utilize, may be effective. Voters could
then revise the imputation of their own ballot before the system made a final decision.
In this way, the imputation-based approach would support voters by providing them with
more information, rather than deciding the outcome for them directly. Although such a
system might be more palatable to voters, it has other practical barriers, like the need
to re-identify voters between rounds. Further, some voters are inherently distrustful of
having a computer recommend a completion of their ballots, and might refuse to accept
any suggestions, even if these were in fact in their best interest.

10.5 Summary

At the onset, this thesis proposed to address three distinct subproblems, a goal which
has now been achieved. A new vision for resolving social choice problems in the face of
incomplete information was provided in Chapters 3 and 4, using techniques from machine
learning to impute missing information in voters’ ballots, and demonstrating that machine
learning can indeed be applied to improve the quality of social choices.

A detailed validation of the proposed approach on real world data in Chapter 5 estab-
lished that it was highly effective, meeting or exceeding the performance of state-of-the-art
competitors, and the flexible testbed system developed in Chapter 6 helps practitioners,

291

as well as researchers in computational social choice, to adopt the same methodology in
the future. The purpose-built algorithms of Chapter 7 further refine performance, offer-
ing improved speed, decision-making quality, and interpretability for this problem domain,
supported by theoretical guarantees and empirical results.

Finally, the theoretical results in Chapter 4 served to connect the fields of machine
learning and computational social choice together, providing an exciting and fruitful area
for future theoretical work from the perspective of both disciplines. Results in Chap-
ter 8 showed that refined axioms could be developed specifically for the imputation-based
approach, and provided an interesting initial look at the effects of combining different im-
putation algorithms and social choice functions together, in terms of axiomatic fairness.
Chapter 9 considered practical ways to improve the resistance of the imputation-based ap-
proach to strategic behaviours, providing a general solution that works for any combination
of voting rule and imputation method that is known to be vulnerable to manipulation in
the first place.

In addition, the results in this chapter discussed applications for the system, and the
powerful advantage it can offer in more structured preference domains. Future application
areas await in a variety of medium-stakes areas, ranging from community decision making,
through to robot coordination. The thesis also leaves open the question of how fairer
imputation algorithms could be designed, and this provides an exciting avenue for future
work, both through axiomatic analysis, and empirical validation.

In all, the thesis serves to advance the state of the art in the domain of group decisions
with incomplete information, integrating machine learning, and providing insights into the
nature of fair decision making for practitioners, voters, and researchers alike.

292

References

David J. Abraham, Avrim Blum, and Tuomas Sandholm. Clearing algorithms for barter
exchange markets: Enabling nationwide kidney exchanges. In Proceedings of the Sth
ACM conference on FElectronic commerce, pages 295-304. ACM, 2007. ISBN 1-59593-
653-X.

Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz. Applying support vector machines
to imbalanced datasets. In Machine learning: ECML 2004, pages 39-50. Springer, 2004.
ISBN 3-540-23105-6.

Alnur Ali and Marina Meila. Experiments with Kemeny ranking: What works when?
Mathematical Social Sciences, 64(1):28-40, 2012.

Horst Alzer. On some inequalities for the gamma and psi functions. Mathematics of
Computation of the American Mathematical Society, 66(217):373-389, 1997.

Kenneth J. Arrow. Social choice and individual values. Yale University Press, 12th edition,
2012. ISBN 0-300-18698-3.

Kenneth J. Arrow, Amartya Sen, and Kotaro Suzumura. Handbook of Social Choice &
Welfare. Elsevier, 2nd edition, 2010. ISBN 0-08-092982-6.

Hossein Azari, David Parkes, and Lirong Xia. Random Utility Theory for Social Choice. In
Advances in Neural Information Processing Systems, pages 126-134. NIPS Foundation,
2012.

Hossein Azari Soufiani, David C. Parkes, and Lirong Xia. Preference Elicitation For General
Random Utility Models. In Uncertainty in Artificial Intelligence: Proceedings of the 29th
Conference. AUAI Press, 2013. ISBN 0-9749039-9-X.

Alexander Balz and Robin Senge. WEKA-LR: A Label Ranking Extension for WEKA.
URL http://www.uni-marburg.de/fbl12/kebi/research/software/labelrankdoc.
pdf.

293

http://www.uni-marburg.de/fb12/kebi/research/software/labelrankdoc.pdf
http://www.uni-marburg.de/fb12/kebi/research/software/labelrankdoc.pdf

John Bartholdi III, Craig A. Tovey, and Michael A. Trick. Voting schemes for which it can
be difficult to tell who won the election. Social Choice and welfare, 6(2):157-165, 1989.

John J. Bartholdi III and James B. Orlin. Single transferable vote resists strategic voting.
Social Choice and Welfare, 8(4):341-354, 1991.

Dorothea Baumeister and Jorg Rothe. Taking the final step to a full dichotomy of the
possible winner problem in pure scoring rules. Information Processing Letters, 112(5):
186-190, 2012.

Boris Bazhanov. Memoirs of Stalin’s former secretary. Third Wave, 1992. Near the end
of Chapter 5.

Bernard Berelson, Paul Felix Lazarsfeld, William N. McPhee, Paul Felix Lazarsfeld, and
Paul Felix Lazarsfeld. Voting: A Study of Opinion Formation in a Presidential Cam-
paign. University of Chicago Press, 1954.

Eleanor Birrell and Rafael Pass. Approximately Strategy-Proof Voting. In Proceedings
of the Twenty-Second International Joint Conference on Artificial Intelligence, pages
67-72. AAAT Press, 2011.

Duncan Black. On Arrow’s impossibility theorem. The Journal of Law € Economics, 12
(2):227-248, 1969.

Duncan Black, Robert Albert Newing, Iain McLean, Alistair McMillan, and Burt L. Mon-
roe. The theory of committees and elections. Springer, 2nd edition, 1958. ISBN 0-521-
04262-3.

Carlo E. Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Libreria
internazionale Seeber, 1936.

S Bouveret. Whale3 - WHich ALternative is Elected. URL http://whale3.noiraudes.
net/whale3/index.do.

Felix Brandt, Guillaume Chabin, and Christian Geist. Pnyx:: A Powerful and User-friendly
Tool for Preference Aggregation. In Proceedings of the 2015 International Conference on

Autonomous Agents and Multiagent Systems, pages 1915-1916. International Foundation
for Autonomous Agents and Multiagent Systems, 2015a. ISBN 1-4503-3413-X.

Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérome Lang, and Ariel Procaccia. Handbook
of Computational Social Choice. Cambridge University Press, 2015b.

294

http://whale3.noiraudes.net/whale3/index.do
http://whale3.noiraudes.net/whale3/index.do

Leo Breiman. Bagging predictors. Machine learning, 24(2):123-140, 1996.

Simina Branzei, loannis Caragiannis, Jamie Morgenstern, and Ariel Procaccia. How Bad
is Selfish Voting? In Proceedings of the Twenty-Seventh AAAI Conference on Artificial
Intelligence, pages 138-144. AAAIT Press, 2013.

Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry, volume 33.
American Mathematical Society Providence, 2001. ISBN 0-8218-2129-6.

Bruce E. Cain. Strategic voting in Britain. American Journal of Political Science, 22(3):
639-655, 1978.

Angus Campbell, Philip Converse, Warren Miller, and Donald Stokes. FElections and the
political order. Wiley New York, 1966.

loannis Caragiannis, Ariel D. Procaccia, and Nisarg Shah. When do noisy votes reveal the

truth? In Proceedings of the fourteenth ACM conference on electronic commerce, pages
143-160. ACM Press, 2013. ISBN 1-4503-1962-9.

loannis Caragiannis, Ariel D. Procaccia, and Nisarg Shah. Modal ranking: A uniquely
robust voting rule. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, pages 616-622. AAAT Press, 2014.

Thomas Carlyle. Sartor Resartus: The Life and Opinions of Herr Teufelsdrickh... Chap-
man and Hall, 1893.

Francois Caron, Yee Whye Teh, and Thomas Brendan Murphy. Bayesian nonparametric

Plackett—Luce models for the analysis of preferences for college degree programmes. The
Annals of Applied Statistics, 8(2):1145-1181, 2014.

Michael X. Delli Carpini and Scott Keeter. What Americans know about politics and why
it matters. Yale University Press, 1997. ISBN 0-300-07275-9.

John M. Chambers. Graphical methods for data analysis. Springer, 1983. ISBN 0-412-
05271-7.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27-66, 2011.

Giinther Charwat and Andreas Pfandler. Democratix: A Declarative Approach to Winner
Determination. In Algorithmic Decision Theory, pages 253—-269. Springer, 2015. ISBN
3-319-23113-8.

295

Weiwei Cheng, Eyke Hiillermeier, and Krzysztof J. Dembczynski. Label ranking methods
based on the Plackett-Luce model. In Proceedings of the 27th International Conference
on Machine Learning (ICML-10), pages 215-222, 2010.

Winston Churchill. The Bright Gleam of Victory, A Speech at the Lord Mayor’s Day
Luncheon, November 1942. URL http://www.winstonchurchill.org/resources/
speeches/1941-1945-war-1leader/987-the-end-of-the-beginning.

Vincent Conitzer. The maximum likelihood approach to voting on social networks. In
Proceedings of the Fifty-First Annual Allerton Conference on Communication, Control,
and Computing, pages 1482-1487. ITEEE, 2013. ISBN 1-4799-3409-7.

Vincent Conitzer and Tuomas Sandholm. Nonexistence of voting rules that are usually
hard to manipulate. In Proceedings of the Twenty-Sizth AAAI Conference on Artificial
Intelligence, pages 627-634. AAAI Press, 2006.

Vincent Conitzer, Matthew Rognlie, and Lirong Xia. Preference functions that score rank-
ings and maximum likelihood estimation. In Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, pages 109-115. AAAT Press, 2009.

Philip E. Converse. The Nature of Belief Systems in Mass Publics. In Ideology and Dis-
content (ed. David Apter). New York Free Press, 1964.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):
273-297, 1995.

David R. Cox. The regression analysis of binary sequences. Journal of the Royal Statistical
Society. Series B (Methodological), 20(2):215-242, 1958.

Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, and Deepak Verma. Adversarial classifica-
tion. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 99-108, 2004.

Jessica Davies, George Katsirelos, Nina Narodytska, and Toby Walsh. Complexity of and
algorithms for borda manipulation. In Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence (AAAI-15), pages 657-662. AAAI Press, 2011.

Jessica Davies, Nina Narodytska, and Toby Walsh. Eliminating the Weakest Link: Making
Manipulation Intractable? In Proceedings of the Twenty-Sizth AAAI Conference on
Artificial Intelligence, pages 1333-1339. AAAI Press, 2012.

296

http://www.winstonchurchill.org/resources/speeches/1941-1945-war-leader/987-the-end-of-the-beginning
http://www.winstonchurchill.org/resources/speeches/1941-1945-war-leader/987-the-end-of-the-beginning

Jean-Charles de Borda. Mémoire sur les élections au scrutin. Baudouin, 1781.

Marie Jean Antoine Nicolas de Caritat. Essai sur ’application de l’analyse a la probabilité
des décisions rendues a la pluralité des voiz. L’imprimerie royale, 1785.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107-113, 2008.

Persi Diaconis and Ronald L. Graham. Spearman’s footrule as a measure of disarray.
Journal of the Royal Statistical Society. Series B (Methodological), pages 262-268, 1977.

John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm. Price of fairness in kidney
exchange. In Proceedings of the 201/ international conference on Autonomous agents
and multi-agent systems, pages 1013-1020. International Foundation for Autonomous
Agents and Multiagent Systems, 2014.

Franz Dietrich and Kai Spiekermann. Independent opinions? On the causal foundations
of belief formation and Jury Theorems. Mind, 122(487):655-685, 2013.

Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of artificial intelligence research, pages 263-286, 1995.

Evgenia Dimitriadou, Kurt Hornik, Friedrich Leisch, David Meyer, and Andreas Weinges-
sel. Misc functions of the Department of Statistics (e1071), TU Wien. R package, 1:
5-24, 2008.

Shahar Dobzinski and Ariel D. Procaccia. Frequent manipulability of elections: The case
of two voters. In Internet and Network Economics, pages 653-664. Springer, 2008.

Paul Dolan, Rebecca Shaw, Aki Tsuchiya, and Alan Williams. QALY maximisation and
people’s preferences: a methodological review of the literature. Health economics, 14(2):
197-208, 2005.

John Doucette and Malcolm I. Heywood. GP classification under imbalanced data sets:
active sub-sampling and AUC approximation. In Genetic Programming, pages 266-277.
Springer, 2008. ISBN 3-540-78670-8.

John A. Doucette, Kate Larson, and Robin Cohen. Conventional machine learning for social
choice. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.
AAAT Press, 2015.

297

Olive Jean Dunn. Multiple comparisons among means. Journal of the American Statistical
Association, 56(293):52-64, 1961.

George H. Dunteman. Principal components analysis. Number 69 in Quantitative Appli-
cations in the Social Sciences. Sage, 1989. ISBN 0-8039-3104-2.

Piotr Faliszewski and Ariel D. Procaccia. Al’s war on manipulation: Are we winning? Al
Magazine, 31(4):53-64, 2010.

Piotr Faliszewski, Edith Hemaspaandra, and Henning Schnoor. Copeland voting: Ties mat-
ter. In Proceedings of the 7th international joint conference on autonomous agents and
multiagent systems-Volume 2, pages 983-990. International Foundation for Autonomous
Agents and Multiagent Systems, 2008. ISBN 0-9817381-1-7.

Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra, and Jorg Rothe. The
shield that never was: Societies with single-peaked preferences are more open to ma-
nipulation and control. In Proceedings of the 12th Conference on Theoretical Aspects of
Rationality and Knowledge, pages 118-127. ACM Press, 2009. ISBN 1-60558-560-2.

Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. Using complexity to
protect elections. Communications of the ACM, 53(11):74-82, 2010.

Vincent E. Farrugia, Héctor P. Martinez, and Georgios N. Yannakakis. The preference
learning toolbox. arXiv preprint arXiv:1506.01709, 2015.

Jiashi Feng, Huan Xu, Shie Mannor, and Shuicheng Yan. Robust logistic regression and
classification. In Advances in Neural Information Processing Systems, pages 253-261.
NIPS Foundation, 2014.

Aris Filos-Ratsikas and Peter Bro Miltersen. Truthful approximations to range voting. In
Web and Internet Economics, pages 175-188. Springer, 2014. ISBN 3-319-13128-1.

Ronald A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Fugenics, 7(2):179-188, 1936.

Zack Fitzsimmons and Edith Hemaspaandra. Complexity of manipulative actions when
voting with ties. In Algorithmic Decision Theory, pages 103—-119. Springer, 2015. ISBN
3-319-23113-8.

D. Foley. The strange history of the economic agent. New School Economic Review, 1(1):
82-94, 2004.

298

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119—
139, 1997.

Ehud Friedgut, Gil Kalai, and Noam Nisan. Elections can be manipulated often. In
Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science,
pages 243-249. IEEE, 2008. ISBN 0-7695-3436-8.

Sean Gailmard. Arrow’s theorem on single-peaked domains. PhD thesis, Department of
Government & Institute for Quantitative Social Science, Harvard University, 2008.

Chris Gathercole and Peter Ross. Dynamic training subset selection for supervised learning
in genetic programming. In Parallel Problem Solving from Nature—PPSN I, pages 312
321. Springer, 1994. ISBN 3-540-58484-6.

John Geanakoplos. Three brief proofs of Arrow’s impossibility theorem. Economic Theory,
26(1):211-215, 2005.

Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub,
and Marius Schneider. Potassco: The Potsdam answer set solving collection. Al Com-
munications, 24(2):107-124, 2011.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases. New Generation Computing, 9(3-4):365-385, 1991.

Katie Genter, Tim Laue, and Peter Stone. The RoboCup 2014 SPL Drop-in Player Com-
petition: Encouraging Teamwork without Pre-coordination. In Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent Systems, pages 1745—

1746. International Foundation for Autonomous Agents and Multiagent Systems, 2015.
ISBN 1-4503-3413-X.

Karen Gerard and Gavin Mooney. QALY league tables: handle with care. Health eco-
nomics, 2(1):59-64, 1993.

Allan Gibbard. Manipulation of voting schemes: a general result. Econometrica: Journal
of the Econometric Society, 41(4):587-601, 1973.

Allan Gibbard. Manipulation of schemes that mix voting with chance. Fconometrica:
Journal of the Econometric Society, 45(3):665-681, 1977.

Jonathan Goldman and Ariel D. Procaccia. Spliddit: Unleashing fair division algorithms.
ACM SIGecom Exchanges, 13(2):41-46, 2015.

299

Gene H. Golub, Michael Heath, and Grace Wahba. Generalized cross-validation as a
method for choosing a good ridge parameter. Technometrics, 21(2):215-223, 1979.

Umberto Grandi, Andrea Loreggia, Francesca Rossi, Kristen Brent Venable, and Toby
Walsh. Restricted manipulation in iterative voting: Condorcet efficiency and Borda
score. In Algorithmic Decision Theory, pages 181-192. Springer, 2013. ISBN 3-642-
41574-1.

Scott D. Grosse. Assessing cost-effectiveness in healthcare: history of the $50,000 per
QALY threshold. FEzpert Review of Pharmacoeconomics & Qutcomes Research, 8(2):
165-178, 2008.

John Guiver and Edward Snelson. Bayesian inference for Plackett-Luce ranking models.
In Proceedings of the 26th Annual International Conference on Machine Learning, pages

377-384. ACM, 2009. ISBN 1-60558-516-5.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
lan H. Witten. The WEKA data mining software: an update. ACM SIGKDD explo-
rations newsletter, 11(1):10-18, 2009.

Les Hatton. The T-experiments: errors in scientific software. In Quality of Numerical
Software, pages 12-31. Springer, 1997. ISBN 1-5041-2942-3.

Les Hatton and Andy Roberts. How accurate is scientific software? [EFEE Transactions
on Software Engineering, 20(10):785-797, 1994.

Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. Eval-
uating collaborative filtering recommender systems. ACM Transactions on Information

Systems (TOIS), 22(1):5-53, 2004.

Magnus R. Hestenes and Eduard Stiefel. Methods of Conjugate Gradients for Solving
Linear Systemsl. Journal of Research of the National Bureau of Standards, 49(6), 1952.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18(7):1527-1554, 2006.

Jerry L. Hintze and Ray D. Nelson. Violin plots: a box plot-density trace synergism. The
American Statistician, 52(2):181-184, 1998.

Thomas Hobbes. Leviathan: Or the Matter, Forme and Power of a Commonwealth, Ec-
clesiasticall and Civil. Yale University Press, 21st edition, 1900. ISBN 0-300-16318-5.

300

William Hosch. Machine Learning. Encyclopedia Britannica, Online Edition, 2016. URL
http://www.britannica.com/technology/machine-learning.

David Hume. A treatise of human nature. Dover Publications, 2nd dover edition, 1739.
ISBN 0-486-43250-5.

Gunter Hégele and Friedrich Pukelsheim. Llull’s writings on electoral systems. Studia
Lulliana, 41(97):3-38, 2001.

Eyke Hiillermeier and Johannes Fiirnkranz. Learning from label preferences. In Proceedings
of the 14th International Conference on Discovery Science, pages 2—17. Springer, 2011.
ISBN 3-642-24476-9.

Marcus Isaksson, Guy Kindler, and Elchanan Mossel. The geometry of manipulation—a
quantitative proof of the Gibbard-Satterthwaite theorem. Combinatorica, 32(2):221-250,
2012.

William James. The will to believe and other essays in popular philosophy. Harvard Uni-
versity Press, 6th edition, 1899. ISBN 0-674-95281-2.

Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic study.
Intelligent data analysis, 6(5):429-449, 2002.

Albert Xin Jiang, Manish Jain, and Milind Tambe. Computational Game Theory for
Security and Sustainability. Journal of Information Processing, 22(2):176-185, 2014.

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 133-142. ACM, 2002. ISBN 1-58113-567-X.

Thorsten Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
217-226. ACM, 2006. ISBN 1-59593-339-5.

Toshihiro Kamishima. Nantonac collaborative filtering: recommendation based on order
responses. In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 583-588. ACM, 2003. ISBN 1-58113-737-
0.

Diane Kelly and Rebecca Sanders. The challenge of testing scientific software. In In
Proceedings of the 2008 Conference for the Association for Software Testing, pages 30—
36. AST, 2008.

301

http://www.britannica.com/technology/machine-learning

John G. Kemeny. Mathematics without numbers. Daedalus, 88(4):577-591, 1959.
Maurice G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81-93, 1938.

Josef Kittler, Mohamad Hatef, Robert PW Duin, and Jiri Matas. On combining classifiers.
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 20(3):226-239, 1998.

Stefan Knerr, Léon Personnaz, and Gérard Dreyfus. Single-layer learning revisited: a
stepwise procedure for building and training a neural network. In Neurocomputing,
pages 41-50. Springer, 1990. ISBN 3-642-76155-0.

Donald E. Knuth. Art of Computer Programming, Volume 4, Fascicle 4, The: Generat-
ing All Trees—History of Combinatorial Generation. Addison-Wesley Professional, 2013.
ISBN 0-13-270234-7.

Kathrin Konczak and Jérome Lang. Voting procedures with incomplete preferences. In
Presentation at the IJCAI-05 Multidisciplinary Workshop on Advances in Preference
Handling, AAAI Press, 2005.

Solomon Kullback and Richard A. Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79-86, 1951.

Jérome Lang, Maria Silvia Pini, Francesca Rossi, Domenico Salvagnin, Kristen Brent Ven-
able, and Toby Walsh. Winner determination in voting trees with incomplete preferences
and weighted votes. Autonomous Agents and Multi-Agent Systems, 25(1):130-157, 2012.

Richard R. Lau and David P. Redlawsk. Voting correctly. American Political Science
Review, 91(03):585-598, 1997.

Richard R. Lau, Parina Patel, Dalia F. Fahmy, and Robert R. Kaufman. Correct voting
across thirty-three democracies: A preliminary analysis. British Journal of Political
Science, 44(02):239-259, 2014.

Lawrence LeDuc, Heather Bastedo, and Catherine Baquero. The Quiet Referendum: Why
Electoral Reform Failed in Ontario. In Prepared for the annual meeting of the Canadian
Political Science Association. University of British Columbia, June, pages 4—6, 2008.

David T. Lee. Efficient, private, and epsilon-strategyproof elicitation of tournament voting
rules. In Proceedings of the 24th International Conference on Artificial Intelligence, pages
2026-2032. AAAIT Press, 2015. ISBN 1-57735-738-8.

302

Omer Lev and Jeffrey S. Rosenschein. Convergence of iterative voting. In Proceedings of the
11th International Conference on Autonomous Agents and Multiagent Systems-Volume
2, pages 611-618. International Foundation for Autonomous Agents and Multiagent
Systems, 2012. ISBN 0-9817381-2-5.

D. V. Lindley. Bayesian analysis in regression problems. Bayesian statistics, DL Meyer
and RO Collier, eds., Peacock publishers, 1970.

Tyler Lu and Craig Boutilier. Learning Mallows models with pairwise preferences. In
Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages
145-152, 2011a.

Tyler Lu and Craig Boutilier. Robust approximation and incremental elicitation in voting
protocols. In Proceedings of the Twenty-First International Joint Conference on Artificial
Intelligence, pages 287-213. AAAI Press, 2011b. ISBN 1045-0823.

Tyler Lu and Craig Boutilier. Multi-Winner Social Choice with Incomplete Preferences.
In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelli-
gence, pages 263-270. AAAI Press, 2013.

Tyler Lu, Pingzhong Tang, Ariel D. Procaccia, and Craig Boutilier. Bayesian vote ma-
nipulation: Optimal strategies and impact on welfare. arXiv preprint arXiw:1210.4895,
2012.

R. Duncan Luce. Individual choice behavior: A theoretical analysis. Wiley, 1959. ISBN
0-486-44136-9.

Colin L. Mallows. Non-null ranking models. 1. Biometrika, 44(1/2):114-130, 1957.

Nicholas Mattei and Toby Walsh. Preflib: A library for preferences http://www. preflib.
org. In Algorithmic Decision Theory, pages 259-270. Springer, 2013. ISBN 3-642-41574-
1.

Nicholas Matti. PrefLib-Tools: A small and lightweight set of Python tools for working
with and generating data from www.PrefLib.org. URL https://github.com/nmattei/
PrefLib-Tools.

Kenneth O. May. A set of independent necessary and sufficient conditions for simple
majority decision. Fconometrica: Journal of the Econometric Society, pages 680-684,
1952.

303

https://github.com/nmattei/PrefLib-Tools
https://github.com/nmattei/PrefLib-Tools

Peter McCullagh and John A. Nelder. Generalized linear models. CRC press, 37th edition,
1989. ISBN 0-412-31760-5.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In Proceed-
ings of the 48th Annual IEEE Symposium on Foundations of Computer Science, pages
94-103. IEEE, 2007. ISBN 0-7695-3010-9.

Marina Melia and Harr Chen. Dirichlet process mixtures of generalized mallows models.
In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence
(UAI2010), 2010.

Vijay Menon and Kate Larson. Reinstating Combinatorial Protections for Manipulation
and Bribery in Single-Peaked and Nearly Single-Peaked Electorates. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, pages 565-571. AAAI Press,
2016.

John Stuart Mill. On liberty. Broadview Press, broadview literary texts edition, 1999.
ISBN 1-55111-199-3.

John M. Miyamoto and Stephen A. Eraker. Parameter estimates for a QALY utility model.
Medical Decision Making: An International Journal of the Society for Medical Decision
Making, 5(2):191-213, 1984.

Hervé Moulin. On strategy-proofness and single peakedness. Public Choice, 35(4):437-455,
1980.

Nina Narodytska and Toby Walsh. The computational impact of partial votes on strategic
voting. In The Proceedings of the 21st European Conference on Artificial Intelligence.
IOS Press, 2014.

CBC News. ’It hurts”> NDP shut out of downtown Toronto in Liberal crush -
Toronto - CBC News, October 2015. URL http://www.cbc.ca/news/canada/toronto/
liberals-ndp-toronto-danforth-1.3279370.

Nina Narodytska, Toby Walsh, and Lirong Xia. Combining voting rules together. In
Proceedings of the 20th European Conference on Artificial Intelligence (ECAI), 2012.

Erik Nord. The QALY —a measure of social value rather than individual utility? Health
Economics, 3(2):89-93, 1994.

304

http://www.cbc.ca/news/canada/toronto/liberals-ndp-toronto-danforth-1.3279370
http://www.cbc.ca/news/canada/toronto/liberals-ndp-toronto-danforth-1.3279370

Liberal Party of Canada. Real Change — A New Plan for a Strong Middle Class
(Liberal Party Platform), 2015. URL https://www.liberal.ca/files/2015/10/
A-new-plan-for-a-strong-middle-class-BW-1.pdf.

Stephen Petrick. Strategic voting hurt NDP: Cassidy. Inside Belleuville,
October 2015. URL http://www.insidebelleville.com/news-story/
5968523-strategic-voting-hurt-ndp-cassidy/.

Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, and Toby Walsh. Incomplete-
ness and Incomparability in Preference Aggregation. In Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, pages 1464-1469. AAAT Press,
2007.

Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, and Toby Walsh. Aggregating
partially ordered preferences. Journal of Logic and Computation, 19(3):475-502, 2009.

Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, and Toby Walsh. Incomplete-
ness and incomparability in preference aggregation: Complexity results. Artificial Intel-
ligence, 175(7):1272-1289, 2011.

James Pita, Manish Jain, Janusz Marecki, Fernando Ordénez, Christopher Portway, Milind
Tambe, Craig Western, Praveen Paruchuri, and Sarit Kraus. Deployed ARMOR protec-
tion: the application of a game theoretic model for security at the Los Angeles Interna-
tional Airport. In Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems: Industrial Track, pages 125-132. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2008.

Robin L. Plackett. The analysis of permutations. Applied Statistics, 24(2):193-202, 1975.

John C. Platt, Nello Cristianini, and John Shawe-Taylor. Large Margin DAGs for Multi-
class Classification. In Advances in Neural Information Processing Systems, volume 12,
pages 547-553, 1999.

Karl Popper. The logic of scientific discovery. Routledge, 2nd edition, 2005. ISBN 1-134-
47002-9.

W. H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical recipes 3rd
edition: The art of scientific computing. Cambridge University Press, 2007. ISBN 0-
521-88068-8.

305

https://www.liberal.ca/files/2015/10/A-new-plan-for-a-strong-middle-class-BW-1.pdf
https://www.liberal.ca/files/2015/10/A-new-plan-for-a-strong-middle-class-BW-1.pdf
http://www.insidebelleville.com/news-story/5968523-strategic-voting-hurt-ndp-cassidy/
http://www.insidebelleville.com/news-story/5968523-strategic-voting-hurt-ndp-cassidy/

Ariel D. Procaccia. Can Approximation Circumvent Gibbard-Satterthwaite? In In Proceed-
ings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pages 836-841,
2010.

Ariel D. Procaccia and Jeffrey S. Rosenschein. Average-case tractability of manipula-
tion in voting via the fraction of manipulators. In Proceedings of the 6th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 718-720.
IFAAMAS, 2007.

Ariel D. Procaccia and Nisarg Shah. Optimal Aggregation of Uncertain Preferences. Work-
ing Paper, Computer Science Department, Carnegie Mellon University, 2015.

Ariel D. Procaccia, Nisarg Shah, and Yair Zick. Voting rules as error-correcting codes.
Artificial Intelligence, 231:1-16, 2016.

Charles P. Quesenberry and D. C. Hurst. Large sample simultaneous confidence intervals
for multinomial proportions. Technometrics, 6(2):191-195, 1964.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81-106, 1986.

J. Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014. ISBN 0-08-050058-
7.

Zinovi Rabinovich, Svetlana Obraztsova, Omer Lev, Evangelos Markakis, and Jeffrey S.
Rosenschein. Analysis of Equilibria in Iterative Voting Schemes. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, pages 1007-1013, 2015.

Alexander Reffgen. Generalizing the Gibbard—Satterthwaite theorem: partial preferences,
the degree of manipulation, and multi-valuedness. Social Choice and Welfare, 37(1):
39-59, June 2011. ISSN 0176-1714.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. The Journal of
Machine Learning Research, 5:101-141, 2004.

Brian Ripley and W. Venables. nnet: Feed-forward neural networks and multinomial log-
linear models. R package version, 7(5), 2011.

P. Romanski. FSelector: Selecting attributes. Vienna: R Foundation for Statistical Com-
puting, 2009.

Jean-Jacques Rousseau. The Social Contract: € Discourses. JM Dent & Sons, 1920.

306

Donald Rumsfeld. Defense.gov Transcript: DoD News Briefing - Secretary Rumsfeld and
Gen. Myers, February 12, 11:30 AM EST. 2002. URL http://archive.defense.gov/

Transcripts/Transcript.aspx?TranscriptID=2636.

Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. Prentice Hall,
Englewood Cliffs, NJ, USA, 1995.

Paul A. Samuelson. Reaffirming the existence of "reasonable" Bergson-Samuelson social
welfare functions. Economica, 44(173):81-88, 1977.

Mark Allen Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and cor-
respondence theorems for voting procedures and social welfare functions. Journal of
Economic Theory, 10(2):187-217, 1975.

Joseph L. Schafer. Multiple imputation: a primer. Statistical Methods in Medical Research,
8(1):3-15, 1999.

Markus Schulze. A new monotonic, clone-independent, reversal symmetric, and condorcet-
consistent single-winner election method. Social Choice and Welfare, 36(2):267-303,
2011.

Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic,
and logical foundations. Cambridge University Press, 2008. ISBN 1-139-47524-X.

Charles Spearman. ‘Footrule’for measuring correlation. British Journal of Psychology,
1904-1920, 2(1):89-108, 1906.

John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel programming stan-
dard for heterogeneous computing systems. Computing in Science & Engineering, 12
(1-3):66-73, 2010.

R. Core Team. R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. 2013. ISBN 3-900051-07-0, 2014.

Andrey Tikhonov. Solution of incorrectly formulated problems and the regularization
method. Soviet Mathematics Doklady, 5:1035-1038, 1963.

Alan Tsang and Kate Larson. The Echo Chamber: Strategic Voting and Homophily in
Social Networks. In Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, pages 368-375, 2016.

307

http://archive.defense.gov/Transcripts/Transcript.aspx?TranscriptID=2636
http://archive.defense.gov/Transcripts/Transcript.aspx?TranscriptID=2636

Alan Tsang, John A. Doucette, and Hadi Hosseini. Voting with social influence: Using
arguments to uncover ground truth. In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, pages 1841-1842. International Foun-
dation for Autonomous Agents and Multiagent Systems, 2015. ISBN 1-4503-3413-X.

Toby Walsh. Uncertainty in preference elicitation and aggregation. In Proceedings of the
22nd national conference on Artificial intelligence, pages 3—8. AAAI Press, 2007.

Toby Walsh. Where are the really hard manipulation problems? the phase transition
in manipulating the veto rule. In Proceedings of the Twenty-First International Joint
Conference on Artifical intelligence, pages 324-329. Morgan Kaufmann Publishers Inc.,
2009.

Toby Walsh. Is computational complexity a barrier to manipulation? Annals of Mathe-
matics and Artificial Intelligence, 62(1-2):7-26, 2011.

Toby Walsh and Lirong Xia. Lot-based voting rules. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2, pages 603-610.
International Foundation for Autonomous Agents and Multiagent Systems, 2012. ISBN
0-9817381-2-5.

Daniel Westlake. Strategic voting has long-term costs for progressives. Na-
tional Post, October 2015. URL http://news.nationalpost.com/full-comment/
daniel-westlake-strategic-voting-has-long-term-costs.

David H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural
computation, 8(7):1341-1390, 1996.

David H. Wolpert. What the no free lunch theorems really mean; how to improve search
algorithms. In Santa fe Institute Working Paper. 2012.

David H. Wolpert and William G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67-82, 1997.

Douglas R. Woodall. An impossibility theorem for electoral systems. Discrete Mathematics,
66(1):209-211, 1987.

Douglas R. Woodall. Properties of preferential election rules. Voting Matters, 3:8-15, 1994.

Lirong Xia. Generalized Decision Scoring Rules: Statistical, Computational, and Ax-
iomatic Properties. In Proceedings of the Sixzteenth ACM Conference on Economics and
Computation, pages 661-678. ACM, 2015. ISBN 1-4503-3410-5.

308

http://news.nationalpost.com/full-comment/daniel-westlake-strategic-voting-has-long-term-costs
http://news.nationalpost.com/full-comment/daniel-westlake-strategic-voting-has-long-term-costs

Lirong Xia and Vincent Conitzer. Determining Possible and Necessary Winners under
Common Voting Rules Given Partial Orders. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, pages 196-201. AAAI Press, 2008.

Lirong Xia and Vincent Conitzer. A maximum likelihood approach towards aggregating
partial orders. In Proceedings of the Twenty-First International Joint Conference on
Artificial Intelligence, pages 446-451. AAATI Press, 2011. ISBN 1045-0823.

Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in text
categorization. In Proceedings of the Fourteenth International Conference on Machine
Learning, pages 412-420, 1997.

Dong Yu, Geoffrey Hinton, Nigel Morgan, Jen-Tzung Chien, and Shigeki Sagayama. In-
troduction to the special section on deep learning for speech and language processing.
IEEE Transactions on Audio, Speech, and Language Processing, 20(1):4-6, 2012.

Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale parallel
collaborative filtering for the netflix prize. In Algorithmic Aspects in Information and
Management, pages 337-348. Springer, 2008. ISBN 3-540-68865-X.

Slavoj Zizek. What Rumsfeld Doesn’t Know That He Knows About Abu Ghraib. In These
Times, 21, 2004.

309

	List of Tables
	List of Figures
	Introduction
	Thesis Statement

	Background
	What is Social Choice?
	A Brief History of Social Choice
	Voting Rules Used in this Thesis
	Axiomatic Social Choice and Impossibility Results
	Measuring Similarities Between Rankings
	Artificial Preference Distributions

	What is Machine Learning?
	The Basics
	Relevant Learning Algorithms
	Multiclass Classification
	Feature Selection

	Summary

	Problem Statement
	Social Choice with Partial Preferences
	Motivating Example

	Formal Problem Statement
	Formalization of the Motivating Example
	The Definition of a ``Good'' Decision
	Problem Statement

	Existing Approaches
	Maximum Likelihood
	Minimax Regret

	Summary

	An Imputation-Based Approach
	Solving the motivational example
	Free Lunches in Social Choice?
	The Relationship Between Preference Learning and Group Decision Making

	A General System
	Informal Description
	Example
	Formalized System
	Conventional Machine Learning as Social Choice

	An Initial Implementation
	Algorithm Selection
	Feature Construction
	Model Selection

	Summary

	Feasibility Study
	Motivation
	Measuring Problem Difficulty
	Empirical Results

	Experimental Design
	Data
	Problem Generation
	The Imputation Based Approach
	Competitors

	Results
	Results Overview
	Single Winner Performance
	Ranking Performance

	Classifier Error Rates
	Discussion
	Summary

	Prefmine Experimental Testbed
	The Prefmine System
	System Design
	An Algorithmic Description of Prefmine
	Using Prefmine
	Dataset Generation
	Imputation Modes
	Voting Rules
	Performance Measures
	Extending the System

	Lessons for Practitioners
	Experimental Robustness
	Feature Selection and Algorithm Choice

	Summary

	 Markov Tree Approach
	Motivation
	Ballots as Sequences
	An Interpretation of the Markov Trees

	Learning Markov Models
	Convergence Rates

	Consistency Results
	Convergence to Artificial Distributions
	Empirical Results
	Bias

	Summary

	Axiomatic Analysis
	Formal Problem Statement
	Methods Under Consideration
	Axioms for Imputation Methods
	Discussion

	Axiomatic Assessment of Imputation Algorithms
	Hot Deck Classifier
	Plurality Classifier
	The Proportionate Classifier
	First Order Markov Tree
	Discussion

	Combinations
	Summary

	 Manipulation Analysis
	Motivation
	 Why Worry About Manipulation?

	 Addressing Manipulation with Differential Privacy
	Robustness of Imputations
	Discussion

	Conclusion and Future Work
	The Coordination Example
	Conclusion and Discussion
	Related Work
	Future Work
	Summary

	References

