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Abstract

The majority of this thesis is devoted to the study of Nevanlinna-Pick spaces and their
multiplier algebras. These spaces are Hilbert function spaces in which a version of the
Nevanlinna-Pick interpolation theorem from complex analysis holds. Their multiplier al-
gebras occupy an important place at the interface between operator algebras, operator
theory and complex analysis.

Over the last few years, the classification problem for these algebras has attracted con-
siderable attention. These investigations were pioneered by Davidson, Ramsey and Shalit,
who used a theorem of Agler and McCarthy to identify a given multiplier algebra with
the restriction of the multiplier algebra of the universal Nevanlinna-Pick space, namely the
Drury-Arveson space, to an analytic variety in a complex ball.

In this thesis, the classification problem is studied from three different angles. In Chapter
3, we investigate multiplier algebras associated to embedded discs in a complex ball. In
particular, we exhibit uncountably many embedded discs which are biholomorphic in a
strong sense, but whose multiplier algebras are not isomorphic. Motivated by these issues,
we use in Chapter 4 a different approach to the classification problem. Thus, we study
the spaces and their multiplier algebras directly without making use of the existence of
a universal Nevanlinna-Pick space. This allows us to completely classify the multiplier
algebras of a special class of spaces on homogeneous varieties. In Chapter 5, we investigate
the complexity of this classification problem from the point of view of Borel complexity
theory.

In Chapter 6, we show that the Hardy space on the unit disc is essentially the only
Nevanlinna-Pick space whose multiplication operators are all hyponormal.

The last part of this thesis is concerned with dilations and von Neumann’s inequality. It
has been known since the seventies that there are three commuting contractions which do
not satisfy von Neumann’s inequality. In Chapter 7, we show that every tuple of commuting
contractions which forms a multivariable weighted shift dilates to a tuple of commuting
unitaries and hence satisfies von Neumann’s inequality, thereby providing a positive answer
to a question of Shields and Lubin from 1974.
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1. Introduction

There are two major themes in this thesis: Nevanlinna-Pick interpolation and dilation
theory. Both topics sit at the interface of operator theory, operator algebras and complex
analysis. It is the purpose of this introduction to outline some of the history of these
topics and thus to put the results obtained in this thesis into perspective. More detailed
summaries of the results in this thesis can be found at the beginning of the individual
chapters.

A whole century ago, Georg Pick considered the following interpolation problem. Given
points z1, . . . , zn in the open unit disc D in the complex plane and numbers λ1, . . . , λn ∈ C,
when does there exist an analytic function f : D → C which solves the interpolation
problem

f(zi) = λi (1 ≤ i ≤ n)

and satisfies the norm constraint

||f ||∞ = sup{|f(z)| : z ∈ D} ≤ 1?

Observe that without the norm constraint, the interpolation problem can always be solved
by a polynomial, but the norm constraint makes the problem non-trivial. Pick’s solution
[67] is the following theorem.

Theorem (Pick). Let z1, . . . , zn ∈ D and λ1, . . . , λn ∈ C. There exists an analytic function
f : D→ C with

f(zi) = λi (1 ≤ i ≤ n)

and ||f ||∞ ≤ 1 if and only if the Hermitian n× n matrix[
1− λiλj
1− zizj

]
is positive semidefinite.

Unaware of Pick’s work, Rolf Nevanlinna independently studied this problem and ob-
tained a somewhat different characterization [62, 63].
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1. Introduction

The original problem of Pick and Nevanlinna is purely function theoretic and does not
mention Hilbert spaces in any way. Nevertheless, there is a Hilbert space in the background
of Pick’s theorem. This space is the Hardy space

H2 =
{
f(z) =

∞∑
n=0

anz
n ∈ O(D) : ||f ||2 =

∞∑
n=0

|an|2 <∞
}
.

The Hardy space is a Hilbert space of analytic functions which plays a pivotal role at the
intersection of complex analysis and operator theory. It is a reproducing kernel Hilbert
space on D, which means that for every w ∈ D, the linear functional of evaluation at w is
bounded on H2. The function

K(z, w) =
1

1− zw
,

which is called a Szegő kernel, is the reproducing kernel of H2. This means that K(·, w) ∈
H2 for w ∈ D and

〈f,K(·, w)〉 = f(w)

for every f ∈ H2. Its multiplier algebra

Mult(H2) = {ϕ : D→ C : ϕ · f ∈ H2 for all f ∈ H2}

turns out to be H∞, the algebra of all bounded analytic functions on the disc. Moreover,
the multiplier norm of such a multiplier ϕ, which is defined to be the norm of the associated
multiplication operator on H2, is simply the supremum norm over D.

Equipped with these notions, Pick’s theorem now becomes a theorem about the repro-
ducing kernel Hilbert space H2: Given points z1, . . . , zn ∈ D and values λ1, . . . , λn, there
exists ϕ ∈ Mult(H) with

ϕ(zi) = λi (1 ≤ i ≤ n)

and multiplier norm at most 1 if and only if the Pick matrix[
K(zi, zj)(1− λiλj)

]
is positive semidefinite. This operator theoretic approach to Nevanlinna-Pick interpolation
was pioneered by Sarason [77], who provided a new proof of Pick’s theorem by establishing
a precursor of the Sz.-Nagy-Foias commutant lifting theorem [84], see also [85, Section
II.2]. A modern account of Sarason’s proof can be found in [3, Section 10.6].

Two decades later, Agler [1], Quiggin [71] and McCullough [58] studied the Nevanlinna-
Pick interpolation problem for general reproducing kernel Hilbert spaces. It is not hard
to see that positivity of the Pick matrix is always a necessary condition for the existence
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1. Introduction

of a solution of the interpolation problem, but it is not always sufficient. If the Hilbert
space has the property that this condition is sufficient, then it is called a Nevanlinna-Pick
space. Thus, a Nevanlinna-Pick space is a reproducing kernel Hilbert space in which Pick’s
theorem holds true, and the Hardy space H2 is the prototypical example of such a space.
Another example is the Dirichlet space on the unit disc, thanks to a result due to Agler
[1], see also [71].

It turns out that the theory becomes much cleaner if one assumes that Pick’s theorem also
holds for matrix valued interpolation, which leads to the notion of a complete Nevanlinna-
Pick space. We refer the reader to Chapter 2 for precise definitions and a list of examples.
A comprehensive treatment of Nevanlinna-Pick spaces can be found in the book [3].

The majority of this thesis is devoted to the study of complete Nevanlinna-Pick spaces
and their multiplier algebras. In particular, the classification problem for these multiplier
algebras is investigated from several different angles. This line of research was initiated by
Davidson, Ramsey and Shalit [24, 25]. A key ingredient in their approach is the Drury-
Arveson space H2

d , which is a natural generalization of the Hardy space to the unit ball Bd
in Cd. Specifically, H2

d is the reproducing kernel Hilbert space on the Bd with reproducing
kernel

K(z, w) =
1

1− 〈z, w〉
.

The case d = ∞ is allowed, and we understand C∞ as `2 in this case. The Drury-
Arveson space, also known as symmetric Fock space, appeared in different guises many
times throughout the literature. The reader is referred to the article [8] as well as the sur-
vey article [79] for a comprehensive treatment of the different features of the Drury-Arveson
space.

The importance of the Drury-Arveson space for the classification problem for multiplier
algebras of Nevanlinna-Pick spaces stems from a theorem of Agler and McCarthy [2],
according to which every irreducible complete Nevanlinna-Pick space can be identified with
the restriction of the Drury-Arveson space to a subset of the unit ball. Davidson, Ramsey
and Shalit used this result to identify for every multiplier algebra M of an irreducible
complete Nevanlinna-Pick space an analytic variety V in a complex ball Bd such thatM is
completely isometrically isomorphic and weak-∗ homeomorphic toMV . HereMV denotes
the restriction of the multiplier algebra of the Drury-Arveson space to V , which is naturally
identified with the quotient of the multiplier algebra of H2

d by the ideal of all multipliers
which vanish on V . Thus, the general classification problem is reduced to algebras of the
form MV . It is important to note that many spaces, even classical spaces of analytic
functions on the unit disc, cannot be realized in a finite dimensional ball in this way.

Another route which leads to the Drury-Arveson space, its multiplier algebra and the
algebras MV comes from dilation theory of tuples of operators. In single operator theory,
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1. Introduction

the Hardy space H2 provides an important link between complex analysis and operator
theory through dilation theory. The starting point is von Neumann’s inequality [88], which
states that if T is a contraction on a Hilbert space, then

||p(T )|| ≤ sup{|p(z)| : z ∈ D}

holds for all polynomials p ∈ C[z]. This result can be readily deduced from Sz.-Nagy’s
dilation theorem [83], see also [85, Chapter I], according to which every contraction T
dilates to a unitary operator. A different version, in which the Hardy space is more visible,
asserts that every pure contraction T coextends to a direct sum of copies of the unilateral
shift Mz on H2.

In multivariable operator theory, one studies d-tuples T = (T1, . . . , Td) of operators on
a Hilbert space H. A natural generalization of the concept of a single contraction to this
setting is the notion of a row contraction. Here, the requirement is that the row opera-
tor (T1, . . . , Td) : Hn → H be a contraction. If one further assumes that the operators
T1, . . . , Td commute, then one can seek a similar link between multivariable complex analy-
sis and multivariable operator theory, and it is here where the Drury-Arveson space enters
the picture. The following analogue of von Neumann’s inequality is due to Drury [26].

Theorem (Drury). If T = (T1, . . . , Td) is a commuting row contraction on a Hilbert space,
then

||p(T )|| ≤ ||p||Mult(H2
d)

for all polynomials p ∈ C[z1, . . . , zd].

The corresponding dilation theorem was established by Müller-Vasilescu [59] and Arveson
[8]. However, we remark that Lubin already proved a version of this theorem in [55].

Theorem (Müller-Vasilescu, Arveson). Every pure commuting row contraction coextends
to a direct sum of copies of the d-tuple Mz = (Mz1 , . . . ,Mzd) of multiplication operators on
H2
d .

In this sense, the d-tuple Mz on the Drury-Arveson space can be regarded as the universal
pure commuting row contraction, and the multiplier algebra of H2

d is the weak-∗ closed
unital operator algebra generated by Mz. If one introduces additional relations between
the operators, one is naturally led to quotients of Md and hence to the algebras MV .
Indeed, this point of view served as the motivation in [24], see also [69].

We also mention that there exists a corresponding commutant lifting theorem due to
Ball, Trent and Vinnikov [9] and Davidson and Le in greater generality [20]. It provides a
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1. Introduction

direct link between dilations and Nevanlinna-Pick interpolation similar to Sarason’s work,
see [9, Section 5, Example 1].

Generally speaking, the classification scheme of Davidson-Ramsey-Shalit seeks to classify
the algebras MV in terms of the geometric structure of the underlying varieties V . They
first considered the case of homogeneous varieties in a finite dimensional ball [24]. In this
case, isomorphism on the level of multiplier algebras translates very nicely to geometric
equivalence of the underlying varieties. Specifically, they showed that two multiplier alge-
bras MV and MW are isometrically isomorphic if and only if there is a unitary map on
Cd (equivalently a biholomorphic automorphism of Bd) which maps V onto W . Similarly,
they showed that MV and MW are algebraically isomorphic if and only if there exists
an invertible linear map on Cd (equivalently a biholomorphic map) which maps V onto
W , provided that the geometry of the underlying varieties is not too complicated. The
additional restrictions on the geometry of the varieties were later removed by the author
in [40], see also [41].

For general varieties in a finite dimensional ball, Davidson, Ramsey and Shalit showed
in [25] that two algebras MV and MW are isometrically isomorphic if and only if the
underlying varieties V and W are biholomorphic via an automorphism of Bd. They also
showed that if MV and MW are algebraically isomorphic, then V and W are biholomor-
phic, provided that the varieties satisfy some mild geometric conditions. The converse of
this statement is not true in general, as Davidson-Ramsey-Shalit exhibited two Blaschke
sequences in the unit disc which are biholomorphic, but which give rise to non-isomorphic
multiplier algebras. It should be noted, however, that Blaschke sequences are fairly com-
plicated varieties, as they have infinitely many irreducible components.

In the case of one dimensional varieties, the converse is often true if one assumes ad-
ditional regularity on the boundary. This was proved by Alpay-Putinar-Vinnikov in the
case of the unit disc [4], by Arcozzi-Rochberg-Sawyer [6] in the case of finitely connected
planar domains, and by Kerr-McCarthy-Shalit [54] in the case of finite Riemann surfaces.
Nevertheless, there is still no complete classification of the algebras MV even in the one
dimensional case, as the regularity assumptions do not hold in general. We refer the reader
to the survey article [76] for a comprehensive account on the current state of the art.

In this thesis, the investigations of Davidson, Ramsey and Shalit are continued from
three different angles.

Firstly, Chapter 3 investigates algebraic isomorphism for algebras of the typeMV , where
V is an embedded disc in a complex ball. In some sense, embedded discs are a particularly
simple case of non-homogeneous varieties. In particular, one might expect that they do
not exhibit the same pathologies as Blaschke sequences. Nevertheless, among other results,
we exhibit an uncountable family of embedded discs which are biholomorphic in a strong
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1. Introduction

sense, but which yield non-isomorphic multiplier algebras. This chapter is based on the
paper [19], which was written jointly with Kenneth Davidson and Orr Shalit.

Secondly, Chapter 4 approaches the classification problem from a different angle. Instead
of using the universality result of Agler and McCarthy, the multiplier algebras are studied
directly. Using this approach, is it possible to classify a broad class of multiplier algebras
which were previously inaccessible. The contents of this chapter appeared in [43].

Thirdly, Chapter 5 is concerned with the complexity of the classification problem for
multiplier algebras. More precisely, the classification problem is studied from the point of
view of Borel complexity theory, a branch of mathematical logic which provides a framework
for comparing the complexity of classification problems in mathematics. This chapter is
essentially the paper [45], which is joint work with Martino Lupini.

The Hardy space H2 is a particularly tractable example of a reproducing kernel Hilbert
space. It was explained earlier that it is the prototypical example of a Nevanlinna-Pick
space. From an operator theoretic point of view, multiplication operators on the Hardy
space are fairly well behaved because they are all subnormal, and in particular hyponormal
operators. As a consequence, H∞, the multiplier algebra of H2, is a uniform algebra, a fact
on which much of the classical theory about H∞ depends, see for instance [33]. In Chapter
6, which is essentially the paper [42], it is shown that this situation is very special: The
Hardy space is essentially the only complete Nevanlinna-Pick space whose multiplication
operators are all hyponormal.

The first steps into the realm of multivariate operator theory were not undertaken toward
a theory for commuting row contractions, but for d-tuples of commuting contractions. This
condition is less restrictive. Andô proved that every pair of commuting contractions dilates
to a pair of commuting unitaries, thereby establishing an analogue of Sz.-Nagy’s dilation
theorem in this setting [5]. As a consequence, one sees that the two variable von Neumann
inequality holds:

||p(T1, T2)|| ≤ sup{|p(z1, z2)| : (z1, z2) ∈ D2}
for every polynomial p ∈ C[z1, z2] and every pair (T1, T2) of commuting contractions.
Surprisingly, the corresponding result for three commuting contractions is false. First,
Parrott [64] gave an example of three commuting contractions which do not dilate to three
commuting unitaries (but do satisfy the three variable von Neumann’s inequality). A
few years later, Kaijser-Varopoulos [87] and Crabb-Davie [14] exhibited three commuting
contractions which do not satisfy the three variable version of Neumann’s inequality.

Almost immediately after the first counterexamples became known, Lubin and Shields
asked if von Neumann’s inequality holds for a particularly tractable class of commuting
contractions, namely multivariable weighted shifts. Chapter 7, which is essentially the
article [44], provides a positive answer to this question.
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2. Preliminaries about Nevanlinna-Pick
spaces

The purpose of this chapter is to gather basic definitions and results from the theory of
reproducing kernel Hilbert spaces and Nevanlinna-Pick interpolation. In particular, we fix
the terminology and notation which will be used throughout this thesis. References on the
basics of reproducing kernel Hilbert spaces include the classical paper of Aronszajn [7], the
book [11] as well as the forthcoming book [66]. The standard reference on Nevanlinna-Pick
spaces is the book [3]. The exposition in the first three sections of this chapter follows [41,
Appendix I]

2.1. Reproducing kernel Hilbert spaces

Let X be a set and let H be a Hilbert space of functions on X. We say that H is a
reproducing kernel Hilbert space or Hilbert function space if for each x ∈ X, the linear
functional of point evaluation

H → C, f 7→ f(x),

is bounded. By the Riesz representation theorem, there exists for x ∈ X a function kx ∈ H
such that

f(x) = 〈f, kx〉 for all f ∈ H.
The two-variable function

K : X ×X → C, (x, y) 7→ ky(x) = 〈ky, kx〉,

is called the reproducing kernel of H. It is easy to see that K is positive definite in the
sense that for any finite sequence of points x1, . . . , xn in X, the n× n matrix[

K(xi, xj)
]n
i,j=1

is positive semidefinite.

The following theorem of Moore shows that every positive definite function arises in this
way and that a Hilbert function space is uniquely determined by its reproducing kernel.
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2. Preliminaries about Nevanlinna-Pick spaces

Theorem 2.1.1 (Moore). Let X be a set and let K : X × X → C be a positive definite
function. Then there exists a unique Hilbert function space H on X whose reproducing
kernel is K.

Proof. See, for example, [3, Theorem 2.23].

It is obvious that the restriction of a positive definite function on a set X to a subset Y
of X is again positive definite. The following lemma describes this situation on the level
of Hilbert function spaces.

Lemma 2.1.2. Let H be a reproducing kernel Hilbert space on a set X with kernel K.
Let H

∣∣
Y

denote the reproducing kernel Hilbert space on Y with reproducing kernel K
∣∣
Y×Y .

Then

H
∣∣
Y

= {f
∣∣
Y

: f ∈ H}

and the map

H → H
∣∣
Y
, f 7→ f

∣∣
Y
,

is a co-isometry.

Proof. See [7, Part I, Section 5].

Observe that it is possible to regard `2 as a Hilbert function space on N. As a Hilbert
function space, however, this space is somewhat uninteresting, as it is merely a direct
sum of copies of the one dimensional Hilbert function space C, regarded as functions on
a singleton. Therefore, most Hilbert function spaces which we consider are irreducible in
the following sense.

Definition 2.1.3. Let H be a reproducing kernel Hilbert space on X with kernel K. We
say that H (or K) is irreducible if K(x, y) 6= 0 for all x, y ∈ X and K(·, x) and K(·, y) are
linearly independent if x 6= y.

The following result, which will be used several times, is known as the Schur product
theorem.

Theorem 2.1.4 (Schur). Let K,L be positive definite functions on a set X. Then the
pointwise product K · L is also positive definite.

Proof. See [78] or [3, Appendix A].

8



2.2. Multipliers

2.2. Multipliers

Let H be a reproducing kernel Hilbert space on X with kernel K. The multiplier algebra
of H is

Mult(H) = {ϕ : X → C : ϕ · f ∈ H for all f ∈ H}.

It should be obvious that Mult(H) is a unital commutative algebra. An application of
the closed graph theorem shows that for every ϕ ∈ Mult(H), the associated multiplication
operator

Mϕ : H → H, f 7→ ϕ · f,

is bounded. Thus, we may define the multiplier norm of ϕ to be ||ϕ||Mult(H) = ||Mϕ||.

The following characterization of the unit ball of Mult(H) will be used repeatedly.

Lemma 2.2.1. Let H be a reproducing kernel Hilbert space on X with kernel K. A function
ϕ : X → C belongs to Mult(H) and satisfies ||ϕ||Mult(H) ≤ 1 if and only if the function

X ×X → C, (x, y) 7→ K(x, y)(1− ϕ(x)ϕ(y)),

is positive definite.

Proof. See, for example, [3, Corollary 2.37].

We say that H has no common zeros if there is no point x ∈ X such that f(x) = 0 for
all f ∈ H. It is not hard to see that this happens if and only if K(x, x) 6= 0 for all x ∈ X.
In particular, if H is irreducible, then it has no common zeros.

Lemma 2.2.2. Let H be a reproducing kernel Hilbert space on X without common zeros.
Let ϕ ∈ Mult(H). Then

M∗
ϕK(·, x) = ϕ(x)K(·, x)

for x ∈ X. In particular, ||ϕ||Mult(H) ≥ sup{|ϕ(x)| : x ∈ X}.

Proof. The elementary proof can be found, for example, in [3, Section 2.3].

In general, the multiplier norm is strictly larger than the supremum norm, and we will
see many examples of this phenomenon. The first such example is the Dirichlet space (see
Section 2.6 below).
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2. Preliminaries about Nevanlinna-Pick spaces

It follows from the last lemma that if H has no common zeros, then we may recover a
multiplier ϕ from the multiplication operator Mϕ via the Berezin transform:

ϕ(x) =
〈MϕK(·, x), K(·, x)〉

K(x, x)
(x ∈ X).

In particular, the assignment ϕ 7→ Mϕ is injective, which allows us to regard Mult(H)
as a subalgebra of B(H). It is important to note that Mult(H) is typically not a selfa-
joint algebra. Indeed, it easily follows from the last lemma that if H is irreducible, then
Mult(H) ∩Mult(H)∗ = C1.

Let A be a subalgebra of B(H). We let Lat(A) denote the lattice of all closed subspaces
of H which are invariant under each T ∈ A. Moreover, if N is a collection of closed
subspaces of H, let Alg(N ) be the algebra of all bounded operators on H which leave each
M ∈ N invariant. Tautologically,

A ⊂ Alg(Lat(A)),

and we say that A is reflexive if equality holds. It is straightforward to show that every
reflexive algebra is closed in the weak operator topology.

Lemma 2.2.3. Let H be a reproducing kernel Hilbert space without common zeros. Then
Mult(H) is a reflexive subalgebra of B(H). In particular, it is closed in the weak operator
topology.

Proof (sketch). One verifies that T ∈ B(H) is a multiplication operator if and only if T ∗

leaves CK(·, x) invariant for every x ∈ X (the “only if” direction follows from Lemma
2.2.2). Reflexivity of Mult(H) is immediate from this observation.

In particular, we see that in the setting of the last lemma, Mult(H), being a WOT closed
subalgebra of B(H), inherits a weak-∗ topology from B(H).

Lemma 2.2.4. Let H be a reproducing kernel Hilbert space on a set X with kernel K
without common zeros. Then on bounded subsets of Mult(H), the weak-∗ topology agrees
with the topology of pointwise convergence.

Proof (sketch). This is a straightforward consequence of the identity

〈ϕ ·K(·, x), K(·, y)〉 = ϕ(y)K(y, x)

for all ϕ ∈ Mult(H) and x, y ∈ X and the fact that the linear span of the kernel functions
K(·, x) is dense in H.

10
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Since Mult(H) is a unital, commutative Banach algebra, it is natural to consider its
maximal ideal space (also known as character space)

M(Mult(H)) = {ρ : Mult(H)→ C : ρ is non-zero, linear and multiplicative},

endowed with the weak-∗ topology. Clearly, every point in the underlying set X gives rise to
the character of evaluation at x. In particular, we see that Mult(H) semi-simple. However,
these point evaluations typically only form a small part of the character space, which is
the reason for some of the subtleties in the theory of multiplier algebras. Indeed, even in
the case of H∞, which is the motivating example for many of the investigations in this
thesis, the character space is known to be very complicated (see, for example, [36, Chapter
V]). For instance, the existence of interpolating sequences implies that M(H∞) contains
a homeomorphic copy of βN, the Stone-Čech compactification of N (see, for example, [36,
Chapter X]). In particular, the compact Hausdorff space M(H∞) is not metrizable and
has cardinality 22ℵ0 .

2.3. Vector valued reproducing kernel Hilbert spaces

Let H be a reproducing kernel Hilbert space on a set X and let E be an auxiliary Hilbert
space. Then one may regard H ⊗ E as a Hilbert space of E-valued functions on X by
identifying an elementary tensor f ⊗ v ∈ H ⊗ E with the function x 7→ f(x)⊗ v.

If E ′ is another auxiliary Hilbert space, then a multiplier from H ⊗ E into H ⊗ E ′ is a
mapping Φ : X → B(E , E ′) such that for all F ∈ H ⊗ E , the function

X → E ′, x 7→ Φ(x)F (x),

belongs to H ⊗ E ′. We write Φ ∈ Mult(H ⊗ E ,H ⊗ E ′). If E = E ′, we simply denote this
space by Mult(H ⊗ E). As in the scalar valued case, an application of the closed graph
theorem shows that such a multiplier Φ induces a bounded operator MΦ : H⊗E 7→ H⊗E ′,
and the multiplier norm of Φ is defined to be the operator norm ||MΦ||.

We require the following generalization of Lemma 2.2.1, which is essentially proved in
the same way.

Lemma 2.3.1. Let H be a reproducing kernel Hilbert space on a set X and let E , E ′ be
auxiliary Hilbert spaces. A function Φ : X → B(E , E ′) belongs to the closed unit ball of
Mult(H⊗ E ,H⊗ E ′) if and only if

X ×X → B(E ′), (x, y) 7→ K(x, y)(idE ′ −Φ(x)Φ(y)∗)

is positive definite.

11



2. Preliminaries about Nevanlinna-Pick spaces

Here, in analogy with the scalar valued case, a function L : X ×X → B(E ′) is said to be
positive definite if for every finite sequences of points x1, . . . , xn in X, the n× n operator
matrix

[L(xi, xj)]
n
i,j=1

is positive.

2.4. Nevanlinna-Pick interpolation

As explained in the introduction, Pick’s theorem serves as the motivation for the definition
of a Nevanlinna-Pick space.

Definition 2.4.1. Let H be a reproducing kernel Hilbert space on X with reproducing
kernel K without common zeros. Given a natural number n, we say that H (or K) satisfies
the n-point Nevanlinna-Pick property if whenever z1, . . . , zn ∈ X and λ1, . . . , λn ∈ C such
that the matrix [

K(zi, zj)(1− λiλj)
]n
i,j=1

is positive, there exists a multiplier ϕ ∈ Mult(H) such that ||ϕ||Mult(H) ≤ 1 and such that

ϕ(zi) = λi (i = 1, . . . , n).

We say that H (or K) satisfies the Nevanlinna-Pick property if it satisfies the n-point
Nevanlinna-Pick property for all n ∈ N.

It turns out that a much cleaner theory can be obtained for spaces which satisfy the
Nevanlinna-Pick property not just for scalars λ1, . . . , λn, but also for matrices of arbitrary
size. This leads to the notion of a complete Nevanlinna-Pick space. While the title of this
thesis simply refers to Nevanlinna-Pick spaces for the sake of brevity, we will be almost
exclusively concerned with complete Nevanlinna-Pick spaces.

Definition 2.4.2. Let H be a reproducing kernel Hilbert space on X with reproducing
kernel K without common zeros. We say that H (or K) satisfies the complete Nevanlinna-
Pick property if whenever n ∈ N and r ∈ N and Λ1, . . . ,Λn ∈ Mr(C) such that the
nr × nr-matrix [

K(zi, zj)(1− ΛiΛ
∗
j)
]n
i,j=1

is positive, there exists a multiplier Φ ∈ Mult(H ⊗ Cr) such that ||Φ||Mult(H⊗Cr) ≤ 1 and
such that

Φ(zi) = Λi (i = 1, . . . , n).

12
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The prototypical example of a complete Nevanlinna-Pick space is the Hardy space H2.
We will see more examples in Section 2.6.

There is a reformulation of the (complete) Nevanlinna-Pick property which is quite
useful as well and which will be used repeatedly. In the setting of Definition 2.4.1, let
Y = {z1, . . . , zn} consist of n distinct points and define a function ϕ0 on Y by ϕ0(zi) = λi
for 1 ≤ i ≤ n. Thus, we ask if there exists a multiplier ϕ ∈ Mult(H) of norm at most 1
such that ϕ

∣∣
Y

= ϕ0. Using Lemma 2.2.1, one can show that the Pick matrix[
K(zi, zj)(1− λiλj)

]n
i,j=1

is positive if and only if the function ϕ0 belongs to the unit ball of Mult(H
∣∣
Y

). It is

immediate from the definition of H
∣∣
Y

that the map

RY : Mult(H)→ Mult(H
∣∣
Y

), ϕ 7→ ϕ
∣∣
Y
,

is a unital completely contractive homomorphism (which is also true if Y is not necessarily
finite). Consequently, H satisfies the Nevanlinna-Pick property if and only if for every finite
set Y , the restriction map RY maps the closed unit ball of Mult(H) onto the closed unit
ball of Mult(H

∣∣
Y

). Since the closed unit balls in question are weak-∗ compact and since
the restriction map is weak-∗-weak-∗ continuous, this happens if and only if the restriction
map is a quotient map. Similarly, H is a complete Nevanlinna-Pick space if and only if for
every finite set Y ⊂ X, the restriction map RY is a complete quotient map. Background
material on maps between operator spaces can be found in [28].

The following result says that the last observation remains true if Y is not necessarily
finite. It is originally due to Quiggin [71, Lemma 3.3]. We give a slightly different proof.

Lemma 2.4.3. Let H be a reproducing kernel Hilbert space on X. Then the following are
equivalent:

(i) H is a (complete) Nevanlinna-Pick space.

(ii) For every subset Y ⊂ X, the restriction map RY : Mult(H) → Mult(H
∣∣
Y

) is a
(complete) quotient map.

Proof. The implication (ii) ⇒ (i) follows from the discussion preceding the lemma.

Conversely, suppose thatH is a complete Nevanlinna-Pick space, let Y ⊂ X and suppose
that Φ0 belongs to the unit ball of Mult(H

∣∣
Y
⊗Cr) for some r ∈ N. The discussion preceding

the lemma shows that for every finite set F ⊂ Y , the weak-∗ compact set

IF = {Φ ∈ Mult(H⊗ Cr) : ||Φ|| ≤ 1 and Φ
∣∣
F

= Φ0

∣∣
F
}

13



2. Preliminaries about Nevanlinna-Pick spaces

is not empty. Therefore, the family {IF : F ⊂ Y finite} has the finite intersection property.
By weak-∗ compactness of the unit ball of Mult(H⊗ Cr), there exists

Φ ∈
⋂

F⊂Y finite

IY ,

and it is clear that Φ
∣∣
Y

= Φ0. Thus, RY is a complete quotient map. Finally, if H is merely
a Nevanlinna-Pick space, then the above argument for r = 1 shows that RY is a quotient
map.

2.5. The Agler-McCarthy universality theorem

Let H be an irreducible reproducing kernel Hilbert space on X with kernel K. We say that
K is normalized at the point x0 ∈ X if K(x, x0) = 1 for all x ∈ X. If K is normalized at
some point in X, we say that H (or K) is normalized.

Given x0 ∈ X, it is always possible to normalize K at x0 by defining

K̃(x, y) = δ(x)δ(y)K(x, y) (x, y ∈ X),

where

δ(x) =

√
K(x, x)

K(x0, x0)
(x ∈ X).

The resulting Hilbert function space is simply δ · H, and the multiplier algebra remains
unchanged (see [3, Section 2.6]).

Irreducible complete Nevanlinna-Pick spaces are characterized by a theorem of McCul-
lough and Quiggin (see [58] and [71], and also Section 7.1 in [3]). We require the following
version of Agler and McCarthy, which is [3, Theorem 7.31].

Theorem 2.5.1 (McCullough-Quiggin, Agler-McCarthy). Let H be an irreducible repro-
ducing kernel Hilbert space on a set X with reproducing kernel K which is normalized at
a point in X. Then H is a complete Nevanlinna-Pick space if and only if the Hermitian
kernel F = 1− 1/K is positive definite.

This characterization theorem is the essential step in the proof of the universality theorem
of Agler-McCarthy, which was mentioned in the introduction. Let

Bd = {z ∈ Cn : ||z|| < 1}

14
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be the open unit ball in Cd. We allow d =∞, in which case C∞ is understood as `2. Let

K(z, w) =
1

1− 〈z, w〉
.

Observe that if d = 1, this is simply the Szegő kernel. Writing K as a geometric series in
〈z, w〉, one may use the Schur product theorem (Theorem 2.1.4) to see that K is positive
definite. The Drury-Arveson space H2

d is the reproducing kernel Hilbert space on Bd with
reproducing kernel K. If d = 1, this space is the Hardy space on the unit disc. It is an
immediate consequence of Theorem 2.5.1 that H2

d is an irreducible complete Nevanlinna-
Pick space. The universality theorem of Agler-McCarthy shows that it is in fact a universal
such space.

Theorem 2.5.2 (Agler-McCarthy). If H is a separable normalized irreducible complete
Nevanlinna-Pick space on a set X with kernel K, then there exists m ∈ N ∪ {∞} and an
embedding j : X → Bm such that

K(z, w) = km(j(z), j(w)) (z, w ∈ X).

In this case, f 7→ f ◦ j defines a unitary operator from H2
m

∣∣
j(X)

onto H.

Proof. See [2], Theorem 3.1 in [9], or Theorem 8.2 and Theorem 7.31 in [3].

In the setting of the last theorem, let U : H2
d

∣∣
j(X)
→ H denote the unitary map. Then

conjugation by U defines a unital completely isometric isomorphism and weak-∗-weak-∗
homeomorphism

Mult(H2
d

∣∣
j(X)

)→ Mult(H), ϕ 7→ ϕ ◦ j.

In particular, every multiplier algebra of a separable normalized irreducible complete
Nevanlinna-Pick space can be identified with Mult(H2

d

∣∣
X

) for some d ∈ N ∪ {∞} and

some X ⊂ Bd. To simplify notation, let MX = Mult(H2
d

∣∣
X

). Davidson-Ramsey-Shalit
define a variety to be the common zero set in Bd of a family of H2

d functions [25, Section
2] (these agree with common zero sets of families of functions in Mult(H2

d) by [3, Theorem
9.27]).

Example 2.5.3. If d = 1 then the varieties in D are precisely D itself, all finite subsets of D
as well as all Blaschke sequences. Recall that a sequence (zn) in D is said to be a Blaschke
sequence if ∑

n

(1− |zn|) <∞.

Background material on Blaschke sequences can be found in [36, Chapter II, Section 2].
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2. Preliminaries about Nevanlinna-Pick spaces

The following result is [25, Proposition 2.2], and it shows that we may without loss of
generality assume that X is a variety.

Proposition 2.5.4 (Davidson-Ramsey-Shalit). Let X ⊂ Bd and let V be the smallest
variety which contains X, that is,

V = {z ∈ Bd : f(x) = 0 for all f ∈ H2
d such that f

∣∣
X

= 0}.

Then the restriction map from H2
d

∣∣
V

to H2
d

∣∣
X

is a unitary.

Proof. The restriction map is always a co-isometry by Lemma 2.1.2. Moreover, if f ∈ H2
d

∣∣
V

vanishes on X, then it vanishes on V by definition of V , hence it is a unitary.

Finally, we observe that Lemma 2.4.3 shows that MV is the complete quotient of
Mult(H2

d) by the weak-∗ closed ideal of all multipliers which vanish on V . Thus, the
definition of MV given here is consistent with the definition given in the introduction.

2.6. Examples

We finish this chapter by recording some examples of complete Nevanlinna-Pick spaces.

Example 2.6.1. (a) As mentioned earlier, the Hardy space H2 on the unit disc, and more
generally the Drury-Arveson space H2

d on the unit ball Bd, is a complete Nevanlinna-Pick
space.

(b) The Dirichlet space

D =
{
f ∈ O(D) :

∫
D
|f ′(z)|2 dA(z) <∞

}
is a complete Nevanlinna-Pick space when endowed with the norm

||f ||2D = ||f ||2H2 +

∫
D
|f ′(z)|2 dA(z),

where A denotes the normalized planar Lebesgue measure on D (see [3, Corollary 7.41]).
This space plays an important role in operator theory, complex analysis and harmonic
analysis, see for example [29].

The choice of norm is crucial. For instance, D is not a complete Nevanlinna-Pick space
when endowed with the norm

|f(0)|2 +

∫
D
|f ′(z)|2 dA(z)

16



2.6. Examples

or with the Sobolev type norm∫
D
|f(z)|2 dA(z) +

∫
D
|f ′(z)|2 dA(z).

Observe that ||zn||2D = n + 1. In particular, ||zn||2Mult(D) ≥ n + 1, so the multiplier norm
strictly dominates the supremum norm in this case. In fact, it is possible to show that
equality holds (see [29, Exercise 5.1.1] or Lemma 3.7.2 below). Hence, Mult(D) is not a
uniform algebra on any set.

(c) For s ≤ 0, let Hs be the reproducing kernel Hilbert space on D with reproducing
kernel

K(z, w) =
∞∑
n=0

(n+ 1)s(zw)s.

Then Hs is a complete Nevanlinna-Pick space, see [3, Corollary 7.41]. If s = 0, then H0

is the Hardy space H2, if s = −1, then Hs is the Dirichlet space D. For −1 ≤ s ≤ 0, the
spaces Hs interpolate between these two spaces in the sense of Riesz-Thorin interpolation
(see [3, Appendix C]).

(d) The Sobolev space W 2
1 consists of all absolutely continuous functions f on [0, 1] with

finite Sobolev norm

||f ||2W 1
2

=

∫ 1

0

(|f(x)|2 + |f ′(x)|2) dx.

This space is a complete Nevanlinna-Pick space (see [3, Theorem 7.43]).

(e) If w : D→ R is a positive superharmonic function, then the weighted Dirichlet space
with weight w consists of all analytic functions f on D with finite norm

||f ||2D(w) = ||f ||2H2 +

∫
D
|f ′(z)|2w(z) dA(z).

These spaces are complete Nevanlinna-Pick spaces, see [82].

We also mention some classical reproducing kernel Hilbert spaces which fail the Nevan-
linna-Pick property.

Example 2.6.2. (a) The Bergman space L2
a on the unit disc, which consists of all analytic

functions f on the unit disc with finite norm

||f ||2L2
a

=

∫
D
|f ′(z)|2 dA(z) <∞

17
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is not a Nevanlinna-Pick space, see [3, Example 5.17]. Its reproducing kernel

KL2
a
(z, w) =

1

(1− zw)2

is the square of the Szegő kernel. In particular, powers of Nevanlinna-Pick kernels are not
Nevanlinna-Pick kernels in general.

(b) The Hardy space H2(Bd) on the ball, which consists of all analytic functions f on
Bd with finite norm

||f ||2H2(Bd) = sup
0<r<1

∫
∂Bd
|f(rz)|2 dσ(z),

where σ denotes the normalized surface measure on ∂Bd, is not a Nevanlinna-Pick space if
d ≥ 2. Similarly, the Bergman space L2

a(Bd), which consists of all analytic functions on Bd
with finite norm

||f ||2L2
a(Bd) =

∫
Bd
|f(z)|2 dV (z),

where V denotes the normalized Lebesgue measure on Bd, is not a Nevanlinna-Pick space.
Indeed, there is no Nevanlinna-Pick space on Bd whose multiplier algebra is H∞(Bd) iso-
metrically, see [3, Section 8.8].

(c) The Hardy space H2(Dd) on the polydisc, which consists of all analytic functions f
on Bd with finite norm

||f ||2H2(Dd) = sup
0<r<1

∫
Td
|f(rz)|2 dσ(z),

where σ denotes the d-fold product of the normalized Lebesgue measure on T, is not a
Nevanlinna-Pick space if d ≥ 2. Indeed, its reproducing kernel

K(z, w) =
d∏
i=1

1

1− ziwi

restricts to the Bergman kernel if we identify the unit disc D with its image in Dd under the
embedding z 7→ (z, z, 0, . . . , 0), and it is easy to see that restrictions of Nevanlinna-Pick
kernels are Nevanlinna-Pick kernels.

Nevertheless, there is a more complicated theorem about interpolation in H∞(D2) =
Mult(H2(D2)), which directly generalizes Pick’s theorem. It is due to Agler [1], see also [3,
Theorem 11.49].
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Theorem 2.6.3 (Agler). Let z(1), . . . , z(n) ∈ D2 and λ(1), . . . , λ(n) ∈ C. There exists f ∈
H∞(D2) with

f(z(i)) = λ(i) (1 ≤ i ≤ n)

and ||f ||∞ ≤ 1 if and only if there are positive definite kernels K and L on {z(1), . . . , z(n)}×
{z(1), . . . , z(n)} such that

1− λ(i)λ(j) = (1− z(i)
1 z

(j)
1 )K(λ(i), λ(j)) + (1− z(i)

2 z
(j)
2 )L(λ(i), λ(j))

for 1 ≤ i, j ≤ n.

There is a version of this result for d ≥ 3. The difference is that it does not characterize
interpolation using functions in the unit ball of H∞(Dd) = Mult(H2(Dd)), but using func-
tions in the Schur-Agler class (see [3, Section 11.8]). An analytic function f on Dd is said
to belong to the Schur-Agler class if for every commuting tuple T = (T1, . . . , Td) of strict
contractions on a Hilbert space, we have

||f(T1, . . . , Td)|| ≤ 1.

If d = 1, 2, then the Schur-Agler class and the unit ball of H∞(Dd) coincide by Sz.-Nagy’s
dilation theorem [83] and by Andô’s theorem [5], respectively. If d ≥ 3, the examples of
Kaijser-Varopoulos [87] and Crabb-Davie [14] show that the Schur-Agler class is a proper
subset of the unit ball of H∞(Dd) if d ≥ 3.
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3. Multipliers of embedded discs

3.1. Introduction

The contents of this chapter are joint work with Ken Davidson and Orr Shalit and appeared
in [19]. We study the classification problem for the algebrasMV , where V ⊂ Bd is a variety.
Concretely, we ask: Given two varieties V,W ⊂ Bd, when are MV and MW isomorphic?

As mentioned in Chapter 1, this problem was completely resolved for isometric isomor-
phisms (if d < ∞) in [25]. Here we will be concerned with the question of algebraic
isomorphism. Since the algebras MV are commutative and semi-simple, every algebraic
homomorphism between these algebras is automatically norm continuous (see, for exam-
ple, [17, Proposition 4.2]). In particular, the questions of algebraic and of topological
isomorphism are the same.

The main result in [25] regarding algebraic isomorphism is the following theorem.

Theorem 3.1.1 (Davidson-Ramsey-Shalit). Let V and W be varieties in Bd, with d <∞,
which are the union of finitely many irreducible varieties and a discrete variety. Let Φ be a
unital algebra isomorphism of MV onto MW . Then there exist holomorphic maps F and
G from Bd into Cd with coefficients in Mult(H2

d) such that

(1) F |W = Φ∗|W and G|V = (Φ−1)∗|V
(2) G ◦ F |W = idW and F ◦G|V = idV

(3) Φ(f) = f ◦ F for f ∈MV , and

(4) Φ−1(g) = g ◦G for g ∈MW .

In particular, when the multiplier algebras are isomorphic, the two varieties are biholo-
morphic. In fact, the function F and its inverse G have the additional feature that the
component functions are multipliers. Thus, we say that F is a multiplier biholomorphism.

In the case of homogeneous varieties (zero sets of a family of homogeneous polynomials),
everything works out in the best possible way. The results of [24, 40] combine to show that
the multiplier algebras of two homogeneous varieties are algebraically isomorphic if and
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only if the varieties are biholomorphic. Moreover the two algebras are similar in this case,
and there is a linear map that implements a (possibly different) biholomorphism between
the homogeneous varieties W and V .

However, in the non-homogeneous case, a number of examples in [25] showed that a com-
plete converse to the theorem above is not possible. One serious issue is that multiplier
biholomorphism is not evidently an equivalence relation. The reason is that the compo-
sition of two multipliers defined on varieties may not be a multiplier. In fact, multiplier
biholomorphism is not an equivalence relation at least when the varieties have infinitely
many components (see Remark 3.6.8).

In [25], two types of counterexamples to the converse of the theorem above are exhibited:
Blaschke sequences in the unit disc [25, Examples 6.2,8.2] and discs in B∞ [25, Examples
6.11, 6.12, 6.13]. We will examine these examples in more detail here. In particular, we give
precise conditions for when the multiplier algebras of two embedded discs in B∞ of a special
type are isomorphic. Our methods allow us to show that there are uncountably many discs
which are multiplier biholomorphic such that their multiplier algebras are not isomorphic.
Since these embedded discs live in an infinite dimensional ball, they may appear somewhat
pathological. However, from the point of view of Nevanlinna-Pick spaces, they are very
natural. Indeed, our most important class of examples arises from the spaces of Example
2.6.1 (c), a family of complete Nevanlinna-Pick spaces on the unit disc which interpolate
between the Hardy space and the Dirichlet space, and which have been studied classically.

We will also be concerned with proper embeddings of discs into finite dimensional balls
Bd. Here the prototype result is due to Alpay, Putinar and Vinnikov [4]:

Theorem 3.1.2 (Alpay-Putinar-Vinnikov). Suppose that f is an injective holomorphic
function of D onto V ⊂ Bd such that

(1) f extends to an injective C2 function on D,

(2) f ′(z) 6= 0 on D,

(3) ‖f(z)‖ = 1 if and only if |z| = 1,

(4) 〈f(z), f ′(z)〉 6= 0 when |z| = 1.

Then MV is isomorphic to H∞.

We remark that [4] only asks that f be C1, but in [6, 2.3.6], where this result is generalized
to finitely connected planar domains, the authors point out that the proof requires f to be
C2. This result is further extended in [54] to finite Riemann surfaces.

We will show in Section 3.3 that the transversality condition (4) is a consequence of
being C1. We will also show (in Section 3.5) that for a minor weakening of the hypotheses
of Theorem 3.1.2, the conclusion is no longer valid.
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It remains open if the converse of Theorem 3.1.1 holds if the varieties have only finitely
many irreducible components. The finiteness of d and the finiteness of the number of
components eliminates all of the counterexamples that we know about.

The remainder of this chapter is organized as follows. In Section 3.2, we record prelimi-
naries regarding embedded discs which will be used throughout this chapter.

In Section 3.3, we show that the transversality assumption in the theorem of Alpay,
Putinar and Vinnikov is a consequence of being C1.

In Section 3.4, we present a modification of an example due to Josip Globevnik . This
example provides a proper analytic embedding of the unit disc in to B2 which extends to
be continuous on D, but transversality in an appropriate sense fails.

In Section 3.5, we exhibit a proper rational map f of the disc into B2 which satisfies all
of the hypotheses of the theorem of Alpay-Putinar-Vinnikov, except for the fact that the
C∞ extension to D is not injective. In this case, the multiplier algebra is not isomorphic
to H∞.

In Section 3.6, we show that a biholomorphism between varieties which induces an
isomorphism between the multiplier algebras must be a bi-Lipschitz map with respect to
the pseudohyperbolic distance. Re-examination of the example of the preceding section
shows that indeed f fails to be bi-Lipschitz, hence cannot induce an isomorphism. We
also give an example which shows that for Blaschke sequences, being bi-Lipschitz does not
imply isomorphism.

In Section 3.7, we consider a special class of embeddings of D into B∞. We give conditions
for when the multiplier algebras of two such embedded discs are isomorphic. In particular,
we determine when such an algebra is isomorphic to H∞. We also show that the classical
scale of complete Nevanlinna-Pick spaces Hs, where s ∈ [−1, 0], gives rise to uncountably
multiplier biholomorphic varieties whose multiplier algebras are not isomorphic.

In Section 3.8, we show that if we extend the scale Hs to s < −1, then we obtain a
family of varieties in B∞ which are homeomorphic to the compact unit disc. Again, we
determine when two multiplier algebras associated to compact embedded discs of a special
type are isomorphic.

In Section 3.9, we use interpolating sequences to show that no multiplier algebra on one
of these compact embedded discs can be isomorphic to a multiplier algebra from Section
3.7.
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3. Multipliers of embedded discs

3.2. Multipliers on discs and automorphism invariance

Let f : D→ V = f(D) ⊂ Bd be a proper holomorphic map. In the case of d <∞, it is well
known that if f is injective and f ′(z) 6= 0 for all z ∈ D, then the complex structure on V
as a subset of Cd coincides with the complex structure induced from the homeomorphism
with D. We require the analogous result for the case d =∞.

A function f : Ω1 → Ω2 between two open balls of two Hilbert spaces is said to be
holomorphic if it is Fréchet differentiable at every point. Equivalently, f is holomorphic
if around every point in Ω1 there is some neighborhood in which f is represented by a
convergent (vector valued) power series. Background material on holomorphic functions
on infinite dimensional domains can be found in [47, Section III.3].

Suppose that V,W ⊂ `2. A function h : V → `2 will be called holomorphic if for
every v ∈ V , there is a ball br(v) in `2 and a holomorphic function g on br(v) such that
g|V ∩br(v) = h|V ∩br(v). A bijective map f between V and W will be called a biholomorphism
provided that both f and f−1 are holomorphic.

The following definition is not standard so it is singled out.

Definition 3.2.1. We say that a map f from the unit disc into the open unit ball of a
Hilbert space is proper if lim|z|→1 ‖f(z)‖ = 1.

When the target space is finite dimensional this definition agrees (in this setting) with
the standard definition of “proper map”, which is that f is proper if the preimage of every
compact set is compact. We require this definition for dealing with maps into infinite
dimensional balls.

The following result is well known when the range is contained in Cd for d < ∞. Since
we do not have a convenient reference when d =∞, a proof is provided below. We let B∞
denote the open unit ball of `2.

Proposition 3.2.2. Let f : D → V = f(D) ⊂ B∞ be a proper injective holomorphic
function such that f ′(z) 6= 0 for z ∈ D. Then f−1 is holomorphic. More generally, a
function h : V → C is holomorphic if and only if h ◦ f is holomorphic.

Proof. Fix v0 = f(z0) ∈ V . As f ′(z0) 6= 0, we can define

P : B∞ → D, z 7→
〈
z,

f ′(z0)

||f ′(z0)||

〉
.

Then P ◦ f is an analytic function on the disc with non-zero derivative at z0, hence P ◦ f
is injective in a neighbourhood of z0.

24



3.2. Multipliers on discs and automorphism invariance

We claim that there is an r > 0 so that P is injective on br(v0) ∩ V . Assume toward
a contradiction that P is not injective in any neighbourhood of v0 in V . Then there are
sequences wn and w̃n in V which converge to v0 with wn 6= w̃n and Pwn = Pw̃n. Write
wn = f(zn) and w̃n = f(z̃n), and note that zn 6= z̃n. Properness of f implies that zn and
z̃n are contained in a disc of radius r < 1, so by passing to a subsequence, we may assume
that zn → z and z̃n → z̃ for points z, z̃ in the disc. Thus f(z) = f(z̃) = v0. Since f is
injective, it follows that z = z̃ = z0. But (Pf)(zn) = (Pf)(z̃n), which contradicts the fact
that Pf is injective in a neighbourhood of z0.

Since P ◦ f has non-zero derivative at z0, there exists ε > 0 such that P ◦ f is a
biholomorphism of bε(z0) onto its image. By shrinking ε if necessary, we may further
assume that f(bε(z0)) ⊂ br(v0). Since Pf(bε(z0)) is open, we can find r0 with 0 < r0 ≤ r
such that

Pbr0(v0) ⊂ Pf(bε(z0)).

Then g = (Pf
∣∣
bε(z0)

)−1P is an analytic function on br0(v0).

We claim that g agrees with f−1 on V ∩ br0(v0). To this end, let w ∈ V ∩ br0(v0). Then
P (w) ∈ Pbr0(v0) ⊂ Pf(bε(z0)), so there exists z ∈ bε(z0) such that Pf(z) = Pw. Since
f(bε(z0)) ⊂ br(v0) and since P is injective on br(v0), it follows that w = f(z). Hence
g(w) = (Pf

∣∣
bε(z0)

)−1Pf(z) = z = f−1(w), as asserted.

The additional claim now follows from the fact that the composition of holomorphic
functions is holomorphic.

The following consequence is well known if the range is contained in Bd for d <∞.

Corollary 3.2.3. If f : D → V = f(D) ⊂ B∞ is a proper injective holomorphic function
such that f ′(z) 6= 0 for all z ∈ D, then the space H∞(V ) of bounded analytic functions on
V coincides with {h ◦ f−1 : h ∈ H∞}.

If V is a variety in Bd, then the algebraMV is an algebra of functions on the variety V .
Thus, every v ∈ V gives rise to the character δv of evaluation at v. These are precisely the
weak-∗ continuous characters onMV by [25, Proposition 3.2], and we will identify V with
a subset of the maximal ideal space M(MV ) in this way. As noted at the end of Section
2.2, the point evaluations typically only form a small subset of the maximal ideal space.

Since the coordinate functions in MV form a row contraction and since characters are
completely contractive, there is a map

π :M(MV )→ Bd, ρ 7→ (ρ(zi))
d
i=1.
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3. Multipliers of embedded discs

It follows from [21, Theorem 3.2] that if d <∞, then the characters in π−1(Bd) are precisely
the point evaluations. Unfortunately, this theorem is not true for d =∞, as the following
example shows.

Example 3.2.4. Let (vn) be a sequence in B∞ with the property that ||vn|| → 1, but
(vn) converges weakly to zero. By passing to a subsequence, we may assume that (vn) is
interpolating for Mult(H2

∞) (see Proposition 3.9.1 below). Thus, the unital homomorphism
Φ : Mult(H2

∞) → `∞ defined by Φ(f)(n) = f(vn) is surjective, so its adjoint Φ∗ is an
embedding of the Stone-Čech compactification βN into the character space of Mult(H2

∞).
We claim that every point in βN\N lies in the fiber over the origin, i.e., π(Φ∗(βN\N)) = {0}.
Indeed, let ρ ∈ βN \ N. Then for every k ≥ 1, we have

(Φ∗(ρ))(zk) = ρ((zk(vn))) = lim
n→∞

zk(vn) = 0.

In particular, we see that there are points in π−1(B∞) which are not point evaluations.

We can also use this construction to show that there are algebras MV with characters
that are fibered over points in B∞ \ V . Let (vn) be as above, and assume that v0 = 0. Let
f ∈ Mult(H2

∞) satisfy f(0) = 1 and f(vn) = 0 for n ≥ 1. Then V = f−1(0) is a variety
such that 0 /∈ V , but the fiber π−1(0) contains a copy of βN \ N.

We also need a few variants of results in [25]. Consider two biholomorphisms of discs

fi : D→ Vi = fi(D) ⊂ Bdi for i = 1, 2

such that Vi are varieties. We allow the case di = ∞. Suppose that Φ : MV1 → MV2 is
an algebra homomorphism, and let Φ∗ be the induced map from M(MV2) to M(MV1).
Composing Φ∗ with the evaluation map π at the row contraction (z1, . . . , zdi) yields a map
FΦ = π ◦ Φ∗ :M(MV2)→ Bdi given by

FΦ(ρ) =
(
ρ(Φ(zi))

)di
i=1

for ρ ∈M(MV2).

In particular, FΦ|V2 maps the variety V2 into Bdi .

Theorem 3.2.5. Let V1, V2 be discs in Bdi as described above. Furthermore, assume that

(1) for every λ ∈ V1, the fiber π−1(λ) = {δλ}, and

(2) π(M(MV1)) ∩ Bd1 = V1.

Let Φ :MV1 →MV2 be an algebra homomorphism. Then F = FΦ|V2 is a holomorphic map
with multiplier coefficients. If F is not constant, then F maps V2 into V1. In this case,
Φ∗|V2 = F and Φ is given by composition with F , that is,

Φ(h) = h ◦ F for all h ∈MV1 .
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3.2. Multipliers on discs and automorphism invariance

In particular, if Φ is injective, then F is not constant. And if Φ is an isomorphism, F is
a biholomorphism of V2 onto V1.

Proof. Let Fi = Φ(zi) for 1 ≤ i ≤ d1. For v ∈ V2, let δv denote the character of evaluation
at v. Then

F (v) = π(Φ∗(δv)) =
(
δv(Φ(zi))

)d
i=1

=
(
Fi(v)

)d1
i=1
.

Observe that the coefficients Fi are all multipliers. We remarked above that F maps V2

into Bd1 .

In a next step, we show that F ◦ f2 is holomorphic. If d1 < ∞, this is clear since the
functions hi = Fi ◦ f2 are. If d1 =∞, let α = (ai)

∞
i=1 ∈ `2. Then

〈F ◦ f2(z), α〉 =
∞∑
i=1

āihi(z).

This converges uniformly on V2 since by the Cauchy-Schwarz inequality,

∞∑
n=N

|ānhn(z)| ≤
( ∞∑
n=N

|an|2
)1/2( ∞∑

n=N

|hn(z)|2
)1/2

≤
( ∞∑
n=N

|an|2
)1/2 N→∞−−−→ 0.

Therefore 〈F ◦ f2(v), α〉 is holomorphic for all α, so F ◦ f2 is holomorphic. Since f2 is a
biholomorphism, F is holomorphic.

Now we assume that F is not constant, and show that F maps into Bd1 . If µ = F (λ)
lies in the boundary ∂Bd for some λ ∈ V2, then 〈F ◦ f2(z), µ〉 is a holomorphic function
into D which takes the value 1 at a point in D. By the maximum modulus principle, this
function is constant. Since the image of F is contained in the closed unit ball, F ◦ f2 itself
and thus F must be constant. This contradicts our assumption.

Now for v ∈ V2, Φ∗(δv) is fibered over the point F (v), which lies in Bd1 . By hypotheses
(1) and (2), the characters ofMV1 in π−1(Bd1) are precisely the point evaluations at points
of V1. Hence F maps V2 into V1. Therefore

Φ(h)(v) = Φ∗(δv)(h) = δF (v)(h) = h(F (v))

for all h ∈MV1 and v ∈ V2.
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3. Multipliers of embedded discs

If Φ is injective, it follows as in [25, Lemma 5.4(2)] that F maps V2 into V1. The argument
there assumed that Φ is an isomorphism, but only injectivity is required. To recall, suppose
that F maps V2 to a single point λ ∈ Bd1 . Then for every i, we have

Φ(λi − zi) = λi − Fi = 0,

hence zi = λi ∈ MV1 by injectivity of Φ. This is clearly impossible as V1 consists of more
than one point. Therefore F is not constant.

Now assume that Φ is an isomorphism and recall that Φ is automatically a topological
isomorphism in the norm topologies. By an adaptation of [24, Section 11.3], the fact
that Φ is implemented by composition implies that Φ is weak-∗ continuous. Since the
closed unit ball B1 of MV1 is weak-∗ compact, and since the weak-∗ topology on MV2

is Hausdorff, Φ
∣∣
B1

: B1 → Φ(B1) is a homeomorphism in the weak-∗ topologies. Every

bounded set inMV2 is contained in rΦ(B1) for some r > 0, hence Φ−1 is weak-∗ continuous
on bounded sets. It follows from the Krein-Smulian theorem that Φ−1 is weak-∗ continuous.
In particular, (Φ−1)∗ takes point evaluations to point evaluations.

We deduce that Φ∗(V2) = V1, hence F maps V2 onto V1. Since F−1 = π ◦ (Φ−1)∗, the
map F−1 is holomorphic with multiplier coefficients.

Remark 3.2.6. The special hypotheses on the algebra MV1 always hold when d1 < ∞ by
[25, Proposition 3.2]. Proposition 3.2.8 below shows that even when d1 =∞, condition (2)
holds in many cases of interest.

Remark 3.2.7. Besides the special assumptions on MV1 , another issue which makes this a
weaker result than Theorem 3.1.1 in the case d1 = ∞ is that we do not know if the map
F can be extended to a map from Bd2 into `2. Better yet, we would like (F1, F2, . . .) =
(Φ(z1),Φ(z2), . . .) to be a bounded vector-valued multiplier. In this case, (F1, F2, . . .) would
extend to a bounded multiplier from H2

d2
⊗ `2 into H2

d2
, since the restriction map from

Mult(H2
d2

) to MV2 is a complete quotient map.

Observe that if Φ is assumed to be completely bounded, then F is indeed a bounded
vector-valued multiplier, as (z1, z2, . . .) is a row contraction. However, if Φ is merely as-
sumed to be bounded, we only know that each Fi extends to a multiplier of H2

d2
, but the

resulting F does not obviously extend to a bounded map on Bd2 .

At least the second condition in the last result holds in many cases of interest. We let
Ad denote the norm closure of the polynomials in Mult(H2

d).

Proposition 3.2.8. Suppose that a variety V in Bd is the intersection of zero sets of a
family F ⊂ Ad. Then π(M(MV )) ∩ Bd = V .
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3.2. Multipliers on discs and automorphism invariance

Proof. Since every point v ∈ V gives rise to the character of evaluation at v, one inclusion is
obvious. To prove the other inclusion, let ρ be a character onMV such that λ = π(ρ) ∈ Bd.
Then

ρ(f
∣∣
V

) = f(ρ(z1), . . . , ρ(zd)) = f(λ)

holds for every polynomial f , and hence for every f ∈ Ad. In particular, as every f ∈ F
vanishes on V , we deduce that f(λ) = 0 for all f ∈ F . Therefore λ belongs to V .

Remark 3.2.9. When the functions F defining V belong toAd, they extend to be continuous
on the closed ball. It follows by the same argument that if ‖λ‖ = 1 and a character ρ belongs
to π−1(λ), then f(λ) = 0 for every f ∈ F . Hence

λ ∈ {z ∈ Bd : f(z) = 0 for all f ∈ F}.

In particular, if the set on the right equals V , we see that π(M(MV )) = V . This is of
interest even when d <∞ (cf. [54, Corollary 5.4]).

It is well known that the conformal automorphisms of the unit disc are the Möbius maps

θ : D→ D, z 7→ λ
z − a
1− az

,

for a ∈ D and |λ| = 1. Moreover, the automorphisms of H∞ are precisely the maps
Cθh = h ◦ θ. This familiar result is credited to Kakutani in [50, p.143].

If f : D → V = f(D) ⊂ Bd is a biholomorphic map onto a variety V , then we can
transfer the Möbius maps to conformal automorphisms of V by sending θ to f ◦ θ ◦ f−1.
Since f is a biholomorphism, these are precisely the conformal automorphisms of V . We
say that MV is automorphism invariant if composition with all of these conformal maps
yield automorphisms ofMV . A sufficient criterion for automorphism invariance is given in
[12, Theorem 3.5]. For further discussion of this property, the reader is referred to Section
8 in [13].

Corollary 3.2.10. Let V1, V2 be discs in Bd as described above such that V1 satisfies con-
ditions (1) and (2) of Theorem 3.2.5. Let Φ : MV1 → MV2 be an algebra isomorphism.
Then there is a Möbius map θ of D such that the following diagram commutes:

MV1 MV2

H∞ H∞

Cf1

Φ

Cf2

Cθ
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3. Multipliers of embedded discs

Proof. By Theorem 3.2.5, F = Φ∗|V2 is a biholomorphism of V2 onto V1, and Φ is imple-
mented by composition with F . We will make use of the fact that MVi can be embedded
into H∞ via

Cfih = h ◦ fi for h ∈MVi .

This map is contractive since the multiplier norm onMVi dominates the supremum norm.
Observe that θ = f−1

1 ◦ F ◦ f2 is a biholomorphism of D onto itself, and thus is a Möbius
map. Clearly this makes the diagram commute.

Suppose that the automorphism θ can be chosen to be the identity or, equivalently, that
CF , where F = f1 ◦ f−1

2 , is an isomorphism ofMV1 ontoMV2 . Then we will say thatMV1

and MV2 are isomorphic via the natural map.

Corollary 3.2.11. Let V1, V2 be discs in Bd as described above such that V1 satisfies condi-
tions (1) and (2) of Theorem 3.2.5. If MV1 or MV2 is automorphism invariant, then MV1

and MV2 are isomorphic if and only if they are isomorphic via the natural map CF , where
F = f1 ◦ f−1

2 .

In particular, if MV2 is isomorphic to H∞, then Cf2 implements the isomorphism.

Proof. The first paragraph is immediate from the preceding corollary. To deduce the
additional statement, we let V1 be the variety defined by the monomials {z2, z3, . . .}. Then
MV1 is naturally identified with H∞ and V1 satisfies conditions (1) and (2) of Theorem
3.2.5.

3.3. Transversality

Recall that a map of D into a ball Bd is proper if lim|z|→1 ‖f(z)‖ = 1. If a proper analytic

map f : D→ Bd extends to be C1 on D, we will say that the image meets the boundary of
Bd transversally at f(z) for z ∈ ∂D provided that

〈f(z), f ′(z)〉 6= 0.

As noted in the introduction, transversality at the boundary is a hypothesis needed
in the theorem of Alpay, Putinar and Vinnikov. In this section, we show that a proper
analytic C1 embedding of the unit disc automatically meets the boundary transversally.
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3.3. Transversality

Proposition 3.3.1. Let f : D→ Bd be an analytic map which extends to be continuous at
1 such that ||f(1)|| = 1. Then

Re〈f(1)− f(z), f(1)〉
1− |z|

≥ 1− |〈f(z), f(1)〉|
1− |z|

≥ 1− |a|
1 + |a|

> 0

for all z ∈ D, where a = 〈f(0), f(1)〉. We have

L = lim inf
z→1,z∈D

1− |〈f(z), f(1)〉|
1− |z|

<∞

if and only if the non-tangential limit of

〈f(1)− f(z), f(1)〉
1− z

as z → 1 exists. In this case, this limit equals L. In particular, if f extends to be differen-
tiable at 1, then 〈f(1), f ′(1)〉 > 0.

Proof. Consider the holomorphic function

g : D→ D, z 7→ 〈f(z), f(1)〉.

An application of the Schwarz-Pick lemma (compare the discussion following Corollary
2.40 in [12]) shows that

1− |g(z)|
1− |z|

≥ 1− |g(0)|
1 + |g(0)|

for all z ∈ D,

from which the first claim readily follows.

The second claim is a direct consequence of the Julia-Carathédory theorem [12, Theorem
2.44]. It follows from the first part that L > 0. In particular, if f extends to be differentiable
at 1, then

〈f ′(1), f(1)〉 = lim
z→1

〈f(1)− f(z), f(1)〉
1− z

= L > 0,

so that f meets the boundary transversally at f(1).

The following consequence is immediate.

Corollary 3.3.2. If f : D → Bd is a proper analytic map which extends to be C1 on D,
then f(D) meets the boundary transversally. Indeed, 〈f(z), f ′(z)z〉 > 0 for all z ∈ ∂D.
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3. Multipliers of embedded discs

Let us examine the geometric meaning of Corollary 3.3.2. For every n ∈ N the space Cn

carries the structure of a 2n-dimensional real Hilbert space with inner product

〈u, v〉R = Re〈u, v〉.

Let f be as in the corollary, and let us assume for simplicity that f extends analytically
to an open neighbourhood U of D. The derivative f ′(z) is a linear map from the complex
tangent space of C at z (which can be identified with C) into the complex tangent space
of f(U) at f(z) (which can be identified with a subspace of Cd of complex dimension 1).
Every z ∈ ∂D also serves as the outward pointing normal vector of the real submanifold
∂D at the point z. The derivative f ′(z) maps z to the vector f ′(z)z.

Intuitively, a curve f(D) is transversal to ∂Bd at f(z) (for z ∈ ∂D) if the real valued inner
product of the tangent vector to the curve at f(z) with the outward pointing normal vector
at f(z) is positive. But since the outward pointing normal of ∂Bd at f(z) is (colinear with)
f(z), this boils down to the condition 〈f(z), f ′(z)z〉R = Re〈f(z), f ′(z)z〉 > 0. Corollary
3.3.2 gives slightly more information.

The following proposition and corollary clarify further the geometric meaning of Propo-
sition 3.3.1 and Corollary 3.3.2.

Proposition 3.3.3. Let ϕ be a differentiable map from the interval [0, 1] into the closed
unit ball B of a real Hilbert space such that ‖ϕ(1)‖ = 1 and 〈ϕ′(1), ϕ(1)〉 > 0. Then for x
near 1

‖ϕ(1)− ϕ(x)‖ ∼ 1− ‖ϕ(x)‖ ∼ 1− x.

Here we use the notation a(x) ∼ b(x) to mean limx→1
a(x)
b(x)

= c ∈ (0,∞).

Proof. By differentiability

‖ϕ(1)− ϕ(x)‖ = ‖ϕ′(1)(x− 1) + o(1− x)‖ ∼ 1− x,

since ϕ′(1) 6= 0. Moreover 1− ‖ϕ(x)‖ ∼ 1− ‖ϕ(x)‖2 and

1− ‖ϕ(x)‖2 = 1− ‖ϕ(1) + ϕ′(1)(x− 1) + o(x− 1)‖2 = 2〈ϕ′(1), ϕ(1)〉(1− x) + o(1− x),

and the latter is ∼ 1− x.

Corollary 3.3.4. Suppose that f is a proper analytic map of D into a ball Bd, and that
f extends to D ∪ {1} and is differentiable at 1. Then there exist c > 0 such that for all
x ∈ (0, 1),

c ≤ dist(f(x), ∂Bn)

‖f(1)− f(x)‖
=

1− ‖f(x)‖
‖f(1)− f(x)‖

≤ 1.
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3.4. Tangential embedding

3.4. Tangential embedding

Following the discussion in the previous section we ask: can a proper biholomorphic em-
bedding of the disc into the ball that extends continuously to the boundary meet the sphere
tangentially? Proposition 3.3.1 shows that 〈f ′(1), f(1)〉 is always bounded away from 0,
when f extends to be differentiable at 1. And the Julia-Carathéodory Theorem shows that
differentiability (at least in the direction of f(1)) is equivalent to having a bounded differ-
ential quotient along some approach to the boundary point. So a possible reformulation of
a tangential condition might be that

lim
x→1,x∈(0,1)

Re〈f(1)− f(x), f(1)〉
1− x

= +∞.

A different formulation is used in [6]. They suggest that the tangential condition should
be

lim inf
x→1, x∈(0,1)

dist(f(x), ∂Bn)

‖f(1)− f(x)‖
= lim inf

x→1, x∈(0,1)

1− ‖f(x)‖
‖f(1)− f(x)‖

= 0.

If this is an actual limit, this intuitively says that as x approaches 1 along the real axis,
the curve f(x) approaches the boundary much more quickly than it approaches f(1), and
hence must approach f(1) along a curve tangent to the boundary.

Corollary 3.3.4 shows that if f is holomorphic and differentiable at 1, then the curve
f(x) cannot approach ∂Bd tangentially in either of these senses. We have been unable to
determine a relationship between these two tangential conditions.

We now construct an example of a continuous proper embedding of a disc into B2 which
meets the boundary tangentially in both of these senses. Unfortunately we have been
unable to determine whether the multiplier algebra is isomorphic to H∞.

Example 3.4.1. The following construction is a modification of an example shown to us
by Josip Globevnik. There is a proper embedding F of D into B2 which extends to be
continuous on D such that

lim
x→1, x∈(0,1)

1− ‖F (x)‖
‖F (1)− F (x)‖

= 0,

and

lim
x→1, x∈(0,1)

Re〈F (1)− F (x), F (1)〉
1− x

= +∞.

Let A be the region in the upper half plane bounded by two semicircles in the upper half
of the unit disc which are tangent at 1, and have radii r1 = 1

2
and r2 = 3

4
together with

the line segment [−1
2
, 0]. The closure of A is shown in Figure 3.1.
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3. Multipliers of embedded discs

1−1
2

0

i

Figure 3.1.: The closure of A

Let f be a conformal map of D onto A such that f(1) = 1. For definiteness, we may
assume that f(−i) = 0 and f(i) = −1

2
.

The map f can be achieved by the following sequence of conformal maps. First apply
the Möbius map w → w+i

iw+1
which takes −i to 0, i to ∞, carries D onto the upper half

plane, takes 1 to 1, and is analytic in a neighbourhood of 1. Then take the square root map
onto the first quadrant, followed by the Möbius map w → w−1

w+1
which carries the quadrant

onto the upper half disc. Call the composition of these maps g. Then g maps the disc
onto the upper half disc, g takes 1 to 0, and is still analytic in a neighbourhood of 1; and
g(±i) = ±1. Now the standard branch of log (with cut along the negative imaginary axis)
carries the region onto the half strip bounded by the negative real axis (−∞, 0], the line
segment [0, πi] and half line (−∞, πi] parallel to the real line. Then take a final Möbius
map w → w−πi

w+2πi
. The composition of all these maps is the desired map f .

Observe that f extends to a homeomorphism of D onto A and satisfies f(1) = 1. The
map g from D to the half circle is conformal in a neighbourhood of 1, so g(eit) ≈ at where
g′(1) = −ia 6= 0; in fact, a = 1

4
. Hence log g(eit) ≈ log(at) for t > 0 and log g(eit) ≈

log(a|t|) + πi for t < 0. So we obtain that

f(eit) ≈


log(at)−πi
log(at)+2πi

for t > 0

log(a|t|)
log(a|t|)+3πi

for t < 0

Hence we may compute that

u(eit) :=
1

2
log
(
1− |f(eit)|2

)
≈ − log log |t|−1.
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3.5. Crossing on the boundary

In particular, u is in L1(T).

Fix 2/3 < r < 1, and define ρ(z) = rz + 1 − r. This maps D onto a disc of radius r
tangent to D at 1. Therefore f1(z) = f(ρ(z)) maps D conformally onto a region contained
in A which extends to be analytic on a neighbourhood of D \ {1}. It is still true that

u1(eit) :=
1

2
log
(
1− |f1(eit)|2

)
belongs to L1, but now it is C∞ except at 1, where it goes to −∞. Hence u1 extends to
a real harmonic function on D which is smooth except at 1, where it goes to −∞. Let ũ1

be its harmonic conjugate. This is also smooth except at 1. Let f2(z) = eu1+iũ1 . Then f2

extends to be continuous on D with f2(1) = 0, and f2 is smooth except at 1.

Now |f1(eit)|2 + |f2(eit)|2 = 1 on T. It follows that F (z) = (f1(z), f2(z)) is a proper
map of D into B2 that extends to be continuous on D, and smooth except at 1. Since f1 is
conformal, F is a biholomorphism of D onto its image.

It is easy to see that as z approaches 1, F (z) approaches (1, 0) tangentially in the sense
that

lim
x→1, x∈(0,1)

1− ‖F (x)‖
‖F (1)− F (x)‖

= 0.

A careful look at the estimates above shows that for x ∈ (0, 1),

f(1− x) ∼
log(ax)− π

2
i

log(ax) + 3π
2
i
∼ (1− c1

log2 x
) + i

c2

log x
.

Hence
Re〈f(1)− f(x), f(1)〉 ∼ c1

log2(1− x)
,

so that

lim
x→1, x∈(0,1)

Re〈F (1)− F (x), F (1)〉
1− x

= +∞.

3.5. Crossing on the boundary

In this section, we will provide a method for constructing a smooth proper embedding of
a disc into a ball such that the multiplier algebra is not isomorphic to H∞. The idea is to
have the boundary cross itself.
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3. Multipliers of embedded discs

Theorem 3.5.1. Suppose that f : D→ Bd is a proper analytic map which satisfies

(1) f |D is injective,

(2) f extends to a differentiable map on D ∪ {±1}, and

(3) f(1) = f(−1).

Suppose that V = f(D) is a variety (in the sense of [25]). Then f−1 6∈ MV . In particular,
the embedding

MV → H∞, h 7→ h ◦ f,
is not surjective.

Proof. We first make some first order estimates in order to approximate the kernel functions
near f(±1). By Proposition 3.3.1, we have 〈f ′(1), f(1)〉 > 0. Furthermore, differentiability
of f at 1 implies that for small x > 0, we have

f(1− x) = f(1)− xf ′(1) + o(x).

Hence

1− ‖f(1− x)‖2 = ‖f(1)‖2 − ‖f(1− x)‖2

= 〈f(1), f(1)− f(1− x)〉+ 〈f(1)− f(1− x), f(1− x)〉
= 〈f(1), xf ′(1) + o(x)〉+ 〈xf ′(1) + o(x), f(1) + o(1)〉
= 2x〈f ′(1), f(1)〉+ o(x).

Similarly, 〈f ′(−1), f(−1)〉 < 0 and for small y with y > 0,

f(−1 + y) = f(−1) + yf ′(−1) + o(y)

and
1− ‖f(−1 + y)‖2 = −2y〈f ′(−1), f(−1)〉+ o(y).

Likewise, for small positive values of x and y, we obtain (using f(1) = f(−1))

1− 〈f(1− x), f(−1 + y)〉
= 1− 〈f(1)− xf ′(1) + o(x), f(−1) + yf ′(−1) + o(y)〉
= 1− 〈f(1), f(−1)〉 − 〈f(1), yf ′(−1)〉+ 〈xf ′(1), f(−1)〉+ o(x+ y)

= x〈f ′(1), f(1)〉 − y〈f ′(−1), f(−1)〉+ o(x+ y).

Let s > 0 so that

0 < a := 〈f ′(1), f(1)〉 = −s〈f ′(−1), f(−1)〉
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3.5. Crossing on the boundary

and set y = sx. We have that

(1− ‖f(1− x)‖2)(1− ‖f(−1 + sx)‖2)∣∣1− 〈f(1− x), f(−1 + sx)〉
∣∣2 =

(2ax+ o(x))(2ax+ o(x))

(2ax+ o(x))2
= 1 + o(1). (3.1)

Assume now for a contradiction that f−1 is a multiplier and let C = ||f−1||MV
and

h = f−1/C, so that ||f ||MV
= 1.

Applying the Pick condition (see Lemma 2.2.1) to h at the points {f(1−x), f(−1+sx)},
we see that the matrix 1−|h(f(1−x))|2

1−‖f(1−x)‖2
1−h(f(1−x))h(f(−1+sx))

1−〈f(1−x),f(−1+sx)〉

1−h(f(−1+sx))h(f(1−x))
1−〈f(−1+sx),f(1−x)〉

1−|h(f(−1+sx))|2
1−‖f(−1+sx)‖2



=

 1−C−2(1−x)2

1−‖f(1−x)‖2
1+C−2(1−x)(1−sx)

1−〈f(1−x),f(−1+sx)〉

1+C−2(1−x)(1−sx)
1−〈f(−1+sx),f(1−x)〉

1−C−2(1−sx)2

1−‖f(−1+sx)‖2


is positive. Taking the determinant and clearing denominators yields(

C2+ (1− x)(1− sx)
)2(

1− ‖f(1− x)‖2
)(

1− ‖f(−1 + sx)‖2
)

≤
(
C2 − (1− x)2)(C2 − (1− sx)2

)∣∣1− 〈f(−1 + sx), f(1− x)〉
∣∣2.

Using the estimate from (3.1) and letting x decrease to 0, we obtain

(C2 + 1)2 ≤ (C2 − 1)2.

As this is false, we deduce that f−1 6∈ MV . In particular, the coordinate function z is not
in the range of the map in the additional statement.

Now we show that a map with these properties can be obtained.

Theorem 3.5.2. There is a rational function f with poles outside D and values in C2

which satisfies the conditions of Theorem 3.5.1, meets ∂B2 transversally, and is one-to-one
except for the fact that f(−1) = f(1), and so that f is a biholomorphism. Then V = f(D)
is a variety (in the sense of [25]) such that MV $ H∞(V ). In particular, f−1 is not a
multiplier.
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3. Multipliers of embedded discs

Proof. Fix 0 < r < 1, and let

b(z) =
z − r
1− rz

.

Note that b(±1) = ±1. Define

f(z) =
1√
2

(
z2, b(z)2

)
.

Then it is clear that f is a rational function with poles outside D. Since z and b(z) are
automorphisms of the disc, it is easy to see that ||f(z)|| < 1 if |z| < 1 and ||f(z)|| = 1 if
|z| = 1.

Since f is analytic on a disc (1 + ε)D for some ε > 0 and

V = f((1 + ε)D) ∩ B2,

it follows that V is a variety [54]. By Proposition 3.3.1, V meets the boundary transversally
at every point.

Note that the first coordinate of f(z) is z2/
√

2. Hence if f(w) = f(z), we have w = ±z.
If f(z) = f(−z), then b(−z)2 = b(z)2, which is easily seen to have solutions z ∈ {0,±1}.
Thus f(−1) = f(1) is the only failure to be one-to-one. Moreover,

f ′(z) =
1√
2

(2z, 2b(z)b′(z))

is never zero since the first coordinate vanishes only at z = 0, while

2b(0)b′(0) = −2r(1− r2) 6= 0.

So this map is a biholomorphism. It is now clear that the hypotheses of Theorem 3.5.1 are
satisfied. Therefore, MV $ H∞(V ) and indeed, f−1 is not a multiplier.

Remark 3.5.3. The fact that f−1 is not a multiplier means that this approach will not yield
counterexamples to the converse of Theorem 3.1.1.

Corollary 3.2.11 and the automorphism invariance ofH∞ yield the following consequence.

Corollary 3.5.4. For V given in Theorem 3.5.2, MV is not isomorphic to H∞.
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3.6. Pseudohyperbolic distance

3.6. Pseudohyperbolic distance

The pseudohyperbolic metric on Bd is defined by

d(z, w) = ‖ϕw(z)‖ = ‖ϕz(w)‖

where ϕw is the conformal automorphism of Bd onto itself interchanging the points w and
0 given by

ϕw(z) =
w − Pwz − (1− ‖w‖2)1/2(1− Pw)z

1− 〈z, w〉
,

where Pw is the orthogonal projection of Cd onto Cw. By [75, Theorem 2.2.2(iv)],

d(z, w)2 = 1− (1− ‖w‖2)(1− ‖z‖2)

|1− 〈w, z〉|2
= 1− |K(z, w)|2

K(w,w)K(z, z)
, (3.2)

where K(z, w) = (1− 〈z, w〉)−1 is the reproducing kernel of the Drury-Arveson space.

The Schwarz lemma [75, Theorem 8.1.4] in this context states that if F is a holomorphic
map of Bd into Be, then

d(F (z), F (w)) ≤ d(z, w).

Lemma 3.6.1. Let V ⊂ Bd be a variety and let λ, µ ∈ V . Then

d(λ, µ) ≤ ‖δλ − δµ‖M∗V ≤ 2d(λ, µ).

Proof. The inequality ‖δλ − δµ‖ ≤ 2d(λ, µ) was observed in [25, Lemma 5.3]. For com-
pleteness, by the Schwarz lemma∣∣∣∣∣ ϕ(λ)− ϕ(µ)

1− ϕ(λ)ϕ(µ)

∣∣∣∣∣ ≤ d(λ, µ),

for all ϕ with ||ϕ||MV
≤ 1 and it follows that

‖δλ − δµ‖ ≤ d(λ, µ) sup
‖ϕ‖MV

≤1

|1− ϕ(λ)ϕ(µ)| ≤ 2d(λ, µ).

For the lower bound, let r = d(λ, µ). Equation (3.2) shows that the determinant of the
matrix [

K(µ, µ) K(µ, λ)
K(λ, µ) K(λ, λ)(1− r2)

]
is equal to 0, hence this matrix is positive semidefinite. Since H2

d

∣∣
V

is a Nevanlinna-Pick
space, it follows that there exists a multiplier ϕ in the unit ball ofMV such that ϕ(µ) = 0
and ϕ(λ) = r. Thus, ||δλ − δµ|| ≥ r.
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3. Multipliers of embedded discs

The following result shows that a biholomorphism F : W → V which induces an iso-
morphism between MV and MW is necessarily a bi-Lipschitz map with respect to the
pseudohyperbolic distance.

Theorem 3.6.2. Suppose that Φ : MV → MW is an isomorphism given by composition
with a biholomorphism F : W → V . Then there are constants c, C > 0 such that

c d(λ, µ) ≤ d(F (λ), F (µ)) ≤ C d(λ, µ) for all λ, µ ∈ W.

Proof. Put t = ‖Φ−1‖−1, and denote by (MV )1 and (MW )1 the unit balls of MV and
MW . Then t · (MW )1 ⊆ Φ((MV )1), so

‖δF (λ) − δF (µ)‖ = sup
f∈(MV )1

|Φ(f)(λ)− Φ(f)(µ)|

= sup
g∈Φ((MV )1)

|g(λ)− g(µ)|

≥ sup
g∈(MW )1

|tg(λ)− tg(µ)|

= t‖δλ − δµ‖.

From the preceding lemma, we deduce that

t · d(λ, µ) ≤ t · ‖δλ − δµ‖ ≤ ‖δF (λ) − δF (µ)‖ ≤ 2d(F (λ), F (µ)).

This gives one inequality with c = t/2. The other inequality follows by symmetry.

Remark 3.6.3. The proof of Theorem 3.5.1 shows that

d(f(1− x), f(−1 + sx))2 = 1− (1− ‖f(1− x)‖2)(1− ‖f(−1 + sx)‖2)

|1− 〈f(1− x), f(−1 + sx)〉|
= o(1).

That is, we have

lim
x→0+

d(f(1− x), f(−1 + sx)) = 0.

It follows that f does not induce an isomorphism between MV and H∞.

Moreover in the example in Theorem 3.5.2, an easy estimate shows that ‖f ′(z)‖ ≥
√

2
on ∂D. Since f ′ never vanishes, we have that infz∈D ‖f ′(z)‖ > 0. Nevertheless, because
of the crossing on the boundary, the previous paragraph shows that the pseudohyperbolic
distance is not preserved up to a constant. Thus this property is not just a local condition.
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3.6. Pseudohyperbolic distance

Remark 3.6.4. Using Equation (3.2), it is not hard to see that given points z, w ∈ Bd and
α, β ∈ D, the Pick matrix[

K(z, z)(1− |α|2) K(z, w)(1− αβ)
K(w, z)(1− βα) K(w,w)(1− |β|2)

]
is positive if and only if

d(α, β) ≤ d(z, w).

This observation shows that the argument in the last remark and the original proof of
Theorem 3.5.1 are very closely related.

Example 3.6.5. Consider the sequences

vn = 1− 1/n2 and wn = 1− e−n2

for n ≥ 1,

and set V = {vn}∞n=1 and W = {wn}∞n=1. In [25, Example 6.2] these two varieties were
examined, and it was shown that there exist g, h ∈ H∞ such that

h ◦ g|V = idV and g ◦ h|W = idW ,

while at the same time, since W is interpolating and V is not, MV and MW are not
isomorphic. Theorem 3.6.2 sheds new light on this example. Indeed, we can check that

d(vn, vn+1) =
2n+ 1

2n2 + 2n
→ 0,

while

d(wn, wn+1) =
1− e−2n−1

1 + e−2n−1 − e−n2−2n−1
→ 1.

Thus the biholomorphisms g and h are not bi-Lipschitz on the varieties, hence they cannot
induce an isomorphism.

The following result generalizes this example significantly.

Proposition 3.6.6. Let V = {vn} be a Blaschke sequence in D. Then there is an interpo-
lating sequence W = {wn} and functions g, h ∈ H∞ such that

g(vn) = wn and h(wn) = vn for all n ≥ 1.

Proof. Let ba(z) = ā
|a|

a−z
1−āz for a ∈ D. Define

δn :=
∏
i 6=n

|bvi(vn)|.
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3. Multipliers of embedded discs

These values are positive because V is a Blaschke sequence. (Carleson’s interpolation
theorem shows that V is an interpolating sequence if and only if it is strongly separated,
i.e. infn≥1 δn > 0.) A result of Garnett [35, Theorem 4] (see [36, ch.VII, Exercise 9]) shows
that if

|an| ≤ δn(1 + log δ−1
n )−2,

there is an f ∈ H∞ such that f(vn) = an for n ≥ 1. Choose (an) with an > 0 satisfying
these inequalities, and tending to 0 sufficiently fast that wn = 1 − an is an interpolating
sequence. Then g = 1−f is the desired map. Finally, since W is an interpolating sequence,
there is an h ∈ H∞ such that h(wn) = vn for all n ≥ 1.

It is tempting to conjecture that a biholomorphism with multiplier coordinates between
two varieties, which is also bi-Lipschitz with respect to the pseudohyperbolic distance d,
induces an isomorphism. The following example shows that this fails.

Example 3.6.7. A Blaschke sequence V = {vn} is separated if

inf
m 6=n

d(vm, vn) > 0.

Interpolating sequences are separated, and are characterized by being strongly separated.
However there are Blaschke sequences which are separated but not strongly separated,
and thus are not interpolating. For such a sequence V , the maps constructed in Proposi-
tion 3.6.6 will be bi-Lipschitz in the pseudohyperbolic metric but the multiplier algebras
are not isomorphic.

An explicit example of a separated but not interpolating sequence is given in [27]. Here
is a related example which has the additional virtue of having 1 as the only limit point of
the sequence. Let

vn,k = (1− 2−n)eik2−n for n ≥ 1 and 0 ≤ k < 2n/2.

Then set V = {vn,k : n ≥ 1, 0 ≤ k < 2n/2}. It is routine to verify that this satisfies the
Blaschke condition and is separated. In order for the sequence to be interpolating, it is
necessary that the measure µ =

∑
n,k(1− |vn,k|)δvn,k be a Carleson measure [36, Theorem

VII.1.1]. This means that there is a constant C so that µ(S(I)) ≤ C|I| for every arc I ⊂ T,
where

S(I) = {reiθ : 1− |I| ≤ r < 1, eiθ ∈ I}.

But µ is not a Carleson measure: for p ≥ 1, let

Sp = S([0, 2−p)) = {reiθ : 1− 2−p ≤ r < 1, 0 ≤ θ < 2−p}.
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3.6. Pseudohyperbolic distance

Then

1

2−p

∑
vn,k∈Sp

1− |vn,k| = 2p
∑
n≥p

2−n min{2n−p, 2n/2}

≥ 2p
2p∑
n=p

2−n2n−p = p+ 1.

This is not bounded.

Remark 3.6.8. Proposition 3.6.6 raises a fundamental issue in finding a converse to The-
orem 3.1.1. The property of having a multiplier biholomorphism between two varieties V
and W is not an equivalence relation. The proposition shows that every Blaschke sequence
is equivalent to some interpolating sequence. Moreover, examination of the proof shows
that if V = {vn} and X = {xn} are Blaschke sequences, there is a common interpolating
sequence W which is equivalent to both V and X.

However in general, there is no h ∈ H∞ such that h(V ) = X. To see this, let

vn = 1− n−2 and xn = (−1)nvn for n ≥ 2.

Suppose that h exists. Let C = ‖h‖∞ and g = C−1h. Then there is an increasing sequence
ni so that h(vni) > 1/2 and h(vni+1) < −1/2. Then d(vni , vni+1) tends to 0, but

d(g(vni), g(vni+1)) > d( 1
2C
, −1

2C
) > 0.

This contradicts the Schwarz inequality.

The problem is that if Z is an interpolating sequence and if g : V → Z and h : Z → X
are multiplier biholomorphisms, then h ◦ g may not be a multiplier. We can extend g and
h to H∞ functions on the whole disc, but these extensions do not have norm 1 in general,
and thus do not map the disc into the disc. Hence, the extensions cannot be composed.

In this example, the varieties have infinitely many irreducible components. We do not
know of any examples with finitely many irreducible components in a finite dimensional ball
where multiplier biholomorphism does not imply isomorphism of the multiplier algebras.
Obviously, isomorphism is an equivalence relation. Showing that multiplier biholomor-
phism is not an equivalence relation in this setting therefore requires a counterexample to
the hoped-for converse of Theorem 3.1.1.

43



3. Multipliers of embedded discs

3.7. A class of discs in B∞

We consider a class of embeddings of D into B∞, which were studied in [25, Section 6]. Let
(bn)∞n=1 ∈ `2 with ||(bn)||2 = 1 and b1 6= 0. Define f : D→ B∞ by

f(z) = (b1z, b2z
2, b3z

3, . . .) for z ∈ D.

Then f is a biholomorphism with inverse g = b−1
1 z1, and these maps are multipliers. The

range V = f(D) is a variety in the sense of [25] because

V = {z ∈ B∞ : bnz
n
1 − bn1zn = 0 for n ≥ 2}.

Moreover, f extends to a homeomorphism from D onto V . It is easy to see that any two
varieties of this type are multiplier biholomorphic.

Define a kernel on D by

K(z, w) =
1

1− 〈f(z), f(w)〉
for z, w ∈ D,

and let Hf be the Hilbert function space on D with kernel K. It is easy to check that the
map

U : H2
∞
∣∣
V
→ Hf , h 7→ h ◦ f,

is unitary. Moreover, if ϕ ∈ MV , then UMϕU
∗ = Mϕ◦f , hence composition with f also

induces a unitarily implemented completely isometric isomorphism Cf :MV → Mult(Hf ).
This observation allows us to work with multiplier algebras of Hilbert function spaces on
the disc instead of the algebras MV .

Thanks to the special form of f , there exists a sequence (an) of non-negative real numbers
such that

K(z, w) =
1

1−
∑∞

n=1 |bn|2(zw)n
=
∞∑
n=0

an(zw)n.

Hence Hf is a weighted Hardy space. Background material on these spaces can be found
in [13, Section 2.1] and [81, Section 6]. Set cn = |bn|2. It was established in [25, Section 6]
that the sequence (an) satisfies the recursion

a0 = 1 and an =
n∑
k=1

ckan−k for n ≥ 1. (3.3)

Moreover, an ∈ (0, 1] for all n ∈ N.
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Remark 3.7.1. The coefficients (an) can also be determined in the following way. First,
note that as ||(bn)||2 = 1, the function g defined by

g(z) =
∞∑
n=1

cnz
n

is holomorphic on D and does not take the value 1 there. Evidently,

1

1− g(z)
=
∞∑
n=0

anz
n for all z ∈ D. (3.4)

That is, (an) is the sequence of Taylor coefficients of (1− g)−1 at the origin.

The special form of the kernel K allows us to explicitly compute the multiplier norm of
monomials in Hf .

Lemma 3.7.2. Suppose that H is a reproducing kernel Hilbert space on D with kernel

K(z, w) =
∞∑
n=0

an(zw)n,

where the sequence (an) satisfies a recursion as in (3.3) for some sequence of nonnegative
numbers (cn) with c1 6= 0. Then

||zn||2Mult(H) = ||zn||2H =
1

an
for all n ∈ N.

Proof. The assumptions imply that an 6= 0 for all n ∈ N, so from the general theory of
weighted Hardy spaces, we have

||zn||2H =
1

an
.

Therefore for n ∈ N,

||zn||2Mult(H) = sup
k≥0

‖zn+k‖H
‖zk‖H

= sup
k≥0

ak
an+k

.

Since a0 = 1, it suffices to show that

akan ≤ an+k for all k, n ∈ N.

The proof of this claim proceeds by induction on k. The base case holds since a0 = 1.
Assume that k ≥ 1, and that the assertion has been established for natural numbers smaller
than k. Then

akan =
k∑
i=1

ak−ianci ≤
n+k∑
i=1

an+k−ici = an+k

as asserted.
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3. Multipliers of embedded discs

The results of Section 3.2 suggest that we should attempt to verify the properties

1. for every λ ∈ V , the fiber π−1(λ) = {δλ}, and

2. π(M(MV )) ∩ Bd = V .

We first observe that Proposition 3.2.8 shows that (2) always holds because the functions
{bnzn1 − bn1zn : n ≥ 2} are polynomials. In fact, Remark 3.2.9 shows that π(M(MV )) = V .

We do not know if (1) holds in general. It does hold for a large class of examples. In
particular, if the ideal of multipliers which vanish at λ coincides with (z − λ) Mult(H),
then it is clear that any character ρ ∈ π−1(λ) must be the character of point evaluation at
λ. We do not have a characterization of when this occurs. The following result, without
the norm closure, will suffice for our current needs.

Lemma 3.7.3. Let f(z) = (b1z, b2z
2, b3z

3, . . .) for z ∈ D, where ‖(bi)‖2 ≤ 1. The following
assertions are equivalent:

(i) For every g ∈MV with g(0) = 0, there is g̃ ∈MV such that g = z1g̃.

(ii) For every g ∈ Mult(Hf ) with g(0) = 0, we have g/z ∈ Mult(Hf ).

(iii) The sequence
(

an
an−1

)
n≥1

is bounded.

Proof. The equivalence of (i) and (ii) follows by an application of the isomorphism

MV → Mult(Hf ), g 7→ g ◦ f.

Suppose that (iii) holds. Then

D : Hf → Hf , h 7→ h− h(0)

z
,

is a bounded linear map. Indeed, D maps zn to zn−1, and ||zn||2 = 1
an

. Let g ∈ Mult(Hf )
with g(0) = 0. Then for every h ∈ Hf , we have

DMgh = D(gh) =
g

z
h.

This shows that g/z ∈ Mult(Hf ) and that DMg = Mg/z. Hence, (ii) holds.

Conversely, suppose that (ii) is satisfied. Then

D̃ : Mult(Hf )→ Mult(Hf ), g 7→ g − g(0)

z
,
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3.7. A class of discs in B∞

is defined and clearly linear. Since convergence in Mult(Hf ) implies pointwise convergence

on D, we conclude with the help of the closed graph theorem that D̃ is bounded. In
particular,

1

an−1

= ||zn−1||2Mult(Hf ) = ||D̃zn||2Mult(Hf ) ≤ ||D̃||2 ||zn||2Mult(Hf ) = ||D̃||2 1

an
,

where we have used Lemma 3.7.2. Thus, (iii) holds.

It is not hard to modify Example 6.12 in [25] to see that the conditions in the preceding
lemma are not always satisfied.

Corollary 3.7.4. Let f(z) = (b1z, b2z
2, b3z

3, . . .) for z ∈ D, where ‖(bi)‖2 ≤ 1. If MV is
automorphism invariant and supn≥1

an
an−1

<∞, then π−1(λ) = {δλ} for every λ ∈ V .

Proof. The result is immediate for λ = 0 since every g ∈ MV such that g(0) = 0 factors
as g = z1h for some h ∈ MV . Thus if ρ ∈ π−1(0), we have ρ(g) = ρ(z1)ρ(h) = 0 = δ0(g).
Hence ρ = δ0. Automorphism invariance readily shows that the same holds for every
λ ∈ V .

Suppose now that
f̃(z) = (b̃1z, b̃2z

2, b̃3z
3, . . .) for z ∈ D

is another embedding of the disc into B∞ as above, and set Ṽ = f̃(D). We may define a
sequence (ãn) using (3.3) or Remark 3.7.1. We ask: when are MV and MṼ isomorphic?

Proposition 3.7.5. The algebras MV and MṼ are isomorphic via the natural map of

composition with f ◦ f̃−1 if and only if the sequences (an) and (ãn) are comparable.

Suppose that MṼ satisfies (1) π−1(λ) = {δλ} for every λ ∈ Ṽ and is automorphism
invariant. Then MV is isomorphic to MṼ if and only if the sequences (an) and (ãn) are
comparable. In particular, MV is isomorphic to H∞ if and only if the sequence (an) is
bounded below.

Proof. Suppose that (an) and (ãn) are comparable. The sequence {zn} is an orthogonal
basis for Hf and Hf̃ , and Lemma 3.7.2 shows that their norms in Hf and Hf̃ are com-
parable. Thus the identity map is an invertible diagonal operator between Hf and Hf̃ .
Therefore, Mult(Hf ) = Mult(Hf̃ ), so that MV and MṼ are isomorphic via the natural
map.

Conversely, if MV and MṼ are isomorphic via the natural map, then Mult(Hf ) =
Mult(Hf̃ ). Therefore the identity map is an isomorphism between these two semisimple
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3. Multipliers of embedded discs

Banach algebras. Consequently, it is a topological isomorphism. So by Lemma 3.7.2, the
sequences (an) and (ãn) are comparable.

If MV is automorphism invariant and satisfies (1), Corollary 3.2.11 applies. Finally,
note that H2 corresponds to the map f(z) = (z, 0, 0, . . . ) and an = 1 for all n ≥ 1 because

1

1− z
=
∑
n≥0

zn.

In general, 0 < ãn ≤ 1, so (ãn) is comparable to (an) if and only if it is bounded below.
The last claim now follows from the previous paragraph and the automorphism invariance
of H∞ = Mult(H2).

In [25, Example 6.12], an example was given of a variety V = f(D) as above such that
Hf is not isomorphic to H2 via the identity map (so thatMV is not similar to H∞ in the
obvious way), and the question was raised whether or not MV is isomorphic to H∞. The
above proposition answers this question, showing that those algebras are not isomorphic.

The following result gives a criterion for MV being isomorphic to H∞ in terms of the
sequence (bn) in the definition of the map f .

Corollary 3.7.6. Let V = f(D) where f(z) = (b1z, b2z
2, b3z

3, . . .), ‖(bn)‖2 = 1 and b1 6= 0.
Then MV is isomorphic to H∞ if and only if

∞∑
n=1

n|bn|2 <∞.

Proof. We know thatMV is isomorphic to H∞ if and only if the sequence (an) is bounded
below. Define

µ =
∞∑
n=1

n|bn|2 ∈ (0,∞].

By the Erdős-Feller-Pollard theorem (see [31, Chapter XIII, Section 11]),

lim
n→∞

an =
1

µ
,

where ∞−1 = 0. The theorem is applicable since |b1|2 > 0. Hence, (an) is bounded below
if and only if this series converges.
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3.7. A class of discs in B∞

Corollary 3.7.7. Let V and (bn) be as in the previous corollary. IfMV is not isomorphic
to H∞, then the series

g(z) =
∑
n≥1

|bn|2zn and (1− g(z))−1 =
∑
n≥0

anz
n

both have radius of convergence 1.

Proof. Since (bn) is in `2, the sequence is bounded, and hence the series for g has radius of
convergence at least 1. If this radius of convergence is R > 1, then the series

∑∞
n=1 n|bn|2

converges. So Corollary 3.7.6 shows that MV is isomorphic to H∞. Observe that g is
bounded on D by ‖(bn)‖2

2 = 1. In particular, g(z) 6= 1 for z ∈ D, and thus (1− g(z))−1 is
defined on D. Hence the series for (1− g(z))−1 has radius of convergence at least 1. If this
radius of convergence were greater than 1, then the only obstruction to

g(z) = 1− 1∑
n≥0 anzn

being defined on a disc of radius R > 1 is that (1−g(z))−1 has a zero on ∂D. This however
implies that g has a pole on the circle, which is impossible because g is bounded on D.
Therefore

∑
n≥0 anz

n has radius of convergence exactly 1.

We have seen that not all algebras MV are isomorphic to H∞. In fact, we will now
exhibit a whole scale of mutually non-isomorphic algebras of this type. To this end, it is
again more convenient to work with the algebras Mult(Hf ), which are subalgebras of H∞.
The following proposition answer the question of which algebras of functions on D arise in
this way.

Proposition 3.7.8. An algebra M of functions on D arises in the way described above if
and only if M is the multiplier algebra of a Hilbert function space on D with kernel K of
the form

K(z, w) =
∞∑
n=0

an(zw)n,

where a0 = 1 and a1 6= 0, which satisfies the following two properties:

(1) K is an irreducible complete Nevanlinna-Pick kernel.

(2)
∑∞

n=0 an =∞.
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3. Multipliers of embedded discs

Proof. Suppose that K satisfies the conditions above. Since K is an irreducible complete
Nevanlinna-Pick kernel, the sequence (cn) defined by

∞∑
n=1

cnz
n = 1− 1∑∞

n=0 anz
n

is positive by [3, Theorem 7.33]. The last condition guarantees that

∞∑
n=1

cn = sup
0<t<1

∞∑
n=1

cnt
n = 1.

As a1 6= 0, also c1 6= 0. Defining bn =
√
cn, we see that M arises as above (compare

Remark 3.7.1).

Conversely, suppose that M arises as above. Then M is the multiplier algebra of a
reproducing kernel Hilbert space on the disc whose kernel is of the desired form. By [3,
Theorem 7.33], K is an irreducible complete Nevanlinna-Pick kernel. Finally,

∞∑
n=0

an = sup
0<t<1

∞∑
n=0

ant
n = sup

0<t<1

1

1−
∑∞

n=1 cnt
n

=∞

because
∑∞

n=1 cn = 1.

Example 3.7.9. For s ≤ 0, let Hs be the irreducible complete Nevanlinna-Pick space on D
with kernel

K(z, w) =
∞∑
n=0

(n+ 1)s(zw)n,

see Example 2.6.1 (c). Recall that H0 is the Hardy space, and that H−1 is the Dirichlet
space. If −1 ≤ s ≤ 0, these spaces satisfy the hypotheses of the last proposition (see also
[3, Example 8.8]). Consequently, every multiplier algebra Mult(Hs) is isomorphic to an
algebra MVs where Vs = fs(D) is a variety and fs is of the form

fs(z) = (bs,1z, bs,2z
2, . . . ) for z ∈ D.

Moreover, each Hs and thus each Mult(Hs) is automorphism invariant (see [12, Theorem

3.5]). Condition (iii) of Lemma 3.7.3 holds: supn≥1
(n+1)s

ns
= 2s < ∞. Thus by Corol-

lary 3.7.4, MVs satisfies condition (1). As we observed, condition (2) always holds.

Therefore Proposition 3.7.5 applies. Since the sequences ((n+1)s)n≥1 are not comparable
for distinct values of s, the multiplier algebras MVs for −1 ≤ s ≤ 0 are mutually non-
isomorphic. In this way, we obtain uncountably many isomorphism classes of algebras
MV .
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3.7. A class of discs in B∞

Consider

〈fs(z), zf ′s(z)〉 =
∞∑
n=1

n|bs,n|2|z|2n.

This series converges to a finite limit as |z| tends to 1 if and only if
∑∞

n=1 n|bs,n|2 < ∞,
which by Corollary 3.7.6 holds precisely when MVs is isomorphic to H∞, namely when
s = 0. Moreover, when s < 0, fs is not C1 because

lim
|z|→1
‖f ′s(z)‖2 = lim

r→1

∞∑
n=1

n2r2n|bs,n|2 = +∞.

A closely related class of examples considered in [6, p.1128–30] are the Besov spaces
Bσ

2 (D) for 0 < σ < 1/2. These spaces coincide as spaces of functions with Hs for s =
−1 + 2σ, although the kernels are somewhat different. Not surprisingly, just as for their
embeddings, our embeddings are tangential in the sense that

lim
x→1, x∈(0,1)

1− ‖fs(xeit)‖
‖fs(eit)− fs(xeit)‖

= 0

as well. Indeed, using that

∞∑
n=0

(n+ 1)sxn ≈ Γ(1 + s)(1− x)−1−s

as x→ 1 from below (see [89, Chap. XIII, p.280, ex. 7]), we see that

1− ||fs(xeit)|| ∼ 1− ||fs(xeit)||2

= 1−
∞∑
n=1

|bs,n|2x2n =
( ∞∑
n=0

(n+ 1)sx2n
)−1

∼ (1− x2)1+s ∼ (1− x)1+s.

Here, we used the notation f(x) ∼ g(x) if limx→1 f(x)g(x)−1 ∈ (0,∞). On the other hand,

||fs(eit)− fs(xeit)||2 =
∞∑
n=1

|bs,n|2(1− xn)2

= 1− 2
∞∑
n=1

|bs,n|2xn +
∞∑
n=1

|bs,n|2x2n

= 2
( ∞∑
n=0

(n+ 1)sxn
)−1

−
( ∞∑
n=1

(n+ 1)sx2n
)−1

.

51



3. Multipliers of embedded discs

Since

2
( ∞∑
n=0

(n+ 1)sxn
)−1

≈ 2Γ(1 + s)−1(1− x)1+s

and ( ∞∑
n=1

(n+ 1)sx2n
)−1

≈ Γ(1 + s)−1(1− x2)1+s ≈ Γ(1 + s)−121+s(1− x)1+s,

we have
||fs(eit)− fs(xeit)|| ∼ (1− x)(1+s)/2.

Thus,

lim
x→1, x∈(0,1)

1− ‖fs(xeit)‖
‖fs(eit)− fs(xeit)‖

= 0.

Similarly, for s = −1, we obtain the same tangential property because

1− ||fs(xeit)|| ∼
( ∞∑
n=0

(n+ 1)sx2n
)−1

∼ − log(1− x)−1

and

||fs(eit)− fs(xeit)||2 = 2
( ∞∑
n=0

(n+ 1)sxn
)−1

−
( ∞∑
n=1

(n+ 1)sx2n
)−1

∼ − log(1− x)−1.

It also follows for −1 ≤ s < 0,

lim
x→1, x∈(0,1)

Re〈fs(1)− fs(x), fs(1)〉
1− x

= lim
x→1−

∑
n≥1

|bs,n|2
1− xn

1− x

=
∑
n≥1

n|bs,n|2 = +∞

by Corollary 3.7.6.

3.8. Embedding closed discs

In this section, we will consider a class of varieties in B∞ which includes varieties associated
to the spaces Hs for s < −1. Again we define f : D→ B∞ by

f(z) = (b1z, b2z
2, b3z

3, . . .) for z ∈ D,

with (bn)∞n=1 ∈ `2 and b1 6= 0. Here, however, we assume that
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3.8. Embedding closed discs

1. ||(bn)||2 = r < 1, and

2.
∑

n≥1 |bn|2zn has radius of convergence 1.

Let V = f(D). As observed in the previous section, f extends to a continuous injection of
D onto V . But because r < 1, V is a compact subset of rB∞ ⊂ B∞.

As we observed in the previous section, H2
∞
∣∣
V

is unitarily equivalent to a reproducing
kernel Hilbert space Hf on D with kernel

K(z, w) =
1

1−
∑∞

n=1 |bn|2(zw)n
=
∞∑
n=0

an(zw)n.

Setting cn = |bn|2, we see as in Remark 3.7.1 that g(z) =
∑

n≥1 cnz
n determines (an) by

1

1− g(z)
=
∞∑
n=0

anz
n for z ∈ D.

Now (cn) is summable and ‖g‖∞ = r2 < 1, so (1− g)−1 extends to be continuous on D.

Once again, it will be convenient to work with the multiplier algebras Mult(Hf ). The
following result characterizes which algebras of functions on the unit disc arise in this way.
It is the analogue of Proposition 3.7.8 in this setting.

Proposition 3.8.1. An algebra M of functions on D arises in the way described above if
and only if M is the multiplier algebra of a Hilbert function space on D with kernel K of
the form

K(z, w) =
∞∑
n=0

an(zw)n,

where a0 = 1 and a1 6= 0, which satisfies the following two properties:

(1) K is an irreducible complete Nevanlinna-Pick kernel.

(2)
∑∞

n=0 an <∞ and the series
∑∞

n=0 anz
n has radius of convergence 1.

Proof. The proof of Proposition 3.7.8 carries over to this setting once we show that∑∞
n=0 an < ∞ if and only if

∑∞
n=1 cn < 1, and that in this case,

∑∞
n=0 anz

n has radius
of convergence 1 if and only if

∑∞
n=1 cnz

n has radius of convergence 1.

The first claim is immediate from the relation between (an) and (cn). Moreover, since∑∞
n=0 an and

∑∞
n=1 cn converge, both power series have radius of convergence at least 1. If∑∞

n=0 anz
n extends analytically across ∂D, then so does

∑∞
n=0 cnz

n by the argument in the
proof of Corollory 3.7.7. Conversely, if g(z) =

∑∞
n=1 cnz

n extends analytically across ∂D,
then the only obstruction to (1 − g(z))−1 =

∑∞
n=0 anz

n being defined on a disc of radius
R > 1 is that g(z) takes the value 1 on ∂D, which is impossible since

∑∞
n=1 cn < 1.
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3. Multipliers of embedded discs

An example of this are the spaces Hs of Example 3.7.9 for s < −1. The reproducing
kernel of the space Hs is

K(z, w) =
∞∑
n=0

(n+ 1)s(zw)n for z, w ∈ D.

Since ∑
n≥0

an =
∑
n≥0

(n+ 1)s <∞,

this space does not fit into the framework of Proposition 3.7.8. However, the series∑∞
n=0(n + 1)szn has radius of convergence 1, so by the previous proposition, the space

Hs fits into the framework of this section for s < −1.

The fact that f has radius of convergence 1 means that there is no open neighbourhood
U of D such that the functions in Hf all extend to analytic functions on U . Closely related
to this observation is the fact that there is no variety which properly contains V .

We will now show that while V is not a variety, its compact closure V is a variety in B∞.
This is in stark contrast to the finite dimensional case, since the only compact varieties in
Bd consist of finitely many points if d <∞, see [75, Theorem 14.3.1].

Lemma 3.8.2. If (bn) and f are defined as above, then V = f(D) is the common zero
locus of the polynomials {bnzn1 − bn1zn : n ≥ 2}; that is,

V = V ({bnzn1 − bn1zn : n ≥ 2}).

Proof. Note that every point in V is a zero of the polynomials bnz
n
1 − bn1zn. Conversely, if

z = (z1, z2, . . .) satisfies these equations, then setting z = z1/b1, we find that

zn = bnz
n for all n ∈ N.

Since (z1, z2, . . .) is a point in `2, we have

∞ >
∞∑
n=1

|zn|2 =
∞∑
n=1

|bn|2|z|2n.

As the series on the right has radius of convergence 1, it follows that |z| ≤ 1. Hence z ∈ D
and z = f(z) belongs to V .

Remark 3.8.3. V is the minimal variety containing V . Hence every function in H2
∞
∣∣
V

extends uniquely to a function in H2
∞
∣∣
V

, and MV can be naturally identified with MV

(see [25, Proposition 2.2]). It is V , not V , which fits into the framework developed in [25].
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3.8. Embedding closed discs

Another property which distinguishes the algebrasMV from the algebras in the preced-
ing section is that the function in MV are continuous on the compact set V .

Lemma 3.8.4. If (bn) and f are defined as above, then H2
∞
∣∣
V

and MV consist of contin-

uous functions on V .

Proof. Let r = ||(bn)||2 < 1. Observe that the Drury-Arveson kernel K is jointly norm
continuous on rB∞ × rB∞, hence the map

rB∞ → H2
∞, w 7→ K(·, w),

is continuous, so that all functions in H2
∞ are norm continuous on rB∞. Since V ⊂ rB∞,

it follows that all functions in H2
∞
∣∣
V

are continuous on V . In particular, this is true of
MV .

Alternatively, we could have argued with the spaceHf in the last proof. Since
∑∞

n=0 an <
∞, the reproducing kernel of Hf extends to a continuous function on D×D, so all function
in Hf extend to continuous functions on D.

Let δ : V → M(MV ) be the map taking v ∈ V to the character δv which evaluates
multipliers at v. Since the functions in MV are continuous on V , the map δ is a homeo-
morphism onto its image. We do not know if δ is always surjective. Shields [81, Section 9]
asks a similar question in the context of spaces of weighted shifts. He answers the question
positively when the algebra is strictly cyclic, in which case the multiplier algebra and the
Hilbert space coincide as sets. We can use his result here.

Lemma 3.8.5. Suppose that

sup
n≥1

n∑
k=0

(akan−k
an

)
<∞.

Then the natural injection δ of V into M(MV ) is a homeomorphism. In particular, this
is the case if V arises from Hs, s < −1.

Proof. The results in Section 9 of [81] show that the operator Mz on Hf is strictly cyclic
if the supremum is finite, hence the Gelfand space of Mult(Hf ) is the closed unit disc. It
follows that δ is a homeomorphism. In the case of Hs, s < −1, Example 1 after Proposition
33 in [81] shows that the supremum is finite.

Now we can establish isomorphism results for this family of compact varieties that par-
allel the results of the previous section.
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Theorem 3.8.6. Let

f(z) = (b1z, b2z
2, b3z

3, . . . ) and f̃(z) = (b̃1z, b̃2z
2, b̃3z

3, . . . )

be functions of D into B∞, with

‖(bn)‖2 = r < 1, ‖(b̃n)‖2 = r′ < 1 and b1b̃1 6= 0

such that the series ∑
n≥1

|bn|2zn and
∑
n≥1

|b̃n|2zn

both have radius of convergence 1. Let V = f(D) and Ṽ = f̃(D).

(a) MV and M
Ṽ

are isomorphic via the natural map if and only if the sequences (an)
and (ãn) are comparable.

(b) Suppose that MV satisfies the hypothesis of Lemma 3.8.5:

sup
n≥1

n∑
k=0

(akan−k
an

)
<∞ where

∑
n≥0

anz
n =

1

1−
∑

n≥1 |bn|2zn
,

and is automorphism invariant. Assume that MV is isomorphic to M
Ṽ

. Then the re-

striction F of Φ∗ to Ṽ is a homeomorphism of Ṽ onto V which is holomorphic on Ṽ and
Φ(h) = h ◦ F . There is a Möbius map θ so that the following diagram commutes:

MV M
Ṽ

A(D) A(D)

Φ

Cf C
f̃

Cθ

Moreover, they are isomorphic via the natural map of composition with G = f ◦ f ′−1.

Proof. (a) This follows as in Proposition 3.7.5.

(b) Since Φ is an isomorphism, Φ∗ yields a homeomorphism of the maximal ideal spaces.
By Lemma 3.8.5, M(MV ) = δ(V ) ' V . So we identify M(MV ) with V . For the other

algebra, we have that Ṽ is identified with δ(Ṽ ) as a subset ofM(M
Ṽ

). Let F : Ṽ → V be

the restriction of Φ∗ to this copy of Ṽ . The argument in the proof of Theorem 3.2.5 again
shows that F is holomorphic on Ṽ . Now

Φ(h)(ṽ) = Φ∗(δṽ)(h) = δF (ṽ)(h) = (h ◦ F )(ṽ) for h ∈MV and ṽ ∈ Ṽ .
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3.9. Interpolating sequences

Thus Φ = CF is a composition operator.

By an adaptation of [24, Section 11.3] as in the proof of Theorem 3.2.5, the fact that
Φ is implemented by composition implies that Φ is weak-∗ continuous. And the argument
continues to conclude that Φ−1 is also weak-∗ continuous. In particular, (Φ−1)∗ takes point
evaluations to point evaluations. As this map is the inverse of F , we deduce that F maps

onto V ; and hence M(M
Ṽ

) = Ṽ .

The commutative diagram is obtained as in the proof of Corollary 3.2.10. The only
change is that, since the multipliers are continuous by Lemma 3.8.4, the range is considered
as a subalgebra of the disc algebra A(D), rather than in the larger algebra H∞. SinceMV

is automorphism invariant, we may apply the automorphism for θ−1 to obtain the natural
map as in Proposition 3.7.5.

Example 3.8.7. The spaces Hs for s < −1 yield an uncountable family of varieties in
B∞ which are homeomorphic to D. Their multiplier algebras are automorphism invariant
(see [12, Theorem 3.5]) and they satisfy the hypothesis of Lemma 3.8.5. The sequences
((n+ 1)s) are not comparable for different values of s. Thus by Theorem 3.8.6, they have
non-isomorphic multiplier algebras.

3.9. Interpolating sequences

We finish the treatment of the algebrasMV of the previous section by showing that under
the assumptions of Lemma 3.8.5 these algebras are not isomorphic to an algebra of the type
MW for any variety W whose closure meets the boundary of the ball. This result should
not be surprising, as isomorphism of the algebras yields a homeomorphism of the maximal
ideal spaces. In the setting of Lemma 3.8.5 the maximal ideal space is homeomorphic to
D. The reader may suspect that this is never the case when W intersects the boundary.

We will establish this is by showing that any sequence in the ball which converges
to the boundary contains an interpolating subsequence. It then follows that MW has
`∞ as a quotient, and hence its maximal ideal space contains a copy of the Stone-Čech
compactification βN of N. In particular, it is not metrizable, so it is not homeomorphic
to the unit disc. We were not able to show, without imposing any special assumptions,
that an algebra MV as in Section 3.8 can never be isomorphic to an algebra of the type
occurring in Section 3.7.

A sequence (xn) in B∞ is an interpolating sequence for Mult(H2
∞) if the evaluation map

Mult(H2
∞)→ `∞, ϕ 7→ (ϕ(xn)),
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3. Multipliers of embedded discs

is surjective. The multiplier algebras considered here are all of the form MV , where V is
a variety in B∞. These are (complete) quotients of Mult(H2

∞) via the restriction map. So
any sequence in V is interpolating for MV if and only if it is interpolating for Mult(H2

∞).

Proposition 3.9.1. Let (zn) be a sequence in B∞ such that limn→∞ ||zn|| = 1. Then (zn)
contains a subsequence which is interpolating for Mult(H2

∞).

Proof. Fix r ∈ (0, 1). We wish to show that there is a subsequence (znk) of (zn) such that
for every sequence (wk) ∈ `∞ of norm at most r, there is a multiplier ϕ ∈ Mult(H) of norm
at most 1 such that ϕ(znk) = wk. We will recursively construct the subsequence (znk) such
that for each k and for all w = (wi) ∈ `∞ with ||w|| ≤ r, the k × k matrix

Ak(w) =
[
(1− wiwj)K(zni , znj)

]k
i,j=1

is positive and invertible. Once we have achieved this, the Nevanlinna-Pick property yields,
for each w ∈ `∞ with ||w|| ≤ r and any positive integer k, the existence of a multiplier hk
of norm at most 1 such that hk(zni) = wi for 1 ≤ i ≤ k. Any weak-∗ cluster point h of the
sequence (hk) will then satisfy h(zni) = wi for all i ∈ N.

We begin the construction by setting zn1 = z1. Suppose that k ≥ 2 and that zn1 , . . . , znk−1

have already been constructed. Given w = (wi) ∈ `∞ with ||w|| ≤ r, we set vij = 1−wiwj.
For z ∈ B∞, we consider the matrix A(w, z) defined by

v1,1K(zn1 , zn1) · · · v1,k−1K(zn1 , znk−1
) v1,kK(zn1 , z)

...
. . .

...
...

vk−1,1K(znk−1
, zn1) · · · vk−1,k−1K(znk−1

, znk−1
) vk−1,kK(znk−1

, z)
vk,1K(z, zn1) · · · vk,k−1K(z, znk−1

) vk,kK(z, z)

 .
Observe that the first (k−1)×(k−1) minor equals Ak−1(w), which is positive and invertible
for all choices of w with ||w|| ≤ r by our recursive assumption. By Sylvester’s criterion, it
therefore suffices to show that there exists znk with nk > nk−1 such that det(A(w, znk)) > 0
for all such w. To see that this is possible, note that

lim
n→∞

K(zn, zn) = lim
n→∞

1

1− ‖zn‖2
=∞.

On the other hand, each K(zi, z) is bounded. Moreover, by compactness of the unit ball
in finite-dimensional spaces, there exists δ > 0 such that

det(Ak−1(w)) > δ
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for all w with ||w|| ≤ r. Thus, in the expansion of the determinant of An(w, z) along the
last row, there is one term

|vkkK(z, z) det(Ak−1(w))| ≥ (1− r2)δK(z, z),

which tends to infinity as z → 1 uniformly in w, whereas all other terms are uniformly
bounded. Therefore the determinant is eventually strictly positive on the whole r-ball.
This establishes the existence of the desired point znk , and thus finishes the recursive
construction.

Corollary 3.9.2. If W is a variety in the ball Bd for d ≤ ∞ such that W intersects the
boundary of the ball, then `∞ is a quotient of MW and hence M(MW ) contains a copy of
βN.

Proof. Proposition 3.9.1 shows that W contains an interpolating sequence. The restriction
map to this sequence is the desired quotient onto `∞. Hence M(`∞), which is homeomor-
phic to βN, embeds as a closed subset of M(MW ).

Thus we obtain the desired consequence.

Proposition 3.9.3. Let V be a compact variety as considered in Theorem 3.8.6 (b), and

let Ṽ be a variety as considered in section 3.7. Then there is no unital surjective algebra
homomorphism from MV onto MṼ . In particular, they are not isomorphic.

Combining this observation with Examples 3.7.9 and 3.8.7, we obtain the following
consequence.

Corollary 3.9.4. The Hilbert spaces Hs have non-isomorphic multiplier algebras for dis-
tinct s ≤ 0.
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4. A new approach to the classification
problem for multiplier algebras

4.1. Introduction

The contents of this chapter appeared in [43]. We continue the study of the isomorphism
problem for multiplier algebras of complete Nevanlinna-Pick spaces. In Chapter 3 and in
[24, 25, 40, 54], this problem was studied by making use of the universality theorem of
Agler and McCarthy (see Section 2.5) to identify a given complete Nevanlinna-Pick space
with a restriction of the Drury-Arveson space to an analytic variety. Roughly speaking, the
results then typically state that two algebras are isomorphic if and only if the underlying
varieties are geometrically equivalent in a suitable sense. For an up-to-date account on
these results, the reader is referred to the recent survey article [76].

While this approach has been successful in dealing with the (completely) isometric iso-
morphism problem (see [25] and [76]), the algebraic (or even completely bounded) isomor-
phism problem seems to be more difficult. Indeed, we encountered some of these issues in
Chapter 3. Essentially the only instance for which the algebraic isomorphism problem has
been completely resolved is the case of restrictions of Drury-Arveson space on a finite di-
mensional ball to homogeneous varieties [24, 40]. The existence of algebraic isomorphisms
is also quite well understood for multiplier algebras associated to certain one-dimensional
varieties under the assumption of sufficient regularity on the boundary [4, 6, 54]. For more
general varieties, however, the situation is far less clear. Moreover, several results in [25]
only apply to varieties which are contained in a finite dimensional ball. From the point of
view of the study of multiplier algebras of complete Nevanlinna-Pick spaces, this condition
is rather restrictive. There are many natural examples of complete Nevanlinna-Pick spaces
on the unit disc or, more generally, on a finite dimensional unit ball, which cannot be
realized as the restriction of Drury-Arveson space on a finite dimensional ball. Indeed, the
classical Dirichlet space, which consists of analytic functions on the unit disc, is such an
example (see also Proposition 4.11.8).

In this chapter, we take a different point of view and study the complete Nevanlinna-Pick
spaces and their reproducing kernels directly. In particular, we consider a class of spaces

61



4. A new approach to the classification problem for multiplier algebras

on homogeneous varieties in a ball in Cd. This more direct approach has the disadvantage
that we can no longer make use of the well developed theory of the Drury-Arveson space. In
particular, the tools coming from the non-commutative theory of free semigroup algebras
[21, 22, 23] are not available any more.

Nevertheless, the direct approach has certain benefits. Firstly, by studying the spaces
directly, we are able to stay within the realm of reproducing kernel Hilbert spaces on sub-
sets of Cd for finite d. We thus avoid the issues surrounding the Drury-Arveson space H2

∞
on an infinite dimensional ball, such as the extremely complicated nature of the maxi-
mal ideal space of Mult(H2

∞) (cf. Example 3.2.4). Secondly, many spaces of interest are
graded in a natural way. Indeed, we consider a class of complete Nevanlinna-Pick spaces
of analytic functions on the open unit ball Bd in Cd which contain the polynomials as a
dense subspace and in which homogeneous polynomials of different degree are orthogonal.
When identifying such a space with a restriction of the Drury-Arveson space, the grading
becomes less visible, since it is usually not compatible with the natural grading on the
Drury-Arveson space. By working with the spaces directly, we are able to exploit their
graded nature. Finally, when working with two spaces on the same set, one can also ask if
their multiplier algebras are equal, rather than just isomorphic.

In addition to this introduction, this chapter has ten sections. In Section 4.2, we gather
some preliminaries regarding unitarily invariant spaces.

In Section 4.3, we observe that it is possible to recover the reproducing kernel of a
complete Nevanlinna-Pick space from its multiplier algebra. As a consequence, we obtain
that two complete Nevanlinna-Pick spaces whose multiplier algebras are equal have the
same reproducing kernels, up to normalization.

In Section 4.4, we apply the results of Section 2 to composition operators on multiplier
algebras. In particular, we characterize those complete Nevanlinna-Pick spaces of ana-
lytic functions on Bd whose multiplier algebras are isometrically invariant under conformal
automorphisms of Bd.

In Section 4.5, we study the notion of algebraic consistency, which, roughly speaking,
assures that the functions in a complete Nevanlinna-Pick space are defined on the largest
possible domain of definition. It turns out that this notion is closely related to the notion
of a variety from [25].

In Section 4.6, we consider a general notion of grading on a complete Nevanlinna-Pick
space. The main result in this section asserts that multiplier norm and Hilbert space norm
coincide for homogeneous elements.

In Section 4.7, we set the stage for the remainder of this chapter by introducing a
family of unitarily invariant complete Nevanlinna-Pick spaces on Bd. The aim is then to
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investigate the isomorphism problem for multiplier algebras of restrictions of such spaces
to homogeneous varieties. This is done by following the route of [24].

In Section 4.8, we study the maximal ideal spaces of the multiplier algebras of spaces
introduced in Section 4.7. In particular, we introduce a regularity condition on the maximal
ideal space, which we call tameness. It is shown that a large collection of spaces, which
includes the spaces Hs of Chapter 3 and their counterparts on Bd, is indeed tame.

In Section 4.9, we recall several results from [24] about holomorphic maps on homoge-
neous varieties, thereby providing simpler proofs in some instances. We also point out that
a crucial argument from [24] can be used to show that the group of unitaries is a maximal
subgroup of the group of conformal automorphisms of Bd.

In Section 4.10, we show that the arguments from [24] can be adapted to our setting to
show that if two of our multiplier algebras are isomorphic, then they are isomorphic via
an isomorphism which preserves the grading.

Finally, Section 4.11 contains the main results about isometric and algebraic isomorphism
of the multiplier algebras. We finish by reformulating some of the results in terms of
restrictions of Drury-Arveson space, thereby providing a connection to examples in Chapter
3.

4.2. Preliminaries

Let Bd denote the open unit ball in Cd. Occasionally, we will allow d =∞, in which case
Cd is understood to be `2. A unitarily invariant space on Bd is a reproducing kernel Hilbert
space H on Bd with reproducing kernel K which is normalized at 0, analytic in the first
component, and satisfies

K(Uz, Uw) = K(z, w)

for all z, w ∈ Bd and all unitary maps U on Cd. Spaces of this type appear throughout the
literature, see for example [39, Section 4] or [38, Section 4]. The following characterization
of unitarily invariant spaces is well known. Since we do not have a convenient reference
for the proof, it is provided below.

Lemma 4.2.1. Let d ∈ N ∪ {∞} and let K : Bd × Bd → C be a function. The following
are equivalent:

(i) K is a positive definite kernel which is normalized at 0, analytic in the first compo-
nent, and satisfies K(z, w) = K(Uz, Uw) for all z, w ∈ Bd and all unitary maps U
on Cd.
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4. A new approach to the classification problem for multiplier algebras

(ii) There is a sequence (an)n of non-negative real numbers with a0 = 1 such that

K(z, w) =
∞∑
n=0

an〈z, w〉n

for all z, w ∈ Bd.

Proof. (ii)⇒ (i) By the Schur product theorem (Theorem 2.1.4), the map (z, w) 7→ 〈z, w〉n
is positive definite for all n ∈ N, hence K is positive definite. Clearly, K is normalized at
0 and invariant under unitary maps of Cd. Moreover, for fixed w ∈ Bd, the series in (ii)
converges uniformly in z on Bd, hence K is analytic in the first variable.

(i)⇒ (ii) Let z1, w1, z2, w2 ∈ Bd satisfy 〈z1, w1〉 = 〈z2, w2〉. We will show thatK(z1, w1) =
K(z2, w2). This will complete the proof, since then, there exists a function f : D → C
such that K(z, w) = f(〈z, w〉) for all z, w ∈ Bd. Since K is analytic in the first component
and is normalized at the origin, f is necessarily analytic and satisfies f(0) = 1. Positive
definiteness of K finally implies that the Taylor coefficients of f at 0 are non-negative, see
the proof of [3, Theorem 7.33] and also Corollary 4.6.3 below.

In order to show that K(z1, w1) = K(z2, w2), first note that for z, w ∈ Bd, the identity

K(λz, w) = K(z, λw)

holds for all λ ∈ T, as multiplication by a complex scalar of modulus 1 is a unitary map

on Cd. Since K(z, λw) = K(λw, z), we see that both sides of the above equation define
analytic maps in λ in an open neighbourhood of D, hence the above identity holds for all
λ ∈ D. In particular, we see that

K(rz, w) = K(z, rw)

for z, w ∈ Bd and r ∈ [0, 1]. Consequently, we may without loss of generality assume that
||w1|| = ||w2||. Then there exists a unitary map on Cd which maps w1 onto w2. Since K
is invariant under unitary maps by assumption, and so is the scalar product 〈·, ·〉, we may
in fact suppose that w1 = w2. Let w denote this vector. Since K is normalized at 0, the
claim is obvious if w = 0, so assume that w 6= 0.

From the assumption 〈z1, w〉 = 〈z2, w〉, we deduce that there exist vectors v, r1, r2 ∈ Cd

such that v ∈ Cw and r1, r2 ∈ (Cw)⊥ and such that

zi = v + ri (i = 1, 2).
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For λ ∈ T, let Uλ denote the unitary map on Cd which fixes Cw and acts as multiplication
by λ on (Cw)⊥. Then for i = 1, 2 and λ ∈ T, we have

K(zi, w) = K(Uλzi, Uλw) = K(v + λri, w).

Observe that the right-hand side defines an analytic function in λ in an open neighbourhood
of D, which is therefore constant. In particular,

K(z1, w) = K(v, w) = K(z2, w),

which completes the proof.

If H is a unitarily invariant space on Bd, then it easily follows from the representation
of the kernel in part (ii) of the preceding lemma that convergence in H implies uniform
convergence on rBd for 0 < r < 1. Since the kernel functions K(·, w) for w ∈ Bd are
analytic by assumption, and since finite linear combinations of kernel functions are dense
in H, we therefore see that every function in H is analytic on Bd.

We also require the following straightforward generalization of [3, Theorem 7.33].

Lemma 4.2.2. Let d ∈ N ∪ {∞} and let H be a unitarily invariant space on Bd with
reproducing kernel

K(z, w) =
∞∑
n=0

an〈z, w〉n,

where a0 = 1. Assume that a1 > 0. Then the following are equivalent:

(i) H is an irreducible complete Nevanlinna-Pick space.

(ii) The sequence (bn)∞n=1 defined by

∞∑
n=1

bnt
n = 1− 1∑∞

n=0 ant
n

for t in a neighbourhood of 0 is a sequence of non-negative real numbers.

In particular, if (ii) holds, then H is automatically irreducible.

Proof. Observe that

1− 1

K(z, w)
=
∞∑
n=1

bn〈z, w〉n.

It is known that this kernel is positive if and only if bn ≥ 0 for all n ≥ 1 (see the proof of
[3, Theorem 7.33], and also Corollary 4.6.3 below). Consequently, the implication (i) ⇒
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(ii) follows from [3, Theorem 7.31], and (ii)⇒ (i) will follow from the same result, once we
observe that H is irreducible in the setting of (ii).

Since a0 = 1 and a1 > 0, the spaceH contains the constant function 1 and the coordinate
functions (see [39, Proposition 4.1] or [38, Section 4]), from which it readily follows that
K(·, x) and K(·, y) are linearly independent if x 6= y. We finish the proof by showing that∑∞

n=0 ant
n never vanishes on D. Assume toward a contradiction that t0 ∈ D is a zero of∑∞

n=0 ant
n of minimal modulus. Then the equality in (ii) holds for all t ∈ D with |t| < |t0|,

and t0 is a pole of
∑∞

n=1 bnt
n. Since bn ≥ 0 for n ≥ 1, this implies that |t0| is a pole

of
∑∞

n=1 bnt
n, and consequently |t0| is a zero of

∑∞
n=0 ant

n. This is a contradiction, since
a0 = 1 and an ≥ 0 for n ≥ 0, and the proof is complete.

We observe that the Drury-Arveson space H2
m is a unitarily invariant complete Nevan-

linna-Pick space on Bm. Indeed, it corresponds to the choice an = 1 for all n ∈ N above,
since its reproducing kernel is given by

km(z, w) =
1

1− 〈z, w〉
.

Recall from Section 2.5 the universality theorem of Agler and McCarthy:

Theorem 4.2.3 (Agler-McCarthy). If H is a normalized irreducible complete Nevanlinna-
Pick space on a set X with kernel K, then there exists m ∈ N ∪ {∞} and an embedding
j : X → Bm such that

K(z, w) = km(j(z), j(w)) (z, w ∈ X).

In this case, f 7→ f ◦ j defines a unitary operator from H2
m

∣∣
j(X)

onto H.

In this setting, we say that j is an embedding for H.

4.3. From multiplier algebras to kernels

We begin by observing that the kernel of a Nevanlinna-Pick space can be recovered from
the isometric structure of its multiplier algebra. Results similar to the next proposition
are well known, see for example [38] and [3], especially Exercise 8.35. Since we do not have
a reference for the exact statement, a complete proof is provided.
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Proposition 4.3.1. Let H be an irreducible reproducing kernel Hilbert space on a set
X with kernel K. Suppose that K is normalized at x0 ∈ X and satisfies the two-point
Nevanlinna-Pick property. Then

sup{Reϕ(w) : ||ϕ||Mult(H) ≤ 1 and ϕ(x0) = 0} =
(

1− 1

K(w,w)

)1/2

for every w ∈ X, and this number is strictly positive if w 6= x0. Moreover, there is a unique
multiplier ϕw which achieves the supremum if w 6= x0, namely

ϕw(z) =
1− 1

K(z,w)√
1− 1

K(w,w)

.

Equivalently,

K(z, w) =
1

1− ϕw(z)ϕw(w)
.

Proof. By the two-point Nevanlinna-Pick property, there exists a contractive multiplier ϕ
with ϕ(x0) = 0 and ϕ(w) = λ if and only if the Pick matrix at points (x0, w),(

1 1
1 K(w,w)(1− |λ|2)

)
,

is positive, which, in turn, happens if and only if

K(w,w) ≥ 1

1− |λ|2
.

This proves the formula for the supremum. Moreover, we see that the supremum is actually
attained.

Irreducibility of H implies that K(w,w) > 1 if w 6= x0. Indeed, since K is normalized
at x0, we have

1 = K(x0, w) = |〈K(·, w), K(·, x0)〉| ≤ K(w,w)1/2

by Cauchy-Schwarz, with equality occurring only if K(·, w) and K(·, x0) are linearly de-
pendent. Since H is irreducible, this only happens if w = x0.

Let ϕ = ϕw be any multiplier which achieves the supremum. If z ∈ X is arbitrary, then
the Pick matrix at points (x0, w, z),1 1 1

1 1 K(w, z)(1− ϕ(w)ϕ(z))

1 K(z, w)(1− ϕ(z)ϕ(w)) K(z, z)(1− |ϕ(z)|2)

 ,
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is positive, since ||ϕ||Mult(H) ≤ 1 (observe that the three-point Nevanlinna-Pick property is
not needed for this implication). The determinant of this matrix is

−|1−K(z, w)(1− ϕ(z)ϕ(w))|2,

hence

K(z, w)(1− ϕw(z)ϕw(w)) = 1.

Since

ϕw(w) =
(

1− 1

K(w,w)

)1/2

,

the formula for ϕw follows. In particular, ϕw is unique if w 6= x0.

The following consequence, which generalizes Section 5.4 in [3], is immediate.

Corollary 4.3.2. Let H1 and H2 be two irreducible Nevanlinna-Pick spaces on the same
set X, with kernels K1 and K2, respectively, which are normalized at a point x0 ∈ X. Then
the following are equivalent:

(i) Mult(H1) = Mult(H2) isometrically.

(ii) Mult(H1) = Mult(H2) completely isometrically.

(iii) H1 = H2 isometrically.

(iv) K1 = K2.

Proof. The implications (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) are clear. The implication (i) ⇒ (iv)
follows from the preceding proposition.

Observe that the last result is generally false without the assumption that both spaces
are Nevanlinna-Pick spaces. Indeed, the Hardy space and the Bergman space on the unit
disc both have H∞(D) as their multiplier algebra.

We can also use Proposition 4.3.1 to show that certain algebras of functions are not multi-
plier algebras of complete Nevanlinna-Pick spaces. For H∞(Bd), this is done in Proposition
8.83 in [3].

Corollary 4.3.3. There is no irreducible reproducing kernel Hilbert space on Dd for d ≥
2 which satisfies the two-point Nevanlinna-Pick property and whose multiplier algebra is
H∞(Dd).
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Proof. Let a = 1/2 and let w = (a, a, 0, . . .) ∈ Dd. Let ϕ ∈ H∞(Dd) be non-constant with
||ϕ||∞ ≤ 1 and ϕ(0) = 0. Then z 7→ ϕ(z, z, 0, . . .) defines an analytic map from D into D
which fixes the origin, hence |ϕ(a)| ≤ 1/2 by the Schwarz lemma. In particular,

sup{Re(ϕ(a)) : ||ϕ||H∞(Dd) ≤ 1 and ϕ(0) = 0} ≤ 1

2
.

But there are several functions which realize the value 1/2, for example the coordinate
projections z1 and z2. In particular, the extremal problem with normalization point 0 in
Proposition 4.3.1 does not have a unique solution. Since every non-vanishing kernel can be
normalized at an arbitrary point without changing the multiplier algebra (see Section 2.5
or [3, Section 2.6]), it follows that H∞(Dd) is not the multiplier algebra of an irreducible
reproducing kernel Hilbert space which satisfies the two-point Nevanlinna-Pick property.

We now consider a second way of recovering the reproducing kernel of a complete
Nevanlinna-Pick space from its multiplier algebra. In contrast to Proposition 4.3.1, this
approach uses the operator space structure of the multiplier algebra.

If ϕ : X → B(E ,C) is a function with ||ϕ(x)|| < 1 for all x ∈ X, where E is an auxiliary
Hilbert space, we define a kernel Kϕ on X by

Kϕ(z, w) =
1

1− ϕ(z)ϕ(w)∗
.

Expressing the last identity as a geometric series, we see that Kϕ is positive definite.

Proposition 4.3.4. Let H be an irreducible reproducing kernel Hilbert space on a set X
with kernel K, normalized at x0 ∈ X. Then K is an upper bound for the set{

Kϕ : ϕ ∈ Mult(H⊗ E ,H) with ||Mϕ|| ≤ 1 and ϕ(x0) = 0
}

with respect to the partial order given by positivity. Moreover, K is the maximum of this
set if and only if H is a complete Nevanlinna-Pick space.

Proof. We first observe that every ϕ as in the proposition maps X into the open unit ball
of B(E ,C). To this end, let x ∈ X, and consider the Pick matrix associated to {x0, x}.
Since K is normalized at x0, and since ϕ(x0) = 0, we obtain(

1 1
1 K(x, x)(1− ϕ(x)ϕ(x)∗)

)
,
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so this matrix is positive. In particular, the (2,2)-entry is necessarily bounded above by 1,
so that

||ϕ(x)||2 ≤ 1− 1

K(x, x)
< 1.

Now, if ϕ : X → B(E ,C) is a multiplier of norm at most 1, then K/Kϕ is positive
definite by Lemma 2.3.1. If in addition ϕ(x0) = 0, then Kϕ is normalized at 0, hence so
is K/Kϕ. This implies that K/Kϕ − 1 is positive definite (see, for example, the proof of
Corollary 4.2 in [37]), and thus also

K −Kϕ = Kϕ

( K
Kϕ

− 1
)

is positive definite by the Schur product theorem. Consequently, Kϕ ≤ K.

If K belongs to the set in the statement of the proposition, then 1 − 1/K is positive
definite, so H is a complete Nevanlinna-Pick space by Theorem 2.5.1.

Assume now that H is a complete Nevanlinna-Pick space, so that we can write

K(z, w) =
1

1− 〈b(z), b(w)〉

for some function b : X → B∞ by Theorem 2.5.2. Consider for z ∈ X the row operator

ϕ(z) = (b1(z), b2(z), . . .) ∈ B(`2,C),

where the bi are the coordinate functions of b. Since

K(z, w)(1− ϕ(z)ϕ(w)∗) = 1,

we have ϕ ∈ Mult(H ⊗ `2,H) with ||ϕ|| ≤ 1, and K = Kϕ. Also, ϕ(x0) = 0 since K is
normalized at x0.

One advantage of this second approach is that we also obtain information about inclu-
sions of multiplier algebras.

Corollary 4.3.5. Let H1 and H2 be reproducing kernel Hilbert spaces on the same set
X with kernels K1 and K2, respectively. Assume that H1 is an irreducible complete
Nevanlinna-Pick space, and suppose that K1 and K2 are both normalized at x0 ∈ X. Then
the following are equivalent:

(i) Mult(H1) ⊂ Mult(H2), and the inclusion map is a complete contraction.
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(ii) K2/K1 is positive definite.

In this case, H1 ⊂ H2, and the inclusion map is a contraction.

Proof. (i) ⇒ (ii) Proposition 4.3.4 yields a multiplier ϕ ∈ Mult(H1 ⊗ E ,H1) of norm at
most 1 such that K1 = Kϕ. By assumption, ϕ is a multiplier on H2 of norm at most 1,
hence K2/K1 = K2/Kϕ is positive. Moreover, another application of the proposition shows
that

K1 = Kϕ ≤ K2,

so that H1 ⊂ H2 and the inclusion map is a contraction.

(ii) ⇒ (i) always holds for reproducing kernel Hilbert spaces. Indeed, ϕ belongs to the
unit ball of Mult(H1 ⊗ `2(n),H1 ⊗ `2(n)) if and only if

K1(z, w)(I − ϕ(z)ϕ(w)∗)

is a positive definite operator valued kernel. By assumption and the Schur product theorem,
it follows that

K2(z, w)(I − ϕ(z)ϕ(w)∗)

is positive definite, hence ϕ ∈ Mult(H2 ⊗ `2(n),H2 ⊗ `2(n)) with ||ϕ|| ≤ 1.

We finish this section by observing that the completely bounded version of Corollary 4.3.2
is not true, that is, if the identity map from Mult(H1) to Mult(H2) is merely assumed to
be a completely bounded isomorphism, then it does not follow that H1 = H2 as vector
spaces.

Example 4.3.6. Let D be the Dirichlet space on D, whose reproducing kernel is given by

KD(z, w) = − log(1− wz)

wz

and let H2 = H2(D) be the Hardy space on D with reproducing kernel

KH2(z, w) =
1

1− zw
.

Then H2 and D are complete Nevanlinna-Pick spaces (see, for example, [3, Corollary 7.41]).

Let (zn)∞n=0 be a sequence in (0, 1) with z0 = 0 and limn→∞ zn = 1 which is interpolating
for the multiplier algebra of the Dirichlet space D. Then (zn) is also interpolating for
H∞ = Mult(H2), so if V = {zn : n ∈ N}, then Mult(H2

∣∣
V

) and Mult(D
∣∣
V

) are equal as
algebras, since they are both equal to `∞.
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In fact, the normalized kernels in D
∣∣
V

and H2
∣∣
V

form a Riesz system (see Section 9.3 in
[2]), so there is a bounded invertible map

A : H2
∣∣
V
→ D

∣∣
V

such that A
( KH2(·, w)

||KH2(·, w)||

)
=

KD(·, w)

||KD(·, w)||

for all w ∈ V . A straightforward computation shows that if ϕ ∈ Mult(H2
∣∣
V

), then

((A∗)−1MϕA
∗f)(w) = ϕ(w)f(w)

for f ∈ D
∣∣
V

and w ∈ V , so

(A∗)−1MϕA
∗ = Mϕ.

It follows that the identity map between Mult(H2
∣∣
V

) and Mult(D
∣∣
V

) is given by a similarity.

However, the spaces H2
∣∣
V

and D
∣∣
V

are not equal. Indeed, if f ∈ D, then

|f(z)| = |〈f,KD(·, z)〉| ≤ ||f ||
√
KD(z, z) ≈ ||f ||

√
− log(1− z2)

as z → 1, but there are functions in H2 which grow faster, such as

f(z) =
∞∑
n=0

(n+ 1)−3/4zn,

for which

|f(z)| ≈ Γ
(1

4

)
(1− z)−1/4

as z → 1 from below (see [89, Chap. XIII,p.280,ex. 7]).

4.4. Composition Operators

The methods of the last section also apply to composition operators on multiplier algebras.
If K1 and K2 are two kernels on a set X, we say that K1 is a rescaling of K2 if there exists
a nowhere vanishing function δ : X → C such that

K1(z, w) = δ(z)δ(w)K2(z, w) (z, w ∈ X).

Rescaling is an equivalence relation on kernels, and two kernels which are equivalent in
this sense give rise to the same multiplier algebra (see Section 2.6 in [3]).
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Proposition 4.4.1. Let H1 and H2 be irreducible complete Nevanlinna-Pick spaces on sets
X1 and X2 with kernels K1 and K2, respectively. Suppose that F : X2 → X1 is a bijection.
Then the following are equivalent:

(i) CF : Mult(H1)→ Mult(H2), ϕ 7→ ϕ ◦ F , is an isometric isomorphism.

(ii) K2 is a rescaling of (K1)F , where (K1)F = K1(F (z), F (w)) for z, w ∈ X2.

In fact, if

K2(z, w) = δ(z)δ(w)K1(F (z), F (w)) (z, w ∈ X2)

for some nowhere vanishing function δ on X2, then

U : H1 → H2, f 7→ δ(f ◦ F ),

is unitary, and CF = Ad(U).

Proof. (i) ⇒ (ii). We may assume that K2 is normalized at a point x0 ∈ X2. Define a
kernel K on X2 by

K(z, w) =
K1(F (z), F (w))K1(F (x0), F (x0))

K1(F (z), F (x0))K1(F (x0), F (w))

and let H be the reproducing kernel Hilbert space on X2 with kernel K. Since K is
a rescaling of (K1)F , the assumption implies that Mult(H) = Mult(H2), isometrically.
Moreover, K is normalized at x0, hence K2 = K by Corollary 4.3.2.

(ii)⇒ (i). This implication holds in general, without the assumption that the kernels are
complete Nevanlinna-Pick kernels. To see this, it suffices to show the additional assertion.
It is a standard fact from the theory of reproducing kernels that U is unitary. Indeed, the
adjoint of U satisfies

U∗K2(·, w) = δ(w)K1(·, F (w))

for all w ∈ X2, thus the assumption easily implies that U∗ is unitary. Moreover, for f ∈ H2

and ϕ ∈ Mult(H1), we have

UMϕU
∗f = U(ϕ

1

δ
(f ◦ F−1)) = (ϕ ◦ F )f,

hence CF = Ad(U) is a well-defined completely isometric isomorphism.

The last result applies in particular to automorphisms of multiplier algebras.
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4. A new approach to the classification problem for multiplier algebras

Corollary 4.4.2. Let H be an irreducible complete Nevanlinna-Pick space on a set X with
kernel K, normalized at x0, and let F : X → X be a bijection and a = F−1(x0). Then CF
is an isometric automorphism of Mult(H) if and only if

K(F (z), F (w)) =
K(z, w)K(a, a)

K(z, a)K(a, w)

for all z, w ∈ X.

Proof. This follows from the preceding proposition as KF is normalized at a.

We wish to apply the preceding result to spaces of analytic functions on Bd. The group
of conformal automorphisms of Bd is denoted by Aut(Bd). We also allow the case d =∞,
see [46] and the references therein.

Proposition 4.4.3. Let d ∈ N ∪ {∞} and let H be a reproducing kernel Hilbert space of
analytic functions on Bd with kernel K. Assume that K is normalized at 0 and does not
vanish anywhere on Bd. Then the identity

K(ϕ(z), ϕ(w)) =
K(z, w)K(a, a)

K(z, a)K(a, w)
(z, w ∈ Bd), (4.1)

where a = ϕ−1(0), holds for every ϕ ∈ Aut(Bd) if and only if

K(z, w) =
1

(1− 〈z, w〉)α

for some α ∈ [0,∞).

Proof. It is well-known that (4.1) holds if K(z, w) = (1−〈z, w〉)−1, see [75, Theorem 2.2.5].
When raising this identity to the power of α, care must be taken if α is not an integer.
However, (4.1) holds for arbitrary α, and z, w ∈ Bd with ||z|| small, as K(z, w) is close to
1 in this case. Since both sides of (4.1) are analytic in z, it holds for all z ∈ Bd.

Conversely, suppose that (4.1) holds for all automorphisms ϕ. Choosing ϕ to be unitary,
it follows that K(Uz, Uw) = K(z, w) for all unitary operators U on Cd. By Lemma 4.2.1,
there exists an analytic function f : D→ C with f(0) = 1 and non-negative derivatives at
0 such that

K(z, w) = f(〈z, w〉).
We wish to show that f(z) = (1 − z)−α for some α ∈ [0,∞). Since every conformal
automorphism of D extends to a conformal automorphism of Bd (see [75, Section 2.2.8]),
it suffices to prove this for the case d = 1.
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For r ∈ (−1, 1), consider the conformal automorphism ϕr of D given by

ϕr(z) =
r − z
1− rz

.

Then for z ∈ D and w ∈ (0, 1), we have

f(ϕr(z)ϕr(w)) =
f(zw)f(r2)

f(rz)f(rw)
,

hence
f(ϕr(z)ϕr(w))f(rz)f(rw) = f(zw)f(r2).

Taking the derivative with respect to r at r = 0, and simplifying, we obtain

(z + w)(f ′(zw)(zw − 1) + f(zw)f ′(0))) = 0

for all z ∈ D and w ∈ (0, 1), hence

f ′(z)(1− z)− f(z)f ′(0) = 0.

for all z ∈ D, and f(0) = 1. This is a first order linear ODE, whose solutions are given by

f(z) = (1− z)−α,

where α = f ′(0). Since f ′(0) ≥ 0, the result follows.

The desired result about complete Nevanlinna-Pick spaces on Bd whose multiplier alge-
bras are isometrically automorphism invariant is the following corollary.

Corollary 4.4.4. Let d ∈ N ∪ {∞} and let H be a reproducing kernel Hilbert space of
analytic functions on Bd with kernel K, normalized at 0. The following are equivalent:

(i) H is an irreducible complete Nevanlinna-Pick space and every ϕ ∈ Aut(Bd) induces
an isometric composition operator on Mult(H).

(ii) There exists α ∈ (0, 1] such that

K(z, w) =
1

(1− 〈z, w〉)α
(z, w ∈ Bd).

Proof. In light of Corollary 4.4.2 and Proposition 4.4.3, it suffices to show that

K(z, w) =
1

(1− 〈z, w〉)α
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4. A new approach to the classification problem for multiplier algebras

is an irreducible complete Nevanlinna-Pick kernel if and only if α ∈ (0, 1].

If α = 0, then K is identically 1, and thus not irreducible. If α > 0, then Lemma 4.2.2
applies to show that K is an irreducible complete Nevanlinna-Pick kernel if and only if the
function 1− (1− x)α has non-negative Taylor coefficients at 0. Observe that

1− (1− x)α =
∞∑
k=1

(−1)k+1

(
α

k

)
xk,

where (
α

k

)
=
α(α− 1)(α− 2) . . . (α− k + 1)

k!
.

The coefficient of x2 in this formula equals

−α(α− 1)

2
,

which is negative if α > 1. Conversely, if α ≤ 1, then all Taylor coefficients are non-
negative.

4.5. Algebraic consistency and varieties

When studying isomorphisms of multiplier algebras, we will usually make an additional
assumption, which, roughly speaking, guarantees that the functions in the reproducing
kernel Hilbert space are defined on their natural domain of definition.

More precisely, let H be a Hilbert function space on a set X with 1 ∈ H. A non-zero
bounded linear functional ρ on H is called partially multiplicative if ρ(ϕf) = ρ(ϕ)ρ(f)
whenever ϕ ∈ Mult(H) and f ∈ H. We say that H is algebraically consistent if for every
partially multiplicative functional ρ on H, there exists x ∈ X such that ρ(f) = f(x) for all
f ∈ H.

Example 4.5.1. The reproducing kernel Hilbert space H on D with kernel

K(z, w) =
∞∑
n=0

2−n(zw)n =
1

1− 1
2
zw

is not algebraically consistent. Indeed, every function in H extends uniquely to an analytic
function on the open disc of radius

√
2 around the origin.
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Remark 4.5.2. Our definitions of a partially multiplicative functional and of algebraic con-
sistency are inspired by [12, Definition 1.5] of Cowen-MacCluer, but are slightly different.
A non-zero bounded linear functional ρ on H is partially multiplicative in the sense of
Cowen-MacCluer if ρ(fg) = ρ(f)ρ(g) whenever f, g ∈ H such that the pointwise product
fg belongs to H as well. The Hilbert function space H is algebraically consistent in the
sense of Cowen-MacCluer if every such functional is given by evaluation at a point in X.
We also refer the reader to [57, Section 2]; their generalized kernel functions are precisely
the elements of H which give rise to partially multiplicative functionals in the sense of
Cowen-MacCluer.

Clearly, every functional which is partially multiplicative in the sense of Cowen-MacCluer
is partially multiplicative in our sense. Therefore, every Hilbert function space which is
algebraically consistent in our sense is algebraically consistent in the sense of Cowen-
MacCluer.

Our definition of algebraic consistency requires that 1 ∈ H and is only meaningful if H
has “enough” multipliers. This limits its applicability for general Hilbert function spaces.
However, it seems to be well-suited for normalized irreducible complete Nevanlinna-Pick
spaces. In particular, we will see that in this setting, algebraic consistency in our sense is
closely related to the notion of a variety from [25] (see Proposition 4.5.6 below) and behaves
well with respect to restrictions of complete Nevanlinna-Pick spaces to subsets (see Lemma
4.5.4 below). Moreover, if H is a normalized irreducible complete Nevanlinna-Pick space,
then 1 ∈ H and the multiplier algebra contains at least all kernel functions (this known fact
can be deduced, for example, from Proposition 4.3.1, as ψw = 1 − 1/K(·, w) is a strictly
contractive multiplier, so K(·, w) =

∑∞
n=0 ψ

n
w converges absolutely in the Banach algebra

Mult(H)). In particular, Mult(H) is dense in H. It remains open if the two definitions
of algebraic consistency agree for normalized irreducible complete Nevanlinna-Pick spaces
(see also Remark 4.5.5 below).

The following lemma provides examples of algebraically consistent spaces (compare with
[12, Theorem 2.15]). The proof in fact shows that for unitarily invariant spaces, our notion
of algebraic consistency and the one of Cowen-MacCluer coincide.

Lemma 4.5.3. Let d ∈ N ∪ {∞} and let H be a complete Nevanlinna-Pick space on Bd
with kernel of the form

K(z, w) =
∞∑
n=0

an〈z, w〉n

such that a0 = 1 and a1 6= 0.

(a) If
∑∞

n=0 an =∞, then H is algebraically consistent on Bd.

77



4. A new approach to the classification problem for multiplier algebras

(b) If
∑∞

n=0 an <∞, but the series
∑∞

n=0 anx
n has radius of convergence 1, then the func-

tions in H extend to (norm) continuous functions on Bd, and H is an algebraically
consistent space of functions on Bd.

(c) If
∑∞

n=0 anx
n has radius of convergence greater than 1, then H is not algebraically

consistent on Bd or on Bd.

Proof. We begin with some considerations that apply to both (a) and (b). It is known
that the condition a1 6= 0 implies that the function 〈·, w〉 is a multiplier for w ∈ Bd (see,
for example, [38, Section 4]). Incidentally, this can also be deduced from Proposition 4.6.4
below. For each i, let

λi = ρ(zi).

We claim that (λi) ∈ Bd. To this end, let w ∈ Bd be finitely supported, say wi = 0 if
i > N . Then

〈λ,w〉 =
N∑
i=1

λiwi = ρ(〈·, w〉).

Since ρ is partially multiplicative and non-zero, ρ(1) = 1. Thus, we get

ρ(K(·, w)) =
∞∑
n=0

anρ(〈·, w〉n) =
∞∑
n=0

anρ(〈·, w〉)n =
∞∑
n=0

an〈λ,w〉n. (4.2)

In either case, the series
∑∞

n=0 anx
n has radius of convergence 1, hence |〈λ,w〉| ≤ 1. Since

w ∈ Bd was an arbitrary finitely supported sequence, we conclude that λ ∈ Bd.

Assume now that
∑∞

n=0 an = ∞. We wish to show that λ ∈ Bd. Suppose for a contra-
diction that ||λ|| = 1. Observe that (4.2) holds for all w ∈ Bd, so choosing w = rλ for
0 < r < 1, we see that

∞∑
n=0

anr
n = ρ(K(·, rλ)) ≤ ||ρ||

( ∞∑
n=0

anr
2n
)1/2

≤ ||ρ||
( ∞∑
n=0

anr
n
)1/2

,

which is not possible as
∑∞

n=0 an = ∞. Consequently, λ ∈ Bd, and it follows from (4.2)
that ρ equals point evaluation at λ. This proves (a).

For the proof of (b), we observe that K extends to a jointly norm continuous function
on Bd × Bd, hence all functions in H extend to norm continuous functions on Bd, and H
becomes a reproducing kernel Hilbert space on Bd in this way. Equation (4.2) shows that
every partially multiplicative functional is given by point evaluation at a point λ ∈ Bd, so
that H is algebraically consistent.
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4.5. Algebraic consistency and varieties

Finally, to show (c), we observe that if
∑∞

n=0 anx
n has radius of convergence R > 1,

then the functions in H extend uniquely to analytic functions on the ball of radius
√
R.

In particular, H is not algebraically consistent on Bd or on Bd.

To show that algebraic consistency is closely related to the notion of a variety from [25],
we first need a simple lemma.

Lemma 4.5.4. Let H be a normalized irreducible complete Nevanlinna-Pick space on a
set X which is algebraically consistent. If Y ⊂ X, then H

∣∣
Y

is an algebraically consistent
space of functions on Y if and only if there is a set of functions S ⊂ H such that

Y = {x ∈ X : f(x) = 0 for all f ∈ S}.

Proof. Suppose that Y is the common vanishing locus of a set S ⊂ H, and let ρ be
a partially multiplicative functional on H

∣∣
Y

. Then ρ̃(f) = ρ(f
∣∣
Y

) defines a partially
multiplicative functional on H. Since H is assumed to be algebraically consistent, ρ̃ is
given by point evaluation at a point y ∈ X. We claim that y ∈ Y . To this end, observe
that for f ∈ S, we have

f(y) = ρ̃(f) = ρ(f
∣∣
Y

) = ρ(0) = 0,

from which we deduce that y ∈ Y . Since every function in H
∣∣
Y

is the restriction of a

function in H, it follows that ρ is given by evaluation at y. Hence, H
∣∣
Y

is algebraically
consistent.

Conversely, assume that H
∣∣
Y

is algebraically consistent. Let S be the kernel of the

restriction map H → H
∣∣
Y

and let Ŷ denote the vanishing locus of S. Clearly, Y ⊂ Ŷ , and

we wish to show that Y = Ŷ . To this end, observe that every function f ∈ H
∣∣
Y

extends

uniquely to a function f̂ ∈ H
∣∣
Ŷ

of the same norm. Assume for a contradiction that there

exists x ∈ Ŷ \ Y . Then we obtain a bounded functional ρ on H
∣∣
Y

which is defined by

ρ(f) = f̂(x). To see that ρ is partially multiplicative, note that if ϕ ∈ Mult(H
∣∣
Y

), then

by the Nevanlinna-Pick property (see Lemma 2.4.3), ϕ extends to a multiplier on H
∣∣
Ŷ

,

which necessarily equals ϕ̂. Thus, ϕ̂f = ϕ̂f̂ . Since H is irreducible, it separates the points
of X, so ρ is not equal to point evaluation at a point in Y , a contradiction. Therefore,
Y = Ŷ .

Remark 4.5.5. It is the second part of the above proof where the difference between our
definition of partially multiplicative functional and the one of Cowen-MacCluer is impor-
tant. Whereas the functional ρ constructed above is partially multiplicative in our sense,
it does not seem to be clear if ρ is partially multiplicative in the sense of Cowen-MacCluer.
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Using notation as in the proof, the crucial question is the following: If f, g ∈ H
∣∣
Y

such

that fg ∈ H
∣∣
Y

, is f̂ g = f̂ ĝ?

It is not hard to see that the following properties are equivalent for a normalized irre-
ducible complete Nevanlinna-Pick space H on a set X and a subset Y ⊂ X:

(i) Whenever f, g ∈ H
∣∣
Y

such that fg ∈ H
∣∣
Y

, then f̂ g = f̂ ĝ.

(ii) Whenever f, g ∈ H
∣∣
Y

such that fg ∈ H
∣∣
Y

, then f̂ ĝ ∈ H
∣∣
Ŷ

.

(iii) Whenever h1, h2, h3 ∈ H such that h1 = h2h3 on Y , then h1 = h2h3 on Ŷ .

Here, as in the proof, Ŷ denotes the vanishing locus of the kernel of the restriction map
H → H

∣∣
Y

, which is the smallest common zero set of a family of functions in H which

contains Y . Moreover, for f ∈ H
∣∣
Y

, the unique extension of f to a function in H
∣∣
Ŷ

is

denoted by f̂ .

Property (iii) and hence all properties are satisfied if H = H2(D), the Hardy space on
the unit disc, and Y ⊂ D is any subset, since the product of two functions in H2(D) belongs
to H1(D), and the zero sets of families of functions in H2(D) and H1(D) coincide (they are
precisely the Blaschke sequences in D, see [36, Section II.2]).

It does not seem to be known if these properties hold if H = H2
d for d ≥ 2 and Y ⊂ Bd

is an arbitrary subset. If they always hold in this case, then the arguments of this section
show that our notion of algebraic consistency and the one of Cowen-MacCluer agree for
normalized irreducible complete Nevanlinna-Pick spaces. We also refer the reader to [57,
Section 5], where it is shown these properties hold for H = H2

∞ and certain special subsets
Y of B∞.

Let H be a normalized irreducible complete Nevanlinna-Pick space on X with kernel K.
Recall from Section 4.2 that an embedding for H is an injective function j : X → Bm such
that

K(z, w) = km(j(z), j(w)) (z, w ∈ X),

where km denotes the kernel of the Drury-Arveson space on Bm. A variety in Bm (see [25,
Section 2]) is the common zero set of a family of functions in H2

m.

Proposition 4.5.6. Let H be a normalized irreducible complete Nevanlinna-Pick space on
a set X with kernel K. The following assertions are equivalent:

(i) H is algebraically consistent.

(ii) There exists an embedding j : X → Bm for H such that j(X) is a variety.

(iii) For every embedding j : X → Bm for H, the set j(X) is a variety.
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4.5. Algebraic consistency and varieties

(iv) Every weak-∗ continuous character on Mult(H) is given by evaluation at a point in
X.

Proof. Let j : X → Bm be an embedding for H, and let V = j(X). Then

U : H2
m

∣∣
V
→ H, f 7→ f ◦ j,

is a unitary operator, and consideration of the map T 7→ UTU∗ shows that U maps
Mult(H2

m

∣∣
V

) onto Mult(H). Thus, H is algebraically consistent if and only if H2
m

∣∣
V

is.
Observe that H2

m is algebraically consistent by Lemma 4.5.3. Thus, the equivalence of (i),
(ii) and (iii) follows from Lemma 4.5.4.

To see that (iii) implies (iv), we note that the identification of Mult(H2
m

∣∣
V

) with Mult(H)
from the first part is a weak-∗-weak-∗ homeomorphism, since it is implemented by conju-
gation with a unitary operator. Thus, the result follows from the fact that every weak-∗
continuous character on Mult(H2

m

∣∣
V

) is given by evaluation at a point in V , provided that
V is a variety (see [25, Proposition 3.2]).

Conversely, suppose that (iv) holds, and let ρ be a partially multiplicative functional on
H. Then the restriction of ρ to Mult(H) is a character. Since

ρ(ϕ) = ρ(Mϕ1) for all ϕ ∈ Mult(H),

it is weak-∗ continuous. By assumption, there is a point x ∈ X such that ρ(ϕ) = ϕ(x) for
all ϕ ∈ Mult(H). Since Mult(H) is dense in H, it follows that ρ is given by evaluation at
x. Consequently, H is algebraically consistent.

In the setting of the last proposition, we identify X with a subset of the maximal ideal
space of Mult(H) via point evaluations.

Lemma 4.5.7. Let H1 and H2 be normalized algebraically consistent irreducible complete
Nevanlinna-Pick spaces on sets X1 and X2, respectively. Let Φ : Mult(H1)→ Mult(H2) be
a unital homomorphism. Then the following assertions are equivalent:

(i) Φ is weak-∗-weak-∗ continuous.

(ii) Φ∗(X2) ⊂ X1.

(iii) There is a map F : X2 → X1 such that

Φ(ϕ) = ϕ ◦ F

for all ϕ ∈ Mult(H1).
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4. A new approach to the classification problem for multiplier algebras

In this case, the map F in (iii) is the restriction of Φ∗ to X2.

Proof. The implication (i) ⇒ (ii) follows immediately from the description of the weak-∗
continuous characters in Proposition 4.5.6. Assume that (ii) holds, and let F denote the
restriction of Φ∗ to X2. Then

Φ(ϕ)(λ) = Φ∗(δλ)(ϕ) = (δF (λ))(ϕ) = (ϕ ◦ F )(λ)

for all λ ∈ X2. Hence, Φ is given by composition with F , that is, (iii) holds.

To show that (iii) implies (i), it suffices to show that Φ is weak-∗-weak-∗ continuous on
bounded sets by the Krein-Smulian theorem. This in turn follows from the general fact
that for a bounded net of multipliers, convergence in the weak-∗ topology is equivalent to
pointwise convergence (see Lemma 2.2.4).

Finally, if F is as in (iii), then

ϕ(F (x)) = Φ(ϕ)(x) = ϕ(Φ∗(x))

for all x ∈ X2 and all ϕ ∈ Mult(H1), so the assertion follows from the fact that Mult(H1)
separates the points of X1 as H1 is an irreducible complete Nevanlinna-Pick space (this
can be deduced, for example, from Proposition 4.3.1).

As a consequence, we see that weak-∗-weak-∗ homeomorphic isometric isomorphisms
between multiplier algebras are always unitarily implemented. In [25], this was shown for
spaces which admit an embedding into a finite dimensional ball using different methods.
This additional assumption was recently removed in [76] by refining these methods.

Proposition 4.5.8. Let H1 and H2 be normalized algebraically consistent irreducible com-
plete Nevanlinna-Pick spaces on sets X1 and X2, respectively. Let Φ : Mult(H1) →
Mult(H2) be a unital isometric isomorphism. If Φ is a weak-∗-weak-∗ homeomorphism,
then Φ is given by composition with a bijection F : Y → X and it is unitarily imple-
mented.

Proof. Lemma 4.5.7, applied to Φ and Φ−1, shows that Φ is given by composition. Thus,
Proposition 4.4.1 implies that Φ is unitarily implemented.
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4.6. Graded complete Nevanlinna-Pick spaces

In this section, we consider reproducing kernel Hilbert spaces which admit a natural grad-
ing. Let H be a reproducing kernel Hilbert space on a set X with reproducing kernel K,
and let X be equipped with an action of the circle group T. We say that K is T-invariant
if

T→ C, λ 7→ K(λz, w),

is continuous for all z, w ∈ X, and

K(λz, λw) = K(z, w)

for all λ ∈ T and z, w ∈ X. Then the T-action on X induces a strongly continuous unitary
representation

Γ : T→ B(H), Γ(λ)(f)(z) = f(λz).

Indeed, Γ(λ) is unitary for λ ∈ T, and for v, w ∈ X, we have

〈Γ(λ)K(·, w), K(·, v)〉 = K(λv, w),

which is continuous in λ. For n ∈ Z, let

Hn = {f ∈ H : Γ(λ)f = λnf for all λ ∈ T}.

Then the closed subspaces Hn are pairwise orthogonal, and it follows from a standard
application of the Fejér kernel that

H =
⊕
n∈Z

Hn.

Elements of Hn are called homogeneous of degree n.

Example 4.6.1. (a) Let d < ∞ and Ω ⊂ Cd be open and connected with 0 ∈ Ω and
TΩ ⊂ Ω. Then T acts on Ω by scalar multiplication. Let H be a reproducing kernel
Hilbert space of analytic functions on Ω with a T-invariant kernel K. It is not hard to see
that

Hn = {f ∈ H : f is a homogeneous polynomial of degree n}

for n ≥ 0, and Hn = {0} for n < 0. Concrete examples of this type include many classical
spaces on Bd or Dd, such as the Hardy space and the Dirichlet space.
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(b) Let d ∈ N ∪ {∞}, and let X ⊂ Cd satisfy DX ⊂ X. Let H be a reproducing kernel
Hilbert space on X with a T-invariant kernel K, and assume that for f ∈ H and x ∈ X,
the function

fx : D→ C, z 7→ f(zx),

is contained in the disc algebra. Then Hn = {0} for n < 0 and for n ≥ 0, the space Hn

consists of all functions f in H such that fx is a multiple of zn for every x ∈ X.

We require a homogeneous decomposition not only for functions, but also for kernels.

Lemma 4.6.2. Let K be a T-invariant positive definite kernel on X, possibly with zeroes
on the diagonal. Then there are uniquely determined Hermitian kernels Kn on X such that
for z, w ∈ X, we have

(1) Kn(λz, w) = λnKn(z, w) for λ ∈ T and

(2) K(z, w) =
∑

n∈ZKn(z, w), where the series converges absolutely.

In this case, Kn is the reproducing kernel of the space of homogeneous elements of degree
n in H. In particular, each Kn is positive definite.

Proof. Let H be the reproducing kernel Hilbert space on X with kernel K. For w ∈ X, let

K(·, w) =
∑
n∈Z

Kn(·, w)

be the homogeneous expansion of K(·, w) in H =
⊕

n∈ZHn. Observe that for f ∈ Hn and
w ∈ X, we have

〈f,Kn(·, w)〉 = 〈f,K(·, w)〉 = f(w),

hence Kn is the reproducing kernel of Hn, and in particular positive definite. The first
property is clear. Since convergence in H implies pointwise convergence on X, it follows
that

K(z, w) =
∑
n∈Z

Kn(z, w).

Positive definiteness of K implies that |Kn(z, w)|2 ≤ Kn(z, z)Kn(w,w), thus |Kn(z, w)| ≤
max{Kn(z, z), Kn(w,w)}, so the series converges absolutely.

The uniqueness statement follows from the uniqueness of the Fourier expansion of the
continuous function

λ 7→ K(λz, w) =
∑
n∈Z

Kn(λz, w) =
∑
n∈Z

λnKn(z, w)

on T.
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4.6. Graded complete Nevanlinna-Pick spaces

Incidentally, the last lemma provides a simple proof of the following known fact (cf. the
proof of Theorem 7.33 in [3]).

Corollary 4.6.3. Let (an)n be a sequence of complex numbers such that the power series∑∞
n=0 ant

n has a positive radius of convergence R. Let E be a Hilbert space and let BR(0)
denote the open ball of radius R around 0 in E. Then the function K defined by

K(z, w) =
∞∑
n=0

an〈z, w〉n (z, w ∈ BR(0))

is a positive definite kernel if and only if an ≥ 0 for all n ∈ N.

Proof. By the Schur product theorem, (z, w) 7→ 〈z, w〉n is a positive definite kernel for all
n ∈ N. Thus, the backward direction is clear. Conversely, if K is a positive definite kernel,
then an application of Lemma 4.6.2 shows that

Kn(z, w) = an〈z, w〉n

defines a positive definite kernel for all n ∈ N. In particular, each Kn is Hermitian, hence
an ∈ R. Moreover, if an ≤ 0, then −Kn is positive definite as well, hence Kn = 0 and thus
an = 0. This observation finishes the proof.

Let H be a reproducing kernel Hilbert space on a set X with a T-invariant kernel K.
Assume that K is normalized at a point in X, so that the constant function 1 is contained
in H and has norm 1. Recall that H admits an orthogonal decomposition H =

⊕
n∈ZHn.

We say that H is standard graded if H0 = C1 and Hn = {0} for n < 0. All spaces in
Example 4.6.1 are standard graded, provided their kernel is normalized at a point. In
particular, unitarily invariant spaces on Bd are standard graded.

In Drury-Arveson space, the multiplier norm of a homogeneous polynomial is equal to
its Drury-Arveson norm. This can be shown by embedding H2

d into the full Fock space (see
also [80, Lemma 9.5]). For a special class of complete Nevanlinna-Pick spaces H on D, it
was shown in Lemma 3.7.2 that ||zn||H = ||zn||Mult(H) for all n ∈ N. The next proposition
generalizes these results.

Proposition 4.6.4. Let H be an irreducible complete Nevanlinna-Pick space which is
standard graded. If f ∈ H is homogeneous, then f ∈ Mult(H) and ||f ||Mult(H) = ||f ||H.

Proof. The proof is an abstract version of the proof of Lemma 3.7.2. Let K =
∑∞

n=0 Kn

be the homogeneous decomposition of K from Lemma 4.6.2. In a first step, we will show
that for every pair of natural numbers n and k, the kernel

Kn+k −KnKk
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4. A new approach to the classification problem for multiplier algebras

is positive definite. We proceed by induction on n. The assumption H0 = C1 implies that
K0 = 1, so this is trivial for n = 0. Assume that n ≥ 1 and that the assertion is true
for 0, 1, . . . , n − 1. Since K is a normalized irreducible complete Nevanlinna-Pick kernel,
F = 1− 1

K
is a positive definite kernel on X by Theorem 2.5.1, and it is clearly T-invariant.

Let F =
∑∞

j=0 Fj be the homogeneous decomposition of F . Since K = KF + 1, we have

∞∑
i=0

Ki =
∞∑
i=0

i∑
j=0

Ki−jFj + 1,

where we have used that all series converge absolutely. Since the homogeneous expansion
is unique, we may compare homogeneous components in this equation. For i = 0, we use
that K0 = 1 to obtain F0 = 0. For i ≥ 1, we therefore get the identity

Ki =
i∑

j=1

Ki−jFj.

Using this identity with i = n+ k and i = n, we deduce that

Kn+k −KnKk =
n+k∑
j=1

Kn+k−jFj −
n∑
j=1

Kn−jKkFj

≥
n∑
j=1

(Kn+k−j −Kn−jKk)Fj ≥ 0

by induction hypothesis and the Schur product theorem. This finishes the inductive proof.

Now, let f ∈ H be homogeneous of degree n ≥ 0 and suppose that ||f ||H ≤ 1. A
well-known characterization of the norm in a reproducing kernel Hilbert space implies that

(z, w) 7→ K(z, w)− f(z)f(w)

is positive definite. Note that the degree n homogeneous component of this kernel is
Kn(z, w)− f(z)f(w), which is positive definite by Lemma 4.6.2. Using the Schur product
theorem, we deduce that

∞∑
k=0

Kk(z, w)(Kn(z, w)− f(z)f(w))

is positive definite. Since KnKk ≤ Kn+k, this implies that

0 ≤
∞∑
k=0

Kn+k(z, w)−
∞∑
k=0

(Kk(z, w)f(z)f(w)) ≤ K(z, w)(1− f(z)f(w)),

so that f is a contractive multiplier on H.
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4.6. Graded complete Nevanlinna-Pick spaces

Remark 4.6.5. For Drury-Arveson space, the above proof can be somewhat simplified. In
this case, Kn(z, w) = 〈z, w〉n, hence Kn+k = KnKk, so that the first step is trivial.

As a consequence, we obtain a simple necessary condition for the complete Nevanlinna-
Pick property of a unitarily invariant space.

Corollary 4.6.6. Let d ∈ N ∪ {∞} and let H be an irreducible unitarily invariant repro-
ducing kernel Hilbert space on Bd with reproducing kernel

K(z, w) =
∞∑
n=0

an〈z, w〉n

such that a0 = 1. If H is a complete Nevanlinna-Pick space, then

anak ≤ an+k

for all n, k ∈ N.

Proof. The proof of Proposition 4.6.4 shows that if H is a complete Nevanlinna-Pick space,
then

Kn+k −KnKk

is positive definite for every k, n ∈ N. But

Kn(z, w) = an〈z, w〉n

for z, w ∈ Bd, hence the result follows.

Example 4.6.7. In the setting of the last lemma, let an = (n+ 1)s for n ∈ N. If s > 0, then

a2
1 = 4s > 3s = a2,

so H is not a complete Nevanlinna-Pick space. Observe that if d = 1 and s = 1, we obtain
the well-known fact that the Bergman space on D is not a complete Nevanlinna-Pick space.

Example 4.6.8. Let us observe that the necessary condition in Corollary 4.6.6 is not suffi-
cient. Let d = 1 and define a0 = 1, a1 = 1

2
, an = 1 for n ≥ 2, that is, H is the space on D

with reproducing kernel

K(z, w) =
∞∑
n=0

an(zw)n =
1

1− zw
− 1

2
zw.

Then akan ≤ an+k for n, k ∈ N. However,

1− 1

K(z, w)
=

1

2
zw +

3

4
(zw) +

1

8
(zw)3 − 5

16
(zw)4 + h.o.t..

Hence, H is not a complete Nevanlinna-Pick space by [3, Theorem 7.33].
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4. A new approach to the classification problem for multiplier algebras

If H is a standard graded complete Nevanlinna-Pick space, we let A(H) denote the norm
closed linear span of the homogeneous elements in Mult(H). For example, A(H2) is the
disc algebra.

For standard graded complete Nevanlinna-Pick spaces, there is a bounded version of
Corollary 4.3.2.

Proposition 4.6.9. Let X be a set equipped with an action of T. Let H1 and H2 be two
irreducible complete Nevanlinna-Pick spaces on X with reproducing kernels K1 and K2,
respectively. Assume that H1 and H2 are standard graded with respect to the action of T
on X. Then the following assertions are equivalent:

(i) H1 = H2 as vector spaces.

(ii) Mult(H1) = Mult(H2) as algebras.

(iii) A(H1) = A(H2) as algebras.

(iv) There exist c1, c2 > 0 such that c2
1K2 −K1 and c2

2K1 −K2 are positive definite.

(v) The identity map H1 → H2 is a bounded isomorphism which induces similarities
Mult(H1) = Mult(H2) and A(H1) = A(H2).

Proof. The equivalence of (i) and (iv) is well known. (v) implies (i), (ii) and (iii) is
trivial, and (i) implies (v) follows from the closed graph theorem. It remains to see that
(ii) or (iii) implies (i). In both cases, H1 and H2 have the same homogeneous elements
by Proposition 4.6.4. Moreover, since all algebras in question are semi-simple, there are
constants C1, C2 > 0 such that

1

C2

||f ||Mult(H2) ≤ ||f ||Mult(H1) ≤ C1||f ||Mult(H2)

for every homogeneous element f (see [17, Proposition 4.2]). Since homogeneous elements
of different degree are orthogonal in H1 and H2, we deduce from Proposition 4.6.4 that
there is a bounded isomorphism H1 → H2 which acts as the identity on homogeneous
elements, and hence everywhere. Thus, (i) holds.

4.7. Restrictions of unitarily invariant spaces

For the remainder of this chapter, we will consider restrictions of unitarily invariant spaces
on Bd, and from now on, we will always assume that d <∞.
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Suppose that H is a unitarily invariant space on Bd with reproducing kernel

K(z, w) =
∞∑
n=0

an〈z, w〉n, (4.3)

where a0 = 1 and an ≥ 0 for all n ∈ N. We will assume that H has the following properties:

(a) H contains the coordinate functions.

(b) H is algebraically consistent on Bd.
(c) H is an irreducible complete Nevanlinna-Pick space.

For simplicity, we will call a space which satisfies these conditions a unitarily invariant
complete NP-space on Bd.

The conditions above can also be expressed in terms of the reproducing kernel. If the
kernel is given as in (4.3), then (a) is equivalent to demanding that a1 > 0 (see, for example
[38, Section 4] or [39, Proposition 4.1]). Lemma 4.5.3 shows that Condition (b) holds if and
only if the radius of convergence of the series

∑∞
n=0 ant

n is 1 (so that H is defined on Bd)
and

∑∞
n=0 an = ∞. In the presence of (a), H is an irreducible complete Nevanlinna-Pick

space if and only if the sequence (bn)∞n=1 defined by

∞∑
n=1

bnt
n = 1− 1∑∞

n=0 ant
n

(4.4)

for t in a neighbourhood of 0 is a sequence of non-negative real numbers, see Lemma 4.2.2.

We will also consider spaces on Bd. The only difference to the above setting is that here,
the functions in H are assumed to be analytic on Bd and continuous on Bd. Moreover, H
is assumed to be algebraically consistent on Bd. In terms of the reproducing kernel K, this
means that

∑∞
n=0 an <∞ but the power series

∑∞
n=0 ant

n has radius of convergence 1 (see
Lemma 4.5.3). We call such a space a unitarily invariant complete NP-space on Bd. We
say that H is a unitarily invariant complete NP-space to mean that H is either a unitarily
invariant complete NP-space on Bd or on Bd.
Remark 4.7.1. Let H be a unitarily invariant complete NP-space as above.

(a) H is standard graded in the sense of Section 4.6.

(b) The condition that the sequence (bn) in Equation (4.4) in non-negative is often
difficult to check in practice. A sufficient condition for this to hold is that the sequence
(an)n is strictly positive and log-convex, i.e.

an
an+1

≤ an−1

an
(n ≥ 1),

see, for example, [3, Lemma 7.38].
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4. A new approach to the classification problem for multiplier algebras

(c) Since H contains the coordinate functions, it follows from Proposition 4.6.4 that the
coordinate functions are multipliers. Thus, all polynomials are multipliers. In particular,
H contains all polynomials, so that an > 0 for all n ∈ N (see also [38, Section 4]).

(d) The monomials zα, where α runs through all multi-indices of non-negative integers
of length d, form an orthogonal basis for H. Moreover,

||zα||2H =
α!

|α|!a|α|

for every multi-index α (see, for example, [38, Section 4] or [39, Proposition 4.1]). It follows
from unitary invariance that

||〈·, w〉n||2HI =
||w||2n

an

for all w ∈ Cd and all n ∈ N.

Example 4.7.2. For −1 ≤ s ≤ 0, let Hs(Bd) be the reproducing kernel Hilbert space on Bd
with kernel

Ks(z, w) =
∞∑
n=0

(n+ 1)−s〈z, w〉.

Using part (b) of Remark 4.7.1, it is easy to see thatHs(Bd) is a unitarily invariant complete
NP-space on Bd.

If s < −1, the series in the definition of Ks converges on Bd × Bd. Let Hs(Bd) be the
reproducing kernel Hilbert space on Bd with this kernel. As above, it is not hard to see
that this space is a unitarily invariant complete NP-space on Bd.

Closely related to the spaces Hs(Bd) for s ∈ (−1, 0] are the spaces from Corollary 4.4.4.
If α ∈ (0, 1], the space Kα with reproducing kernel

K(z, w) =
1

(1− 〈z, w〉)α
(z, w ∈ Bd)

is a unitarily invariant complete NP-space on Bd. Expressing the reproducing kernel as a
binomial series and using part (d) of Remark 4.7.1, it is straightforward to see that Kα
and Hα−1 agree as vector spaces, and have equivalent norms.

Remark 4.7.3. While we assume that our spaces on Bd are invariant under unitary maps,
we specifically do not assume that they are invariant under other conformal automorphisms
of the unit ball. Such an assumption would simplify some arguments, but the condition of
automorphism invariance is often difficult to check in practice. Indeed, even for spaces on
D, there does not seem to be a simple criterion for automorphism invariance. We refer the
reader to [12, Section 3.1] and [13, Section 8].
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We now turn to restrictions of unitarily invariant complete NP-spaces. Suppose that
I ( C[z1, . . . , zd] is a homogeneous ideal. Following [24], we define

Z0(I) = V (I) ∩ Bd

and

Z(I) = V (I) ∩ Bd,

where

V (I) = {z ∈ Cd : f(z) = 0 for all f ∈ I}

denotes the vanishing locus of I. Observe that since I is a proper ideal, Z0(I) always
contains the origin.

If H is a unitarily invariant complete NP-space on Bd, we define HI = H
∣∣
Z0(I)

. If H is a

unitarily invariant complete NP-space on Bd, we define HI = H
∣∣
Z(I)

. Recall from Lemma

2.1.2 that the norm on HI is defined in such a way that the restriction map from H onto
HI is a co-isometry. Lemma 4.5.4 shows that HI is algebraically consistent in both cases.
Observe that the circle group acts on Z0(I) and on Z(I) by scalar multiplication, which
gives the spaces HI a grading in the sense of Section 4.6. Moreover, the restriction map
from H onto HI respects the grading. Thus, a function in HI is homogeneous of degree n
if and only if it is the restriction of a homogeneous polynomial of degree n.

Since an ideal and its radical have the same vanishing locus, there is no loss of generality
in restricting our attention to radical homogeneous ideals. If I ( C[z1, . . . , zd] is a radical
homogeneous ideal, then the ring of polynomial functions on V (I) is canonically isomorphic
to the quotient C[z1, . . . , zd]/I by Hilbert’s Nullstellensatz. The following lemma, which
gives a different description of the space HI , can be thought of as a Hilbert function space
analogue of this fact. Results of this type are certainly well known (cf. [24, Section 6]),
but we do not have a convenient reference for the precise statement.

Lemma 4.7.4. Let H be a unitarily invariant space on Bd or on Bd with reproducing kernel
K, and let I ( C[z1, . . . , zd] be a radical homogeneous ideal. Then the closure of I in H is
given by

I = {f ∈ H : f
∣∣
Z0(I)

= 0}.

Hence the map

H	 I → HI ,

given by restriction, is a unitary operator. Moreover, H	 I is the closed linear span of the
kernel functions K(·, w) for w ∈ Z0(I).
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4. A new approach to the classification problem for multiplier algebras

Proof. Let

R : H → HI

be the restriction map. Then R is a co-isometry by definition of HI , thus it suffices to show
that kerR = I. It is clear that I ⊂ kerR. Conversely, let f ∈ kerR and let f =

∑∞
n=0 fn

be the homogeneous decomposition of f . Then

0 = f(tz) =
∞∑
n=0

tnfn(z)

for all t ∈ D and all z ∈ Z0(I), hence each fn vanishes on V (I). Consequently, fn ∈ I for
all n ∈ N by Hilbert’s Nullstellensatz, thus f ∈ I.

Since the restriction map from H onto HI is a co-isometry, it follows that this map is a
unitary operator from H	 I onto HI . Moreover, given f ∈ H, we see that f is orthogonal
to the kernel functions K(·, w) for w ∈ Z0(I) if and only if f vanishes on Z0(I), which
happens if and only if f ∈ I by the first part.

Thus, instead of thinking of HI as a space of functions on Z0(I) or on Z(I), we may also
regard it as a subspace of H. The following lemma shows how composition operators act
in this second picture of HI . It is a straightforward generalization of a well-known result
about composition operators on reproducing kernel Hilbert spaces (see, for example, [12,
Theorem 1.4]).

Lemma 4.7.5. Let H be a reproducing kernel Hilbert space on a set X with reproducing
kernel KH, and let K be a reproducing kernel Hilbert space on a set Y with reproducing
kernel KK. Suppose that Z ⊂ X and W ⊂ Y , and define

I(Z) = {f ∈ H : f
∣∣
Z

= 0}

and

I(W ) = {f ∈ K : f
∣∣
W

= 0}.

Then for a function ϕ : W → Z, the following are equivalent:

(i) There exists a bounded composition operator Cϕ : H
∣∣
Z
→ K

∣∣
W

such that Cϕ(f) = f◦ϕ
for all f ∈ H

∣∣
Z

.

(ii) There exists a bounded operator Tϕ : K 	 I(W ) → H 	 I(Z) with T (KK(·, w)) =
KH(·, ϕ(w)) for all w ∈ W .
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In this case,
Tϕ = R−1

Z (Cϕ)∗RW ,

where
RZ : H	 I(Z)→ H

∣∣
Z
, f 7→ f

∣∣
Z
,

and
RW : K 	 I(W )→ K

∣∣
W
, f 7→ f

∣∣
W
,

denote the unitary restriction maps.

Proof. Suppose that (i) holds. For w ∈ W and f ∈ H 	 I(Z), we have

〈f,R∗Z(Cϕ)∗RWKK(·, w)〉H = 〈(f
∣∣
Z

) ◦ ϕ,KK(·, w)
∣∣
W
〉K|W

= f(ϕ(w))

= 〈f,KH(·, ϕ(w))〉H.

Since KH(·, ϕ(w)) ∈ H	 I(W ), we conclude that (ii) holds with Tϕ = R∗Z(Cϕ)∗RW , which
also proves the additional assertion.

Conversely, if (ii) holds, let f ∈ H 	 I(Z) and let w ∈ W . Clearly, R∗Z(f
∣∣
Z

) = f and

R∗W (KK(·, w)
∣∣
W

) = KK(·, w), hence

(RWT
∗
ϕR
∗
Zf
∣∣
Z

)(w) = 〈RWT
∗
ϕf,KK(·, w)

∣∣
W
〉K|W

= 〈f, TϕKK(·, w)〉H
= 〈f,KH(·, ϕ(w))〉H
= (f ◦ ϕ)(w).

Consequently, (i) holds with Cϕ = RWT
∗
ϕR
∗
Z .

It may seem restrictive that we only consider restrictions to varieties defined by homo-
geneous polynomials. Indeed, if H is a unitarily invariant complete NP-space on Bd and
X ⊂ Bd has circular symmetry, i.e. TX = X, then H

∣∣
X

is standard graded in the sense of
Section 4.6. It turns out, however, that algebraic consistency forces X to be a homogeneous
variety. More generally, we obtain the following result.

Lemma 4.7.6. Let H be a normalized irreducible Hilbert function space of analytic func-
tions on Bd (respectively of continuous functions on Bd which are analytic on Bd). Let
X ⊂ Bd (respectively X ⊂ Bd) be a non-empty set which satisfies TX ⊂ X. If H

∣∣
X

is alge-
braically consistent, then X = Z0(I) (respectively X = Z(I)) for some radical homogeneous
ideal I ( C[z1, . . . , zd].
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Proof. We first consider the case where H is a space of analytic functions on Bd. Let I be
the ideal of all polynomials that vanish on X. Suppose that f ∈ O(Bd) vanishes on X,
and let f =

∑∞
n=0 fn be the homogeneous expansion of f . Given x ∈ X, the function

D→ C, λ 7→ f(λx),

is contained in the disc algebra and vanishes on T, hence it vanishes identically. Using
the homogeneous expansion of f , we see that fn(x) = 0 for all n ∈ N. Thus, every fn
and hence f vanishes on Z0(I). This argument also shows that I is a homogeneous ideal.
Moreover, every function in H

∣∣
X

extends uniquely to a function in O(Bd)
∣∣
Z0(I)

.

Clearly, X ⊂ Z0(I). To establish equality, denote for f ∈ H the unique extension

of f to a function in O(Bd)
∣∣
Z0(I)

by f̂ . Observe that f̂ in fact belongs to H
∣∣
Z0(I)

and

has the same norm as f . Since O(Bd)
∣∣
Z0(I)

is an algebra, we see that ϕ̂f = ϕ̂f̂ for all

ϕ ∈ Mult(H
∣∣
X

) and f ∈ H
∣∣
X

. Assume for a contradiction that there exists x ∈ Z0(I) \X.

Then f 7→ f̂(x) defines a bounded functional on H
∣∣
X

which is partially multiplicative.
Since H is irreducible, this functional is not given by evaluation at a point in X. This
contradicts algebraic consistency of H

∣∣
X

, hence X = Z0(I).

Finally, if H is a space of continuous functions on Bd which are analytic on Bd, then the
proof above applies to this setting as well once we replace Z0(I) with Z(I) and O(Bd) with
the algebra of all continuous functions on Bd which are analytic on Bd.

4.8. The maximal ideal space

To classify the multiplier algebras of the spaces HI introduced in the last section, we follow
the same route as [24]. To this end, we first study the character spaces of these multiplier
algebras. We begin with an easier object. Recall that if H is a standard graded complete
Nevanlinna-Pick space, A(H) denotes the norm closure of the span of all homogeneous
elements in Mult(H). If A is a unital Banach algebra, we let M(A) denote its maximal
ideal space.

Lemma 4.8.1. Let H be a unitarily invariant complete NP-space on Bd or on Bd, and let
I ( C[z1, . . . , zd] be a radical homogeneous ideal. Then

M(A(HI))→ Z(I), ρ 7→ (ρ(z1), . . . , ρ(zd)),

is a homeomorphism.
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Proof. Let ρ ∈ M(A(HI)). We first show that λ = (ρ(z1), . . . , ρ(zd)) ∈ Bd. Suppose
otherwise, and let 0 < r < 1 be such that ||rλ|| > 1. If p is a polynomial with homogeneous
decomposition p =

∑N
n=0 pn, then

|p(rλ)|2 ≤
( N∑
n=0

rn|ρ(pn)|
)2

≤
N∑
n=0

r2n

N∑
n=0

||pn||2Mult(HI).

By Proposition 4.6.4, ||pn||Mult(HI) = ||pn||HI , hence this quantity is dominated by

1

1− r2

N∑
n=0

||pn||2HI =
1

1− r2
||p||2HI .

Consequently, p 7→ p(rλ) extends to a well-defined bounded functional ρ̃ on HI . It is easy
to see that ρ̃ is partially multiplicative, but

(ρ̃(z1), . . . , ρ̃(zd)) = rλ /∈ Bd.

This contradicts the fact that HI is algebraically consistent. Clearly, λ ∈ V (I). Thus, if Φ
denotes the map from the statement of the lemma, it follows that Φ(ρ) ∈ Z(I). It is clear
that Φ is continuous, and since the polynomials are dense in A(HI) by definition, it is also
injective.

SinceM(A(HI)) is compact, we may finish the proof by showing that Φ is surjective. If
H is a space on Bd, then the elements of A(HI) extend to continuous functions on Z(I),
as the multiplier norm dominates the supremum norm. If H is a space on Bd, they are
already defined on Z(I), so in both cases, every λ ∈ Z(I) gives rise to a character δλ given
by point evaluation at λ, and this character satisfies Φ(δλ) = λ.

The character space of the whole multiplier algebra is often much more complicated.
Indeed, if H is the Hardy space H2(D), then Mult(H) = H∞, an algebra whose character
space is known to be very complicated (see, for example, [36, Chapter V]).

Since every character on Mult(HI) restricts to a character on A(HI), we obtain in the
setting of the last lemma a continuous map

π :M(Mult(HI))→ Z(I), ρ 7→ ρ(z1, . . . , zd).

This map is surjective, as evaluation at a point in Z0(I) is a character and the character
space is compact.

If H is a space on Bd, then Mult(HI) consists of continuous functions on the compact
set Z(I). The weak-∗ continuous characters are precisely the point evaluations at points in
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Z(I) by Proposition 4.5.6 and thus form a compact subset of M(Mult(H)). The question
whether every character is a point evaluation in this setting remains open.

If H is a space on Bd, then the weak-∗ continuous characters are point evaluations at
points in Z0(I), again by Proposition 4.5.6, thus they form a proper subset of the maximal
ideal space. The next lemma shows that in this case, multipliers can oscillate wildly near
the boundary of Bd, and hence the character space of Mult(HI) is rather complicated.

Lemma 4.8.2. Let H be a unitarily invariant complete NP-space on Bd and let I (
C[z1, . . . , zd] be a radical homogeneous ideal. Let (λn) be a sequence in Z0(I) which satisfies
limn→∞ ||λn|| = 1. Then (λn) contains a subsequence which is interpolating for Mult(HI).
In particular, π−1(λ) contains a copy of βN \ N for every λ ∈ V (I) ∩ ∂Bd.

Proof. The proof of Proposition 3.9.1 shows that it suffices to show that KI(λn, λn) con-
verges to ∞, where KI denotes the reproducing kernel of HI . However, if

K(z, w) =
∞∑
n=0

an〈z, w〉n (z, w ∈ Bd)

denotes the reproducing kernel ofH, then KI is simply the restriction of K to Z0(I)×Z0(I).
Moreover, sinceH is algebraically consistent on Bd, we have

∑∞
n=0 an =∞ by Lemma 4.5.3,

thus KI(λn, λn) tends to ∞, as asserted.

For the proof of the additional assertion, we note that for every λ ∈ V (I)∩ ∂Bd, there is
an interpolating sequence (λn) which converges to λ by the first part. Hence, the algebra
homomorphism

Mult(HI)→ `∞, ϕ 7→ (ϕ(λn)),

is surjective, and its adjoint is a topological embedding of βN \ N into π−1(λ).

We now turn to the fibers of π over points in the open ball. LetH be a unitarily invariant
complete NP-space on Bd or on Bd, and let

π :M(Mult(H))→ Bd, ρ 7→ (ρ(z1), . . . , ρ(zd)),

be the map from above. For λ ∈ Bd, the fibers π−1(λ) always contains the character of
evaluation at λ. If one allows the case d = ∞, then these fibers can be much larger, see
Example 3.2.4. We say thatH is tame if the fibers of π over Bd are singletons. Equivalently,
if ρ is a character on Mult(H) such that λ = π(ρ) ∈ Bd, then ρ is the character of evaluation
at λ. Note that even if H is a space on Bd, we do not impose a condition on fibers over the
boundary. It remains open whether there are non-tame spaces if d <∞. We also mention
that for spaces on D, the question of when the fibers of π are singletons already appears
in [81] (see Question 3 on page 78).

96
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Example 4.8.3. Perhaps the easiest example of a tame space is the Hardy space H2(D)
on the unit disc. Let us briefly recall the well-known argument, which we will generalize
below. Suppose ρ is a character on H∞(D) = Mult(H2(D)) such that λ = ρ(z) ∈ D. If
ϕ ∈ H∞(D), then

ϕλ =
ϕ− ϕ(λ)

z − λ
∈ H∞(D)

by the maximum modulus principle, and

ϕ = ϕ(λ) + (z − λ)ϕλ.

Since ρ is a character and since ρ(z − λ) = 0, it follows that

ρ(ϕ) = ϕ(λ),

thus ρ is the character of evaluation at λ.

Remark 4.8.4. If H is tame and if I ( C[z1, . . . , zd] is a radical homogeneous ideal, then
HI is similarly well-behaved. More precisely, if ρ is a character on Mult(HI) such that
π(ρ) ∈ Bd (and hence π(ρ) ∈ Z0(I)), then ρ is the character of evaluation at λ. Indeed,
this follows from tameness of H and from the fact that the restriction map from Mult(H)
to Mult(HI) is surjective, since H is a Nevanlinna-Pick space.

Proposition 3.2 in [25] shows that H2
d is tame (for d < ∞). The argument in [25]

uses a result about characters on the non-commutative free semigroup algebra Ld from
[21], and the fact that Mult(H2

d) is a quotient of Ld [22]. Since this does not apply
to unitarily invariant complete NP-spaces besides H2

d , we will use a different argument
similar to the one in Example 4.8.3. The underlying principle, however, is always the
same, namely a factorization result for elements in the Banach algebra in question. In the
following proposition, we record some sufficient conditions for tameness in decreasing order
of generality.

Proposition 4.8.5. Let H be a unitarily invariant complete NP-space with reproducing
kernel K(z, w) =

∑∞
n=0 an〈z, w〉n. Consider the following conditions:

(a) Gleason’s problem can be solved in Mult(H). That is, given λ ∈ Bd and ϕ ∈ Mult(H),
there are ϕ1, . . . , ϕd ∈ Mult(H) such that

ϕ− ϕ(λ) =
d∑
i=1

(zi − λi)ϕi.
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4. A new approach to the classification problem for multiplier algebras

(b) For every λ ∈ Bd, the space
d∑
i=1

(zi − λi)H ⊂ H

is closed in H.

(c) The condition

lim
n→∞

an
an+1

= 1

holds.

Then (c)⇒ (b)⇒ (a), and each of (a), (b), (c) implies that H is tame.

Proof. We first show that (a) implies that H is tame. Let ρ be a character on Mult(H)
with π(ρ) = λ ∈ Bd and let ϕ ∈ Mult(H). By assumption, there are ϕ1, . . . , ϕd ∈ Mult(H)
such that

ϕ− ϕ(λ) =
d∑
i=1

(zi − λi)ϕi.

Since the right-hand side is contained in the kernel of the multiplicative linear functional
ρ, it follows that

ρ(ϕ) = ϕ(λ),

hence ρ is the character of point evaluation at λ.

(b) ⇒ (a) We use a factorization theorem for multipliers on complete Nevanlinna-Pick
spaces to show that (a) is satisfied (cf. Section 4 of [37]). We first claim that

d∑
i=1

(zi − λi)H = {f ∈ H : f(λ) = 0}.

Indeed, to see the nontrivial inclusion, suppose that f ∈ H vanishes at λ. Since the
polynomials form a dense subset of H, there is a sequence (pn) of polynomials which
converges to f in H. Then (pn − pn(λ)) is a sequence of polynomials vanishing at λ which
converges to f , as evaluation at λ is continuous. Observe that the space on the left-hand
side contains all polynomials vanishing at λ and is closed by assumption. Thus, f belongs
to the space on the left-hand side, as asserted.

Hence, if ϕ ∈ Mult(H) with ϕ(λ) = 0, then ran(Mϕ) is contained in the range of the
row multiplication operator

(Mz1−λ1 , . . . ,Mzd−λd).
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Let z−λ denote the B(Cd,C)-valued multiplier (z1−λ1, . . . , zd−λd). Then by the Douglas
lemma, there exists c > 0 such that

MϕM
∗
ϕ ≤ c2Mz−λM

∗
z−λ.

In this situation, a factorization theorem valid for multiplier algebras of complete Nevan-
linna-Pick spaces (see, for example, Theorem 8.57 in [3]) implies the existence of a B(C,Cd)-
valued multiplier Ψ such that

c(z − λ)Ψ = ϕ.

Writing

Ψ =

ψ1
...
ψd

 ,

we see that

ϕ =
d∑
i=1

(zi − λi)(cψi).

Consequently, Gleason’s problem can be solved in Mult(H), so (a) holds.

(c) ⇒ (b) The proof uses the notion of essential Taylor spectrum (see, for example,
Section 33 and 34 in [60], Section 2.6 in [30], or [15]). By Theorem 4.5 (2) in [39], the
assumption that an/an+1 converges to 1 implies that the essential Taylor spectrum of
Mz = (Mz1 , . . . ,Mzd) equals ∂Bd, hence the d-tuple (Mz1−λ1, . . . ,Mzd−λd) is a Fredholm
tuple for all λ = (λ1, . . . , λd) ∈ Bd. In particular, the last coboundary map in the Koszul
complex has closed range, thus the row operator

(Mz1 − λ1, . . . ,Mzd − λd)

has closed range for all λ ∈ Bd. Consequently, (b) holds.

Example 4.8.6. The spaces Hs(Bd), Hs(Bd) and Kα in Example 4.7.2 all satisfy condition
(c) of the preceding proposition and are hence tame.

Remark 4.8.7. (a) The regularity condition limn→∞
an
an+1

= 1 is not uncommon in the study

of unitarily invariant kernels, see for example Section 4 in [38]. Proposition 4.5 in [38] shows
that this condition automatically holds if

∑∞
n=0 an =∞ and (an) is eventually decreasing.

(b) If (an)n is log-convex (see part (b) of Remark 4.7.1), then limn→∞
an
an+1

always exists

in [0,∞]. Since H is assumed to be algebraically consistent on Bd or on Bd, the power
series

∑∞
n=0 anz

n has radius of convergence 1 (see Lemma 4.5.3), hence limn→∞
an
an+1

= 1 is
automatic in this case.
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(c) As mentioned after Lemma 3.7.3, it is possible to modify Example 6.12 in [25] to
construct a unitarily invariant complete NP space H on D which violates condition (a) at
λ = 0, and hence all conditions of the preceding proposition. It is not known if this space
H is tame.

(d) The idea to use the factorization theorem to solve Gleason’s problem in Mult(H)
already appears in [37], where this was done for the multiplier algebra of the Drury-Arveson
space. The main difference between the two arguments is that in [37], it was shown that
Gleason’s problem can be solved in Mult(H2

d) for λ = 0, and automorphism invariance
of Mult(H2

d) was used to deduce the general case. The argument here does not require
automorphism invariance.

We finish this section by observing that tameness is also implied by the presence of
a Corona theorem. In practice, this result is of very limited use, since establishing
tameness is usually much easier than establishing a Corona theorem. Indeed, it is very
easy to see that H2(D) is tame (see Example 4.8.3), whereas the Corona theorem for
H∞(D) = Mult(H2(D)) is hard. Nevertheless, since there are no known examples of com-
plete Nevanlinna-Pick spaces on Bd for which the Corona theorem fails, the next result
explains the lack of examples of spaces which are not tame.

Proposition 4.8.8. Let H be a unitarily invariant complete NP-space on Bd. If the set of
all point evaluations at points in Bd is weak-∗ dense in the maximal ideal space of Mult(H),
then H is tame.

Proof. Let ρ be a character on Mult(H) such that π(ρ) = λ ∈ Bd. By assumption, there
is a net of points (λα) in Bd such that δλα converges to ρ in the weak-∗ topology. Hence,
λα = π(δλα) converges to λ = π(ρ). Since the multipliers are continuous on Bd, it follows
that δλα converges to δλ in the weak-∗ topology, whence ρ = δλ.

4.9. Holomorphic maps on homogeneous varieties

In the last section, we saw that the maximal ideal space of an algebra of the type A(HI)
or Mult(HI) contains a copy of the homogeneous variety Z0(I). We will see in the next
section that under suitable conditions, algebra homomorphisms between our algebras in-
duce holomorphic maps between the varieties. Thus, we will require some results about
holomorphic maps on homogeneous varieties. The arguments presented in the first part
of this section (up to Lemma 4.9.6) already appeared in the author’s Master’s thesis [41,
Section 3.3].
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Throughout this section, let I, J ( C[z1, . . . , zd] be radical homogeneous ideals. We say
that a map F : Z0(I) → Cd′ , where d′ ∈ N, is holomorphic if for every z ∈ Z0(I), there
exists an open neighbourhood U of z and a holomorphic function G on U which agrees
with F on U ∩ Z0(I).

We require the following variant of the maximum modulus principle.

Lemma 4.9.1. Let F : Z0(I) → Bd be a holomorphic map. If F is not constant, then
F (Z0(I)) ⊂ Bd.

Proof. We may assume that {0} ( Z0(I). Suppose that there exists w ∈ Z0(I) such that
||F (w)|| = 1 and choose w̃ ∈ Z0(I) satisfying w ∈ Dw̃. The ordinary maximum modulus
principle shows that the holomorphic function

D→ D, t 7→ 〈F (tw̃), F (w)〉,

is the constant function 1. Consequently, F (tw̃) = F (w) for all t ∈ D, and in particular
F (0) = F (w) ∈ ∂Bd. Now, if z ∈ Z0(I) is arbitrary, another application of the maximum
modulus principle shows that the function

D→ D, t 7→ 〈F (tz), F (0)〉,

is the constant function 1, hence F (z) = F (0). Thus, F is constant.

The next goal is to show that every biholomorphism between Z0(I) and Z0(J) which
fixes the origin is the restriction of an invertible linear map. This result is Theorem 7.4 in
[24], where it was established by adjusting the proof of Cartan’s uniqueness theorem from
[75, Theorem 2.1.3]. We provide a simpler proof, which only uses the Schwarz lemma from
ordinary complex analysis. We begin with the following variant of the Schwarz lemma.

Lemma 4.9.2. Let d′ ∈ N and let F : Z0(I) → Bd′ be a holomorphic map such that
F (0) = 0. Then ||F (z)|| ≤ ||z|| for all z ∈ Z0(I). If equality holds for some z ∈ Z0(I)\{0},
then there exists w0 ∈ ∂Bd′ such that

F
(
t
z

||z||

)
= tw0 (4.5)

for all t ∈ D. In particular, F maps the disc Cz ∩ Bd biholomorphically onto the disc
CF (z) ∩ Bd′ in this case.
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4. A new approach to the classification problem for multiplier algebras

Proof. We may assume that {0} ( Z0(I). Let z ∈ Z0(I) \ {0}, suppose that F (z) 6= 0 and
define w0 = F (z)/||F (z)||. By the classical Schwarz lemma, the function

f : D→ D, t 7→
〈
F
(
t
z

||z||

)
, w0

〉
,

satisfies |f(t)| ≤ |t| for all t ∈ D. The first statement now follows by choosing t = ||z||.
If ||F (z)|| = ||z||, then f(||z||) = ||z||, thus f is the identity by the Schwarz lemma. Since
||F (t z

||z||)|| ≤ |t| for all t ∈ D by the first part, Equation (4.5) holds. The last assertion is
now obvious.

The desired result about biholomorphisms which fix the origin follows as an application
of the last lemma.

Proposition 4.9.3 ([24, Theorem 7.4]). Let F : Z0(I) → Z0(J) be a biholomorphism
such that F (0) = 0. Then there exists an invertible linear map A on Cd which maps V (I)
isometrically onto V (J) such that A

∣∣
Z0(I)

= F .

Proof. We may again assume that {0} ( Z0(I). Let G be a holomorphic map which is
defined on a neighbourhood U of 0 and which coincides with F on U∩Z0(I). Let A0 be the
derivative of G at 0. Lemma 4.9.2, applied to F and its inverse, shows that ||F (z)|| = ||z||
for all z ∈ Z0(I), so the second part of the same lemma applies. Taking the derivative
with respect to t in Equation (4.5) for fixed z ∈ Z0(I) \ {0}, we see that w0 necessarily
satisfies w0||z|| = A0z, hence

F (z) = ||z||w0 = A0z.

Thus, A0

∣∣
Z0(I)

= F , and A0 is isometric on Z0(I) since F is. Linearity of A0 implies that

A0 maps V (I) isometrically onto V (J).

Finally, the same argument, applied to F−1 in place of F , shows that there exists a
linear map B0 on Cd such that B0

∣∣
Z0(J)

= F−1. From this, we deduce that A0 restricts to

a linear isomorphism from the linear span of Z0(I) onto the linear span of Z0(J). Thus, if
we let A be an invertible extension of A0

∣∣
Z0(I)

to Cd, then A satisfies all the requirements

of the proposition.

We also crucially require a result from [24], which, loosely speaking, allows us to repair
biholomorphisms which do not fix the origin. This result is contained in the proof of
Proposition 4.7 in [24]. The proof in [24] proceeds in two steps. In a first step, tools
from algebraic geometry and knowledge about the structure of conformal automorphisms
of Bd are used to reduce the statement about arbitrary homogeneous varieties to the case
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of discs. The second step, which deals with the case of discs, is an argument from plane
conformal geometry.

It turns out that the first step, namely the reduction to discs, also follows immediately
from Lemma 4.9.2.

Lemma 4.9.4. Let F : Z0(I)→ Z0(J) be a biholomorphism with F (0) 6= 0. Let b = F (0)
and let a = F−1(0). Then ||a|| = ||b|| and F maps the disc D1 = Ca∩Bd biholomorphically
onto the disc D2 = Cb ∩ Bd.

Proof. Let

f : D→ Z0(J), t 7→ F
(
t
a

||a||

)
,

and let ϕ be an automorphism of D which maps 0 to ||a|| and vice versa. Then h = f ◦ ϕ
satisfies the assumptions of Lemma 4.9.2, hence

||b|| = ||h(||a||)|| ≤ ||a||.

By symmetry, ||a|| ≤ ||b||, so ||a|| = ||b||. It now follows from the second part of Lemma
4.9.2 that h maps D biholomorphically onto the disc D2. The result follows.

The second step is essentially the following lemma. For λ ∈ T, let Uλ denote the unitary
map on Cd defined by

Uλ(z) = λz

for z ∈ Cd.

Lemma 4.9.5 (Davidson-Ramsey-Shalit [24]). Let ϕ be a conformal automorphism of D.
The set

{(Uλ ◦ ϕ−1 ◦ Uµ ◦ ϕ)(0) : λ, µ ∈ T} ⊂ D
is a closed disc around 0 which contains the point ϕ−1(0).

Proof. We repeat the relevant part of the proof of Theorem 7.4 in [24]. The assertion is
trivial if ϕ fixes the origin, so we may assume that ϕ(0) 6= 0. Then

C = {(Uµ ◦ ϕ)(0) : µ ∈ T}

is the circle around 0 with radius |ϕ(0)|. Since automorphisms of D map circles to circles, it
follows that the set ϕ−1(C) is a circle which obviously passes through 0. Moreover, ϕ−1(0)
is contained in the interior of the circle ϕ−1(C) as 0 is contained in the interior of C. Thus

{(Uλ ◦ ϕ−1 ◦ Uµ ◦ ϕ)(0) : λ, µ ∈ T} = {Uλ(ϕ−1(C)) : λ ∈ T}

is a closed disc around 0 which contains ϕ−1(0).

103



4. A new approach to the classification problem for multiplier algebras

Observe that if I ( C[z1, . . . , zd] is a radical homogeneous ideal, then Uλ leaves Z0(I)
and Z(I) invariant for each λ ∈ T. Combining Lemmata 4.9.4 and 4.9.5, we obtain the
result from [24] which allows us to repair biholomorphisms which do not fix the origin.

Lemma 4.9.6 (Davidson-Ramsey-Shalit [24]). Let I, J ( C[z1, . . . , zd] be radical homo-
geneous ideals and suppose that F : Z0(I) → Z0(J) is a biholomorphism. Then there are
λ, µ ∈ T such that the biholomorphism

F ◦ Uλ ◦ F−1 ◦ Uµ ◦ F : Z0(I)→ Z0(J)

fixes the origin.

Proof. The assertion is trivial if F (0) = 0, so we may assume that F (0) 6= 0. It follows
then from Lemma 4.9.4 that it suffices to consider the case where d = 1 and where Z0(I) =
Z0(J) = D, the unit disc. An application of Lemma 4.9.5 shows that there are λ, µ ∈ T
such that

F−1(0) = (Uλ ◦ F−1 ◦ Uµ ◦ F )(0),

hence F ◦ Uλ ◦ F−1 ◦ Uµ ◦ F fixes the origin.

We finish this section by giving another application of the crucial Lemma 4.9.5 of David-
son, Ramsey and Shalit [24]. We will show that the group of unitaries is a maximal sub-
group of Aut(Bd), the group of conformal automorphisms of Bd. Since the group Aut(Bd)
is well studied, it is likely that this has been observed before. Nevertheless, even when
d = 1, the only result in this direction that seems to be widely known is the fact that the
group of unitaries is a maximal compact subgroup of Aut(Bd).

Recall that for a ∈ Bd, there exists an automorphism ϕa of Bd defined by

ϕa(z) =
a− Paz − saQaz

1− 〈z, a〉
(z ∈ Bd),

where Pa is the orthogonal projection of Cd onto the subspace spanned by a, Qa = I − Pa
and sa = (1 − |a|2)1/2. Then ϕa is an involution which interchanges 0 and a (see, for
example, [75, Theorem 2.2.2]). Moreover, every ϕ ∈ Aut(Bd) is of the form ϕ = U ◦ ϕa,
where U is unitary and a = ϕ−1(0) [75, Theorem 2.2.5]. We begin with a preliminary
lemma.

Lemma 4.9.7. Let G ⊂ Aut(Bd) be a subsemigroup which contains all unitary maps and
let O denote the orbit of 0 under G. Then the following assertions hold:

(a) G is a subgroup of Aut(Bd).
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(b) A point a ∈ Bd belongs to O if and only if ϕa ∈ G.

(c) G = Aut(Bd) if and only if O = Bd.

Proof. (a) If ϕ ∈ G, then ϕ = Uϕa for some unitary map U and a ∈ Bd. Then ϕa ∈ G.
Since ϕa is an involution, it follows that ϕ−1 = ϕaU

−1 ∈ G. Hence, G is a group.

(b) For the proof of the non-trivial implication, suppose that a ∈ O and let ϕ ∈ G with
a = ϕ(0). Then ϕ−1 ∈ G by part (a) and (ϕ−1)−1(0) = a, hence

ϕ−1 = U ◦ ϕa

for some unitary map U . Since U ∈ G, it follows that ϕa ∈ G, as asserted.

(c) This follows immediately from (b) and the description of the automorphisms of Bd
in terms of unitary maps and the involutions ϕa.

We now show that the group of rotations is a maximal subgroup of the group Aut(D).
We will then deduce the higher-dimensional analogue from this result.

Lemma 4.9.8. The group of rotations is a maximal subgroup of the group Aut(D).

Proof. Let G be a subgroup of Aut(D) which properly contains the group of rotations. Let
O be the orbit of 0 under G. We wish to show that O = D, which is equivalent to the
assertion by part (c) of Lemma 4.9.7.

We first claim that DO ⊂ O. To this end, let a ∈ O. Then ϕa ∈ G by part (b) of
Lemma 4.9.7. An application of Lemma 4.9.5 now shows that O contains the closed disc
of radius |a| around 0, which proves the claim.

We finish the proof by showing that O contains points of modulus arbitrarily close to
1. Since G contains a non-rotation automorphism, O 6= {0}. Clearly, O is rotationally
invariant, hence there exists r > 0 such that r ∈ O and therefore ϕr ∈ G by part (b) of
Lemma 4.9.7. Consider the hyperbolic automorphism f defined by

f(z) = ϕr(−z) =
r + z

1 + rz

for z ∈ D. Then f ∈ G. Moreover, it is well known and easy to see that

lim
n→∞

fn(0) = 1,

where fn denotes the n-fold iteration of f . Thus, the proof is complete.
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We are now ready to prove a multivariate analogue of the last lemma.

Proposition 4.9.9. The group of unitary maps on Cd is a maximal subsemigroup of
Aut(Bd).

Proof. Suppose that G is a subsemigroup of Aut(Bd) which properly contains the group of
unitary maps. Then G is a subgroup by part (a) of Lemma 4.9.7. Let O denote the orbit
of 0 under G. Our goal is to show that O = Bd (see part (c) of Lemma 4.9.7). Since G
contains all unitaries, it suffices to show that De1 ⊂ O, where e1 denotes the first standard
basis vector of Cd.

To this end, let
H = {ϕ ∈ G : ϕ(De1) = De1}.

Identifying De1 with D we obtain a subgroup

H̃ = {ϕ
∣∣
D : ϕ ∈ H}

of Aut(D). Clearly, H̃ contains all rotations Uλ for λ ∈ T. Since G contains a non-unitary
automorphism, {0} 6= O. Moreover, O is invariant under unitary maps, hence there exists
r > 0 such that re1 ∈ O and thus ϕre1 ∈ G by part (b) of Lemma 4.9.7. Observe that

ϕre1 ∈ H, so H̃ contains the non-rotation automorphism ϕr. It now follows from Lemma

4.9.8 that H̃ = Aut(D). Since Aut(D) acts transitively on D, the definition of H̃ implies
that De1 ⊂ O, which completes the proof.

There is an immediate consequence for collections of functions on Bd which are unitarily
invariant.

Corollary 4.9.10. Let S 6= ∅ be a collection of functions on Bd and define

G = {ϕ ∈ Aut(Bd) : f ◦ ϕ ∈ S for all f ∈ S}.

Assume that G contains U , the group of unitary maps on Cd. Then either G = U or
G = Aut(Bd).

Proof. It is clear thatG is a subsemigroup of Aut(Bd), so the result follows from Proposition
4.9.9.

The last result applies in particular to reproducing kernel Hilbert spaces H on Bd with
a kernel of the form

K(z, w) =
∞∑
n=0

an〈z, w〉n (z, w ∈ Bd).
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In this case, by the closed graph theorem, G is also the set of all automorphisms of Bd
which induce a bounded composition operator on H. Moreover, G contains all unitaries.
Thus, the last result says that such a space H is either invariant under all automorphisms
of Bd, or under unitaries only.

4.10. Existence of graded isomorphisms

The question of when two algebras of the type Mult(HI) are isomorphic is more difficult
than the question about equality of multiplier algebras studied in Section 4.6. The chief
reason is that isomorphisms do not necessarily respect the grading. Thus, our goal is
to establish the existence of graded isomorphisms. As in [24], this will follow from an
application of Lemma 4.9.6.

Throughout this section, let H and K be unitarily invariant complete NP-spaces on Bd
or on Bd and let I, J ( C[z1, . . . , zd] be radical homogeneous ideals. We allow the case
where H is a space on Bd, and K is a space on Bd, or vice versa. We will consider the
multiplier algebras Mult(HI) and Mult(KJ), as well as their norm closed versions A(HI)
and A(KJ). To cover both cases, we first study homomorphisms from A(HI) into Mult(KJ).
We identify the maximal ideal space of A(HI) with Z(I) by Lemma 4.8.1. Similarly, we
identify Z0(J) with a subset of the maximal ideal space of Mult(KJ) via point evaluations.
The following lemma should be compared to Proposition 7.1 and Lemma 11.5 in [24].

Lemma 4.10.1. Let H and K as well as I, J ( C[z1, . . . , zd] be as above.

(a) If Φ : A(HI)→ Mult(KJ) is an injective unital homomorphism, then Φ∗ maps Z0(J)
holomorphically into Z0(I).

(b) If Φ : Mult(HI)→ Mult(KJ) is an injective unital homomorphism and weak-∗-weak-∗
continuous, then Φ∗ maps Z0(J) holomorphically into Z0(I).

(c) If Φ : Mult(HI)→ Mult(KJ) is an injective unital homomorphism, and if H is tame,
then Φ∗ maps Z0(J) holomorphically into Z0(I), and Φ is weak-∗-weak-∗ continuous.

Proof. (a) Clearly, Φ∗ maps Z0(J) into Z(I), and the j-th coordinate of Φ∗ is given by
Φ(zj) ∈ A(HI), hence F = Φ∗

∣∣
Z0(J)

is holomorphic. Lemma 4.9.1 shows that the range of F

contains points in ∂Bd only if F is constant. In this case, Φ(zj) = λj, where (λ1, . . . , λd) ∈
∂Bd. Since Φ is unital and injective, it follows that λj = zj on Z0(I), which is absurd.
Thus, the range of F is contained in Z0(I).

(b) By definition of the map π : M(Mult(HI)) → Z(I), part (a) implies that π ◦ Φ∗ is
holomorphic and maps Z0(J) into Z0(I). Since Φ is weak-∗-weak-∗ continuous, Φ∗(Z0(J))
consists of point evaluations by Lemma 4.5.7, so the assertion follows.
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(c) Again by part (a), π ◦ Φ∗ is holomorphic and maps Z0(J) into Z0(I). Since H is
tame, we conclude that Φ∗ maps Z0(J) into the set (of point evaluations at points in)
Z0(I) (see Remark 4.8.4). If K is a space on Bd, Lemma 4.5.7 therefore implies that Φ is
weak-∗-weak-∗ continuous. Now, assume that K is a space on Bd. If H is a space on Bd as
well, then Φ∗(Z(J)) ⊂ Z(I) by continuity of Φ∗, thus Φ is again weak-∗-weak-∗ continuous
by Lemma 4.5.7.

It remains to consider the case where H is a space on Bd and K is space on Bd. We
claim that Φ∗(Z0(J)) is contained in a ball of radius r < 1. This will finish the proof,
as Φ∗(Z(J)) ⊂ rZ(I) ⊂ Z0(I) by continuity, so once again, the assertion follows from
Lemma 4.5.7. Suppose that Φ∗(Z0(J)) contains a sequence (Φ∗(λn)) with ||Φ∗(λn)|| → 1.
By passing to a subsequence, we may assume that (λn) converges to a point λ ∈ Z(J).
Lemma 4.8.2 shows that there is a multiplier ϕ ∈ Mult(HI) such that (ϕ(Φ∗(λn))) does
not converge. However,

ϕ(Φ∗(λn)) = (Φ(ϕ))(λn),

and Φ(ϕ) ∈ Mult(KJ) is a continuous function on Z(J). This is a contradiction, and the
proof is complete.

For isomorphisms, we obtain the following consequence.

Corollary 4.10.2. Let H and K as well as I, J ( C[z1, . . . , zd] be as above.

(a) If Φ : A(HI) → A(HJ) is an isomorphism, then Φ∗ maps Z0(J) biholomorphically
onto Z0(I).

(b) Let Φ : Mult(HI) → Mult(HJ) be an isomorphism, and assume that H is tame or
that Φ is weak-∗-weak-∗ continuous. Then Φ∗ maps Z0(J) biholomorphically onto
Z0(I), and Φ is a weak-∗-weak-∗ homeomorphism.

Proof. (a) immediately follows from part (a) of the preceding lemma.

(b) By part (c) of the last lemma, Φ is weak-∗-weak-∗ continuous in both cases. Since
it is also a homeomorphism in the norm topologies, the Krein-Smulian theorem combined
with weak-∗ compactness of the unit balls shows that Φ−1 is weak-∗-weak-∗ continuous as
well (see, for example, the argument at the end of the proof of Theorem 3.2.5). Thus, part
(b) of the last lemma also applies to Φ−1, so that Φ∗ is a biholomorphism between Z0(J)
and Z0(I).

For n ∈ N, let (HI)n denote the space of all homogeneous elements of HI of degree n.
Recall that (HI)n ⊂ A(HI) for all n ∈ N. We say that a homomorphism Φ : A(HI) →
Mult(KJ) is graded if

Φ((HI)n) ⊂ (KJ)n
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for all n ∈ N. Graded isomorphisms admit a particularly simple description in terms of
their adjoint.

Lemma 4.10.3. Let H and K as well as I, J ( C[z1, . . . , zd] be as above, and suppose that
Φ : A(HI) → A(KJ) is an isomorphism (respectively that Φ : Mult(HI) → Mult(KJ) is a
weak-∗-weak-∗ continuous isomorphism). Then the following are equivalent:

(i) Φ is graded.

(ii) Φ∗(0) = 0.

(iii) There exists an invertible linear map A on Cd which maps V (J) isometrically onto
V (I) such that Φ is given by composition with A, that is,

Φ(ϕ) = ϕ ◦ A

for all ϕ ∈ A(HI) (respectively ϕ ∈ Mult(HI)).

Proof. (iii) ⇒ (i) is obvious.

(i) ⇒ (ii) Let λ = Φ∗(0) ∈ Z(I). If λ 6= 0, then there is a homogeneous element
ϕ ∈ A(HI) of degree 1 such that ϕ(λ) 6= 0. Corollary 4.10.2 implies that Φ∗(0) ∈ Z0(I),
hence

Φ(ϕ)(0) = ϕ(Φ∗(0)) = ϕ(λ) 6= 0.

In particular, Φ(ϕ) is not homogeneous of degree 1, hence Φ is not graded.

(ii) ⇒ (iii) By Corollary 4.10.2, Φ∗ maps Z0(J) biholomorphically onto Z0(I). Since
Φ∗(0) = 0, Proposition 4.9.3 therefore yields an invertible linear map A which maps V (J)
isometrically onto V (I) such that Φ∗ coincides with A on Z0(J). It follows that

Φ(ϕ) = ϕ ◦ A

on Z0(J) for all ϕ ∈ A(HI) (respectively ϕ ∈ Mult(HI)). Moreover, if Φ is a map from
A(HI) onto A(KJ), then this identity holds on Z(J) by continuity.

Assume now that Φ is a map from Mult(HI) onto Mult(KJ). If K is a space on Bd,
we are done. If K and H are spaces on Bd, then Φ(ϕ) = ϕ ◦ A again holds on Z(J) by
continuity. We finish the proof by showing that the remaining case where K is a space on
Bd, H is a space on Bd and V (J) 6= {0} does not occur. Indeed, in this case, V (I) 6= {0}
and Φ∗ would map Z(J) onto a necessarily compact subset of Z0(I) by Lemma 4.5.7. This
contradicts the fact that Φ∗ maps Z0(J) onto Z0(I).
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We mention that in the case whereH = K = H2
d , the Drury-Arveson space, isomorphisms

as above are called vacuum-preserving in [24].

The desired consequence about the existence of graded isomorphisms is the following
result.

Proposition 4.10.4. Let H and K as well as I, J ( C[z1, . . . , zd] be as above.

(a) If A(HI) and A(KJ) are algebraically (respectively isometrically) isomorphic, then
there exists a graded algebraic (respectively isometric) isomorphism from A(HI) onto
A(KJ).

(b) If Mult(HI) and Mult(KJ) are algebraically (respectively isometrically) isomorphic
via a weak-∗-weak-∗ continuous isomorphism, then there exists a graded weak-∗-
weak-∗ continuous algebraic (respectively isometric) isomorphism from Mult(HI) onto
Mult(KJ).

Proof. By Lemma 4.10.3, it suffices to show in each case that there exists an isomorphism
whose adjoint fixes the origin. We will achieve this by applying Corollary 4.10.2 and
Lemma 4.9.6. To this end, observe that for λ ∈ T, the unitary map Uλ on Cd given by
multiplication with λ induces a unitary composition operator CUλ on HI . If ϕ ∈ Mult(HI),
then

CUλMϕC
∗
Uλ

= Mϕ◦Uλ ,

hence ΦI
λ(Mϕ) = CUλMϕC

∗
Uλ

defines an isometric, weak-∗-weak-∗ continuous automorphism
of Mult(HI) which maps A(HI) onto A(HI). Clearly, the adjoint of this automorphism,
restricted to Z0(I), is given by multiplication with Uλ. The same result holds for KJ in
place of HI .

Suppose now that Φ is an isomorphism between A(HI) and A(KJ) (respectively a weak-
∗-weak-∗ continuous isomorphism between Mult(HI) and Mult(KJ)). By Corollary 4.10.2,
the adjoint Φ∗ maps Z0(J) biholomorphically onto Z0(I). From Lemma 4.9.6, we infer
that there exist λ, µ ∈ T such that the map

Φ∗ ◦ Uλ ◦ (Φ∗)−1 ◦ Uµ ◦ Φ∗

fixes the origin. This map is the adjoint of

Φ ◦ ΦI
µ ◦ Φ−1 ◦ ΦJ

λ ◦ Φ,

which is an isomorphism between A(HI) and A(KJ) (respectively a weak-∗-weak-∗ con-
tinuous isomorphism between Mult(HI) and Mult(KJ)). Moreover, it is isometric if Φ is
isometric, which finishes the proof.
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4.11. Isomorphism results

We are now ready to establish the main results about isomorphism of multiplier algebras
of spaces of the type HI . We will usually make an assumption which guarantees that the
Hilbert function spaces have dimension at least 2. In projective algebraic geometry, the
maximal ideal of C[z1, . . . , zd] which is generated by the coordinate functions z1, . . . , zd is
called the irrelevant ideal (see [90, Chapter VII]). This is because the vanishing locus of
this ideal in Cd is just the origin, hence the projective vanishing locus in Pd−1(C) is empty.
We will say that a radical homogeneous ideal of C[z1, . . . , zd] is relevant if it is proper and
not equal to the irrelevant ideal. By the projective Nullstellensatz, the projective vanishing
locus of every such ideal I is not empty, thus Z0(I) ⊂ Cd always contains a disc.

Proposition 4.11.1. Let H and K be unitarily invariant complete NP-spaces, and let I
and J be relevant radical homogeneous ideals in C[z1, . . . , zd]. Let Φ : A(HI) → A(KJ) be
a graded algebraic isomorphism (respectively Φ : Mult(HI) → Mult(KJ) a graded weak-∗-
weak-∗ continuous isomorphism).

Then H = K as vector spaces, and there exists an invertible linear map A which maps
V (J) isometrically onto V (I) such that Φ is given by composition with A. Moreover, A
induces a bounded invertible composition operator

CA : HI → KJ , f 7→ f ◦ A,

such that
Φ(Mϕ) = CAMϕ(CA)−1

for all ϕ ∈ A(HI) (respectively ϕ ∈ Mult(HI)). In particular, Φ is given by a similarity.

Proof. By Lemma 4.10.3, there exists an invertible linear map A which maps V (J) iso-
metrically onto V (I) and such that Φ is given by composition with A. Since all Banach
algebras under consideration are semi-simple, Φ and its inverse are (norm) continuous (see
[17, Proposition 4.2]). Thus, if f ∈ HI is homogeneous, then Proposition 4.6.4 shows that

||f ◦ A||KJ = ||f ◦ A||Mult(KJ ) ≤ ||Φ|| ||f ||Mult(HI) = ||Φ|| ||f ||HI ,

so there exists a bounded operator CA : HI → KJ such that

CAf = f ◦ A

holds for every polynomial f , and hence for all f ∈ HI . Consideration of Φ−1 shows that
CA is invertible. Moreover, for ϕ ∈ Mult(HI) and f ∈ KJ , we have

CAMϕ(CA)−1f = (ϕ ◦ A)f,
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hence Φ is given by conjugation with CA.

We finish the proof by showing that H and K coincide as vector spaces. To this end, let

KH(z, w) =
∞∑
n=0

an〈z, w〉n

and

KK(z, w) =
∞∑
n=0

a′n〈z, w〉n

denote the reproducing kernels of H and K, respectively. Since I and J are radical, Lemma
4.7.4 implies that the restriction maps RI : H	 I → HI and RJ : K	J → KJ are unitary.
Let

TA = R−1
I (CA)∗RJ ∈ B(K 	 J,H	 I).

Then TA is bounded and invertible, and Lemma 4.7.5 combined with Lemma 4.7.4 implies
that

TAKK(·, w) = KH(·, Aw)

for all w ∈ Z0(J). Using the homogeneity of J , it is easy to deduce from KK(·, w) ∈ K	J
for w ∈ Z0(J) that 〈·, w〉n ∈ K	J for all w ∈ Z0(J) and all n ∈ N. Similarly, 〈·, z〉n ∈ H	I
for all z ∈ Z0(I) and all n ∈ N. Moreover, CA and hence TA respects the degree of
homogeneous polynomials. Consequently,

TAa
′
n〈·, w〉n = an〈·, Aw〉n (4.6)

for all n ∈ N and all w ∈ V (J). Using part (d) of Remark 4.7.1 and the fact that
||Aw|| = ||w||, we see that

||a′n〈·, w〉n||2KJ = a′n||w||2n

and that
||an〈·, Aw〉n||2HI = an||w||2n.

Since J is relevant, V (J) contains a non-zero vector w, hence

||(C∗A)−1||2 ≤ an
a′n
≤ ||C∗A||2

for all n ∈ N, from which it immediately follows that H = K as vector spaces (see part (d)
of Remark 4.7.1).

Using the same methods as in the last proof, we obtain a version of Proposition 4.11.1
for isometric isomorphisms.
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Proposition 4.11.2. Let H and K be unitarily invariant complete NP-spaces, and let I
and J be relevant radical homogeneous ideals in C[z1, . . . , zd]. Let Φ : A(HI) → A(KJ) be
a graded isometric isomorphism (respectively Φ : Mult(HI)→ Mult(KJ) a graded weak-∗-
weak-∗ continuous isometric isomorphism).

Then H = K as Hilbert spaces, and there exists a unitary map U which maps V (J)
onto V (I) such that Φ is given by composition with U . Moreover, U induces a unitary
composition operator

CU : HI → KJ , f 7→ f ◦ U,

such that
Φ(Mϕ) = CUMϕ(CU)−1

for all ϕ ∈ A(HI) (respectively ϕ ∈ Mult(HI)). In particular, Φ is unitarily implemented.

Proof. Proposition 4.11.1 and its proof show that there exists an invertible linear map
U which maps V (J) isometrically onto V (I) such that U induces a unitary composition
operator

CU : KJ → HI , f 7→ f ◦ U,

and such that Φ is given by conjugation with CU . Since CU is a unitary operator, the last
part of the proof of Proposition 4.11.1 shows that an = a′n for all n ∈ N in the notation of
the proof, and hence H = K as Hilbert spaces.

Finally, setting n = 1 in Equation (4.6), we see that

TU〈·, w〉 = 〈·, Uw〉

for all w ∈ V (J), and hence for all w in the linear span of V (J). Since TU is a unitary
operator, part (d) of Remark 4.7.1 implies that U is isometric on the linear span of V (J).
Hence, U is a unitary map from the linear span of V (J) onto the linear span of V (I).
Changing U on the orthogonal complement of span(V (J)) if necessary, we can therefore
achieve that U is a unitary map on Cd.

The last result, combined with Proposition 4.10.4, provides a necessary condition for the
existence of an isometric isomorphism between two algebras of the form A(HI), namely
condition (iii) in the next theorem. This condition turns out to be sufficient as well. We
thus obtain our main result regarding the isometric isomorphism problem. It generalizes
[24, Theorem 8.2]. For a bounded invertible operator S between two Hilbert spaces H and
K, let

Ad(S) : B(H)→ B(K), T 7→ STS−1,

be the induced isomorphism between B(H) and B(K).
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Theorem 4.11.3. Let H and K be unitarily invariant complete NP-spaces, and let I and J
be relevant radical homogeneous ideals in C[z1, . . . , zd]. Then the following are equivalent:

(i) A(HI) and A(KJ) are isometrically isomorphic.

(ii) Mult(HI) and Mult(KJ) are isometrically isomorphic via a weak-∗-weak-∗ continuous
isomorphism.

(iii) H = K as Hilbert spaces and there is a unitary map U on Cd which maps V (J) onto
V (I).

If H or K is tame, then this is equivalent to

(iv) Mult(HI) and Mult(KJ) are isometrically isomorphic.

If U is a unitary map on Cd as in (iii), then U induces a unitary composition operator

CU : HI → KJ , f 7→ f ◦ U,

and Ad(CU) maps A(HI) onto A(KJ) and Mult(HI) onto Mult(KJ).

Proof. It follows from Proposition 4.10.4 and Proposition 4.11.2 that (i) or (ii) implies (iii).
Moreover, if one of the spaces is tame, then Corollary 4.10.2 (b) shows the equivalence of
(ii) and (iv).

Conversely, suppose that (iii) holds. Since H = K is unitarily invariant, U induces a

unitary composition operator ĈU ∈ B(H). If K denotes the reproducing kernel of H, then

(ĈU)∗K(·, w) = K(·, Uw)

for all w ∈ Z0(J) (or w ∈ Z(J) if H is a space on Bd). Since H	 I and H	J are spanned
by kernel functions (see Lemma 4.7.4), the implication (ii) ⇒ (i) in Lemma 4.7.5 shows
that U induces a unitary composition operator CU : HI → HJ .

Then for ϕ ∈ Mult(HI) and f ∈ KJ ,

CUMϕ(CU)−1f = (ϕ ◦ U) · f,

hence Ad(CU) maps Mult(HI) into Mult(HJ) and A(HI) into A(HJ). If we consider
Ad(CU−1), we see that Ad(CU) is an isomorphism from Mult(HI) onto Mult(HJ) and from
A(HI) onto A(HJ). Hence, (i) and (ii) hold, and the additional assertion is proven.

For algebraic isomorphisms, the situation is more difficult. Proposition 4.10.4 and Propo-
sition 4.11.1 show that if A(HI) and A(KJ) are algebraically isomorphic, then H = K as
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vector spaces and there exists an invertible linear map A on Cd which maps V (J) isomet-
rically onto V (I). Note that here, A will in general only be isometric on V (J) and not on
all of Cd. In this case, it is no longer obvious that A induces an algebraic isomorphism be-
tween A(HI) and A(KJ). The reason why the proof of Theorem 4.11.3 does not carry over
is that now, A does not induce a composition operator on all of H. In the case of H = H2

d ,
this problem already appeared in [24], where it was solved under additional assumptions
on the geometry of V (J). The general case was settled in [40]. Fortunately, we can use a
crucial reduction from [24] and the main result of [40] in our setting as well.

Lemma 4.11.4. Let H be a reproducing kernel Hilbert space on Bd (or on Bd) with a
reproducing kernel of the form

K(z, w) =
∞∑
n=0

an〈z, w〉n,

where an > 0 for all n ∈ N. Suppose that I ( C[z1, . . . , zd] is a radical homogeneous ideal.
If A is a linear map on Cd which is isometric on V (I), then there exists a bounded operator

TA : H	 I → H such that TAK(·, w) = K(·, Aw)

for all w ∈ Z0(I) (respectively w ∈ Z(I) if H is a space on Bd).

Proof. The first part of the proof is a straightforward adaptation of the proof of [40,
Proposition 2.5]. Let

V (I) = V1 ∪ . . . ∪ Vr
be the decomposition of V (I) into irreducible homogeneous varieties and let Î be the

vanishing ideal of spanV1 ∪ . . .∪ spanVr. Then Î ⊂ I by Hilbert’s Nullstellensatz. By [24,

Proposition 7.6], the linear map A is isometric on V (Î), so we may assume without loss of
generality that

V (I) = V1 ∪ . . . ∪ Vr
is a union of subspaces, so

I = I1 ∩ . . . ∩ Ir,

where Ij is the vanishing ideal of Vj. Then by a variant of [40, Lemma 2.3],

H	 I = H	 I1 + . . .+H	 Ir.

We define TA on the dense subspace of H	 I consisting of polynomials by

TAp = p ◦ A∗.
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Then TA〈·, w〉n = 〈·, Aw〉n for all w ∈ V (I). Using the fact that H is unitarily invariant
and that A is isometric on each Vj, it is not hard to see that the map TA is isometric on
H	 Ij for every j (cf. [40, Lemma 2.2]). As in the proof of [40, Proposition 2.5], we may
therefore finish the proof by showing that the algebraic sum

H	 I1 + . . .+H	 Ir

is closed.

If H = H2
d , this is the main result of [40]. More generally, in the present setting, there

exists a unique unitary operator

U : H2
d → H with U(p) =

√
anp

for every homogeneous polynomial p of degree n (see, for example [39, Proposition 4.1]).
Since each Ij is a homogeneous ideal, U(Ij) = Ij and hence U(H2

d 	 Ij) = H 	 Ij for
1 ≤ j ≤ r. Consequently, closedness of the algebraic sum

H	 I1 + . . .+H	 Ir

follows from the special case where H = H2
d .

With the help of Lemma 4.11.4, we can now prove the main result regarding the algebraic
isomorphism problem. It generalizes [24, Theorem 8.5] and [40, Theorem 5.9]. Observe
that since the algebras A(HI) and Mult(HI) are semi-simple, algebraic isomorphisms are
automatically norm continuous.

Theorem 4.11.5. Let H and K be unitarily invariant complete NP-spaces, and let I and J
be relevant radical homogeneous ideals in C[z1, . . . , zd]. Then the following are equivalent:

(i) A(HI) and A(KJ) are algebraically isomorphic.

(ii) Mult(HI) and Mult(KJ) are isomorphic via a weak-∗-weak-∗ continuous isomor-
phism.

(iii) H = K as vector spaces and there is an invertible linear map A on Cd which maps
V (J) isometrically onto V (I).

If H or K is tame, then this is equivalent to

(iv) Mult(HI) and Mult(KJ) are algebraically isomorphic.

If A is an invertible linear map on Cd as in (iii), then A induces a bounded invertible
composition operator

CA : HI → KJ , f 7→ f ◦ A,
and Ad(CA) maps A(HI) onto A(KJ) and Mult(HI) onto Mult(KJ).
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Proof. It follows from Proposition 4.10.4 and Proposition 4.11.1 that (i) or (ii) implies
(iii). Moreover, if one of the spaces is tame, then Corollary 4.10.2 (b) once again shows
the equivalence of (ii) and (iv).

Assume that (iii) holds. Since H = K as vector spaces, the formal identity

E : H → K, f 7→ f,

is bounded and bounded below by the closed graph theorem. By Lemma 4.11.4, there
exists a bounded operator

T : K 	 J → K such that TKK(·, w) = KK(·, Aw)

for all w ∈ Z0(J) (respectively w ∈ Z(J)). Let TA = E∗T . Then

TA(KK(·, w)) = E∗KK(·, Aw) = KH(·, Aw)

for all w, from which we deduce with the help of Lemma 4.7.4 that TA mapsK	J intoH	I.
Replacing A with A−1, we see that TA ∈ B(K	 J,H	 I) is invertible. It now follows from
Lemma 4.7.5 that A induces a bounded invertible composition operator CA : HI → KJ .
As in the proof of Theorem 4.11.3, we see that Ad(CA) is the desired isomorphism.

Just as in [24], we obtain from the geometric rigidity result [24, Proposition 7.6] a
rigidity result for our algebras. It generalizes [24, Theorem 8.7]. The author is grateful to
the anonymous referee of [43] for pointing out this corollary.

Corollary 4.11.6. Let H be a unitarily invariant complete NP-space and let I and J
be relevant radical homogeneous ideals in C[z1, . . . , zd]. Suppose that V (I) or V (J) is
irreducible.

(a) If A(HI) and A(HJ) are algebraically isomorphic, then A(HI) and A(HJ) are uni-
tarily equivalent.

(b) If Mult(HI) and Mult(HJ) are isomorphic via a weak-∗-weak-∗ continuous isomor-
phism, then Mult(HI) and Mult(HJ) are unitarily equivalent.

(c) If H or K is tame and Mult(HI) and Mult(HJ) are algebraically isomorphic, then
Mult(HI) and Mult(HJ) are unitarily equivalent.

Proof. In each case, Theorem 4.11.5 shows that there exists an invertible linear map A
on Cd which maps V (J) isometrically onto V (I). In particular, V (I) and V (J) are both
irreducible. Proposition 7.6 in [24] implies that A is isometric on the linear span of V (J),
and hence can be chosen to be unitary. All assertions now follow from Theorem 4.11.3.
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Let us apply Theorems 4.11.3 and 4.11.5 in the setting where H and K are given by
log-convex sequences (see part (b) of Remark 4.7.1). This includes in particular the spaces
Hs(Bd) and Hs(Bd) of Example 4.7.2. If a = (an)n is a sequence of positive real numbers
such that the series

∞∑
n=0

anz
n

has radius of convergence 1, we write H(a) for the reproducing kernel Hilbert space with
reproducing kernel

K(z, w) =
∞∑
n=0

an〈z, w〉n.

If
∑∞

n=0 an = ∞, this is a reproducing kernel Hilbert space on Bd, and if
∑∞

n=0 an < ∞,
this a space on Bd.

Corollary 4.11.7. Let a = (an) and a′ = (a′n) be two log-convex sequences of positive real
numbers such that

a0 = 1 = a′0

and

lim
n→∞

an
an+1

= 1 = lim
n→∞

a′n
a′n+1

.

Let H = H(a) and K = H(a′). Let I, J ⊂ C[z1, . . . , zd] be two relevant radical homogeneous
ideals of polynomials. Then the following are equivalent:

(i) A(HI) and A(KJ) are isometrically isomorphic.

(ii) Mult(HI) and Mult(KJ) are isometrically isomorphic.

(iii) an = a′n for all n ∈ N and there exists a unitary map U on Cd which maps V (J) onto
V (I).

Moreover, the following assertions are equivalent as well:

(i) A(HI) and A(KJ) are algebraically isomorphic.

(ii) Mult(HI) and Mult(KJ) are algebraically isomorphic.

(iii) There exist constants C1, C2 > 0 such that

C1 ≤
an
a′n
≤ C2

for all n ∈ N and there exists an invertible linear map A on Cd which maps V (J)
isometrically onto V (I).
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Proof. The assumptions on a and a′ imply that H and K are unitarily invariant complete
NP spaces on Bd or on Bd (see the beginning of Section 4.7). Proposition 4.8.5 (c) shows
that H and K are tame. The first set of equivalences is now an immediate consequence
of Theorem 4.11.3. To prove the second set of equivalences, in light of Theorem 4.11.5, it
suffices to show that H = K as vector spaces if and only if there exist constants C1, C2 > 0
such that

C1 ≤
an
a′n
≤ C2

for all n ∈ N. To this end, observe that if H = K as vector spaces, then the formal identity
E : H → K, f 7→ f , is bounded and invertible by the closed graph theorem, hence the
existence of the constants follows from the description of the norm in part (d) of Remark
4.7.1. The other implication follows from part (d) of Remark 4.7.1 as well.

We finish this chapter by considering the last result about algebraic isomorphism from
the point of view adopted in [25] and in Chapter 3. That is, we will identify a multiplier
algebra Mult(HI) with an algebra of the form MV = Mult(H2

∞
∣∣
V

) for a suitable variety
V ⊂ B∞.

We first show that most of our examples of unitarily invariant complete NP-spaces
cannot be embedded into a finite dimensional ball. More generally, let H be an irreducible
complete Nevanlinna-Pick space on Bd with reproducing kernel of the form

K(z, w) =
∞∑
n=0

an〈z, w〉n,

where a0 = 1. Recall that an embedding for H is an injective function j : Bd → Bm for
some m ∈ N ∪ {∞} such that

〈j(z), j(w)〉 = 1− 1∑∞
n=0 an〈z, w〉n

for all z, w ∈ Bd. By Lemma 4.2.2, there is a sequence (cn) of non-negative real numbers
such that

1− 1∑∞
n=0 an〈z, w〉n

=
∞∑
n=1

cn〈z, w〉n

for all z, w ∈ Bd. Since

〈z, w〉n =
∑
|α|=n

(
n

α

)
zαwα = 〈ψn(z), ψn(w)〉,
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where

ψn : Cd → C(n+d−1
n ), z 7→

(√(
n

α

)
zα

)
|α|=n

,

an embedding j for H can be explicitly constructed by setting

j(z) = (
√
c1ψ1(z),

√
c2ψ2(z),

√
c3ψ3(z), . . .).

Using the fact that
∑∞

n=1 cn ≤ 1, it is not hard to see that j is an analytic map from Bd into
Bm which extends to a norm continuous map from Bd to Bm. If d = 1, these embeddings
are simply the embeddings considered in Sections 3.7 and 3.8.

In particular, we see that if only finitely many of the cn are non-zero, then H admits an
embedding into a finite dimensional ball, that is, there exists m < ∞ and an embedding
j : Bd → Bm for H. In fact, this property characterizes unitarily invariant spaces which
admit an embedding into a finite dimensional ball.

Proposition 4.11.8. Let H be an irreducible complete Nevanlinna-Pick space on Bd with
reproducing kernel of the form

K(z, w) =
∞∑
n=0

an〈z, w〉n,

where a0 = 1. Then H admits an embedding into a finite dimensional ball if and only if
the analytic function f on D defined by

f(t) =
1∑∞

n=0 ant
n

is a polynomial.

Proof. With notation as in the discussion preceding the proposition, observe that

1− f(t) =
∞∑
n=1

cnt
n

for all t ∈ D. Hence, f is indeed an analytic function on D, and f is a polynomial if and
only if all but finitely many cn are zero.

For the proof of the remaining implication, suppose that H admits an embedding j into
Bm for some m <∞. From

1− 1

K(z, w)
= 〈j(z), j(w)〉Cm ,
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we deduce that the rank of the kernel L = 1− 1/K is at most m in the sense that for any
finite collection of points {z1, . . . , zn}, the matrix(

L(zi, zj)
)n
i,j=1

has rank at most m. Let K denote the reproducing kernel Hilbert space on Bd with
reproducing kernel L. Since

〈L(·, w), L(·, z)〉K = L(z, w),

and since K is spanned by the kernel functions L(·, z) for z ∈ Bd, it follows that the
dimension of K is at most m. However, L also admits the representation

L(z, w) =
∞∑
n=1

cn〈z, w〉n,

hence for every n ∈ N with cn 6= 0, the space K contains the monomial zn1 , and different
monomials are orthogonal. Consequently, cn = 0 for all but finitely many n, so f is a
polynomial.

As a consequence, we see that all spaces in Example 4.7.2 besides the Drury-Arveson
space do not admit an embedding into a finite dimensional ball.

Corollary 4.11.9. Let H be a unitarily invariant complete NP-space with reproducing
kernel of the form

K(z, w) =
∞∑
n=0

an〈z, w〉n.

If H admits an embedding into a finite dimensional ball, then the sequence (an) converges
to a positive real number, and hence H = H2

d as vector spaces. In particular, the space
Hs(Bd) for −1 ≤ s < 0, the space Hs(Bd) for s < −1, and the space Kα for 0 < α < 1 do
not admit an embedding into a finite dimensional ball.

Proof. Assume that H admits an embedding into a finite dimensional ball. Proposition
4.11.8 implies that there exists N ∈ N and non-negative real numbers c1, . . . , cN such that

∞∑
n=0

ant
n =

1

1−
∑N

n=1 cnt
n
.

Observe that c1 > 0 as a1 > 0. Since the power series on the left-hand side has radius
of convergence 1, this rational function in t has a pole on ∂D. Because an ≥ 0 for all
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n ∈ N, this is only possible if
∑∞

n=0 an = ∞, from which we deduce that
∑N

n=1 cn = 1.

Let r =
∑N

n=1 ncn. In this setting, the Erdős-Feller-Pollard theorem (see [31, Chapter
XIII, Section 11]) implies that limn→∞ an = 1/r > 0. The remaining assertions are now
obvious.

Suppose now that a is a sequence as in Corollary 4.11.7, and assume first that we are
in the case where

∑∞
n=0 an =∞. Let ja : Bd → B∞ denote the embedding for H(a) which

was constructed above. Note that c1 6= 0 as a1 6= 0, that the coordinates ja are polynomials
(in fact monomials), and that the first d coordinates are given by (

√
c1z1, . . . ,

√
c1zd). In

particular, ja : Bd → Va is invertible, where Va denotes the range of ja. An inverse of ja
is given by

j−1
a (z) =

1
√
c1

(z1, . . . , zd) (4.7)

for z ∈ Va.

Suppose now that I ⊂ C[z1, . . . , zd] is a relevant radical homogeneous ideal. Then the
restriction of ja to Z0(I) is an embedding forH(a)I . SinceH(a)I is algebraically consistent,
the image

Va,I = ja(Z0(I)) ⊂ B∞

is a variety by Proposition 4.5.6. Moreover, ja maps Z0(I) biholomorphically onto Va,I .
This discussion also applies to the case where

∑∞
n=0 an <∞ by simply replacing Bd with Bd

and Z0(I) with Z(I) above. In this case,
∑∞

n=1 cn < 1 and ja maps Z(I) homeomorphically
onto Va,I and Z0(I) biholomorphically onto its image.

Let m ∈ N∪{∞}. For a variety V ⊂ Bm, letMV = Mult(H2
m

∣∣
V

). Following Chapter 3,
we say that two varieties V,W ⊂ Bm are multiplier biholomorphic if there exists a home-
omorphism F : V → W such that every coordinate of F is in MV and every coordinate
of F−1 is in MW . If m < ∞, then such a map is automatically a biholomorphism in the
usual sense. This definition is motivated by [25, Theorem 5.6], which states that ifMV and
MW are algebraically isomorphic, then V and W are multiplier biholomorphic, provided
that m <∞ and V and W satisfy some mild geometric assumptions. Moreover, there are
examples of two discs in B2 which are biholomorphic, but not multiplier biholomorphic
(see Section 3.5).

However, already the results in Sections 3.7 and 3.8 show that there are multiplier
biholomorphic discs in B∞ whose multiplier algebras are not isomorphic. It turns out that
for the varieties Va,I constructed above, of which the discs from Sections 3.7 and 3.8 are
a special case, the multiplier biholomorphism classes only depend on the ideal I and on
summability of the sequence a. They do not detect any other properties of the sequence
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a. In light of Corollary 4.11.7, this means that the relation of multiplier biholomorphism
fails rather dramatically at distinguishing the isomorphism classes of the algebras MVa,I .

Proposition 4.11.10. Let a = (an) and a′ = (a′n) be sequences as in Corollary 4.11.7,
and let I, J ⊂ C[z1, . . . , zd] be relevant radical homogeneous ideals. Let Va,I and Va′,J be
the varieties defined above. Then the following are equivalent:

(i) Va,I and Va′,J are multiplier biholomorphic.

(ii) The sequences a and a′ are either both summable or both not summable, and there
exists an invertible linear map A on Cd which maps V (J) isometrically onto V (I).

Proof. (i) ⇒ (ii) Observe that Va,I is homeomorphic to Z0(I) if a is not summable and
homeomorphic to Z(I) if a is summable. Since Z(I) is compact and Z0(I) is not, it follows
that if (i) holds, then a and a′ are either both summable or both not summable. In the
non-summable case, Z0(I) and Z0(J) are biholomorphic. In the summable case, there is a
homeomorphism F : Z(I)→ Z(J) which is analytic on Z0(I) and whose inverse is analytic
on Z0(J). Then Lemma 4.9.1 implies that Z0(I) and Z0(J) are biholomorphic. Finally,
an application of Lemma 4.9.6 and Proposition 4.9.3 shows that there exists an invertible
linear map A on Cd which maps V (J) isometrically onto V (I).

(ii)⇒ (i) Let us first assume that a and a′ are both not summable, and let ja : Bd → Va
and ja′ : Bd → Va′ be the embeddings constructed earlier. Then F = ja ◦ A ◦ j−1

a′ maps
Va′,J homeomorphically onto Va,I . From Equation (4.7) and the fact that the coordinates
of ja are polynomials, we deduce that the coordinates of F are polynomials in z1, . . . , zd.
Similarly, the coordinates of F−1 are polynomials in z1, . . . , zd, hence F is a multiplier
biholomorphism.

After replacing Bd with Bd, the same argument applies in the situation where a and a′

are both summable. Hence, the proof is complete.
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5. The Borel complexity of the
classification problem

5.1. Introduction

The contents of this chapter are joint work with Martino Lupini and appeared in [45]. We
investigate the classification problem for multiplier algebras MV from the perspective of
Borel complexity theory. Our main result is that the classification problem for multiplier
algebras MV up to algebraic isomorphism is intractable in the sense of Borel complexity
theory.

Theorem 5.1.1. The multiplier algebras MV , where V is a variety in B∞, are not clas-
sifiable by countable structures up to algebraic isomorphism.

This means that there is no explicit way to classify the multiplier algebras MV using
countable structures as complete invariants. A more precise version of the statement of
Theorem 5.1.1 will be given in Section 5.2. The proof of Theorem 5.1.1 is presented in
Sections 5.3 and 5.5. In order to prove Theorem 5.1.1 we develop in Section 5.4 the theory
of turbulence for Polish groupoids. This is a generalization of Hjorth’s theory of turbulence
for Polish group actions from [49], see also [34, Chapter 10].

We also study the (completely) isometric classification problem for multiplier algebras
MV associated to varieties in Bd with d finite. By Theorem 4.4 and Theorem 5.10 in [25],
this amounts to classifying varieties in Bd up to Aut(Bd)-conformal equivalence. We are
able to exactly determine the complexity of such a task.

Theorem 5.1.2. For any d ∈ N, the relation of Aut(Bd)-conformal equivalence of varieties
in Bd is essentially countable, and has maximum complexity among essentially countable
equivalence relations.

In particular, Theorem 5.1.2 shows that the relation of Aut(Bd)-conformal equivalence
of varieties in Bd is not smooth. In fact, any class of complete invariants would have to be
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5. The Borel complexity of the classification problem

as complex as conceivable. We will explain in more detail the content of Theorem 5.1.2 in
Section 5.2. The proof of Theorem 5.1.2 is provided in Section 5.6.

The remainder of this chapter is organized as follows. In Section 5.2, we recall necessary
basic notions and results from Borel complexity theory. In Section 5.3, we reduce Theorem
5.1.1 to a non-classification result for certain sequences in (0, 1]. In order to establish this
result, we develop the theory of turbulence for Polish groupoids in Section 5.4. In Section
5.5, we establish the desired non-classification result for sequences. Finally, in Section 5.6,
the proof of Theorem 5.1.2 is provided.

5.2. Borel complexity theory

Borel complexity theory studies the relative complexity of classification problems in math-
ematics, and offers tools to detect and prove obstructions to classification. In this frame-
work, a classification problem is regarded as an equivalence relation on a standard Borel
space. Perhaps after a suitable parametrization, this covers most of classification problems
in mathematics. For example, varieties in Bd for d ∈ N ∪ {∞} are a collection Vd of
nonempty closed subsets of Bd. We will verify in the next section that Vd is a Borel subset
of the space of nonempty closed subsets of Bd endowed with the Effros Borel structure
[53, Section 12.C]. This shows that varieties form a standard Borel space when endowed
with the induced Borel structure [53, Proposition 12.1]. The relation of Aut(Bd)-conformal
equivalence of varieties in Bd can then be regarded as an equivalence relation on this stan-
dard Borel space. Similarly, the multiplier algebrasMV are naturally parametrized by the
varieties themselves, and one can regard algebraic isomorphisms of the algebrasMV as an
equivalence relation on the standard Borel space of varieties described above.

Borel complexity theory aims at comparing the complexity of different classification
problems. The fundamental notion of comparison is Borel reducibility. Recall that a Polish
space is a separable topological space which is homeomorphic to a complete metric space.
A standard Borel space is a measurable space which is isomorphic to the Borel space of
a Polish space. If E and F are equivalence relations on standard Borel spaces X and Y
respectively, then a Borel reduction from E to F is a Borel function f : X → Y with the
property that

f(x)Ff(x′) if and only if xEx′

for every x, x′ ∈ X. The relation E is Borel reducible to F—in formulas E ≤B F—if there
exists a Borel reduction from E to F . This amounts to saying that one can assign to the
elements of X complete invariants up to E that are F -equivalence classes, and moreover
such an assignment is constructive in the sense that it is given by a Borel map at the level
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of the spaces. We say that E and F are Borel bireducible, and write E ∼B F , if E ≤B F
and F ≤B E. The notion of Borel reducibility was first introduced in [32, Definition 2]. A
complete survey on Borel complexity theory can be found in [34].

Some distinguished equivalence relations are used as benchmarks of complexity to draw
a hierarchy of classification problems in mathematics. The first natural benchmark is
provided by the relation =R of equality of real numbers. An equivalence relation is smooth
if it is Borel reducible to =R. (One can replace R with any other standard Borel space
[53, Theorem 15.6].) For example, the relation of isomorphism of finite-splitting trees is
smooth [34, Theorem 13.2.3].

Smooth equivalence relations represent the lowest level complexity. A more ample class is
given by considering Borel equivalence relations that are countable or essentially countable.
An equivalence relation E on a standard Borel space X is Borel if it is a Borel subset
of the product X × X. A Borel equivalence relation E is countable if its classes are
countable, and essentially countable if it is Borel reducible to a countable one. Clearly, a
smooth equivalence relation is, in particular, essentially countable. The relation E0 of tail
equivalence of binary sequences is countable but not smooth [34, Subsection 6.1]. More
generally the orbit equivalence relation of a Borel action of a countable group on a standard
Borel space is countable. There exists a countable Borel equivalence relation E∞ that has
maximum complexity among (essentially) countable Borel equivalence relations. One can
describe E∞ as the relation of isomorphism of locally finite trees or graphs [34, Theorem
13.2.4]. In the proof of Theorem 5.1.2, we will use the following equivalent description
of E∞. Let F2 be the free group on two generators and {0, 1}F2 the space of subsets
of F2 endowed with the product topology. The group F2 naturally acts on {0, 1}F2 by
translation. The corresponding orbit equivalence relation E(F2, 2) is Borel bireducible
with E∞ [34, Theorem 7.3.8].

A more generous notion of classifiability for equivalence relations is being classifiable by
countable structures. An equivalence relation is classifiable by countable structures if it
is Borel reducible to the relation of isomorphism within some Borel class of structures in
some first order language. Equivalently an equivalence relation is classifiable by countable
structures if it is Borel reducible to the orbit equivalence relation of a continuous action of
S∞ on a Polish space [34, Section 3.6]. The Polish group S∞ is the group of permutations of
N with the topology of pointwise convergence [34, Section 2.4]. Any (essentially) countable
equivalence relation is in particular classifiable by countable structures [48, Lemma 2.4,
Lemma 2.5]. Again, there exists an equivalence relation of maximum complexity among
those that are classifiable by countable structures. Such an equivalence relation can be
described, for instance, as the relation of isomorphism of countable trees or graphs [32,
Theorem 1].
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5.3. Varieties and unitarily invariant kernels

If X is a Polish space, then the space F (X) of nonempty closed subsets of X is a standard
Borel space when endowed with the Effros Borel structure [53, Section 12.C]. This is the
Borel structure generated by the sets

{K ∈ F (X) : K ∩ U 6= ∅}

where U ranges over the open subsets of X.

For d ∈ N∪ {∞} let Vd ⊂ F (Bd) be the set of varieties in Bd, where Bd is endowed with
the norm topology. For d ≤ d′ the canonical inclusion Bd ⊂ Bd′ induces a Borel injection
from Vd into Vd′ .

Proposition 5.3.1. The set Vd of varieties in Bd is a Borel subset of F (Bd).

Proof. Observe that Vd is the image of F (H2
d) under the Borel map which assigns to a

closed subset S of H2
d the variety V (S) of common zeros of elements of S. Therefore Vd is

analytic. By [53, Theorem 14.7] it remains to show that Vd is co-analytic.

To this end, suppose that x ∈ Bd, ε > 0 and F ⊂ Bd is finite, say F = {x1, . . . , xn}. By
the Nevanlinna-Pick property of H2

d , there exists a multiplier ϕ in the unit ball of Mult(H2
d)

which vanishes on F and satisfies |ϕ(x)| ≥ ε if and only if the matrix

A(x, F, ε) =


K(x, x)(1− |ε|2) K(x, x1) . . . K(x, xn)

K(x1, x) K(x1, x1) . . . K(x1, xn)
...

. . . . . .
...

K(xn, x) K(xn, x1) . . . K(xn, xn)


is positive semidefinite, which does not depend on the order of the points in F .

We now claim that a closed subset V ⊂ Bd is a variety if and only if for every x ∈ Bd,
either x ∈ V or there exists a rational ε > 0 such that for all finite sets F ∈ F (Bd), either
F ∩ (Bd \ V ) 6= ∅ or A(x, F, ε) is positive. This formula shows that Vd is co-analytic by
[53, Proposition 37.1], and hence finishes the proof. To show the non-trivial implication of
the claim, suppose that the last statement holds. Then for every x ∈ Bd \ V , there exists
ε > 0 such that for all finite sets F ⊂ Bd, the weak-∗ compact set

IF = {ϕ ∈ Mult(H2
d) : ||ϕ||Mult(H2

d) ≤ 1 and |ϕ(x)| ≥ ε and ϕ
∣∣
F

0}

is not empty. Clearly, these sets have the finite intersection property, hence there exists
a multiplier ϕ which belongs to each of the IF , and this ϕ vanishes on V and satisfies
|ϕ(x)| ≥ ε. Consequently, V is a variety.
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We can now state Theorem 5.1.1 more precisely as follows.

Theorem 5.3.2. The equivalence relation on the space V∞ of varieties in 7B∞ defined by
V ∼ W if and only if MV and MW are algebraically isomorphic is not classifiable by
countable structures.

In fact, we show that this equivalence relation is not even classifiable by countable
structures when restricted to set of all varieties of the form Va, which were constructed in
the discussion preceding Proposition 4.11.10.

Recall from Section 4.7 that a unitarily invariant complete NP-space on Bd is a repro-
ducing kernel Hilbert space H(a) on Bd with reproducing kernel of the form

K(z, w) =
∞∑
n=0

an〈z, w〉n

for z, w ∈ Bd, where a = (an) is a sequence of positive numbers such that a0 = 1, the power
series

∑∞
n=0 ant

n has radius of convergence 1,
∑∞

n=0 an = ∞, and there exists a sequence
b = (bn) of non-negative numbers such that

∞∑
n=0

ant
n =

1

1−
∑∞

n=1 bnt
n
. (5.1)

We let A ⊂ (0,∞)N denote the set of such sequences. It is not difficult to see that A
is a Borel subset of (0,∞)N endowed with the product topology. Indeed the first three
conditions are clearly Borel. For the last one, one can observe that given a sequence of
positive numbers a such that a0 = 1 and such that

∑∞
n=0 ant

n has radius of convergence
1, there is a unique sequence b of real numbers such that Equation 5.1 holds for t in a
neighbourhood of the origin. This sequence b can be recursively computed from a, which
shows that the set of all a such that b is non-negative is Borel.

It follows from the universality theorem of Agler and McCarthy (see Section 2.5) that
for every a ∈ A, there exists a variety Va ⊂ B∞ such thatMVa is completely isometrically
isomorphic to Mult(H(a)). In fact, the variety Va is the image of Bd under the embedding
ja : Bd → B∞ constructed in the discussion preceding Proposition 4.11.8. One can use
the explicit definition of the embedding ja in terms of a to show that the map a 7→ Va is
Borel. Therefore, in order to establish Theorem 5.3.2, it is enough to prove the following
result.

Theorem 5.3.3. Let d ∈ N. The relation ∼d on the space A defined by a ∼d a′ if and only
if Mult(H(a)) and Mult(H(a′)) are algebraically isomorphic is not classifiable by countable
structures.
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To prove this result, we will consider the special class of unitarily invariant complete NP-
spaces of Corollary 4.11.7. We say that a (necessarily non-increasing) sequence a = (an)
in (0, 1]N is admissible log-convex if a0 = 1, ( an

an+1
)n is non-increasing and converges to 1,

and
∑∞

n=0 an = ∞. Let A0 ⊂ (0, 1]N be the Borel set of admissible log-convex sequences.
Log-convexity of a implies that there exists a sequence (bn) of non-negative numbers as in
Equation (5.1), see [3, Lemma 7.38]. Therefore, A0 ⊂ A.

We consider on A0 the relation EA0 defined by aEA0a
′ if and only if a and a′ have the

same growth. This means that there are constants c, C > 0 such that c ≤ a′n/an ≤ C for
every n ∈ N. The equivalence of (ii) and (iii) in Corollary 4.11.7 shows that the relations
∼d and EA0 coincide on A0. Therefore, it only remains to show that the relation EA0 is
not classifiable by countable structures. This will be proved in Section 5.5.

We mention that the same proof also shows that the algebras A(H) for H a unitarily
invariant complete NP-space on Bd are not classifiable by countable structures up to alge-
braic isomorphism. Here A(H) denotes the closure of the polynomials in Mult(H). One
can also observe that, for d ∈ N, the collection K of kernels of unitarily invariant complete
NP-spaces on Bd is Borel. It follows from Theorem 5.3.3 that the relation on K defined by
K ∼ K ′ if and only if Mult(H(K)) and Mult(H(K ′)) are algebraically isomorphic is not
classifiable by countable structures. Here, H(K) denotes the reproducing kernel Hilbert
space with kernel K.

5.4. Turbulence for Polish groupoids

The main goal of this section is to introduce the notion of turbulence for Polish groupoids,
and to generalize to this setting Hjorth’s turbulence theorem. A groupoid is a small category
where every arrow is invertible. If G is a groupoid, then an object of G can be identified
with the corresponding identity arrow. This allows one to identify the set of objects
with a subset G0 of G. There are source and range maps s, r : G → G0 that map
every arrow to the corresponding source and range. The set of composable arrows is
G2 = {(γ, ρ) : s(γ) = r(ρ)}. Composition of arrows can be seen as a function G2 → G, and
similarly inversion of arrows is a function from G to G.

A Polish groupoid is a groupoid endowed with a topology that

1. has a countable basis of Polish open sets,

2. makes composition and inversion of arrows continuous and open,

3. makes for every x ∈ G0 the set Gx of arrows of G with source x a Polish subspace of
G, and
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4. makes the set of objects G0 a Polish subspace of G.

Polish groupoids have been introduced and studied in [72, 73]. In [56] several funda-
mental results about Polish group actions are generalized to Polish groupoids. We assume
in the following that G is a Polish groupoid. The orbit equivalence relation of G is the
equivalence relation EG on G0 defined by xEGy if and only if there exits γ ∈ G such that
s(γ) = x and r(γ) = y. If A,B ⊂ G we let AB be the set of all compositions γρ for γ ∈ A
and ρ ∈ B such that r(ρ) = s(γ). We write Aγ for A {γ} when A ⊂ G and γ ∈ G. In
particular if x ∈ G0 then Ax is the set of elements of A with source x. If X is a Gδ subset
of G0, denote by G|X the Polish groupoid XGX = {γ ∈ G : s(γ), r(γ) ∈ X} endowed with
the subspace topology. This is called the restriction of G to X. If x is an object of G and
V is a neighborhood of x in G, then the local orbit O (x, V ) is the set of all points that
can be reached from x by applying elements of V . In formulas

O (x, V ) =
⋃
n∈N

r (V nx) .

Definition 5.4.1. An object x of G is turbulent if for every neighborhood V of x the local
orbit O (x, V ) is somewhere dense. The groupoid G is generically preturbulent if the set of
turbulent objects with dense orbit is a comeager subset of G0. If moreover every orbit is
meager, then G is generically turbulent.

In the rest of this section we will often tacitly use the following version of the classical
Kuratowsky-Ulam theorem, see [56, Lemma 2.9.1].

Theorem 5.4.2. Suppose that X is a second countable topological space, Y is a Polish
space, and f : X → Y is open and continuous. If A ⊂ X is analytic, then A is comeager
if and only if f−1 {y} ∩ A is comeager in f−1 {y} for comeager many y ∈ Y .

For example, it follows from Theorem 5.4.2 that if X is a dense Gδ subspace of G0 and
G is generically (pre)turbulent, then G|X is generically (pre)turbulent.

Suppose that H is a Polish group and Y is a Polish H-space, i.e. a Polish space endowed
with a continuous action of H. Let G be the Polish action groupoid associated with the
Polish H-space Y as in [56, Subsection 2.7]. Observe that the orbit equivalence relation EG
coincides with the orbit equivalence relation EY

H . Furthermore it is not difficult to verify
that G is a generically (pre)turbulent groupoid as in Definition 5.4.1 if and only if Y is a
generically (pre)turbulent H-space in the sense of [34, Definition 10.3.3].

Recall the following terminology from Borel complexity of equivalence relations. If
E and F are equivalence relations on standard Borel spaces X and Y , then an (E,F )-
homomorphism is a function f : X → Y that maps E-classes into F -classes. A generic
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(E,F )-homomorphism is a function f : X → Y that is an (E,F )-homomorphism when re-
stricted to some comeager subset ofX. An equivalence relation E on a standard Borel space
X is generically S∞-ergodic if for every Polish S∞-space Y and every Baire-measurable
generic (E,EY

S∞)-homomorphism, there exists a comeager subset of X that is mapped by
f into a single S∞-orbit. It is well known that an equivalence relation is classifiable by
countable structures if and only if it is Borel reducible to the orbit equivalence relation of
a Polish S∞-space, see [34, Theorem 11.3.8].

The following is the main consequence of turbulence for Polish groupoids.

Theorem 5.4.3. Suppose that G is a generically preturbulent Polish groupoid. Then the
associated orbit equivalence relation EG is generically S∞-ergodic.

Corollary 5.4.4. If G is a generically turbulent Polish groupoid, then the orbit equivalence
relation EG is not classifiable by countable structures.

Theorem 5.4.3 generalizes the original result of Hjorth [49, Section 3] from Polish group
actions to Polish groupoids. Polish groupoids provide a natural setting to present the
proof of Hjorth’s turbulence theorem even in the case of Polish group actions. Indeed in
the course of the proof one looks at the action “restricted” to a (not necessarily invariant)
Gδ subspace, see for example [34, Theorem 10.4.2]. Such a restriction is not a Polish group
action in general, even when one starts with a Polish group action. It is nonetheless a
Polish groupoid.

The following lemma is the groupoid analog of [49, Lemma 3.17]. In the following we
write ∀∗γ ∈ X to mean “for a comeager set of γ ∈ X”.

Lemma 5.4.5. Suppose that G is a Polish groupoid, H is a Polish group, and Y is a
Polish H-space. If f : G0 → Y is a Baire-measurable generic

(
EG, E

Y
H

)
-homomorphism,

then there exists a comeager subset C of G0 such that for every x ∈ C and every open
neighborhood W of 1H in H there exists a neighborhood V of x such that for every x′ ∈
s(V ) ∩ C and for a comeager set of γ ∈ V x′,

f(r(γ)) ∈ Wf(x′).

Proof. After replacing G with the restriction of G to a dense Gδ subset of G0, we can
assume that f is a continuous

(
EG, E

Y
H

)
-homomorphism [34, Exercise 2.3.2]. Furthermore

it is enough to prove that for every open neighborhood W of 1H there is a comeager subset
C of X such that for every x ∈ C there exists a neighborhood V of x in G such that
∀x′ ∈ s[V ]∩C, ∀∗γ ∈ V x′, f(r(γ)) ∈ Wf(x′). Fix an open neighborhood W of 1H and an
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open neighborhood W0 of 1H such that W−1
0 = W0 and W 2

0 ⊂ W . Fix a sequence (hn) in
H such that ⋃

n∈N

W0hn = H.

For every n ∈ N, the set

Bn = {(z, y) ∈ Y × Y | z ∈ W0hny}

is analytic. Therefore the set

An = {γ ∈ G : f(r(γ)) ∈ W0hnf(s(γ))}

is analytic by [53, Proposition 22.1]. By [53, Proposition 8.22] there exists an open subset
On of G such that On 4 An is meager. Set Dn = An ∩ On, and observe that DnD

−1
n is a

comeager subset of OnO
−1
n . Since G is the union of An for n ∈ N, the union O of On for

n ∈ N is an open dense subset of G. In particular r (O) is an open subset of G0. Define

now, for n ∈ N, Õn to be the set of γ ∈ On such that r(γ) does not belong to the closure of

the union of r (Oi) for i < n. Let Õ be the union of Õn for n ∈ N, and observe that r[Õ] is

an open dense subset of G0. For every n ∈ N set D̃n = Dn ∩ Õn and observe that D̃n is a
comeager subset of Õn. Therefore there exists a comeager subset Cn of r[Õn] = s[ÕnÕ

−1
n ]

such that for every x ∈ Cn, D̃nD̃
−1
n x is a comeager subset of ÕnÕ

−1
n x. Define C to be the

union of Cn for n ∈ N, and observe that C is a comeager subset of G0. We claim that C
satisfies the desired conclusions. Fix x ∈ C and n ∈ N such that x ∈ Cn. We have that
ÕnÕ

−1
n is an open neighborhood of x. Furthermore for every x′ ∈ Cn = C ∩ s[ÕnÕ

−1
n ],

D̃nD̃
−1
n x′ is comeager in ÕnÕ

−1
n x′. If ρ, γ ∈ D̃n, then

f(r(γ)) ∈ W0hnf(s(γ)) and f(r(ρ)) ∈ W0hnf(s(ρ)).

Therefore

f(r(ργ−1)) = f(r(ρ)) ∈ W0hnf(s(ρ)) ⊂ W0W
−1
0 f(s(ργ−1)) ⊂ Wf(s(ργ−1)).

This concludes the proof.

We now explain how one can deduce Theorem 5.4.3 from Lemma 5.4.5.

Proof of Theorem 5.4.3. Fix an enumeration (Vk)k∈N of a basis of Polish open subsets of
G, and a compatible complete metric dY on Y bounded by 1. Suppose that d is the metric
in S∞ defined by

log2 d(σ, ρ) = −min {n ∈ N : σ (n) 6= ρ (n)} .
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for σ, ρ ∈ S∞. We also consider the complete metric

D(σ, ρ) = d(σ, ρ) + d(σ−1, ρ−1)

on S∞. Define e to be the identity of S∞, and

Nk =
{
σ ∈ S∞ : d(σ, e) < 2−k

}
for k ∈ N. As in the proof of Hjorth’s turbulence theorem for Polish group actions [34,
Theorem 10.4.2], one can deduce from Lemma 5.4.5 that there exists a dense Gδ subset C0

of G0 with the following properties:

• f |C0 is a continuous (EG, E
Y
S∞)-homomorphism,

• every element of C0 has dense orbit,

• for every m ∈ N and x ∈ Vm ∩ C0 the local orbit O (x, Vm) is somewhere dense,

• for every x ∈ C0 and k ∈ N there exists m ∈ N such that x ∈ Vm and ∀x′ ∈ s (Vm),
∀∗γ ∈ Vmx′, f(r(γ)) ∈ Nkf(x′).

Let C be the set of x ∈ C0 such that ∀∗γ ∈ Gx, r(γ) ∈ C0, and observe that C is a dense
Gδ subset of G0 [56, Lemma 2.10.6]. After replacing G with the restriction G|C of G to C,
and Vk with Vk ∩G|C , we can assume that C = G0.

Fix x0, y0 ∈ G0. We claim that f(x)EY
S∞f(y). We will define by recursion on i ≥ 0

elements xi, yi of G0, gi, hi of S∞, and nx(i), ny(i) of N, such that the following conditions
hold:

• g0 = h0 = e,

• x0 ∈ Vnx(0) and y0 ∈ Vny(0),

• gif(x) = f(xi) and hif(y) = f(yi),

• xi+1 ∈ Vnx(i) ∩ O
(
xi, Vnx(i)

)
and yi+1 ∈ Vny(i) ∩ O

(
yi, Vny(i)

)
,

• the dY -diameter of f
(
G0 ∩ Vnx(i)

)
is at most 2−i,

• O
(
xi, Vnx(i)

)
is dense in Vny(i) ∩G0 and O

(
yi, Vny(i)

)
is dense in Vnx(i+1) ∩G0,

• d(gi, gi+1) ≤ 2−i and d(hi, hi+1) ≤ 2−i,

• if i > 0 and kx(i) = max
{
gi(λ), g−1

i (λ) | λ ≤ i
}

, then ∀z ∈ s
(
Vnx(i)

)
, ∀∗γ ∈ Vnx(i)z,

f(r(γ)) ∈ Nkx(i)f(z),

• if i ≥ 0 and ky(i) = max
{
hi(λ), h−1

i (λ) | λ ≤ i
}

, then ∀z ∈ s
(
Vny(i)

)
, ∀∗γ ∈ Vny(i)z,

f(r(γ)) ∈ Nky(i)f(z).
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Granted the construction, the sequences (gi) , (hi) in S∞ are D-Cauchy and hence con-
verge to elements g, h ∈ S∞. Furthermore dY (gif(x), hif(y)) → 0 and hence gf(x) =
hf(y). This concludes the proof that f(x)EY

S∞f(y).

We assume recursively that we have defined xi, yi, gi, hi, nx(i), ny(i) and explain how to
define xi+1, gi+1, nx(i + 1). The definition of yi+1, hi+1, ny(i + 1) is similar. We have that
the local orbit O

(
yi, Vny(i)

)
is somewhere dense. Pick a nonempty open subset W of Vny(i)

that is contained in the closure of O
(
yi, Vny(i)

)
. By recursive hypothesis we have that

O
(
xi, Vnx(i)

)
is dense in W . Let γ0, . . . , γ`−1 ∈ Vnx(i) such that, setting zj = s (γj) for j < `

and z` = r (γ`−1), one has that z0 = xi, z` ∈ W , and zj+1 = r (γj) for j < `. Since by
inductive assumption we have that ∀z ∈ s

(
Vnx(i)

)
, ∀∗γ ∈ Vnx(i)z, f(r(γ)) ∈ Nkx(i)f(z),

after modifying the sequence (γ0, . . . , γ`−1) we can assume that, for every j < `, f (zj+1) =
pjf (zj) for some pj ∈ Nkx(i). Therefore f(z`) = pf(z) where p = p`−1p`−2 · · · p0 ∈ Nkx(i).
We may then let xi+1 = z`, gi+1 = pgi, kx(i + 1) = max

{
gi+1(λ), g−1

i+1(λ) : λ ≤ i+ 1
}

,
and nx(i + 1) ∈ N such that xi+1 ∈ Vnx(i+1) and ∀x′ ∈ s

(
Vnx(i+1)

)
, ∀∗γ ∈ Vnx(i+1)x

′,
f(r(γ)) ∈ Nkx(i+1)f(x′). This concludes the definition of xi+1, gi+1, nx(i+ 1).

5.5. Admissible log-convex sequences

Recall from Section 5.3 that a sequence a in (0, 1]N is admissible log-convex if a0 = 1,
( an
an+1

)n is non-increasing and converges to 1, and
∑

n an = ∞. The set A0 ⊂ (0, 1]N of
admissible log-convex sequences is Borel. We consider the relation EA0 on A defined by
aEA0a

′ if and only if a and a′ have the same growth, in formulas c ≤ a′n/an ≤ C for some
constants c, C > 0 and for every n ∈ N. The main goal of this section is to prove the
following result:

Proposition 5.5.1. Admissible log-convex sequences are not classifiable by countable struc-
tures up to the relation of having the same growth.

However, it is not difficult to verify that admissible log-convex sequences are classifiable
by the orbits of a Polish group action up the relation of having the same growth. This
means that there exists a continuous Polish group action G y X such that EA0 is Borel
reducible to the orbit equivalence relation EX

G . The crucial point is that if

B = {(− log(an)) : (an) ∈ A} ⊂ (0,∞)N,

then

H = {z ∈ `∞ : there exist x, y ∈ B with x− y = z}
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is a subgroup of `∞ which is separable in the `∞-metric, and two sequences (an), (a′n) in A
have the same growth if and only if (− log(an)) and (− log(a′n)) belong to the same H-orbit
under translation.

The rest of this section is dedicated to the proof of Proposition 5.5.1. Consider the
equivalence relation F on (0, 1)N defined by

sFs′ if and only if sup
n

∣∣∣∣∣∑
k<n

(∏
i≤k

si −
∏
i≤k

s′i

)∣∣∣∣∣ <∞.

Define furthermore the Borel function

(0, 1)N → (0, 1]N

s 7→ f (s) = exp

(
−
∑
k<n

∏
i≤k

si

)
n∈N

where the empty sum is 0. Observe that for s ∈ (0, 1)N, we have that f(s)0 = 1, f(s) is
log-convex and f(s)n/f(s)n+1 ≥ 1 for all n ∈ N. Let X ⊂ (0, 1)N be the set of s ∈ (0, 1)N

such that f (s) ∈ A0. Using the fact that f(s) ∈ A0 if and only if f(s) is not summable,
it is not difficult to verify that X is a dense Gδ subset of (0, 1)N. The restriction f |X of
f to X is a Borel reduction from F |X to EA0 . It is thus enough to show that F |X is not
classifiable by countable structures.

Lemma 5.5.2. F has meager classes.

Proof. Fix s ∈ (0, 1). We want to show that the F -class of s is meager. We can assume
without loss of generality that

∏
i≤k si → 0 for k →∞, as the set of such s is a comeager

subset of (0, 1)N. Fix m ∈ N and let Km be the (closed) set of t ∈ (0, 1)N such that, for
every n ∈ N, ∣∣∣∣∣∑

k<n

(∏
i≤k

si −
∏
i≤k

ti

)∣∣∣∣∣ ≤ m.

Observe that if t0 ∈ Km and n0 ∈ N then the element t of (0, 1]N defined by

ti =

{
t0i for i ≤ n0,
1− 2−i otherwise

does not belong to Km. Therefore Km is nowhere dense. Finally observe that the F -class
of s is

⋃
mKm.
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Consider now the relation E on (0, 1)N defined by

sEs′ if and only if
∑
n∈N

∣∣∣∣∣∏
i≤k

si
s′i
− 1

∣∣∣∣∣ <∞.

We will see below that E is an equivalence relation. Since F has meager classes, X ⊂ (0, 1)N

is comeager, and E ⊂ F , it is not hard to see that, in order to prove that F |X is not
classifiable by countable structures, it is enough to show that E is generically S∞-ergodic.
Indeed if F |X is classifiable by countable structures, then F |X admits a Borel reduction
f to the orbit equivalence relation of an S∞-space Y [34, Theorem 11.3.8]. Since E ⊂ F ,
f is a Borel

(
E|X , EY

S∞

)
-homomorphism. By generic S∞-ergodicity of E, there exists a

comeager subset C of X that is mapped by f into a single S∞-orbit. Since F has meager
classes, C contains at least two F -equivalence classes, contradicting the fact that f is a
Borel reduction from F to ESY∞ .

Let now Γ be the subgroup of RN
+ containing those sequences g such that∑
n

∣∣∣∣∣∏
k≤n

gk − 1

∣∣∣∣∣ <∞.

Observe that Γ is indeed a subgroup of RN
+. In fact suppose that g,h ∈ Γ. Fix n0 ∈ N

such that ∣∣∣∣∣∏
k≤n

gk − 1

∣∣∣∣∣ ≤ 1

2

for every n ≥ n0. Then∑
n∈N

∣∣∣∣∣∏
k≤n

g−1
k − 1

∣∣∣∣∣ ≤ ∑
n<n0

∣∣∣∣∣∏
k≤n

g−1
k − 1

∣∣∣∣∣+ 2
∑
n∈N

∣∣∣∣∣∏
k≤n

gk − 1

∣∣∣∣∣ <∞
and hence g−1 ∈ Γ. Furthermore∑

n∈N

∣∣∣∣∣∏
k≤n

gkhk − 1

∣∣∣∣∣ ≤ ∑
n<n0

∣∣∣∣∣∏
k≤n

gkhk − 1

∣∣∣∣∣+
3

2

∑
n∈N

∣∣∣∣∣∏
k≤n

hk − 1

∣∣∣∣∣+
∑
n

∣∣∣∣∣∏
k≤n

gk − 1

∣∣∣∣∣ <∞
and hence gh ∈ Γ. Since sEs′ if and only if s/s′ ∈ Γ, it follows in particular that E is an
equivalence relation.

Define the bi-invariant metric dΓ on Γ by setting

dΓ (g,h) =
∑
n∈N

∣∣∣∣∣∏
k≤n

gk −
∏
k≤n

hk

∣∣∣∣∣ .
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We claim that dΓ induces a Polish topology on Γ. To this end, consider the injective map
Φ : RN

+ → RN defined by

a 7→

((∏
k≤n

ak

)
− 1

)
n

.

Observe that the restriction of Φ to Γ is an isometry from (Γ, dΓ) to `1 endowed with the
`1-metric. Furthermore the image of Γ under Φ is a Gδ subset of `1, since b ∈ Φ (Γ) if
and only if bn > −1 for every n ∈ N. Since a Gδ subspace of a Polish space is Polish [53,
Theorem 3.11], this concludes the proof that dΓ induces a Polish topology on Γ.

If g ∈ Γ and s ∈ (0, 1)N, define gs ∈ RN
+ by

(gs)n = gnsn.

Consider now the groupoid

G =
{

(g, s) ∈ Γ× (0, 1)N : gs ∈ (0, 1)N
}

.

Composition and inversion of arrows in G are defined by

(g, s) (h, t) = (gh, t)

whenever ht = s, and
(g, s)−1 =

(
g−1, gs

)
.

Being a closed subset of Γ × (0, 1)N, G is Polish with the induced topology. Clearly
composition and inversion of arrows are continuous. Furthermore the map (1, s) 7→ s allows
one to identify the set of objects of G with (0, 1)N. It remains to show that composition of
arrows is open. To this purpose it is enough to show that the source map

G → (0, 1)N

(g, s) 7→ s

is open, see [74, Exercise I.1.8]. Suppose that (g, s) ∈ G, and U is an open neighborhood
of (g, s). Thus there exist ε > 0 and N ∈ N such that U contains all the pairs (h, t) ∈ G
such that dΓ (g,h) < ε and |sn − tn| < ε for n ≤ N . Suppose that ε > η > 0 is such that
gn (sn + η) < 1 for every n ≤ N . Consider the neighborhood W of s consisting of those
t ∈ (0, 1)N such that |sn − tn| < η for every n ≤ N . We claim that s (U) ⊃ W . In fact if
t ∈ W we have that for n ≤ N ,

gntn ≤ gn (sn + η) < 1
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and therefore (g, t) ∈ U .

In the following lemma we establish that G is a turbulent Polish groupoid. Together with
Theorem 5.4.3, this implies that its associated orbit equivalence relation E is generically
S∞-ergodic, concluding the proof of Proposition 5.5.1.

Lemma 5.5.3. Any element s of (0, 1)N is a turbulent object with dense orbit for the Polish
groupoid G.

Proof. It is easy to see that the orbit of s is dense. It remains to show that for any
neighborhood V of (1, s) in G the local orbit O (s, V ) is somewhere dense. Without loss
of generality we can assume that there exist ε > 0 and n0 ∈ N such that, if

U =

{
t ∈ (0, 1)N : ∀n ≤ n0,

∣∣∣∣ tnsn − 1

∣∣∣∣ < ε

}
and

W = {g ∈ Γ : dΓ (g,1) < ε} ,

then V = (W × U)∩G. We claim that the local orbit O (s, V ) dense in U . Fix t ∈ U and
n1 ≥ n0. Let N ∈ N, to be determined later. Set

gk =


N
√
tk/sk for k ≤ n1,∏
j≤n1

N
√
sj/tj for k = n1 + 1,

1 otherwise.

Observe that, for N large enough, we have that g ∈ Γ, d (g,1) < ε, and gis ∈ U for every
i ≤ N . Finally observe that gNk sk = tk for k ≤ n1. This concludes the proof that the local
orbit O (s, V ) is dense in U . Since this is true for every neighborhood V of s in G, s is a
turbulent point for G.

5.6. Conformal equivalence of varieties

Fix d ∈ N and let Vd be the space of varieties in Bd. Denote by Aut(Bd) be the group
of conformal automorphisms of Bd. Recall that the pseudohyperbolic distance d on Bd is
defined by

d (a, b) = ‖ϕa (b)‖ ,

where ‖·‖ is the usual Euclidean norm and ϕa is the conformal automorphism of Bd which
interchanges 0 and a defined in [75, Subsection 2.2.1]. Then d is a proper metric (since
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its closed balls coincide with Euclidean closed balls) that induces the usual topology on
Bd. Furthermore, Aut(Bd) is a closed subgroup of the group of isometries of (Bd, d), and
hence a locally compact Polish group when endowed with the compact-open topology.
More information about conformal automorphisms of Bd can be found in [75, Chapter
2]. Consider the Borel action of Aut(Bd) on Vd defined by (α, V ) 7→ α (V ). Observe
that the relation EVdAut(Bd) of Aut(Bd)-conformal equivalence of varieties in Bd is the orbit

equivalence relation associated with this action. Therefore, it follows from [52, Theorem
1.1] that EVdAut(Bd) is essentially countable.

The remainder of this section is devoted to proving Theorem 5.1.2, asserting that EVdAut(Bd)

has in fact maximum complexity among essentially countable equivalence relations. As
explained in the introduction, the same conclusion will then apply to the relation of (com-
pletely) isometric isomorphism of multiplier algebras MV , where V ∈ Vd.

Observe that the canonical inclusion of Bd into Bd+1 induces an inclusion of Vd into Vd+1.
According to the following proposition, this inclusion is a Borel reduction from the relation
of Aut(Bd)-conformal equivalence on Vd to the relation of Aut(Bd+1)-conformal equivalence
on Vd+1. We mention that this result also follows from [25, Theorem 4.4].

Proposition 5.6.1. Let X, Y ⊂ Bd be subsets. Then X and Y are conformally equivalent
via an element of Aut(Bd) if and only if they are conformally equivalent via an element of
Aut(Bd+1).

Proof. By [75, Section 2.2.8], every conformal automorphism of Bd extends to a conformal
automorphism of Bd+1. This establishes one direction.

Conversely, suppose that F ∈ Aut(Bd+1) maps X onto Y , and let G ⊂ Aut(Bd+1)
denote the subgroup of all automorphisms which fix Bd. We wish to show that X and Y
are G-equivalent. Since Aut(Bd) acts transitively on Bd [75, Theorem 2.2.3], and since every
element of Aut(Bd) extends to an element of G, the subgroup G acts transitively on Bd. We
may therefore assume that 0 ∈ X and 0 ∈ Y . By Proposition 2.4.2 in [75] and the discussion
preceding it, F maps the affine span of X onto the affine span of Y . Hence, F maps
span(X)∩Bd onto span(Y )∩Bd, where span denotes the linear span. Since span(X)∩Bd
and span(Y )∩Bd are themselves unitarily equivalent to complex balls of dimension e ≤ d,
and since automorphisms of Be extend to automorphisms of higher-dimensional balls, we
conclude that there exists a map F̃ ∈ G such that F |span(X)∩Bd = F̃ |span(X)∩Bd . This
completes the proof.

Therefore to establish the desired lower bound on the complexity of EVdAut(Bd) it suffices to

consider the case d = 1, hence Bd = D, the unit disc. The elements of V1\{D} are precisely
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the (possibly finite) Blaschke sequences. Recall from Section 5.2 that the orbit equivalence
relation E(F2, 2) associated with the left translation action of the free group F2 on its
subsets has maximum complexity among essentially countable equivalence relation. We
will now show that E(F2, 2) is Borel reducible to the relation EV1Aut(D) of Aut(D)-conformal

equivalence of Blaschke sequences. To this end, we will adapt the proof of [48, Theorem
4.1].

The lower bound in [48, Theorem 4.1] is achieved by encoding the action of F2 on {0, 1}F2

by translation. The crucial point in this proof is that Aut(D) contains a copy of F2 such
that the orbit of every point in D is discrete. We require something stronger, namely that
the orbit of every point is a Blaschke sequence.

Proposition 5.6.2. There exists a discrete group Γ ⊂ Aut(D) which is isomorphic to F2

such that ∑
g∈Γ

(1− |g(z)|) <∞

for every z ∈ D.

Proof. Let g1 and g2 be two conformal automorphisms of D which generate a Schottky
group (see Chapter II, Section 1 in [16]), and let Γ be the group generated by g1 and g2.
Then Γ is isomorphic to F2 by [16, Chapter II, Proposition 1.6]. By the same proposition,
the closure of the Dirichlet domain D0(Γ) of Γ contains nontrivial arcs in ∂D (see [16,
Chapter I, Section 2.3] for the definition of the Dirichlet domain). In particular, the
Lebesgue measure of D0(Γ) ∩ ∂D is strictly positive. In this situation, [86, Theorem XI.4]
applies to show that ∑

g∈Γ

(1− |g(0)|) <∞.

Finally, the argument preceding Theorem XI.3 in [86] shows that this sum is finite if 0 is
replaced with an arbitrary point z ∈ D.

It seems worthwhile to give a concrete example of two conformal automorphisms of D
which generate a group Γ as in the statement of the proposition. Let H denote the upper
half-plane in C. Recall that D and H are conformally equivalent via the Cayley map

H → D
z 7→ z − i

z + i
.

This map induces an isomorphism of topological groups between Aut(D) and Aut(H).
Moreover, Aut(H) is isomorphic to PSL2(R) via the map that assigns to the matrix
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(
a b
c d

)
∈ PSL2(R) the corresponding Möbius transformation

z 7→ az + b

cz + d
.

Let Φ : PSL2(R) → Aut(D) denote the isomorphism obtained by composing the two
isomorphisms above. The group Λ considered in the proof of [48, Theorem 4.1] is generated
by the images of (

1 2
0 1

)
and

(
1 0
2 1

)
under Φ. The group Λ is isomorphic to F2, but the orbit of 0 under Λ is not a Blaschke
sequence. This follows from the following facts:

• Λ has finite index in PSL(2,Z), and

• the orbit of 0 under Φ (PSL2(Z)) is not a Blaschke sequence, as its conical limit set
on ∂D has positive Lebesgue measure, see [16, Chapter II, Section 3.1].

Moreover, Λ is not a Schottky group, but just a generalized Schottky group in the sense
of [16, Chapter II, Section 1.1]. However, if we let Γ ⊂ Aut(D) denote the group generated
by the images of (

1 3
0 1

)
and

(
1 0
3 1

)
,

then it is not hard to see that Γ is indeed a Schottky group, and thus satisfies the conclusion
of the proposition.

In the proof of the next theorem, we require the following elementary observation.

Lemma 5.6.3. Let (X, d) be a metric space and let x(0), x(1), x(2) and y(0), y(1), y(2), y(3) by
points in X such that

d(x(i), x(j)) = d(y(i), y(j))

for 0 ≤ i, j ≤ 2 and such that the distances d(y(i), y(j)) are all distinct for 0 ≤ i < j ≤ 3.
If θ : X → X is an isometry such that

θ({x(0), x(1), x(2)}) ⊂ {y(0), y(1), y(2), y(3)},

then θ(x(i)) = y(i) for 0 ≤ i ≤ 2.
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5.6. Conformal equivalence of varieties

Proof. The assumptions on the distances and the fact that θ is an isometry imply that

θ({x(0), x(1)}) = {y(0), y(1)},
θ({x(0), x(2)}) = {y(0), y(2)}, and

θ({x(1), x(2)}) = {y(1), y(2)}.

This is only possible if θ(x(i)) = y(i) for 0 ≤ i ≤ 2.

We are now ready to prove the main result of this section.

Theorem 5.6.4. The relation E(F2, 2) is Borel reducible to the relation of Aut(D)-con-
formal equivalence of Blaschke sequences.

Proof. The proof is an adaptation of the proof of the lower bound in [48, Theorem 4.1].
The details are as follows.

Let Γ be a group as in Proposition 5.6.2. We will identify F2 with Γ. Moreover, let d be
the pseudohyperbolic metric on D, and for z ∈ D and ε > 0, let

Dε(z) = {y ∈ D : d(y, z) < ε}.

We will explicitly construct four Blaschke sequences

Bi = {x(i)
g : g ∈ F2}

for 0 ≤ i ≤ 3 and find ε > 0 with the following properties:

1. gx
(i)
h = x

(i)
gh for g, h ∈ F2 and 0 ≤ i ≤ 3,

2. x
(i)
g ∈ Dε/5(x

(0)
g ) for g ∈ F2 and 0 ≤ i ≤ 3,

3. Dε/2(x
(0)
g ) ∩ (B0 ∪B1 ∪B2 ∪B3) = {x(i)

g : 0 ≤ i ≤ 3},

4. The distances d(x
(i)
g , x

(j)
g ) do not depend on g ∈ F2 and are all distinct and positive

for 0 ≤ i < j ≤ 3.

The construction proceeds as follows. Let x
(0)
1 ∈ D be arbitrary and set x

(0)
g = g(x

(0)
1 )

for g ∈ F2. Let B0 = {x(0)
g : g ∈ F2}. Then B0 is a Blaschke sequence. In particular, there

exists ε > 0 such that
Dε(x

(0)
1 ) ∩B0 = {x(0)

1 }.

Choose distinct points x
(i)
1 ∈ Dε/5(x

(0)
1 ) \ {x(0)

1 } for i ∈ {1, 2, 3} such that the pseudo-

hyperbolic distances d(x
(i)
1 , x

(j)
1 ) for i < j are all different from each other, and define
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5. The Borel complexity of the classification problem

x
(i)
g = g(x

(i)
1 ) for i ∈ {1, 2, 3} and g ∈ F2. Moreover, set Bi = {x(i)

g : g ∈ F2}. Using the
fact that every g ∈ F2 is an isometry with respect to d, properties (1)–(4) are now easy to
verify.

Given A ⊂ F2, let
VA = B0 ∪B1 ∪B2 ∪ {x(3)

g : g ∈ A}.

We will show that A = gB for some g ∈ F2 if and only if VA and VB are Aut(D)-conformally
equivalent. Clearly, if g ∈ F2 such that gA = B, then g(VA) = VB, hence VA and VB are
Aut(D)-conformally equivalent. Conversely, assume that there exists θ ∈ Aut(D) with

θ(VA) = VB. We will show that there exists g ∈ F2 such that θ = g. Since x
(0)
1 ∈ VA, there

exists g ∈ F2 and i ∈ {0, 1, 2, 3} such that θ(x
(0)
1 ) = x

(i)
g . Observe that for k ∈ {1, 2}, we

have
d(θ(x

(k)
1 ), x(i)

g ) = d(θ(x
(k)
1 ), θ(x

(0)
1 )) = d(x

(k)
1 , x

(0)
1 ) < ε/5

by Condition (2). By the same condition, d(x
(i)
g , x

(0)
g ) < ε/5, hence

θ(x
(k)
1 ) ∈ Dε/2(x(0)

g ).

Therefore, Condition (3) implies that

θ({x(0)
1 , x

(1)
1 , x

(2)
1 }) ⊂ {x(i)

g : 0 ≤ i ≤ 3}.

In light of Condition (4), an application of Lemma 5.6.3 shows that θ(x
(i)
1 ) = x

(i)
g for

0 ≤ i ≤ 2. This means that θ and g are two Möbius transformations which agree on three
points. Consequently, θ = g, see for example [70, Theorem 10.10]. We finish the proof by

showing that gA = B. Note that if h ∈ A, then x
(3)
h ∈ VA. Therefore, x

(3)
gh = g(x

(3)
h ) =

θ(x
(3)
h ) ∈ VB, so gh ∈ B. This shows that gA ⊂ B. Similarly, g−1B ⊂ A, so gA = B, as

desired.
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6. Nevanlinna-Pick spaces with
hyponormal multiplication operators

6.1. Introduction

The contents of this chapter appeared in [42]. Let H be a reproducing kernel Hilbert
space on a set X with kernel K. In this chapter, we study the relationship between two
possible properties of H: the complete Nevanlinna-Pick property and hyponormality of
multiplication operators. The definition of the complete Nevanlinna-Pick property can be
found in Section 2.4.

The second property we consider is hyponormality of multiplication operators, that is,
the property that for every multiplier ϕ on H, the corresponding multiplication operator
Mϕ ∈ B(H) satisfies MϕM

∗
ϕ ≤ M∗

ϕMϕ. While multiplication operators are not normal in
typical examples, they are subnormal and hence hyponormal for a number of reproducing
kernel Hilbert spaces, including Hardy and Bergman spaces on domains in Cd.

Two results concerning weighted Hardy spaces serve as a motivation for the study of the
relationship between the two properties. Suppose for a moment that H is a reproducing
kernel Hilbert space on the open unit disc D with kernel K of the form

K(z, w) =
∞∑
n=0

an(zw)n (z, w ∈ D),

where (an) is a sequence of positive numbers with a0 = 1 (i.e. H is a unitarily invariant
space on the unit disc in the sense of Section 4.2). Note that the classical Hardy space
H2 corresponds to the choice an = 1 for all n, in which case we recover the Szegő kernel
(1−zw)−1. We assume that multiplication by the coordinate function z induces a bounded
multiplication operator Mz on H. Equivalently, the sequence (an/an+1) is bounded. Then
the operator Mz is hyponormal if and only if

an
an−1

≥ an+1

an
for all n ≥ 1
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6. Nevanlinna-Pick spaces with hyponormal multiplication operators

(see Section 7 in [81], and note that the sequence (β(n)) there is related to (an) via
an = β(n)−2). On the other hand, a sufficient condition forH being a complete Nevanlinna-
Pick space is that the reverse inequalities

an
an−1

≤ an+1

an
for all n ≥ 1

hold (see Lemma 7.38 and Theorem 7.33 in [3]). Since this condition is not necessary, the
two results do not immediately tell us anything new about weighted Hardy spaces satis-
fying both the Nevanlinna-Pick property and hyponormality of multiplication operators.
Nevertheless, they seem to indicate that the presence of both properties is special.

The aim of this chapter is to show that the Hardy space is essentially the only complete
Nevanlinna-Pick space whose multiplication operators are hyponormal. Recall that a re-
producing kernel Hilbert space H with kernel K on a set X is called irreducible if K(x, y)
is never zero for x, y ∈ X and if K(·, x) and K(·, y) are linearly independent for different
x, y ∈ X. We call a set A ⊂ D a set of uniqueness for H2 if the only element of H2 which
vanishes on A is the zero function. The main result now reads as follows.

Theorem 6.1.1. Let H be an irreducible complete Nevanlinna-Pick space on a set X with
kernel K such that all multiplication operators on H are hyponormal. Then one of the
following possibilities holds:

(1) X is a singleton and H = C.

(2) There is a set of uniqueness A ⊂ D for H2, a bijection j : X → A and a nowhere
vanishing function δ : X → C such that

K(λ, µ) = δ(λ)δ(µ) k(j(λ), j(µ)),

where k(z, w) = (1− zw)−1 denotes the Szegő kernel. Hence,

H2 → H, f 7→ δ(f ◦ j),

is a unitary operator. If X is endowed with a topology such that K is separately
continuous on X ×X, then j is continuous. If X ⊂ Cn and K is holomorphic in the
first variable, then j is holomorphic.

Since the Hardy space H2 is a complete Nevanlinna-Pick space whose multiplication
operators are hyponormal, it is easy to see that the same is true for every space as in part
(2). Hence, this result characterizes Hilbert function spaces with these two properties.
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6.2. Embedding into Drury-Arveson space

Remark 6.1.2. (a) It is well known that sets of uniqueness for H2 are characterized by the
Blaschke condition (see, for example, [36, Section II 2]): A set A ⊂ D is a set of uniqueness
for H2 if and only if ∑

a∈A

(1− |a|) =∞.

(b) The condition that K(x, y) is never zero is not very restrictive. Indeed, if we drop
this condition, then X can be partitioned into sets (Xi) such that the restriction of H
to each Xi (compare the next section) is an irreducible complete Nevanlinna-Pick space
(see [3, Lemma 7.2]). This yields a decomposition of H into an orthogonal direct sum of
irreducible complete Nevanlinna-Pick spaces Hi. It is not hard to see that this decomposi-
tion is reducing for multiplication operators. Hence, all multiplication operators on H are
hyponormal if and only if this is true for each summand. We omit the details.

Before we come to the proof of the main result of this chapter, let us consider an ap-
plication to Hilbert function spaces in higher dimensions. In particular, this applies to
holomorphic Hilbert function spaces on the open unit ball in Cn for n ≥ 2. Standard
examples of such spaces either have the property that all multiplication operators are hy-
ponormal (such as Hardy and Bergman space) or have the Nevanlinna-Pick property (such
as the Drury-Arveson space, see the next section), but not both. This is not a coincidence.

Corollary 6.1.3. Let n ≥ 3 be a natural number, and let U ⊂ Rn be an open set. Then
there is no irreducible complete Nevanlinna-Pick space on U which consists of continuous
functions and whose multiplication operators are all hyponormal.

Proof. Assume toward a contradiction that H is such a Hilbert function space, and let
K be its kernel. Since the functions in H are continuous, it follows that K is separately
continuous. Hence, Theorem 6.1.1 implies that there is a continuous injection j : U → D.
But this is impossible if n ≥ 3 due to Brouwer’s domain invariance theorem [10].

The remainder of this chapter is organized as follows. In Section 6.2, we will use the
Agler-McCarhty universality theorem to embed a complete Nevanlinna-Pick space as in
Theorem 6.1.1 into the Drury-Arveson space. The proof of Theorem 6.1.1 is then presented
in Section 6.3.

6.2. Embedding into Drury-Arveson space

As a first step in the proof of Theorem 6.1.1, we will embed the complete Nevanlinna-Pick
space H into the Drury-Arveson space using the Agler-McCarthy universality theorem.
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6. Nevanlinna-Pick spaces with hyponormal multiplication operators

Using notation as before, we write Bd for the open unit ball in `2(d), where d is a cardinal.
The Drury-Arveson space H2

d is the reproducing kernel Hilbert space on Bd with kernel

kd(z, w) =
1

1− 〈z, w〉
.

If d = 1, this is the Hardy space H2. For d ≥ 2, Arveson [8] exhibited multipliers on H2
d

which are not hyponormal by showing that their spectral radius is strictly less than their
multiplier norm. Indeed, if z1 and z2 denote the coordinate functions on C2, then Mz1z2 is
not hyponormal on H2

2 , as

||Mz1z2z1z2||2 =
1

6
<

1

4
= ||M∗

z1z2
z1z2||2

(see [8, Lemma 3.8]). This observation readily generalizes to d ≥ 2.

Given a subset Y ⊂ Bd, we write H2
d

∣∣
Y

for the reproducing kernel Hilbert space on Y

with kernel kd
∣∣
Y×Y . If

I(Y ) = {f ∈ H2
d : f

∣∣
Y

= 0}
denotes the kernel of the restriction map, then Lemma 2.1.2 implies that

H2
d 	 I(Y )→ H2

d

∣∣
Y
, f 7→ f

∣∣
Y
, (6.1)

is a unitary. We will require the universality theorem of Agler and McCarthy (see Section
2.5) in the following form.

Theorem 6.2.1. Let H be an irreducible complete Nevanlinna-Pick space on a set X with
kernel K. Assume that K is normalized at λ0 ∈ X in the sense that K(λ0, µ) = 1 for all
µ ∈ X. Then there is a cardinal d and an injection b : X → Bd with b(λ0) = 0 such that

K(λ, µ) =
1

1− 〈b(λ), b(µ)〉
(λ, µ ∈ X).

Hence,
H2
d 	 I(Y )→ H, f 7→ (f

∣∣
Y

) ◦ b,
is a unitary operator, where Y = b(X).

In the above setting, let FY = H2
d	I(Y ). This space is co-invariant under multiplication

operators. Clearly, every ϕ ∈ Mult(H2
d) restricts to a multiplier on H2

d

∣∣
Y

, and hence gives

rise to the multiplier (ϕ
∣∣
Y

) ◦ b on H. If U denotes the unitary operator in Theorem 6.2.1,
then

U∗M(ϕ|Y ◦b)U = PFYMϕ

∣∣
FY
.

Thus, if we assume that all multiplication operators on H are hyponormal, then all opera-
tors appearing on the right-hand side of the last identity are hyponormal as well. We will
use this fact to show that FY can be identified with H2.
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6.3. Proof of Theorem 6.1.1

6.3. Proof of Theorem 6.1.1

The discussion at the end of the last section suggests studying compressions of multiplica-
tion operators to co-invariant subspaces such that the compressed operator is hyponormal.
We need the following simple observation.

Lemma 6.3.1. Let H be a Hilbert space, let T ∈ B(H) and let M ⊂ H be a co-invariant
subspace for T . Suppose that the compression of T to M is hyponormal. If f ∈ M with
||T ∗f || = ||Tf ||, then Tf ∈M .

Proof. Since M is co-invariant under T , and since PMT
∣∣
M

is hyponormal, we have

||T ∗f || ≤ ||PMTf || ≤ ||Tf || = ||T ∗f ||.

Consequently, ||PMTf || = ||Tf ||, and hence Tf ∈M .

We will apply this observation to multiplication operators on H2
d . Since the coordinate

functions zi are multipliers on H2
d , it follows from unitary invariance of the Drury-Arveson

space that all functions of the form 〈·, w〉 for w ∈ `2(d) are multipliers on H2
d .

Lemma 6.3.2. Suppose that F ⊂ H2
d is a closed subspace which is co-invariant under

multiplication operators. Let z ∈ Bd, and suppose that the compression PFM〈·,z〉
∣∣
F is

hyponormal. Then the following assertions hold.

(a) If 1 ∈ F and K(·, z) ∈ F , then 〈·, z〉 ∈ F .

(b) If 〈·, z〉 ∈ F , then 〈·, z〉n ∈ F for all n ≥ 1.

Proof. (a) Clearly, we may assume that z 6= 0, and define w = z/||z||. Then

ι : H2 → H2
d ,

∞∑
n=0

anζ
n 7→

∞∑
n=0

an〈·, w〉n,

is an isometry, where ζ denotes the identity function on C. Under this embedding, the
unilateral shift Mζ on H2 corresponds to the restriction of M〈·,w〉 to the reducing subspace
ι(H2). In particular, M〈·,w〉

∣∣
ι(H2)

is an isometry.

Now, consider

f = K(·, z)− 1 =
∞∑
n=1

〈·, z〉n ∈ F .
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6. Nevanlinna-Pick spaces with hyponormal multiplication operators

Observe that f is contained in the range of the isometry M〈·,w〉
∣∣
ι(H2)

, hence

||M〈·,w〉f || = ||f || = ||M∗
〈·,w〉f ||.

Lemma 6.3.1 implies that F contains the element M〈·,z〉f , and thus also

f −M〈·,z〉f = 〈·, z〉 ∈ F .

(b) The proof is by induction on n. The base case n = 1 holds by assumption. Suppose
that n ≥ 2 and the assertion is true for n− 1. The same argument as in the proof of part
(a), applied to 〈·, z〉n−1 in place of f , shows that

||M〈·,z〉〈·, z〉n−1|| = ||M∗
〈·,z〉〈·, z〉n−1||,

so that

〈·, z〉n = M〈·,z〉〈·, z〉n−1 ∈ F

by Lemma 6.3.1.

Given Y ⊂ Bd, it can happen that there is a larger set Z ⊃ Y such that every function
in H2

d

∣∣
Y

extends uniquely to a function in H2
d

∣∣
Z

(cf. Section 4.5). To account for that, we
define

Y = {z ∈ Bd : f(z) = 0 for all f ∈ I(Y )}.

Then Y is the largest set which contains Y and satisfies this extension property. Moreover,
it is easy to see that

Y = {z ∈ Bd : K(·, z) ∈ H2
d 	 I(Y )}.

Lemma 6.3.3. Let Y ⊂ Bd be a set with 0 ∈ Y , and set FY = H2
d 	 I(Y ). If the

compression PFYM〈·,w〉
∣∣
FY

is hyponormal for every w ∈ Bd, then Y is a complex ball, that
is,

Y = M ∩ Bd

for some closed subspace M of `2(d).

Proof. Let M be the closed linear span of Y . Observe that for all w ∈ Y , we have
K(·, w) ∈ FY . Since 1 = K(·, 0) ∈ FY , part (a) of Lemma 6.3.2 implies that 〈·, w〉 ∈ FY
for all w ∈ Y . It follows that

〈·, v〉 ∈ FY for all v ∈M,
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6.3. Proof of Theorem 6.1.1

as v 7→ 〈·, v〉 is a conjugate linear isometry. Using part (b) of Lemma 6.3.2, we deduce that

K(·, v) =
∞∑
n=0

〈·, v〉n ∈ FY

for all v ∈ M ∩ Bd. This argument shows that Y ⊃ M ∩ Bd, and the reverse inclusion is
trivial.

We can now prove the main result.

Proof of Theorem 6.1.1. If X is a singleton, there is nothing to prove. Otherwise, fix
λ0 ∈ X. Since K is an irreducible kernel, it is nowhere zero, so we can consider the
normalized kernel defined by

K̃(λ, µ) =
K(λ, µ)

δ(λ)δ(µ)
,

where

δ(λ) =
K(λ, λ0)√
K(λ0, λ0)

.

Then K̃(λ0, µ) = 1 for all µ ∈ X. Moreover, if H̃ denotes the reproducing kernel Hilbert

space with kernel K̃, then
H̃ → H, f 7→ δf

is a unitary operator. It is easy to see that H̃ also satisfies the hypotheses of Theorem
6.1.1, so we will work with H̃ instead of H.

We will show that H̃ can be identified with H2
d′ for a suitable cardinal d′. It will then

follow that d′ is necessarily 1. By Theorem 6.2.1, there is an injection b : X → Bd for some
cardinal d such that 0 = b(λ0) ∈ b(X) and such that

K̃(λ, µ) = kd(b(λ), b(µ))

holds for all λ, µ ∈ X. Define Y = b(X) and FY = H2
d 	 I(Y ), and note that 0 ∈ Y . The

discussion at the end of Section 6.2 now shows that FY satisfies the hypotheses of Lemma
6.3.3, hence

Y = M ∩ Bd
for some closed subspace M . Let d′ be the dimension of the Hilbert space M . As X is not
a singleton, d′ 6= 0. Clearly, FY = FY , so that the restriction map from FY into H2

d

∣∣
Y

is
unitary. If V is an isometry from `2(d′) onto M ⊂ `2(d), we have

kd(V (z), V (w)) = kd′(z, w) for all z, w ∈ Bd′ .
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6. Nevanlinna-Pick spaces with hyponormal multiplication operators

Therefore,

FY → H2
d′ , f 7→ f ◦ V,

is a unitary operator as well. Combining this map with the unitary from Theorem 6.2.1,
we obtain a unitary

H2
d′ → H̃, f 7→ f ◦ j,

where j = V ∗ ◦ b.

By assumption, all multiplication operators on H̃ are hyponormal, hence the same is
true for H2

d′ . This is only possible if d′ = 1 (see the discussion at the beginning of Section

6.2), so that the last operator is in fact a unitary from H2 onto H̃. Injectivity of this
operator implies that A = j(X) is a set of uniqueness for H2. Combining the identities for
the various kernels, we see that

K(λ, µ) = δ(λ)δ(µ)k(j(λ), j(µ)) for all λ, µ ∈ X, (6.2)

as asserted.

To prove the additional assertion, let λ0 6= µ ∈ X. Then j(µ) 6= 0, so rearranging
equation (6.2), we obtain for j the formula

j(λ) =
(
j(µ)

)−1
(

1− δ(λ)δ(µ)

K(λ, µ)

)
.

Taking the definition of δ into account, it follows that j is continuous (respectively holo-
morphic) whenever K(·, µ) is.

Remark 6.3.4. (a) Since d′ = 1 in the last proof, the isometry V is of the form λ 7→ λw for
some unit vector w in the one-dimensional space M . It is easy to see that in this situation,
the inverse of the unitary

FY = FY → H2, f 7→ f ◦ V,

is given by

H2 → FY ⊂ H2
d ,

∞∑
n=0

anζ
n 7→

∞∑
n=0

an〈·, w〉n.

An isometric embedding of this type was used in the proof of Lemma 6.3.2.

(b) For the most part of the proof of Theorem 6.1.1, we only used hyponormality of
operators of the form PFYM〈·,w〉

∣∣
FY

for w ∈ Bd (notation as above). If H is an irreducible
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complete Nevanlinna-Pick space with kernel K, normalized at some point λ0, then these
operators correspond to multiplication operators on H with multipliers of the form

ϕ(·) = 〈b(·), w〉 (w ∈ Bd), (6.3)

where b is the injection from Theorem 6.2.1. These multipliers play the role of coordinate
functions for Nevanlinna-Pick spaces (see the discussion preceding Beurling’s theorem for
Nevanlinna-Pick spaces [3, Theorem 8.67]).

The only argument which requires hyponormality of more general multiplication oper-
ators is the proof that d′ = 1. Thus, if we weaken the hypothesis of Theorem 6.1.1 and
only require hyponormality of multiplication operators corresponding to functions as in
(6.3), then H will be equivalent to H2

d′ (in the sense of part (2) of Theorem 6.1.1) for some
cardinal d′.
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7. von Neumann’s inequality for
commuting weighted shifts

7.1. Introduction

The contents of this chapter appeared in [44]. von Neumann’s inequality states that

||p(T )|| ≤ sup{|p(z)| : z ∈ D}

holds for every contraction T on a Hilbert space and every polynomial p ∈ C[z], where
D denotes the open unit disc in C [88]. This inequality can be deduced from Sz.-Nagy’s
dilation theorem, according to which every contraction T on a Hilbert space admits a
unitary (power) dilation [83]. Andô’s theorem shows that any pair (T1, T2) of commuting
contractions dilates to a pair of commuting unitaries [5]. As a consequence, we obtain a
two variable von Neumann inequality:

||p(T1, T2)|| ≤ sup{|p(z1, z2)| : (z1, z2) ∈ D2}

for every polynomial p ∈ C[z1, z2]. The situation for three or more commuting contractions
is quite different. Parrott [64] gave an example of three commuting contractions satisfying
von Neumann’s inequality which do not dilate to commuting unitaries. Kaijser-Varopoulos
[87] and Crabb-Davie [14] exhibited three commuting contractions which do not satisfy the
three variable version of von Neumann’s inequality. More details about this topic can be
found in Chapter 5 of the book [65].

In 1974, Shields [81, Question 36] asked if von Neumann’s inequality holds for a particu-
larly tractable class of commuting contractions, namely multivariable weighted shifts. He
attributes this question to Lubin. This problem is also explicitly mentioned in the proof of
Theorem 22 in [51]. Multivariable weighted shifts can be defined as follows. Let (βI)I∈Nd
be a collection of strictly positive numbers with β0 = 1 such that for j = 1, . . . , d, the set

{βI+εj/βI : I ∈ Nd}
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7. von Neumann’s inequality for commuting weighted shifts

is bounded, where εj ∈ Nd is the tuple whose j-coordinate is 1 and whose other coordinates
are 0. Define a space of formal power series

H2(β) =
{
f(z) =

∑
I∈Nd

aIz
I : ||f ||2 =

∑
I∈Nd
|aI |2β2

I <∞
}

and for j = 1, . . . , d, let Mzj be the unique bounded linear operator on H2(β) such that

Mzjz
I = zI+εj for all I ∈ Nd.

Then the tuple (Mz1 , . . . ,Mzd) is called a d-variable weighted shift. More details about
multivariable weighted shifts can be found in Section 7.3.

The purpose of this chapter is to provide a positive answer to the question of Lubin and
Shields.

Theorem 7.1.1. Let T = (T1, . . . , Td) be a d-variable weighted shift and assume that each
Tj is a contraction. Then T dilates to a d-tuple of commuting unitaries. In particular, T
satisfies von Neumann’s inequality, that is,

||p(T )|| ≤ sup{|p(z)| : z ∈ Dd}

for all p ∈ C[z1, . . . , zd].

A proof of Theorem 7.1.1 will be given in Section 7.4. In fact, we will show that ev-
ery contractive d-variable weighted shift satisfies the matrix version of von Neumann’s
inequality.

It is important that the tuple T in Theorem 7.1.1 is a multivariable weighted shift
in the sense described above. Indeed, the three operators of the Crabb-Davie example
[14], which do not satisfy von Neumann’s inequality, commute and are weighted shifts
individually (with some weights equal to zero), but they do not form a 3-variable weighted
shift. Furthermore, it is also possible to define multivariable weighted shifts with possibly
zero weights, see Remark 7.3.1 (b). In Section 7.5, we will exhibit such a tuple of operators
which does not dilate to a tuple of commuting unitaries. This example is similar to Parrott’s
example [64].

Abstract considerations show that there exists a d-tuple of commuting contractions
(S1, . . . , Sd) on a Hilbert space such that

||p(T1, . . . , Td)|| ≤ ||p(S1, . . . , Sd)||
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holds for every d-tuple of commuting contractions (T1, . . . , Td) and every polynomial p ∈
C[z1, . . . , zd], and, in fact, for every matrix of polynomials p. This defines an operator
algebra structure on C[z1, . . . , zd], which is called the universal operator algebra for d
commuting contractions (see [65, Chapter 5]). It follows from Theorem 7.1.1 and from the
failure of von Neumann’s inequality for three commuting contractions that S cannot be a
d-variable weighted shift for d ≥ 3.

Corollary 7.1.2. Let ρ : C[z1, . . . , zd] → B(H) be an isometric representation of the
universal operator algebra for d commuting contractions. If d ≥ 3, then the d-tuple of
operators (ρ(z1), . . . , ρ(zd)) is not a d-variable weighted shift.

This should be compared with the situation for commuting row contractions, that
is, commuting tuples (T1, . . . , Td) satisfying

∑d
j=1 TjT

∗
j ≤ 1. In this case, the universal

norm is the multiplier norm on the Drury-Arveson space, and the corresponding d-tuple
(Mz1 , . . . ,Mzd) of row contractions is a d-variable weighted shift [8, 26]. Indeed, the tuple
(Mz1 , . . . ,Mzd) was first described as a weighted shift.

The remainder of this chapter is organized as follows. In Section 7.2, we provide a
general method for establishing von Neumann’s inequality for commuting contractions. In
Section 7.3, we recall the definition and some basic properties of multivariable weighted
shifts. Section 7.4 contains the proof of Theorem 7.1.1. Finally, in Section 7.5, we exhibit
an example which shows that Theorem 7.1.1 does not generalize to multivariable weighted
shifts with possibly zero weights.

7.2. A general method for establishing von Neumann’s
inequality

Let X ⊂ CN be a compact set. We say that a function f : X → C is analytic if it extends
to an analytic function in an open neighbourhood of X. We denote by ∂0X the Shilov
boundary of the algebra of all analytic functions on X. Thus, ∂0X is the smallest compact
subset K of X such that

sup{|f(z)| : z ∈ X} = sup{|f(z)| : z ∈ K}

holds for every analytic function f on X. For simplicity, we call ∂0X the Shilov boundary
of X. By the maximum modulus principle, ∂0X is contained in the topological boundary
∂X, but it may be smaller. Similar to the scalar valued case, we say that a function
F = (F1, . . . , Fd) : X → B(H)d is analytic if each Fj extends to a B(H)-valued analytic
function in an open neighbourhood of X.
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7. von Neumann’s inequality for commuting weighted shifts

The next result is motivated by a proof of von Neumann’s inequality for matrices due
to Nelson [61], see also [65, Exercise 2.16] and [68, Chapter 1].

Proposition 7.2.1. Let X ⊂ CN be compact and suppose that T : X → B(H)d is an
analytic function such that T (z) is a d-tuple of commuting contractions for all z ∈ X.
Then the following assertions are true:

(a) If the tuple T (z) satisfies von Neumann’s inequality for all z ∈ ∂0X, then T (z)
satisfies von Neumann’s inequality for all z ∈ X.

(b) If the tuple T (z) dilates to a tuple of commuting unitaries for all z ∈ ∂0X, then T (z)
dilates to a tuple of commuting unitaries for all z ∈ X.

Proof. Let p = (pi,j)
n
i,j=1 be an n × n matrix of polynomials in C[z1, . . . , zd] and suppose

that the inequality
||p(T (z))||B(Hn) ≤ ||p||∞

holds for all z ∈ ∂0X, where

||p||∞ = sup{||p(w)||Mn : w ∈ Dd}.

Given f, g ∈ Hn of norm 1, observe that the scalar valued function

X → C, z 7→ 〈p(T (z))f, g〉,

is analytic. By assumption, this function is bounded by ||p||∞ on ∂0X, and hence on X by
definition of ∂0X. Consequently, the inequality

||p(T (z))||B(Hn) ≤ ||p||∞
holds for all z ∈ X. Part (a) now follows by taking n = 1 above. Part (b) is a consequence
of the general fact that a tuple of commuting contractions satisfies the matrix version
of von Neumann’s inequality if and only if it dilates to a tuple of commuting unitaries,
which follows from Arveson’s dilation theorem (see, for example, [65, Corollary 7.7], or [68,
Corollary 4.9] for the explicit statement).

Remark 7.2.2. (a) Proposition 7.2.1 and its proof remain valid in the following more
general setting: Suppose that A ⊂ C(X) is a uniform algebra with Shilov boundary
X0 ⊂ X. Let T : X → B(H)d be a function such that T (z) is a d-tuple of commuting
contractions for all z ∈ X and such that for all p ∈ C[z1, . . . , zd] and all f, g ∈ H, the scalar
valued function

X → C, z 7→ 〈p(T (z))f, g〉,
belongs to the algebra A. If T (z) satisfies von Neumann’s inequality (respectively dilates
to a d-tuple of commuting unitaries) for all z ∈ X0, then T (z) satisfies von Neumann’s
inequality (respectively dilates to a d-tuple of commuting unitaries) for all z ∈ X.
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7.3. Preliminaries about weighted shifts

(b) We can recover Nelson’s proof of von Neumann’s inequality from Proposition 7.2.1
in the following way. Suppose that T ∈ Mn(C) is a contraction and let T = UDV be a
singular value decomposition of T , where U, V ∈ Mn(C) are unitary and D is a diagonal

matrix with entries in [0, 1]. For z ∈ Dd
, define

T (z) = U diag(z1, . . . , zn)V.

This defines an analytic map on Dd
. Moreover, ∂0(Dd

) = Td, and T (z) is unitary for
z ∈ Td. By Proposition 7.2.1, it therefore suffices to establish von Neumann’s inequality
for unitary matrices, which in turn is an immediate consequence of the spectral theorem.

To motivate the proof of Theorem 7.1.1, we first deduce from Proposition 7.2.1 that
single contractive weighted shifts satisfy von Neumann’s inequality (of course, this also
follows from the usual von Neumann’s inequality for Hilbert space contractions).

Proposition 7.2.3. Let T be a unilateral weighted shift which is a contraction. Then T
satisfies von Neumann’s inequality.

Proof. A straightforward approximation argument reduces the statement to the case of
truncated weighted shifts (see Lemma 7.4.1 below for the details). Let n ∈ N and suppose
that T ∈ Mn(C) is a truncated weighted shift with weight sequence w1, . . . , wn−1 in D,
that is,

T =


0 0 · · · 0 0
w1 0 · · · 0 0
0 w2 · · · 0 0
...

...
. . .

...
...

0 0 . . . wn−1 0

 .

For z = (z1, . . . , zn−1) ∈ Dn−1
, let T (z) ∈ Mn be the truncated weighted shift with weight

sequence z1, . . . , zn−1. This defines an analytic map on Dn−1
. Since ∂0(Dn−1

) = Tn−1, an
application of Proposition 7.2.1 shows that it suffices to establish von Neumann’s inequality
for T (z) if z ∈ Tn−1. However, for z ∈ Tn−1, the operator T (z) is easily seen to be unitarily
equivalent to T (1, 1, . . . , 1) (cf. Corollary 1 in Section 2 of [81]), which evidently dilates to
the bilateral shift, and thus satisfies von Neumann’s inequality.

7.3. Preliminaries about weighted shifts

In this section, we review the definition and some basic properties of multivariable weighted
shifts. For a comprehensive treatment, the reader is referred to [51]. Let d ∈ N. We begin
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7. von Neumann’s inequality for commuting weighted shifts

by recalling multi-index notation. A multi-index is an element I ∈ Nd. For 1 ≤ j ≤ d,
we write εj for the multi-index I = (i1, . . . , id) with ij = 1 and ik = 0 for k 6= j. Given a
multi-index I = (i1, . . . , id), we define

|I| = i1 + . . .+ id.

Moreover, if z = (z1, . . . , zd) ∈ Cd, we write

zI = zi11 . . . z
id
d .

If T = (T1, . . . , Td) is a commuting tuple of operators, we similarly define T I . Given
two multi-indices I = (i1, . . . , id) and J = (j1, . . . , jd), we say that I ≤ J if ik ≤ jk for
1 ≤ k ≤ d.

Now, let H be a Hilbert space with an orthonormal basis

{eI : I ∈ Nd}

and let
w = (wI,j)(I,j)∈Nd×{1,...,d}

be a bounded collection of strictly positive numbers satisfying the commutation relations

wI,jwI+εj ,k = wI,kwI+εk,j (7.1)

for all I ∈ Nd and j ∈ {1, . . . , d}. The (d-variable) weighted shift with weights w is the
unique d-tuple of bounded operators (T1, . . . , Td) on H satisfying

TjeI = wI,jeI+εj (I ∈ Nd, j ∈ {1, . . . , d}).

Observe that the relations (7.1) guarantee that the operators Tj commute. Evidently, Tj
is a contraction if and only if wI,j ≤ 1 for all I ∈ Nd.

Remark 7.3.1. (a) The definition of multivariable weighted shifts in the introduction
is equivalent to the definition given in this section. To see this, suppose that Mz =
(Mz1 , . . . ,Mzd) is a tuple of multiplication operators on a space H2(β) as in the introduc-
tion. Then with respect to the orthonormal basis (zI/βI)I∈Nd , the tuple Mz is the d-variable
weighted shift with weights

wI,j =
βI+εj
βI

.

Conversely, every d-variable weighted shift in the sense of this section is unitarily equivalent
to the tuple (Mz1 , . . . ,Mzd) on H2(β), where

βI = ||T Ie(0,...,0)||
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7.3. Preliminaries about weighted shifts

for I ∈ Nd, see [51, Proposition 8]. While the definition in terms of multiplication operators
is somewhat cleaner, it is more convenient to work with the weights w and not with the
weights β in the proof of Theorem 7.1.1. Nevertheless, part of the proof is motivated by
this other point of view.

(b) The assumption that all weights wI,j are strictly positive is standard in the study of
multivariable weighted shifts. It is of course possible to define multivariable weighted shifts
with complex weights in a similar way. According to [51, Corollary 2], every multivariable
weighted shift with complex non-zero weights, equivalently, every injective multivariable
weighted shift with complex weights, is unitarily equivalent to one with strictly positive
weights. However, if we allow for zero weights, then the situation is quite different. Such
a tuple is no longer unitarily equivalent to a tuple of the form Mz on H2(β). We will see
in Section 5 that the dilation part of Theorem 7.1.1 does not hold in this more general
setting.

Just as in the proof of Proposition 7.2.3, we will work with truncated shifts in the proof
of Theorem 7.1.1, and we will also need to consider complex and possibly zero weights.
For N ∈ N, define a finite dimensional subspace HN of H by

HN = span{eI : |I| ≤ N}. (7.2)

Suppose that
w = (wI,j)|I|≤N,j∈{1,...,d}

is a collection of complex numbers satisfying the commutation relations (7.1) for |I| ≤ N−1
and j ∈ {1, . . . , d}. We call such a collection a commuting family. The (d-variable)
truncated weighted shift with weights w is the unique d-tuple of operators (T1, . . . , Td) on
HN+1 satisfying

TjeI =

{
wI,jeI+εj if |I| ≤ N,

0 if |I| = N + 1.

Once again, the commutation relations ensure that the operators Tj commute.

We require the following straightforward adaptation of [51, Corollary 2] to truncated
weighted shifts.

Lemma 7.3.2. Let T be a d-variable truncated weighted shift on HN+1 with non-zero
weights w = (wI,j). Then T is unitarily equivalent to the d-variable truncated weighted
shift with weights (|wI,j|).

Proof. For |I| ≤ N+1, we define recursively complex numbers λI of modulus 1 by λ(0,...,0) =
1 and λI+εj = λIwI,j/|wI,j| for |I| ≤ N . As in the proof of [51, Corollary 2], we deduce from
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7. von Neumann’s inequality for commuting weighted shifts

the commutation relations (7.1) that this is well defined. If U is the unitary operator on
HN+1 satisfying UeI = λIeI , then (U∗T1U, . . . , U

∗TdU) is the d-variable truncated weighted
shift with weights (|wI,j|).

7.4. Proof of Theorem 7.1.1

The proof of Theorem 7.1.1 is essentially an adaptation of the proof of Proposition 7.2.3
to the multivariate setting. We begin with a straightforward reduction to truncated shifts.

Lemma 7.4.1. In order to prove Theorem 7.1.1, it suffices to show that every d-variable
truncated weighted shift with weights in (0, 1] dilates to a d-tuple of commuting unitaries.

Proof. Let T = (T1, . . . , Td) be a d-variable weighted shift on H such that ||Tj|| ≤ 1 for
each j, that is, all weights of T belong to (0, 1]. Let HN be the subspace of H defined in
(7.2). Observe that the compressed tuple

PHNT
∣∣
HN

= (PHNT1

∣∣
HN
, . . . , PHNTd

∣∣
HN

)

is a d-variable truncated weighted shift with weights in (0, 1]. Since HN is co-invariant
under each Tj, we see that

p(PHNT
∣∣
HN

) = PHNp(T )
∣∣
HN

holds for every p ∈ C[z1, . . . , zd]. Therefore, for every p ∈ C[z1, . . . , zd], the sequence
p(PHNT

∣∣
HN

) converges to p(T ) in the strong operator topology as N →∞. Consequently,

if PHNT
∣∣
HN

dilates to a d-tuple of commuting unitaries and thus satisfies the matrix version
of von Neumann’s inequality for all N ∈ N, then T satisfies the matrix version of von
Neumann’s inequality, and therefore dilates to a d-tuple of commuting unitaries.

The main obstacle when generalizing the proof of Proposition 7.2.3 to multivariable
shifts is that multivariable truncated weighted shifts are not parametrized by the points of
a polydisc in an obvious way. This is because of the commutation relations (7.1). Instead,
we will use Lemma 7.4.2 below.

For the remainder of this section, let us fix N ∈ N and set

I = {(I, j) ∈ Nd × {1, . . . , d} : |I| ≤ N}.

Let X denote the closure of the set of all commuting families (wI,j)(I,j)∈I with 0 < |wI,j| ≤ 1
for all (I, j) ∈ I. Observe that we may regard X as a compact subset of C|I|.
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Lemma 7.4.2. The Shilov boundary of X is contained in the set

X0 = {(wI,j) ∈ X : |wI,j| = 1 for all (I, j) ∈ I}.

Proof. Let w = (wI,j) ∈ X \ X0 with wI,j 6= 0 for all (I, j) ∈ I and let f : X → C be a
function which extends to be analytic in a neighbourhood of X. We will show that there
exists a point w̃ = (w̃I,j) ∈ X with w̃I,j 6= 0 for all (I, j) ∈ I such that

|f(w)| ≤ |f(w̃)|

and such that
{(I, j) ∈ I : |wI,j| = 1} ( {(I, j) ∈ I : |w̃I,j| = 1}.

Once this has been accomplished, iterating this process finitely many times yields a point
v ∈ X0 such that |f(w)| ≤ |f(v)|. Consequently, X0 is a boundary for the algebra of all
analytic functions on X, so ∂0X ⊂ X0.

Let us begin by establishing some terminology which will be used throughout the proof.
Let T = (T1, . . . , Td) be the d-variable truncated weighted shift with weights w. If I ⊂ Nd

is a multi-index with |I| ≤ N + 1, we say that I is good if

||T Ie(0,...,0)|| = 1.

Otherwise, we call I bad (cf. Remark 7.3.1 (a)). The following observations are immediate:

(a) If I is good and if J ≤ I, then J is good.

(b) If (I, j) ∈ I with |wI,j| < 1, then I + εj is bad.

(c) Suppose that |I| ≤ N . If I is good and I + εj is bad, then |wI,j| < 1.

We say that a pair (I, j) ∈ I is scalable if I is good, but I + εj is bad. It follows from
(b) and the choice of w that there exists at least one bad multi-index. Since (0, . . . , 0) is
good, we therefore see that there exists at least one scalable pair. Recall that all |wI,j| are
assumed to be non-zero, so we may define

r = max{|wI,j| : (I, j) is scalable}−1.

Then r > 1 by (c). Let Dr(0) ⊂ C denote the closed disc of radius r around 0. For
t ∈ Dr(0) and (I, j) ∈ I, define

ŵI,j(t) =

{
twI,j if (I, j) is scalable,

wI,j if (I, j) otherwise
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and let ŵ(t) = (ŵI,j(t))(I,j)∈I . We finish the proof by showing that ŵ(t) ∈ X for every

t ∈ Dr(0). Indeed, it then follows from the maximum modulus principle that there exists
t0 ∈ ∂Dr(0) with

|f(w)| = |f(ŵ(1))| ≤ |f(ŵ(t0))|,

so setting w̃ = ŵ(t0), we obtain a point with the desired properties.

Since X is closed, it suffices to show that ŵ(t) ∈ X for all t ∈ Dr(0) \ {0}. Clearly,
0 < |ŵI,j(t)| ≤ 1 for these t, so we need to show that ŵ(t) is a commuting family, that is,
we need to show that

ŵI,j(t)ŵI+εj ,k(t) = ŵI,k(t)ŵI+εk,j(t)

for all t ∈ Dr(0) and all multi-indices I with |I| ≤ N − 1 and 1 ≤ j, k ≤ d. Let I be such
a multi-index. If I is bad, it follows from (a) that I + εj and I + εk are bad as well, and
hence no pairs in I which appear in the above equation are scalable. If I and I + εj + εk
are good, then it follows again from (a) that no pairs in the equation are scalable. Thus,
it remains to consider the case where I is good and I + εj + εk is bad. In this case, exactly
one of (I, j) and (I + εj, k) is scalable, depending on whether I + εj is good. Similarly,
exactly one of (I, k) and (I + εk, j) is scalable. Thus

ŵI,j(t)ŵI+εj ,k(t) = twI,jwI+εj ,k = twI,kwI+εk,j = ŵI,k(t)ŵI+εk,j(t),

as asserted.

We are now ready to prove the main theorem.

Proof of Theorem 7.1.1. According to Lemma 7.4.1, it is enough to establish Theorem
7.1.1 when T is a d-variable truncated weighted shift with weights in (0, 1], say T acts on
HN . Given a commuting family w ∈ X, let us write T (w) for the d-variable truncated
weighted shift on HN with weights w. Then the range of the analytic map

X → B(HN)d, w 7→ T (w),

consists of d-tuples of commuting contractions and contains every d-variable truncated
weighted shift on HN with weights in (0, 1]. According to Proposition 7.2.1 and Lemma
7.4.2, it therefore suffices to show that T (w) dilates to a d-tuple of commuting unitaries
if w ∈ X0. We infer from Lemma 7.3.2 that for w ∈ X0, the d-tuple T (w) is unitarily
equivalent to the tuple T (1), where 1 denotes the element of X0 which consists only of 1s.
Thus, it remains to show that T (1) dilates to a d-tuple of commuting unitaries. In this
case, it is not hard to construct a unitary dilation explicitly.
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Indeed, let σ denote the normalized Lebesgue measure on Td, and for 1 ≤ k ≤ d, let Mzk

be the operator on L2(σ) given by multiplication with zk. Then Mz = (Mz1 , . . . ,Mzd) is a
d-tuple of commuting unitaries, and T (1) can be identified with the compression of Mz to
the semi-invariant subspace

span{zI : I ∈ Nd, |I| ≤ N},

cf. Example 1 in Section 2 of [51]. Therefore, the proof is complete.

Remark 7.4.3. In the last proof, the tuple of unitaries (M∗
z1
, . . . ,M∗

zd
) on L2(Td) is in fact a

regular dilation of the adjoint of T (1) in the sense of [85, Section 9]. Therefore, the adjoint
of every tuple T (w) for w ∈ ∂0X admits a regular unitary dilation. This is not true for
the adjoint of every tuple T (w) for w ∈ X.

For example, suppose that d = 2 and let

wI,j =

{
1/2, if I = (0, 0)

1, otherwise.

Let T = (T1, T2) be the 2-variable weighted shift with weights (wI,j). With notation as
in Remark 7.3.1 (a), T is unitarily equivalent to (Mz1 ,Mz2) on H2(β), where β0 = 1 and
βI = 1/2 if I 6= (0, 0). A straightforward computation shows that

(1− T1T
∗
1 − T2T

∗
2 + T1T2T

∗
1 T
∗
2 )e(1,1) = −3/4e(1,1),

hence T ∗ does not admit a regular unitary dilation by [85, Theorem 9.1]. Similarly, the
truncations PHNT

∗
∣∣
HN

do not admit regular unitary dilations if N ≥ 2.

For the same reason, multivariable truncated weighted shifts do not in general coex-
tend to a (direct sum of) Mz on the Hardy space H2(Dd), or, more generally, to a tuple
(V1, . . . , Vd) of doubly commuting isometries (i.e. the Vi commute and V ∗i Vj = VjV

∗
i if

i 6= j). Indeed, if (V1, V2) is a pair of doubly commuting isometries, then

(1− V1V
∗

1 − V2V
∗

2 + V1V2V
∗

1 V
∗

2 ) = (1− V1V
∗

1 )(1− V2V
∗

2 )

is a positive operator, and hence if (T1, T2) is a compression of (V1, V2) to a co-invariant
subspace, then

1− T1T
∗
1 − T2T

∗
2 + T1T2T

∗
1 T
∗
2

is a positive operator as well. On the other hand, if d = 1, then every contractive weighted
shift, being a pure contraction, coextends to a direct sum of copies of the unilateral shift
Mz on H2(D).
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7.5. A non-injective counterexample

The definition of multivariable weighted shifts given in Section 7.3 can be generalized
to allow complex and possibly zero weights, see Remark 7.3.1 (b). Even though it is
customary to assume that all weights are non-zero, we may still ask if Theorem 7.1.1
holds in this greater generality. Observe that the proof of Theorem 7.1.1 breaks down if
some of the weights of T are zero. Indeed, the method of scaling certain weights by a
complex number t never changes a zero weight into a non-zero one. It is natural to ask,
however, if the proof can be modified by introducing non-zero weights in such a way that
the commutation relations (7.1) still hold. We will now exhibit an example which shows
that this is not possible in general. In fact, the operator tuple in this example does not
dilate to a commuting tuple of unitaries.

Let T be a 3-variable weighted shift with not necessarily positive weights (wI,j) given by

wI,j =


0, if |I| ≥ 2 or I = εj,

ai,j, if I = εi and i 6= j,

δj if I = (0, 0, 0).

Here (ai,j)i 6=j are six complex numbers of modulus 1 and (δj)1≤j≤3 are three complex
numbers of modulus at most 1, all to be determined later. The relevant part of the three
dimensional grid N3 together with the weights wI,j is shown in Figure 7.1.

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

0

a2,3

a3,
2

a3,1

0

a2,1

0

δ1

δ2

δ3

a1,
2

a1,3

Figure 7.1.: The weights of T
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Observe that if δj = 0 for all j, then (wI,j) satisfies the commutation relations (7.1)
regardless of the value of the six weights ai,j. On the other hand, the relations

δ1a1,3 = δ3a3,1

δ2a2,1 = δ1a1,2

δ3a3,2 = δ2a2,3

show that if one of the δj is not zero, then all of them are non-zero. Moreover, multiplying
the above equations, we see that in this case, the equation

a1,3a2,1a3,2 = a3,1a1,2a2,3

must hold. For example, let us set a2,1 = −1 and

a1,2 = a1,3 = a2,3 = a3,1 = a3,2 = 1.

If δj = 0 for j = 1, 2, 3, then we obtain a 3-variable contractive weighted shift T with not
necessarily positive weights. However, it is not possible to perturb the first three weights
w(0,0,0),j = δj while maintaining commutativity of the operators. Note this also shows that
for any N ≥ 2, the weights (wI,j), where |I| ≤ N , do not belong to the set X of Section
7.4.

We now show that the 3-tuple of commuting contractions T which we just constructed
does not dilate to a 3-tuple of commuting unitaries. This is very similar to Parrott’s
example [64]. Observe that the 6-dimensional space M spanned by the vectors

e(1,0,0), e(0,1,0), e(0,0,1), e(1,1,0), e(1,0,1), e(0,1,1)

contains ran(Tj) as well as ker(Tj)
⊥ for j = 1, 2, 3, so we may restrict our attention to this

space. With respect to the orthonormal basis above, the operators Tj are given on M by

Tj =

[
0 0
Aj 0

]
∈M6(C) (j = 1, 2, 3),

where

A1 =

0 −1 0
0 0 1
0 0 0

 , A2 =

1 0 0
0 0 0
0 0 1

 , A3 =

0 0 0
1 0 0
0 1 0

 .
As in the treatment of Parrott’s example in [18, Example 20.27], we consider the matrix
polynomial

p(z1, z2, z3) =

z1 z2 0
z3 0 z2

0 z3 −z1

 .
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7. von Neumann’s inequality for commuting weighted shifts

It is shown there that

sup{||p(z1, z2, z3)|| : z1, z2, z3 ∈ D} =
√

3.

On the other hand,
||p(T1, T2, T3)|| = ||p(A1, A2, A3)||.

The submatrix of the 9× 9 matrix p(A1, A2, A3) corresponding to the rows 1, 6, 8 and the
columns 2, 4, 9 is −1 1 0

1 0 1
0 1 −1

 ,
and it is easy to check that this matrix has norm 2. Thus,

||p(T1, T2, T3)|| ≥ 2.

In fact, it is not hard to see that ||p(T1, T2, T3)|| = 2. Since 2 >
√

3, it follows that
the commuting contractions T1, T2, T3 do not dilate to commuting unitaries. However, it
follows from Section 5 of [64] that T1, T2, T3 do satisfy the scalar version of von Neumann’s
inequality.

This example also demonstrates that Lemma 7.3.2 and [51, Corollary 6] do not hold in
general without the assumption that the weights are non-zero. Indeed, it is not hard to
see that if ai,j = 1 for all i 6= j in the example above, then T does dilate to a commuting
tuple of unitaries.
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Raumes, Math. Nachr. 4 (1951), 258–281.

[89] E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to
the general theory of infinite processes and of analytic functions; with an account of the
principal transcendental functions, Fourth edition. Reprinted, Cambridge University
Press, New York, 1952.

[90] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, Springer-Verlag, New
York-Heidelberg, 1975, Reprint of the 1960 edition, Graduate Texts in Mathematics,
Vol. 29.

175


	Introduction
	Preliminaries about Nevanlinna-Pick spaces
	Reproducing kernel Hilbert spaces
	Multipliers
	Vector valued reproducing kernel Hilbert spaces
	Nevanlinna-Pick interpolation
	The Agler-McCarthy universality theorem
	Examples

	Multipliers of embedded discs
	Introduction
	Multipliers on discs and automorphism invariance
	Transversality
	Tangential embedding
	Crossing on the boundary
	Pseudohyperbolic distance
	A class of discs in Binfinity
	Embedding closed discs
	Interpolating sequences

	A new approach to the classification problem for multiplier algebras
	Introduction
	Preliminaries
	From multiplier algebras to kernels
	Composition Operators
	Algebraic consistency and varieties
	Graded complete Nevanlinna-Pick spaces
	Restrictions of unitarily invariant spaces
	The maximal ideal space
	Holomorphic maps on homogeneous varieties
	Existence of graded isomorphisms
	Isomorphism results

	The Borel complexity of the classification problem
	Introduction
	Borel complexity theory
	Varieties and unitarily invariant kernels
	Turbulence for Polish groupoids
	Admissible log-convex sequences
	Conformal equivalence of varieties

	Nevanlinna-Pick spaces with hyponormal multiplication operators
	Introduction
	Embedding into Drury-Arveson space
	Proof of Theorem 6.1.1

	von Neumann's inequality for commuting weighted shifts
	Introduction
	A general method for establishing von Neumann's inequality
	Preliminaries about weighted shifts
	Proof of Theorem 7.1.1
	A non-injective counterexample

	References

