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Abstract 

Service vehicles, such as refrigerator trucks and tour buses, are equipped with auxiliary devices, 

including refrigeration systems and cabin air conditioning systems, which consume significant amount 

of energy. The engine of these vehicles should idle to supply power for auxiliary devices when they 

stop for a long time, e.g. for loading and unloading goods. This study proposes a new anti-idling system 

for service vehicles that powers auxiliary devices by a battery pack and an engine-driven generator (or 

alternator). In addition to idle elimination which is the main objective of all current anti-idling systems, 

the proposed system called Regenerative Auxiliary Power System (RAPS) attempts to reduce fuel 

consumption by enabling regenerative braking and utilizing an optimal power management system. 

The objectives of this study are to identify drive and service loads of a service vehicle for component 

sizing of the RAPS and to develop an optimal power management system for more fuel saving. 

In order to determine the size of required components (a battery pack and a generator) for the 

RAPS, drive and service loads of a given service vehicle should be identified. The drive load is the 

amount of power that is required for moving the vehicle, and the service load is the power consumption 

of the auxiliary devices. To identify drive and service loads, all the parameters in power balance 

equation of the engine should be either measured or estimated. As two inputs with unknown variations 

in this equation, vehicle mass and torque of auxiliary devices are required to be estimated. This study 

proposes a model-based algorithm that utilizes available signals in the CAN bus of the vehicle as well 

as a signal from a GPS receiver (road grade information) for simultaneous estimation of the vehicle 

mass and torque of auxiliary devices.  

The power management system of the RAPS should determine the split ratio of auxiliary power 

demand between the generator and battery in order to minimize fuel consumption. It should also 

guarantee that the battery has enough energy for powering auxiliary devices at all the engine-OFF stops. 

To meet these objectives, a two-level control system is proposed in this study. In the high-level control 

system, a fast dynamic programming (DP) technique which utilizes extracted features of the predicted 

drive and service loads obtains an SOC trajectory. In the low-level control system, a refined Adaptive 

Equivalent Fuel Consumption Minimization (A-ECMS) technique is employed to track the SOC 

trajectory obtained by the high-level control scheme.  

Many numerical simulations are carried out to test the functionality of the proposed identification 

algorithm and power management system. Moreover, the numerical simulations are validated by 

Hardware-In-The-Loop (HIL) simulations. The results show the idling is completely eliminated and a 

significant amount of fuel is saved by implementing the RAPS on a service vehicle. Therefore, the cost 

of energy can be noticeably reduced and consequently the cost of RAPS is recouped in a short period 

of time. 
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Chapter 1 

Introduction 

Service vehicles, such as refrigerator trucks and tour buses, are equipped with auxiliary devices, 

including refrigeration systems and cabin air conditioning systems, which consume significant amount 

of energy. The engine of these vehicles should idle to supply power for auxiliary devices when they 

stop for a long time, e.g. for loading and unloading goods. The idling time of trucks is estimated 

between 1,600 and 1,800 hours in a year [1]. Diesel engines have a high efficiency (up to 40%) at 

highway speeds while their efficiency drops to 1-11% during idling [2], [3]. The average fuel 

consumption for each truck during idling is estimated at 6,056 L (1,600 gal) per year [4].  Therefore, 

service vehicles with their frequent idling contributes to greenhouse gas emissions due to increased fuel 

consumption. That is why anti-idling provisions have existed in many cities in Canada and other 

countries for at least three decades.  

1.1 Motivation  

Auxiliary devices of service vehicles must have either a mechanical or an electrical power source. In 

the former option, as shown in Figure 1-1, the power generated by the engine is transmitted to an 

engine-driven auxiliary device by a belt and pulley mechanism or a power take-off (PTO). In some 

applications, such as in heavy-duty refrigerator trucks, an auxiliary engine is employed to supply the 

auxiliary power.  In the latter option, the electrical power generated by an engine-driven generator is 

consumed by an electric auxiliary device (see Figure 1-2).   

One major issue in relation to these configurations is a significant increase of the idling time. As 

delivery and service vehicles have frequent stops, the engine should operate all the time to supply the 

power required by auxiliary devices. To reduce idling of service vehicles, many anti-idling systems 

have been developed recently. As shown in Figure 1-3, a Battery-Powered System (BPS) is a new 

technology that uses electrical power generated by an engine-driven generator and a battery pack to run 

the auxiliary devices.  
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Figure 1-1 Configuration of a vehicle’s powertrain system with an engine-driven auxiliary 

device 

 

 

Figure 1-2 Configuration of a vehicle’s powertrain system with an electric auxiliary device 
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A BPS has many advantages over former configurations.  In this system, idling can be eliminated 

as the engine is turned OFF and the battery supplies auxiliary power at engine-OFF stops. In addition, 

unlike the configuration shown in Figure 1-1, the auxiliary device in BPS can operate at a constant 

speed (or desired variable speed independent from engine speed), thereby improving its performance 

and efficiency. This study proposes a new system, called Regenerative Auxiliary Power System 

(RAPS), which is a great improvement over BPS. 

 

 

Figure 1-3 Configuration of a vehicle’s powertrain system with a BPS 

 

1.2 Regenerative Auxiliary Power System (RAPS) 

A regenerative auxiliary power system (RAPS) has components similar to those of BPS (an engine-

driven generator, a battery pack, and electric auxiliary devices). However, RAPS enables regenerative 

braking that lowers fuel consumption and reduces wear on friction braking components. In addition to 

idle elimination, which is the main objective of all current BPS, the RAPS attempts to reduce fuel 
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consumption by utilizing an optimal power management system. Therefore, the cost of energy can be 

noticeably reduced and consequently the cost of replacing components is recouped in a short period of 

time. 

A schematic of a RAPS is illustrated in Figure 1-4. In this system either the main alternator of the 

vehicle (OEM alternator) or a secondary generator (which can be connected to a power take-off (PTO) 

unit) is utilized for generating electric power. The battery can be charged by the generator or grid power. 

Moreover, a control box, which includes a metal–oxide semiconductor field-effect transistor 

(MOSFET) and a microcontroller, governs the amount of current that should be drawn from the 

generator for running auxiliary devices and/or charging the battery.  

 

 

Figure 1-4 A schematic of the RAPS 

 

The RAPS operates in three modes: engine-OFF, traction, and braking. When the engine is OFF 

all the demanded auxiliary power is supplied by the battery. To ensure the main battery of the vehicle 

(OEM battery) is not discharged in this mode, a zero signal is sent to the MOSFET to cut off the 

connection of OEM battery and the battery of the RAPS. Additionally, when the state of the charge 

(SOC) of the battery reached the minimum allowable value, the RAPS is shut off, and a message is sent 

to the driver to turn the engine ON for keeping the auxiliary devices ON. 
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During traction, as shown in Figure 1-5, the generator and the battery either individually or together 

supply electric power to the auxiliary device. Extra electric power can be also generated by the 

generator to charge the battery. The optimal split ratio of the auxiliary power between the battery and 

generator is determined by a power management system. 

  

 

Figure 1-5 Performance of the RAPS during traction 

 

When braking is demanded, as presented in Figure 1-6, a portion of the vehicle kinetic energy can 

be converted to electrical energy, thereby decelerating the vehicle. This electrical energy can be used 

to run auxiliary devices and/or stored in the battery. In a case that the regenerated power is less than 

demand auxiliary power, battery is discharged to provide remaining required power. When generator 

cannot supply generative braking torque, friction brake is applied as much as required.  
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Figure 1-6 Performance of the RAPS during braking 

 

1.3 Problem Statement 

Due to the different needs of fleet service vehicles and the power requirements for their auxiliary 

devices, one RAPS design will not fit all. As a result, necessary tools and methods should be developed 

and implemented to arrive at an optimum RAPS for a given service fleet. To design an optimum RAPS 

for a given service fleet, the primary step is to identify drive and service loads. The drive load will 

indicate the portion of engine power that is required for moving the vehicle. Also, drive load will show 

the amount of potential power, which can be utilized for charging the battery.  On the other hand, the 

service load will indicate the amount of engine power consumed by engine-driven auxiliary devices. 

Identification of drive and service loads has two main applications: first, it provides important 

information for sizing the components of the RAPS, and second, it is essential for an optimum operation 

of the power management system. Therefore, it is crucial to identify drive and service loads 

independently. This calls for a new approach, where the power extracted from the engine for the 
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auxiliary devices can be identified and separated from the power consumed for driving the vehicle. To 

meet this objective, all the parameters with unknown variation in the vehicle power balance equation 

should be either measured or estimated.  

As stated earlier, in addition to idle elimination, the RAPS attempts to reduce fuel consumption of 

service vehicles. Since the RAPS has two sources of power, a battery pack and a generator, a power 

management system is required to determine the split ratio of auxiliary power between them in order 

to reduce fuel consumption. Moreover, when brake is applied by the driver, the power management 

system uses the regenerative braking power to run auxiliary devices and the extra power is stored in the 

battery.  The other role of the power management system is to ensure the battery has enough energy for 

all possible stops that the engine is OFF. This can be achieved using prediction of locations and duration 

of the stops based on historical data. Therefore, an optimal real-time power management system to 

meet all these requirements is demanded.  

1.4 Objectives 

This thesis seeks to develop required tools and methods to achieve following objectives:  

 

 Drive and Service Loads Identifications 

To determine the size of the RAPS’ components, drive and service loads of a given service vehicle 

should be identified. For this identification, auxiliary power and vehicle mass, as two parameters with 

unknown variations in the power balance equation of the engine, need to be estimated simultaneously. 

Vehicle mass individually or together with other parameters, such as road grade, has been estimated by 

many different methods. Moreover, the auxiliary power is usually obtained by sensor-based methods 

using extra sensors installed on the vehicle, which is not cost effective or feasible. This research aims 

to propose a model-based estimation algorithm that utilizes signals available through the vehicle control 

area network (CAN) to obtain vehicle mass and auxiliary power for identification of drive and service 

loads. Moreover, to ensure the identification algorithm is reliable in more realistic situations, it should 

be evaluated by HIL simulations. 
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 Real-time Controller for the power management system of the RAPS  

The control scheme of the power management system should discharge and charge the battery so that 

it has enough energy for all the engine-OFF stops and is ideally fully depleted at the end of a trip, where 

it can be charged by an external electrical source. Furthermore, the controller needs to determine the 

optimal split ratio of the auxiliary power between the generator and battery in order to minimize fuel 

consumption. To achieve these requirements, a two-level control system is required. In the high-level 

control system, an optimal SOC trajectory for the whole trip is obtained based on the prediction of drive 

and service loads. The time steps for this level are very large (i.e. from an engine-OFF stop to the next 

one) to be able to update the SOC trajectory quickly when it is required. In the low-level control system, 

a real-time controller tracks the SOC trajectory obtained by the high-level control system so that the 

fuel consumption is minimized.  

 

 Drive and Service Loads Prediction 

As mentioned earlier, the high-level controller of the power management system takes advantage of the 

load preview for obtaining the SOC trajectory in order to ensure the battery has enough energy in all 

engine-OFF stops and it is fully depleted at the end of a trip. Therefore, a method is demanded to predict 

drive and service loads. Due to the fact that service vehicles have almost the same duty and drive cycles 

every day, a prediction based on historical data would be reliable. This study attempts to propose a 

method to predict all the parameters involved in drive and service loads. 

1.5 Thesis Outline 

The remaining of this thesis is organized as follows: 

Chapter 2 reviews the literature on idle-reduction technologies as well as all methods for identification 

of drive and service loads. Moreover, this Chapter reviews the power management systems of plugin 

hybrid electric vehicles which have similar configuration to the proposed anti-idling system. 

An algorithm for drive and service loads identification is proposed in Chapter 3. The performance of 

this algorithm is also tested in some numerical simulations. 
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Chapter 4 presents a test bench that is developed for hardware-in-the-loop (HIL) simulations of service 

vehicles’ powertrain system. The identification algorithm is evaluated by HIL simulations in more 

realistic situations. 

Chapter 5 proposes a power management system for the RAPS. Some simulations are conducted to 

show the capability of the controller to meet all the defined objectives.  

A technique for prediction of drive and service loads, which is required for a better performance of the 

power management system, is proposed in Chapter 6. 

Finally, Chapter 7 discusses the conclusions of this thesis and presents some recommendations for 

future research in this area. 
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Chapter 2 

Literature Review 

In this Chapter, the literature in several areas relevant to the research conducted in this thesis is 

reviewed.  

2.1 Idle Reduction Technologies for Service Vehicles 

Engine idling has many drawbacks including emission and noise pollutions, higher fuel consumption, 

maintenance cost, and driver discomfort [5]. A study by United States Environmental Protection 

Agency (EPA) in 2008 shows that heavy-duty diesel vehicles can produce up to 34.4 g/hr of CO and 

42.3 g/hr of NOx [6]. The idling time and amount of emissions are greater in Canada because of a 

harsher climate. Many attempts have been made in the last decade to reduce or eliminate idling of 

service vehicles. Some of these technologies are reviewed in this section and their advantages and 

disadvantages are discussed. 

 Truck Stop Electrification  

Truck Stop Electrification (TSE) is a stationary terminal that offers a wide range of services including 

heated and cooled air, internal and external AC power for hotel loads, block heating, chilled or frozen 

transport refrigeration, satellite television, and high-speed internet access [7]. The available TSE 

technologies can be categorized into two groups: on-board systems and off-board systems. 

In the on-board systems, all the equipment (air conditioning system, heater, inverter, etc.) are 

installed in the truck. As shown Figure 2-1, external electrical power is transferred to the truck via an 

extension cord to run on-board equipment. Off-board systems, on the other hand, offer all the services 

without requiring the operator to have any on-board equipment. As illustrated in Figure 2-2, services 

including air ducting, 115 VAC power outlets, Ethernet, television, phone connections, and video touch 

screen are provided via a window interface [7].   

The on-board solution costs more for the operator to adapt the vehicle, but this cost is offset by a 

lower hourly service charge compared to off-board systems. TSE technology can reduce fuel 

consumption and emissions, and it also increases the quality of life for drivers and increases safety by 

providing amenities and rest for drivers. The main disadvantage of TSE technology is the limited 
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number of available electrified parking spots despite the fact that many more trucks on the road need 

their services. In addition, this solution is more suitable for long-haul trucks, which travel for long 

distances. As a result, for delivery/service vehicles that have many stops in the cities for loading and 

unloading, other anti-idling technologies should be considered.  

 

Figure 2-1 Truck stop electrification (TSE), On-board System [8] 

 

Figure 2-2 Truck stop electrification (TSE), Off-board System [8] 



 

 12 

 Auxiliary Power Unit  

An auxiliary power unit (APU) consists of a small internal combustion engine that uses fuel from a 

truck’s fuel tank when the truck’s engine is OFF to provide power for auxiliary devices. Fuel 

consumption of APUs depends greatly on the size of engine and the auxiliary load, but the average fuel 

consumption is estimated at 0.75-2.0 l/h (0.2-0.5 gal/h) under standard conditions [9]. This value is less 

than the fuel consumption of the main truck’s engine during idling. APUs also address the issue of the 

TSE technology by allowing the driver the flexibility of stopping the vehicle everywhere a parking spot 

is available. The main shortcoming of this technology is emissions produced by the auxiliary engine. 

To resolve this problem, diesel particulate filters (DPF), which are relatively expensive, should be 

utilized. Moreover, the noise caused by APUs is disturbing for drivers. 

 Battery-Powered Systems  

A Battery-Powered System (BPS) generates required power for auxiliary devices by a battery pack 

instead of using a small engine. The battery is either recharged by the truck’s alternator or an external 

electrical power supply. This technology offers all the features of APUs without emissions and noise 

caused by the small auxiliary engine.  The number of batteries employed by this system depends on the 

total demanded auxiliary power. Recharging time is also dependent on the number of batteries, level of 

depletion, and alternator amperage. The drawbacks of this technology are short battery service life, 

performance inhibition in extreme ambient temperatures, and limited capacity. 

 Fuel-Cell-Powered Systems  

Fuel-cell-powered systems (FCPS) have received significant scientific attention as a clean and efficient 

auxiliary power system recently. FCPS based on solid oxide fuel cell (SOFC) and polymer electrolyte 

membrane fuel cell (PEM FC) have been investigated in the literature extensively [10]–[12]. These 

systems offer all the benefits of BPS, but many challenges, such as lack of hydrogen fuel supply chain, 

and use of expensive and exotic materials have prevented FCPS from being commercialized [7]. 

Another reason that makes FCPS less interesting than BPS is inability of FCPS to capture wasted energy 

of the vehicle (regenerative braking), which is one of the main goals of this thesis. 
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2.2 Drive and service Loads Identification 

A drive load represents a portion of total power that is required for moving a vehicle. To identify the 

drive load of a service vehicle, all the associated parameters of resistance forces on the vehicle in 

longitudinal direction should be either measured or estimated. Vehicle mass, and road grade are two 

parameters with unknown variations, and there is no measurable signal in the vehicle control area 

network (CAN) for obtaining these parameters directly. As a result, these two parameters need to be 

estimated. 

A service load represents an amount of power that is consumed by engine-driven auxiliary devices. 

In most control systems that use longitudinal dynamics, the power consumption of auxiliary devices is 

neglected. When this amount of power is significant, such as the power consumption of a refrigeration 

system, the performance of the controller is not reliable. Therefore, an estimation of auxiliary power is 

required to find accurate delivered power to drive wheels.  

 Vehicle Parameter Estimation 

Vehicle parameter estimation is attainable through two approaches: sensor-based and model-based. In 

the sensor-based approach, some sensors required for the parameter estimation, which adds 

manufacturing cost. A model-based approach is a cheaper alternative to the sensor-based estimation. 

In this method, standard signals available through the vehicle CAN are used for the estimation. 

Additionally, these two approaches can be used together to provide the needed system redundancy.  

In order to implement a parameter estimator in the real vehicle, many qualities should be considered 

[13]: 

 Simple: The estimation algorithm should be simple enough to be capable of operating online 

with fast computational time. 

 Accurate: Based on the application of the estimator, the error of the parameter estimation 

should be small enough. 

 Fast: The rate of convergence should be fast enough for detecting parameter variations. 

 Robust: The estimation algorithm should be robust to disturbances such as variations of wind 

speed and road conditions. 
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 Inexpensive: The estimation algorithm should be implementable inexpensively to be viable, 

especially for economy-priced vehicles.  

 Vehicle Mass Estimation 

A considerable amount of literature has been published on the estimation of the vehicle mass. These 

studies can be classified based on the dynamics that is used for the estimation. Explicitly, the literature 

presents mass estimation methods based on suspension, powertrain, lateral, and longitudinal dynamics 

[13].  

Suspension deflection can provide good information for the vehicle mass estimation. This can be 

measured by installing a sensor on the suspension. Rajamani et al. used this method to design an 

adaptive observer for estimating suspension states and parameters including the vehicle mass [14]. 

Moreover, Zarringhalam et al. used suspension dynamics along with longitudinal and pitch dynamics 

to estimate the vehicle mass, pitch moment of inertia, and height of the center of gravity [15]. 

Powertrain dynamics can be also used for the estimation of the vehicle mass. Fremd in [16] showed 

that “ The natural oscillation in transmission line of a motor vehicle and the mass of motor vehicle are 

in a one-to-one relationship if the instantaneous transmission ratio remains unchanged”. He estimated 

the vehicle mass by measuring the natural frequency of the vehicle’s cardan shaft. 

The relationship between lateral forces and lateral acceleration is affected by the vehicle mass. 

Therefore, handling dynamics can be used to estimate the vehicle mass. Best et al. in [17] as well as 

Wenzel et al. in [18] used lateral dynamics to estimate states and parameters (including mass) by 

applying extended Kalman filter and dual extended Kalman filter, respectively.  

The vehicle mass also impacts the relationship between longitudinal forces and longitudinal 

acceleration. Literature presents many different algorithms using longitudinal dynamics to estimate the 

vehicle mass along with other vehicle states and parameters. Rhode et al. used longitudinal dynamics 

to estimate vehicle driving resistance parameters [19]. They used recursive least squares (RLS) 

algorithm with exponential forgetting factors to estimate the vehicle mass, rolling resistance coefficient, 

and drag coefficient. 
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Some studies used sharp longitudinal acceleration and deceleration to estimate the mass. 

Considering the vehicle mass is excited significantly during these events, the estimation will results in 

a more accurate result. Breen in [20] proposed a method to estimate the vehicle mass by measuring 

applied braking force. Similar methods are presented by Klatt and Reiner et al. in [21] and [22], 

respectively. In addition, Genise determined vehicle mass immediately after upshifts of a transmission 

by measuring the engine torque and vehicle acceleration [23]. Zhu et al. suggested a similar approach 

to estimate the vehicle mass and drag coefficient in [24] and [25]. 

 Road Grade Estimation 

Many sensor-based and model-based approaches for the road grade estimation can be found in the 

literature.  One of the earliest sensors for measuring the road grade was a patent by Gaeke [26]. He used 

the road grade signal to refine the wheel brake pressure command. Most recent sensor-based approach 

for estimating the road grade have employed a Global Positioning System (GPS) unit [27], [28]. These 

methods need accurate GPS devices, and cannot work properly with low cost GPS, which are expected 

to be standard in the next few years [29]. However, some methods have been proposed to estimate road 

grade by using commonly available GPS along with sensor fusion algorithm such as extended Kalman 

filter [30]. Furthermore, the road grade information can be obtained by using other sensors such as 

accelerometer [31], [32]. 

Model-based road grade estimation was first proposed by Lingman et al. in  [33]. They used Kalman 

filtering to process measured or estimated propulsion force and measured vehicle speed to estimate the 

road grade. Many model-based estimation methods for estimating the road grade along with the vehicle 

mass have been presented in the literature, which will be discussed in the next part. 

 Simultaneous Vehicle Mass and Road Grade Estimation 

Considerable research has been done for simultaneous vehicle mass and road grade estimation in the 

past few years. In the sensor-based approach, the road grade is usually estimated using sensors, and the 

vehicle mass is estimated using a parameter estimation algorithm [27], [31]. In the model-based 

approach, typically longitudinal dynamics is utilized to estimate the vehicle mass and road grade. 

Vahidi et al. proposed Recursive Least Squares (RLS) with multiple forgetting factors for this 

estimation [34]–[36]. They showed that “if the chosen forgetting factors reflect relative rate of variation 
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of the parameters, both parameters can be estimated with good accuracy.” In another research, a two-

stage estimator was proposed by McIntyre et al. for the estimation of a heavy-duty vehicle mass and 

road grade [37].  In the first stage, a similar RLS method used to determine the vehicle mass and an 

estimate for a constant road grade. In the second stage, a nonlinear estimator that provides a more- 

accurate estimate of the road grade was developed. Winstead et al. combined an Extended Kalman 

Filter (EKF) to generate estimation of the vehicle mass and road grade and a Model Predictive 

Controller (MPC) to control vehicle speed trajectory [38]. Finally, Mahyuddin et al. designed an 

adaptive nonlinear observer for the estimation of the mass and road grade by using vehicle speed and 

driving torque [39]. 

Many control systems in the vehicle, particularly heavy-duty ones, require simultaneous estimation 

of the road grade and mass. These control systems can be categorized as follows: 

 Vehicle longitudinal control (traction and braking) [40], [41] 

 Cruise control [42]–[44] 

 Space control for automated vehicles [45], [46] 

 Transmission shift scheduling 

 Energy control strategy of hybrid vehicles 

 Auxiliary Power Estimation 

A limited number of studies have been done for the estimation of vehicle’s auxiliary power. Matsubara 

et al. proposed an estimator device for torque estimation of a variable displacement compressor [47]. 

They calculated the torque required for driving the compressor based on the compressor signal. This 

device requires many sensors such as temperature sensor, pressure sensor, and rotational speed sensor 

for the estimation. Most other similar algorithms such as those reported in [48] and [49] need same 

sensors, which may not be cost-effective.  

2.3 Power Management System of PHEVs 

In the literature, there is no study focused on the power management system of BPS; however, 

reviewing control strategies of PHEVs, with similar configuration to BPS, will provide a good insight 
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into designing an optimal power management system. The power management system of PHEVs can 

be categorized into two main groups: Rule based and Optimization based. 

 Rule-Based Control Strategies 

In the rule-based control strategy, predefined rules are set to operate the HEV at its highest efficiency 

point without any prior information about the trip [50]. Most popular rule-based control strategies are 

Max-SOC, and Engine ON-OFF (Thermostat) [51]. The rules in the Max-SOC use the engine as a main 

source of power, and the electric motor is utilized only when demand power is greater than the power 

engine can produce.  Furthermore, when the power demand is less than the power that the engine can 

generate while operating on its optimum line, the motor works as a generator and use the remaining 

power of the engine to charge the battery until it reaches the maximum allowable SOC. In the thermostat 

control strategy, the engine goes OFF when the SOC of the battery reaches a maximum value, and the 

vehicle operates in the electric mode only. The engine is turned ON again when the SOC reaches the 

low setting. The performance of rule-based control strategies can be improved by utilizing fuzzy logic 

control methods. The main advantages of fuzzy rule-based strategies is their robustness against 

measurements error and their adaptation since the fuzzy rules can be easily tuned [52]. Li et al. have 

proposed a fuzzy control strategy that determines torque ratio of the engine and the electric motor [53]. 

This method ensures the engine operates in the neighborhood of optimal region while prevents the 

battery from over-discharging. 

 Optimization-Based Control Strategies 

Although rule-based control strategies are easy to be implemented, their performance can be far from 

optimal solutions as they do not use prior information to do the optimization for the whole cycle. 

Optimization-based control strategies find an optimal split ratio between sources of power in order to 

minimize a cost function, which is usually the cost function of fuel consumption. These control 

strategies can be categorized into two groups; Global Optimization, and Real-Time Optimization.  

Global optimization is a non-causal method since it needs full knowledge of future driving cycles 

to find minimum fuel consumption. This method is also highly computationally demanding, and it is 

not possible to be processed by standard vehicle on-board processors. Therefore, it cannot be 

implemented as a real-time controller, but it can be used to design rules for rule-based control strategies, 

and it is a good benchmark to evaluate the performance of other controllers. The most popular technique 
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to obtain the global optimal solution for the power management controller of hybrid vehicles is 

Dynamic Programming (DP) [54]. To address the problems associated with real-time implementation 

of DP, many research has been conducted recently. Since trip prediction has been greatly improved by 

rapid development of intelligent transportation systems (ITS), geographical information systems (GIS), 

and global positioning systems (GPS) [55]–[57], a rout preview with a good level of accuracy is 

available for the DP. Gong et al. proposed a driving cycle modeling using traffic information in order 

to implement a DP-based power management scheme for PHEVs [58]. Furthermore, the authors in 

another study proposed a two-scale DP to reduce computational effort of this technique [59].  In this 

method, the driving cycle was first obtained with averaging of the historical data, and SOC profile was 

found by solving the macro-scale DP problem. Then, the whole trip was divided into a number of 

segments, and for each segment a smaller DP was solved using online traffic information. The SOC 

obtained in the macro-scale DP solution at terminal location was reinforced to be the final value.  

On the other hand, real-time control optimization is a casual method as they only use past and 

current information to minimize the cost function. Model Predictive Control (MPC) and Equivalent 

Fuel Consumption Minimization Strategy (ECMS) are two widely used real-time control schemes for 

the power management of PHEVs. MPC is a model-based method with the advantage of solving 

nonlinear constrained optimization problem that is performed over a moving finite horizon. 

Taghavipour et al. showed the effectiveness of this method on minimizing fuel consumption of PHEVs 

[60]. ECMS is a method that seeks to find real-time suboptimal solution for the power management 

system of hybrid vehicles [61]. In this method, instantaneous sum of actual fuel consumption and 

equivalent fuel consumption of the power used by the battery is minimized. An equivalent weight factor 

is required to find the equivalent fuel consumption of the electrical energy, which is stored in or drawn 

from the battery. If a big value is selected for the equivalent weight factor, discharging battery is 

penalized and more fuel is consumed. However, a small equivalent weight factor leads to more usage 

of electrical energy, thereby decreasing battery SOC [62], [63].  As a result, this parameter should be 

tuned so that the SOC reaches the minimum allowable value at the end of a trip. To achieve this goal, 

a-priori knowledge of the driving cycle is required, and the equivalent weight factor can be determined 

offline by an iterative search or optimization method. To address this problem and implement this 

strategy online, Adaptive Equivalent Fuel Consumption Strategy (A-ECMS) that updates equivalent 

weight factor online was proposed [64]. Many different methods for adaptation of the equivalent weight 

factor has been proposed. These method can be categorized into three groups [65]:  
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 Adaptation based on driving cycle prediction [66], [67] 

 Adaptation based on driving pattern recognition [68] 

 Adaptation based on affine function of SOC error  

The third option is the most popular method for the adaptation of the equivalent weight factor. In 

this method, the equivalent weight factor is changed dynamically in order to maintain SOC around a 

reference value. The affine function of SOC error can be based on a P controller [69], a PI controller 

[70], [71], or a PI controller along with a tangent function of SOC [72].    

2.4 Chapter Summary 

This chapter reviewed idle reduction technologies for service vehicles. Among all these technologies, 

battery-powered systems (BPS) was the best option to be implemented on service vehicles. However, 

this technology can be greatly improved by a new system that is introduced in this study. This chapter 

also reviewed the literature on the estimation of the parameters involved in drive and service loads. In 

the literature, there was no study focused on power management system of BPS; however, control 

strategies of PHEVs, with similar configuration to BPS, were briefly reviewed.  
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Chapter 3 

Identification of Drive and Service Loads  

Drive and service loads identification is a primary step for determining the size of RAPS components. 

In order to identify these loads, all the parameters in the vehicle power balance equation should be 

measured; otherwise, an estimation of each is necessary. In the vehicle power balance equation, power 

of engine-driven auxiliary devices, vehicle mass, and road grade are the parameters with unknown 

variations. The auxiliary power can be time varying during a driving cycle. For example, in a 

refrigerator truck, power consumption of the refrigerator changes with respect to the evaporator and 

condenser temperatures. In addition, vehicle mass can be different from one driving cycle to another 

depending on the freight load. This can change up to 500% from loaded to unloaded [73], [74]. 

Moreover, a small change in the road grade can affect the torque response of a heavy-duty vehicle 

considerably [27]. Although road grade information is not available in the vehicle CAN bus, it can be 

provided by employing a GPS unit in the vehicle. Therefore, auxiliary power and vehicle mass are two 

parameters that require estimation.  

3.1 Vehicle Power Balance Model 

The system model can be obtained by balancing the vehicle power. That is, the generated power by the 

engine is equal to the power required for moving the vehicle, i.e. drive load, plus the power consumed 

by the engine-driven auxiliary devices, i.e. service load:   

 

 𝑃𝑒𝑛𝑔 = 𝑃𝑑𝑙 + 𝑃𝑠𝑙 (3-1) 

  

The generated power by the engine (𝑃𝑒𝑛𝑔𝑖𝑛𝑒) is equal to: 

 

 𝑃𝑒𝑛𝑔 = 𝑇𝑒𝜔𝑒 (3-2) 

 

where 𝑇𝑒 is the engine torque, and 𝜔𝑒 is the engine rotational speed.  
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The drive load (𝑃𝑑𝑙) is the portion of engine power required to accelerate/decelerate the vehicle and 

its driveline, to overcome the gravity force due to road grade, and to overcome resistance forces due to 

rolling resistance, aerodynamic forces, and driveline friction (see Figure 3-1) [75]: 

 

 
𝑃𝑑𝑙 = (𝑀𝑢̇ + 𝐹𝐴 + 𝐹𝑔 + 𝐹𝑅𝑅)

𝑢

𝜂𝑑𝑙
+ (𝐼𝑒 + 𝐼𝑡 +

𝐼𝑑

𝑁𝑡
2 +  

𝐼𝑤

𝑁𝑡𝑓
2 ) 𝜔̇𝑒𝜔𝑒 

(3-3) 

 

where M is the total vehicle mass (i.e. curb mass plus cargo mass), 𝑢 is the vehicle longitudinal speed, 

𝑢̇ is the vehicle longitudinal acceleration, 𝐹𝐴 is aerodynamics resistance, 𝐹𝑔 is grade resistance, 𝐹𝑅𝑅 is 

tire rolling resistance, 𝜂𝑑𝑙 is the efficiency of driveline, 𝐼𝑒 is rotational inertia of the engine, 𝐼𝑡 is 

rotational inertia of the transmission, 𝐼𝑑 is rotational inertia of the driveshaft, 𝐼𝑤 is rotational inertia of 

the wheels and axles shafts, 𝑁𝑡 is the transmission ratio, 𝑁𝑡𝑓 is the combined ratio of the transmission 

and final drive, 𝜔𝑒 is the engine rotational speed, and 𝜔̇𝑒 is the engine rotational acceleration. 

 

 

Figure 3-1 Driveline components of the vehicle 

 

To simplify the second term on the right-hand side of the Equation (3-3), the inertia of all the 

components can be replaced by 𝐼𝑡𝑜𝑡. Therefore, this equation can be rewritten as: 
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 𝑃𝑑𝑙 = (𝑀𝑢̇ + 𝐹𝐴 + 𝐹𝑔 + 𝐹𝑅𝑅)
𝑢

𝜂
𝑑𝑙

+ 𝐼𝑡𝑜𝑡𝜔̇𝑒𝜔𝑒 (3-4) 

  

Finally, by substituting the following equations for 𝐹𝐴, 𝐹𝑔, and 𝐹𝑅𝑅, 𝑃𝑑𝑙 can be defined as: 

 

 
𝐹𝐴 =

1

2
𝜌𝐶𝐷𝐴𝑓𝑢

2 
(3-5) 

 

 𝐹𝑔 = 𝑀𝑔 sin𝛼 (3-6) 

 

 𝐹𝑅𝑅 = 𝐶𝑟𝑟𝑀𝑔 cos𝛼 (3-7) 

 

 𝑃𝑑𝑙 = (𝑀𝑢̇ +
1

2
𝜌𝐶𝐷𝐴𝑓𝑢

2 +𝑀𝑔 sin𝛼 + 𝐶𝑟𝑟𝑀𝑔 cos𝛼)
𝑢

𝜂
𝑑𝑙

+ 𝐼𝑡𝑜𝑡𝜔̇𝑒𝜔𝑒 (3-8) 

 

where  𝜌 is the mass density of the air, 𝐶𝐷 is the coefficient of aerodynamic resistance, 𝐴𝑓 is the frontal 

area of the vehicle, 𝑔 is the acceleration due to gravity,  𝛼 is the angle of slope, and  𝐶𝑟𝑟 is the coefficient 

of rolling resistance.  

The service load (𝑃𝑠𝑙) is the amount of power consumed by auxiliary devices that are connected to 

the engine: 

 

 𝑃𝑠𝑙 = 𝑇𝑎𝑢𝑥𝜔𝑒 (3-9) 

 

where 𝑇𝑎𝑢𝑥 is the torque of auxiliary devices. In the above equation, it is assumed the auxiliary devices 

are driven at the same speed as the engine.  A transmission factor is required when the assumption is 

not valid. 
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By substituting Equations (3-2), (3-8), and (3-9) into Equation (3-1), the power balance of the 

vehicle can be rewritten as follows: 

 

 𝑇𝑒𝜔𝑒 = (𝑀𝑢̇ +
1

2
𝜌𝐶𝐷𝐴𝑓𝑢

2 +𝑀𝑔 sin𝛼 + 𝐶𝑟𝑟𝑀𝑔 cos𝛼)
𝑢

𝜂
𝑑𝑙

+ 𝐼𝑡𝑜𝑡𝜔̇𝑒𝜔𝑒 + 𝑇𝑎𝑢𝑥𝜔𝑒 (3-10) 

 

The vehicle speed can be related to engine speed by:  

 

 𝑢 =
𝑅𝜔𝑒
𝑁𝑡𝑓

 (3-11) 

 

where R is the tire radius. Finally, Equation (3-10) and (3-11) can be combined to obtain system model 

as: 

 

 𝑇𝑒 = (𝑀𝑢̇ +
1

2
𝜌𝐶𝐷𝐴𝑓𝑢

2 +𝑀𝑔 𝑠𝑖𝑛𝛼 + 𝐶𝑟𝑟𝑀𝑔 𝑐𝑜𝑠𝛼)
𝑅

𝑁𝑡𝑓 𝜂𝑑𝑙
+ 𝐼𝑡𝑜𝑡𝜔̇𝑒 + 𝑇𝑎𝑢𝑥 (3-12) 

 

To implement a parameter estimation algorithm, which will be described in the next section, the 

system model should be discretized. Therefore, Equation (3-12) can be approximated by the Euler’s 

method [76]: 

 

 
𝑇𝑒(𝑘) = (𝑀

𝑢(𝑘) − 𝑢(𝑘 − 1)

Δ𝑡
+
1

2
𝜌𝐶𝐷𝐴𝑓𝑢(𝑘)

2 +𝑀𝑔 𝑠𝑖𝑛𝛼(𝑘)

+ 𝐶𝑟𝑟𝑀𝑔 𝑐𝑜𝑠𝛼(𝑘))
𝑅

𝑁𝑡𝑓 𝜂𝑑𝑙
+ 𝐼𝑡𝑜𝑡

𝜔𝑒(𝑘) − 𝜔𝑒(𝑘 − 1)

Δ𝑡
+ 𝑇𝑎𝑢𝑥(𝑘) 

(3-13) 

 

where Δ𝑡 is step size, and 𝑘 denotes the discrete time instant. 
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In Equation (3-13), engine torque (𝑇𝑒), vehicle speed (𝑢), and engine speed (𝜔𝑒) are the signals 

available through the vehicle control area network (CAN). The acceleration signal is provided by the 

vehicle accelerometer, and in a case that this signal is not available, it can be obtained from the vehicle 

speed. By comparing the engine speed and vehicle speed, combined ratio of the transmission and final 

drive (𝑁𝑡𝑓) can be calculated. Moreover, road grade (𝛼) is assumed to be provided by a GPS receiver. 

Inertia of driveline components (𝐼𝑡𝑜𝑡), efficiency of driveline (𝜂𝑑𝑙), rolling resistance coefficient (𝐶𝑟𝑟), 

mass density of the air (𝜌), coefficient of aerodynamic resistance (𝐶𝐷), and frontal area of the vehicle 

(𝐴𝑓) are vehicle’s parameters and are known. Therefore, the only unknown parameters will be the 

vehicle mass (𝑀) and the torque of auxiliary devices (𝑇𝑎𝑢𝑥) that need to be estimated. 

3.2 Estimation Method 

For the online estimation of the vehicle mass and auxiliary torque, a Kalman filter method is used. The 

Kalman filter is a recursive solution to the discrete–data linear filtering problem, which was first 

developed by Rudolf E. Kalman in 1960 [77]. The Kalman filter is a method that provides an efficient 

computational means to estimate the state of a process, in a way that minimizes the mean of the squared 

errors. This method supports estimations of past, present, and even future states when the precise model 

of the system is unknown [78].  

Usually the Kalman filter is applied as an observer for the estimation of states. However, it can be 

also applied for the parameter estimation. To treat parameters as states, the following equation can be 

generated for the parameter estimation problem [79]: 

 

 𝜃(𝑘) = 𝜃(𝑘 − 1) + 𝑤(𝑘) 

𝑧(𝑘) = 𝜃𝑇(𝑘)𝜙(𝑘) + 𝑣(𝑘)  
(3-14) 

 

where 𝜃(𝑘) represents the n-dimensional unknown system parameter vector, 𝑧(𝑘) is process output, 

𝜙(𝑘) is the regression vector, 𝑤(𝑘) is a vector denote parameters variation at time instant 𝑘, and 𝑣(𝑘) 

is measurement noise. It is assumed that 𝑤(𝑘) and 𝑣(𝑘) are Gaussian process with zero mean value. 
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The goal of this method is to find the model output (𝑧̂) that best approximates the process output 

(𝑧) with the minimal sum of squared error (see Figure 3-2). 

 

 

Figure 3-2 Process and model outputs 

 

The model output can be calculated as follows: 

 

 𝑧̂(𝑘) = 𝜃1(𝑘)𝜙1(𝑘) + 𝜃2(𝑘) 𝜙2(𝑘) + ⋯+ 𝜃𝑛(𝑘)𝜙𝑛(𝑘) 
(3-15) 

 

To find the best model output (𝑧̂), the Kalman filter finds the best linear combination of regressors 

(𝜙𝑖) by optimizing the unknown parameters (𝜃𝑖). The first step for the parameter estimation is to form 

a parametric model of the system [80]. To achieve this goal, one must gather the unknown parameters 

i.e. 𝑀 and  𝑇𝑎𝑢𝑥  in a vector and express them in the form of a parametric model: 

 

 𝑧(𝑘) = 𝜃𝑇(𝑘)𝜙(𝑘) (3-16) 
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where 𝑧 is the actual output, 𝜃 represents the actual values of the parameters, and 𝜙 is the regression 

vector. Since Equation (3-13) is in a nonlinear form, the unknown parameters are selected as 
1

𝑀
 and 

 
1

𝑀
𝑇𝑎𝑢𝑥 to be able to form a parametric model as follows: 

 

 

{
 
 
 
 

 
 
 
 𝑧(𝑘) = (

𝑢(𝑘) − 𝑢(𝑘 − 1)

Δ𝑡
+ 𝑔 sin𝛼(𝑘) + 𝐶𝑟𝑟𝑔 cos𝛼(𝑘))

𝑅

𝑁𝑡𝑓𝜂𝑑𝑙

𝜃(𝑘) = [
1

𝑀

1

𝑀
𝑇𝑎𝑢𝑥(𝑘)]

𝑇

𝜙 (𝑘) = [𝑇𝑒(𝑘) − 𝐼𝑡𝑜𝑡
𝜔𝑒(𝑘) − 𝜔𝑒(𝑘 − 1)

Δ𝑡
− 

𝑅

2𝑁𝑡𝑓𝜂𝑑𝑙
𝜌𝐶𝐷𝐴𝑓𝑢(𝑘)

2 −1]

𝑇

 (3-17) 

 

The next step is to form an estimation model that is the same as a parametric model with estimated 

values of the unknown parameters: 

 

 

{

𝑧̂(𝑘) = 𝜃𝑇(𝑘)𝜙(𝑘)

𝜃(𝑘) = [𝜃1(𝑘) 𝜃2(𝑘)]
𝑇

 (3-18) 

 

where 𝑧̂ is the model output and 𝜃 represents the estimated values of the parameters. 

The estimation error is the difference between the output of the parametric and the estimation 

models. This reflects the distance between 𝜃 and 𝜃 and is defined by:  

 

 𝑒(𝑘) = 𝑧(𝑘) − 𝑧̂(𝑘) (3-19) 

 

Now, the estimation error is used to drive the adaptive law that generates 𝜃(𝑘) online. The Kalman 

filter calculates the new parameter estimate 𝜃(𝑘 + 1) at a time instant (𝑘 + 1) by adding a correction 

vector to the previous parameter estimate 𝜃(𝑘) at time instant (𝑘): 
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 𝜃(𝑘 + 1) = 𝜃(𝑘) + 𝐾(𝑘)𝑒(𝑘) (3-20) 

  

where  𝐾 is the Kalman gain that is calculated by: 

 

 

{
 
 

 
 𝐾(𝑘) =

𝑃(𝑘)𝜙(𝑘)

𝑅2 + 𝜙
𝑇(𝑘)𝑃(𝑘)𝜙(𝑘)

𝑃(𝑘 + 1) = 𝑃(𝑘) + 𝑅1 − 𝐾(𝑘)𝜙
𝑇(𝑘)𝑃(𝑘)

 (3-21) 

  

where 𝑃(𝑘) is the estimation error covariance, 𝑅1 and 𝑅2 are covariance matrices of process and 

measurement noise. Note that if we select 𝑅1 = 0 and 𝑅2 = 1 , then this equation becomes standard 

least-squares algorithm, which is usually used where the parameters are constant. 

The Kalman filter can track time-varying parameters reasonably well as long as its gain vector 

𝐾(𝑘) keeps away from zero. A nonzero gain vector is guaranteed if the covariance matrix satisfies the 

matrix inequality [81]:  

 

 𝑃(𝑘) ≥ 𝛼𝐼,     (3-22) 

 

where 𝛼 is a positive scalar. Therefore, a good Kalman filter in terms of tracking performance can be 

designed by choosing a suitable matrix sequence 𝑅1 ≥ 0 to guarantee above-mentioned matrix 

inequality for some appropriate positive number 𝛼. The diagonal entries of  𝑅1 should be chosen based 

on how fast the corresponding parameter changes with respect to time. As a result, if a parameter is 

known to change quickly, the corresponding entry in 𝑅1 should be large and vice versa [79]. 

Considering the vehicle mass is constant and the auxiliary torque is time varying during a driving cycle, 

this procedure helps to control the forgetting individually for each parameter. Furthermore, 

measurement noise covariance is usually measured prior to the filter operation by taking some off-line 
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sample measurements. In order to obtain the best performance of the filter, these covariance matrices 

should be frequently tuned off-line [78].  

The stability of the Kalman filter is generally guaranteed if the covariance matrix satisfies the 

matrix inequality [81]:  

 

 𝑃(𝑘) ≤ 𝛽𝐼 (3-23) 

 

for some scalar 𝛽 > 0.  

Equations (3-22) and (3-23) not only guarantee the tracking ability and stability of the Kalman 

filter, but also ensure some basic convergence properties. For the more details about the Kalman filter 

based estimation algorithm and its proof of stability and convergence, interested readers are referred to 

[82]–[84]. 

In many practical problems, prior knowledge about parameters that shows where they are located 

in 𝑅𝑛 may be available. This knowledge usually comes in terms of upper or lower bounds. This 

procedure that constrains estimation of parameters in the set where the parameters are located is called 

parameter projection [85]. In the problem in hand, a condition is required to avoid 𝑀̂ = 0. To achieve 

this condition, the projection algorithm must be utilized. This algorithm keeps 𝑀̂ > 𝑀𝑚𝑖𝑛  while 

maintaining stability and convergence of the Kalman filter. Additionally, it is obvious that the auxiliary 

torque is a positive value. Therefore, 𝑇𝑎𝑢𝑥 ≥ 0 can be added as another condition. 

3.3 Simulation Results 

To simulate performance of the estimation algorithm, a refrigerator truck with the specifications listed 

in Table 3-1 is selected. The refrigeration system of this vehicle has an engine-driven compressor with 

performance curve presented in Figure 3-3. This curve shows that the power consumption of the 

compressor has a linear relationship with its speed. Therefore, the compressor has a constant torque of 

45 𝑁𝑚 at all engine speeds. It should be noted that the refrigeration system has an ON/OFF control 

scheme. 
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Table 3-1 Specification of a service vehicle 

Symbol Parameter Value 

M Total mass of vehicle and freight 6000 𝑘𝑔 

R Tire radius 0.387 𝑚 

𝐶𝑟𝑟 Coefficient of rolling resistance 0.015 

𝐶𝐷 Drag coefficient 0.4 

𝐴𝑓 Frontal area 3.23 𝑚2 

     𝜌 Air density (𝑇 = 20 ℃) 1.204 𝑘𝑔.𝑚−3 

 

 

Figure 3-3 Performance curve of the refrigeration system's compressor 

Two case scenarios are considered for the simulations: (I) the compressor is OFF at the beginning 

of the drive cycle, (II) the compressor is ON when the vehicle starts moving. Also, to show the 

performance of the estimation algorithm in both highway and city cycles, the simulations have been 

done for FTP-75 and HWFET driving cycles.  
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Simulation results for a scenario are shown in Figure 3-4. As it can be seen, there is an error in the 

estimated parameters when the auxiliary device turns ON or OFF until both parameters converge to 

their actual values again.  If this change occurs when the system has low excitation (i.e. small variation 

in vehicle speed), the convergence time is increased. To address this issue, a two-stage estimation 

algorithm is considered, which will be described below.  

 

Figure 3-4 Error in estimation when the auxiliary device turns ON or OFF 

 Algorithm Improvement (Two-Stage Estimation) 

During a driving cycle, vehicle mass is almost constant and the torque of auxiliary device is time-

varying. However, when the torque of auxiliary device changes, estimated vehicle mass oscillates until 

the convergence of both parameters. It is obvious that vehicle mass does not change during a driving 

cycle. Therefore, a condition is added to the estimation algorithm to improve the results. According to 

this condition, there are two stages for the estimation. In the first stage, the algorithm works until it 

estimates an acceptable value for the vehicle mass. In the next stage, the vehicle mass is kept on the 

estimated value, and thus the torque of auxiliary device can be estimated. The parametric model of the 

second stage can be defined as:   
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{
 
 
 
 
 

 
 
 
 
 𝑧𝑠2(𝑘) = (

𝑢(𝑘) − 𝑢(𝑘 − 1)

Δ𝑡
+ 𝑔 sin𝛼(𝑘) + 𝐶𝑟𝑟𝑔 cos𝛼(𝑘))

𝑅

𝑁𝑡𝑓𝜂𝑑𝑙
−

                                         
1

𝑀𝑒𝑠𝑡  
(𝑇𝑒 − 𝐼𝑡𝑜𝑡

𝜔𝑒(𝑘) − 𝜔𝑒(𝑘 − 1)

Δ𝑡
−

𝑅

2𝑁𝑡𝑓𝜂𝑑𝑙
𝜌𝐶𝐷𝐴𝑓𝑢(𝑘)

2)

𝜃𝑠2(𝑘) = 𝑇𝑎𝑢𝑥

𝜙𝑠2 (𝑘) = −
1

𝑀𝑒𝑠𝑡

 (3-24) 

 

where 𝑀𝑒𝑠𝑡 is the estimated vehicle mass, which has been obtained from stage one. Other parts of the 

estimation algorithm operate the same as stage one. 

As presented in Figure 3-5, when the system error (𝑒) is less than a predefined value in a long 

enough period of time, the estimation algorithm goes from stage one to stage two. The required 

parameters for defining this condition should be tuned for each specific vehicle by a trial and error 

method.   

 

Figure 3-5 Two-stage estimation of mass and torque of auxiliary device 
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After applying this condition to the estimation algorithm, the previously defined scenarios are 

simulated and presented in the subsequent sections. 

 FTP-75 Driving Cycle 

FTP-75 is a city driving cycle based on Urban Dynamometer Driving Schedule (UDDS), which 

simulates an urban rout with frequent stops. Figure 3-6 and Figure 3-7 illustrate the estimation of the 

parameters in FTP-75 driving cycle. The results show that actual and estimated values are in a good 

agreement in most of the time. By adding the condition described in Section 3.3.1 to the algorithm, 

vehicle mass is kept constant until the end of the driving cycle. Therefore, when the auxiliary device 

turns ON or OFF, no error is added to the estimated parameters. In addition, Table 3-2 shows percent 

mass error and root-mean-square (RMS) error in the auxiliary torque. This table also summarizes RMS 

error in identified drive and service loads that can be obtained by substituting the estimated values into 

Equation (3-8) and (3-9). Furthermore, a comparison of the estimation errors between two-stage and 

one-stage estimation algorithms is available in this table. This comparison states that the final value of 

the vehicle mass obtained by the one-stage estimation algorithm may have smaller error, but the errors 

in identified drive and service loads are considerably decreased by employing the proposed two-stage 

algorithm.  

 HWFET Driving Cycle 

HWFET is a highway driving cycle, which simulates a high-speed cycle with no stops. Figure 3-8 and 

Figure 3-9 depict the estimation of the parameters in HWFET driving cycle. In this driving cycle, actual 

and estimated values are in a good agreement too. Despite the fact that a vehicle in a highway cycle has 

small speed variations, which results in poor excitation of the regressor matrix, the Kalman filter is able 

to estimate the parameters at the beginning of the cycle with more excitation (the vehicle has high 

acceleration when it starts moving). As a result, the estimation algorithm switches to the second stage 

quickly, and consequently the auxiliary torque in the middle of the cycle with low excitation is 

estimated very well. Table 3-3 summarizes estimation errors for this driving cycle. The errors in the 

identified drive and service loads by one-stage algorithm in this driving cycle is even worse because 

when the auxiliary device turns ON or OFF, the convergence rate is slower on account of poor 

excitation in the highway cycle. 
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Figure 3-6 Estimation of vehicle mass and auxiliary torque in case scenario (I) during FTP-75 

driving cycle 

 

Figure 3-7 Estimation of vehicle mass and auxiliary torque in case scenario (II) during FTP-75 

driving cycle 

0 500 1000 1500 2000
0

5000

10000

V
e

h
ic

le
 M

a
s

s
 (

k
g

)

 

 

0 500 1000 1500 2000
0

20

40

60

Time (sec)

A
u

x
il
ia

ry
 T

o
rq

u
e

 (
N

m
)

 

 

Actual

Estimated

Actual

Estimated

0 500 1000 1500 2000

2000

4000

6000

V
e

h
ic

le
 M

a
s

s
 (

k
g

)

 

 

0 500 1000 1500 2000
0

20

40

60

Time (sec)

A
u

x
il
ia

ry
 T

o
rq

u
e

 (
N

m
)

 

 

Actual

Estimated

Actual

Estimated



 

 34 

 

Figure 3-8 Estimation of vehicle mass and auxiliary torque in case scenario (I) during HWFET 

driving cycle 

 

Figure 3-9 Estimation of vehicle mass and auxiliary torque in case scenario (II) during HWFET 

driving cycle 
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Table 3-2 Percent mass error and RMS error in auxiliary torque, drive load, and service load 

during FTP-75 driving cycle 

 Scenario (I) Scenario (II) 

 
Two-Stage 

Estimation 

One-Stage 

Estimation 

Two-Stage 

Estimation 

One-Stage 

Estimation 

Percent Mass 

Error 
0.1% 0 0 0 

RMSE in 

Auxiliary Torque 
0.36 Nm 1.99 Nm 0.20 Nm 3.12 Nm 

RMSE in Drive 

Load 
33.37 W 310.11 W 0 856.08 W 

RMSE in Service 

Load 
58.80 W 312.86 W 40.82 W 852.70 W 

Table 3-3 Percent mass error and RMS error in auxiliary torque, drive load, and service load 

during HWFET driving cycle 

 Scenario (I) Scenario (II) 

 
Two-Stage 

Estimation 

One-Stage 

Estimation 

Two-Stage 

Estimation 

One-Stage 

Estimation 

Percent Mass 

Error 
0.12% 0 0 0 

RMSE in 

Auxiliary Torque 
0.54 Nm 7.6 Nm 0.31 Nm 8.98 Nm 

RMSE in Drive 

Load 
42.91 W 2.06e+03 W 0 2.11e+03 W 

RMSE in Service 

Load 
88.03 W 1.78+03 W 68.24 W 2.10e+03 W 
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3.4 Chapter Summary 

The drive load is the amount of power that is required for moving the vehicle, while the service load is 

the power consumption of the auxiliary devices. To identify drive and service loads, all the parameters 

in the vehicle power balance equation should be either measured or estimated.  Two parameters with 

unknown variations in this equation are vehicle mass and torque of auxiliary devices that are required 

to be estimated. This chapter proposed a model-based algorithm that utilizes available signals in the 

CAN bus of the vehicle as well as road grade information provided by a GPS receiver for simultaneous 

estimation of these two parameters. This algorithm operates in two stages: in the first stage, the Kalman 

filter works until it estimates an acceptable value for the vehicle mass; in the next stage, the vehicle 

mass is kept constant, and only auxiliary torque is estimated. The algorithm switches from stage one to 

two when the system error is less than a predefined value in a long enough period of time. The 

simulation results showed a good agreement between estimated and actual values at different levels of 

excitation (city and highway cycles).  
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Chapter 4 

Identification Validation Using HIL Simulations 

Hardware-in-the-loop (HIL) simulation provides an effective platform for test and evaluation of a 

system components as well as validation of control systems. Recently, this technique has been widely 

used in industry for following reasons [86]: 

 Pressure to reduce development cycles 

 Safety requirements that mandate comprehensive testing of a control system before it can be 

implemented on a real system 

 The need to prevent costly failures 

 Reduced cost and more availability of the components required for HIL simulations 

In automotive industry, HIL has been utilized for many applications such as component and 

subsystem evaluation [87], [88], controller validation [89]–[92], measuring efficiency of subsystems 

[93], etc.  

The proposed identification algorithm was tested by numerical simulations in Chapter 3. Although 

this is the most cost-effective approach, the results are strongly relied on the accuracy of the model 

used for the actual system. As a result, the algorithm needs to be tested in more realistic situations. The 

best approach is to test the algorithm on a real vehicle (pure hardware), however due to associated costs 

and required time, the proposed identification method is evaluated on a HIL platform. This test setup 

and results are discussed in this chapter.  

4.1 HIL Test Setup 

As illustrated in Figure 4-1, the HIL test setup includes one input AC dynamometer motor for 

simulating vehicle’s engine and two identical output AC dynamometers for simulating drive and service 

loads. The input and output dynamometers, which are from Mustang Dynamometers, include ±0.1% 

accuracy torque meters, magnetic speed sensors, and CompactLogix controller. Specifications of input 

and output dynamometers are summarized in Table 4-1.  
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Table 4-1 Specifications of dynamometers 

Symbol Parameter 
Input 

Dynamometer 

Output 

Dynamometers 

𝑇𝑚𝑎𝑥 
Maximum 

torque 
250 𝑁𝑚 630 𝑁𝑚 

𝜔𝑚𝑎𝑥 

Maximum 

rotational 

speed 

1800 𝑟𝑝𝑚 1400 𝑟𝑝𝑚 

𝑃𝑚𝑎𝑥 
Maximum 

power 
60 ℎ𝑝 60 ℎ𝑝 

 

The input dynamometer (A) is connected to the output dynamometer (B) by a 6-speed manual 

transmission (Eaton Fuller FS-5306A). The output dynamometer (C) is also connected to a power take-

off (Muncie CS6). The power take-off (PTO) is a gearbox attached to the transmission and is utilized 

to transfer power from the engine to the auxiliary devices. The PTO may be engaged by means of a 

cable, pneumatic or hydraulic pressure. In the selected PTO, a pneumatic system is deployed for this 

purpose. A portion of power generated by the input dynamometer is transferred through transmission 

to one of the output dynamometers that simulates drive load. The remaining goes to the second 

dynamometer, which simulates the auxiliary load, through the PTO. A schematic of power flow in the 

HIL setup is shown in Figure 4-2. 
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Figure 4-1 HIL setup: (A) Input dynamometer for simulating engine performance, (B) Output 

dynamometer for simulating drive load, (C) Output dynamometer for simulating service load, 

(D) Transmission, (E) Power take-off (PTO) 

 

 

 

Figure 4-2 Schematic of power flow in HIL setup 
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A pneumatic system has been designed to shift the transmission gears based on a drive cycle. Two 

pneumatic actuators, as illustrated in Figure 4-3, are attached to the gear stick and operate together for 

gear shifting. A microcontroller is used to control the pneumatic system. 

 

 

Figure 4-3 Pneumatic system for gear shifting 

 

In this HIL system, the driving cycle, auxiliary device ON/OFF signal, road grade information, and 

vehicle specifications are used in a Matlab/Simulink code to find the  drive load (for dynamometer B), 

service load (for dynamometer C), speed of input dynamometer (A), and gear number. A software 

designed by Mustang Dynamometer (MD), as shown in Figure 4-4, is used to control the speed of the 

input dynamometer and torque of output dynamometers by a PID controller. MD software is also used 

as data acquisition system for collecting torque and speed signals of the dynamometers. Speed and 

torque signals of the input dynamometer (A), as well as speed of the output dynamometer (B) are 

required for the identification task. Other signals are measured to verify performance of the PID 

controller in tracking desired values. Based on the desired gear number obtained by the 

Matlab/Simulink code, the microcontroller controls the gear shifting. Finally, a manually-operated 
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pneumatic valve is utilized to engage or disengage the PTO clutch to turn the auxiliary load ON or 

OFF. The schematic of HIL control system is illustrated in Figure 4-5. 

 

 

Figure 4-4 User interface of the MD software for controlling speed and torque of the 

dynamometers 
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Figure 4-5 Schematic of HIL control system 

4.2 Model Scaling 

As shown in Table 4-1, the maximum speed of the input dynamometer is 1800 rpm, whereas this speed 

can reach up to 5000 rpm in gasoline engines and 2500 rpm in diesel engines. This means that for 

simulating a driving cycle in the HIL setup, the vehicle speed needs to be scaled down. To scale the 

vehicle, the well-known Buckingham’s Pi theorem, which is the basic theorem of dimensional analysis, 

will be applied. This theorem states that two systems are dynamically similar if the corresponding 

dimensionless variables (Pi groups) are equal. Interested readers are referred to [94] for more details 

and the proof of the theorem. Following steps should be taken to apply this theorem [94]:   
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1- List all the variables associated with the system.  

2- Determine the number of Pi groups. The number of Pi groups (npi)  is equal to the number of 

variables (p) minus the number of dimensions (q). 

3- Select repeating variables. The repeating variables should be dimensionally independent and 

include all the dimensions.  

4- Form Pi groups. Each variable should be multiplied by repeating variables to form a Pi group. 

 

In the problem in hand, all the variables associated with the system and their corresponding dimensions 

are listed in Table 4-2. The number of Pi groups is calculated as follows: 

 

 𝑛𝑝𝑖 = 𝑝 − 𝑞 = 12 − 3 = 9 (4-1) 

 

M, R, and u are selected as repeating variables in this system, and the first Pi group is calculated as: 

 

 
𝜋1 = 𝑇𝑀

𝑎𝑅𝑏𝑢𝑐 = [𝑀][𝐿]2[𝑇]−2[𝑀]𝑎[𝐿]𝑏[𝐿]𝑐[𝑇]−𝑐 
(4-2) 

 

The exponents of repeating variables are obtained by making the Pi group dimensionless: 

 

 1 + 𝑎 = 0 

2 + b + c = 0 

−2 − c = 0 

𝑎 = −1,   𝑏 = 0,   𝑐 = −2 

(4-3) 
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By substituting the obtained values into Equation (4-2), 𝜋1 is calculated as: 

 

 
𝜋1 =

𝑇

𝑀 𝑢2 
 

(4-4) 

 

Similarly, other Pi groups, as listed in Table 4-2, can be found. 

 

Table 4-2 Variables associated with the system and their corresponding Pi groups 

Variables Symbols Dimensions Pi group 

Torque of 
dynamometers 

𝑇 [𝑀][𝐿]2[𝑇]−2 𝜋1 =
𝑇

𝑀𝑢2
 

Rotational speed 𝜔  [𝑇]−1 𝜋2 =
𝜔𝑒𝑅

𝑢
 

Vehicle mass 𝑀  [𝑀] Repeating variable 

Speed 𝑢 [𝐿][𝑇]−1 Repeating variable 

Frontal area 𝐴𝑓 [𝐿]2 𝜋3 =
𝐴𝑓

𝑅2
 

Drag coefficient 𝐶𝑑 [] 𝜋4 = 𝐶𝑑 

Tire radius 𝑅 [𝐿] Repeating variable 

Air density 𝜌 [𝑀][𝐿]−3 𝜋5 =
𝜌𝑅3

𝑀
 

Road grade 𝛼 [] 𝜋6 = 𝛼 

Inertia 𝐼 [𝑀][𝐿]2 𝜋7 =
𝐼

𝑀𝑅2
 

Efficiency 𝜂 [] 𝜋8 = 𝜂 

Gear ratio 𝑁𝑡𝑓 [] 𝜋9 = 𝑁𝑡𝑓 

 

Due to the limitation of speed in HIL setup, vehicle speed should be scaled down to 1/3 (considering 

the vehicle has a gasoline engine). Equality equation for the Pi groups of real vehicle and HIL system 

can be written as follows: 
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 (𝜋1)𝑉𝑒ℎ = (𝜋1)𝐻𝐼𝐿 

(
𝑇 

𝑀 𝑢2 
)
𝑉𝑒ℎ

= (
𝑇 

𝑀 𝑢2 
)
𝐻𝐼𝐿

 

(
𝑇𝐻𝐼𝐿
𝑇𝑉𝑒ℎ

) = (
𝑀𝐻𝐼𝐿
𝑀𝑉𝑒ℎ

)(
𝑢𝐻𝐼𝐿
𝑢𝑉𝑒ℎ

)
2

 

𝑆𝑇 = 𝑆𝑀𝑆𝑢
2 = (1)(1/3)2 = 1/9 

(4-5) 

 

where 𝑆𝑇 , 𝑆𝑀 , 𝑆𝑢 are the ratio of engine torque, mass, and speed in HIL system to those of a real 

vehicle, respectively.  

Similarly,  

 (𝜋2)𝑉𝑒ℎ𝑖𝑐𝑙𝑒 = (𝜋2)𝐻𝐼𝐿 

(
𝜔𝑅

 𝑢
)
𝑉𝑒ℎ𝑖𝑐𝑙𝑒

= (
𝜔𝑅

 𝑢
)
𝐻𝐼𝐿

 

(
𝜔𝐻𝐼𝐿

𝜔𝑉𝑒ℎ
) = (

𝑢𝐻𝐼𝐿

𝑢𝑉𝑒ℎ
) (

𝑀𝑉𝑒ℎ

𝑀𝐻𝐼𝐿
)    

𝑆𝜔𝑒 =
𝑆𝑢
𝑆𝑅
=
1/3

1
= 1/3 

(4-6) 

 

where 𝑆𝜔𝑒 , and 𝑆𝑅  are the ratio of engine speed, and tire radius in HIL system to those of a real vehicle, 

respectively. Other Pi groups do not change when vehicle speed is scaled. As a result, when the vehicle 

speed is scaled down to 1/3, rotational speed of dynamometers should be scaled to 1/3 and torque of 

dynamometers need to be scaled to 1/9. It should be mentioned that the collected data from the HIL 

setup are scaled up by similar procedure before they are used for the estimation purposes. 

4.3 Transmission Efficiency 

The efficiency of transmission is usually assumed to be a constant value for each gear. However, this 

assumption is not valid when the input torque of transmission is small. As this situation rarely happens 
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in vehicles, this assumption can be held. Since the torque of all dynamometers are scaled down to 1/9 

in the HIL setup, assumption of constant efficiency for the transmission causes noticeable error in the 

HIL simulation results. As a result, some tests are required in order to obtain the transmission efficiency 

in the operating region of the HIL setup. To achieve this goal, the input dynamometer is run at a constant 

speed while the torque increases step by step. This procedure is performed from the lowest possible 

speed and torque to the highest desired speed and torque. Then, the efficiency at each speed and torque 

is obtained by: 

 

 
𝜂𝑡 =

𝑃𝑡−𝑜𝑢𝑡 
𝑃𝑡−𝑖𝑛 

=
𝑇𝑡−𝑜𝑢𝑡 𝜔𝑡−𝑜𝑢𝑡
𝑇𝑡−𝑖𝑛 𝜔𝑡−𝑖𝑛

 (4-7) 

 

where 𝑃𝑜𝑢𝑡 , 𝑃𝑖𝑛  are the output and input power of transmission, respectively. 

For each gear an efficiency map in terms of input speed and input torque is obtained. Figure 4-6 

shows efficiency map of gear 1 to gear 6. As shown, the efficiency of the transmission in HIL system 

ranges from 31% to 97%. The higher the gear number, the better efficiency. The maximum efficiency 

of each gear occurs at the minimum speed and maximum torque. Moreover, the efficiency of each gear 

is improved when the torque is increased at a constant speed, and also the efficiency is decreased when 

the speed is increased at a constant torque.   
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Figure 4-6 Efficiency map of gear 1 to 6 
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4.4 Test Results 

HIL simulations are conducted for the service vehicle described in Section 3.3. To determine the 

validity of the system model, the engine torque that is obtained by the model is compared to the 

measured engine torque. To achieve this goal, the vehicle specifications as well as the measured engine 

speed and vehicle speed are substituted in the Equation (3-13) to find the engine torque. Then, this 

value is compared with the measured torque of the input dynamometer, which simulates the engine 

torque. Figure 4-7 shows a comparison of these values for a driving cycle when the auxiliary device is 

ON for the whole cycle. The results confirm that the system is properly modeled for HIL simulations.  

 

Figure 4-7 Comparison of the engine torque obtained by the model with that of measured from 

the input dynamometer. 

 

 

The HIL simulations are done for a driving cycle shown in Figure 4-8. Three case scenarios are 

considered for the simulations: (I) the PTO is disengaged, which means that auxiliary device is OFF, 

(II) the PTO is engaged to provide constant torque of 45 Nm for the auxiliary device, (III) the auxiliary 

device is ON in the beginning of the cycle and then it turns OFF. 
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Figure 4-8 A driving cycle used for HIL simulations 

 

Before applying the estimation algorithm, some considerations should be taken into account. Some 

data points obtained from simulations cannot be utilized by the estimation algorithm. When the 

following conditions are met, the estimation is put on hold and previous values are used as the estimated 

parameters. These conditions include: braking, gear shifting, and low-acceleration periods. The brake 

pressure is available in the CAN bus of heavy-duty vehicles, but determining brake torque from brake 

pressure requires an accurate model for each specific vehicle. Additionally, during gear shifting, the 

drive torque signal is not accurate and hence will not be used in the estimation algorithm.  In addition, 

when the vehicle has low acceleration, the excitations of measurement signals are not rich enough for 

the estimation purposes. Therefore, during braking, gear shifting, and low acceleration periods (𝑢̇ <

0.1 𝑚/𝑠2) the estimation algorithm becomes inactive and previous values are used.  

By considering the above-mentioned points, the estimation algorithm is applied to the collected 

data. Figure 4-9, Figure 4-10, and Figure 4-11 illustrate the estimation of vehicle mass and auxiliary 

torque for the three case scenarios. Furthermore, Table 4-3 shows percent mass error, RMS error in 

auxiliary torque, and RMSE in drive and service loads. As seen, there is a good agreement between the 

actual and estimated values. The estimation switches from stage one to two, as discussed in 

Section 3.3.1, when the percentage of system error is less than 2% for 4 seconds. This happens after 36 
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sec, 55 sec and 36 sec in case scenario I, II, and III, respectively. As a result, the estimation of the 

vehicle mass remains unchanged after an acceptable value is found. The estimated mass in the second 

stage has a small error (less than 3%) in all cases. The estimation of auxiliary torque converges to the 

actual value in a reasonable amount of time. If the auxiliary device turns ON or OFF during the 

estimation (e.g. case scenario III), the convergence rate of estimated auxiliary torque to the actual value 

is dependent on the situation. For instance, if this happens when the system has low level of excitation, 

the convergence rate will be slower. The results illustrate that the estimation of the parameters is 

inactive when previously-described conditions are met. For example, at the end of the cycle when the 

brake is applied and speed of the vehicle reduces from 55 km/h to zero, the algorithm provides the pre-

braking estimation.  

 

Figure 4-9 Estimation of vehicle mass and auxiliary torque in case scenario (I) 

20 40 60 80 100 120 140 160
2000

4000

6000

8000

V
e

h
ic

le
 M

a
s

s
 (

k
g

)

 

 

Actual

Estimated

20 40 60 80 100 120 140 160

0

5

10

Time (sec)

A
u

x
il
ia

ry
 T

o
rq

u
e

 (
N

m
)

 

 

Actual

Estimated



 

 51 

 

Figure 4-10 Estimation of vehicle mass and auxiliary torque in case scenario (II) 

 

Figure 4-11 Estimation of vehicle mass and auxiliary torque in case scenario (III) 
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Table 4-3 Percent mass error and RMS error in auxiliary torque, drive load, and service load 

 
Percent 

Mass Error 

RMSE in 

Auxiliary Torque 

RMSE in 

Drive Load 

RMSE in 

Service Load 

Scenario 

(I) 
0.7 % 1.35 Nm 2.56 𝑘𝑊 0.23 𝑘𝑊 

Scenario 

(II) 
-1.09 % 6.24 Nm 2.63 𝑘𝑊 0.67 𝑘𝑊 

Scenario 

(III) 
-2.72 % 11.38 Nm 4.31 𝑘𝑊 1.54 𝑘𝑊 

 

4.5 Sensitivity Analysis 

In Equation (3-13), some parameters are assumed to be known in advance. In this section, the sensitivity 

of the estimation algorithm is evaluated with respect to these parameters. Three main parameters that 

can be different from our assumption are rolling resistance coefficient (𝐶𝑟𝑟), coefficient of aerodynamic 

resistance (𝐶𝐷), and tire radius (𝑅). The sensitivity analysis is done on the set of data collected in case 

of scenario (II). For this study, these three parameters are varied in a reasonable range, and the 

estimation errors are calculated for each variation.  

Change of aerodynamic coefficient has a very small effect on regression vector (see Equation 

(3-17)). Therefore, as illustrated in Figure 4-12, the estimation algorithm is not very sensitive to the 

variation of aerodynamic coefficient, and change of error in estimated mass and auxiliary torque is 

trivial.  
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Figure 4-12 Sensitivity of the estimation algorithm with respect to coefficient of aerodynamic 

resistance 

 

Furthermore, Figure 4-13 shows that variation of the rolling resistance coefficient does not have a 

profound effect on the estimation of the vehicle mass. On the other hand, the estimation of auxiliary 

torque is more sensitive to this variation. This is because, rolling resistance coefficient and torque of 

auxiliary devices affect the system model in the same way. As a result, in order to properly identify 

service loads, more accurate value of rolling resistance coefficient is required. 

Finally, Figure 4-14 presents the sensitivity of the estimation algorithm with respect to the tire 

radius. Considering the tire radius has direct effect on traction torque, mass estimation is affected 

considerably when this value is not accurate. Therefore, the tire radius should be determined precisely 

for better identification of the drive load.  
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Figure 4-13 Sensitivity of the estimation algorithm with respect to rolling resistance coefficient 

 

Figure 4-14 Sensitivity of the estimation algorithm with respect to tire radius 
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4.6 Chapter Summary 

To evaluate the estimation algorithm in more realistic situations, HIL simulations were carried out.  In 

this chapter, a test setup required for these HIL simulations was introduced. This test setup has three 

dynamometers for simulating generated power by the engine, drive loads, and service loads. The 

dynamometers are connected to each other by a manual transmission and a PTO, and their speed and 

torque are controlled by a PID controller provided in the MD software. The gear shifting is also done 

by two pneumatic actuators attached to the gear stick. Considering the speed limit of the dynamometers 

is smaller than the actual speed of an engine, the vehicle was scaled down using Buckingham’s Pi 

theorem. To make measurable signals in the tests comparable to actual available signals in the CAN 

bus, some data points did not use for the estimation. When the following conditions were met, the 

estimation was put on hold and previous values were used as estimated parameters. These conditions 

include: braking, gear shifting, and low acceleration periods. By HIL simulations, more realistic results 

were obtained that confirmed a good performance of the estimation algorithm.  
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Chapter 5 

RAPS Power Management System  

A regenerative auxiliary power system (RAPS) can supply auxiliary power using the battery, generator 

(or alternator), or combination of these two sources. In the battery only mode, all auxiliary power 

demand is provided by the battery, and no auxiliary load is added to the engine by the generator. The 

system can operate in this mode until the state of charge (SOC) of the battery reaches a predefined 

minimum allowable value. In the generator only mode, the auxiliary power is supplied by the engine-

driven generator. Moreover, extra power can be generated by the generator to charge the battery as 

required. Finally, in the combined mode, both battery and generator provides the auxiliary power 

demand. The ideal scenario is to use the battery for the whole trip where it can be charged by an external 

electrical source, but the problem would be the size and cost of the battery.  As a result, the power 

management system of the RAPS should determine the split of auxiliary power demand between the 

generator and battery in the whole trip in order to minimize fuel consumption. The other objective of 

the power management system is to guarantee that the battery has enough energy for powering auxiliary 

devices for all the stops where the engine is OFF.  

5.1 System Model 

A simplified backward model is employed for the powertrain of a service vehicle since utilizing 

complex model is neither required nor necessary for developing the power management system. The 

drive cycle and auxiliary load demand are the inputs to the model, and the engine fuel consumption and 

the battery SOC are the outputs. The model of each powertrain’s component is described in this section. 

All these models are extracted from Autonomie, which is a commercially-available software for 

modeling and simulation of powertrain systems.  

A service vehicle that is selected for this study is a refrigerator delivery truck with specifications 

listed in Table 5-1. In addition, the specifications of the RAPS’ components, i.e. the battery and 

generator, are available in this Table. 
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Table 5-1 Vehicle Specifications 

Symbol Parameter Value 

M Vehicle mass  6000 𝑘𝑔 

R Tire radius 0.387 𝑚 

𝐶𝑟𝑟 
Coefficient of rolling 

resistance 
0.015 

𝐶𝐷 Drag coefficient 0.44 

𝐴𝑓 Frontal area 3.23 𝑚2 

𝑃𝑒𝑛𝑔−𝑚𝑎𝑥 Engine maximum power 205 𝑘𝑊 

𝑃𝑔𝑒𝑛−𝑚𝑎𝑥 Generator maximum power 5.5 𝑘𝑊 

𝐸𝑏𝑎𝑡𝑡 Battery energy 9 𝑘𝑊ℎ 

 

 Engine  

The model that is used for the engine takes the engine speed and engine torque as inputs and generates 

fuel consumption of the engine as an output using the engine’s fuel rate map: 

 𝑚̇𝑓 = 𝑓1(𝜔𝑒 , 𝑇𝑒) (5-1) 

 

where the engine torque (𝑇𝑒) is sum of the drive torque and generator torque, and the engine speed (𝜔𝑒) 

is calculated using vehicle speed and combined ratio of the transmission and final drive in the backward 

model.  

 Generator  

The generator model takes generator speed and generator torque as inputs and provides the generator 

power as an output using a generator efficiency map: 
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 𝑃𝑔𝑒𝑛 = 𝑓2(𝜔𝑔𝑒𝑛, 𝑇𝑔𝑒𝑛) (5-2) 

 

where the generator torque is determined by the RAPS controller, and the generator speed is either 

equal to the engine speed or can be obtained by considering the engine-generator transmission ratio.  

 Battery  

A simplified model is used for the lithium-ion battery of the RAPS. In this model, the dynamics of the 

battery SOC is defined as: 

 

 𝑆𝑂𝐶̇ = −
𝑉𝑂𝐶 −√𝑉𝑂𝐶

2 − 4𝑃𝑏𝑎𝑡𝑡𝑅𝑖𝑛𝑡

2𝑅𝑖𝑛𝑡𝐶
 

(5-3) 

 

where 𝑉𝑂𝐶 is the open-circuit voltage of the battery, 𝑃𝑏𝑎𝑡𝑡 is the battery power, 𝑅𝑖𝑛𝑡 is the internal 

resistance of the battery, and 𝐶 is the battery capacity. The power that is drawn from or charged into 

the battery is determined by the RAPS controller, and its sign is positive when the battery is discharged 

and negative when it is charged.  

5.2 Control Strategy 

As stated earlier, the control strategy of a RAPS needs to satisfy two requirements; it needs to minimize 

fuel consumption in the whole cycle, and it needs to ensure the battery has enough energy to power 

auxiliary devices when the engine is OFF.  This section discusses three possible control schemes for 

the RAPS: rule-based, dynamic programming (DP), and a new two-level control strategy (DP-

AECMS). 

 Rule-Based Control Strategy 

In the rule-based control strategy, it is assumed that no prior information about drive and duty cycles is 

available. Therefore, to ensure the battery has enough energy at all engine-OFF stops, the controller 

charges the battery to the maximum allowable SOC when the engine is ON, and it keeps the SOC at 

the maximum value until the battery is discharged again at the next engine-OFF stop. This strategy can 
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be far from optimal solution because the battery might be charged when the engine operates 

inefficiently, and it is very likely that the battery is fully charged at the end of a trip, which is not 

desirable in terms of fuel consumption.  

 Dynamic Programming (DP) 

A service vehicle specifically a refrigerator delivery truck has usually the same route and auxiliary load 

(duty cycle) every day. This can provide a load preview with an acceptable level of accuracy for a better 

performance of the control strategy. To take advantage of this feature, a DP technique, which provides 

a global optimal solution to constrained nonlinear control problems, can be utilized to find an SOC 

trajectory for the following operating day of the vehicle. The future information that is required by DP 

is attainable using historical data and sensory data such as the weight of freight, ambient temperature, 

traffic information, distance to next stop, etc. Prediction of drive and duty cycles based on this data will 

be discussed in Chapter 6. 

In order to implement DP, the system model can be defined as: 

 

 𝑆𝑂𝐶(𝑘 + 1) = 𝑓(𝑆𝑂𝐶(𝑘), 𝑢𝑑(𝑘)) (5-4) 

 

where 𝑆𝑂𝐶(𝑘) is the state of the system representing state of the charge of the battery at each instant, 

and 𝑢𝑑(𝑘) is the control input that determines the split ratio of the auxiliary power between the 

generator and battery as follows: 

 

 𝑃𝑔𝑒𝑛(𝑘) = 𝑢𝑑(𝑘) 

𝑃𝑏𝑎𝑡𝑡(𝑘) = 𝑃𝑎𝑢𝑥 − 𝑢𝑑(𝑘) 
(5-5) 

 

where 𝑃𝑔𝑒𝑛 is the power of the generator, 𝑃𝑏𝑎𝑡𝑡 is the power of the battery, and 𝑃𝑎𝑢𝑥 is demanded 

auxiliary power. This equation states that if the generator power, which is determined by the controller, 

is greater than the demanded auxiliary power, then the battery will be charged (the power of the battery 

will be negative). 
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The optimization problem is to find 𝑢𝑑(𝑘) in order to minimize the following cost function: 

 

 

𝐽 = ∑𝑉(𝑆𝑂𝐶(𝑘), 𝑢𝑑(𝑘))

𝑁

𝑘=0

=∑𝑚𝑓(𝑘)

𝑁

𝑘=0

 (5-6) 

 

where 𝑉 is the cost of each instant that is equal to the total fuel consumption of the engine. The 

optimization problem is subjected to the following constraints: 

 

 𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 

𝑇𝑒𝑛𝑔−𝑚𝑖𝑛 ≤ 𝑇𝑒𝑛𝑔(𝑡) ≤ 𝑇𝑒𝑛𝑔−𝑚𝑎𝑥 

𝑇𝑔𝑒𝑛−𝑚𝑖𝑛 ≤ 𝑇𝑔𝑒𝑛(𝑡) ≤ 𝑇𝑔𝑒𝑛−𝑚𝑎𝑥 

(5-7) 

where 𝑇𝑒𝑛𝑔−𝑚𝑖𝑛 and 𝑇𝑒𝑛𝑔−𝑚𝑎𝑥 are the minimum and maximum engine torques, and 𝑇𝑔𝑒𝑛−𝑚𝑖𝑛 and 

𝑇𝑔𝑒𝑛−𝑚𝑎𝑥 are the minimum and maximum generator torques. 

  After defining the optimization problem and system model, DP can be applied to obtain optimal 

control 𝑢𝑑
∗ (𝑘), which gives the optimal state 𝑆𝑂𝐶∗(𝑘). Based on Bellman’s principle of optimality, the 

optimal solution at any stage (𝑘) can be found by solving following sub-problem backward from the 

terminal condition [95]: 

 

 𝐽𝑘
∗(𝑆𝑂𝐶(𝑘)) =  min

𝑢𝑑(𝑘)
 (𝑉(𝑆𝑂𝐶(𝑘), 𝑢𝑑(𝑘)) + 𝐽𝑘+1

∗ (𝑆𝑂𝐶∗(𝑘 + 1))) (5-8) 

 

with  

 

 𝐽𝑘
∗(𝑆𝑂𝐶(𝑁)) =  min

𝑢𝑑(𝑁)
 (𝑉(𝑆𝑂𝐶(𝑁), 𝑢𝑑(𝑁))) (5-9) 
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For the final stage 𝑁. 

To solve Equation (5-8) numerically, backward DP algorithm, which is described in [95] is used.  

 Two Level Control System (DP-AECMS) 

The main drawback of DP control strategy is high computational cost. Therefore, the processing power 

it requires cannot be facilitated by standard vehicles’ on-board processors, especially when the SOC 

trajectory is required to be updated online for example when new future information is available. To 

address this problem, a new two-level controller is proposed. In the high level of this controller, a fast 

dynamic programing technique is employed to find optimal values of the initial and final SOC for each 

segment based on available a-priori knowledge. A segment, as illustrated in Figure 5-1, is a duration 

when the vehicle is driven, or when the vehicle is stopped for delivery or pick up and the engine is OFF. 

In the low level, a real-time control scheme determines the split ratio of auxiliary power between the 

generator and the battery with the initial and final SOC obtained by the high-level controller. 

 

 

Figure 5-1 Definition of segments and SOC trajectory  
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5.2.3.1 High-Level Control System 

In the high-level control system a fast DP technique determines the optimal amount of energy, which 

can be discharged from or charged into the battery in each segment.  This level also ensures the battery 

has enough energy at all possible stops when the engine is OFF. Due to the fact that DP should be run 

for only a few points (number of segments), the computational time is significantly reduced, and an 

optimal solution can be obtained online quickly.  

In this level of the control system, instead of finding the optimal solution at each instant, it is 

determined for each segment. The system model can be defined as: 

 

 𝑆𝑂𝐶(𝑛 + 1) = 𝑓(𝑆𝑂𝐶(𝑛), 𝑢ℎ(𝑛)) (5-10) 

 

where 𝑆𝑂𝐶(𝑛) is the initial SOC of the battery at each segment. The model that is used to find the 

battery SOC in this level is different from the one described in Section 5.1.3 and it is defined as: 

 

 𝑆𝑂𝐶(𝑛) =
𝐸𝑏𝑎𝑡𝑡−𝑟𝑒𝑚(𝑛) 

𝐸𝑏𝑎𝑡𝑡
                                                                 (5-11) 

 

where 𝐸𝑏𝑎𝑡𝑡 is the total energy of the battery, and 𝐸𝑏𝑎𝑡𝑡−𝑟𝑒𝑚(𝑛) is the remaining energy in the battery. 

Furthermore, 𝑢ℎ(𝑛) is the control input that determines the split ratio of the auxiliary energy between 

the generator and battery as follows: 

 

 𝐸𝑔𝑒𝑛−𝑠𝑒𝑔(𝑛) = 𝑢ℎ(𝑛) 

𝐸𝑏𝑎𝑡𝑡−𝑠𝑒𝑔(𝑛) = 𝐸𝑎𝑢𝑥−𝑠𝑒𝑔(𝑛) − 𝐸𝑟𝑒𝑔𝑒𝑛−𝑠𝑒𝑔(𝑛) − 𝑢ℎ(𝑛) 
(5-12) 

 

where 𝐸𝑔𝑒𝑛−𝑠𝑒𝑔 is the total produced electrical energy by the generator in a segment that is used for 

powering the auxiliary device as well as charging the battery, 𝐸𝑏𝑎𝑡𝑡−𝑠𝑒𝑔 is the energy that is charged 

into or discharge from the battery in the segment, 𝐸𝑎𝑢𝑥−𝑠𝑒𝑔 is the total auxiliary energy demanded in 
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the segment, and 𝐸𝑟𝑒𝑔𝑒𝑛−𝑠𝑒𝑔 is the total electrical energy generated by regenerative braking in the 

segment. The goal is to obtain 𝑢ℎ(𝑛) so that the following cost function is minimized: 

 

 

𝐽 = ∑𝑚𝑓(𝑛)

𝑁𝑠

𝑛=0

 (5-13) 

 

where (𝑁𝑠) is the number of segments plus one, and 𝑚𝑓 is total fuel consumption of the engine in a 

segment. To find the fuel consumption of each segment, the engine power at each instant that is used 

for driving the vehicle plus the generator power is required. While the DP technique finds the generator 

energy in the segment, the distribution of this energy, which is needed to acquire the generator power, 

is not known. To address this problem, it is assumed that this energy is distributed equally at each 

instant in the segment. While this assumption is not valid in calculating real fuel consumption, it 

provides accurate enough information to find a suboptimal solution in the high-level control system. 

The fuel consumption of each segment should be calculated numerous times for all possible 

solutions when DP is in process. In order to reduce the computation burden of this calculation, a new 

method is proposed. In this method, which is based on the features extracted from the prediction of the 

drive cycle [96], a histogram of the engine speed and engine torque for each segment is constructed.  

This histogram bins engine speed and torque into a 10-by-10 grid of equally spaced containers (see 

Figure 5-2).  
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Figure 5-2 Histogram plot of engine torque and engine speed for a segment 

 

Then, the energy of the generator found by DP is divided by the total time of the segment to find 

the generator power. The generator power is divided by the speed index of the histogram to obtain 

generator torque. Subsequently, the generator torque is added to the torque index of the histogram to 

calculate a new engine torque. Now, the histogram represents the engine speed and engine torque, 

which is sum of the drive torque and generator torque. Afterward, the corresponding speed and torque 

of each bin are utilized by the model described in Equation (5-1) to obtain the fuel rate. To find the fuel 

consumption of each bin, the fuel rate is multiplied by the height of each bin, which represents the 

duration that the engine operates at a correlated speed and torque. Finally, the fuel consumption of the 

segment is calculated by adding the fuel consumption of all the bins. In employing this method, 

processing time is decreased dramatically because instead of using all points in the segment, only 100 

points are used to obtain the fuel consumption. This process is illustrated in Figure 5-3 for more 

clarification.  
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Figure 5-3 Fuel consumption calculation for each segment in DP 

 

Since in this level of the control system, the optimization is done for the segments (not each instant) 

the constraints on the engine torque and generator torque cannot be applied, and they will be considered 

in the low level. The only constraint that should be satisfied in this level is on the battery as follows: 

 𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑘) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (5-14) 

 

where 𝑆𝑂𝐶𝑚𝑖𝑛 and 𝑆𝑂𝐶𝑚𝑎𝑥 are the minimum and maximum allowable states of the charge of battery, 

respectively. 

Finally, to obtain optimal control 𝑢ℎ
∗ (𝑘), which gives the optimal state 𝑆𝑂𝐶∗(𝑛), the same method 

that was described in the previous section should be applied.  
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5.2.3.2 Low-Level Control System 

In the high-level control system, the optimal initial and final SOC of each segment was determined. 

This ensures that the battery has enough energy for the engine-OFF stops and also it is fully depleted 

at the end of a trip. Now, in the low-level control system, a real-time control strategy is required to 

determine the optimal ratio of the auxiliary power between the battery and generator by considering the 

desired initial and final SOC. To meet this objective, an adaptive equivalent fuel consumption 

minimization strategy (A-ECMS), which has shown good performance on HEVs and PHEVs, will be 

employed. The algorithm will be refined to improve results and reduce computational load. 

The objective of equivalent fuel consumption minimization strategy (ECMS) is to minimize 

instantaneous equivalent fuel rate (𝑚̇𝑓,𝑒𝑞𝑢), which is defined as [97]: 

 

 
𝑚̇𝑓,𝑒𝑞𝑢(𝑡, 𝑢𝑙(𝑡)) =  𝑚̇𝑓(𝑡, 𝑢𝑙) + 𝑠

𝑃𝑏𝑎𝑡𝑡(𝑡, 𝑢𝑙)

𝐿𝐻𝑉
 (5-15) 

 

where 𝑢𝑙 is the split ratio of auxiliary power between the battery and generator, 𝑚̇𝑓 is the fuel 

consumption rate of the engine, 𝑃𝑏𝑎𝑡𝑡 is the battery power charged into or discharged from the battery,  

𝐿𝐻𝑉 is the lower heating value of the fuel, and 𝑠 is the equivalent weight factor that converts the 

electrical energy of the battery to equivalent fuel. If a big value is selected for the equivalent weight 

factor, discharging battery is penalized and more fuel is consumed, but a small equivalent weight factor 

leads to more usage of electrical energy, thereby decreasing battery SOC.  

At each instant, all the possible 𝑢𝑙(𝑡) are substituted in Equation (5-15) to calculate 𝑚̇𝑓,𝑒𝑞𝑢 using 

the powertrain model defined in Section 5.1. Then, 𝑢𝑙
∗(𝑡), which gives the minimum 𝑚̇𝑓,𝑒𝑞𝑢, is selected 

as the optimal solution by considering following constraints:  

 

 𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 

𝑇𝑒𝑛𝑔−𝑚𝑖𝑛 ≤ 𝑇𝑒𝑛𝑔(𝑡) ≤ 𝑇𝑒𝑛𝑔−𝑚𝑎𝑥 

𝑇𝑔𝑒𝑛−𝑚𝑖𝑛 ≤ 𝑇𝑔𝑒𝑛(𝑡) ≤ 𝑇𝑔𝑒𝑛−𝑚𝑖𝑛 

(5-16) 
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Using Pontryagin’s minimum principle, it can be shown that the true value for the equivalent weight 

factor can be found if future information is available [98]. This optimal value (𝑠𝑜𝑝𝑡) ensures the final 

SOC is equal to the desired SOC. Since the future information is assumed to be known in the RAPS, 

an iterative optimization algorithm can be utilized to find the equivalent weight factor.  However, this 

is not a computationally-efficient method mainly if the initial guess is not close to correct solution. 

Therefore, this method is still not the best option for real-time implementation because it takes a long 

time to find new solution when future information, e.g. traffic information, is updated. Adaptive 

equivalent fuel consumption minimization strategy (A-ECMS) is a method that updates equivalent 

weight factor (𝑠) online. Many different methods for adaptation of the equivalent weight factor has 

been used, but the most popular one utilizes the affine function of SOC error based on a PI controller 

[70]: 

 

 
𝑠 (𝑆𝑂𝐶, 𝑡) = 𝑠0 + 𝑘𝑝 (𝑆𝑂𝐶𝑟𝑒𝑓 − 𝑆𝑂𝐶(𝑡)) + 𝑘𝑖∫ (𝑆𝑂𝐶𝑟𝑒𝑓 − 𝑆𝑂𝐶(𝑡))

𝑡

0

 (5-17) 

 

where 𝑠0 is the initial guess for the equivalent weight factor, 𝑘𝑝 is a proportional gain, 𝑘𝑖 is an integral 

gain, and 𝑆𝑂𝐶𝑟𝑒𝑓 is reference SOC, which can be defined as: 

 

 𝑆𝑂𝐶𝑟𝑒𝑓 = 𝑆𝑂𝐶0 − (𝑆𝑂𝐶0 − 𝑆𝑂𝐶𝑓)
𝐷(𝑡)

𝐷𝑡𝑜𝑡
                           (5-18) 

 

where 𝑆𝑂𝐶0 and 𝑆𝑂𝐶𝑓 are the initial and final SOC of the segment, respectively, 𝐷(𝑡) is the distance 

travelled by the vehicle, and 𝐷𝑡𝑜𝑡 is the total distance that the vehicle will travel in a segment. This 

equation states that the SOC is changed linearly with respect to the distance that the vehicle travels in 

a segment. Therefore, it is assured that the battery is charged or discharged at the end of the segment 

as determined by the high-level control system.  

In Equation (5-17), 𝑠0, 𝑘𝑝, and 𝑘𝑖 are three tuning parameters that should be determined so that the 

SOC is close to the one with 𝑠𝑜𝑝𝑡 (𝑠 that is obtained offline based on full a-priori knowledge). To tune 
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the 𝑘𝑝 value, first we compare 𝑆𝑂𝐶𝑟𝑒𝑓 with 𝑆𝑂𝐶𝑜𝑝𝑡 (SOC of the battery when 𝑠𝑜𝑝𝑡 is selected) in a 

segment.  As shown in Figure 5-4, the 𝑆𝑂𝐶 of the battery with 𝑠𝑜𝑝𝑡 deviates around the 𝑆𝑂𝐶𝑟𝑒𝑓. 

Therefore, 𝑘𝑝 should be selected so that 𝑆𝑂𝐶 can deviate rather than strictly follow 𝑆𝑂𝐶𝑟𝑒𝑓.  

Figure 5-5, Figure 5-6, and Table 4-1 illustrate the SOC, equivalent weight factor and the fuel 

economy of the vehicle in the same segment with high and low values for 𝑘𝑝. The issue with a high 𝑘𝑝 

is that the 𝑆𝑂𝐶 cannot deviate, and consequently, the result is not optimal as more fuel is consumed. 

On the other hand, with a low 𝑘𝑝, the final desired 𝑆𝑂𝐶 is not guaranteed to be reached. As a result, in 

order to let the 𝑆𝑂𝐶 deviate and to reach final desired 𝑆𝑂𝐶 at the same time, it is proposed to switch 

𝑘𝑝 from a low value to high one when 70 percent of the distance of a segment has been travelled. As 

presented in Table 5-2, with switching gain, the fuel consumption and final 𝑆𝑂𝐶 are very close to the 

optimal result. 

 

Figure 5-4 A comparison between optimal and reference SOC in a segment 
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Figure 5-5 A comparison of optimal SOC and SOCs that are obtained by high and low 

proportional gain 

 

Figure 5-6 A comparison of optimal equivalent weight factor and the ones that are obtained by 

the high and low proportional gains 
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Table 5-2 Fuel economy and final SOC of the vehicle in a segment with different methods for 

the adaptation of the equivalent weight factor 

Method Fuel Economy Final SOC 

𝑠 with low 𝑘𝑝 24.06 L/100km 0.567 

𝑠 with high 𝑘𝑝 24.18 L/100km 0.546 

𝑠 with switching 𝑘𝑝 23.97 L/100km 0.546 

𝑠𝑜𝑝𝑡 23.74 L/100km 0.544 

 

The other parameter that can affect the performance of the controller is the initial value of the 

equivalent weight factor (𝑠0). This parameter can be determined offline using historical data; however, 

the sensitivity analysis is carried out to discover how the results change if the guess for (𝑠0) is not close 

to optimal.  Figure 5-7 shows the percent increase of the fuel consumption in a segment with different 

(𝑠0). The result states that if (𝑠0) is selected in the neighborhood of the optimal value, the fuel 

consumption is very close to the optimal result. As mentioned earlier, since most delivery vehicles have 

the same drive and duty cycles every day, an acceptable value for (𝑠0) can be guessed based on 

historical data, which ultimately results in the controller’s good performance.  
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Figure 5-7 Percent increase of fuel consumption with different initial equivalent weight factors 

 

5.3 Simulation Results 

To evaluate performance of the controllers described in the previous Section, two case scenarios are 

considered for the refrigerator truck specified in Table 5-1. The vehicle in the first case is driven mostly 

in city cycles. The vehicle is loaded at the beginning of the cycle, and a portion of the freight is unloaded 

at each stop. At the last stop where the vehicle is fully unloaded, the refrigerator is turned OFF. 

Therefore, this stop is not included in the duty cycle of the vehicle. In the second case scenario, the 

vehicle is driven in highway cycles. The duty cycle is similar to the first case with less stops for 

deliveries. For both case scenarios, the initial and final SOC of the battery are 80% and 30%, 

respectively. More details of these scenarios are summarized in Table 5-3, and their auxiliary load 

profiles (duty cycles) are shown in Figure 5-8. 
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Table 5-3 Simulation details of the case scenario 1 and 2 

 

Case Scenario 1 Case Scenario 2 

Driving/ Engine 

OFF 
Freight Weight 

Driving/ 

Engine OFF 
Freight Weight 

Segment 1 

Loading- Engine 

OFF  

(30 minutes) 

1500 kg 

Loading- 

Engine OFF  

(30 minutes) 

1500 kg 

Segment 2 
Driving  

(4 × HD-UDDS) 
1500 kg 

Driving 

 (3 × HHDDT-

cruise) 

1500 kg 

Segment 3 

Delivery- Engine 

OFF 

(30 minutes) 

1000 kg 

Delivery- 

Engine OFF 

(60 minutes) 

500 kg 

Segment 4 
Driving  

(4 × HD-UDDS) 
1000 kg 

Driving 

 (3 × HHDDT-

cruise) 

500 kg  

Segment 5 

Delivery- Engine 

OFF 

(30 minutes) 

500 kg - - 

Segment 6 
Driving  

(4 × HD-UDDS) 
500 kg - - 
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Figure 5-8 Auxiliary load profile of case scenario 1 (top) and case scenario 2 (bottom) 

All the simulations are conducted on a computer with an Intel Core i7-3770 CPU and an 8-GB 

memory. The numbers of discretized state and control input for DP and high-level of DP-AECMS are 

selected reasonably to provide fast and accurate solutions.  Moreover, in the low level of DP-AECMS, 

as discussed earlier, a better guess for 𝑠0 will result in lower fuel consumption. However, a constant 

value for 𝑠0 is selected in these simulations to simplify the algorithm. The tuning parameters of the 

controller are listed in Table 5-4.  

 

 

 

0 1 2 3 4 5
0

2

4

6
Case Scenario 1

P
a

u
x
 (

k
W

)

 

 

0 1 2 3 4 5
0

2

4

6
Case Scenario 2

Time (hrs)

P
a

u
x
 (

k
W

)



 

 74 

Table 5-4 Controller’s tuning parameters for the simulations 

Symbol Parameter Value 

DP 

Δ𝑡 Step time 1 𝑠𝑒𝑐 

𝑛𝑠𝑜𝑐 Number of discritized state 100 

𝑛𝑢 Number of discretized control input 100 

High-level of DP-AECMS 

𝑛𝑠𝑜𝑐 Number of discritized state 100 

𝑛𝑢 Number of discretized control input 100 

Low-level of DP-AECMS 

𝑠0 
Initial guess of equivalent weight 

factor 
2.4 

𝑘𝑝−ℎ𝑖𝑔ℎ High proporsional gain 300 

𝑘𝑝−𝑙𝑜𝑤 Low proporsional gain 10 

𝑘𝑖 Integral gain 0.5 

 

As discussed earlier, the main issue associated with the implementation of DP on the RAPS is the 

high computational time. It takes about 5600 𝑠𝑒𝑐 to run DP for these case scenarios while the 

processing time for the high-level of DP-AECMS is only 4 𝑠𝑒𝑐. Consequently, DP-AECMS decreases 

the processing time dramatically, and the SOC trajectory, which is obtained by the high-level control 

system, can be updated quickly when it is required.   
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Table 5-5 and Table 5-6 list SOC of the segments obtained by the controllers in the case scenario 

1 and 2, respectively. The results show that the SOC trajectory that is found by the high-level of DP-

AECMS is very close to the one obtained by DP. Moreover, the real-time final SOC of each segment 

(which are attained by the low-level of DP-AECMS) agrees with the ones found by the high-level of 

DP-AECMS. This means that the PI controller of the low-level control system can track the SOC 

trajectory very well. On the other hand, the rule-based control strategy charges the battery to the 

maximum allowable SOC after the battery is discharged at engine-OFF stops.  

 

Table 5-5 Initial and final SOC of the segments obtained by different controllers in case 

scenario 1 

 DP 
High-Level of 

DP-ECMS 

Low-Level of 

DP-ECMS 
Rule-Based 

Initial SOC 0.800 0.800 0.800 0.800 

Final SOC of  

Segment 1 
0.499 0.499 0.499 0.499 

Final SOC of  

Segment 2 
0.633 0.687 0.686 0.800 

Final SOC of  

Segment 3 
0.389 0.444 0.444 0.564 

Final SOC of  

Segment 4 
0.553 0.543 0.543 0.800 

Final SOC of  

Segment 5 
0.306 0.300 0.300 0.564 

Final SOC  0.300 0.300 0.307 0.800 
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Table 5-6 Initial and final SOC of the segments obtained by different controllers in case 

scenario 2 

 DP 
High-Level of 

DP-ECMS 

Low-Level of 

DP-ECMS 
Rule-Based 

Initial SOC 0.800 0.800 0.800 0.800 

Final SOC of  

Segment 1 
0.499 0.499 0.499 0.499 

Final SOC of  

Segment 2 
0.791 0.786 0.788 0.8 

Final SOC of  

Segment 3 
0.306 0.300 0.302 0.312 

Final SOC  0.300 0.300 0.300 0.800 

 

Figure 5-9 and Figure 5-10 show simulation results for case scenarios 1 and 2 obtained by DP-

AECMS. According to the results, the battery is the only source of power for the refrigerator when the 

vehicle is stopped for loading or unloading, thereby eliminating vehicle idling. In addition, the high-

level control system properly finds the initial and final battery SOC of the segments so that the battery 

has enough energy when the engine is OFF. Moreover, the negative power of the battery shows that the 

battery is charged by the generator because either the battery needs more energy in the future or extra 

energy from regenerative braking, which should be stored in the battery, is available.  

As presented in Figure 5-11 and Figure 5-12, by utilizing the rule-based control strategy, the engine 

idling is completely eliminated too. However, the battery is fully charged at the end of the trip while it 

was supposed to be completely depleted.    
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Figure 5-9 Battery SOC, battery power, generator power during traction, and generator power 

during braking (regenerative braking) for the case scenario 1 using DP-AECMS control 

strategy 
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Figure 5-10  Battery SOC, battery power, generator power during traction, and generator 

power during braking (regenerative braking) for the case scenario 2 using DP-AECMS control 

strategy 
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Figure 5-11 Battery SOC, battery power, generator power during traction, and generator 

power during braking (regenerative braking) for the case scenario 1 using rule-based control 

strategy 
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Figure 5-12 Battery SOC, battery power, generator power during traction, and generator 

power during braking (regenerative braking) for the case scenario 2 using rule-based control 

strategy 
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The performance of the proposed control system (DP-AECMS) in terms of fuel economy is 

compared with that of DP and the rule-based control strategy, and the results are summarized in 

Table 5-7 and Table 5-8. These tables also include the fuel economy of a conventional refrigerator 

delivery truck with an engine-driven compressor. Considering the conventional vehicle does not have 

any anti-idling system, the engine should be kept ON during all loading/unloading stops. Due to the 

fact that the engine operates very inefficiently when it idles, the fuel consumption during these stops is 

3L, which is a significant ratio of the total fuel consumption.  The results confirm that in addition to 

idle elimination, the RAPS improves the fuel economy of the vehicle significantly. This improvement 

for the city cycle, with more available regenerative power, is 11.9% and for the highway cycle is 6.6%.  

The proposed real-time controller shows that it can be used effectively instead of a global 

optimization method (DP), which is impossible for real-time implementation on the RAPS due to high 

processing time. Furthermore, since the rule-based control strategy does not deplete the battery at the 

end of the trips, the improvement in fuel economy is significantly less than the DP-AECMS control 

scheme.  

 

Table 5-7 A comparison of fuel economy between RAPS (with DP-AECMS, rule-based, and DP 

control strategies) and conventional configuration for the case scenario 1 

 Fuel Consumption Fuel Economy Improvement 

DP-AECMS 20.52 L 19.31 L/100 km 11.9 % 

Rule-based 22.55 L 21.22 L/100 km 3.17 % 

DP 20.21 L 19.02 L/100 km 13.2 % 

Conventional 23.29 L 21.92 L/100 km - 
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Table 5-8 A comparison of fuel economy between RAPS (with DP-AECMS, rule-based, and DP 

control strategies) and conventional configuration for the case scenario 2 

 Fuel Consumption Fuel Economy Improvement 

DP-AECMS 31.52 L 14.15 L/100 km 6.6 % 

Rule-based 32.85 L 14.74 L/100 km 2.69 % 

DP 31.36 L 14.06 L/100 km 7.2 % 

Conventional 33.76 L 15.15 L/100 km - 

 

In these simulations, the size of the battery and the generator have been selected reasonably based 

on cost of components and the given duty cycle of the vehicle. However, the bigger the battery and the 

generator in the RAPS, the more fuel can be saved. To study the effect of the size of these components, 

the first case scenario is simulated with different size of batteries and generators. Table 5-9 shows that 

the increase in the size of the battery and improvement in the fuel consumption has almost a linear 

relationship. This table also presents the amount of energy supplied by the battery and regenerative 

braking for the total demanded auxiliary energy of 11.3 kWh. The remaining energy is provided by the 

generator. It can be concluded that the maximum battery size that can be used for the given duty cycle 

is 18 kWh; otherwise, the battery is not fully depleted at the end of the trip. Moreover, the smallest 

battery for this case scenario is 6 kWh; otherwise, the engine idling cannot be completely eliminated.   

According to the results listed in Table 5-10, when a bigger generator is selected, more braking 

power can be recovered by the regenerative braking, thereby lowering fuel consumption. The reason 

that the battery is less discharged with bigger generator is that the available regenerative energy is 

greater than demanded power in the last segment. As a result, the battery is charged in this segment 

even if the initial SOC is set on the minimum value. Based on this study, the size of the battery and 

generator can be selected by considering their cost as well as cost of fuel and electrical power.  
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Table 5-9 Fuel consumption improvement, battery energy consumption, and regenerative 

braking energy in case scenario 1 with 5.5-kW generator and different size of batteries 

 
6-kWh 

Battery 

9-kWh 

Battery 

12-kWh 

Battery 

18-kWh 

Battery 

Fuel Consumption 

Improvement 
9.1 % 11.9 % 13.8 % 15.9 % 

Battery Energy 

Consumption 
2.75 kWh 4.32 kWh 5.85 kWh 8.26 kWh 

Regenerative Braking 

Energy 
2.51 kWh 2.51 kWh 2.51 kWh 2.51 kWh 

 

Table 5-10 Fuel consumption improvement, battery energy consumption, and regenerative 

braking energy in case scenario 1 with 9-kWh battery and different size of generators 

 
5.5-kW 

Generator 

8-kW 

Generator 

12-kW 

Generator 

Fuel Consumption 

Improvement 
11.9 % 13.3% 14.8% 

Battery Energy 

Consumption 
4.32 kWh 4.21 kWh 3.72 kWh 

Regenerative Braking 

Energy 
2.51 kWh 3.43 kWh 4.97 kWh 
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5.4 Chapter Summary  

The power management system of the RAPS should determine the split ratio of auxiliary power demand 

between the generator and battery in order to minimize fuel consumption. It should also guarantee that 

the battery has enough energy for powering auxiliary devices for all the engine-OFF stops. To meet 

these objectives, a two-level control system was proposed in this chapter. In the high-level control 

system, a fast dynamic programming technique that utilized extracted features of the predicted drive 

and service loads obtained an SOC trajectory (initial and final SOC of the segments). In order to reduce 

computational effort of the DP, a method for calculating fuel consumption of each segment that utilized 

a histogram of the engine speed and engine torque was proposed. In the low-level control system, an 

adaptive equivalent fuel consumption minimization (A-ECMS) technique employed to find optimal 

split ratio of the auxiliary power between the sources by considering initial and final SOC found by the 

high-level control scheme. For adaptation of the equivalent weight factor, affine function of the SOC 

error based on a PI controller was utilized. Additionally, to improve performance of the PI controller, 

the proportional gain was switched from a low value to a high value when 70% of the distance in a 

segment was travelled. The simulation results showed, in addition to complete idle elimination, 

significant amount of fuel can be saved by employing the RAPS in a service vehicle.  
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Chapter 6 

Drive and Service Loads Prediction  

As discussed in Chapter 5, the proposed power management system of the RAPS takes advantage of a-

priori knowledge of drive and service loads for a better performance. Since service vehicles, specifically 

delivery trucks, have a similar route and duty cycle every day, obtaining this information is less 

challenging compared to other vehicles. In the high-level of the proposed control system, full 

knowledge of drive and service loads is required, but distances of the segments are the only necessary 

future information in the low-level control system. Therefore, a prediction of all the parameters that 

affect drive and service loads based on historical data is required. This chapter will start with analyzing 

the sensitivity of the control system to the accuracy of drive and service loads’ prediction. This analysis 

is necessary to find out how accurately these loads should be predicted in order to have an acceptable 

performance by the controller. This chapter will also introduces a method for the prediction of the 

parameters involved in these loads (i.e. drive cycle, vehicle mass, auxiliary power, location and duration 

of engine-OFF stops). 

6.1 Sensitivity Analysis 

The sensitivity of the controller with respect to the prediction of drive and service loads will be studied 

in this section. To meet this objective, the performance of the controller will be evaluated when the a-

priori knowledge of the drive load (drive cycle and vehicle mass) and service load (auxiliary power) is 

not accurate. For all these sensitivity analyses, the first case study discussed in Chapter 5 will be 

considered. 

 Drive Cycle  

A drive cycle can be characterized by three parameters: total time, total distance, and type of driving 

cycle, i.e. city or highway. The prediction of distance can affect the performance of the high-level and 

low-level control systems. However, the prediction of two other parameters only affects the high-level 

control system.  

Total time of a driving cycle is influenced by traffic conditions. A change in the time of a driving 

cycle will result in the change of total auxiliary power consumed in the corresponding segment. The 

performance of the high-level control system is evaluated when traffic is heavier or lighter than the 
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predicted value (20% increase and decrease in the time). As shown in Figure 6-1, the controller is not 

very sensitive to the prediction of the time of the driving cycle due to the fact that the high-level control 

system attempts to provide enough electrical energy for the engine-OFF segments, and as a result when 

the driving time is increased or decreased, the difference in demanded auxiliary energy is compensated 

by increasing or reducing the amount of energy supplied by the generator. Therefore, SOC trajectory 

will not change significantly when traffic information does not conform to the prediction, and increase 

in fuel consumption will be less than 1%. 

  

Figure 6-1  SOC trajectory obtained by high-level control system with different prediction of 

drive cycle’s time 

When a vehicle is driven in a city cycle rather than highway, more fuel can be saved by the RAPS 

because more regenerative auxiliary power is available. Therefore, the type of driving cycle impacts 

the performance of the controller. As a result, the sensitivity of the controller to the prediction of the 

type of the driving cycle needs to be studied. The worst case scenario for this study would be to predict 

that a driving cycle is a highway cycle while the actual cycle is a city cycle or vice versa. Figure 6-2 

illustrates that the SOC trajectory obtained by the high-level control system changes when the type of 

drive cycle is mistakenly predicted to be a highway cycle instead of a city cycle. The change in the fuel 

consumption, however, is very small (less than 0.5%). Therefore, the performance of the controller is 

not very sensitive to the prediction of the type of the driving cycle either.  
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Figure 6-2 SOC trajectory obtained by high-level control system with wrong and correct 

prediction of drive cycle’s type 

 

Unlike the two previous parameters, the distance of the driving cycle affects both high-level and 

low-level control systems. When the prediction of the distance is greater than the actual value, the 

battery cannot be charged or discharged completely as determined by the high-level controller. 

Therefore, the battery either will lack energy at the stops or will not be fully depleted at the end of a 

trip.  On the other hand, when the prediction is shorter than the actual distance, the SOC of the battery 

reaches the desired value in the middle of a segment and then it should be kept constant to the end. 

Consequently, the performance of the controller is reduced and the fuel consumption is increased. As 

shown in Figure 6-3, in the case that the distance is over predicted, the SOC goes below the minimum 

value in the last engine-OFF stop, which means that the engine needs to be turned ON. In the other case 

that the distance is under predicted, the constraint of the SOC limit is satisfied, but the fuel consumption 

is increased by about 0.5%.  
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Figure 6-3 Change in battery SOC with different prediction of drive cycle’s time 

 Vehicle Mass  

The other parameter that influences the drive load is the vehicle mass. Therefore, the sensitivity of the 

control system with respect to the accuracy of mass prediction should be studied. For this study, two 

cases are considered: first, it is predicted that the vehicle is fully loaded during the whole cycle (𝑀 =

7500 𝑘𝑔) and second, the weight of freight is not included in the prediction of the vehicle mass (𝑀 =

6000 𝑘𝑔). Although the prediction of the mass is different in these cases, it is assumed that the 

demanded auxiliary power is the same. As shown in Figure 6-4, the accuracy of the mass prediction 

can change the SOC trajectory a little bit; however, this change has a small effect on total fuel economy 

(less than 0.6%) in comparison with the case that the vehicle mass is correctly predicted. As a result, 

the control system is insensitive to the mass prediction when the auxiliary load is independent from the 

mass.  
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Figure 6-4 SOC trajectory obtained by high-level control system with different prediction of 

vehicle mass 

 Auxiliary Power 

This section studies the effect of auxiliary power prediction on the control system’s performance. For 

this purpose, the SOC trajectory obtained by the high-level control system with the correct auxiliary 

power prediction is compared with the cases in which the auxiliary power is over predicted or under 

predicted by 20%. As illustrated in Figure 6-5, the accuracy of the auxiliary power prediction can 

noticeably change the SOC trajectory. Subsequently, to find out the effect of these inaccurate 

predictions on the real-time controller, the low-level control system is run for each case. Figure 6-6 

shows that when the auxiliary load is over predicted, the battery is not fully discharged at the end of 

the cycle, which results in more fuel consumption and more emissions. On the other hand, when the 

auxiliary load is under predicted, the minimum limit of the battery SOC is violated at a stop where the 

engine is supposed to be OFF. Therefore, the engine should be turned ON, which causes engine idling. 

As a result, it is essential to predict demanded auxiliary power accurately in order to have an optimal 

solution. As discussed in section 6.1.1, a change in the time of a driving cycle, which results in the 

change of total auxiliary power of the corresponding segment, does not have a profound impact on the 

controller. Therefore, it can be concluded that controller is only sensitive to the total amount of auxiliary 

power in engine-OFF stops.  
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Figure 6-5 SOC trajectory obtained by high-level control system with different prediction of 

total auxiliary power 

 

Figure 6-6 Change in battery SOC with different prediction of total auxiliary power 
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It should be noted that in the above case study the predictions of the auxiliary power for all the 

segments were incorrect, and consequently the controller could not be adjusted at all. Therefore, the 

battery was not fully depleted in the over prediction case, and it was over discharged in the under 

prediction one. However, if the auxiliary power of some segments do not conform to the prediction, the 

controller compensates for the wrong previous battery charging/discharging in segments that follow. 

For example, when the prediction of auxiliary power for the first two segments is incorrect, the battery 

SOC eventually reaches the desired final SOC at the end of the trip, but the fuel consumption is 

increased about 1.5%. 

6.2 Prediction Method 

The sensitivity analysis, which was carried out in the previous section, showed that the controller of 

power management system of the RAPS is not very sensitive to the prediction of time and type of drive 

cycles as well as the prediction of the vehicle mass. On the other hand, the performance of the controller 

is reduced when the prediction of the distance of the drive cycle and the total amount of auxiliary power 

in each segment (specifically the engine-OFF segments) are not very accurate. This section proposes a 

prediction method for all these parameters based on historical data.  

One method to use historical data for the prediction of these parameters is to utilize their values in 

the last operating day. However, to have more sensible prediction, it is proposed to consider a bigger 

window of data (a course of 30 operating days) and put a greater weighting factors on the data of 

immediate past days:   

 
𝛿𝑝𝑟𝑒𝑑 =

𝛼1𝛿1 + 𝛼2∑ 𝛿𝑖
8
𝑖=2 + 𝛼3∑ 𝛿𝑖

30
𝑖=9  

𝛼1 + 7𝛼2 + 22𝛼3
 (6-1) 

 

where 𝛿𝑝𝑟𝑒𝑑  is the predicted value of a parameter for the following operating day, 𝛿𝑖 is the value of the 

parameter for 𝑖_𝑡ℎ  day (𝑖 = 1 and 𝑖 = 30 represent last day and thirty days ago, respectively), and  

𝛼1 > 𝛼2 > 𝛼3   are their corresponding weighting factor.  

 Drive Cycle 

As shown in the Section 6.1.1, the control system is insensitive to the type of drive cycles. As a result, 

one standard driving cycle that is most similar to the real drive cycle of the vehicle can be selected for 
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the prediction purpose. Then, duration of this drive cycle can be adjusted through the prediction of time 

of the drive cycle obtained by Equation (6-1). This prediction is accurate enough for a good 

performance of the high-level control system. However, the low-level control system requires a better 

method for the prediction of distance, which will be discussed in Section 6.2.4. 

 Vehicle Mass 

The control system is not sensitive to the mass prediction when the auxiliary load is known. Therefore, 

in some service vehicles such as tour buses that the auxiliary load (e.g. power consumption of AC) is 

independent from the vehicle mass, reported curb weight by the manufacturer can be utilized as the 

predicted mass. On the other hand, in some other service vehicles such as refrigerator trucks, the freight 

mass affects auxiliary load (power consumption of the refrigerator) noticeably, thus its prediction is 

essential. In this case the vehicle mass can be predicted by Equation (6-1), and then it can be updated 

online by the estimation algorithm discussed in Chapter 3.  

 Auxiliary power 

The total auxiliary power of each segment is another parameter that should be known in advance. As 

previously discussed, the controller is more sensitive to auxiliary power of engine-OFF segments. To 

predict total auxiliary power of each segment, the average auxiliary power is obtained by Equation 

(6-1), then the average is multiplied by the segment’s duration to find total auxiliary power (auxiliary 

energy). The durations of the segments that the engine is ON have been already obtained by the 

prediction of the time of the drive cycle, and the durations of engine-OFF segments can be found by 

the method that will be discussed in the Section 6.2.4.   

 Location and Duration of Engine-OFF Stops 

The prediction of auxiliary energy at the stops where the engine is OFF as well as prediction of the 

distances of the segments (locations of the stops) impact the performance of the controller. Therefore, 

it is important to properly predict the location and duration of engine-OFF stops using historical data. 

One approach to predict these two parameters is an averaging method presented in Equation (6-1). 

However, if the vehicle stops in some new locations or it does not stop in some old ones, the averaging 

method cannot figure out if these changes are one-time only or permanent (see Figure 6-7). Therefore, 

a smart method is required to add and remove the location of stops. To meet this objective, a clustering 

algorithm that puts the data points of each stop in one cluster can be utilized. Thus, the algorithm creates 
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a new cluster (as a new stopping location) when enough data points are available, and it removes an 

old stopping location when the number of data points are reduced in its cluster.  

 

 

Figure 6-7 Permanent and temporary stopping locations where the engine is OFF 

 

Two most widely used clustering techniques are k-mean [99] and Density-Based Spatial Clustering 

of Application with Noise (DBSCAN) [100]. The k-mean clustering is a centroid model that seeks to 

partition 𝑛 data points into 𝑘 clusters so that each data point belongs to the cluster with the nearest 

center (mean). The k-mean algorithm operates by taking following steps: 

1- Select 𝑘 cluster centers randomly. 

2- Calculate the Euclidean distance between each data point and cluster centers. 

3- Assign the data point to the cluster center whose distance from the cluster center is minimum. 

4- Calculate new cluster centers by finding the mean value of all the data points in each cluster. 

5- Calculate the Euclidean distance between each data point and new cluster centers. 

6- If any data point is assigned to a new cluster center, repeat from step 3; otherwise, stop. 



 

 94 

The main drawback of k-mean technique in the problem in hand is that it needs predefined number 

of clusters. This means that the number of engine-OFF stops should be known in advance, whereas the 

goal is to add or remove stopping locations spontaneously. The other disadvantage of this technique is 

inability to handle noisy data or outliers. Consequently, if the vehicle stops in a location only one time, 

this data point affects the clustering process. 

To overcome the problems associated with the k-mean technique, the DBSCAN method, which is 

a density-based model, can be utilized. This technique does not need predefined number of clusters, 

and it can handle noisy data efficiently. In this method, each data point is categorized into three groups: 

core points, border points, and outliers (noise points). A core point, as shown in Figure 6-8, is a point 

that more than a minimum number of data points (𝑀𝑖𝑛𝑃𝑡𝑠) is available in its 𝐸𝑝𝑠-neighborhood. A 

border point has fewer points than 𝑀𝑖𝑛𝑃𝑡𝑠 in its 𝐸𝑝𝑠-neighborhood, but it is in the neighborhood of a 

core point. A noise point is a point that is neither a core point nor a border point.  

 

 

Figure 6-8 Definition of core, border, and noise points in DBSCAN clustering method 

 

Definition. A point 𝑝 is directly density-reachable from a point 𝑞 if 𝑝 is in the neighborhood of 𝑞 

and 𝑞 is a core point. Also, a point 𝑝 is density-reachable from a point 𝑞 if there is a chain of points 

𝑝1, 𝑝2 , … , 𝑝𝑛 (𝑝1 = 𝑝, 𝑝𝑛 = 𝑞) so that 𝑝𝑖+1 is directly density-reachable from 𝑝𝑖 (see Figure 6-9) 
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Figure 6-9 Definition of directly density-reachable (left) and density-reachable (right) 

The algorithm of DBSCAN is presented in the below box. Furthermore, a simple example of this 

clustering method is shown in Figure 6-10. 

 

 

for each data point 𝑝  

      if 𝑝 is not yet in a cluster then  

                 if 𝑝 is a core point then 

             all data point that are density-reachable from p are assigned to a new cluster 

             else 

             assign 𝑝 to Noise point 

             end 

      end 

end 
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Figure 6-10 An example of DBSCAN clustering 

 

By applying DBSCAN method on the historical data, duration and location of the engine-OFF stops 

can be predicted by finding the center of the clusters. Each data point is weighted by the factors 

explained in Equation (6-1). For this case study, the weighting factors, 𝑀𝑖𝑛𝑃𝑡𝑠, and 𝐸𝑝𝑠 are defined 

as: 

Table 6-1 Simulation specifications 

Symbol Parameter Value 

𝛼1 
Weighting factor for the data 

collected in the last day 
5 

𝛼2 
Weighting factor for the data 

collected in 4th week 
3 

𝛼3 
Weighting factor for the data 

collected first three weeks 
1 

𝑀𝑖𝑛𝑃𝑡𝑠 
Minimum number of data points in a 

cluster 
8 

𝐸𝑝𝑠 Neighborhood radius 5 
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As presented in Figure 6-11, the data points are assigned to four clusters by DBSCAN method. The 

center of each cluster, which is the average of all the data points in the cluster, determines the location 

and duration of one engine-OFF stop.  The result shows that, in addition to three permanent stopping 

locations, it is very likely the vehicle stops in an extra location (cluster 3) in the following operating 

day. On the other hand, some data points are considered as noise points, so they do not impact on other 

clusters.  

 

Figure 6-11 Prediction of engine-OFF locations and durations obtained by the DBSCAN 

method 

 

To summarize, a prediction method (using historical data) for each required parameter, which are 

listed in Table 6-2, was proposed.  
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Table 6-2 A summary of methods for the prediction of drive and service loads 

Parameters Prediction Method 

Type of drive cycle One standard drive cycle similar to the actual one 

Time of drive cycle Averaging (Equation 6-1) 

Mass Averaging (Equation 6-1) 

Distance of drive cycle Clustering 

Average auxiliary power Averaging  (Equation 6-1) 

Duration of engine-OFF stops Clustering 

 

6.3 Updating Prediction by Real-Time Information 

In the previous section, a method for prediction of drive and service loads using historical data was 

proposed. Due to the fact that a service vehicle has a similar drive and duty cycles every day, this 

prediction is very reliable. However, to improve the performance of the controller, the prediction can 

be updated by any available real-time information.  

As discussed earlier, the amount of auxiliary power in some service vehicles can be a function of 

many factors. For example, in refrigerator trucks the variation of freight mass, ambient temperature, 

solar radiation, etc. can change this value significantly. Therefore, the prediction of auxiliary power 

can be updated online with a comprehensive model that uses all of this data to obtain future auxiliary 

power. Some research have been done to develop such a model [101], but further study is much on 

demand for interested researchers. Additionally, the prediction of vehicle mass can be updated by real-

time estimation algorithm proposed in Chapter 3. Furthermore, the prediction of time and distance of a 

drive cycle can be improved by a navigation system.   

If the prediction is updated by the real-time information or the actual SOC does not agree with the 

predicted SOC trajectory, the high-level control system should be run again to obtain a new SOC 
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trajectory. Since the high-level control system utilizes a fast dynamic programming method described 

in Chapter 5, the updating process takes place online with minimum computational effort. 

6.4 Chapter Summary 

Considering the control scheme of the power management system operates based on a prediction of 

drive and service loads, this chapter studied the sensitivity of the control system to the accuracy of the 

prediction of all the parameters involved in these loads. It was shown that the controller is only sensitive 

to the total power consumption of the auxiliary devices at engine-OFF stops as well as distance of the 

driving cycles. Based on this study, a prediction method for each parameter using historical data was 

proposed. Most of the parameters were predicted by an averaging method that considered a big window 

of data (a course of 30 operating days) and put a greater weighting factor on the collected data in 

immediate past days. For predicting location and duration of the engine-OFF stops, a DBSCAN 

clustering method was proposed. This technique provided a better prediction than the averaging method 

for these parameters because it can handle outliers very well, i.e. the temporary engine-OFF stops, 

which were unlikely to be repeated in the future, did not affect the prediction. 
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Chapter 7 

Conclusions   

In this thesis a new anti-idling system for service vehicles, called Regenerative Auxiliary Power System 

(RAPS), was proposed and studied. To design an optimum RAPS for given service vehicles, some tools 

and methods were developed. The contributions of this research are summarized in the next section. 

7.1 List of Contributions 

Developed a fuel-efficient anti-idling system for service vehicles 

This system uses electrical power generated by an engine-driven generator and a battery pack to run 

electrical auxiliary devices. The battery can be charged by the generator or an external electrical source. 

With this configuration, the battery is the only source of power for the auxiliary devices when the 

vehicle stops for a long time. Therefore, the engine idling can be eliminated by turning the engine OFF. 

During traction, the generator and battery either individually or together supply electric power to the 

auxiliary devices. Furthermore, during braking, kinetic energy of the vehicle is transmitted from wheels 

to the output shaft of the engine, and then it is converted to electrical energy by the generator, thereby 

decelerating the vehicle. This electrical energy is used to run the auxiliary devices and/or to charge the 

battery. This system has many advantages over current anti-idling systems: the performance and 

efficiency of the auxiliary devices are improved since they are independent from the engine, and fuel 

consumption is significantly reduced by enabling regenerative braking and utilizing an optimal power 

management system.  

 

Developed a model-based algorithm for simultaneous estimation of vehicle mass and torque of 

auxiliary devices. 

To identify drive and service loads, which is an important requirement for determining size of RAPS’ 

components, the torque of auxiliary devices and vehicle mass, as two parameters with unknown 

variations, need to be estimated. A model-based estimation algorithm, which utilizes signals available 

through the vehicle control area network (CAN), was proposed to estimate these two parameters 

simultaneously [102], [103]. This algorithm made use of the Kalman filter for estimating the parameters 

in two stages. In the first stage, both parameters were estimated until an accepted value for the vehicle 
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mass was obtained. Then, the vehicle mass was kept constant and only the auxiliary torque was 

estimated in the second stage. The algorithm worked very well at different level of excitations. 

 

Developed a test setup for hardware-in-the loop simulations of the powertrain of service vehicles. 

To verify performance of the identification algorithm, a test setup for hardware-in-the-loop simulations 

was developed. This test setup can also be used to evaluate performance of an individual powertrain’s 

components of vehicles including transmission, differential, drive shafts, alternator, battery, and power 

take-off (PTO). Moreover, to test many other control systems in vehicles, this test setup can be utilized. 

The HIL simulations showed the good performance of the estimation algorithm in more realistic 

situations. 

 

Developed a real-time control strategy for the power management system of the RAPS. 

A new two-level control scheme for the power management system of the RAPS was proposed [104]. 

In the high-level control system, a new fast dynamic programming (DP) method that utilized extracted 

features of predicted drive and service loads was proposed. This level of the controller obtained the 

SOC trajectory of the battery for the whole operating day. In the low-level control system, the SOC 

trajectory, obtained by the DP algorithm, was tracked by a refined adaptive equivalent fuel consumption 

minimization method (A-ECMS). The simulation results showed that engine idling can be completely 

eliminated by implementing the RAPS on a service vehicle. Additionally, fuel consumption of the 

vehicle was reduced by 12% in city cycles and 7% in highway cycles. Fuel saving can be increased by 

utilizing a larger battery and generator. 

 

Developed a method for prediction of drive and service loads. 

This study proposed a method for predicting all the parameters involved in drive and service loads 

using historical data collected in the last thirty operating days of the vehicle. This method that was 

based on averaging technique and data clustering put a greater weighting factor on the most recent 

operating days for more sensible prediction. The simulation results showed that the prediction method 

was able to handle outliers very well, i.e. the temporary engine-OFF stops, which were unlikely to be 

repeated in the future, did not affect the prediction. 
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7.2 Recommendations for Future Research 

Although the performance of the identification algorithm as well as the controller of the power 

management system were shown to be very promising, there is still room for more research in design 

and validation of the algorithms as summarized below:  

 

Validation of the controller of the power management system using HIL simulations  

With some modifications to the test bench described in Chapter 4, the control scheme of the power 

management system can be validated by HIL simulations. To meet this objective, the dynamometer 

that is connected to PTO for simulating the auxiliary device should be replaced by an electrical load 

simulation module that is powered by a battery pack and a generator connected to the input 

dynamometer by a belt and pulley mechanism. A microcontroller is required to run the proposed real-

time controller for this system. 

 

Using a high-fidelity model for the simultaneous estimation of the vehicle mass and auxiliary 

power 

In this study, a simplified model was used to develop the estimation algorithm. A high-fidelity model 

can be utilized for this purpose to take some other factors, such as road condition, into account. 

 

Developing a robust estimation algorithm 

The performance of the proposed estimation algorithm can be reduced by some disturbances, such as 

wind. In some applications including determining the size of the RAPS’ components, these disturbances 

do not have a profound impact on the estimation results. However, if this estimation method is 

employed in some other real-time controllers, the robustness of the algorithm against such disturbance 

should be studied and some modifications may be required.  

 

Developing a method to predict auxiliary power using available sensory data 

The method presented in Chapter 6 used historical data to predict the auxiliary power. As mentioned 

earlier, this prediction can be updated by some sensory data such as ambient temperature, pressure, 
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solar radiation, etc. A comprehensive model that uses all of this information can be developed to update 

the prediction of the auxiliary power. 

 

Field tests to validate performance of the algorithms on a real vehicle  

After validating the proposed estimation algorithm and control system by numerical and HIL 

simulations, they need to be tested on a real vehicle. In the first step, a vehicle with an engine-driven 

auxiliary device is required for testing the estimation algorithm. In order to do this, an OBD data logger 

and a GPS receiver should be installed on the vehicle to collect data in different driving cycles. The 

collected data can be used to determine the size of the battery and the generator for the RAPS. In the 

next step, the engine-driven auxiliary device should be replaced by an electrical one, and a generator 

and battery should be added to the vehicle as main components of the RAPS. Then the performance of 

the RAPS’ controller can be tested on the vehicle, and fuel consumption of the vehicle equipped with 

the RAPS can be compared with the conventional configuration. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 104 

Bibliography 

[1] Y. Wang, J. Byrne, and W. Rickerson, “Investigating the Cost, Liability, and Reliability of Anti-

idling Equipment for Trucks: Final Report to Delaware Department of Transportation,” Univ. 

Delaware, Cent. Energy Environ. Policy, Newark, 2007. 

[2] F. Stodolsky, L. Gaines, and A. Vyas, “Analysis of technology options to reduce the fuel 

consumption of idling trucks,” Argonne National Lab., IL (US), 2000. 

[3] C. Brodrick, D. Sperling, and H. A. Dwyer, “Will Diesel Engines make a Comeback?,” Consum. 

Res. Mag., p. 18, 2002. 

[4] N. Lutsey, C.-J. Brodrick, D. Sperling, and C. Oglesby, “Heavy-duty truck idling characteristics: 

Results from a nationwide truck survey,” Transp. Res. Rec. J. Transp. Res. Board, no. 1880, pp. 

29–38, 2004. 

[5] T. L. Perrot, J. D. Tario, J. C. Kim, and C. Hagan, “Installation and economics of a Shorepower 

facility for long-haul trucks.” Albany, NY: New York State Energy Research and Development 

Authority, 2004. 

[6] “Idling Vehicle Emissions for Passenger Cars, Light-Duty Trucks, and HeavyDuty Trucks,” 

2008. [Online]. Available: http://www3.epa.gov/otaq/consumer/420f08025.pdf. 

[7] E. E. Lust, W. T. Horton, and R. Radermacher, “A Review and Cost Comparison of Current 

Idle-Reduction Technology,” in ASME 2008 Power Conference, 2008. 

[8] “Truck Stop Electrification and Anti-Idling As a Diesel Emissions Reduction Strategy At U.S.-

Mexico Ports Of Entry,” 2009. [Online]. Available: 

http://www3.epa.gov/region09/climatechange/pdfs/TSE_Otay_report.pdf. 

[9] C. MacDonald, R. Douglas,  a. Tamayol, and M. Bahrami, “A Feasibility Study of Auxiliary 

HVAC Systems for Reducing Idling Time of Long Haul Trucks,” Vol. 1 Heat Transf. Energy 

Syst. Theory Fundam. Res. Aerosp. Heat Transf. Gas Turbine Heat Transf. Transp. Phenom. 

Mater. Process. Manuf. Heat, pp. 323–330, Jul. 2012. 

[10] A. Lindermeir, S. Kah, S. Kavurucu, and M. Mühlner, “On-board diesel fuel processing for an 

SOFC–APU—Technical challenges for catalysis and reactor design,” Appl. Catal. B Environ., 

vol. 70, no. 1, pp. 488–497, 2007. 

[11] C.-J. Brodrick, T. E. Lipman, M. Farshchi, N. P. Lutsey, H. A. Dwyer, D. Sperling, S. W. Gouse 

Iii, D. B. Harris, and F. G. King, “Evaluation of fuel cell auxiliary power units for heavy-duty 

diesel trucks,” Transp. Res. Part D Transp. Environ., vol. 7, no. 4, pp. 303–315, 2002. 

[12] Y. Liu, W. Lehnert, H. Janßen, R. C. Samsun, and D. Stolten, “A review of high-temperature 

polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-

powered road vehicles,” J. Power Sources, vol. 311, pp. 91–102, 2016. 

[13] H. K. Fathy, D. Kang, and J. L. Stein, “Online vehicle mass estimation using recursive least 

squares and supervisory data extraction,” in American Control Conference, 2008, pp. 1842–

1848. 

[14] R. Rajamani and J. K. Hedrick, “Adaptive observers for active automotive suspensions: theory 

and experiment,” Control Syst. Technol. IEEE Trans., vol. 3, no. 1, pp. 86–93, 1995. 



 

 105 

[15] R. Zarringhalam, A. Rezaeian, W. Melek, A. Khajepour, S. Chen, and N. Moshchuk, “A 

comparative study on identification of vehicle inertial parameters,” in 2012 American Control 

Conference (ACC), 2012, pp. 3599–3604. 

[16] R. Fremd, “Apparatus for measuring the mass of a motor vehicle,” U.S. Patent No. 4656876,14-

Apr-1987. 

[17] M. C. Best and T. J. Gordon, “Combined state and parameter estimation of vehicle handling 

dynamics,” in Proceedings of of the 5th International Symposium on Advanced Vehicle Control 

(AVEC), 2000. 

[18] T. A. Wenzel, K. J. Burnham, M. V Blundell, and R. A. Williams, “Dual extended Kalman filter 

for vehicle state and parameter estimation,” Veh. Syst. Dyn., vol. 44, no. 2, pp. 153–171, 2006. 

[19] S. Rhode and F. Gauterin, “Online estimation of vehicle driving resistance parameters with 

recursive least squares and recursive total least squares,” Intelligent Vehicles Symposium (IV), 

IEEE. pp. 269–276, 2013. 

[20] M. T. Breen, “System and method for determining relative vehicle mass,” U.S. Patent No. 

5482359,09-Jan-1996. 

[21] A. Klatt, “Method and apparatus to automatically determine the weight or mass of a moving 

vehicle,” U.S. Patent No. 4548079,22-Oct-1985. 

[22] K. Reiner, H. Rieker, and J. Stoll, “Device for determining the mass of a motor vehicle,” U.S. 

Patent No. 4941365,17-Jul-1990. 

[23] T. A. Genise, “Control method/system including determination of an updated value indicative 

of gross combination weight of vehicles,” U.S. Patent No. 5490063,06-Feb-1996. 

[24] G. G. Zhu, D. O. Taylor, and T. L. Bailey, “Recursive vehicle mass estimation,” U.S. Patent 

No. 6167357,26-Dec-2000. 

[25] G. G. Zhu, D. O. Taylor, and T. L. Bailey, “Recursive vehicle mass estimation system,” U.S. 

Patent No. 6438510,20-Aug-2002. 

[26] E. G. Gaeke, “Road grade sensor,” U.S. Patent No. 3752251,14-Aug-1973. 

[27] H. S. Bae, J. Ryu, and J. C. Gerdes, “Road grade and vehicle parameter estimation for 

longitudinal control using GPS,” in IEEE Conference on Intelligent Transportation Systems, 

Proceedings, ITSC, 2001, pp. 166–171. 

[28] S. Han and C. Rizos, “Road slope information from GPS-derived trajectory data,” J. Surv. Eng., 

vol. 125, no. 2, pp. 59–68, 1999. 

[29] P. Sahlholm and K. Henrik Johansson, “Road grade estimation for look-ahead vehicle control 

using multiple measurement runs,” Control Eng. Pract., vol. 18, no. 11, pp. 1328–1341, 2010. 

[30] P. Sahlholm, H. Jansson, E. Kozica, and K. H. Johansson, “A sensor and data fusion algorithm 

for road grade estimation,” 2007. 

[31] H. Ohnishi, J. Ishii, M. Kayano, and H. Katayama, “A study on road slope estimation for 

automatic transmission control,” JSAE Rev., vol. 21, no. 2, pp. 235–240, 2000. 

[32] D. D. Hrovat, H. E. Tseng, and T. A. Brown, “Method for road grade/vehicle pitch estimation,” 

U.S. Patent No. 6714851,30-Mar-2004. 

[33] B. Schmidtbauer and P. Lingman, “Road slope and vehicle mass estimation using Kalman 



 

 106 

filtering,” in The Dynamics of Vehicles on Roads and on Tracks: Proceedings of the 17th IAVSD 

Symposium Held in Lyngby, Denmark, August 20-24, 2001, 2003, vol. 37, pp. 12–23. 

[34] A. Vahidi, M. Druzhinina, A. Stefanopoulou, and H. Peng, “Simultaneous mass and time-

varying grade estimation for heavy-duty vehicles,” in American Control Conference, 2003, vol. 

6, pp. 4951–4956. 

[35] A. Vahidi, A. Stefanopoulou, and H. Peng, “Experiments for Online Estimation of Heavy 

Vehicle’s Mass and Time-Varying Road Grade,” Dyn. Syst. Control. Vol. 1 2, vol. 2003, pp. 

451–458, 2003. 

[36] A. Vahidi, A. Stefanopoulou, and H. Peng, “Recursive least squares with forgetting for online 

estimation of vehicle mass and road grade: theory and experiments,” Veh. Syst. Dyn., vol. 43, 

no. 1, pp. 31–55, 2005. 

[37] M. L. Mcintyre, T. J. Ghotikar, A. Vahidi, X. Song, D. M. Dawson, and S. Member, “A Two-

Stage Lyapunov-Based Estimator for Estimation of Vehicle Mass and Road Grade,” vol. 58, no. 

7, pp. 3177–3185, 2009. 

[38] V. Winstead and I. V Kolmanovsky, “Estimation of road grade and vehicle mass via model 

predictive control,” Proc. 2005 IEEE Conf. Control Appl., pp. 1588–1593, 2005. 

[39] M. N. Mahyuddin, J. Na, G. Herrmann, X. Ren, and P. Barber, “An adaptive observer-based 

parameter estimation algorithm with application to road gradient and vehicle’s mass 

estimation,” in Control (CONTROL), UKACC International Conference on, 2012, pp. 102–107. 

[40] A. Vahidi, A. Stefanopoulou, and H. Peng, “Adaptive model predictive control for co‐ordination 

of compression and friction brakes in heavy duty vehicles,” Int. J. Adapt. Control Signal 

Process., vol. 20, no. 10, pp. 581–598, 2006. 

[41] H. S. Bae and J. C. Gerdes, “Parameter estimation and command modification for longitudinal 

control of heavy vehicles,” 2003. 

[42] M. K. Liubakka, D. S. Rhode, and J. R. Winkelman, “Adaptive automotive speed control,” in 

Proceedings of Workshop on Advances in Control and its Applications, 1996, pp. 1–26. 

[43] K. Oda, H. Takeuchi, M. Tsujii, and M. Ohba, “Practical estimator for self-tuning automotive 

cruise control,” in American Control Conference, 1991, 1991, pp. 2066–2071. 

[44] D. Yanakiev and I. Kanellakopoulos, “Speed tracking and vehicle follower control design for 

heavy-duty vehicles,” Veh. Syst. Dyn., vol. 25, no. 4, pp. 251–276, 1996. 

[45] P. Ioannou and Z. Xu, “Throttle and Brake Control Systems for Automatic Vehicle Following,” 

J. Intell. Transp. Syst., vol. 1, no. 4, pp. 345–377, 1994. 

[46] D. Yanakiev and I. Kanellakopoulos, “Nonlinear spacing policies for automated heavy-duty 

vehicles,” Veh. Technol. IEEE Trans., vol. 47, no. 4, pp. 1365–1377, 1998. 

[47] R. Matsubara, S. Umemura, S. Kumazawa, H. Nakaima, and M. Kawaguchi, “Compressor 

torque estimate device, engine controller and method of estimating compressor torque,” U.S. 

Patent No. 6910344,28-Jun-2005. 

[48] Y. Yamanaka, S. Numazawa, Y. Nishi, H. Kishita, and H. Suzuki, “Method and apparatus for 

calculating torque of variable capacity type compressor,” U.S. Patent No. 5385029,31-Jan-1995. 

[49] T. Imai and A. Inoue, “Compressor output calculation unit and control unit using the same.” EP 



 

 107 

Patent 1491375, 29-Dec-2004. 

[50] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in 

hybrid electric vehicles,” Veh. Technol. IEEE Trans., vol. 60, no. 1, pp. 111–122, 2011. 

[51] M. Ehsani, Y. Gao, and A. Emadi, Modern electric, hybrid electric, and fuel cell vehicles: 

fundamentals, theory, and design. CRC press, 2009. 

[52] F. R. Salmasi, “Control strategies for hybrid electric vehicles: Evolution, classification, 

comparison, and future trends,” Veh. Technol. IEEE Trans., vol. 56, no. 5, pp. 2393–2404, 2007. 

[53] S. G. Li, S. M. Sharkh, F. C. Walsh, and C.-N. Zhang, “Energy and battery management of a 

plug-in series hybrid electric vehicle using fuzzy logic,” Veh. Technol. IEEE Trans., vol. 60, no. 

8, pp. 3571–3585, 2011. 

[54] A. Brahma, Y. Guezennec, and G. Rizzoni, “Optimal energy management in series hybrid 

electric vehicles,” in American Control Conference, 2000. Proceedings of the 2000, 2000, vol. 

1, no. 6, pp. 60–64. 

[55] B. McQueen and J. McQueen, Intelligent transportation systems architectures. 1999. 

[56] J. de Dios Ortuzar and L. G. Willumsen, Modelling transport. John Wiley & Sons, 2011. 

[57] Z.-R. Peng and M.-H. Tsou, Internet GIS: distributed geographic information services for the 

internet and wireless networks. John Wiley & Sons, 2003. 

[58] Q. Gong, Y. Li, and Z.-R. Peng, “Trip-based optimal power management of plug-in hybrid 

electric vehicles,” Veh. Technol. IEEE Trans., vol. 57, no. 6, pp. 3393–3401, 2008. 

[59] Q. Gong, Y. Li, and Z.-R. Peng, “Trip based power management of plug-in hybrid electric 

vehicle with two-scale dynamic programming,” in Vehicle Power and Propulsion Conference, 

2007. VPPC 2007. IEEE, 2007, pp. 12–19. 

[60] A. Taghavipour, N. L. Azad, and J. McPhee, “An optimal power management strategy for power 

split plug-in hybrid electric vehicles,” Int. J. Veh. Des., vol. 60, no. 3/4, pp. 286–304, 2012. 

[61] G. Paganelli, S. Delprat, T.-M. Guerra, J. Rimaux, and J.-J. Santin, “Equivalent consumption 

minimization strategy for parallel hybrid powertrains,” in Vehicular Technology Conference, 

2002. VTC Spring 2002. IEEE 55th, 2002, vol. 4, pp. 2076–2081. 

[62] A. Sciarretta, M. Back, and L. Guzzella, “Optimal control of parallel hybrid electric vehicles,” 

Control Syst. Technol. IEEE Trans., vol. 12, no. 3, pp. 352–363, 2004. 

[63] L. Serrao, S. Onori, and G. Rizzoni, ECMS as a realization of Pontryagin’s minimum principle 

for HEV control. IEEE, 2009, pp. 3964–3969. 

[64] C. Musardo, G. Rizzoni, Y. Guezennec, and B. Staccia, “A-ECMS: An Adaptive Algorithm for 

Hybrid Electric Vehicle Energy Management,” Eur. J. Control, vol. 11, no. 4–5, pp. 509–524, 

Oct. 2005. 

[65] S. Onori and L. Serrao, “On Adaptive-ECMS strategies for hybrid electric vehicles,” in 

Proceedings of the International Scientific Conference on Hybrid and Electric Vehicles, 

Malmaison, France, 2011, pp. 6–7. 

[66] D. Ambühl and L. Guzzella, “Predictive reference signal generator for hybrid electric vehicles,” 

Veh. Technol. IEEE Trans., vol. 58, no. 9, pp. 4730–4740, 2009. 

[67] L. Fu, U. Ozguner, P. Tulpule, and V. Marano, “Real-time energy management and sensitivity 



 

 108 

study for hybrid electric vehicles,” in American Control Conference (ACC), 2011, 2011, pp. 

2113–2118. 

[68] B. Gu and G. Rizzoni, “An adaptive algorithm for hybrid electric vehicle energy management 

based on driving pattern recognition,” in ASME 2006 International Mechanical Engineering 

Congress and Exposition, 2006, pp. 249–258. 

[69] A. Chasse, A. Sciarretta, and J. Chauvin, “Online optimal control of a parallel hybrid with 

costate adaptation rule,” in Advances in Automotive Control, 2010, pp. 99–104. 

[70] J. T. B. A. Kessels, M. W. T. Koot, P. P. J. Van den Bosch, and D. B. Kok, “Online energy 

management for hybrid electric vehicles,” Veh. Technol. IEEE Trans., vol. 57, no. 6, pp. 3428–

3440, 2008. 

[71] A. Chasse, G. Corde, A. Del Mastro, and F. Perez, “Online optimal control of a parallel hybrid 

with after-treatment constraint integration,” in Vehicle Power and Propulsion Conference 

(VPPC), 2010 IEEE, 2010, pp. 1–6. 

[72] M. Sivertsson and L. Eriksson, “Design and evaluation of energy management using map-based 

ECMS for the PHEV benchmark,” Oil Gas Sci. Technol. d’IFP Energies Nouv., vol. 70, no. 1, 

pp. 195–211, 2015. 

[73] A. Stefanopoulou and L. Moklegaard, “Adaptive continuously variable compression braking 

control for heavy-duty vehicles,” Ann Arbor, vol. 1001, p. 48197, 2002. 

[74] J. K. Hedrick, D. McMahon, V. Narendran, and D. Swaroop, “Longitudinal vehicle controller 

design for IVHS systems,” in American Control Conference, 1991, 1991, pp. 3107–3112. 

[75] T. D. Gillespie, Fundamentals of vehicle dynamics. SAE, 1992. 

[76] K. Atkinson, W. Han, and D. E. Stewart, Numerical solution of ordinary differential equations, 

vol. 108. John Wiley & Sons, 2011. 

[77] R. E. Kalman, “A new approach to linear filtering and prediction problems,” J. basic Eng., vol. 

82, no. 1, pp. 35–45, 1960. 

[78] G. Bishop and G. Welch, “An introduction to the kalman filter,” Proc SIGGRAPH, Course, vol. 

8, pp. 23175–27599, 2001. 

[79] O. Nelles, Nonlinear system identification: from classical approaches to neural networks and 

fuzzy models. Springer, 2000. 

[80] P. Ioannou and B. Fidan, “Adaptive control tutorial, Society for Industrial and Applied 

Mathematics.” 2006. 

[81] L. Cao and H. M. Schwartz, “Analysis of the Kalman filter based estimation algorithm: an 

orthogonal decomposition approach,” Automatica, vol. 40, no. 1, pp. 5–19, 2004. 

[82] L. Guo, “Estimating time-varying parameters by the Kalman filter based algorithm: stability 

and convergence,” Autom. Control. IEEE Trans., vol. 35, no. 2, pp. 141–147, 1990. 

[83] L. Guo and L. Ljung, “Exponential stability of general tracking algorithms,” Autom. Control. 

IEEE Trans., vol. 40, no. 8, pp. 1376–1387, 1995. 

[84] L. Guo and L. Ljung, “Performance analysis of general tracking algorithms,” Autom. Control. 

IEEE Trans., vol. 40, no. 8, pp. 1388–1402, 1995. 

[85] P. A. Ioannou and J. Sun, Robust adaptive control. Prentice-Hall, 1996. 



 

 109 

[86] D. Maclay, “Simulation gets into the loop,” IEE Rev., vol. 43, no. 3, pp. 109–112, 1997. 

[87] Q. Zhang, J. F. Reid, and D. Wu, “Hardware-in-the-loop simulator of an off-road vehicle 

electrohydraulic steering system,” Trans. ASAE-American Soc. Agric. Eng., vol. 43, no. 6, pp. 

1323–1330, 2000. 

[88] N. Shidore, H. Lohse-Busch, R. W. Smith, T. Bohn, and P. B. Sharer, “Component and 

subsystem evaluation in a systems context using Hardware in the Loop,” in Vehicle Power and 

Propulsion Conference, 2007. VPPC 2007. IEEE, 2007, pp. 419–424. 

[89] Y.-H. Hung, C.-H. Wu, S.-M. Lo, B.-R. Chen, E.-I. Wu, and P.-Y. Chen, “Development of a 

hardware in-the-loop platform for plug-in hybrid electric vehicles,” in Computer 

Communication Control and Automation (3CA), 2010 International Symposium on, 2010, vol. 

1, pp. 45–48. 

[90] D. Ramaswamy, R. McGee, S. Sivashankar, A. Deshpande, J. Allen, K. Rzemien, W. Stuart, 

W. Lee, M. Yoon, M. Sunwoo, Y.-H. Hung, C.-H. Wu, S.-M. Lo, B.-R. Chen, E.-I. Wu, and P.-

Y. Chen, “A cost-and time-effective hardware-in-the-loop simulation platform for automotive 

engine control systems,” in Proceedings of the Institution of Mechanical Engineers, Part D: 

Journal of Automobile Engineering, 2003, vol. 217, no. 1, pp. 41–52. 

[91] W. Lee, M. Yoon, and M. Sunwoo, “A cost-and time-effective hardware-in-the-loop simulation 

platform for automotive engine control systems,” Proc. Inst. Mech. Eng. Part D J. Automob. 

Eng., vol. 217, no. 1, pp. 41–52, 2003. 

[92] R. S. Razavian, N. L. Azad, and J. McPhee, “A battery hardware–in–the–loop setup for 

concurrent design and evaluation of real–time optimal HEV power management controllers,” 

Int. J. Electr. Hybrid Veh., vol. 5, no. 3, pp. 177–194, 2013. 

[93] A. Hentunen, J. Suomela, A. Leivo, M. Liukkonen, and P. Sainio, “Hardware-in-the-loop 

verification environment for heavy-duty hybrid electric vehicles,” in Vehicle Power and 

Propulsion Conference (VPPC), 2010 IEEE, 2010, pp. 1–6. 

[94] E. Buckingham, “On physically similar systems; illustrations of the use of dimensional 

equations,” Phys. Rev., vol. 4, no. 4, pp. 345–376, 1914. 

[95] D. S. Naidu, Optimal control systems. CRC press, 2002. 

[96] S. Fallah, B. Yue, O. Vahid-Araghi, and A. Khajepour, “Energy management of planetary rovers 

using a fast feature-based path planning and hardware-in-the-loop experiments,” Veh. Technol. 

IEEE Trans., vol. 62, no. 6, pp. 2389–2401, 2013. 

[97] C. Zhang and A. Vahidi, “Route preview in energy management of plug-in hybrid vehicles,” 

Control Syst. Technol. IEEE Trans., vol. 20, no. 2, pp. 546–553, 2012. 

[98]  a. Vahidi, “Route Preview in Energy Management of Plug-in Hybrid Vehicles,” IEEE Trans. 

Control Syst. Technol., vol. 20, no. 2, pp. 546–553, Mar. 2012. 

[99] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in 

Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1967, 

vol. 1, no. 14, pp. 281–297. 

[100] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering 

clusters in large spatial databases with noise.,” in Kdd, 1996, vol. 96, no. 34, pp. 226–231. 

[101] M. A. Fayazbakhsh and M. Bahrami, “Comprehensive modeling of vehicle air conditioning 



 

 110 

loads using heat balance method,” SAE Technical Paper, 2013. 

[102] S. Mohagheghi Fard, A. Khajepour, A. Rezaeian, and C. J. Mendes, “Refrigeration Load 

Identification of Hybrid Electric Trucks,” SAE Technical Paper, 2014. 

[103] S. M. Fard and A. Khajepour, “Concurrent Estimation of a Vehicle’s Mass and Auxiliary 

Power,” in ASME 2014 International Mechanical Engineering Congress and Exposition, 2014, 

pp. V04BT04A006–V04BT04A006. 

[104] S. M. Fard and A. Khajepour, “An optimal power management system for a regenerative 

auxiliary power system for delivery refrigerator trucks,” Appl. Energy, vol. 169, pp. 748–756, 

2016. 

 


