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Abstract 

Falls are common in the geriatric population, with approximately one third of older adults 

falling each year. Falls can result in lasting physical and psychological consequences and cost 

approximately $20 billion per year in the United States. Wearable sensors can be used for 

quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly 

implemented in clinical care and older adult living environments. 

The objectives of this study were to evaluate eyes open and eyes closed static 

posturography in older adults; provide in-depth analysis of the differences between single-task 

and dual-task gait in elderly individuals and the relation to faller status; generate models for 

wearable-sensor-based fall risk classification in older adults and identify the optimal sensor type, 

location, combination, and modelling method for walking with and without a cognitive load task; 

and compare wearable-sensor-based fall risk classification performance to clinical assessment-

based and posturography-based fall risk classification outcomes. 

A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 

fallers based on 6 month retrospective fall occurrence; 47 non-fallers, 28 fallers based on 6 

month prospective fall occurrence with retrospective fallers excluded) walked 7.62 m under 

single-task (ST) and dual-task (DT) conditions while wearing pressure-sensing insoles and tri-

axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the 

Activities-specific Balance Confidence scale, Community Health Activities Model Program for 

Seniors questionnaire, six minute walk test, static posturography with eyes open and closed, and 

ranked their fear of falling. Fall risk classification models were assessed for all sensor 

combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and 

support vector machine. Feature selection was performed using Relief-F, Fast Correlation-Based 

Filter (FCBF), and Correlation based Feature Selection (CFS).  

For static posturography, measures sensitive to anterior-posterior motion and medial-

lateral centre of pressure (CoP) velocity were greater under eyes closed compared to eyes open 

conditions for prospective non-fallers, fallers, and multi-fallers. For prospective multi-fallers, 

medial-lateral range and root-mean square distance from the mean were also greater when visual 

input was removed, suggesting that assessment of medial-lateral balance control may be 

particularly important for evaluating the risk of multiple falls. Differences were found between 
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prospective fallers and non-fallers for Romberg Quotient (RQ) anterior-posterior range and root-

mean square distance from the mean. Differences between prospective multi-fallers and non-

fallers were for eyes closed and RQ anterior-posterior and vector sum magnitude velocity. This 

suggests that RQ calculations are particularly relevant for elderly fall risk assessments. 

Measures that changed between ST and DT walking conditions, including non-temporal 

measures related to movement frequency and abnormal body segment movements, were 

identified. Increased gait variability under DT conditions was indicated by increased posterior 

CoP stance path deviations, medial-lateral CoP stance path deviation durations, and CoP stance 

path coefficient of variation; and decreased Fast Fourier Transform quartiles and ratio of even to 

odd harmonics. Decreased gait velocity and decreased pelvis and shank acceleration standard 

deviations (SD) could represent compensatory gait strategies to counter the increased gait 

variability and thus maintain stability. Differences between prospective fallers and prospective 

non-fallers were related to movement frequency and variability. 

Fall risk classification models that used Relief-F feature selection achieved the best 

performance. With feature selection, the best model for prospective faller classification 

contained ten features (four pressure-sensing insole features, six left shank accelerometer 

features) and used a support vector machine classifier. This model achieved an accuracy of 94%, 

F1 score of 0.923, and Matthew’s Correlation Coefficient (MCC) of 0.866. The posterior pelvis 

accelerometer provided strong single-sensor performance (83% accuracy, F1 score 0.769, MCC 

0.645), although lower than the best multi-sensor model performance, and should be considered 

if a single-sensor system is necessary to reduce assessment cost and complexity at the point-of-

care. Neural networks and support vector machines both achieved strong classification 

performance and outperformed naïve Bayesian classifiers. Sensor-based models outperformed 

clinical assessment-based models and posturography-based models for both retrospective and 

prospective fall risk classification. Wearable sensors provided strong fall risk classification 

performance and should be considered for point-of-care assessment of elderly fall risk.  
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Chapter 1 Introduction 

Falls are common for people beyond middle age, with approximately one third of people 

over 65 years of age falling each year [1,2]. This fall rate increases with age [3,4] and for people 

in long-term care [5]. Fall related injuries among people older than 65 years cost approximately 

$20 billion per year in the United States [6]. Furthermore, the direct-care costs of injuries due to 

falls could reach $32.4 billion per year by 2020 [7]. 

Falls can result in lasting physical and psychological consequences, including injury 

[3,8], long-term disability [9], reduced activity and mobility levels [4,8,10,11], admission to 

long-term care institutions [4,11,12], fear of falling [8,11], reduced self-confidence [4,13], and 

death [11,14]. Fear of falling is a particularly worrisome consequence since fear can lead to a 

cyclical pattern of deterioration, social isolation, and decreased quality of life [15], even without 

a fall occurring. 

The serious physical, psychological, and economic consequences of falling has led to two 

approaches to avoid these consequences. The first approach uses physical monitoring devices to 

detect falls and allow immediate care once a person has fallen. However, this approach can only 

reduce the severity of the consequences, not eliminate them. Another approach is to prevent fall 

occurrence through interventions such as exercise [16,17], improved footwear [16], assistive 

devices [17], adaptation or modification of home environment [16,17], review and modification 

of medications [16], and increased surveillance and care by caregivers [17]. To be the most 

effective in preventing falls, these interventions must be provided early to elderly individuals at 

risk of falling. Therefore, timely fall risk assessment is important for identifying those at risk of 

falling and to aid in determining the most appropriate intervention to ultimately reduce or 

eliminate falls [17].  

Several clinical assessment tools (i.e., tools based on observational assessment or 

questionnaires that are used clinically) have been used to assess fall risk; including, timed 

walking tests, Timed Up and Go (TUG), Berg Balance Scale, Community Balance and Mobility 

Scale (CBMS), and Tinetti Assessment Tool (described in Chapter 2.2). These assessments often 

involve a specific task-duration threshold or other threshold value that classifies the individual as 

at fall risk and the clinician's subjective judgement can affect the overall score. Sensors that 
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objectively provide quantitative measurements could eliminate the subjective influences in fall 

risk assessment. Many of these sensors measure in flat ground environments (e.g., force 

platforms, pressure platforms, and instrumented walkways). On the other hand, wearable sensors 

allow measurement in a variety of environments (e.g., accelerometers, gyroscopes, pressure-

sensing insoles). The most appropriate wearable sensors and sensor-derived measurements for 

elderly fall risk have yet to be determined. The goal of this research is to develop a wearable-

sensor-based fall risk assessment tool that can predict elderly fall risk. 

1.1 Rationale 

As previously stated, many older adults are at risk of falling and a fall can have serious 

and lasting physical, psychological, and economic consequences. A variety of clinical techniques 

have been used to determine fall risk proactively and inform the clinician when prescribing 

appropriate interventions to reduce fall risk.  

While a properly designed clinical tool based on observational assessment or 

questionnaires can provide a standardized fall risk assessment, many clinical tools are limited by 

ceiling or floor effects, low resolution, and subjective elements [18,19]. Clinical tools can 

oversimplify fall risk in older populations to a summation of disease-specific symptoms instead 

of a complex interaction of multiple diseases [20]. Furthermore, if younger populations are the 

comparator, healthy elderly can be incorrectly classified as at fall risk due to normal, age-related 

changes that do not correlate with increased falls [20].  

Some clinical tools, such as the Gait and Balance Scale [21], STRATIFY [22,23], and 

interRAI Home Care Assessment [24], include fall history due to its strong predictive power for 

future falls [5,13,17,25-27]. While this approach is good, at least one fall must occur to classify 

an individual as at risk. Past falls could result in negative consequences, such as injury and fear 

of falling, before diagnosis and subsequent interventions. The goal of this thesis research was to 

determine biomechanical gait features that are linked to fall risk, and to develop a fall risk model 

that can be used to identify fall risk in individuals without a recent fall history. This could result 

in earlier intervention and reduce the chance of falls occurring, and thereby avoid the associated 

negative consequences of falling.    

 Laboratory-based equipment can provide a complete, quantitative assessment of body 

kinematics and dynamics. Unfortunately, this equipment is expensive and time consuming for 
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data collection and analysis, limiting its role in clinical practice [28]. Furthermore, force plates 

limit assessments to the laboratory environment and one step, level ground movements [29]. 

Instrumented walkways are available in clinical facilities, but the analyses are limited to 

temporal and foot position on level ground. 

 Wearable sensors overcome some laboratory-based equipment limitations since they are 

not bound to a specific environment, allowing assessment in a variety of locations such as stairs, 

ramps, home, and outdoors. While wearable sensors such as footswitches and pedometers do not 

provide biomechanical signals for complex movement analyses, sensors such as accelerometers 

and pressure-sensing insoles provide richer data that can be used to better understand mobility.  

Inertial sensors, primarily accelerometers, have been applied in the past to older adult fall 

risk prediction (reviewed in detail in Section 2.3.3) and previously developed models have 

reached high levels of accuracy (47-100%), sensitivity (0-100%), and specificity (15-100%). 

However, these previous fall risk prediction models could be improved by identifying fallers 

prospectively, using separate training and testing data sets, and performing intra-study sensor-

site comparisons instead of inter-study comparisons. Inter-study comparisons can have different 

participants and protocols, thereby introducing outcome data changes that are not related to the 

sensors or modelling methods.  

The F-Scan pressure-sensing insole is a thin grid of pressure measurement cells that can 

be placed inside a shoe between the foot and shoe insole. This sensor has not been applied to fall 

risk assessment for older populations, but has been successfully used to assess simulated 

instability and transtibial amputee dynamic stability (reviewed in detail in Section 2.3.3.2). This 

is the first study to investigate plantar pressure analysis for older adult fall risk assessment. It is 

important to determine whether insoles provide data relevant to fall risk and different fall risk 

information than accelerometers, to avoid redundancy that hinders data collection efficiency and 

cost. 

1.2 Objectives 

The objectives of this research were to: 

1. Evaluate eyes open and eyes closed posturography in elderly people.  
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a. Determine whether posturography measures can differentiate between elderly fallers 

and non-fallers and determine whether these posturography measures can be used to 

create a viable screening tool for older people at fall risk.   

b. Determine if differences could be detected between eyes open and eyes closed static 

posturography conditions.  

2. Evaluate single-task (ST) and dual-task (DT) walking in elderly people using pressure-

sensing insoles and accelerometers. 

a. Determine whether pressure-sensing insole and accelerometer wearable sensors can 

detect biomechanical differences in gait that occur with a secondary cognitive task. 

b. Determine whether ST or DT gait data from pressure-sensing insole and 

accelerometer wearable sensors can differentiate between elderly fallers and non-

fallers.   

3. Develop and evaluate elderly fall risk prediction models using plantar pressure and 

accelerometer-based features.  

a. Determine the most appropriate plantar pressure measures, accelerometer measures, 

and accelerometer sites.  

b. Use the measures in 3(a) to assess and classify elderly fall risk.  

c. Compare wearable-sensor-based fall risk classification to clinical-assessment-based 

fall risk classification and posturography-based fall risk classification.  

d. Use feature selection to identify smaller feature sets for fall risk classification from 

wearable accelerometer and pressure-sensing insole gait data and compare the results 

to fall risk classification results obtained without feature selection.  

1.3 Contributions 

This research provides a substantial knowledge contribution to the field of older adult fall 

risk management and advances the application of wearable sensors in this field. The following 

novel contributions were made: 

1. Identified the importance of Romberg Quotient (RQ) calculations for elderly fall risk 

assessments that use static posturography. This is the first study to use the RQ to identify 

posturography differences between older adult fallers and non-fallers. Differences were 
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found between prospective fallers and non-fallers for RQ anterior-posterior range and 

root-mean square distance from the mean. Differences between prospective multi-fallers 

(i.e. multiple falls) and non-fallers were for eyes closed and RQ anterior-posterior and 

vector sum magnitude velocity. This suggests that RQ calculations are particularly 

relevant for elderly fall risk assessments. Therefore, postural balance should be tested 

with and without visual input and RQ should be calculated to provide fall risk-relevant 

information, for both single and multi-fallers, when assessing an older adult population.  

2. Increased the knowledge base of gait changes that occur with a secondary task and are 

detectable using wearable sensor-derived measures. Previous studies had only 

investigated swing time and gait speed measures using force-sensing insoles [30-32] and 

walking speed, stride time, leg rotation, and gait variability measures using 

accelerometers [33-35]. In this thesis research, pressure-sensing insole data provided new 

measures associated with centre of pressure (CoP) stance path, stride events, and impulse. 

Increased gait variability under DT conditions was evident from increased CoP stance 

path deviations and coefficients of variation. This thesis research also evaluated 

accelerometer-derived measures and was the first to identify decreased FFT quartiles and 

ratio of even to odd harmonics (REOH) as indicators of increased gait variability under 

DT conditions. Decreased pelvis and shank acceleration standard deviations during DT 

gait were also identified for the first time, which could, along with decreased gait velocity 

and other associated temporal changes, represent compensatory gait strategies to counter 

increased gait variability and maintain stability.  

3. For the first time, accelerometer and pressure sensing-insole based measures were 

developed and evaluated concurrently for their ability to detect differences between 

prospective elderly fallers and non-fallers based on ST and DT gait. Some statistical 

differences were identified between prospective elderly fallers and non-fallers based on 

ST and DT gait, primarily related to gait variability. 

4. Developed and evaluated new multi-sensor and single-sensor models for fall risk 

prediction based on accelerometer and pressure-sensing insole wearable-sensor-based 

measures. This is the first study to compare features from multiple accelerometer sites 

and pressure-sensing insoles to determine the best single-sensor and multi-sensor 

combination, and the best measures for fall risk prediction. While multi-sensor-based 
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models outperformed single-sensor-based models, single-sensor-based models may be 

desirable to reduce cost and complexity for clinical and long-term assessment. This novel 

research used new measures, multiple sensor sites, and based the evaluation on 

prospective fall information. Furthermore, feature selection was employed to eliminate 

irrelevant features and improve fall risk predictive performance.  

5. Determined that wearable-sensor-based elderly fall risk classification can outperform 

clinical-assessment-based and posturography-based elderly fall risk classification. 

Sensor-based models outperformed clinical-assessment-based models and posturography-

based models for both retrospective and prospective fall classification. These results 

demonstrate the advantage of using wearable sensors when assessing fall risk compared 

to using clinical assessments or posturography assessments. Weiss et al., 2013 [36], van 

Schooten et al., 2015 [37], and Rispens et al., 2015 [38] also found that sensor-based 

predictive models, or a combination of sensor-based and clinical assessments, improved 

fall risk prediction compared to clinical assessment alone. However, this is the first study 

to compare wearable-sensor-based elderly fall risk classification directly to 

posturography-based elderly fall risk classification. This research provides important 

information to improve future clinical point-of-care assessments. Gait assessment may 

provide a more stability-challenging and thus more complete assessment of older adult 

fall risk than static posturography or clinical assessments. Therefore, the integration of 

wearable-sensors into point-of-care older adult fall risk assessments could improve fall 

risk identification. 

Publications derived from this thesis research include: 

 Howcroft J, Lemaire ED, Kofman J. Wearable-sensor-based prediction models for 

fall risk in older adults. PLOS One. 2016; 11(4): e0153240.   

 Howcroft J, Kofman J, Lemaire ED, McIlroy WE. Analysis of dual-task elderly gait 

in fallers and non-fallers using wearable sensors. Journal of Biomechanics. 2016; 

49(7): 992-1001. 

 Howcroft J, Kofman J, Lemaire ED, McIlroy WE. Static posturography of elderly 

fallers and non-fallers with eyes open and closed. World Congress on Medical 

Physics and Biomedical Engineering. 7-12 June 2015; 51: 966-969. 



7 

 

 Howcroft J, Lemaire ED, Kofman J, McIlroy WE. Analysis of dual-task elderly gait 

using wearable plantar-pressure insoles and accelerometers.  36
th

 Annual International 

Conference of the IEEE EMBS. 26-30 Aug 2014; 5003-5006. 

 Howcroft J, Kofman J, Lemaire ED. Review of fall risk assessment in geriatric 

populations using inertial sensors. Journal of NeuroEngineering and Rehabilitation. 

2013; 10: 91. 

1.4 Thesis Outline 

Chapter 1 provided an introduction with background information, rationale, objectives 

and contributions of this research. Chapter 2 provides a review of the relevant literature, focusing 

on an overview of fall risk and occurrence in older individuals, clinical fall risk assessment tools, 

and sensor-based fall risk assessment. Chapter 3 details the methodology used in this study; 

including, participant information, data collection protocol, and data processing. Chapter 4 

presents the results and discussion of the static posturography analysis, detailing differences 

between and cut-off scores for prospective faller, multi-faller, and non-faller classifications, and 

differences between eyes open and eyes closed static posturography. Chapter 5 details the 

evaluation of single-task and dual-task gait in older adults. Chapter 6 presents the development, 

analysis, and discussion of fall prediction models based on full feature sets. In Chapter 6, a 

comparison between sensor site locations (single and multi-site) in terms of fall risk predictive 

performance and a comparison between wearable-sensor-based models, posturography-based 

models, and clinical-assessment-based models are presented. Chapter 7 details the inclusion of 

feature selection in model development and discusses the improvements in fall risk classification 

performance compared to classification without feature selection. Chapter 8 presents the thesis 

conclusions and provides direction for future work.  
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Chapter 2 Background and Literature Review  

2.1 Older Adults 

2.1.1 Fall Risk Factors 

Older adults often have multiple, interdependent risk factors that increase their risk of falling, 

making fall risk a complex, multi-factorial issue. These factors can be internal factors that 

involve deterioration, disease, or failing of a biological function; gait factors that directly impact 

mobility; or lifestyle factors [39]. Specific risk factors are: 

 Internal factors: muscle weakness [17,25,26,40], cognitive impairment [4,25,26,41], 

visual impairment [4,9,26,40,41], dizziness/vertigo [4,40], postural hypotension [26], 

neural system deterioration [4], neurological disorders [41], vestibular deficiencies [9], 

cardiopulmonary impairment [9,41], reduced proprioception [9,27], reduced orthostasis 

[27], urinary incontinence [13], arthritis [17,40], foot problems [40,42], and reduced 

flexibility [43]; 

 Gait factors: mobility limitations [26], gait deterioration during dual tasks [44], reduced 

reaction time [45], gait impairment [4,17,25,26,40,41], balance impairment [17,26,41], 

postural unsteadiness [46], and gait variability [47,48]; and 

 Lifestyle factors: reduced activity [13,27], multiple medications [13,26,41], depression 

[13,17,25], alcohol use [41], fear of falling [13,26,40], history of falls [13,17,25,26], and 

environmental factors [4,40].  

These fall risk factors often worsen or challenge an individual's stability, increasing the 

likelihood of a fall while performing activities of daily living [49].  

2.1.2 Stability Issues 

Dynamic stability is a property of a body that causes it when disturbed from a condition 

of equilibrium or steady motion to develop forces or moments that restore the original conditions 

[50]. During walking, an individual must control centre of mass displacements with respect to a 

changing base of support [51]. Dynamic stability is often worse in older individuals compared to 

their younger counterparts [52,53].  

Risk factors for dynamic stability deterioration are similar to many fall risk factors; 

including, deterioration in musculoskeletal, neuromuscular, and somatosensory systems; lifestyle 
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factors; and other factors [54]. Many studies have found poorer dynamic stability control in 

elderly fallers, suggesting that deteriorations in dynamic stability control may be a fall risk 

factor. A combination of poor dynamic balance, poor executive function, and low exercise levels 

was found to be a predictor of increased fall risk for older, community dwelling individuals [49]. 

Therefore, dynamic stability should be considered as a fall risk factor that may be representative 

of overall fall risk, given its associations with many of the internal and lifestyle fall risk factors.  

2.1.3 Fall Occurrence 

Between 25% and 35% of individuals aged 65 years and older fall per year [41,55-57]. In 

addition, approximately 12% of older adults aged 65 years and older will fall more than once per 

year [58]. The rate of falling increases to between 32% and 42% for people aged 75 years and 

older [2,59] and continues to increase with increasing age [60]. The rate of falling also increases 

for women on colder days and during winter [3], individuals in long-term care facilities such as 

nursing homes, and individuals receiving home care services compared to community-dwelling 

older adults [61]. A review of 12 nursing home fall occurrence studies found that 43% of older 

adults fall per year (range 16% to 75%) [62]. Luukinen et al., 1994 [63] reported higher fall rates 

for long-term-care-dwelling older adults (men: 2012 falls per 1,000 person years, female: 1423 

falls per 1,000 person years) compared to community-dwelling older adults (men: 368 falls per 

1,000 person years, female: 611 falls per 1,000 person years). Two studies that investigated 90-

day fall occurrence in older adults receiving home care services reported fall occurrence rates of 

27% [64] and 35.9% [65]. A study comparing 90-day fall rates in Canada, United States, 

Finland, United Kingdom, Belgium, Italy, and Hong Kong found higher fall rates for home care 

(8.4 to 41.8%) compared to nursing home (5.3 to 32.1%) populations, suggesting that older 

adults receiving home care may experience the highest fall rates [66].  

2.1.4 Consequences of Falls 

By 2020, the direct care costs of fall injuries for individuals aged 65 years and older is 

expected to reach $32.4 billion, with an additional $21.8 billion in indirect costs [7]. Falls are the 

leading cause of injury and death due to injury in the elderly, primarily due to the health impact 

of falls on individuals aged 85 years and older [41]. Between 40% and 60% of falls lead to 

injuries, with 30% to 50% of falls resulting in minor injuries, 5% causing fractures, and 5% 

leading to major injuries [3]. Major injuries include head trauma and severe soft tissue injuries 
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[27]. Injurious falls can have long-term consequences including admission to a long-term care 

institution, long-term disability, deconditioning, strength reduction, and functional decline 

[5,9,13,67]. Hip fracture is a serious fall injury that can result in high health care costs, long term 

care or nursing home admission, and reduced independence [67,68] with a mortality rate of 21% 

if surgical repair is required [69]. 

Injurious falls can also result in psychological consequences. The psychological 

combined with the physical effect of a fall can lead to reduced activity and mobility levels 

[5,13,17,67]. This can lead to reduced participation in events, reduced independence, and 

isolation [5,17]. Falls can also lead to feelings of helplessness, reduced self-confidence, 

depression, and reduced falls self-efficacy in older individuals [5,13,17]. Falls can also increase 

or result in fear of falling. Fear of falling can result in a negative cyclical pattern shown in Figure 

2.1 that can lead to nursing home admission [70].   

 

Figure 2.1. Negative cyclical events resulting from fear of falling [70].  

2.2 Clinical Assessments Related to Fall Risk 

2.2.1 Introduction 

Clinical assessment tools measure a person’s ability to perform specific tasks or activities 

[18]. A properly designed clinical tool can provide a standardized, consistent, and accurate 
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description of a person's functional abilities [18]. However, clinical assessment tools can have 

issues such as ceiling or floor effects, low resolution, and subjective elements that allow the 

rater’s experience to affect results [19].  

A wide variety of clinical assessment tools have been used to assess elderly populations 

for fall risk. Some key assessment tools are summarized in this section. Interested readers are 

directed to Tyson and Connell, 2009 [21] and Anemaet and Moffa-Trotter, 1999 [18] for more 

thorough reviews of clinical fall risk assessments. 

2.2.2 Timed Walking Distance Tests 

The two-minute, six-minute, ten-minute, and twelve-minute walk tests are all designed to 

assess functional capacity with the total distance walked during the test period measured [21]. 

For the six-minute walk test (6MWT), participants are asked to walk as far as they can during a 

six-minute period [71].  The 6MWT was first introduced by Guyatt et al., 1985 [71] as a measure 

of exercise capacity in patients with chronic heart failure. The 6MWT has demonstrated 

construct validity based on strong correlations between distances walked and peak oxygen 

consumption [72-74]. The 6MWT has been assessed as a mobility-related function test in older 

adults [75]. Harada et al., 1999 [75] reported a one-week test-retest reliability of 0.95 (Pearson's 

correlation coefficient) for 6MWT distances, and convergent validity between 6MWT distances 

and performance-based, clinical, and self-report measures of physical function and general health 

with a subset of measures explaining 69% of the variability in 6MWT distances. Lord and Menz, 

2002 [76] also assessed convergent validity and found that strength, maximal balance range, 

medication use, and age explained 52.5% of the variability in 6MWT distances. The American 

Thoracic Society released practical guidelines for administering a standard 6MWT [77]. 

The 25 ft walk test is a subset of the Hauser Ambulation Index [78]. Different time 

intervals are provided to score 25 ft walk performance: less than or equal to 10 seconds, less than 

or equal to 20 seconds, greater than 20 seconds, and unable to complete a 25 ft walk [78]. The 

Hauser Ambulation Index was designed to assess individuals with multiple sclerosis [78]. 

Reference gait speed values for a range of ages at comfortable and maximum walking speed for a 

25 ft distance were reported by Bohannon et al., 1997 [79]. For individuals in their 60s, the mean 

comfortable walking speed was 135.9 ± 20.5 cm/s for men (n = 18) and 129.6 ± 21.3 cm/s for 

women (n = 18). The mean maximum speed was 193.3 ± 36.4 cm/s for men and 177.4 ± 25.4 
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cm/s for women [79]. For individuals in their 70s, the mean comfortable walking speed was 

133.0 ± 19.6 cm/s for men (n = 22) and 127.2 ± 21.1 cm/s for women (n = 20). The mean 

maximum speed was 207.9 ± 36.3 cm/s for men and 174.9 ± 28.1 cm/s for women [79].   

 Additional walking tests include 8 ft, 5 m, 10 m, and 30 m distances. These walking 

distances are primarily used for assessing stroke populations. Normative values for 8 ft walk 

times were provided by Guralnik et al., 1994 [80] for men and women aged 70 years and older. 

Eight foot walk time, in combination with other measures, was related to mortality risk and 

nursing home admission [80]. Walking speed over 5 m was sensitive to change for pre- and post-

stroke assessments [81]. Flansbjer et al., 2005 [82] assessed a 10 m walking test for a post-stroke 

population and found high test-retest agreement (ICC [Intraclass Correlation Coefficient] > 0.90) 

and small standard error of measurement (< 7.9%). Green et al., 2002 [83] assessed speed test-

retest reliability for a 10 m walking assessment with a 1 year post-stroke population and found 

high within-assessment reliability (ICC ≥ 0.95) and good between-assessment reliability (ICC ≥ 

0.87). High reproducibility (ICC ≥ 0.97) was reported for 10 m and 30 m walking distances in a 

multiple sclerosis population [84]. A lack of consistency exists between these relatively short 

walking distance assessments in terms of walking pace (e.g., self-selected comfortable pace or 

maximum pace) and whether a 'rolling' start is used [21].  

2.2.3 Activity Performance Tests 

The Timed Up and Go (TUG) is commonly used to test elderly populations for fall risk, 

with longer completion times associated with impaired mobility and increased fall risk [85,86]. 

The TUG was first proposed by Podsiadlo and Richardson, 1991 [87] as a modification of the 

Get Up and Go test. The American Geriatrics Society, British Geriatrics Society, and Society of 

Nordic Geriatricians recommend the TUG as a screening test for fall risk [85,88]. The TUG 

requires the participant to get up from a chair, walk three meters, return to the chair, and sit down 

[85,87,89,90]. Participants are allowed to use walking aids [85]. Optimal thresholds to determine 

fall risk have been recommended, ranging from 10 to 33 s [91]. The TUG has demonstrated good 

to excellent inter-rater reliability, ICC between 0.80 and 0.99 [85,87,91], and moderate to 

excellent test-retest reliability [85,87,92]. TUG assessment results correlated well to moderately 

well with other clinical measures such as the Berg Balance Scale (r = -0.81), Barthel Index   

(r = -0.78, assesses ability to independently perform activities of daily living) [87], and gait 
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speed (r = -0.61) and has achieved 87% sensitivity and 87% specificity in discriminating 

between elderly individuals with a six month history of multiple falls and elderly individuals 

with no six month fall history [93].  

The Berg Balance Scale (BBS), developed by Berg et al., 1989 [94], uses 14 activities to 

assess balance for elderly populations, using a five-point ordinal scale with a maximum possible 

score of 56 [18,94,95]. These activities include: sit to stand, stand to sit, unsupported standing, 

unsupported sitting, transfers, turning 360°, and others [18]. Scores lower than 40 indicate a high 

risk of falls [18]. Berg et al., 1992 [96] found that BBS could predict the occurrence of multiple 

falls in the elderly, with a score less than 45 indicating a 2.7 times increased risk of multiple 

falls, and could discriminate between elderly mobility aid users and non-users. BBS has 

demonstrated excellent inter and intra-rater reliability, ICC of 0.98 and 0.99, respectively [94]. 

The BBS has achieved 77% sensitivity and 86% specificity in discriminating between elderly 

individuals with a six month history of multiple falls and elderly individuals with no six month 

fall history using a cut-off score of 49 [95].  

The Clinical Test of Sensory Integration and Balance (CTSIB) is a clinical version of the 

Sensory Organization Test (SOT), originally developed by Nashner et al., 1990 [97]. The SOT, 

unlike the CTSIB, uses a force plate to measure centre of pressure excursions and will be 

discussed in 2.3.1. The CTSIB assesses participant balance for six conditions: eyes open on firm 

surface, eyes open on compliant, foam surface, eyes closed on firm surface, eyes closed on foam 

surface, visual conflict on firm surface, and visual conflict on foam surface [98]. The visual 

conflict is a dome, originally designed by Shumway-Cook and Horak, 1986 [99], placed over the 

participant’s head with horizontal lines that follow head movement, reducing the meaning of the 

visual input. The time the participant can hold a static posture without moving the feet or upper 

limbs is recorded up to a maximum stance time of 30 seconds. The CTSIB has good test-retest 

reliability (r = 0.75) [100] and correlated well with TUG times (r = 0.47 to 0.67) [100]. Ricci et 

al., 2009 [98] performed the CTSIB on a group of 96 elderly individuals and obtained stance 

times for each of the six conditions for sub-groups of non-fallers, single-fallers, and multi-fallers, 

with multi-fallers tending to perform the worst of the three groups. Di Fabio and Anacker, 1996 

[101] used the 95% confidence interval for the composite CTSIB score as a lower limit for a 

normal CTSIB score, which resulted in 44% sensitivity and 90% specificity when classifying 31 

non-falling and 16 falling healthy elderly adults. When standing times for only foam conditions 
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were averaged, a cut-off score of 81 s (mean stance duration) resulted in a sensitivity of 75% and 

a specificity of 65% [101]. Discriminant functions that include CTSIB scores and age correctly 

classified 77% of non-fallers and 63% of fallers [101].      

The Community Balance and Mobility Scale (CBMS) was designed by Howe et al., 2006 

[102] to identify postural instability, balance, and mobility issues in community dwelling adults 

with traumatic brain injury [21,102]. The CBMS uses a 6-point scale to assess high level tasks 

including hopping, crouching and walking, walking and looking, and running with a controlled 

stop [102]. Excellent intra-rater, inter-rater, and test-retest reliability (ICC > 0.95) and internal 

consistency (Cronbach's α= 0.96 to 0.97) were found [102,103]. Good construct validity was 

found for the CBMS when compared to maximal walking velocity (r = 0.64) [102]. Good 

construct validity was indicated by Innes et al., 2011 [104] who found significant correlations 

between CBMS and gait measures (e.g. walking velocity, step length, and step width), measures 

of dynamic stability (e.g. step length variability), and the Activities-specific Balance Confidence 

(ABC) scale. When assessing individuals with traumatic brain injury, CBMS is less susceptible 

to ceiling effects than BBS [104]. CBMS has also demonstrated good construct validity when 

assessing stroke populations with moderate to high convergent validities (Spearman correlation 

between 0.70 and 0.83) between CBMS, BBS and TUG [105]. CBMS was associated with 

stroke-induced functional limitations and muscle weakness and showed greater sensitivity to 

change than TUG or BBS [105]. The CBMS was able to discriminate between older adult 

multiple fallers and non-fallers with a sensitivity of 79% and a specificity of 76% using a cut-off 

value of 39 [103].  

The Dynamic Gait Index [106] assesses dynamic postural control in older adults, 

particularly those with vestibular dysfunction, using a ranking score from 0 to 3 for various 

walking tasks ranging from self-selected speed walking to climbing stairs [107]. The Dynamic 

Gait Index has excellent inter-rater reliability (0.96) and test-retest reliability (0.98) [108]. A 

moderate, significant correlation was found between the BBS and Dynamic Gait Index, 

indicating concurrent validity [107]. Whitney et al., 2000 [109] found that a Dynamic Gait Index 

score of less than or equal to 19 indicated a 2.58 times increase in the likelihood of falling for 

individuals with vestibular dysfunction. Shumway-Cook et al., 1997 [95] used an identical 

threshold to predict fall risk in older individuals, which resulted in a sensitivity of 59% and a 

specificity of 64%.  
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The Elderly Mobility Scale was originally designed to assess mobility levels of frail 

elderly hospital patients [110]. This scale scores performance of seven mobility items; including, 

lying to sitting, sit to stand, walking, and functional reach. Concurrent validity with the Barthel 

score and functional independence measure were found in older adults (Spearman’s ρ ≥ 0.787) 

[110,111]. The Elderly Mobility Scale has excellent inter-rater reliability (Spearman’s ρ = 0.88) 

[111] and has been used to make placement decisions in extended care settings [112].    

The functional reach test assesses the maximum distance a person can reach forward 

beyond arm’s length while maintaining a fixed, standing base of support [113]. In a population 

of elderly veterans, a logistic regression analysis indicated an increased risk of experiencing 

multiple falls if individuals were unable to reach (odds ratio = 8.07), reached less than or equal to 

6 inches (odds ratio = 4.02), and reached greater than 6 inches but less than or equal to 10 inches 

(odds ratio = 2.00) [114]. Normative data for the functional reach test in women aged 20 to 80 

was published by Isles et al., 2004 [115], showing a decrease in functional reach distance with 

increasing age. There is some disagreement in the literature as to whether functional reach 

distance relates to dynamic stability limits. Jonsson et al., 2002 [116] found a low correlation (r = 

0.38) between reach distance and centre of pressure displacement and a moderate correlation (r = 

0.68) between trunk forward rotation and reach distance. This result suggested that the functional 

reach test may relate to compensatory mechanisms more than stability limits [116]. Kage et al., 

2009 [117] found moderate, but significant, correlations between the one-arm functional reach 

test distance and centre of pressure excursions (r = 0.60, p < 0.001) and that trunk rotation did 

not contribute significantly to reach distance.  

The multi-directional reach test is similar to but more complex than the forward reach 

test. The multi-directional reach test asks the participant to reach their hands as far as possible in 

four directions: forward, backward, right, and left [118]. For the backwards direction, 

participants are asked to lean as far as possible [118]. The test demonstrated good internal 

consistency (Cronbach’s alpha = 0.842), reliability (ICC = 0.942) and good construct validity 

with significant correlations to BBS and TUG [118]. An investigation of multi-directional reach 

in individuals aged 20 to 79 years old found a decrease in forward, left, and right but not 

backward stability limits with increasing age [119].    

The Modified Gait Abnormality Rating Scale [120] ranks gait based on 7 items, with 

higher scores indicating greater abnormality and a total possible worst score of 21. This scale is 



16 

 

based on the original 16 item Gait Abnormality Rating Scale developed by Wolfson et al., 1990 

[121]. Concurrent validity of the modified Gait Abnormality Rating Scale was good, with 

relationships to stride length (r = -0.754) and walking speed (r = -0.679) [120].  Construct 

validity was demonstrated by finding significant differences between elderly fallers and non-

fallers, with elderly fallers having a higher score on the scale [120]. When used to predict 

recurrent fall occurrence in an elderly population, the modified Gait Abnormality Rating Scale 

achieved a sensitivity of 62.3% and a specificity of 87.1%, with a cut-off score of 9 [122].  

The One Legged Stance test requires the participant to balance on one foot with their 

hands on their hips [20]. Standing on one leg requires the participant to move their centre of 

mass over the stance leg and then maintain postural orientation and stability on the stance leg 

[123]. The one legged stance test has excellent inter-rater reliability (ICC ≥ 0.832) [124]. The 

one legged stance test appears within the BBS (maximal score at 10 s), Bohannon’s ordinal 

balance scale (maximal score at 30 s), and Tinetti’s Balance Subscale (maximal score at 5 s) 

[123]. A study by Jonsson et al., 2004 [123] identified the first five seconds as a critical 

assessment period, when force variability rapidly decreased. This decrease was more rapid in 

younger participants compared to older participants [123]. Normative one legged stance times 

for individuals aged 18 to 99 years old were reported by Springer et al., 2007 [124]. Older 

individuals, who could not balance on one leg for five seconds were at an increased risk of 

injurious falls, with a predictive sensitivity of 36%, specificity of 76%, and positive predictive 

value of 31% [125].  

The Physiological Profile Assessment (PPA) was developed by Lord et al., 2003 [126] as 

a tool to evaluate fall risk. This assessment evaluates participant vision, peripheral sensation, 

muscle force, reaction time, and postural sway to obtain an overall indication of the ability to 

maintain postural stability [126]. PPA construct validity was determined by evaluating its ability 

to identify elderly individuals at risk of falls and achieved accuracy rates between 75 and 79% 

when compared to one year prospective fall occurrence [126]. The PPA sub-elements have 

moderate to excellent test-retest reliability (0.50 ≤ ICC ≤ 0.97), fair intra-rater reliability (0.24 ≤ 

ICC ≤ 0.94) and good inter-rater reliability (0.54 ≤ ICC ≤ 0.95) [126,127]. A comparison across 

age groups found greater variability in PPA sub-element scores in younger age groups, whereas 

older age groups exhibited an overall reduction in PPA scores across most, if not all elements 

[128].  
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The Sharpened Romberg test is a variation of the Romberg test with increased task 

difficulty to better identify balance issues. The Sharpened Romberg test requires a person to 

maintain balance during tandem stance (i.e. heel-to-toe position) and is often assessed with eyes 

open and eyes closed [129,130]. The Sharpened Romberg test has excellent inter-rater reliability 

(ICC = 0.99) and good to excellent test-retest reliability (0.76 ≤ ICC ≤ 0.91) [131]. Sharpened 

Romberg assessments of community dwelling elderly women found no significant differences 

between fallers and non-fallers but did find a significant deterioration in performance under eyes 

closed conditions compared to eyes open [130].  

The Tinetti Assessment tool [20] is one of the oldest clinical balance assessment tools 

and is widely used to assess older populations [132]. The Tinetti Assessment tool contains a 

balance section with ten activities and a gait section with eight activities [18]. The performance 

of each activity is ranked by the assessor, providing a maximum score of 16 for the balance 

section and 12 for the gait section, giving an overall maximum score of 28 [18]. A score less than 

or equal to 18 indicates a high fall risk, 19 to 23 indicates a moderate fall risk, and greater than or 

equal to 24 indicates a low fall risk [133].  

2.2.4 Questionnaire-Based Tests 

The Activities-specific Balance Confidence scale (ABC) is a questionnaire designed to 

evaluate balance confidence across a range of activities of daily living [134] and has been 

identified as the most appropriate assessment of balance confidence for moderate to high 

functioning older adults [135]. The ABC has excellent test-retest reliability (r = 0.92), good 

consistency (Cronbach’s α = 0.90 to 0.95), and good construct validity demonstrated by an 

ability to discriminate between low and high mobility older adults [134,136,137]. Different 

critical cut-off values have been identified when assessing older individuals, with scores greater 

than 80% considered high functioning, 50-80% moderate functioning, and less than 50% low 

functioning in terms of physical abilities [138]. In addition, a score less than 67% was predictive 

of fall occurrence, with a sensitivity of 84.4% and specificity of 87.5% at predicting one year fall 

history [139]. In a study that evaluated fear of falling, as measured by ABC, Falls Efficacy Scale, 

and Survey of Activities and Fear of Falling in the Elderly (SAFE), only ABC was able to 

discriminate between fallers and non-fallers [136]. 
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The Falls Efficacy Scale asks older adults to rank their confidence in their ability to not 

fall while performing a variety of activities of daily living with a maximum score of 100 [140]. A 

score greater than 70 indicates a fear of falling and a score greater than 80 indicates an increased 

risk of falling [140]. The questionnaire has good test-retest reliability (r = 0.71, ICC of 0.58 to 

0.83), excellent internal reliability (Cronbach’s α of 0.902 to 0.97), and excellent internal 

consistency (Cronbach’s α = 0.91 to 0.94) [136,140-142]. Concurrent validity for evaluating 

older individuals has been demonstrated through correlations with ABC (r = 0.86) and the 

Survey of Activities and Fear of Falling in the Elderly (SAFE) questionnaires (r = 0.67) [143]. In 

a comparison between ABC and the Falls Efficacy Scale, the ABC had better test-retest 

reliability and was better able to discriminate between fallers and non-fallers [142].  

 The Community Healthy Activities Model Program for Seniors (CHAMPS) Activities 

Questionnaire measures participation in physical activities and activities of daily living and 

allows estimation of energy expenditure [144]. The questionnaire is designed such that older 

adults with memory and cognitive issues could still accurately identify activity participation 

[144]. CHAMPS can be used to calculate calories expended per week based on the duration of 

activity per week and the standard metabolic equivalent of task (MET) values for the different 

activities [145]. This tool has moderate test-retest reliability (ICC ≥ 0.58) and discriminated 

between low and high activity older individuals, demonstrating construct validity [145].  

 SAFE was developed by Lachman et al., 1998 [146] and asks the person to indicate their 

participation in eleven different activities, rank their fear of falling when performing that 

activity, and indicate whether their performance of that activity has changed over the past five 

years. For activities that participants do not do, the survey asks them to specify the reason for not 

participating [146]. Concurrent validity was demonstrated through correlations to the Falls 

Efficacy scale (r = -0.76) and a simple fear question (r = -0.59) [146]. SAFE has a good internal 

consistency (Cronbach’s α = 0.82 to 0.86) [136,137]. SAFE was able to distinguish between 

fallers and non-fallers in elderly individuals [147].  

2.2.5 Discussion of Clinical Fall-Risk Assessment Tools 

Clinical assessment tools often involve a specific threshold that is used to classify 

individuals into high fall risk or no fall risk categories. This is a concerning aspect since a 

difference of one point for one activity can affect the fall risk diagnosis. Therefore, subjective 
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influence from the rater, whether due to inexperience, incorrect application of instructions, or 

personal bias, can become critical for borderline participants. The chosen thresholds for timed 

tools are also a concern due to the wide range of thresholds that have been used and presented in 

the literature. For example, the TUG has been used with thresholds between 10 and 33 s [91]. 

Even for similar elderly populations (i.e., identical disease status, similar living environment, 

similar age ranges), 11 to 20 s thresholds have been used to determine fall risk [148-150].  

2.3 Sensor-Based Assessment of Fall Risk 

Assessments based on quantitative measurements from sensors are less vulnerable to 

subjective influences than clinical assessments. This section will summarize some of the 

important sensor-based assessments that have been applied to fall risk assessment. 

2.3.1 Posturography  

Posturography assesses a person’s ability to stand independently (static posture or 

spontaneous sway) and maintain or recover balance following a sensory or mechanical 

perturbation (dynamic posture or induced sway) [151]. Postural assessments typically employ a 

force platform or pressure platform to assess static and dynamic postural stability.   

Force platforms measure tri-axially applied forces and moments using strain gauge, 

piezoelectric, or capacitive transducers [152]. Force platforms provide ground-reaction force and 

moment data and plantar centre of pressure (CoP) data [153] and are considered the gold 

standard for obtaining load information between the participant and flat ground [29]. The person 

stands on the force plate for static postural assessments and walks over the force plate for 

dynamic walking assessments. Force plates have high sensitivity, low crosstalk, repeatability, 

and signal measurement stability [154]. While a force platform can provide accurate loading 

data, it is typically limited to laboratory environments and one-step, level ground movements [29].   

 Pressure platforms can be used to detect peak pressures and pressure-time integrals 

during gait [155], centre of pressure progression during gait [156], areas of high pressure under 

the foot during static standing [157], and anatomical foot deformities [158]. The pedobarograph 

is an example of a pressure platform that consists of a glass plate that is illuminated along its 

edge by light [159]. The participant walks over the glass plate with applied pressure breaking the 

path of light, as shown in Figure 2.2 [157,159]. The applied pressure is proportional to the image 
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grey scale intensity and can be used as a measure of pressure [157]. While pedobarographs 

provide useful pressure information, they have similar limitations to force platforms. 

A commonly used posturography assessment is the Sensory Organization Test (SOT). 

The SOT is similar to the CTSIB (Section 2.2.3), except that the six stance conditions (eyes 

open, eyes closed, and visual conflict, for firm and foam surfaces) are performed on a force plate 

to measure postural sway through CoP movements. A modified version of this test only assesses 

the eyes open and eyes closed conditions. The SOT has demonstrated good overall test-retest 

reliability (ICC of 0.66) with individual components having ICCs ranging from 0.26 to 0.68 [160]. 

 

Figure 2.2. Static foot image from a pedobarograph [159].  

Posturography assessments can measure declines in postural balance that occur with 

increasing age. A large study by Era et al., 2006 [161] of 7,979 adults aged 30 years and older 

found that deteriorations in postural balance started as early as 30 years of age and this 

deterioration accelerated after 60 years of age. Another study of 96 adults by Cohen et al., 1996 

[162] found that postural balance deteriorations begin in mid-life, 45 to 69 years old, and become 

more pronounced with increasing age. Maki et al., 1994 [163] found that the speed and mean 

frequency of CoP displacements increased with age, except for medial-lateral (ML) spontaneous 

sway. In addition to a general deterioration with age, differences between young and elderly 

adults have been identified [12,164,165]; such as, speed, range, and power-spectrum-derived 

centroidal frequency of CoP displacements [164]. Cross-spectral, least squares, and maximum 

likelihood analyses of CoP displacements were also able to identify differences between young 

and elderly adults [12]. Prieto et al., 1996 [165] found differences between young and elderly 

adults for range, sway area, mean frequency, fractal dimension, total power, and centroidal 

frequency of CoP displacements.   

Eyes open and eyes closed conditions are the two most commonly assessed static 

posturography conditions and differences in postural balance have been identified between these 
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conditions. Eyes open and closed static posturography revealed that adults of any age increased 

sway path length with eyes closed [166]. Differences between eyes open and eyes closed 

conditions were greater for elderly than younger adults [165,167]. For elderly adults, differences 

between eyes open and eyes closed conditions were found for sway area, mean frequency, fractal 

dimension, total power, 50% power frequency, 95% power frequency, and centroidal frequency 

parameters of CoP displacements [165]. Furthermore, Perrin et al., 1997 [167] reported increased 

path length and area, particularly in the anterior-posterior (AP) direction, during eyes closed 

posturography tests, compared to eyes open, for elderly adults. The study with 7,979 participants 

(2730 over 60 years) found increased AP CoP speed and velocity moment (mean area covered by 

the CoP movement per unit time) for eyes closed static posturography tests compared to eyes 

open [161]; however, no statistical analysis was reported. These studies have shown that postural 

control worsens under eyes closed conditions compared to eyes open and that this worsening of 

postural control is more pronounced in older adults.  

For older adults, poor postural balance can be predictive of future falls [161,168] and 

indicates an impaired ability to recover from small postural perturbations [164]. Static 

posturography assessments can be used to detect these postural balance differences and 

distinguish between fallers and non-fallers. A review of static posturography studies identified 

four differences in posturography measures between fallers and non-fallers [168]. Fallers 

exhibited higher ML sway amplitude under eyes closed and eyes open conditions, higher AP 

speeds under eyes open conditions, higher ML CoP root mean square distance from mean (RMS) 

under eyes closed conditions, and higher mean CoP speed under eyes closed conditions 

compared to non-fallers [168]. A need was identified for additional studies based on prospective 

fall occurrence to better understand the predictive value of static posturography for fall risk 

[168]. Topper et al., 1993 [169] used posturography to identify fallers and non-fallers and 

achieved an accuracy of 65%, sensitivity of 78%, and specificity of 46%. 

Few studies have examined posturography measures for multi-fallers [170-172]. Stel et 

al., 2003 [170] found that increased ML sway was predictive of recurrent fallers, based on one 

year prospective fall history.  Buatois et al., 2006 [171] found increased sway in multi-fallers, 

based on 16 month prospective fall occurrence, compared to non-fallers under eyes closed 

conditions. Merlo et al., 2012 [172] found increased AP and ML RMS for multi-fallers, based on 

one year retrospective fall occurrence, compared to single-fallers and non-fallers on a compliant 
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surface, eyes open only, and increased 95% confidence ellipse area for multi-fallers compared to 

non-fallers on a firm surface. 

Posturography can also be assessed after a sensory or mechanical perturbation occurs, 

which evaluates the ability of the participant to maintain or recover balance in a dynamic setting 

[151]. Most dynamic posturography assessments use a moving platform that elicits a relative 

acceleration between the feet and the upper body [173]. During a dynamic posturography 

assessment, fallers had greater ML sway amplitudes compared to non-fallers [163]. Maki et al., 

1990 [164] compared a static posturography assessment to a dynamic posturography assessment 

with a random AP platform acceleration. The static posturography assessment successfully 

identified elderly fallers based on speed, range, and power-spectrum-derived centroidal 

frequency of CoP displacements, but the dynamic posturography assessment could not identify 

elderly fallers [164]. However, in a separate study, Maki et al., 1987 [12] identified fallers based 

on deviations from normative dynamic posturography data with a false positive rate of 25% 

when positive prediction was 100%.  

2.3.2 Laboratory-based Gait Assessment Sensors 

Laboratory-based, quantitative gait analysis is considered the gold standard for walking 

assessment [28] and can involve a wide variety of sensors including video systems, 

optoelectronic systems, force plates, electromyography, and electronic walkways [151,174]. This 

allows three-dimensional reconstruction of the person’s walking pattern and quantitative analysis 

of kinematic, kinetic, and spatiotemporal parameters [28]. Gait analysis can identify subtle gait 

impairments and abnormal postural control strategies, but due to the expensive equipment and 

time consuming data collection and analysis for systems that use cameras and force plates, this 

method has a limited role in clinical practice [28]. However, instrumented walkways can be used 

in gait assessment to efficiently measure temporal parameters, foot placement, and plantar 

loading patterns for multiple sequential steps.  

The 4.6 m long GAITRite® instrumented level walkway contains a grid of 13,824 

pressure sensors in the middle 3.6 m [175]. Spatiotemporal parameters include stride length, 

stride width, cadence, gait velocity, and gait symmetry [175-178]. For assessing elderly walking, 

this walkway has excellent reliability for walking speed, cadence, step length, and left toe in/out 
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angle with ICC values between 0.82 and 0.91 and fair to good reliability for base of support and 

right toe in/out angle with ICC between 0.49 and 0.71 [175]. 

Gait assessments were reviewed in the studies by: Hamacher et al., 2011 [179] and Judge 

et al., 1996 [180]. The Hamacher et al., 2011 [179] systematic review identified 29 studies that 

assessed gait stability via biomechanical measures of foot kinematics in elderly individuals. 

Swing and stance time variability and Floquet multipliers (measures of orbital stability) were 

identified as useful measures for distinguishing between elderly fallers and non-fallers. Step 

width, stride velocity, and local stability measures were identified as useful measures for 

distinguishing between younger and older adults.  

Judge et al., 1996 [180] summarized kinematic and kinetic gait changes that occur in 

older individuals, compared with younger individuals, and identified changes that continue to 

occur with advancing age. Decreased gait velocity and increased double support and stance time 

were identified as temporal gait changes as age increases beyond 70 years. Shortened step length, 

upright torso without a forward lean, greater thoracic curvature, increased forward pelvis tilt, 

reduced frontal and transverse plane pelvis range of motion, greater hip flexion and hip 

abduction, greater knee hyperextension during midstance, reduced peak knee flexion during 

swing phase, reduced ankle plantarflexion during terminal stance, and greater external foot 

rotation were identified as kinematic gait changes in older adults compared to younger adults. In 

terms of kinetic gait changes, older adults generated less power at the ankle compared to younger 

adults, which may be compensated for by greater power generation in the hip flexors.    

2.3.3 Wearable Gait Assessment Sensors 

Pedometers are simple wearable sensors that measure the number of steps that occur 

during gait [181]. Some pedometers count steps using a spring-loaded mass or similar switch 

mechanism that detects impact associated with each step [181]. Step data can be used to estimate 

walking distance and energy expenditure but lacks accuracy [181].  

 Foot switches can detect gait events from pressure on the foot’s plantar surface 

[182,183]. The applied pressure produces a proportional voltage [182]. These sensors are 

typically slim with a fast dynamic response [182]. However, some foot switch sensors, such as 

force sensitive resistors (Figure 2.3), lack pressure measurement accuracy and therefore should 

be limited to detecting on and off foot contact information [182,183]. Wearable sensors that 
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provide better accuracy than pedometers and footswitches include inertial sensors and pressure-

sensing insoles, which will be described in greater detail in Sections 2.3.3.1 and 2.3.3.2.   

 

Figure 2.3. Delsys force sensitive resistor foot switch [183]. 

2.3.3.1 Inertial Sensors 

As part of this thesis research, a literature review of inertial sensor use for geriatric fall 

risk was published in the Journal of NeuroEngineering and Rehabilitation [184]. This section 

summarizes the key findings from this review and was updated to include relevant papers 

published since the original literature review was performed. 

Sixty-four studies met the search criteria: investigated elderly fall risk using inertial 

sensors, mean participant age greater than or equal to 60 years, and published in English. 

Accelerometers were the sole inertial sensor in 68.8% of the studies, whereas gyroscopes were 

the sole inertial sensor in only 3.1% of studies. Both accelerometers and gyroscopes were used in 

28.1% of the studies. Accelerometers measure linear acceleration, and the signal can be 

integrated to determine linear velocity. Gyroscopes measure angular velocity, and the signal can 

be integrated to determine angular displacement. 

To assess the accuracy of inertial sensor-based fall risk classification, inertial sensor 

classifications were compared to three criterion classification methods: retrospective fall history 

(32.8%), prospective fall occurrence (17.2%), and scores on clinical assessments (29.7%). A 

combination of retrospective fall history and clinical assessment tools were used to establish fall 

risk in 15.6% of the studies and a combination of retrospective and prospective fall occurrence 

were used in 4.7%. Table 2.1 lists the fall risk criterion classification methods used in the 

literature. Brief descriptions of the clinical assessment tools are provided in Table 2.2. The 

majority of studies used retrospective fall history or clinical assessments as a criterion 
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classification method. These methods are not as accurate as prospective fall occurrence. 

Retrospective fall history is less accurate compared to prospective fall occurrence due to 

participant fall recollection issues with retrospective assessment. Furthermore, retrospective fall 

assessment means that a fall would have occurred before the study assessment, and participants 

may have adjusted their walking and mobility pattern to be more conservative, stable and safe 

after the fall but before the study assessment. The use of clinical assessments as a criterion 

classification method is also less accurate compared to prospective fall occurrence. Clinical 

assessments include errors (i.e. false positives and false negatives) and could introduce 

inaccuracies when evaluating sensor-based systems. This is in addition to the limitations already 

discussed in Chapter 2.2. Therefore, prospective fall occurrence should be the criterion 

classification method of choice in sensor-based fall-risk assessment studies.  

 

Table 2.1. Criterion classification methods used to establish fall risk for comparison with 

inertial-sensor-based fall-risk measures. Assessment-tool thresholds indicate levels that 

designated a high fall risk category.  

 
Retrospective 

History 
Prospective 

Occurrence 
Assessment Tools 

Auvinet et al., 2003 

[185] 
1 year   

Bautmans et al., 2011 

[148] 
6 months   TUG > 15 s or Tinetti score ≤ 24 

Brodie et al., 2014 [186]  1 year   

Brodie et al., 2015 [187] 1 year   

Brodie et al., 2015 [188] 1 year   

Brodie et al., 2015 [189]  1 year  

Caby et al., 2011 [190] 1 year  25 m walking, Mini Motor test, Tinetti test, 

TUG, Physical Performance Scale, Fukuda 

test, One Legged Stance test 

Cho and Kamen, 1998 

[191] 
1 year  Self-reported frequent fallers 

Doheny et al., 2011 

[192] 
5 years  Self-reported fear of falling or presence of 

cardiovascular risk factors 

Doheny et al., 2012 

[193] 
5 years   

Doheny et al., 2013 

[194] 
1 year   

Doi et al., 2013 [195]  1 year  

Galan-Mercant et al., 

2013, 2015 [196,197]  
  Fried's criteria for frailty 
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Ganea et al., 2011 [198]    Fried’s criteria for frailty  

Giansanti et al., 2006, 

2008 [199-201]  
Unspecified  Tinetti test level 3 

Gietzelt et al., 2009 [22]    STRATIFY score (includes 2 month fall 

history) ≥ 2 

Gietzelt et al., 2014 

[202]  
 2, 4, and 6 months  

Greene et al., 2010 [203]  5 years   

Greene et al., 2014 [204]  1 year  Fried's criteria for frailty 

Ihlen et al., 2015 [205]  1 year   

Ishigaki et al., 2011 

[149]  
  One Legged Stance test (eyes open) ≤ 15 s 

and/or TUG ≥ 11 s 

Isho et al., 2015 [206]  1 year   

Kojima et al., 2008 

[207] 
1 year   

Laessoe et al., 2007 

[208] 
 1 year (fall diary 

with contact at 6 

months) 

 

Latt et al., 2009 [209]  1 year   

Liu et al., 2008 [210]  Unspecified  Falling during gait perturbation assessment, 

medical history, self-identification as 

frequent faller 

Liu et al., 2011 [211]    Physiological Profile Assessment (PPA) 

Liu et al., 2011 [212]  1 year   

Liu et al., 2014 [213]   1 year  

Mancini et al., 2016 

[214]  
1 year 6 months  

Marschollek et al., 2008 

[150]  
  TUG>20 s, STRATIFY score > 2, Barthel 

Index: Mobility score < 10 

Marschollek et al., 2009 

[23]  
In-hospital history   

Marschollek et al., 2011 

[215,216]  
 1 year  

Martinez-Ramirez et al., 

2011 [217]  
  Body mass loss ≥ 4.5 kg, low energy, low 

physical activity, weakness, slowness 

Menz et al., 2003 [218]    Overall fall risk score (low, moderate, high 

risk) based on vision, peripheral sensation, 

strength, reaction time, balance tests 

Mignardot et al., 2014 

[219]  
 2 years  

Moe-Nilssen et al., 2005 

[220]  
1 year   

Najafi et al., 2002 [221]    Fall risk score ≥ 5 based on balance, gait, 

visual, cognitive and depressive disorders, 
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history of falls.  

Najafi et al., 2013 [222]    Tinetti score < 21 

Narayanan et al., 2008, 

2009, 2010  

[223-225]  

  PPA  

O’Sullivan et al., 2009 

[1]  
1 year   

Paterson et al., 2011 

[226]  
 1 year  

Redmond et al., 2010 

[227]  
  PPA  

Rispens et al., 2015 

[228]  
1 year   

Rispens et al., 2015 [38]   6 months  

Riva et al., 2013 [229]  1 year   

Schwesig et al., 2013 

[230]  
 1 year  

Senden et al., 2012 

[231]  
  Tinetti test ≤ 24 (Low risk 19-24, High risk 

< 19) 

Tanaka et al., 2014 

[232]  
  TUG > 13.5 s 

Toebes et al., 2012 [233]  1 year   

Toebes et al., 2015 [234]  1 year   

van Schooten et al., 

2015 [37]  
6 months 6 months  

Wang et al., 2014 [235]    PPA 

Weiss et al., 2011 [236]  1 year   

Weiss et al., 2013 [36]  1 year 6 months  

Wu et al., 2013 [237]  1 year   

Yack and Berger, 1993 

[238]  
1 year  Self report of unsteady or unstable walking 

and/or standing 

Zakaria et al., 2015 

[239]  
  TUG ≥ 13.5 s 
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Table 2.2. Clinical assessment tools 

Assessment tool Description 

Barthel Index [240]  Ordinal scale from 0 (total dependence) to 100 (total independence) based on 8 

self-care and 2 mobility activities of daily living. 

Fried's Frailty 

Criteria [241]  

Presence of 3 or more of 5 frailty indicators: substantial and unintentional weight 

loss, grip weakness, poor endurance and energy, slow walking speed, low 

physical activity level. 

Fukuda Test [242]  The person is blindfolded, extends both arms, and marches in place for 50 to 100 

steps. Maximum body rotation greater than 30° indicates vestibular deficits.  

Mini Motor Test 

[243]  

20 item test that assesses bed positions (2 items), sitting position (3 items), 

standing position (9 items), and gait (6 items). 

One Legged Stance 

Test [244]  

Time standing on one leg without upper extremity support and without bracing 

the suspended leg against the stance leg. Greater than 30 s indicates low fall risk 

and less than 5 s indicates high fall risk. 

Physical 

Performance Scale 

[80]  

Ability to stand with feet together side-by-side, semi-tandem, and tandem; walk 8 

feet; and rise from a chair and return to seated position. 

Physiological Profile 

Assessment [126]  

Assessment of vision, peripheral sensation, muscle force, reaction time, and 

postural sway. Score of 0-1 = mild, 1-2 = moderate, and > 2 = high risk of falling. 

STRATIFY Score 

[245]  

Assessment of 2-month fall history, mental alteration, frequent toileting, visual 

impairment, psychotropic medication use, and mobility issues. Score of < 2 

indicates increased fall risk. 

Timed Up and Go 

(TUG) [87]  

Time to stand up from an armchair, walk 3 m, turn, walk back to the chair, and sit 

down again. Times that exceed 14 s indicate increased fall risk for community 

dwelling elderly without neurological disorders. 

Tinetti Assessment 

Tool [133]  

Dynamic balance and gait evaluation with 10 balance components and 8 gait 

components. Overall scores < 19 = high, 19-23 = moderate, > 23 = low fall risk. 

Maximum score = 40. 

 

Accelerometers and gyroscopes are small enough to be attached to a body part, belt, or 

headband for measurement during activity. The lower back, including the pelvis, sacrum, and 

spinal vertebrae between L3 and L5, is the most common single-sensor location (54.7%). This 

site approximates the centre of mass location [22,23,199,215,236] and is acceptable for long-

term at-home use [22,215]. Other sensor locations include the head [186,191,209,246], upper 

back [229,233,234,238], sternum [188,189,192,194,196-198,204,221,222,237], shoulder [190], 

elbow [190], wrist [190,235], hip [191,210], thigh [192,194,204], knee [190,210], shank 

[203,204], ankle [190,210,235,237], and foot [214,226]. To date, there has been no objective 

evaluation to determine which sensor site, or combination of sites, provide the most appropriate 

and reliable fall-risk data. Careful investigation of optimal variables should be included in this 

assessment, because optimal sites will likely be variable specific. Likewise, investigation of 

variables should consider that optimal variables may be site specific.  
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Various activities have been used for inertial-sensor-based fall-risk assessment. The most 

frequently assessed activity was level ground walking (42.2%), followed by TUG (31.2%), sit-

stand transitions (STS, 21.9%), free-living walking (14.1%), standing postural sway assessment 

(12.5%), left-right alternating step test on level ground (AST, 10.9%), and uneven-ground 

walking (1.6%). Many studies used a combination of activities (20.3%).  

While gait is often assessed under single-task (ST) conditions, where the participant is 

only asked to walk, gait can also be assessed under dual-task (DT) conditions. DT gait involves 

walking while performing an attention-demanding task, often verbal or mathematical. In older 

adults, DT gait can result in: 

 Reduced: walking speed [30,31,33-35,247-251], stride frequency [33];  

 Increased percentage of missteps [252], step duration, stride time [33], stance 

time [251];  

 Increased [251] or decreased [30,31] swing time;  

 Increased variability: swing time [30,31], stride-to-stride gait velocity [248], 

stride time [33,250], stride length [250], and phase variability index [33];  

 Decreased: root mean square and peak anterior-posterior (AP) and medial-lateral 

(ML) trunk accelerations [33];  

 Increased: local stability exponent for AP and ML trunk accelerations [33], 

sample entropy for AP trunk accelerations [33].  

Opinions are mixed regarding DT potential for predicting future falls or diagnosing 

underlying problems [253,254]. Some DT measures for differentiating elderly fallers from non-

fallers are lower gait speed [255-257]; greater swing [31,32,258] and stride [259] time 

variability; and greater dual task cost for mean step width, mean step time, and mean step length 

variability [260]; and faster walking speed for older adults with speeds above the 50th percentile 

[261]. However, other studies found no fall prediction improvement after adding a second task 

[262,263].  

In the literature, 180 distinct variables were derived from accelerometer and gyroscope 

data and can be categorized as: position and angle (4.2%), angular velocity (17.8%), linear 

acceleration (30.5%), spatial (1.7%), temporal (20.3%), other (25.4%). From the review 
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published in the Journal of NeuroEngineering and Rehabilitation [184], nine variables from 

more than one study were significant each time they were assessed:  

1) ratio of mean squared modulus for postural sway [199-201];  

2) standard deviation of anterior-posterior acceleration [191,236];  

3) gait speed [148,209,218,236];  

4) sit/stand transition duration [198,221];  

5) dominant Fast Fourier Transform (FFT) peak parameters derived from lower-back linear 

acceleration signals [150,215,216];  

6) ratio of even to odd harmonic magnitudes derived from head, upper back, and lower-back 

linear acceleration signals [209,211,212,238,246];  

7) area under the first six harmonics divided by the remaining area for lower-back linear 

acceleration signals [211,212];  

8) ratio of the first four harmonics to the magnitude of the first six harmonics for lower-back 

linear acceleration signals [211,212];  

9) discrete wavelet transform parameters from lower-back angular velocity and linear 

acceleration signals and sternum linear acceleration signals [198,217].  

Two of these multi-study variables (variables 3 and 6) were from different research 

groups, while seven variables (variables 1,2,4,5, and 7-9) were from a single research group. 

Additional research is needed to corroborate these initial, relatively isolated findings and identify 

a larger set of inertial-sensor-based variables that could be used to predict fall risk.  

While identifying variables that correlate with fall risk is an important first step, the next 

step should be to use these variables to develop a predictive fall risk model. Just over half of the 

studies (51.6%) have taken this step. Regression models, mathematical classifiers, decision trees, 

support vector machines, neural networks, and cluster analysis were employed to predict fall 

risk. The accuracy, specificity, and sensitivity of these models are shown in Table 2.3.  
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Table 2.3. Model type, validation method, accuracy, specificity, and sensitivity listed by 

research article 

Author Model Model Validation 
Accuracy 

(%) 
Specificity 

(%) 
Sensitivity 

(%) 

Bautmans et al., 2011† 

[148]  
Logistic regression, 

ROC curve 
Not specified 77 78 78 

Caby et al., 2011* 

[190] 
 

Radial basis function 

neural network, 

support vector, k-

nearest neighbour, 

and naive Bayesian 

classifiers 

Leave-one-out 

cross-validation 
75-100 40-100 93-100 

Doheny et al., 2013† 

[194]  
Logistic regression, 

ROC curve 
Leave-one-out 

cross-validation 
59.0-74.4 75.0-80.0 42.1-68.7 

Doi et al., 2013‡ [195]  Logistic regression, 

ROC curve 
Not specified  84.2 68.8 

Ganea et al., 2011* 

[198]  
Logistic regression, 

ROC curve 
Not specified  35-88 55-92 

Giansanti et al., 

2006*† [199] 
 

Mahalanobis cluster 

analysis 
47:53 split 

(Train:Test) 
93.5-94.5 93-94 93.9-94.9 

Giansanti et al., 

2008*† [201]  
Multi-layer 

perceptron neural 

network 

47:53 split 

(Train:Test) 
88-91 88-92 88-91 

Giansanti et al., 

2008*† [200]  
Multi-layer 

perceptron neural 

network 

47:53 split 

(Train:Test) 
97 97 98 

Gietzelt et al., 2009* 

[22]  
Decision tree Not specified 90.5 91.0 89.4 

Gietzelt et al., 2014‡ 

[202]  
Decision tree Ten-fold cross 

validation 
74.8-88.5 28.0-96.8 33.6-98.3 

Greene et al., 2010† 

[203] 
 

Logistic regression 80:20 split 

(Train:Test) 
76.8 75.9 77.3 

Greene et al., 2012† 

[203]  
Support vector 

machine 
Ten-fold cross 

validation 
71.5 68.4 65.4 

Greene et al., 2014*† 

[204]  
Support vector 

machine 
Ten-fold cross 

validation 
56.6-87.6   

Ihlen et al., 2015† 

[205]  
Partial Linear Square 

Discriminant 

Analysis, ROC curve 

Cross validation AUC: 0.83-

0.93 
79-87 69-72 

Isho et al., 2015† 

[206]  
Regression, ROC 

curve 
Not specified AUC: 0.745 84.6 72.7 

Kojima et al., 2008† 

[207]  
Regression, canonical 

discriminant 

classifier 

Not specified 62.1 68.2 61.1 

Liu et al., 2011* [212]  Linear regression, 

linear discriminant 

classifier 

Leave-one-out 

cross-validation 
71 98.3 88.9 
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Liu et al., 2014‡ [213]  Logistic regression 50:50 split 

(Train:Test) 
47-83 42-100 0-71 

Marschollek et al., 

2008* [150]  
Logistic regression, 

classifier 
Stratified ten-times 

ten-fold cross 

validation 

65.5-89.1 15.4-60.4 78.5-99.0 

Marschollek et al., 

2009† [23]  
Decision tree Not possible due 

to limited sample 

size 

90 100 57.7 

Marschollek et al., 

2011‡ [215]  
Logistic regression, 

decision tree 
Stratified ten-times 

ten-fold cross 

validation 

78-80 82-96 58-74 

Marschollek et al., 

2011‡ [216]  
Logistic regression, 

classifier 
Stratified ten-times 

ten-fold cross 

validation 

70 78 58 

Mignardot et al., 

2014‡ [219]  
Principal component 

analysis, ROC curve 
Not specified AUC: 0.67-

0.70 
  

Moe-Nilssen et al., 

2005† [220]  
Linear regression, 

ROC curve 
Not specified 80 85 75 

Rispens et al., 2015‡ 

[38]  
Logistic regression, 

ROC curve 
Not specified AUC: 0.68-

0.81 
  

Riva et al., 2013† 

[229]  
Factor analysis, 

Logistic regression 
Not specified 71.0-72.5 96.6 16.7-21.4 

Schwesig et al., 2012‡ 

[230]  
Binary logistic 

regression, ROC 

curve 

Not specified  42-61 63-100 

Senden et al., 2012* 

[231]  
Linear regression, 

ROC curve 
Not specified AUC: 0.67-

0.85 
  

van Schooten et al., 

2015‡ [37]  
Logistic regression, 

ROC curve 
Not specified AUC: 0.71-

0.82 
66.3-80.9 67.9-70.0 

Weiss et al., 2011† 

[236] 
 

Logistic regression Not specified 63.4-87.8 50.0-83.3 65.2-91.3 

Weiss et al., 2013‡ 

[36]  
Logistic regression Not specified 71.6-94.7 78.9-100 33.5-75.0 

Wu et al., 2013† [237]  Logistic regression Not specified  86.7 80.0 

Zakaria et al., 2015† k-nearest neighbour 76:24 split 

(Train:Test) 
   

AUC: Area under curve, ROC: receiver operating characteristic, Criterion classification 

method: *Clinical assessment, †Retrospective fall history, ‡Prospective fall history 

Inertial sensors have demonstrated potential as tools to provide quantitative, objective, 

and reliable indications of older adult fall risk. Fall risk prediction models based on inertial 

sensor data have achieved high levels of accuracy, specificity, and sensitivity. However, these 

early fall risk prediction models could be improved by identifying fallers prospectively and 
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comparing the effectiveness of different promising sensor site(s) and variables directly instead of 

comparing results between different studies.  

2.3.3.2 Pressure-Sensing Insoles 

Pressure-sensing (PS) insoles can give a visual and quantitative depiction of the temporal 

patterns of forces acting on the plantar foot surface during weight-bearing activities [264]. 

Unlike force platforms, which are typically restricted to laboratory environments [265], PS 

insoles can measure foot pressure during a variety of functional activities [266] and in various 

environments such as ramps, stairs, and uneven surfaces. Furthermore, PS insoles provide the 

pressure distribution over the whole plantar surface rather than just the CoP, as with force plates. 

An insole can also detect metatarsal length, arch information, bony prominences, and the 

presence of claw and hammer toes [267]. This plantar pressure information can be useful in 

diagnosing and assessing those with diabetic peripheral neuropathy or musculoskeletal, 

integumentary, and neurological disorders [265]. While PS insoles are useful, they are limited to 

measuring perpendicularly applied forces and cannot measure shear forces [265].   

Three commercially available PS insoles are predominant in the literature: F-Scan, Pedar, 

and Parotec (Table 2.4). F-Scan (Figure 2.4) has the largest number of sensors, better spatial 

resolution, and it is the thinnest sensor, making it the least likely to affect gait. The F-Scan insole 

consists of two polymer sheets with electrical circuits separated by semi-conductive ink [268]. 

The application of pressure decreases the sensor’s electrical resistance, allowing the 

measurement of applied pressure [268]. A mylar substrate insulates the electronic components 

from moisture [269].  

Table 2.4. Commercially available pressure-sensing insole specifications 

 F-Scan Insole Pedar Insole Parotec System 

Sensor Type 

[265,268,270,271] 

Force sensitive 

resistor  

Capacitance 

Transducer  

Microsenor mounted 

beneath a hydrocell  

Number of Sensors 

[268,269,272,273] 

960  99  24  

Spatial Resolution 

(sensors/cm
2
) [268,270] 

4  2   

Sensor thickness (mm)  

[270-273] 

0.18  2.6  3 

Sensor Range (kPa)  

[269-271] 

56-868  40-600  0-625 
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Figure 2.4. F-Scan Sensor [274].  

F-Scan sensors have been studied in depth to determine their accuracy, reliability, and 

other characteristics. A wide range of error levels have been reported in the literature and are 

shown in Table 2.5. Furthermore, Hsiao et al., 2002 [268] found that error was dependent on the 

calibration pressure. When the calibration pressure was similar to the applied pressure, the error 

was low (1.3 to 5.8%) and when the calibration pressure was dissimilar, the error was high 

(-26.4% to 33.9%) [268]. Studies have also reported pressures decrease after numerous trials 

[269,275]. This led to the recommendation that an F-Scan sensor should only be used for up to 

30 gait cycles, because the pressure decline is limited to 3.5% at 30 cycles, but declines more 

rapidly due to wear after 30 gait cycles, decreasing to 20.5% after approximately 70 cycles [269]. 

The F-Scan sensor has good reliability [269,275,276] although material creep has resulted in 

increasing pressure values between 2.3 and 19.0% over time in static loading scenarios 

[272,273,277]. Hysteresis tests showed typical preconditioning effects, leading to the 

recommendation that sensor warm up should occur before use [272]. Sensor warm up also 

decreases the inter-person coefficient of variation [275]. Further increase in sensor temperature 

after sensor warm up has been shown to decrease total force measurements but did not appear to 

impact CoP measurements with good consistency in AP (r > 0.90) and ML (r > 0.717) CoP 

trajectories over time [278]. 
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Table 2.5. Percent errors for F-Scan sensors 

 Percent Error Tested Sensor Range 

Woodburn and Helliwell 

(1996) [273] (Woodburn301)  

<14% 735-880 N 

McPoil et al. 1995 [277] 

(McPoil95)  

4% 50 kPa 

McPoil et al. 1995 [277] 

(McPoil95) 

<24% 500 kPa 

Luo et al. 1998 [279] 

(Luo186)  

<20%  

Nicolopoulos et al. 2000 [272] 

(Nicolopoulos124)  

3-24% 413-757 kPa 

 

Studies utilizing the F-Scan insoles have assessed plantar pressure over several foot areas 

such as the forefoot, midfoot, metatarsals, and hindfoot [280-282]. Kim et al., 2013 [282] 

identified differences in toe, first metatarsal, and heel region contact surface areas but not peak 

plantar pressure between dominant and non-dominant feet in older woman fallers. Mueller and 

Strube, 1996 [266] used F-Scan sensors to compare people with diabetic peripheral neuropathy 

to a control population and determined that foot deformities in those with peripheral neuropathy 

accounted for increases in plantar pressure. While this sensor has not yet been used to assess 

elderly fall risk, it has been successfully used to develop the Dynamic Stability Index, which was 

evaluated with healthy people and simulated instability [283] and with transtibial amputees 

[284]. The variables that make up the Dynamic Stability Index are shown in Table 2.6. The 

Dynamic Stability Index represents an important step in applying F-Scan insoles to the field of 

fall risk. However, no studies to date have assessed the potential of F-Scan insoles, or other PS 

insoles, to determine fall risk in older adults. The important fall risk variables for older adults 

will likely be different from a simulated-instability or transtibial-amputee population, although 

some overlap is expected. Furthermore, even for variables that do overlap and predict fall risk in 

multiple populations, their relative importance will likely vary between specific populations. 

Therefore, it is important that a new fall risk prediction model be developed, independent of the 

Dynamic Stability Index, for an older adult population. 
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Table 2.6. Dynamic Stability Index variables [284] 

Variable Description 

Shifts in anterior-

posterior (AP) centre 

of pressure (CoP) 

Number of times the first derivative of the AP CoP crossed a threshold 

of ± 0.5 mm/frame.  

Shifts in medial-lateral 

(ML) CoP 

Number of times the first derivative of the ML CoP crossed a threshold 

of ± 0.5 mm/frame. 

Maximum lateral 

placement of force  

Maximum activated lateral sensor cell position of the foot CoP during a 

stride as a percentage of the insole width. Higher values would be 

linked with increased instability.  

Cell triggering Maximum number of times a sensor cell is triggered (turned on after 

being off) during a stride divided by the number of frames during the 

stride. Cells should only be triggered once per stride. 

Stride time Time (s) from foot strike to the following foot strike of the same foot. 

Double support time Time (s) spent with both feet in contact with the ground within a single 

stance phase. 

2.4 Summary  

 Approximately one third of adults aged 65 years and older will experience a fall each 

year [1,2], with the fall rate increasing with age [3,4]. These falls can have negative physical and 

psychological consequences. Fall risk assessments are performed to identify older adults at 

increased fall risk. Clinical assessments based on observational assessments or questionnaires 

have been used to identify individuals at increased fall risk; however, clinical tools are limited by 

ceiling or floor effects, low resolution, and subjective elements [18,19]. Sensor-based fall risk 

assessments provide a quantitative assessment, typically of standing balance or gait, and are less 

vulnerable to subjective influences than clinical assessments. Laboratory-based equipment (e.g., 

force platforms, pressure platforms, instrumented walkways) can provide a complete, 

quantitative assessment of body kinematics and dynamics. Unfortunately, this equipment is 

expensive and time consuming for data collection and analysis [28], and not suitable for 

assessment on uneven-terrain. Wearable sensors also provide quantitative information and allow 

measurement in a variety of environments. Inertial sensors, primarily accelerometers, have been 

used for older adult fall risk prediction with high levels of accuracy (47-100%), sensitivity (0-

100%), and specificity (15-100%). However, only 30% of these models classified prospective 

fall occurrence. There is a need to evaluate different promising sensor sites and sensor-derived 

variables for fall risk prediction directly, instead of comparing results between studies in the 

literature. Furthermore, F-Scan pressure-sensing insoles have been used to assess amputee 
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stability and may provide useful gait data relevant to older adult fall risk assessment. A 

concurrent evaluation of accelerometers and pressure-sensing insoles can determine if insole data 

provides features relevant to fall risk and if insole-derived features provide different fall risk 

information than accelerometers. There is a need to develop fall risk classification models based 

on accelerometer-derived and pressure-sensing insole-derived features and evaluate their 

predictive accuracy in older adult faller classification. Feature selection should also be employed 

to eliminate irrelevant features and identify a set of fall risk relevant features for fall risk 

classification model development. Finally, there is a need to directly compare wearable-sensor-

based fall risk classification models to models based on other fall risk relevant information, such 

as posturography assessments and clinical assessments.       
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Chapter 3 Methodology 

3.1 Overview 

Chapter 3 details the data collection and data processing methodology common to all 

analyses. Methods specific to different analyses are detailed in Chapters 4-7, with the associated 

results and discussion. 

To evaluate wearable sensors as an older adult fall risk assessment tool and accomplish 

the objectives outlined in Section 1.2, gait, posturography, fall occurrence, and participant data 

were collected on a sample of older adults (Section 3.2). Participants completed the Activities-

specific Balance Confidence scale, Community Health Activities Model Program for Seniors 

questionnaire, static posturography with eyes open and closed, six minute walk test, and 25 ft 

walk under ST and DT conditions, and ranked their fear of falling (Sections 3.3 and 3.4). 

Accelerometer and pressure-sensing insole data were collected for the ST and DT conditions and 

vertical force data were collected for the static posturography assessments. Data were processed 

and relevant features computed (Section 3.5) to evaluate differences between conditions, 

differences between faller and non-faller groups, and for input into fall risk models.  

For the static posturography assessment, statistical techniques were used to identify 

significant differences between eyes open and closed static posturography conditions and 

between faller and non-faller groups. Three methods for determining cut-off scores (clinical cut-

off scores, receiver-operator characteristic curves, discriminant functions) were used to classify 

fallers and non-fallers (Section 4.2). For the ST and DT gait assessment, statistical techniques 

were used to identify significant differences between ST and DT walking conditions and 

between faller and non-faller groups (Section 5.2). For fall risk model development, three 

classifier models (multi-layer perceptron neural network, naïve Bayesian, support vector 

machine) were used to assess fall risk predictive capability for all wearable-sensor data, 

posturography data, and clinical assessment data (Section 6.2). Multi-site accelerometer data and 

pressure-sensing insole data were used for wearable-sensor-based fall risk model development, 

involving all sensor combinations. Finally, feature selection algorithms (CFS, FCBF, Relief-F) 

were used to eliminate irrelevant features for all sensor combinations to determine whether 

feature selection improved fall risk predictive performance (Section 7.3).  
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3.2 Participants 

A convenience sample of 100 people, 65 years or older, were recruited from the 

community. Of the 100 participants, 61 were recruited from local churches (United Church of 

Canada), 38 were recruited from the University of Waterloo Retirees Association, and one was 

recruited directly from a retirement home (Chartwell Bankside Terrace Retirement Residence). 

Four participants used a cane and two used a walker during everyday life; however, they did not 

use their assistive device during walking assessments. Potential participants were excluded if 

they had a cognitive disorder (self-reported) or were unable to walk for six minutes without an 

assistive device. The University of Waterloo, Office of Research Ethics approved the study and 

all participants gave informed written consent.  

Falls were defined as “an event which results in a person coming to rest unintentionally 

on the ground or other lower level, not as a result of a major intrinsic event (such as a stroke) or 

overwhelming hazard” [2]. The 100 participants were divided into five falling categories: 

 Retrospective non-fallers (RNF), N=76: did not fall in the six-month period before data 

collection. 67 (88%) lived residentially and 9 (12%) lived in retirement homes. 75 RNF 

completed the six month fall follow-up period. 

 Retrospective fallers (RF), N=24: fell in the six-month period before data collection. 23 

(96%) lived residentially and 1 (4%) lived in a retirement home.  

 Prospective faller (PF), N=28: fell during the six month follow-up period, but did not 

fall in the six-month period before data collection (i.e., subset of RNF). 22 (79%) lived 

residentially and 6 (21%) lived in a retirement home. 

 Prospective multi-fallers (PMF), N=6: PF who fell more than once during the six month 

follow-up period. 5 (83%) lived residentially and 1 (17%) lived in a retirement home.  

 Prospective non-faller (PNF), N=47: did not fall during the six month follow-up period. 

44 (94%) lived residentially and 3 (6%) lived in a retirement home. 

For the 28 PF, the mean number of falls during the six month follow-up was 1.3 (range: one to 

four falls).  

Table 3.1 reports anthropometric, demographic, and baseline data for the participant sub-

populations. The participants were a high-functioning, high balance confidence subset of the 

general older adult population, based on CHAMPS calories expended per week, 6MWT 
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distances, and ABC scores. The CHAMPS calories expended per week were higher than those 

reported by Stewart et al., 2001 [145] of 2420 ± 1831 kcal/week (n = 249, aged 65 to 90 years) 

but similar to those reported for an active subset with 3386 ± 219 kcal/week (n = 76, aged 65 to 

85 years). Similarly, CHAMPS calories expended per week were higher than those reported by 

Harada et al., 2001 [285] for a retirement home population of 1548 ± 1767 kcal/week (n = 36, 

aged 65 to 89 years) but similar to those reported for community-dwelling older adults of 3484 ± 

2042 kcal/week (n = 51, aged 65 to 86 years). Therefore, the CHAMPS calories expended per 

week for this thesis (3491 ± 2671 kcal/week) indicated an active population. The average 6MWT 

distance (453.6 ± 101.7 m) was similar to those reported by Lord et al., 2002 [76] of 442 ± 142 m 

for men and 400 ± 125 m for women (n = 515, aged 62 to 95 years, retirement-home-dwelling); 

Harada et al., 1999 [75] of 497 ± 95 m (n = 51, aged 65 to 86 years, community-dwelling); and 

Steffen et al., 2002 [286] of mean distances of 392 m to 572 m for various age and gender 

groupings (n = 96, age groups: 60-69, 70-79, 80-89 years, community-dwelling). However, the 

6MWT distance was greater than the distance from retirement-home-dwelling older adult 

reported by Harada et al., 1999 [75] of 275 ± 107 m (n = 35, aged 65 to 89 years). ABC scores 

(88.9 ± 9.8) were higher than those reported by Myers et al., 1996 [135] for community-dwelling 

older adults (aged 65 to 95 years) of 74.0 ± 20.9 for a non-fearful subset (n = 26), 68.7 ± 23.4 for 

a fearful but not avoiding activities subset (n = 16), and 30.8 ± 16.2 for a fearful and avoiding 

activities subset (n = 18); by Moore et al., 2011 [136] of 74.7 (confidence interval: 71.3 to 78.1, 

n = 133, aged 51 to 95 years); and by Talley et al., 2008 [137] of 78.2 ± 16.7 (n = 272, aged 70 

to 98 years, female). This suggests that participants in this thesis research had higher balance 

confidence than other older adult populations. However, ABC results were similar to those 

reported by Myers et al., 1998 [138] for older adults, who were mostly involved in exercised-

oriented research projects and programs, with ABC scores of 89.8 ± 27 for men and 84.4 ± 17 

for women. Therefore, this thesis study’s population was active, based on CHAMPS calories 

expended per week, and had equivalent or higher balance confidence, based on ABC scores, 

compared to other older adult populations. In addition, fear of falling scores were low (1.8 out of 

10, averaged across all participants, where 10 is high fear of falling).  

Separate analyses were performed for retrospective (RNF, RF) and prospective groups 

(PNF, PF, PMF) because a pre-assessment fall may cause a participant to develop fear of falling 
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and change gait patterns [287]. Furthermore, RF would already be identified as being at 

increased risk of future falls due to their fall history [17].  

Table 3.1. Participant characteristics by fall group (mean ± standard deviation) 

 RF RNF PNF PF PMF All 

n 24 76 47 28 6 100 

Male/Female 13/11 31/45 17/30 14/14 3/3 44 / 56 

Age (years) 76.3 ± 7.0 75.2 ± 6.6 75.3 ± 5.5 75.0 ± 8.2 71.8 ± 8.1 75.5 ± 6.7 

Height (cm) 165.2 ± 10.3 165.1 ± 10.0 164.8 ± 10.5 165.7 ± 9.3 168.7 ± 10.9 165.1 ± 10.0 

Weight (kg) 71.9 ± 14.3 73.3 ± 13.4 73.3 ± 13.6 73.4 ± 13.2 86.2 ± 13.2 72.8 ± 13.5 

ABC 87.5 ± 10.9 89.3 ± 9.4 89.6 ± 10.2 88.4 ± 8.0 89.0 ± 6.6 88.9 ± 9.8 

CHAMPS 

Calories 

Expended 

(kcal/week) 

4671 ± 3631 3118 ± 2189 3005 ± 2368 3314 ± 1921 3368 ± 1091 3491 ± 2671 

Fear of 

Falling (0 to 

10) 

1.9 ± 2.1 1.8 ± 2.0 1.8 ± 2.0 2.0 ± 2.2 1.5 ± 2.0 1.8 ± 2.0 

6MWT 

distance (m) 
446.6 ± 101.4 455.8 ± 102.4 462.1 ± 110.0 444.7 ± 91.1 440.7 ± 81.0 453.6 ± 101.7 

3.3 Protocol 

Participants reported six month retrospective fall occurrence, age, and sex. Body weight 

and height were measured. Participants completed the Activities-specific Balance Confidence 

(ABC) [134] and Community Health Activities Model Program for Seniors (CHAMPS) [144] 

questionnaires. They also rated their fear of falling from 0 (no fear) to 10 (high level of fear).  

All participants completed a static posturography assessment. Two Wii Balance Boards 

(WBB) were placed such that their long axes were oriented parallel to the AP axis (Figure 3.1). 

Recent WBB studies reported good correspondence with force platform measures [288,289], 

excellent test-retest reliability [288,290], and good to excellent concurrent validity [288,290] for 

CoP displacement measures. 

 

Figure 3.1. WBB orientation and foot position. 
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Participants stood in a comfortable stance on two WBBs, with one foot on each board. 

Participants stood quietly for 30 seconds with eyes open and then 30 seconds with eyes closed 

while WBB data were collected at 100Hz [291]. 

After the posturography assessment, PS insoles (I) (F-Scan 3000E, Tekscan, Boston, 

MA) were equilibrated using multi-point calibration (137.9, 275.8, 413.7 kPa), fit to the shoes, 

and calibrated. Accelerometers (X16-1C, Gulf Coast Data Concepts, Waveland, MS) were 

attached to the posterior head with a band (H), posterior pelvis with a belt (P), and left and right 

lateral shank (LS and RS, respectively), just above the ankle, with a band. Plantar pressure data 

were collected at 120 Hz and accelerometer data at 50 Hz. Participants completed a 25 ft (7.62 

m) walk with and without a cognitive load with completion times recorded via a stopwatch. 

Participants started walking approximately 1 m before the start of the 25 ft course and stopped 

walking approximately 1 m after the end of the course. These 1 m distances allowed for 

participant acceleration and deceleration and were excluded from analysis. The cognitive load 

was a verbal word fluency task requiring the participants to say words starting with letters A, F, 

or S [292]. Participants also completed the six minute walk test (6MWT) [71]. The starting letter 

and order of walking activities were randomized. 

3.4 Clinical Assessments 

Three clinical assessments were evaluated: 6MWT, ABC questionnaire, and CHAMPS 

activities questionnaire. These assessment methods, described in detail in Section 2.2.2 (6MWT) 

and 2.2.4 (ABC, CHAMPS), were used in this research because they provided information on 

important functional abilities as listed in Table 3.2 and because of their high reliability and 

validity.  

The 6MWT assesses walking capacity, with participants instructed to walk as far and as 

fast as possible for six minutes, with the distance (6MWD) recorded [71]. The 6MWT has good 

test-retest reliability (0.88 < r < 0.94), good convergent validity when compared to treadmill 

performance (0.71 < r < 0.82), and moderate construct validity by discriminating between age 

groups and between low and high activity older individuals [293].  

ABC is a situation-specific measure of balance confidence over a wide range of activity 

difficulty [134] with excellent test-retest reliability (r = 0.92), good consistency (Cronbach’s α = 

0.90), and good construct validity for discriminating between low and high mobility older adults 
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[134]. Furthermore, as described in Section 2.2.4, ABC was able to discriminate between older 

adult fallers and non-fallers while two other fear of falling questionnaire tools could not (Falls 

Efficacy Scale and SAFE) [128]. 

The CHAMPS activities questionnaire was designed for accurate completion by older 

adults who may have memory and cognitive issues that make accurate recall difficult. CHAMPS 

can be used to calculate calories expended per week (CalExp) [145] and has moderate test-retest 

reliability (ICC ≥ 0.58) and construct validity by discriminating between low and high activity 

older individuals [145].  

Table 3.2. Clinical assessments and related functional abilities 

Clinical Assessment Functional Correlates 
6MWT [76] Physical performance and mobility  

ABC [134,135] Balance confidence, fear of falling  

CHAMPS [144] Physical activity level  

3.5 Data Processing  

3.5.1 Posturography Data Processing  

Vertical force data from the WBB were filtered using a 15 point moving average filter 

and plantar CoP were computed using purpose-built software (NiMBaL Balance Assessment, 

University of Waterloo). Outcome variables were AP and ML absolute CoP motion range 

(Range); AP and ML CoP RMS distance from mean; mean AP and ML CoP total excursion 

velocities; and AP and ML mean resultant CoP velocity vector sum magnitude (VSM) [165]. For 

all values, the Romberg Quotient (RQ) was calculated as eyes closed divided by eyes open [294]. 

3.5.2 Wearable Sensors Data Processing 

Gait velocities for ST and DT trials were calculated as 7.62 m divided by the stopwatch 

recorded time. Plantar-pressure and accelerometer data were exported to Matlab v2010a to 

calculate outcome variables. 

Plantar pressure features: 

 CoP path (Figure 3.2):  

o Number, length, and duration of posterior deviations per stance phase. Since the 

CoP path should advance monotonically and anteriorly, posterior CoP path 

movements were identified as irregular.  
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o Number, length, and duration of ML path deviations per stance: first derivative of 

the CoP ML signal exceeding a dual threshold of ± 0.5 mm/frame [283]. Smooth 

medial and lateral movements were expected.  

o Minimum, maximum, mean, and median CoP path velocities, normalized by 

stance time.  

o AP and ML coefficients of variation (CoV) for the stance phase CoP path: Mean 

and standard deviation (SD) of CoP path positions calculated at 1% intervals, 

determined using ensemble averaging [295], for the entire stance phase and used 

to calculate the overall CoP path stance phase CoV as in Winter, 1991 [296].  

 Temporal: Cadence, stride time, stance time, swing time, percent stance time, percent 

double support time, stride time symmetry index [297] between the left and right limbs, 

and CoV for stride time, stance time, and swing time, were calculated.  

 Impulse: Impulse from the total force-time curve (sum of forces from all insole sensors, 

Figure 3.3), calculated using the area under the force-time curve normalized by body mass 

(Ns/kg) for: I1 (foot-strike to first peak), I2 (first peak to minimum), I3 (minimum to 

second peak), I4 (second peak to foot-off), I5 (foot-strike to minimum), I6 (minimum to 

foot-off), and I7 (foot-strike to foot-off). 

 

Figure 3.2. Typical plantar pressure derived CoP path for 10 ST gait strides.  
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Figure 3.3. Typical total ground reaction force curve with impulse phases indicated. I1: foot-

strike to first peak, I2: first peak to minimum, I3: minimum to second peak, I4: second peak to 

foot-off, I5: foot-strike to minimum, I6: minimum to foot-off, I7: stance phase. 

For accelerometer data, the positive vertical axis was upwards, positive AP axis was anterior, 

and positive ML axis was toward the participant’s right. Accelerometer features:  

 Temporal: Cadence, stride time.  

 Descriptive statistics: Maximum, mean, and SD of acceleration for the superior, inferior, 

anterior, posterior, right, and left axes by stride. 

 Fast Fourier Transform (FFT) First Quartile: Percentage of acceleration frequencies in 

the first quartile (i.e., frequencies < 12.5 Hz) of an FFT frequency plot for vertical, AP, 

and ML axes over the entire walking trial.  

 Ratio of even to odd harmonics (REOH): Proportion of the acceleration signal in phase 

with stride frequency. The harmonic ratio is used to measure irregular accelerations and 

overall gait pattern stability [209,218,238].The harmonic ratio was calculated for vertical, 

AP, and ML axes over the entire walking trial [298]. 

 Maximum Lyapunov exponent (MLE): Average rate of expansion or contraction of the 

original trajectory in response to perturbations [210], calculated for vertical, AP, and ML 

accelerations over the entire walking trial [299]. The number of dimensions was 
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determined using the global false nearest neighbours method [300] and a time delay based 

on the first minimum of the average mutual information [301]. 

For descriptive statistics, temporal, and MLE parameters, acceleration data were filtered using 

a fifth order, low pass Butterworth filter with a 12.5 Hz cut-off frequency. Unfiltered 

acceleration data were used to calculate the FFT quartile and REOH. Pelvis accelerometer data 

were missing for two non-fallers (RNF and PNF) and left shank accelerometer data were missing 

for one non-faller (RNF and PNF) due to sensor power failure. 



47 

 

Chapter 4 Static Posturography Assessment of Older Adults 

4.1 Objectives  

The objectives of the static posturography assessment research were to identify 

differences between retrospective and prospective fallers and non-fallers.  Appropriate outcome 

measure cut-off scores for prospective faller, multi-faller, and non-faller classifications were then 

determined to assess whether this information could be used as a viable screening tool for older 

people at risk of falling. The data was also examined to determine if differences could be 

detected between eyes open and eyes closed static posturography conditions.  

Outcomes from this static posturography research were published in [302]: 

 Howcroft JD, Kofman J, Lemaire ED, McIlroy WE. Static posturography of elderly fallers 

and non-fallers with eyes open and closed. IFMBE Proceedings of the World Congress on 

Medical Physics and Biomedical Engineering. Toronto, Ontario. 7-12 June 2015; 51: 966-

969. 

4.2 Data Analysis  

Normality was assessed for each variable using the Shapiro-Wilk test (α = 0.05). For eyes 

open and eyes closed comparisons, a paired t-test was used for normal variables and a Wilcoxon 

Signed-Rank Test was used for non-normal variables. For faller versus non-faller comparisons, a 

Mann-Whitney U Test was used for non-normal variables and a Levene Test for equality of 

variance was used for normal variables. An independent t-test was used for equal variance and a 

Welch’s t-test was used for unequal variance. Significance was tested at p < 0.05. 

For variables that were significantly different between PF and PNF, or PMF and PNF, 

cut-off scores for faller classification were determined using the Clinical Cut-off Score [303], 

Receiver-Operator Characteristic (ROC) curves, and discriminant functions.  

The clinical cut-off score C, was calculated by: 

n c c n

n c

C
   

 





       (4.1) 
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where σn and σc are the variable standard deviation for the normal non-faller group and clinical 

faller group, respectively; and μn and μc are the variable mean for the normal non-faller group 

and clinical faller group, respectively [303].  

For Receiver-Operator Characteristic (ROC) curves, the predictive value was based on 

area-under-curve, accuracy, sensitivity, and specificity. A cut-off score with at least 80% 

sensitivity was selected because correctly identifying fallers in a clinical setting would be more 

important than minimizing false positives.  

A discriminant function was based on all variables that showed a significant difference 

between PNF and PF, and between PNF and PMF. The cut-off score was the mean value 

between the discriminant function group centroid values. 

4.3 Results 

4.3.1 Eyes Open and Closed  

Eyes closed results were significantly greater than eyes open for both PNF and PF 

groups, for AP range of CoP motion, AP RMS, AP and ML CoP velocities, and CoP velocity 

VSM (Table 4.1). For PNF, the largest percent increase (eyes open to eyes closed) was 101% for 

AP velocity, followed by VSM (78%), AP range (76%), AP RMS (68%), and ML velocity 

(28%). PF percent increases were AP velocity (120%), VSM (99%), AP range (49%), ML 

velocity (46%), and AP RMS (40%). For PMF, all variables were significantly greater for eyes 

closed than eyes open (Table 4.1). The largest percent increase was 188% for AP velocity, 

followed by VSM (164%), AP RMS (89%), AP range (86%), ML velocity (58%), ML RMS 

(48%), and ML range (44%).   
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Table 4.1. Mean, standard deviation, (μ ± σ) and p-value between eyes open and eyes closed 

static posturography trials for prospective fallers 

Measures Eyes Open Eyes Closed p value 
Prospective Non-Faller 
CoP Range, AP (mm) 21.42 ± 7.24 37.72 ± 12.99 <0.001 
CoP Range, ML (mm) 14.98 ± 9.70 15.58 ± 7.09 0.662 
CoP RMS, AP (mm) 4.12 ± 1.22 6.91 ± 2.35 <0.001 
CoP RMS, ML (mm) 2.80 ± 1.80 2.86 ± 1.20 0.810 
CoP Velocity, AP (mm/s) 7.53 ± 1.93 15.11 ± 5.59 <0.001 
CoP Velocity, ML (mm/s) 4.57 ± 1.57 5.83 ± 2.01 <0.001 
CoP Velocity, VSM (mm/s) 9.70 ± 2.34 17.26 ± 6.04 <0.001 
Prospective Faller 
CoP Range, AP (mm) 22.86 ± 5.47 34.00 ± 12.37 <0.001 
CoP Range, ML (mm) 13.43 ± 9.97 14.32 ± 5.77 0.665 
CoP RMS, AP (mm) 4.65 ± 1.25 6.51 ± 2.03 <0.001 
CoP RMS, ML (mm) 2.65 ± 1.94 2.72 ± 1.41 0.864 
CoP Velocity, AP (mm/s) 7.75 ± 1.66 17.03 ± 8.39 <0.001 
CoP Velocity, ML (mm/s) 4.63 ± 1.67 6.74 ± 4.53 0.007 
CoP Velocity, VSM (mm/s) 9.84 ± 2.32 19.58 ± 9.82 <0.001 
Prospective Multi-Faller 
CoP Range, AP (mm) 22.48 ± 7.52 41.91 ± 14.55 0.046 
CoP Range, ML (mm) 10.49 ± 1.22 15.09 ± 3.25 0.046 
CoP RMS, AP (mm) 4.44 ± 0.96 8.38 ± 2.12 0.028 
CoP RMS, ML (mm) 2.08 ± 0.41 3.07 ± 0.99 0.028 
CoP Velocity, AP (mm/s) 7.67 ± 1.43 22.06 ± 11.31 0.028 
CoP Velocity, ML (mm/s) 4.28 ± 0.86 6.77 ± 1.89 0.046 
CoP Velocity, VSM (mm/s) 9.21 ± 2.12 24.27 ± 11.31 0.046 

 

For RNF and RF, AP range of CoP motion, AP RMS, AP CoP velocity, and CoP VSM 

were significantly greater for eyes closed compared to eyes open (Table 4.2). For RF, ML CoP 

velocity was also significantly greater for eyes closed compared to eyes open. For RNF, the 

largest percent increase for eyes closed was 107% for AP CoP velocity, followed by CoP VSM 

(86%), AP range of CoP (66%), and AP RMS (57%). For RF, the largest percent increase for 

eyes closed was 136% for AP CoP velocity, followed by VSM (112%), AP range of CoP motion 

(71%), ML CoP velocity (55%), and AP RMS (54%).  
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Table 4.2. Mean, standard deviation, (μ ± σ) and p-value between eyes open and eyes closed 

static posturography trials for retrospective fallers 

Measures Eyes Open Eyes Closed p value 
Retrospective Non-Faller 
CoP Range, AP (mm) 21.84 ± 6.67 36.31 ± 12.72 <0.001 
CoP Range, ML (mm) 14.39 ± 9.70 15.13 ± 6.58 0.509 
CoP RMS, AP (mm) 4.30 ± 1.26 6.75 ± 2.22 <0.001 
CoP RMS, ML (mm) 2.74 ± 1.83 2.82 ± 1.27 0.717 
CoP Velocity, AP (mm/s) 7.65 ± 1.84 15.86 ± 6.74 <0.001 
CoP Velocity, ML (mm/s) 5.07 ± 4.34 6.19 ± 3.18 0.500 
CoP Velocity, VSM (mm/s) 9.79 ± 2.32 18.17 ± 7.65 <0.001 
Retrospective Faller 
CoP Range, AP (mm) 20.54 ± 6.25 35.06 ± 18.27 <0.001 
CoP Range, ML (mm) 12.64 ± 5.60 15.51 ± 12.20 0.391 
CoP RMS, AP (mm) 4.19 ± 1.29 6.47 ± 3.11 <0.001 
CoP RMS, ML (mm) 2.38 ± 1.20 2.94 ± 2.33 0.106 
CoP Velocity, AP (mm/s) 7.34 ± 2.47 17.34 ± 16.03 0.002 
CoP Velocity, ML (mm/s) 4.45 ± 1.43 6.88 ± 5.85 0.019 
CoP Velocity, VSM (mm/s) 9.43 ± 2.95 19.98 ± 17.85 0.003 

4.3.2 Fallers, Non-Fallers, and Predictive Capabilities 

RQ for AP range and AP RMS were significantly greater for PNF than PF (Table 4.3). 

No other differences between PNF and PF were found. RQ cut-off scores based on RQ AP range 

and RQ AP RMS achieved 56.0-62.7% accuracy, 60.7-82.1% sensitivity, and 40.4-57.4% 

specificity (Table 4.4). The RQ for AP range clinical cut-off score achieved the best accuracy 

and specificity results and ROC cut-off score achieved the best sensitivity results for 

discriminating between PF and PNF (Table 4.4).  

Table 4.3. Romberg Quotient mean, standard deviation, (μ ± σ) and p-values for comparisons 

between prospective faller (PF) and prospective non-faller (PNF) groups  

Variables PNF PF p value 

CoP Range, AP  1.90 ± 0.79 1.53 ± 0.54 0.028 

CoP Range, ML  1.25 ± 0.61 1.22 ± 0.48 0.827 

CoP RMS, AP  1.77 ± 0.65 1.46 ± 0.48 0.021 

CoP RMS, ML  1.20 ± 0.55 1.18 ± 0.57 0.892 

CoP Velocity, AP  2.04 ± 0.65 2.18 ± 0.97 0.510 

CoP Velocity, ML  1.34 ± 0.45 1.43 ± 0.57 0.467 

CoP Velocity, VSM  1.81 ± 0.57 2.02 ± 1.07 0.360 
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Table 4.4. Prospective fall group clinical, ROC, and discriminant function cut-off scores 

(classified as faller for scores less than cut-off score) 

Method Measure Cut-Off 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Clinical  RQ CoP Range, AP 1.68

 
62.7 71.4 57.4 

RQ CoP RMS, AP 1.59 57.3 60.7 55.3 

ROC RQ CoP Range, AP (AUC=0.633) 1.96 57.3 82.1 42.6 

RQ CoP RMS, AP (AUC=0.640) 1.81 56.0 82.1 40.4 

Discriminant 

Function 

-2.779 + 0.812 x RQAPRange + 

0.817 x RQAPRMS 

-0.071 57.3 67.9 51.1 

RQAPRange: RQ CoP Range, AP; RQAPRMS: RQ CoP RMS, AP 

PMF eyes closed AP velocity (p = 0.015) and eyes closed VSM (p = 0.020) were 

significantly greater than PNF. The Romberg Quotients for AP velocity and VSM were also 

significantly greater for PMF compared to PNF (Table 4.5). Cut-off scores for eyes closed AP 

velocity, eyes closed VSM, RQ for AP velocity, and RQ for VSM velocity achieved 45.3-84.9% 

accuracy, 50-83.3% sensitivity, and 40.4-89.4% specificity (Table 4.6). Discriminant function 

achieved the best accuracy and specificity results (Table 4.6). ROC cut-off score for eyes closed 

AP velocity achieved the best sensitivity results for discriminating between PMF and PNF 

(Table 4.6).  

Table 4.5. Romberg Quotient mean, standard deviation, (μ ± σ) and p-values for comparisons 

between prospective multi-faller (PMF) and prospective non-faller (PNF) groups 

Ratio Variables PNF PMF p value 
CoP Range, AP  1.90 ± 0.79 1.98 ± 0.65 0.651 
CoP Range, ML  1.25 ± 0.61 1.45 ± 0.30 0.213 
CoP RMS, AP  1.77 ± 0.65 1.95 ± 0.54 0.401 
CoP RMS, ML  1.20 ± 0.55 1.49 ± 0.46 0.197 
CoP Velocity, AP  2.04 ± 0.65 2.86 ± 1.51 0.019 
CoP Velocity, ML  1.34 ± 0.45 1.59 ± 0.39 0.187 
CoP Velocity, VSM  1.81 ± 0.57 2.80 ± 1.83 0.006 
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Table 4.6. Prospective multiple fall group clinical, ROC, and discriminant function cut-off 

scores (classified as faller for scores greater than the cut-off score) 

Method Measure 
Cut-

Off 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Clinical CoP Velocity, AP, Eyes Closed 

(mm/s) 

17.41
 

69.8 50.0 72.3 

CoP Velocity, VSM, Eyes Closed 

(mm/s) 

19.70 67.9 50.0 70.2 

RQ CoP Velocity, AP 2.29 71.7 50.0 74.5 

RQ CoP Velocity, VSM 2.05 69.8 50.0 72.3 

ROC CoP Velocity, AP, Eyes Closed 

(mm/s) (AUC = 0.688) 

13.78 49.1 83.3 44.7 

CoP Velocity, VSM, Eyes Closed 

(mm/s) (AUC = 0.691) 

15.34 47.2 83.3 42.6 

RQ CoP Velocity, AP (AUC = 

0.660) 

1.83 45.3 83.3 40.4 

RQ CoP Velocity, VSM (AUC = 

0.670) 

1.69 45.3 83.3 40.4 

Discriminant 

Function 

-1.481 + 0.146 x APVelEC - 

0.114 x VSMVelEC - 2.027 x 

RQAPVel + 2.877 x RQVSMVel 

0.541 84.9 50.0 89.4 

APVelEC: CoP velocity, AP, eyes closed; VSMVelEC: CoP velocity, VSM, eyes closed; 

RQAPVel: RQ CoP velocity, AP; RQVSMVel: RQ CoP velocity, VSM 

No significant differences were found between RF and RNF for eyes open, eyes closed, 

and RQ (Table 4.7) posturography values.  

Table 4.7. Romberg Quotient mean, standard deviation, (μ ± σ) and p-values for comparisons 

between retrospective fallers (RF) and retrospective non-fallers (RNF) groups 

Ratio Variables RNF RF p value 

CoP Range, AP  1.77 ± 0.73 1.68 ± 0.52 0.494 

CoP Range, ML  1.24 ± 0.55 1.26 ± 0.63 0.894 

CoP RMS, AP  1.66 ± 0.60 1.57 ± 0.55 0.502 

CoP RMS, ML  1.20 ± 0.55 1.27 ± 0.57 0.608 

CoP Velocity, AP  2.09 ± 0.78 2.16 ± 0.91 0.731 

CoP Velocity, ML  1.35 ± 0.51 1.44 ± 0.65 0.543 

CoP Velocity, VSM  1.89 ± 0.79 1.94 ± 0.81 0.759 
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Based on these results, the recommended cut off score for classifying fallers and non-

fallers based on a static posturography assessment was 1.68 for RQ of AP CoP range. The cut off 

scores for classifying multi-fallers was 0.541 based on a discriminant function that includes eyes 

closed AP velocity, eyes closed VSM velocity, RQ of AP velocity, and RQ of VSM velocity:  

(-1.481 + 0.146 x APVelEC - 0.114 x VSMVelEC - 2.027 x RQAPVel + 2.877 x RQVSMVel).   

4.4 Discussion  

Static posturography measures discriminated between elderly fallers and non-fallers, with 

RQ and AP measures being particularly relevant for fall risk classification. Since cut-off score 

classifications achieved up to 84% accuracy (Table 4.6), an “eyes open : eyes closed” static 

posturography assessment can be considered as a screening tool for older people at risk of 

falling.  

For all participants, measures sensitive to AP motion increased when visual input was 

removed, with the largest percent increases for PMF. This suggests that older adults have an 

increased reliance on visual input for postural control, particularly older adults at increased risk 

of multiple falls. For PF and PNF, percent increases from eyes open to eyes closed were 

inconsistent, with PF having greater percent increases in AP velocity (PF: 120%, PNF: 101%) 

but smaller percent increases in AP range (PF: 49%, PNF: 76%) and RMS (PF: 40%, PNF: 

68%). These differences in distance (range, RMS) and velocity may be because PNF might be 

able to tolerate a larger range of CoP movements, allowing them to better withstand potentially 

fall-inducing perturbations [12]. Conversely, PF may have a lower tolerance, to compensate for 

poorer postural control, requiring increased AP velocities compared to PNF to maintain CoP 

within a smaller area of stability. PMF may be unable to maintain a smaller range of CoP 

movements because of postural control issues that result in greater increases in range, RMS, and 

velocity. Greater AP CoP movement with eyes closed was also found within RF and RNF 

groups, but AP CoP measures could not discriminate between RF and RNF.  

For ML measures, CoP velocity increased with eyes closed for PNF and PF. However, all 

ML measures for PMF increased with eyes closed. These results further support the premise that 

PMF have poorer postural control than PNF and PF. Since significant increases in ML range and 

RMS only occurred for PMF, ML balance control assessment with eyes closed may only be 

important for evaluating the risk of multiple falls (i.e., people at higher fall risk).  
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Romberg Quotient was the best measure for differentiating between PF and PNF, with 

significant differences for RQ AP range and RQ AP RMS. This is in contrast to retrospective 

falls, where static posturography results were not significantly different between RF and RNF. 

PMF had greater RQ AP velocity and RQ VSM velocity than PNF. These results highlighted the 

importance of testing postural balance with and without visual input and calculating RQ to give 

the clearest indication of fall risk, for both single and multi-fallers, in an older adult population.   

The clinical cut-off score achieved the best results for PF classification and the 

discriminant function cut-off score achieved the best results for PMF classification, in terms of 

accuracy and specificity. For PF, a clinical cut-off score of 1.68 for RQ AP range produced 

moderate faller classification results that were comparable to the literature (i.e., 62.7% accuracy, 

71.4% sensitivity, 57.4% specificity versus Topper et al., 1993 [169] with 65% accuracy, 78% 

sensitivity, 46% specificity). For PMF, a discriminant function with AP velocity EC, VSM 

velocity EC, RQ AP velocity, RQ VSM velocity and a cut-off score of 0.541 achieved good fall 

risk classification results with 84.9% accuracy, 50% sensitivity, and 89.4% specificity. The PMF 

cut-off score classification outperformed the PF cut-off score classification in terms of accuracy 

and specificity. Identifying and classifying PF can be challenging because some one-time fallers 

may have fallen, in part, due to environmental causes (e.g., unexpected obstacle, icy conditions, 

etc.), and may have relatively good balance compared to other fallers.  

While clinical and discriminant function cut-off scores achieved the best overall results, 

the ROC cut-off score achieved the best sensitivity results because a preferred sensitivity level 

can be set with the ROC method. Therefore, it is important to consider the classification goals 

when choosing a cut-off score method. ROC would be preferable when avoiding misclassifying 

fallers as non-fallers is a priority.  

Discriminant function cut-off scores could be determined using the clinical cut-off score 

(Equation 4.1) instead of the mean value between the discriminant function group centroid 

values. This would include variance within the faller and non-faller calculations and could 

improve predictive results. 

With only six multi-fallers, the multi-faller sensitivity results for the determined cut-off 

scores were limited to one of seven levels (0%, 17%, 33%, 50%, 67%, 83%, and 100%). More 
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precise determination of predictive sensitivity could be determined with a larger sample of multi-

fallers.  

Static posturography was evaluated for its ability to identify elderly people who are at 

risk of falling but had not previously fallen. The best faller classification measures were RQ AP 

range and RQ AP RMS for all prospective fallers and eyes closed AP velocity, eyes closed VSM 

velocity, RQ AP velocity, and RQ VSM velocity for multi-fallers, suggesting that RQ 

calculations are particularly relevant for elderly fall risk assessments. Cut-off scores based on 

posturography measures achieved good results for multi-faller classification and achieved 

reasonable results when including prospective fallers who had only fallen once. PMF 

classification with a discriminant function: (-1.481 + 0.146 x Eyes Closed AP Velocity - 0.114 x 

Eyes Closed Vector Sum Magnitude Velocity - 2.027 x RQ AP Velocity + 2.877 x RQ Vector Sum 

Magnitude Velocity) and cut-off score of 0.541 could be used as a screening tool for older people 

at risk of multiple falls.  
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Chapter 5 Evaluation of Single-Task and Dual-Task Gait 

 in Older Adults based on Wearable Sensor Data 

5.1 Objectives  

The objectives of this part of the research were to determine whether pressure-sensing 

insole and accelerometer wearable sensors can detect biomechanical differences in gait that 

occur with a secondary cognitive task and whether ST or DT gait data from pressure-sensing 

insole and accelerometer wearable sensors can differentiate between elderly fallers and non-

fallers. Specifically, wearable accelerometers and pressure-sensing insoles were used to: detect 

gait differences between fallers and non-fallers for ST walking, detect gait differences between 

fallers and non-fallers for DT walking, detect differences between ST and DT walking for fallers, 

and detect differences between ST and DT walking for non-fallers. 

Outcomes from this research were published in the Journal of Biomechanics [304]. 

 Howcroft J, Kofman J, Lemaire ED, and McIlroy WE. Analysis of Dual-Task Elderly Gait in 

Fallers and Non-Fallers using Wearable Sensors. Journal of Biomechanics. 2016; 49(7): 992-

1001. 

5.2 Data Analysis  

For each variable, a mixed-design ANOVA test was performed with a 2-factor within-

subject walking condition (ST, DT) and a 2-factor between-subject faller status condition (faller, 

non-faller). A post-hoc assessment was performed for variables with a significant (p < 0.05) 

main effect for walking condition or faller condition or significant interaction effect 

(retrospective fall occurrence: Appendix A, Tables A.1-A.5; prospective fall occurrence: 

Appendix A, Tables A.6-A.10). For the post-hoc assessment, normality was assessed using the 

Shapiro-Wilk Test (α = 0.05). Wilcoxon Signed-Rank Tests were used to compare ST and DT 

walking conditions, with faller and non-faller data analyzed separately, for non-normal data sets. 

A paired t-test was used for normal data sets. For faller versus non-faller comparisons, a Mann-

Whitney U Test was used for non-normal data sets, with DT and ST gait data analyzed 

separately. A Levene Test for equality of variance was performed for normal data sets. For equal 

variance, an independent t-test was used. Welch’s t-test was used for unequal variance. The 

critical p-value for all comparisons was 0.05. Corrections for multiple tests were applied [305]; 
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thus, not all variables with p < 0.05 were significantly different. R
2
 categories for correlations 

between gait velocity and wearable-sensor-derived measures were negligible (0-0.3), low (0.3-

0.5), moderate (0.5-0.7), high (0.7-0.9), and very high (0.9-1.0) [306]. 

5.3 Results 

5.3.1 Single-Task and Dual-Task Gait in Older Adults 

5.3.1.1 Retrospective Fallers  

5.3.1.1.1 Pressure-sensing insole measures 

For RF, DT parameters were significantly greater than ST for PD per stride, ML 

deviation duration, stride time, stance time, swing time, stride time CoV, swing time CoV, 

percent stance time, percent double-support time, stride time symmetry index, CoV AP, I1, I4 to 

I7 (Table 5.1). DT was significantly lower than ST for minimum, mean, and median CoP 

velocity; and cadence.  

For RNF, DT was significantly greater than ST for PD per stride, medial deviation 

duration, stride time, stance time, swing time, stride time CoV, stride time symmetry index, CoV 

(AP and ML), I1, and I4 to I7 (Table 5.1). DT was significantly lower than ST for minimum, 

mean, and median CoP velocity; and cadence.  
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Table 5.1. Mean and SD of pressure-sensing insole variables with a significant (p < 0.05) 

ANOVA result for retrospective fallers and non-fallers. Bold p-values indicate a significant 

difference between ST and DT conditions after correction for multiple comparisons. 

 Fallers Non-Fallers 

ST DT p ST DT p 

CoP Path 

PD per Stride 1.2 ± 0.9 2.3 ± 2.6 0.022 1.6 ± 2.3 2.5 ± 2.5 <0.001 

ML Deviation Duration 

(s) 

0.034 ± 0.012 0.042 ± 0.015 0.007 0.031 ± 0.014 0.037 ± 0.016 0.004 

Min CoP Vel (m/s) 0.033 ± 0.016 0.025 ± 0.015 <0.001 0.029 ± 0.011 0.022 ± 0.009 <0.001 

Mean CoP Vel (m/s) 0.297 ± 0.050 0.248 ± 0.046 <0.001 0.290 ± 0.044 0.250 ± 0.047 <0.001 

Median CoP Vel (m/s) 0.263 ± 0.048 0.218 ± 0.050 <0.001 0.249 ± 0.038 0.211 ± 0.043 <0.001 

Temporal 

Cadence (steps/minute) 112.1 ± 12.3 97.1 ± 14.9 <0.001 111.1 ± 10.2 97.4 ± 14.3 <0.001 

Stride Time (s) 1.09 ± 0.13 1.27 ± 0.23 <0.001 1.09 ± 0.11 1.26 ± 0.20 <0.001 

Stance Time (s) 0.71 ± 0.09 0.85 ± 0.20 <0.001 0.72 ± 0.08 0.83 ± 0.14 <0.001 

Swing Time (s) 0.38 ± 0.05 0.42 ± 0.07 0.002 0.38 ± 0.05 0.43 ± 0.07 <0.001 

Stride Time CoV 0.03 ± 0.02 0.05 ± 0.04 0.023 0.03 ± 0.02 0.04 ± 0.02 <0.001 

Stance Time CoV 0.05 ± 0.04 0.07 ± 0.04 0.088 0.06 ± 0.04 0.06 ± 0.03 0.513 

Swing Time CoV 0.08 ± 0.05 0.11 ± 0.08 0.022 0.11 ± 0.08 0.10 ± 0.05 0.692 

Percent Stance Time (%) 64.62 ± 3.05 66.81 ± 4.93 0.001 65.86 ± 3.49 65.93 ± 2.93 0.248 

Percent Double-Support 

Time (%) 

14.64 ± 3.01 16.87 ± 4.93 <0.001 15.91 ± 3.48 15.93 ± 2.90 0.328 

Stride Time Symmetry 

Index 

1.92 ± 0.79 3.07 ± 2.56 0.005 2.14 ± 1.31 2.89 ± 1.59 0.001 

CoP Path Stance Phase CoV 

CoV AP 4.95 ± 1.41 6.05 ± 2.46 0.012 4.63 ± 1.57 5.81 ± 1.98 <0.001 

CoV ML 6.47 ± 2.36 6.83 ± 2.54 0.376 6.66 ± 2.36 7.60 ± 2.80 0.001 

Impulse (Ns/kg) 

Foot-strike to first peak 

(I1) 

1.20 ± 0.43 1.54 ± 0.70 <0.001 1.20 ± 0.46 1.45 ± 0.61 <0.001 

Min to second peak (I3) 1.47 ± 0.58 1.58 ± 0.56 0.047 1.67 ± 0.64 1.76 ± 0.71 0.057 

Second peak to foot-off 

(I4) 

0.97 ± 0.30 1.39 ± 0.58 <0.001 1.08 ± 0.46 1.41 ± 0.80 <0.001 

Foot-strike to min (I5) 2.35 ± 0.65 2.67 ± 0.88 0.007 2.40 ± 0.91 2.56 ± 0.88 0.007 

Min to foot-off (I6) 2.36 ± 0.76 2.89 ± 0.90 <0.001 2.67 ± 0.99 3.10 ± 1.28 <0.001 

Foot-strike to foot-off 

(I7) 

4.65 ± 1.27 5.50 ± 1.58 <0.001 4.99 ± 1.68 5.60 ± 1.96 <0.001 

 

5.3.1.1.2 Accelerometer measures 

For RF and RNF, significant differences were found between DT and ST gait conditions 

(Table 5.2 to Table 5.5). These differences are summarized in Table 5.6 for RF and Table 5.7 for 

RNF.  
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Table 5.2. Mean and SD of head accelerometer variables with a significant (p < 0.05) ANOVA 

result for retrospective fallers and non-fallers. Bold p-values indicate a significant difference 

between ST and DT conditions after correction for multiple comparisons. 

 Fallers Non-Fallers 

ST DT p ST DT p 

FFT Quartile (%) 

Vertical 43.7 ± 12.7 36.6 ± 13.1 0.004 43.8 ± 13.3 38.6 ± 11.7 <0.001 

AP 50.9 ± 10.7 44.9 ± 10.9 0.034 52.4 ± 10.2 47.3 ± 9.6 <0.001 

ML 50.5 ± 12.9 47.1 ± 12.6 0.304 55.1 ± 11.5 50.4 ± 10.9 0.004 

Ratio of Even to Odd Harmonics 

Vertical 2.55 ± 1.12 1.60 ± 0.67 0.002 2.17 ± 0.94 1.86 ± 0.94 0.022 

AP 1.75 ± 0.68 1.37 ± 0.55 0.021 1.71 ± 0.81 1.49 ± 0.61 0.022 

ML 0.61 ± 0.29 0.45 ± 0.18 0.086 0.52 ± 0.26 0.48 ± 0.21 0.366 

Maximum Lyapunov Exponent 

ML 0.23 ± 0.10 0.27 ± 0.11 0.179 0.25 ± 0.09 0.28 ± 0.11 0.112 

Acceleration Descriptive Statistics (g) 

Superior Max  0.26 ± 0.13 0.31 ± 0.09 0.030 0.25 ± 0.08 0.31 ± 0.09 <0.001 

Superior Mean 0.11 ± 0.05 0.13 ± 0.05 0.086 0.10 ± 0.04 0.12 ± 0.03 <0.001 

Superior SD 0.07 ± 0.04 0.08 ± 0.02 0.241 0.06 ± 0.02 0.08 ± 0.02 <0.001 

Anterior Mean 0.13 ± 0.06 0.11 ± 0.05 0.732 0.15 ± 0.06 0.12 ± 0.06 0.003 

Posterior Max 0.42 ± 0.17 0.33 ± 0.14 0.009 0.34 ± 0.12 0.34 ± 0.14 0.679 

Posterior Mean 0.17 ± 0.08 0.13 ± 0.06 0.007 0.13 ± 0.04 0.13 ± 0.05 0.376 

Posterior SD 0.12 ± 0.05 0.09 ± 0.04 0.004 0.09 ± 0.03 0.09 ± 0.03 0.649 

Right Max 0.28 ± 0.08 0.29 ± 0.09 0.475 0.25 ± 0.11 0.30 ± 0.11 0.001 

Right Mean 0.12 ± 0.04 0.13 ± 0.05 0.305 0.11 ± 0.05 0.13 ± 0.05 <0.001 

Right SD 0.07 ± 0.02 0.08 ± 0.02 0.424 0.07 ± 0.03 0.08 ± 0.03 <0.001 
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Table 5.3. Mean and SD of posterior pelvis accelerometer variables with a significant (p < 0.05) 

ANOVA result for retrospective fallers and non-fallers. Bold p-values indicate a significant 

difference between ST and DT conditions after correction for multiple comparisons. 

 Fallers Non-Fallers 

ST DT p ST DT p 

FFT Quartile (%) 

Vertical 34.0 ± 9.6 27.0 ± 8.1 0.002 34.2 ± 10.2 26.6 ± 9.3 <0.001 

ML 32.0 ± 10.4 28.6 ± 9.8 0.253 33.8 ± 10.9 29.6 ± 10.1 <0.001 

Ratio of Even to Odd Harmonics 

Vertical 2.09 ± 0.84 1.82 ± 0.66 0.568 2.23 ± 0.84 1.96 ± 0.76 0.029 

AP 1.81 ± 0.64 1.64 ± 0.64 0.648 2.18 ± 0.81 1.88 ± 0.70 0.006 

Maximum Lyapunov Exponent 

Vertical 0.32 ± 0.12 0.36 ± 0.11 0.081 0.34 ± 0.11 0.30 ± 0.09 0.053 

Acceleration Descriptive Statistics (g) 

Superior Max 0.32 ± 0.12 0.27 ± 0.10 0.012 0.31 ± 0.09 0.29 ± 0.10 0.011 

Superior Mean 0.10 ± 0.03 0.08 ± 0.02 0.002 0.11 ± 0.03 0.09 ± 0.03 <0.001 

Superior SD 0.08 ± 0.03 0.06 ± 0.02 0.007 0.08 ± 0.02 0.07 ± 0.02 <0.001 

Inferior Max 0.47 ± 0.18 0.35 ± 0.12 <0.001 0.44 ± 0.11 0.38 ± 0.14 <0.001 

Inferior Mean 0.17 ± 0.07 0.12 ± 0.05 <0.001 0.15 ± 0.05 0.13 ± 0.04 <0.001 

Inferior SD 0.12 ± 0.05 0.09 ± 0.03 <0.001 0.12 ± 0.03 0.10 ± 0.04 <0.001 

Anterior Max 0.47 ± 0.16 0.34 ± 0.11 <0.001 0.46 ± 0.16 0.37 ± 0.13 <0.001 

Anterior Mean 0.17 ± 0.06 0.13 ± 0.04 0.004 0.16 ± 0.06 0.14 ± 0.04 <0.001 

Anterior SD 0.13 ± 0.05 0.09 ± 0.03 <0.001 0.13 ± 0.05 0.10 ± 0.04 <0.001 

Posterior Max 0.29 ± 0.11 0.24 ± 0.09 0.004 0.29 ± 0.11 0.26 ± 0.10 <0.001 

Posterior Mean 0.12 ± 0.04 0.09 ± 0.03 0.004 0.11 ± 0.04 0.10 ± 0.04 0.002 

Posterior SD 0.08 ± 0.03 0.06 ± 0.02 0.001 0.08 ± 0.03 0.07 ± 0.02 <0.001 

Right Max 0.42 ± 0.15 0.32 ± 0.12 0.001 0.39 ± 0.12 0.34 ± 0.14 <0.001 

Right Mean 0.14 ± 0.05 0.10 ± 0.03 <0.001 0.13 ± 0.04 0.11 ± 0.04 <0.001 

Right SD 0.11 ± 0.04 0.08 ± 0.03 0.001 0.10 ± 0.03 0.09 ± 0.04 <0.001 

Left Max 0.41 ± 0.18 0.31 ± 0.11 <0.001 0.39 ± 0.11 0.34 ± 0.12 <0.001 

Left Mean 0.13 ± 0.06 0.10 ± 0.04 0.002 0.13 ± 0.03 0.11 ± 0.04 <0.001 

Left SD 0.11 ± 0.05 0.08 ± 0.03 <0.001 0.10 ± 0.03 0.09 ± 0.03 <0.001 
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Table 5.4. Mean and SD of right shank accelerometer variables with a significant (p < 0.05) 

ANOVA result for retrospective fallers and non-fallers. Bold p-values indicate a significant 

difference between ST and DT conditions after correction for multiple comparisons. 

 Fallers Non-Fallers 

ST DT p ST DT p 

FFT Quartile (%) 

Vertical 36.2 ± 11.7 29.4 ± 9.5 0.022 39.1 ± 12.1 30.2 ± 10.6 <0.001 

AP 27.5 ± 8.6 20.5 ± 6.7 0.002 29.0 ± 8.6 21.8 ± 7.2 <0.001 

ML 24.8 ± 8.6 19.5 ± 6.1 0.012 27.5 ± 8.0 21.0 ± 6.5 <0.001 

Maximum Lyapunov Exponent 

Vertical 0.50 ± 0.19 0.60 ± 0.13 0.067 0.56 ± 0.13 0.56 ± 0.11 0.664 

Acceleration Descriptive Statistics (g) 

Superior Max 0.51 ± 0.16 0.44 ± 0.15 0.029 0.52 ± 0.19 0.47 ± 0.17 0.001 

Superior Mean 0.16 ± 0.05 0.13 ± 0.04 0.006 0.17 ± 0.06 0.15 ± 0.05 0.005 

Superior SD 0.14 ± 0.04 0.11 ± 0.04 0.004 0.14 ± 0.05 0.12 ± 0.04 <0.001 

Inferior Max 0.77 ± 0.24 0.66 ± 0.24 0.003 0.79 ± 0.31 0.65 ± 0.25 <0.001 

Inferior Mean 0.23 ± 0.08 0.18 ± 0.06 <0.001 0.22 ± 0.07 0.18 ± 0.07 <0.001 

Inferior SD 0.21 ± 0.07 0.17 ± 0.06 0.001 0.21 ± 0.08 0.17 ± 0.07 <0.001 

Anterior Max 1.73 ± 0.73 1.32 ± 0.56 <0.001 1.66 ± 0.53 1.29 ± 0.54 <0.001 

Anterior Mean 0.45 ± 0.19 0.33 ± 0.12 0.001 0.42 ± 0.12 0.33 ± 0.12 <0.001 

Anterior SD 0.50 ± 0.22 0.35 ± 0.16 0.001 0.47 ± 0.17 0.34 ± 0.16 <0.001 

Posterior Max 1.18 ± 0.41 1.10 ± 0.38 0.101 1.15 ± 0.36 1.13 ± 0.35 0.528 

Posterior Mean 0.31 ± 0.08 0.28 ± 0.07 0.021 0.31 ± 0.08 0.28 ± 0.07 <0.001 

Right Max 0.63 ± 0.21 0.50 ± 0.19 0.001 0.59 ± 0.20 0.50 ± 0.18 <0.001 

Right Mean 0.18 ± 0.06 0.14 ± 0.05 <0.001 0.18 ± 0.06 0.15 ± 0.06 <0.001 

Right SD 0.17 ± 0.06 0.12 ± 0.05 <0.001 0.15 ± 0.05 0.12 ± 0.05 <0.001 

Left Max 0.72 ± 0.26 0.65 ± 0.23 0.021 0.75 ± 0.32 0.63 ± 0.25 <0.001 

Left Mean 0.24 ± 0.08 0.20 ± 0.07 0.001 0.24 ± 0.11 0.20 ± 0.08 <0.001 

Left SD 0.22 ± 0.09 0.19 ± 0.08 0.001 0.23 ± 0.10 0.18 ± 0.08 <0.001 
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Table 5.5. Mean and SD of left shank accelerometer variables with a significant (p < 0.05) 

ANOVA result for retrospective fallers and non-fallers. Bold p-values indicate a significant 

difference between ST and DT conditions after correction for multiple comparisons. 

 Fallers Non-Fallers 

ST DT p ST DT p 

FFT Quartile (%) 

Vertical 39.9 ± 14.5 30.0 ± 11.6 0.001 36.9 ± 12.7 29.6 ± 10.9 <0.001 

AP 30.4 ± 11.3 22.4 ± 8.2 0.004 27.8 ± 8.4 21.6 ± 7.4 <0.001 

ML 26.9 ± 11.6 19.4 ± 7.6 0.005 24.0 ± 8.4 18.8 ± 6.9 <0.001 

Maximum Lyapunov Exponent 

ML 0.32 ± 0.17 0.33 ± 0.16 0.932 0.38 ± 0.16 0.29 ± 0.14 <0.001 

Acceleration Descriptive Statistics (g) 

Superior Max 0.68 ± 0.26 0.52 ± 0.18 0.002 0.71 ± 0.32 0.58 ± 0.26 <0.001 

Superior Mean 0.20 ± 0.05 0.15 ± 0.04 <0.001 0.21 ± 0.07 0.17 ± 0.06 <0.001 

Superior SD 0.19 ± 0.07 0.13 ± 0.05 <0.001 0.20 ± 0.09 0.15 ± 0.08 <0.001 

Inferior Max 0.85 ± 0.25 0.72 ± 0.24 0.001 0.84 ± 0.28 0.76 ± 0.24 <0.001 

Inferior Mean 0.23 ± 0.06 0.18 ± 0.07 0.001 0.22 ± 0.07 0.18 ± 0.06 <0.001 

Inferior SD 0.22 ± 0.07 0.18 ± 0.07 <0.001 0.22 ± 0.08 0.18 ± 0.06 <0.001 

Anterior Max 1.69 ± 0.66 1.19 ± 0.43 <0.001 1.55 ± 0.42 1.25 ± 0.43 <0.001 

Anterior Mean 0.48 ± 0.23 0.32 ± 0.14 <0.001 0.44 ± 0.13 0.33 ± 0.11 <0.001 

Anterior SD 0.51 ± 0.23 0.33 ± 0.14 <0.001 0.46 ± 0.13 0.34 ± 0.13 <0.001 

Posterior Max 1.02 ± 0.36 0.87 ± 0.26 0.016 1.00 ± 0.29 0.99 ± 0.34 0.347 

Posterior Mean 0.29 ± 0.10 0.22 ± 0.07 <0.001 0.28 ± 0.07 0.25 ± 0.08 <0.001 

Posterior SD 0.28 ± 0.09 0.23 ± 0.07 <0.001 0.27 ± 0.08 0.26 ± 0.09 0.044 

Right Max 0.71 ± 0.23 0.64 ± 0.21 0.037 0.71 ± 0.23 0.67 ± 0.23 0.039 

Right Mean 0.21 ± 0.06 0.18 ± 0.05 0.007 0.20 ± 0.06 0.18 ± 0.05 <0.001 

Right SD 0.22 ± 0.07 0.19 ± 0.07 0.019 0.21 ± 0.07 0.19 ± 0.07 0.005 

Left Max 0.79 ± 0.31 0.64 ± 0.28 <0.001 0.80 ± 0.33 0.66 ± 0.28 <0.001 

Left Mean 0.23 ± 0.07 0.17 ± 0.06 <0.001 0.22 ± 0.08 0.18 ± 0.06 <0.001 

Left SD 0.21 ± 0.09 0.15 ± 0.08 <0.001 0.21 ± 0.09 0.16 ± 0.08 <0.001 

 

  



63 

 

Table 5.6. Summary of accelerometer variables with significant differences between ST and DT 

gait conditions for retrospective fallers  

Locations Variables with Significant Differences DT versus ST 
Head 
Pelvis 
Left Shank  
Right Shank 

Vertical FFT quartiles 
Posterior mean 

DT < ST 

Head  
Pelvis  
Left Shank 

Posterior maximum, SD 
DT < ST 

Pelvis 
Left Shank 
Right Shank 

Superior maximum, mean, SD 
Inferior maximum, mean, SD 
Anterior maximum, mean, SD 
Right mean, SD 
Left maximum, mean, SD 

DT < ST 

Pelvis 
Right Shank 

Right maximum 
DT < ST 

Left Shank  
Right Shank 

AP FFT quartiles 
ML FFT quartiles 
 

DT < ST 

Head Vertical Ratio of even to odd harmonics (REOH) DT < ST 
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Table 5.7. Summary of accelerometer variables with significant differences between ST and DT 

gait conditions for retrospective non-fallers 

Locations Variables with Significant Differences DT versus ST 
Head 
Pelvis 
Left Shank 

Right Shank 

Vertical FFT quartiles 
ML FFT quartiles 
Anterior mean 

DT < ST 

Head 
Left Shank  
Right Shank 

AP FFT quartiles 
 DT < ST 

Pelvis 

Left Shank  

Right Shank 

Superior maximum, mean, SD 

Inferior maximum, mean, SD 

Anterior maximum, SD 

Posterior mean 

Right mean, SD 

Left maximum, mean, SD 

DT < ST 

Head 

Pelvis 

Vertical Ratio of even to odd harmonics (REOH) 

AP Ratio of even to odd harmonics (REOH) 
DT < ST 

Pelvis 

Right Shank 

Right maximum 
DT < ST 

Head Superior maximum, mean, SD 

Right maximum, mean, SD 
DT > ST 

Pelvis Posterior maximum, SD DT < ST 

Left Shank ML Maximum Lyapunov exponents (MLEs) DT < ST 

 

5.3.1.2 Prospective Fall Occurrence 

5.3.1.2.1 Pressure-sensing insole measures 

For PF, DT parameters were significantly greater than ST for PD per stride, ML deviation 

duration, stride time, stance time, swing time, stride time CoV, stride time symmetry index, I1, 

I4, I6, and I7 (Table 5.8). DT parameters were significantly lower than ST for minimum, mean, 

and median CoP velocity; cadence; and I2.  

For PNF, DT parameters were significantly greater than ST for PD per stride, ML 

deviation duration, stride time, stance time, swing time, stride time CoV, stride time symmetry 

index, CoV AP, CoV ML, I1, I4, I5, I6, and I7 (Table 5.8). DT parameters were significantly 

lower than ST for minimum, mean, and median CoP velocity; and cadence. 
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Table 5.8. Mean and SD of pressure-sensing insole variables with a significant (p < 0.05) 

ANOVA result for prospective fallers and non-fallers. Bold p-values indicate a significant 

difference between ST and DT conditions after correction for multiple comparisons. 

 Fallers Non-Fallers 

ST DT p ST DT p 

CoP Path 

PD per Stride 1.8 ± 2.7 2.6 ± 3.1 <0.001 1.5 ± 2.0 2.5 ± 2.1  <0.001 

Lateral Deviation 

Length (mm) 

0.9 ± 0.6 1.1 ± 0.7 0.165 1.0 ± 1.2 1.4 ± 1.4 0.051 

ML Deviation Duration 

(s) 

0.029 ± 0.013 0.038 ± 0.014 0.029 0.031 ± 0.015 0.037 ± 0.017 0.019 

Min CoP Vel (m/s) 0.028 ± 0.010 0.021 ± 0.009 0.001 0.031 ± 0.012 0.023 ± 0.010 <0.001 

Mean CoP Vel (m/s) 0.284 ± 0.038 0.249 ± 0.044 <0.001 0.293 ± 0.048 0.250 ± 0.049 <0.001 

Median CoP Vel (m/s) 0.247 ± 0.034 0.208 ± 0.035 <0.001 0.250 ± 0.041 0.213 ± 0.047 <0.001 

Temporal 

Cadence (steps/minute) 109.6 ± 10.0 98.4 ± 12.9 <0.001 111.9 ± 10.5 96.4 ± 14.9 <0.001 

Stride Time (s) 1.11 ± 0.10 1.24 ± 0.18 <0.001 1.09 ± 0.11 1.28 ± 0.21 <0.001 

Stance Time (s) 0.73 ± 0.09 0.83 ± 0.13 <0.001 0.72 ± 0.09 0.84 ± 0.15 <0.001 

Swing Time (s) 0.38 ± 0.05 0.42 ± 0.07 <0.001 0.37 ± 0.06 0.44 ± 0.07 <0.001 

Stride Time CoV 0.03 ± 0.03 0.04 ± 0.02 0.031 0.03 ± 0.01 0.04 ± 0.02 <0.001 

Stride Time Symmetry 

Index 

2.13 ± 1.14 2.95 ± 1.79 0.005 2.18 ± 1.41 2.86 ± 1.50 0.026 

CoP Path Stance Phase CoV 

CoV AP 4.90 ± 1.63 5.22 ± 1.42 0.248 4.48 ± 1.54 6.17 ± 2.21 <0.001 

CoV ML 6.57 ± 2.44 7.39 ± 2.60 0.059 6.66 ± 2.33 7.70 ± 2.96 0.007 

Impulse (Ns/kg) 

Foot-strike to first peak 

(I1) 

1.22 ± 0.41 1.40 ± 0.52 0.009 1.20 ± 0.50 1.50 ± 0.66 <0.001 

First peak to min (I2) 1.22 ± 0.48 1.10 ± 0.49 0.004 1.27 ± 0.49 1.24 ± 0.51 0.435 

Min to second peak (I3) 1.83 ± 0.66 1.95 ± 0.79 0.219 1.58 ± 0.61 1.68 ± 0.63 0.111 

Second peak to foot-off 

(I4) 

1.14 ± 0.41 1.43 ± 0.71 0.014 1.05 ± 0.49 1.41 ± 0.85 <0.001 

Foot-strike to min (I5) 2.36 ± 0.79 2.42 ± 0.86 0.554 2.44 ± 0.99 2.66 ± 0.90 0.001 

Min to foot-off (I6) 2.89 ± 1.00 3.30 ± 1.24 0.009 2.56 ± 0.98 3.01 ± 1.30 <0.001 

Foot-strike to foot-off 

(I7) 

5.19 ± 1.62 5.66 ± 1.89 0.026 4.89 ± 1.74 5.61 ± 2.01 <0.001 

 

5.3.1.2.2 Accelerometer measures 

For PF and PNF, significant differences were found between DT and ST gait conditions 

(Table 5.9 to Table 5.12). These differences are summarized in Table 5.13 for fallers and Table 

5.14 for non-fallers. 
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Table 5.9. Mean and SD of head accelerometer variables with a significant (p < 0.05) ANOVA 

result for prospective fallers and non-fallers. Bold p-values indicate a significant difference 

between ST and DT conditions after correction for multiple comparisons. 

 Fallers Non-Fallers 

ST DT p ST DT p 

FFT Quartile (%) 

Vertical 45.0 ± 13.0 37.6 ± 10.0 0.009 46.4 ± 13.7 39.3 ± 12.9 <0.001 

AP 50.4 ± 9.9 44.0 ± 7.3 0.011 53.5 ± 10.5 49.3 ± 10.4 <0.001 

ML 56.3 ± 10.1 50.5 ± 10.8 0.065 54.7 ± 12.4 50.6 ± 11.1 0.033 

Ratio of Even to Odd Harmonics 

Vertical 2.17 ± 0.58 1.99 ± 0.94 0.210 2.17 ± 1.12 1.77 ± 0.92 0.033 

AP 1.90 ± 0.78 1.45 ± 0.63 0.033 1.60 ± 0.83 1.50 ± 0.61 0.420 

Maximum Lyapunov Exponent 

ML 0.24 ± 0.09 0.30 ± 0.10 0.088 0.25 ± 0.09 0.27 ± 0.12 0.391 

Acceleration Descriptive Statistics (g) 

Superior Max  0.27 ± 0.08 0.33 ± 0.08 0.001 0.23 ± 0.07 0.29 ± 0.09 0.001 

Superior Mean 0.11 ± 0.04 0.13 ± 0.03 0.002 0.10 ± 0.03 0.12 ± 0.03 0.005 

Superior SD 0.07 ± 0.02 0.08 ± 0.02 0.006 0.06 ± 0.02 0.08 ± 0.02 0.005 

Anterior Mean 0.14 ± 0.07 0.11 ± 0.05 0.106 0.15 ± 0.06 0.12 ± 0.06 0.014 

Right Max 0.27 ± 0.10 0.29 ± 0.10 0.179 0.25 ± 0.12 0.30 ± 0.12 0.003 

Right Mean 0.11 ± 0.05 0.13 ± 0.05 0.084 0.11 ± 0.05 0.13 ± 0.05 0.004 

Right SD 0.07 ± 0.02 0.08 ± 0.03 0.151 0.07 ± 0.03 0.08 ± 0.03 0.002 
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Table 5.10. Mean and SD of posterior pelvis accelerometer variables with a significant (p < 

0.05) ANOVA result for prospective fallers and non-fallers. Bold p-values indicate a significant 

difference between ST and DT conditions after correction for multiple comparisons.  

 Fallers Non-Fallers 

ST DT p ST DT p 

FFT Quartile (%) 

Vertical 32.9 ± 10.6 26.3 ± 9.4 0.014 34.8 ± 10.0 26.5 ± 9.1 <0.001 

AP 40.7 ± 8.5 37.4 ± 7.8 0.076 43.0 ± 9.8 40.0 ± 7.9 0.072 

ML 32.7 ± 11.4 29.5 ± 9.6 0.072 34.1 ± 10.6 29.3 ± 10.3 0.003 

Ratio of Even to Odd Harmonics 

Vertical 2.20 ± 0.84 2.00 ± 0.74 0.151 2.25 ± 0.85 1.94 ± 0.79 0.071 

AP 2.11 ± 0.76 1.86 ± 0.77 0.088 2.23 ± 0.86 1.90 ± 0.67 0.037 

Maximum Lyapunov Exponent 

ML 0.28 ± 0.12 0.24 ± 0.10 0.295 0.25 ± 0.11 0.21 ± 0.10 0.037 

Acceleration Descriptive Statistics (g) 

Superior Max  0.32 ± 0.08 0.30 ± 0.09 0.569 0.31 ± 0.10 0.28 ± 0.10 0.011 

Superior Mean 0.11 ± 0.03 0.09 ± 0.03 0.013 0.11 ± 0.03 0.09 ± 0.03 0.001 

Superior SD 0.08 ± 0.02 0.07 ± 0.02 0.045 0.08 ± 0.02 0.07 ± 0.02 <0.001 

Inferior Max 0.45 ± 0.09 0.41 ± 0.14 0.029 0.44 ± 0.13 0.37 ± 0.15 <0.001 

Inferior Mean 0.15 ± 0.03 0.14 ± 0.04 0.023 0.16 ± 0.05 0.13 ± 0.05 <0.001 

Inferior SD 0.12 ± 0.02 0.11 ± 0.03 0.032 0.12 ± 0.03 0.10 ± 0.04 <0.001 

Anterior Max 0.42 ± 0.12 0.37 ± 0.12 0.004 0.48 ± 0.17 0.38 ± 0.14 <0.001 

Anterior Mean 0.15 ± 0.04 0.13 ± 0.04 0.020 0.17 ± 0.06 0.14 ± 0.04 <0.001 

Anterior SD 0.12 ± 0.03 0.10 ± 0.03 0.001 0.13 ± 0.05 0.10 ± 0.04 <0.001 

Posterior Max 0.31 ± 0.10 0.27 ± 0.08 0.018 0.28 ± 0.12 0.25 ± 0.11 0.028 

Posterior Mean 0.12 ± 0.03 0.10 ± 0.03 0.004 0.11 ± 0.05 0.10 ± 0.04 0.011 

Posterior SD 0.08 ± 0.02 0.07 ± 0.02 0.015 0.07 ± 0.03 0.06 ± 0.03 0.005 

Right Max 0.40 ± 0.11 0.37 ± 0.15 0.053 0.38 ± 0.13 0.31 ± 0.12 <0.001 

Right Mean 0.13 ± 0.03 0.12 ± 0.04 0.050 0.13 ± 0.04 0.10 ± 0.03 <0.001 

Right SD 0.11 ± 0.03 0.10 ± 0.05 0.021 0.10 ± 0.03 0.08 ± 0.03 <0.001 

Left Max 0.40 ± 0.08 0.36 ± 0.09 0.068 0.39 ± 0.13 0.33 ± 0.14 <0.001 

Left Mean 0.13 ± 0.03 0.11 ± 0.03 0.005 0.13 ± 0.04 0.10 ± 0.04 <0.001 

Left SD 0.10 ± 0.02 0.09 ± 0.02 0.020 0.10 ± 0.03 0.08 ± 0.03 <0.001 
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Table 5.11. Mean and SD of right shank accelerometer variables with a significant (p < 0.05) 

ANOVA result for prospective fallers and non-fallers. Bold p-values indicate a significant 

difference between ST and DT conditions after correction for multiple comparisons.  

 Fallers Non-Fallers 

ST DT p ST DT p 

FFT Quartile (%) 

Vertical 38.6 ± 11.4 29.9 ± 10.2 0.006 39.3 ± 12.7 30.2 ± 10.9 <0.001 

AP 27.3 ± 8.1 20.7 ± 6.0 0.005 29.9 ± 8.8 22.1 ± 7.6 <0.001 

ML 25.9 ± 7.6 20.0 ± 6.3 0.002 28.2 ± 8.0 21.3 ± 6.4 <0.001 

Maximum Lyapunov Exponent 

AP 0.50 ± 0.15 0.43 ± 0.13 0.059 0.48 ± 0.15 0.43 ± 0.15 0.058 

Acceleration Descriptive Statistics (g) 

Superior Max  0.47 ± 0.18 0.46 ± 0.16 0.762 0.56 ± 0.19 0.48 ± 0.17 <0.001 

Superior Mean 0.15 ± 0.04 0.14 ± 0.04 0.600 0.18 ± 0.06 0.15 ± 0.05 0.010 

Superior SD 0.12 ± 0.04 0.12 ± 0.04 0.189 0.15 ± 0.05 0.12 ± 0.05 <0.001 

Inferior Max 0.74 ± 0.32 0.65 ± 0.27 0.014 0.82 ± 0.31 0.65 ± 0.24 <0.001 

Inferior Mean 0.21 ± 0.08 0.18 ± 0.07 0.001 0.22 ± 0.07 0.18 ± 0.07 <0.001 

Inferior SD 0.20 ± 0.09 0.16 ± 0.07 0.001 0.22 ± 0.08 0.17 ± 0.07 <0.001 

Anterior Max 1.58 ± 0.44 1.32 ± 0.40 0.004 1.71 ± 0.58 1.26 ± 0.60 <0.001 

Anterior Mean 0.40 ± 0.08 0.33 ± 0.08 0.001 0.44 ± 0.14 0.32 ± 0.13 <0.001 

Anterior SD 0.44 ± 0.13 0.34 ± 0.12 0.001 0.49 ± 0.18 0.34 ± 0.18 <0.001 

Posterior Mean 0.29 ± 0.07 0.28 ± 0.06 0.412 0.31 ± 0.09 0.28 ± 0.08 <0.001 

Right Max 0.57 ± 0.20 0.47 ± 0.16 0.007 0.61 ± 0.21 0.51 ± 0.19 <0.001 

Right Mean 0.17 ± 0.05 0.14 ± 0.05 0.011 0.18 ± 0.06 0.15 ± 0.06 0.001 

Right SD 0.15 ± 0.05 0.12 ± 0.04 0.002 0.16 ± 0.06 0.13 ± 0.05 <0.001 

Left Max 0.71 ± 0.33 0.64 ± 0.27 0.068 0.77 ± 0.31 0.62 ± 0.24 <0.001 

Left Mean 0.23 ± 0.11 0.20 ± 0.09 0.019 0.25 ± 0.10 0.19 ± 0.07 <0.001 

Left SD 0.22 ± 0.12 0.18 ± 0.09 0.002 0.24 ± 0.10 0.18 ± 0.08 <0.001 
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Table 5.12. Mean and SD of left shank accelerometer variables with a significant (p < 0.05) 

ANOVA result for prospective fallers and non-fallers. Bold p-values indicate a significant 

difference between ST and DT conditions after correction for multiple comparisons.  

 Fallers Non-Fallers 

ST DT p ST DT p 

FFT Quartile (%) 

Vertical 34.8 ± 12.9 28.9 ± 11.7 0.046 37.9 ± 12.7 29.6 ± 10.3 <0.001 

AP 26.4 ± 8.3 20.8 ± 7.0 0.005 28.4 ± 8.3 21.6 ± 7.1 <0.001 

ML 21.5 ± 7.4 17.3 ± 4.9 0.056 25.3 ± 8.6 19.5 ± 7.6 <0.001 

Ratio of Even to Odd Harmonics 

Vertical 1.27 ± 0.43 1.11 ± 0.25 0.056 1.17 ± 0.31 1.22 ± 0.40 0.482 

Maximum Lyapunov Exponent 

AP 0.48 ± 0.16 0.38 ± 0.16 0.011 0.45 ± 0.13 0.43 ± 0.15 0.544 

ML 0.38 ± 0.17 0.27 ± 0.14 0.003 0.37 ± 0.16 0.30 ± 0.15 0.010 

Acceleration Descriptive Statistics (g) 

Superior Max  0.70 ± 0.34 0.60 ± 0.26 0.015 0.71 ± 0.31 0.56 ± 0.26 <0.001 

Superior Mean 0.20 ± 0.06 0.17 ± 0.05 0.004 0.21 ± 0.08 0.17 ± 0.06 <0.001 

Superior SD 0.19 ± 0.09 0.16 ± 0.07 0.005 0.20 ± 0.09 0.15 ± 0.08 <0.001 

Inferior Max 0.82 ± 0.28 0.75 ± 0.23 0.027 0.85 ± 0.28 0.76 ± 0.26 0.001 

Inferior Mean 0.20 ± 0.06 0.18 ± 0.05 0.003 0.22 ± 0.07 0.18 ± 0.06 <0.001 

Inferior SD 0.21 ± 0.07 0.18 ± 0.06 0.003 0.23 ± 0.08 0.18 ± 0.07 <0.001 

Anterior Max 1.49 ± 0.45 1.22 ± 0.40 0.001 1.58 ± 0.41 1.25 ± 0.45 <0.001 

Anterior Mean 0.42 ± 0.11 0.32 ± 0.10 <0.001 0.45 ± 0.14 0.33 ± 0.12 <0.001 

Anterior SD 0.44 ± 0.15 0.34 ± 0.13 <0.001 0.47 ± 0.13 0.34 ± 0.14 <0.001 

Posterior Mean 0.28 ± 0.06 0.24 ± 0.06 <0.001 0.28 ± 0.08 0.26 ± 0.09 0.008 

Posterior SD 0.27 ± 0.08 0.25 ± 0.07 0.011 0.27 ± 0.08 0.27 ± 0.10 0.516 

Right Mean 0.21 ± 0.07 0.19 ± 0.05 0.068 0.20 ± 0.05 0.18 ± 0.05 <0.001 

Right SD 0.22 ± 0.09 0.20 ± 0.07 0.065 0.21 ± 0.06 0.19 ± 0.07 0.039 

Left Max 0.78 ± 0.33 0.67 ± 0.25 0.010 0.82 ± 0.33 0.65 ± 0.29 <0.001 

Left Mean 0.20 ± 0.07 0.17 ± 0.06 0.005 0.23 ± 0.09 0.18 ± 0.07 <0.001 

Left SD 0.20 ± 0.08 0.16 ± 0.07 0.004 0.22 ± 0.10 0.16 ± 0.08 <0.001 
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Table 5.13. Summary of accelerometer variables with significant differences between ST and 

DT gait conditions for prospective fallers  

Locations Variables with Significant Differences DT versus ST 
Head 
Left Shank 
Right Shank 

AP FFT Quartile 
DT < ST 

Pelvis 
Left Shank 
Right Shank 

Inferior mean 
Anterior maximum, mean, SD 
Left mean, SD 

DT < ST 

Head 
Right Shank 

Vertical FFT Quartile 
DT < ST 

Pelvis  
Left Shank 

Superior mean 
Posterior mean, SD 

DT < ST 

Pelvis 
Right Shank 

Right SD 
DT < ST 

Left Shank  
Right Shank 

Inferior maximum, SD 
DT < ST 

Head Superior maximum, mean, SD 
 

DT > ST 

Pelvis Posterior maximum DT < ST 

Right Shank ML FFT Quartile 

Right maximum, mean 

Left maximum 

DT < ST 

Left Shank AP Maximum Lyapunov exponents (MLEs) 

ML Maximum Lyapunov exponents (MLEs) 

Superior maximum, SD 

DT < ST 
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Table 5.14. Summary of accelerometer variables with significant differences between ST and 

DT gait conditions for prospective non-fallers  

Locations Variables with Significant Differences DT versus ST 
Head 
Pelvis 
Left Shank 
Right Shank 

Vertical FFT Quartile 
Anterior mean 
 

DT < ST 

Head 

Left Shank 

Right Shank 

AP FFT Quartile 

DT < ST 

Pelvis 

Left Shank 

Right Shank 

ML FFT Quartile 

Superior maximum, mean, SD 

Inferior maximum, mean, SD 

Anterior maximum, SD 

Posterior mean 

Right mean, SD 

Left maximum, mean, SD 

DT < ST 

Pelvis 

Left Shank 

ML Maximum Lyapunov exponents (MLEs) 
DT < ST 

Pelvis 

Right Shank 

Right maximum 
DT < ST 

Head Superior maximum, mean, SD 

Right maximum, mean, SD 
DT > ST 

Pelvis AP Ratio of even to odd harmonics (REOH) 

Posterior maximum, SD 
DT < ST 

 

5.3.2 Gait Differences between Fallers and Non-Fallers under Single-Task and Dual-Task 

Conditions 

5.3.2.1 Retrospective Fall Occurrence 

Significant differences were found between fallers and non-fallers for the head and 

posterior pelvis accelerometers. No other accelerometer locations had significant differences 

between fallers and non-fallers. Fallers had significantly greater head posterior standard 

deviation (p = 0.025) for ST gait. Fallers also had significantly decreased posterior pelvis AP 

REOH (p = 0.023) for ST gait and significantly greater posterior pelvis vertical MLE (p = 0.017) 

for DT gait.  

For pressure-sensing insole measures, no significant differences were found between RF 

and RNF for both DT and ST gait data.  
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5.3.2.2 Prospective Fall Occurrence 

Significant differences were found in accelerometer measures between fallers and non-

fallers. For the head accelerometer, AP FFT quartile was significantly lower (p = 0.011) for 

fallers than non-fallers for DT gait. For the left shank accelerometer, ML FFT quartile was 

significantly lower (p = 0.045) for fallers than non-fallers for ST gait. For the right shank 

accelerometer, superior maximum was significantly lower (p = 0.041) for fallers than non-fallers 

for ST gait.    

For pressure-sensing insoles, fallers had significantly lower CoV AP (p = 0.046) than 

non-fallers for DT gait. No significant differences were found between fallers and non-fallers for 

ST gait. 

5.3.3 Correlations between Wearable Sensor-derived Parameters and Gait Velocity 

For all participant groups (PF, PNF, RF, RNF), DT gait velocity was significantly lower 

(p ≤ 0.001) than ST gait velocity. For PF, DT gait velocity (0.95 ± 0.21 m/s) was significantly 

lower (p < 0.001) than ST (1.17 ± 0.16 m/s). For PNF, DT gait velocity (0.95 ± 0.23 m/s) was 

also significantly lower (p < 0.001) than ST (1.22 ± 0.23 m/s). For RF, DT gait velocity (0.95 ± 

0.28 m/s) was significantly lower (p = 0.001) than ST (1.24 ± 0.28 m/s). For RNF, DT gait 

velocity (0.95 ± 0.23 m/s) was also significantly lower (p < 0.001) than ST (1.20 ± 0.21 m/s). No 

significant differences were found between RF and RNF or between PF and PNF for ST or DT 

gait velocity (p ≥ 0.261). Table 5.15 reports correlations between gait velocity and pressure-

sensing insole and accelerometer measures. 

Table 5.15. Correlations (R
2
) between wearable sensor measures and gait velocity for ST and 

DT gait for all (n = 100) participants. Negligible (≤ 0.3), low (0.3 – 0.5), moderate (0.5 - 0.7), 

and high (0.7 – 0.9) correlation levels were determined [306]. * indicates a negative correlation 

to gait velocity.  

Wearable Sensor ST  DT  

Pressure-Sensing Insole Low 

Mean CoP Velocity (0.496) 

Median CoP Velocity (0.355) 

Cadence (0.354) 

Negligible 

I4 (0.250)* 

I1 (0.244)* 

I6 (0.133)* 

I7 (0.119)* 

Maximum CoP Velocity (0.065) 

Minimum CoP Velocity (0.054) 

Moderate 

Cadence (0.581) 

Median CoP Velocity (0.531) 

Mean CoP Velocity (0.526) 

I4 (0.418)* 

I1 (0.416)* 

Negligible 

I7 (0.276)* 

I6 (0.244)* 

Minimum CoP Velocity  (0.221) 

I5 (0.202)* 
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I5 (0.053)* 

I3 (0.046)* 

ML CoV (0.036) 

ML Deviation Duration (0.016)* 

Posterior Deviations per Stride (0.016)* 

ML Deviations per Stride (0.014) 

AP CoV (0.004)* 

Lateral Deviation Length (0.003)* 

Posterior Deviation Duration (0.003)* 

Posterior Deviation Length (0.001) 

Medial Deviation Length (0.001) 

I2 (<0.001) 

Posterior Deviations per Stride (0.143)* 

ML Deviation Duration (0.137)* 

AP CoV (0.115)* 

I3 (0.028)* 

Lateral Deviation Length (0.022)* 

Medial Deviation Length (0.012)* 

Posterior Deviation Length (0.001) 

Posterior Deviation Duration (0.001)* 

I2 (<0.001) 

ML Deviations per Stride (<0.001)* 

ML CoV (<0.001) 

Maximum CoP Velocity (<0.001) 
Head Accelerometer Moderate 

Vertical FFT Quartile (0.552) 

Negligible 

ML FFT Quartile (0.267) 

AP FFT Quartile (0.265) 

Anterior Standard Deviation (0.258) 

Inferior Maximum (0.236) 

Inferior Standard Deviation (0.236) 

Posterior Mean (0.227) 

Inferior Mean (0.214) 

Anterior Maximum (0.176) 

Left Standard Deviation (0.167) 

Posterior Standard Deviation (0.165) 

Anterior Mean (0.144) 

Left Maximum (0.116) 

Posterior Maximum (0.115) 

Right Standard Deviation (0.088) 

Right Maximum (0.073) 

Left Mean (0.069) 

Superior Standard Deviation (0.039) 

Superior Maximum (0.032) 

Right Mean (0.028) 

Superior Mean (0.015) 

Vertical MLE (0.009) 

AP Harmonic Ratio (0.009)* 

AP MLE (0.008)* 

ML Harmonic Ratio (0.005) 

ML MLE (0.005) 

Vertical Harmonic Ratio (<0.001) 

Low 

Posterior Standard Deviation (0.335)  

Vertical FFT Quartile (0.333) 

Negligible 

Left Standard Deviation (0.284) 

Posterior Mean (0.270) 

Inferior Mean (0.247) 

Posterior Maximum (0.245) 

Inferior Standard Deviation (0.223) 

Inferior Maximum (0.213) 

Left Maximum (0.209)  

Anterior Standard Deviation (0.147) 

Left Mean (0.137) 

Vertical Harmonic Ratio (0.114) 

Right Standard Deviation (0.106) 

AP FFT Quartile (0.099) 

Anterior Mean (0.091) 

Superior Maximum (0.074) 

Anterior Maximum (0.073) 

Right Maximum (0.070) 

ML FFT Quartile (0.059) 

ML MLE (0.059)* 

Superior Standard Deviation (0.057) 

AP Harmonic Ratio (0.054) 

Vertical MLE  (0.039) 

AP MLE (0.017)* 

Right Mean (0.015) 

Superior Mean (0.009) 

ML Harmonic Ratio (0.002)* 

Pelvis Accelerometer Low 

Vertical FFT Quartile (0.457) 

Left Mean (0.403) 

Inferior Mean (0.399) 

Anterior Mean (0.374) 

Right Mean (0.360) 

Anterior Standard Deviation (0.357) 

Anterior Maximum (0.345) 

Negligible 

Inferior Maximum (0.291) 

Inferior Standard Deviation (0.285) 

Left Standard Deviation (0.276) 

Posterior Standard Deviation (0.252) 

Right Standard Deviation (0.249) 

Posterior Maximum (0.243) 

Moderate 

Anterior Standard Deviation (0.565) 

Anterior Mean (0.536) 

Anterior Maximum (0.503) 

Low 

Left Mean (0.456) 

Left Standard Deviation (0.435) 

Inferior Mean (0.393) 

Inferior Standard Deviation (0.384) 

Superior Standard Deviation (0.374) 

Left Maximum (0.370) 

Inferior Maximum (0.357) 

Vertical FFT Quartile (0.353) 

Right Mean (0.319) 

Right Standard Deviation (0.315) 
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Superior Mean (0.234) 

Left Maximum (0.232)  

Right Maximum (0.219) 

Posterior Mean (0.208) 

Superior Standard Deviation (0.188) 

Superior Maximum (0.186) 

AP FFT Quartile (0.067) 

ML FFT Quartile (0.039) 

AP MLE (0.018)* 

Vertical MLE (0.009) 

ML MLE (0.007) 

Vertical Harmonic Ratio (0.007) 

ML Harmonic Ratio (0.005) 

AP Harmonic Ratio (0.003) 

 

Negligible 

Superior Maximum (0.295) 

Superior Mean (0.272) 

Posterior Standard Deviation (0.269) 

Posterior Maximum (0.254)  

Right Maximum (0.230) 

Posterior Mean (0.202) 

Vertical Harmonic Ratio (0.140) 

AP Harmonic Ratio (0.106) 

ML MLE (0.030) 

ML Harmonic Ratio (0.023)* 

ML FFT Quartile (0.015)* 

Vertical MLE (0.008) 

AP FFT Quartile (0.001) 

AP MLE (<0.001) 

Right Shank 

Accelerometer 

Moderate 

Anterior Mean (0.609) 

Anterior Standard Deviation (0.504) 

Low 

Right Standard Deviation (0.449)  

Anterior Maximum (0.442) 

Vertical FFT Quartile (0.425) 

Right Mean (0.380) 

ML FFT Quartile (0.355) 

AP FFT Quartile (0.316) 

Inferior Mean (0.305) 

Right Maximum (0.302) 

Negligible 

Inferior Standard Deviation (0.237) 

Posterior Mean (0.216) 

Inferior Maximum (0.173) 

Superior Standard Deviation (0.158) 

Posterior Maximum (0.150) 

Left Mean (0.118) 

Left Maximum (0.117) 

Superior Maximum (0.116) 

Posterior Standard Deviation (0.110) 

Left Standard Deviation (0.104) 

Superior Mean (0.101) 

AP Harmonic Ratio (0.070) 

ML Harmonic Ratio (0.068) 

ML MLE (0.027) 

Vertical Harmonic Ratio (0.025) 

Vertical MLE (0.020)* 

AP MLE (0.005) 

Moderate 

Anterior Mean (0.650) 

Anterior Standard Deviation (0.550) 

Anterior Maximum (0.504) 

Low 

Right Standard Deviation (0.487) 

Inferior Mean (0.442) 

Right Mean (0.436) 

AP FFT Quartile (0.412) 

Inferior Standard Deviation (0.403) 

Vertical FFT Quartile (0.391) 

Right Maximum (0.373) 

Superior Standard Deviation (0.372) 

ML FFT Quartile (0.358) 

Inferior Maximum (0.355) 

Left Standard Deviation (0.354) 

Left Maximum (0.330) 

Left Mean (0.306) 

Superior Maximum (0.306) 

Negligible 

Posterior Mean (0.251) 

Superior Mean (0.207) 

Posterior Standard Deviation (0.129) 

Posterior Maximum (0.121) 

AP MLE (0.114) 

ML MLE (0.107) 

ML Harmonic Ratio (0.042) 

Vertical Harmonic Ratio (0.026) 

AP Harmonic Ratio (0.007) 

Vertical MLE (0.001)* 

Left Shank 

Accelerometer 

Moderate 

Anterior Standard Deviation (0.503) 

Anterior Mean (0.501) 

Low 

Anterior Maximum (0.486) 

Inferior Mean (0.456) 

Left Mean (0.450) 

Inferior Standard Deviation (0.422) 

Left Standard Deviation (0.403) 

Posterior Mean (0.398) 

Left Maximum (0.347) 

High 

Anterior Mean (0.711) 

Moderate 

Anterior Standard Deviation (0.669) 

Anterior Maximum (0.566) 

Left Mean (0.528) 

Inferior Mean (0.515) 

Low 

Left Standard Deviation (0.464) 

Inferior Standard Deviation (0.449) 

Left Maximum (0.420) 
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Inferior Maximum (0.333) 

Vertical FFT Quartile (0.306) 

Negligible 

AP FFT Quartile (0.250) 

Superior Standard Deviation (0.232) 

ML FFT Quartile (0.214) 

Superior Mean (0.214) 

Posterior Standard Deviation (0.191) 

Superior Maximum (0.191) 

Right Standard Deviation (0.163) 

Right Maximum (0.158) 

Right Mean (0.151) 

Posterior Maximum (0.142) 

Vertical MLE (0.017)* 

AP MLE (0.005)* 

AP Harmonic Ratio (0.005)* 

ML Harmonic Ratio (0.005) 

Vertical Harmonic Ratio (0.005) 

ML MLE (0.002) 

Posterior Mean (0.307) 

Inferior Maximum (0.300) 

Negligible 

Superior Mean (0.269) 

Superior Standard Deviation (0.268) 

Vertical FFT Quartile (0.240) 

Superior Maximum (0.233) 

AP FFT Quartile (0.231) 

Right Standard Deviation (0.218) 

Right Mean (0.214) 

ML FFT Quartile (0.148) 

Posterior Standard Deviation (0.147) 

Right Maximum (0.128)  

Posterior Maximum (0.097) 

AP MLE (0.090) 

ML MLE (0.047) 

Vertical Harmonic Ratio (0.036) 

ML Harmonic Ratio (0.005) 

Vertical MLE (0.004)* 

AP Harmonic Ratio (<0.001) 

 

5.4 Discussion of Wearable Sensor-based Single-Task and Dual-Task Gait 

Assessment 

Wearable tri-axial accelerometers and pressure-sensing insoles could detect some 

differences between ST and DT gait in older adults. These differences included temporal and 

non-temporal parameters associated with impulse, movement frequency, abnormal foot 

movements, and body segment accelerations. For some measures, adding a cognitive load 

resulted in more variable and less stable gait, while other DT-related differences may represent 

elements of a conservative, compensatory gait strategy aimed at minimizing the impact of DT-

induced dynamic stability alterations. Differences between fallers and non-fallers were related to 

gait variability and dynamic stability.   

 Wearable sensors detected some differences between prospective fallers and non-fallers. 

Prospective fallers had significantly smaller AP first quartile frequencies at the head during DT, 

and smaller ML first quartile frequencies at the left shank during ST compared to prospective 

non-fallers. Since there was less low frequency content, fallers likely had more numerous higher-

frequency gait perturbations. These findings suggest that fallers exhibit dynamic stability issues 

related to high frequency gait perturbations that may increase their fall risk compared to non-

fallers. However, CoV AP during DT was significantly lower for fallers than non-fallers, 

suggesting decreased faller CoP path variability at the foot-shoe interface. This suggests that 
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fallers exhibit greater variability in body movements, such as at the pelvis and trunk, but lower 

variability at the foot-shoe interface, compared to non-fallers. Fallers also had lower maximum 

superior acceleration at the right shank during ST compared to non-fallers, which could also 

indicate reduced acceleration magnitude near the foot-shoe interface. Interestingly, gait speed, 

stride time CoV, and swing time CoV did not differ between fallers and non-fallers, while other 

studies used these measures to discriminate between fallers and non-fallers [31,32,255-259,307]. 

This could be due to differences between studies in the secondary task (physical vs. cognitive 

load, type of cognitive load) or older adult populations (community-dwelling, nursing home, 

disease population), which could also explain, in part, the lack of consensus on the usefulness of 

DT gait as a fall risk assessment tool. As suggested by Muir-Hunter and Wittwer, 2015 [253], 

differences in results and methodology between studies highlight the need to standardize DT 

assessment research, in part, by identifying the most appropriate secondary task [253]. 

 Significant differences between older adult retrospective fallers and non-fallers did not 

coincide with the significant differences between prospective fallers and non-fallers. In 

particular, retrospective fallers exhibited significantly greater head posterior SD during ST, less 

posterior pelvis AP REOH during ST, and greater posterior pelvis vertical MLE during DT 

compared to retrospective non-fallers. All of these differences are indicative of greater variability 

and less stability in retrospective faller gait compared to non-faller gait. In the prospective 

analysis, greater variability and less stability were indicated in faller gait by lower AP FFT (head 

accelerometer, DT) and lower ML FFT (left shank accelerometer, ST) compared to non-faller 

gait. Differences between retrospective and prospective faller analyses could be due to the 

limitations of using retrospective fall occurrence: inaccurate recall of falls and changes to gait 

patterns that occur between the fall and assessment either in an attempt to increase stability or as 

a result of fear of falling. This difference between retrospective and prospective analyses could 

also be because the sub-group of participants in the prospective analysis did not have a recent 

history of falls (i.e., were RNF only). Detecting fallers without a recent history of falls could 

require a different subset of fall-risk sensitive variables, because this population is less likely to 

have a fear of falling and is more likely to be relatively healthy and fit compared to a population 

with a fall history (RF).  

 Greater gait variability and CoP path deviations during DT gait compared to ST, detected 

by the wearable sensor-derived measures, indicated that DT gait challenged walking stability. 
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The number of posterior CoP stance phase path deviations (retrospective and prospective 

analyses) and duration of ML CoP stance phase path deviations (retrospective and prospective 

analyses) were significantly greater during DT walking, for both fallers and non-fallers. 

Although CoP path length deviations from the expected path were relatively short, these 

deviations represented potential instabilities and could increase the risk of falls. For retrospective 

analysis, greater DT variability was also expressed by greater stride time symmetry index; and 

greater stance path, stride time, and swing time CoV; except for ML stance path CoV for fallers 

and swing time CoV for non-fallers. For prospective analysis, greater DT variability was 

expressed by greater stride time CoV, greater AP and ML stance path CoV (non-fallers only), 

and greater stride time symmetry index. Greater stride time variability [33,250] and swing time 

variability [30,31] have been reported previously. Stride and swing time variability under DT 

conditions have been linked to impaired executive function in Parkinsonian populations [308]. 

Stance path CoV may also be an appropriate DT gait variability indicator, with the advantage of 

separating AP and ML variability. Greater CoP path CoV was more pronounced in the AP than 

ML direction, suggesting greater AP than sideways instability. FFT first quartile frequency was 

lower during DT gait for both retrospective and prospective analyses, indicating less low 

frequency content with a cognitive load. REOH (proportion of acceleration in-phase with stride 

frequency) also was lower with a cognitive load, indicating greater gait variability. REOH was 

significantly lower in the retrospective analysis for fallers in the vertical direction at the head and 

non-fallers in the AP and vertical direction for the head and posterior pelvis. For prospective 

analysis, REOH was significantly lower with a cognitive load for non-fallers in the AP direction 

for the posterior pelvis. Thus, novel parameters derived from wearable pressure-sensing insoles 

and accelerometers can detect greater variability during DT walking.  

 Gait velocity, cadence, and all CoP stance velocity measures, except maximum CoP 

stance velocity, were lower under DT conditions for both retrospective and prospective analyses. 

Stride time, stance time, and swing time were greater for retrospective and prospective analyses. 

These temporal results agree with the literature [30,31,33-35,247-251]. The swing time results of 

the research in this thesis were similar to Wild et al., 2013 [251] but not Hausdorff et al., 2008 

[30] and Springer et al., 2006 [31]. Body-weight normalized impulse increased with a cognitive 

load, for retrospective and prospective analyses, for all phases except I2 (first peak to minimum) 

and I3 (minimum to second peak). Since stance time increased (retrospective analysis: RF: 21%, 
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RNF 15%; prospective analysis: PF: 14%, PNF: 17%) to a greater extent than overall impulse 

(I7, retrospective analysis: RF: 18%, RNF 12%; prospective analysis: PF: 9%, PNF: 15%), 

greater stance time was likely the main contributor to greater impulse during DT. These temporal 

and impulse changes with DT gait may be part of a compensatory, conservative gait strategy 

aimed at maintaining dynamic stability. 

DT acceleration maximum, mean, and SD decreases occurred along all axes for all 

accelerometer locations, compared to ST, with only the head having instances of greater 

acceleration for DT compared to ST for both retrospective and prospective analyses (Table 5.6, 

Table 5.7, Table 5.13, and Table 5.14). During DT gait, greater head accelerations during DT 

gait may be due to non-gait related movements that accompany the cognitive task during 

particularly attention demanding periods (e.g., struggling to think of another word that starts with 

the desired letter, researcher prompts to continue with cognitive task). Lower SDs at the pelvis 

and shanks indicated less variability with a cognitive load. Lower acceleration variability may 

indicate the adoption of a conservative stiffening strategy, where body motions are reduced to 

minimize centre of mass deviations [309], as part of a DT compensatory strategy. In the 

prospective analysis, lower SDs occurred more consistently for non-fallers compared to fallers, 

with smaller SD measured at the pelvis, left shank, and right shank for all axes except posterior. 

This may indicate that non-fallers are better than fallers at compensating for the increased DT 

demands by reducing acceleration variability.  

 Since lower walking velocity is widely reported for DT gait, wearable-sensor-derived 

measures should be independent of lower gait velocity. One left shank measure (anterior mean 

acceleration, R
2
 = 0.711) correlated highly to gait velocity. Five pressure sensing insole 

measures, one head accelerometer measure, three posterior pelvis measures, three right shank 

accelerometer measures, and five left shank accelerometer measures correlated moderately to 

gait velocity. Most measures had negligible correlations to gait velocity, indicating that most of 

the variability in these measures cannot be explained by gait velocity changes. Even for the few 

variables with non-negligible correlations to gait velocity, at least 29% of the variability cannot 

be explained by gait velocity changes. Since the wearable-sensor-derived measures provided 

information independent of lower gait velocity, these measures increase the understanding of 

DT-induced gait changes.  
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Cognitive task performance was not measured during DT performance. Therefore, 

participant prioritization of the cognitive or gait task could not be assessed and any 

inconsistencies in prioritization may have increased inter-individual variability. However, 

participants were encouraged to continue with the cognitive task when they visibly struggled or 

stopped listing words, preventing cognitive task abandonment. Individuals tend to prioritize 

motor tasks over cognitive tasks in DT scenarios [249,251], but prioritization across participants 

can vary, masking gait differences between fallers and non-fallers [310], and negatively affect 

fall risk prediction. Therefore, future studies should ensure that cognitive task performance is 

assessed during DT assessments. In addition to assessing single-task gait, single-task cognitive 

performance should also be evaluated to determine the dual task cost of the cognitive task.  

The ST and DT gait assessment revealed potentially useful measures of DT gait changes, 

highlighting the necessity of investigating measures related to movement frequency and 

abnormal body segment movements. Greater gait variability under DT conditions was evident 

from greater posterior and ML CoP stance path deviations and CoV, and decreased FFT quartiles 

and REOH. Lower gait velocity and lower pelvis and shank acceleration SDs could represent 

compensatory gait strategies aimed at countering this greater gait variability and thus 

maintaining stability. Differences between PF and PNF related to movement frequency and 

variability were identified. New measures acquired from wearable sensors could be used in DT 

gait assessment in point-of-care environments to evaluate gait deficits related to executive 

function, particularly attention allocation.  
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Chapter 6 Fall Prediction Models based on Full Feature Sets  

derived from Wearable Sensor Gait Data 

6.1 Objectives  

The objectives of the research on fall-risk prediction modelling were to: identify the best 

wearable sensor type, location, and combination to be included in fall-risk classification and 

prediction models; determine whether ST or DT gait data provided the best data for faller/non-

faller classification and prediction; evaluate naïve Bayesian classifiers, support vector machines, 

and neural networks as fall risk classifiers; and evaluate whether models based on wearable-

sensor gait data outperform models based on clinical assessment data or posturography data for 

older adult fall-risk classification and prediction. 

Outcomes from this research were published in PLOS One [311]. 

 Howcroft J, Lemaire ED, and Kofman J. Wearable-Sensor-Based Classification Models of 

Faller Status in Older Adults. PLOS One. 2016; 11(4): e0153240. 

6.2 Methods 

Three classifier models were assessed for fall risk predictive capability: multi-layer 

perceptron neural network (NN), naïve Bayesian (NB), and support vector machine (SVM). 

Retrospective and prospective fall occurrences were used separately as the classification 

criterion. For retrospective fall occurrence models, 75% of participant data (18 fallers, 57 non-

fallers) were used for training and 25% were used for testing (6 fallers, 19 non-fallers). For 

prospective fall occurrence models, 75% of participant data (21 fallers, 35 non-fallers) were used 

for training and 25% were used for testing (7 fallers, 12 non-fallers). A holdout validation 

method was selected instead of a cross validation, because holdout validation may be more 

appropriate when predicting elderly fall risk with relatively small sample sizes and ensures that 

training data is completely independent from testing data [312]. 

All models were developed with the Matlab R2010a standard model algorithms. The 

Neural Network Pattern Recognition Toolbox was used for NN development and supervised 

backpropagation training was performed using the Neural Network Training tool. NN with 5, 10, 

15, 20, and 25 nodes in a single hidden layer were evaluated. Neural networks between the best 

NN and the best of the two neighbouring NN were also evaluated. For example, if the 15-node 
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NN provided the best classification and the 20-node NN outperformed the 10-node NN, NN with 

16, 17, 18, and 19 nodes were also evaluated. Other models included linear and quadratic 

discriminant NB models, and SVM with polynomial kernels with degrees one to seven. 

In this section, fall prediction models were based on all gait variables derived from the 

wearable sensors, separately for ST and DT gait data. All possible sensor combinations (Table 

6.1) were evaluated using all 146 parameters (30 pressure insole parameters, 29 accelerometer 

parameters at 4 body locations). In addition, models were developed with static posturography 

data (see Chapter 4.0) and clinical assessment data: ABC score, CHAMPS derived activity 

frequency and calorie expenditure, 6MWT distance, ST and DT walk times, fear of falling levels.  

Model evaluation parameters included accuracy, specificity, sensitivity, positive 

predictive value (PPV), negative predictive value (NPV) [313], F1 score (harmonic mean of 

precision and sensitivity) [314], and Matthew’s Correlation Coefficient (MCC) [315]. F1 score 

was calculated as: 

2 2
1

2

PPV sensitivity TP
F

PPV sensitivity TP FP FN


 

  
  ,   (6.1) 

and MCC was calculated as: 

    

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


   
 ,     (6.2) 

where TP = true positive, TN = true negative, FP = false positive, and FN = false negative. A 

ranking method similar to Kendell et al., 2012 [316] was used to determine the best models. 

Each model evaluation parameter was ranked from best (1) to worst (n), and ranks for all model 

evaluation parameters were summed to identify the overall best model (lowest summed rank) 

(Figure 6.1).   
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Table 6.1. Summary of sensor combinations and total number of input parameters 

Sensor 

Combination 
Sensor Description 

Total 

parameters 
I pressure insole  30 
H accelerometer (head) 29 
P accelerometer (pelvis) 29 
LS accelerometer (left shank) 29 
RS accelerometer (right shank) 29 
H-P accelerometer (head, pelvis) 58 
H-LS accelerometer (head, left shank) 58 
H-RS accelerometer (head, right shank) 58 
P-LS accelerometer (pelvis, left shank) 58 
P-RS accelerometer (pelvis, right shank) 58 
LS-RS accelerometer (left shank, right shank) 58 
H-P-LS accelerometer (head, pelvis, left shank)  87 
H-P-RS accelerometer (head, pelvis, right shank) 87 
H-LS-RS accelerometer (head, left shank, right shank) 87 
P-LS-RS accelerometer (pelvis, left shank, right shank) 87 
H-P-LS-RS accelerometer (head, pelvis, left shank, right shank) 116 
I-H pressure insole; accelerometer (head) 59 
I-P pressure insole; accelerometer (pelvis) 59 
I-LS pressure insole; accelerometer (left shank) 59 
I-RS pressure insole; accelerometer (right shank) 59 
I-H-P pressure insole; accelerometer (head, pelvis) 88 
I-H-LS pressure insole; accelerometer (head, left shank) 88 
I-H-RS pressure insole; accelerometer (head, right shank) 88 
I-P-LS pressure insole; accelerometer (pelvis, left shank) 88 
I-P-RS pressure insole; accelerometer (pelvis, right shank) 88 
I-LS-RS pressure insole; accelerometer (left shank, right shank) 88 
I-H-P-LS pressure insole; accelerometer (head, pelvis, left shank) 117 
I-H-P-RS pressure insole; accelerometer (head, pelvis, right shank) 117 
I-H-LS-RS pressure insole; accelerometer (head, left shank, right shank) 117 
I-P-LS-RS pressure insole; accelerometer (pelvis, left shank, right shank) 117 
I-H-P-LS-RS pressure insole; accelerometer (head, pelvis, left shank, right 

shank) 
146 
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Figure 6.1. Flowchart of model development and ranking analysis for fall risk classification models without feature selection. 
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6.3 Results 

6.3.1 Fall Prediction Models based on Retrospective Fall Occurrence 

Of the best 45 wearable-sensor-based retrospective-fall-risk classifier models based on 

ST data (Table 6.2), the top four models (I-P SVM, I-H-P SVM, I-P NN, I-H-P-LS NN) tied for 

first place and achieved an accuracy of 84%, F1 score of 0.600, and MCC of 0.521. These 

models classified participants using support vector machines (degree 2 and 3) and neural 

networks (9 and 20 nodes) and included  combinations of 30 pressure insole variables, 29 head 

accelerometer variables, 29 pelvis accelerometer variables, and 29 left shank accelerometer 

variables. The fifth best model (H SVM), based on 29 head accelerometer variables, achieved an 

accuracy of 84% and the highest scores for F1 (0.667) and MCC (0.561) but relatively low 

specificity and PPV prevented this model from ranking higher. The head sensor-based models 

ranked the highest of the single-sensor models with two models ranking in the top six. No other 

single-sensor models ranked among the top 10. All 55 models (Table 6.2) achieved an MCC > 0, 

indicating that their performance was better than chance. One model based on static 

posturography (SP) data ranked in the top ten (tied for 6
th

), and the other SP models ranked 45
th

 

(tied), 50
th

 (tied, two models), and 53
rd

. The five models based solely on the collected clinical 

assessment (CA) data ranked 45
th

 (tied, two models), 50
th

 (tied), 54
th

 (tied, two models).  
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Table 6.2. Best 45 wearable-sensor-based retrospective-fall-risk classifier models based on ST 

gait data, best 5 clinical assessment models, and best 5 static posturography assessment models 

Sensors Model 

Type
 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 

F1 MCC SR 

I-H-P SVM-3 84.0 50.0 94.7 75.0 85.7 0.600 0.521 52 

I-H-P-LS NN-20 84.0 50.0 94.7 75.0 85.7 0.600 0.521 52 

I-P SVM-2 84.0 50.0 94.7 75.0 85.7 0.600 0.521 52 

I-P NN-9 84.0 50.0 94.7 75.0 85.7 0.600 0.521 52 

H SVM-2 84.0 66.7 89.5 66.7 89.5 0.667 0.561 54 

H SVM-4 84.0 33.3 100.0 100.0 82.6 0.500 0.525 68 

H-P-LS-RS NN-5 84.0 33.3 100.0 100.0 82.6 0.500 0.525 68 

I-H SVM-4 84.0 33.3 100.0 100.0 82.6 0.500 0.525 68 

I-P-LS SVM-2 84.0 33.3 100.0 100.0 82.6 0.500 0.525 68 

SP NN-10 84.0 33.3 100.0 100.0 82.6 0.500 0.525 68 

I-P-LS-RS NB-Q 80.0 83.3 78.9 55.6 93.8 0.667 0.554 91 

H NB-Q 80.0 50.0 89.5 60.0 85.0 0.545 0.421 109 

I-H-P-LS NN-25 80.0 50.0 89.5 60.0 85.0 0.545 0.421 109 

I-P NN-8 80.0 50.0 89.5 60.0 85.0 0.545 0.421 109 

LS-RS NN-23 80.0 50.0 89.5 60.0 85.0 0.545 0.421 109 

I-P NB-Q 76.0 83.3 73.7 50.0 93.3 0.625 0.497 133 

I-P-LS NB-Q 76.0 83.3 73.7 50.0 93.3 0.625 0.497 133 

H SVM-6 80.0 33.3 94.7 66.7 81.8 0.444 0.369 138 

H-LS-RS NN-15 80.0 33.3 94.7 66.7 81.8 0.444 0.369 138 

H-P SVM-3 80.0 33.3 94.7 66.7 81.8 0.444 0.369 138 

H-P NN-20 80.0 33.3 94.7 66.7 81.8 0.444 0.369 138 

I-H SVM-2 80.0 33.3 94.7 66.7 81.8 0.444 0.369 138 

I-H-P-LS SVM-2 80.0 33.3 94.7 66.7 81.8 0.444 0.369 138 

I-P-LS-RS NN-21 80.0 33.3 94.7 66.7 81.8 0.444 0.369 138 

LS-RS NN-25 80.0 33.3 94.7 66.7 81.8 0.444 0.369 138 

P NN-5 80.0 33.3 94.7 66.7 81.8 0.444 0.369 138 

P NN-25 80.0 33.3 94.7 66.7 81.8 0.444 0.369 138 

P-LS-RS NN-12 80.0 33.3 94.7 66.7 81.8 0.444 0.369 138 

I-P-RS NB-Q 72.0 83.3 68.4 45.5 92.9 0.588 0.445 165 

H-LS NB-Q 76.0 50.0 84.2 50.0 84.2 0.500 0.342 175 

H-P-LS NB-Q 76.0 50.0 84.2 50.0 84.2 0.500 0.342 175 

H-P-LS-RS NB-Q 76.0 50.0 84.2 50.0 84.2 0.500 0.342 175 

H SVM-7 80.0 16.7 100.0 100.0 79.2 0.286 0.363 189 

H-LS SVM-3 80.0 16.7 100.0 100.0 79.2 0.286 0.363 189 

H-P SVM-5 80.0 16.7 100.0 100.0 79.2 0.286 0.363 189 

LS SVM-1 80.0 16.7 100.0 100.0 79.2 0.286 0.363 189 

P SVM-7 80.0 16.7 100.0 100.0 79.2 0.286 0.363 189 

I-H-RS NB-Q 68.0 66.7 68.4 40.0 86.7 0.500 0.306 217 

I-P-LS NB-L 68.0 66.7 68.4 40.0 86.7 0.500 0.306 217 

H-LS-RS NB-Q 72.0 50.0 78.9 42.9 83.3 0.462 0.275 220 

H-P-RS NB-Q 72.0 50.0 78.9 42.9 83.3 0.462 0.275 220 

I-H-LS NB-Q 72.0 50.0 78.9 42.9 83.3 0.462 0.275 220 

I-H-LS-RS NB-Q 72.0 50.0 78.9 42.9 83.3 0.462 0.275 220 

I-H-P-LS NB-Q 72.0 50.0 78.9 42.9 83.3 0.462 0.275 220 
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CA NN-11 76.0 33.3 89.5 50.0 81.0 0.400 0.266 239 

CA NN-12 76.0 33.3 89.5 50.0 81.0 0.400 0.266 239 

H NN-15 76.0 33.3 89.5 50.0 81.0 0.400 0.266 239 

P NN-6 76.0 33.3 89.5 50.0 81.0 0.400 0.266 239 

SP SVM-5 76.0 33.3 89.5 50.0 81.0 0.400 0.266 239 

CA NN-10 72.0 33.3 84.2 40.0 80.0 0.364 0.187 292 

SP SVM-6 72.0 33.3 84.2 40.0 80.0 0.364 0.187 292 

SP SVM-7 72.0 33.3 84.2 40.0 80.0 0.364 0.187 292 

SP SVM-5 68.0 33.3 78.9 33.3 78.9 0.333 0.123 328 

CA SVM-1 72.0 16.7 89.5 33.3 77.3 0.222 0.081 332 

CA NN-9 72.0 16.7 89.5 33.3 77.3 0.222 0.081 332 

SR: Summed Ranking, CA: Clinical assessment measures, I: Pressure-sensing insole 

measures, H: Head accelerometer measures, SP: Static posturography measures, P: Pelvis 

accelerometer measures, LS: Left shank accelerometer measures, RS: Right shank 

accelerometer measures, NN: Neural network, NB: Naive Bayesian model, SVM: Support 

vector machine. 

Models: NN-a, where a is the number of nodes in the hidden layer; SVM-b, where b is the 

polynomial degree; NB-L is linear Naïve Bayesian and NB-Q is quadratic Naïve Bayesian.  

 

Of the best 45 wearable-sensor-based retrospective-fall-risk classifier models based on 

DT data (Table 6.3), the top model (P NN) achieved an accuracy of 80%, F1 score of 0.545, and 

MCC of 0.421. The second best model (I-P SVM-1) achieved an accuracy of 80%, the highest 

F1 score (0.706), and highest MCC (0.634), but its relatively low specificity and PPV prevented 

it from ranking first. All 55 models (Table 6.3) achieved an MCC > 0, indicating that their 

performance was better than chance. The pelvis sensor-based models ranked the highest of the 

single-sensor models, with three models ranking in the top ten. One model based on SP data 

ranked 3
rd

, and the other SP-based models ranked 13
th

 (tied), 27
th

 (tied, two models), and 49
th

 

(tied). The five models based solely on the collected CA data ranked 13
th

 (tied, two models), 27
th

 

(tied), 53
rd

 (tied, two models). 
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Table 6.3. Best 45 wearable-sensor-based retrospective-fall-risk classifier models based on DT 

gait data, best 5 clinical assessment models, and best 5 static posturography assessment models 

Sensors Model 

Type
 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 

F1 MCC SR 

P NN-7 80.0 50.0 89.5 60.0 85.0 0.545 0.421 49 

I-P SVM-1 80.0 100.0 73.7 54.5 100.0 0.706 0.634 51 

SP NN-10 84.0 33.3 100.0 100.0 82.6 0.500 0.525 57 

P NN-6 80.0 33.3 94.7 66.7 81.8 0.444 0.369 74 

LS NN-25 80.0 33.3 94.7 66.7 81.8 0.444 0.369 74 

I-P NN-14 80.0 33.3 94.7 66.7 81.8 0.444 0.369 74 

I-P NN-15 80.0 33.3 94.7 66.7 81.8 0.444 0.369 74 

I-H-P SVM-1 72.0 66.7 73.7 44.4 87.5 0.533 0.359 95 

I-P-RS SVM-1 72.0 66.7 73.7 44.4 87.5 0.533 0.359 95 

I-P-LS SVM-1 72.0 50.0 78.9 42.9 83.3 0.462 0.275 116 

P NN-10 72.0 50.0 78.9 42.9 83.3 0.462 0.275 116 

I-P NN-25 72.0 50.0 78.9 42.9 83.3 0.462 0.275 116 

CA NN11 76.0 33.3 89.5 50.0 81.0 0.400 0.266 132 

CA NN12 76.0 33.3 89.5 50.0 81.0 0.400 0.266 132 

SP SVM-5 76.0 33.3 89.5 50.0 81.0 0.400 0.266 132 

I-P SVM-5 76.0 33.3 89.5 50.0 81.0 0.400 0.266 132 

I-P NN-13 76.0 33.3 89.5 50.0 81.0 0.400 0.266 132 

I-LS NN-9 76.0 33.3 89.5 50.0 81.0 0.400 0.266 132 

I-H-P NN-15 76.0 33.3 89.5 50.0 81.0 0.400 0.266 132 

LS-RS SVM-6 80.0 16.7 100.0 100.0 79.2 0.286 0.363 149 

I-H-P-LS NN-23 80.0 16.7 100.0 100.0 79.2 0.286 0.363 149 

P NB-L 60.0 66.7 57.9 33.3 84.6 0.444 0.210 160 

H-P NB-L 60.0 66.7 57.9 33.3 84.6 0.444 0.210 160 

P SVM-3 68.0 50.0 73.7 37.5 82.4 0.429 0.217 181 

LS SVM-3 68.0 50.0 73.7 37.5 82.4 0.429 0.217 181 

P-RS SVM-1 68.0 50.0 73.7 37.5 82.4 0.429 0.217 181 

CA NN10 72.0 33.3 84.2 40.0 80.0 0.364 0.187 196 

SP SVM-6 72.0 33.3 84.2 40.0 80.0 0.364 0.187 196 

SP SVM-7 72.0 33.3 84.2 40.0 80.0 0.364 0.187 196 

P SVM-1 72.0 33.3 84.2 40.0 80.0 0.364 0.187 196 

I-P SVM-3 72.0 33.3 84.2 40.0 80.0 0.364 0.187 196 

I-P-LS SVM-3 72.0 33.3 84.2 40.0 80.0 0.364 0.187 196 

P-LS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 196 

P-RS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 196 

H-P-LS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 196 

H-P-RS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 196 

P-LS-RS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 196 

H-P-LS-RS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 196 

I-P NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 196 

I-H-P NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 196 

I-P-LS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 196 

I-P-RS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 196 

I-H-P-LS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 196 

I-P-LS-RS NB-L 56.0 66.7 52.6 30.8 83.3 0.421 0.165 196 
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P-LS NN-5 76.0 16.7 94.7 50.0 78.3 0.250 0.180 202 

I-H NN-7 76.0 16.7 94.7 50.0 78.3 0.250 0.180 202 

I-LS NN-5 76.0 16.7 94.7 50.0 78.3 0.250 0.180 202 

I-H-LS NN-9 76.0 16.7 94.7 50.0 78.3 0.250 0.180 202 

SP SVM-5 68.0 33.3 78.9 33.3 78.9 0.333 0.123 261 

P SVM-5 68.0 33.3 78.9 33.3 78.9 0.333 0.123 261 

RS SVM-1 68.0 33.3 78.9 33.3 78.9 0.333 0.123 261 

RS SVM-2 68.0 33.3 78.9 33.3 78.9 0.333 0.123 261 

CA SVM1 72.0 16.7 89.5 33.3 77.3 0.222 0.081 274 

CA NN9 72.0 16.7 89.5 33.3 77.3 0.222 0.081 274 

I NB-Q 72.0 16.7 89.5 33.3 77.3 0.222 0.081 274 

SR: Summed Ranking, CA: Clinical assessment measures, I: Pressure-sensing insole 

measures, H: Head accelerometer measures, SP: Static posturography measures, P: Pelvis 

accelerometer measures, LS: Left shank accelerometer measures, RS: Right shank 

accelerometer measures, NN: Neural network, NB: Naive Bayesian model, SVM: Support 

vector machine. 

Models: NN-a, where a is the number of nodes in the hidden layer; SVM-b, where b is the 

polynomial degree; NB-L is linear Naïve Bayesian and NB-Q is quadratic Naïve Bayesian.  

 

A comparison between the ten best ST and ten best DT models (Table 6.4) shows that all 

but one of the ST models outranked and thus clearly outperformed the DT models.  
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Table 6.4. Comparison across 10 best ST and 10 best DT gait based models for retrospective-

fall-risk classification 

Gait 

Data 
Sensors 

Model 

Type
 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 
F1 MCC SR 

ST   H SVM-2 84.0 66.7 89.5 66.7 89.5 0.667 0.561 33 

ST   I-P SVM-2 84.0 50.0 94.7 75.0 85.7 0.600 0.521 35 

ST   I-H-P SVM-3 84.0 50.0 94.7 75.0 85.7 0.600 0.521 35 

ST   I-P NN-9 84.0 50.0 94.7 75.0 85.7 0.600 0.521 35 

ST   I-H-P-LS NN-20 84.0 50.0 94.7 75.0 85.7 0.600 0.521 35 

ST   H SVM-4 84.0 33.3 100.0 100.0 82.6 0.500 0.525 44 

ST   I-H SVM-4 84.0 33.3 100.0 100.0 82.6 0.500 0.525 44 

ST   I-P-LS SVM-2 84.0 33.3 100.0 100.0 82.6 0.500 0.525 44 

ST   H-P-LS-RS NN-5 84.0 33.3 100.0 100.0 82.6 0.500 0.525 44 

DT I-P SVM-1 80.0 100.0 73.7 54.5 100.0 0.706 0.634 48 

ST   I-P-LS-RS NB-Q 80.0 83.3 78.9 55.6 93.8 0.667 0.554 49 

DT P NN-7 80.0 50.0 89.5 60.0 85.0 0.545 0.421 73 

DT P NN-6 80.0 33.3 94.7 66.7 81.8 0.444 0.369 84 

DT LS NN-25 80.0 33.3 94.7 66.7 81.8 0.444 0.369 84 

DT I-P NN-14 80.0 33.3 94.7 66.7 81.8 0.444 0.369 84 

DT I-P NN-15 80.0 33.3 94.7 66.7 81.8 0.444 0.369 84 

DT I-H-P SVM-1 72.0 66.7 73.7 44.4 87.5 0.533 0.359 85 

DT I-P-RS SVM-1 72.0 66.7 73.7 44.4 87.5 0.533 0.359 85 

DT I-P-LS SVM-1 72.0 50.0 78.9 42.9 83.3 0.462 0.275 102 

DT P NN-10 72.0 50.0 78.9 42.9 83.3 0.462 0.275 102 

SR: Summed Ranking, I: Pressure-sensing insole measures, H: Head accelerometer 

measures, P: Pelvis accelerometer measures, LS: Left shank accelerometer measures, RS: 

Right shank accelerometer measures, NN: Neural network, NB: Naive Bayesian model, 

SVM: support vector machine, ST: Single-task gait, DT: Dual-task gait. 

Models: NN-a, where a is the number of nodes in the hidden layer; SVM-b, where b is the 

polynomial degree; NB-Q is quadratic Naïve Bayesian.  

6.3.2 Fall Prediction Models based on Prospective Fall Occurrence 

Of the best 45 wearable-sensor-based prospective-fall-risk classifier models based on ST 

gait data (Table 6.5), the top model (H-RS, SVM-1) achieved an accuracy of 79%, the second 

highest F1 score (0.667), and the second highest MCC (0.535). The second best model (H-LS, 

NN-20) had similar scores, only slightly lower for accuracy, specificity, NPV, and MCC. The 

third best model (I-P-LS-RS, NN-10) achieved the highest F1 score (0.714) and an accuracy of 

78%, but its relatively low specificity and PPV prevented it from ranking higher. The fourth best 

model (H-RS, NN-18) achieved the highest MCC Score (0.567), but its relatively low sensitivity 

and NPV prevented it from ranking higher. All 55 models (Table 6.5) achieved an MCC > 0, 

indicating that their performance was better than chance. The head sensor-based models ranked 

the highest of the single-sensor models with one model ranking in the top ten. No CA-based or 
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SP-based models ranked in the top ten models. The five models based solely on the collected CA 

data ranked 15
th

, 24
th

, 34
th

 (tied), 43
rd

 (tied, two models). SP-based models ranked 22
nd

, 28
th

 

(tied), 46
th

, 50
th

, and 52
nd

.  

Table 6.5. Best 45 wearable-sensor-based prospective-fall-risk classifier models based on ST 

gait data, best 5 clinical assessment models, and best 5 static posturography assessment models 

Sensors Model 

Type
 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 

F1 MCC SR 

H-RS SVM-1 78.9 57.1 91.7 80.0 78.6 0.667 0.535 35 

H-LS NN-20 77.8 57.1 90.9 80.0 76.9 0.667 0.523 46 

I-P-LS-RS NN-10 77.8 71.4 81.8 71.4 81.8 0.714 0.532 51 

H-RS NN-18 78.9 42.9 100.0 100.0 75.0 0.600 0.567 65 

H-RS NN-20 73.7 71.4 75.0 62.5 81.8 0.667 0.454 75 

I-H-RS NN-20 73.7 71.4 75.0 62.5 81.8 0.667 0.454 75 

H NB-Q 73.7 57.1 83.3 66.7 76.9 0.615 0.420 78 

I-H-RS SVM-1 73.7 57.1 83.3 66.7 76.9 0.615 0.420 78 

H-RS NN-15 73.7 57.1 83.3 66.7 76.9 0.615 0.420 78 

I-H-RS NN-16 73.7 57.1 83.3 66.7 76.9 0.615 0.420 78 

I-LS SVM-3 72.2 57.1 81.8 66.7 75.0 0.615 0.403 106 

H-P-RS NN-10 72.2 57.1 81.8 66.7 75.0 0.615 0.403 106 

I-H-P-RS NN-8 72.2 57.1 81.8 66.7 75.0 0.615 0.403 106 

I-H-LS-RS NN-10 77.8 33.3 100.0 100.0 75.0 0.500 0.500 111 

CA SVM-4 73.7 42.9 91.7 75.0 73.3 0.545 0.408 113 

H-LS NB-L 72.2 42.9 90.9 75.0 71.4 0.545 0.396 133 

P-LS SVM-4 72.2 42.9 90.9 75.0 71.4 0.545 0.396 133 

I-P SVM-4 72.2 42.9 90.9 75.0 71.4 0.545 0.396 133 

P NN-14 72.2 42.9 90.9 75.0 71.4 0.545 0.396 133 

P-LS NN-16 72.2 42.9 90.9 75.0 71.4 0.545 0.396 133 

I-LS-RS NN-11 72.2 42.9 90.9 75.0 71.4 0.545 0.396 133 

SP SVM-2 68.4 71.4 66.7 55.6 80.0 0.625 0.368 142 

I-H-LS-RS NN-12 72.2 50.0 83.3 60.0 76.9 0.545 0.351 145 

CA SVM-3 73.7 28.6 100.0 100.0 70.6 0.444 0.449 156 

H-P-RS NB-L 66.7 71.4 63.6 55.6 77.8 0.625 0.342 157 

H-RS NB-L 68.4 57.1 75.0 57.1 75.0 0.571 0.321 167 

H-RS NB-Q 68.4 57.1 75.0 57.1 75.0 0.571 0.321 167 

I-H-LS-RS SVM-3 72.2 16.7 100.0 100.0 70.6 0.286 0.343 187 

SP SVM4 63.2 71.4 58.3 50.0 77.8 0.588 0.288 187 

H NB-L 63.2 71.4 58.3 50.0 77.8 0.588 0.288 187 

I SVM-1 63.2 71.4 58.3 50.0 77.8 0.588 0.288 187 

H-LS-RS NB-L 66.7 57.1 72.7 57.1 72.7 0.571 0.299 192 

LS SVM-3 66.7 57.1 72.7 57.1 72.7 0.571 0.299 192 

CA NN15 68.4 42.9 83.3 60.0 71.4 0.500 0.287 201 

I SVM-5 68.4 42.9 83.3 60.0 71.4 0.500 0.287 201 

I NN-15 68.4 42.9 83.3 60.0 71.4 0.500 0.287 201 

LS-RS SVM-5 66.7 14.3 100.0 100.0 64.7 0.250 0.304 224 

I-LS SVM-5 66.7 14.3 100.0 100.0 64.7 0.250 0.304 224 

H-LS-RS NB-Q 66.7 42.9 81.8 60.0 69.2 0.500 0.269 232 
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I-H-LS NB-L 66.7 42.9 81.8 60.0 69.2 0.500 0.269 232 

I-H-P-LS NB-L 66.7 42.9 81.8 60.0 69.2 0.500 0.269 232 

I-H-LS SVM-1 66.7 42.9 81.8 60.0 69.2 0.500 0.269 232 

CA NN-16 63.2 57.1 66.7 50.0 72.7 0.533 0.233 238 

CA NN-20 63.2 57.1 66.7 50.0 72.7 0.533 0.233 238 

I-H-RS NB-L 63.2 57.1 66.7 50.0 72.7 0.533 0.233 238 

SP SVM-6 57.9 71.4 50.0 45.5 75.0 0.556 0.209 245 

H-LS SVM-1 66.7 28.6 90.9 66.7 66.7 0.400 0.255 250 

I SVM-4 63.2 42.9 75.0 50.0 69.2 0.462 0.185 283 

I-RS SVM-1 63.2 42.9 75.0 50.0 69.2 0.462 0.185 283 

SP SVM-5 52.6 71.4 41.7 41.7 71.4 0.526 0.131 285 

RS NB-Q 57.9 57.1 58.3 44.4 70.0 0.500 0.150 295 

SP NN-6 63.2 28.6 83.3 50.0 66.7 0.364 0.141 303 

H-P-LS-RS NB-L 61.1 42.9 72.7 50.0 66.7 0.462 0.161 306 

H-P-LS-RS NB-Q 61.1 42.9 72.7 50.0 66.7 0.462 0.161 306 

H-P NB-Q 55.6 57.1 54.5 44.4 66.7 0.500 0.114 311 

SR: Summed Ranking, CA: Clinical assessment measures, I: Pressure-sensing insole 

measures, H: Head accelerometer measures, SP: Static posturography measures, P: Pelvis 

accelerometer measures, LS: Left shank accelerometer measures, RS: Right shank 

accelerometer measures, NN: Neural network, NB: Naive Bayesian model, SVM: Support 

vector machine. 

Models: NN-a, where a is the number of nodes in the hidden layer; SVM-b, where b is the 

polynomial degree; NB-L is linear Naïve Bayesian and NB-Q is quadratic Naïve Bayesian.  

 

Of the best 45 wearable-sensor-based prospective-fall-risk classifier models based on DT 

gait data (Table 6.6), the top three models (H-P-LS NN-10, H-P-LS NN-15, H-P-RS NN-24) 

achieved an accuracy of 78%, the second highest F1 score (0.750), and the second highest MCC 

(0.570). The fifth best model (H-P-LS-RS, NN-10) achieved the highest F1 score (0.778) and 

highest MCC (0.636), but its relatively low specificity and PPV prevented it from ranking 

higher. The pelvis sensor-based models ranked the highest of the single-sensor models with one 

model ranking in the top ten. No CA-based or SP-based models appeared in the top ten models. 

All 55 models (Table 6.6) achieved an MCC > 0, indicating that their performance was better 

than chance. The models based solely on the collected CA data ranked 17
th

, 24
th

, 27
th

, and 29
th

 

(tied, two models). The SP-based models ranked 18
th

, 22
nd

 (tied), 32
nd

, 46
th

, and 47
th

 (tied).  
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Table 6.6. Best 45 wearable-sensor-based prospective-fall-risk classifier models based on DT 

gait data, best 5 clinical assessment models, and best 5 static posturography assessment models 

Sensors Model 

Type
 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 

F1 MCC SR 

H-P-LS NN-10 77.8 85.7 72.7 66.7 88.9 0.750 0.570 30 

H-P-LS NN-15 77.8 85.7 72.7 66.7 88.9 0.750 0.570 30 

H-P-RS NN-24 77.8 85.7 72.7 66.7 88.9 0.750 0.570 30 

P NN-10 77.8 71.4 81.8 71.4 81.8 0.714 0.532 41 

H-P-LS-RS NN-10 77.8 100.0 63.6 63.6 100.0 0.778 0.636 52 

H-P NN-20 77.8 57.1 90.9 80.0 76.9 0.667 0.523 65 

P-RS NN-25 72.2 71.4 72.7 62.5 80.0 0.667 0.433 78 

I-P-RS NN-9 72.2 71.4 72.7 62.5 80.0 0.667 0.433 78 

P-RS SVM-3 72.2 85.7 63.6 60.0 87.5 0.706 0.484 81 

H-P-LS NN-5 72.2 85.7 63.6 60.0 87.5 0.706 0.484 81 

H-P-LS NN-13 72.2 85.7 63.6 60.0 87.5 0.706 0.484 81 

P NN-8 72.2 57.1 81.8 66.7 75.0 0.615 0.403 97 

P NN-25 72.2 57.1 81.8 66.7 75.0 0.615 0.403 97 

LS NN-21 72.2 57.1 81.8 66.7 75.0 0.615 0.403 97 

P-LS NN-20 72.2 57.1 81.8 66.7 75.0 0.615 0.403 97 

H-P-RS NN-21 72.2 57.1 81.8 66.7 75.0 0.615 0.403 97 

CA SVM4 73.7 42.9 91.7 75.0 73.3 0.545 0.408 121 

SP SVM2 68.4 71.4 66.7 55.6 80.0 0.625 0.368 123 

H-P-LS SVM-1 66.7 71.4 63.6 55.6 77.8 0.625 0.342 133 

I-LS SVM-2 66.7 71.4 63.6 55.6 77.8 0.625 0.342 133 

P-RS SVM-5 61.1 100.0 36.4 50.0 100.0 0.667 0.426 134 

H-P NB-Q 66.7 57.1 72.7 57.1 72.7 0.571 0.299 158 

SP SVM4 63.2 71.4 58.3 50.0 77.8 0.588 0.288 158 

CA SVM3 73.7 28.6 100.0 100.0 70.6 0.444 0.449 160 

H-P-RS SVM-3 61.1 71.4 54.5 50.0 75.0 0.588 0.255 170 

I-LS SVM-1 61.1 71.4 54.5 50.0 75.0 0.588 0.255 170 

CA NN15 68.4 42.9 83.3 60.0 71.4 0.500 0.287 176 

CA NN16 63.2 57.1 66.7 50.0 72.7 0.533 0.233 194 

CA NN20 63.2 57.1 66.7 50.0 72.7 0.533 0.233 194 

H NB-Q 68.4 28.6 91.7 66.7 68.8 0.400 0.268 196 

P-LS SVM-3 66.7 28.6 90.9 66.7 66.7 0.400 0.255 203 

SP SVM6 57.9 71.4 50.0 45.5 75.0 0.556 0.209 212 

P-LS SVM-1 61.1 57.1 63.6 50.0 70.0 0.533 0.204 216 

LS NB-L 55.6 71.4 45.5 45.5 71.4 0.556 0.169 228 

I-H-LS NB-Q 55.6 71.4 45.5 45.5 71.4 0.556 0.169 228 

I-H-P-RS NB-Q 55.6 71.4 45.5 45.5 71.4 0.556 0.169 228 

H-P-RS NB-Q 61.1 42.9 72.7 50.0 66.7 0.462 0.161 231 

H-LS-RS NB-Q 61.1 42.9 72.7 50.0 66.7 0.462 0.161 231 

LS SVM-6 61.1 42.9 72.7 50.0 66.7 0.462 0.161 231 

H-P SVM-2 61.1 42.9 72.7 50.0 66.7 0.462 0.161 231 

H-P SVM-4 61.1 42.9 72.7 50.0 66.7 0.462 0.161 231 

H-LS SVM-3 61.1 42.9 72.7 50.0 66.7 0.462 0.161 231 

LS-RS SVM-4 61.1 42.9 72.7 50.0 66.7 0.462 0.161 231 

P-LS-RS SVM-2 61.1 42.9 72.7 50.0 66.7 0.462 0.161 231 
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I-LS-RS SVM-2 61.1 42.9 72.7 50.0 66.7 0.462 0.161 231 

SP NN6 63.2 28.6 83.3 50.0 66.7 0.364 0.141 251 

SP SVM5 52.6 71.4 41.7 41.7 71.4 0.526 0.131 264 

RS NB-Q 52.6 71.4 41.7 41.7 71.4 0.526 0.131 264 

I-RS NB-Q 52.6 71.4 41.7 41.7 71.4 0.526 0.131 264 

I-H-RS NB-Q 52.6 71.4 41.7 41.7 71.4 0.526 0.131 264 

P-RS NB-Q 55.6 57.1 54.5 44.4 66.7 0.500 0.114 287 

I-P-LS-RS NB-Q 50.0 71.4 36.4 41.7 66.7 0.526 0.081 288 

P NB-Q 50.0 57.1 45.5 40.0 62.5 0.471 0.025 322 

P-LS NB-Q 50.0 57.1 45.5 40.0 62.5 0.471 0.025 322 

I-LS-RS NB-Q 50.0 57.1 45.5 40.0 62.5 0.471 0.025 322 

SR: Summed Ranking, CA: Clinical assessment measures, I: Pressure-sensing insole 

measures, H: Head accelerometer measures, SP: Static posturography measures, P: Pelvis 

accelerometer measures, LS: Left shank accelerometer measures, RS: Right shank 

accelerometer measures, NN: Neural network, NB: Naïve Bayesian model, SVM: Support 

vector machine. 

Models: NN-a, where a is the number of nodes in the hidden layer; SVM-b, where b is the 

polynomial degree; NB-L is linear Naïve Bayesian and NB-Q is quadratic Naïve Bayesian. 

 

A comparison between the ten best ST and ten best DT models (Table 6.7) shows that the 

best overall models were based on DT-gait data (H-P-LS NN-10, H-P-LS NN-15, H-P-RS NN-

24, and H-P-LS-RS NN-10). The best model based on ST-gait data tied for 5th with a DT pelvis-

only model.  
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Table 6.7. Comparison across 10 best ST and 10 best DT gait based models for prospective-fall-

risk classification 

Gait 

Data 

Sensors Model 

Type
 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 

F1 MCC SR 

DT H-P-LS NN-10 77.8 85.7 72.7 66.7 88.9 0.750 0.570 31 

DT H-P-LS NN-15 77.8 85.7 72.7 66.7 88.9 0.750 0.570 31 

DT H-P-RS NN-24 77.8 85.7 72.7 66.7 88.9 0.750 0.570 31 

DT H-P-LS-RS NN-10 77.8 100.0 63.6 63.6 100.0 0.778 0.636 39 

ST I-P-LS-RS NN-10 77.8 71.4 81.8 71.4 81.8 0.714 0.532 43 

DT P NN-10 77.8 71.4 81.8 71.4 81.8 0.714 0.532 43 

ST H-RS SVM-1 78.9 57.1 91.7 80.0 78.6 0.667 0.535 46 

ST H-LS NN-20 77.8 57.1 90.9 80.0 76.9 0.667 0.523 53 

DT H-P NN-20 77.8 57.1 90.9 80.0 76.9 0.667 0.523 53 

ST H-RS NN-18 78.9 42.9 100.0 100.0 75.0 0.600 0.567 68 

ST H-RS NN-20 73.7 71.4 75.0 62.5 81.8 0.667 0.454 73 

ST I-H-RS NN-20 73.7 71.4 75.0 62.5 81.8 0.667 0.454 73 

DT P-RS SVM-3 72.2 85.7 63.6 60.0 87.5 0.706 0.484 79 

DT H-P-LS NN-5 72.2 85.7 63.6 60.0 87.5 0.706 0.484 79 

ST H NB-Q 73.7 57.1 83.3 66.7 76.9 0.615 0.420 83 

ST I-H-RS SVM-1 73.7 57.1 83.3 66.7 76.9 0.615 0.420 83 

ST H-RS NN-15 73.7 57.1 83.3 66.7 76.9 0.615 0.420 83 

ST I-H-RS NN-16 73.7 57.1 83.3 66.7 76.9 0.615 0.420 83 

DT P-RS NN-25 72.2 71.4 72.7 62.5 80.0 0.667 0.433 87 

DT I-P-RS NN-9 72.2 71.4 72.7 62.5 80.0 0.667 0.433 87 

SR: Summed Ranking, I: Pressure-sensing insole measures, H: Head accelerometer 

measures, P: Pelvis accelerometer measures, LS: Left shank accelerometer measures, RS: 

Right shank accelerometer measures, NN: Neural network, SVM: Support vector machine, 

ST: Single-task gait, DT: Dual-task gait.  

Models: NN-a, where a is the number of nodes in the hidden layer; SVM-b, where b is the 

polynomial degree; NB-L is linear Naïve Bayesian and NB-Q is quadratic Naïve Bayesian.  

6.4 Discussion  

 Models derived from this analysis predicted retrospective fall occurrence (Section 6.3.1) 

and prospective fall occurrence (Section 6.3.2) with varying degrees of accuracy, sensitivity, and 

specificity. The large number of models assessed using different combinations of sensor-based-

measures, model types, and ST or DT gait data permitted determination of the optimal 

combination for fall risk prediction.  

 The posterior pelvis accelerometer provided the best single-sensor predictive capability, 

with at least one model ranking among the top ten for DT for both prospective and retrospective 

fall occurrence. The head accelerometer also performed well as a single-sensor model with at 

least one model ranking among the top ten for ST for both prospective and retrospective fall 

occurrence. The head location may have provided strong single-sensor results because it 
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provided measurements relevant to visual input and upper body stability. However, this sensor 

may not perform as well under DT conditions, during which non-gait related head movements 

may occur during attention demanding periods (e.g., struggling to think of another word that 

starts with the desired letter, researcher prompts to continue with cognitive task). This means the 

head location is also less likely to perform well in free-living environment assessments where the 

participant may experience DT conditions. The pelvis location, on the other hand, is less likely to 

experience non-gait related movements under DT conditions. In previous studies, the pelvis or 

lower back location was the most frequent sensor site for fall risk prediction models [184]. This 

location is intuitively appropriate since it is close to the body centre of mass. The pelvis location 

also allows unobtrusive and easy monitoring with a belt attached sensor or accelerometer-

equipped smartphone, and high user acceptance was found for a 20 day case-study with a lower 

back sensor [317]. The analysis presented in this thesis section is the first to compare the pelvis 

location directly with other locations (head, left shank, right shank) to show that an 

accelerometer located at the posterior pelvis is superior for DT fall risk prediction and is thus the 

preferred single-sensor location.  

While a single sensor is practical, the best fall risk prediction results were found with 

multiple sensors. For prospective fall occurrence, the top models (H-P-LS, H-P-RS) were based 

on DT gait data and achieved an accuracy of 78%, sensitivity of 86%, and specificity of 73%. 

The best single-sensor model for prospective fall classification used the pelvis accelerometer and 

also achieved an accuracy of 78%, sensitivity of 71%, and specificity of 82%. Therefore, the 

multi-sensor models performed better at faller classification and the single-sensor model 

performed better at non-faller classification. A DT model using both the left and right shank 

accelerometers, in combination with head and pelvis accelerometers (i.e., H-P-LS-RS), achieved 

100% sensitivity, which is desirable for a screening assessment tool because all fallers would be 

identified. However, the sensitivity results came at the cost of specificity, with the DT H-P-LS-

RS model achieving 64% specificity and DT H-P-LS and H-P-RS models achieving 73% 

specificity. For retrospective fall occurrence, the best models (I-P, I-H-P, I-P, I-H-P-LS) were 

based on ST gait data and achieved an accuracy of 84%, sensitivity of 50%, and specificity of 

95%. The best single-sensor model for retrospective fall classification used the head 

accelerometer and also achieved an accuracy of 84% with a sensitivity of 67% and a specificity 

of 89%. Therefore, for retrospective fall occurrence, the multi-sensor models performed better at 
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non-faller classification and the single-sensor model performed better at faller classification. 

While multi-sensor-based models ranked higher than their single-sensor-based model 

counterparts (Table 6.2, Table 6.6), the use of multiple sensors would increase cost and 

complexity for point-of-care implementation. Therefore, a single posterior pelvis accelerometer 

may be considered for prospective fall risk prediction if a lower cost and faster to implement 

assessment is desired.     

The comparison between ST and DT-gait-based models for prospective fall classification 

did not reveal a clearly superior gait assessment for fall risk prediction. This is in contrast to the 

results for retrospective fall classification where ST models outperformed DT models. For 

retrospective fall occurrence, some retrospective fallers may have developed fear of falling and 

reacted to the challenging DT condition by focusing on increasing stability and minimizing the 

impact of the secondary task, whereas other retrospective fallers may not have developed fear of 

falling and may have focused more on the cognitive task. This potential difference between 

retrospective fallers could have been the cause of the poorer DT classification performance 

compared to ST classification performance for retrospective fall risk. Retrospective fallers were 

excluded from the prospective groups, meaning that prospective fallers did not have a recent 

history of falls and were less likely to have differences in fear of falling [318] and reactions to 

the challenging DT condition. This difference between retrospective and prospective-based 

analyses emphasizes the importance of performing prospective analyses. There was no clearly 

superior gait assessment when predicting prospective fall occurrence with the top ST and DT-

gait-based models achieving the same accuracy (78%). This is in agreement with other studies 

that failed to find fall prediction improvement under DT conditions, compared to ST, in older 

adults [262,263]. Therefore, even when controlling for recent fall history and its potential 

negative impacts on fear of falling and DT prioritization, DT gait assessment did not provide a 

clear fall risk predictive improvement compared to ST gait assessment. 

Sensor-based models outperformed models based on the collected clinical assessment 

data for both retrospective and prospective fall classification. For prospective fall classification, 

clinical assessment-based models ranked 15
th

, 24
th

, 34
th

 (tied), 43
rd

 (tied, two models) for ST-

based models and 17
th

, 24
th

, 27
th

, and 29
th

 (tied, two models) for DT-based models. For 

retrospective fall classification, sensor-based models also outperformed clinical assessment-

based models, with clinical assessment-based models ranked 45
th

 (tied, two models), 50
th

 (tied), 
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54
th

 (tied, two models) for ST-based models and 13
th

 (tied, two models), 27
th

 (tied), 53
rd

 (tied, 

two models) for DT-based models. These results demonstrated the advantage of using wearable 

sensors when assessing fall risk compared to using only clinical assessments. Weiss et al., 2013 

[36], van Schooten et al., 2015 [37], and Rispens et al., 2015 [38] also found that sensor-based 

predictive models, or a combination of sensor and clinical assessments, improved fall risk 

prediction compared to clinical assessment alone. Therefore, the integration of wearable-sensors 

into point-of-care older adult fall risk assessments could improve fall risk identification. 

The clinical assessment-based models included features from the collected clinical 

assessment data (i.e., ABC, 6MWT distance, 25ft walk times, fear of falling, CHAMPS 

features). Other clinical assessments, such as BBS, TUG, CBMS, and other assessments, have 

shown sensitivity to older adult fall risk and their inclusion could have improved the clinical 

assessment-based model performance. Therefore, the wearable-sensor-based models 

outperformed models based on the collected clinical assessment data but may not have 

outperformed clinical assessment-based models that included additional clinical assessments.  

Sensor-based models also outperformed static posturography-based models for both 

retrospective and prospective fall classification. For prospective fall classification, static 

posturography-based models ranked 22
nd

, 28
th

 (tied), 46
th

, 50
th

, and 52
nd

 for ST-based models 

and 18
th

, 22
nd

 (tied), 32
nd

, 46
th

, and 47
th

 (tied) for DT-based models. For retrospective fall 

classification, sensor-based models also outperformed static posturography-based models, with 

static posturography-based models ranked 6
th

 (tied), 45
th

 (tied), 50
th

 (tied, two models), and 53
rd

 

for ST-based models and 3
rd

, 13
th

 (tied), 27
th

 (tied, two models), and 49
th

 (tied) for DT-based 

models. The static posturography assessments were based on standing balance under eyes open 

and eyes closed conditions, whereas the wearable sensors were used as part of a gait assessment. 

The gait assessment was a more challenging activity that assessed balance under dynamic 

conditions compared to static posturography, which assessed standing balance under stationary 

conditions. Dynamic walking balance requires integrated sensory inputs from visual, vestibular, 

and proprioceptive systems; appropriate neuromuscular coordination; and adequate muscle 

strength and joint mobility [68]. Therefore, a gait assessment may provide a more challenging 

and complete assessment of older adult fall risk than static posturography. Furthermore, the use 

of wearable sensors allows for gait assessment at the point-of-care.  
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Three different intelligent modeling techniques were assessed in this study: neural 

networks, naïve Bayesian classifiers, and support vector machines. For prospective fall 

classification, neural networks were used in 16 of the top ten ST and top ten DT gait-based 

models (Table 6.7), support vector machines were used in three, and naïve Bayesian were used in 

one. For retrospective fall classification, neural networks were used in nine of the top ten ST and 

top ten DT gait-based models (Table 6.4), support vector machines were used in ten, and naïve 

Bayesian were used in one. Therefore, neural networks appeared to consistently achieve strong 

modeling performance for older adult fall prediction with support vector machines also 

performing well. 

Wearable-sensor based models were able to predict prospective and retrospective fall 

occurrence in older adults and outperform the predictive ability of clinical assessment-based 

models and static posturography-based models. The best models were based on multi-sensor 

input that often involved the head, pelvis, or both accelerometers in combination with other 

sensors. Single-sensor gait assessments provided strong prospective and retrospective fall risk 

prediction, using the posterior pelvis accelerometer and head accelerometer, respectively. DT 

gait assessments performed slightly better than ST gait assessments for evaluating prospective 

fall risk of older adults. Neural networks and support vector machines appear to be more 

appropriate than naïve Bayesian classifiers for older adult fall risk prediction. Fall risk predictive 

models developed for point-of-care environments should be developed using multi-sensor DT 

gait assessment with the pelvis location considered if assessment is limited to one sensor. 
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Chapter 7 Fall Prediction Models based on Reduced Feature Sets 

derived from Wearable Sensor Gait Data 

7.1 Objectives  

In developing classification and prediction models, feature selection methods are often 

used in order to output a reduced feature set to avoid high computational costs, the “curse of 

dimensionality”, and to remove irrelevant features [319,320]. Reducing feature-space size 

reduces the risk of prediction-model over-fitting and may improve classification performance 

[320,321]. In this thesis research, feature selection methods were used to identify smaller feature 

sets for fall risk classification from large features sets derived from wearable accelerometer and 

pressure-sensing insole gait data and to evaluate whether including a feature selection step 

improves fall risk classification performance compared to classification without feature 

selection.  

7.2 Feature Selection Technique Background 

To reduce feature-space size, feature selection techniques are preferable to projection 

techniques (e.g. principal component analysis (PCA)) and compression techniques (e.g. 

information theory) because the original features are not altered [321]. Three main feature 

selection methods can be considered: filter, wrapper, and embedded. Filter methods focus on 

intrinsic data properties, with features scored on relevance [320,321]. Wrapper methods are 

tailored to a specific classification method and different feature subsets are tested with the 

chosen classifier to optimize performance [320,321]. Wrapper methods can achieve better 

performance than filter methods but are computationally expensive and can result in over-fitting 

[321]. Embedded methods are similar to wrapper methods but feature selection is built into the 

classifier construction, which reduces computational complexity compared to wrapper methods 

[321]. Caby et al., 2011 [190] used a wrapper feature selection method to reduce a wearable-

sensor-based feature space before using an intelligent classifier for fall risk prediction. While the 

wrapper approach is sound, this method ties the feature selection technique to a specific 

classifier, precluding evaluation of the feature subset across different classifier types. A 

classifier-independent, filter approach is preferred, because it permits direct comparisons 

between different classifiers and different feature sets, including a full feature set. CFS is a 
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supervised method that identifies a subset of features that are correlated with the class label (i.e. 

faller or non-faller) and uncorrelated with other parameters, and eliminates irrelevant and 

redundant features [320]. To identify the feature subset, CFS computes the subset’s heuristic 

measure of 'merit' based on pair-wise correlations [322,323].  

FCBF is a supervised method that identifies predominant features for classification and 

eliminates redundant features. This method avoids pair-wise correlation analysis between all 

relevant features, reducing computational complexity compared to CFS [324]. The feature subset 

is selected based on the symmetrical uncertainty [322].  

Relief-F is a supervised method that weights the parameter’s relative strength, and 

eliminates less relevant features without eliminating redundant features [319,322]. Relief-F is 

useful when evaluating parameters with interdependencies and noisy data sets [323].  

7.3 Methods 

Filter feature selection methods were selected because feature subsets from each filter 

method could be evaluated using three different classifiers, which would not be possible with 

wrapper or embedded methods. Furthermore, filter methods reduce the computational cost and 

reduce the risk of over-fitting [321]. Three filter feature selection methods were used: 

correlation-based feature selection (CFS), fast correlation based filter (FCBF), and Relief-F. CFS 

and FCBF both provide a minimum subset of features whereas Relief-F provides a ranking of 

features. 

The number of features to include in the Relief-F feature subset was determined using the 

runExperiment algorithm within the Arizona State University Feature Selection Repository 

(ASUFSR) [322], which evaluates increasingly larger feature subsets, by five-feature increments, 

until the entire feature set is included in the subset. Naïve Bayes (NB) and Support Vector 

Machine (SVM) were used as classifiers. The smallest feature subset that did not decrease 

accuracy, or at worst resulted in no more than a 5% decrease in accuracy from the full-feature 

set, was selected.  

Feature selection was performed as a pre-classification step on all features for all 31 

sensor combinations (Table 6.1) in Matlab R2010a using ASUFSR algorithms [322]. Pelvis 

accelerometer data were missing for two non-fallers (RNF and PNF) and left shank 

accelerometer data were missing for one non-faller (RNF and PNF) due to sensor power failure. 
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Following feature selection, three classifier models were used to assess each feature set: multi-

layer perceptron neural network (NN), NB, and SVM (as described in Section 6.2). 

Retrospective and prospective fall occurrences were used separately as the classification criterion 

(as described in Section 6.2). For retrospective fall occurrence models, 75% of participant data 

(18 fallers, 57 non-fallers) were used for training and 25% were used for testing (6 fallers, 19 

non-fallers). For prospective fall occurrence models, 75% of participant data (21 fallers, 35 non-

fallers) were used for training and 25% were used for testing (7 fallers, 12 non-fallers). For 

retrospective models, only ST gait-based models were considered, because ST models 

outperformed DT models (Section 6.5). Therefore, the top ten ST models from the analysis 

without feature selection, performed as described in Section 6.2, were used to compare to the top 

ST models with feature selection to evaluate the effects of including feature selection on 

classification performance. For prospective models, ST and DT gait-based models were 

considered, because both ST and DT models performed well (Section 6.5). Therefore, the top ten 

ST and DT models from the analysis without feature selection were compared to the top ST and 

DT models with feature selection to evaluate the effect of including feature selection on 

classification performance.  

Model evaluation parameters included accuracy, specificity, sensitivity, PPV, NPV [313], 

F1 score (harmonic mean of precision and sensitivity) [314], and MCC [315]. A ranking method 

similar to that used in Kendell et al., 2012 [316] was employed to determine the best models. 

Each model evaluation parameter was ranked from best (1) to worst (n), and ranks for all model 

evaluation parameters were summed to identify the overall best model (lowest summed rank) 

(Figure 7.1). 
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Figure 7.1. Flowchart of feature selection-based model development and ranking analysis. AV: All variable, FS: Feature selection, 

NB: Naïve Bayesian, NN: Neural network, SVM: Support vector machine.  
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7.4 Results 

7.4.1 Feature Selection Faller Classification Models based on Retrospective Fall 

Occurrence 

Nine feature subsets (eight Relief-F, one CFS, one FCBF: Table 7.1) were inputs for the 

twenty best models (Table 7.2). CFS and FCBF analyses outputted the same feature set (Feature 

Subset 9). The top fifteen models used Relief-F feature selection, with the top two models 

(Feature Subset 1, SVM-6 and SVM-7) including three insole measures and seven head 

accelerometer measures (Table 7.1). The top model (Feature Subset 1, SVM-7) achieved the 

highest accuracy (96%), sensitivity (100%), NPV (100%), F1 score (0.923) and MCC (0.901) 

and a specificity of 95%, and PPV of 86%. Two single-sensor-based models ranked 11
th

 (Feature 

Subset 5 with head accelerometer sensor, SVM-4; and Feature Subset 6 with pelvis 

accelerometer sensor, SVM-4), achieving an accuracy of 88%, sensitivity 67%, specificity 95%, 

PPV 80%, NPV 90%, F1 score 0.727, and MCC 0.656. The twenty best models using feature 

selection were compared to the ten best models generated using all combinations of variables 

(AV) but no feature selection (Chapter 6.3) (Table 7.2). The top fifteen models that used feature 

selection outperformed the best models that did not use feature selection.  
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Table 7.1. Feature-selection subsets based on ST gait data used as inputs for retrospective fall 

risk classification models 

Method Feature-Selection Subset Output Subset # 

Relief-F Insoles: Impulse I3, I6, and I7 

Head: Maximum, mean, standard deviation posterior acceleration 

Maximum, mean, standard deviation anterior acceleration 

Mean superior acceleration 

1 

Relief-F Pelvis: AP ratio of even to odd harmonics 

Maximum, mean, standard deviation left acceleration 

Left Shank: ML Lyapunov exponent 

2 

Relief-F Head: Vertical ratio of even to odd harmonics 

Mean, standard deviation posterior acceleration 

Pelvis: Maximum, standard deviation left acceleration 

3 

Relief-F Insole: Impulse I1, I3, I4, I6, I7 

Pelvis: ML FFT first quartile 

AP Lyapunov exponent  

Maximum, mean, standard deviation left acceleration 

4 

Relief-F Head: ML and vertical FFT first quartile 

Vertical ratio of even to odd harmonics 

ML Lyapunov exponent 

Maximum, mean, standard deviation right acceleration 

Maximum, mean, standard deviation posterior acceleration 

Maximum, mean, standard deviation anterior acceleration 

Maximum, mean superior acceleration 

5 

Relief-F Pelvis: ML FFT first quartile 

AP ratio of even to odd harmonics 

AP, ML, vertical Lyapunov exponent 

Maximum, mean, standard deviation left acceleration 

Maximum, standard deviation inferior acceleration 

6 

Relief-F Insole: Impulse I3, I6, I7 

Head: Maximum, mean, standard deviation posterior acceleration 

Pelvis: ML FFT first quartile 

AP Lyapunov exponent 

Maximum, mean left acceleration 

7 

Relief-F Pelvis: ML Lyapunov exponent  

Maximum, mean, standard deviation left acceleration 

Left Shank: ML Lyapunov exponent 

Maximum, standard deviation left acceleration 

Maximum, standard deviation superior acceleration 

Right Shank: AP, vertical ratio of even to odd harmonics 

AP, ML, vertical Lyapunov exponent 

Mean anterior acceleration 

8 

CFS/FCBF Pelvis: Standard deviation left acceleration 9 

I: Pressure-sensing insole measures, H: Head accelerometer measures, P: Pelvis 

accelerometer measures, LS: Left shank accelerometer measures, RS: Right shank 

accelerometer measures, AP: Anterior-posterior, ML: Medial-lateral, FFT: Fast Fourier 

Transform.  
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Table 7.2. Best twenty ST models based on retrospective fall occurrence with feature-selection 

and best ten all variable (AV) models based on retrospective fall occurrence. Feature subset 

numbers are defined in Table 7.1. For AV, feature set indicates the sensor and number of 

variables (in parentheses) in the subset.   

Method Feature Set 
Model 

Type
 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 
F1 MCC SR 

Relief-F 1 SVM-7 96.0 100.0 94.7 85.7 100.0 0.923 0.901 33 

Relief-F 1 SVM-6 92.0 83.3 94.7 83.3 94.7 0.833 0.781 43 

Relief-F 2 NN-15 88.0 50.0 100.0 100.0 86.4 0.667 0.657 44 

Relief-F 3 NN-21 88.0 50.0 100.0 100.0 86.4 0.667 0.657 44 

Relief-F 3 NN-23 88.0 50.0 100.0 100.0 86.4 0.667 0.657 44 

Relief-F 3 NN-25 88.0 50.0 100.0 100.0 86.4 0.667 0.657 44 

Relief-F 1 NN-21 88.0 50.0 100.0 100.0 86.4 0.667 0.657 44 

Relief-F 4 NN-9 88.0 50.0 100.0 100.0 86.4 0.667 0.657 44 

Relief-F 4 NN-21 88.0 50.0 100.0 100.0 86.4 0.667 0.657 44 

Relief-F 1 SVM-5 92.0 100.0 89.5 75.0 100.0 0.857 0.819 52 

Relief-F 5 SVM-4 88.0 66.7 94.7 80.0 90.0 0.727 0.656 65 

Relief-F 6 SVM-4 88.0 66.7 94.7 80.0 90.0 0.727 0.656 65 

Relief-F 7 NN-21 88.0 66.7 94.7 80.0 90.0 0.727 0.656 65 

Relief-F 3 SVM-3 88.0 83.3 89.5 71.4 94.4 0.769 0.693 68 

Relief-F 8 NB-Q 84.0 83.3 84.2 62.5 94.1 0.714 0.618 102 

AV H(29) SVM-4 84.0 33.3 100.0 100.0 82.6 0.500 0.525 104 

AV I(30),H(29) SVM-4 84.0 33.3 100.0 100.0 82.6 0.500 0.525 104 

AV 
I(30),P(29), 

LS(29) 
SVM-2 84.0 33.3 100.0 100.0 82.6 0.500 0.525 104 

AV 

H(29),P(29), 

LS(29), 

RS(29) 

NN-5 84.0 33.3 100.0 100.0 82.6 0.500 0.525 104 

CFS/ 

FCBF 
9 NN-8 84.0 33.3 100.0 100.0 82.6 0.500 0.525 104 

CFS/ 

FCBF 
9 NN-10 84.0 33.3 100.0 100.0 82.6 0.500 0.525 104 

AV H(29) SVM-2 84.0 66.7 89.5 66.7 89.5 0.667 0.561 107 

AV 

I(30),P(29), 

LS(29), 

RS(29) 

NB-Q 80.0 83.3 78.9 55.6 93.8 0.667 0.554 120 

AV I(30),P(29) SVM-2 84.0 50.0 94.7 75.0 85.7 0.600 0.521 121 

AV 
I(30),H(29), 

P(29) 
SVM-3 84.0 50.0 94.7 75.0 85.7 0.600 0.521 121 

AV I(30),P(29) NN-9 84.0 50.0 94.7 75.0 85.7 0.600 0.521 121 

AV 

I(30),H(29), 

P(29), 

LS(29) 

NN-20 84.0 50.0 94.7 75.0 85.7 0.600 0.521 121 

CFS/ 

FCBF 
9 NB-Q 76.0 66.7 78.9 50.0 88.2 0.571 0.418 157 

CFS/ 

FCBF 
9 SVM-2 80.0 33.3 94.7 66.7 81.8 0.444 0.369 176 

CFS/ 

FCBF 
9 SVM-3 80.0 33.3 94.7 66.7 81.8 0.444 0.369 176 

AV: All variables, I: Pressure-sensing insole measures, H: Head accelerometer measures, 

P: Pelvis accelerometer measures, LS: Left shank accelerometer measures, RS: Right 
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shank accelerometer measures, NN: Neural network, NB: Naive Bayesian model, SVM: 

support vector machine, SR: summed rank. 

Models: NN-a, where a is the number of nodes in the hidden layer; SVM-b, where b is the 

polynomial degree; NB-Q is quadratic Naïve Bayesian.  

7.4.2 Feature Selection Fall Prediction Models based on Prospective Fall Occurrence  

Twelve feature subsets (eleven Relief-F, one FCBF: Table 7.3) were inputs for the twenty 

best models (Table 7.4). The top thirteen models used Relief-F feature selection, with the top two 

models (Feature Subset 10, SVM-5 and SVM-7) including four insole measures and six left 

shank accelerometer measures. These top two models achieved the highest accuracy (94%), 

specificity (100%), PPV (100%), F1 score (0.923), and MCC (0.886) with sensitivity of 86% and 

NPV of 92%. Two models (Feature Subset 10, SVM-3 and Feature Subset 12, NN-16) achieved 

the highest sensitivity (100%) and NPV (100%) with an accuracy of 89%, specificity 82%, PPV 

78%, F1 score 0.875, and MCC 0.798. Two models (Feature Subset 11 with SVM-3 and SVM-4) 

had intermediate rankings between the models reported above, with accuracy 89%, sensitivity 

86%, and specificity 91%. One single-sensor-based model tied for seventh best model (Feature 

Subset 15 with pelvis accelerometer sensor, SVM-3), achieving an accuracy of 83%, sensitivity 

71%, specificity 91%, PPV 83%, NPV 83%, F1 score 0.769, and MCC 0.645. The twenty best 

models using feature selection were compared to the ten best models generated using all 

combinations of variables (AV) without feature selection (Chapter 6.4) (Table 7.4). The top 

thirteen models that used feature selection outperformed the best models that did not use feature 

selection.  
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Table 7.3. ST and DT feature-selection subsets used as inputs for prospective fall risk 

classification models  

Method 
Gait 

Data 
Feature-Selection Subset Output Subset # 

Relief-F ST Insoles: Posterior deviation duration 

ML CoP path stance phase CoV  

Impulse I1, I6 

Left Shank: ML FFT first quartile 

Maximum left acceleration 

Maximum, mean, standard deviation anterior acceleration 

Maximum superior acceleration 

10 

Relief-F DT Insoles: Median stance phase CoP velocity 

ML CoP path stance phase CoV 

Percent stance time 

Percent double support time 

Pelvis: AP Lyapunov exponent 

11 

Relief-F DT Head: AP and vertical FFT first quartile 

ML, vertical ratio of even to odd harmonics 

Mean right acceleration 

Mean, standard deviation inferior acceleration 

Maximum, standard deviation superior acceleration 

Pelvis: Maximum, standard deviation left acceleration 

Maximum, mean, standard deviation right acceleration 

Maximum, standard deviation posterior acceleration 

Mean anterior acceleration 

Maximum, mean, standard deviation inferior acceleration 

12 

Relief-F ST Insoles: Posterior deviation duration 

Minimum stance phase CoP velocity 

Stride time, stance time, swing time CoV 

Head: ML FFT first quartile 

AP ratio of even to odd harmonics 

Standard deviation left acceleration 

Maximum, mean, standard deviation anterior acceleration 

Maximum inferior acceleration 

Maximum superior acceleration 

Left Shank: ML FFT first quartile 

Maximum left acceleration 

Maximum, mean, standard deviation anterior acceleration 

Mean inferior acceleration 

Maximum superior acceleration 

13 

Relief-F ST Insole: Lateral deviation length 

ML deviation duration 

Minimum stance phase CoP velocity 

Pelvis: AP, vertical ratio of even to odd harmonics 

ML Lyapunov exponent 

Standard deviation left acceleration 

Maximum anterior acceleration 

Standard deviation inferior acceleration 

Maximum superior acceleration 

14 
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Relief-F DT Pelvis: AP Lyapunov exponent 

Maximum, standard deviation left acceleration 

Maximum, mean right acceleration 

Maximum, mean, standard deviation posterior acceleration 

Maximum, mean, standard deviation anterior acceleration 

Maximum, mean, standard deviation inferior acceleration 

Mean superior acceleration 

15 

Relief-F DT Left Shank: ML, vertical FFT first quartile 

AP, vertical Lyapunov exponent 

Right Shank: Mean posterior acceleration 

16 

Relief-F ST Insoles: Lateral deviation length 

ML deviation duration 
Minimum stance phase CoP velocity 

AP CoP path stance phase CoV  

Impulse I1 

Stride time CoV 

Head: AP ratio of even to odd harmonics 

Maximum, mean, standard deviation anterior acceleration 

Maximum, standard deviation superior acceleration 

Pelvis: ML ratio of even to odd harmonics 

ML, vertical Lyapunov exponent 

Mean, standard deviation left acceleration 

Standard deviation right acceleration 

Maximum posterior acceleration 

Maximum anterior acceleration 

Maximum superior acceleration 

Left Shank: ML FFT first quartile 

Maximum, standard deviation left acceleration 

Mean right acceleration 

Maximum, standard deviation anterior acceleration 

Standard deviation inferior acceleration 

Maximum, standard deviation superior acceleration 

Right Shank: ML, vertical Lyapunov exponent 

Maximum, mean, standard deviation left acceleration 

Maximum, standard deviation inferior acceleration 

Maximum, mean, standard deviation superior acceleration 

17 

FCBF DT Head: Standard deviation superior acceleration 18 

Relief-F DT Insole: Posterior deviation length 

Minimum, median stance phase CoP velocity 

Impulse I3 

Swing time CoV 

Head: Mean left acceleration 

Mean superior acceleration 

Left Shank: ML, vertical FFT first quartile 

AP, ML, vertical Lyapunov exponent 

Right Shank: Mean, standard deviation posterior acceleration 

Maximum anterior acceleration 

19 

Relief-F DT Head: Maximum, standard deviation superior acceleration 

Pelvis: Standard deviation left acceleration 

20 
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Standard deviation inferior acceleration 

Right Shank: ML ratio of even to odd harmonics 

Relief-F ST Pelvis: Vertical Lyapunov exponent 

Standard deviation left acceleration 

Left Shank: AP Lyapunov exponent 

Maximum left acceleration 

Mean right acceleration 

Standard deviation anterior acceleration 

Maximum superior acceleration 

Right Shank: ML Lyapunov exponent 

Standard deviation left acceleration 

Maximum inferior acceleration 

21 

I: Pressure-sensing insole measures, H: Head accelerometer measures, P: Pelvis 

accelerometer measures, LS: Left shank accelerometer measures, RS: Right shank 

accelerometer measures, AP: Anterior-posterior, ML: Medial-lateral, CoV: Coefficient of 

Variation, FFT: Fast Fourier Transform.  
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Table 7.4. Best twenty models using feature selection and best ten all variable (AV) models. 

Feature subsets are defined in Table 7.3. For AV, feature set indicates the gait data type (ST or 

DT), sensor and number of variables (in parentheses) in the subset. All models are based on 

prospective fall occurrence.  

Method Feature Set Model 

Type  

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 

F1 MCC SR 

Relief-F 10 SVM-5 94.4 85.7 100.0 100.0 91.7 0.923 0.886 13 

Relief-F 10 SVM-7 94.4 85.7 100.0 100.0 91.7 0.923 0.886 13 

Relief-F 11 SVM-3 88.9 85.7 90.9 85.7 90.9 0.857 0.766 34 

Relief-F 11 SVM-4 88.9 85.7 90.9 85.7 90.9 0.857 0.766 34 

Relief-F 10 SVM-3 88.9 100.0 81.8 77.8 100.0 0.875 0.798 49 

Relief-F 12 NN-16 88.9 100.0 81.8 77.8 100.0 0.875 0.798 49 

Relief-F 13 NB-L 83.3 71.4 90.9 83.3 83.3 0.769 0.645 66 

Relief-F 14 SVM-2 83.3 71.4 90.9 83.3 83.3 0.769 0.645 66 

Relief-F 13 NN-23 83.3 71.4 90.9 83.3 83.3 0.769 0.645 66 

Relief-F 15 SVM-3 83.3 71.4 90.9 83.3 83.3 0.769 0.645 66 

Relief-F 11 SVM-5 83.3 71.4 90.9 83.3 83.3 0.769 0.645 66 

Relief-F 16 SVM-7 83.3 71.4 90.9 83.3 83.3 0.769 0.645 66 

Relief-F 17 SVM-2 83.3 57.1 100.0 100.0 78.6 0.727 0.670 83 

AV 

DT:H(29), 

P(29), 

LS(29), 

RS(29) 

NN-10 77.8 100.0 63.6 63.6 100.0 0.778 0.636 100 

FCBF 18 NN-20 78.9 85.7 75.0 66.7 90.0 0.750 0.587 101 

AV 

DT:H(29), 

P(29), 

LS(29) 

NN-10 77.8 85.7 72.7 66.7 88.9 0.750 0.570 107 

AV 

DT:H(29), 

P(29), 

LS(29) 

NN-15 77.8 85.7 72.7 66.7 88.9 0.750 0.570 107 

AV 

DT:H(29), 

P(29), 

RS(29) 

NN-24 77.8 85.7 72.7 66.7 88.9 0.750 0.570 107 

Relief-F 19 NB-L 77.8 85.7 72.7 66.7 88.9 0.750 0.570 107 

Relief-F 20 SVM-3 77.8 85.7 72.7 66.7 88.9 0.750 0.570 107 

Relief-F 15 NN-5 77.8 85.7 72.7 66.7 88.9 0.750 0.570 107 

AV 
ST:H(29), 

RS(29) 
SVM-1 78.9 57.1 91.7 80.0 78.6 0.667 0.535 125 

AV 
ST:H(29), 

RS(29) 
NN-18 78.9 42.9 100.0 100.0 75.0 0.600 0.567 128 

AV 
ST:H(29), 

LS(29) 
NN-20 77.8 57.1 90.9 80.0 76.9 0.667 0.523 134 

AV 
DT:H(29), 

P(29) 
NN-20 77.8 57.1 90.9 80.0 76.9 0.667 0.523 134 

Relief-F 21 SVM-3 77.8 57.1 90.9 80.0 76.9 0.667 0.523 134 

Relief-F 21 SVM-4 77.8 57.1 90.9 80.0 76.9 0.667 0.523 134 

Relief-F 21 SVM-6 77.8 57.1 90.9 80.0 76.9 0.667 0.523 134 

AV 

ST:I(30), 

P(29), 

LS(29), 

RS(29) 

NN-10 77.8 71.4 81.8 71.4 81.8 0.714 0.532 139 

AV DT:P(29) NN-10 77.8 71.4 81.8 71.4 81.8 0.714 0.532 139 
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AV: All variables, ST: Single-task gait, DT: Dual-task gait, I: Pressure-sensing insole 

measures, H: Head accelerometer measures, P: Pelvis accelerometer measures, LS: Left 

shank accelerometer measures, RS: Right shank accelerometer measures, NN: Neural 

network, NB: Naive Bayesian model, SVM: support vector machine, SR: summed rank. 

Models: NN-a, where a is the number of nodes in the hidden layer; SVM-b, where b is the 

polynomial degree; NB-L is linear Naïve Bayesian 

7.5 Discussion  

The three feature selection techniques, CFS, FCBF, and Relief-F, successfully reduced 

the feature set from up to 146 features to a viable set containing as few as one feature. Models 

derived using the reduced feature sets outperformed models derived using the full feature set 

when predicting fall risk, demonstrating the benefits of feature selection methods when creating 

fall risk prediction models.  

The best feature selection technique for this application was Relief-F, used in the top 

thirteen models for prospective fall prediction and top fifteen models for retrospective fall 

classification. These results differed from other classification studies where CFS and FCBF 

provided the best feature subsets [324,325]. However, these studies were not classifying elderly 

fall risk and instead classified human activities such as sitting, standing, and stair walking [325] 

or benchmark data sets that included healthcare diagnoses and census data [324]. Relief-F feature 

selection has recognized strengths when dealing with noisy data sets and parameters with 

interdependencies [323]. These strengths may make it ideal for elderly fall risk classification 

where differences between fallers and non-fallers are often subtle and varied.  

The best two models for prospective faller classification (Feature Subset 10, SVM-5 and 

SVM-7) contained ten features, four pressure-sensing insole features and six left shank 

accelerometer features. These models achieved an accuracy of 94%, F1 score of 0.923, and MCC 

of 0.866. The pressure-sensing insole features were posterior deviation duration, ML CoP path 

stance phase CoV, I1, and I6. The left shank accelerometer features were ML FFT first quartile; 

maximum left acceleration; maximum, mean and standard deviation anterior acceleration; and 

maximum superior acceleration. Both ML CoP path stance phase CoV and ML FFT first quartile 

suggest that features related to ML variability are important in fall risk identification. ML 

stability is particularly critical for fall risk analysis, because decreased ML stability could 

increase the risk of a sideways fall and hip fracture. Falls cause 90% of hip fractures and, in the 

year following a hip fracture, 25% of older adults die, 76% experience a decline in mobility, 
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50% experience a decline in performance of activities of daily living, and 22% move to a nursing 

home [39]. Furthermore, all three anterior acceleration measures at the left shank appeared in the 

feature set, suggesting that accelerations in the direction of progression are important for fall risk 

prediction. 

While the best two models for prospective faller classification achieved strong 

performance, they did not achieve the best sensitivity results. With a sensitivity of 86%, if these 

top two models were used to screen older adults for fall risk, 14% of fallers would be missed and 

not identified for fall prevention programs. However, two models achieved 100% sensitivity, 

where all fallers were correctly identified: Features Subset 10, SVM-3 with four pressure-sensing 

insole features and six left shank accelerometer features; and Feature Subset 12, NN-16 with 

nine head accelerometer features and eleven pelvis accelerometer features (Table 7.3). A model 

with 100% sensitivity would make an excellent screening tool; however, with a PPV of 78%, 

22% of model-identified fallers would not be at risk of falling and could receive unneeded fall 

prevention services. The benefit of 100% sensitivity may be worth the 5% decrease in accuracy, 

18% decrease in specificity, and higher costs.  

The best model (Feature Subset 1, SVM-7) for retrospective faller classification 

contained ten features, 3 pressure-sensing insole features and seven head accelerometer features. 

This model achieved an accuracy of 96%, F1 score of 0.923, MCC of 0.901, and sensitivity of 

100%, making it an excellent tool for screening assessments because all fallers would be 

identified. This model compared well with the best faller classification results in the literature, 

with only Caby et al., 2011 [190] and Giansanti et al., 2008 [200] achieving better results (100% 

and 97% accuracy). The three pressure-sensing insole features were impulse measures. I3 and I6 

measured impulse during the second half of stance and I7 measured impulse during the entire 

stance phase. This indicated the importance of force magnitude and timing of force application 

during stance phase for fall risk identification, with fallers having lower I3, I6, and I7 impulse 

compared to non-fallers. The lower impulse could indicate reduced force application due to 

muscle weakness, which is a fall risk factor [26,326].  The head features were maximum, mean, 

and standard deviation for posterior and anterior acceleration, and mean superior acceleration. 

Head accelerations in the direction of progression were important for fall risk classification, with 

fallers having greater posterior and lower anterior acceleration compared to non-fallers.  
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While a multi-sensor-based model achieved the best performance for both retrospective 

and prospective faller classification, a single-sensor-based model may be desirable to reduce cost 

and complexity for clinical and long-term assessment. For prospective faller classification, the 

strongest single-sensor-based model (Feature Subset 15, SVM-3), using features from only a 

posterior pelvis accelerometer, was ranked 7th (Table 7.4). This model achieved an accuracy of 

83%, 71% sensitivity, 91% specificity, 83% PPV, 83% NPV, F1 score of 0.769, and MCC of 

0.645. The pelvis accelerometer location has benefits for ease of use, because this location 

allows unobtrusive and easy monitoring with a belt attached sensor or accelerometer-equipped 

smartphone, and high user acceptance was found for a 20-day case-study with a lower back 

sensor [317]. However, the pelvis accelerometer model had 11% lower accuracy, 15% lower 

sensitivity, and 9% lower specificity compared to the best multi-sensor-based model.  

For retrospective faller classification, two single-sensor-based models achieved the best 

single-sensor performance (ranked 11
th

, Table 7.2), head accelerometer alone (Feature Subset 5, 

SMV-4) and posterior pelvis accelerometer alone (Feature Subset 6, SVM-4). These single-

sensor models achieved an accuracy of 88%, sensitivity of 67%, specificity of 95%, PPV 80%, 

NPV 90%, F1 score 0.727, and MCC 0.656. The single-sensor models had 8% lower accuracy 

and 23% lower sensitivity compared to the best multi-sensor-based model. Therefore, for both 

retrospective and prospective faller classification, the added complexity and cost of a multi-

sensor-based system may be worth the increased fall risk predictive performance. 

Models with a feature subset performed better than models with a complete feature set, 

demonstrating the importance of including feature reduction when defining models for fall risk 

prediction. Feature selection techniques removed irrelevant features and improved predictive 

accuracy. Improved predictive accuracy is one of the expected advantages of feature selection 

[320,321,325].  

Feature selection provided models with smaller feature sets and improved fall risk 

prediction compared to fall risk prediction without feature selection. Relief-F provided the best 

feature subsets for fall risk classification. The best model for prospective faller classification was 

based on four pressure-sensing insole features and six left shank accelerometer features. The best 

model for retrospective faller classification was based on three pressure-sensing insole features 

and seven head accelerometer features. Viable single-sensor-based model performance was also 

achieved with posterior pelvis accelerometers, but with lower classification performance than the 
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best models. Feature selection, particularly Relief-F, should be considered as an important data 

analysis step in fall risk prediction using wearable sensors.  
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Chapter 8 Conclusion 

 This thesis evaluated wearable sensors as an older adult fall risk assessment tool. 

Wearable sensor-derived gait data were used successfully to identify differences between ST and 

DT gait in elderly individuals and to classify older adults based on retrospective and prospective 

fall occurrence. All the objectives for this thesis were met: 

Objective 1: Evaluate eyes open and eyes closed posturography in elderly people 

 For all participants (PNF, PF, PMF) measures sensitive to AP motion increased when 

visual input was removed, with the largest percent increases for PMF. For ML measures, CoP 

velocity increased with eyes closed for PNF and PF compared to eyes open. However, all ML 

measures for PMF increased with eyes closed. Since significant increases in ML range and ML 

RMS only occurred for PMF, ML balance control assessment with eyes closed may be 

particularly important for evaluating the risk of multiple falls (i.e., people at higher fall risk). 

Differences were found between prospective fallers and non-fallers for RQ AP range and 

RQ AP RMS and between prospective multi-fallers and non-fallers for eyes closed AP velocity, 

eyes closed VSM velocity, RQ AP velocity, and RQ VSM velocity. These results highlighted the 

importance of testing postural balance with and without visual input and calculating RQ to give 

the clearest indication of fall risk, for both single and multi-fallers, in an older adult population.  

For discriminating between PF and PNF, a clinical cut-off score of 1.68 for RQ AP range 

produced moderate faller classification results (63% accuracy, 71% sensitivity, 57% specificity) 

that were comparable to the posturography literature (Topper et al., 1993 [169] with 65% 

accuracy, 78% sensitivity, 46% specificity) but poorer than the best models identified in this 

thesis. 

For discriminating between PMF and PNF, a discriminant function with AP velocity EC, 

VSM velocity EC, RQ AP velocity, RQ VSM velocity and a cut-off score of 0.541 achieved 

good fall risk classification results with 85% accuracy, 50% sensitivity, and 89% specificity. 
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Objective 2: Evaluate ST and DT walking in elderly people using pressure-sensing insoles 

and accelerometers 

Greater gait variability and CoP path deviations during DT gait compared to ST gait, 

detected by the wearable sensor-derived measures, indicated that DT conditions challenged 

walking stability. The number of posterior CoP stance phase path deviations and duration of ML 

CoP stance phase path deviations was significantly higher during DT walking than for ST. These 

deviations represent potential instabilities. Greater gait variability during DT gait was also 

expressed by greater stride time CoV, greater AP and ML stance path CoV (PNF only), greater 

stride time symmetry index, lower FFT first quartile frequency, and lower ratio of even to odd 

harmonics. Greater stride time variability [33,250] has been reported previously.   

Gait velocity, cadence, and all CoP stance velocity measures, except maximum CoP 

stance velocity, were lower under DT conditions than for ST. These temporal results agree with 

the literature [30,31,33-35,247-251] and are likely part of a compensatory, conservative strategy 

aimed at maintaining dynamic stability under DT conditions. 

Lower standard deviations at the pelvis and shanks indicated less variability with a 

cognitive load. Lower acceleration variability may represent a conservative stiffening strategy, 

where body motions are reduced to minimize centre of mass deviations [309], as part of a DT 

compensatory strategy. In the prospective analysis, lower SDs occurred more consistently for 

non-fallers compared to fallers, with lower SD measured at the pelvis, left shank, and right shank 

for all axes except posterior. This may indicate that non-fallers are better than fallers at 

compensating for the increased DT demands by reducing acceleration variability. 

Differences between PF and PNF were identified for AP FFT first quartile (head 

accelerometer, DT gait), ML FFT first quartile (left shank accelerometer, ST gait), superior 

maximum acceleration (right shank accelerometer, ST gait), and coefficient of variation AP 

(pressure-sensing insoles, DT gait). Fallers had significantly smaller FFT first quartile 

frequencies than non-fallers, indicating less low frequency content and more numerous higher-

frequency gait perturbations. CoV AP during DT was significantly lower for fallers than non-

fallers, suggesting lower faller CoP path variability at the foot-shoe interface. This suggests that 

fallers exhibit greater variability in body movements, such as at the pelvis and trunk, but lower 

variability at the foot-shoe interface, compared to non-fallers. Fallers also had lower maximum 
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superior acceleration at the right shank during ST, which could also indicate reduced acceleration 

magnitude near the foot-shoe interface.   

Objective 3: Create and evaluate elderly fall risk prediction models using plantar pressure 

and accelerometer-based features 

The best model for prospective faller classification had ten input features (pressure-

sensing insole features: posterior deviation duration, ML CoP path stance phase CoV, I1, and  I6, 

left shank accelerometer features: ML FFT first quartile, maximum left acceleration, maximum 

superior, and maximum, mean, and standard deviation anterior acceleration) using a 5
th

 or 7
th

 

order polynomial support vector machine. This model achieved an accuracy of 94%, sensitivity 

86%, specificity 100%, F1 score 0.923, and MCC 0.866 and would provide clinically useful fall 

risk classification.  

100% sensitivity was achieved by two models: one with four pressure-sensing insole 

features and six left shank accelerometer features and a 3
rd

 order polynomial support vector 

machine and the other model used a 16-node neural network with nine input head accelerometer 

features (AP and vertical FFT first quartile; ML and vertical ratio of even to odd harmonics; 

mean right acceleration; mean and standard deviation inferior acceleration; maximum and 

standard deviation superior acceleration) and eleven input posterior pelvis accelerometer features 

(maximum and standard deviation left acceleration; maximum, mean, and standard deviation 

right acceleration; maximum and standard deviation posterior acceleration; mean anterior 

acceleration; maximum, mean, and standard deviation inferior acceleration). These models 

achieved an accuracy of 89%, sensitivity 100%, specificity 82%, F1 score 0.875, and MCC 

0.798.  

A single-sensor-based model may be desirable to reduce cost and complexity for clinical 

and long-term assessment. The best single-sensor-based model used a 3
rd

 order polynomial 

support vector machine and fifteen posterior pelvis accelerometer features (AP Lyapunov 

exponent; maximum and standard deviation left acceleration; maximum and mean right 

acceleration; maximum, mean, and standard deviation posterior acceleration; maximum, mean, 

and standard deviation anterior acceleration; maximum, mean, and standard deviation inferior 
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acceleration; and mean superior acceleration). This model achieved an accuracy of 83%, 

sensitivity 71%, specificity 91%, F1 score 0.769, and MCC 0.645.  

The best feature selection technique for elderly fall risk classification was Relief-F. 

Relief-F feature selection has recognized strengths when dealing with noisy data sets and 

parameters with interdependencies [323]. These strengths may make it ideal for elderly fall risk 

classification where differences between fallers and non-fallers are often subtle and varied.    

Sensor-based models outperformed clinical assessment-based models and posturography-

based models for both retrospective and prospective fall classification. These results demonstrate 

the advantage of using wearable sensors when assessing fall risk compared to using clinical 

assessments or posturography assessments. A gait assessment may provide a more challenging 

and complete assessment of older adult fall risk than static posturography or clinical assessments. 

Therefore, the integration of wearable-sensors into point-of-care older adult fall risk assessments 

could improve fall risk identification. 

8.1 Future Work 

The developed predictive models provide a binary classification of individuals as fallers 

and non-fallers. This may oversimplify the complex nature of fall risk populations. While 

designating individuals as "at fall risk" is important, it oversimplifies the complex fall risk issue. 

A finer fall risk categorization, such as an indication of the level of biomechanical fall risk, could 

aid clinicians in determining which individuals should receive limited health care resources. One 

approach would be to define criterion classifications for model development that are dependent 

on the type of falls that the participants experienced. For example, participants who only fell 

when there was a non-biomechanical condition that increased fall risk would be classified as at 

'Low Biomechanical Fall Risk'. Non-biomechanical conditions could include, but are not limited 

to, icy sidewalks, unexpected obstacle on the floor, or insufficient lighting. Participants who fell 

at least once due to a ground height change or floor surface (i.e. wood to carpet) change would 

be classified as at 'Medium Biomechanical Fall Risk'. Changes in ground height include uneven 

floor surface, stairs, ramps, and curbs. Participants who fell at least once in a level ground 

environment would be classified as at 'High Biomechanical Fall Risk'. Unfortunately, with only 

three participants classified as ‘High Biomechanical Fall Risk’, there was an insufficient sample 
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size to proceed with this level of analysis and faller classification. Study protocol continuation to 

obtain a larger sample size could allow classification of levels of biomechanical fall risk. 

In this thesis, wearable-sensor-based features, posturography-based features, and clinical 

assessment features were all evaluated separately as inputs to fall risk models. While this 

allowed for comparisons between these feature sets, models could be developed using features 

from all sources (i.e., wearable-sensor, posturography, and clinical). In addition, other readily 

available information, such as age, could be incorporated as model inputs. This could result in 

stronger model performance.  

The identified models and features in this thesis could also be tested with specific disease 

populations that have increased fall risk. These populations include Parkinson’s disease, diabetes 

with peripheral neuropathy, dementia, and stroke. The models developed for a general elderly 

population may not perform as well in disease-specific populations, which have specific risk 

factors that are unique to that disease. For example, diabetics with peripheral neuropathy have 

twice the fall risk compared to their peers [327] and have decreased lower extremity strength 

[327,328] and impaired joint proprioception [328], particularly at the ankle. Evaluating the 

developed models in disease populations to determine fall risk predictive performance and 

comparing this performance to models developed specifically for the disease-specific population 

would be useful in determining whether disease-specific models are necessary for accurate faller 

prediction or whether a model developed based on a general elderly population is sufficiently 

accurate for clinical diagnostic purposes. In addition to evaluating model performance on 

different disease-specific populations, the developed models could be tested on nursing-home-

dwelling and home-care-recipient older adult populations. Similar to the disease-specific 

populations, these older adult populations are at increased fall risk compared to community-

dwelling older adults (Section 2.1.3). In addition to evaluating the identified models on disease-

specific populations, the models should be re-tested on a new older adult population to validate 

model performance.  

Further examination of the derived wearable-sensor-features could also be performed to 

determine whether the features are more closely related to speed control versus dynamic 

stability. Features related to dynamic stability control that are weakly correlated to gait velocity 

would have greater clinical relevance, because they provide information that cannot be obtained 

through a simple gait velocity measurement.  
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While strong results were achieved based on level ground gait data, falls often occur in 

non-level ground environments where the environment itself contributes to the risk of falling. In 

this study, 33% of prospective falls occurred on stairs, suggesting that this environment in 

particular can challenge stability and balance in older adults. Therefore, it would be interesting to 

expand this work by assessing gait while walking up and down stairs. In addition, stair-based 

gait could be assessed in a dual-task scenario with either a physical load that ideally would 

obstruct or partially obstruct visual input of the stair or a cognitive load. 
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Appendix A: ANOVA Results 

Table A.1. Mixed-design ANOVA test results for pressure-sensing insole variables for 

retrospective fallers and non-fallers. Bold indicates a significant difference (p < 0.05) 

 Walking Condition Main 

Effect 
Faller Status Main Effect Interaction Effect 

CoP Path 

PD per Stride F(1,98) = 29.863, p < 0.001, 

η
2
 = 0.234  

F(1,98) = 0.427, p = 0.515, 

η
2
 = 0.004 

F(1,98) = 0.339, p = 0.562, 

η
2
 = 0.003 

PD Length (mm) F(1,98) = 2.489, p = 0.118,  

η
2
 = 0.025 

F(1,98) = 0.008, p = 0.931, 

η
2
 < 0.001 

F(1,98) = 1.274, p = 0.262, 

η
2
 = 0.013 

PD Duration (s) F(1,98) = 3.012, p = 0.086,  

η
2
 = 0.030 

F(1,98) = 0.891, p = 0.348, 

η
2
 = 0.009 

F(1,98) = 0.897, p = 0.346, 

η
2
 = 0.009 

Medial Deviations per 

Stride (#) 

F(1,98) = 3.915, p = 0.051,  

η
2
 = 0.038 

F(1,98) = 0.774, p = 0.381, 

η
2
 = 0.008 

F(1,98) = 0.018, p = 0.893, 

η
2
 < 0.001 

Medial Deviation 

Length (mm) 

F(1,98) = 0.961, p = 0.329,  

η
2
 = 0.010 

F(1,98) = 0.278, p = 0.599, 

η
2
 = 0.003 

F(1,98) = 0.014, p = 0.906, 

η
2
 < 0.001 

Lateral Deviation 

Length (mm) 

F(1,98) = 0.357, p = 0.551,  

η
2
 = 0.004 

F(1,98) = 1.106, p = 0.295, 

η
2
 = 0.011 

F(1,98) = 3.242, p = 0.075, 

η
2
 = 0.032 

ML Deviation Duration 

(s) 
F(1,98) = 12.079, p = 0.001, 

η
2
 = 0.110 

F(1,98) = 2.627, p = 0.108, 

η
2
 = 0.026 

F(1,98) = 0.140, p = 0.709, 

η
2
 = 0.001 

Min CoP Vel (m/s) F(1,98) = 50.528, p < 0.001, 

η
2
 = 0.340 

F(1.98) = 1.411, p = 0.238, 

η
2
 = 0.014 

F(1,98) = 0.313, p = 0.577, 

η
2
 = 0.003 

Max CoP Vel (m/s) F(1,98) = 0.401, p = 0.528,  

η
2
 = 0.004 

F(1,98) = 1.525, p = 0.220, 

η
2
 = 0.015 

F(1,98) = 0.543, p = 0.463, 

η
2
 = 0.006 

Mean CoP Vel (m/s) F(1,98) = 98.514, p < 0.001, 

η
2
 = 0.501 

F(1,98) = 0.088, p = 0.768, 

η
2
 = 0.001 

F(1,98) = 1.128, p = 0.291, 

η
2
 = 0.011 

Median CoP Vel (m/s) F(1,98) = 116.078, p < 0.001, 

η
2
 = 0.542 

F(1,98) = 1.372, p = 0.244, 

η
2
 = 0.014 

F(1,98) = 1.015, p = 0.316, 

η
2
 = 0.010 

Temporal 

Cadence (steps/minute) F(1,98) = 90.242, p < 0.001, 

η
2
 = 0.479 

F(1,98) = 0.020, p = 0.887, 

η
2
 < 0.001 

F(1,98) = 0.200, p = 0.656, 

η
2
 = 0.002 

Stride Time (s) F(1,98) = 67.952, p < 0.001, 

η
2
 = 0.409 

F(1,98) = 0.004, p = 0.948, 

η
2
 < 0.001 

F(1,98) = 0.085, p = 0.772, 

η
2
 = 0.001 

Stance Time (s) F(1,98) = 63.568, p < 0.001, 

η
2
 = 0.393 

F(1,98) = 0.003, p = 0.956, 

η
2
 < 0.001 

F(1,98) = 1.490, p = 0.225, 

η
2
 = 0.015 

Swing Time (s) F(1,98) = 34.062, p < 0.001, 

η
2
 = 0.258 

F(1,98) = 0.017, p = 0.898, 

η
2
 < 0.001 

F(1,98) = 2.180, p = 0.143, 

η
2
 = 0.022 

Stride Time CoV F(1,98) = 18.939, p < 0.001, 

η
2
 = 0.162 

F(1,98) = 0.014, p = 0.907, 

η
2
 < 0.001 

F(1,98) = 0.644, p = 0.424, 

η
2
 = 0.007 

Stance Time CoV F(1,98) = 4.451, p = 0.037,  

η
2
 = 0.043 

F(1,98) = 0.036, p = 0.850, 

η
2
 < 0.001 

F(1,98) = 2.252, p = 0.137, 

η
2
 = 0.022 

Swing Time CoV F(1,98) = 2.827, p = 0.096,  

η
2
 = 0.028 

F(1,98) = 0.669, p = 0.416, 

η
2
 = 0.007 

F(1,98) = 4.343, p = 0.040, 

η
2
 = 0.042 

Percent Stance Time (%) F(1,98) = 9.039, p = 0.003,  

η
2
 = 0.084 

F(1,98) = 0.063, p = 0.803, 

η
2
 = 0.001 

F(1,98) = 8.060, p = 0.006, 

η
2
 = 0.076  

Percent Double-Support 

Time (%) 
F(1,98) = 9.108, p = 0.003,  

η
2
 = 0.085 

F(1,98) = 0.050, p = 0.823, 

η
2
 = 0.001 

F(1,98) = 8.739, p = 0.004, 

η
2
 = 0.082 

Stride Time Symmetry 

Index 
F(1,98) = 18.167, p < 0.001, 

η
2
 = 0.156 

F(1,98) = 0.007, p = 0.931, 

η
2
 < 0.001 

F(1,98) = 0.834, p = 0.363, 

η
2
 = 0.008 

CoP Path Stance Phase CoV 

CoV AP F(1,98) = 25.766, p < 0.001, 

η
2
 = 0.208 

F(1,98) = 0.592, p = 0.444, 

η
2
 = 0.006 

F(1,98) = 0.033, p = 0.855, 

η
2
 < 0.001 
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CoV ML F(1,98) = 5.853, p = 0.017,  

η
2
 = 0.056 

F(1,98) = 0.807, p = 0.371, 

η
2
 = 0.008 

F(1,98) = 1.158, p = 0.285, 

η
2
 = 0.012 

Impulse (Ns/kg) 

Foot-strike to first peak 

(I1) 
F(1,98) = 46.674, p < 0.001, 

η
2
 = 0.323 

F(1,98) = 0.092, p = 0.762, 

η
2
 = 0.001 

F(1,98) = 1.122, p = 0.292, 

η
2
 = 0.011 

First peak to min (I2) F(1,98) = 1.409, p = 0.238,  

η
2
 = 0.014 

F(1,98) < 0.001, p = 0.996, 

η
2
 < 0.001 

F(1,98) = 0.449, p = 0.504, 

η
2
 = 0.005 

Min to second peak (I3) F(1,98) = 4.988, p = 0.028,  

η
2
 = 0.048 

F(1,98) = 1.809, p = 0.182, 

η
2
 = 0.018 

F(1,98) = 0.034, p = 0.854, 

η
2
 < 0.001 

Second peak to foot-off 

(I4) 
F(1,98) = 33.335, p < 0.001, 

η
2
 = 0.254 

F(1,98) = 0.268, p = 0.606, 

η
2
 = 0.003 

F(1,98) = 0.496, p = 0.483, 

η
2
 = 0.005 

Foot-strike to min (I5) F(1,98) = 14.656, p < 0.001, 

η
2
 = 0.130 

F(1,98) = 0.018, p = 0.893, 

η
2
 < 0.001 

F(1,98) = 1.696, p = 0.196, 

η
2
 = 0.017 

Min to foot-off (I6) F(1,98) = 31.105, p < 0.001, 

η
2
 = 0.241 

F(1,98) = 1.170, p = 0.282, 

η
2
 = 0.012 

F(1,98) = 0.376, p = 0.541, 

η
2
 = 0.004 

Foot-strike to foot-off 

(I7) 
F(1,98) = 37.076, p < 0.001, 

η
2
 = 0.274 

F(1,98) = 0.306, p = 0.581, 

η
2
 = 0.003 

F(1,98) = 1.014, p = 0.316, 

η
2
 = 0.010 
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Table A.2. Mixed design ANOVA test results for head accelerometer variables for retrospective 

fallers and non-fallers. Bold indicates a significant difference (p < 0.05) 

 Walking Condition Main 

Effect 
Faller Status Main Effect Interaction Effect 

FFT Quartile (%) 

Vertical F(1,98) = 32.058, p <0.001,  

η
2
 = 0.246 

F(1,98) = 0.607, p = 0.438, 

η
2
 = 0.006 

F(1,98) < 0.001, p = 0.998, 

η
2
 < 0.001 

AP F(1,98) = 24.252, p <0.001,  

η
2
 = 0.198 

F(1,98) = 0.846, p = 0.360, 

η
2
 = 0.009 

F(1,98) = 0.130, p = 0.719, 

η
2
 = 0.001 

ML F(1,98) = 7.741, p = 0.006,  

η
2
 = 0.073 

F(1,98) = 3.027, p = 0.085, 

η
2
 = 0.030 

F(1,98) = 0.177, p = 0.675, 

η
2
 = 0.002 

Ratio of Even to Odd Harmonics 

Vertical F(1,98) = 21.021, p < 0.001, 

η
2
 = 0.177 

F(1,98) = 0.127, p = 0.723, 

η
2
 = 0.001 

F(1,98) = 5.387, p = 0.022, 

η
2
 = 0.052 

AP F(1,98) = 10.185, p = 0.002, 

η
2
 = 0.094 

F(1,98) = 0.101, p = 0.751, 

η
2
 = 0.001 

F(1,98) = 0.678, p = 0.412, 

η
2
 = 0.007 

ML F(1,98) = 6.296, p = 0.014,  

η
2
 = 0.060 

F(1,98) = 0.625, p = 0.431, 

η
2
 = 0.006 

F(1,98) = 2.491, p = 0.118, 

η
2
 = 0.025 

Maximum Lyapunov Exponent 

Vertical F(1,98) = 2.511, p = 0.116,  

η
2
 = 0.025 

F(1,98) = 0.002, p = 0.968, 

η
2
 < 0.001 

F(1,98) = 0.339, p = 0.562, 

η
2
 = 0.003 

AP F(1,98) = 0.866, p = 0.354,  

η
2
 = 0.009 

F(1,98) = 2.109, p = 0.150, 

η
2
 = 0.021 

F(1,98) = 0.345, p = 0.558, 

η
2
 = 0.004 

ML F(1,98) = 5.261, p = 0.024,  

η
2
 = 0.051 

F(1,98) = 0.506, p = 0.479, 

η
2
 = 0.005 

F(1,98) = 0.233, p = 0.630, 

η
2
 = 0.002 

Acceleration Descriptive Statistics (g) 

Superior Max  F(1,98) = 22.938, p < 0.001, 

η
2
 = 0.190 

F(1,98) = 0.202, p = 0.654, 

η
2
 = 0.002 

F(1,98) = 0.579, p = 0.448, 

η
2
 = 0.006 

Superior Mean F(1,98) = 15.467, p < 0.001, 

η
2
 = 0.136 

F(1,98) = 0.371, p = 0.544, 

η
2
 = 0.004 

F(1,98) = 0.235, p = 0.629, 

η
2
 = 0.002 

Superior SD F(1,98) = 10.793, p = 0.001, 

η
2
 = 0.099 

F(1,98) = 0.031, p = 0.861, 

η
2
 < 0.001 

F(1,98) = 0.635, p = 0.428, 

η
2
 = 0.006 

Inferior Max F(1,98) = 0.195, p = 0.660, 

η
2
 = 0.002 

F(1,98) = 0.889, p = 0.348, 

η
2
 = 0.009 

F(1,98) = 1.675, p = 0.199, 

η
2
 = 0.017 

Inferior Mean F(1,98) < 0.001, p = 0.984, 

η
2
 < 0.001 

F(1,98) = 0.454, p = 0.502, 

η
2
 = 0.005 

F(1,98) = 2.194, p = 0.142, 

η
2
 = 0.022 

Inferior SD F(1,98) = 0.015, p = 0.902, 

η
2
 < 0.001 

F(1,98) = 0.462, p = 0.498, 

η
2
 = 0.005 

F(1,98) = 3.558, p = 0.062, 

η
2
 = 0.035 

Anterior Max F(1,98) = 0.164, p = 0.686, 

η
2
 = 0.002 

F(1,98) = 1.250, p = 0.266, 

η
2
 = 0.013 

F(1,98) = 0.492, p = 0.485,  

η
2
 = 0.005 

Anterior Mean F(1,98) = 5.520, p = 0.021, 

η
2
 = 0.053 

F(1,98) = 2.102, p = 0.150, 

η
2
 = 0.021 

F(1,98) = 0.412, p = 0.523,  

η
2
 = 0.004 

Anterior SD F(1,98) = 1.603, p = 0.209, 

η
2
 = 0.016 

F(1,98) = 0.600, p = 0.440,  

η
2
 = 0.006 

F(1,98) = 0.056, p = 0.813, 

η
2
 = 0.001 

Posterior Max F(1,98) = 5.816, p = 0.018, 

η
2
 = 0.056 

F(1,98) = 1.882, p = 0.173, 

η
2
 = 0.019 

F(1,98) = 6.507, p = 0.012, 

η
2
 = 0.062 

Posterior Mean F(1,98) = 10.619, p = 0.002, 

η
2
 = 0.098 

F(1,98) = 2.576, p = 0.112, 

η
2
 = 0.026 

F(1,98) = 7.625, p = 0.007, 

η
2
 = 0.072 

Posterior SD F(1,98) = 10.770, p = 0.001,  

η
2
 = 0.099 

F(1,98) = 2.332, p = 0.130, 

η
2
 = 0.023 

F(1,98) = 7.782, p = 0.006, 

η
2
 = 0.074 

Right Max F(1,98) = 5.659, p = 0.019,  

η
2
 = 0.055 

F(1,98) = 0.305, p = 0.582, 

η
2
 = 0.003 

F(1,98) = 1.216, p = 0.273,  

η
2
 = 0.012 

Right Mean F(1,98) = 6.747, p = 0.011,  F(1,98) = 0.089, p = 0.766, F(1,98) = 0.744, p = 0.391,  
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η
2
 = 0.064 η

2
 = 0.001 η

2
 = 0.008 

Right SD F(1,98) = 5.876, p = 0.017, 

η
2
 = 0.057 

F(1,98) = 0.164, p = 0.686,  

η
2
 = 0.002 

F(1,98) = 1.865, p = 0.175, 

η
2
 = 0.019 

Left Max F(1,98) = 0.627, p = 0.430,  

η
2
 = 0.006 

F(1,98) = 0.944, p = 0.334,  

η
2
 = 0.010 

F(1,98) = 0.182, p = 0.670, 

η
2
 = 0.002 

Left Mean F(1,98) = 2.221, p = 0.139,  

η
2
 = 0.022 

F(1,98) = 0.341, p = 0.561, 

η
2
 = 0.003 

F(1,98) = 0.001, p = 0.974, 

η
2
 < 0.001 

Left SD F(1,98) = 1.018, p = 0.316,  

η
2
 = 0.010 

F(1,98) = 0.904, p = 0.344,  

η
2
 = 0.009 

F(1,98) = 1.018, p = 0.316,  

η
2
 = 0.010 

 

  



151 

 

Table A.3. Mixed-design ANOVA test results for posterior pelvis accelerometer variables for 

retrospective fallers and non-fallers. Bold indicates a significant difference (p < 0.05) 

 Walking Condition Main 

Effect 
Faller Status Main Effect Interaction Effect 

FFT Quartile (%) 

Vertical F(1,96) = 35.034, p < 0.001, 

η
2
 = 0.267  

F(1,96) = 0.004, p = 0.952, 

η
2
 < 0.001 

F(1,96) = 0.051, p = 0.822, 

η
2
 = 0.001 

AP F(1,96) = 3.265, p = 0.074,  

η
2
 = 0.033 

F(1,96) = 2.800, p = 0.098, 

η
2
 = 0.028 

F(1,96) = 1.515, p = 0.221, 

η
2
 = 0.016 

ML F(1,96) = 11.396, p = 0.001, 

η
2
 = 0.106 

F(1,96) = 0.406, p = 0.526, 

η
2
 = 0.004 

F(1,96) = 0.121, p = 0.729, 

η
2
 = 0.001 

Ratio of Even to Odd Harmonics 

Vertical F(1,96) = 4.690, p = 0.033,  

η
2
 = 0.047 

F(1,96) = 0.940, p = 0.335, 

η
2
 = 0.010 

F(1,96) < 0.001, p = 0.983, 

η
2
 < 0.001 

AP F(1,96) = 4.506, p = 0.036,  

η
2
 = 0.045 

F(1,96) = 5.451, p = 0.022, 

η
2
 = 0.054 

F(1,96) = 0.402, p = 0.528, 

η
2
 = 0.004 

ML F(1,96) = 2.611, p = 0.109,  

η
2
 = 0.026 

F(1,96) = 0.399, p = 0.529, 

η
2
 = 0.004 

F(1,96) = 0.179, p = 0.673, 

η
2
 = 0.002 

Maximum Lyapunov Exponent 

Vertical F(1,96) = 0.253, p = 0.616,  

η
2
 = 0.003 

F(1,96) = 0.834, p = 0.363, 

η
2
 = 0.009 

F(1,96) = 8.305, p = 0.005, 

η
2
 = 0.080 

AP F(1,96) = 0.001, p = 0.982,  

η
2
 < 0.001 

F(1,96) = 1.555, p = 0.215, 

η
2
 = 0.016 

F(1,96) = 0.181, p = 0.672, 

η
2
 = 0.002 

ML F(1,96) = 1.704, p = 0.195,  

η
2
 = 0.017 

F(1,96) = 0.727, p = 0.396, 

η
2
 = 0.008 

F(1,96) = 2.155, p = 0.145, 

η
2
 = 0.022 

Acceleration Descriptive Statistics (g) 

Superior Max  F(1,96) = 12.686, p = 0.001, 

η
2
 = 0.117 

F(1,96) = 0.137, p = 0.712, 

η
2
 = 0.001 

F(1,96) = 1.445, p = 0.232, 

η
2
 = 0.015 

Superior Mean F(1,96) = 23.146, p < 0.001, 

η
2
 = 0.194 

F(1,96) = 0.955, p = 0.331, 

η
2
 = 0.010 

F(1,96) = 0.141, p = 0.708, 

η
2
 = 0.001 

Superior SD F(1,96) = 22.859, p < 0.001, 

η
2
 = 0.192 

F(1,96) = 0.395, p = 0.531, 

η
2
 = 0.004 

F(1,96) = 0.841, p = 0.361, 

η
2
 = 0.009 

Inferior Max F(1,96) = 50.859, p < 0.001, 

η
2
 = 0.346 

F(1,96) = 0.011, p = 0.917, 

η
2
 < 0.001 

F(1,96) = 5.619, p = 0.020, 

η
2
 = 0.055 

Inferior Mean F(1,96) = 43.509, p < 0.001, 

η
2
 = 0.312 

F(1,96) = 0.183, p = 0.670, 

η
2
 = 0.002 

F(1,96) = 5.128, p = 0.026, 

 η
2
 = 0.051 

Inferior SD F(1,96) = 59.689, p < 0.001, 

η
2
 = 0.383 

F(1,96) = 0.002, p = 0.964, 

η
2
 < 0.001 

F(1,96) = 5.252, p = 0.024, 

η
2
 = 0.052 

Anterior Max F(1,96) = 50.172, p < 0.001, 

η
2
 = 0.343 

F(1,96) = 0.048, p = 0.828, 

η
2
 < 0.001 

F(1,96) = 2.462, p = 0.120, 

η
2
 = 0.025 

Anterior Mean F(1,96) = 25.683, p < 0.001, 

η
2
 = 0.211 

F(1,96) < 0.001, p = 0.999, 

η
2
 < 0.001 

F(1,96) = 0.791, p = 0.376, 

η
2
 = 0.008 

Anterior SD F(1,96) = 47.469, p < 0.001, 

η
2
 = 0.331 

F(1,96) = 0.240, p = 0.626, 

η
2
 = 0.002 

F(1,96) = 1.430, p = 0.235, 

η
2
 = 0.015 

Posterior Max F(1,96) = 14.851, p < 0.001, 

η
2
 = 0.134 

F(1,96) = 0.262, p = 0.610, 

η
2
 = 0.003 

F(1,96) = 0.781, p = 0.379, 

η
2
 = 0.008 

Posterior Mean F(1,96) = 17.948, p < 0.001, 

η
2
 = 0.158 

F(1,96) = 0.206, p = 0.651, 

η
2
 = 0.002 

F(1,96) = 0.878, p = 0.351, 

η
2
 = 0.009 

Posterior SD F(1,96) = 20.269, p < 0.001, 

η
2
 = 0.174 

F(1,96) = 0.209, p = 0.649, 

η
2
 = 0.002 

F(1,96) = 0.717, p = 0.399, 

η
2
 = 0.007 

Right Max F(1,96) = 42.893, p < 0.001, 

η
2
 = 0.309 

F(1,96) = 0.080, p = 0.777, 

η
2
 = 0.001 

F(1,96) = 3.702, p = 0.057, 

η
2
 = 0.037 

Right Mean F(1,96) = 47.848, p < 0.001, F(1,96) = 0.014, p = 0.906, F(1,96) = 4.884, p = 0.029, 
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η
2
 = 0.333 η

2
 < 0.001 η

2
 = 0.048 

Right SD F(1,96) = 48.650, p < 0.001, 

η
2
 = 0.336 

F(1,96) < 0.001, p = 0.994, 

η
2
 < 0.001 

F(1,96) = 4.122, p = 0.045, 

η
2
 = 0.041 

Left Max F(1,96) = 31.337, p < 0.001, 

η
2
 = 0.246 

F(1,96) = 0.060, p = 0.806, 

η
2
 = 0.001 

F(1,96) = 3.382, p = 0.069, 

η
2
 = 0.034 

Left Mean F(1,96) = 30.504, p < 0.001, 

η
2
 = 0.241 

F(1,96) = 0.002, p = 0.967, 

η
2
 < 0.001 

F(1,96) = 0.556, p = 0.458, 

η
2
 = 0.006 

Left SD F(1,96) = 51.562, p < 0.001, 

η
2
 = 0.349 

F(1,96) = 0.008, p = 0.928, 

η
2
 < 0.001 

F(1,96) = 4.257, p = 0.042, 

η
2
 = 0.042 
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Table A.4. Mixed-design ANOVA test results for right shank accelerometer variables for 

retrospective fallers and non-fallers. Bold indicates a significant difference (p < 0.05) 

 Walking Condition Main 

Effect 
Faller Status Main Effect Interaction Effect 

FFT Quartile (%) 

Vertical F(1,98) = 26.366, p < 0.001, 

η
2
 = 0.212 

F(1,98) = 0.751, p = 0.388, 

η
2
 = 0.008 

F(1,98) = 0.442, p = 0.508, 

η
2
 = 0.004 

AP F(1,98) = 44.719, p < 0.001, 

η
2
 = 0.313 

F(1,98) = 0.894, p = 0.347, 

η
2
 = 0.009 

F(1,98) = 0.014, p = 0.907, 

η
2
 < 0.001 

ML F(1,98) = 42.903, p < 0.001, 

η
2
 = 0.304 

F(1,98) = 1.975, p = 0.163, 

η
2
 = 0.020 

F(1,98) = 0.489, p = 0.486, 

η
2
 = 0.005 

Ratio of Even to Odd Harmonics 

Vertical F(1,98) = 2.261, p = 0.136,  

η
2
 = 0.023 

F(1,98) = 2.189, p = 0.142, 

η
2
 = 0.022 

F(1,98) = 0.005, p = 0.943, 

η
2
 = 0.000 

AP F(1,98) = 0.052, p = 0.821,  

η
2
 = 0.001 

F(1,98) = 0.453, p = 0.502, 

η
2
 = 0.005 

F(1,98) = 0.001, p = 0.981, 

η
2
 < 0.001 

ML F(1,98) = 1.076, p = 0.302,  

η
2
 = 0.011 

F(1,98) = 0.024, p = 0.878, 

η
2
 < 0.001 

F(1,98) = 1.363, p = 0.246, 

η
2
 = 0.014 

Maximum Lyapunov Exponent 

Vertical F(1,98) = 5.479, p = 0.021,  

η
2
 = 0.053 

F(1,98) = 0.173, p = 0.678, 

η
2
 = 0.002 

F(1,98) = 4.250, p = 0.042, 

η
2
 = 0.042 

AP F(1,98) = 1.015, p = 0.316,  

η
2
 = 0.010 

F(1,98) = 0.460, p = 0.499, 

η
2
 = 0.005 

F(1,98) = 2.392, p = 0.125, 

η
2
 = 0.024 

ML F(1,98) = 0.004, p = 0.949,  

η
2
 < 0.001 

F(1,98) = 0.294, p = 0.589, 

η
2
 = 0.003 

F(1,98) = 3.304, p = 0.072, 

η
2
 = 0.033 

Acceleration Descriptive Statistics (g) 

Superior Max  F(1,98) = 16.769, p < 0.001, 

η
2
 = 0.146  

F(1,98) = 0.501, p = 0.481, 

η
2
 = 0.005 

F(1,98) = 0.379, p = 0.540, 

η
2
 = 0.004 

Superior Mean F(1,98) = 14.403, p < 0.001, 

η
2
 = 0.128 

F(1,98) = 2.380, p = 0.126, 

η
2
 = 0.024 

F(1,98) = 0.561, p = 0.456, 

η
2
 = 0.006 

Superior SD F(1,98) = 24.338, p < 0.001, 

η
2
 = 0.199 

F(1,98) = 0.124, p = 0.726, 

η
2
 = 0.001 

F(1,98) = 0.528, p = 0.469, 

η
2
 = 0.005 

Inferior Max F(1,98) = 28.785, p < 0.001, 

η
2
 = 0.227 

F(1,98) = 0.001, p = 0.971, 

η
2
 < 0.001 

F(1,98) = 0.277, p = 0.600, 

η
2
 = 0.003 

Inferior Mean F(1,98) = 50.687, p < 0.001, 

η
2
 = 0.341 

F(1,98) = 0.123, p = 0.727, 

η
2
 = 0.001 

F(1,98) = 1.151, p = 0.286, 

η
2
 = 0.012 

Inferior SD F(1,98) = 47.224, p < 0.001, 

η
2
 = 0.325 

F(1,98) = 0.072, p = 0.789, 

η
2
 = 0.001 

F(1,98) = 0.077, p = 0.781, 

η
2
 = 0.001 

Anterior Max F(1,98) = 49.540, p < 0.001, 

η
2
 = 0.336 

F(1,98) = 0.177, p = 0.675, 

η
2
 = 0.002 

F(1,98) = 0.141, p = 0.709, 

η
2
 = 0.001 

Anterior Mean F(1,98) = 52.900, p < 0.001, 

η
2
 = 0.351 

F(1,98) = 0.134, p = 0.715, 

η
2
 = 0.001 

F(1,98) = 0.708, p = 0.402, 

η
2
 = 0.007 

Anterior SD F(1,98) = 54.765, p < 0.001, 

η
2
 = 0.358 

F(1,98) = 0.207, p = 0.650, 

η
2
 = 0.002 

F(1,98) = 0.164, p = 0.686, 

η
2
 = 0.002 

Posterior Max F(1,98) = 3.690, p = 0.058, 

η
2
 = 0.036 

F(1,98) = 0.001, p = 0.978,  

η
2
 < 0.001 

F(1,98) = 1.549, p = 0.216, 

η
2
 = 0.016 

Posterior Mean F(1,98) = 15.037, p < 0.001, 

η
2
 = 0.133 

F(1,98) = 0.009, p = 0.923, 

η
2
 < 0.001 

F(1,98) = 0.009, p = 0.924, 

η
2
 < 0.001 

Posterior SD F(1,98) = 3.046, p = 0.084, 

η
2
 = 0.030 

F(1,98) = 0.164, p = 0.686, 

η
2
 = 0.002 

F(1,98) = 0.234, p = 0.630, 

η
2
 = 0.002 

Right Max F(1,98) = 40.019, p < 0.001, 

η
2
 = 0.290 

F(1,98) = 0.279, p = 0.599, 

η
2
 = 0.003 

F(1,98) = 0.898, p = 0.346, 

η
2
 = 0.009 

Right Mean F(1,98) = 42.496, p < 0.001, F(1,98) = 0.139, p = 0.710, F(1,98) = 2.510, p = 0.116, 
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η
2
 = 0.302 η

2
 = 0.001 η

2
 = 0.025 

Right SD F(1,98) = 54.996, p < 0.001, 

η
2
 = 0.359 

F(1,98) = 0.209, p = 0.649, 

η
2
 = 0.002 

F(1,98) = 1.830, p = 0.179, 

η
2
 = 0.018 

Left Max F(1,98) = 16.587, p < 0.001, 

η
2
 = 0.145 

F(1,98) = 0.005, p = 0.942, 

η
2
 < 0.001 

F(1,98) = 1.175, p = 0.281, 

η
2
 = 0.012 

Left Mean F(1,98) = 30.384, p < 0.001, 

η
2
 = 0.237 

F(1,98) = 0.002, p = 0.964, 

η
2
 < 0.001 

F(198) = 0.368, p = 0.546, 

η
2
 = 0.004 

Left SD F(1,98) = 30.962, p < 0.001, 

η
2
 = 0.240 

F(1,98) = 0.003, p = 0.955, 

η
2
 < 0.001 

F(1,98) = 1.133, p = 0.290, 

η
2
 = 0.011 
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Table A.5. Mixed-design ANOVA test results for left shank accelerometer variables for 

retrospective fallers and non-fallers. Bold indicates a significant difference (p < 0.05) 

 Walking Condition Main 

Effect 
Faller Status Main Effect Interaction Effect 

FFT Quartile (%) 

Vertical F(1,97) = 32.606, p < 0.001,  

η
2
 = 0.252 

F(1,97) = 0.518, p = 0.473, 

η
2
 = 0.005 

F(1,97) = 0.796, p = 0.375,  

η
2
 = 0.008 

AP F(1,97) = 45.418, p < 0.001, 

η
2
 = 0.319 

F(1,97) = 1.102, p = 0.296, 

η
2
 = 0.011 

F(1,97) = 0.790, p = 0.376, 

η
2
 = 0.008 

ML F(1,97) = 33.860, p < 0.001, 

η
2
 = 0.259 

F(1,97) = 1.142, p = 0.288, 

η
2
 = 0.012 

F(1,97) = 1.126, p = 0.291, 

η
2
 = 0.011 

Ratio of Even to Odd Harmonics 

Vertical F(1,97) = 3.676, p = 0.058,  

η
2
 = 0.037 

F(1,97) = 0.024, p = 0.877, 

η
2
 < 0.001 

F(1,97) = 1.402, p = 0.239, 

η
2
 = 0.014 

AP F(1,97) = 0.026, p = 0.872,  

η
2
 < 0.001 

F(1,97) = 1.432, p = 0.234, 

η
2
 = 0.015 

F(1,97) = 0.207, p = 0.650, 

η
2
 = 0.002 

ML F(1,97) = 0.270, p = 0.605,  

η
2
 = 0.003 

F(1,97) = 0.362, p = 0.549, 

η
2
 = 0.004 

F(1,97) = 0.424, p = 0.516, 

η
2
 = 0.04 

Maximum Lyapunov Exponent 

Vertical F(1,97) = 2.581, p = 0.111,  

η
2
 = 0.026 

F(1,97) = 0.251, p = 0.617, 

η
2
 = 0.003 

F(1,97) = 2.684, p = 0.105, 

η
2
 = 0.027 

AP F(1,97) = 3.166, p = 0.078,  

η
2
 = 0.032 

F(1,97) = 0.383, p = 0.537, 

η
2
 = 0.004 

F(1,97) = 0.670, p = 0.415, 

η
2
 = 0.007 

ML F(1,97) = 3.971, p = 0.049,  

η
2
 = 0.039 

F(1,97) = 0.087, p = 0.768, 

η
2
 = 0.001 

F(1,97) = 4.731, p = 0.032, 

η
2
 = 0.047 

Acceleration Descriptive Statistics (g) 

Superior Max  F(1,97) = 34.742, p < 0.001, 

η
2
 = 0.264 

F(1,97) = 0.555, p = 0.458, 

η
2
 = 0.006 

F(1,97) = 0.187, p = 0.666,  

η
2
 = 0.002 

Superior Mean F(1,97) = 52.793, p < 0.001, 

η
2
 = 0.352 

F(1,97) = 0.876, p = 0.352, 

η
2
 = 0.009 

F(1,97) = 0.835, p = 0.363, 

η
2
 = 0.009 

Superior SD F(1,97) = 48.560, p < 0.001, 

η
2
 = 0.334 

F(1,97) = 0.707, p = 0.402,  

η
2
 = 0.007 

F(1,97) = 0.472, p = 0.494, 

η
2
 = 0.005 

Inferior Max F(1,97) = 29.754, p < 0.001, 

η
2
 = 0.235 

F(1,97) = 0.089, p = 0.766, 

η
2
 = 0.001 

F(1,97) = 1.549, p = 0.216, 

η
2
 = 0.016 

Inferior Mean F(1,97) = 40.913, p < 0.001, 

η
2
 = 0.297 

F(1,97) = 0.216, p = 0.643, 

η
2
 = 0.002 

F(1,97) = 0.558, p = 0.457, 

η
2
 = 0.006 

Inferior SD F(1,97) = 39.888, p < 0.001, 

η
2
 = 0.291 

F(1,97) = 0.022, p = 0.881, 

η
2
 < 0.001 

F(1,97) = 0.455, p = 0.501, 

η
2
 = 0.005 

Anterior Max F(1,97) = 62.633, p < 0.001, 

η
2
 = 0.392 

F(1,97) = 0.203, p = 0.654, 

η
2
 = 0.002 

F(1,97) = 4.052, p = 0.047, 

η
2
 = 0.040 

Anterior Mean F(1,97) = 62.296, p < 0.001, 

η
2
 = 0.391 

F(1,97) = 0.310, p = 0.579, 

η
2
 = 0.003 

F(1,97) = 2.519, p = 0.116, 

η
2
 = 0.025 

Anterior SD F(1,97) = 71.087, p < 0.001, 

η
2
 = 0.423 

F(1,97) = 0.254, p = 0.615, 

η
2
 = 0.003 

F(1,97) = 3.437, p = 0.067, 

η
2
 = 0.034 

Posterior Max F(1,97) = 9.336, p = 0.003, 

η
2
 = 0.088 

F(1,97) = 0.656, p = 0.420, 

η
2
 = 0.007 

F(1,97) = 7.169, p = 0.009, 

η
2
 = 0.069 

Posterior Mean F(1,97) = 51.174, p < 0.001, 

η
2
 = 0.345 

F(1,97) = 0.208, p = 0.649, 

η
2
 = 0.002 

F(1,97) = 8.347, p = 0.005, 

η
2
 = 0.079 

Posterior SD F(1,97) = 28.213, p < 0.001, 

η
2
 = 0.225 

F(1,97) = 0.282, p = 0.596, 

η
2
 = 0.003 

F(1,97) = 11.832, p = 0.001, 

η
2
 = 0.109 

Right Max F(1,97) = 6.614, p = 0.012,  

η
2
 = 0.064 

F(1,97) = 0.051, p = 0.822, 

η
2
 = 0.001 

F(1,97) = 0.655, p = 0.420, 

η
2
 = 0.007 

Right Mean F(1,97) = 27.104, p < 0.001, F(1,97) = 0.044, p = 0.834, F(1,97) = 1.698, p = 0.196, 
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η
2
 = 0.218 η

2
 < 0.001 η

2
 = 0.017 

Right SD F(1,97) = 13.841, p < 0.001, 

η
2
 = 0.125 

F(1,97) = 0.002, p = 0.966, 

η
2
 < 0.001 

F(1,97) = 0.604, p = 0.439, 

η
2
 = 0.006 

Left Max F(1,97) = 31.642, p < 0.001, 

η
2
 = 0.246 

F(1,97) = 0.057, p = 0.812, 

η
2
 = 0.001 

F(1,97) = 0.013, p = 0.908, 

η
2
 < 0.001 

Left Mean F(1,97) = 42.047, p < 0.001, 

η
2
 = 0.302 

F(1,97) = 0.005, p = 0.945, 

η
2
 < 0.001 

F(1,97) = 0.524, p = 0.471, 

η
2
 = 0.005 

Left SD F(1,97) = 38.632, p < 0.001, 

η
2
 = 0.285 

F(1,97) = 0.080, p = 0.778, 

η
2
 = 0.001 

F(1,97) = 0.093, p = 0.761, 

η
2
 = 0.001 
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Table A.6. Mixed-design ANOVA test results for pressure-sensing insole variables for 

prospective fallers and non-fallers. Bold indicates a significant difference (p < 0.05) 

 Mixed-Design ANOVA Analysis 

Walking Condition Main 

Effect 

Faller/Non-Faller Status 

Main Effect 
Interaction Effect 

CoP Path 

PD per Stride F(1,73) = 31.166, p < 0.001, 

η
2
 = 0.299 

F(1,73) = 0.102, p = 0.750, 

η
2
 = 0.001 

F(1,73) = 0.318, p = 0.575, 

η
2
 = 0.004 

PD Length (mm) F(1,73) = 0.144, p = 0.705, η
2
 

= 0.002 

F(1,73) = 0.070, p = 0.792, 

η
2
 = 0.001 

F(1,73) = 0.191, p = 0.664, 

η
2
 = 0.003 

PD Duration (s) F(1,73) = 0.651, p = 0.423, η
2
 

= 0.009 

F(1,73) = 0.568, p = 0.453, 

η
2
 = 0.008 

F(1,73) = 0.611, p = 0.437, 

η
2
 = 0.008 

Medial Deviations per 

Stride (#) 

F(1,73) = 3.039, p = 0.086, η
2
 

= 0.040 

F(1,73) = 0.299, p = 0.586, 

η
2
 = 0.004 

F(1,73) = 0.043, p = 0.836, 

η
2
 = 0.001 

Medial Deviation 

Length (mm) 

F(1,73) = 1.303, p = 0.257, η
2
 

= 0.018 

F(1,73) = 1.952, p = 0.167, 

η
2
 = 0.026 

F(1,73) = 1.655, p = 0.202, 

η
2
 = 0.022 

Lateral Deviation 

Length (mm) 
F(1,73) = 4.705, p = 0.033, η

2
 

= 0.061 

F(1,73) = 0.899, p = 0.346, 

η
2
 = 0.012 

F(1,73) = 0.346, p = 0.558, 

η
2
 = 0.005 

ML Deviation Duration 

(s) 
F(1,73) = 11.527, p = 0.001, 

η
2
 = 0.136 

F(1,73) = 0.023, p = 0.881, 

η
2
 < 0.001 

F(1,73) = 0.311, p = 0.579, 

η
2
 = 0.004 

Min CoP Vel (m/s) F(1,73) = 35.113, p < 0.001, 

η
2
 = 0.325 

F(1,73) = 1.024, p = 0.315, 

η
2
 = 0.014 

F(1,73) = 0.504, p = 0.480, 

η
2
 = 0.007 

Max CoP Vel (m/s) F(1,73) = 2.223, p = 0.140, η
2
 

= 0.030 

F(1,73) = 0.023, p = 0.881, 

η
2
 < 0.001 

F(1,73) = 1.323, p = 0.254, 

η
2
 = 0.018 

Mean CoP Vel (m/s) F(1,73) = 68.784, p < 0.001, 

η
2
 = 0.485 

F(1,73) = 0.223, p = 0.638, 

η
2
 = 0.003 

F(1,73) = 0.939, p = 0.336, 

η
2
 = 0.013 

Median CoP Vel (m/s) F(1,73) = 91.911, p < 0.001, 

η
2
 = 0.557 

F(1,73) = 0.209, p = 0.649, 

η
2
 = 0.003 

F(1,73) = 0.062, p = 0.804, 

η
2
 = 0.001 

Temporal 

Cadence (steps/minute) F(1,73) = 75.960, p < 0.001, 

η
2
 = 0.510 

F(1,73) = 0.003, p = 0.957, 

η
2
 < 0.001 

F(1,73) = 1.891, p = 0.173, 

η
2
 = 0.025 

Stride Time (s) F(1,73) = 62.868, p < 0.001, 

η
2
 = 0.463 

F(1,73) = 0.058, p = 0.810, 

η
2
 = 0.001 

F(1,73) = 1.790, p = 0.185, 

η
2
 = 0.024 

Stance Time (s) F(1,73) = 51.289, p < 0.001, 

η
2
 = 0.413 

F(1,73) = 0.018, p = 0.894, 

η
2
 < 0.001 

F(1,73) = 0.764, p = 0.385, 

η
2
 = 0.010 

Swing Time (s) F(1,73) = 43.638, p < 0.001, 

η
2
 = 0.374 

F(1,73) = 0.448, p = 0.505, 

η
2
 = 0.006 

F(1,73) = 1.800, p = 0.184, 

η
2
 = 0.024 

Stride Time CoV F(1,73) = 12.405, p = 0.001, 

η
2
 = 0.145 

F(1,73) = 0.901, p = 0.346, 

η
2
 = 0.012 

F(1,73) = 0.523, p = 0.472, 

η
2
 = 0.0074 

Stance Time CoV F(1,73) = 0.127, p = 0.723, η
2
 

= 0.002 

F(1,73) = 0.695, p = 0.407, 

η
2
 = 0.009 

F(1,73) = 1.049, p = 0.309, 

η
2
 = 0.014 

Swing Time CoV F(1,73) = 0.194, p = 0.661, η
2
 

= 0.003 

F(1,73) = 0.354, p = 0.554, 

η
2
 = 0.005 

F(1,73) = 0.007, p = 0.935, 

η
2
 < 0.001 

Percent Stance Time (%) F(1,73) = 0.123, p = 0.727, η
2
 

= 0.002 

F(1,73) = 0.214, p = 0.645, 

η
2
 = 0.003 

F(1,73) = 0.435, p = 0.512, 

η
2
 = 0.006 

Percent Double-Support 

Time (%) 

F(1,73) = 0.057, p = 0.812, η
2
 

= 0.001 

F(1,73) = 0.168, p = 0.683, 

η
2
 = 0.002 

F(1,73) = 0.304, p = 0.583, 

η
2
 = 0.004 

Stride Time Symmetry 

Index 
F(1,73) = 12.003, p = 0.001, 

η
2
 = 0.141 

F(1,73) = 0.005, p = 0.942, 

η
2
 < 0.001 

F(1,73) = 0.121, p = 0.729, 

η
2
 = 0.002 

CoP Path Stance Phase CoV 

CoV AP F(1,73) = 21.823, p < 0.001, 

η
2
 = 0.230 

F(1,73) = 0.525, p = 0.471, 

η
2
 = 0.007 

F(1,73) = 9.970, p = 0.002, 

η
2
 = 0.120 

CoV ML F(1,73) = 10.331, p = 0.002, F(1,73) = 0.131, p = 0.718, F(1,73) = 0.140, p = 0.709, 
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η
2
 = 0.124 η

2
 = 0.002 η

2
 = 0.002 

Impulse (Ns/kg) 

Foot-strike to first peak 

(I1) 
F(1,73) = 30.524, p < 0.001, 

η
2
 = 0.295 

F(1,73) = 0.107, p = 0.744, 

η
2
 = 0.001 

F(1,73) = 1.953, p = 0.167, 

η
2
 = 0.026 

First peak to min (I2) F(1,73) = 6.078, p = 0.016, η
2
 

= 0.077 

F(1,73) = 0.726, p = 0.397, 

η
2
 = 0.010 

F(1,73) = 1.936, p = 0.168, 

η
2
 = 0.026 

Min to second peak (I3) F(1,73) = 4.115, p = 0.046, η
2
 

= 0.053 

F(1,73) = 3.075, p = 0.084, 

η
2
 = 0.040 

F(1,73) = 0.050, p = 0.824, 

η
2
 = 0.001 

Second peak to foot-off 

(I4) 
F(1,73) = 22.006, p < 0.001, 

η
2
 = 0.232 

F(1,73) = 0.132, p = 0.717, 

η
2
 = 0.002 

F(1,73) = 0.257, p = 0.614, 

η
2
 = 0.004 

Foot-strike to min (I5) F(1,73) = 5.566, p = 0.021, η
2
 

= 0.071 

F(1,73) = 0.578, p = 0.450, 

η
2
 = 0.008 

F(1,73) = 1.921, p = 0.170, 

η
2
 = 0.026 

Min to foot-off (I6) F(1,73) = 21.351, p < 0.001, 

η
2
 = 0.226 

F(1,73) = 1.449, p = 0.233, 

η
2
 = 0.019 

F(1,73) = 0.060, p = 0.807, 

η
2
 = 0.001 

Foot-strike to foot-off 

(I7) 
F(1,73) = 22.578, p < 0.001, 

η
2
 = 0.236 

F(1,73) = 0.162, p = 0.688, 

η
2
 = 0.002 

F(1,73) = 1.037, p = 0.312, 

η
2
 = 0.014 
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Table A.7. Mixed-design ANOVA test results for head accelerometer variables for prospective 

fallers and non-fallers. Bold indicates a significant difference (p < 0.05) 

 Mixed-Design ANOVA Analysis 

Walking Condition Main 

Effect 

Faller/Non-Faller Status 

Main Effect 
Interaction Effect 

FFT Quartile (%) 

Vertical F(1,73) = 29.151, p < 0.001, 

η
2
 = 0.285 

F(1,73) = 0.334, p = 0.565, 

η
2
 = 0.005 

F(1,73) = 0.021, p = 0.884, 

η
2
 < 0.001 

AP F(1,73) = 21.982, p < 0.001, 

η
2
 = 0.231 

F(1,73) = 4.217, p = 0.044, 

η
2
 = 0.055 

F(1,73) = 1.027, p = 0.314, 

η
2
 = 0.014 

ML F(1,73) = 10.335, p = 0.002, 

η
2
 = 0.124 

F(1,73) = 0.126, p = 0.723, 

η
2
 = 0.002 

F(1,73) = 0.268, p = 0.607, 

η
2
 = 0.004 

Ratio of Even to Odd Harmonics 

Vertical F(1,73) = 4.297, p = 0.042, η
2
 

= 0.056 

F(1,73) = 0.384, p = 0.537, 

η
2
 = 0.005 

F(1,73) = 0.618, p = 0.434, 

η
2
 = 0.008 

AP F(1,73) = 7.692, p = 0.007, η
2
 

= 0.095 

F(1,73) = 0.735, p = 0.394, 

η
2
 = 0.010 

F(1,73) = 3.038, p = 0.086, 

η
2
 = 0.040 

ML F(1,73) = 1.104, p = 0.297, η
2
 

= 0.015 

F(1,73) = 1.333, p = 0.252, 

η
2
 = 0.018 

F(1,73) = 0.296, p = 0.588, 

η
2
 = 0.004 

Maximum Lyapunov Exponent 

Vertical F(1,73) = 2.846, p = 0.096, η
2
 

= 0.038 

F(1,73) = 0.315, p = 0.576, 

η
2
 = 0.004 

F(1,73) = 1.237, p = 0.270, 

η
2
 = 0.017 

AP F(1,73) = 0.106, p = 0.746, η
2
 

= 0.001 

F(1,73) = 0.741, p = 0.392, 

η
2
 = 0.010 

F(1,73) = 2.190, p = 0.143, 

η
2
 = 0.029 

ML F(1,73) = 5.331, p = 0.024, η
2
 

= 0.068 

F(1,73) = 0.182, p = 0.671, 

η
2
 = 0.002 

F(1,73) = 1.116, p = 0.294, 

η
2
 = 0.015 

Acceleration Descriptive Statistics (g) 

Superior Max  F(1,73) = 29.960, p < 0.001, 

η
2
 = 0.291 

F(1,73) = 5.376, p =0.023, 

η
2
 = 0.069 

F(1,73) = 0.101, p = 0.751, 

η
2
 = 0.001 

Superior Mean F(1,73) = 22.368, p < 0.001, 

η
2
 = 0.235 

F(1,73) = 3.131, p = 0.081, 

η
2
 = 0.041 

F(1,73) = 0.793, p = 0.376, 

η
2
 = 0.011 

Superior SD F(1,73) = 18.481, p < 0.001, 

η
2
 = 0.202 

F(1,73) = 3.363, p = 0.071, 

η
2
 = 0.044 

F(1,73) = 0.078, p = 0.781, 

η
2
 = 0.001 

Inferior Max F(1,73) = 2.013, p = 0.160, 

η
2
 = 0.027 

F(1,73) = 0.043, p = 0.836, 

η
2
 = 0.001 

F(1,73) = 0.247, p = 0.620, 

η
2
 = 0.003 

Inferior Mean F(1,73) = 1.931, p = 0.169, 

η
2
 = 0.026 

F(1,73) = 0.118, p = 0.732, 

η
2
 = 0.002 

F(1,73) = 0.123, p = 0.726, 

η
2
 = 0.002 

Inferior SD F(1,73) = 2.328, p = 0.131, 

η
2
 = 0.031 

F(1,73) = 0.019, p = 0.891, 

η
2
 < 0.001 

F(1,73) = 0.186, p = 0.668, 

η
2
 = 0.003 

Anterior Max F(1,73) = 0.955, p = 0.332, 

η
2
 = 0.013 

F(1,73) = 0.921, p = 0.340, 

η
2
 = 0.012 

F(1,73) = 0.123, p = 0.727, 

η
2
 = 0.002 

Anterior Mean F(1,73) = 7.928, p = 0.006, 

η
2
 = 0.098 

F(1,73) = 1.294, p = 0.259, 

η
2
 = 0.017 

F(1,73) = 0.089, p = 0.767, 

η
2
 = 0.001 

Anterior SD F(1,73) = 1.836, p = 0.180, 

η
2
 = 0.025 

F(1,73) = 0.958, p = 0.331, 

η
2
 = 0.013 

F(1,73) = 0.341, p = 0.561, 

η
2
 = 0.005 

Posterior Max F(1,73) = 0.021, p = 0.885, 

η
2
 < 0.001 

F(1,73) = 0.917, p = 0.342, 

η
2
 = 0.012 

F(1,73) = 0.063, p = 0.802, 

η
2
 = 0.001 

Posterior Mean F(1,73) = 0.287, p = 0.594,  

η
2
 = 0.004 

F(1,73) = 0.323, p = 0.571, 

η
2
 = 0.004 

F(1,73) = 0.006, p = 0.939, 

η
2
 < 0.001 

Posterior SD F(1,73) = 0.287, p = 0.594, 

η
2
 = 0.004 

F(1,73) = 0.822, p = 0.368, 

η
2
 = 0.011 

F(1,73) = 0.002, p = 0.960, 

η
2
 < 0.001 

Right Max F(1,73) = 8.653, p = 0.004, 

η
2
 = 0.106 

F(1,73) = 0.021, p = 0.884, 

η
2
 < 0.001 

F(1,73) = 1.253, p = 0.267, 

η
2
 = 0.017 
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Right Mean F(1,73) = 10.375, p = 0.002,  

η
2
 = 0.124 

F(1,73) = 0.340, p = 0.562, 

η
2
 = 0.005 

F(1,73) = 0.075, p = 0.784, 

η
2
 = 0.001 

Right SD F(1,73) = 10.907, p = 0.001, 

η
2
 = 0.130 

F(1,73) = 0.007, p = 0.935, 

η
2
 < 0.001 

F(1,73) = 0.842, p = 0.362, 

η
2
 = 0.011 

Left Max F(1,73) = 2.022, p = 0.159, 

η
2
 = 0.027 

F(1,73) = 0.879, p = 0.352, 

η
2
 = 0.012 

F(1,73) = 2.011, p = 0.160,  

η
2
 = 0.027 

Left Mean F(1,73) = 2.989, p = 0.088,  

η
2
 = 0.039 

F(1,73) = 1.952, p = 0.167, 

η
2
 = 0.026 

F(1,73) = 3.087, p = 0.083, 

η
2
 = 0.041 

Left SD F(1,73) = 0.602, p = 0.440, 

η
2
 = 0.008 

F(1,73) = 0.453, p = 0.503, 

η
2
 = 0.006 

F(1,73) = 1.253, p = 0.267, 

η
2
 = 0.017 
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Table A.8. Mixed-design ANOVA test results for posterior pelvis accelerometer variables for 

prospective fallers and non-fallers. Bold indicates a significant difference (p < 0.05) 

 Mixed-Design ANOVA Analysis 

Walking Condition Main 

Effect 

Faller/Non-Faller Status 

Main Effect 
Interaction Effect 

FFT Quartile (%) 

Vertical F(1,71) = 33.338, p < 0.001, 

η
2
 = 0.320 

F(1,71) = 0.259, p = 0.612, 

η
2
 = 0.004 

F(1,71) = 0.422, p = 0.518, 

η
2
 = 0.006 

AP F(1,71) = 8.637, p = 0.004, η
2
 

= 0.108 

F(1,71) = 1.981, p = 0.164, 

η
2
 = 0.027 

F(1,71) = 0.023, p = 0.879, 

η
2
 < 0.001 

ML F(1,71) = 12.400, p = 0.001, 

η
2
 = 0.149 

F(1,71) = 0.076, p = 0.784, 

η
2
 = 0.001 

F(1,71) = 0.478, p = 0.491, 

η
2
 = 0.007 

Ratio of Even to Odd Harmonics 

Vertical F(1,71) = 4.108, p = 0.046, η
2
 

= 0.055 

F(1,71) = 0.001, p = 0.971, 

η
2
 < 0.001 

F(1,71) = 0.162, p = 0.688, 

η
2
 = 0.002 

AP F(1,71) = 5.850, p = 0.018, η
2
 

= 0.076 

F(1,71) = 0.342, p = 0.560, 

η
2
 = 0.005 

F(1,71) = 0.084, p = 0.773, 

η
2
 = 0.001 

ML F(1,71) = 0.792, p = 0.377, η
2
 

= 0.011 

F(1,71) = 0.030, p = 0.862, 

η
2
 < 0.001 

F(1,71) = 0.004, p = 0.953, 

η
2
 < 0.001 

Maximum Lyapunov Exponent 

Vertical F(1,71) = 3.627, p = 0.061, η
2
 

= 0.049 

F(1,71) = 0.012, p = 0.912, 

η
2
 < 0.001 

F(1,71) = 0.744, p = 0.391, 

η
2
 = 0.010 

AP F(1,71) = 0.073, p = 0.789, η
2
 

= 0.001 

F(1,71) = 0.008, p = 0.928, 

η
2
 < 0.001 

F(1,71) = 0.051, p = 0.822, 

η
2
 = 0.001 

ML F(1,71) = 6.913, p = 0.010, η
2
 

= 0.089 

F(1,71) = 2.688, p = 0.106, 

η
2
 = 0.036 

F(1,71) = 0.002, p = 0.969, 

η
2
 < 0.001 

Acceleration Descriptive Statistics (g) 

Superior Max  F(1,71) = 5.609, p = 0.021, 

η
2
 = 0.073 

F(1,71) = 0.741, p = 0.392, 

η
2
 = 0.010 

F(1,71) = 0.864, p = 0.356, 

η
2
 = 0.012 

Superior Mean F(1,71) = 17.158, p < 0.001, 

η
2
 = 0.195 

F(1,71) = 0.142, p = 0.708, 

η
2
 = 0.002 

F(1,71) = 0.863, p = 0.356, 

η
2
 = 0.012 

Superior SD F(1,71) = 18.516, p < 0.001, 

η
2
 = 0.207 

F(1,71) = 0.473, p = 0.494, 

η
2
 = 0.007 

F(1,71) = 0.827, p = 0.366, 

η
2
 = 0.012 

Inferior Max F(1,71) = 21.109, p < 0.001, 

η
2
 = 0.229 

F(1,71) = 0.605, p = 0.439, 

η
2
 = 0.008 

F(1,71) = 1.682, p = 0.199, 

η
2
 = 0.023 

Inferior Mean F(1,71) = 19.490, p < 0.001, 

η
2
 = 0.215 

F(1,71) = 0.272, p = 0.603, 

η
2
 = 0.004 

F(1,71) = 1.404, p = 0.240, 

η
2
 = 0.019 

Inferior SD F(1,71) = 26.319, p < 0.001, 

η
2
 = 0.270 

F(1,71) = 0.663, p = 0.418, 

η
2
 = 0.009 

F(1,71) = 2.666, p = 0.107, 

η
2
 = 0.036 

Anterior Max F(1,71) = 29.255, p < 0.001, 

η
2
 = 0.292 

F(1,71) = 1.067, p = 0.305, 

η
2
 = 0.015 

F(1,71) = 2.602, p = 0.111, 

η
2
 = 0.035 

Anterior Mean F(1,71) = 15.505, p < 0.001, 

η
2
 = 0.179 

F(1,71) = 1.203, p = 0.276, 

η
2
 = 0.017 

F(1,71) = 1.062, p = 0.306, 

η
2
 = 0.015 

Anterior SD F(1,71) = 32.727, p < 0.001, 

η
2
 = 0.316 

F(1,71) = 1.405, p = 0.240, 

η
2
 = 0.019 

F(1,71) = 1.627, p = 0.206, 

η
2
 = 0.022 

Posterior Max F(1,71) = 7.766, p = 0.007, 

η
2
 = 0.099 

F(1,71) = 1.163, p = 0.284, 

η
2
 = 0.016 

F(1,71) = 0.138, p = 0.711, 

η
2
 = 0.002 

Posterior Mean F(1,71) = 9.866, p = 0.002, 

η
2
 = 0.122 

F(1,71) = 0.060, p = 0.807, 

η
2
 = 0.001 

F(1,71) = 0.324, p = 0.571, 

η
2
 = 0.005 

Posterior SD F(1,71) = 10.708, p = 0.002, 

η
2
 = 0.131 

F(1,71) = 1.176, p = 0.282, 

η
2
 = 0.016 

F(1,71) = 0.070, p = 0.792, 

η
2
 = 0.001 

Right Max F(1,71) = 22.869, p < 0.001, 

η
2
 = 0.244 

F(1,71) = 2.124, p = 0.149, 

η
2
 = 0.029 

F(1,71) = 3.910, p = 0.052, 

η
2
 = 0.052 
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Right Mean F(1,71) = 21.995, p < 0.001, 

η
2
 = 0.237 

F(1,71) = 1.866, p = 0.176, 

η
2
 = 0.026 

F(1,71) = 2.833, p = 0.097, 

η
2
 = 0.038 

Right SD F(1,71) = 27.996, p < 0.001, 

η
2
 = 0.283 

F(1,71) = 2.958, p = 0.090, 

η
2
 = 0.040 

F(1,71) = 3.506, p = 0.065, 

η
2
 = 0.047 

Left Max F(1,71) = 11.974, p = 0.001, 

η
2
 = 0.144 

F(1,71) = 0.319, p = 0.574, 

η
2
 = 0.004 

F(1,71) = 0.686, p = 0.410, 

η
2
 = 0.010 

Left Mean F(1,71) = 22.865, p < 0.001, 

η
2
 = 0.244 

F(1,71) = 0.001, p = 0.972, 

η
2
 < 0.001 

F(1,71) = 0.841, p = 0.362, 

η
2
 = 0.012 

Left SD F(1,71) = 26.720, p < 0.001, 

η
2
 = 0.273 

F(1,71) = 0.118, p = 0.733, 

η
2
 = 0.002 

F(1,71) = 0.992, p = 0.323, 

η
2
 = 0.014 
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Table A.9. Mixed-design ANOVA test results for right shank accelerometer variables for 

prospective fallers and non-fallers. Bold indicates a significant difference (p < 0.05) 

 Mixed-Design ANOVA Analysis 

Walking Condition Main 

Effect 

Faller/Non-Faller Status 

Main Effect 
Interaction Effect 

FFT Quartile (%) 

Vertical F(1,73) = 30.897, p < 0.001, 

η
2
 = 0.297 

F(1,73) = 0.044, p = 0.834, 

η
2
 = 0.001 

F(1,73) = 0.022, p = 0.884, 

η
2
 < 0.001 

AP F(1,73) = 42.588, p < 0.001, 

η
2
 = 0.368 

F(1,73) = 1.753, p = 0.190, 

η
2
 = 0.023 

F(1,73) = 0.301, p = 0.585, 

η
2
 = 0.004 

ML F(1,73) = 47.478, p < 0.001, 

η
2
 = 0.394 

F(1,73) = 1.491, p = 0.226, 

η
2
 = 0.020 

F(1,73) = 0.287, p = 0.594, 

η
2
 = 0.004 

Ratio of Even to Odd Harmonics 

Vertical F(1,73) = 1.463, p = 0.230, η
2
 

= 0.020 

F(1,73) = 0.001, p = 0.975, 

η
2
 < 0.001 

F(1,73) = 0.053, p = 0.818, 

η
2
 = 0.001 

AP F(1,73) = 0.021, p = 0.885, η
2
 

< 0.001 

F(1,73) = 0.001, p = 0.975, 

η
2
 < 0.001 

F(1,73) = 0.058, p = 0.810, 

η
2
 = 0.001 

ML F(1,73) = 3.334, p = 0.072, η
2
 

= 0.044 

F(1,73) = 1.352, p = 0.249, 

η
2
 = 0.018 

F(1,73) = 2.087, p = 0.153, 

η
2
 = 0.028 

Maximum Lyapunov Exponent 

Vertical F(1,73) = 0.202, p = 0.654, η
2
 

= 0.003 

F(1,73) = 0.634, p = 0.428, 

η
2
 = 0.009 

F(1,73) = 0.059, p = 0.809, 

η
2
 = 0.001 

AP F(1,73) = 7.656, p = 0.007, η
2
 

= 0.095 

F(1,73) = 0.156, p = 0.694, 

η
2
 = 0.002 

F(1,73) = 0.324, p = 0.571, 

η
2
 = 0.004 

ML F(1,73) = 3.249, p = 0.076, η
2
 

= 0.043 

F(1,73) = 0.324, p = 0.571, 

η
2
 = 0.004 

F(1,73) = 0.799, p = 0.374, 

η
2
 = 0.011 

Acceleration Descriptive Statistics (g) 

Superior Max  F(1,73) = 8.303, p = 0.005, 

η
2
 = 0.102 

F(1,73) = 1.820, p = 0.182, 

η
2
 = 0.024 

F(1,73) = 6.279, p = 0.014, 

η
2
 = 0.079 

Superior Mean F(1,73) = 5.796, p = 0.019, 

η
2
 = 0.074 

F(1,73) = 2.956, p = 0.090, 

η
2
 = 0.039 

F(1,73) = 1.677, p = 0.199, 

η
2
 = 0.022 

Superior SD F(1,73) = 13.103, p = 0.001, 

η
2
 = 0.152 

F(1,73) = 1.753, p = 0.190, 

η
2
 = 0.023 

F(1,73) = 4.513, p = 0.037, 

η
2
 = 0.058 

Inferior Max F(1,73) = 27.457, p < 0.001, 

η
2
 = 0.273 

F(1,73) = 0.488, p = 0.487, 

η
2
 = 0.007 

F(1,73) = 2.097, p = 0.152, 

η
2
 = 0.028 

Inferior Mean F(1,73) = 30.777, p < 0.001, 

η
2
 = 0.297 

F(1,73) = 0.336, p = 0.564, 

η
2
 = 0.005 

F(1,73) = 0.393, p = 0.533, 

η
2
 = 0.005 

Inferior SD F(1,73) = 42.857, p < 0.001, 

η
2
 = 0.370 

F(1,73) = 0.404, p = 0.527, 

η
2
 = 0.006 

F(1,73) = 1.987, p = 0.163, 

η
2
 = 0.027 

Anterior Max F(1,73) = 39.795, p < 0.001, 

η
2
 = 0.353 

F(1,73) = 0.131, p = 0.718, 

η
2
 = 0.002 

F(1,73) = 2.950, p = 0.090, 

η
2
 = 0.039 

Anterior Mean F(1,73) = 43.567, p < 0.001, 

η
2
 = 0.374 

F(1,73) = 0.435, p = 0.512, 

η
2
 = 0.006 

F(1,73) = 2.218, p = 0.141, 

η
2
 = 0.029 

Anterior SD F(1,73) = 45.927, p < 0.001, 

η
2
 = 0.386 

F(1,73) = 0.691, p = 0.409, 

η
2
 = 0.009 

F(1,73) = 2.405, p = 0.125, 

η
2
 = 0.032 

Posterior Max F(1,73) = 0.384, p = 0.537, 

η
2
 = 0.005 

F(1,73) = 0.210, p = 0.648, 

η
2
 = 0.003 

F(1,73) = 0.265, p = 0.608, 

η
2
 = 0.004 

Posterior Mean F(1,73) = 10.992, p = 0.001, 

η
2
 = 0.131 

F(1,73) = 0.389, p = 0.535, 

η
2
 = 0.005 

F(1,73) = 2.896, p = 0.093, 

η
2
 = 0.038 

Posterior SD F(1,73) = 1.438, p = 0.234, 

η
2
 = 0.019 

F(1,73) = 0.005, p = 0.943, 

η
2
 < 0.001 

F(1,73) = 0.034, p = 0.854, 

η
2
 < 0.001 

Right Max F(1,73) = 27.236, p < 0.001, 

η
2
 = 0.272 

F(1,73) = 0.748, p = 0.390, 

η
2
 = 0.010 

F(1,73) < 0.001, p = 0.987, 

η
2
 <0.001 
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Right Mean F(1,73) = 19.773, p < 0.001, 

η
2
 = 0.213 

F(1,73) = 1.263, p = 0.265, 

η
2
 = 0.017 

F(1,73) = 0.075, p = 0.786, 

η
2
 = 0.001 

Right SD F(1,73) = 35.211, p < 0.001, 

η
2
 = 0.325 

F(1,73) = 1.197, p = 0.278, 

η
2
 = 0.016 

F(1,73) = 0.137, p = 0.712, 

η
2
 = 0.002 

Left Max F(1,73) = 19.078, p < 0.001, 

η
2
 = 0.207 

F(1,73) = 0.142, p = 0.707, 

η
2
 = 0.002 

F(1,73) = 3.014, p = 0.087, 

η
2
 = 0.040 

Left Mean F(1,73) = 26.078, p < 0.001, 

η
2
 = 0.263 

F(1,73) = 0.157, p = 0.693, 

η
2
 = 0.002 

F(1,73) = 3.015, p = 0.087, 

η
2
 = 0.040 

Left SD F(1,73) = 32.828, p < 0.001, 

η
2
 = 0.310 

F(1,73) = 0.032, p = 0.859, 

η
2
 < 0.001 

F(1,73) = 1.906, p = 0.172, 

η
2
 = 0.025 

 

  



165 

 

Table A.10. Mixed-design ANOVA test results for left shank accelerometer variables for 

prospective fallers and non-fallers. Bold indicates a significant difference (p < 0.05) 

 Mixed-Design ANOVA Analysis 

Walking Condition Main 

Effect 

Faller/Non-Faller Status 

Main Effect 
Interaction Effect 

FFT Quartile (%) 

Vertical F(1,72) = 20.535, p < 0.001, 

η
2
 = 0.222 

F(1,72) = 0.623, p = 0.433, 

η
2
 = 0.009 

F(1,72) = 0.536, p = 0.467, 

η
2
 = 0.007 

AP F(1,72) = 36.656, p < 0.001, 

η
2
 = 0.337 

F(1,72) = 0.846, p = 0.361, 

η
2
 = 0.012 

F(1,72) = 0.373, p = 0.543, 

η
2
 = 0.005 

ML F(1,72) = 21.428, p < 0.001, 

η
2
 = 0.229 

F(1,72) = 4.360, p = 0.040, 

η
2
 = 0.057 

F(1,72) = 0.619, p = 0.434, 

η
2
 = 0.009 

Ratio of Even to Odd Harmonics 

Vertical F(1,72) = 1.492, p = 0.226, η
2
 

= 0.020 

F(1,72) = 0.010, p = 0.921, 

η
2
 < 0.001 

F(1,72) = 4.279, p = 0.042, 

η
2
 = 0.056 

AP F(1,72) = 0.082, p = 0.775, η
2
 

= 0.001 

F(1,72) = 0.006, p = 0.940, 

η
2
 < 0.001 

F(1,72) = 0.593, p = 0.444, 

η
2
 = 0.008 

ML F(1,72) = 0.003, p = 0.958, η
2
 

< 0.001 

F(1,72) = 0.305, p = 0.583, 

η
2
 = 0.004 

F(1,72) = 0.719, p = 0.399, 

η
2
 = 0.010 

Maximum Lyapunov Exponent 

Vertical F(1,72) = 0.088, p = 0.768, η
2
 

= 0.001 

F(1,72) = 0.464, p = 0.498, 

η
2
 = 0.006 

F(1,72) = 0.207, p = 0.651, 

η
2
 = 0.003 

AP F(1,72) = 8.853, p = 0.004, η
2
 

= 0.109 

F(1,72) = 0.206, p = 0.651, 

η
2
 = 0.003 

F(1,72) = 3.730, p = 0.057, 

η
2
 = 0.049 

ML F(1,72) = 18.213, p < 0.001, 

η
2
 = 0.202 

F(1,72) = 0.156, p = 0.694, 

η
2
 = 0.002 

F(1,72) = 0.853, p = 0.359, 

η
2
 = 0.012 

Acceleration Descriptive Statistics (g) 

Superior Max  F(1,72) = 27.371, p < 0.001, 

η
2
 = 0.275 

F(1,72) = 0.068, p = 0.795, 

η
2
 = 0.001 

F(1,72) = 0.865, p = 0.355, 

η
2
 = 0.012 

Superior Mean F(1,72) = 33.402, p < 0.001, 

η
2
 = 0.317 

F(1,72) = 0.259, p = 0.612, 

η
2
 = 0.004 

F(1,72) = 2.604, p = 0.111, 

η
2
 = 0.035 

Superior SD F(1,72) = 35.620, p < 0.001, 

η
2
 = 0.331 

F(1,72) = 0.052, p = 0.820, 

η
2
 = 0.001 

F(1,72) = 1.000, p = 0.321, 

η
2
 = 0.014 

Inferior Max F(1,72) = 15.530, p < 0.001, 

η
2
 = 0.177 

F(1,72) = 0.105, p = 0.746, 

η
2
 = 0.001 

F(1,72) = 0.353, p = 0.554, 

η
2
 = 0.005 

Inferior Mean F(1,72) = 28.405, p < 0.001, 

η
2
 = 0.283 

F(1,72) = 0.874, p = 0.353, 

η
2
 = 0.012 

F(1,72) = 1.235, p = 0.270, 

η
2
 = 0.017 

Inferior SD F(1,72) = 25.728, p < 0.001, 

η
2
 = 0.263 

F(1,72) = 0.257, p = 0.614, 

η
2
 = 0.004 

F(1,72) = 0.877, p = 0.352, 

η
2
 = 0.012 

Anterior Max F(1,72) = 43.355, p < 0.001, 

η
2
 = 0.376 

F(1,72) = 0.493, p = 0.485, 

η
2
 = 0.007 

F(1,72) = 0.540, p = 0.465, 

η
2
 = 0.007 

Anterior Mean F(1,72) = 46.233, p < 0.001, 

η
2
 = 0.391 

F(1,72) = 0.714, p = 0.401, 

η
2
 = 0.010 

F(1,72) = 0.290, p = 0.592, 

η
2
 = 0.004 

Anterior SD F(1,72) = 52.633, p < 0.001, 

η
2
 = 0.422 

F(1,72) = 0.263, p = 0.610, 

η
2
 = 0.004 

F(1,72) = 1.052, p = 0.309, 

η
2
 = 0.014 

Posterior Max F(1,72) = 0.474, p = 0.493, 

η
2
 = 0.007 

F(1,72) = 0.290, p = 0.592, 

η
2
 = 0.004 

F(1,72) = 1.918, p = 0.170, 

η
2
 = 0.026 

Posterior Mean F(1,72) = 19.140, p < 0.001, 

η
2
 = 0.210 

F(1,72) = 0.985, p = 0.324, 

η
2
 = 0.013 

F(1,72) = 1.246, p = 0.268, 

η
2
 = 0.017 

Posterior SD F(1,72) = 5.384, p = 0.023, 

η
2
 = 0.070 

F(1,72) = 0.481, p = 0.490, 

η
2
 = 0.007 

F(1,72) = 2.833, p = 0.097, 

η
2
 = 0.038 

Right Max F(1,72) = 3.181, p = 0.079, 

η
2
 = 0.042 

F(1,72) = 0.002, p = 0.967, 

η
2
 < 0.001 

F(1,72) = 0.108, p = 0.743, 

η
2
 = 0.002 
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Right Mean F(1,72) = 17.639, p < 0.001, 

η
2
 = 0.197 

F(1,72) = 0.118, p = 0.732, 

η
2
 = 0.002 

F(1,72) = 0.019, p = 0.891, 

η
2
 < 0.001 

Right SD F(1,72) = 8.560, p = 0.005, 

η
2
 = 0.106 

F(1,72) = 0.483, p = 0.489, 

η
2
 = 0.007 

F(1,72) = 0.102, p = 0.751, 

η
2
 = 0.001 

Left Max F(1,72) = 23.183, p < 0.001, 

η
2
 = 0.244 

F(1,72) = 0.014, p = 0.905, 

η
2
 < 0.001 

F(1,72) = 1.351, p = 0.249, 

η
2
 = 0.018 

Left Mean F(1,72) = 25.453, p < 0.001,  

η
2
 = 0.261 

F(1,72) = 0.886, p = 0.350, 

η
2
 = 0.012 

F(1,72) = 1.577, p = 0.213, 

η
2
 = 0.021 

Left SD F(1,72) = 25.796, p < 0.001, 

η
2
 = 0.264 

F(1,72) = 0.147, p = 0.703, 

η
2
 = 0.002 

F(1,72) = 1.434, p = 0.235, 

η
2
 = 0.020 

 

 

 

 


