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Abstract

With the threat of longevity risk to the insurance industry becoming increasingly ap-
parent in recent years, insurers and reinsurers are concerned about how to better model
and manage longevity risk. However, modeling and managing longevity risk is not trivial,
due in part to its systematic nature and in part to the excessive amount of risk factors that
constitute the risk. The theme of this thesis is modeling and managing longevity risk. In
particular, this thesis focuses on four types of uncertainties among all possible risk factors.
These four risk factors include 1) mortality jump risk; 2) longevity drift risk; 3) population
basis risk; and 4) cohort mismatch risk.

In the current literature, a number of stochastic mortality models with transitory jump
effects have been proposed to capture mortality jump risk. Rather than modeling the age
pattern of jump effects explicitly, most of the existing models assume that the distributions
of jump effects and general mortality improvements across ages are identical. Nevertheless,
this assumption does not appear to be in line with what can be observed from historical
data. In this thesis, we addressed this disconnect by introducing a Lee-Carter variant
that captures the age pattern of mortality jumps by a distinct collection of parameters.
The model variant was then further generalized to permit the age pattern of jump effects
to vary randomly. We illustrated the two proposed models with mortality data from the
United States and English and Welsh populations, and further used these data to value
hypothetical mortality bonds with similar specifications to the Atlas IX Capital Class B
note that was launched in 2013. The features we considered were found to have a significant
impact on the estimated prices.

We then explored longevity drift risk, which is the uncertainty about the mortality
trend itself. We tackled longevity drift risk by introducing the locally-linear CBD model in
which the drifts that govern the expected mortality trend are allowed to follow a stochastic
process. Compared to the original CBD model, this specification results in median forecasts
that are more consistent with recent trends and more robust relative to changes in the data
sample period. Furthermore, the proposed model also yields wider prediction intervals that
may better reflect the possibilities of future trend changes. To mitigate the risk associated
with changes in drifts, we proposed a new hedging method called the generalized state-
space hedging method which demands less stringent assumptions. The proposed method
allows hedgers to extract more hedge effectiveness out of a hedging instrument, and is
therefore useful when there are only a few traded longevity securities in the market.

To incorporate population basis risk, we further extended the proposed generalized
state-space hedging method to a multi-population setting. In this extended hedging
method, the hedging strategy is derived by first reformulating the assumed multi-population
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stochastic mortality model in a state-space representation, and then considering the sensi-
tivities of the hedge portfolio and the liability being hedged to all relevant hidden states.
Inter alia, this method allowed us to decompose the underlying longevity risk into com-
ponents arising solely from the hidden states that are shared by all populations and com-
ponents stemming exclusively from the hidden states that are population-specific. The
latter components collectively represent an explicit measure of the population basis risk
involved. Through this measure, a new metric called standardized basis risk profile was
developed. This metric allowed us to assess the relative levels of population basis risk
that q-forwards with different reference populations, reference ages, and times-to-maturity
may lead to. The proposed methodologies were illustrated using real mortality data from
various national populations.

Similar to population basis risk, cohort mismatch risk is another risk that is related
to population differences when conducting an index-based longevity hedge. It arises when
the hedger chooses to link hedging instruments to different cohorts. Although existing
index-based longevity hedging strategies mitigate the risk associated with period effects,
they often overlook the risk associated with different cohorts. The negligence of cohort ef-
fects may lead to sub-optimal hedge effectiveness if the liability being hedged is a deferred
pension or annuity which involves cohorts that are not covered by the data sample. We
proposed a new hedging strategy that incorporates both period and cohort effects. The
resulting longevity hedge is a value hedge which reduces the uncertainty surrounding the
τ -year ahead value of the liability being hedged in terms variance or Value-at-Risk. We
further developed a method to expedite the evaluation of a value longevity hedge. By
utilizing the fact that the innovations of the stochastic processes for the period and co-
hort effects are not serially correlated, the proposed method avoids the need for nested
simulations that are generally required when evaluating a value hedge.
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Chapter 1

Introduction

1.1 Background

Over the past century, human mortality has undergone substantial improvement. In short,
people are living longer and longer. For developed countries such as Canada and Japan,
life expectancy has increased dramatically. For example, according to the data provided by
the Human Mortality Database (2015), the life expectancy of Canadian male and female
offspring was approximately 62 and 66 respectively in 1940, while in 2011, newborn males
and females in Canada could expect to live to 80 and 84 respectively. According to a report
from the National Institute on Aging1, a steady increase in global life expectancy has been
observed since World War II. A major transition in human health is taking place around
the world at different rates and along different pathways.

Although the worldwide dramatic increase in life expectancy over the 20th century can
be regarded as one of the greatest achievements of human society, the uncertainty associ-
ated with the increase in life expectancy could largely affect the financial strength of the
insurance industry. Let us take defined-benefit pension plan as an example. The uncer-
tainty associated with the increase in life expectancy has a significant effect on the pension
plans, as the longer individuals live, the larger the pension liabilities will be. Typically, we
use longevity risk to refer to the adverse financial consequences that arise when individu-
als live longer than expected. The threat of longevity risk to the insurance industry has
become more apparent in recent years, due in part to the current low-yield environment
following the financial crisis of 2007-08 along with the more conservative mortality im-
provement scales that have been recently introduced by the actuarial profession (Canadian

1Available at: https://www.nia.nih.gov/research/publication/global-health-and-aging/living-longer
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Institute of Actuaries, 2014; Continuous Mortality Investigation Bureau, 2009a,b; Society
of Actuaries, 2014).

By definition, longevity risk contains two important aspects: the uncertainty underly-
ing human mortality and the adverse financial consequences for insurance companies and
pension plan providers. Therefore, when studying longevity risk, we need to focus on both
aspects. On the one hand, a stochastic mortality model that can accurately measure the
underlying uncertainty is essential, as that, from a statistical viewpoint, the uncertainty
underlying the mortality rate is the cause of longevity risk. On the other hand, for risk
management purposes we also need to investigate how we can efficiently manage adverse
financial consequences.

On the modeling front, a number of stochastic mortality models have been proposed
to quantify the uncertainty related to the mortality rate and provide mortality forecasts.
The most popular single-population models include the Lee-Carter model introduced by
Lee and Carter (1992), the Cairns-Blake-Dowd model introduced by Cairns et al. (2006),
and the collection of models (Models M1-M8) considered by Cairns et al. (2009,2011a)
and Dowd et al. (2010a,b). Some of those models have been extended to model multiple
populations, including the augmented common factor model by Li and Lee (2005), the two-
population Cairns-Blake-Dowd model by Cairns et al. (2011b), and the gravity model by
Dowd et al. (2011a). Many other mortality models have also been proposed to incorporate
a certain risk, such as the mortality jump model by Chen and Cox (2009) which integrates
a jump process into the Lee-Carter model.

On the management front, solutions for hedging longevity risk can be divided into two
categories: customized hedge and index-based hedge. A customized longevity hedge is
based on the actual mortality experience of the individuals associated with the liability
being hedged; as such, it can eliminate all longevity risk. However, its disadvantages of be-
ing more costly and lacking liquidity and transparency have made a customized longevity
hedge less attractive to investors in capital markets. Different from customized hedge, an
indexed-based longevity hedge is based on a broad-based mortality index which reflects
the actual mortality experience of a larger pool of individuals such as a national popula-
tion. The index-based longevity hedge emerges from the increasing demand for longevity
risk transfers and is more attractive to investors in capital markets for its liquidity and
transparency.

The majority of the longevity risk transfers executed to date are customized longevity
transactions, such as bespoke longevity swaps within the insurance industry. However, as
the insurance industry cannot take unlimited amount of risk, the market for index-based
mortality derivatives has started to grow, thereby allowing longevity risk to be transferred
from insurance market to capital market. The derivation of strategies for optimizing an
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index-based longevity hedge is generally based on sensitivity matching. In particular,
hedging strategies have been derived by matching the sensitivities of the liability being
hedged and the portfolio of hedging instruments with respect to changes in the underlying
mortality rates. This method is similar to the delta-hedging method in financial literature.

The task of modeling and managing longevity risk is challenging. First, the nature
of longevity risk is systematic and affects all policies. We cannot simply apply the law
of large numbers to eliminate longevity risk. Second, there are too many types of uncer-
tainty that constitute longevity risk. Types of uncertainty related to the mortality model
include mortality jump risk (related to mortality jumps), longevity diffusion risk (related
to the uncertainty surrounding the mortality trend), longevity drift risk (related to the
uncertainty of the mortality trend), model risk, and parameter risk. Types of uncertainty
related to the hedging of longevity risk include population basis risk, cohort mismatch risk,
Poisson risk (also known as small sampling risk), and recalibration risk.

The theme of this thesis is modeling and managing longevity risk. In particular, this
thesis focuses on the following four types of uncertainty among all possible risk factors:
1) mortality jump risk, 2) longevity drift risk, 3) population basis risk, and 4) cohort
mismatch risk. The former two factors arise from the inadequacy of current models, while
the latter two factors arise as consequences for risk management purposes.

Mortality Jump Risk

The first source of uncertainty we consider in this thesis is mortality jump risk. The
dynamic of human mortality over time has been subject to short-term mortality jumps.
Typically, we use mortality jump to describe the phenomenon of the level of mortality rate
over a certain period changing dramatically in relation to the neighboring years. These
mortality jumps may be caused by some catastrophic events such as wars (World War I
and World War II) and influenza pandemics (1918 Spanish Flu and 1957-58 Asian Flu).

In general, catastrophic mortality events have three features. First, the presence of
these events is infrequent, with only one or two catastrophic events observed over a long
period. Second, the impact of these mortality events is catastrophic. The occurrence of
these events could significantly affect the level of human mortality and trigger a large
amount of death claims. For example, the Spanish Flu in 1918 infected 50% of the world’s
population and caused the death of 40-50 million people (Crosby 1976). Third, the impacts
of these catastrophic events fade out very quickly with the mortality level usually recovering
to the normal level after only a few years.

The occurrence of these catastrophic mortality events could cause a large amount of
deaths which could trigger a large number of unexpected death claims and thereby threaten
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the financial strength of the life insurance industry. In recent years, catastrophic mortality
bond is often used by insurers and reinsurers as a risk mitigation tool that can help cede
exposures to extreme mortality risk. The first of such bonds was called Vita I and was
issued by Swiss Re in 2003 to reduce exposure to a catastrophic mortality deterioration
in five populations. This bond was regarded as a huge success and led to the issuance of
many other catastrophic mortality bonds (see Blake et al., 2006b, 2013).

Numerous mortality models have been proposed to incorporate certain features of mor-
tality jumps. The majority of the mortality jump models aim to provide a better fit to
certain features of jump effect including frequency, severity, and correlation across different
populations.

One feature that is important but often left unmodeled is the age pattern of jump
effect, or how the effect of a mortality jump is distributed among different ages. Most
existing models assume that the age pattern of mortality jumps is identical to that of gen-
eral mortality improvements. Although this assumption eases the difficulty in estimating
the model, it is counter-intuitive because mortality jumps can be caused by various events
(such as pandemics) which would each affect different ages differently. Therefore, a distinct
collection of parameters is required to characterize the age pattern of mortality jumps. In
addition, the age pattern of mortality jumps also affects the pricing of catastrophic mor-
tality bonds. In a catastrophic mortality bond, the principal repayment is not guaranteed
as it depends on a pre-defined mortality index. The pre-defined mortality index is usually
calculated as a weighted average of mortality rates from different age groups. If the age
pattern of mortality jumps is calibrated inaccurately, then it could largely affect the pricing
of catastrophic mortality bonds.

Longevity Drift Risk

The second source of uncertainty considered in this thesis is longevity drift risk. While
Human mortality improves overtime, what is the rate of improvement? Longevity drift risk
is the risk associated with the trend in mortality improvement. Compared to mortality
jump risk, longevity drift risk affects mortality dynamics in the long run. It can be simply
understood as the uncertainty related to the speed of mortality improvement and as an
important aspect of uncertainty masked within longevity risk.

Longevity drift risk emerges from trend changes in mortality. Profound evidence for
trend changes in mortality has been found all over the world (Gallop, 2006; Kannisto et
al., 1994; Vaupel, 1997). Furthermore, the existence of trend changes has been tested by
numerous statistical tests (Li et al., 2011; Ahmadi and Li, 2014; O’Hare and Li, 2014).
However, in the current literature trend changes is not generally regarded as a risk. Most
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of the models that incorporate trend changes reflect historical trend changes, but they do
not allow mortality trend to change in the future in a random manner. Therefore, the
stochastic nature of the drift may be a desirable property for models that capture drift
risk.

Managing longevity drift risk is a new concept first introduced by Cairns (2013). In his
work, he extends the traditional delta-hedging to delta-nuga hedging to additionally reduce
the exposure to drift risk. However, there are several constraints when applying the delta-
nuga hedging method. First, the delta-nuga hedging method is sub-optimal if the linearity
assumption does not hold; second, the number of hedging instruments is restricted; third,
the delta-nuga hedging method is subject to the singularity problem2. A hedging method
that can mitigate these limitations has yet to be found.

Population Basis Risk

The third source of uncertainty considered in this thesis is population basis risk, which
is a risk that is related to population differences. Population basis risk arises from an
index-based hedge when the hedging population differs from the reference population of
the hedging instrument.

Population basis risk is inevitable in an index-based longevity hedge. Although a
large number of multi-population models have been proposed to capture the dependence
within different populations, only a few studies attempt to measure population basis risk.
According to current literature, the methods of measuring population basis risk are limited.
Previous studies on measuring population basis risk typically follow the framework set
out by Coughlan et al. (2011). In this framework, population basis risk is measured
by comparing the resulting hedge effectiveness between two situations: the absence or
presence of basis risk. This method of measuring basis risk, which can be regarded as a
post-simulation approach, is heavily reliant on simulations. It is clear that an analytical
method for analysing population basis risk is missing; thus, we have no way of knowing
what constitutes basis risk.

Some researchers have derived strategies that incorporate population basis risk (Dowd
et al., 2011a; Li and Hardy, 2011; Li and Luo, 2012; Zhou and Li, 2014). However, the
previous methods are all restricted to specific models. A more general framework for
hedging population basis risk has yet to be discovered.

2These three limitations are discussed in more detail in Chapter 3
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Cohort Mismatch Risk

The final source of uncertainty considered in this thesis is cohort mismatch risk. Co-
hort effects refer to the observed phenomena that individuals born in particular generations
have experienced more rapid mortality improvement than their adjacent generations. Such
effects have been found significant in many countries including the United States and Eng-
land and Wales. Cohort effects are also known as year-of-birth effects because individuals
born in the same year experience the same cohort effects, while individuals born in different
years experience different cohort effects.

Similar to population basis risk, cohort mismatch risk is another risk related to popu-
lation differences when conducting an index-based longevity hedge. Cohort mismatch risk
arises when the hedger chooses to link hedging instruments to different cohorts. Existing
index-based longevity hedging strategies mitigate the risk associated with period (time-
related) effects, but often overlook cohort effects. Only a few studies (Li and Luo, 2011;
Cairns et al., 2014; Cairns, 2013) have considered cohort effects when deriving hedging
strategies. However, no studies have indicated how cohort mismatch risk can be handled,
as cohort effects are either fixed or incorporated indirectly.

As the market for index-based mortality derivatives is still quite far from being large
and liquid, the number of tradable longevity products is limited. Commonly the hedging
population does not come from the same cohort as the hedging instruments. A hedging
method that can eliminate the uncertainty associated with cohort effects would be very
useful in the current stage of the longevity market.

1.2 Objectives and Outline of the Thesis

This thesis explores four of the many risk factors that constitute longevity risk. The four
types of risk being considered are mortality jump risk, longevity drift risk, population
basis risk, and cohort mismatch risk discussed in Chapter 2 to Chapter 5 respectively.
Each chapter encompasses two parts of modeling and application.

In Chapter 2, we explore mortality jump risk. In particular, we focus on the age pattern
of mortality jump effect. We study how the jump effect is distributed among ages and how
the features of different age patterns affect the pricing of catastrophic mortality bonds.
Two model variants of the Lee-Carter model are proposed to capture the variations in
the age patterns of catastrophic mortality jumps. An innovative “Route II” approach is
applied to estimate the mortality jump models. We illustrate the two proposed models
with mortality data from the United States and English and Welsh populations. We then
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apply the new model variants to pricing mortality-linked bonds and identify the problems
that may arise if a constant age pattern is assumed.

In Chapter 3, we explore longevity drift risk. We fist investigate empirical and statistical
evidence for stochastic drifts. We then address longevity drift risk by proposing a locally-
linear mortality model in which the drifts that govern the expected mortality trend are
allowed to be stochastic. We study the forecasting performance and the robustness of the
proposed model. A new hedging method, the generalized state-space hedging method, is
developed to immunize a portfolio against drift risk. A hypothetical example is provided
to illustrate the proposed hedging method.

In Chapter 4, we explore population basis risk. We further extend the generalized
state-space hedging method introduced in Chapter 3 to a multi-population setting. Us-
ing the proposed hedging method, we analytically decompose the portfolio variance and
study the relationship between the hedge effectiveness and the composition of hedging
strategies. A new metric called standardized basis risk profile is developed. This metric
allows us to assess the relative levels of population basis risk that q-forwards with different
reference populations, reference ages, and times-to-maturity may lead to. The proposed
methodologies are illustrated using real mortality data from various national populations.

In Chapter 5, we explore cohort mismatch risk. We propose a new hedging strategy that
incorporates both period and cohort effects. Using the proposed method, one can create
a value hedge for a deferred annuity liability which involves cohort effects that are not yet
realized as of the time when the hedge is established. The risk measures we consider include
variance and Value-at-Risk. We further develop a method to expedite the evaluation of a
value longevity hedge. By utilizing the fact that the innovations of the stochastic processes
for the period and cohort effects are not serially correlated, the proposed method avoids
the need for nested simulations that are generally required when evaluating a value hedge.
Finally, we present the baseline empirical results and perform several sensitivity tests.

In Chapter 6, we conclude the thesis with some suggestions for further research.
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Chapter 2

The Age Pattern of Transitory
Mortality Jumps and Its Impact on
the Pricing of Catastrophic Mortality
Bonds

2.1 Introduction

The dynamics of human mortality over time are subject to short-term jumps. These jumps
may be caused by influenza pandemics, most notably the Spanish flu in 1918-20 that is
estimated to have infected 50% of the world’s population and led to a total mortality of
40-50 million (Crosby 1976). More recently, the Asian flu in 1957-8 is believed to have
killed approximately 1 million persons in total (Dauer and Serfling, 1961; Pyle, 1986;
Potter, 2001). It is reasonable to assume that similar influenza pandemics will occur in
future, because there is an unlimited reservoir of influenza subtypes. Also, for reasons such
as interspecies transmission, intraspecies variation and altered virulence, the timings and
severities of future pandemics (and hence mortality jumps) are unpredictable (Cox et al.,
2003; Webster et al., 1997).

Mortality jumps are infrequent, but their occurrence could trigger a large number of
unexpected death claims, thereby affecting the financial strength of the life insurance in-
dustry. Stracke and Heinen (2006) estimated that the worst pandemic would result in
approximately e45 billion of additional claims expenses in Germany. This amount is
equivalent to five times the total annual gross profit or 100 percent of the policyholder
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bonus reserves in the German life insurance market. Toole (2007) found that in a severe
pandemic scenario, additional claims expenses would consume 25 percent of the risk based
capital (RBC) of the entire U.S. life insurance industry. This finding means that companies
with less than 100 percent of RBC would be at an increased risk of insolvency. In recent
years, a number of reinsurers have used catastrophic mortality bonds as a risk mitigation
tool. The first of such bonds was called Vita I, issued by Swiss Re in 2003 to reduce its
exposure to a catastrophic mortality deterioration in five populations. With a full sub-
scription, this bond was regarded as a huge success and led to many other catastrophic
mortality bonds being issued (see Blake et al., 2006b, 2013).

To model extreme mortality risk and value catastrophic mortality bonds, researchers
have developed a number of stochastic mortality models that incorporate jump effects.
These models include the contributions by Bauer and Kramer (2009), Biffis (2005), Chen
(2013), Chen and Cummins (2010), Chen and Cox (2009), Chen et al. (2010, 2013a),
Cox et al. (2006, 2010), Deng et al. (2012), Hainaut and Devolder (2008), Lin and Cox
(2008), Lin et al. (2013) and Zhou et al. (2013a). Several features of mortality jumps
have been studied in great depth. In terms of jump occurrence, Chen and Cox (2009) and
Chen et al. (2010) used independent Bernoulli distributions, Cox et al. (2006) considered
Poisson jump counts, whereas Lin and Cox (2008) utilized a discrete-time Markov chain.
In terms of jump severity, Chen and Cox (2009) and Chen et al. (2010) made use of
normal distributions, Chen and Cummins (2010) applied the extreme value theory, while
Chen (2013) and Deng et al. (2012) considered double-exponential jumps. In terms of
correlations across different populations, Chen et al. (2013a) used a factor-copula method,
Lin et al. (2013) built a model with correlated Brownian motions, whereas Zhou et al.
(2013a) considered a multinomial approach.

One feature that has not been studied extensively is the age pattern of mortality jumps,
that is, how the effect of a mortality jump is distributed among different ages. Most of the
existing models are either constructed for modeling aggregate mortality indexes that are
based on total annual death and exposure counts, or configured in such a way that the age
pattern of mortality jumps is identical to that of general mortality improvements. To dis-
cern the potential limitations of these modeling approaches, let us perform an exploratory
analysis on some of the short-term mortality jumps that occurred in the U.S. and England
and Wales since 1901. We first apply the outlier detection methodology proposed by Li
and Chan (2005, 2007) to find out the timings of the historical mortality outliers (jumps).1

1A detailed description about the data used in the outlier analysis is provided in Section 2.2. In
implementing the outlier detection method, we consider positive additive outliers (i.e., outliers with no
lasting impact) only, because the focus of this chapter is on short-term catastrophic mortality jumps.

9



Then for each detected mortality jump, we approximate its age pattern by computing

y(x, T ∗) = ln(mx,T ∗)−
1

6

(
T ∗−1∑
t=T ∗−3

ln(mx,t) +
T ∗+3∑
t=T ∗+1

ln(mx,t)

)
.

for all age group x, where T ∗ is the timing of the detected jump and mx,t is the central death
rate for age group x at time t. This quantity compares the log death rate for each age group
in the year when the mortality jump occurred with the corresponding average log death
rate over the six neighboring years.2 The patterns of y(x, T ∗) for all detected mortality
jumps are depicted in Figure 2.1, from which we can conclude that the age patterns of
mortality jumps are not uniform over age and exhibit certain degrees of variation. These
properties cannot be reflected in models that are based on aggregate mortality indexes.
Also shown in Figure 2.1 are the values of bx (the age response parameters describing
the age pattern of general mortality improvements) in the original Lee-Carter model (Lee
and Carter, 1992) that is estimated to the data from each of the two populations.3 It
can be seen that the patterns of bx and y(x, T ∗) are generally different, indicating that
models using the same age response parameters for mortality jumps and general mortality
improvements may not be adequate.

To our knowledge, the work of Cox et al. (2010) is the only attempt so far to explicitly
address the age pattern of mortality jumps, but their modeling approach is based much
more heavily on expert opinions than statistical estimation. To fill this gap, in this chapter
we propose two variants of the Lee-Carter model with short-term jump effects. The first
variant captures the age pattern of mortality jumps by a distinct collection of parameters,
acknowledging the empirical fact that the age patterns of general and extreme changes
in mortality rates over time are different. The second variant is a further generalization
which permits the age pattern of mortality jumps to vary randomly, taking into account
the correlation of jump effects among different age groups. Both model variants nest
the transitory jump model developed by Chen and Cox (2009), in which mortality jumps
are incorporated in the time-series process for the period effects. However, our proposed

2It can be shown easily that yx,T∗ ≈ Jx,T∗ under our general model specification (equation (2.1)) and
the random walk assumption (equation (2.2)), where Jx,T∗ is a component in our model which measures
the effect of a mortality jump occurred in year T ∗ on age group x. To prevent the potential masking
effect arising from the noise in the data, we compare the mortality in year T ∗ with the average mortality
over T ∗ ± 3 years (rather than just T ∗ ± 1 years). If another mortality jump occurred in the neighboring
years, then the death rates for the year in which the other jump occurred are excluded in the calculation.
For example, for the U.S. population, we compare the death rates in 1918 with the average death rates
over years 1915-1917, 1919 and 1921. The death rates in year 1920, in which another jump occurred, are
excluded in the calculation.

3The full definition of the original Lee-Carter model is provided in Section 2.3.
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Figure 2.1: The estimates of y(x, T ∗) (the age patterns of mortality jumps) and bx (the age
response parameters in the original Lee-Carter model) for the populations of the U.S. (the upper
panel) and England and Wales (the lower panel). To facilitate exposition, the values of y(x, T ∗)
shown are normalized; i.e., the values of y(x, T ∗)/

∑
x y(x, T ∗) are shown.
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model variants demand different (and more advanced) estimation techniques, because in
these model variants jump effects are involved in not only the time-series process but also
other parts of the model structure.

We do acknowledge that parsimony is important and that the number of parameters
grows as additional features are introduced. To focus on the issues we intend to investi-
gate, we model one population only at a time and do not incorporate random changes in
long-term mortality trends. Also, to preserve the tractability of the resulting log-likelihood
function, we only consider Gaussian jumps, despite that other jump severity distributions
such as double-exponential may produce a better fit. We overcome the challenges in statis-
tical estimation by using the Route II estimation methodology that was recently introduced
by Haberman and Renshaw (2012). This alternative estimation method is based on the
first differences of the log mortality rates with respect to calendar time rather than the log
mortality rates themselves. Compared to the traditional way of estimation, the advantages
of the Route II methodology are twofold. First, in using the Route II approach, parameters
representing the static level of mortality (i.e., the ax parameters) are not involved in the
estimation and projection processes.4 By excluding these parameters, the model structure
being estimated is more parsimonious and therefore convergence is easier to achieve. Sec-
ond, in contrast to the traditional approach in which an extra step is needed to estimate
the time-series process embedded in the model, the Route II methodology permits us to
estimate all relevant parameters in one single estimation algorithm. So far as we aware,
this thesis represents the first attempt to use the Route II approach to estimate stochastic
mortality models with jump effects.

It is reasonable to conjecture that the features we consider have an impact of the pric-
ing of catastrophic mortality bonds, because two mortality jumps of the same severity but
different age patterns could affect the payout from a mortality bond differently, depending
on the age range with which the mortality bond is associated. To verify this conjecture, we
attempt to use our proposed model variants to price a collection of hypothetical mortality
bonds that are associated with different age ranges. In an incomplete market, the pricing
problem is not straightforward, although it can be accomplished by insurance-based meth-
ods (Chen and Cummins, 2010; Wills and Sherris, 2010), no-arbitrage methods (Cairns et
al., 2006; Chen and Cox, 2009; Chen et al., 2013a; Li, 2010; Li and Ng, 2011; Lin and Cox,
2008) or economic methods (Zhou et al., 2011, 2013a,b; Chen et al., 2013b). The pricing
method we use is the method of canonical valuation, which was first proposed by Stutzer
(1996) and applied to the market of insurance-linked securities by Chen et al. (2013a), Li

4In using the Route II methodology, a projection of future mortality rates is obtained by first summing
the projected first differences of future log mortality rates and then applying the summand to the most
recent log mortality rates. The ax parameters are therefore irrelevant.
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(2010) and Li and Ng (2011). Using the Atlas IX Capital Class B note launched in 2013
as a martingale constraint, this method identifies a risk-neutral probability measure, from
which prices of the hypothetical mortality bonds can be estimated.

The rest of this chapter is organized as follows. Section 2.2 describes the mortality
data used in our illustrations. Section 2.3 provides the specifications of the proposed
model variants. Section 2.4 explains how the parameters in the proposed model variants
are estimated. Section 2.5 presents the estimation results and evaluates the goodness-of-
fit. Section 2.6 details the pricing method we use and presents the calculated prices for
a collection of hypothetical catastrophic mortality bonds. Finally, concluding remarks are
provided in Section 2.7.

2.2 Mortality Data

The illustrations in this chapter are based on the mortality data from the unisex populations
of the U.S. and England and Wales. We obtain the required data from two official sources.

The data for the U.S. population from 1901 to 2005 are provided by the Centers for
Diseases Control and Prevention (CDC).5 These data are arranged by age groups <1, 1-4,
5-14, 15-24, ..., 75-84.

For the U.S. population from 2006 to 2010 and English and Welsh population from
1901 to 2011, the data are obtained from the Human Mortality Database (2014). For
consistency reasons, we group these data in the same way as in the data from the CDC.

2.3 Model Specification

2.3.1 The Original Lee-Carter Model

Our proposed model variants are built upon the original Lee-Carter model (Lee and Carter,
1992), which can be expressed as

ln(mx,t) = ax + bxkt + ex,t,

where mx,t denotes the central death rate for age group x in year t. In the model, parameter
ax represents the static level of mortality for age group x, parameter kt captures the

5www.cdc.gov
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variation of log mortality rates over time, parameter bx measures the sensitivity of ln(mx,t)

to changes in kt, and ex,t is the sampling error. It is assumed that ex,t
iid∼ N(0, σ2

e).

It is well-known that the model is subject to an identifiability problem. To stipulate
parameter uniqueness, the following identifiability constraints are often used:

X∑
x=1

bx = 1 and

tT∑
t=t1

kt = 0,

where X is the number of age groups under consideration, [t1, tT ] is the data sample period
and T is the length of the data sample period. These constraints are also used in this
chapter.

To generate mortality forecasts, the evolution of kt over time is modeled by a random
walk with drift:

kt = µ+ kt−1 + ξt, (2.1)

where µ is the drift term and the innovation term ξt follows a normal distribution with
mean 0 and variance σ2. It is assumed that the innovations have no serial correlation and
are independent of ex,t. Given this process, mortality forecasts can be obtained readily by
extrapolation.

2.3.2 The General Specification for the Model Variants under
Consideration

We now present the general specification for all model variants we consider. To introduce
short-term jump effects, we add an extra term NtJx,t to the original Lee-Carter model,
giving

ln(mx,t) = ax + bxkt +NtJx,t + ex,t, (2.2)

where ax, bx and ex,t carry the same meanings as in the original Lee-Carter model. The
sequence of kt in equation (2.2) is assumed to be free of jumps, so a change in kt can be
interpreted to mean a general (but not extreme) change in the overall level of mortality.
We retain the assumption that kt follows the random walk with drift specified by equation
(2.1).

We allow a maximum of one mortality jump in a calendar year. The jump count
variable Nt equals one if a mortality jump occurs in year t, and zero otherwise. It follows
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that Nt follows a Bernoulli distribution with parameter p, where p denotes the probability
of a mortality jump in a calendar year. We assume that the sequence of Nt possesses no
serial correlation.

The variable Jx,t reflects the effect of a mortality jump occurred in year t on age group

x. We assume Gaussian jumps, which imply the vector ~Jt = (J1,t, . . . , JX,t)
′ follows a

multivariate normal distribution with mean vector ~µ(J) and covariance matrix ΣJ . We
further assume that the sequence of ~Jt has no serial correlation and that ~Jt is independent
of Nt, ξt and ex,t.

In what follows we present three specific model variants. The differences among these
model variants lie in the way in which ~µ(J) and ΣJ are specified.

2.3.3 Model J0

Model J0 is constructed by setting

~µ(J) = ~bµJ and ΣJ =


b2

1 b1b2 · · · b1bX
b1b2 b2

2 b2bX
...

. . .
...

b1bX b2bX · · · b2
X

σ2
J ,

where ~b = (b1, . . . , bX)′. It follows that the model can be expressed as

ln(mx,t) = ax + bx(kt +NtYt) + ex,t,

where Yt ∼ N(µJ , σ
2
J) is a random variable representing the severity of the jump occurring

at time t. In Model J0, the jump effects NtYt are superimposed onto the general period
effects kt. The age patterns of jump effects and general period effects are assumed to be
identical, determined by the same collection of bx parameters.

Model J0 is not new and is in fact identical to the transitory jump model proposed by
Chen and Cox (2009). It is used in this chapter to benchmark against our proposed model
variants, in which the age pattern of mortality jumps is explicitly modeled.

We remark here that the way in which we estimate Model J0 is different from that used
by Chen and Cox (2009). In this chapter, we use the Route II methodology proposed by
Haberman and Renshaw (2012), in which all relevant parameters are estimated in a single
estimation algorithm. By contrast, the estimation procedure of Chen and Cox (2009)
involves multiple stages. First, they apply a rank-1 singular value decomposition to the
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matrix of ln(mx,t) − ax to obtain estimates of bx and kt. Second, they re-estimate kt so
that for all t, the following equation holds:

Dt =
X∑
x=1

(Ex,t exp(ax + bxkt)),

where Dt is the total death count in year t and Ex,t is the exposure count for age group x
in year t. Then finally, the parameters associated with the jump effects and the random
walk with drift are estimated by the method of conditional maximum likelihood. Their
estimation method works for this model variant, but not for the next two model variants
in which jump effects are involved in components other than the time-series process.

2.3.4 Model J1

Model J1 is constructed by setting

~µ(J) = ~b(J)µJ and ΣJ =


(b

(J)
1 )2 b

(J)
1 b

(J)
2 · · · b

(J)
1 b

(J)
X

b
(J)
1 b

(J)
2 (b

(J)
2 )2 b

(J)
2 b

(J)
X

...
. . .

...

b
(J)
1 b

(J)
X b

(J)
2 b

(J)
X · · · (b

(J)
X )2

σ2
J ,

where ~b(J) = (b
(J)
1 , . . . , b

(J)
X )′ is a constant vector. It immediately follows that Model J1 can

be expressed as

ln(mx,t) = ax + bxkt + b(J)
x NtYt + ex,t. (2.3)

In this model variant, the age pattern of jump effects is captured by a distinct parameter
vector ~b(J). It is clear that Model J1 nests Model J0, as the latter model can be recovered
by setting ~b(J) to ~b. When estimating Model J1, an additional identifiability constraint

X∑
x=1

b(J)
x = 1

is used to stipulate parameter uniqueness. The use of this parameter constraint also permits
us to readily compare the b

(J)
x parameters with the bx parameters, which also sum to one.

For this model variant, the age pattern of jump effects is fixed despite the jump severity
Yt is random. In more detail, equation (2.3) implies that the normalized effect of a mortality
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jump occurred in year t on age group x is given by

Jx,t∑
x Jx,t

=
b

(J)
x Yt∑
x b

(J)
x Yt

= b(J)
x ,

which is non-random. The fact that Model J1 implies a fixed age pattern of mortality
jumps can also be understood from the specification of ΣJ . In particular, the specification
of ΣJ means that Jx,t and Jy,t for all x, y = 1, . . . , X are perfectly correlated with each
other. We may therefore express Jx,t as

Jx,t = b(J)
x (µJ + σJWt),

where Wt is a standard normal random variable that is independent of age. Therefore, no
matter what the realized value of Wt is, the jump effects for age groups 1, . . . , X must be
proportional to b

(J)
1 , . . . , b

(J)
X .

2.3.5 Model J2

From Figure 2.1 (particularly in the lower panel) we observe that the (normalized) age
patterns of different mortality jumps are somewhat different. It is therefore reasonable to
further generalize Model J1 so that the normalized jump effect for age group x can deviate
from b

(J)
x in a random manner. To incorporate this property, one can permit the jump

effects for different age groups to be correlated with one another, but not perfectly so.

In Model J2, we allow the age pattern of mortality jumps to vary by setting

~µ(J) = ~b(J)µJ and ΣJ =


(b

(J)
1 )2 ρb

(J)
1 b

(J)
2 · · · ρb

(J)
1 b

(J)
X

ρb
(J)
1 b

(J)
2 (b

(J)
2 )2 ρb

(J)
2 b

(J)
X

...
. . .

...

ρb
(J)
1 b

(J)
X ρb

(J)
2 b

(J)
X · · · (b

(J)
X )2

σ2
J ,

where −1 ≤ ρ ≤ 1 is a constant, which can be interpreted to mean the correlation between
the jump effects for age groups i and j, where i 6= j. It is clear that Model J2 nests Model
J1, since the latter is the special case when ρ = 1. As before, the identifiability constraint∑X

x=1 b
(J)
x = 1 is used when estimating Model J2.

This model variant permits the age pattern of jump effects to vary randomly, as the
normalized jump effect Jx,t/

∑
x Jx,t can no longer be simplified to a non-random constant.
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From another viewpoint, the specification of ΣJ implies that

Jx,t = b(J)
x (µJ + σJWx,t),

where Wx,t ∼ N(0, 1) and cov(Wx,t,Wy,t) = ρ for x 6= y. It follows that when x 6= y, the
realized values of Wx,t and Wy,t are different, which in turn means that the jump effects

for age groups 1, . . . , X are no longer proportional to b
(J)
1 , . . . , b

(J)
X .

We acknowledge that it is possible to further relax the model structure by permitting
the correlations between different pairs of age groups to be different, that is, by having
all X(X − 1)/2 off-diagonal elements in ΣJ to be free parameters. However, adopting an
unconstrained ΣJ matrix would significantly increase the number of parameters that need
to be estimated. The simplified structure we use allows us to incorporate the potential
variations in the age pattern of mortality jumps with only one additional parameter relative
to Model J1.

2.4 Estimation Method

As previously mentioned, the estimation method of Chen and Cox (2009) is not appli-
cable to Models J1 and J2, in which jump effects are not simply superimposed onto the
random walk with drift. To overcome the estimation challenge, we use the Route II esti-
mation methodology documented in the paper by Haberman and Renshaw (2012), which
the authors found to work well under the Lee-Carter modeling framework.

The Route II estimation method is based on the first differences of the log mortality
rates with respect to calendar time rather than the log mortality rates themselves. In more
detail, the goal of this estimation method is to estimate the parameters contained in the
structure of

Zx,t := ln(mx,t)− ln(mx,t−1).

As Zx,t ≈ ∂ ln(mx,t)

∂t
= 1

mx,t

∂mx,t
∂t

, we can interpret Zx,t to mean the scaled or relative mortality

improvement rate at age x at time t.6 An incremental mortality improvement implies
Zx,t < 0, while an incremental mortality deterioration implies Zx,t > 0.

6There are alternative ways to approximate the partial derivative. For example, Haberman and Renshaw
(2012) approximates it by using Zx,t = 2(1− mx,t

mx,t−1
)/(1+

mx,t

mx,t−1
). We acknowledge that using ∆t = 1 may

not lead to an accurate approximation. This approximation is used solely to facilitate the demographic
interpretation of Zx,t and is not used elsewhere in the chapter. All results in this chapter are independent
of the accuracy of this approximation.
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The general specification in equation (2.2) implies that

Zx,t = bx(kt − kt−1) +Nt · Jx,t −Nt−1 · Jx,t−1 + εx,t, (2.4)

where εx,t = ex,t − ex,t−1. It is clear that εx,t∼N(0, σ2
r), where σ2

r = 2σ2
e . Under the

assumption that kt follows a random walk with drift, equation (2.2) can be further simplified
into

Zx,t = bx(µ+ ξt) +Nt · Jx,t −Nt−1 · Jx,t−1 + εx,t. (2.5)

For convenience, we rewrite equation (2.5) in vector form as follows:

~Zt = ~b(µ+ ξt) +Nt
~Jt −Nt−1

~Jt−1 + ~εt, (2.6)

where ~Zt = (Z1,t, . . . , ZX,t)
′ and ~εt = (ε1,t, . . . , εX,t)

′.

Our goal is to estimate the parameters in the parametric structure of ~Zt. Noting that
~Zt is not serially independent, we consider the method of conditional maximum likelihood,
whereby the joint density of all observations is expressed as the product of the condi-
tional densities of different observations. In particular, the log-likelihood function can be
expressed as

l(~θ) = ln f(~zt2 , . . . , ~ztT ; ~θ)

= ln[f(~ztT |~ztT−1
; ~θ) · f(~ztT−1

|~ztT−2
; ~θ) . . . f(~zt3|~zt2 ; ~θ) · f(~zt2 ; ~θ)]

= ln f(~zt2 ; ~θ) +

tT∑
t=t3

ln f(~zt|~zt−1; ~θ)

=

tT−1∑
t=t2

ln f(~zt, ~zt+1; ~θ)−
tT−1∑
t=t3

ln f(~zt; ~θ),

where ~θ denotes the vector of parameters being estimated. The second step in the derivation
above originates from the fact that ~Zt depends on ~Zt−1 but not ~Zs for any integer s < t−1.

On the basis of the distributional assumptions we imposed on ξt, Nt, ~Jt and ~εt, it can
be shown that the following three properties hold7:

Property 1

~Zt|Nt = nt, ~Jt = ~jt ⊥ ~Zt+1|Nt = nt, ~Jt = ~jt.

7The derivation of the three properties is summarized in Appendix A.1.
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Property 2

~Zt|Nt−1 = nt−1, Nt = nt ∼MVN(~µmar,Σmar),

where

~µmar = ~bµ+ (nt − nt−1)~µ(J)

and

Σmar = ~b~b′σ2 + I · σ2
r + (n2

t + n2
t−1)ΣJ .

Property 3 Define

~Z∗t,t+1 =

(
~Zt
~Zt+1

)
.

We have

~Z∗t,t+1|Nt−1 = nt−1, Nt = nt, Nt+1 = nt+1 ∼MVN(~µjoint,Σjoint),

where

~µjoint =

(
~bµ+ (nt − nt−1)~µ(J)

~bµ+ (nt+1 − nt)~µ(J)

)

and

Σjoint =

(
σ2~b~b′ + I · σ2

r + (n2
t + n2

t−1)ΣJ −n2
tΣJ

−n2
tΣJ σ2~b~b′ + I · σ2

r + (n2
t+1 + n2

t )ΣJ

)
.

Using these three properties, we can calculate the unconditional density f(~zt; ~θ) and the

joint density f(~zt, ~zt+1; ~θ) in the log-likelihood function by first conditioning on the jump
indicator variables and then integrating the conditional density over the jump indicator
variables. Specifically, the unconditional density of ~zt can be expressed as

f(~zt; ~θ) =
1∑

nt=0

1∑
nt+1=0

f(~zt|Nt−1 = nt−1, Nt = nt) Pr(Nt−1 = nt−1, Nt = nt),
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whereas the joint density of ~zt and ~zt+1 is given by

f(~zt, ~zt+1; ~θ) =
∑1

nt=0

∑1
nt+1=0

∑1
nt+2=0 f(~zt, ~zt+1|Nt−1 = nt−1, Nt = nt, Nt+1 = nt+1)

×Pr(Nt = nt, Nt+1 = nt+1, Nt+2 = nt+2).

The log-likelihood function l(~θ) is maximized by an iterative Newton-Raphson proce-
dure, in which parameters are updated one at a time. The details about the iterative
procedure, including the initial values used, are provided in Appendix A.2.

Given the parameter estimates, one can readily obtain a projection of future mortality
rates by first summing the projected first differences of future log mortality rates and then
applying the summand to the most recent log mortality rates. In particular, the projected
value of ln(mx,u) for u = tT+1, tT+2, . . . can be computed by adding the projected value of∑u

t=tT+1
Zx,t to ln(mx,tT ).

We conclude this section with three remarks. First, since Zx,t does not depend on ax,
the ax parameters are not estimated. The irrelevance of the ax parameters is not surprising,
because in using the Route II approach, the static level of mortality is determined by the
log mortality rates at the forecast origin, instead of the ax parameters. By excluding these
irrelevant parameters, the parametric structure being estimated is more parsimonious and
hence convergence can be achieved more easily. Second, the Route II projection approach,
i.e., applying projected Zx,t values to the value of ln(mx,tT ), ensures that the projected
mortality rates progress naturally from the mortality rates at the forecast origin, thereby
avoiding the potential short-term forecast bias that may result from the typical two-stage
estimation method with

∑X
x=1 bx = 1 and

∑tT
t=t1

kt = 0 as identifiability constraints (see
Lee and Miller, 2001; Li et al., 2009). This advantage is particularly important when
the modeler’s objective is to value catastrophic mortality bonds, which often have short
maturities. Third, the Route II approach allows us to estimate all relevant parameters,
including the parameters in the random walk with drift, in one single estimation algorithm.
This alternative estimation approach therefore spares us from the problems, for example,
the need for standard error corrections, that are associated with multi-stage estimation
methods (see Murphy and Topel, 2002).

2.5 Estimation Results

All three model variants are fitted to the historical mortality data from the U.S. and English
and Welsh populations. The estimated parameters and their standard errors are shown
in Tables 2.1 and 2.2. The standard errors are calculated by a parametric bootstrapping
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procedure, which is detailed in Appendix A.3. Admittedly, some of the parameter estimates
that are associated with jump effects have rather large standard errors. The large standard
errors are not overly surprising, because over the data sample period there were only a
handful of extreme changes in mortality on which the estimation of these parameters could
be based.

Because the three model variants are nested, we can readily compare their fit to the
historical data by using the Akaike Information Criterion (AIC) (Akaike, 1974), which is
defined by 2 × (−l̂ + k), where l̂ is the maximized log-likelihood and k is the effective
number of parameters. We prefer the model with the smallest AIC value, which indicates
the model provides the best fit (measured by l̂), taken into account its degree of parsimony
(measured by k). The AIC values of all models we estimated are displayed in Tables 2.1
and 2.2.

For both populations, Model J1 gives a lower AIC value in comparison to Model J0.
This result indicates that the fit to historical data is improved significantly if a distinct
collection of parameters is used to capture the age pattern of mortality jumps. For the
population of England and Wales, Model J2 gives an even smaller AIC value, which means
that the fit to historical data is further benefited by allowing the age pattern of mortality
jumps to vary randomly. However, this conclusion does not apply to the U.S. population,
possibly because the U.S. population were subject to fewer extreme changes in mortality
over the data sample period and thus the information contained in the historical data
might not be sufficient to support the use of a varying age pattern. On the basis of the
AIC value, we recommend Model J1 for the U.S. population and Model J2 for English and
Welsh population.

We can also conduct the likelihood ratio test to compare the three model variants. The
null hypothesis and alternative hypothesis of the test are summarized as follow:

H0 : ~θ = ~θ0 and H1 : ~θ = ~θ1,

where ~θ0 represents the set of parameters from the unrestricted model, and ~θ1 represents
the set of parameters from the restricted model. The likelihood ratio test statistic LR is
calculated as

LR = 2× (l̂1 − l̂0),

where l̂0 is the maximized log-likelihood of the unrestricted model and l̂1 is the maximized
log-likelihood of the restricted model. The results of the likelihood ratio test for both
populations are summarized in Table 2.3. Same as comparing the AIC value, the likelihood
ratio test results suggest Model J1 for the U.S. population and Model J2 for English and
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Table 2.1: Estimates of the parameters in Models J0, J1 and J2, the U.S. unisex population.
The standard errors of the parameter estimates are shown in parentheses.

Estimates (standard error)

Model J0
b1 0.071817 (0.005502) µ −0.159414 (0.024615)
b2 0.144984 (0.005706) σ 0.230318 (0.021654)
b3 0.125876 (0.005514) σr 0.035369 (0.000798)
b4 0.174212 (0.005599) µJ 0.322572 (1.182600)
b5 0.189691 (0.005681) σJ 1.988527 (0.696490)
b6 0.115635 (0.005483) p 0.047808 (0.026661)
b7 0.063679 (0.005555)
b8 0.045722 (0.005594)
b9 0.038553 (0.005550)
b10 0.029831 (0.005592)

Log-likelihood: 1963.148772 AIC: −3896.297543

Model J1

b1 0.104906 (0.004947) b
(J)
1 0.045360 (0.008899) µ −0.203843 (0.044046)

b2 0.161054 (0.005133) b
(J)
2 0.133287 (0.006246) σ 0.452523 (0.031716)

b3 0.114020 (0.005017) b
(J)
3 0.135024 (0.006391) σr 0.026349 (0.000606)

b4 0.113396 (0.005047) b
(J)
4 0.222280 (0.013361) µJ 0.740631 (0.652480)

b5 0.109291 (0.005043) b
(J)
5 0.253698 (0.016476) σJ 1.362288 (0.421620)

b6 0.097629 (0.004887) b
(J)
6 0.129772 (0.006698) p 0.064164 (0.026342)

b7 0.080788 (0.005020) b
(J)
7 0.049746 (0.007012)

b8 0.074319 (0.004995) b
(J)
8 0.022695 (0.008335)

b9 0.071807 (0.004949) b
(J)
9 0.012077 (0.008511)

b10 0.072788 (0.005018) b
(J)
10 −0.003939 (0.010254)

Log-likelihood 2188.382845 AIC: −4324.765690

Model J2

b1 0.104338 (0.004922) b
(J)
1 0.046579 (0.006603) µ −0.203220 (0.043805)

b2 0.160182 (0.004987) b
(J)
2 0.133484 (0.005584) σ 0.456687 (0.032294)

b3 0.114087 (0.004945) b
(J)
3 0.136716 (0.004888) σr 0.026059 (0.000603)

b4 0.114347 (0.004906) b
(J)
4 0.220386 (0.009940) µJ 0.711151 (0.814950)

b5 0.109416 (0.004985) b
(J)
5 0.250450 (0.013630) σJ 1.891909 (0.537790)

b6 0.098078 (0.004897) b
(J)
6 0.128856 (0.004895) p 0.071365 (0.027124)

b7 0.080863 (0.004907) b
(J)
7 0.050046 (0.005224) ρ 0.999070 (0.000845)

b8 0.074234 (0.004918) b
(J)
8 0.023430 (0.006141)

b9 0.071752 (0.004866) b
(J)
9 0.012904 (0.006177)

b10 0.072704 (0.004937) b
(J)
10 −0.002852 (0.008445)

Log-likelihood: 2188.921027 AIC: −4323.842054

23



Table 2.2: Estimates of the parameters in Models J0, J1 and J2, English and Welsh unisex
population. The standard errors of the parameter estimates are shown in parentheses.

Estimates (standard error)

Model J0
b1 0.018286 (0.005950) µ −0.113471 (0.017376)
b2 0.105161 (0.005731) σ 0.092098 (0.031653)
b3 0.095571 (0.005837) σr 0.067778 (0.001547)
b4 0.330116 (0.007189) µJ 1.632288 (0.657920)
b5 0.266008 (0.006752) σJ 1.967868 (0.443460)
b6 0.107817 (0.005889) p 0.118019 (0.035530)
b7 0.038190 (0.005870)
b8 0.019531 (0.005868)
b9 0.014950 (0.005941)
b10 0.004369 (0.006004)

Log-likelihood: 1313.331494 AIC: −2596.662988

Model J1

b1 0.112529 (0.008572) b
(J)
1 −0.001796 (0.005827) µ −0.203858 (0.046202)

b2 0.256623 (0.009615) b
(J)
2 0.072235 (0.008187) σ 0.459819 (0.034251)

b3 0.152161 (0.008274) b
(J)
3 0.080577 (0.004546) σr 0.043686 (0.001013)

b4 0.066560 (0.008935) b
(J)
4 0.389606 (0.013685) µJ 1.998496 (0.410110)

b5 0.072099 (0.008844) b
(J)
5 0.308119 (0.010146) σJ 1.320538 (0.274390)

b6 0.086473 (0.008218) b
(J)
6 0.110848 (0.003734) p 0.133860 (0.035408)

b7 0.078347 (0.008302) b
(J)
7 0.028514 (0.004050)

b8 0.060935 (0.008351) b
(J)
8 0.010598 (0.004232)

b9 0.057952 (0.008394) b
(J)
9 0.006409 (0.004294)

b10 0.056321 (0.008559) b
(J)
10 −0.005110 (0.004481)

Log-likelihood 1646.198340 AIC: −3240.396680

Model J2

b1 0.115010 (0.008248) b
(J)
1 0.003626 (0.002792) µ −0.202446 (0.045380)

b2 0.257910 (0.009592) b
(J)
2 0.081977 (0.003841) σ 0.453815 (0.033916)

b3 0.149043 (0.008348) b
(J)
3 0.086463 (0.002171) σr 0.042855 (0.001006)

b4 0.068967 (0.008840) b
(J)
4 0.375667 (0.006481) µJ 1.133851 (1.439400)

b5 0.066487 (0.008902) b
(J)
5 0.293454 (0.005001) σJ 3.927853 (0.865820)

b6 0.083765 (0.008332) b
(J)
6 0.109057 (0.001901) p 0.131646 (0.034135)

b7 0.078472 (0.008308) b
(J)
7 0.031342 (0.002014) ρ 0.999510 (0.000012)

b8 0.062099 (0.008336) b
(J)
8 0.012886 (0.002021)

b9 0.059538 (0.008263) b
(J)
9 0.008506 (0.002044)

b10 0.058710 (0.008477) b
(J)
10 −0.002979 (0.002136)

Log-likelihood: 1648.815577 AIC: −3243.631154
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Welsh population.

Table 2.3: The likelihood ratio test results for the U.S. unisex population and English and
Welsh unisex population.

the U.S. unisex population
~θ0

~θ1 LR Critical Value p-value
Model J0 Model J1 450.468146 18.307038 0.000000
Model J1 Model J2 1.076364 3.841459 0.299512

English and Welsh unisex population
~θ0

~θ1 LR Critical Value p-value
Model J0 Model J1 665.733692 18.307038 0.000000
Model J1 Model J2 5.234474 3.841459 0.022144

In Figure 2.2 we compare the estimates of bx in Model J0 and the estimates of bx
and b

(J)
x in Model J1/J2. Because the same normalization scheme applies to all three sets

of parameters, we can gauge their relative importance readily. In Model J1/J2, the age

pattern of a typical mortality jump is captured by the pattern of b
(J)
x , which has a peak

in age group 15-24 / 25-34 and diminishes quickly towards the ends of the age spectrum,
while the age pattern of general mortality improvements is captured by the pattern of bx,
which has a peak in age group 1-4 and is more uniform across different age groups. By
contrast, in Model J0, the age patterns of extreme and general changes in mortality are
both incorporated into the pattern of bx, which looks like an average between the patterns
of bx and b

(J)
x in Model J1/J2. The potential problems of Model J0 have now become clear.

For example, the effect of a mortality jump on individuals aged between 15 and 34 could
be understated, while that on individuals aged beyond 45 could be overstated.

In Figure 2.3 we display the normalized age patterns of 50 mortality jumps that are
simulated from the estimated Models J1 and J2 for English and Welsh population. As
expected, the normalized age patterns of all 50 simulated mortality jumps from Model J1
are identical. The fixed normalized age pattern is not adequate to capture what we found
from the exploratory analysis for this population (see Section 2.1): the age patterns of the
detected historical mortality jumps for English and Welsh population are quite different
from one anther; out of the five detected jumps, three have a peak in age group 15-24, one
has a peak in age group 1-4 and one has a peak in age group 25-34. By contrast, the jumps
simulated from Model J2 appear to have a close resemblance to the historical jumps that
are shown in the lower panel of Figure 2.1.
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Figure 2.2: The estimated values of bx in Model J0 and b
(J)
x in Model J1 (for the U.S. population)

and Model J2 (for English and Welsh population).
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Figure 2.3: 50 mortality jumps simulated from Models J1 and J2 for the population of England
and Wales. To facilitate exposition, the values shown are normalized; i.e., the magnitudes of
Jx,t/

∑
x Jx,t are shown.
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2.6 Applications to Catastrophic Mortality Bonds Pric-

ing

2.6.1 Catastrophic Mortality Bonds

In recent years, several reinsurers have attempted to cede their exposures to extreme mor-
tality risk by issuing catastrophic mortality bonds. These bonds have rather short times
to maturity, usually three to five years. Coupon payments are typically linked to a market
interest rate such as the London Interbank Offered Rate (LIBOR), while the principal
repayment is not guaranteed. In particular, the principal would be reduced if the underly-
ing index exceeds an attachment point and exhausted if the index exceeds an exhaustion
point. A typical underlying index is based on a weighted average of mortality rates across
different populations, age groups and genders. The exact composition of it depends on the
hedger’s (seller’s) risk exposures.

To attract investors with different objectives and risk preferences, a catastrophic mor-
tality bond may be divided into several tranches, each of which has its own attachment
and exhaustion points, coupon rates, credit rating and/or time to maturity. For example,
six different tranches have been issued under Swiss Re’s Vita Capital IV program that was
launched in October 2010.8 We refer interested readers to Bauer and Kramer (2009) and
Blake et al. (2013) for more information about previously issued catastrophic mortality
bonds.

2.6.2 Pricing Methodology

The market for catastrophic mortality bonds is incomplete in the sense that it is not
possible to price a security in this market by constructing a replicating portfolio. In an
incomplete market, a critical step in performing risk-neutral valuation is to identify a
risk-neutral probability measure, under which prices of mortality bonds can be computed.
Although this step can be accomplished by methods such as the Wang transform (see, e.g.,
Chen and Cox, 2009) and the Esscher transform (see, e.g., Chuang and Brockett, 2014),
we consider the method of canonical valuation, which can be implemented readily with the
model variants we consider.

The method of canonical valuation was introduced by Stutzer (1996). In his original
work, valuation was performed in a fully non-parametric manner. Specifically, he derived

8See http://www.artemis.bm/deal directory/vita-capital-iv-ltd/ and http://www.artemis.bm/deal directory/vita-
capital-iv-ltd-series-v-and-vi/.
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a risk-neutral probability measure by adjusting the empirical distribution of future index
values that was obtained by sampling with replacement from historical index values. The
approach we consider is a semi-parametric variant (Li, 2010; Chen et al., 2013a), whereby
risk-neutralization is applied to the empirical distribution of the sample paths generated
from an assumed model.

The first step in implementing this pricing method is to generate a large number of
sample paths of future mortality rates from the assumed stochastic mortality model, defined
under the real-world probability measure. The generated sample paths represent as a
collection of states of nature, all of which are equally probable. Therefore, if N sample
paths are generated, then the probability mass function for the state of nature ω under
the real-world probability measure P is given by

Pr(ω = ωj) = πj =
1

N
, j = 1, 2, . . . , N.

Our goal is to determine the probability distribution of ω under a risk-neutral probability
measure Q that is equivalent to P. We use N = 20000 in our calculations.

Let us suppose that the market contains m distinct primary securities, whose values
evolve according to the state of nature ω. The ith primary security, where i = 1, 2, . . . ,m,
has a time-0 price of Fi and, at the risk-free interest rate, a random discounted payoff of
fi(ω). We require that all primary securities are priced correctly under Q, so that the
martingale constraints

EQ[fi(ω)] =
N∑
j=1

fi(ω)π∗j = Fi, i = 1, 2, . . . ,m, (2.7)

where π∗j , j = 1, 2, . . . , N , is the probability distribution of ω under Q, are satisfied.

In an incomplete market, m < N and hence there are multiple risk-neutral probability
measures satisfying (2.7). Let Q be the set of all measures that are equivalent to P and
satisfy (2.7); that is, Q is the set of all equivalent martingale measures. The next step is to
choose a measure in Q. This choice is based on the Kullback-Leibler information criterion
(Kullback and Leibler, 1951), which is defined by

D(Q,P) = EP
(
dQ
dP

ln
dQ
dP

)
=

N∑
j=1

π∗j ln
π∗j
πj
.

We choose the equivalent martingale measure Q0 that minimizes the Kullback-Leibler
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information criterion; that is,

Q0 = arg min
Q∈Q

D(Q,P),

subject to
∑N

j=1 π
∗
j = 1 and the martingale constraints specified by equation (2.7). We

refer Q0 to as the canonical measure.

From a statistical angle, the justification for the canonical measure is that it incorpo-
rates all information contained in the prices of the m primary securities that are traded
in the market but no other (irrelevant) information. The canonical measure can also be
justified from economic and geometric viewpoints (see Frittelli, 2000; Li and Ng, 2011).

Given the canonical measure, we can readily price a security that is associated with
the same underlying. Let us consider a security that has a payoff, discounted to time-
zero at the risk-free interest rate, of g(ωj) in the jth state of nature. The price of this

security implied by Q0 is simply
∑N

j=1 g(ωj)π̃
∗
j , where π̃∗j , j = 1, 2, . . . , N , is the probability

distribution of ω under Q0.

2.6.3 Derivation of the Canonical Measure

We consider m = 1 martingale constraint, which is based on the price (premium spread)
of the Atlas IX Capital Class B note launched by SCOR Global Life in 2013. The note
is designed to protect the issuer from losses that are associated with extreme increases in
the U.S. mortality over a six-year observation period from January 1, 2013 to December
31, 2018. It makes coupon payments that are linked to the 3-month LIBOR quarterly and
a principal repayment at maturity. The principal would be reduced if there is an increase
in the underlying U.S. mortality index that exceeds a specified percentage of a reference
mortality index during the observation period. The key information about this note is
summarized in Table 2.4.9

The actual underlying index is composed by a weighted average of U.S. mortality rates
over different age groups and genders. In our valuation work, we use a slightly simplified
index that is based on unisex mortality rates, because the models we consider are fitted
to unisex rather than gender-specific mortality. Each age weight in the simplified index
is the sum of the corresponding age weights for both genders in the actual index.10 The
age weights used in the simplified mortality index are displayed in Table 2.5. On the basis

9Source: S&P Rating Report (www.standardandpoors.com/ratings/ils/en/us)
10The age and gender weights used in the actual underlying mortality index can be found in the S&P

Rating Report (www.standardandpoors.com/ratings/ils/en/us).
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Table 2.4: Information about the variable-rate principal-at-risk series 2013-1 Class B notes
issued under the Atlas IX Capital program.

Credit rating BB
Amount $180 million
Interest 3-month LIBOR minus 6 bps (floored at zero) plus 325 bps
Term 5 years and 4 months
Closing date September 11, 2013
Scheduled maturity date January 17, 2019

Table 2.5: The age weights used in the simplified mortality index.

Age Group (x) Weight (wx)

1 (Ages <1) 0.0000%
2 (Ages 1 - 4) 0.0000%
3 (Ages 5 - 14) 0.0000%
4 (Ages 15 - 24) 0.6479%
5 (Ages 25 - 34) 6.8844%
6 (Ages 35 - 44) 29.0933%
7 (Ages 45 - 54) 34.0283%
8 (Ages 55 - 64) 19.6846%
9 (Ages 65 - 74) 6.8641%
10 (Ages 75 - 84) 2.7974%

Total 100.0000%

of these age weights, the simplified mortality index qt for years t = 2012, . . . , 2018 can be
calculated as

qt =
10∑
x=1

wxmx,t, (2.8)

where wx represents the weight on age group x.

The principal of this note is subject to a potential reduction at the end of each year
from 2014 to 2018. In particular, at the ends of years t = 2014, . . . , 2018, the mortality
improvement index, q

(MI)
t , is calculated according to the following equation:

q
(MI)
t =

qt−1 + qt

2× q(ref)
t−2

, (2.9)
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where q
(ref)
t is the reference index, which is defined as follows:

q
(ref)
t =


L× q(ref)

t−1 , if L× q(ref)
t−1 ≤ q

(ref)
t

(2− L)× q(ref)
t−1 , if q

(ref)
t ≤ (2− L)× q(ref)

t−1

q
(ref)
t , if (2− L)× q(ref)

t−1 < q
(ref)
t < L× q(ref)

t−1

, (2.10)

for t = 2013, · · · , 2016, where q
(ref)
2012 = q2012 and L denotes the attachment point. We can

interpret q
(MI)
t to mean the change in mortality (on a two-year aggregate basis) relative to

the reference index. The percentage reduction in the original principal at the ends of years
t = 2014, . . . , 2018 is a function of q

(MI)
t :

Rt =
min(q

(MI)
t , U)−min(q

(MI)
t , L)

U − L
, (2.11)

where L = 1.02 and U = 1.04 are the attachment and exhaustion points, respectively. Let
Pt be the balance of the principal (per $1 of the original principal) in year t. We have
P2014 = 1 and

Pt = max

(
100%−

t−1∑
u=2014

Ru, 0

)
(2.12)

for t = 2015, . . . , 2019.

At the end of each quarter, a coupon is paid on the balance of the principal. Let Ct be
the coupon (per $1 of the original principal) payable at time t and c be the coupon rate.
We have

Ct+ s
4

= cPt,

for t = 2014, . . . , 2018 and s = 0, 1, 2, 3, and C2019 = cP2019. The coupon rate c is set to
be the 3-month LIBOR minus 6 basis points (floored at zero) plus 325 basis points. As
the proceeds from the sale of the notes are deposited into a designated collateral account
that earns the 3-month LIBOR minus 6 basis points, the additional 325 basis points can
be regarded as the premium spread that compensates investors for taking on the extreme
mortality risk.

On the basis of the Atlas IX Capital Class B note, the martingale constraint for deriving
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the canonical measure can be expressed as

EQ

(
4∑
t=0

3∑
s=0

Dt+ s+1
4
C2014+t+ s

4
+D5+ 1

4
(C2019 + P2019)

)
= 1, (2.13)

where Dt represents the risk-free discount factor for a period of t years. Let V (ωj) be
the value of

∑4
t=0

∑3
s=0Dt+ s+1

4
C2014+t+ s

4
+ D5+ 1

4
(C2019 + P2019) in the jth state of nature

(simulated mortality scenario). It can be shown that the distribution of ω under the
resulting canonical measure can be expressed as

π̃∗j =
exp(γ̂V (ωj))∑N
j=1 exp(γ̂V (ωj))

, j = 1, 2, . . . , N,

where the Lagrangian multiplier γ̂ is given by

γ̂ = arg min
γ

N∑
j=1

exp(γ(V (ωj)− 1)).

In our calculations, the simulated mortality scenarios are obtained by applying the
simulated values of Zx,t (from either one of the three model variants) to the 2010 mortality
rates,11 assuming that they are identical to the 2012 mortality rates on which the first
reference index value is based. We believe that the effect of this two-year time lag is not
that material, as the principal reduction is based on relative changes in mortality rather
than absolute levels of mortality. The risk-free discount factors are computed by using the
yield curve for zero-coupon U.S. Treasury bonds and notes on September 11, 2013 (the
closing date).12

2.6.4 Pricing Hypothetical Mortality Bonds

We consider three hypothetical mortality bonds that are linked to mortality indexes with
different age weights. The age weights (i.e., wx for x = 1, . . . , 10) on which the mortality
indexes are based are shown in Table 2.6. The first set of age weights is the same as that
used in the (simplified) mortality index to which the Atlas IX Capital Class B note is
linked. The other two sets of age weights, which are more concentrated on younger and

11The end of the data sample period is 2010.
12The yields on zero-coupon U.S. Treasury bonds and notes for selected maturities are provided by

Bloomberg. The yields for other maturities are obtained by linear interpolations.
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Table 2.6: The age weights used in the mortality indexes to which the hypothetical mor-
tality bonds being valued are linked.

Weight (wx)
Age group (x) Hypothetical bond 1 Hypothetical bond 2 Hypothetical bond 3

1 (Age < 1) 0.00 % 0.00 % 0.00 %
2 (Ages 1 - 4) 0.00 % 0.00 % 0.00 %
3 (Ages 5 - 14) 0.00 % 10.00 % 0.00 %
4 (Ages 15 - 24) 0.65 % 40.00 % 0.00 %
5 (Ages 25 - 34) 6.88 % 40.00 % 0.00 %
6 (Ages 35 - 44) 29.09 % 10.00 % 0.00 %
7 (Ages 45 - 54) 34.03 % 0.00 % 0.00 %
8 (Ages 55 - 64) 19.68 % 0.00 % 0.00 %
9 (Ages 65 - 74) 6.86 % 0.00 % 37.50 %
10 (Ages 75 - 84) 2.80 % 0.00 % 62.50 %

Total 100.00 % 100.00 % 100.00 %

older ages, respectively, could be used when securitizing life insurances that are sold to
younger people13 and life settlements that typically involve individuals who are aged above
65.

Each hypothetical mortality bond is further divided into five tranches (I to V) with
different attachment and exhaustion points (i.e., [L,U ]), namely [1.02, 1.04], [1.04, 1.06],
[1.06, 1.08], [1.08, 1.10] and [1.10, 1.12]. Except parameters wx, L and U , the hypothetical
mortality bonds are identical to the Atlas IX Capital Class B note.

Our goal is to estimate the premium spread for each tranche of the three hypothetical
bonds. This goal is accomplished by first solving the following equations for the coupon
rate c:

EQ0

(
4∑
t=0

3∑
s=0

Dt+ s+1
4
C2014+t+ s

4
+D5+ 1

4
(C2019 + P2019)

)
= 1 and Ct+ s

4
= cPt,

where Q0 is the canonical measure identified in Section 2.6.3 and the values of P2014, . . . , P2019

in each state of nature are calculated using equations (2.8) to (2.12), on the basis of the
sample path of future mortality rates associated with that particular state of nature and
the applicable values of wx, L and U . The premium spread is then estimated by subtract-

13Life insurance portfolios that are concentrated on ages below 44 are not uncommon. For instance, in
financial year 2012, 74% of the customers who purchased term-life insurances from Lifenet Insurance were
aged below 40. Source: http://ir.lifenet-seimei.co.jp/.
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Table 2.7: The estimated premium spreads for the hypothetical mortality bonds.

Tranche I Tranche II Tranche III Tranche IV Tranche V

Attachment point (%) 102.00 104.00 106.00 108.00 110.00
Exhaustion point (%) 104.00 106.00 108.00 110.00 112.00

Estimated premium spread (basis points)

Hypothetical Bond 1
Model J0 325.00 217.30 192.76 182.70 176.59
Model J1 325.00 266.67 210.63 178.94 166.62
Model J2 325.00 274.19 220.29 186.86 171.94

Estimated premium spread (basis points)

Hypothetical Bond 2
Model J0 546.08 434.86 340.38 280.48 248.94
Model J1 752.94 649.96 558.60 485.48 432.36
Model J2 755.98 658.01 573.23 506.80 459.50

Estimated premium spread (basis points)

Hypothetical Bond 3
Model J0 991.94 530.33 284.89 199.76 175.27
Model J1 489.50 337.69 233.04 184.50 167.30
Model J2 481.44 333.54 231.56 183.97 167.14

ing the rate that collateral account earns (the 3-month LIBOR minus 6 basis points) from
the calculated coupon rate.

The estimated premium spreads for all tranches of the three hypothetical bonds are
displayed in Table 2.7. We acknowledge that Model J2 is not the most preferred model
for the U.S. population, but the results from this model variant are still presented for
completeness and for the readers to gauge how the permission of a random age pattern
may affect the premium spread estimates. As expected, the estimated premium spreads
decrease with the attachment and exhaustion points, because investors should be rewarded
less as the bond’s riskiness reduces. More noteworthy is that compared to Model J0, Models
J1 and J2 (which model the age pattern of mortality jumps with a distinct collection of
parameters) yield significantly different premium spread estimates. The differences range
from minus 51 to plus 85 percentage points, depending on the bond’s attachment and
exhaustion points as well as the age weights of the index to which the bond is linked.

Let us first focus on the pricing results for Bond 1. For Tranche I of this bond, all three
model variants yield the same premium spread estimate of 325 basis points. This result
is not surprising, because this tranche is identical to the Atlas IX Capital Class B note
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on which the martingale constraint for the canonical measure is based. Relative to the
premium spreads estimated from Model J0, the premium spreads estimated from Models
J1 and J2 are larger for Tranches II and III but smaller for Tranche V. This result cannot
be explained simply by comparing the jump severity and volatility parameters among the
three model variants. However, we may understand this result by examining how the
jump severity and volatility parameters interact with the parameters representing the age
pattern of mortality jumps. In Figure 2.4 we show the patterns of b

(J)
x (µJ + λσJ), for

λ = 0, 0.5, 1, 2, implied by Models J0, J1 and J2. This quantity can be understood as
the impact of a mortality jump with a magnitude of µJ + λσJ on age group x. We now
examine the values of b

(J)
x (µJ + λσJ) for age group 45-54, the age group on which Bond

1’s mortality index is most heavily weighted. For λ = 0 (i.e., for a mortality jump with a

moderate magnitude), the value of b
(J)
x (µJ +λσJ) for age group 45-54 implied by Model J0

is lower than those implied by the other two model variants, but for higher values of λ (i.e.,
for a mortality jump with a larger magnitude), the opposite is true. This observation offers
an explanation as to why Models J0 implies lower premium spreads for the riskier tranches
(which have lower attachment and exhaustion points) but higher premium spreads for the
less risky tranches. Using a similar argument, we can also explain why Model J2 implies
higher premium spreads for Tranches II to V in comparison to Model J1.

We then turn to the pricing results for Bond 2, whose index is most heavily weighted
on age groups 15-24 and 25-34. For these two age groups, Model J0 yields the smallest
values of b

(J)
x (µJ + λσJ) for all values of λ we consider. This observation may explain why

Model J0 implies the smallest premium spread for all five tranches of Bond 2. On the other
hand, except for λ = 0, Model J2 gives the highest values of b

(J)
x (µJ + λσJ) for age groups

15-24 and 25-34, accounting for why it produces the highest premium spreads.

Finally, we consider the pricing results for Bond 3, whose index is most heavily weighted
on the oldest age group. We have demonstrated in Section 2.5 that Model J0 tends to
overestimate the effect of mortality jumps on individuals at older ages. The impact of
such an overestimation does have a significant impact in terms of pricing, as indicated by
the premium spread estimates shown in Table 2.7. The reason that Model J0 implies the
highest premium spread estimates for all tranches of Bond 3 may also be explained by
Figure 2.4, from which we observe that Model J0 consistently produces the highest values
of b

(J)
x (µJ + λσJ) for the last age group.

2.6.5 The Effect of Parameter Uncertainty

We have pointed out in Section 2.5 that some of the parameter estimates have rather
large standard errors. It is therefore worthwhile to investigate how parameter uncertainty

36



<1 1−4 5−14 15−24 25−34 35−44 45−54 55−64 65−74 75−84
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Age group

b
(J

)

x
µ

J

 

 

J0

J1

J2

<1 1−4 5−14 15−24 25−34 35−44 45−54 55−64 65−74 75−84
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Age group

b
(J

)

x
(µ

J
 +

 0
.5

σ
J
)

 

 

J0

J1

J2

<1 1−4 5−14 15−24 25−34 35−44 45−54 55−64 65−74 75−84
0

0.1

0.2

0.3

0.4

0.5

0.6

Age group

b
(J

)

x
(µ

J
 +

 σ
J
)

 

 

J0

J1

J2

<1 1−4 5−14 15−24 25−34 35−44 45−54 55−64 65−74 75−84
0

0.2

0.4

0.6

0.8

1

Age group

b
(J

)

x
(µ

J
 +

 2
σ

J
)

 

 

J0

J1

J2

Figure 2.4: The patterns of b
(J)
x (µJ + λσJ), for λ = 0, 0.5, 1, 2, implied by Models J0, J1 and J2.

Note that for Model J0, b
(J)
x = bx.

may affect the risk spread estimates. To accomplish this goal, the following procedure is
implemented:

1. Use the parametric bootstrap documented in Appendix A.2 to obtain M = 5000
different collections of parameter estimates.

2. For each collection of parameter estimates, simulate N = 20000 mortality scenarios.
Given these 20000 mortality scenarios, derive the canonical measure and use it to
obtain premium spread estimates for all tranches of the three hypothetical bonds
under consideration. This step yields, for each tranche of each hypothetical bond, an
empirical distribution of M = 5000 premium spread estimates.

3. On the basis of the 2.5th and 97.5th percentiles of the empirical distributions derived
from Step 2, construct 95% confidence intervals for the premium spread estimates.
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These confidence intervals reflect the uncertainty surrounding the premium spread
estimates that arises from parameter uncertainty.

The estimated confidence intervals are displayed in Table 2.8. Excluding Tranche I of
Bond 1 (which is used to formulate the martingale constraint), the impact of parameter
uncertainty on the premium spread estimates for Bonds 1 and 3 is moderate. For these two
bonds, the widths of the estimated confidence intervals generated from the three model
variants are quite similar, ranging from 6% to 24% of the corresponding central estimates.

Nevertheless, the impact of parameter uncertainty on the premium spread estimates
for Bond 2 is far more significant, as indicated by the estimated confidence intervals with
widths ranging from 47% to 89% of the corresponding central estimates. This phenomenon
may be attributed to the fact that the index of Bond 2 is very heavily weighted on the
two age groups (15-24 and 25-34) which are affected the most by mortality jumps. The
pricing results for this bond are therefore more sensitive to changes in the jump-effect-
related parameters, which are the most uncertain. It can also be seen that for Bond 2, the
premium spread estimates derived from Models J1 and J2 are subject to more uncertainty
than those from Model J0. This outcome can be explained by the fact that for age groups
15-24 and 25-34, the standard errors of the estimates of b

(J)
x in Models J1 and J2 are larger

than those of the estimates of bx in Models J0.

Admittedly, for Bond 2, the confidence intervals derived from our proposed models are
significantly wider than those generated from the existing Model J0. Given that the age
patterns of mortality jumps do vary and that the payoff from a catastrophic mortality bond
does depend heavily on the age patterns of future mortality jumps, the wider confidence
intervals may simply be a more realistic reflection of how little we know about the properties
of future mortality jumps and hence the true values of catastrophic mortality bonds. The
lack of data to reveal precisely the patterns of jumps is definitely a huge limitation of this
pricing study, so readers are warned not to overlook the degrees of uncertainty conveyed
in the confidence intervals. Business decisions should be made on the basis of the range of
possible values, rather than just the central estimate itself.

2.7 Concluding Remarks

In this chapter, we have investigated how the age pattern of transitory mortality jumps can
be modeled explicitly. Two new variants of the Lee-Carter model have been proposed. The
first variant uses a distinct collection of parameters to capture the age pattern of mortality
jumps, while the second variant is a further generalization that allows the age pattern
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Table 2.8: 95% interval estimates of the premium spreads for the hypothetical mortality
bonds, taken into account of parameter uncertainty.

Tranche I Tranche II Tranche III Tranche IV Tranche V

Attachment point (%) 102.00 104.00 106.00 108.00 110.00
Exhaustion point (%) 104.00 106.00 108.00 110.00 112.00

95% interval estimate of the premium spread (basis points)

Hypothetical Bond 1
Model J0 (325.00, 325.00) (192.70, 241.02) (170.64, 215.57) (164.80, 202.92) (161.94, 195.90)
Model J1 (325.00, 325.00) (244.30, 286.40) (191.07, 231.69) (168.87, 192.61) (162.44, 174.65)
Model J2 (325.00, 325.00) (249.04, 294.70) (196.23, 245.42) (171.55, 206.47) (163.59, 185.79)

95% interval estimate of the premium spread (basis points)

Hypothetical Bond 2
Model J0 (389.06, 704.88) (314.24, 555.54) (253.12, 433.30) (208.20, 349.17) (188.26, 304.46)
Model J1 (565.61, 998.05) (463.48, 898.37) (378.12, 787.48) (304.51, 708.40) (262.09, 636.79)
Model J2 (567.57, 996.00) (464.65, 897.57) (378.73, 812.67) (318.72, 738.93) (276.28, 686.54)

95% interval estimate of the premium spread (basis points)

Hypothetical Bond 3
Model J0 (894.25, 1074.5) (481.77, 571.62) (257.76, 308.97) (183.33, 220.99) (164.98, 193.89)
Model J1 (436.83, 547.00) (300.37, 368.99) (209.32, 256.87) (173.12, 197.69) (163.33, 173.30)
Model J2 (421.49, 537.58) (293.04, 366.61) (206.95, 256.88) (172.48, 198.88) (163.21, 173.89)

of future mortality jumps to vary randomly. When applied to historical mortality data
from the U.S. and English and Welsh populations, the proposed model variants provide a
significantly better fit in comparison to the more restrictive model in which the same age
response parameters are used for modeling both general and extreme changes in mortality.
We have also found that the way in which the age pattern of mortality jumps is modeled
has a significant impact on the pricing of catastrophic mortality bonds.

Our proposed model variants have several pros and cons relative to the model introduced
by Cox et al. (2010). While the other model also explicitly captures the age pattern
of mortality jumps, our proposed model variants involve less subjectivity, because their
parameters can be estimated entirely from historical data. Another advantage of our
modeling approach is that it permits a random age pattern of mortality jump effects. On
the other hand, the other model is advantageous of having a less stringent data requirement
and the ability to incorporate expert judgements. In practice, the analysis of a catastrophic
mortality bond is often based on multiple models.14 We believe that issuers and credit

14For instance, according to the S&P Rating Report (www.standardandpoors.com/ratings/ils/en/us),
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rating agencies would benefit by making reference to the projection results generated from
both our proposed model variants and the model of Cox et al. (2010).

We understand that readers may be concerned with the extent of parameter risk in
our modeling approach, because there were only a handful of extreme mortality events oc-
curred during the data sample period. To address this concern, we have used a parametric
bootstrapping procedure to quantify the uncertainty surrounding each of the model pa-
rameters. It is found that the standard errors of some jump-effect-related parameters (e.g.,
µJ and σJ) are quite large. However, this problem applies to not only our proposed model
variants (Models J1 and J2) but also the existing, more restrictive model (Model J0). We
have also utilized the parametric bootstrap to analyze the impact of parameter uncertainty
on pricing. It is found that the impact depends quite heavily on the age range with which
the security being priced is associated. In our illustrations, the impact of parameter risk
is only moderate on two out of the three bonds under consideration, but is severe on the
remaining bond which is heavily related to the age groups that are subject to the most
mortality jump effects.

One may be interested in generalizing the model variants proposed in this chapter to
a multi-population version, which would be useful for pricing and analyzing catastrophic
mortality bonds that are linked to a group of populations. An important aspect in develop-
ing multi-population mortality models is coherence, a property that ensures the mortality
projections of related populations do not diverge indefinitely over time (see Li and Lee,
2005; Cairns et al., 2011b). To make the multi-population versions of Models J1 and J2
coherent, we require all populations to share the same set of bx parameters and the dif-
ference between the kt parameters of any two populations to be mean-reverting over time.
Nevertheless, coherence can still be maintained even if the populations being modeled have
different jump frequencies, severities and/or age patterns (i.e., parameters p, µJ and σJ),
as short-term mortality jump effects do not affect long-term mortality trends.

To facilitate exposition, we have restricted our discussion to short-term mortality jumps
only. One may, however, use a similar modeling approach to capture intermittent changes
in long-term mortality trends. Such an extension is supported by the empirical findings
of various researchers, including Sweeting (2011) who noted that there have been multi-
ple changes in the secular mortality trend for English and Welsh males since 1841. The
age patterns of intermittent changes in long-term mortality trends merit special attention,
because they may reflect important information concerning demographic transitions. For
example, the trend changes during the post-war period are believed to be associated with
shifts in mortality improvement from younger to older ages (Oeppen and Vaupel, 2002).

the credit rating of the Atlas IX Capital Class B note was derived from five different models provided by
Risk Management Solutions.
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They may also have pricing implications on various longevity risk transfer products, in-
cluding pension buy-ins and buy-outs, which have steadily gained popularity over the past
decade.

Measuring hedge effectiveness is another possible avenue for future research. By adapt-
ing the method of Cairns et al. (2014), we may be able to quantify the amount of extreme
mortality risk that can be mitigated by trading a catastrophic mortality bond. Further-
more, by implementing the adapted method with Models J0, J1 and J2, we may be able
to seek answers to several interesting research questions. For instance, we may predict
by how much hedge effectiveness may be over- or under-estimated if the age pattern of
mortality jumps is not explicitly taken into account. We may also better understand
how the randomness associated with the age pattern of mortality jumps may affect hedge
effectiveness.
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Chapter 3

Modeling and Managing Longevity
Drift Risk

3.1 Introduction

Depending on the context and intention, longevity risk can be defined in different ways.
From a statistical viewpoint, Coughlan et al. (2013) provided the following concise yet
complete definition: “It is a combination of (i) uncertainty surrounding the trend increases
in life expectancy and (ii) variations around this uncertain trend that is the real problem.
This is what is meant by longevity risk and it arises as a result of unanticipated changes in
mortality rates.” Despite the risk encompasses two components, most existing stochastic
mortality models capture only the latter. For instance, in the Lee-Carter model (Lee and
Carter, 1992), the evolution of mortality over time is typically captured by an autoregressive
integrated moving average process, with the special case – random walk with drift – being
used the most often. What this modeling method captures is ‘diffusion risk’, which arises
from the variations around a fixed drift that determines the expected trend, but not the
uncertainty associated with the trend itself. The collection of models (Models M1-M8)
considered by Cairns et al. (2009, 2011a) and Dowd et al. (2010a,b) are subject to the
same limitation.

Although often left unmodeled, the risk associated with the trend in mortality im-
provement does exist. There is profound empirical evidence for trend changes in mortality,
exemplified by the findings of Gallop (2006) concerning the mortality improvement in the
United Kingdom over the past century. It was found that the average rate of mortality
improvement for British males was gently fluctuating around 0.7% per annum over the
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period of 1930-32 to 1970-72, after which the rate increased substantially, reaching 2.0%
per annum over the period of 1990-92 to 2001-03. Similar trend changes are also observed
in other developed countries (see, e.g., Kannisto et al., 1994; Vaupel, 1997). A number of
researchers have further confirmed the trend changes in mortality by rigorous statistical
tests, including Li et al. (2011) who considered Zivot and Andrew’s test, Ahmadi and
Li (2014) who used a non-parametric change-point test, and O’Hare and Li (2014) who
utilized the CUSUM test that is based on cumulative sums of standardized residuals.

Researchers have also developed mortality models that incorporate trend changes in
the past (Li et al., 2011; Ahmadi and Li, 2014, O’Hare and Li, 2014; Coelho and Nunes,
2011; van Berkum et al., 2014; Renshaw and Haberman, 2003), but these models at best
can only reflect how historical trend changes may affect the best estimate forecast. They
do not capture trend changes as a risk, as they do not allow historical trend changes to
recur at random future time points with random extents. For example, in the broken-
trend stationary model proposed by Li et al. (2011), it is assumed that the future trend
in mortality improvement is always the same as the historical trend after the detected
structural break point. The model proposed recently by van Berkum et al. (2014) is less
stringent in the sense that multiple trend changes are permitted during the data sample
period, but still the drift is assumed to be fixed beyond the last estimated structural break
point. An alternative way that has been used to deal with trend changes is to optimize
the calibration window, so that the model is fitted to the period of time during which
the trend is the most linear (Booth et al., 2002; Denuit and Goderniaux, 2005; Li et al.,
2015a). However, excluding a portion of the data does not address the random nature of
trend changes.

On the modeling front, we may address the risk associated with trend changes by per-
mitting the drift term(s) in the assumed mortality model to be stochastic. A previous
attempt to introduce a stochastic drift was made by Milidonis et al. (2011), who modeled
the time-varying factor in the Lee-Carter model using a regime-switching log-normal pro-
cess with two regimes. The drift term in each regime is permitted to be different, so that
the drift of the process may vary as the system switches between the two regimes under
an assumed Markov chain. However, as indicated in the estimation results of Milidonis et
al. (2011), it is the volatility rather than the drift that separates the two regimes. There-
fore, the regime-switching process may be suitable for capturing short-term catastrophic
mortality events which are generally accompanied with high mortality volatility, but may
not be adequate for capturing the risk arising from drift changes. Another attempt was
made by Sweeting (2011), who considered a piece-wise linear regression. Although the
slope of the regression line is permitted to change in the future, the probability and extent
of future slope changes are calculated in an ad hoc manner. In particular, the probability
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is taken as the ratio of the number of observed break points to the total number of data
points, while the extent is estimated using the root mean square of the annual changes in
the underlying dynamic factor. Alternative mortality models which more explicitly and
rigorously address the risk associated with trend changes are yet to be developed.

The first objective of this chapter is to develop a stochastic mortality model that permits
the user to quantify not only ‘diffusion risk’ but also ‘drift risk’. Our proposed model is
based on the original Cairns-Blake-Dowd (CBD) model (Cairns et al., 2006), under which
the dynamics of mortality are driven by two time-varying factors. As usual, the evolution
of the time-varying factors is modeled by a bivariate random walk with drift, but on
top of that, we permit the drifts themselves to follow another bivariate random walk.
This modeling method is justified by the results of Nyblom and Mäkeläinen’s (1983) test
for random walk coefficients. We call our proposed model the locally-linear CBD model
(thereafter the LLCBD model), because the drifts governing the linear increments in the
two CBD time-varying factors are different in different time steps. To enable estimation,
we first formulate our proposed model in a state-space representation, just as how Mavros
et al. (2014), Hári et al. (2008), Pedroza (2006), de Jong and Tickle (2006) and Carter
(1996) specified the models they considered. We then use the Kalman filtering technique
(Kalman, 1960; Kalman and Bucy, 1961) to estimate the unknown model parameters and
retrieve the hidden states (i.e., the two CBD time-varying factors and the two varying
drifts) in a recursive manner. The method we use can estimate all parameters in the
proposed model in one single stage.

Although the extension of the Lee-Carter model proposed by Hári et al. (2008) possesses
a time-varying drift, it is different from our proposed model in various aspects. In terms
of objectives, the extension of Hári et al. (2008) was not designed with a motivation to
quantify trend risk, and possibly for this reason, it assumes that the drift would fluctuate
around its long-term mean. In contrast, with a goal of assessing drift risk, we postulate
the dynamics of the drift vector as a random walk. The use of a random walk is in part
because of the support from the random walk coefficient test and in part because we have
no a priori knowledge about the value and more importantly the existence of the mean of
the drift vector. In terms of model structure, the extension of Hári et al. (2008) is built
on a reformulation introduced by Girosi and King (2005) whereby the vector of log central
death rates are structured to follow a multidimensional random walk, whose drifts are
driven by a vector of latent factors which follows a stationary multivariate autoregressive
moving average process. To maximize comparability with the original CBD model, our
state-space model requires no reformulation and has an observation equation that preserves
the parameterization of the original CBD model. Compared to the extension of Hári et
al. (2008) in which the latent factors are not straightforward to interpret, our proposed
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model contains richer demographical intuitions as all four hidden states in it have their
own physical meanings. In spite of the mentioned differences, the estimation results for
both models indicate one thing in common: the permission of time-varying drift(s) results
in mortality projections that are more robust with respect to changes in the data sample
period. Both models can therefore ameliorate the well-known problem that the usual
estimator of the drift(s) of a random walk is highly sensitive to (and indeed completely
dependent on) the first and last observations of the data series (see, e.g., Li and Chan,
2005; Zhou and Li, 2013).

Having addressed drift risk in modeling, our second objective is to develop a method
to manage it. To our knowledge, Cairns (2013) was the first to study how an index-based
longevity hedge may be constructed to reduce the hedger’s exposure to drift risk. He ex-
tended the existing ‘delta’ hedging method (Cairns, 2011; Luciano et al., 2012; Zhou and
Li, 2014) to the ‘delta-nuga’ hedging method, in which the sensitivities of the liability being
hedged and the portfolio of hedging instruments to changes in drifts are matched. While
the delta-nuga hedging method has some appeals, it is subject to a few limitations. First,
in deriving the delta-nuga hedging strategies, it is assumed that the future values of the
time-varying factors in the underlying model are related to the current values in a deter-
ministically linear manner. Hence, if the linear relation does not hold, the hedging results
would be sub-optimal. Second, when applied to the CBD/LLCBD model, the delta-nuga
hedging method requires exactly four hedging instruments. This stringent requirement
may render the method impractical in the early stages of market development when the
market does not provide the required number of standardized hedging instruments. Third,
as we are going to demonstrate in Section 3.5.5, the delta-nuga hedging method is subject
to the singularity problem, which means that the solution to the hedging strategies does
not exist when certain combinations of hedging instruments are used. To mitigate these
limitations, we propose in this chapter the generalized state-space hedging method.

In the generalized state-space hedging method, we waive the linearity assumption by
considering the sensitivities of the liability being hedged and the portfolio of hedging in-
struments to all future hidden states that are relevant. Similar to the work of Cairns et al.
(2014), we derive the hedging strategies by variance minimization. We regard our proposed
method as a generalization, because it degenerates to the traditional delta and delta-nuga
hedging methods when all future hidden states are deterministically linearly related to the
current ones. Based on the sensitivities to all relevant hidden states, the proposed method
may also be seen as a complement to several existing static hedging methods, including
the methods of q-duration (Coughlan, 2009) and key q-duration (Li and Luo, 2012; Li
and Hardy, 2011) that are based on the sensitivities to the death probabilities at selected
ages and the method of key K-duration (Tan et al., 2014) that is based on the sensitivities
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to the CBD mortality indexes at selected time points. In comparison to the traditional
delta and delta-nuga hedging methods, the proposed method is more flexible in terms of
the number and type of hedging instruments. Our empirical results indicate that when
population basis risk is assumed to be absent, the proposed hedging method can lead to a
greater than 85% hedge effectiveness even if only one hedging instrument is used.

The rest of this chapter is organized as follows. In Section 3.2 we explore statistical
evidence for stochastic drifts. In Section 3.3 we detail the specification of the proposed
LLCBD model. In the same section we also analyze the performance of the proposed
model by estimating it to some real mortality data. In Section 3.4 we discuss several
additional issues about modeling. In Section 3.5 we present the generalized state-space
hedging method and compare it with the traditional delta and delta-nuga hedging methods.
In Section 3.6 we illustrate the proposed hedging method with a hypothetical example.
Finally, in Section 3.7 we conclude with some suggestions for future research.

3.2 Evidence for Stochastic Drifts

Let qx,t be the crude probability that an individual dies between time t− 1 and t (during
year t), given that he/she has survived to age x at time t − 1. We calculate qx,t by the
following approximation:

qx,t ≈
1

1 + 0.5mx,t

,

where mx,t is the crude central rate of death at age x and in year t.1 The simplest version
of the CBD model can be expressed as

ln

(
qx,t

1− qx,t

)
= κ1(t) + κ2(t)(x− x̄) + εx,t,

where x̄ represents the average over the sample age range to which the model is fitted, εx,t’s
are the sampling errors, which are assumed to be i.i.d. normally distributed with a zero
mean and a constant variance of σ2

ε , and κ1(t) and κ2(t) are time-varying stochastic factors,
of which the dynamics are assumed to follow a bivariate random walk with constant drifts
C1 and C2.

We estimate the above model to the mortality data from Canadian male population
over a sample age range of 50 to 89 (40 ages) and a sample period of 1941 to 2010 (70

1The approximation is exact if deaths are uniformly distributed between two consecutive integer ages.

46



years), using the method of least squares; that is, the time-varying stochastic factors are
obtained using the following objective function:

min
κ1(t),κ2(t)

89∑
x=50

(
ln

(
qx,t

1− qx,t

)
− κ1(t)− κ2(t)(x− x̄)

)2

, t = 1941, . . . , 2010.

The data are obtained from the Human Mortality Database (2015). Let ∆ be the difference
operator. If the assumption of constant drifts hold, then the estimated values of ∆κ1(t)
and ∆κ2(t) should fluctuate around their respective sample means Ĉ1 and Ĉ2. However,
as shown in upper panels of Figure 3.1, the estimates of ∆κ1(t) and ∆κ2(t) do not seem
to follow the expected pattern.

The lower panels of Figure 3.1 depict the 5- and 10-year moving averages of ∆κ1(t) and
∆κ2(t). These moving averages may be considered as proxies for the drifts at different time
points. It is clear that the moving averages are time-varying and exhibit random patterns.
The observations we made from Figure 3.1 lead to the question as to whether the drifts
themselves are stochastic.

We further investigate the stochastic nature of the drift terms by applying a statistical
test for random walk coefficients. The following description focuses on C1, but the test
for C2 can be conducted in a similar manner. Suppose that κ1(t) follows a random walk,
with a drift C1(t) that also follows a random walk itself. The dynamics of κ1(t) can be
expressed by the following system of equations:{

∆κ1(t) = C1(t) + ξ(t),
C1(t) = C1(t− 1) + υ(t), t = ta + 1, ta + 2, . . . , tb,

(3.1)

where ta = 1941 and tb = 2010 represent the beginning and end points of the calibration
window, respectively. It is assumed that ξ(t)’s and v(t)’s are i.i.d. normally distributed
with a zero mean and constant variances, and that ξ(t) and υ(t) are mutually independent.

We let σ2
ξ and σ2

υ be the variances of ξ(t) and υ(t), respectively. If σ2
υ = 0, then C1(t) is

constant over time rather than following a random walk. It is thus obvious that our goal
is to test the null hypothesis H0 : σ2

υ = 0 against the alternative hypothesis H1 : σ2
υ > 0.

However, as pointed out by LaMotte and McWhorter (1978), it impossible to evaluate the
power of such a test. For this reason, they recommended basing the test on the ratio σ2

υ/σ
2
ξ ,

which makes the computation of the test’s power possible.

We use the locally most powerful invariant (LMPI) test developed by Nyblom and
Mäkeläinen (1983) to test H0 : σ2

υ/σ
2
ξ = 0 against H1 : σ2

υ/σ
2
ξ > 0. It follows from equation
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Figure 3.1: The estimated values of ∆κ1(t) and ∆κ2(t) and their respective means C1 and
C2 (the upper panels), and the 5-year and 10-year moving averages of ∆κ1(t) and ∆κ2(t)
(the lower panels).

(3.1) that we can rewrite ∆κ1(t) as a sum of past innovations:

∆κ1(t) = C1(ta) +
t∑

i=ta+1

υ(i) + ξ(t), t = ta + 1, ta + 2, . . . , tb.

Consequently,

cov(∆κ1(s),∆κ1(t)) = σ2
υ · (min(s, t)− ta) + δs,tσ

2
ξ ,
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where δs,t equals 1 if s = t and 0 otherwise, and s, t = ta + 1, ta + 2, . . . , tb. It immediately
follows that ∆~κ1 = (∆κ1(ta + 1), . . . ,∆κ1(tb))

′ ∼ MVN
(
XC1(ta), σ

2
ξ (Itb−ta + σ2

υ/σ
2
ξ · V )

)
,

where

X =


1
1
...
1

, V =


1 1 · · · 1
1 2 · · · 2
...

...
. . .

...
1 2 · · · tb − ta

 ,

MVN represents a multivariate normal distribution, and Ik denotes a k-by-k identity ma-
trix.

Using the generalized Neyman-Pearson lemma, the LMPI test rejects when the LMPI
test statistic is greater than some constant that defines the rejection region. On the basis
of our set-up, the LMPI test statistic under the null hypothesis can be expressed as

LLMPI = (∆~κ1−XĈ1)′V (∆~κ1−XĈ1)

(∆~κ1−XĈ1)′(∆~κ1−XĈ1)

=

tb∑ tb∑
s,t=ta+1

(min(s,t)−ta)(∆κ1(s)−Ĉ1)(∆κ1(t)−Ĉ1)
tb∑

t=ta+1
(∆κ1(t)−Ĉ1)

2
=

tb∑
t=ta+1

(
tb∑
s=t

(∆κ1(s)−Ĉ1)

)2

tb∑
t=ta+1

(∆κ1(t)−Ĉ1)
2

.

The derivation of the distribution of LLMPI is based on the property of invariance
in translation. In particular, the denominator of LLMPI can be transformed into a χ2

variable, while the numerator can be transformed into a linear combination of independent
χ2 variables. Using the results of Nyblom and Mäkeläinen (1983), LLMPI follows the same
distribution as

tb−ta−1∑
k=1

λk,tb−ta
(
1 + λk,tb−taσ

2
υ/σ

2
ξ

)
u2
k

tb−ta−1∑
k=1

(
1 + λk,tb−taσ

2
υ/σ

2
ξ

)
u2
k

,

where uk’s are i.i.d. standard normal random variables and λ−1
k,tb−ta = 2(1−cos(πk/(tb−ta)))

for k = 1, 2, . . . , (tb − ta − 1). At a significance level of α, the rejection region cα for the
LMPI test can be constructed by solving following equation:

α = Pr

(
LLMPI

tb − ta − 1
> cα

)
= Pr

(
tb−ta−1∑
k=1

(
λk,tb−ta

tb − ta − 1
− cα

)
u2
k > 0

)
.
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The value of cα can be solved numerically by applying Imhof’s (1961) method of inversing
the characteristic functions. It is found that at α = 0.05, the value of c0.05 for our tests is
0.4689.

The calculated values of LLMPI/(tb − ta − 1) for testing stochastic drifts in κ1(t) and
κ2(t) are 2.0949 and 0.5087, respectively. Because these values are strictly greater than
c0.05 = 0.4689, the null hypotheses for both tests are rejected at a 5% level of significance.
The test results recommend modeling both κ1(t) and κ2(t) with stochastic drifts.

3.3 The LLCBD Model

3.3.1 Model Specification

Motivated by the results of the LMPI test, we propose the LLCBD model whereby the
drifts in κ1(t) and κ2(t) are stochastic. For notational convenience, we define

yx,t := ln

(
qx,t

1− qx,t

)
.

As with the original CBD model, the LLCBD model assumes that

yx,t = κ1(t) + κ2(t)(x− x̄) + εx,t, for x = xc, xc + 1, . . . , xd, (3.2)

where [xc, xd] represents the age range to which the model is being applied, x̄ represents
the average over the sample age range [xa, xb] to which the model is fitted, and εx,t’s are the
sampling errors, which are assumed to be i.i.d. normally distributed with a zero mean and a
constant variance of σ2

ε . Note that [xc, xd] can be wider than the sample age range [xa, xb],
because the smooth age-interaction function x − x̄ in the model permits extrapolation
across the age dimension2. Note also that the quantity being modeled (qx,t) is the crude
conditional death probability, so the sampling error, εx,t, in equation (3.2) measures the
uncertainty due to variation in the actual number of deaths, provided that the unobserved
underlying death probability

q̃x,t =
eκ1(t)+(x−x̄)κ2(t)

1 + eκ1(t)+(x−x̄)κ2(t)
(3.3)

2This idea is similar to forecasting into the future. The estimated model is allowed to “forecast” to
higher ages.
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is known. The variability of εx,t’s depends critically on the size of the population being
modeled. Other things equal, the larger the population size is, the smaller the variance of
εx,t (i.e., σ2

ε ) is.

The difference between the original CBD and the LLCBD models lies in the way in
which the time-varying stochastic factors κ1(t) and κ2(t) are modeled. Specifically, for
i = 1, 2, κi(t) in the LLCBD model follows the following system of stochastic processes:{

κi(t) = Ci(t− 1) + κi(t− 1) + ηi(t),
Ci(t) = Ci(t− 1) + ηi+2(t).

Equivalently speaking, κi(t) follows a random walk with a stochastic drift, which itself
follows another random walk. We describe this extension of the CBD model as ‘locally
linear’, since the drifts in κ1(t) and κ2(t) at different discrete time steps are different. We
further assume that the vector of innovations ~ηt = (η1(t), η2(t), η3(t), η4(t))′ possesses no
serial correlation and follows a multivariate normal distribution with a zero mean vector and
a covariance matrix Q. Note that ~ηt measures the uncertainty surrounding the unobserved
underlying death probability (i.e., systematic longevity risk). This piece of uncertainty
exists even if the number of persons-at-risk is infinitely large.

By design, all four hidden states, κ1(t), κ2(t), C1(t) and C2(t), in the LLCBD model
are stochastic. Therefore, Q in the LLCBD model must be positive definite, so that the
multivariate normal distribution which ~ηt follows is non-degenerate. Let Qi,j be the (i, j)th
element in matrix Q. We permit the off-diagonal elements in Q (i.e., Qi,j for i 6= j) to be
non-zero so that the innovations can be statically correlated with one another.

All four hidden states in the LLCBD model are interpretable. As in the original CBD
model, κ1(t) and κ2(t) respectively represent the level and slope of the mortality curve (the
curve of qx,t in year t) after a logit transformation. Hence, a reduction in κ1(t) indicates
an overall mortality improvement, while an increase in κ2(t) means that mortality (in logit
scale) at younger ages (below the mean x̄ of the sample age range) improves more rapidly
than at older ages. Because C1(t) and C1(t) respectively govern the rates of change in κ1(t)
and κ2(t), we can interpret C1(t) to mean the (local) pace of mortality improvement and
C2(t) to mean the (local) change in the age distribution of mortality improvements.

To facilitate estimation and analyses, it is more convenient to express the LLCBD model
as a linear Gaussian state-space model comprising of an observation equation and an un-
observable state process. We let ~yt = (yxc,t, yxc+1,t, . . . , yxd,t)

′ be the vector of observations
at time t. The observation equation is given by

~yt = B~αt + ~εt,
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where

B =


1 xc − x̄ 0 0
1 xc + 1− x̄ 0 0
...

...
...

...
1 xd − x̄ 0 0

 ,

~αt = (κ1(t), κ2(t), C1(t), C2(t))′ and ~εt = (εxc,t, εxc+1,t, . . . , εxd,t)
′ respectively represent the

vector of unobservable states and the vector of error terms at time t. Given the distribu-
tional assumptions we made, ~εt

i.i.d.∼ MVN(0, σ2
ε · Ixd−xc+1).

The unobservable state process can be expressed as

~αt = A~αt−1 + ~ηt,

where

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


and ~ηt, as previously defined, is the time-t innovation vector which follows MVN(0, Q).

The state-space specification above is quite general and can be adapted easily to yield
different model variants. Most notably, we can recover the original CBD model by setting

Q =


Q1,1 Q1,2 0 0
Q2,1 Q2,2 0 0

0 0 0 0
0 0 0 0

 ,

where Qi,j for i, j = 1, 2 are free parameters, so that the drift terms are forced to be
constant. In this special case, ~ηt follows a degenerate multivariate normal distribution. To
maintain the stochastic nature of κ1(t) and κ2(t), the sub-matrix

Q∗ :=

(
Q11 Q12

Q21 Q22

)
(3.4)

must be positive definite.
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3.3.2 Estimation

To illustrate, we fit the LLCBD model to the mortality data of Canadian males over a
calibration window of 1941-2010 and an age range of 50-89. As a comparison, we also fit
the original CBD model to the same data set. The estimation of unknown parameters and
retrieval of the hidden states are accomplished by the EM algorithm and the Kalman filter,
the details of which are provided in the Appendix B.1. For fair comparison, we use same
initial values for both the original CBD model and the LLCBD model. The initial values
are selected to be the corresponding estimates of κ1(ta), κ2(ta), C1(ta) and C2(ta) using the
estimation method from the paper of Cairns et al. (2006)3.

Table 3.1 displays the estimated parameters (i.e., σ2
ε and Q) for both the original CBD

model and the LLCBD model. Also shown in the table are the parameters’ confidence
intervals, which are computed by bootstrapping (Cavanaugh and Shumway, 1997; Stoffer
and Wall, 1991). We observe that the permission of stochastic drifts leads to only a
minimal change in σ2

ε , but results in rather significant reductions in Q1,1 and Q2,2. The
latter observation is because in the LLCBD model, part of the volatilities of ∆κ1(t) and
∆κ2(t) is captured by Q3,3 and Q4,4.

In Figure 3.2 we show the values of the hidden states in both estimated models. The
values for years 1941 to 2010 are retrieved from the historical data4, whereas those for years
2011 and onwards are forecasted. The degree of forecast uncertainty for each hidden state
can be seen from the corresponding fan chart, which shows the central 10% prediction in-
terval with the heaviest shading, surrounded by the 20%, 30%, ..., 90% prediction intervals
with progressively lighter shadings. The line in the middle of each fan chart represents the
corresponding median forecast.

Let us first focus on C1(t) and C2(t). Under the LLCBD model, the retrieved values
of C1(t) and C2(t) vary considerably over the calibration window, providing another piece
of evidence against the assumption of constant drifts; the median forecasts of C1(t) and
C2(t) are in line with the retrieved values in the recent past, and are surrounded by ample
forecast uncertainty. In sharp contrast, under the original CBD model, the retrieved and
forecasted values of C1(t) and C2(t) are constant over time, and are roughly equal to
the average values of C1(t) and C2(t) in the LLCBD model retrieved over the calibration
window; the forecasted values are apparently biased high.

3In the paper of Cairns et al. (2006), the authors first transform qx,t into logit(qx,t). Then κ1(t)
and κ2(t) for each time t are estimated from the model logit(qx,t) = κ1(t) + κ2(t)(x− x̄) + εx,t using least
squares.

4The retrieved states are the expectations of the hidden states given all the information that we have
(as detailed in Appendix B.1).
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Table 3.1: The estimated values of σ2
ε and Q and the corresponding 95% confidence inter-

vals, the original CBD model and the LLCBD model.

Parameter Estimate 95% Confidence Interval
The original CBD model

σ2
ε 2.2462× 10−3 (2.1291× 10−3, 2.3664× 10−3)

Q1,1 2.0164× 10−4 (1.1644× 10−4, 3.0781× 10−4)
Q1,2 8.3876× 10−7 (−3.5692× 10−6, 5.0612× 10−6)
Q2,2 7.0298× 10−7 (3.4742× 10−7, 1.1430× 10−6)

The LLCBD model
σ2
ε 2.2109× 10−3 (2.1237× 10−3, 2.3735× 10−3)

Q1,1 6.6911× 10−5 (2.4100× 10−5, 1.3649× 10−4)
Q1,2 3.2010× 10−6 (6.1500× 10−7, 6.1600× 10−6)
Q1,3 −7.0967× 10−6 (−1.6900× 10−5, 1.3950× 10−5)
Q1,4 −1.0880× 10−6 (−2.0000× 10−6, 1.6600× 10−7)
Q2,2 1.7979× 10−7 (4.9750× 10−8, 4.8300× 10−7)
Q2,3 −1.3259× 10−7 (−7.7000× 10−7, 1.1300× 10−6)
Q2,4 −6.4419× 10−8 (−1.0600× 10−7, 8.0700× 10−9)
Q3,3 4.4151× 10−6 (2.0650× 10−7, 1.1300× 10−5)
Q3,4 −4.3974× 10−8 (−2.7950× 10−7, 2.8450× 10−7)
Q4,4 2.5681× 10−8 (2.6850× 10−9, 5.5850× 10−8)

The patterns of the retrieved values of C1(t) and C2(t) in the LLCBD model are infor-
mative. The trend in C1(t) appears to fluctuate around a constant prior to the 1970s, but
then reduces rapidly over the next two decades. The rapid reduction in C1(t) echoes the
observations made by Kannisto et al. (1994) and Vaupel (1997) that the rates of mortality
improvement in the developed world significantly accelerated in the 1970s. The trend in
C2(t) also seems stable prior to the 1970s, but then the stability ceases. The pattern of
C2(t) suggests that the age distribution of mortality improvements for Canadian males has
undergone rapid changes over the past four decades.

Next, we turn to the patterns of κ1(t) and κ2(t) over time. The dynamics of these two
hidden states are of our particular interest, because the death probabilities for all ages at
time t are determined entirely by the values of κ1(t) and κ2(t). For κ1(t) and κ2(t), the
two models yield similar retrieved values, but highly different forecasts. For the LLCBD
model, the gradients of the median forecasts and the retrieved values in the recent past
are quite consistent with each other, but this consistency does not apply to the original
CBD model. These observations are the consequences of the aforementioned differences
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Figure 3.2: The retrieved (1941-2010) and forecasted (2011-2060) values of the hidden
states, κ1(t), κ2(t), C1(t) and C2(t), in the original CBD model and the LLCBD model.

in the patterns of C1(t) and C2(t) – which determine the expected speed at which κ1(t)
and κ2(t) vary – generated from the two models. It is also noteworthy to compare the
levels of forecast uncertainty. By permitting stochastic drifts, the LLCBD model results in
more conservative prediction intervals for κ1(t) and κ2(t) (and hence for qx,t) in the long
run. This outcome is not surprising, because the randomness associated with the drifts
contributes to the uncertainty surrounding the forecasts of κ1(t) and κ2(t).

Finally, we remark that the hidden states retrieved over 1941-2010 are subject to un-
certainty. Figure 3.3 shows the 95% confidence intervals for the retrieved hidden states in
the LLCBD model. Following Shumway and Stoffer (2006), the 95% confidence interval
for κ1(t) is calculated as κ1(t)±1.96

√
Var(κ1(t)), and those for the other hidden states are

calculated in a similar manner. The variances of the retrieved states are computed using
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Figure 3.3: The retrieved hidden states (solid lines) in the LLCBD model and their 95%
confidence intervals (dashed lines), 1941-2010.

the Kalman filter and Kalman smoother, which are detailed in the Appendix B.1.

3.3.3 Goodness-of-fit

We first evaluate the fit of the LLCBD model to the historical data with a test suggested
by Harvey (1990). The test is based on the model’s vector of prediction errors, ~wt =
(wxa,t, wxa+1,t, . . . , wxb,t)

′, which can be computed as

~wt = ~̃yt −BAE[~αt−1], t = ta + 1, ta + 2, . . . , tb,

where ~̃yt denotes the realization of ~yt, E[~αt−1] represents the retrieved vector of hidden
states at time t− 1, and BAE[~αt−1] is the one-step ahead predicted value of ~yt. According
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to Harvey (1990), the goodness-of-fit of a state-space model can be evaluated through
the prediction error variance σ2

p and the prediction error mean deviation D, which can
approximated as

σ2
p ≈

1

(xb − xa + 1)(tb − ta)

xb∑
x=xa

tb∑
t=ta+1

w2
x,t

and

D ≈ 1

(xb − xa + 1)(tb − ta)

xd∑
x=xa

tb∑
t=ta+1

|wx,t|,

respectively. If the sample size is large and the model is specified correctly, then wx,t’s
are i.i.d. normal random variables with a zero mean and a constant variance σ2

p. Under
this condition5, the prediction error mean deviation D would converge in probability to
(2/π)0.5σp. Therefore, if the model provides an adequate fit to the historical data, then
the value of (2/π)σ2

p/(D2) should be close to 1. For the fitted LLCBD model, σ2
p = 0.0023,

D = 0.0370 and thus (2/π)σ2
p/(D2) = 1.07. The calculated value of (2/π)σ2

p/(D2) indicates
an adequate fit.

Next, we compare the fit of the LLCBD model with that of the original CBD model.
When formulated as a Gaussian state-space model, the original CBD model is nested in the
LLCBD model. Therefore, we can evaluate the relative goodness-of-fit of the two models
by the Akaike information criterion (AIC), which is defined as

AIC = 2(N − ln(L̂)),

where N and L̂ represent the number of parameters and the maximized likelihood value,
respectively. A model with a smaller AIC value is more preferred. We remark here that
in a state-space formulation, κ1(t), κ2(t), C1(t) and C2(t) are regarded as hidden states
rather than model parameters. Hence, for example, the total number of parameters in the
LLCBD model is 11, encompassing σ2

ε and 10 distinct elements of matrix Q.

In Table 3.2 we report the values of N , ln(L̂) and AIC for each model we estimated.
The results indicate that the LLCBD model provides a significantly better fit than the
original CBD model, taken into account the additional parameters it contains.

5If vx,t’s are i.i.d. but not normal, then D would converge to another constant instead.
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Table 3.2: The values of N , ln(L̂) and AIC for the original CBD model and the LLCBD model.

Model ln(L̂) AIC N
CBD 4465.05 −8922.11 4

LLCBD 4487.89 −8953.78 11

3.3.4 Forecasting Performance

We now perform two tests to evaluate the forecasting performance of the models under
consideration. The first test is the ‘contracting horizon backtest’ previously considered by
Dowd et al. (2010b) and Lee and Miller (2001). The test is based on the accuracy of
the projections of ln(qx,t/1 − qx,t) in year t = 2010, using models that are estimated to
data over different calibration windows. In particular, the first forecast is derived from
data over 1941-1971, the second forecast is derived from data over 1941-1972, and so on.
As the end point of calibration window becomes closer to 2010, the forecasted value of
ln(qx,2010/1 − qx,2010) should converge to the actual value. We may regard the forecasting
performance of a model as good if the model yields projections that are close to the actual
value, no matter what the calibration window is. The result of this test for x = 60 is shown
in Figure 3.4. Except the first few, the median forecasts produced by the LLCBD model
are fairly close to the actual value realized in 2010, but those generated from the original
CBD model are consistently biased high. In addition, by comparing the proportions of the
95% prediction intervals that encompass the actual value, we may infer that the LLCBD
model provides a more adequate provision of uncertainty. The results for other values of
x in the sample age range are similar and are therefore not shown.

In the second test, we estimate the models to restricted calibration windows, and then
compare the forecasted values produced by the models with the actual values that are not
used in fitting the models. We consider 39 restricted sample periods, ranging from 1941-
1971 to 1941-2009. The comparisons are made on the basis of two metrics: Mean Error
(ME) and Mean Squared Error (MSE). The results of this test are tabulated in Table
3.3. For instance, the mean error of −0.0675 for the LLCBD model with a calibration
window of 1941-1995 is computed by averaging the errors (defined as the actual value
less the forecasted value) made in the forecasts of ln(qx,t/1 − qx,t) for x = 50, . . . , 89 and
t = 1996, . . . , 2010. It can be seen that on the basis of all three metrics, the LLCBD model
consistently yields better forecast accuracy in comparison to the original CBD model.
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Figure 3.4: The median and 95% interval forecasts of ln(q60,2010/1 − q60,2010), generated from
the CBD and LLCBD models that estimated to data over different calibration windows. The
starting point of the calibration windows is always 1941 but end points range from 1971 to 2009.

3.3.5 Robustness

When modeling mortality dynamics, it is reasonable to incorporate the most recent data.
However, there is no consensus among researchers as to what length of calibration window
should be used. It has been demonstrated extensively that mortality forecasts produced by
traditional projection models, in which the drift term(s) is/are assumed to be constant, are
highly sensitive to the length of the calibration window used. While a longer calibration
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Table 3.3: The Mean Errors (ME) and Mean Squared Errors (MSE) for the forecasts of
ln(qx,t/1 − qx,t) produced by the original CBD model and the LLCBD model, using data
over different calibration windows.

ME MSE ME MSE
Calibration Calibration

window LLCBD CBD LLCBD CBD window LLCBD CBD LLCBD CBD
1941-1971 −0.1956 −0.2267 0.0927 0.1120 1941-1991 −0.0054 −0.1204 0.0195 0.0250
1941-1972 −0.1775 −0.2493 0.0797 0.1209 1941-1992 0.0009 −0.1116 0.0169 0.0225
1941-1973 −0.1925 −0.2563 0.0850 0.1230 1941-1993 −0.0534 −0.1267 0.0155 0.0256
1941-1974 −0.2409 −0.2661 0.1027 0.1262 1941-1994 −0.0528 −0.1215 0.0136 0.0238
1941-1975 −0.2223 −0.2611 0.0871 0.1203 1941-1995 −0.0675 −0.1239 0.0139 0.0239
1941-1976 −0.2025 −0.2623 0.0755 0.1192 1941-1996 −0.0616 −0.1183 0.0131 0.0222
1941-1977 −0.1264 −0.2434 0.0548 0.1119 1941-1997 −0.0638 −0.1163 0.0144 0.0216
1941-1978 −0.1151 −0.2338 0.0521 0.1059 1941-1998 −0.0587 −0.1107 0.0177 0.0210
1941-1979 −0.0567 −0.2046 0.0407 0.0909 1941-1999 −0.0507 −0.1057 0.0187 0.0201
1941-1980 −0.0691 −0.2049 0.0117 0.0826 1941-2000 −0.0095 −0.0842 0.0143 0.0145
1941-1981 −0.0232 −0.1848 0.0112 0.0683 1941-2001 0.0047 −0.0688 0.0107 0.0116
1941-1982 −0.0668 −0.1933 0.0146 0.0686 1941-2002 −0.0089 −0.0669 0.0079 0.0112
1941-1983 −0.0386 −0.1768 0.0135 0.0584 1941-2003 −0.0199 −0.0657 0.0069 0.0109
1941-1984 −0.0213 −0.1649 0.0146 0.0513 1941-2004 −0.0059 −0.0506 0.0055 0.0087
1941-1985 −0.0683 −0.1741 0.0171 0.0512 1941-2005 −0.0020 −0.0411 0.0057 0.0079
1941-1986 −0.0822 −0.1745 0.0159 0.0499 1941-2006 0.0244 −0.0143 0.0061 0.0064
1941-1987 −0.0389 −0.1545 0.0130 0.0409 1941-2007 0.0001 −0.0289 0.0059 0.0071
1941-1988 −0.0835 −0.1644 0.0224 0.0407 1941-2008 −0.0187 −0.0375 0.0062 0.0074
1941-1989 −0.0554 −0.1507 0.0190 0.0353 1941-2009 −0.0171 −0.0293 0.0059 0.0065
1941-1990 −0.0043 −0.1277 0.0176 0.0281

window permits us to incorporate more information from the historical data, it generally
leads to a forecast that is not sufficiently consistent with the recent trend. This problem,
as we are about to demonstrate, may be ameliorated by permitting stochastic drifts.

We consider four calibration windows which have the same end point but different
starting points: 1941-2010, 1951-2010, 1961-2010 and 1971-2010. We first perform the
LMPI test for the four calibration windows (see Table 3.4). For all four calibration windows,
the null hypothesis of a constant drift in κ1(t) is rejected at the 5% significant level; and
for all but only one calibration window, the null hypothesis of a constant drift in κ2(t) is
rejected at the 10% significant level.

Then, we estimate both the original CBD model and the LLCBD model to data over
the four calibration windows. For each model, we examine how the resulting forecasts may
change as the starting point of the calibration window moves.
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Table 3.4: The LMPI test results (test statistic and critical values at 5% and 10% signifi-
cance levels) for different calibration windows.

Test statistic Critical Value
Calibration window ∆κ1(t) ∆κ2(t) 5% 10%

1941-2010 2.0949 0.5087 0.4689 0.3485
1951-2010 2.2383 0.3515 0.4709 0.3503
1961-2010 1.9063 0.2661 0.4719 0.3529
1971-2010 0.9425 0.4444 0.4728 0.3544

Figure 3.5 and 3.6 depict the forecasts of the hidden states in both models on the
basis of the four different calibration windows. For the original CBD model, the four
calibration windows lead to noticeably different estimates of C1(t) and C2(t), and hence
considerably different rates of change in κ1(t) and κ2(t). The four median forecasts of κ1(t)
and κ2(t) are clearly diverging, while the four fan charts are far from being overlapping
one another. Despite the forecasts based on the calibration window starting in 1971 are
somewhat consistent with the recent trends, the consistency diminishes significantly as the
calibration window begins earlier.

Compared to the original CBD model, the LLCBD model produces median forecasts
that are substantially more robust with respect to changes in the beginning point of the
calibration window. Regardless of how long the calibration window is, the consistency of
the median forecasts with the recent trends remains. These features may be attributed
again to the permission of varying drifts, so that the projected rates of change in κ1(t) and
κ2(t) are in line with the rates of change in the recent past rather than being close to the
average rates of change over the calibration window.

The widths of the fan charts for C1(t) and C2(t) in the LLCBD model deserve a few
comments. For C1(t), the longer the calibration window is, the wider the fan chart is. This
relationship is expected, as more historical variations are incorporated into the model when
the calibration window lengthens. However, the opposite is true for C2(t). This apparently
nonintuitive relationship may be attributed to the fact that volatility of the retrieved values
of C2(t) in the earlier decades is much smaller. As we begin the calibration window earlier,
the calibration window covers a longer period of low C2(t) volatility while the period of
high C2(t) volatility covered remains unchanged, so the (average) C2(t) volatility captured
by estimated model becomes smaller.

Figure 3.7 shows, for both models, the forecasts of qx,t at ages 65 and 75 that are
based on the four different calibration windows. In terms of qx,t, the difference between
the robustness of the two models is even more apparent.

61



CBD: κ1(t) LLCBD: κ1(t)

1941 1971 2001 2031 2061
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

Year (t)

κ
1
(t

)

 

 

1941 to 2010

1951 to 2010

1961 to 2010

1971 to 2010

1941 1971 2001 2031 2061
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

Year (t)
κ

1
(t

)

 

 

1941 to 2010

1951 to 2010

1961 to 2010

1971 to 2010

CBD: κ2(t) LLCBD: κ2(t)

1941 1971 2001 2031 2061
0.04

0.06

0.08

0.1

0.12

0.14

0.16

Year (t)

κ
2
(t

)

 

 

1941 to 2010

1951 to 2010

1961 to 2010

1971 to 2010

1941 1971 2001 2031 2061
0.04

0.06

0.08

0.1

0.12

0.14

0.16

Year (t)

κ
2
(t

)

 

 

1941 to 2010

1951 to 2010

1961 to 2010

1971 to 2010

Figure 3.5: Forecasts of the hidden states κ1(t) and κ2(t) in the original CBD model and the
LLCBD model that are fitted to data over four calibration windows: 1941-2010, 1951-2010,
1961-2010, 1971-2010.
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Figure 3.6: Forecasts of the hidden states C1(t) and C2(t) in the original CBD model
and the LLCBD model that are fitted to data over four calibration windows: 1941-2010,
1951-2010, 1961-2010, 1971-2010.
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Figure 3.7: Forecasts of ln(qx,t) at x = 65, 75 produced by the original CBD model and the
LLCBD model that are fitted to data over four calibration windows: 1941-2010, 1951-2010,
1961-2010, 1971-2010.

Still, there exists small variation in the width of the LLCBD fan charts. As ln(qx,t) is a
function of κ1(t) and κ2(t), the uncertainty surrounding ln(qx,t) depends on the uncertainty
surrounding C1(t) and C2(t). In Figure 3.7, the two ages, x = 65 and x = 75, considered
are close to x̄ = 69.5. When x is close to x̄, the coefficient (x− x̄) of κ2(t) is small, which
means the uncertainty surrounding C2(t) has a relatively small impact on the uncertainty
surrounding ln(qx,t). For this reason, the fan charts of ln(qx,t) have similar patterns to the
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fan charts of C1(t): the longer the calibration window is, the wider the fan chart is.

As in the forecasts of the hidden states, in the long run the interval forecasts of qx,t pro-
duced by the LLCBD model are more conservative than those generated from the original
CBD model. The fan charts derived from the LLCBD model encompass a larger collec-
tion of possible long-term mortality scenarios, ranging from a zero mortality improvement
rate to improvement rates that are even greater that those realized in the recent past. As
explained below, we view the provision of fan charts that are wider in the long run as an
advantage.

When developing a mortality model, it is important to consider biological reasonable-
ness, a concept that was first raised by Cairns et al. (2006) in the context of median
mortality forecasts. Simply put, this concept means that the collective views of experts in
mortality should be taken into account. For example, one should rule out a model that
projects a strictly positive probability of immortality.

The concept of biological reasonableness should also be applicable to interval forecasts.
In the context interval mortality forecasting, we believe that it is legitimate to interpret
biological reasonableness as follows: if the collective view of experts is that future life
expectancies should not exceed a certain range, then a biologically reasonable interval
forecast should not be wider than the range possible of outcomes that experts agree on;
in contrast, if experts have rather different opinions on the prospect of longevity, then a
biologically reasonable interval forecast should take a shape that encompasses as much as
possible the range of opinions. We use two examples to explain why we regard the interval
mortality forecasts produced by our LLCBD model are more biologically reasonable.

The seminal work of Oeppen and Vaupel (2002) found that the trend in record life
expectancy since 1840 is close to perfectly linear, showing no sign of deceleration. It was
then argued that the linear trend would continue in the coming decades. To achieve a linear
climb in life expectancy, age-specific death probabilities need to decline at an increasing
pace. As shown in Figure 3.7, the plausibility of an increasing rate of mortality recline can
be captured in the fan charts derived from the LLCBD model, but not in those generated
from the original CBD model.

The recent reports produced by the Society of Actuaries (2014) and the Canadian
Institute of Actuaries (2014) suggest that (at least part of) the actuarial profession in
North America believes that mortality improvement rates will reduce to 0-1% after a
transitional period of some 20-30 years. The profession’s view means that trajectories of
future mortality rates will become flat or almost flat a few decades from now. Such an
outcome does not seem to be captured by the fan charts generated using the original CBD
model, but may possibly be contained in the LLCBD fan charts whose widths increase
with time more quickly.
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Figure 3.8: Forecasts of ln(qx,t) at x = 65, 75 produced by the LLCBD models with σ2
ε = 0

(excluding variation in death counts) and with σ2
ε > 0 (including variation in death counts).

3.3.6 Excluding Variation in Death Counts

As the quantity being modeled (qx,t) by the LLCBD model is the crude conditional death
probability, the fan charts in Figure 3.7 incorporate both systematic longevity risk and
variation in the actual number of deaths. They reflect the level of uncertainty surrounding
the future crude death probabilities, assuming that the population size remains stable in
the future.

To exclude the uncertainty due to variation in the actual number of deaths, we can
generate fan charts of future death probabilities under the assumption that σ2

ε = 0. Figure
3.8 compares the fan charts that incorporate only systematic longevity risk with those that
incorporate both sources of uncertainty. It can be observed that systematic longevity risk
accounts for most of the total uncertainty. This outcome is not overly surprising, because
the population being modeled is a national population with a reasonably large number of
persons-at-risk at each age over the age range under consideration.
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3.3.7 Further Comments on the Dynamics of C1(t) and C2(t)

We assume that Ci(t), i = 1, 2 follows a random walk rather than a mean-reverting sta-
tionary process (e.g., an AR(1)), on grounds that we have no a priori knowledge about the
value and more importantly the existence of the mean of the drift vector. To substantiate
the random walk assumption with statistical evidence, we consider the Dickey-Fuller test,
which tests the null hypothesis of

z(t) = z(t− 1) + εz(t)

against the alternative hypothesis of

z(t) = µz + φzz(t− 1) + εz(t)

for a generic time-series {z(t)}, where µz is a constant and φz is another constant with an
absolute value that is strictly smaller than 1. The test is applied to the following:

(a) 5-year moving averages of ∆κ1(t) and ∆κ2(t) in the original CBD model, estimated
using the least squares method;

(b) 10-year moving averages of ∆κ1(t) and ∆κ2(t) in the original CBD model, estimated
using the least squares method;

(c) the retrieved values of C1(t) and C2(t) in the LLCBD model.

As mentioned in Section 3.2, (a) and (b) may be regarded as proxies for the drifts at
different time points. The results of all tests performed (see Table 3.5) are in favour of a
random walk.

3.4 Other Modeling Considerations

3.4.1 A Comparison with Models with Additional Dynamic Fac-
tors and/or Age Effect Structures

One may wonder if the benefits of using a stochastic drift process can be achieved by
using models with additional dynamic factors and/or different age effect structures. For
this reason, we further compare the proposed LLCBD model against the following four
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Table 3.5: The results of the Dickey-Fuller tests for a random walk against an AR(1),
applied to the 5- and 10-year moving averages of ∆κ1(t) and ∆κ2(t) in the original CBD
model and the retrieved values of C1(t) and C2(t) in the LLCBD model. A 5% level of
significance is used.

p-value Test statistic Critical value p-value Test statistic Critical value
5-year moving averages of ∆κ1(t) 5-year moving averages of ∆κ2(t)

0.6293 −1.2349 −2.9097 0.1596 −2.3529 −2.9097
10-year moving averages of ∆κ1(t) 10-year moving averages of ∆κ2(t)

0.9572 0.0316 −2.9141 0.5815 −1.3441 −2.9141
Retrieved values of C1(t) Retrieved values of C2(t)

0.9802 0.3685 −2.9054 0.7115 −1.0467 −2.9054
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discrete-time stochastic mortality models, which have been considered extensively in the
literature (see, e.g., Cairns et al., 2009, 2011a; Dowd et al., 2010a,b).6

• The original Lee-Carter model (Model M1):

ln(mx,t) = ax + bxkt + εx,t,

where ax and bx are age-specific parameters, kt is a time-varying dynamic factor, and
εx,t is the sampling error. Compared to the CBD/LLCBD model, Model M1 has one
fewer dynamic factor and a different age effect structure (specified by parameters ax
and bx).

• The Renshaw-Haberman model (Model M2):

ln(mx,t) = a(x) + b1(x)κ(t) + b2(x)γ(t− x) + εx,t,

where a(x), b1(x) and b2(x) are age-specific parameters, κ(t) is a time-varying dy-
namic factor, γ(t − x) is a cohort-varying dynamic factor, and εx,t is the sampling
error. Compared to the CBD/LLCBD model, Model M2 has the same number of
dynamic factors, but one of which is cohort-related rather than time-related. It has
also a different age effect structure.

• The Cairns-Blake-Dowd model with a cohort effect (Model M6):

ln

(
qx,t

1− qx,t

)
= κ1(t) + κ2(t)(x− x̄) + γ(t− x) + εx,t,

where x̄ is the average of the age range [xa, xb] to which the model is calibrated, k1(t)
and k2(t) are time-varying dynamic factors, γ(t − x) is a cohort-varying dynamic
factor, and εx,t is the sampling error. Compared to the CBD/LLCBD model, Model
M6 contains one extra dynamic factor, which varies with year-of-birth.

• The Cairns-Blake-Dowd model with quadratic and cohort effects (Model M7):

ln

(
qx,t

1− qx,t

)
= κ

(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γ
(4)
t−x + εx,t,

6We do not consider Model M3 (the age-period-cohort model), because it is simply a special case of
Model M2 with b1(x) and b2(x) being constants instead of functions of age. Also, Model M4 (the P-splines
regression) is excluded, in part because it is based on a regression rather than stochastic processes and in
part because it does not yield sample mortality paths which are needed for the analyses in later parts of
the chapter.
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where σ̂2
x is the mean of (x− x̄)2 over [xa, xb]. Compared to the CBD/LLCBD model,

Model M7 contains two extra dynamic factors, one of which varies with time and the
other of which varies with year-of-birth.

As what we did for the CBD and LLCBD models in Section 3.3.4, we evaluate the
forecasting performance of the four additional models by

(i) using the ‘contracting horizon backtest’ considered in Dowd et al. (2010b), and

(ii) fitting the models to restricted calibration windows and then comparing the resulting
forecasts with the actual values that are not used in fitting the models.

The result of (i) is shown in Figure 3.9. By comparing Figure 3.9 with the upper
panel of Figure 3.4, we can conclude that none of the four additional models can produce
forecasts with the desirable properties (more accurate median forecasts and more adequate
provisions of uncertainty) possessed by the LLCBD forecasts.

The result of (ii) is reported in Figure 3.10. The LLCBD model generally yields ME and
MSE with smaller magnitudes compared to any one of the alternative models. The benefit
of using the LLCBD model is the most apparent when the end point of the calibration
window is between 1980 and 1990.

The additional evaluation work indicates that the benefit of using a stochastic drift
process cannot be obtained simply by using more dynamic factors or tweaking the age-effect
structures. Of course, it may be possible to further improve the forecasting performance by
adding more dynamic factors (e.g., a cohort effect) to the LLCBD model. These possible
extensions are left for future research.

3.4.2 Sensitivity to the Choice of Age Range

The baseline estimation result is based on an age range of [xa, xb] = [50, 89]. This age
range is chosen for the following reasons.

First, the age range of [50, 89] is often used in the literature (see, e.g., Cairns et al.,
2009) to calibrate stochastic mortality models for pension and annuity valuations. Using
this age range enables readers to compare the estimation results in this chapter and other
papers more readily.

Second, according to the Human Mortality Database documentation (Wilmoth et al.,
2005), raw population counts for Canadians are available up to age 89 only. Population
counts beyond age 89 are not ‘real’ but estimated using the extinct cohort method.
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Figure 3.9: The median and 95% interval forecasts of ln(q60,2010/1 − q60,2010), generated from
Models M1, M2, M6 and M7 that estimated to data over different calibration windows. The
starting point of the calibration windows is always 1941 but end points range from 1971 to 2009.

Third, as the models are built for modeling longevity risk at pensionable ages, beginning
the sample age range at 50 prevents the models from being influenced by the (possibly
different) mortality improvement dynamics at younger ages. Also, the age effect structure
in the CBD/LLCBD model does not capture the accident hump at younger ages.

In this sub-section, we examine how the estimation results may be different if different
age ranges are used. We consider the following six age ranges: 45-94, 46-93, 47-92, 48-91,
49-90 and 50-89 (the baseline age range). Note that the average age over each of the six
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Figure 3.10: The Mean Error (ME) and Mean Squared Error (MSE) for the forecasts of
ln(qx,t/1 − qx,t) produced by the LLCBD model and Models M1, M2, M5 (the original
CBD), M6 and M7.
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Figure 3.11: The retrieved values of the hidden states, κ1(t), κ2(t), C1(t) and C2(t), in the
LLCBD model when different age ranges are used in estimation.

age ranges is x̄ = 69.5. It is necessary to keep x̄ fixed, because otherwise κ1(t) and κ2(t)
would be scaled differently.

Figure 3.11 shows the retrieved values of the hidden states, κ1(t), κ2(t), C1(t) and C2(t),
in the LLCBD model for each age range under consideration. For most of the time, the
retrieved hidden states are robust relative to the choice of age range. Over the last 10
years of the calibration window, the retrieved drifts are arguably quite sensitive to the age
range used. However, compared to the widths of the confidence intervals (Figure 3.3), the
changes in the retrieved drifts due to changes in age range are small.
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Table 3.6: The LMPI test results (test statistic and critical values at 5% and 10% levels
of significance) for κ1(t) and κ2(t) estimated from the four additional data sets.

Test statistic Critical value
Data set κ1(t) κ2(t) 5% 10%

Dutch male 1.4714 0.5775 0.4709 0.3503
English and Welsh male 0.5909 0.0312 0.4689 0.3485

Japanese unisex 0.0450 0.5258 0.4709 0.3503
Canadian female 0.0210 0.0567 0.4689 0.3485

3.4.3 Application to other Data Sets

It would be interesting to see if stochastic drifts apply to the mortality dynamics of other
populations, and if the LLCBD model still outperforms when it is fitted to other data sets.
In this sub-section, we apply the testing and modeling methods to the following additional
data sets:

Population Age range Sample period
Dutch male 50 to 89 1951 to 2010

English and Welsh male 50 to 89 1941 to 2010
Japanese unisex 50 to 89 1951 to 2010
Canadian female 50 to 89 1941 to 2010

These data sets cover different geographical locations (Europe, North America and Asia),
genders (male, female and unisex) and sample periods (1941-2010 and 1951-2010). They
are also obtained from the Human Mortality Database.

First, we apply the LMPI test to the least square estimates of the CBD dynamic factors
κ1(t) and κ2(t). The test results are reported in Table 3.6. For Dutch males, the test
results indicate that the drifts for both κ1(t) and κ2(t) are stochastic. More interestingly,
the test results suggest that it is possible to have only one drift being stochastic (κ1(t)
for English and Welsh males and κ2(t) for Japanese unisex). For Canadian females, the
test results conclude that none of the two drifts is stochastic. This conclusion highlights a
noteworthy fact: just as cohort effect (which is highly significant in the United Kingdom
but not so much in Asian populations) and jump effect (which can only be detected if
the calibration window is long enough), stochastic drift is not a universal phenomenon.
Whether a stochastic drift is needed depends critically on the data set considered.

Next, we use the AIC to compare the goodness-of-fit produced by the LLCBD models
(with one and two stochastic drift(s)) and the original CBD model. The results are shown
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Table 3.7: The values of N , ln(L̂) and AIC for the models fitted to the four additional data
sets. (‘CBD’: the original CBD model; ‘LLCBD’: the LLCBD model with two stochastic
drifts; ‘LLCBD∗’: the LLCBD model with C2 being constant; ‘LLCBD∗∗’: the LLCBD
model with C1 being constant.)

Dutch Male English and Welsh Male

Model ln(L̂) AIC N ln(L̂) AIC N
CBD 3547.7047 −7087.4093 4 4146.5332 −8285.0664 4

LLCBD∗ 3556.3097 −7098.6194 7 4149.9301 −8285.8603 7
LLCBD∗∗ 3554.6960 −7095.3920 7 4149.4382 −8284.8764 7
LLCBD 3562.7838 −7103.5676 11 4153.3105 −8284.6209 11

Japanese Unisex Canadian Female

Model ln(L̂) AIC N ln(L̂) AIC N
CBD 2662.9849 −5317.9698 4 3304.2798 −6600.55951 4

LLCBD∗ 2666.4540 −5318.9079 7 3305.5235 -6597.04696 7
LLCBD∗∗ 2671.2966 −5328.5931 7 3306.0631 −6598.12613 7
LLCBD 2671.7738 −5321.5476 11 3307.2052 −6592.41038 11

in Table 3.7. For Dutch males, the optimal model is the LLCBD model with two stochastic
drifts; for English and Welsh males, the optimal model is the LLCBD model with C2 being
constant; for Japanese unisex, the optimal model is the LLCBD model with C1 being
constant; and for Canadian females, the optimal model is the original CBD model. These
conclusions are in line with the LMPI test results.

For all of the four populations except Canadian females, we compare the forecasts
generated by the original CBD model and the model chosen according to the AIC. Figure
3.12 displays the results of the ‘contracting horizon backtest’ (used in Sections 3.3.4 and
3.4.1) for the three populations. In all cases, the LLCBD model (or its variant) yields a
median forecast that is less biased and a 95% prediction interval that captures a larger
proportion of the actual values.

Figure 3.13 shows the values of ME and MSE produced by the ‘forecasts’ generated
from models that are estimated to restricted calibration windows (1941-1971, ..., 1941-
2009 for English and Welsh males; 1951-1971, ..., 1951-2009 for Dutch males and Japanese
unisex). For Dutch males, the LLCBD model – which contains two stochastic drifts – yields
significantly higher forecast accuracy compared to the original CBD model. For the other
two populations, the LLCBD models – of which the drifts are only partially stochastic –
still provide improved forecast accuracy, but the improvement is not that remarkable.
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Figure 3.12: The median and 95% interval forecasts of ln(q60,2010/1 − q60,2010), generated from
models that estimated to data over different calibration windows. The starting point of the
calibration windows is either 1951 (Dutch male and Japanese unisex) or 1941 (English and Welsh
male), but end points range from 1971 to 2009.
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Figure 3.13: The Mean Error (ME) and Mean Squared Error (MSE) for the forecasts of
ln(qx,t/(1− qx,t) produced by the original CBD model and the optimal LLCBD model.

Finally, we evaluate the robustness of the models relative to the length of the calibration
window used. The results are provided in Figure 3.14. As what we found in Sections 3.3.4
and 3.4.1, the LLCBD model (or its variant) is more robust than the original CBD model.
It also yields forecasts that are more consistent with the recent trend.
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Figure 3.14: Forecasts of ln(qx,t) for x = 75 produced by the original CBD model and the optimal
LLCBD model fitted to data over different calibration windows.
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3.5 Hedging Drift and Diffusion Risks

Having modeled both drift and diffusion risks with the LLCBD model, in this section
we explain how we may hedge these risks by using standardized hedging instruments.
We start with a sub-section which details the assumptions made, followed by a review of
the traditional delta and delta-nuga hedging methods. We then introduce our proposed
‘generalized state-space hedging method’, and conclude with some comments about the
distinctions between the traditional and newly proposed methods.

3.5.1 The Set-up

Our goal is to hedge the longevity risk associated with a T -year temporary life annuity
immediate that is just sold. Suppose that it is now time t0 (i.e., the end of year t0) and
that the annuitant is now aged x0. Ignoring sampling risk, the (random) present value of
the liability being hedged is

L =
T∑
u=1

e−ru
t0+u∏
t=t0+1

p̃x0+t−t0−1,t

per contract, where r is the interest rate for discounting purposes,

p̃x,t = 1− q̃x,t

and, as defined in equation (3.3), q̃x,t is the underlying (unobserved) conditional probability
of death in year t (between age x and x + 1). Note that L is a function of κ1(t0 +
1), . . . , κ1(t0 + T ) and κ2(t0 + 1), . . . , κ2(t0 + T ), all of which are random as of the time
when the longevity hedge is established.

The standardized hedging instruments used are q-forwards. A q-forward is a zero-
coupon swap with its floating leg proportional to the realized death probability at a certain
reference age in a certain reference year and its fixed leg proportional to the corresponding
pre-determined forward mortality rate.

We consider a hedge portfolio of m ≥ 1 q-forwards. Let xj, tj and qfxj ,tj be the reference
age, reference year and forward mortality rate for the jth q-forward contract, respectively.
We assume t0 < t1 < . . . < tm. We also assume that payment exchanges hands at the end
of the reference year, so that tj − t0 is the time-to-maturity for the jth q-forward. For
simplicity, it is assumed in the derivations that there is no population basis risk; that is, the
q-forwards and the liability being hedged are associated with exactly the same population
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of individuals. In today’s market, the LLMA’s7 LifeMetrics indexes, to which standardized
q-forwards are linked, are based on smoothed (rather than crude) age-specific conditional
death probabilities. For this reason, we assume that the q-forwards are linked to the
underlying death probabilities that are not subject to the randomness of εx,t. Under the
mentioned assumptions, the (random) present value of the payoff from the jth q-forward
contract is given by

Hj = e−r(tj−t0)(qfxj ,tj − q̃xj ,tj), j = 1, . . . ,m.

It is obvious that Hj depends on κ1(tj) and κ2(tj), which are random variables as of the
time when the longevity hedge is established.

We let Nj be the notional amount of the jth q-forward and

P = L−
m∑
j=1

NjHj

be the (random) present value of all cash flows when the longevity hedge is in place. If
the longevity hedge is successful, then the variability in P would be significantly less than
that in L. Using this reasoning, we assess hedge effectiveness with the following metric:

HE = 1− Var(P )

Var(L)
.

The value of HE is close to 1 if the longevity hedge is effective, and close to 0 if otherwise.
This metric is also used by Cairns (2011, 2013), Cairns et al. (2014), Coughlan et al.
(2011) and Li and Hardy (2011).

3.5.2 A Review of Traditional Delta and Delta-Nuga Hedging
Methods

3.5.2.1 Delta Hedging

The idea behind the traditional delta hedging method, considered by researchers including
Cairns (2011, 2013) and Zhou and Li (2014), is to match the sensitivities of the liability
being hedged and the hedging portfolio with respect to changes in the time-varying factors
in the assumed stochastic mortality model in year t0. If the CBD model is assumed, then

7The Life and Longevity Markets Association (www.llma.org)

80



the sensitivities involved are represented by the following partial derivatives: ∂L/∂κi(t0),
∂Hj/∂κi(t0), i = 1, 2, j = 1, . . . ,m.

Because L and Hj are functions of κ1(t) and κ2(t) for t > t0 rather than κ1(t0) and
κ2(t0), the partial derivatives of L and Hj with respect to κ1(t0) and κ2(t0) cannot be
computed straightforwardly. To make the estimation of sensitivities possible, the partial
derivatives are calculated using the best estimates of L and Hj on the basis of κ1(t0) and
κ2(t0):

L̂ =
T∑
u=1

e−ru
t0+u∏
t=t0+1

p̂x0+t−t0−1,t and Ĥj = e−r(tj−t0)(qfxj ,tj − q̂xj ,tj), (3.5)

where q̂x,t = eκ̂1(t)+(x−x̄)κ̂2(t)

1+eκ̂1(t)+(x−x̄)κ̂2(t) , p̂x,t = 1− q̂x,t and

κ̂i(t) = κi(t0) + Ci(t0)× (t− t0), t > t0, i = 1, 2,

is the best estimate of κi(t) given κi(t0) and Ci(t0).8

The partial derivatives of L̂ and Ĥj with respect to κ1(t0) and κ2(t0) can be computed
readily as follows:

∂L̂
∂κ1(t0)

= −
∑T

u=1 e
−ru (∑t0+u

t=t0+1 q̂x0+t−t0−1,t

) (∏t0+u
t=t0+1 p̂x0+t−t0−1,t

)
;

∂L̂
∂κ2(t0)

= −
∑T

u=1 e
−ru (∑t0+u

t=t0+1(x0 + t− t0 − 1− x̄)q̂x0+t−t0−1,t

) (∏t0+u
t=t0+1 p̂x0+t−t0−1,t

)
;

∂Ĥj
∂κ1(t0)

= −e−r(tj−t0)p̂xj ,tj q̂xj ,tj ;

∂Ĥj
∂κ2(t0)

= −e−r(tj−t0)(xj − x̄)p̂xj ,tj q̂xj ,tj .

These derivatives are regarded as the ‘deltas’ of the liability being hedged and the hedging
instruments.

We require exactly two hedging instruments to obtain a delta-neutral position. The
notional amounts of the two q-forwards in the hedge portfolio should satisfy the following
system of equations:

∂L̂
∂κ1(t0)

= N1 × ∂Ĥ1

∂κ1(t0)
+N2 × ∂Ĥ2

∂κ1(t0)

∂L̂
∂κ2(t0)

= N1 × ∂Ĥ1

∂κ2(t0)
+N2 × ∂Ĥ2

∂κ2(t0)

,

8In effect, L̂ and Ĥj are respectively the values of L and Hj calculated by switching off all random
components.
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the solution to which is given by(
N1

N2

)
=

(
∂Ĥ1

∂κ1(t0)
∂Ĥ2

∂κ1(t0)
∂Ĥ1

∂κ2(t0)
∂Ĥ2

∂κ2(t0)

)−1(
∂L̂

∂κ1(t0)
∂L̂

∂κ2(t0)

)
,

provided that the inverse of the square matrix on the right-hand-side exists. The invert-
ibility of the square matrix is discussed in Section 3.5.5.

3.5.2.2 Delta-Nuga Hedging

Cairns (2013) acknowledged that the values of the liability being hedged and the hedge
portfolio are also affected by changes in the estimated values of the drift terms in the
processes for κ1(t) and κ2(t). To mitigate this piece of uncertainty, he proposed the delta-
nuga hedging method in which the sensitivities of L̂ and Ĥj to the changes in the drift
terms are also considered. This method includes, additionally, the following four partial
derivatives:

∂L̂
∂C1(t0)

= −
∑T

u=1 e
−ru (∑t0+u

t=t0+1(t− t0)q̂x0+t−t0−1,t

) (∏t0+u
t=t0+1 p̂x0+t−t0−1,t

)
;

∂L̂
∂C2(t0)

= −
∑T

u=1 e
−ru (∑t0+u

t=t0+1(t− t0)(x0 + t− t0 − 1− x̄)q̂x0+t−t0−1,t

) (∏t0+u
t=t0+1 p̂x0+t−t0−1,t

)
;

∂Ĥj
∂C1(t0)

= −e−r(tj−t0)(tj − t0)p̂xj ,tj q̂xj ,tj ;

∂Ĥj
∂C2(t0)

= −e−r(tj−t0)(tj − t0)(xj − x̄)p̂xj ,tj q̂xj ,tj .

These additional partial derivatives are considered as the ‘nugas’ of the liability being
hedged and the hedging instruments. To neutralize the deltas and nugas, we need exactly
four hedging instruments. The notional amounts of the four hedging instruments should
satisfy the following system of equations:

∂L̂
∂κ1(t0)

= N1 × ∂Ĥ1

∂κ1(t0)
+N2 × ∂Ĥ2

∂κ1(t0)
+N3 × ∂Ĥ3

∂κ1(t0)
+N4 × ∂Ĥ4

∂κ1(t0)

∂L̂
∂κ2(t0)

= N1 × ∂Ĥ1

∂κ2(t0)
+N2 × ∂Ĥ2

∂κ2(t0)
+N3 × ∂Ĥ3

∂κ2(t0)
+N4 × ∂Ĥ4

∂κ2(t0)

∂L̂
∂C1(t0)

= N1 × ∂Ĥ1

∂C1(t0)
+N2 × ∂Ĥ2

∂C1(t0)
+N3 × ∂Ĥ3

∂C1(t0)
+N4 × ∂Ĥ4

∂C1(t0)

∂L̂
∂C2(t0)

= N1 × ∂Ĥ1

∂C2(t0)
+N2 × ∂Ĥ2

∂C2(t0)
+N3 × ∂Ĥ3

∂C2(t0)
+N4 × ∂Ĥ4

∂C2(t0)

,
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which implies N1
...
N4

 =


∂Ĥ1

∂κ1(t0)
· · · ∂Ĥ4

∂κ1(t0)
...

. . .
...

∂Ĥ1

∂C2(t0)
· · · ∂Ĥ4

∂C2(t0)


−1

∂L̂
∂κ1(t0)

...
∂L̂

∂C2(t0)

 , (3.6)

provided that the inverse of the square matrix on the right-hand-side exists. The invert-
ibility of the square matrix is discussed in Section 3.5.5.

3.5.3 The Generalized State-Space Hedging Method

The review presented in the previous sub-section exposes two limitations of the traditional
delta and delta-nuga hedging methods. First, in deriving the deltas and nugas, it is assumed
that κ1(t) and κ2(t) for t > t0 are linear functions of κ1(t0), κ2(t0), C1(t0) and C2(t0). The
resulting deltas and nugas therefore contain no information about the sensitivities of L and
Hj to κ1(t) and κ2(t) for any t > t0. Second, the traditional methods have very stringent
requirements on the number of hedging instruments being used. The delta hedging method
requires exactly two distinct hedging instruments whereas the delta-nuga hedging needs
exactly four.

To overcome these limitations, we hereby introduce the generalized state-space hedging
method which better utilizes the information contained in the hidden states at different
times and is more flexible in terms of the number of hedging instruments required. In
the generalized state-space hedging method, we work on L and Hj (rather than their best
estimates) and preserve the fact that they are functions of κ1(t) and κ2(t) for t > t0.

We let ~α∗t = (κ1(t), κ2(t))′ and ~α∗∗t = (C1(t), C2(t))′. It follows that L is a function of the
sequence of {~α∗t0+1, . . . , ~α

∗
t0+T} and Hj is a function of ~α∗tj , j = 1, . . . ,m. The derivation of

the generalized state-space hedging strategy involves the first-order Taylor approximations
of L and Hj about all relevant vectors of hidden states. For L, the first-order approximation
l(~α∗t0+1, . . . , ~α

∗
t0+T ) is given by

L ≈ l(~α∗t0+1, . . . , ~α
∗
t0+T ) = L̂+

t0+T∑
i=t0+1

(
∂L

∂~α∗i

)′
(~α∗i − ~̂α∗i ),

where L̂ is defined in equation (3.5) and ~̂α∗i is the expected value of ~α∗i given the information
up to and including year t0. For Hj, j = 1, . . . ,m, the first order approximation hj(~α

∗
tj

) is
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Table 3.8: A summary of the distinctions among L, L̂, l, Hj, Ĥj and hj.

L A non-linear function of ~α∗t0+1, . . . , ~α
∗
t0+T

L̂
An approximation of L, obtained by setting κi(t) = κi(t0) + C1(t0)(t− t0)

for i = 1, 2 and t > t0; L̂ is a non-linear function of κ1(t0) and κ2(t0) (i.e., ~α∗t0)

l
An approximation of L based on a first-order Taylor’s expansion around L̂;
l is a linear function of ~α∗t0+1, . . . , ~α

∗
t0+T

Hj A non-linear function of ~α∗tj

Ĥj
An approximation of Hj, obtained by setting κi(tj) = κi(t0) + C1(t0)(tj − t0)

for i = 1, 2; Ĥj is a non-linear function of κ1(t0) and κ2(t0) (i.e., ~α∗t0)

hj
An approximation of Hj based on a first-order Taylor’s expansion around Ĥj;
hj is a linear function of ~α∗tj

given by

Hj ≈ hj(~α
∗
tj

) = Ĥj +

(
∂Hj

∂~α∗tj

)′
(~α∗tj − ~̂α

∗
tj

), (3.7)

where Ĥj is defined in equation (3.5). For brevity, we suppress the arguments of l and hj
in the rest of this chapter. Also, unless otherwise specified, the partial derivatives ∂L/∂~α∗i
and ∂Hj/∂~α

∗
tj

are evaluated at ~α∗i = ~̂α∗i and ~α∗tj = ~̂α∗tj , respectively. To facilitate exposition,

in Table 3.8 we summarize the distinctions among L, L̂, l, Hj, Ĥj and hj.

The hedging strategy is obtained by minimizing the variance of l−
∑m

i=1 Nihi as of the
time when the hedge is established. The variance to be minimized can be expressed as

Var (l −
∑m

i=1Nihi) = Var

(
t0+T∑
i=t0+1

(
∂L
∂~α∗i

)′
(~α∗i − ~̂α∗i )−

∑m
j=1Nj

(
∂Hj
∂~α∗tj

)′
(~α∗tj − ~̂α

∗
tj

)

)
= Var

 t0+T∑
i=t0+1

i 6=t1,t2,...,tm

(
∂L
∂~α∗i

)′
(~α∗i − ~̂α∗i ) +

∑m
j=1

(
∂L
∂~α∗tj
−Nj

∂Hj
∂~α∗tj

)′
(~α∗tj − ~̂α

∗
tj

)

 .

It is interesting to note that Var(l −
∑m

i=1Nihi) can be written as the sum of three com-
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ponents:

Var

(
l −

m∑
i=1

Nihi

)
= V1 + V2 + V3,

where

V1 =

t0+T∑
i,j=t0+1

i,j 6=t1,t2,...,tm

(
∂L

∂~α∗i

)′
Cov(~α∗i , ~α

∗
j )

(
∂L

∂~α∗j

)

represents the variance contributed from the hidden states that are not related to the
hedging instruments,

V2 =
m∑
i=1

m∑
j=1

(
∂L

∂~α∗ti
−Ni

∂Hi

∂~α∗ti

)′
Cov(~α∗ti , ~α

∗
tj

)

(
∂L

∂~α∗tj
−Nj

∂Hj

∂~α∗tj

)

represents the variance contributed from the hidden states that are directly related to the
hedging instruments, and

V3 = 2

t0+T∑
i=t0+1

i 6=t1,t2,...,tm

m∑
j=1

(
∂L

∂~α∗i

)′
Cov(~α∗i , ~α

∗
tj

)

(
∂L

∂~α∗tj
−Nj

∂Hj

∂~α∗tj

)

represents the variance contributed from the interaction between the states that are related
and unrelated to the hedging instruments. Note that V1 is free of Nj, j = 1, . . . ,m. We
can interpret V1 to mean the risk that cannot be hedged by the collection of m hedging
instruments.

All partial derivatives involved in Var(l −
∑m

i=1Nihi) can be computed analytically.
First, we rewrite L in terms of ~α∗t , t = t0 + 1, . . . , t0 + T , as

L =
T∑
u=1

e−ru
t0+u∏
t=t0+1

(
1 + exp(M ′

x0,t
~α∗t )
)−1

, (3.8)

where Mx0,t = (1, x0 + t − t0 − 1 − x̄)′. The partial derivative of L with respect to ~α∗i ,
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evaluated at ~αi = ~̂αi, can then be computed as

∂L

∂~α∗i
= Mx0,i

exp(M ′
x0,i
~̂α∗i )

1 + exp(M ′
x0,i
~̂α∗i )

(
−

T∑
u=i−t0

e−ru
t0+u∏
t=t0+1

(
1 + exp(M ′

x0,t
~̂α∗t )
)−1
)
.

Similarly, we can express Hj in terms of ~α∗tj as

Hj = e−r(tj−t0)

(
qfxj ,tj − 1 +

(
1 + exp((M

(H)
xj ,tj)

′~α∗tj)
)−1
)
,

where M
(H)
xj ,tj = (1, xj − x̄)′. The partial derivative of Hj with respect to ~α∗tj , evaluated at

~αtj = ~̂αtj , can then be calculated as

∂Hj

∂~α∗tj
= −e−r(tj−t0)M

(H)
xj ,tj

exp
(

(M
(H)
xj ,tj)

′~̂α∗tj

)
(

1 + exp
(

(M
(H)
xj ,tj)

′~̂α∗tj

))2 .

The expression for Var(l−
∑m

i=1Nihi) also involves Cov(~α∗i , ~α
∗
j ), the covariance matrix

of ~α∗i and ~α∗j . To compute Cov(~α∗i , ~α
∗
j ), we first calculate the covariance matrix of ~αi and

~αj as

Ξi,j := Cov(~αi, ~αj) =



A|i−j|(Q+ AQA′ + · · ·Aj−(t0+1)Q(Aj−(t0+1))′) , i > j

(Q+ AQA′ + · · ·Ai−(t0+1)Q(Ai−(t0+1))′)(A|i−j|)′ , i < j

Q+ AQA′ + · · ·Aj−(t0+1)Q(Aj−(t0+1))′ , i = j

. (3.9)

Then Ξi,j is decomposed into four block matrices as follows:

Ξi,j =

(
Cov(~α∗i , ~α

∗
j ) Cov(~α∗i , ~α

∗∗
j )

Cov(~α∗∗i , ~α
∗
j ) Cov(~α∗∗i , ~α

∗∗
j )

)
.

Finally, Ξ∗i,j = Cov(~α∗i , ~α
∗
j ) can be obtained from the upper-left block matrix in Ξi,j.

To derive the hedging strategy, we first take partial derivative of Var(l −
∑m

j=1Njhj)
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with respect to Ni for i = 1, 2, . . . ,m:

∂Var(l−
∑m
j=1N

∗
j hj)

∂Ni
= ∂V2

∂Ni
+ ∂V3

∂Ni

=−2
∑m

j=1( ∂Hi
∂~α∗ti

)′Ξ∗ti,tj(
∂L
∂~α∗tj
−Nj

∂Hj
∂~α∗tj

)− 2
t0+T∑
j=t0+1

j 6=t1,t2,...,tm

( ∂Hi
∂~α∗ti

)′Ξ∗ti,j
∂L
∂~α∗j

= 2
∑m

j=1Nj(
∂Hi
∂~α∗ti

)′Ξ∗ti,tj
∂Hj
∂~α∗tj
− 2

t0+T∑
j=t0+1

( ∂Hi
∂~α∗ti

)′Ξ∗ti,j
∂L
∂~α∗j

.

Then the optimal hedging strategy is obtained by setting the partial derivatives to zero;
that is,

m∑
j=1

Nj(
∂H1

∂~α∗ti
)′Ξ∗ti,tj

∂Hj

∂~α∗tj
=

t0+T∑
j=t0+1

(
∂H1

∂~α∗ti
)′Ξ∗ti,j

∂L

∂~α∗j
, i = 1, . . . ,m.

This system of linear equations can be written in matrix form as
( ∂H1

∂~α∗t1
)′Ξ∗t1,t1

∂H1

∂~α∗t1
· · · ( ∂H1

∂~α∗t1
)′Ξ∗t1,tm

∂Hm
∂~α∗tm

...
. . .

...

( ∂Hm
∂~α∗tm

)′Ξ∗tm,t1
∂H1

∂~α∗t1
· · · ( ∂Hm

∂~α∗tm
)′Ξ∗tm,tm

∂Hm
∂~α∗tm




N1

...

Nm


=



t0+T∑
j=t0+1

( ∂H1

∂~α∗t1
)′Ξ∗t1,j

∂L
∂~α∗j

...

t0+T∑
j=t0+1

( ∂Hm
∂~α∗tm

)′Ξ∗tm,j
∂L
∂~α∗j


, (3.10)

As to be explained in Section 3.5.5, the square matrix on the left-hand-side of the equation
above is always invertible. Hence, the values of N1, . . . , Nm can be obtained readily as
follows:

N1

...

Nm


=


( ∂H1

∂~α∗t1
)′Ξ∗t1,t1

∂H1

∂~α∗t1
· · · ( ∂H1

∂~α∗t1
)′Ξ∗t1,tm

∂Hm
∂~α∗tm

...
. . .

...

( ∂Hm
∂~α∗tm

)′Ξ∗tm,t1
∂H1

∂~α∗t1
· · · ( ∂Hm

∂~α∗tm
)′Ξ∗tm,tm

∂Hm
∂~α∗tm



−1


t0+T∑
j=t0+1

( ∂H1

∂~α∗t1
)′Ξ∗t1,j

∂L
∂~α∗j

...

t0+T∑
j=t0+1

( ∂Hm
∂~α∗tm

)′Ξ∗tm,j
∂L
∂~α∗j


. (3.11)

It is noteworthy that the formula above contains Ξ∗s,t for s, t = t1, . . . , tm. As such, the
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resulting hedging strategy incorporates the static and dynamic correlations between the
hidden states in the observation equation.

3.5.4 Delta and Delta-Nuga Hedging Methods as Special Cases

In the generalized state-space hedging approach, we treat L and Hj as explicit functions
of the state vectors ~α∗t for t > t0. The analytical minimization of variance is made possible
by approximating L and Hj with a first order Taylor’s expansion around all state vectors
involved. In contrast, in the traditional delta and delta-nuga hedging methods, the hedging
strategies are derived on the basis of the best estimates L and Hj, which depend exclusively
on ~α∗t0 = (κ1(t0), κ2(t0))′.

In what follows, we show that the traditional delta and delta-nuga hedging methods
are indeed special cases of the proposed generalized state-space hedging method when the
following linear relations hold for t > t0 + 1:{

~α∗t = ~α∗t0+1 + (t− (t0 + 1))× ~α∗∗t0+1

~α∗∗t = ~α∗∗t0+1

. (3.12)

3.5.4.1 Connections with the Traditional Delta Hedging Method

Suppose that the linear relations specified by equation (3.12) hold. Assume further that
m = 2 hedging instruments are used and that the vector of drift terms is constant; i.e.,
~α∗∗t = ~̂α∗∗t0 for t ≥ t0 + 1. Then Ξ∗i,j = Q∗ for i, j = t0 + 1, . . . , (t0 + T ), where Q∗ is defined
in equation (3.4). It follows that equation (3.10) can be reduced to ( ∂H1

∂~α∗t1
)′Q∗ ∂H1

∂~α∗t1
( ∂H1

∂~α∗t1
)′Q∗ ∂H2

∂~α∗t2

( ∂H2

∂~α∗t2
)′Q∗ ∂H1

∂~α∗t1
( ∂H2

∂~α∗t2
)′Q∗ ∂H2

∂~α∗t2


N1

N2

 =


t0+T∑
j=t0+1

( ∂H1

∂~α∗t1
)′Q∗ ∂L

∂~α∗j

t0+T∑
j=t0+1

( ∂H2

∂~α∗t2
)′Q∗ ∂L

∂~α∗j

 . (3.13)
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Also, we have

t0+T∑
i=t0+1

∂L
∂~α∗i

= −
t0+T∑
i=t0+1

Mx0,iq̂x0+i−t0−1,i

(
T∑

u=i−t0
e−ru

t0+u∏
t=t0+1

p̂x0+t−t0−1,t

)
= −

T∑
u=1

e−ru
t0+u∏
t=t0+1

p̂x0+t−t0−1,t

(
t0+u∑
t=t0+1

Mx0,tq̂x0+t−t0−1,t

)
= ∂L̂

∂~α∗t0

(3.14)

and

∂Hj

∂~α∗tj
= −e−r(tj−t0)M

(H)
xj ,tj q̂xj ,tj × p̂xj ,tj =

∂Ĥj

∂~α∗t0
(3.15)

for j = 1, 2.

Substituting equations (3.14) and (3.15) into equation (3.13), we immediately obtain (
∂Ĥ1

∂~α∗t0

)′(
∂Ĥ2

∂~α∗t0

)′
Q∗

(
∂Ĥ1

∂~α∗t0

∂Ĥ2

∂~α∗t0

)( N1

N2

)
=

 (
∂Ĥ1

∂~α∗t0

)′(
∂Ĥ2

∂~α∗t0

)′
Q∗

∂L̂

∂~α∗t0
,

or equivalently,(
∂Ĥ1

∂κ1(t0)
∂Ĥ1

∂κ2(t0)
∂Ĥ2

∂κ1(t0)
∂Ĥ2

∂κ2(t0)

)
Q∗

(
∂Ĥ1

∂κ1(t0)
∂Ĥ2

∂κ1(t0)
∂Ĥ1

∂κ2(t0)
∂Ĥ2

∂κ2(t0)

)(
N1

N2

)
=

(
∂Ĥ1

∂κ1(t0)
∂Ĥ1

∂κ2(t0)
∂Ĥ2

∂κ1(t0)
∂Ĥ2

∂κ2(t0)

)
Q∗

(
∂L̂

∂κ1(t0)
∂L̂

∂κ2(t0)

)
.

By definition, Q∗ is positive definite and hence invertible. If the matrix(
∂Ĥ1

∂κ1(t0)
∂Ĥ1

∂κ2(t0)
∂Ĥ2

∂κ1(t0)
∂Ĥ2

∂κ2(t0)

)

is also invertible, then we have(
N1

N2

)
=

(
∂Ĥ1

∂κ1(t0)
∂Ĥ2

∂κ1(t0)
∂Ĥ1

∂κ2(t0)
∂Ĥ2

∂κ2(t0)

)−1(
∂L̂

∂κ1(t0)
∂L̂

∂κ2(t0)

)
,

which yields the same values of N1 and N2 as those implied by the traditional delta-
hedging method. As Q∗ is being canceled out in the derivation, the strategy developed by
the delta hedging method does not incorporate any information concerning the variances
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and covariances of the hidden states.

3.5.4.2 Connections with the Traditional Delta-Nuga Hedging Method

Suppose that the linear relations specified by equation (3.12) hold and that m = 4 hedging
instruments are used. Equation (3.10) then becomes

( ∂H1

∂~α∗t1
)′Ξ∗t1,t1

∂H1

∂~α∗t1
· · · ( ∂H1

∂~α∗t1
)′Ξ∗t1,tm

∂Hk
∂~α∗tm

...
. . .

...

( ∂Hk
∂~α∗tm

)′Ξ∗tm,t1
∂H1

∂~α∗t1
· · · ( ∂Hk

∂~α∗tm
)′Ξ∗tm,tm

∂Hk
∂~α∗tm




N1

...

N4

 =



t0+T∑
j=t0+1

( ∂H1

∂~α∗t1
)′Ξ∗t1,j

∂L
∂~α∗j

...

t0+T∑
j=t0+1

( ∂H1

∂~α∗t4
)′Ξ∗t4,j

∂L
∂~α∗j


(3.16)

It can be shown easily that under the assumptions made, the covariance matrix Ξi,j

can be written as

Ξi,j = Ai−(t0+1)Q(Aj−(t0+1))′

for i, j = t0 + 1, . . . , (t0 + T ). Consequently, we have(
∂Hi
∂~α∗ti

)′
Ξ∗ti,tj

∂Hj
∂~α∗tj

=
(

∂Hi
∂κ1(ti)

∂Hi
∂κ2(ti)

0 0
)

Ξti,tj

(
∂Hj

∂κ1(tj)

∂Hj
∂κ1(tj)

0 0
)′

=
(
∂Hi
∂~αti

)′
Ξti,tj

∂Hj
∂~αtj

=
(
∂Hi
∂~αti

)′
Ati−t0P (Atj−t0)′

∂Hj
∂~αtj

,
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for i, j = 1, 2, . . . , 4, where P = A−1Q(A−1)′. Also, we have

(Atj−t0)′
∂Hj
∂~αtj

=


1 0 0 0
0 1 0 0

tj − t0 0 1 0
0 tj − t0 0 1




∂Hj
∂κ1(tj)
∂Hj

∂κ2(tj)

0
0


=


1

xj − x̄
tj − t0

(tj − t0)(xj − x̄)

(−e−r(tj−t0)p̂xj ,tj q̂xj ,tj
)

=
(

∂Ĥj
∂κ1(t0)

∂Ĥj
∂κ2(t0)

∂Ĥj
∂C1(t0)

∂Ĥj
∂C2(t0)

)′
=

∂Ĥj
∂~αt0

,

for j = 1, 2, 3, 4. Hence, the left-hand-side of equation (3.16) can be reduced to( ∂H1

∂~αt1
)′At1−t0

...
( ∂H4

∂~αt4
)′At4−t0

P
(

( ∂H1

∂~αt1
)′At1−t0 · · · ( ∂H4

∂~αt4
)′At4−t0

)
=


( ∂Ĥ1

∂~αt0
)′

...

( ∂Ĥ4

∂~αt0
)′

P
(

( ∂Ĥ1

∂~αt0
)′ · · · ( ∂Ĥ4

∂~αt0
)′
)
.

Furthermore, from equation (3.8) we obtain

t0+T∑
i=t0+1

(i− t0) ∂L
∂~α∗i

=
t0+T∑
i=t0+1

(i− t0)Mx0,iq̂x0+i−t0−1,i

(
−

T∑
u=i−t0

e−ru
t0+u∏
t=t0+1

p̂x0+t−t0−1,t

)
=

T∑
u=1

e−ru(−1)
t0+u∏
t=t0+1

p̂x0+t−t0−1,t

(
t0+u∑
t=t0+1

(t− t0)Mx0,tq̂x0+t−t0−1,t

)
,

which gives

t0+T∑
i=t0+1

(Ai−t0)′
∂L

∂~αi
=

∂L̂

∂~αt0
.

Therefore, the right-hand-side of equation (3.16) can be reduced to ( ∂H1

∂~αt1
)′At1−t0

...
( ∂H4

∂~αt4
)′At4−t0

P

t0+T∑
j=t0+1

(Aj−t0)′
∂L

∂~αj
=


( ∂Ĥ1

∂~αt0
)′

...

( ∂Ĥ4

∂~αt0
)′

P
∂L̂

∂~αt0
.
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Finally, we can rewrite equation (3.16) as
( ∂Ĥ1

∂~αt0
)′

...

( ∂Ĥ4

∂~αt0
)′

P
(

∂Ĥ1

∂~αt0
· · · ∂Ĥ4

∂~αt0

) N1
...
N4

 =


( ∂Ĥ1

∂~αt0
)′

...

( ∂Ĥ4

∂~αt0
)′

P
∂L̂

∂~αt0
,

or equivalently
∂Ĥ1

∂κ1(t0)
· · · ∂Ĥ1

∂C2(t0)
...

. . .
...

∂Ĥ4

∂κ1(t0)
· · · ∂Ĥ4

∂C2(t0)

P


∂Ĥ1

∂κ1(t0)
· · · ∂Ĥ4

∂κ1(t0)
...

. . .
...

∂Ĥ1

∂C2(t0)
· · · ∂Ĥ4

∂C2(t0)


 N1

...
N4

 =


∂Ĥ1

∂κ1(t0)
· · · ∂Ĥ1

∂C2(t0)
...

. . .
...

∂Ĥ4

∂κ1(t0)
· · · ∂Ĥ4

∂C2(t0)

P


∂L̂

∂κ1(t0)
...
∂L̂

∂C2(t0)

 .

By definition, Q is positive definite and hence P = A−1Q(A−1)′ is invertible. If the
other matrices in the equation above are invertible, then we immediately obtain N1

...
N4

 =


∂Ĥ1

∂κ1(t0)
· · · ∂Ĥ4

∂κ1(t0)
...

. . .
...

∂Ĥ1

∂C2(t0)
· · · ∂Ĥ4

∂C2(t0)


−1

∂L̂
∂κ1(t0)

...
∂L̂

∂C2(t0)

 ,

which yieldsN1, N2, N3 andN4 that are exactly the same as those implied by the traditional
delta-nuga hedging method. The hedging strategy is free of Q∗ and therefore incorporates
no information concerning the variances and covariances of the hidden states.

3.5.4.3 Distinctions between the Proposed Method and the Traditional Meth-
ods

Although the delta and delta-nuga methods can be viewed as special cases of the general-
ized state-space method, they are fundamentally different from the generalized state-space
method in several ways.

First, under the generalized state-space method, the hedging strategy is derived by
optimizing a specific objective function: Var(L −

∑m
j=1NjHj). In contrast, the delta and

delta-nega methods rely merely on sensitivity matching and involves no optimization.

Second, through Ξ∗s,t, the generalized state-space method incorporates both static and
dynamic correlations between different hidden states. Such correlations are not taken into
account in the delta and delta-nega methods.

92



Third, instead of assuming the linear relation specified in equation (3.12), the gener-
alized state-space method recognizes that L and Hj are functions of ~α∗t0+1, . . . , ~α

∗
t0+T and

~α∗tj , respectively. Even if the same model is assumed, the generalized state-space method
would still be different (in terms of both the derivation and the resulting notional amounts)
from the delta and delta-nuga methods.

Finally, in the generalized state-space method, the drifts themselves are state variables.
However, in the delta-nuga hedging method, the drift term in the time-varying dynamic
factor is regarded as a constant parameter which is recalibrated from time to time.

3.5.5 Comments on the Hedging Methods

3.5.5.1 Sub-optimality of the Traditional Methods

In the previous sub-section, we have shown that the traditional delta and delta-nuga hedg-
ing methods are special cases of the generalized state-space hedging method when the linear
relations specified in equation (3.12) hold. Equivalently speaking, if the linear relations
do not hold, then the notional amounts N1, . . . , Nm computed using delta or delta-nuga
hedging methods do not minimize

Var

(
L−

m∑
j=1

NjHj

)
,

the variance of the present values of all cash flows associated with the hedged position.
Therefore, in general, the hedging strategies derived from the traditional methods are
suboptimal relative to those derived from the generalized state-space approach. The degree
of sub-optimality is quantified in Section 3.6 where a numerical illustration is presented.

3.5.5.2 The Singularity Problem

Recall that in the traditional delta hedging method, the solution to N1 and N2 exists only
if the following matrix is invertible:(

∂Ĥ1

∂κ1(t0)
∂Ĥ2

∂κ1(t0)
∂Ĥ1

∂κ2(t0)
∂Ĥ2

∂κ2(t0)

)
=

(
−e−r(t1−t0)p̂x1,t1 q̂x1,t1 −e−r(t2−t0)p̂x2,t2 q̂x2,t2

−e−r(t1−t0)(x1 − x̄)p̂x1,t1 q̂x1,t1 −e−r(t2−t0)(x2 − x̄)p̂x2,t2 q̂x2,t2

)
.

If the references ages of both q-forwards are the same (i.e., x1 = x2), then the second row
of the matrix would become perfectly linearly dependent on the first row and hence the
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square matrix is not invertible. Note that this problem exists even though the reference
years t1 and t2 of the q-forwards are different.

The same problem also applies to the traditional delta-nuga hedging method, under
which the solution to N1, . . . , N4 exists only if the square matrix in equation (3.6) is
invertible. The first three rows of the square matrix in equation (3.6) are respectively
given by

Row 1:
∂Ĥj

∂κ1(t0)
=−e−r(tj−t0)p̂xj ,tj q̂xj ,tj , j = 1, 2, 3, 4;

Row 2:
∂Ĥj

∂κ2(t0)
=−e−r(tj−t0)(xj − x̄)p̂xj ,tj q̂xj ,tj , j = 1, 2, 3, 4;

Row 3:
∂Ĥj

∂C1(t0)
=−e−r(tj−t0)(tj − t0)p̂xj ,tj q̂xj ,tj , j = 1, 2, 3, 4.

It is clear that when the references ages of the q-forwards are the same (i.e., x1 = x2 =
x3 = x4), the first and second rows in the matrix are perfectly linearly dependent on each
other, which means the inverse of the matrix does not exist. On top of that, the problem of
singularity will also occur if the q-forwards are linked to the same cohort; that is, tj−xj = c
for j = 1, . . . , 4, where c denotes the year of birth to which the q-forwards are linked. This
is because in this case, the difference between rows 3 and 2 becomes

−e−r(tj−t0)(c− t0 + x̄)p̂xj ,tj q̂xj ,tj , j = 1, 2, 3, 4,

which is perfectly linearly dependent on row 1. This fact suggests that although it seems
natural to choose q-forwards that are linked to the same cohort (as the one associated with
the annuity liability), such a choice is not desirable if the delta-nuga hedging method is
used.

The singularity problem does not apply to the generalized state-space hedging method-
ology, provided that the state vectors beyond year t0 are not deterministically related as
specified in equation (3.12). To explain why, let us have a closer scrutiny of the square
matrix in equation (3.10). Because

Cov(hi, hj) = (
∂Hi

∂~α∗ti
)′Ξ∗ti,tj

∂Hj

∂~α∗tj
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for i, j = 1, 2, . . . ,m, the square matrix

Σh :=


( ∂H1

∂~α∗t1
)′Ξ∗t1,t1

∂H1

∂~α∗t1
· · · ( ∂H1

∂~α∗t1
)′Ξ∗t1,tm

∂Hm
∂~α∗tm

...
. . .

...
( ∂Hm
∂~α∗tm

)′Ξ∗tm,t1
∂H1

∂~α∗t1
· · · ( ∂Hm

∂~α∗tm
)′Ξ∗tm,tm

∂Hm
∂~α∗tm


can be viewed as the covariance matrix of ~h = (h1, . . . , hm)′. By the spectral theorem, the
square matrix can be written as

Σh = UΛU ′,

where U is an orthogonal matrix and Λ is a diagonal matrix containing the eigenvalues of
Σh. It immediately follows that

U ′ΣhU = Λ.

We can view U ′ΣhU as the covariance matrix of the random vector U ′~h, of which each
element is a linear combination of the elements in ~h. From equation (3.7) and the fact that
t1 < . . . < tm, we can infer that there does not exist a linear combination of h1, . . . , hm
such that the linear combination is non-random. Therefore, all diagonal elements in Λ
must be straightly positive. With straightly positive eigenvalues, the invertibility of Σh is
guaranteed.

3.5.5.3 The Hedging Instrument Selection Problem

In using the traditional delta or delta-nuga hedging method, the number of hedging in-
struments must be either 2 (for delta) or 4 (for delta-nuga). In contrast, the generalized
state-space hedging method can be implemented with any number of hedging instruments,
as the solution to equation (3.10) exists for any m ≥ 1. In this sense, the generalized
state-space hedging method may be considered as more adaptable to different stages of
market development.

As the market grows, more hedging instruments will become available. For reasons
such as transaction costs, a hedger may wish to use only a subset of (rather than all)
instruments that are available in the market. One possible criterion for choosing the subset
of instruments is the resulting variance of the present values of all cash flows involved.
To formulate this method mathematically, we first define a subset M which contains m
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element(s) out of a set of k elements:

M = {(a1, a2, . . . , am) : ai ∈ {1, 2, . . . , k}, a1 < a2 < . . . < am},

where m and k represent the number of instruments that the hedger wishes to use and
the total number of instruments available in the market, respectively. The collection of m
instrument(s) selected can written as

arg min
Sm∈M

Var

 t0+T∑
i=t0+1

i 6=tj ,j∈Sm

(
∂L

∂~α∗i

)′
( ~α∗i − ~̂α∗i ) +

∑
j∈Sm

(
∂L

∂~α∗tj
−Nj

∂Hj

∂~α∗tj

)′
(~α∗tj − ~̂α

∗
tj

)


 .

3.6 Illustrating the Hedging Methods

3.6.1 Assumptions

In this illustration, the liability being hedged is a 30-year life annuity immediate (i.e.,
T = 30). The annuity is sold to a person aged x0 = 70 at the end of year t0 = 2010, and
a longevity hedge is established at the same time as the annuity is sold. We assume that
the annuitant is subject to exactly the same mortality as Canadian males.

The hedging instruments under consideration are q-forwards. It is assumed that at the
time when the hedge is established, there are exactly k = 4 q-forwards available in the
market. The reference ages and years of these q-forwards are summarized below:

j Reference age xj Reference year tj
1 76 2017
2 85 2026
3 92 2033
4 100 2040

The first three q-forwards are associated with the same cohort (with year-of-birth 1941),
whereas the last q-forward is associated with the cohort born one year earlier. We inten-
tionally avoid having all four q-forwards linked to the same cohort, because otherwise the
traditional delta-nuga hedging method would fail due to the singularity problem. Note that
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the maturities of the q-forwards are approximately T/4, T/2, 3T/4 and T , respectively.
We assume that the q-forwards are also linked to the mortality of Canadian males.

The procedure which we use to assess hedge effectiveness can be summarized as follows:

(i) Preparation

– Compute the partial derivatives involved.

– Assuming that the hedger wishes to use m q-forwards, select m out of the k = 4
available q-forwards on the basis of variance minimization.

– Calculate the optimal notional amounts.

(ii) Simulation

– Simulate 10,000 mortality scenarios from the CBD/LLCBD model that is fitted
to the data for Canadian males over a calibration window of 1941-2010 and an
age range of 50-89.

– For each simulated mortality scenario, calculate the realized values of L and Hj,
j = 1, . . . ,m. An interest rate of r = 0.01 is used for discounting purposes.

(iii) Evaluation

– On the basis of the 10,000 realizations of L and Hj, j = 1, . . . ,m, compute the
value HE.

The objectives of this illustration are threefold: (1) to compare the hedge effectiveness
produced by the traditional and newly proposed methods; (2) to assess how the negligence
of stochastic drifts may affect the resulting hedge effectiveness; (3) to demonstrate the
interaction among the model assumption, the hedging method and the duration of the
liability being hedged. To better achieve these objectives, we divide the empirical results
into the following four groups, depending on the hedging method and mortality model from
the hedging strategy is derived:

The mortality model on which
the hedging strategy is based Hedging method

Group 1 The original CBD model Traditional delta hedging
Group 2 The LLCBD model Traditional delta and delta-nuga hedging
Group 3 The original CBD model Generalized state-space hedging
Group 4 The LLCBD model Generalized state-space hedging
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Table 3.9: The hedge effectiveness and notional amounts for all possible combinations of
m = 2 q-forwards, Groups 1 and 3. The ‘–’ sign indicates that the corresponding q-forward
is not used. The simulation model is the original CBD model.

Group 1 Group 3
Assumed model: The original CBD model Assumed model: The original CBD model

Method: Traditional delta hedging Method: Generalized state-space hedging
HE N1 N2 N3 N4 HE N1 N2 N3 N4

0.9230 98.0364 47.4528 − − 0.9358 71.5625 47.9503 − −
0.8997 137.3202 − 17.0804 − 0.9135 107.8487 − 18.1090 −
0.8183 154.1561 − − 7.5688 0.8322 132.5633 − − 7.0199
−0.3565 − 165.8758 −42.6257 − 0.9053 − 44.2286 8.4076 −
0.0177 − 130.3489 − −13.2221 0.8924 − 51.7275 − 2.4632
−5.2683 − − 156.3945 −61.7343 0.7463 − − 24.6273 −0.2105

3.6.2 Result I: A Comparison of Different Hedging Methods

In this sub-section, we focus on comparing the hedge effectiveness produced by different
hedging methods. The relevant results are displayed in Tables 3.9 and 3.10.

Let us first study Table 3.9, which compares the results in Groups 1 and 3. For these two
groups, the hedging strategies are based on the same model (the original CBD model) but
are derived using different hedging techniques. Here, we intend to focus on the difference
in hedging techniques, so we assume that the actual (simulation) mortality model is also
the original CBD model. We report the results when m = 2 hedging instruments are used,
because the results in Group 1 are derived from the traditional delta-hedging method
which requires exactly two hedging instruments. For Group 1, the best hedge effectiveness
obtained is greater than 92%, but different combinations of q-forwards lead to highly
different values of HE. In the worst case when the third and fourth q-forwards are used,
the value of HE is even negative, which means the seller of the annuity is subject to
even more longevity risk when the hedge is in place. For Group 3, the values of HE
are much less sensitive to the choice of the two q-forwards. Also, given the same choice
of q-forwards, the hedge effectiveness in Group 3 is always higher than that in Group 1,
indicating that hedgers can make better use of the hedging instruments if they use the
generalized state-space hedging method. This advantage may be attributed to the fact
that the generalized state-space hedging method incorporates information about the static
and dynamic correlations between the hidden states, but the delta hedging method does
not.

We then move on to studying Table 3.10, which compares the results from Groups 2 and
4. As before, the hedging strategies for these two groups are based on the same model (the
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Table 3.10: The hedge effectiveness and notional amounts for all possible combinations of
m = 2 and m = 4 q-forwards, Groups 2 and 4. The ‘–’ sign indicates that the corresponding
q-forward is not used. The simulation model is the LLCBD model.

Group 2 Group 4
Assumed model: The LLCBD model Assumed model: The LLCBD model

Method: Traditional delta/delta-nuga hedging Method: Generalized state-space hedging
HE N1 N2 N3 N4 HE N1 N2 N3 N4

Number of q-forwards used: m = 2
0.7209 110.4838 68.2613 − − 0.8409 −25.5044 76.0989 − −
0.8701 158.4984 − 27.8511 − 0.8957 97.7825 − 24.9453 −
0.1140 179.0761 − − 13.2179 0.6569 92.8728 − − 7.4087
−3.5174 − 225.3339 −64.0867 − 0.9579 − 41.0866 13.4239 −
−5.7736 − 178.2121 − −21.2905 0.9386 − 56.9217 − 3.3286
−32.7169 − − 242.3726 −101.8099 0.8764 − − 30.2868 −2.9065

Number of q-forwards used: m = 4
0.8754 157.7860 1.0128 27.4379 −0.0000 0.9737 66.7273 38.9987 13.2875 0.8685

LLCBD model) but different hedging techniques. For Group 4, all results are derived from
the generalized state-space hedging method, whereas for Group 2, the results for m = 2
and m = 4 are respectively obtained by using the traditional delta and delta-nuga hedging
methods. The simulation model used here is the LLCBD model, consistent with the model
on which the hedging strategies are based. Compared to the values of HE in Group 2,
the values of HE in Group 4 are consistently higher and are more robust relative to the
choice of hedging instruments. It is also noteworthy that some values of HE in Group 2
are negative, as the traditional hedging methods do not guarantee a reduction in variance.
This problem is discussed further in Section 3.6.5.1.

The results presented in this sub-section demonstrate the previously made argument
concerning the sub-optimality of the traditional hedging methods. Other things equal, the
generalized state-space hedging method yields a better hedge effectiveness, regardless of
whether the original CBD model or the LLCBD model is assumed.

In this sub-section, the values of HE for Groups 1 and 3 are calculated using scenarios
generated from the original CBD model, while those for Groups 2 and 4 are computed using
scenarios simulated from the LLCBD model. For the readers’ information, the estimated
values of Var(L) under the CBD and LLCBD models are 0.0913 and 0.0715, respectively.
The reason that Var(L) calculated using the CBD scenarios is larger can be understood by
revisiting Figure 3.7, which shows that the LLCBD fan charts are initially narrower than
the corresponding CBD fan charts, but become wider about 20 years from the forecast
origin as they widen at faster rates. The reason behind can also be visualized in Figure
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Figure 3.15: The standard deviations of the annuitants’ cohort death probabilities in logit
scale (i.e., ln(qt−1941,t/(1− qt−1941,t)) for t = 2011, . . . , 2041), estimated using the CBD and
LLCBD models.

3.15, which compares the standard deviations of the cohort death probabilities of the
annuitants (in logit scale) under the two models. The standard deviations under the CBD
model are higher for the first half of the annuity’s maximum duration, but the opposite is
true for the second half. Because cash flows in distant future are less influential (due to the
effects of discounting and survivorship), Var(L) depends more heavily on the uncertainty
surrounding the earlier cohort death probabilities and is consequently higher under the
CBD model.

3.6.3 Result II: The Impact of Model Mis-Specification

We have previously argued that compared to the original CBD model, the LLCBD model
(with stochastic drifts) may more realistically represent the true underlying mortality dy-
namics. In this sub-section, we examine how much hedge effectiveness may be lost if the
true underlying mortality dynamics are driven by a model with stochastic drifts while a
model with constant drifts is assumed in deriving the hedging strategies. To achieve this
goal, we compare the results in Groups 3 and 4 (see Table 3.11) when the true (simulation)
model is the LLCBD model.
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Table 3.11: The hedge effectiveness and the corresponding notional amounts when m = 1, 2, 3, 4
q-forwards are used, Groups 3 and 4. The ‘–’ sign indicates that the corresponding q-forward is
not used. The simulation model is the LLCBD model.

Group 3 Group 4

Assumed model: The original CBD model Assumed model: The LLCBD model
Method: Generalized state-space hedging Method: Generalized state-space hedging

HE N1 N2 N3 N4 HE N1 N2 N3 N4

Number of q-forwards used: m = 1

0.8000 − 60.0893 − − 0.8575 − − 22.3178 −
Number of q-forwards used: m = 2

0.6496 71.5625 47.9503 − − 0.9579 − 41.0866 13.4239 −
Number of q-forwards used: m = 3

0.8557 75.7070 29.6824 9.3110 − 0.9732 64.1560 36.5098 16.1386 −
Number of q-forwards used: m = 4

0.8728 76.1325 29.7784 7.9015 0.7337 0.9737 66.7273 38.9987 13.2875 0.8685

All results in Groups 3 and 4 are based on the generalized state-space hedging method
and mortality scenarios simulated from the LLCBD model. The differences between the
results in these two groups are because of the difference in the model from which the
notional amounts are derived. Since the generalized state-space hedging method permits us
to use any number of hedging instruments, we consider both the situation when all available
q-forwards are used and the situation when only a subset of the available q-forwards are
included. When less than four q-forwards are used, the q-forwards are chosen using the
method described in Section 3.5.5.3. For Group 3, HE does not necessarily increase with
m, because the model on which the hedging strategies are based is inconsistent with the
simulation model.

Compared to the corresponding values in Group 3, the values of HE in Group 4 are
consistently higher. This observation suggests that the negligence of stochastic drifts may
result in a material loss of hedge effectiveness, if the true underlying model is one with
stochastic drifts.

3.6.4 Result III: The Interaction among Different Factors

In this sub-section, we demonstrate the interaction among the model assumption, the
hedging method and the duration of the liability being hedged. To achieve this goal, we
now consider annuity liabilities with durations ranging from T = 25 to T = 40 years.
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For each annuity liability, the longevity hedge is composed of m = 2 q-forwards, which
are linked to the same cohort of individuals as the annuity liability and have maturities
of (approximately) T/2 and T/4. All other previously made assumptions, including the
assumptions about the values of x0, t0 and r, remain unchanged. The simulation model
used is still the LLCBD model. The results are presented in Figure 3.16.

We first compare the trends of HE for Groups 2 and 4. As expected, the trend for
Group 4, which is based on the generalized state-space hedging method, is always higher
than that for Group 2, which is based on the traditional delta hedging method. A more
interesting observation is that the gap between the two trends is roughly constant. This
observation indicates that the benefit from using the more general hedging method is
somewhat fixed, with little dependence on the duration of the liability being hedged.

Next, we compare the trends of HE for Groups 3 and 4. The gap between the two
trends widens rapidly as the duration of the liability being hedged increases. From this
observation we can infer that when the true model is one with stochastic drifts, the benefit
of incorporating stochastic drifts into the hedging strategy is more remarkable if the liability
being hedged is longer-dated. This conclusion is reasonable because the assumption about
the drifts, which determine the gradients of future mortality trends, should have more
long-run than short-run effects.

Finally, we compare the trends of HE for Groups 1 and 4. The gap between the
HE trends for these two groups is approximately the sum of the gap between the HE
trends for Groups 2 and 4 and the gap between the HE trends for Groups 3 and 4. It
reflects the overall benefit of using both the generalized state-space hedging method and
the assumption of stochastic drifts in deriving the hedging strategies.

3.6.5 Further Issues

3.6.5.1 Why Delta and Delta-Nuga Methods May Perform Unsatisfactorily
Sometimes?

In Section 3.6.2 we reveal that the delta and delta-nuga hedging methods may sometimes
lead to a low or even negative hedge effectiveness. We may attribute this problem to the
linearity assumption on which these methods are based.

To illustrate, we construct a scenario analysis that is based on the following assump-
tions:

• Mortality model on which the hedging strategy is based: the original CBD model
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Figure 3.16: The relationship between the hedge effectiveness (HE) and the duration (T )
of the liability being hedged, Groups 1, 2, 3 and 4. The simulation model is the LLCBD
model.

• Simulation model: the original CBD model

• Hedging instruments: the 2nd and 3rd q-forward, (x2, t2) = (85, 2026) and (x3, t3) =
(92, 2033).

Under these assumptions, the values of HE produced by the delta hedging method and the
generalized state-space hedging method are −0.3565 and 0.9053, respectively (see Table
3.9).

Six mortality scenarios – built on hypothetical sample paths of κ1(t) and κ2(t) – are
used to analyze why the two methods perform so differently (see Figure 3.17). Scenarios
(i) and (ii) are the most extreme ‘linear’ scenarios within the 95% prediction intervals,
while Scenarios (iii) to (vi) are extreme ‘non-linear’ scenarios within the 95% prediction
intervals.9 For each scenario and hedging method, we calculate the realized values of

9The annuity liability and all hedging instruments used are related to ages greater than x̄ = 69.5, so
the projected mortality would be high (low) when both κ1(t) and κ2(t) are high (low). It follows that (1)
and (a) are the linear sample paths that would result in the highest projected mortality, whereas (2) and
(b) are the linear sample paths that would lead to the lowest projected mortality.
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Table 3.12: The values of L − N2H2 − N3H3 − L̂ and L − L̂ under the six hypothetical
extreme mortality scenarios described in Figure 3.17.

Scenario Sample paths N2H2 N3H3 L−N2H2 −N3H3 − L̂ L− L̂
Delta Hedge

(i) (1) × (a) −1.3804 0.9932 −0.1379 −0.5251
(ii) (2) × (b) 1.2271 −0.8361 0.1658 0.5568
(iii) (3) × (c) −1.9107 −0.9401 2.5764 −0.2743
(iv) (3) × (d) −0.0769 0.1562 −0.1848 −0.1055
(v) (4) × (c) 0.0511 −0.1431 0.1883 0.0963
(vi) (4) × (d) 1.6191 1.1475 -2.5397 0.2270

Generalized State-Space Hedge
(i) (1) × (a) −0.3681 −0.1959 0.0389 −0.5251
(ii) (2) × (b) 0.3272 0.1649 0.0647 0.5568
(iii) (3) × (c) −0.5095 0.1854 0.0497 −0.2743
(iv) (3) × (d) −0.0205 −0.0308 −0.0542 −0.1055
(v) (4) × (c) 0.0136 0.0282 0.0545 0.0963
(vi) (4) × (d) 0.4317 −0.2263 0.0216 0.2270

L − N2H2 − N3H3 − L̂ (the hedged position) and L − L̂ (the unhedged position). The
results are tabulated in Table 3.12.

For Scenarios (i) and (ii), the hedge derived using the delta hedging method yields
values of L−N2H2−N3H3− L̂ that are much smaller than L− L̂ in magnitude, suggesting
that the hedge can withstand extreme mortality scenarios that are ‘linear’. However, for
remaining four scenarios, all of which are ‘non-linear’, the hedge derived using the delta
hedging method performed very badly (even worse than not hedging), indicating that the
hedge is vulnerable to non-linear changes in the dynamic factors. We also observe that
L−N2H2 −N3H3 − L̂ and L− L̂ may take the same or different signs, which means that
the poor performance is sometimes because the hedge has gone in the wrong direction and
sometimes because the hedge has gone in the right direction but too far.

For all six scenarios, the generalized state-space hedging method performs satisfactorily,
yielding values of L−N2H2 −N3H3 − L̂ that are much smaller than L− L̂ in magnitude.
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Figure 3.17: Six extreme mortality scenarios: Scenarios (i) to (vi) are formed by (1) ×
(a), (2) × (b), (3) × (c), (3) × (d), (4) × (c), (4) × (d), respectively. The dotted lines
represent the 95% prediction intervals.
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Table 3.13: The ‘best achievable’ hedges given the 10,000 mortality scenarios simulated
from (a) the original CBD model and (b) the LLCBD model.

(a) Simulation model: the original CBD model
HE N1 N2 N3 N4

0.9358 −70.9784 −47.8004 − −
0.9136 −107.4581 − −17.8760 −
0.8322 −132.2430 − − −6.9878
0.9054 − −44.4610 −8.0472 −
0.8926 − −52.0698 − −2.2432
0.7465 − − -24.3666 0.2981

(b) Simulation model: the LLCBD model
HE N1 N2 N3 N4

0.8410 −22.8565 75.3767 − −
0.8967 93.0628 − 24.1189 −
0.6609 79.1050 − − 6.8454
0.9586 − 41.4408 12.7478 −
0.9400 − 57.0345 − 3.0335
0.8769 − − 29.1619 −2.6613
0.9749 62.2898 39.3229 13.0727 0.6231

3.6.5.2 The Best Achievable Hedge Effectiveness

Given the 10,000 mortality scenarios simulated from the CBD/LLCBD model, we can
iteratively search for the combination of N1, . . . , Nm what would maximize HE. The
resulting value of HE may be regarded as the ‘best achievable’ hedge effectiveness (given
the 10,000 scenarios) and can be used as a benchmark to assess the quality of the proposed
hedging strategy.

We consider hedge portfolios with m = 2, 4 q-forwards, chosen from the collection of
four q-forwards described in Section 3.6.1. Table 3.13 displays, for each portfolio, the best
achievable value of HE and the corresponding values of N1, . . . , Nm on the basis of the
mortality scenarios simulated from (a) the original CBD model and (b) the LLCBD model.
The values reported in Table 3.13 (a) are very close to those shown in Table 3.9 (Group
3), whereas the values reported in Table 3.13 (b) are very close to those shown in Table
3.10 (Group 4). The results suggest that the performance of the generalized state-space
hedging strategy is nearly as good as the best achievable one.
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3.6.5.3 Poisson Risk

The baseline results assume no Poisson risk (a.k.a. sampling risk). We now incorporate
Poisson uncertainty into the hedging results by treating the cohort of annuitants as a
random survivorship group.

Let lx,t be the number of annuitants who survive to age x at the beginning of year t,
and dx,t be the number of annuitants who die in year t (between age x and x + 1). For a
fixed initial number of annuitants lx0,t0+1, we have the following:

dx0+t−t0−1,t ∼ Poisson(lx0+t−t0−1,t × q̃x0+t−t0−1,t)

and

lx0+t−t0,t+1 = lx0+t−t0−1,t − dx0+t−t0−1,t,

where t = t0 + 1, . . . , t0 + T and q̃x,t is the underlying unobserved probability of death in
year t (between age x and x+ 1).

In generating the hedging results, we simulate, for each of the 10,000 simulated mortality
scenarios from the LLCBD model, one realization of {lx0+t−t0+1,t+1; t = t0, t0 + 1, . . . , t0 +
T − 1}. The per contract value of the liability being hedged in each mortality scenario is
then computed as follows:

L =
T∑
u=1

e−ru
lx0+u,t0+1+u

lx0,t0+1

.

The calculation of N1, . . . , Nm remains the same as when Poisson uncertainty is not taken
into account, because the q-forward hedge aims to mitigate only systematic longevity risk.
There is also no change to the calculation of Hj, j = 1, . . . ,m, because the q-forwards
are assumed to be linked to the smoothed death probabilities that are free of Poisson
uncertainty.

We calculate the hedge effectiveness for annuity liabilities with different initial numbers
of annuitants: lx0,t0+1 = 103, 104, 105, 106, 107. The results (see Table 3.14) are based on
hedge portfolios with m = 1, 2, 3, 4 q-forwards, built by applying the generalized state-
space method to the original CBD model (Group 3) and the LLCBD model (Group 4).
When there are only 1 000 annuitants initially, Poisson risk erodes hedge effectiveness by
about 30 to 40 percentage points. The erosion in hedge effectiveness is much milder (less
than 10 percentage points) when the initial number of annuitants is 10 000, and becomes
negligible when the initial number of annuitant grows to 100 000. When the initial number
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of annuitants is 107, the resulting values of HE are identical (to four significant figures)
to those when Poisson risk is assumed to be absent. Our results are in line with those
produced by Li and Hardy (2011) and Cairns et al. (2014).

3.6.5.4 Sensitivity to the Covariance between State Vectors

Recall that Q represents the covariance matrix of the innovation vectors, thereby governing
the static and dynamic correlations between the hidden states. The hedging strategy
derived from the generalized state-space method depends on Q, but those derived from
the delta- and delta-nuga methods do not. Hence, it is warranted to examine how the
performance of different hedging strategies may change when Q is altered.

We consider the following five hypothetical situations:

(a) all elements are scaled up or down;

(b) elements related to κ1(t) (i.e., Q1,i and Qi,1 for i = 1, 2, 3, 4) are scaled up or down;

(c) elements related to κ2(t) (i.e., Q2,i and Qi,2 for i = 1, 2, 3, 4) are scaled up or down;

(d) elements related to C1(t) (i.e., Q3,i and Qi,3 for i = 1, 2, 3, 4) are scaled up or down;

(e) elements related to C2(t) (i.e., Q4,i and Qi,4 for i = 1, 2, 3, 4) are scaled up or down.

Four scaling factors, 0.2, 0.5, 2 and 5, are considered. The simulation model used is the
LLCBD model (with the altered covariance matrix). The test results for hedges with m = 4
q-forwards are presented in Table 3.15.

As expected, when the delta-nuga hedging method is used, altering Q has no impact
on the values of N1, . . . , N4. However, the value of HE changes considerably when Q is
scaled up or down. The value of HE is the lowest (0.1753) when the elements related to
C2(t) are scaled up by a factor of 5.

When the generalized state-space hedging method is used, the values of N1, . . . , N4

are adaptive to the modifications made to Q. As the notional amounts are ‘corrected’
accordingly10, the resulting value of HE is much more robust relative to changes in Q. For
every situation under consideration, the value of HE produced by the generalized state-
space hedging method is higher than that produced by the delta-nuga hedging method.

10Situation (a) is an exception. If all elements of Q are scaled by the same factor, then according to
equation (3.9) all elements in Ξ∗i,j , for any i and j, would also be scaled by exactly the same factor. As
a result, we can cancel out the scaling factor in equation (3.11), resulting in no change in the values of
N1, . . . , N4.
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Table 3.14: The calculated values of HE when Poisson risk is absent and present. The hedge
portfolios are composed of m = 1, 2, 3, 4 q-forwards and are built by applying the GSS method
to the original CBD model (Group 3) and the LLCBD model (Group 4).

Without Poisson Risk
Group 3 Group 4

HE N1 N2 N3 N4 HE N1 N2 N3 N4

m = 1 0.8000 − 60.0893 − − 0.8575 − − 22.3178 −
m = 2 0.6496 71.5625 47.9503 − − 0.9579 − 41.0866 13.4239 −
m = 3 0.8557 75.7070 29.6824 9.3110 − 0.9732 64.1560 36.5098 16.1386 −
m = 4 0.8728 76.1325 29.7784 7.9015 0.7337 0.9737 66.7273 38.9987 13.2875 0.8685

With Poisson Risk, lx0,t0+1 = 1, 000
Group 3 Group 4

HE N1 N2 N3 N4 HE N1 N2 N3 N4

m = 1 0.4271 − 60.0893 − − 0.4487 − − 22.3178 −
m = 2 0.3451 71.5625 47.9503 − − 0.5062 − 41.0866 13.4239 −
m = 3 0.4528 75.7070 29.6824 9.3110 − 0.5143 64.1560 36.5098 16.1386 −
m = 4 0.4618 76.1325 29.7784 7.9015 0.7337 0.5151 66.7273 38.9987 13.2875 0.8685

With Poisson Risk, lx0,t0+1 = 10, 000
Group 3 Group 4

HE N1 N2 N3 N4 HE N1 N2 N3 N4

m = 1 0.7358 − 60.0893 − − 0.7829 − − 22.3178 −
m = 2 0.5986 71.5625 47.9503 − − 0.8776 − 41.0866 13.4239 −
m = 3 0.7876 75.7070 29.6824 9.3110 − 0.8921 64.1560 36.5098 16.1386 −
m = 4 0.8027 76.1325 29.7784 7.9015 0.7337 0.8926 66.7273 38.9987 13.2875 0.8685

With Poisson Risk, lx0,t0+1 = 100, 000
Group 3 Group 4

HE N1 N2 N3 N4 HE N1 N2 N3 N4

m = 1 0.7922 − 60.0893 − − 0.8503 − − 22.3178 −
m = 2 0.6432 71.5625 47.9503 − − 0.9499 − 41.0866 13.4239 −
m = 3 0.8475 75.7070 29.6824 9.3110 − 0.9648 64.1560 36.5098 16.1386 −
m = 4 0.8644 76.1325 29.7784 7.9015 0.7337 0.9653 66.7273 38.9987 13.2875 0.8685

With Poisson Risk, lx0,t0+1 = 1, 000, 000
Group 3 Group 4

HE N1 N2 N3 N4 HE N1 N2 N3 N4

m = 1 0.7994 − 60.0893 − − 0.8567 − − 22.3178 −
m = 2 0.6491 71.5625 47.9503 − − 0.9570 − 41.0866 13.4239 −
m = 3 0.8550 75.7070 29.6824 9.3110 − 0.9723 64.1560 36.5098 16.1386 −
m = 4 0.8720 76.1325 29.7784 7.9015 0.7337 0.9727 66.7273 38.9987 13.2875 0.8685

With Poisson Risk, lx0,t0+1 = 10, 000, 000
Group 3 Group 4

HE N1 N2 N3 N4 HE N1 N2 N3 N4

m = 1 0.8000 − 60.0893 − − 0.8575 − − 22.3178 −
m = 2 0.6496 71.5625 47.9503 − − 0.9578 − 41.0866 13.4239 −
m = 3 0.8557 75.7070 29.6824 9.3110 − 0.9731 64.1560 36.5098 16.1386 −
m = 4 0.8727 76.1325 29.7784 7.9015 0.7337 0.9736 66.7273 38.9987 13.2875 0.8685

109



Table 3.15: The values of HE, N1, N2, N3 and N4 when Q is altered in different manners.

Group 2 Group 4
Assumed model: The LLCBD model Assumed model: The LLCBD model

Multiplier Method: Traditional delta-nuga hedging Method: Generalized state-space hedging
HE N1 N2 N3 N4 HE N1 N2 N3 N4

(a) All elements are scaled up or down
0.2 0.8903 157.7860 1.0128 27.4379 -0.0000 0.9803 66.7273 38.9987 13.2875 0.8685
0.5 0.8849 157.7860 1.0128 27.4379 -0.0000 0.9779 66.7273 38.9987 13.2875 0.8685
2 0.8544 157.7860 1.0128 27.4379 -0.0000 0.9641 66.7273 38.9987 13.2875 0.8685
5 0.7788 157.7860 1.0128 27.4379 -0.0000 0.9287 66.7273 38.9987 13.2875 0.8685

(b) Elements related to κ1(t) (i.e., Q1,i and Qi,1 for i = 1, 2, 3, 4) are scaled up or down
0.2 0.9583 157.7860 1.0128 27.4379 -0.0000 0.9867 87.1269 41.1404 13.2163 1.1126
0.5 0.9401 157.7860 1.0128 27.4379 -0.0000 0.9838 78.9923 40.7965 13.2949 1.0401
2 0.3661 157.7860 1.0128 27.4379 -0.0000 0.9002 50.0976 33.4547 12.4363 0.1343
5 0.4538 157.7860 1.0128 27.4379 -0.0000 0.8918 62.6005 32.7750 11.8342 -2.9903

(c) Elements related to κ2(t) (i.e., Q2,i and Qi,2 for i = 1, 2, 3, 4) are scaled up or down
0.2 0.9306 157.7860 1.0128 27.4379 -0.0000 0.9821 67.7555 40.5623 13.2294 0.9485
0.5 0.9151 157.7860 1.0128 27.4379 -0.0000 0.9801 67.4009 39.9414 13.2894 0.9192
2 0.7206 157.7860 1.0128 27.4379 -0.0000 0.9450 65.5549 37.4718 13.1057 0.6844
5 0.6440 157.7860 1.0128 27.4379 -0.0000 0.9133 78.7940 37.4970 12.9966 0.4223

(d) Elements related to C1(t) (i.e., Q3,i and Qi,3 for i = 1, 2, 3, 4) are scaled up or down
0.2 0.8134 157.7860 1.0128 27.4379 -0.0000 0.9673 48.8085 33.5628 12.5653 1.0407
0.5 0.7978 157.7860 1.0128 27.4379 -0.0000 0.9745 21.5914 30.1378 12.2326 0.8986
2 0.9412 157.7860 1.0128 27.4379 -0.0000 0.9781 82.4635 41.9468 13.3386 0.9666
5 0.8541 157.7860 1.0128 27.4379 -0.0000 0.8821 85.7639 43.2876 12.6638 1.1792

(e) Elements related to C2(t) (i.e., Q3,i and Qi,3 for i = 1, 2, 3, 4) are scaled up or down
0.2 0.9161 157.7860 1.0128 27.4379 -0.0000 0.9784 84.0152 40.8037 13.4928 1.0814
0.5 0.8608 157.7860 1.0128 27.4379 -0.0000 0.9684 79.1166 40.3986 13.6192 0.7173
2 0.8781 157.7860 1.0128 27.4379 -0.0000 0.9480 53.2548 39.4064 13.2301 1.0908
5 0.1753 157.7860 1.0128 27.4379 -0.0000 0.5724 74.0987 41.8060 12.9891 1.1607
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3.6.5.5 Sensitivity to the Number of q-forwards Used

As previously mentioned, the generalized state-space hedging method can be implemented
with any number of q-forwards (m), because the solution to equation (3.10) exists for any
m ≥ 1. We now examine how the performance of the generalized state-space hedging
method may change as the number of q-forwards used increases.

We consider the following collection of q-forwards:

j Reference age xj Reference year tj j Reference age xj Reference year tj
1 80 2025 6 80 2030
2 80 2026 7 80 2031
3 80 2027 8 80 2032
4 80 2028 9 80 2033
5 80 2029 10 80 2034

Note that it is not possible to use this collection of q-forwards to build delta or delta-nuga
hedges, because they are all linked to the same reference age.11

When m = 1, the hedge contains q-forward j = 1; when m = 2, the hedge contains
q-forwards j = 1, 2; and so on. The hedging results for m = 1, . . . , 10 are reported in Table
3.16. As m increases, the value of HE increases. However, the rate of increase in HE
reduces with m, suggesting that the marginal benefit of adding an additional q-forward
becomes small when the hedge portfolio already contains a large number of q-forwards.

When m becomes very large, inverting Σh may become difficult as it may be close
to singular due to its large dimension. Users of this method should be mindful of this
potential problem, although having a very large m is not likely.

3.6.5.6 Sensitivity to Choice of q-forwards

Finally, we examine the sensitivity of the hedging results to the choice of q-forwards. The
following set of q-forwards is considered:

j Reference age xj Reference year tj
1 70 2020
2 88 2025
3 75 2030
4 77 2035

11When the q-forwards are linked to the same reference age, the delta and delta-nuga methods are
subject to the singularity problem (see Section 3.5.5.2).
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Table 3.16: The values of HE and N1, . . . , Nm produced by the generalized state-space
method when different numbers of q-forwards are used.

HE N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

0.8425 83.1379 − − − − − − − − −
0.8517 9.6612 78.6630 − − − − − − − −
0.8583 19.5117 4.3579 67.1848 − − − − − − −
0.8640 26.2820 4.5859 4.9870 57.6373 − − − − − −
0.8685 30.9677 4.7438 5.2967 5.6566 49.0497 − − − − −
0.8717 34.1813 4.8520 5.5091 5.9726 6.2574 40.9674 − − − −
0.8736 36.3330 4.9245 5.6513 6.1842 6.5404 6.7341 33.1843 − − −
0.8749 37.7136 4.9710 5.7425 6.3200 6.7220 6.9642 7.0601 25.6171 − −
0.8754 38.5350 4.9987 5.7968 6.4008 6.8301 7.1011 7.2282 7.2236 18.2404 −
0.8758 38.9536 5.0128 5.8245 6.4420 6.8851 7.1709 7.3139 7.3269 7.2210 11.0539

In contrast to the q-forwards used in the baseline results, the q-forwards considered here
are linked to distinct birth cohorts.

Table 3.17 shows Result I (a comparison of different hedging methods) on the basis
of the alternative set of q-forwards. The conclusion obtained in Section 3.6.2 remains
unchanged: the generalized state-space method consistently yields a better hedge effec-
tiveness compared to the delta and delta-nuga methods, regardless of whether the original
CBD model or the LLCBD model is assumed in the derivation.

Table 3.18 displays Result II (the impact of model mis-specification) on the basis of the
alternative set of q-forwards. The conclusion drawn in Section 3.6.3 still stands: neglecting
stochastic drifts may lead to a material loss of hedge effectiveness, if the true underlying
model is one with stochastic drifts.

3.7 Concluding Remarks

Longevity risk comprises of diffusion risk and drift risk. Although both sources of risk are
significant, the latter is often ignored in the existing stochastic mortality models. In this
chapter, we introduce the LLCBD model which captures drift risk by allowing the drifts
themselves to follow a random walk. Written in a state-space form, the LLCBD model
contains four hidden states, κ1(t), κ2(t), C1(t) and C2(t), all of which have demographic
intuitions behind. All hidden states and parameters in the model can be estimated in one
single stage by using the EM algorithm and the Kalman filter.

As an illustration, we estimate the LLCBD model to the historical mortality data of
Canadian males. The adequacy of the model’s fit is confirmed by Harvey’s (1990) test that
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Table 3.17: Result I (a comparison of different hedging methods) based on the alternative set
of q-forwards. For Groups 1 and 3, the simulation model used is the original CBD model. For
Groups 2 and 4, the simulation model used is the LLCBD model.

Group 1 Group 3
Assumed model: The original CBD model Assumed model: The original CBD model

Method: Traditional delta hedging Method: Generalized state-space hedging
HE N1 N2 N3 N4 HE N1 N2 N3 N4

0.8510 152.5614 43.2934 − − 0.9135 112.2606 35.4131 − −
−1.6532 −378.3325 − 562.1118 − 0.7646 112.5175 − 137.0038 −
−1.2703 −168.3086 − − 367.6104 0.7597 152.6432 − − 97.0379
0.7050 − 30.8523 161.5324 − 0.9106 − 30.8712 70.1558 −
0.4764 − 22.7090 − 174.7847 0.9107 − 32.3435 − 51.5237
−2.8836 − − −450.4640 662.2052 0.7358 − − 120.3346 48.6849

Group 2 Group 4
Assumed model: The LLCBD model Assumed model: The LLCBD model

Method: Traditional delta/delta-nuga hedging Method: Generalized state-space hedging
HE N1 N2 N3 N4 HE N1 N2 N3 N4

0.6880 178.7526 59.9580 − − 0.7905 11.7794 57.6941 − −
−9.1519 −469.6742 − 806.0370 − 0.7086 −238.5952 − 184.9745 −
−12.2549 −213.1537 − − 575.5422 0.7694 −124.0271 − − 118.4957

0.0151 − 43.4293 222.2012 − 0.8300 − 45.7134 51.2775 −
−1.6542 − 32.6105 − 262.5109 0.8929 − 37.2561 − 58.1600
−18.8856 − − −669.7701 1053.7844 0.7267 − − −44.6941 136.6734

0.5892 349.2159 66.6085 −399.0373 221.0896 0.9132 −20.9026 37.8663 −60.2340 96.9143

is based on the model’s vector of prediction errors. In comparison to the original CBD
model, the LLCBD model provides a better goodness-of-fit in terms of AIC, and yields
more accurate short- and long-term forecasts in terms of ME and MSE. We also find that
the LLCBD model generates forecasts that are more consistent with the observed trends
in the recent past and are more robust relative to changes in the length of the calibration
window. Because the LLCBD model incorporates additionally the uncertainty associated
with the drifts, it results in wider long-term prediction intervals that reflect the possibilities
of future trend changes.

Another contribution of this chapter is the generalized state-space hedging method,
from which one can construct an index-based longevity hedge to mitigate both diffusion
and drift risks. As explained in Section 3.5.5, the proposed hedging method can ameliorate
the problems of sub-optimality and singularity that the traditional delta and delta-nuga
hedging methods are subject to. The proposed hedging method does not impose any
requirement on the number of hedging instruments used. It also works for any combination
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Table 3.18: Result II (the impact of model mis-specification) derived using the alternative set
of q-forwards. The simulation model used is the LLCBD model.

Group 3 Group 4
Assumed model: The original CBD model Assumed model: The LLCBD model
Method: Generalized state-space hedging Method: Generalized state-space hedging
HE N1 N2 N3 N4 HE N1 N2 N3 N4

Number of q-forwards used: m = 1
0.7413 − 42.9262 − − 0.7899 − 57.7622 − −

Number of q-forwards used: m = 2
0.8825 − 32.3435 − 51.5237 0.8929 − 37.2561 − 58.1600

Number of q-forwards used: m = 3
0.7906 86.7842 28.9276 − 39.8774 0.9123 − 39.0704 −72.4252 101.2808

Number of q-forwards used: m = 4
0.7840 82.7462 28.4464 10.8472 34.4610 0.9132 −20.9026 37.8663 −60.2340 96.9143

of hedging instruments, provided that the payoffs from the hedging instruments are not
perfectly correlated with one another.

As an example, we apply the generalized state-space hedging method to a hypothetical
hedging scenario. The results of this application point to three conclusions. First, the
proposed hedging method performs better than the traditional delta and delta-nuga hedg-
ing methods, no matter which of the two models under consideration is assumed. Second,
ignoring stochastic drifts in the derivation of the hedging strategies would lead to a ma-
terial reduction in hedge effectiveness, if the true underlying model is one with stochastic
drifts. Third, the negative impact of ignoring stochastic drifts is particularly significant if
the duration of the liability being hedged is long.

To focus on the issue concerning drift risk, in this chapter we choose to build our model
on the simplest version of the CBD model, which does not take cohort effects into account.
We acknowledge that cohort effects are significant in certain populations, and that it is
not trivial to incorporate cohort effects in a state-space representation in which the vector
of hidden states evolve over time rather than year of birth. In future research, it would be
interesting to investigate how the LLCBD model can be further extended to incorporate
cohort effects. This goal may possibly be accomplished by using the parsimonious approach
introduced by Marvos et al. (2014), whereby cohort effects are captured through the
dependence among residuals.

To ease exposition, we have also assumed that the q-forwards and the annuity liability
are associated with exactly the same population. In reality, the q-forwards are more likely
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to be linked to a broad-based mortality index rather than the hedger’s own population,
giving rise to population basis risk that may reduce hedge effectiveness. Future research
warrants a study on how our contributions may be applied to situations when population
basis risk exists. Such a study would encompass an extension of the LLCBD model to
a version which, similar to the models contributed by Li and Lee (2005), Cairns et al.
(2011b), Dowd et al. (2011) and Li et al. (2015b), models the mortality of two populations
in a coherent manner. The study would also include an adjustment of the generalized
state-space hedging method to capture the imperfect correlations between the mortality
improvements of the two populations involved. The multi-population extension of the
generalized state-space hedging method is discussed in Chapter 4.

The longevity hedging strategy presented in this chapter is static, as no adjustment is
made to the hedge after inception. Static hedging strategies generally require longer-dated
instruments, but the majority of capital market investors prefer to invest in shorter-dated
ones. It would therefore be useful to extend the proposed hedging method from static to
dynamic. This extension is also discussed in Chapter 4.
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Chapter 4

A Hedging Method with an Explicit
Measure of Population Basis Risk

4.1 Introduction

Longevity risk refers to the adverse financial consequences that arise when individuals live
longer than expected. The risk affects sponsors of defined-benefit pension plans heavily,
as the longer people live the larger the pension liabilities are. The threat of longevity
risk to pension plan sponsors has become even more apparent in recent years, due in part
to the low-yield environment after the financial crisis of 2007-08 and in part to the more
conservative mortality improvement scales that are recently introduced by the actuarial
profession (Canadian Institute of Actuaries, 2014; Continuous Mortality Investigation Bu-
reau, 2009a,b; Society of Actuaries, 2014). In response to the problem, pension longevity
risk transfers started to emerge in early 2000s, providing opportunities for pension plan
sponsors to transfer longevity risk to entities that are in a better position to run the risk.

The majority of the pension longevity risk transfers executed to date are insurance-
based buy-outs, buy-ins and bespoke longevity swaps. However, the insurance industry is
unable to take an unlimited amount of longevity risk, because of the systematic nature of
risk and the capital requirements imposed by Solvency II or its equivalent. The analyses of
Graziani (2014) and Michaelson and Mulholland (2014) concluded that the global insurance
industry can only absorb a fraction of the longevity risk exposure from defined-benefit
pension plans worldwide. Consequently, there is a need to search for additional participants
who are willing to accept the risk. One possible candidate is capital market investors,
who are possibly interested in the longevity asset class because of the risk premium and
diversification benefit it offers.
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Capital market investors demand liquidity and are likely to be discouraged by the
information asymmetry arising from the fact that pension plan sponsors know better about
the mortality experience of the individuals associated with their portfolios. To attract their
participation, longevity risk needs to be packaged as standardized index-based mortality
derivatives. Several successful attempts of standardization have been made. The first took
place in January 2008 when J.P. Morgan executed a mortality (q-) forward contract with
Lucida, a monoline insurer in the UK.1 Other examples include the £70 million 10-year q-
forward that J.P. Morgan transacted with the Pall (UK) Pension fund in January 20112 and
the e12 billion index-based longevity swap executed between Deutsche Bank and Aegon in
February 2012.3 More recently, Deutsche Bank launched in November 2013 the Longevity
Experience Option (LEO), which is structured as an out-of-the-money call option spread
on 10-year forward survival rates and has a maturity of 10 years. The first LEO was
reportedly traded in January 2014.4 At present, tradable longevity indexes include the
LifeMetrics Index provided by the Life and Longevity Markets Association (LLMA) and
the Xpect Club Vita Index provided by Deutsche Börse.

Nevertheless, the market for index-based mortality derivatives is still quite far from
being large and liquid, and is facing several challenges. On the supply side, a few major
investment banks, namely Credit Suisse, Normura and UBS, left the market for longevity
risk transfers in 2012 for regulatory reasons (Tan et al., 2015). On the demand side, as noted
by Blake et al. (2013), the major challenge is “the continuing resistance of pension plan
trustees and their advisors, as well as insurers and reinsurers, to imperfect hedging solutions
of the capital markets.” Longevity hedges developed from index-based mortality derivatives
are imperfect, because there exists population basis risk which arises from the difference
in mortality improvements between the populations associated with the hedger and the
index used for hedging purposes. The challenge on the demand side calls for research to
address the following questions: (1) How to quantify the exposure to population basis risk
in an index-based longevity hedge? (2) How to optimize an index-based longevity hedge
when population basis risk is taken into account? (3) How risk management decisions, for
example, selection of the most appropriate reference population, can be made in a world
where population basis risk exists?

Although a large number of multi-population stochastic mortality models have been
proposed,5 only a few attempts have been made to investigate how such models can be used

1Source: www.efinancialnews.com/story/2008-02-19/lucida-guards-against-longevity
2Source: www.pensionsworld.co.uk/article/first-longevity-hedge-non-retired-pension-plan-members
3Source: www.db.com/medien/en/content/3862 4047.htm
4Source: www.trading-risk.com/deutsche-bank-longevity-option-platform-closes-debut-deal
5See, for example, D’Amato et al. (2014), Li and Lee (2005), Cairns et al. (2011b), Dowd et al. (2011b),

Jarner and Kryger (2011), Ahmadi and Li (2014), Hatzopoulos and Haberman (2013), Hunt and Blake
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to generate meaningful measures of population basis risk. Previous studies on measuring
population basis risk, including the work of Cairns et al. (2014), Li and Hardy (2011) and
Ngai and Sherris (2011), typically follow the framework set out by Coughlan et al. (2011).
The framework encompasses the following two steps: (i) calibrate the portfolio of hedging
instruments; (ii) calculate the amount of risk that the hedge can reduce on the basis of
a large number of scenarios simulated from the assumed stochastic mortality model. The
two steps are performed under the assumptions that population basis risk is absent and
present, and the difference between the results under the two assumptions represents the
population basis risk that the hedger is subject to. Because this approach depends on a
calibrated longevity hedge, it does not readily indicate how population basis risk varies
as the composition of the hedge portfolio changes. In addition, the heavy reliance on
simulations makes this approach rather computationally demanding.

Strategies for optimizing an index-based longevity hedge have been developed by re-
searchers including Cairns (2011, 2013), Cairns et al. (2006b, 2014), Coughlan et al.
(2011), Dahl (2004), Dahl and Møller (2006), Dahl et al. (2008), Dowd et al. (2011a),
Li and Hardy (2011), Li and Luo (2012), Luciano et al. (2012), and Zhou and Li (2014).
Generally speaking, the hedging strategies were derived by matching the sensitivities of
the liability being hedged and the portfolio of hedging instruments with respect to changes
in the underlying mortality rates. Most of the existing longevity hedging strategies are
subject to one significant limitation: they were developed under the ideal assumption that
population basis risk does not exist. Although Dowd et al. (2011a), Li and Hardy (2011),
Li and Luo (2012) and Zhou and Li (2014) studied how hedging strategies may be adjusted
when population basis risk is present, their adjustment formulas are derived on the basis
of specific multi-population mortality models. For example, the adjustment formula pro-
posed by Li and Luo (2012) depends heavily on the augmented common factor model (Li
and Lee, 2005) and is consequently incompatible with other model assumptions. A more
general framework for hedging in the presence of population basis risk is yet to be sought.

The objectives of this chapter are threefold. The first objective is to develop a hedging
strategy that explicitly incorporates population basis risk. This objective is achieved by ex-
tending the generalized state-space hedging method proposed in Chapter 3 to incorporate
the random deviation between the mortality improvements of the populations associated
with the hedging instruments and the liability being hedged. We choose to use the gener-
alized state-space hedging method as a starting point, because, as explained in Chapter 3,
the method ameliorates the problems of sub-optimality and singularity that are found in
the delta-nuga hedging method of Cairns (2013) and imposes less stringent requirements
on the number of hedging instruments used. In our proposed method, the hedging strategy

(2015), Yang and Wang (2013), and Zhou et al. (2013a, 2014).
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is derived by first reformulating the assumed multi-population stochastic mortality model
in a state-space form, and then considering the sensitivities of the hedge portfolio and
the liability being hedged to all relevant hidden states. Our proposed method is rather
general in the sense that it can be applied to any coherent multi-population mortality
model, provided that the model can be expressed in a state-space form. We demonstrate
in the next section that the applicable models include the multi-population versions of the
Lee-Carter and Cairns-Blake-Dowd models (Lee and Carter, 1992; Cairns et al., 2006).
The proposed hedging method is presented in both static and dynamic settings, and the
benefit of dynamically adjusting a longevity hedge is studied.

The second objective is to develop an efficient method for quantifying the population
basis risk in a longevity hedge. To this end, we introduce a method to analytically ap-
proximate the variance of the time-t values of an annuity portfolio, with or without a
longevity hedge. The method enables us to estimate hedge effectiveness (defined as the
reduction in variance) without using simulation. As such, we can readily gauge how much
hedge effectiveness is eroded by population basis risk under different hedge portfolio com-
positions. We also show that the approximated variance of a hedged annuity portfolio
can be decomposed into components arising solely from the hidden states that are shared
by all populations and components stemming exclusively from the hidden states that are
population-specific. The latter components collectively represent an explicit measure of the
population basis risk involved in the longevity hedge. Furthermore, from the mathematical
formulation of this measure, we can infer that a portion of population basis risk depends
on how the longevity hedge is constructed while another portion exists no matter what the
notional amounts of the hedging instruments are. The intuitions behind the decomposition
of variance and the measure of population basis risk are illustrated extensively by graphical
means throughout the chapter.

The final objective is to develop a metric for assessing the relative levels of population
basis risk that different hedging instruments may lead to. We propose a metric called
‘standardized basis risk profile’, with which we can compare the resulting population basis
risk when q-forwards with different reference ages, maturities and reference populations are
used. The standardized basis risk profile is of practical importance. For instance, let us
suppose that a pension plan sponsor in Canada is contemplating hedging its longevity risk
exposure with q-forwards that are linked to a LifeMetrics Index. At present, the LifeMetrics
Index is available in England and Wales, the US, Germany and the Netherlands, but not in
Canada. The standardized basis risk profile can aid this pension plan sponsor in selecting
one out of the four available reference populations. While the methods proposed previously
by Cairns (2011, 2013), Cairns et al. (2014), Coughlan et al. (2011) and Li and Hardy
(2011) may also be used for the purpose of reference population selection, they generally
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require significant computational effort. In contrast, the standardized basis risk profile can
be computed analytically, and the comparison between different standardized basis risk
profiles can be made without calibrating the associated hedges in advance.

The remainder of this chapter is organized as follows. Section 4.2 describes the collec-
tion of multi-population mortality models to which the proposed hedging strategy can be
applied. Section 4.3 presents the proposed hedging strategy and the analytical decomposi-
tion of the portfolio variance. Section 4.4 explains how the decomposition of variance can
be utilized to measure population basis risk and defines the standardized basis risk profile.
Section 4.5 illustrates the proposed methodologies using real mortality data from various
national populations. Finally, Section 4.6 concludes the chapter.

4.2 The Applicable Multi-Population Mortality Mod-

els

The proposed hedging method is quite general in the sense that it can be applied to any
coherent multi-population mortality model, provided that the model can be expressed in
a state-space form. In what follows, we first present the general state-space representa-
tion, and then illustrate how existing coherent multi-population mortality models can be
formulated in state-space forms.

4.2.1 The General State-Space Representation

Generally speaking, a state-space representation is composed of two components: (1) an
observation equation that describes the connection between the observations and hidden
states, and (2) a transition equation that captures the evolution of the hidden states
through a Markov process. Let ~yt and ~αt be the vectors of observations and hidden states
at time t, respectively. The observation equation is defined as

~yt = ~A+B~αt + ~εt, (4.1)

where ~A is a vector of constant terms, B is the design matrix which specifies the linear
relationship between the observations ~yt and the hidden states ~αt, and ~εt is a vector of
observation errors that has a zero mean and a constant covariance matrix R. The transition
equation is defined as

~αt = ~U +D~αt−1 + ~ηt, (4.2)
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where ~U represents the vector of drifts, D is a matrix which specifies the relationship
between ~αt and ~αt−1, and ~ηt is a vector of innovations that has a zero mean and a constant
covariance matrix Q.

In the context of multi-population mortality modeling, the observation vector ~yt con-
tains the time-t values of the (transformed) age-specific death rates or probabilities for all
of the populations being modeled. Suppose that the number of populations being modeled

is np. We can express ~yt as ((~y
(1)
t )′, . . . , (~y

(np)
t )′)′, with ~y

(p)
t , p = 1, . . . , np, representing the

vector of (transformed) age-specific death rates or probabilities for population p. If the

age range under consideration is [xa, xb], then ~y
(p)
t = (y

(p)
xa,t, y

(p)
xa+1,t, . . . , y

(p)
xb,t

)′.

A typical multi-population mortality model contains several stochastic components,
some of which apply to all of the populations being modeled while the other of which are

population-specific. Accordingly, we can express the state vector as ~αt = ((~αct)
′, (~α

(1)
t )′, . . . , (~α

(np)
t )′)′,

where ~αct encompasses the hidden states that are shared by all of the populations being

modeled and ~α
(p)
t , p = 1, . . . , np, consists of the hidden states that belong exclusively to

population p. In the sequel, we call ~αct the vector of ‘common states’ and ~α
(p)
t a vector of

‘population-specific states’.

We require the multi-population mortality model to be ‘coherent’. A coherent multi-
population mortality model is constructed in such a way to avoid a long-term divergence be-
tween projected mortality trajectories of different populations, an outcome that is deemed
to be biologically unreasonable. The concept of coherent multi-population mortality fore-
casting was first proposed by Li and Lee (2005), who also specified the following sufficient
conditions for coherence: (i) all of the populations being modeled have the same age-
response to the common stochastic factors; (ii) the population-specific stochastic factors
are mean-reverting. The sufficient conditions for coherence guarantee that, the mortality
trends for different populations would not diverge indefinitely.6

When formulated in a state-space representation, condition (i) means that the co-
efficients of the common states for all of the populations being modeled are the same.

6The concept of coherence has been translated into mathematical hypothesis by several researchers
(e.g., Cairns et al., 2011b, Zhou and Li, 2014). Cairns et al. (2011b) modeled the log of central death

rates, log(m
(p)
x,t), using a two-population APC model. They applied the following mathematical hypothesis

for coherence: the ratio of m
(1)
x,t/m

(2)
x,t for all ages do not diverge as t→∞. In the M-CBD model proposed

by Zhou and Li (2014), although it is not stated explicitly, the underlying mathematical hypothesis for

coherence is that in logit scale, the death probabilities q
(1)
x,t and q

(2)
x,t do not diverge as t→∞.

121



Equivalently speaking, the design matrix B should satisfy the following structure:

B =


Bc B(1) 0 · · · 0
Bc 0 B(2) · · · 0
...

...
...

. . .
...

Bc 0 0 · · · B(np)

 , (4.3)

where

Bc =

 (~bcxa)
′

...

(~bcxb)
′

 and B(p) =

 (~b
(p)
xa )′

...

(~b
(p)
xb )′


for p = 1, . . . , np. In the above, ~bcx is the vector of the coefficients of ~αct (the common states)

in y
(p)
x,t and does not depend on p; ~b

(p)
x , p = 1, . . . , np, is the vector of the coefficients of ~α

(p)
t

(the population-specific states) in y
(p)
x,t and is allowed to depend on p. Condition (ii) means

that ~α
(p)
t , p = 1, . . . , np, follows a certain autoregressive process.

In line with the structure of the state vector, we have ~ηt = ((~ηct )
′, (~η

(1)
t )′, . . . , (~η

(np)
t )′)′,

where ~ηct and ~η
(p)
t , p = 1, . . . , np, represent the innovation vectors in the processes for ~αct

and ~α
(p)
t , respectively. It is assumed that ~ηct , ~η

(1)
t , ..., ~η

(np)
t are mutually independent. Given

this assumption, the covariance matrix Q in the transition equation is a block diagonal
matrix,

Q =


Qc 0 · · · 0
0 Q(1) 0
...

. . .
...

0 0 · · · Q(np)

 , (4.4)

with Qc, Q(1), . . . , Q(np) representing the covariance matrices of ~ηct , ~η
(1)
t , . . . , ~η

(np)
t , respec-

tively. In the rest of this section, we use two examples to illustrate how existing coherent
multi-population mortality models can be formulated using the general state-space repre-
sentation.
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4.2.2 The Augmented Common Factor Model

The first example is the Augmented Common Factor (ACF) model proposed by Li and

Lee (2005). Let m
(p)
x,t be population p’s central death rate at age x and in year t. The ACF

model assumes that

ln(m
(p)
x,t) = a(p)

x + bcx k
c
t + b(p)

x k
(p)
t + ε

(p)
x,t , p = 1, . . . , np,

where a
(p)
x is an age-specific parameter representing population p’s average mortality level

at age x, kct is a time-varying stochastic factor that affects all of the np populations, k
(p)
t

is another time-varying stochastic factor that affects population p only, and bcx and b
(p)
x

measure the sensitivities of ln(m
(p)
x,t) to kct and k

(p)
t , respectively. It is assumed that the

error term ε
(p)
x,t is normally distributed with a zero mean and a variance of σ2

ε , and that the
error terms for different populations, ages and years are independent.

The trend in kct can be interpreted to mean the general trend in mortality improvements
for all of the np populations. As in the original Lee-Carter model (Lee and Carter, 1992),
the evolution of kct over time is modeled by a random walk with drift:

kct = µc + kct−1 + ηct ,

where µc is the drift term and ηct
i.i.d.∼ N(0, Qc).

Deviations from the general trend are captured by the dynamics of k
(p)
t , p = 1, . . . , np.

It is assumed that the evolution of k
(p)
t follows a first order autoregressive process:

k
(p)
t = µ(p) + φ(p)k

(p)
t−1 + η

(p)
t ,

where µ(p) is a constant, φ(p) is another constant with an absolute value that is strictly less

than 1, and η
(p)
t

i.i.d.∼ N(0, Q(p)). It is further assumed that ηct , η
(1)
t , . . . , η

(np)
t are mutually

uncorrelated. The assumed process for k
(p)
t ensures the resulting mortality projections are

coherent.

Suppose that the ACF model is estimated to data over the age range of [xa, xb]. We can
easily express such a model in a state-space form, with the vector of observations being

~yt = ((~y
(1)
t )′, . . . , (~y

(np)
t )′)′ =

(
ln(m

(1)
xa,t), . . . , ln(m

(1)
xb,t

), . . . , ln(m
(np)
xa,t ), . . . , ln(m

(np)
xb,t

)
)′
,

where ~y
(p)
t = (ln(m

(p)
xa,t), . . . , ln(m

(p)
xb,t

))′ for p = 1, . . . , np, and the vector of hidden states
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being

~αt = ((~αct)
′, (~α

(1)
t )′, . . . , (~α

(np)
t )′)′ =

(
kct , k

(1)
t , . . . , k

(np)
t

)′
,

where ~αct = kct and ~α
(p)
t = k

(p)
t for p = 1, . . . , np.

The rest of the observation equation is specified as

~A =
(
a(1)
xa , . . . , a

(1)
xb
, . . . , a(np)

xa , . . . , a(np)
xb

)′
,

~εt =
(
ε

(1)
xa,t, . . . , ε

(1)
xb,t
, . . . , ε

(np)
xa,t , . . . , ε

(np)
xb,t

)′
,

Bc = ((~bcxa)
′, . . . , (~bcxb)

′)′ = (bcxa , . . . , b
c
xb

)′,

and

B(p) = ((~b(p)
xa )′, . . . , (~b(p)

xb
)′)′ = (b(p)

xa , . . . , b
(p)
xb

)′,

where ~bcx = bcx and ~b
(p)
x = b

(p)
x for p = 1, . . . , np. Note that ~εt

i.i.d.∼ MVN(0, R), where
R = σ2

ε · Inp(xb−xa+1) and Inp(xb−xa+1) represents an np(xb−xa+ 1)×np(xb−xa+ 1) identity
matrix.

Finally, the rest of the transition equation is specified as

~U =
(
µc, µ(1), . . . , µ(np)

)′
,

D =


1 0 0 · · · 0
0 φ(1) 0 · · · 0
0 0 φ(2) · · · 0
...

...
...

. . .
...

0 0 0 · · · φ(np)

 ,

and

~ηt = ((~ηct )
′, (~η

(1)
t )′, . . . , (~η

(np)
t )′)′ = (ηct , η

(1)
t , . . . , η

(np)
t )′,

where ~ηct = ηct and ~η
(p)
t = η

(p)
t for p = 1, . . . , np. Note that ~ηt

i.i.d.∼ MVN(0, Q), where Q is
specified by equation (4.4) with Qc being the variance of ηct and Q(p) being the variance of

η
(p)
t .
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4.2.3 The Multi-Population Cairns-Blake-Dowd Model

The second example is the multi-population Cairns-Blake-Dowd (M-CBD) model, which

Zhou and Li (2014) considered. Let q
(p)
x,t represents the probability that an individual from

population p dies between time t − 1 and t (during year t), provided that he or she has
survived to age x at time t− 1. The M-CBD model assumes that

logit(q
(p)
x,t ) = ln

(
q

(p)
x,t

1− q(p)
x,t

)
= κc1,t+κ

c
2,t(x− x̄)+κ

(p)
1,t +κ

(p)
2,t (x− x̄)+ε

(p)
x,t , p = 1, . . . , np,

where x̄ denotes the average age over the sample age range [xa, xb], κ
c
1,t and κc2,t are time-

varying stochastic factors that apply to all of the np populations, κ
(p)
1,t and κ

(p)
2,t are time-

varying stochastic factors that apply to population p only, and ε
(p)
x,t is the error term. As

in the ACF model, it is assumed that ε
(p)
x,t ∼ N(0, σ2

ε ) and that the error terms for different
populations, ages and years are independent.

The common stochastic factors κc1,t and κc2,t are modeled jointly by a bivariate random
walk with drifts:{

κc1,t = µc1 + κc1,t−1 + ηc1,t
κc2,t = µc2 + κc2,t−1 + ηc2,t

,

where µc1 and µc2 are the drift terms and ~ηct = (ηc1,t, η
c
2,t)
′ i.i.d.∼ MVN(0, Qc).

Each pair of population-specific stochastic factors, κ
(p)
1,t and κ

(p)
2,t , are modeled by two

correlated first-order autoregressive processes:{
κ

(p)
1,t = µ

(p)
1 + φ

(p)
1 κ

(p)
1,t−1 + η

(p)
1,t

κ
(p)
2,t = µ

(p)
2 + φ

(p)
2 κ

(p)
2,t−1 + η

(p)
2,t

,

where µ
(p)
1 and µ

(p)
2 are constants, φ

(p)
1 and φ

(p)
2 are constants with absolute values that are

strictly less than 1, and ~η
(p)
t = (η

(p)
1,t , η

(p)
2,t )
′ i.i.d.∼ MVN(0, Q(p)). The use of mean-reverting

processes for κ
(p)
1,t and κ

(p)
2,t ensures that the resulting mortality forecasts are coherent.

The M-CBD model can also be written easily in a state-space form, with the vector of
observations being

~yt = ((~y
(1)
t )′, . . . , (~y

(np)
t )′)′ =

(
logit(q

(1)
xa,t), . . . , logit(q

(1)
xb,t

), . . . , logit(q
(np)
xa,t ), . . . , logit(q

(np)
xb,t

)
)′
,
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where ~y
(p)
t = (logit(q

(p)
xa,t), . . . , logit(q

(p)
xb,t

))′, and the vector of hidden states being

~αt = ((~αct)
′, (~α

(1)
t )′, . . . , (~α

(np)
t )′)′ =

(
κc1,t, κ

c
2,t, κ

(1)
1,t , κ

(1)
2,t , . . . , κ

(np)
1,t , κ

(np)
2,t

)′
,

where ~αct = (κc1,t, κ
c
2,t)
′ and ~α

(p)
t = (κ

(p)
1,t , κ

(p)
2,t )
′ for p = 1, . . . , np.

The rest of the observation equation is specified as

~A = (0, . . . , 0)′ ,

~εt =
(
ε

(1)
xa,t, . . . , ε

(1)
xb,t
, . . . , ε

(np)
xa,t , . . . , ε

(np)
xb,t

)′
,

and

Bc =


(~bcxa)

′

(~bcxa+1)′

...

(~bcxb)
′

 = B(p) =


(~b

(p)
xa )′

(~b
(p)
xa+1)′

...

(~b
(p)
xb )′

 =


1 xa − x̄
1 xa + 1− x̄
...

...
1 xb − x̄

 , for p = 1, 2, . . . , np,

where ~bcx = ~b
(p)
x = (1, x − x̄)′, for p = 1, . . . , np and x = xa, . . . , xb. Note that ~εt

i.i.d.∼
MVN(0, R), where R = σ2

ε · Inp(xb−xa+1).

Finally, the rest of the transition equation is specified as

~U =
(
µc1, µ

c
2, µ

(1)
1 , µ

(1)
2 . . . , µ

(np)
1 , µ

(np)
2

)′
,

D =



1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0

0 0 φ
(1)
1 0 · · · 0 0

0 0 0 φ
(1)
2 · · · 0 0

...
...

. . .
...

...

0 0 0 0 · · · φ
(np)
1 0

0 0 0 0 · · · 0 φ
(np)
2


and

~ηt = ((~ηct )
′, (~η

(1)
t )′, . . . , (~η

(np)
t )′)′ = (ηc1,t, η

c
2,t, . . . , η

(np)
1,t , η

(np)
2,t )′.
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Note that ~ηt
i.i.d.∼ MVN(0, Q), where Q is specified by equation (4.4) with Qc being the

covariance matrix of ~ηct and Q(p) being the covariance matrix of ~η
(p)
t .

4.3 The Generalized State-Space Hedging Method

4.3.1 The Set-up

Let us first define several notations. Denote by Ft the information concerning the evolution
of mortality up to and including time t. We use m

(p)
x,s|t and q

(p)
x,s|t to represent m

(p)
x,s and q

(p)
x,s

given Ft, respectively. If s > t, then m
(p)
x,s|t and q

(p)
x,s|t are random variables conditioned on

the realized mortality up to and including time t. Otherwise, m
(p)
x,s|t and q

(p)
x,s|t are known

realizations. Similarly, we use ~αs|t, ~α
c
s|t, ~α

(p)
s|t and y

(p)
x,s|t to denote ~αs, ~α

c
s, ~α

(p)
s and y

(p)
x,s given

Ft, respectively.

Suppose that it is now time t0 (i.e., the end of year t0). The hedger wishes to hedge
the longevity risk associated with a portfolio of T -year temporary life annuity immediate
contracts that are just sold to individuals aged x0. We use PL to denote the hedger’s own
population of individuals, and let L(t) be the time-t value of the hedger’s future liabilities
(per annuitant), given the information about the evolution of mortality up to and including
time t. Ignoring small sample risk, the value of L(t) can be expressed as

L(t) =
∑T−(t−t0)

u=1 e−ru
(∏t+u

s=t+1(1− q(PL)
x0+s−t0−1,s|t)

)
=

∑T−(t−t0)
u=1 e−ru

(∏t+u
s=t+1 g

(PL)
x0+s−t0−1,s|t

)
,

for t = t0, t0 + 1, . . . , t0 + T − 1, where g
(p)
x,s|t is a function that links (1 − q

(p)
x,s|t) to the

observation being modeled. For the M-CBD model, g
(p)
x,s|t is simply

g
(p)
x,s|t = 1− q(p)

x,s|t =
1

1 + exp(y
(p)
x,s|t)

.

For the ACF model, which is built for the central death rates, an assumption is needed to
connect m

(p)
x,s|t and q

(p)
x,s|t. We assume that

m
(p)
x,s|t = − ln(1− q(p)

x,s|t),
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which holds exact if the force of mortality is constant between consecutive integer ages.
Under this assumption, g

(p)
x,s|t for the ACF model is given by

g
(p)
x,s|t = 1− q(p)

x,s|t = exp(−m(p)
x,s|t) = exp(− exp(y

(p)
x,s|t)).

When t = t0, L(t) represents the total value of the future liabilities payable to all
annuitants. For t0 < t < t0 + T , L(t) represents the value of the future liabilities payable
to the annuitants who survive to time t. At time t0 + T , the liabilities run off completely
and hence L(t0 + T ) = 0.

The hedging instruments used are q-forwards. A q-forward is a zero-coupon swap with
its floating leg proportional to the realized death probability at a certain reference age
during the year immediately before the maturity date and its fixed leg proportional to the
corresponding pre-determined forward mortality rate. The hedger should participate in
the q-forwards as the fixed-rate receiver, so that if mortality turns out to be lower than
expected, then it will receive a net payment to offset the correspondingly larger annuity
liability. In general, the reference populations to which the q-forwards available in the
market are linked are not identical to the hedger’s own population of individuals. The
hedger is therefore subject to population basis risk, which is addressed in later parts of
this chapter.

We consider a hedge portfolio of m ≥ 1 q-forwards, which are linked to the same
reference population PH . Let us focus on the jth q-forward contract, which has a reference
age xj and time-to-maturity Tj. If the q-forward is launched at time t, then its floating

leg would be proportional to the realization of q
(PH)
xj ,t+Tj |t, whereas its fixed leg would be

proportional to the forward mortality rate E(q
(PH)
xj ,t+Tj |t) that is fixed at time t.7 It follows

that the (random) time-t value of its payoff to the fixed-rate receiver is

H
(PH)
j (t) = e−rTj

(
E(q

(PH)
xj ,t+Tj |t)− q

(PH)
xj ,t+Tj |t

)
= e−rTj

(
E(q

(PH)
xj ,t+Tj |t)− 1 + g

(PH)
xj ,t+Tj |t

)
per $1 notional.

We use N
(PH)
j (t) to denote the notional amount of the jth q-forward acquired at time

t. Our hedging goal is to minimize the variance of the time-t value of the unexpected

7In practice, the forward mortality rate should be lower than E(q
(PH)
xj ,t+Tj |t), so that the counterparty

accepting longevity risk would be rewarded a positive expected risk premium. However, because the cost
of hedging is not a focus of this chapter, we assume a zero risk premium for simplicity.

128



future cash flows. If the hedge is static, that is, the hedge portfolio is formed at t = t0 and
remains unadjusted thereafter, then the hedging goal can be formulated mathematically
as

min
N

(PH )
1 (t0),...,N

(PH )
m (t0)

(
Var

(
L(t0)−

m∑
j=1

N
(PH)
j (t0)H

(PH)
j (t0)

))
. (4.5)

We also consider dynamic hedging. In formulating a dynamic hedge, we assume that the
hedger adjusts its hedge portfolio at the end of each year. We also assume that when the
hedge is adjusted, the existing q-forwards are unwinded and freshly launched q-forwards
(also with reference ages x1, . . . xm and times-to-maturity T1, . . . Tm) are introduced to the
hedge portfolio. Under these assumptions, the time-t hedging goal for the dynamic hedge
can be expressed as

min
N

(PH )
1 (t),...,N

(PH )
m (t)

(
Var

(
L(t)−

m∑
j=1

N
(PH)
j (t)H

(PH)
j (t)

))
, (4.6)

for t = t0, t0 + 1, . . . , t0 + T − 1.

4.3.2 Decomposition of Variance

Before we derive the optimal notional amounts, we demonstrate in this sub-section that
the variances in equations (4.5) and (4.6) can be decomposed into different components,
each of which carries a specific physical meaning. The decomposition allows us to better
understand the composition of the longevity risk that the hedger is subject to.

Given the state-space representation of the underlying multi-population mortality model,
both L(t) andH

(PH)
j (t) are functions of {~αs, s > t|Ft}. Since L(t) represents the value of the

liabilities after time t until they run off completely at time t0 + T , it contains the common
states and the PL-specific states at times t+1, . . . , t0 +T ; accordingly, L(t) is a function of

~αct+1|t, ~α
c
t+2|t, . . . , ~α

c
t0+T |t and ~α

(PL)
t+1|t, ~α

(PL)
t+2|t, . . . , ~α

(PL)
t0+T |t. On the other hand, because H

(PH)
j (t)

represents the value of the payoff from the jth q-forward at time t+ Tj, H
(PH)
j (t) contains

the common state and the PH-specific state at time t + Tj; hence, H
(PH)
j (t) is a function

of ~αct+Tj |t and ~α
(PH)
t+Tj |t.

To facilitate analytical calculations, we approximate L(t) and H
(PH)
j (t) using first order

Taylor expansions about the relevant states vectors. For L(t), the first-order approximation
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l(t) is given by

L(t) ≈ l(t)

= L̂(t) +
∑t0+T

s=t+1

(
∂L(t)
∂~αc

s|t

)′
(~αcs|t − ~̂αcs|t) +

∑t0+T
s=t+1

(
∂L(t)

∂~α
(PL)

s|t

)′
(~α

(PL)
s|t − ~̂α

(PL)
s|t ),

where ~̂αcs|t and ~̂α
(PL)
s|t are the expected values of ~αcs and ~α

(PL)
s given Ft, respectively, and

L̂(t) is the value of L(t) evaluated at ~̂αct+1|t, . . . ,
~̂αct0+T |t and ~̂α

(PL)
t+1|t, . . . ,

~̂α
(PL)
t0+T |t. For H

(PH)
j (t),

j = 1, . . . ,m, the first order approximation h
(PH)
j (t) is given by

H
(PH)
j (t) ≈ h

(PH)
j (t)

= Ĥ
(PH)
j (t) +

(
∂H

(PH )
j (t)

∂~αc
t+Tj |t

)′
(~αct+Tj |t − ~̂α

c
t+Tj |t) +

(
∂H

(PH )
j (t)

∂~α
(PH )

t+Tj |t

)′
(~α

(PH)
t+Tj |t − ~̂α

(PH)
t+Tj |t),

where ~̂αct+Tj |t and ~̂α
(PH)
t+Tj |t are the expected values of ~αct+Tj |t and ~α

(PH)
t+Tj |t given Ft, respectively,

and Ĥ
(PH)
j (t) is the value of H

(PH)
j (t) evaluated at ~̂αct+Tj |t and ~̂α

(PH)
t+Tj |t.

As with L(t) and H
(PH)
j (t), l(t) is a function of ~αct+1|t, . . . , ~α

c
t0+T |t and ~α

(PL)
t+1|t, . . . , ~α

(PL)
t0+T |t,

and h
(PH)
j (t) is a function of ~αct+Tj |t and ~α

(PH)
t+Tj |t. For brevity, these arguments are suppressed

in the notations. Further, the partial derivatives ∂L(t)/∂~αcs|t, ∂L(t)/∂~α
(PL)
s|t , ∂H

(PH)
j (t)/∂~αcs|t

and ∂H
(PH)
j (t)/∂~α

(PH)
s|t are evaluated at ~αs|t = ~̂αs|t = (~̂αcs|t,

~̂α
(1)
s|t , . . . ,

~̂α
(np)

s|t )′, unless otherwise
specified.

We let ~N
(PH)
t = (N

(PH)
1 (t), . . . , N

(PH)
m (t))′ be the vector of notional amounts. Without

loss of generality, we assume that T1 < T2 < . . . < Tm. The variance to be minimized can
be expressed as

Var

(
L(t)−

m∑
j=1

N
(PH)
j (t)H

(PH)
j (t)

)

≈ Var

(
l(t)−

m∑
j=1

N
(PH)
j (t)h

(PH)
j (t)

)

= Var

(
t0+T∑
s=t+1

(
∂L(t)
∂~αc

s|t

)′
(~αcs|t − ~̂αcs|t)−

m∑
j=1

N
(PH)
j (t)

(
∂H

(PH )
j (t)

∂~αc
t+Tj |t

)′
(~αct+Tj |t − ~̂α

c
t+Tj |t)

+
t0+T∑
s=t+1

(
∂L(t)

∂~α
(PL)

s|t

)′
(~α

(PL)
s|t − ~̂α

(PL)
s|t )−

m∑
j=1

N
(PH)
j (t)

(
∂H

(PH )
j (t)

∂~α
(PH )

t+Tj |t

)′
(~α

(PH)
t+Tj |t − ~̂α

(PH)
t+Tj |t)

)
.
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Noting that the common states, the states specific to the hedger’s population and the
states specific to the q-forward’s reference population are mutually independent, we can
express the variance above as the sum of five components:

Var

(
l(t)−

m∑
j=1

N
(PH)
j (t)h

(PH)
j (t)

)
= V1(t) + V2(t) + V3(t) + V4(t) + V5(t), (4.7)

where

V1(t) = Var

(
t0+T∑
s=t+1

(
∂L(t)

∂~αcs|t

)′
(~αcs|t − ~̂αcs|t)

)
=

t0+T∑
s,u=t+1

(
∂L(t)

∂~αcs|t

)′
Cov(~αcs|t, ~α

c
u|t)

(
∂L(t)

∂~αcu|t

)

represents the portion of the variance of L(t) (i.e., the time-t value of the hedger’s future
liabilities) that is contributed from the common states,

V2(t) = Var

(
m∑
j=1

(
−N (PH)

j (t)
∂H

(PH )
j (t)

∂~αc
t+Tj |t

)′
(~αct+Tj |t − ~̂α

c
t+Tj |t)

)
=

∑m
i=1

∑m
j=1

(
−N (PH)

i (t)
∂H

(PH )
i (t)

∂~αc
t+Ti|t

)′
Cov(~αct+Ti|t, ~α

c
t+Tj |t)

(
−N (PH)

j (t)
∂H

(PH )
j (t)

∂~αc
t+Tj |t

)
represents the portion of the variance of

∑m
j=1N

(PH)
j (t)H

(PH)
j (t) (i.e., the time-t value of

the hedge portfolio) that is contributed from the common states,

V3(t) = 2Cov

(
t0+T∑
s=t+1

(
∂L(t)
∂~αc

s|t

)′
(~αcs|t − ~̂αcs|t),

m∑
j=1

(
−N (PH)

j (t)
∂H

(PH )
j (t)

∂~αc
t+Tj |t

)′
(~αct+Tj |t − ~̂α

c
t+Tj |t)

)
= 2

t0+T∑
s=t+1

m∑
j=1

(
∂L(t)
∂~αc

s|t

)′
Cov(~αcs|t, ~α

c
t+Tj |t)

(
−N (PH)

j (t)
∂H

(PH )
j (t)

∂~αc
t+Tj |t

)
represents (the negative of) the covariance between

∑m
j=1N

(PH)
j (t)H

(PH)
j (t) and L(t),8

V4(t) = Var

(
t0+T∑
s=t+1

(
∂L(t)

∂~α
(PL)
s|t

)′
(~α

(PL)
s|t − ~̂α

(PL)
s|t )

)
=

t0+T∑
s,u=t+1

(
∂L(t)

∂~α
(PL)
s|t

)′
Cov(~α

(PL)
s|t , ~α

(PL)
u|t )

(
∂L(t)

∂~α
(PL)
u|t

)

represents the portion of the variance of L(t) that is contributed from the states that are

8Because the states specific to PH and PL are independent, the covariance between∑m
j=1N

(PH)
j (t)H

(PH)
j (t) and L(t) is contributed entirely by the common states.
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specific to the hedger’s population,

V5(t) = Var

(
−

m∑
j=1

N
(PH)
j (t)

(
∂H

(PH )
j (t)

∂~α
(PH )

t+Tj |t

)′
(~α

(PH)
t+Tj |t − ~̂α

(PH)
t+Tj |t)

)

=
m∑
i=1

m∑
j=1

(
−N (PH)

i (t)
∂H

(PH )
i (t)

∂~α
(PH )

t+Ti|t

)′
Cov(~α

(PH)
t+Ti|t, ~α

(PH)
t+Tj |t)

(
−N (PH)

j (t)
∂H

(PH )
j (t)

∂~α
(PH )

t+Tj |t

)

represents the portion of the variance of
∑m

j=1N
(PH)
j (t)H

(PH)
j (t) that is contributed from

the states that are specific to the q-forwards’ reference population. It is noteworthy that
V1(t), V2(t), V4(t) and V5(t) are all non-negative, because they can be regarded as the vari-
ances of certain random variables. However, V3(t) is negative (equivalently speaking, the

covariance between
∑m

j=1 N
(PH)
j (t)H

(PH)
j (t) and L(t) is positive), because the changes in

the values of the q-forward portfolio and the liability offset each other.

We now drill deeper into the physical meanings behind the five variance components.
First, let us focus on V1(t), V2(t) and V3(t), which are related to the common states but
are independent of the population-specific states. The sum of V1(t), V2(t) and V3(t) can

thus be interpreted as the portion of the variance of L(t)−
∑m

j=1N
(PH)
j (t)H

(PH)
j (t) (i.e., the

time-t value of the hedged position) contributed from the common states. This portion of
variance exists even if population basis risk is (hypothetically) absent.

In more detail, V1(t) is a constant that does not depend on the q-forwards’ notional
amounts, V2(t) is positively related to the q-forwards’ notional amounts in a quadratic
manner, and V3(t) is negatively related to the q-forwards’ notional amounts in a linear
manner. The pattern of V2(t) reflects the fact that the hedger is exposed to more common
trend risk (i.e. the risk associated with the common states) as it acquires more notional
amounts of q-forwards, while the pattern of V3(t) reflects the reduction in risk due to the
correlation between the value of the liabilities being hedged and the value of the hedging
instruments. If the liabilities are left unhedged, then both V2(t) and V3(t) would be zero.
As the hedger acquires q-forwards, V3(t) decreases (becomes more negative) but V2(t)
increases. If the decrease in V3(t) outweighs the increase in V2(t), then the portion of the
variance that is contributed from the common states would be reduced (to a level that is
smaller than V1(t)).

Next, we turn to V4(t) and V5(t). Because these two components are related to the
population-specific states but are independent of the common states, they collectively
measure the population basis risk that the hedger is subject to. More specifically, as V4(t)

is related only to ~α
(PL)
t+1|t, . . . , ~α

(PL)
t0+T |t and is free of the notional amounts, it represents the

portion of the population basis risk that exists no matter what the notional amounts of the
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Table 4.1: A summary of the information about the variance components V1(t), . . . , V5(t). The

definitions of Ψ
(PH)
t , ~G

(PH)
t and Γ

(PH)
t are provided in equations (4.8), (4.10) and (4.9), respec-

tively.

Component Relation with ~N
(PH)
t Associated hidden states Matrix notation

V1(t) Constant ~αct Not applicable

V2(t) Positive and quadratic ~αct ( ~N
(PH)
t )′Ψ

(PH)
t

~N
(PH)
t

V3(t) Negative and linear ~αct −2(~G
(PH)
t )′ ~N

(PH)
t

V4(t) Constant ~α
(PL)
t Not applicable

V5(t) Positive and quadratic ~α
(PH)
t ( ~N

(PH)
t )′Γ

(PH)
t

~N
(PH)
t

q-forwards are. On the other hand, V5(t) increases with the q-forwards’ notional amounts
in a quadratic manner. This relationship is a result of the fact that the hedger is subject
to more population basis risk as it acquires larger notional amounts of q-forwards that are
linked to a population which is different from its own population of individuals.

Overall, as the hedger acquires q-forwards, V3(t) reduces but V2(t) and V5(t) increase.
If the reduction in V3(t) outweighs the increase in V2(t) and V5(t), then the total variance
of the hedged position reduces. Furthermore, because the effects of V3(t) and the sum of
V4(t) and V5(t) are offsetting, there exists an optimal vector of notional amounts which
would minimize the variance of the hedged position. In Table 4.1 we summarize how each
variance component is related to the q-forwards’ notional amounts and the hidden states.
These relationships form the basis for the derivation of the optimal notional amounts in
Section 4.3.3 and the further analysis of population basis risk in Section 4.4.

4.3.3 Deriving the Hedging Strategies

We now derive the optimal notional amounts that minimize Var(l(t)−
∑m

j=1 N
(PH)
j (t)h

(PH)
j (t)),

the approximated variance of the values of the hedged position. To facilitate the deriva-
tion, we first rewrite V2(t), V3(t) and V5(t) in matrix forms. For V2(t) and V5(t), which are
quadratically related to the notional amounts, we have

V2(t) = ( ~N
(PH)
t )′Ψ

(PH)
t

~N
(PH)
t ,

V5(t) = ( ~N
(PH)
t )′Γ

(PH)
t

~N
(PH)
t ,
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where Ψ
(PH)
t and Γ

(PH)
t are m-by-m square matrices, with the (i, j)th element being

Ψ
(PH)
i,j|t =

(
∂H

(PH)
i (t)

∂~αct+Ti|t

)′
Cov(~αct+Ti|t, ~α

c
t+Tj |t)

∂H
(PH)
j (t)

∂~αct+Tj |t
(4.8)

and

Γ
(PH)
i,j|t =

(
∂H

(PH)
i (t)

∂~α
(PH)
t+Ti|t

)′
Cov(~α

(PH)
t+Ti|t, ~α

(PH)
t+Tj |t)

∂H
(PH)
j (t)

∂~α
(PH)
t+Tj |t

, (4.9)

respectively. For V3(t), which is linearly related to the notional amounts, we have

V3(t) = −2(~G
(PH)
t )′ ~N

(PH)
t ,

where ~G
(PH)
t is an m-by-1 vector with the jth element G

(PH)
j (t) being

G
(PH)
j (t) =

t0+T∑
s=t+1

(
∂H

(PH)
j (t)

∂~αct+Tj |t

)′
Cov(~αct+Tj |t, ~α

c
s|t)

∂L(t)

∂~αcs|t
. (4.10)

We can then express the variance to be minimized as

Var

(
l(t)−

m∑
j=1

N
(PH)
j (t)h

(PH)
j (t)

)
= ( ~N

(PH)
t )′(Ψ

(PH)
t +Γ

(PH)
t ) ~N

(PH)
t −2(~G

(PH)
t )′ ~N

(PH)
t +C(t),

(4.11)

where C(t) = V1(t) + V4(t) is a constant that is free of the notional amounts.

To derive the optimal notional amounts, we take partial derivative of Var(l(t)−
∑m

j=1N
(PH)
j (t)h

(PH)
j (t))

with respect to ~N
(PH)
t , which gives

∂Var(l(t)−
∑m

j=1N
(PH)
j (t)h

(PH)
j (t))

∂ ~N
(PH)
t

= 2(Ψ
(PH)
t + Γ

(PH)
t ) ~N

(PH)
t − 2~G

(PH)
t .

The optimal vector of notional amounts
~̂
N

(PH)
t that minimizes Var(l(t)−

∑m
j=1 N

(PH)
j (t)h

(PH)
j (t))
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can be obtained readily by setting the partial derivative to zero:

(
Ψ

(PH)
t + Γ

(PH)
t

)
~̂
N

(PH)
t = ~G

(PH)
t

~̂
N

(PH)
t =

(
Ψ

(PH)
t + Γ

(PH)
t

)−1
~G

(PH)
t .

(4.12)

The second step holds because, as discussed in Chapter 3, Ψ
(PH)
t and Γ

(PH)
t are positive-

definite matrices. Finally, the minimized value of Var(l(t)−
∑m

j=1 N
(PH)
j (t)h

(PH)
j (t)) can be

obtained by plugging equation (4.12) into equation (4.11), which gives

min
N

(PH )
1 (t),...,N

(PH )
m (t)

(
Var(l(t)−

m∑
j=1

N
(PH)
j (t)h

(PH)
j (t))

)
= C(t)−(~G

(PH)
t )′

(
Ψ

(PH)
t + Γ

(PH)
t

)−1
~G

(PH)
t .

(4.13)

Equations (4.12) and (4.13) involve Cov(~αcs|t, ~α
c
u|t), Cov(~α

(PL)
s|t , ~α

(PL)
u|t ) and Cov(~α

(PH)
s|t , ~α

(PH)
u|t )

for some s, u > t. To compute these quantities, we first calculate the covariance matrix of
~αs|t and ~αu|t for s, u > t, given the information up to and including time t, as

Ξs,u|t := Cov(~αs|t, ~αu|t) =



D|s−u|(Q+DQD′ + · · ·Du−(t+1)Q(Du−(t+1))′) , s > u

(Q+DQD′ + · · ·Ds−(t+1)Q(Ds−(t+1))′)(D|s−u|)′ , s < u

Q+DQD′ + · · ·Du−(t+1)Q(Du−(t+1))′ , s = u

.

Then Ξs,u|t is decomposed into (np + 1) block matrices as follows:

Ξs,u|t =



Cov(~αcs|t, ~α
c
u|t) 0 0 · · · 0

0 Cov(~α
(1)
s|t , ~α

(1)
u|t) 0 · · · 0

0 0 Cov(~α
(2)
s|t , ~α

(2)
u|t) · · · 0

...
...

...
. . .

...

0 0 0 · · · Cov(~α
(np)

s|t , ~α
(np)

u|t )

 .

Finally, Ξc
s,u|t = Cov(~αcs|t, ~α

c
u|t), Ξ

(PL)
s,u|t = Cov(~α

(PL)
s|t , ~α

(PL)
u|t ) and Ξ

(PH)
s,u|t = Cov(~α

(PH)
s|t , ~α

(PH)
u|t )
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can be obtained respectively from the corresponding block matrices in Ξs,u|t.

Equations (4.12) and (4.13) also encompass the partial derivatives of L(t) and H
(PH)
j (t)

with respect to the common states and the population-specific states. The partial deriva-
tives of L(t) with respect to ~αcs|t and ~α

(PL)
s|t , evaluated at ~αcs|t = ~̂αcs|t and ~α

(PL)
s|t = ~̂α

(PL)
s|t , can

be computed as

∂L(t)
∂~αc

s|t
=

T−(t−t0)∑
u=s−t

e−ru

∂g
(PL)

x0+s−t0−1,s|t

∂y
(PL)

x0+s−t0−1,s|t

∣∣∣~αs|t=~̂αs|t
∂y

(PL)

x0+s−t0−1,s|t
∂~αc

s|t

∣∣∣~αs|t=~̂αs|t
 t+u∏

v=t+1
v 6=s

ĝ
(PL)
x0+v−t0−1,v|t


=

T−(t−t0)∑
u=s−t

e−ru~bcx0+s−t0−1

∂g
(PL)

x0+s−t0−1,s|t

∂y
(PL)

x0+s−t0−1,s|t

∣∣∣~αs|t=~̂αs|t
 t+u∏

v=t+1
v 6=s

ĝ
(PL)
x0+v−t0−1,v|t


(4.14)

and

∂L(t)

∂~α
(PL)

s|t
=

T−(t−t0)∑
u=s−t

e−ru

∂g
(PL)

x0+s−t0−1,s|t

∂y
(PL)

x0+s−t0−1,s|t

∣∣∣~αs|t=~̂αs|t
∂y

(PL)

x0+s−t0−1,s|t

∂~α
(PL)

s|t

∣∣∣~αs|t=~̂αs|t
 t+u∏

v=t+1
v 6=s

ĝ
(PL)
x0+v−t0−1,v|t


=

T−(t−t0)∑
u=s−t

e−ru~b
(PL)
x0+s−t0−1

∂g
(PL)

x0+s−t0−1,s|t

∂y
(PL)

x0+s−t0−1,s|t

∣∣∣~αs|t=~̂αs|t
 t+u∏

v=t+1
v 6=s

ĝ
(PL)
x0+v−t0−1,v|t

 ,

(4.15)

respectively, where ~bcx and ~b
(PL)
x are defined in equation (4.3), and ĝ

(PL)
x,s|t is the value of g

(PL)
x,s|t

evaluated at ~αcs|t = ~̂αcs|t and ~α
(PL)
s|t = ~̂α

(PL)
s|t . Similarly, the partial derivatives of H

(PH)
j (t)

with respect to ~αct+Tj |t and ~α
(PH)
t+Tj |t, evaluated at ~αct+Tj |t = ~̂αct+Tj |t and ~α

(PH)
t+Tj |t = ~̂α

(PH)
t+Tj |t, can

be calculated as

∂H
(PH )
j (t)

∂~αc
t+Tj |t

= e−rTj

∂g
(PH )

xj,t+Tj |t

∂y
(PH )

xj,t+Tj |t
∣∣∣~αs|t=~̂αs|t


∂y

(PH )

xj,t+Tj |t

∂~αc
t+Tj |t

∣∣∣~αs|t=~̂αs|t


= e−rTj~bcxj

∂g
(PH )

xj,t+Tj |t

∂y
(PH )

xj,t+Tj |t
∣∣∣~αs|t=~̂αs|t


(4.16)
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and

∂H
(PH )
j (t)

∂~α
(PH )

t+Tj |t
= e−rTj

∂g
(PH )

xj,t+Tj |t

∂y
(PH )

xj,t+Tj |t
∣∣∣~αs|t=~̂αs|t


∂y

(PH )

xj,t+Tj |t

∂~α
(PH )

t+Tj |t
∣∣∣~αs|t=~̂αs|t


= e−rTj~b

(PH)
xj

∂g
(PH )

xj,t+Tj |t

∂y
(PH )

xj,t+Tj |t
∣∣∣~αs|t=~̂αs|t

 ,

(4.17)

respectively, where ~bcx and ~b
(PH)
x are defined in equation (4.3).

The calculation of ∂g
(p)
x,s|t/∂y

(p)
x,s|t in equations (4.14), (4.15), (4.16) and (4.17) depends

on the specification of the assumed model. For the ACF model (and other models that are
built for central death rates), we have

∂g
(p)
x,s|t

∂y
(p)
x,s|t
∣∣∣~αs|t=~̂αs|t = − exp(ŷ

(p)
x,s|t) exp(− exp(ŷ

(p)
x,s|t)) = −m̂(p)

x,s|t exp(−m̂(p)
x,s|t), (4.18)

where m̂
(p)
x,s|t represents the value ofm

(p)
x,s|t evaluated at ~αcs|t = ~̂αcs|t and ~α

(p)
s|t = ~̂α

(p)
s|t . For the M-

CBD model (and other models that are built for single-year conditional death probabilities),
we have

∂g
(p)
x,s|t

∂y
(p)
x,s|t
∣∣∣~αs|t=~̂αs|t = −

exp(ŷ
(p)
x,s|t)

(1 + exp(ŷ
(p)
x,s|t))

2
= −q̂(p)

x,s|t

(
1− q̂(p)

x,s|t

)
, (4.19)

where q̂
(p)
x,s|t represents the value of q

(p)
x,s|t evaluated at ~αcs|t = ~̂αcs|t and ~α

(p)
s|t = ~̂α

(p)
s|t .

4.3.4 Evaluation of Hedge Effectiveness

We evaluate hedge effectiveness by measuring the proportion of variance reduced. In the
absence of any longevity hedge, the time-t0 (random) value of the annuity liabilities is L(t0).
If a static hedge with m q-forwards is established at t = t0, then the hedger would receive
offsetting cash flows from the q-forwards at t = t0 +T1, . . . , t0 +Tm, which collectively have
a time-t0 (random) value of

∑m
j=1N

(PH)
j (t0)H

(PH)
j (t0). If the hedge is effective, then the

offsetting cash flows would result in a hedged position that has a small variance. Using this

137



reasoning, we assess the hedge effectiveness of a static hedge with the following metric:

HE = 1−
Var

(
L(t0)−

∑m
j=1N

(PH)
j (t0)H

(PH)
j (t0)

)
Var(L(t0))

.

The value of HE is close to 1 if the longevity hedge is effective, and close to 0 if otherwise.

Using the approximation technique and the variance decomposition discussed in Section
4.3.2, we can approximate HE as

ĤE = 1−
Var

(
l(t0)−

∑m
j=1N

(PH)
j (t0)h

(PH)
j (t0)

)
Var(l(t0))

= 1−V1(t0) + V2(t0) + V3(t0) + V4(t0) + V5(t0)

V1(t0) + V4(t0)
.

As shown in Section 4.3.2, all components (i.e., the covariance terms and the partial deriva-
tives) in V1(t0), V2(t0), V3(t0), V4(t0) and V5(t0) can be analytically computed. Hence, with

minimal computational effort, we can calculate ĤE for different combinations of notional
amounts and derive an empirical relationship between ĤE and N

(PH)
1 , . . . , N

(PH)
m . This

feature may be considered as an advantage over some of the existing longevity hedging
methods (Cairns, 2011, 2013; Cairns et al., 2014; Coughlan et al., 2011; Li and Hardy,
2011), in which a simulation is required to calculate the hedge effectiveness for each com-
bination of notional amounts.

For a dynamic hedge, the cash flows from the hedge portfolio are more complicated
because the hedger does not hold the hedging instruments to maturity. In constructing
a dynamic hedge, we assume that at time t0 the hedger acquires m freshly launched q-
forwards which have reference ages x1, . . . , xm and times-to-maturity T1, . . . , Tm. Then, at
each time point t = t0 + 1, . . . , t0 + T − 1, the hedger closes out all of the q-forwards in
the existing hedge portfolio, and acquires m freshly launched q-forwards which also have
reference ages x1, . . . , xm and times-to-maturity T1, . . . , Tm. Finally, at t = T , all of the
q-forwards in the hedge portfolio are closed out. We let PCF (t) be time-t0 value of the
net cash flow that is incurred when the hedger adjusts the hedge portfolio at time t. Given
the assumptions we made, we can express PCF (t) as follows:

PCF (t) = S
(PH)
x0,t0,t−1

m∑
j=1

N
(PH)
j (t−1)e−r(t−t0−1+Tj)(E(q

(PH)
xj ,t−1+Tj |t−1)−E(q

(PH)
xj ,t−1+Tj |t)) (4.20)
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for t = t0 + 1, . . . , t0 + T , where

S
(PH)
x0,t0,t−1 =

{
1, t = t0 + 1∏t−1

s=t0+1(1− q(PH)
x0+s−t0−1,s|t−1), t = t0 + 2, . . . , t0 + T

represents the probability that an individual from the hedger’s population, who is aged x0

at time t0, survives to time t − 1. The effectiveness for the dynamic hedge can then be
assessed by the following formula:

HE = 1−
Var

(
L(t0)−

∑t0+T
t=t0+1 PCF (t)|Ft0

)
Var(L(t0)|Ft0)

.

4.4 Analyzing Population Basis Risk

The goal of this section is to investigate how the variance decomposition presented in
Section 4.3.2 can help us quantify population basis risk. We begin this section by studying
the hedger’s risk exposure in a situation when population basis risk is assumed to be
absent. Then, we examine the effect of population basis risk by observing how the hedger’s
risk exposure would change when the assumption of no population basis risk is relaxed.
Finally, we develop a quantity called ‘standardized basis risk profile,’ which allows hedgers
to compare the levels of population basis risk arising from different reference populations.
Throughout this section, diagrams that aid us to understand population basis risk are
presented.

4.4.1 The Hedger’s Risk Exposure when Population Basis Risk
is Absent

Let us first consider a simplified scenario in which population basis risk is assumed to
be absent. Under our set-up, population basis risk arises solely from the population-
specific states, so the simplified scenario can be interpreted to mean the situation when
the population-specific states are not stochastic. To construct the simplified scenario,
we set Q(p) = 0 for p = 1, 2, . . . , np, which implies the population-specific states would

remain constant; that is, ~α
(p)
s|t0 ≡ ~α

(p)
t0|t0 , for p = 1, . . . , np and s ≥ t0. Consequently,

Cov(~α
(PH)
s|t , ~α

(PH)
u|t ) = 0 for all s, u > t, and hence Γ

(PH)
t , V4(t) and V5(t) would become

zero. In the simplified scenario, the total longevity risk that the hedger is exposed to is
V1(t) + V2(t) + V3(t).
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When population basis risk is hypothetically absent, the choice of the q-forwards’ refer-
ence population PH should not affect the optimal hedge effectiveness. In other words, the
minimized variance specified in equation (4.13) should not depend on PH . This fact can

be verified mathematically as follows. Let us rewrite the square matrix Ψ
(PH)
t in equation

(4.11) as a product of three square matrices,

Ψ
(PH)
t = Λ

(PH)
t Zc

tΛ
(PH)
t , (4.21)

where Λ
(PH)
t is an m-by-m diagonal matrix with the jth diagonal element λ

(PH)
j (t) being

λ
(PH)
j (t) = e−rTj

∂g
(PH)
xj ,t+Tj |t

∂y
(PH)
xj ,t+Tj |t

∣∣∣~αs|t=~̂αs|t , (4.22)

and Zc
t is another m-by-m symmetric matrix with the (i, j)th element being

Zc
i,j(t) = (~bcxi)

′Ξc
t+Ti,t+Tj |t

~bcxj . (4.23)

Similarly, we rewrite ~G
(PH)
t in equation (4.11) as a product of a square matrix and a vector,

~G
(PH)
t = Λ

(PH)
t

~Gc
t , (4.24)

where ~Gc
t = (Gc

1(t), . . . , Gc
m(t))′ is an m-by-1 vector with the jth element Gc

j(t) being

Gc
j(t) =

t0+T∑
s=t+1

(~bcxj)
′Ξc
t+Tj ,s|t

∂L(t)

∂~αs|t
.

The definition of ~bcx is provided in equation (4.3). Note that neither Zc
t nor ~Gc

t depends

on PH . Substituting Γ
(PH)
t = 0 and equations (4.21) and (4.24) into equation (4.13), we

obtain

min
N

(PH )
1 (t),...,N

(PH )
m (t)

(
Var(l(t)−

m∑
j=1

N
(PH)
j (t)h

(PH)
j (t))

)
= C(t)− (~Gc

t)
′(Zc

t )
−1 ~Gc

t ,

which is free of PH .

Nevertheless, even if population basis risk is absent, the optimal notional amounts do

140



depend on the q-forwards’ reference population. The dependence of
~̂
N

(PH)
t on PH can be

seen by substituting Γ
(PH)
t = 0 and equations (4.21) and (4.24) into equation (4.12), which

gives

~̂
N

(PH)
t = (Λ

(PH)
t )−1(Zc

t )
−1 ~Gc

t . (4.25)

The dependence of
~̂
N

(PH)
t on PH lies in the diagonal matrix Λ

(PH)
t , which, according to

equations (4.18) and (4.19), contains either m̂
(PH)
x,s|t or q̂

(PH)
x,s|t . This diagonal matrix is re-

lated to PH , because different reference populations may have different expected levels of
mortality even after controlling for age and time.

To facilitate comparison, we define a quantity called ‘standardized notional amount,’
which takes the expected level of mortality into account. Let

~N (PH)
t = (N (PH)

1 (t), . . . ,N (PH)
m (t))′ = Λ

(PH)
t

~N
(PH)
t

be the vector of standardized notional amounts. It follows from equation (4.25) that

the optimal standardized notional amounts
~̂N (PH)
t = Λ

(PH)
t

~̂
N

(PH)
t = (Zc

t )
−1 ~Gc

t are free of

PH . Furthermore, when written in terms of ~N (PH)
t , both V2(t) = ( ~N (PH)

t )′Zc
t
~N (PH)
t and

V3(t) = −2(~Gc
t)
′ ~N (PH)

t have coefficients that do not depend on PH .

The arguments above can be demonstrated graphically. Let us consider the case when
m = 1 q-forward is used and three hypothetical reference populations, p1, p2 and p3, are
available. The left panel of Figure 4.1 shows, for each reference population, the theoretical
pattern of V1(t)+V2(t)+V3(t) (i.e., the variance of the hedged position in the absence of any

population basis risk) as a function of the (non-standardized) notional amount N
(PH)
1 (t).

The following four properties are noted: (i) the curves have a parabolic shape, because

V1(t) + V2(t) + V3(t) is a quadratic function of N
(PH)
1 (t); (ii) the curves have a common

vertical intercept of V1(t), because the variance must be V1(t) if the annuity liabilities
are left unhedged; (iii) the curves have the same minimum value, because the choice of
PH should have no effect on the optimal hedge effectiveness when population basis risk is
absent; (iv) the curves have different axes of symmetry, owing to the effect of Λ

(PH)
t . The

right panel of Figure 4.1 considers the standardized notional amount N (PH)
1 (t) instead. As

expected, properties (i) to (iii) still hold, but the three curves are overlapping. The overlap

is because when V1(t) + V2(t) + V3(t) is expressed as a function of N (PH)
1 (t), its coefficients

are no longer dependent on PH .
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Figure 4.1: The theoretical patterns of V1(t)+V2(t)+V3(t) as functions of the (non-standardized)
notional amount (the left panel) and the standardized notional amount (the right panel). It is
assumed that one q-forward is used and that the available reference populations are p1, p2 and
p3.

4.4.2 The Hedger’s Risk Exposure when Population Basis Risk
is Present

When population basis risk is present, Γ
(PH)
t becomes non-zero and the hedger’s total expo-

sure to longevity risk is V1(t)+V2(t)+V3(t)+V4(t)+V5(t). To have a deeper understanding

of the hedger’s risk exposure, we rewrite Γ
(PH)
t as a product of three square matrices,

Γ
(PH)
t = Λ

(PH)
t Z

(PH)
t Λ

(PH)
t ,

where Λ
(PH)
t is specified in equation (4.22) and Z

(PH)
t is an m-by-m symmetric matrix with

the (i, j)th element being

Z
(PH)
i,j (t) = (~b(PH)

xi
)′Ξ

(PH)
t+Ti,t+Tj |t

~b(PH)
xj

. (4.26)

The definition of ~b
(PH)
x is provided in equation (4.3). It immediately follows from equation

(4.12) that the optimal standardized notional amounts are given by

~̂N (PH)
t = Λ

(PH)
t

~̂
N

(PH)
t = (Zc

t + Z
(PH)
t )−1 ~Gc

t . (4.27)
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Also, it follows from equation (4.13) that the minimized variance can be expressed as

min
N

(PH )
1 (t),...,N

(PH )
m (t)

(
Var(l(t)−

m∑
j=1

N
(PH)
j (t)h

(PH)
j (t))

)
= C(t)− (~Gc

t)
′(Zc

t +Z
(PH)
t )−1 ~Gc

t .

(4.28)

When population basis risk is present, Z
(PH)
t ,

~̂N (PH)
t and the minimized variance are

all related to the q-forwards’ reference population PH . Moreover, because C(t), ~Gc
t and

Zc
t do not depend on PH , the dependence of

~̂N (PH)
t and the minimized variance on PH

lies exclusively in Z
(PH)
t . Therefore, Z

(PH)
t should contain all information concerning the

population basis risk that arises from the difference in the mortality improvements between
the reference population PH and the hedger’s own population of individuals.

Let us consider the case when m = 1 q-forward is used. In this case, Z
(PH)
t reduces to

a scalar and equals

Z
(PH)
1,1 (t) = (~b(PH)

x1
)′Ξ

(PH)
t+T1,t+T1|t

~b(PH)
x1

:= BRP (x1, T1, PH).

We call BRP (x1, T1, PH) the ‘standardized basis risk profile’ for a q-forward with reference
age x1, time-to-maturity T1 and reference population PH . This quantity is non-negative,
because it can be regarded as the variance of (~b

(PH)
x1 )′~α

(PH)
t+T1|t. It can be observed from

equation (4.28) that when m = 1, the minimized variance is an increasing function of
BRP (x1, T1, PH). A smaller value of BRP (x1, T1, PH) thus represents a more favourable
optimal hedging performance. Moreover, according to equation (4.27), when m = 1 the
optimal standardized notional amount is a decreasing function in BRP (x1, T1, PH). What
this means is that in the extreme case when BRP (x1, T1, PH) is very high, it is optimal
not to hedge with the q-forward with parameters x1, T1 and PH .

The connection between BRP (x1, T1, PH) and population basis risk can be understood
from another angle. According to the decomposition of variance presented in Section
4.3.2, population basis risk is represented by two components, V4(t) and V5(t), which are
respectively related to the idiosyncratic features of the hedger’s own population and the q-
forwards’ reference population. Also, while V4(t) is a constant, V5(t) is a quadratic function
of the q-forwards’ notional amounts, reflecting the fact that the hedger is exposed to more
risk associated with the idiosyncratic features of the q-forwards’ reference population as
the notional amounts become larger. As a fact, when m = 1,

V5(t) = BRP (x1, T1, PH)× (N (PH)
1 (t))2,
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which means that BRP (x1, T1, PH) can be understood as the speed at which population
basis risk grows when the (standardized) notional amount of the q-forward with parameters
x1, T1 and PH increases. It is clear that other things equal, a hedger should choose a q-
forward with the lowest value of BRP (x1, T1, PH).

In practice, the standardized basis risk profile can aid hedgers to select the most appro-
priate reference population out of the reference populations available in the market. While
the methods proposed previously by Cairns (2011, 2013), Cairns et al. (2014), Coughlan et
al. (2011) and Li and Hardy (2011) may also be used for the purpose of reference popula-
tion selection, they generally require a lot more computational effort because they involve
multiple steps: (i) for each candidate reference population, calibrate the hedge (i.e., select
the optimal notional amounts); (ii) simulate realizations of future mortality and calculate
the hedge effectiveness resulting from each calibrated hedge; (iii) choose the reference pop-
ulation that leads to the best hedge effectiveness. In contrast, the standardized basis risk
profile can be computed analytically, and the comparison between different standardized
basis risk profiles can be made without calibrating the associated hedges in advance.

We now revisit the previously made arguments from a geometrical viewpoint. Let us
continue to assume that the hedge portfolio contains m = 1 q-forward. The upper-left panel
of Figure 4.2 shows the theoretical pattern of V4(t) + V5(t) (the portion of variance arising

from population basis risk) as a function of the standardized notional amount N (PH)
1 (t).

Since V4(t) is a constant and V5(t) increases quadratically with N (PH)
1 (t), the pattern is a

parabola with V4(t) as the vertical intercept and N (PH)
1 (t) = 0 as the axis of symmetry.

The upper-right panel of Figure 4.2 compares the theoretical patterns of V1(t)+V2(t)+
V3(t) (the total variance in the absence of population basis risk) and V1(t) +V2(t) +V3(t) +
V4(t) + V5(t) (the total variance including population basis risk). As population basis risk
is being incorporated, V4(t) + V5(t) is superimposed onto V1(t) + V2(t) + V3(t), leading the
pattern of the total variance to shift upwards and leftwards. The upward shift reflects, for
every N (PH)

1 (t) > 0, the loss in hedge effectiveness that is owing to population basis risk.
The leftward shift highlights the fact that the optimal (standardized) notional amount
would be smaller when population basis risk is taken into consideration.

The lower-left panel of Figure 4.2 plots V4(t)+V5(t) againstN (PH)
1 (t) for three q-forwards

with the same reference age x1 and time-to-maturity T1 but different reference popula-
tions (PH = p1, p2, p3). We further assume that BRP (x1, T1, p3) > BRP (x1, T1, p1) >
BRP (x1, T1, p2). All three curves intersect the vertical axis at V4(t), because V5(t) = 0

whenN (PH)
1 (t) = 0. However, they have different curvatures, which are determined by their

corresponding standardized population basis risk profiles. Finally, in lower-right panel of
Figure 4.2 we show the theoretical patterns of V1(t) + V2(t) + V3(t) + V4(t) + V5(t) for the

144



0

V
4
(t)  

Standardized Notional Amount
 

 

V
4
(t)+V

5
(t)

0

V
1
(t)  

V
1
(t)+V

4
(t)  

Standardized Notional Amount
 

 

V
1
(t)+V

2
(t)+V

3
(t)+V

4
(t)+V

5
(t)

V
1
(t)+V

2
(t)+V

3
(t)

0

V
4
(t)  

Standardized Notional Amount
 

 

p
1

p
2

p
3

0

V
1
(t)+V

4
(t)  

Standardized Notional Amount
 

 

p
1

p
2

p
3

Figure 4.2: The theoretical relationships between different combinations of variance components
and the standardized notional amount of the q-forward in a single-instrument hedge portfolio;
upper-left: V4(t) + V5(t);
upper-right: V1(t) + V2(t) + V3(t) and V1(t) + V2(t) + V3(t) + V4(t) + V5(t);
lower-left: V4(t) + V5(t) for hypothetical reference populations p1, p2, p3;
lower-right: V1(t) + V2(t) + V3(t) + V4(t) + V5(t) for hypothetical reference populations p1, p2, p3.

three q-forwards that are linked to reference populations p1, p2 and p3. Among the five
variance components, V5(t) is the only one that is related to PH and hence the differences
between the shapes of the curves are due entirely to the differences in V5(t) or equivalently
BRP (x1, T1, PH). The curve with the lowest vertex (which means the highest hedge ef-
fectiveness) is the one that corresponds to the q-forward with the smallest standardized
population basis risk profile.
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4.5 A Numerical Illustration

In this section, we illustrate the proposed methods with some real mortality data. We begin
this section by stating the general assumptions made. We then present the estimated multi-
population mortality model on which the illustrative longevity hedges are based. Finally,
the results of the illustrative static and dynamic longevity hedges are discussed in turn.

4.5.1 Assumptions

The following assumptions are made throughout the rest of this section.

• The liability being hedged is a portfolio of 30-year temporary life annuity immediate
contracts that are sold to persons aged 60 at time t0; that is x0 = 60 and T = 30.

• The annuitants’ mortality is exactly the same as that of Canadian males.

• There is no small sample risk.

• The hedge portfolio is composed of only m = 1 q-forward, which has a reference age
of x1 = 60 and a time-to-maturity (from the launch date) of T1 = 10.

• In the market, q-forwards that are linked to the male populations of the following
four countries are available and liquidly traded: the US, England and Wales, the
Netherlands and West Germany. We make this assumption because the tradable
LifeMetrics Indexes offered by the LLMA are linked to each of these four national
populations. There is no q-forward linked to the population of Canadian males.

• The continuously compounded interest rate (r) is assumed to be 0.01 per annum.

• There is no transaction cost.

4.5.2 The Multi-Population Mortality Model Used

Given the assumptions made, we require a mortality model for np = 5 populations. The
model we use is the ACF model discussed in Section 4.2.2. We estimate the model to
the historical mortality data of Canadian males (p = 1), US males (p = 2), English and
Welsh males (p = 3), Dutch males (p = 4) and West German males (p = 5), using the
method of maximum likelihood with the following identifiability constraints:

∑xb
x=xa

bcx = 1,
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Table 4.2: The estimates of the parameters in the transition equation of the ACF model.

~U D Q
µc −3.7903× 10−1 − − Qc 1.0739× 10−1

µ(1) −2.5276× 10−3 φ(1) 9.0759× 10−1 Q(1) 1.5802× 10−3

µ(2) −4.9883× 10−3 φ(2) 9.0310× 10−1 Q(2) 1.4631× 10−1

µ(3) −1.1591× 10−1 φ(3) 9.3293× 10−1 Q(3) 5.9729× 10−1

µ(4) 6.1779× 10−2 φ(4) 9.4680× 10−1 Q(4) 3.1499× 10−1

µ(5) −3.3226× 10−2 φ(5) 9.1873× 10−1 Q(5) 2.0034× 10−1

∑xb
x=xa

b
(p)
x = 1 for p = 1, . . . , np,

∑tb
t=ta

kct = 0, and
∑tb

t=ta
k

(p)
t = 0 for p = 1, . . . , np. The

sample age range [xa, xb] and calibration window [ta, tb] used are [60, 89] and [1961, 2009],
respectively. All required data are obtained from the Human Mortality Database (2015).

The estimates of the age-specific parameters in the observation equation and the hidden
states over the calibration window are shown graphically in Figure 4.3. The estimates of
the parameters in the transition equation are provided in Table 4.2.

In what follows, we set t0 to the end of 2009, the last year of the calibration window.
Also, following the assumptions made in Section 4.5.1, PL = 1 and the possible values of
PH are 2, 3, 4 and 5.

4.5.3 Hedging Results I: Static Hedges

In this sub-section we consider static hedges that are established at time t0 and are left
unadjusted afterwards. Table 4.3 compares the resulting values of HE (calculated by
simulation9) when population basis risk is absent and present. The value of HE is close
to 80% in the ideal world where population basis risk is non-existent, but reduces to
30-60% in a more realistic situation when population basis risk exists (i.e., PH 6= PL =
1). It is interesting to note that the reduction in HE depends heavily on the choice of
reference population: the reduction in HE is about 20 percentage points when the reference
population is Dutch males (PH = 4), but is close to 50 percentage points when the reference
population is West German males (PH = 5). This result suggests that it is important to
choose the q-forward’s reference population carefully.

Also shown in Table 4.3 are the values of ĤE, the analytical approximation of HE.
For all five cases, the values of ĤE are very close to the corresponding simulated values of

9The result is based on 10000 simulated paths.
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Figure 4.3: The estimates of the age-specific parameters a
(p)
x , bcx and b

(p)
x , p = 1, . . . , 5, and

the hidden states kct and k
(p)
t , p = 1, . . . , 5, in the ACF model.
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Table 4.3: The values of HE (calculated by simulation) and ĤE (the analytical approxi-
mation of HE) when population basis risk is absent and present.

Basis risk is absent
Basis risk is present

PH = 2 PH = 3 PH = 4 PH = 5
HE (calculated by simulation) 0.7905 0.5393 0.3816 0.5794 0.3159

ĤE (calculated analytically) 0.7902 0.5352 0.3860 0.5725 0.3155

Table 4.4: The component variances, V1(t0), . . . , V5(t0), when population basis risk is as-
sumed to be absent.

V1(t0) V2(t0) V3(t0) V4(t0) V5(t0)
An optimized hedge with 1 q-forward 0.0249 0.0197 −0.0393 0.0000 0.0000

No hedge 0.0249 0.0000 0.0000 0.0000 0.0000

HE, suggesting that the analytical approximation is reasonably accurate and may hence
be used in practice to save computational effort.

We now move to studying the component risks: V1(t0), . . . , V5(t0). As discussed in Sec-
tions 4.3.2 and 4.3.3, they can be computed analytically. Let us first consider the situation
when population basis risk is assumed to be absent (Table 4.4). In such a situation, all
population-specific states are non-stochastic, so that V4(t0) = V5(t0) = 0 regardless of the
q-forward’s notional amount. When the liabilities are left unhedged, V2(t0) = V3(t0) = 0
while V1(t0) = 0.0249 > 0, so that the total risk is 0.0249. If an optimized hedge is in
place, then V2(t0) becomes positive but V3(t0) becomes negative and larger than V2(t0) in
magnitude. In effect, the total risk, V1(t0) + V2(t0) + V3(t0), is reduced to 0.0053 (which is
significantly smaller than 0.0249).

When there is no population basis risk, the value of HE is 0.7905 and the optimized
standardized notional amount N̂ (PH)

1 (t0) is 3.0537 no matter which reference population
PH is chosen. However, for the reasons provided in Section 4.4.2, the optimized (non-

standardized) notional amounts do depend on PH . In particular, we have N̂
(2)
1 (t0) =

395.0998, N̂
(3)
1 (t0) = 476.3772, N̂

(4)
1 (t0) = 489.7257, N̂

(5)
1 (t0) = 401.9512. These results

can be visualized in Figure 4.4, which shows how V1(t0) + V2(t0) + V3(t0) (i.e., the total
longevity risk that the hedger is exposed to when there is no population basis risk) varies

with N (PH)
1 (t0) and N

(PH)
1 (t0) for different choices of PH .

Next, we consider a more realistic situation when population basis risk is present (Table
4.5). In this situation, V4(t0) is positive and is invariant with both the notional amount of
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Figure 4.4: The relationship between V1(t0)+V2(t0)+V3(t0) and N
(PH)
1 (t0) (the left panel),

and the relationship between V1(t0) + V2(t0) + V3(t0) and N (PH)
1 (t0) (the right panel);

PH = 2, 3, 4, 5.

the q-forward and the choice of the q-forward’s reference population. The value of V4(t0)
(0.0001) reflects the portion of population basis risk arising from the hidden states that are
associated with the hedger’s own population PL. On the other hand, V5(t0) is zero when
the liabilities are left unhedged but becomes positive as a q-forward contract is acquired.
The value of V5(t0) depends on PH , reflecting the portion of population basis risk arising
from the hidden states that are associated with the q-forward’s reference population.

It can be observed from Table 4.5 that the choice of reference population has a huge
impact on the values of V2(t0), V3(t0) and V5(t0) and consequently the hedge effectiveness.
This outcome may be understood by studying Figure 4.5, which shows the following three
curves for each of the candidate reference populations:

(I) V1(t0) + V2(t0) + V3(t0) against the standardized notional amount N (PH)
1 (t0);

(II) V4(t0) + V5(t0) against the standardized notional amount N (PH)
1 (t0);

(III) V1(t0) + V2(t0) + V3(t0) + V4(t0) + V5(t0) against the standardized notional amount

N (PH)
1 (t0).

As previously explained, Curve (I) for all reference populations must be identical (see
also the right panel of Figure 4.4). For different reference populations, the vertical inter-
cepts of Curve (II) are the same (with a value of V4(t0) = 0.0001) but the curvatures of
Curve (II) are not. Because Curve (III) is the superimposition of Curves (I) and (II), the
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Table 4.5: The component variances, V1(t0), . . . , V5(t0), the optimized notional amount,

N̂
(PH)
1 (t0), the optimized standardized notional amount, N̂ (PH)

1 (t0), and the standardized
basis risk profile, BRP (x1, T1, PH), for candidate reference populations PH = 2, 3, 4, 5.

V1(t0) V2(t0) V3(t0) V4(t0) V5(t0) N̂
(PH)
1 (t0) N̂ (PH)

1 (t0) BRP (x1, T1, PH)

PH = 2 (The United States)

One q-forward 0.0249 0.0091 −0.0268 0.0001 0.0043 268.8725 2.0781 0.0010
Unhedged 0.0249 0.0000 0.0000 0.0001 0.0000

PH = 3 (England and Wales)

One q-forward 0.0249 0.0047 −0.0193 0.0001 0.0049 233.7923 1.4986 0.0022
Unhedged 0.0249 0.0000 0.0000 0.0001 0.0000

PH = 4 (The Netherlands)

One q-forward 0.0249 0.0104 −0.0286 0.0001 0.0039 356.4354 2.2225 0.0008
Unhedged 0.0249 0.0000 0.0000 0.0001 0.0000

PH = 5 (West Germany)

One q-forward 0.0249 0.0032 −0.0158 0.0001 0.0047 161.2411 1.2250 0.0031
Unhedged 0.0249 0.0000 0.0000 0.0001 0.0000

shape and position of Curve (III) depend on PH . In particular, if the curvature of Curve
(II) for a certain reference population is steeper, that is, the marginal increment in popu-
lation basis risk per unit standardized notional amount acquired is higher, then the vertex
of Curve (III) for the reference population would be positioned relatively higher and lefter.
Therefore, for a reference population with a steeper Curve (II), the minimized variance
is higher (which corresponds to a smaller value of HE) and the optimized standardized
notional amount is smaller (which corresponds to smaller magnitudes of V2(t0) and V3(t0)

as the magnitudes of these two components are positively related to N (PH)
1 (t0)).

It is now clear that the relative degree of population basis risk depends entirely on the
curvature of Curve (II). Figure 4.6 displays each candidate reference population’s Curve
(II). For each PH , the order of the curvature of its Curve (II) is exactly the same as the
order of its resulting population basis risk (measured in terms of the reduction in HE; see
Table 4.3). Recall that the standardized basis risk profile BRP (x1, T1, PH) is defined as
the curvature of Curve (II). Hence, instead of a graphical mean, one may use this quantity
to choose the reference population that would lead to the smallest amount of population
basis risk.
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Figure 4.5: The curves of (I) V1(t0) +V2(t0) +V3(t0), (II) V4(t0) +V5(t0), and (III) V1(t0) +

V2(t0) +V3(t0) +V4(t0) +V5(t0) against the standardized notional amount N (PH)
1 (t0), PH =

2, 3, 4, 5.

4.5.4 Hedging Results II: Dynamic Hedges

In this sub-section we consider dynamic hedges that are adjusted annually. In more detail,
it is assumed that at time t0, the hedger writes a N̂

(PH)
1 (t0) notional q-forward with reference

age x1, time-to-maturity T1 and reference population PH . Then, at each future time t,
where t = t0 + 1, . . . , t0 + T − 1, the hedger closes out the q-forward written at t− 1 and
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Figure 4.6: V4(t0) + V5(t0) against the standardized notional amount N (PH)
1 (t0), PH =

2, 3, 4, 5.

writes a N̂
(PH)
1 (t) notional freshly launched q-forward, which is characterized by the same

parameters x1, T1 and PH . Finally, at time t = T , all of the q-forwards in the hedge
portfolio are closed out.

Table 4.6 compares the values of HE resulting from static and dynamic hedges. By
dynamically adjusting a hedge, the value of HE can be increased by approximately 12-16
percentage points. The increase in HE due to dynamic adjustments does not seem to
depend heavily on whether population basis risk exists.

Recall that the relative degree of population basis risk depends entirely on the stan-
dardized basis risk profile BRP (x1, T1, PH), which is defined exclusively by the q-forward
parameters x1, T1 and PH . Compared to the corresponding static hedge, the standardized
basis risk profile applicable to a dynamic hedge is identical and remains constant (as we
use q-forwards with parameters x1, T1 and PH consistently over the hedge horizon). For
this reason, the order of HE remains the same when we switch a hedge from static to
dynamic.

To further analyze the hedges, in Figure 4.7 we display the simulated distributions of
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Table 4.6: A comparison of the values of HE resulting from static hedges and the corre-
sponding dynamic hedges.

Basis risk is absent
Basis risk is present

PH = 2 PH = 3 PH = 4 PH = 5
Static hedge 0.7905 0.5393 0.3816 0.5794 0.3159

Dynamic hedge 0.9181 0.7001 0.5150 0.7068 0.4486

the time-t0 values of the unexpected cash flows under the following conditions:

(i) when the liabilities are left unhedged, i.e., L(t0)− E(L(t0)

(ii) when the liabilities are statically hedged, i.e., L(t0)−E(L(t0))−N (PH)
1 (t0)H

(PH)
1 (t0);

(iii) when the liabilities are dynamically hedged, i.e., L(t0)−E(L(t0))−
∑

t>t0
PCF (t)|Ft0 .

All of the three distributions are centred at zero, as the expectations of L(t0)− E(L(t0)),

H
(PH)
1 (t0) and

∑
t>t0

PCF (t)|Ft0 are zero. No matter if population basis risk exists, Dis-
tribution (i) is the most dispersed while Distribution (iii) is the least. This observation
indicates that a static hedge reduces the variability of the unexpected cash flows and that
the corresponding dynamic hedge reduces the variability even more. Of course, the re-
ductions in the variability of the unexpected cash flows are the most prominent when
population basis risk is assumed to be absent. When population basis risk is present, the
reductions in the variability of the unexpected cash flows depend quite significantly on PH .

4.6 Concluding Remarks

It is believed that hedgers’ concern about population basis risk is a major obstacle to the
development of the market for index-based longevity risk transfers. In 2013, the LLMA
established the Longevity Basis Risk Working Group, whose goal is to develop readily
applicable methods for quantifying population basis risk. This chapter addresses the needs
of the market by introducing a method for measuring population basis risk efficiently and
a framework for optimizing index-based longevity hedges when the index used is associated
with a population that is different from the hedger’s own population.

The first contribution of this chapter is an extension of the generalized state-space hedg-
ing method proposed in Chapter 3. The extension allows us to calibrate a longevity hedge
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Figure 4.7: The simulated distributions of the time-t0 values of the unexpected cash flows
when the liabilities are unhedged, statically hedged and dynamically hedged.
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that is composed of standardized hedging instruments, taken into account the difference in
mortality improvements between the populations associated with the hedging instruments
and the hedger’s portfolio. The extension may be regarded as a general framework, be-
cause it is applicable to all coherent multi-population stochastic mortality models that can
be written in state-space representations. We have demonstrated empirically that when
calibrated by the proposed method, a static longevity hedge with one q-forward can yield
an effectiveness of 30-60%, depending on the choice of the reference population. The effec-
tiveness would become 12 to 16 percentage points higher if the hedge is adjusted annually
over the hedging horizon.

The second contribution is a method to analytically approximate the variances of L(t)

(the time-t value of unhedged position) and L(t) −
∑m

j=1N
(PH)
j (t)H

(PH)
j (t) (the time-t

value of the hedged position). This approximation method enables us to calculate the
hedge effectiveness,

HE = 1−
Var

(
L(t0)−

∑m
j=1N

(PH)
j (t0)H

(PH)
j (t0)

)
Var(L(t0))

,

without using simulation. Using this approximation method, we can derive an empirical re-
lationship between HE and the composition of the hedge portfolio (N

(PH)
1 (t), . . . , N

(PH)
m (t))

with only minimal computational effort. Furthermore, by applying this approximation
method to the full multi-population mortality model and the restricted model with Q(1) =
Q(2) = . . . = Q(np) = 0, we can readily gauge to what extend population basis risk erodes
hedge effectiveness under different hedge portfolio compositions.

The third contribution is an analysis of longevity risk through a variance decomposition.
We have shown that the (approximated) variance of the time-t values of a hedged annuity
portfolio can be expressed as the sum of five components, V1(t)+V2(t)+V3(t)+V4(t)+V5(t).
We have argued that V4(t) and V5(t) collectively represent an explicit measure of the
population basis risk involved in the longevity hedge. In particular, V4(t) represents the
portion of population basis risk that exists no matter how the hedge is composed, whereas
V5(t) represents the portion of population basis risk that depends on the composition
of the hedge portfolio. We have also shown that V5(t) increases quadratically with the

standardized notional amounts N (PH)
1 (t), . . . ,N (PH)

m (t) of the q-forwards used, and that
the curvature depends on the parameters of the q-forwards. Using these properties, we
define a metric called standardized basis risk profile, which allows us to assess the relative
levels of population basis risk that q-forwards with different reference populations, reference
ages and times-to-maturity may lead to.

We conclude with the caveats of our work and suggestions for future research. The
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hedge effectiveness reported in this chapter does not take model and parameter risks into
account. If the true underlying model is not identical to the model used in deriving
the general state-space hedging strategy, the hedge effectiveness may be reduced. To
estimate the possible reduction, one may recalculate hedge effectiveness by simulating
mortality scenarios generated by alternative multi-population mortality models. Similarly,
the impact of parameter risk can be estimated by recomputing hedge effectiveness using
mortality scenarios that are generated by bootstrapping or Bayesian methods (Brouhns et
al., 2005; Cairns et al., 2011b; Yang et al., 2015).

It should also be noted that small sample risk (a.k.a. Poisson risk and sampling risk)
is not incorporated into the results of this chapter. One may estimate the impact of small
sample risk by simulation approaches, in which realizations of death counts are simulated
from a certain counting distribution such as Poisson and binomial (Cairns et al., 2014; Li
and Hardy, 2011). It may also be possible to estimate the impact of small sample risk by
analytical means. In more detail, when small sample risk is considered, the variance of L(t)
would consist additionally a component representing the variance of the time-t values of
the future liabilities given known values of q

(PL)
x0+t−t0 , q

(PL)
x0+t+1−t0 , . . .. If this component can be

analytically computed or approximated, then we can obtain an analytical approximation
of HE that incorporates small sample risk. The derivation of such an analytical expression
is left for future research.
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Chapter 5

An Efficient Method for Hedging
Period and Cohort Effects in
Longevity Risk

5.1 Introduction

Solutions for hedging pure longevity risk can be broadly divided into two categories: cus-
tomized and index-based. A customized longevity hedge is based on the actual mortality
experience of the individuals associated with the liability being hedged, whereas an index-
based longevity hedge is linked to a broad-based mortality index which reflects the actual
mortality experience of a larger pool of individuals, such as a national population. Each
of these two types of longevity hedge has its pros and cons.

A customized hedge eliminates all longevity risk, but it is more costly and difficult to
unwind. It is also less attractive to capital markets investors, because it lacks liquidity and
transparency. Typically, a customized hedge is structured as a ‘cash flow hedge’, in which
net payments are made period by period to immunize the longevity risk associated with
every single cash flow of the hedger. An example of a customized cash flow hedge is the
longevity swap that was executed between J.P. Morgan and Canada Life in 2009. Under
this 40-year longevity swap, Canada Life receives from J.P. Morgan the actual payments it
must pay to its annuitants and, in return, makes a series of fixed payments to J.P. Morgan
(Blake et al., 2013).

In contrast, an index-based hedge is not perfect, leaving behind residual risks such as
small sample risk and population basis risk. The problems arising from these residual risks

158



have been analyzed by researchers including Cairns et al. (2014), Coughlan et al. (2011),
Haberman et al. (2014), Li and Hardy (2011) and Ngai and Sherris (2011). Nevertheless,
an index-based hedge is potentially more liquid and consequently cheaper due to a lower
illiquidity premium. If the hedge is adjusted periodically, then the hedging instruments
used can be shorter-dated, better meeting investors’ preference and reducing the hedger’s
exposure to counterparty default risk (see, e.g., Cairns, 2011; Zhou and Li, 2014). Fur-
thermore, because the value of a pension or annuity liability depends on the level of the
relevant mortality index at the time of valuation, index-based hedges can be structured
as a ‘value hedge’, which immunizes the risk associated with the liability’s value rather
than the liability’s cash flows. An example of an index-based value hedge is the q-forward
contract that Lucida executed with J.P. Morgan to lock in the value of its annuity liability
at the end of the hedging horizon (Blake et al., 2013).

As Coughlan et al. (2013) pointed out, index-based value hedges are very well suited
for de-risking deferred liabilities, which involve no cash flow during the period of deferral.
They permit pension plan sponsors with a large number of active members (who are still
years from receiving their pension benefits) to offload their longevity risk exposures. As an
index-based value hedge is quite flexible, it can be adjusted from time to time according to,
for example, the changes in the composition of plan sponsor’s workforce and the options
(e.g., a lump sum vs. lifetime payments) chosen by the plan members. Index-based value
hedges also provide a way for insurers selling advanced-life delayed annuities (i.e., deeply
deferred life annuities) to reduce their longevity risk exposures and hence the associated
solvency capital.1 The world’s first index-based value hedge for deferred members of a
pension plan was the q-forward deal executed between the Pall (UK) Pension Fund and
J.P. Morgan in 2011 (Blake et al., 2014). The hedge was calibrated to lock in the value of
the deferred pension liability over a 10-year horizon.

Although the suitability for deferred pension and annuity liabilities is an important
feature of index-based value hedges, this feature has not been extensively studied in the
literature. From a technical viewpoint, deferred liabilities often involve cohorts that are
not covered by the data sample to which the underlying mortality model is calibrated. To
illustrate, let us suppose that the underlying mortality model is calibrated to data over
ages 50 to 89 (a typical age range to which mortality models for pension valuation are
fitted) and a sample period that includes the current year. The data sample does not
cover the cohorts who are now age 49 or younger, which means when valuing the deferred

1Advanced-life delayed annuities (ALDAs) are also known as longevity insurance, deferred income
annuities (DIAs) and qualified longevity annuity contracts (QLACs). In the US, ALDAs are available from
insurers including Guardian, New York Life, Mass Mutual, MetLife and Pacific Life. We refer interested
readers to Gong and Webb (2010), Horneff et al. (2010) and Milevsky (2005) for further information
concerning ALDAs.
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liabilities for these cohorts, the cohort effects in the model must be projected. In other
words, the deferred liabilities are subject to the stochastic uncertainty surrounding not
only period (time-related) effects but also cohort (year-of-birth-related) effects. However,
cohort effects are not taken into account in most of the existing methods for calibrating
index-based hedges, including the method discussed in Chapter 3 and those proposed by
Blake et al. (2006), Cairns (2011), Dahl (2004), Dahl and Møller (2006), Dahl et al. (2008),
Zhou and Li (2014) and Luciano et al. (2012).

So far as we aware, Li and Luo (2011), Cairns et al. (2014) and Cairns (2013) have
considered cohort effects in the context of hedging. Li and Luo (2011) incorporated the
potential dependence between different cohorts into a static longevity hedge, but their set-
up is a cash flow hedge that is not particularly suitable for a deferred liability. Cairns et al.
(2014) and Cairns (2013) studied a value hedge for a deferred annuity that is payable to a
single cohort of individuals; however, in their set-up, the cohort in question is covered by
the data sample used in calibrating the simulation model, which means that the annuity
liability is not subject to any cohort effect uncertainty. Therefore, their results do not
indicate how cohort effect uncertainty may be mitigated if it is involved in liability being
hedged. Another shortcoming is that their calculations are based on the assumption that
all possible (simulated) outcomes are known a priori. This approach provides the best
achievable hedge effectiveness given the range of simulated outcomes, but a simulation-
based calibration could be computationally intensive, especially when multiple hedging
instruments are included in the hedge portfolio.

This chapter complements the literature by contributing a method for hedging the un-
certainty surrounding both period and cohort effects. Using the proposed method, one can
create a value hedge for a deferred annuity liability which involves cohort effects that are
not yet realized as of the time when the hedge is established. The hedging instruments
used are q-forwards, which may be linked to cohorts that are different from those that are
associated with the annuity liability. At the user’s discretion, the hedge can be executed
as a static hedge (which remains unchanged over the hedging horizon) or a dynamic hedge
(which is adjusted periodically over the hedging horizon). The proposed method is devel-
oped from the stochastic properties of the innovations in the assumed processes for the
underlying period and cohort effects. It yields hedge ratios that can be expressed analyt-
ically in terms of (i) the variances and covariances of the innovations and (ii) the partial
derivatives of the values of the hedge portfolio and the annuity liability with respect to the
relevant innovations. As no simulation is required in the calculating the hedge ratios, the
execution of our proposed hedging method requires minimal computational effort.

Unlike the hedging strategies proposed by Blake et al. (2006), Cairns (2011), Li and
Luo (2011) and Zhou and Li (2014), the hedge ratios under our method are not obtained
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simply by matching the sensitivities of the liability and the hedge portfolio to changes in
the underlying mortality. Instead, our method has a closer resemblance to the generalized
state-space hedging method proposed in Chapter 3, under which the optimal hedge ratios
are calculated on the basis of a specific risk measure.2 Compared to the sensitivity matching
approaches, this approach to deriving hedge ratios is more suitable for hedgers who have
a definite hedging objective. The risk measures we consider include variance and Value-
at-Risk (relative to the unhedged expected value). The former is commonly used for the
purpose of evaluating the effectiveness of longevity hedges (see Cairns, 2011, 2013; Cairns
et al., 2014; Coughlan et al., 2011; Li and Hardy, 2011), while the latter is more in line
with the calculation of solvency risk capital under Solvency II (see Plat, 2011; Olivieri and
Pitacco, 2009). We illustrate the proposed hedging method using real mortality data from
a national population. The empirical work demonstrates the benefit of factoring cohort
effects into a longevity hedge under different circumstances.

Another objective of this chapter is to address the computational burden involved when
assessing the performance of a value longevity hedge. Generally speaking, to evaluate the
performance of a value longevity hedge, nested simulations (i.e., simulations on simulations)
are required. For instance, to evaluate a value longevity hedge with a hedging horizon of
τ years, we first simulate, say M1, mortality paths over the first τ years since the hedge is
established. Then, for each of these M1 mortality paths, we need to calculate the value of
the hedged position at the end of the hedging horizon, which demands another, say M2,
sample mortality paths (for years τ + 1 and beyond). In total, M1 ×M2 sample paths are
required, and therefore the computation burden is significant as both M1 and M2 are large
numbers. It has been proposed to use approximation methods to eliminate the need for
the M2 sample paths (Cairns, 2011; Cairns et al., 2014; Denuit and Dhaene, 2007; Denuit
et al., 2010; Zhou and Li, 2014).

In this chapter, we attack the problem of nested simulations from a different angle.
Instead of using an approximation, we utilize the statistical properties of the innovations
from the underlying period and cohort effect processes. We recognize that the value of
the hedge portfolio at time τ (measured from the time at which the hedge is established)
can be reformulated in such a way that the only random components are the innovations
beyond time τ . On the basis of this fact, we evaluate hedge effectiveness by simulating
sample paths of innovations rather than sample paths of period and cohort effects. Because

2The generalized state-space hedging method requires the user to formulate the underlying stochastic
mortality model in a state-space representation, comprised of an observation equation that relates the
observed mortality to the latent state factors and a first order state process that governs the evolution
of the latent state factors over time. It is not straightforward to express a stochastic mortality model
in a state-space representation if it contains a cohort effect term. Therefore, the generalized state-space
hedging method cannot be applied readily to the problem considered in this chapter.
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all innovations are serially uncorrelated by definition, the M2 sample paths for valuation
purposes at time τ do not depend on the M1 sample paths in the first stage, thereby
sparing us from the need of nested simulations. As the proposed method does not depend
on any approximation, it is not subject to the problem of approximation accuracy and
the resulting hedge effectiveness measure can better reflect the ‘reality’ implied by the
simulated mortality scenarios.

The remainder of this chapter is organized as follows. Section 5.2 presents the stochastic
mortality model that is assumed throughout this chapter. Section 5.3 describes the liability
being hedged and the hedging instruments. Section 5.4 introduces the proposed hedging
method and details how the hedge ratios under the proposed method can be calculated.
Section 5.5 explains our proposed method for evaluating value hedges. Section 5.6 presents
the baseline empirical results and performs several sensitivity tests. Finally, Section 5.7
concludes the chapter with some suggestions for future research.

5.2 The Assumed Model

5.2.1 Specification

The model we use throughout the chapter is Model M7, a generalized version of the original
Cairns-Blake-Dowd model (Cairns et al., 2006). It has been shown to perform satisfactorily
when applied to several national populations including the United States and England and
Wales (Cairns et al., 2009, 2011a; Dowd et al., 2010a,b).

Let qx,t be the probability that an individual dies between time t− 1 and t (i.e., during
year t), given that he/she has survived to age x at time t− 1. Model M7 captures qx,t as
follows:

ln

(
qx,t

1− qx,t

)
= κ

(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γ
(4)
t−x, (5.1)

where x̄ is the average of the age range [xa, xb] to which the model is calibrated and σ̂2
x is

the mean of (x − x̄)2 over the same age range. In the model, κ
(1)
t , κ

(2)
t , and κ

(3)
t are the

period (time-related) effects, governing the random evolution of qx,t over time t. On the

other hand, γ
(4)
t−x is the cohort (year-of-birth) effect, which determines the random evolution

of qx,t over the year of birth (t− x) dimension.

Following Cairns et al. (2009), we estimate equation (5.1) by the method of Poisson
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maximum likelihood with the following identifiability constraints:∑
x,t

γ
(4)
t−x = 0,

∑
x,t

(t− x)γ
(4)
t−x = 0, and

∑
x,t

(t− x)2γ
(4)
t−x = 0,

where the summations are taken over the entire age range [xa, xb] and sample period [ta, tb]
to which the model is calibrated. These constraints are sufficient to stipulate parameter
uniqueness. They also ensure that the estimated values of γ

(4)
t−x will fluctuate around zero

and will have no discernible linear or quadratic trend.

Having estimated equation (5.1) to historical death and exposure counts, the period
effects are modeled jointly by a trivariate random walk with drift:

κ
(1)
t = µ(1) + κ

(1)
t−1 + η

(1)
t

κ
(2)
t = µ(2) + κ

(2)
t−1 + η

(2)
t

κ
(3)
t = µ(3) + κ

(3)
t−1 + η

(3)
t

, (5.2)

where µ(1), µ(2), µ(3) are the drift terms, and η
(1)
t , η

(2)
t and η

(3)
t are the random innovations.

The vector of the innovations (η
(1)
t , η

(2)
t , η

(3)
t )′ possesses no serial correlation and follows a

trivariate normal distribution with a zero mean vector and a constant (positive definite)

covariance matrix Q. Because of the identifiability constraints used, the cohort effect γ
(4)
t−x

should have no long-term trend and can thus be modeled by a mean-reverting ARMA(R,M)
process:

γ
(4)
t−x = µ(4) +

R∑
i=1

φ
(4)
i γ

(4)
t−x−i + η

(4)
t−x +

M∑
i=1

θ
(4)
i η

(4)
t−x−i, (5.3)

where µ(4) is the constant term, φ
(4)
1 , . . . , φ

(4)
R are the AR coefficients, and θ

(4)
1 , . . . , θ

(4)
M

are the MA coefficients. The innovation η
(4)
t−x possesses no serial correlation and follows a

normal distribution with a zero mean and a constant variance of (σ(4))2.

5.2.2 Estimation

The empirical work in this chapter is based on the historical data from the male population
of England and Wales (EW). The data are obtained from the Human Mortality Database
(2015). We estimate equation (5.1) to the death and exposure counts for EW males over
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the age range of [xa, xb] = [50, 89] and the sample period of [ta, tb] = [1941, 2011].3

The maximum likelihood estimates of κ
(1)
t , κ

(2)
t , κ

(3)
t and γ

(4)
t−x are shown graphically in

Figure 5.1. The downward trend in κ
(1)
t reflects a steady reduction in mortality at all ages

over the sample period. The patterns of κ
(2)
t and κ

(3)
t respectively indicate how the gradient

and curvature of the relationship between ln(qx,t/(1−qx,t)) and x have changed since 1941.

As expected, the estimated values of γ
(4)
t−x fluctuate around zero with no observable trend.

The spike at t− x = 1918 could attributed to the Spanish flu epidemic, which might have
affected people who were born in 1918 (see, e.g., Holmes, 2004).

We have the estimated (realized) values of κ
(1)
t , κ

(2)
t and κ

(3)
t for t = ta = 1941 to

t = tb = 2011, but the values of κ
(1)
t , κ

(2)
t and κ

(3)
t for t > tb are random, following

the trivariate random walk specified in equation (5.2). For t > tb, all values of qx,t are
subject to the uncertainty surrounding the associated unrealized period effects. However,
not all values of qx,t beyond the end point tb of the sample period are subject to cohort
effect uncertainty. In particular, cohort effect uncertainty only matters to those with
t − x > tb − xa = 2011 − 50 = 1961, because the data sample covers years of birth
up to tb − xa = 1961 and consequently the cohort effects for t − x ≤ 1961 are already
realized.4 It follows that cohort effect uncertainty is irrelevant to liabilities that are payable
to individuals born in or before 1961, but plays a role in deferred pension liabilities for
workforces containing individuals born after 1961.

Table 5.1 reports the estimates of the parameters in the processes for the period and
cohort effects. Parameters Q, θ

(4)
1 , φ

(4)
1 and σ(4) are involved in the hedging strategy

presented in Section 5.4. Also, the empirical fact that Q(1, 1) and (σ(4))2 are significantly
larger than Q(2, 2) and Q(2, 3) is used to explain some interesting properties of the hedging
results in Section 5.6.5

3We use the age range of [50, 89] for several reasons. First, mortality improvement dynamics over
different age ranges are very different; given the purpose of the model is to value pension liabilities, it is
more appropriate not to include younger ages. Second, the age functions, x − x̄ and (x − x̄)2 − σ̂2

x, in
Model M7 do not capture the ‘accident hump’ at younger ages. Third, the data beyond age 90 are subject
to reliability issues. In particular, the population counts for EW males beyond age 89 are extrapolated
rather than raw values. As a fact, the age range of [50, 89] is used in other studies including the work of
Cairns et al. (2009).

4For instance, q50,2021 is subject to the uncertainty surrounding γ
(4)
1971, but q80,2021 is free of cohort effect

uncertainty as γ
(4)
1941 is already known from the data sample.

5We use Q(i, j) to denote the (i, j)th element of Q.
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Figure 5.1: The Poisson maximum likelihood estimates of κ
(1)
t , κ

(2)
t , κ

(3)
t and γ

(4)
t−x in Model

M7, t = 1941, . . . , 2011 and x = 50, . . . , 89.

5.2.3 Significance of Cohort Effects

To understand the importance of considering cohort effects, we also estimate the original
Cairns-Blake-Dowd model (Model M5), which does not take cohort effects into account.
Figure 5.2 compares the actual historical values of ln(qx,t/(1−qx,t)) with the corresponding
fitted values that are calculated from Models M5 and M7. It can be observed that the
surface representing the actual historical values is not flat, with several humps and bumps
along the diagonal dimension. The humps and bumps, which indicate that mortality varies
across different years of birth, can be captured in the fitted values calculated from Model
M7 (the model used in this chapter) but not in those calculated from Model M5 (the more
restrictive model that ignores cohort effects).

The need for considering cohort effects can also be understood by considering the
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Table 5.1: The estimates of the parameters in the trivariate random walk for κ
(1)
t , κ

(2)
t and

κ
(3)
t and the ARMA(1,1) process for γ

(4)
t−x. The ARMA order (R = 1,M = 1) is identified

using the Box-Jenkins method (Box and Jenkins, 1976).

The trivariate random walk for κ
(1)
t , κ

(2)
t and κ

(3)
t

µ(1) −0.0155

µ(2) 1.5908× 10−4

µ(3) 2.8048× 10−6

Q

 0.0013 3.4174× 10−5 9.3595× 10−7

3.4174× 10−5 1.9104× 10−6 6.2427× 10−8

9.3595× 10−7 6.2427× 10−8 5.8429× 10−9


The ARMA(1,1) process for γ

(4)
t−x

µ(4) −2.6647× 10−4 θ
(4)
1 −0.4088 φ

(4)
1 0.5612 (σ(4))2 4.9418× 10−4

standardized residuals from each mortality model:

Zx,t =
Dx,t − D̂x,t√

D̂x,t

,

where Dx,t is the actual death count at age x and in year t, and D̂x,t is the corresponding
death count estimated from the model. If the model is adequate, then the pattern of Zx,t
should be random and have little clustering. In Figure 5.3 we compare the heat maps of
Zx,t from Models M5 and M7. For Model M7, the pattern of Zx,t looks reasonably random,
indicating that the model gives an adequate fit to the historical data. However, for Model
M5, the pattern of Zx,t contains some obvious diagonal bands, indicating a lack of fit which
arises from features that are year-of-birth specific.

Figures 5.2 and 5.3 reminiscent the results produced by the Continuous Mortality In-
vestigation Bureau (2002). They point to the conclusion that in the United Kingdom,
where most of the longevity risk transfers in the world take place, cohort effects are signif-
icant and should be modeled explicitly. In the following sections, we explain how cohort
effect uncertainty can be mitigated by an index-based longevity hedge, and discuss the
importance of cohort effects from the perspective of hedge effectiveness.
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Figure 5.2: Historical values of ln(qx,t/(1− qx,t)) and the corresponding fitted values that
are calculated from Models M5 and M7.

167



Year (t)

A
g
e
 (

x
)

Standardized residuals under model M5

 

 

1960 1970 1980 1990 2000 2010

50

55

60

65

70

75

80

85

−10

−8

−6

−4

−2

0

2

4

6

8

10

Year (t)

A
g
e
 (

x
)

Standardized residuals under model M7

 

 

1950 1960 1970 1980 1990 2000 2010

50

55

60

65

70

75

80

85

−8

−6

−4

−2

0

2

4

6

Figure 5.3: Heat maps of the standardized residuals Zx,t calculated from Models M5 and M7.

5.3 The Set-up

5.3.1 The Liability Being Hedged

The liability being hedged is a portfolio of T -year deferred life annuity immediate contracts,
which are sold to individuals age x0−T at time tb (the end point of the data sample period).
Each contract makes no payment during the first T years from time tb; however, when the
annuitant reaches age x0 at time tb + T , the contract pays $1 at the end of each year
(starting in year tb + T + 1) as long as the annuitant is alive. We let L be the sum of the
discounted cash flows, measured at time tb, per contract. Ignoring sampling risk, we have

L =
ω−x∑
u=1

e−r(T+u)

T+u∏
s=1

(1− qx0−T+s−1,tb+s), (5.4)

where r is the risk-adjusted discount rate and ω is the highest attainable age. It can be seen
that L contains the underlying death probabilities qx0−T+s−1,tb+s, for s = 1, . . . , T +ω−x0.
Under our model assumption, this in turn means that L is a function of a sequence of
period effects, {κ(i)

tb+s
; i = 1, 2, 3, s = 1, . . . , T + ω − x0}, and a cohort effect γ

(4)
tb−(x0−T )+1.

We let Lt = L|Ft, where t ≥ tb and Ft represents the information up to and including
time t. The period and/or cohort effect uncertainty affecting Lt depends on t and the
parameters of the annuity liability.
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For tb ≤ t < tb + T + ω − x0, Lt is subject to the randomness of the following period
effects: κ

(i)
t+1, . . . , κ

(i)
tb+T+ω−x0

, where i = 1, 2, 3. For t > tb + T + ω − x0 (i.e., when all
annuity payments have already been made), all period effects contained in L are realized
and therefore Lt is no longer subject to any period effect uncertainty.

Recall that xa is the lower limit of the sample age range. At t ≥ tb, we have the
realizations of the cohort effects up to and including year-of-birth t− ta. As such, whether
Lt is subject to cohort effect uncertainty depends on the value of tb− (x0− T ) + 1 relative
to that of t − xa. If tb − (x0 − T ) + 1 > t − xa, then Lt is subject to the uncertainty

associated with the unrealized value of γ
(4)
tb−(x0−T )+1. If tb − (x0 − T ) + 1 ≤ t − xa, then

γ
(4)
tb−(x0−T )+1 is already realized and thus Lt is free from any cohort effect uncertainty.

Suppose that the hedge is built at time t, where t ≥ tb. The longevity hedge we develop
is a value hedge, mitigating the uncertainty associated with

VLt(t+ τ) := E (Lt|Ft+τ ) , (5.5)

the value of the liability τ > 0 years from the time when the hedge is established.6 We
assume τ < T + ω − x0, as it is not reasonable to have a hedging horizon that ends after
all liability cash flows are paid.

As of time t, VLt(t+ τ) is subject to uncertainty surrounding the random sample path

of the period effects from time t to t + τ , that is, κ
(i)
t+1, . . . , κ

(i)
t+τ for i = 1, 2, 3. When

tb− (x0−T )+1 > t−xa, it is also subject to at least part of the sample path of the cohort

effects over years of birth t+ 1− xa to t+ τ − xa, that is, γ
(4)
t+1−xa , . . . , γ

(4)
t+τ−xa .

7

5.3.2 The Hedging Instruments

The longevity hedge we develop consists of m ≥ 1 q-forwards. Suppose that the q-forwards
in the portfolio are launched at time t, where t ≥ tb. For the jth q-forward, the discounted
net cash flow, measured at time t and from the perspective of the fixed-rate receiver, is

H(j, t) = e−rTj(qfxj ,t+Tj − qxj ,t+Tj) (5.6)

6In this chapter, we perform valuation under the real-world probability measure. Therefore, the expec-
tation in equation (5.5) is taken under the real-world probability measure and the discount rate r used in
(5.4) a risk-adjusted rate (rather than a risk-free rate).

7If tb − (x0 − T ) + 1 > t+ τ − xa, then the expectation in VLt(t+ τ) depends on the cohort effects up

to γ
(4)
t+τ−xa

through the ARMA(R,M) process specified in equation (5.3). If tb− (x0−T ) + 1 ≤ t+ τ −xa,
then the portion of the sample path beyond year-of-birth tb − (x0 − T ) + 1 is irrelevant.
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per $1 notional, where xj, Tj and qfxj ,t+Tj denote the reference age, the time-to-maturity

and the (fixed) forward mortality rate, respectively. Under our model assumption, H(j, t)

is a function of κ
(i)
t+Tj

, for i = 1, 2, 3, and γ
(4)
t+Tj−xj .

The forward mortality rate is determined at time t when the q-forward is launched.
Following Coughlan et al. (2007), we calculate the forward mortality rate as follows:

qfxj ,t+Tj = (1− Tj × λ× vxj)q̂xj ,t+Tj , (5.7)

where λ is the annualized Sharpe ratio demanded by the counterparty (i.e., the fixed-rate
payer), q̂xj ,t+Tj is the best estimate of qxj ,t+Tj that is calculated by switching off all random
innovations beyond time t, and vxj is the estimated volatility of the yearly changes in the
death probability at age xj.

8

To focus on our research objectives, we disregard population basis risk; that is, we
assume that the reference population to which the q-forwards are linked is identical to the
hedger’s own population of individuals. However, with moderate adaptations, the proposed
hedging strategy can be extended to incorporate the difference between the populations
involved.

Let Ht(j, t) = H(j, t)|Ft. It is obvious that Ht(j, t) is subject to the uncertainty sur-

rounding the following (unrealized) period effects: κ
(i)
t+Tj

, where i = 1, 2, 3. Whether Ht(j, t)
is subject to cohort effect uncertainty depends on the q-forward’s reference age xj and time-

to-maturity Tj. If t+ Tj − xj > t− xa, then γ
(4)
t+Tj−xj is not yet realized and hence Ht(j, t)

is subject to the uncertainty surrounding γ
(4)
t+Tj−xj . Otherwise, γ

(4)
t+Tj−xj is already realized

and thus Ht(j, t) is free from any cohort effect uncertainty.

Suppose that the longevity hedge is established at time t, where t ≥ tb, and that all
q-forwards used are freshly launched at time t. As the longevity hedge is built to mitigate
the uncertainty associated with the value of the annuity liability at time t + τ , of our
particular interest is

VHt(j,t)(t+ τ) = E (Ht(j, t)|Ft+τ ) ,

the value of the jth q-forward τ years from the time when the hedge is established. Similar
to VLt(t+τ), VHt(j,t)(t+τ) is subject to the uncertainty surrounding the sample path of the
period effects from years t+1 to t+min(τ, Tj). If t+Tj−xj > t−xa, then VHt(j,t)(t+ τ) is
also subject to the uncertainty surrounding the sample path of the cohort effect over years-

8The forward mortality rate may also be computed using other methods, including those proposed by
Chuang and Brockett (2014) and Li et al. (2011).
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of-birth t+1−xa to min(t+τ−xa, t+Tj−xj). We remark here that if t+Tj−xj ≤ t−xa,
then the jth q-forward would not be able to hedge the cohort effect uncertainty involved
in the annuity liability, due to reasons that are mentioned in the previous paragraph.

5.3.3 Hedging Objectives

We consider static and dynamic hedging. For both, two hedging objectives, (1) minimiza-
tion of variance and (2) minimization of Value-at-Risk, are considered.

5.3.3.1 Static Hedging

When we statically hedge the annuity liability, we build a q-forward portfolio at t = tb to
mitigate the uncertainty associated with the value of the liability over a hedging horizon
of τ > 0 years. No adjustment is made to the portfolio during the whole τ -year period.

We use Nj(t) to denote the notional amount of the jth q-forward purchased at time
t. When minimizing the variance of the τ -year ahead values of the hedged position, the
objective function can be expressed as

min
N1(tb),...,Nm(tb)

Var

(
VLtb (tb + τ)−

m∑
j=1

Nj(tb)VHtb (j,tb)(tb + τ)

)
. (5.8)

When minimizing the Value-at-Risk of the τ -year ahead values of the hedged position
(relative to the unhedged mean) at the 99.5% confidence level, the objective function is
given by

min
N1(tb),...,Nm(tb)

VaR0.995

(
VLtb (tb + τ)− VLtb (tb)−

m∑
j=1

Nj(tb)VHtb (j,tb)(tb + τ)

)
, (5.9)

where VaR0.995(y) represents the 99.5th percentile of y.

5.3.3.2 Dynamic Hedging

To dynamically hedge the annuity liability, we first set up at time tb a q-forward portfolio
that minimizes the variance or Value-at-Risk of the values of the hedged position in τ = 1
year. At time tb+1, the existing q-forwards are closed out and a new hedge portfolio, which
is composed of q-forwards that are freshly launched at time tb + 1, is built to minimize the
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variance or Value-at-Risk of the hedged position in the next τ = 1 year. The process is
repeated over the desired duration, say Y years.

To keep the set-up simple, we assume that the q-forwards used always have reference
ages x1, . . . xm and times-to-maturity (measured from the launch date) T1, . . . Tm. We
further assume that no transaction cost is incurred when trading the q-forward contracts.

When we aim to minimize the variance of the 1-year ahead values of the hedged position,
the objective function can be expressed as

min
N1(t),...,Nm(t)

Var

(
VLt(t+ 1)−

m∑
j=1

Nj(t)VHt(j,t)(t+ 1)

)
, (5.10)

for t = tb, tb + 1, . . . , tb + Y − 1. When we aim to minimize the 99.5% Value-at-Risk of the
1-year ahead values of the hedged position (relative to the unhedged mean), the objective
function is given by

min
N1(t),...,Nm(t)

VaR0.995

(
VLt(t+ 1)− VLt(t)−

m∑
j=1

Nj(t)VHt(j,t)(t+ 1)

)
, (5.11)

for t = tb, tb + 1, . . . , tb + Y − 1.

Note that objective function (5.11) is in line with Solvency II’s one-year risk, which, as
Plat (2011) summarized, consists of the following two components:

1. the risk that next year’s realized mortality will be below (or above) its expectation;

2. the risk of a decrease (or increase) in expected mortality beyond next year.

Ignoring the correlations between different risk modules, the difference between VaR0.995(VLt(t+
1)−VLt(t)) (the Value-at-Risk of the unhedged position) and the Value-at-Risk minimized
under (5.11) represents the reduction in the Solvency Capital Requirement (SCR) for year
t+ 1 due to the q-forward hedge portfolio that is built at the beginning of the year.

5.4 Deriving the Optimal Hedging Strategies

5.4.1 Reformulating Lt and Ht(j, t)

As discussed in Section 5.3, Lt and Ht(j, t) are functions of various unrealized period and/or
cohort effects. However, these functional forms are not easy to work with, because there
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exist serial correlations in the period and cohort effects. To get around this problem, we
now reformulate Lt and Ht(j, t) as functions of the innovations (in the stochastic processes
for the period and cohort effects), which, by definition, are free of any serial correlation.

First, let us consider the period effects. Under the trivariate random walk with drift
(equation (5.2)), we can express the period effects for year t+ s as

κ
(i)
t+s = κ

(i)
t + µ(i)s+

s∑
u=1

η
(i)
t+u,

for i = 1, 2, 3. Given Ft, the only random components in the expression are the following
innovations: η

(i)
t+1, . . . , η

(i)
t+s.

Next, we turn to the cohort effects. By rewriting the ARMA(R,M) process (equation
(5.3)) into an infinite MA form, we can express the cohort effect for year-of-birth t−xa+ s
as

γ
(4)
t−xa+s = µ(4)

(
1−

R∑
i=1

φ
(4)
i Bi

)−1

+

(
1 +

M∑
i=1

θ
(4)
i Bi

)(
1−

R∑
i=1

φ
(4)
i Bi

)−1

η
(4)
t−xa+s, (5.12)

where B denotes the backshift operator. Given Ft, the only random terms in the expression
are the following innovations: η

(4)
t−xa+1, . . . , η

(4)
t−xa+s.

Combining the above and the results from Section 5.3, we can draw the following
conclusions. When tb ≤ t < tb + T + ω − x0 (the range of t that is of our interest), Lt is a

function of the following random innovations: η
(i)
t+1, . . . η

(i)
t+T+ω−x0

, where i = 1, 2, 3. Also,

if tb− (x0− T ) + 1 > t− xa, then Lt is also a function of η
(4)
t−xa+1, . . . , η

(4)
tb+T−x0+1. All other

components in Lt are non-random as of time t.

For any t ≥ tb, Ht(j, t) is a function of the following random innovations from the period

effect process: η
(i)
t+1, . . . , η

(i)
t+Tj

, where i = 1, 2, 3. If t+ Tj − xj > t− xa, then Ht(j, t) is also

a function of η
(4)
t−xa+1, . . . , η

(4)
t+Tj−xj . Otherwise, Ht(j, t) involves no unrealized innovation

from the cohort effect process. Other than the mentioned innovations, all components in
Ht(j, t) are non-random as of time t.

We conclude this sub-section by specifying the innovation vector ~ηt and its probability
distribution. We define ~ηt as follows:

~ηt := (η
(1)
t , η

(2)
t , η

(3)
t , η

(4)
t−xa)

′.

Given the model assumptions, ~ηt possesses no serial correlation. It follows a multivariate
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normal distribution with a zero mean vector and a covariance matrix

Q∗ =

(
Q 0
0 (σ(4))2

)
,

where Q and (σ(4))2 are defined in Section 5.2.

5.4.2 Linear Approximations

It follows from equations (5.4) and (5.6) that both Lt and Ht(j, t) are non-linear functions
of the period and cohort effects (and thus non-linear functions of the innovations from
the period and cohort effect processes). To enable an analytical derivation of the hedging
strategies, we approximate Lt and Ht(j, t) with first-order Taylor expansions around the
relevant random innovations.

We let lt and ht(j, t) be the first-order Taylor approximations of Lt and Ht(j, t), respec-
tively. We have

lt = L̂t +

T+ω−x0−t∑
s=1

∂Lt

∂η
(i)
t+s

η
(i)
t+s +

tb−(x0−T )+xa−t+1∑
s=1

∂Lt

∂η
(4)
t−xa+s

η
(4)
t−xa+s, (5.13)

for tb ≤ t < tb + T + ω − x0, and

ht(j, t) = Ĥt(j, t) +
3∑
i=1

Tj∑
s=1

∂Ht(j, t)

∂η
(i)
t+s

η
(i)
t+s +

Tj−xj∑
s=1

∂Ht(j, t)

∂η
(4)
t−xa+s

η
(4)
t−xa+s, (5.14)

for t ≥ tb, where L̂t and Ĥt(j, t) respectively represent the estimates of Lt and Hj,t that are
computed by setting ~ηt+s to ~0 (the expected value of ~ηt+s) for all s > 0. Also, throughout
this chapter, all partial derivatives with respect to the innovations are evaluated at either
the realized innovations (if the innovations are realized) or the expected values of the
innovations (if the innovations are not yet realized).
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Using equation (5.13), we obtain the following approximation for VLt(t+ τ):

VLt(t+ τ) ≈ Vlt(t+ τ)
:= E (lt|Ft+τ )

= E

(
L̂t +

T+ω−x0−t∑
s=1

∂Lt

∂η
(i)
t+s

η
(i)
t+s +

tb−(x0−T )+xa−t+1∑
s=1

∂Lt

∂η
(4)
t−xa+s

η
(4)
t−xa+s

∣∣∣∣∣Ft+τ
)

= L̂t +
3∑
i=1

τ∑
s=1

∂Lt

∂η
(i)
t+s

η
(i)
t+s +

τ∑
s=1

∂Lt

∂η
(4)
t−xa+s

η
(4)
t−xa+s

= L̂t +
τ∑
s=1

(
∂Lt
∂~ηt+s

)′
~ηt+s,

(5.15)

where ∂Lt
∂~ηt+s

=

(
∂Lt

∂η
(1)
t+s

, ∂Lt

∂η
(2)
t+s

, ∂Lt

∂η
(3)
t+s

, ∂Lt

∂η
(4)
t−xa+s

)′
.

Also, using equation (5.14), we have the following approximation for VHt(j,t)(t+ τ):

VHt(j,t)(t+ τ) ≈ Vht(j,t)(t+ τ)
:= E (ht(j, t)|Ft)

= E

(
Ĥt(j, t) +

3∑
i=1

Tj∑
s=1

∂Ht(j,t)

∂η
(i)
t+s

η
(i)
t+s +

Tj−xj∑
s=1

∂Ht(j,t)

∂η
(4)
t−xa+s

η
(4)
t−xa+s

∣∣∣∣∣Ft+τ
)

= Ĥt(j, t) +
3∑
i=1

τ∑
s=1

∂Ht(j,t)

∂η
(i)
t+s

η
(i)
t+s +

τ∑
s=1

∂Ht(j,t)

∂η
(4)
t−xa+s

η
(4)
t−xa+s

= Ĥt(j, t) +
τ∑
s=1

(
∂Ht(j,t)
∂~ηt+s

)′
~ηt+s,

(5.16)

where ∂Ht(j,t)
∂~ηt+s

=

(
∂Ht(j,t)

∂η
(1)
t+s

, ∂Ht(j,t)
∂η

(2)
t+s

, ∂Ht(j,t)
∂η

(3)
t+s

, ∂Ht(j,t)

∂η
(4)
t−xa+s

)′
.

The expression for Vlt(t + τ) contains the partial derivatives of Lt with respect to
different innovations. Those with respect to the period-effect-related innovations can be
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computed analytically as follows:

∂Lt

∂η
(1)
t+k

= −
ω−x0∑
u=1

e−r(T+u)

(
T+u∏
s=1

(1− qx0−T+s−1,tb+s)

)(
T+u∑

s=t−tb+k
qx0−T+s−1,tb+s

)
;

∂Lt

∂η
(2)
t+k

= −
ω−x0∑
u=1

e−r(T+u)

(
T+u∏
s=1

(1− qx0−T+s−1,tb+s)

)
×

(
T+u∑

s=t−tb+k
(x0 − T + s− 1− x̄)qx0−T+s−1,tb+s

)
;

∂Lt

∂η
(3)
t+k

= −
ω−x0∑
u=1

e−r(T+u)

(
T+u∏
s=1

(1− qx0−T+s−1,tb+s)

)
×

(
T+u∑

s=t−tb+k
((x0 − T + s− 1− x̄)2 − σ̂2

x)qx0−T+s−1,tb+s

)
,

(5.17)

for k = 1, . . . ,min(τ, w − x0 + T + (tb − t)), and

∂Lt

∂η
(1)
t+k

=
∂Lt

∂η
(2)
t+k

=
∂Lt

∂η
(3)
t+k

= 0,

for k > w − x0 + T + (tb − t). Those with respect to the cohort-effect-related innovations
can be computed analytically as follows:

∂Lt

∂η
(4)
t−xa+k

= −X(Ct,k)

ω−x0∑
u=1

e−r(T+u)

(
T+u∏
s=1

(1− qx0−T+s−1,tb+s)

)(
T+u∑

s=t−tb+1

qx0−T+s−1,tb+s

)
,

(5.18)

for k = 1, . . . , τ , where Ct,k = tb − (x0 − T ) + 1− (t− xa + k) and

X(s) =


0, if c < 0
1, if s = 0

φ
(4)
1 + θ

(4)
1 , if s = 1∑s−1

i=1 φ
(4)
i X(s− i) + (φ

(4)
s + θ

(4)
s ), if s ≥ 2

(5.19)

with φ
(4)
s = 0 if s > R and θ

(4)
s = 0 if s > M .

The expression for Vht(j,t)(t+ τ) contains the partial derivatives of ht(j, t) with respect
to different innovations. Those respect to the period-effect-related innovations can be
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calculated analytically as follows:

∂Hj(j,t)

∂η
(1)
t+k

= −e−rTj(1− qxj ,t+Tj)qxj ,t+Tj ;
∂Hj(j,t)

∂η
(2)
t+k

= −e−rTj(xj − x̄)(1− qxj ,t+Tj)qxj ,t+Tj ;
∂Hj(j,t)

∂η
(3)
t+k

= −e−rTj((xj − x̄)2 − σ̂2
x)(1− qxj ,t+Tj)qxj ,t+Tj ,

(5.20)

for k = 1, . . . ,min(τ, Tj), and

∂Hj(j, t)

∂η
(1)
t+k

=
∂Hj(j, t)

∂η
(2)
t+k

=
∂Hj(j, t)

∂η
(3)
t+k

= 0,

for k > Tj. Those with respect to the cohort-effect-related innovations can be calculated
analytically as follows:

∂Hj(j, t)

∂η
(4)
t−xa+k

= −X(Tj − xj + xa − k)e−rTj(1− qxj ,t+Tj)qxj ,t+Tj . (5.21)

5.4.3 Minimizing Variance

As discussed in Section 5.3.3, the variance to be minimized is

Var

(
VLt(t+ τ)−

m∑
j=1

Nj(t)VHt(j,t)(t+ τ)

)
,

where t = tb for a static hedge, and t = tb, . . . , T and τ = 1 for a dynamic hedge.

Using equations (5.15) and (5.16), the variance to be minimized can be approximated
as

Var
(
Vlt(t+ τ)−

∑m
j=1Nj(t)Vht(j,t)(t+ τ)

)
=

τ∑
s=1

(
∂Lt
∂~ηt+s

−
∑m

j=1 Nj(t)
∂Ht(j,t)
∂~ηt+s

)′
Q∗
(

∂Lt
∂~ηt+s

−
∑m

j=1Nj(t)
∂Ht(j,t)
∂~ηt+s

)
.

(5.22)

We can calculate the optimal notional amounts N̂1(t), . . . , N̂m(t) by solving the first-
order conditions, that is, by setting the first partial derivatives of (5.22) with respect
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to N1(t), . . . , Nm(t) to zero. The solution is given by


N̂1(t)

...

N̂m(t)

 =


τ∑
s=1

(∂Ht(1,t)
∂~ηt+s

)′Q∗ ∂Ht(1,t)
∂~ηt+s

· · ·
τ∑
s=1

(∂Ht(1,t)
∂~ηt+s

)′Q∗ ∂Ht(m,t)
∂~ηt+s

...
. . .

...

τ∑
s=1

(∂Ht(m,t)
∂~ηt+s

)′Q∗ ∂Ht(1,t)
∂~ηt+s

· · ·
τ∑
s=1

(∂Ht(m,t)
∂~ηt+s

)′Q∗ ∂Ht(m,t)
∂~ηt+s



−1
τ∑
s=1

(∂Ht(1,t)
∂~ηt+s

)′Q∗ ∂Lt

∂~ηt+s

...

τ∑
s=1

(∂Ht(m,t)
∂~ηt+s

)′Q∗ ∂Lt

∂~ηt+s

 .

(5.23)

The second order conditions (not shown) indicate that the solution above minimizes the
variance specified in equation (5.22). Note that the solution above does not depend on
the forward mortality rate, and hence it is unaffected by the assumption about the market
price of risk (λ).

To develop a deeper insight into the solution, let us focus on the case when m = 1
q-forward is used. In this case, the optimal notional amount can be expressed as

N̂1(t) =
k2

k1

, (5.24)

and the minimized variance is

k3 −
k2

2

k1

, (5.25)

where

k1 =
τ∑
s=1

(
∂Ht(1, t)

∂~ηt+s

)′
Q∗
(
∂Ht(1, t)

∂~ηt+s

)
(5.26)

is the approximate variance of Ht(1, t),

k2 =
τ∑
s=1

(
∂Ht(1, t)

∂~ηt+s

)′
Q∗
(
∂Lt
∂~ηt+s

)
(5.27)

is the approximate covariance between Ht(1, t) and Lt, and

k3 =
τ∑
s=1

(
∂Lt
∂~ηt+s

)′
Q∗
(
∂Lt
∂~ηt+s

)
(5.28)
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is the approximate variance of Lt.

How would the solution change if relevant cohort effect uncertainty is not taken into
account? Suppose that cohort effect does exist but the hedger mistakenly ignores cohort
effect uncertainty (i.e., treating (σ(4))2 as zero). In this hypothetical situation, the ex-
pression of the optimized notional amount would exclude the terms involving (σ(4))2 and
become

N̂1(t) =
k2 − c2

k1 − c1

=
k2

(
1− c2

k2

)
k1

(
1− c1

k1

) ,
where

c1 =
τ∑
s=1

(
∂Ht(j, t)

∂η
(4)
t−xa+s

)2

(σ(4))2

can be viewed as the portion of the variance of Hj(j, t) that is contributed from the inno-
vations associated with the cohort effects, and

c2 =
τ∑
s=1

∂Ht(j, t)

∂η
(4)
t−xa+s

· ∂Lt

∂η
(4)
t−xa+s

(σ(4))2

can be understood as the portion of the covariance between Ht(j, t) and Lt that is con-
tributed from the innovations associated with the cohort effects. It is clear that N̂1(t) is
either larger or smaller than the actual optimal notional amount N̂1(t) (which incorporates
cohort effect uncertainty) unless c1/k1 = c2/k2. It can also be seen that N̂1(t) is close to
N̂1(t) when c1/k1 and c2/k2 are close to zero. The conditions under which under which
N̂1(t) and N̂1(t) are equal (or close to each other) are further discussed in Section 5.6
when we present the numerical results. Substituting N1(t) = N̂1(t) into equation (5.22),
we obtain the variance of the values of the hedged position when cohort effect uncertainty
is ignored in the calibration procedure but it actually exists:

k3 − 2k2
k2 − c2

k1 − c1

+ k1

(
k2 − c2

k1 − c1

)2

. (5.29)

The difference between expressions (5.29) and (5.25) is

1

k1

(
k2 − k1

k2 − c2

k1 − c1

)2

,
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which is straightly greater than zero unless c1/k1 = c2/k2.9 It follows that ignoring cohort
effect uncertainty generally leads to a sub-optimal variance minimization.

5.4.4 Minimizing Value-at-Risk

As discussed in Section 5.3.3, the Value-at-Risk to be minimized is

VaR0.995

(
VLt(t+ τ)− VLt(t)−

m∑
j=1

Nj(t)VHt(j,t)(t+ τ)

)
,

which can be approximated as

VaR0.995

(
Vlt(t+ τ)− VLt(t)−

m∑
j=1

Nj(t)Vht(j,t)(t+ τ)

)
,

where t = tb for a static hedge, and t = tb, . . . , T and τ = 1 for a dynamic hedge.

On the basis of equations (5.15) and (5.16) and the fact that the innovation vectors are
i.i.d. multivariate-normally distributed, we know that

Vlt(t+ τ)− VLt(t)−
m∑
j=1

Nj(t)Vht(j,t)(t+ τ)

follows a normal distribution with a mean of

µt = −
m∑
j=1

Nj(t)Ĥt(j, t) (5.30)

and a variance of

Σt =
τ∑
s=1

(
∂Lt
∂~ηt+s

−
m∑
j=1

Nj(t)
∂Ht(j, t)

∂~ηt+s

)′
Q∗

(
∂Lt
∂~ηt+s

−
m∑
j=1

Nj(t)
∂Ht(j, t)

∂~ηt+s

)
. (5.31)

As a shorthand, we use π0.995 to denote the Value-at-Risk at the 99.5% significance

9We can interpret k1 as the approximate variance of Hj(j, t), and thus it is straightly greater than zero.
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level. By definition,

Pr

(
Vlt(t+ τ)− Vlt(t)−

m∑
j=1

Nj(t)Vht(j,t)(t+ τ) ≤ π0.995

)
= 0.995.

Rearranging, we have

Pr

(
Vlt(t+ τ)− Vlt(t)−

∑m
j=1Nj(t)Vht(j,t)(t+ τ)− µt√

Σt

≤ π0.995 − µt√
Σt

)
= 0.995,

which gives

π0.995 = µt +
√

Σt · Φ−1(0.995), (5.32)

where Φ−1(0.995) is the 99.5% quantile of the standard normal distribution.

To derive the optimal notional amounts, we take partial derivative of π0.995 with respect
to N1(t), . . . , Nm(t):

∂π0.995

∂Ni(t)
= −Ĥt(i, t)−

Φ−1(0.995) ·
τ∑
s=1

(
∂Ht(i,t)
∂~ηt+s

)′
Q∗

(
∂Lt
∂~ηt+s

−
m∑
j=1

Nj(t)
∂Ht(j,t)
∂~ηt+s

)
√√√√ τ∑

s=1

(
∂Lt
∂~ηt+s

−
m∑
j=1

Nj(t)
∂Ht(j,t)
∂~ηt+s

)′
Q∗

(
∂Lt
∂~ηt+s

−
m∑
j=1

Nj(t)
∂Ht(j,t)
∂~ηt+s

) ,

for i = 1, . . . ,m. The optimal notional amounts N̂1(t), . . . , N̂m(t) are calculated by solving
the first order conditions,

∂π0.995

∂Ni(t) |Ni(t)=N̂i(t)
= 0, i = 1, . . . ,m

and verifying the second order conditions.

When m = 1 q-forward is used, the first-order condition boils down to a quadratic
equation. The root that satisfies the second-order condition

∂2π0.995

∂(Ni(t))2
|N1(t)=N̂1(t)

> 0
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is

N̂1(t) =
−b−

√
b2 − 4ac

2a
,

where

a =
(
Φ−1(0.995) · k1

)2 − (Ĥt(1, t))
2 · k1,

b = 2
(
−(Φ−1(0.995))2k1 + (Ĥt(1, t))

2
)
· k2,

c = (Φ−1(0.995))2(k2)2 − (Ĥt(1, t))
2k3,

and k1, k2 and k3 are defined in Section 5.4.3.

It is noteworthy that N̂1(t) exists if and only if b2 ≥ 4ac. It can be shown that

b2 − 4ac = 4k1k3

(
k2

2

k1k3

− 1

)
(Ĥt(1, t))

2((Ĥt(1, t))
2 − (Φ−1(0.995))2k1).

Both k1 and k3 are positive, as they respectively represent the approximate variances of
H1(1, t) and Lt. Also, it follows from the interpretations of k1, k2 and k3 that k2/(k1k3)
represents the square of the (approximate) correlation coefficient between Vlt(t + τ) and
Vht(1,t)(t + τ), and is thus strictly smaller than 1. Consequently, a sufficient condition for
b2 ≥ 4ac is

(Ĥt(1, t))
2 ≤ (Φ−1(0.995))2k1, (5.33)

which means (Ĥt(1, t))
2 has to be sufficiently small. On the basis of the pricing formula

specified in equation (5.7), we have

Ĥt(j, t) = e−rTj((1− Tj × λ× vxj)q̂xj ,t+Tj − q̂xj ,t+Tj) = −(Tj × λ× vxj)q̂xj ,t+Tj . (5.34)

Condition (5.33) therefore means that the Sharpe ratio demanded by the q-forward’s coun-
terparty cannot be too large. This condition is studied more deeply in Section 5.6.3 where
we examine the sensitivity of the hedging results to the assumed value of λ.

It is also interesting to note that if the q-forwards are costless (i.e., the Sharpe ratio
λ demanded by the counterparty is zero), then Ĥt(j, t) = 0 for j = 1, . . . ,m.10 In this
case, the optimal notional amounts obtained by minimizing Value-at-Risk and minimizing

10When λ = 0, the forward mortality rate qfxj ,t+Tj
equals q̂xj ,t+Tj , the best estimate of qxj ,t+Tj calculated

by switching off all random innovations beyond time t. As such, Ht(j, t) = e−rTj (q̂xj ,t+Tj − qxj ,t+Tj ) and
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variance would be identical. In particular, for m = 1, when Ĥt(j, t) = 0, we have

a = (Φ−1(0.995)k1)2, b = −2(Φ−1(0.995))2k1k2, c = (Φ−1(0.995)k2)2

and consequently N̂1(t) = k2/k1, which is the same as the expression for N̂1(t) when the
objective is to minimize variance.

5.5 Evaluating Hedge Effectiveness

5.5.1 The Metrics

When the hedging objective is to minimize variance, we measure hedge effectiveness as the
proportion of variance reduced. For a static hedge, the metric can be expressed as

HEVar = 1−
Var(VLtb (tb + τ)−

∑m
j=1 Nj(tb)VHtb (j,tb)(tb + τ))

Var(VLtb (tb + τ))
. (5.35)

For a dynamic hedge, the metric (applicable to year t+ 1) is given by

HEVar
t = 1−

Var(VLt(t+ 1)−
∑m

j=1Nj(t)VHt(j,t)(t+ 1))

Var(VLt(t+ 1))
, (5.36)

for t = tb, tb + 1, . . . , tb +Y − 1. The value of this metric is close to 1 if the longevity hedge
is effective, and close to 0 if otherwise.

When the hedging objective to minimize Value-at-Risk, we measure hedge effectiveness
as the absolute reduction in Value-at-Risk. For a static hedge, the metric is given by

HEVaR0.995 = VaR0.995

(
VLtb (t+ τ)− VLtb (tb)

)
− VaR0.995

(
VLtb (t+ τ)− VLtb (tb)−

∑m
j=1 Nj(tb)VHtb (j,tb)(tb + τ)

)
.

(5.37)

For a dynamic hedge, the metric (applicable to year t+ 1) can be expressed as:

HEVaR0.995
t = VaR0.995 (VLt(t+ 1)− VLt(t))

− VaR0.995

(
VLt(t+ 1)− VLt(t)−

∑m
j=1Nj(t)VHt(j,t)(t+ 1)

)
,

(5.38)

Ĥt(j, t) = e−rTj (q̂xj ,t+Tj − q̂xj ,t+Tj ) = 0.
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for t = tb, tb + 1, . . . , tb + Y − 1. Of course, the larger this metric is, the more effective the
longevity hedge is. Also, as discussed in Section 5.3.3.2, the metric specified by equation
(5.38) can be loosely interpreted to mean the reduction in the Solvency II SCR for year
t+ 1 due to the q-forward hedge portfolio that is built at the beginning of the year.

5.5.2 Evaluation by Analytical Approximations

The metrics specified in the previous subsection can be computed using analytical ap-
proximations. In particular, we can use equation (5.22) to approximately calculate metrics
(5.35) and (5.36), and equations (5.30), (5.31) and (5.32) to approximately compute metrics
(5.37) and (5.38). This method requires no simulation.

5.5.3 Evaluation by Simulations

5.5.3.1 The Potential Computational Burden

Alternatively, for a more exact calculation of the hedge effectiveness metrics, we may use
simulations. However, this approach to evaluating a value hedge typically requires nested
simulations.

To illustrate, let us consider a static hedge with a hedging horizon of τ . Suppose thatM1

sets of sample paths (of the period effects beyond time tb and the cohort effects beyond year-
of-birth tb−xa) are generated for assessing the effectiveness of the hedge. For each one of the
M1 sets of sample paths, we need to value the annuity liability and q-forwards as of time tb+
τ ; that is, to calculate VLtb (tb+τ) = E(Ltb|Ftb+τ ) and VHtb (j,tb)(tb+τ) = E(Htb(j, tb)|Ftb+τ ),
which have no exact analytical form. To evaluate these expectations, another M2 sets of
sample paths (of the period effects beyond time tb + τ and the cohort effects beyond year-
of-birth tb − xa + τ) have to be generated. Because of the serial correlations in the period
and cohort effect processes, these expectations depend on the realizations from time tb + 1
to tb + τ and from year-of-birth tb − xa + 1 to tb − xa + τ . What this means is that we
need to generate additional M2 sets of sample paths for each one of the M1 sets of sample
paths. In effect, M1 × M2 sets of sample paths are required. Generally speaking, M1

and M2 are large, say 10,000, and therefore the computation burden is substantial. If the
hedge is dynamic, then the computation burden would be even more significant, requiring
M1 ×M2 × Y sets of sample paths.
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Figure 5.4: An illustration of the innovation-based simulation method. In the diagram, ~ηu(i)
represents the innovation vector at t = u in the ith sample path. The block enclosed by the
rectangle is used for computing VLtb (tb + τ) and VHtb (j,tb)(tb + τ) for each node i at t = τ .

5.5.3.2 An Innovation-Based Simulation Procedure

We now propose a method that saves the need for nested simulations. As discussed in
Section 5.4.1, Lt and Ht(j, t) can be expressed as functions in which the innovation vectors
~ηt+s, s = 1, 2, . . ., are the only random components. On the basis of this fact, in the
proposed method we simulate sample paths of the innovations vectors rather than the
period and cohort effects. We can then use the fact that the innovation vectors are not
serially correlated to save computational effort.

To explain, we consider again a static hedge with a hedging horizon of τ . Suppose
that we generate M1 sample paths of innovation vectors to evaluate the effectiveness of
the hedge, and for each of these M1 sample paths, we use M2 sample paths of innovation
vectors to value the liability and the hedge portfolio at time tb+ τ . Because the innovation
vectors possess no serial correlation, the innovation vectors used for valuation at t = tb + τ
do not depend on the realized innovation vectors at t = tb + 1, . . . , tb + τ . Hence, the same
set of M2 sample paths for valuation purposes can be used for each of the M1 sample paths,
thereby avoiding the need for nested simulations.

The idea is illustrated in Figure 5.4. For ease of exposition, we assume here that
M2 = M1. As shown in the diagram, M1 sample paths of the innovation vectors for
t = tb + 1, . . . , tb + T + ω − x0 are generated. We can use these M1 sample paths to
compute VLtb (tb) in metrics (5.35) and (5.37). Because the innovation vectors are not
serially correlated, ~ηtb+s for s > τ do not depend on the realizations of ~ηtb+s for s ≤ τ . As
such, we can use the same collection of innovation vectors to calculate VLtb (tb + τ) (the
liability’s value) and VHtb (j,tb)(tb + τ) (the hedge portfolio’s value) in metrics (5.35) and
(5.37) for each note i = 1, . . . ,M1 at time tb + τ . Furthermore, because the innovation
vectors are identically distributed, we can ‘reuse’ part of the M1 simulated innovation
vectors (the portion enclosed by the rectangle) to compute VLtb (tb+τ) and VHtb (j,tb)(tb+τ).
In the entire process of hedge effectiveness evaluation, only M1 sample paths of innovation
vectors are needed.
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By dividing the innovation vectors shown in Figure 5.4 into (overlapping) blocks with
the same height (M1) but different widths (ranging from 1 to T + ω − x0 − 1), the idea
can also be applied to an annually adjusted dynamic hedge. The total number of sample
paths required is still M1, even if the hedge is rebalanced periodically.

5.5.4 The Best Achievable Hedge Effectiveness

To assess the quality of the proposed method for calibrating longevity hedges, we compare
the hedge effectiveness resulting from the proposed method against the best achievable
hedge effectiveness, which is calculated as follows:

(i) treat the M1 simulated mortality scenarios as known a priori outcomes;

(ii) on the basis of the M1 scenarios, numerically identify the notional amounts that
would optimize the chosen hedge effectiveness metric;

(iii) the hedge effectiveness resulting from the notional amounts identified in the previous
step can be interpreted as the best achievable hedge effectiveness.

Of course, if the proposed calibration method is good, then it should yield a hedge effec-
tiveness that is sufficiently close to the best achievable hedge effectiveness.

5.6 Numerical Illustrations

5.6.1 The Baseline Results

Let us begin by stating the baseline assumptions. In line with the set-up described in
Section 5.3, the liabilities being hedged are deferred life annuities that are sold at the end
of year tb = 2011 when the data sample period terminates. For all annuities, the age at
which the period of deferral ends is always x0 = 60, and the highest attainable age is
ω = 100. The annuities have deferral periods ranging from T = 6 to T = 20 years, which
means that they are respectively associated with years-of-birth from 1958 to 1972. As the
largest year-of-birth covered by the data sample is tb−xa = 2011− 50 = 1961, some of the
annuity liabilities are subject to cohort effect uncertainty but some are not.

The hedge portfolio consists of m = 1 q-forward. It is assumed that three q-forwards
with the same reference age (x1 = 65) but different times-to-maturity (T1 = 11, 16, 21)
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Figure 5.5: The relationship between HEVar and the period of deferral T for different
q-forward choices.

are available in the market. These combinations of x1 and T1 imply that the q-forwards
are associated with years-of-birth 1957, 1962 and 1967, respectively. When calculating the
forward mortality rates, it is assumed that the annualized Sharpe ratio demanded by the
counterparty is λ = 0.

The hedge is established at the end of year tb = 2011 (i.e., at the same time when
the annuities are sold). We consider a hedging horizon of τ = 1 year for the following
two reasons. First, the results for τ = 1 are the most informative, as a dynamic hedge is
simply a repeated execution of static hedges with τ = 1. Second, when τ = 1, some of the
analytical expressions in Section 5.4 can be simplified, thereby allowing us to more easily
link the empirical results to the theoretical work. When valuing the annuity liabilities and
the q-forwards, a continuously compounded risk-adjusted discount rate of r = 0.01 per
annum is assumed.

The relationships between the calculated hedge effectiveness and the annuity’s period of
deferral under different circumstances are displayed in Figure 5.5 (when the objective is to
minimize variance) and Figure 5.6 (when the objective is to minimize Value-at-Risk). Sep-
arate panels are used to distinguish the results based on different q-forward specifications.
Each panel shows three sets of results that are obtained from the same collection of sample
paths: (1) the results that are based on the proposed calibration method with cohort effect
uncertainty taken into consideration (the green line labeled “with cohort effect”); (2) the
results that are based on the proposed calibration method but cohort effect uncertainty
is ignored (the red line labeled “no cohort effect”); (3) the best achievable results given
the collection of sample paths (the blue line labeled “best achievable”). All results are
calculated using the innovation-based simulation procedure described in Section 5.5.3.

Let us first compare the green and blue lines. For all circumstances under consideration,
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Figure 5.6: The relationship between HEVaR0.995 and the period of deferral T for different
q-forward choices.

these two lines are very close to each other, indicating that the proposed calibration method
yields a hedge effectiveness that is very close to the highest hedge effectiveness that one
can possibly achieve.

We then compare the green and red lines. The gap between these two lines reflects
the benefit of incorporating cohort effect uncertainty in the calibration procedure. When
the q-forward with x1 = 65 and T1 = 11 is used (the left panels), the green and red lines
coincide. This outcome is because the q-forward, which is linked to a cohort (year-of-
birth 1957) that is already realized in the data sample, is not subject to any cohort effect
uncertainty. As a result, no matter how the hedge is calibrated, it is not able to offset any
cohort effect uncertainty involved in the annuity liability. The other two q-forwards are
related to unrealized cohorts (years-of-birth 1962 and 1967), so a gap between the green
and red lines exists when either one of them is used. For the q-forward with x1 = 65
and T1 = 16 (the middle panels), the benefit of incorporating cohort effect uncertainty is
remarkable, but for the q-forward with x1 = 65 and T1 = 21 (the right panels), the benefit
is only marginal.

We now explain why the benefit of incorporating cohort effect uncertainty depends on
the choice of q-forwards. Recall that for a static hedge with m = 1 q-forward, the optimized
notional amount11 when cohort effect uncertainty is ignored is

N̂1(tb) =
k2

(
1− c2

k2

)
k1

(
1− c1

k1

) ,
11We assume λ = 0 in the baseline results. As discussed in Section 5.4.4, when λ = 0, the optimal

notional amounts for both hedging objectives under consideration would be the same.
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whereas the optimized notional amount when cohort effect uncertainty is taken into account
is

N̂1(tb) =
k2

k1

.

These two notional amounts (and hence the corresponding hedge effectiveness values) are
close to each other if

c1

k1

=

(
∂Htb (1,tb)

∂η
(4)
tb−xa+1

)2 (
σ(4)
)2

(
∂Htb (1,tb)

∂~ηtb+1

)′
Q∗
(
∂Htb (1,tb)

∂~ηtb+1

) , (5.39)

the proportion of the variance ofHtb(1, tb) that is contributed from cohort effect uncertainty,
and

c2

k2

=

(
∂Htb (1,tb)

∂η
(4)
tb−xa+1

)(
∂Ltb

∂η
(4)
tb−xa+1

)(
σ(4)
)2

(
∂Ltb
∂~ηtb+1

)′
Q∗
(
∂Htb (1,tb)

∂~ηtb+1

) , (5.40)

the proportion of the covariance between Htb(1, tb) and Ltb that is contributed from cohort
effect uncertainty, are close to zero. Equivalently speaking, the benefit of incorporating
cohort effect uncertainty tends to be moderate if cohort effects are not that influential in
Var(Htb(1, tb)) and cov(Htb(1, tb), Ltb).

Table 5.2 reports the values of c1/k1 and c2/k2 for different combinations of the q-
forward’s maturity (T1) and the liability’s deferral period (T ) when the q-forward’s refer-
ence age x1 is fixed to 65. As expected, for T1 ≤ 15, both ratios are zero because in this
case Htb(1, tb) is not related to any unrealized cohort. Also, when T = 5, c2/k2 = 0 for all
values of T1 because in this case Lt is not related to any realized cohort. Other than c2/k2

for T = 5, the ratios are the highest when T1 = 16, but reduce rapidly as T1 increases.
This pattern explains why the gaps between the red and green lines in the middle panels
of Figures 5.5 and 5.6 are wide, but those in the right panels are narrow.

A natural question to ask is what attributes to the observed patterns of c1/k1 and c2/k2.
For a given specification of the liability being hedged, c1/k1 and c2/k2 tend to be small
when

∂H1(1, tb)

∂η
(4)
tb−xa+1

= −X(Tj − xj + xa − 1)e−rT1(1− qx1,tb+T1)qx1,tb+T1
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Table 5.2: The values of c1/k1 and c2/k2 for different combinations of the q-forward’s maturity
(T1) and the liability’s deferral period (T ). The q-forward’s reference age x1 is fixed to 65.

T1 ≤ 15 16 17 18 19 20 21

T = 20
c1/k1 0 0.3336 0.0115 0.0036 0.0012 0.0004 0.0001
c2/k2 0 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000

T = 15
c1/k1 0 0.3336 0.0115 0.0036 0.0012 0.0004 0.0001
c2/k2 0 0.0065 0.0010 0.0006 0.0003 0.0002 0.0001

T = 10
c1/k1 0 0.3336 0.0115 0.0036 0.0012 0.0004 0.0001
c2/k2 0 0.2995 0.0612 0.0353 0.0201 0.0114 0.0064

T = 5
c1/k1 0 0.3336 0.0115 0.0036 0.0012 0.0004 0.0001
c2/k2 0 0 0 0 0 0 0

is small in magnitude. It can be seen that the partial derivative is proportional to X(T1−
x1 + xa − 1). Specified in equation (5.19), X(s) is the coefficient of η

(4)
t−xa+s in equation

(5.12), the infinite MA form of the cohort effect process. Given the estimates of θ
(4)
1 and

φ
(4)
1 , X(T1−x1 +xa− 1) = X(T1− 65 + 50 + 1) equals 1 when T1 = 16; however, it reduces

dramatically to 0.1524 when T1 = 17 and reduces in an exponential manner to 0 when T1

increases further. Thus, the assumed cohort effect process has a significant influence on
c1/k1 and c2/k2, and consequently the benefit of incorporating cohort effect uncertainty.

The results shown in Figures 5.5 and 5.6 highlight an important fact: even if the annuity
liability is not linked to any unrealized cohort, incorporating cohort effect uncertainty into
the calibration process may still result in a more effective hedge. This fact can be identified
most easily in the middle panels, from which we observe that the gaps between the green
and red lines remain when the annuity’s period of deferral T is less than 10 (i.e., the
year-of-birth associated with the annuity is earlier than 1961). We can explain this fact
by considering again the expressions for N̂1(tb) and N̂1(tb). When the annuity liability is
not linked to any unrealized cohort, c2 equals zero. However, c1 may still be positive (and
large in magnitude) as it is not related to the annuity liability. Therefore, N̂1(tb) may
still be significantly different from N̂1(tb), which means the incorporation of cohort effect
uncertainty still matters.

In each panel of Figures 5.5 and 5.6, we observe a spike at T = 10. More interestingly,
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the spikes in the middle panels point upwards, but the spikes in the left and right panels
point downwards. We can explain the spikes in the patterns of HEVar by noting that the
analytical approximation of the optimized HEVar is given by

1−
k3 − k2

2

k1

k3

=
k2

2

k1k3

, (5.41)

in which k1 is positively related to ∂Htb(1, tb)/∂η
(4)
tb−xa+1, k3 is positively related to ∂Ltb/∂η

(4)
tb−xa+1,

and k2 is positively related to the product of ∂Htb(1, tb)/∂η
(4)
tb−xa+1 and ∂Ltb/∂η

(4)
tb−xa+1.12

Furthermore, ∂Htb(1, tb)/η
(4)
tb−xa+1 is proportional to X(T1 − x1 + xa − 1), and

∂Lt

∂η
(4)
tb−xa+1

= −X(xa−x0+T )

ω−x0∑
u=1

e−r(T+u)

(
T+u∏
s=1

(1− qx0−T+s−1,tb+s)

)(
T+u∑

s=t−tb+1

qx0−T+s−1,tb+s

)

is proportional to X(xa − x0 + T ). The following conclusions can then be drawn.

• x1 = 65 and T1 = 11 (the left panel)

At T = 10, we have X(xa−x0 +T ) = X(50−60+10) = X(0). As mentioned earlier,

given our estimates of θ
(4)
1 and φ

(4)
1 , X(s) is exceptionally large when s = 0, and

therefore when T approaches 10, k3 (which is positively related to X(xa − x0 + T ))
increases sharply. On the other hand, as T approaches 10, k1 remains unchanged
because it is unrelated to the annuity liability (and the annuity’s deferral period T ).
Also, k2 remains unchanged, because it is related to X(xa − x0 + T ) through the

product of ∂Ltb/∂η
(4)
tb−xa+1 and ∂Htb(1, tb)/∂η

(4)
tb−xa+1, but ∂Htb(1, tb)/∂η

(4)
tb−xa+1 = 0

when x1 = 65 and T1 = 11 (because the cohort to which the q-forward is linked
is already realized at tb = 2011). Overall, as T approaches 10, the denominator of
expression (5.41) increases sharply but the numerator remains unchanged, rendering
a downward spike in the optimized hedge effectiveness.

• x1 = 65 and T1 = 16 (the middle panel)

At T = 10, we have not only X(xa − x0 + T ) = X(50 − 60 + 10) = X(0) but also
X(T1−x1+xa−1) = X(16−65+50−1) = X(0). Hence, as T approaches 10, both k2

(which is positively related to the product of X(xa−x0 +T ) and X(T1−x1 +xa−1))

12A larger value of ∂Htb(1, tb)/∂η
(4)
tb−xa+1 means that Htb(1, tb) is more sensitive to η

(4)
tb−xa+1. As such,

Htb(1, tb) is subject to more cohort effect uncertainty, and therefore k1 – which represents the (approximate)

variance Htb(1, tb) – would increase if ∂Htb(1, tb)/∂η
(4)
tb−xa+1 is larger. Similar arguments can be used to

explain the other two relationships.
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and k3 (which is positively related to X(xa − x0 + T )) increase sharply. Overall, as
T approaches 10, both the numerator and denominator of expression (5.41) increase
significantly, resulting in an optimized hedge effectiveness that is much closer to 1.

• x1 = 65 and T1 = 21 (the right panel)

The situation in this case is the same as that when x1 = 65 and T1 = 11, except that
∂Htb(1, tb)/∂η

(4)
tb−xa+1 is non-zero. Still, ∂Htb(1, tb)/∂η

(4)
tb−xa+1 is close to zero (0.0137),

because it is proportional to X(T1 − x1 + xa − 1) = X(21 − 65 + 50 − 1) = X(5),

which is very close to zero given our estimates of θ
(4)
1 and φ

(4)
1 . Therefore, although

k2 increases as T approaches 10, the increase in k2 tends to be mild in comparison
to that in k3. Overall, as T approaches 10, the denominator of expression (5.41)
increases sharply while the numerator only increases gently, leading to a downward
spike in the optimized hedge effectiveness.

One final interesting observation is that when x1 = 65 and T1 = 16 (i.e., when the
q-forward is linked to year-of-birth 1962), the gap between the green and red lines is
significant for the entire range of T except T = 10 (i.e., when the annuity liability is also
linked to year-of-birth 1962). This observation suggests that the benefit of incorporating
cohort effect uncertainty is minimal when the annuity liability and the q-forward are linked
to the same cohort. To explain why, we consider the following two facts.

First, as shown in Table 5.1, Q∗(1, 1) (the variance of η
(1)
t ) and Q∗(4, 4) ((σ(4))2, the

variance of η
(4)
t−x) are significantly larger than the other elements in Q∗. It follows that

k1 ≈

(
∂Htb(1, tb)

∂η
(1)
tb+1

)2

Q∗(1, 1) +

(
∂Htb(1, tb)

∂η
(4)
tb−xa+1

)2

(σ(4))2

and

k2 ≈

(
∂Htb(1, tb)

∂η
(1)
tb+1

)(
∂Ltb

∂η
(1)
tb+1

)
Q∗(1, 1) +

(
∂Htb(1, tb)

∂η
(4)
tb−xa+1

)(
∂Ltb

∂η
(4)
tb−xa+1

)
(σ(4))2.

Second, when the annuity liability and the q-forward are associated with the same year-of-
birth, we have tb+T1−x1 = tb−(x0−T )+1, which implies T1−x1+xa−1 = xa−x0+T = Ctb,1
and hence

X(T1 − x1 + xa − 1) = X(Ctb,1).
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It then follows from equations (5.17), (5.18), (5.20) and (5.21) that

∂Htb(1, tb)

∂η
(1)
tb+1

=
∂Htb(1, tb)

∂η
(4)
tb−xa+1

and
∂Ltb

∂η
(1)
tb+1

=
∂Ltb

∂η
(4)
tb−xa+1

.

Using these two facts and equations (5.39) and (5.40), we can deduce that if the annuity
liability and the q-forward are linked to the same cohort, then c1/k1 would be close to
c2/k2 and consequently N̂1(tb) would be close to N̂1(tb) (even though c1/k1 and c2/k2 may
be significant greater than zero).13 Therefore, in this case, the sub-optimality due to the
ignorance of cohort effect uncertainty is minimal.

5.6.2 The Impact of the Persistency in the Cohort Effects

The baseline results reveal that the benefit from incorporating cohort effect uncertainty
depends critically on X(s), which in turn depends on parameters θ

(4)
1 and φ

(4)
1 . As X(s)

represents the coefficient of the lag-s innovation in infinite MA form of the cohort effect
process (equation (5.12)), it may be regarded as a measure of the persistency in the cohort
effects. In particular, if X(s) decays rapidly as s increases from zero, then an innovation
in a certain year-of-birth would have only a small impact on the cohort effect a few years-
of-birth ahead; and the opposite is true if the decay in X(s) is slow. On the basis of our

parameter estimates, we have θ
(4)
1 + φ

(4)
1 = 0.1524, which yields a high rate of decay in

X(s). The baseline results are thus based on cohort effects with a very low persistency.

In this sub-section, we study how the hedging results may change if cohort effects are
more persistence. To achieve this goal, we consider four hypothetical combinations of
parameters θ

(4)
1 and φ

(4)
1 , which are shown in Table 5.3. As demonstrated in Figure 5.7,

the alternative parameters imply higher cohort effect persistency compared to the baseline
(estimated) parameters. Under the first three sets of alternative parameters, the cohort
effect process is stationary. However, under the last set of alternative parameters, the
cohort effect process is a non-stationary random walk, which means that every innovation
has a permanent impact on the forthcoming cohort effects. Except the assumptions about
θ

(4)
1 and φ

(4)
1 , all assumptions in the previous sub-section remain the unchanged.

The hedging results on the basis of the alternative parameter sets are shown in Figures
5.8 (when the objective is to minimize variance) and 5.9 (when the objective is to minimize
Value-at-Risk). Let us first focus on the results generated using Parameter Set 1 (panels
(a), (b) and (c)). One striking difference from the baseline results is that the spikes in

13For T = 10, x1 = 65 and T1 = 16, we have c1/k1 = 0.3336 and c2/k2 = 0.2995 (see Table 5.2).
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Table 5.3: The four sets of hypothetical ARMA(1,1) parameters for the analysis in Section 5.6.2.

φ
(4)
1 θ

(4)
1 φ

(4)
1 +θ

(4)
1

Parameter Set 1 0.9 −0.1 0.8
Parameter Set 2 0.9 0.05 0.95
Parameter Set 3 0.9 0.3 1.2
Parameter Set 4 1 0 1
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Figure 5.7: The patterns of X(s) implied by the baseline (estimated) parameters and the
four sets of alternative parameters. Note: X(s) = 0 for s < 0 regardless of the parameter
choice.

the hedge effectiveness are less sharp. As explained in the previous sub-section, the spikes
arise because X(s) is particularly large at s = 0. Under the alternative parameter set,
X(s) reduces more gently as s increases from zero, and therefore sharpness of the spikes
is reduced. Another striking difference is that when the alternative parameter set is used,
the spike in the hedge effectiveness for x1 = 65 and T1 = 21 points upwards instead of
downwards. As discussed in the previous sub-section, the direction of the spike depends on
the magnitude of X(5): the spike would point upwards if X(5) is large, but downwards if
X(5) is zero or close to zero. For x1 = 65 and T1 = 21, X(5) is close to zero (0.0137) under
the baseline parameters, but is much higher (0.5249) under the alternative parameter set.
The increase in X(5) explains the change in the direction of the spike.
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Next, we move to the results generated using Parameter Sets 2 (panels (d), (e) and
(f)) and 3 (panels (g), (h) and (i)). These results are very similar to those produced using
Parameter Set 1. However, because the rates of change in X(s) implied by Parameter Sets
2 and 3 are even gentler, the sharpness of the spikes in the hedge effectiveness reduces even
further. Also, we observe that for Parameter Set 3, the spikes occur at T = 11 rather than
T = 10. The change in the location of the spikes is because X(s) under Parameter Set 3
attains its maximum at s = 1 instead of s = 0.

Finally, we study the results produced using Parameter Set 4 (panels (j), (k) and (l)).
Under Parameter Set 4, we have X(s) = 1 for all s ≥ 0. As such, the spikes in the
hedge effectiveness disappear. When a q-forward linked to a realized cohort is used (panel
(j)), the hedge effectiveness is reasonably high when T < 10 (i.e., when the liability is
also linked to a realized cohort) but becomes substantially lower when T ≥ 10 as the
q-forward is unable to mitigate the cohort effect uncertainty in the liability. When a q-
forward linked to an unrealized cohort is used (panels (k) and (l)), the hedging results for
T < 10 and T ≥ 10 are also very different. When T < 10, c1 > 0 but c2 = 0 because
the annuity liability is linked to a realized cohort. Therefore, for this range of T , N̂1(tb) is
quite different from N̂1(tb) and consequently the gaps between the green and red lines are
significant. When T ≥ 10, we have X(T1 − x1 + xa − 1) = X(xa − x0 + T ) = 1, which,
according to the arguments presented in the previous sub-section, leads to c1/k1 ≈ c2/k2

and consequently N̂1(tb) ≈ N̂1(tb). Therefore, for this range of T , the gaps between the
green and red lines are very narrow. It is also noteworthy that panels (k) and (l) look
identical. As discussed in the previous sub-section, the impact of T1 on the hedging results
lies in the value of X(T1− x1 + xa− 1) = X(T1− 65 + 50− 1). Under Parameter Set 4, we
have X(T1 − 65 + 50 − 1) = 1 for any T1 ≥ 16, and therefore the results shown in panels
(k) and (l) are the same.

5.6.3 The Effects of τ and λ

The baseline results assume that τ = 1 and λ = 0. For completeness, in this section we
sensitivity test τ and λ, while keeping all other assumptions unchanged.

Figure 5.10 shows the relationship between the calculated hedge effectiveness and the
hedging horizon τ . The results are based on a deferral period of T = 20 years and a
q-forward with a reference age of x1 = 65 and a time-to-maturity of T1 = 16 years. It
can be observed that the calculated hedge effectiveness increases with τ when τ ≤ 16, but
decreases when τ > 16. We may understand this observed relationship by noting that the
optimized value of HEVar is k2

2/(k1k3) and by revisiting the expressions for k1, k2 and k3

(equations (5.26) to (5.28)). For τ ≤ T1, k1, k2 and k3 all increase monotonically with τ , as
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(c) Set 1; x1 = 65, T1 = 21

20 18 16 14 12 10 8 6

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

H
E

V
a
r

Period of deferral (T)

 

 

Best Achievable

With Cohort Effect

No Cohort Effect
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(f) Set 2; x1 = 65, T1 = 21
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(g) Set 3; x1 = 65, T1 = 11

20 18 16 14 12 10 8 6
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

H
E

V
a
r

Period of deferral (T)

 

 

Best Achievable

With Cohort Effect

No Cohort Effect
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(j) Set 4; x1 = 65, T1 = 11
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(k) Set 4; x1 = 65, T1 = 16
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Figure 5.8: The calculated values of HEVar under the four parameter sets specified in Table 5.3.
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(g) Set 3: x1 = 65, T1 = 11

20 18 16 14 12 10 8 6

0.05

0.1

0.15

0.2

0.25

0.3

0.35

H
E

V
a
R

0
.9

9
5

Period of deferral (T)

 

 

Best Achievable

With Cohort Effect

No Cohort Effect

(h) Set 3: x1 = 65, T1 = 16
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(i) Set 3: x1 = 65, T1 = 21
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(j) Set 4: x1 = 65, T1 = 11
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(k) Set 4: x1 = 65, T1 = 16
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Figure 5.9: The calculated values of HEVaR0.995 under the four parameter sets specified in Table
5.3.
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(b) Value-at-Risk Minimization

Figure 5.10: The calculated values of HEVar and HEVaR0.995 for different hedging horizons. It is
assumed that T = 20, x1 = 65 and T1 = 16.

every term in the summands in equations (5.26) to (5.28) is non-negative. In this example,
k2

2 increases at a faster rate than k1k3, leading to a rise in the optimized HEVar for τ ≤ 16.
However, for τ > T1, k2 may reduce with τ , because ∂Htb(1, tb)/∂~ηtb+s = 0 for s > T1 (as
the value of the q-forward is unrelated to any innovation vector beyond the q-forward’s
maturity) and ∂Ltb/∂~ηtb+s < 0 (as the value of the liability increases when the values of
the innovations decrease). The possible reduction in k2 explains the observed downward
trend when τ > 16.

We also observe in Figure 5.10 that the benefit of incorporating cohort effect uncertainty
diminishes as τ increases. This observation follows from the specifications of the annuity
liability and the q-forward. In this example, both the annuity liability and the q-forward
are linked to year-of-birth 1962 (one year ahead of the last year-of-birth covered by the
data sample). As such, no matter how large τ is, the only unrealized cohort-effect-related
innovation involved in VLtb (tb + τ) and VHtb (1,tb)(tb + τ) is the one that is one step ahead
of the forecast origin. On the other hand, as τ increases, the number of unrealized period-
effect-related innovations involved in VLtb (tb + τ) and VHtb (1,tb)(tb + τ) increases.14 Overall,
when τ becomes higher, cohort effect uncertainty plays a less significant role, and hence
the benefit of incorporating cohort effect uncertainty reduces.

14It follows from the definitions in Section 5.3 that VLtb
(tb+ τ) involves the period-effect-related innova-

tions from time tb+1 to tb+min(τ, T+ω−x0), whereas VHtb
(1,tb)(tb+τ) involves to the period-effect-related

innovations from time t+ 1 to t+ min(τ, Tj).
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(b) Optimized notional amount

Figure 5.11: The calculated values of HEVaR0.995 and the corresponding optimized notional
amounts for 0 ≤ λ ≤ 4.5. It is assumed that T = 20, x1 = 65 and T1 = 16.

As explained in Section 5.4, if the objective is to minimize variance, then the market
price of risk λ demanded by the counterparty (the fixed-rate payer) has no impact on the
optimal notional amounts. However, if the objective is to minimize Value-at-Risk, then the
value of λ affects the optimal notional amounts and consequently the hedge effectiveness.
Figure 5.11 shows the calculated values of HEVaR0.995 and the corresponding optimized
notional amounts for different assumed values of λ. The results are based again on the
assumptions that T = 20, x1 = 65 and T1 = 16 years, and have incorporated cohort effect
uncertainty.

When λ is greater than zero, the q-forward is no longer costless. As the hedge cost
(which is proportional to the notional amount) offsets the benefit from the correlation
effects, it is optimal to acquire a smaller notional amount and the optimal hedge effec-
tiveness reduces accordingly. This argument explains what we observe when λ increases
from 0 to 3.4. When λ = 3.4, the hedge cost completely offsets the benefit from the
correlation effects, leading both the optimal notional amount and the hedge effectiveness
to zero. Mathematically, equation (5.34) implies that (Ĥtb(1, tb))

2 = 0 when λ = 0 and

that (Ĥtb(1, tb))
2 increases with λ. At λ = 3.4, (Ĥtb(1, tb))

2 reaches (Φ−1(0.995))2(k2)2/k3,

resulting in c = 0 and thus N̂1(tb) = 0.

A higher λ means a more generous reward to the fixed-rate payer. When λ increases
further, the reward to the fixed-rate payer becomes so high that the annuity provider
would be better off if it participates in the q-forward as a fixed-rate payer rather than a
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fixed-rate receiver. For this reason, when λ is larger than 3.4, the optimal notional amount
becomes negative (which means a participation as a fixed-rate payer). As λ increases even
further, the reward to the fixed-rate payer would eventually reach a level that a more
negative notional amount would always bring more benefit to the annuity provider. In this
case, the optimal notional amount does not exist. Mathematically, when λ exceeds 4.5,
(Ĥtb(1, tb))

2 is strictly greater than (Φ−1(0.995))2k1,15 violating condition (5.33) and hence

resulting in no solution to N̂1(tb).

5.7 Conclusion

Cohort effect uncertainty often plays a role in an index-based longevity hedge, because
either the liability being hedged, the hedging instrument, or both are associated with
cohorts that are not yet realized. However, it is largely overlooked in the existing methods
for calibrating index-based longevity hedges. When cohort effect uncertainty is present
but is not taken into account in the hedging strategy, the resulting longevity hedge may
perform sub-optimally.

In this chapter, we have contributed a hedge calibration method that fully incorporates
cohort effect uncertainty. With the proposed method, one can find the notional amounts
that minimizes the variance or Value-at-Risk of the τ -year ahead values of the hedged
position. The optimized notional amounts can be expressed in terms of Q∗ (the covariance
matrix of the innovation vector) and various partial derivatives that can be analytically
computed. By setting τ = 1 and executing the calibration method every year, an annually-
adjusted dynamic longevity hedge can be created easily.

We have also contributed a method that eases the computation burden required in
evaluating a value longevity hedge. Rather than simulating sample paths of future period
and cohort effects, the proposed method evaluates a longevity hedge by simulating sample
paths of future innovations. As all innovations are serially uncorrelated by definition, we
can always use the same collection of sample paths of innovations for valuing the hedge
portfolio at the end of the hedging horizon. Nested simulations can therefore be avoided.

The proposed methods have been illustrated using historical mortality data from En-
glish and Welsh male population, for which cohort effects are found to be significant.
Through an illustrative longevity hedge with one q-forward, we have examined the benefit
of incorporating cohort effects under different circumstances. A number of lessons can be
learnt from the empirical work.

15It is argued in Section 5.4.4 that 0 < k2/(k1k3) < 1 and k1 > 0. Thus, (Φ−1(0.995))2k1 must be
strictly greater than (Φ−1(0.995))2(k2)2/k3.
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First, the benefit of incorporating cohort effects depends heavily on the year-of-birth
to which the q-forward is linked. For a static hedge established at time tb, the benefit
tends to be more significant if the difference between the year-of-birth associated with the
q-forward (tb + T1 − x1) and the last year-of-birth covered by the data sample (tb − xa) is
small. The reason behind is that when (tb + T1 − x1) − (tb − xa) is close to zero, cohort
effects are influential in the variance of the q-forward’s values and the covariance between
the values of the q-forward and the liability being hedged.

Second, even if the liability being hedged is not linked to any unrealized cohort, in-
corporating cohort effect uncertainty into the calibration process may still yield a more
effective hedge. This outcome is because the optimal notional amount depends on the sen-
sitivity of the q-forward’s value to the underlying cohort effect. As long as the q-forward
is linked to an unrealized cohort, ignoring this component would result in a sub-optimal
notional amount.

Third, the benefit of incorporating cohort effect uncertainty is small when the liability
being hedged and the q-forward are linked to the same cohort, because under this condition
c1/k1 and c2/k2 are close to each other. This finding is complementary to a conclusion
obtained by Cairns et al. (2014): a longevity hedge tends to be less effective when there
is a mismatch between the cohorts to which the hedging instrument and the liability
being hedged are linked. When the problem of mismatched cohorts is inevitable, the
hedger should be mindful of the less than ideal hedge effectiveness and factor cohort effect
uncertainty into his/her hedging strategy.

Fourth, the hedging results depend heavily on X(s), which measures the persistency of
cohort effects. For instance, if cohort effects are more persistent, then the hedging results
would be more robust relative to the liability’s period of deferral. Also, if cohort effects
are more persistent, then the benefit of incorporating cohort effect uncertainty would be
less sensitive to the specification of the q-forward used.

Fifth and last, the benefit of incorporating cohort effect uncertainty diminishes as the
hedging horizon τ increases. The reason behind is that in VLtb (tb + τ) and VHtb (1,tb)(tb + τ),
the proportion of the innovations that are related to cohort effects falls as τ rises. Because
cohort effect uncertainty tends to be more significant when τ is small, it deserves some
attention when the hedger’s objective is to, for example, mitigate the one-year risk defined
in Solvency II.

As in many studies on longevity risk modeling, we assume in this chapter that the
innovations in the period and cohort effect processes are normally distributed. Recently, it
has been found that such innovations could be leptokurtic, thereby calling for a non-normal
distributional assumption (see, e.g., Wang et al., 2015). When a different distributional
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assumption is used, the theoretical result for variance minimization would remain the same
but that for Value-at-Risk minimization would change. One possible direction for further
research is to study how the strategy for minimizing Value-at-Risk should be adapted if
the innovations follow a more sophisticated distribution.

To focus on cohort effect uncertainty, we do not consider population basis risk in this
chapter. However, with the aid of a multi-population mortality model, we can easily extend
the proposed calibration method to incorporate the difference between the populations
involved. For example, if we assume the augmented common factor model (Li and Lee,
2005), then we can derive the hedging strategy by first formulating Lt and Ht(j, t) as
functions of the innovations from the random walk that captures the common mortality
trend and the autoregressive processes that characterize the population-specific mortality
trends. Another caveat of this chapter is that sampling risk is ignored. To gauge the
impact of sampling risk, one may use a discrete distribution such as Poisson to model
death counts conditioned on the realized underlying mortality rate (see, e.g., Cairn et al.,
2014). We leave these extensions to future research.

202



Chapter 6

Concluding Remarks

Longevity risk is comprised of various risk factors. In this thesis, we have explored four of
the most important risk factors constituting longevity risk: mortality jump risk, longevity
drift risk, population basis risk and cohort mismatch risk.

Mortality jump risk refers to the uncertainty associated with catastrophic mortality
events. In previous studies, most focus has been placed on modeling the severity and
frequency of mortality jumps. One characteristic that is important but often ignored is
the age pattern of mortality jumps. In this thesis, we have investigated how the mortality
jump effect can be distributed across different ages. We have shown how this age pattern
can be modeled explicitly by introducing two variants of the Lee-Carter model. The pro-
posed model variants use a distinct collection of parameters to capture the age pattern of
mortality jumps. The key advantage of our modeling approach is that it permits a random
age pattern of mortality jump effects.

Since mortality jumps are infrequent, we have addressed parameter risk. We have
conducted a parametric bootstrapping procedure to quantify the uncertainty surrounding
each of the model parameters. We found that the standard errors of some jump-effect-
related parameters are quite high, due to the fact that only a handful of extreme mortality
events occurred during the data sample period. We have also shown that the impact of
parameter uncertainty on pricing depends quite heavily on the age range with which the
security being priced is associated.

Different from mortality jump risk which only has a short-term effect, longevity drift
risk is the uncertainty associated with the longevity trend. Longevity drift risk affects
the mortality dynamics over a long time. Most of the existing mortality models focus
on capturing the uncertainty surrounding a specific trend, leaving the uncertainty related
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to the trend itself unmodeled. To incorporate longevity drift risk, we have introduced
the LLCBD model which is a locally-linear extension to the original CBD model. The
LLCBD model is shown to be demographically intuitive and can be estimated in one single
stage using EM algorithm and Kalman filter. Compared to the original CBD model, the
LLCBD model provides better goodness-of-fit in terms of AIC, yields more accurate short-
and long-term forecasts in terms of mean error and mean squared error, generates forecasts
that are more consistent with the observed trends in the recent past and are more robust
relative to changes in the length of the calibration window.

We have also developed a new hedging method called the generalized state-space hedg-
ing method from which one can construct an index-based longevity hedge to mitigate drift
risk. The proposed hedging method can ameliorate the problems of sub-optimality and
singularity that the traditional delta and delta-nuga hedging methods are subject to. We
have further applied the generalized state-space hedging method to a hypothetical scenario
and shown the importance of managing drift risk.

Population basis risk, which arises from population differences, is inevitable in an index-
based longevity hedge. To measure and manage population basis risk, the proposed gen-
eralized state-space hedging method is then extended to a multi-population setting. The
extended hedging method allows the calibration of a longevity hedge that is composed
of standardized hedging instruments which take into account the difference in mortality
improvements between the populations associated with the hedging instruments and the
hedger’s portfolio. The extension may be regarded as a general framework, because it is
applicable to all coherent multi-population stochastic mortality models that can be written
in state-space representations.

In addition, based on the proposed hedging method, we have also investigated how we
can analytically approximate the variances of an unhedged position. This approximation
method enables the calculation of hedge effectiveness without using simulation. Using this
approximation method, we can derive an empirical relationship between hedge effectiveness
and the composition of the hedge portfolio and then analyse longevity risk through a
variance decomposition. A new metric called standardized basis risk profile has been
proposed which allows us to assess the relative levels of population basis risk that q-
forwards with different reference populations, reference ages, and times-to-maturity may
lead to.

Other than population basis risk, cohort mismatch risk also plays a role in an index-
based longevity hedge. When cohort effect uncertainty is present but not considered in
the hedging strategy, the resulting longevity hedge may also perform sub-optimally. To
incorporate cohort mismatch risk, we have developed a new hedge calibration method
through which one can analytically obtain the optimal notional amounts that minimize the
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variance or Value-at-Risk of the τ -year ahead values of the hedged position. As well, we
have designed a method that eases the computation burden required in evaluating a value
longevity hedge. The proposed method evaluates a longevity hedge using the simulated
sample paths of future innovations. As all innovations are serially uncorrelated, we can
always use the same collection of innovations for valuing the hedge portfolio at the end of
the hedging horizon and therefore avoid nested simulations.

Using historical mortality data from English and Welsh male population, we have ex-
amined the benefit of incorporating cohort effects in a longevity hedge under different
circumstances. From the empirical work, a number of lessons can be learned regarding the
incorporation of cohort mismatch risk:

• the benefit of incorporating cohort effects depends heavily on the year-of-birth to
which the q-forward is linked;

• even if the liability being hedged is not linked to any unrealized cohort, incorporating
cohort effect uncertainty into the calibration process may still yield a more effective
hedge;

• the benefit of incorporating cohort effect uncertainty is small when the liability being
hedged and the q-forward are linked to the same cohort;

• the hedging results depend heavily on the persistency of cohort effects; and

• the benefit of incorporating cohort effect uncertainty diminishes as the hedging hori-
zon increases.

For future research, one may be interested in generalizing model J1, model J2 (proposed
in Chapter 2), and the LLCBD model (proposed in Chapter 3) to a multi-population
version, which would be useful for pricing and analysing longevity products that are linked
to a group of populations. One may also use the modeling approach described in Chapter
2 to capture the age patterns of intermittent changes in long-term mortality trends.

We acknowledge that cohort effects are significant in certain populations, and that it is
not trivial to incorporate cohort effects in a state-space representation in which the vector
of hidden states evolve over time rather than year of birth. Therefore, it would also be
interesting to investigate how the LLCBD model and the generalized state-space hedging
method can be further extended to incorporate cohort effects.

As in many studies on longevity risk modeling, we assume in this thesis that the inno-
vations in the period and cohort effect processes are normally distributed. Recently, it has
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been found that such innovations could be leptokurtic, thereby calling for a non-normal
distributional assumption (see, e.g., Wang et al., 2015). When a different distributional
assumption is used, the theoretical result for variance minimization would remain the same
but that for Value-at-Risk minimization would change. Another possible direction for fur-
ther research is to study how the strategy for minimizing Value-at-Risk should be adapted
if the innovations follow a more sophisticated distribution.
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Appendix A

A.1 Derivation of Property 1, 2 and 3

The assumptions required in the derivation of Property 1, 2 and 3 are summarized as
follow:

• ξt ∼ N(0, σ2), ~Jt ∼ MVN(~µ(J),ΣJ), ~εt ∼ MVN(0, I · σ2
r), and

• ξt, Nt, ~Jt and ~εt are mutually independent, and

• ξt, Nt and ~Jt are serially independent.

Derivation of Property 1:

According to equation (2.6), we have

~Zt = ~b(µ+ ξt) +Nt
~Jt −Nt−1

~Jt−1 + ~εt,

~Zt+1 = ~b(µ+ ξt+1) +Nt+1
~Jt+1 −Nt

~Jt + ~εt+1.

Therefore, ~Zt given Nt = nt, ~Jt = ~jt would be~b(µ+ξt)+nt~jt−Nt−1
~Jt−1 +~εt. Similarly, ~Zt+1

given Nt = nt, ~Jt = ~jt would be ~b(µ+ ξt+1) +Nt+1
~Jt+1−nt~jt +~εt+1. Since that we have the

assumption of ξt, Nt, ~Jt and ~εt being mutually and serially independent, we immediately
get

~Zt|Nt = nt, ~Jt = ~jt ⊥ ~Zt+1|Nt = nt, ~Jt = ~jt.
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Derivation of Property 2:

As shown in equation (2.6), we have

~Zt = ~b(µ+ ξt) +Nt
~Jt −Nt−1

~Jt−1 + ~εt.

Therefore, ~Zt given Nt−1 = nt−1, Nt = nt would be ~b(µ+ ξt) + nt ~Jt − nt−1
~Jt−1 + ~εt.

The moment generating function of ~Zt givenNt−1 = nt−1, Nt = nt can then be computed
as

M~Zt|Nt−1=nt−1,Nt=nt
(~x) = E(exp(~x′ ~Zt)|Nt = nt, Nt−1 = nt−1)

= E(exp(~x′(~b(µ+ ξt) + nt ~Jt − nt−1
~Jt−1 + ~εt)))

= E(exp(~x′~b(µ+ ξt))) · E(exp(~x′nt ~Jt)) · E(exp(−~x′nt−1
~Jt−1)) · E(exp(~x′εt)).

Since that we have

• ξt ∼ N(0, σ2), ~Jt ∼ MVN(~µ(J),ΣJ), ~εt ∼ MVN(0, I · σ2
r), and

• ξt, ~Jt and ~εt are mutually independent, and

• ~Jt are serially independent,

the moment generating function of ~Zt given Nt−1 = nt−1, Nt = nt can then be computed
as

M~Zt|Nt−1=nt−1,Nt=nt
(~x) = exp(~x′~bµ+ 1

2
~x′~bσ2~b′~x)) · exp(~x′nt~µ

(J) + 1
2
~x′n2

tΣJ~x)

· exp(−~x′nt−1~µ
(J) + 1

2
~x′n2

t−1ΣJ~x) · exp(1
2
~x′Iσ2

r~x)

= exp(~x′(~bµ+ nt~µ
(J) − nt−1~µ

(J)) + 1
2
~x′(~b~b′σ2 + n2

tΣJ + n2
t−1ΣJ + Iσ2

r)~x)
= exp(~x′~µmar + 1

2
~x′Σmar~x),

where

~µmar = ~bµ+ (nt − nt−1)~µ(J)

and

Σmar = ~b~b′σ2 + I · σ2
r + (n2

t + n2
t−1)ΣJ .
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Therefore,

~Zt|Nt−1 = nt−1, Nt = nt ∼MVN(~µmar,Σmar),

where

~µmar = ~bµ+ (nt − nt−1)~µ(J)

and

Σmar = ~b~b′σ2 + I · σ2
r + (n2

t + n2
t−1)ΣJ .

Derivation of Property 3:

According to equation (2.6), we have

~Zt = ~b(µ+ ξt) +Nt
~Jt −Nt−1

~Jt−1 + ~εt,

~Zt+1 = ~b(µ+ ξt+1) +Nt+1
~Jt+1 −Nt

~Jt + ~εt+1.

Define

~Z∗t,t+1 =

(
~Zt
~Zt+1

)
.

Then ~Z∗t,t+1 given Nt−1 = nt−1, Nt = nt, Nt+1 = nt+1 can be expressed as(
~b(µ+ ξt) + nt ~Jt − nt−1

~Jt−1 + ~εt
~b(µ+ ξt+1) + nt+1

~Jt+1 − nt ~Jt + ~εt+1

)
.

To enhance the derivation of Property 3, we impose a working independence assumption
that the error term ~εt is serially independent. Based on this working independence assump-
tion, the covariance of ~Zt and ~Zt+1 given Nt−1 = nt−1, Nt = nt, Nt+1 = nt+1 would equal to
−n2

tΣJ . The resulting likelihood function would then become a composite likelihood (e.g.,
see Diao and Cook, 2014), which is a partial specification of the full likelihood.

Using Property 2, we have

~Z∗t,t+1|Nt−1 = nt−1, Nt = nt, Nt+1 = nt+1 ∼MVN(~µjoint,Σjoint),
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where

~µjoint =

(
~bµ+ (nt − nt−1)~µ(J)

~bµ+ (nt+1 − nt)~µ(J)

)

and

Σjoint =

(
σ2~b~b′ + I · σ2

r + (n2
t + n2

t−1)ΣJ −n2
tΣJ

−n2
tΣJ σ2~b~b′ + I · σ2

r + (n2
t+1 + n2

t )ΣJ

)
.

A.2 Estimation Algorithms for Model J0, J1 and J2

In this appendix, we present the algorithms for estimating the three model variants under
consideration. We first provide in Appendix A.2.1 the information that applies to all three
model variants. Then in Appendices A.2.2 to A.2.4 we give the details that are specific to
each model variant.

A.2.1 General Information

Recall that the log-likelihood function is given by

l(~θ) = ln f(~zt2 , . . . , ~ztT ; ~θ) =

tT−1∑
t=t2

ln f(~zt, ~zt+1; ~θ)−
tT−1∑
t=t3

ln f(~zt; ~θ).

Parameter estimates are obtained by maximizing l(~θ) with an iterative Newton-Raphson
procedure, in which parameters are updated one at a time. The updating of a parameter
θ in the parameter vector ~θ proceeds according to

θ(m+1) = θ(m) −
∂
∂θ
l(~θ)|θ=θ(m)

∂2

∂θ2 l(~θ)|θ=θ(m)

, (1)

where θ(m) represents the estimate of θ in the mth iteration. The identifiability constraints
are applied at the end of each iteration.

Equation (1) depends on the first and second partial derivatives of l(~θ) with respect to
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θ, which are given by

∂

∂θ
l(~θ) =

tT−1∑
t=t2

∂
∂θ
f(~zt, ~zt+1; ~θ)

f(~zt, ~zt+1; ~θ)
−

tT−1∑
t=t3

∂
∂θ
f(~zt; ~θ)

f(~zt; ~θ)

and

∂2

∂θ2
l(θ) =

tT−1∑
t=t2

[ ∂2

∂θ2f(~zt, ~zt+1; ~θ)

f(~zt, ~zt+1; ~θ)
−
( ∂
∂θ
f(~zt, ~zt+1; ~θ)

f(~zt, ~zt+1; ~θ)

)2]
−
tT−1∑
t=t3

[ ∂2

∂θ2f(~zt; ~θ)

f(~zt; ~θ)
−
( ∂
∂θ
f(~zt; ~θ)

f(~zt; ~θ)

)2]
,

respectively. The expressions above involve the first and second partial derivatives of
f(~zt, ~zt+1; ~θ) and f(~zt; ~θ) with respect to θ. These partial derivatives are derived as follows.

First, we consider the following conditional density functions:

f
nt−1,nt
t := f(~zt|Nt−1 = nt−1, Nt = nt),

f
nt−1,nt,nt+1

t,t+1 := f(~zt, ~zt+1|Nt−1 = nt−1, Nt = nt, Nt+1 = nt+1).

The first and second partial derivatives of f
nt−1,nt
t with respect to θ can be expressed as

∂
∂θ
f
nt−1,nt
t = f

nt−1,nt
t · [−1

2
· Tr(Σ−1

mar · ∂∂θΣmar)− ∂
∂θ

(~zt − ~µmar)TΣ−1
mar(~zt − ~µmar)

−1
2
· (~zt − ~µmar)T ∂

∂θ
Σ−1
mar(~zt − ~µmar)]

and

∂2

∂θ2f
nt−1,nt
t = f

nt−1,nt
t · {[−1

2
Tr(Σ−1

mar · ∂∂θΣmar)− ∂
∂θ

(~zt − ~µmar)TΣ−1
mar(~zt − ~µmar)

−1
2
(~zt − ~µmar)T ∂

∂θ
Σ−1
mar(~zt − ~µmar)]2 − 1

2
Tr( ∂

∂θ
Σ−1
mar

∂
∂θ

Σmar + Σ−1
mar

∂2

∂θ2 Σmar)

− ∂
∂θ

(~zt − ~µmar)T ∂
∂θ

Σ−1
mar(~zt − ~µmar)− ∂

∂θ
(~zt − ~µmar)TΣ−1

mar
∂
∂θ

(~zt − ~µmar)

− ∂
∂θ

(~zt − ~µmar)T ∂
∂θ

Σ−1
mar(~zt − ~µmar)− 1

2
(~zt − ~µmar)T ∂2

∂θ2 Σ−1
mar(~zt − ~µmar)},

respectively, where Tr(M) denotes the trace of a matrix M . The first and second partial
derivatives of f

nt−1,nt,nt+1

t,t+1 with respect to θ can be obtained by replacing ~zt, ~µmar and Σmar

in the expressions above by ~z?t,t+1, ~µjoint and Σjoint, respectively.
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Then, by using the facts that

f(~zt; ~θ) = p2f 11
t + p(1− p)f 10

t + p(1− p)f 01
t + (1− p)2f 00

t

=
1∑

nt−1=0

1∑
nt=0

pnt−1+nt · (1− p)2−(nt−1+nt) · fnt−1,nt
t

and that

f(~zt, ~zt+1; ~θ) = p · f(~zt, ~zt+1|Nt = 1) + (1− p) · f(~zt, ~zt+1|Nt = 0)

= p3 · f 111
t,t+1 + p2(1− p) · [f 110

t,t+1 + f 011
t,t+1 + f 101

t,t+1]
+p(1− p)2 · [f 010

t,t+1 + f 100
t,t+1 + f 001

t,t+1] + (1− p)3 · f 000
t,t+1

=
1∑

nt−1=0

1∑
nt=0

1∑
nt+1=0

pnt−1+nt+nt+1 · (1− p)3−(nt−1+nt+nt+1) · fnt−1,nt,nt+1

t,t+1 ,

we can readily compute the first and second partial derivatives of f(~zt, ~zt+1; ~θ) and f(~zt; ~θ)
with respect to θ as described below.

Case I: θ 6= p

∂
∂θ
f(~zt; ~θ) =

1∑
nt−1=0

1∑
nt=0

pnt−1+nt · (1− p)2−(nt−1+nt) · ∂
∂θ
f
nt−1,nt
t

∂2

∂θ2f(~zt; ~θ) =
1∑

nt−1=0

1∑
nt=0

pnt−1+nt · (1− p)2−(nt−1+nt) · ∂
2

∂θ2
f
nt−1,nt
t

∂
∂θ
f(~zt, ~zt+1; ~θ) =

1∑
nt−1=0

1∑
nt=0

1∑
nt+1=0

pnt−1+nt+nt+1 · (1− p)3−(nt−1+nt+nt+1) · ∂
∂θ
f
nt−1,nt,nt+1

t,t+1

∂2

∂θ2f(~zt, ~zt+1; ~θ) =
1∑

nt−1=0

1∑
nt=0

1∑
nt+1=0

pnt−1+nt+nt+1 · (1− p)3−(nt−1+nt+nt+1) · ∂
2

∂θ2
f
nt−1,nt,nt+1

t,t+1
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Case II: θ = p

∂
∂θ
f(~zt; ~θ) = 2p · f 11

t + (1− 2p) · f 10
t + (1− 2p) · f 01

t − 2(1− p)f 00
t

∂2

∂θ2f(~zt; ~θ) = 2f 11
t − 2f 10

t − 2f 01
t + 2f 00

t

∂
∂θ
f(~zt, ~zt+1; ~θ) = 3p2 · f 111

t,t+1 + (2p− 3p2) · [f 110
t,t+1 + f 011

t,t+1 + f 101
t,t+1]

+(1− 4p+ 3p2) · [f 010
t,t+1 + f 100

t,t+1 + f 001
t,t+1]− 3(1− p)2 · f 000

t,t+1

∂2

∂θ2f(~zt, ~zt+1; ~θ) = 6p · f 111
t,t+1 + (2− 6p) · [f 110

t,t+1 + f 011
t,t+1 + f 101

t,t+1]

+(−4 + 6p) · [f 010
t,t+1 + f 100

t,t+1 + f 001
t,t+1] + 6(1− p) · f 000

t,t+1

A.2.2 Model J0

The parameters needed to be estimated include:

~b =


b1

b2
...
bX

 , µ, lnσ, lnσr, µJ , lnσJ , logit(p).

We estimate σ, σr and σJ in natural log scale and p in logit scale to avoid any potential
boundary problems. The initial value for each parameter is chosen as follows:

~b: the maximum likelihood estimates of ~b in the original Lee-Carter model;

µ: the mean of the first difference of the sequence of the maximum likelihood esti-
mates of kt in the original Lee-Carter model;

lnσ: the sample standard deviation (in log scale) of the sequence of the maximum
likelihood estimates of kt in the original Lee-Carter model;

lnσr: the maximum likelihood estimate of σr (in log scale) in the original Lee-Carter
model, fitted using the Route II approach;

µJ : same as the initial value for µ;
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lnσJ : same as the initial value for lnσ;

logit(p): the frequency of the detected additive outliers (in logit scale).

Given the initial values, parameters are updated iteratively by equation (1), until the
change in the value of the log-likelihood function is smaller than a tolerance level, which
we set to 10−8.

A.2.3 Model J1

The parameters needed to be estimated include:

~b =


b1

b2
...
bX

 , µ, lnσ, lnσr, µJ , lnσJ , ~b(J) =


b

(J)
1

b
(J)
2
...

b
(J)
X

 , logit(p).

The initial value for each parameter is chosen as follows:

~b: the maximum likelihood estimate of ~b in Model J0;

µ: the maximum likelihood estimate of µ in Model J0;

lnσ: the maximum likelihood estimate of lnσ in Model J0;

lnσr: the maximum likelihood estimate of lnσr in Model J0;

µJ : the maximum likelihood estimate of µJ in Model J0;

lnσJ : the maximum likelihood estimate of lnσJ in Model J0;

~b(J): the maximum likelihood estimate of ~b in Model J0;

logit(p): the maximum likelihood estimate of logit(p) in Model J0;.

As before, parameters are updated iteratively using equation (1), until the change in
the value of the log-likelihood function is smaller than the tolerance level of 10−8.
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A.2.4 Model J2

The parameters needed to be estimated include:

~b =


b1

b2
...
bX

 , µ, lnσ, lnσr, ~b(J) =


b

(J)
1

b
(J)
2
...

b
(J)
X

 , lnσJ , ρ, logit(p).

Compared to Model J1, this model variant contains only one extra parameter, ρ, which
determines the correlation between the jump effects on two different age groups. From
Figure 2.1, we observe that the shapes of the age patterns of the historical mortality jumps
are quite stable. It is therefore reasonable to expect that ρ is fairly close to (and smaller
than) one. This expectation motivates us to use the profile likelihood technique to expedite
convergence.1 The overall estimation procedure is summarized as follows:

1. Partition the parameter vector ~θ into two groups, namely the correlation parameter
ρ and other parameters ~θ∗. Let l(~θ∗|ρ) be the model’s log-likelihood conditioned on
ρ.

2. Starting with ρ = 0.99999, estimate ~θ∗ by maximizing l(~θ∗|ρ) with the iterative
Newton-Raphson procedure. The required initial values are taken as the correspond-
ing maximum likelihood estimates in Model J1. The maximized value of l(~θ∗|ρ) is
recorded.

3. Reduce ρ by 0.00001 and repeat Step 2. Stop the algorithm when the maximized
value of l(~θ∗|ρ) no longer increases.

A.3 The Parametric Bootstrap for Model J0, J1 and

J2

To measure parameter uncertainty, we use a parametric bootstrapping procedure that is
adapted from the work of Brouhns et al. (2005). The procedure used is summarized as
follows:

1We refer interested readers to Davison (2003) for further information about the profile likelihood
technique.
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1. For each t in the data sample period, simulate a realization of each of the following:

• the jump indicator variable Nt from B(1, p̂);

• the innovation term ξt in the random walk with drift from N(0, σ̂2);

• the vector of jump effects ~Jt from MVN(~̂µJ , Σ̂J), provided that the simulated
value of Nt is 1.

2. For each x in the sample age range and each t in the data sample period, simulate a
realization of the residual εx,t from N(0, σ̂2

r).

3. Calculate realizations of Zx,t for all x in the sample age range and t in the data
sample period using equation (2.5) and the results from the previous two steps.

4. On the basis of the realizations of Zx,t from the previous step, re-estimate all model
parameters by the method of maximum likelihood, as described in Appendix A.2.

5. Repeat the previous four steps M times.

In the above, the “hat” sign over a parameter denotes a maximum likelihood estimate from
the original data sample.

The bootstrapping procedure provides us with M collections of parameter estimates,
from which the standard error of each parameter estimate can be calculated. We use
M = 5, 000 in our calculations. Note that the standard errors of ~b(J), ln σJ and ρ are
computed from a subset of the 5,000 realizations in which at least one simulated value of Nt

is non-zero. In addition, the standard errors of lnσ, lnσr, lnσJ and logit(p) are computed
from realizations in their original scales (i.e., after an anti-log or anti-logit transformation,
where applicable).
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Appendix B

B.1 Estimation Procedure for the LLCBD model

In this appendix we detail the estimation procedure, which is adapted from the work of
Holmes (2013). As before, we use [ta, tb] and [xa, xb] to denote the sample period and
sample age range to which the model is fitted, respectively. The vector of observations at
time t is ~yt = (yxa,t, . . . , yxb,t)

′.

Following Holmes (2013), we use an Expectation-Maximization (EM) algorithm to ob-
tain maximum likelihood parameter estimates. Under our model assumptions,

~ηt
i.i.d.∼ MVN(0, Q) and ~εt

i.i.d.∼ MVN(0, Ixb−xa+1σ
2
ε ).

It immediately follows that the log-likelihood function is given by

ln(L) =− 1
2σ2
ε

tb∑
t=ta

(~yt −B~αt)′ (~yt −B~αt)− (tb−ta+1)(xb−xa+1)
2

ln(σ2
ε )

−1
2

tb∑
t=ta+1

(~αt − A~αt−1)′Q−1 (~αt − A~αt−1)− 1
2

tb∑
t=ta+1

ln |Q|+ cl,

where cl is a constant that is free of the hidden states and parameters. When fitting the
special case with constant drifts, ~αt and Q should be replaced by ~α∗t and Q∗, respectively.

The EM algorithm iterates over two steps until convergence. In the first step, which is
known as the Expectation step, the expectation of the log-likelihood is computed:

Ψ = E [ln(L)]

=− 1
2σ2
ε

tb∑
t=ta

(
E[~y′t~yt]− 2E[~y′tB~αt] + E[~α′tB

′B~αt]
)
− (tb−ta+1)(xb−xa+1)

2
ln(σ2

ε )

−1
2

tb∑
t=ta+1

(
E[~α′tQ

−1~αt]− 2E[~α′t−1A
′Q−1~αt] + E[~α′t−1A

′Q−1A~αt−1]
)
− tb−ta

2
ln |Q|+ cl.
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In the second step, which is known as the Maximization step, parameter estimates are
obtained by maximizing the expected log-likelihood Ψ. We now derive the update equations
for parameters σ2

ε and Q in the Maximization step.

Update Equation for σ2
ε :

Differentiating Ψ with respect to σ2
ε , we have

∂Ψ

∂σ2
ε

= −1

2

tb∑
t=ta

−E [~y′t~yt] + 2E [~y′tB~αt]− E [~α′tB
′B~αt]

σ4
ε

− (tb − ta + 1)(xb − xa + 1)

2σ2
ε

.

Setting the partial derivative to 0, we can obtain the update equation for R as follows:

σ2
ε = 1

u

tb∑
t=ta

(E [~y′t~yt]− 2E [~y′tB~αt] + E [~α′tB
′B~αt])

= 1
u

tb∑
t=ta

E [(~yt −B~αt)′(~yt −B~αt)]

= 1
u

tb∑
t=ta

E[vec((~yt −B~αt)′Ixb−xa+1(~yt −B~αt))]

= 1
u

tb∑
t=ta

E [(~yt −B~αt)′ ⊗ (~yt −B~αt)′] vec (Ixb−xa+1)

= 1
u

tb∑
t=ta

E [vec((~yt −B~αt)(~yt −B~αt)′)′] vec (Ixb−xa+1)

= 1
u

tb∑
t=ta

(
vec(E[~yt~y

′
y])
′ − 2vec(E[~yt~α

′
t]B
′)′ + vec(BE[~αt~α

′
t]B
′)′
)

vec (Ixb−xa+1) ,

where vec(X) represents the vectorization of X, ⊗ is the kronecker product operator and
u = (tb − ta + 1)(xb − xa + 1).

Update Equation for Q:
The partial derivative of Ψ with respect to Q can be calculated as

∂Ψ

∂Q
=

1

2

tb∑
t=ta+1

Q−1
(

E[~αt~α
′
t]−E[~αt~α

′
t−1]A′−AE[~αt−1~α

′
t]+AE[~αt−1~α

′
t−1]A′

)
Q−1− tb−ta

2
Q−1.
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Setting the partial derivative to zero, we obtain the following update equation for Q:

Q =
1

tb − ta

tb∑
t=ta+1

(
E[~αt~α

′
t]−E[~αt~α

′
t−1]A′ − AE[~αt−1~α

′
t] + AE[~αt−1~α

′
t−1]A′

)
.

Calculating the Expectations in the Update Equations:
We now explain how the expectations in the update equations for σ2

ε and Q can be evalu-
ated. Let Et(·), Vart(·), Covt(·, ·) respectively be the expectation, variance and covariance
conditioned on the information up to and including time t. The expectations in the update
equations are calculated on the basis of all data, so that, for example, E[~αt~α

′
t] is computed

as Etb [~αt~α
′
t].

To calculate Etb [~αt~α
′
t−1], Etb [~αt~α

′
t], Etb [~αt−1~α

′
t] and Etb [~αt−1~α

′
t−1], we use the Kalman

smoother algorithm. The first step in the algorithm is to calculate the expectations of ~αt~α
′
t

and ~αt, conditioned on the information up to an including time t, using the Kalman filter:
Et[~αt] = Et−1[~αt] +Kt(yt −BEt−1[~αt])

Vart(~αt) = (Im −KtB)Vart−1(~αt)
Et[~αt~α

′
t] = Vart(~αt) + Et[~αt](Et[~αt])

′
,

where Et−1[~αt] = AEt−1[~αt−1], Vart−1(~αt) = AVart−1(~αt−1)A′ +Q and

Kt = Vart−1(~αt)B
′ (BVart−1(~αt)B

′ + Ixb−xa+1 · σ2
ε

)−1

is the Kalman gain at time t.

The second step of the algorithm utilizes the Kalman smoother,
Etb [~αt−1] = Et−1[~αt−1] + Jt−1(Etb [~αt]− Et−1[~αt])

Vartb(~αt−1) = Vart−1(~αt−1) + Jt−1(Vartb(~αt)− Vart−1(~αt))J
′
t

Etb [~αt~α
′
t] = Vartb(~αt) + Etb [~αt](Etb [~αt])

′
,

and the lag-1 covariance smoother,
Covtb(~αtb , ~αtb−1) = (Im −KtbB)AVartb−1(~αtb−1)

Covtb(~αt−1, ~αt−2) = Vart−1(~αt−1)J ′t−2 + Jt−1(Covtb(~αt, ~αt−1)− AVart−1(~αt−1))J ′t−2

Etb [~αt~α
′
t−1] = Covtb(~αt, ~α

′
t−1) + Etb [~αt](Etb [~αt−1])′

,

where Jt−1 = Vart−1(~αt−1)A′(Vart−1(~αt))
−1. By applying the two sets of equations above

recursively for t = tb, tb − 1, . . ., the required expectations can be obtained readily.
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The update equation for σ2
ε contains two additional expectations, namely E[~yt~α

′
t] and

E [~y′t~yt]. These two expectations are computed as follows:

E[~yt~y
′
t] = ~̃yt~̃y

′
t;

E[~yt~α
′
t] = ~̃ytEtb [~αt]

′,

where ~̃yt represents the realization of ~yt and Etb [~αt] can be evaluated by the Kalman
smoother.
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