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Abstract

Estimation of aggregate claim amounts is a fundamental task in Actuarial science, based on

which risk theory, ruin theory and reinsurance theory can be studied. Properties, includ-

ing moments, Laplace transforms, and probability functions of aggregate claims have been

extensively studied by many scholars under various models (see, e.g., Hogg and Klugman

(1984)). The main classical model is the compound Poisson risk model, where the interclaim

times are independent of the claim severities. Scholars started to explore this problem by

considering more general counting processes, such as mixed Poisson processes (e.g., Will-

mot (1986)) and renewal processes (e.g., Andersen (1957)). Afterwards, the independence

assumptions on multiple risk factors were gradually relaxed. Additionally, the observation

times are further randomized to fit the reality better.

In this thesis, we propose to analyze the aggregate claims until both randomized and deter-

ministic time horizons by incorporating inflation and payment (reporting) delays into the

analysis. Dependence between the claim occurrence times (also interclaim times) and claim

severities is further considered.

A comprehensive review on the study of the aggregate claims is given in Chapter 1. Chapter

2 introduces the relevant preliminary knowledge on the aggregate models and techniques

used in this thesis.

Chapter 3 examines the Laplace transforms of the aggregate claims under a nonhomogeneous

birth process, which covers Poisson, mixed Poisson and linear contagion model. Furthermore,

the claim occurrence times influence the distribution of the claim severities. Under some as-

sumptions on the counting process, the time-dependent aggregate claims are represented as

a random sum of independent and identically distributed random variables.

The aggregate incurred but not reported (IBNR) claims are studied in Chapter 4 due to their

essential role in reserving. A recursive formula is identified for the moments of the total dis-

counted IBNR claims under a generalized renewal risk model where the interclaim times,
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claim severities and random reporting lags have an arbitrary dependence structure. The

probability mass function of the number of IBNR claims is obtained under certain assump-

tions on the marginal distributions of the interclaim times, claim severities and reporting

lags. To address the influence of the economic environment, a Markovian arrival process is

introduced in Chapter 5 to analyze the IBNR claim problem. A straightforward represen-

tation and a closed-form expression are identified for the moments of the total discounted

IBNR claim amount and numbers respectively without adding much difficulty to the analysis.

Instead of a deterministic time horizon as considered in Chapters 3, 4 and 5, attention has

also been paid to the analysis under a randomized observation time (see, e.g., Stanford et

al. (2005) and Ramaswami et al. (2008)). Randomization in the time horizon usually leads

to more tractable expressions for given quantities (e.g., Albrecher et al. (2011, 2013)). How-

ever, in the case of time-dependent aggregate claims, it only adds extra integration to the

expressions of relevant quantities. In this thesis, instead of working with general random

time horizons, we work with some specific random time horizons, i.e. two-sided exit time,

in Chapter 6. The two-sided exit problem has been the subject matter of risk manage-

ment analysis to better understand the dynamic of various insurance risk processes. In the

two-sided exit setting, the discounted aggregate claims are investigated under a dependent

renewal process (also known as dependent Sparre Andersen risk process). Utilizing Laplace

transforms, we identify the fundamental solutions to a given integral equation, which will

be shown to play a role similar to the scale matrix for spectrally-negative Markov-additive

processes (e.g., Kyprianou and Palmowski (2008)). Explicit expressions and recursions are

then identified for the two-sided probabilities and the moments of the aggregate claims re-

spectively. Chapter 7 ends the thesis by some concluding remarks and directions for future

research.
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Chapter 1

Background and Introduction

Insurance is an efficient way to transfer risks. Insurance companies manage risks shifted

from individuals and get compensated by collecting premiums. The number of claims aris-

ing within a given time period from a specified block of insurance is referred to as claim

frequency, which is usually modelled by a discrete random variable (rv). The claim severity,

modelled by a nonnegative rv, gives the size of the individual claim. The premiums charged

are dependent upon the frequency and severities of the claims occurred. Due to the fact that

premiums are usually charged up front for the (non-life) contract, insurers are required by

regulators to set aside adequate reserves to fulfil their promise to compensate the insured in

future’s claim causing events. Thus, accurate modelling of the total claim amount is vital for

insurers in pricing, reserving, meeting solvency requirement and more generally, managing

risks.

The aggregate loss is a mathematical representation of the total claims received by the in-

surer. Many models have been developed for the aggregate risks; the most classical ones are

the individual and collective risk models (see Bühlman (1970) and Klugman et al. (2008,

Chapter 9)). The individual risk model utilizes a sum of a fixed number of independent and

identically distributed (iid) random variables (rv’s) to quantify the aggregate loss. On the

other hand, under the collective risk model, the aggregate loss is represented as a sum of

a random number of iid rv’s. The collective model is constructed based on the assumption

that the claim severities are independent of the claim frequency. However, the assumption
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of independence is often viewed as too restrictive in real-world applications. The goal of this

thesis is to study the aggregate claims by allowing dependence between claim severities and

frequency, since adequate modelling of the dependence between different types of risks in

an insurance company is vital. To consider the randomness in the claim severities, generic

rv’s are utilized in modelling. We use a counting process to model claim frequency, since it

describes how the claim numbers develop over time. Dependence structure between them is

introduced with consideration of both generality and tractability. The analysis in this thesis

is very efficient and effective in capturing the properties of the aggregate claims, which are

essential in risk theory, ruin theory and reinsurance theory.

Mathematically speaking, the goal of this thesis is to use the collective model and to quantify

the aggregate claim model defined through the usual compound sum representation

St =
Nt∑
i=1

Yi, (1.1)

with the convention that St = 0 if Nt = 0, where the claim sizes {Yi}∞i=1 are assumed to form

a sequence of positive rv’s. The claim number process {Nt}t≥0 is a counting process with

claim occurrence times {Ti}∞i=0 starting with T0 = 0, and interclaim times τi = Ti − Ti−1 for

i = 1, 2, . . . . This thesis first explores the distribution of the aggregate time-dependent claim

amounts until a deterministic time horizon (i.e. t is a constant) by assuming an arbitrary

dependence structure between Yi and Ti (or τi). It allows for the incorporation of the time

value of money and claims inflation, as well as payment delay into analysis.

From the deterministic time framework, many scholars contributed to the analysis of total

time-dependent claim models. For instance, Willmot (1989) studied the total claim amounts

through Laplace transform (LT) under inflationary condition in a mixed Poisson counting

process. Jang (2004) considered a parallel problem under a shot noise counting process.

Léveillé and Garrido (2001a, 2001b) derived a recursive formula for the moments of the dis-

counted renewal sum of claim amounts. See also Woo and Cheung (2013) in the context

of the dependent Sparre Andersen risk process. Kim and Kim (2007) and Ren (2008) also

2



considered this problem in the framework of the Markovian claim arrival process. Using

differential equations, Wang (2010) studied the moment generating function of a discounted

compound renewal sum with phase-type interarrival times and general claim severities. The

reader is also referred to Léveillé and Adékambi (2011, 2012) where the analysis of the joint

distribution of the discounted compound renewal sums at different time points is considered.

The total incurred but not reported (IBNR) claim amount is defined as

SIBNR(t) =
Nt∑
i=1

1{Ti+Wi>t}Yi, (1.2)

where Wi is the reporting lag associated with the ith loss Yi. Thus, the IBNR problem is a

particular application of the time-dependent aggregate claim model. In insurance contexts,

IBNR claims arise from the natural lag between the occurrence and the report of a claim to

the insurer. Indeed, insurers should make adequate provision for the total amount of claims

incurred but not yet reported to the insurer. The IBNR claims are thus of central impor-

tance in claim reserving. In practice, the estimation of the IBNR claim amount is based on

the “run-off triangle”, which is a table recording the total reported claim amount by acci-

dent years and development years. Various deterministic (e.g., chain-ladder method (Taylor

(1986)) and stochastic models (e.g., “macro-level” models (Wuthrich and Merz (2008)) are

proposed to predict the IBNR reserving. A comprehensive review on the IBNR problem can

also be found in Badescu et al. (2016) and references therein. However, the existing method

mainly focuses on providing a point estimate for the total IBNR claim amount, which fails

to account for the random variation in the value of variables that contribute to IBNR claims.

The randomness of some important factors in this context, such as reporting lags, incurred

claim severities and time value of money, is considered in this thesis. Guo et al. (2013)

derived the distribution of the IBNR claim number for different distributional assumptions

for the batch sizes, capitalizing on the self-decomposability property of the Poisson claim

arrival process. Note that the IBNR problem has known connections with queueing theory.

For instance, the IBNR claim number is equivalent to the number of busy servers in queues

with infinite servers. More specifically, in this thesis, the IBNR claim number is analogous
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to the GIX/G/∞ queuing system with bulk arrivals (e.g., Liu et al., 1990). In light of this

connection, we point out that Chaudhry and Templeton (1983) studied the probability gen-

erating function (pgf) of the number of customers in an MX/M/∞ queuing system. Later,

Willmot and Drekic (2001, 2002, 2009) studied the transient distribution of the number of

customers under various distributional assumptions for the reporting lags in a MX/G/∞

queue model. On the other hand, interpreting the reporting lag as an investigation time in

the IBNR analysis leads to problems related to delays in claim settlement (e.g., Boogaert

and Haezendonck (1989)). Therefore, the results obtained in this thesis are also applicable

to address problems related to the reported but not settled claims.

Later on, more attention is paid to the model with randomized time horizon. From this

standpoint, we further introduce an insurance surplus process {Ut}t≥0 defined as

Ut = u+ ct− St, (1.3)

where u = U0 ≥ 0 is the initial surplus, c is a positive premium rate and St is the aggregate

claim amount as defined in (1.1). Of particular interest in the risk analysis of the insurance

surplus process {Ut}t≥0 are the first passage times τ+b and τ−0 respectively defined as

τ+b = inf{t ≥ 0 : Ut > b}, (1.4)

and

τ−0 = inf{t ≥ 0 : Ut < 0}. (1.5)

Analysis of the total claim amount until a specific random time, including ruin time (i.e.

τ−0 ) and the time surpassing certain levels (i.e. τ+b ), has attracted extensive attention. For

instance, Albrecher and Teugels (2006) provide exponential estimates for the infinite- (i.e.

Pr(τ−0 < ∞|U0 = u)) and finite- (i.e. Pr(τ−0 < C|U0 = u)) time ruin probabilities by using

copula to model the dependence between the interclaim times and claim severities. Ruin

probabilities under the dependent Sparre Andersen risk model were further investigated by
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Boudreault et al. (2006), Cossette et al. (2010) and Cheung et al. (2010). Cai et al. (2009)

and Feng (2009a, 2009b) considered the mean of the total discounted operation costs under

the compound Poisson risk model process and the phase-type renewal model, respectively.

Recursive formulas were then derived by Cheung (2013) for the higher-order moments in a

dependent Sparre Andersen risk model. See also Cheung and Landriault (2009) for the anal-

ysis of the maximum surplus level (i.e. maxt≤τ−0
Ut) before ruin in semi-Markov process. As

an extension to the analysis of quantities related to τ−0 , the expected accumulated discounted

tax was investigated by Albrecher and Hipp (2007), which involves τ+b . However, most the

papers mentioned above have focused on Gerber-Shiu discounted penalty functions. Less

attention is paid to the analysis of the total discounted claim amount under the two-sided

exit setting.

The two-sided exit probabilities are well studied under independence assumptions between

the interclaim times and claim severities. We refer the reader to Kyprianou (2006, Chapter

8) and Kuznetsov et al. (2013) in the context of the Lévy insurance risk model. However,

the assumption of independence is often viewed as too restrictive in real-world applications.

Kyprianou and Palmowski (2008) further considered this problem under the Markov additive

process, which can be viewed as a Markov regime switching Lévy insurance risk process. We

further remark that occupation time problems (see Landriault et al. (2016)) and Parisian

ruin problems (see Loeffen et al. (2013)) are both intimately connected to the two-sided

exit problems. In this thesis, we analyze some quantities under a two-sided exit setting by

allowing a (relatively) general dependence structure between the interclaim times and the

claim severities.

To be specific, this thesis is constructed in the following way.

Chapter 2 introduces the mathematical quantities of interest and formally defines the ter-

minology to be used. Relevant properties of some useful distributions and processes are

reviewed.
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Chapter 3 studies the distribution of the aggregate time-dependent claims in birth process

claim count models. We derive an integral representation for the density of the claim values

over the interval (s, t] given that Ns = k under a factorization assumption. Furthermore, the

factorization assumption is extended to allow for a change point, which results in a piecewise

factorization function. Thereafter, the mixed Erlang properties of the time-dependent sum

are discussed.

In Chapter 4, the time-dependent renewal sum of IBNR claim amounts is investigated

through LTs. Moments of the time-dependent renewal sum of IBNR claim amounts are

obtained through defective renewal equation techniques. An explicit expression for the first

moment is derived, and a recursive formula is identified for the higher-order moments. The

joint distribution of the total discounted IBNR claim amount and the total incurred and

reported (IR) claim amount at possibly different time points is then studied. Thus, the

IBNR claims can be estimated by the known IR claims; this analysis is particularly relevant

for reserving purposes. The self-decomposability of the IBNR claim number process is also

considered when claim causing events arrive according to a compound Poisson process. Fur-

thermore, properties of the IBNR claim number are analyzed under a Coxian distributional

assumption for the interclaim times and exponentially distributed reporting lags.

Chapter 5 reconsiders the IBNR problem by assuming that claims occur according to a

Markovian Arrival Process (MAP). The dynamic of such a process is assumed to change

according to an external environment process. Thus, it allows the claim numbers and sever-

ities to fluctuate according to the state of the business environment. The Markovian arrival

process is very general; it covers the Poisson process, a renewal process with phase-type

interclaim times, and the Markov-modulated Poisson process. On the other hand, it allows

for situation in which the interclaim times and/or claim severities are dependent. An explicit

and simple expression for the first-order moment of the total discounted IBNR claim amount

is derived and recursive formulas for its higher-order moments are obtained. Numerical ap-

plications are provided to examine the properties of the total IBNR claim number, which

has closed-form expressions for its finite-order moments.
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Chapter 6 assumes a dependent renewal model, where the pdf of the interclaim times and

claim severities are expressed in the form of a summation of factorizations. In the two-sided

exit setting, the discounted aggregate claim is investigated under a dependent renewal pro-

cess. Utilizing LTs, we identify the fundamental solutions to a given integral equation, which

will be shown to play a role similar to the scale matrix in the analysis of spectrally-negative

Markov-additive processes (e.g., Kyprianou and Palmowski (2008)). Explicit expressions

and recursions are then identified for the two-sided exit probabilities and the moments of

the discounted aggregate claims incurred until the insurance surplus process first leaves the

[0, b] interval. A numerical example involving the Farlie-Gumbel-Morgenstern(FGM) copula

is considered in the end.

Chapter 7 concludes the thesis and discusses future research directions. Note that most

chapters of this thesis directly relate to scientific papers, and were written independently of

one another. Due to the large amount of notation, efforts have been made to have consistent

notation over the entire thesis to avoid ambiguity. Even though some inconsistencies may

remain, no abuse of notation shall exist within a chapter.
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Chapter 2

Preliminaries

This chapter summarizes the mathematical preliminaries relevant in this thesis. We adopt

the conventions that the empty product and sum are 1 and 0 respectively throughout this

thesis. Also, we assume that N+ = {1, 2, . . .} and N = {0, 1, 2, . . .}.

2.1 Quantities related to the aggregate risk model

The model of interest is the aggregate claim model as defined in (1.1). The distribution

function (df) of Yi is Fi(·) ∈ [0, 1] for i ∈ N+. Whenever the probability density function

(pdf) of Yi exists, we denote it as fi(x) =
d
dx
Fi(x). Here, we assume Yi is a nonnegative rv

unless stated otherwise. The LT of Yi is defined as

f̃i(s) =

∫ ∞

0

e−sxdFi(x),

for s ∈ C such that the integral exists. An equivalent definition to f̃(s) being the Laplace

transform of a nonnegative rv is that f̃(s) is completely monotone (i.e. (−1)nf̃ (n)(s) ≥ 0 for

n ∈ N) and f̃(0) = 1 (Feller (1971, p. 439)). This characterization is very relevant in the

inversion of Laplace transform. If {Yi}∞i=1 are iid with df F , we define its n-fold convolution

as

F ∗n(x) = Pr(Y1 + Y2 + . . .+ Yn ≤ x),
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for n ∈ N with the convention that F ∗0(x) = 1 for x ≥ 0. As for the claim count rv Nt, its

probability mass function (pmf) and pgf are defined as pn,t = Pr(Nt = n) for n ∈ N and

Pt(z) =
∑∞

n=0 pn,tz
n for some z ∈ R such that the summation converges, respectively. Also,

in the case where there exists a random risk parameter Θ, we let Pt(z|θ) be the pgf of Nt

given that Θ = θ. The marginal pgf of Nt is expressed as

Pt(z) =

∫
Pt(z|θ)dU(θ),

where U(θ) = Pr(Θ ≤ θ) is the df of Θ. This defines a mixed counting process {Nt}t≥0. The

mixture distributions are motivated as a model to address heterogeneity within population,

and thus improves the fitting power of the model to reality.

Usually at most one arrival is allowed at one time in the ordinary counting process. However,

this assumption is violated in many real-world applications. For instance, buses arrive at

a stop bringing multiple customers at once and people usually go to restaurants in groups

instead of individually. The bulk arrival process (see, e.g., Chaudhry and Templeton (1983))

is utilized to model the counting process in which arrivals occur in groups. The size of an

arriving group may be a random number or a fixed number. In the insurance context, this

process is applicable in the situation where a single claim causing event might bring multiple

claims. In this thesis, we allow the claim number to follow a counting process with random

bulk arrivals.

2.2 Applications of time-dependent claim models

The time-dependent claim model refers to the situation where the claim severities depend

on the time occurrences, interclaim times and other quantities. The two most popular ap-

plications of the time-dependent claim model in insurance practice are the inflation model

and the payment (reporting) delay model.

The inflation model incorporates the time value of money and claim inflation into the analysis
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of claim values. We assume that a claim occurring at 0 is distributed as a common “baseline”

rv Y with cdf F (·) and LT f̃(·). Considering a claim incurred at x, whose baseline rv is Y , its

value at time x is e
∫ x
0 δ0,ydyY , where δ0,y is the instantaneous rate of claim inflation at time y.

After taking the interest rate δ1,y into account, the real value of this claim at time 0 carries a

discount factor of e−
∫ x
0 δydy, where δy = δ1,y − δ0,y is the instantaneous effective interest rate

net of inflation. Therefore, under the assumption that the interest rate is deterministic, the

df of the time-0 value of a claim occurring at x is written as

Pr
(
e−

∫ x
0 δydyY ≤ y

)
= F

(
e
∫ x
0 δydyy

)
,

and its LT is expressed as f̃
(
e−

∫ x
0 δydys

)
. The amount of the discounted aggregate claims is

then expressed as
∑Nt

k=1 e
−

∫ Tk
0 δxdxYk. Léveillé and Garrido (2001a, 2001b) and Léveillé and

Adékambi (2012) studied its moments by assuming independence between interclaim times

and claim severities in models under both deterministic and stochastic interest rate models.

Woo and Cheung (2013) further analyzed the moments of the discounted aggregate claims,

while relaxing the independence assumption, using moment generating functions and copula

methods.

In the reporting (payment) delay model, we consider the process with bulk arrivals, i.e. a

claim causing event generates a random number of independent claims. For each of the claims

caused by the same claim causing event occurring at x, the claim severities are assumed to

have a common LT f̃x(z) and to be independent of each other. Furthermore, a natural lag

between the occurrence of a claim and the payment (or reporting) is taken into consideration.

We assume this random delay is distributed as Kx(·) for a claim occurring at time x > 0

and all payment delays are independent of other payment delays. If payment delays are

independent of all claim amounts, the LT for the amount of the claim occurring at time x

that has not been paid up to time t is then given as Kx(t− x) + K̄x(t− x)f̃x(z). Therefore,

the total value of all the claims occurring from one claim causing event at time x that has
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not been paid until t has LT

f̃t(z|x) = Bx

(
Kx(t− x) + K̄x(t− x)f̃x(z)

)
,

where Bx(z) is the pgf of the claims occurring at time x. The payment delay problem has

a close mathematical relationship with the inflation model when claim causing events occur

according to a Poisson process (see Klugman et al. (2013, Chapter 9)). The reporting delay

model will be considered in depth under the general renewal process in Chapter 4 of this

thesis. Useful (from the point of view of mathematics and computational feasibility) results

related to the important quantities of this model will be derived.

2.3 Important processes and distribution classes

It is not easy to get closed-form expressions for quantities associated with the (discounted) ag-

gregate claims. Here, we introduce some important distribution classes, which will facilitate

the derivation of closed-form expressions for important quantities related to the aggregate

claim.

2.3.1 Mixed Erlang distributions

The mixed Erlang distributions are frequently utilized to model the quantities associated

with insurance claims. This class is dense, broad and computationally convenient. Klugman

et al. (2013) summarized various contexts in which the use of mixed Erlang distributions is

of interest.

Definition 1. A rv X has a mixed Erlang distribution if its pdf is given as

f(x) =
∞∑
n=1

qn
λnxn−1e−λx

(n− 1)!
, x > 0,

where λ > 0 and the mixing weights {qn}∞n=0 form a discrete counting distribution with pgf

Q(z) =
∑∞

n=0 qnz
n.

11



Thus, the LT of X is easily obtained as

E
(
e−sX

)
= Q

(
λ

λ+ s

)
.

We further explore the distributional properties of mixed Erlang distribution. The tail

distribution F̄ (x) =
∫∞
x

f(y)dy can be re-expressed as

F̄ (x) = e−λx

∞∑
n=0

Q̄n
(λx)n

n!
,

where Q̄n =
∑∞

i=n+1 qi. A special case of the mixed Erlang is the Erlang-r distribution,

whose pdf is given by

eλ,r(x) =
λre−λx

(r − 1)!
, x > 0, λ > 0, r ∈ N+,

and its tail df can be written as

∫ ∞

x

eλ,r(y)dy = e−λx

r−1∑
n=0

(λx)n

n!
.

Moreover, it is of most importance to mention the mixed Erlang representation for exponen-

tial distributions. From Willmot and Woo (2007), exponential distributions can be expressed

as a mixed Erlang distribution with the pmfs of a zero-truncated geometric distribution as

the mixing weights, namely

λi

λi + s
= Qi

(
λ

λ+ s

)
,

where λi < λ < ∞ and Qi(z) =
(λi/λ)z

1−(1−λi/λ)z
.

Thus, it is possible to express multiple mixed Erlang distributions with different scale pa-

rameters as mixed Erlang distributions with a common scale parameter. Therefore, the sum

of independent mixed Erlang distributed rv’s with various scale parameters also has a mixed

Erlang distribution.
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2.3.2 (Nonhomogeneous) Poisson processes

Poisson process is a classical model for claim frequency. It has broad applications in a

variety of fields, including engineering, statistics and neuroscience. A Poisson process pos-

sesses many desirable properties, including thinning, superposition, and decomposition. The

self-decomposability helps to bridge limiting distribution and its finite-time counterparts.

Thus, it is of utmost importance in the analysis of a counting process through its limiting

behaviour as illustrated in the later time. Here, we omit the detailed definitions of thinning

and superposition; interested readers are encouraged to read Ross (2010, Chapter 5).

Before approaching the definition of Poisson process, we introduce some important definitions

related to a counting process first.

Definition 2. A stochastic process {Nt}t≥0 is said to have stationary increment if the dis-

tribution of Nt −Ns for t > s depends only on the interval length, i.e. t− s.

Definition 3. A stochastic process {Nt}t≥0 has independent increments if increments for

any set of disjoint intervals are independent.

Definition 4. Conditional on Nt −N0 = k, the successive jump times are distributed as the

order statistics of k iid rv’s with df on [0, t], then we say the process has the order statistic

property (see Feign (1979)).

Poisson process can be defined through multiple equivalent definitions, see He (2014, Chapter

2) and Taylor and Karlin (1998, Chapter 5). We provide a definition next.

Definition 5. The process {Nt}t≥0 with N0 = 0 is called a Poisson process if

1. {Nt}t≥0 possesses the independent increment property and the stationary increment

property; and

2. Pr(Nt = 1) = λt+o(t) and Pr(Nt ≥ 2) = o(t), where the intensity λ > 0 and o(t)/t → 0

when t → 0.
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The pmf of a Poisson process {Nt}t≥0 with intensity λ is thus given by

Pr(Nt = n) =
(λt)ne−λt

n!
, n = 0, 1, 2, . . . .

and its pgf is

P (z) = E
[
zNt
]
= eλt(z−1).

It is easily verified that P (z) is discretely self-decomposable, i.e. P (z) = P (1− ρ+ ρz)Pρ(z)

where Pρ(z) is itself a pgf for all ρ such that 0 < ρ < 1. Also, it is noticed that, for s < t,

Pr(Ns = k|Nt = k + n) =

(
k + n

n

)(s
t

)k (
1− s

t

)n
.

Thus, Poisson process has order statistics property, i.e. given that n claims occurring in

[0, t], the claim times are distributed as the order statistics of n iid rv’s, which are uniformly

distributed on [0, t].

Moreover, the interclaim times of a Poisson process are exponentially distributed with mean

of 1/λ. Also, a Poisson process can be characterized by its interclaim times, i.e. a counting

process with iid exponentially distributed interclaim times is a Poisson process. See Ross

(2010, Chapter 5) for more detail.

In the case when the intensity rate changes over time but still is deterministic, denoted as

λ(t) > 0, we have the nonhomogeneous Poisson process. Its pmf is written as

Pr(Nt = n) =

(∫ t

0
λ(x)dx

)n
e−

∫ t
0 λ(x)dx

n!
, n ∈ N.

It is easily obtained that the nonhomogeneous Poisson process has independent but not sta-

tionary increments. The nonhomogeneous Poisson process also possesses the order statistic
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property, since

Pr(Ns = k|Nt = k + n) =

(
k + n

n

)(∫ s

0
λ(x)dx∫ t

0
λ(x)dx

)k(
1−

∫ s

0
λ(x)dx∫ t

0
λ(x)dx

)n

,

for s ∈ [0, t], where the iid rv’s have a pdf of λ(x)/
∫ t

0
λ(y)dy for x ∈ [0, t].

2.3.3 Mixed Poisson processes

A mixed Poisson process can be viewed as a generalization of a Poisson process when the

intensity of the Poisson process is regarded as a rv. This model accounts for heterogeneity

within the population. Mathematically, for a mixed Poisson process {Nt}t≥0, we have that

{Nt|Θ = θ}t≥0 is a Poisson process with rate θ. Its marginal pmf is given by

Pr(Nt = n) =

∫ ∞

0

(θt)ne−θt

n!
U(dθ),

where U is the df of Θ. U is called the mixing distribution and also called structure func-

tion. It represents the fluctuations in the risk levels. Various choices of mixing distributions

lead to different models for claim frequency. For example, a mixed Poisson rv with Gamma

distributed intensity follows a negative binomial distribution, see Klugman et al. (2013,

Chapter 7) for more detail.

Let ũ(s) =
∫∞
0

e−sθdU(θ) be the LT of the mixing distribution, then, the pgf of Nt satisfies

Pt(z) = ũ[t(1− z)].

The moments are then easily obtainable via their relationship with the pgf. We compare the

mean and variance of mixed Poisson process here, namely

E[Nt] = E[Θ]t ≤ V ar[Nt] = E[Θ]t+ V ar[Θ]t2.

The variance is shown to exceed the mean. Thus, mixed Poisson processes have heavier tails
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than Poisson processes; it is then more proper to model long-tailed data. As demonstrated

by McFadden (1965), mixed Poisson processes have stationary but not independent incre-

ments. The mixed Poisson process does have order statistic property and we will illustrate

this later in Chapter 3.

Furthermore, the mixed Poisson process has an important characterization (Grandell (1997,

p. 25-26)) given in the following theorem.

Theorem 1. A pgf P (z) satisfying P (z) ̸= 1, a.s. is a mixed Poisson pgf if and only if, as a

function of z, P (1 + (z − 1)/ρ) is a pgf for all ρ ∈ (0, 1).

Theorem 1 is very relevant in insurance contexts in the sense that it guarantees both num-

bers of the ground-up loss and the claims with deductible are valid counting rv’s. This

characterization theorem also justifies the popularity of applying mixed Poisson processes in

insurance practice.

2.3.4 (Delayed) Sparre Andersen risk processes

Consider a surplus process as defined in (1.3), where the pairs {(τi, Yi)}∞i=1 are iid, and dis-

tributed as a generic pair (τ, Y ). If τ and Y are independent of each other, the surplus

process {Ut}t≥0 as defined in (1.3) is called the Sparre Andersen risk model, where {Nt}t≥0

is an ordinary renewal risk process. Relaxing the independence assumption between τ and Y

yields the dependent Sparre-Andersen risk process. Thus, the (dependent) Sparre-Andersen

risk process can be treated as a (dependent) renewal process. The Gerber-Shiu discounted

penalty function (first proposed by Gerber and Shiu (1998)) has been well studied under

the Sparre-Andersen risk model. Chapter 6 derived a recursive formula for the moments

of the aggregate claims under the dependent Sparre Andersen risk model. The dependence

assumed between the pair (τi, Yi) helps to model the reality more accurately. For instance,

in catastrophic events, data from practice has shown that a larger accident tends to occur

as the interclaim time increases.

The first interclaim time in a renewal process or Sparre-Andersen risk process may sometimes
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be assumed to have a different distribution than the other interclaim times. This results

in a delayed renewal risk process, where the distribution of the time to the first event is

assumed to be different from that of the subsequent ones, which are assumed to be identically

distributed. Its introduction is mainly motivated by the fact that the starting point 0 (also

called observation time) is arbitrarily chosen, thus, the system might have been idling for

some time. But instead exactly one claim occurs at time T1, T2, . . ., thus the other interclaim

times record the exact idling time of the system. The analysis under the renewal process

can usually be extended to the delayed model without adding much difficulty.

2.4 Methodologies and techniques

In this section, we present some relevant mathematical tools and techniques used later in

this thesis.

2.4.1 Lagrange polynomials

Suppose that x1, x2, . . . , xk for k ≥ 2 are distinct numbers and h(x) is any polynomial of

degree k − 1 or less. Then, h(x) can be expressed as

h(x) =
k∑

i=1

h(xi)

[
k∏

j=1,j ̸=i

x− xj

xi − xj

]
.

By making use of the Lagrange polynomial expansions, we get the following lemma.

Lemma 2. Consider an equation h(x) =
∑k−1

i=0 cix
i + w(x) for k ≥ 2, which has k distinct

zeros s1, s2, . . . , sk, then

h(x) = w(x)−
k∑

i=1

w(si)
k∏

j=1,j ̸=i

x− sj
si − sj

,

= w(x) + ck−1

k∏
i=1,i ̸=l

(x− si)−
k∑

i=1,i̸=l

[
k∏

j=1,j ̸=i,l

x− sj
si − sj

]
w(si),

for any l ∈ {1, 2, . . . , k} and ck−1 = −
∑k

i=1w(si)
∏k

j=1,j ̸=i
1

si−sj
.
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2.4.2 Dickson-Hipp operator

Let s be a (possibly) complex number with a nonnegative real part, and define

Tsh(x) =

∫ ∞

x

e−s(y−x)h(y)dy,

for a function h such that the integral exists. Ts is known as the Dickson-Hipp operator.

The Dickson-Hipp operator is very relevant in ruin theory (see, e.g., Dickson and Hipp

(2001)). For x = 0, it is equivalent to the Laplace transform operator, i.e. Tsh(0) = h̃(s).

Furthermore, for any complex number s1, s2, . . . , sk, for k ≥ 2, we have

Ts1,s2,...,skh(x) = Ts1Ts2 . . . Tskh(x).

More specifically,

Ts1,s2h(0) = Ts2,s1h(0) =
h̃(s2)− h̃(s1)

s1 − s2
,

for s1 ̸= s2. By Li and Garrido (2004), it holds that, if s1, s2, . . . , sk are distinct,

Ts1,s2,...,skh(x) = (−1)k−1

k∑
i=1

[
k∏

j=1,j ̸=i

1

sj − si

]
Tsih(x), (2.1)

for x ≥ 0.

2.4.3 Rouche’s theorem

Solutions to Lundberg’s generalized equation E
[
e−δW1es(cW1−X1)

]
= 1 for δ ≥ 0 are very

relevant to the analysis of ruin-related quantities. Rouche’s theorem is mainly utilized to

verify the existence of the solutions to Lundberg’s generalized equation with δ > 0 in certain

domain. As such, we recall Rouche’s theorem here (see, e.g., Titchmarsh (1939)).

Theorem 3. If h(z) and g(z) are analytic inside and on a closed contour D and |g(z)| <

|h(z)| on D, then h(z) and g(z) + h(z) have the same number of zeros inside D.

As an extension to Rouche’s theorem, Klimenok (2001, Theorem 1) proposed a generalization

18



which is particularly relevant in ruin cases where δ = 0.

Theorem 4. Let the function g(z) and h(z) be analytic in the open disk |z| < 1 and contin-

uous on the boundary |z| = 1 and the following relations hold:

|g(z)||z|=1,z ̸=1 > |h(z)||z|=1,z ̸=1,

g(1) = −h(1) ̸= 0.

Let also the functions g(z) and h(z) have derivatives at the point z = 1 with the following

inequality that holds:

g′(1) + h′(1)

g(1)
> 0.

Then the numbers Ng+h and Ng of zeros of the functions g(z)+h(z) and g(z) in the domain

|z| < 1 are related as follows:

Ng+h = Ng − 1.

2.5 Copula

Copula is a well known distribution-based aggregation method to specify the dependence

structure between risk factors (e.g., Joe (1997), McNeil et al. (2005), and Nelsen (2006)). The

copula method is utilized in this thesis also due to its easy computational implementation.

Let C : [0, 1]× [0, 1] → [0, 1] be a bivariate copula. Then, for any random vector (X, Y ),

Pr(X ≤ x, Y ≤ y) = C(Pr(X ≤ x),Pr(Y ≤ y)),

for x, y ∈ R× R. Similarly, the survival copula relative to the joint survival function, i.e.

Pr(X > x, Y > y) = Ĉ(Pr(X > x),Pr(Y > y)),
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is given by

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v),

for (u, v) ∈ [0, 1]2. Due to Sklar’s theorem (Nelsen (2006)), the relationship between copula

and distribution functions is uniquely defined for two continuous rv’s X and Y .

Next, we introduce a special copula, called Bernstein copula. For a given copula C, the

Bernstein copula (BC) is defined as

CB(u, v) =
n∑

i=1

ℓ∑
j=1

C

(
i

n
,
j

ℓ

)
Bn(i, u)Bℓ(j, v), (2.2)

for u, v ∈ [0, 1], where the indexes n, ℓ are positive integers, and Bn(i, p) =
(
n
i

)
pi(1 − p)n−i

for p ∈ [0, 1] and i = 0, 1, . . . , n. Here, we adopt the convention that Bn(k, p) = 0 for n < k

or k < 0. We point out here that FGM copula is a special case of Bernstein copula with

n = ℓ = 2 and C
(
1
2
, 1
2

)
= 1+θ

4
, for θ ∈ [−1, 1] i.e.

CFGM(u, v) = uv + θuv(1− u)(1− v). (2.3)

It is easily obtainable that Bernstein density is given by

cB(u, v) =
∂2

∂u∂v
CB(u, v) =

n−1∑
i=0

ℓ−1∑
j=0

an,ℓ

(
i

n
,
j

ℓ

)
Bn−1(i, u)Bℓ−1(j, v), (2.4)

where

an,ℓ

(
i

n
,
j

ℓ

)
= nℓ

[
C

(
i+ 1

n
,
j + 1

ℓ

)
− C

(
i

n
,
j + 1

ℓ

)
− C

(
i

n
,
j + 1

ℓ

)
+ C

(
i

n
,
j

ℓ

)]
.

The motivation of introducing the Bernstein copula is also due to its denseness in the space

of bounded continuous functions (see Nelsen (1998) for more detail). This means that for

any continuous copula function in the 2 dimensional hypercube [0, 1]2, we can represent it as

a Bernstein copula. The flexibility of Bernstein copula allows us to approximate an unknown
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underlying dependence structure in any realistic environment by fitting the Bernstein copula

to the empirical data. See also Diers et al. (2012) for more discussions on the properties of

the Bernstein copula. Chapter 6 will consider the analysis of the moments of the aggregate

discounted claim costs under a two-sided exit setting by assuming the dependence between

claim severities and interclaim times is a generalized Bernstein copula.

21



Chapter 3

Time-Dependent Claims in Birth

Process Claim Count Models

In this chapter, we consider the case when {Nt}t≥0 is a nonhomogeneous birth process, a

model which is shown to be particularly suitable for use in a time-dependent claim context.

We are interested in the behaviour of the process after a fixed time s, given the value of

Ns, say k. Thus, the results hold for any counting process with the Markov property which

behaves like a nonhomogeneous birth process thereafter.

Now, we are going to introduce the main processes under which we will work. First, we

start with a Markovian counting process. A counting process is Markovian, if the manner

in which the process behaves after a certain time, say s, is only related to the scenario at

time s, without depending on the process history before s. Mathematically speaking, for

t > s, the distribution of Nt −Ns given Ns is the same regardless of the values {Nu}0≤u<s.

For a Markovian counting process, of central importance to the analysis are the transition

probabilities, for n ∈ N, given by,

pk,k+n(s, t) = Pr(Nt −Ns = n|Ns = k),
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and the pgf is denoted as

Pk,s,t(z) = E[zNt−Ns|Ns = k] =
∞∑
n=0

pk,k+n(s, t)z
n. (3.1)

Now we are going to approach the definition of a birth process.

Definition 6. A Markovian counting process {Nt}t≥0 is called a birth process if

pk,k+1(t, t+ h) = λk(t)h+ o(h),

and

pk,k+n(t, t+ h) = o(h)

for n = 2, 3, . . ., where the functions {λ0, λ1, . . .} are called the transition intensity functions.

In birth process, the marginal probabilities are given (under the assumption that N0 = 0)

by pn(t) = Pr(Nt = n) = p0,n(0, t). It has been shown that birth process is defined in terms

of the probability transition functions. The transition probabilities are then characterized

by the transition intensities, which also have an alternative formulation, namely

pk,k(s, t) = e−
∫ t
s λk(y)dy, (3.2)

for k = 0, 1, . . .. For n ≥ 1, pk,k+n(s, t) may be obtained recursively in n. The explicit formu-

las for the transition probabilities as a function of transition intensities can be obtained for

some choices of λm(t)s, see Klugman et al. (2013, Chapter 7), Willmot (2010) and reference

therein.

In what follows in this chapter, let the realizations of Tm, for m ∈ N+, be denoted by tm.

For convenience, we assume T0 = t0 = 0. Also, hn,t(tk+1, tk+2, . . . , tk+n|k, s) represents the

density function associated with the event that there are exactly n claims in (s, t) at times

tk+1 < tk+2 < . . . < tk+n where s < tk+1 and tk+n < t, given that Ns = k. This density is of

central importance in what follows, and is now given explicitly.
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Lemma 5. For n ∈ N+,

hn,t(tk+1, tk+2, . . . , tk+n|k, s) = e−
∫ t
s λk+n(y)dy

n∏
m=1

ϕk+m(tk+m|s), (3.3)

where

ϕj(x|s) = λj−1(x)e
∫ x
s {λj(y)−λj−1(y)}dy. (3.4)

Proof. It is clear from (3.2) that form ∈ N+, exp{−
∫ t∗
tk+m−1

λk+m−1(y)dy}may be interpreted

as the probability that Tk+m exceeds t∗, given that Ntk+m−1
= k +m − 1. Thus, λk+m−1(y)

is the associated failure rate, and (assuming for the moment that tk = s) the joint density

of Tk+1, Tk+2, . . . , Tk+n|Ns = k may thus be expressed as

n∏
m=1

λk+m−1(tk+m)e
−

∫ tk+m
tk+m−1

λk+m−1(y)dy.

In order to have exactly n claims in (s, t), there can be no more claims in (tk+n, t) with

probability exp
{
−
∫ t

tk+n
λk+n(y)dy

}
, implying that

hn,t(tk+1, tk+2, . . . , tk+n|k, s)

= e
−

∫ t
tk+n

λk+n(y)dy
n∏

m=1

λk+m−1(tk+m)e
−

∫ tk+m
tk+m−1

λk+m−1(y)dy

= e
−
[∫ t

s −
∫ tk+n
s

]
λk+n(y)dy

n∏
m=1

λk+m−1(tk+m)e
−
[∫ tk+m−1

s −
∫ tk+m
s

]
λk+m−1(y)dy. (3.5)

Simple arrangement of (3.5) results in (3.3).

An explicit expression for the probability transition function follows immediately from Lemma

5.

Lemma 6. The transition probabilities may be expressed as

pk,k+1(s, t) =

∫ t

s

h1,t(tk+1|k, s)dtk+1, (3.6)
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and for n=2,3,. . . ,

pk,k+n(s, t) =

∫ t

s

∫ tk+n

s

· · ·
∫ tk+2

s

hn,t(tk+1, . . . , tk+n|k, s)dtk+1dtk+2 . . . dtk+n. (3.7)

Proof. Integrating over all possible values of tk+1, tk+2, . . . , tk+n results in (3.6) and (3.7).

We now turn to the problem of interest, namely the analysis of time-dependent claims. To

this end, the sum total of claim values for claims incurred in (s, t) is denoted as

Ss,t =
Nt∑

i=k+1

Xi|Ns = k, (3.8)

for t ≥ s, where the claim severities {Xi}∞i=k+1 depend on the particular quantity of interest

to be analyzed. See Klugman et al. (2013, Section 9.1) for a discussion of this issue. We

denote the conditional LT of Ss,t, given that there are exactly n claims in (s, t) at times

tk+1, tk+2, . . . , tk+n by f̃n,t(z|k, s, tk+1, . . . , tk+n). If we further assume that the individual

claim values are independent of all other claim values, with distribution depending on nothing

more than possibly the incurral time, k, s and t, then we may write

f̃n,t(z|k, s, tk+1, . . . , tk+n) =
n∏

m=1

f̃t(z|k, s, tk+m). (3.9)

Note that in (3.9), f̃t(z|k, s, x) is the LT of the claim value associated with a claim incurral

at x ∈ (s, t). The independence assumption is not necessary, we are now in a position to

state the general results for the aggregate claim values, conditional on Ns = k without the

assumption stated in (3.9).

Theorem 7. Given that Ns = k, the aggregate claim values associated with claims incurred

in (s, t) has LT

E[e−zSs,t|Ns = k] = pk,k(s, t) +
∞∑
n=1

pk,k+n(s, t)f̃n,t(z|k, s), (3.10)
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where

f̃1,t(z|k, s) =
∫ t

s
h1,t(tk+1|k, s)f̃1,t(z|k, s, tk+1)dtk+1∫ t

s
h1,t(tk+1|k, s)dtk+1

, (3.11)

and for n=2,3, . . . ,

f̃n,t(z|k, s) =
∫ t

s

∫ tk+n

s
. . .
∫ tk+2

s
hn,t(tk+1, . . . , tk+n|k, s)f̃n,t(z|k, s, tk+1, . . . , tk+n)dtk+1 . . . dtk+n∫ t

s

∫ tk+n

s
. . .
∫ tk+2

s
hn,t(tk+1, . . . , tk+n|k, s)dtk+1 . . . dtk+n

.

(3.12)

Proof. Obviously, Ss,t = 0 if Nt − Ns = 0, and otherwise (3.10) follows directly by con-

ditioning on Nt − Ns = n, and the n claim times Tk+1, . . . , Tk+n, together with (3.6) and

(3.7).

Clearly, (3.11) and (3.12) imply that the LT f̃n,t(z|k, s, tk+1, . . . , tk+n) may be represented

as a mixture, with mixing weight proportional to hn,t(tk+1, . . . , tk+n|k, s). Also, it is useful

to note that in the important special case when (3.9) holds, (3.3) implies that for any n,

the integrand in (3.12) factors as a function of the integration variables tk+1, tk+2, . . . , tk+n.

We also want to remark that the order of the claim incurral times won’t influence the result

if hn,t(tk+1, tk+2, . . . , tk+n) is a symmetric function for n ≥ 1. In this case, we can re-write

(3.12) as

f̃n,t(z|k, s) =
∫ t

s

∫ t

s
. . .
∫ t

s
hn,t(tk+1, . . . , tk+n|k, s)

∏n
m=1 f̃t(z|k, s, tk+m)dtk+1 . . . dtk+n∫ t

s

∫ t

s
. . .
∫ t

s
hn,t(tk+1, . . . , tk+n|k, s)dtk+1 . . . dtk+n

.

3.1 The birth process with factorization assumption

While the representation of Theorem 7 is extremely general, a very useful simplification

results if (3.9) holds and λj(x) for j = k, k + 1, . . . is such that ϕk+m(x|s), defined in (3.4)

for m ∈ N+, factors (for fixed k and s) as a function of m multiplied by a function of x. This

is the case for (possibly) nonhomogeneous version of Poisson and mixed Poisson processes,

and the contagion models, as is discussed later. This factorization assumption is motivated

by Puri (1982), in the context of the evaluation of the marginal probabilities {pn(t);n ∈ N}.
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In fact, the factorization essentially characterizes the so-called order statistic property (see

Puri (1982)).

Theorem 8. Suppose that (3.9) holds, and λj(x) for j = k, k + 1, . . . is such that

ϕk+m(x|s) = αm,k,sb(x|k, s), (3.13)

for m ∈ N+. Then for n ∈ N+,

pk,k+n(s, t) = e−
∫ t
s λk+n(y)dy

(
∏n

m=1 αm,k,s)

n!

{∫ t

s

b(x|k, s)dx
}n

, (3.14)

and (3.10) may be expressed in compound form as

E[e−zSs,t|Ns = k] = Pk,s,t

{
f̃t(z|k, s)

}
, (3.15)

where the pgf Pk,s,t(z) is given by (3.1), and

f̃t(z|k, s) =
∫ t

s
b(x|k, s)f̃t(z|k, s, x)dx∫ t

s
b(x|k, s)dx

, (3.16)

is the LT of a mixed distribution.

Proof. We utilize the approach of Puri (1982). First note that (3.3) becomes

hn,t(tk+1, tk+2, . . . , tk+n|k, s) = e−
∫ t
s λk+n(y)dy

{
n∏

m=1

αm,k,s

}
n∏

m=1

b(tk+m|k, s), (3.17)

for n ∈ N+. Also, combining (3.9) with (3.17) results in

hn,t(tk+1, tk+2, . . . , tk+n|k, s)f̃n,t(z|k, s, tk+1, . . . , tk+n)

= e−
∫ t
s λk+n(y)dy

{
n∏

m=1

αm,k,s

}
n∏

m=1

[
b(tk+m|k, s)f̃t(z|k, s, tk+m)

]
, (3.18)

again for n ∈ N+. For n = 1, substitution of (3.17) into (3.6) yields (3.14) after changing
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the variable of integration from tk+1 to x. Similarly, (3.6) and (3.11) imply that

pk,k+1(s, t)f̃1,t(z|k, s) =
∫ t

s

h1,t(tk+1|k, s)f̃1,t(z|k, s, tk+1)dtk+1

= e−
∫ t
s λk+1(y)dyα1,k,s

∫ t

s

b(x|k, s)f̃t(z|k, s, x)dx

= pk,k+1(s, t)f̃t(z|k, s),

using (3.16) and (3.18) also. Note that for any integrable function γ(x), it follows easily

from γ(t) = ∂
∂t

∫ t

s
γ(x)dx that

∫ t

s

∫ tk+n

s

. . .

∫ tk+2

s

{
n∏

m=1

γ(tk+m)

}
dtk+1 . . . dtk+n =

1

n!

{∫ t

s

γ(x)dx

}n

, (3.19)

for n = 2, 3, . . .. Thus (3.14), which is essentially given by Puri (1982) for the marginal

rather than the transitional properties, holds for n = 2, 3, . . . by substituting (3.17) into

(3.7) and using (3.19) with γ(x) = b(x|k, s). Then (3.7) and (3.12) imply that

pk,k+n(s, t)f̃n,t(z|k, s)

=

∫ t

s

∫ tk+n

s

. . .

∫ tk+2

s

hn,t(tk+1, . . . , tk+n|k, s)f̃n,t(z|k, s, tk+1, . . . , tk+n)dtk+1 . . . dtk+n

= e−
∫ t
s λk+n(y)dy

(
n∏

m=1

αm,k,s

)∫ t

s

∫ tk+n

s

. . .

∫ tk+2

s

{
n∏

m=1

[
b(tk+m|k, s)f̃t(z|k, s, tk+m)

]}
dt,

(3.20)

where t = [tk+1, tk+2, . . . , tk+m], using (3.18) as well. Thus, we have

pk,k+n(s, t)f̃n,t(z|k, s) =
e−

∫ t
s λk+n(y)dy

n!

(
n∏

m=1

αm,k,s

){∫ t

s

b(x|k, s)f̃t(z|k, s, x)dx
}n

= pk,k+n(s, t)
{
f̃t(z|k, s)

}n

,

by (3.19) with γ(x) = b(x|k, s)f̃t(z|k, s, z), where the last line follows from (3.16). Therefore,
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(3.10) becomes

E[e−zSs,t|Ns = k] =
∞∑
n=0

pk,k+n(s, t)
{
f̃t(z|k, s)

}n

.

which immediately yields the representation (3.15). Finally, as λm(x) is nonnegative for

m = k, k + 1, . . ., it follows from (3.4) that ϕk+m(x|s) is also nonnegative for m ∈ N+,

and thus it may be assumed without loss of generality that each of αm,k,s and b(x|k, s) is

nonnegative, implying that (3.16) is a mixture LT of a distribution.

The representation in Theorem 8 of the distribution of a random sum of conditionally inde-

pendent, but not necessarily identically distributed rv’s as a random sum of iid rv’s is very

convenient from the viewpoint of quantitative analysis. This is particularly true due to the

fact that in many applications the transition probabilities are of a simple and well known

form, as is discussed in further details in the next section.

Furthermore, the results of this section and Theorem 8 in particular make no assumptions

about the behaviour of the process before time s except for the assumption about the Markov

property and k claims have occurred. That is, the process {Nt}t≥0 needs only be a nonho-

mogeneous birth process beyond a certain point.

Next, we provide some examples involving some common choices of the intensity function

λn(t).

Example 1. A delayed nonhomogeneous Poisson process

Suppose that λn(x) = λ(x) for s ≤ x ≤ t and n = k, k + 1, . . .. Then for m ∈ N+, (3.4)

becomes ϕk+m(x|s) = λ(x), and the results of Theorem 8 may be applied with αm,k,s = 1 and

b(x|k, s) = λ(x). Then (3.14) becomes

pk,k+n(s, t) =
e−

∫ t
s λ(x)dx{

∫ t

s
λ(x)dx}n

n!

a Poisson probability. As pk,k(s, t) = exp{−
∫ t

s
λ(y)dy}, (3.15) is a compound Poisson LT
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with secondary LT given by (3.16), namely

f̃t(z|k, s) =
∫ t

s
λ(x)f̃t(z|k, s, x)dx∫ t

s
λ(x)dx

.

Of course, homogeneous Poisson process is obtained when λ(x) is a constant on (s, t). Be-

sides, the ordinary nonhomogeneous Poisson process results if λm(t) = λ(t) for all m ∈ N

and t ≥ 0.

Example 2. Linear contagion

In the linear contagion model, we assume that

λj(t) = (α+ βj)λ(t),

for j = k, k + 1, . . .. Thus (3.4) becomes, from m ∈ N+,

ϕm+k(x|s) = {α + β(k +m− 1)}λ(x)eβ
∫ x
s λ(y)dy,

implying that for β ̸= 0, Theorem 8 applies with αm,k,s = m + k − 1 + α
β
, and b(x|k, s) =

βλ(x)eβ
∫ x
s λ(y)dy. Then

∏n
m=1 αm,k,s

n!
=

Γ(n+ k + α
β
)

n!Γ(k + α
β
)

=

(
n+ k + α

β
− 1

n

)
,

and (3.14) becomes

pk,k+n(s, t) =

(
n+ k + α

β
− 1

n

)(
1− e−β

∫ t
s λ(x)dx

)n
e−(α+βk)

∫ t
s λ(x)dx.

As in Klugman et al. (2013, p.112), pk,k+n(s, t) is of negative binomial form if β > 0, and

is of binomial form if β < 0 with −α/β a positive integer. Also, the secondary distribution

in the compound LT representation (3.15) itself has LT (3.16), namely

f̃(z|k, s) =
β
∫ t

s
λ(x)eβ

∫ x
s λ(y)dyf̃t(z|k, s, x)dx

eβ
∫ t
s λ(y)dy − 1

,
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as is easily verified.

Again, we remark that the usual contagion model results when λm(x) = (α+βm)λ(x) for all

m ∈ N+, and x ≥ 0. Furthermore, the homogeneous case results with λ(x) = 1.

Example 3. The nonhomogeneous mixed Poisson case

Let U(θ), θ > 0 be the df of a nonnegative rv, and define Γm(t) =
∫∞
0

θme−θtdU(θ) for

m = k, k + 1, . . .. Then consider the intensity function for t ≥ s defined by

λm(t) = r(t)
Γm+1

{
R(s) +

∫ t

s
r(x)dx

}
Γm

{
R(s) +

∫ t

s
r(x)dx

} , m = k, k + 1, . . . ,

where {r(x); s ≤ x ≤ t} and R(s) are nonnegative. For the motivation of this assumption,

see Section 7.2 of Klugman et al. (2013). Then Γm+1(t) = −Γ′
m(t), which implies that

λm(t) = − d
dt
ln Γm

{
R(s) +

∫ t

s
r(x)dx

}
. Therefore, for u, v ≥ s,

∫ v

u

λm(y)dy = −
∫ v

u

d

dy
ln Γm

{
R(s) +

∫ y

s

r(x)dx

}
dy

= ln
Γm

{
R(s) +

∫ v

s
r(x)dx

}
Γm

{
R(s) +

∫ u

s
r(x)dx

} ,
resulting in

e−
∫ v
u λm(y)dy =

Γm

{
R(s) +

∫ v

s
r(x)dx

}
Γm

{
R(s) +

∫ u

s
r(x)dx

} ,
and

pk,k(s, t) =
Γk

{
R(s) +

∫ t

s
r(x)dx

}
Γk {R(s)}

.
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Also, for m ∈ N+

ϕk+m(x|s) = λk+m−1(x)e
−

∫ s
x λk+m(y)dy−

∫ x
s λk+m−1(y)dy

= r(x)
Γk+m

{
R(s) +

∫ x

s
r(y)dy

}
Γk+m−1

{
R(s) +

∫ x

s
r(y)dy

} Γk+m {R(s)}
Γk+m

{
R(s) +

∫ x

s
r(y)dy

}
×

Γk+m−1

{
R(s) +

∫ x

s
r(y)dy

}
Γk+m−1 {R(s)}

= r(x)
Γk+m {R(s)}
Γk+m−1 {R(s)}

.

Therefore, Theorem 8 can be applied with

αm,k,s =
Γk+m {R(s)}
Γk+m−1 {R(s)}

,

and b(x|k, s) = r(x). Then

pk,k+n(s, t) =
Γk+n

{
R(s) +

∫ t

s
r(y)dy

}
Γk+n {R(s)}

Γk+n {R(s)}
Γk {R(s)}

{∫ t

s
r(y)dy

}n

n!
,

i.e.

pk,k+n(s, t) =
Γk+n

{
R(s) +

∫ t

s
r(y)dy

}
Γk {R(s)}

{∫ t

s
r(y)dy

}n

n!
,

a formula which evidently holds for all n ∈ N. The secondary LT as defined in (3.16) becomes

f̃t(z|k, s) =
∫ t

s
λxf̃t(z|k, s, x)dx∫ t

s
r(x)dx

,

in this case.

The ordinary nonhomogeneous mixed Poisson process results if

λm(t) = r(t)
Γm

{∫ t

0
r(x)dx

}
Γm

{∫ t

0
r(x)dx

} ,
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for all m ∈ N and t > 0. The corresponding homogeneous process results with r(x) being

constant. This process may also be formulated as a conditional Poisson process rather than as

a birth process. See Klugman et al. (2013, Section 7.2) or Grandell (1997) for further details.

In this process, we only consider the situation after time s, no assumption is needed for the

process before time s. However, this process covers the case when it follows nonhomogeneous

mixed Poisson process since time 0. To be specific, if {Nt, t ≥ 0} follows nonhomogeneous

mixed Poisson process, with intensity as θr(t), and Θ has cdf U(θ). Then we have {Nt −

Ns|Ns = k} also follow nonhomogeneous mixed Poisson process, with intensity as Θ∗r(t),

and Θ∗ has df Pr(Θ∗ ≤ x) =
∫ x

0

(θ
∫ s
0 r(x)dx)ke−θ

∫ s
0 r(x)dx

k!pk(s)
U(dθ) for x > 0.

In the following, we take a further look at a special case of (3.13), given by

ϕm(x|s) = αm,sb(x|s), (3.21)

for m = k + 1, k + 2, . . .. It follows directly that, for x ∈ [s, t] and i = 1, 2, . . . , n ∈ N+,

Pr(Ti+k ≤ x|Nt = n+ k,Ns = k)

=
n∑

j=i

Pr(Nx = j + k|Nt = n+ k,Ns = k)

=
n∑

j=i

Pr(Nt = n+ k|Ns = k,Nx = j + k) Pr(Nx = j + k|Ns = k)

Pr(Nt = n+ k|Ns = k)

=
n∑

j=i

Pr(Nt = n+ k|Nx = j + k) Pr(Nx = j + k|Ns = k)

Pr(Nt = n+ k|Ns = k)
,

where the last line holds due to Markovian property of the process. By (3.14), we have

Pr(Ti+k ≤ x|Nt = n+ k,Ns = k)

=
n∑

j=i

(
n

j

)(∫ x

s
b(y|s)dy

)j (∫ t

x
b(y|s)dy

)n−j

(∫ t

s
b(y|s)dy

)n
{
e
∫ x
s [λk+n(y)−λk+j(y)]dy

n∏
m=j+1

αm+k,x

∫ t

x
b(y|x)dy

αm+k,s

∫ t

x
b(y|s)dy

}
,
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where the last term can be re-written, by (3.4), as

e
∫ x
s [λk+n(y)−λk+j(y)]dy

n∏
m=j+1

αm+k,x

∫ t

x
b(y|x)dy

αm+k,s

∫ t

x
b(y|s)dy

=
n∏

m=j+1

e
∫ x
s [λk+m(y)−λk+m−1(y)]dy

∫ t

x
λk+m−1(y)e

∫ y
x [λk+m(z)−λk+m−1(z)]dzdy∫ t

x
λk+m−1(y)e

∫ y
s [λk+m(z)−λk+m−1(z)]dzdy

= 1.

Hence, it follows that

Pr(Ti+k ≤ x|Nt = n+ k,Ns = k) =
n∑

j=i

(
n

j

)(∫ x

s
b(y|s)dy

)j (∫ t

x
b(y|s)dy

)n−j

(∫ t

s
b(y|s)dy

)n .

Therefore, conditional onNt = n+k,Ns = k, the (k+i)th claim occurrence time is distributed

as the ith order statistic of n iid rv’s with df
∫ x

s
b(y|s)dy/

∫ t

s
b(y|s)dy for i = 1, 2, . . . , n and

x ∈ [s, t]. Then, the resulting process {Nt}t≥s conditional on Ns = k has the order statistic

property.

3.2 A birth process model with “two stages”

In this section, we indicate how the representation in Theorem 8 is modified if the factoriza-

tion (3.13) changes form but (3.9) holds. We have the following result.

Corollary 9. Suppose (3.9) holds, and λm(x) for m = k, k + 1, . . . is such that

ϕk+m(x|s) =

αm,k,sb1(x|k, s) m ≤ n0,

αm,k,sb2(x|k, s) m > n0.

(3.22)
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Then, the LT of the total claim size may be expressed as

E[e−zSs,t|Ns = k] =

n0∑
n=0

pk,k+n(s, t) [g̃1,t(z|k, s)]n

+
∞∑

n=n0+1

pk,k+n(s, t)

∫ t

s

cn(x|k, s, t) [g̃1,x(z|k, s)]n0 [g̃2,x(z|k, s)]n−n0−1 f̃t(z|k, s, x)dx,

(3.23)

where

pk,k+n(s, t)

=


e−

∫ t
s λk(y)dy n = 0,

e−
∫ t
s λk+n(y)dy

∏n
m=1 αm,k,s

(
∫ t
s b1(x|k,s)dx)n

n!
0 < n ≤ n0,

e−
∫ t
s λk+n(y)dy

∏n
m=1 αm,k,s

∫ t

s

(
∫ x
s b1(y|k,s)dy)n0 (

∫ t
x b2(y|k,s)dy)n−n0−1

n0!(n−n0−1)!
b2(x|k, s)dx n > n0,

and

g̃1,x(z|k, s) =
∫ x

s
b1(y|k, s)f̃t(z|k, s, y)dy∫ x

s
b1(y|k, s)dy

, s < x ≤ t, (3.24)

g̃2,x(z|k, s) =
∫ t

x
b2(y|k, s)f̃t(z|k, s, y)dy∫ t

x
b2(y|k, s)dy

, s < x < t, (3.25)

cn(x|k, s, t) =
(
∫ x

s
b1(y|k, s)dy)n0(

∫ t

x
b2(y|k, s)dy)n−n0−1b2(x|k, s)∫ t

s

[
(
∫ x

s
b1(y|k, s)dy)n0(

∫ t

x
b2(y|k, s)dy)n−n0−1

]
b2(x|k, s)dx

. (3.26)

Proof. Recall that hn,t(tk+1, tk+2, . . . , tk+n|k, s) = e−
∫ t
s λk+n(y)dy

∏n
m=1 ϕk+m(tk+m). For n ≤

n0, the process is unaffected by the change of factorization and Theorem 8 applies. Thus, we

focus on the case when n > n0. Indeed, substituting the two-stage factorization ϕk+m(x|s)

into (3.3) results in

hn,t(tk+1, tk+2, . . . , tk+n|k, s)=e−
∫ t
s λk+n(y)dy

n∏
m=1

αm,k,s

{
n0∏

m=1

b1(tk+m|k, s)

}
n∏

m=n0+1

b2(tk+m|k, s).

(3.27)
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In turn, by using (3.27), the integration of (3.18) becomes

∫ t

s

∫ tk+n

s

· · ·
∫ tk+2

s

hn,t(tk+1, tk+2, . . . , tk+n|k, s)
n∏

m=1

f̃t(z|k, s, tk+m)dtk+m

=

∫ t

s

∫ tk+n

s

. . .

∫ tk+n0+2

s

(∫ tk+n0+1

s

. . .

∫ tk+2

s

n0∏
m=1

b1(tk+m|k, s)f̃t(z|k, s, tk+m)dtk+m

)

×

(
n∏

m=n0+1

b2(tk+m|k, s)f̃t(z|k, s, tk+m)dtk+m

)
e−

∫ t
s λk+n(y)dy

n∏
m=1

αm,k,s (3.28)

Rearranging the integration field in (3.28) results in

e−
∫ t
s λk+n(y)dy

×
n∏

m=1

αm,k,s

∫ t

s

∫ t

tk+n0+1

∫ tk+n

tk+n0+1

. . .

∫ tk+n0+3

tk+n0+1

[
n∏

m=n0+2

b2(tk+m|k, s)f̃t(z|k, s, tk+m)dtk+m

]

×

(∫ tk+n0+1

s
b1(x|k, s)f̃t(z|k, s, x)dx

)n0

n0!
b2(tk+n0+1|k, s)f̃t(z|k, s, tk+n0+1)dtk+n0+1. (3.29)

Using the similar logic as that in proof of Theorem 8, (3.29) can be simplified to

∫ t

s

∫ tk+n

s

· · ·
∫ tk+2

s

hn,t(tk+1, tk+2, . . . , tk+n|k, s)
n∏

m=1

f̃t(z|k, s, tk+m)dtk+m

=

∫ t

s

(∫ x

s
b1(y|k, s)f̃t(z|k, s, y)dy

)n0
(∫ t

x
b2(y|k, s)f̃t(z|k, s, y)dy

)n−n0−1

n0!(n− n0 − 1)!
b2(x|k, s)f̃t(z|k, s, x)dx

× e−
∫ t
s λk+n(y)dy

n∏
m=1

αm,k,s.
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Thus, from (3.10), the LT of Ss,t is given by

E[e−zSs,t|Ns = k]

= e−
∫ t
s λk(y)dy +

n0∑
n=1

e−
∫ t
s λk+n(y)dy

(
n∏

m=1

αm,k,s

)
(
∫ t

s
b1(x|k, s)f̃t(z|k, s, x)dx)n

n!

+
∞∑

n=n0+1

[∫ t

s

(
∫ x

s
b1(y|k, s)f̃t(z|k, s, y)dy)n0(

∫ t

x
b2(y|k, s)f̃t(z|k, s, y)dy)n−n0−1

n0!(n− n0 − 1)!

×b2(x|k, s)f̃t(z|k, s, x)dx
]
e−

∫ t
s λk+n(y)dy

n∏
m=1

αm,k,s. (3.30)

The pgf of the number of claims during (s, t) given there are k claim occurrences up to time

s is easily obtained by replacing the LT of the claim severity by z, namely

Pk,s,t(z) = e−
∫ t
s λk(y)dy +

n0∑
n=1

e−
∫ t
s λk+n(y)dy

n∏
m=1

αm,k,s

(
∫ t

s
b1(x|k, s)dx)n

n!
zn

+
∞∑

n=n0+1

e−
∫ t
s λk+n(y)dy

n∏
m=1

αm,k,s

∫ t

s

(
∫ x

s
b1(y|k, s)dy)n0(

∫ t

x
b2(y|k, s)dy)n−n0−1

n0!(n− n0 − 1)!
b2(x|k, s)dxzn.

Thus coefficient of zn immediately leads to the pmf in Corollary 9. After substituting

pk,k+n(s, t) into (3.30), (3.23) is easily verified.

As a special case when b1(x|k, s) = b2(x|k, s) = b(x|k, s), replacing
∫ x

s
b(y|k, s)f̃t(z|k, s, y)dy

by A(x)
∫ t

s
b(y|k, s)f̃t(z|k, s, y)dy, with A(s) = 0 and A(t) = 1 results in

∫ t

s

[
(
∫ x

s
b1(y|k, s)f̃t(z|k, s, y)dy)n0

n0!

(
∫ t

x
b2(y|k, s)f̃t(z|k, s, y)dy)n−n0−1

(n− n0 − 1)!

]
b2(x|k, s)f̃t(z|k, s, x)dx

=

[∫ t

s

b(y|k, s)f̃t(z|k, s, y)dy
]n ∫ t

s

A(x)n0(1− A(x))n−n0−1

n0!(n− n0 − 1)!
dA(x).

The second integral part in the last line is the pdf of a Beta(n0+1, n−n0) distribution. Since

the domain of Beta distribution is (0, 1), the second integral has a value of 1. Thus (3.29) is

simplified to be equivalent to (3.20). Therefore, the result of Theorem 8 may be recovered

from Corollary 9. Clearly, more than two stages may be handled in a similar manner, but

the details are tedious and omitted here.
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3.3 The mixed Erlang properties

It is generally very difficult to pursue explicit expressions for the quantities associated with

the aggregate claims. As illustrated in Section 2.3.1, the use of mixed Erlang distributions

provides a better approach to address the problem. Given Ns = k and Tk+i = x, we assume

the corresponding individual claim Xk+i in (3.8) is mixed Erlang distributed, whose LT is

given as

f̃t(z|k, s, x) = Qx

(
βx,s,t

z + βx,s,t

∣∣∣∣ k, s, t) for s < x < t, (3.31)

with the pgf Qx(z|k, s, t) =
∑∞

n=0 qn(x|k, s, t)zn. We also assume that βs,t = sups≤x≤t βx,s,t <

∞ and set αx,s,t = βx,s,t/βs,t. Thus,

Qx

(
βx,s,t

z + βx,s,t

∣∣∣∣ k, s, t) = Qx

(
αx,s,t

βs,t

z+βs,t

1− (1− αx,s,t)
βs,t

z+βs,t

∣∣∣∣∣ k, s, t
)

= Rx

(
βs,t

z + βs,t

∣∣∣∣ k, s, t) ,

with

Rx(z|k, s, t) =
∞∑
j=0

rj(x|k, s, t)zj = Qx

(
αx,s,tz

1− (1− αx,s,t)z

∣∣∣∣ k, s, t) .

We find that Rx(z|k, s, t) is a compound distribution with a zero-truncated geometric dis-

tribution being its secondary distribution. After some easy mathematical manipulations, we

have that r0(x|k, s, t) = q0(x|k, s, t), and for j ∈ N+,

rj(x|k, s, t) =
j∑

i=1

(
j − 1

i− 1

)
qi(x|k, s, t)(αx,s,t)

i(1− αx,s,t)
j−i.

See also Klugman et al. (2013, p.162). We further assume that (3.9) holds, then from (3.10),

(3.11) and (3.12), our total claim amount Ss,t in (3.8) is also mixed Erlang distributed,

expressed as

E[e−zSs,t|Ns = k] = Qk,s,t

(
βs,t

z + βs,t

)
, (3.32)
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where

Qk,s,t(z) = pk,k(s, t) +
∞∑
n=1

pk,k+n(s, t)Q
∗
n(z|k, s, t),

with Q∗
n(z|k, s, t) defined as

Q∗
n(z|k, s, t) =

∫ t

s

∫ tk+n

s
. . .
∫ tk+2

s
hn,t(tk+1, . . . , tk+n|k, s)

(∏n
m=1Rtk+m

(z|k, s, t)
)
dtk+1 . . . dtk+n∫ t

s

∫ tk+n

s
. . .
∫ tk+2

s
hn,t(tk+1, . . . , tk+n|k, s)dtk+1 . . . dtk+n

.

(3.33)

Now, we apply the mixed Erlang properties in two-stage models, i.e. by (3.22), to specify

the mixing weights.

Proposition 10. If the individual time-dependent claim value is mixed Erlang distributed

as defined in (3.31), then total claim amount Ss,t defined by (3.8) in the two-stage models is

also mixed Erlang distributed, i.e.

E[e−zSs,t|Ns = k] = Qk,s,t

(
βs,t

z + βs,t

)
=

∞∑
n=0

qn(k, s, t)

[
βs,t

z + βs,t

]n
,

whose mixing weights qn(k, s, t) are given as

∞∑
m=n0+1

pk,k+m

∫ t

s

cm(x|k, s, t)
(
q∗n0
1 (x|k, s, t) ∗ q∗(m−n0−1)

2 (x|k, s, t) ∗ r(x|k, s, t)
)
n
dx

+

n0∑
m=1

pk,k+m(q
∗m
1 )n(t|k, s, t), (3.34)

for n ∈ N+, and

q0(k, s, t) =
∞∑

n=n0+1

pk,k+n

∫ t

s

cn(x|k, s, t)q1,0(x|k, s, t)n0q2,0(x|k, s, t)n−n0−1r0(x|k, s, t)dx

+

n0∑
n=0

pk,k+nq1,0(t|k, s, t)n, (3.35)
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where, for s < x ≤ t and j = 0, 1, . . .,

q1,j(x|k, s, t) =
∫ x

s
b1(y|k, s)rj(y|k, s, t)dy∫ x

s
b1(y|k, s)dy

,

q2,j(x|k, s, t) =
∫ t

x
b2(y|k, s)rj(y|k, s, t)dy∫ t

x
b2(y|k, s)dy

.

Proof. As shown in (3.33), we need to identify Q∗
n(z|k, s, t) in order to find the mixing weight

of the mixed Erlang distribution. From (3.23), (3.24), (3.25) and (3.26), we have

Q∗
n(z|k, s, t)=

Qn
t,1(z|k, s, t), n ≤ n0∫ t

s
cn(x|k, s, t)Qx,1(z|k, s, t)n0Qx,2(z|k, s, t)n−n0−1Rx(z|k, s, t)dx, n ≥ n0 + 1,

(3.36)

where

Qx,1(z|k, s, t) =
∞∑
j=0

q1,j(x|k, s, t)zj =
∫ x

s
b1(y|k, s)Ry(z|k, s, t)dy∫ x

s
b1(y|k, s)dy

,

Qx,2(z|k, s, t) =
∞∑
j=0

q2,j(x|k, s, t)zj =
∫ t

x
b2(y|k, s)Ry(z|k, s, t)dy∫ t

x
b2(y|k, s)dy

,

and cn(x|k, s, t) defined by (3.26). Expanding (3.36) and equating the coefficient of zn yield

(3.34) and (3.35) directly.

In the case where (3.13) holds, i.e. ϕk+m(x|s) = αm,k,sb(x|k, s) for m ≥ 1, (3.32) can be

simplified to

E[e−zSs,t|Ns = k] = Pk,s,t

[
Q

(
βs,t

z + βs,t

∣∣∣∣ k, s, t)] ,
where Q(z|k, s, t) =

∫ t
s b(x|k,s)Rx(z|k,s,t)dx∫ t

s b(x|k,s)dx , by (3.15) and (3.16).

Thus, we can express the aggregate claim Ss,t as a mixed Erlang distributed rv with the

mixing weight distributed as a compound distribution of a compound distribution. The

mixed Erlang properties obtained can be applied to address the inflation model and payment

delay model, details are omitted here.
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Chapter 4

IBNR Claims In Renewal Models

Chapter 3 analyzed the aggregate claims under the models where claim severities and claim

occurrence times are dependent. Starting from this chapter, we work under a renewal risk

model with dependence between interclaim times and claim severities, also known as a de-

pendent Sparre Andersen risk model.

IBNR claims are of central importance in claim reserving. Indeed, insurers should make ad-

equate provision for the total amount of claims incurred but not yet reported to the insurer

at fixed point in time. This chapter considers the randomness of some important factors in

this context, such as reporting lags and incurred claim sizes. Furthermore, the independence

assumption made in Section 9.3 of Klugman et al. (2013) is overly strong, the claim amounts

and delays are known to be highly correlated in insurance practice, and thus the model is not

appropriate. To address this issue, a dependency structure among interclaim times, claim

severities and delays are incorporated into the analysis of the IBNR claim problem in this

chapter.

LTs are utilized to characterize the total discounted IBNR claim amounts, and the IBNR

claim number is further examined using pgfs.

Definition 7. The claim causing event process {Nt}t≥0 is an ordinary renewal process defined

through the interarrival times {τk}k≥1, which form a sequence of iid rv’s having common df
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Fτ (·) = 1− F̄τ (·) and LT f̃τ (s).

Renewal-type risk models consider processes with independent interarrival times (see, e.g.,

Andersen, 1957). Moreover, we further introduce a series of definitions with their underlying

assumptions.

1. The batch size Cx corresponds to the number of independent claims generated by

the claim causing event at time x. The batch sizes {Cx}x≥0 have a common pgf

B(z) = E[zCx ]. Batch sizes at different time points are mutually independent (i.e. Cx

and Cy are independent for x ̸= y). They are also assumed to be independent of any

other rv’s in the risk model.

2. Let Wi,k be the reporting lag of the ith claim in the kth claim causing event. The rv’s

{Wi,k}i,k∈N+ are assumed to be iid with df K(·).

3. Let Xi,k be the deflated (or baseline) severity of the ith claim in the kth claim causing

event. The nonnegative rv’s {Xi,k}i,k∈N+ form a sequence of iid rv’s with df P (·) and

LT p̃(s) = E
[
e−sXi,k

]
=
∫∞
0

e−sxP (dx) for s ≥ 0.

We assume that all claim severities and reporting lags in different claim causing events are

independent (i.e. Xj,n and Wi,k are independent rv’s if i ̸= j or k ̸= n). Also, the random

vectors (τk,Wi,k, Xi,k)k∈N+ are mutually independent with common joint df J , which we

conventionally express as

J(t, w, x) = F (t)KW |τ (w|t)PX|τ,W (x|t, w), (4.1)

for t, w, x ≥ 0, where PX|τ,W is the df of Xi,k|(τk,Wi,k), and KW |τ is the df of Wi,k|τk. Fur-

thermore, we let p̃X|τ,W be the LT of Xi,k|(τk,Wi,k), and µn(t, w) = E[Xn
i,k|τk = t,Wi,k = w]

for n ∈ N. Note that the claim arrival dynamic described above is a generalization of the

one governing the dependent Sparre Andersen model (e.g., Cheung et al. (2010)).

To introduce the total discounted IBNR claim amount of interest here, first, we assume that

the time-0 value of a (deflated) claim of amount y occurring at x and reported at time x+w
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is e−δxl(w)y, where δ is the constant force of interest (net of inflation) and l is a non-negative

function of the reporting lag. Thus, the total discounted IBNR claim amount Z(t) is defined

as

Z(t) =
Nt∑
k=1

CTk∑
i=1

e−δTk l(Wi,k)1{Wi,k+Tk>t}Xi,k, (4.2)

for δ ≥ 0 with LT Lγ(t) = E
[
e−γZ(t)

]
, which is known to exist on (at least) γ ≥ 0. A possible

candidate for l is l(w) = e−ϵw for w, ϵ ≥ 0, which corresponds to the situation where both

the force of interest and inflation rate are assumed constant. Other relevant applications for

the function l (e.g., l may be censored at a given reporting lag threshold) can be found in

Huang et al. (2015). Also, note that the renewal sum of discounted claim amounts studied

by e.g., Léveillé and Garrido (2001a, 2001b) and Léveillé and Adékambi (2011), is a special

case of (4.2) with infinitely long reporting lags (i.e. Wi,k = ∞ a.s. for i, k ∈ N+), l(·) = 1,

and B(z) = z.

The remainder of this chapter is structured as follows. In Section 4.1, the generic model

for the total discounted IBNR claim amounts is formally introduced and analyzed under a

generic dependence structure between the interclaim times, claim severities and reporting

lags. An expression for the LT of the total discounted IBNR claim amount is derived, and

recursive formulas for the moments are then obtained using their defective renewal equation

representation. Also, we later analyze the joint distribution of the IBNR claim amounts

and the incurred and reported claim amounts at different time points. Section 4.2 pays

special attention to the IBNR claim number problem when the claim arrival process follows

a compound Poisson process. Section 4.3 studies the IBNR claim number when batch arrivals

are of size 1. The tractability of the model when reporting lags are distributed as a mixture

of exponentials is later shown.

4.1 Total discounted IBNR claim amount

In this section, the total discounted IBNR claim amount Z(t) is analyzed through LTs.
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4.1.1 Moments of IBNR claims

Following similar arguments as in Léveillé and Garrido (2001b), we condition on the char-

acteristics of the first claim causing event and make use of the representation (4.1) for the

joint df J . It follows that

Lγ(t) = F̄ (t)+

∫ t

0

Lγe−δx(t−x)B

(
1 +

∫ ∞

t−x

[
p̃X|τ,W (γl(w)e−δx|x,w)− 1

]
KW |τ (dw|x)

)
F (dx).

(4.3)

Assuming that the moments of Z(t) exist, differentiating n times (4.3) wrt γ and evaluating

the resulting equation at γ = 0, one obtains

E[Zn(t)] =

∫ t

0

e−nδxE[Zn(t− x)]F (dx) + vn(t), (4.4)

for n ≥ 1, where

vn(t) =
n∑

m=1

(
n

m

)∫ t

0

e−nδxE[Zn−m(t− x)]
m∑
k=1

B(k)(1)Bm,k (ξ1(x, t), . . . , ξm−k+1(x, t))F (dx),

(4.5)

B(k)(·) is the kth-order derivative of B(·) and

ξi(x, t) =

∫ ∞

t−x

l(w)iµi(x,w)KW |τ (dw|x), 0 ≤ x ≤ t, i = 1, 2, . . . , n.

Also, Bm,k holds for Bell’s polynomial (e.g., Bell (1927) and Johnson (2002)) defined as

Bm,k(x1, x2, . . . , xm−k+1) =
∑ m!

j1!j2! . . . jm−k+1!

(x1

1!

)j1 (x2

2!

)j2
. . .

(
xm−k+1

(m− k + 1)!

)jm−k+1

,

(4.6)

for m = 1, 2, . . . , n and k = 1, 2, . . . ,m. Note that the sum in (4.6) is taken over all sequences

j1, j2, j3, . . . , jm−k+1 of non-negative integers such that

j1 + j2 + . . .+ jm−k+1 = k; j1 + 2j2 + 3j3 + . . .+ (m− k + 1)jm−k+1 = m.

For n ∈ N+, the moments {E[Zn(t)]}t≥0 satisfy the defective (proper) renewal equation (4.4)

when δ > 0 (δ = 0). Results pertaining to renewal equations are discussed in great length in,

44



e.g., Feller (1971) and Resnick (2002). In Theorem 11, a recursive formula for the moments

of Z(t) is obtained, which involves the renewal function {H(t)}t≥0 of the renewal process

{Nt}t≥0 satisfying ∫ ∞

0

e−sxH(dx) =
f̃(s)

1− f̃(s)
, s > 0. (4.7)

Theorem 11. For n ∈ N+, the nth moment of Z(t) is given recursively as

E[Zn(t)] = vn(t) +

∫ t

0

e−nδxvn(t− x)H(dx), (4.8)

where E[Z0(t)] = 1 for t > 0.

Proof. Letting Mn(t) = E[Zn(t)], Equation (4.4) is a renewal equation of the form

Mn(t) = f̃(nδ)

∫ t

0

Mn(t− x)Fnδ(dx) + vn(t), (4.9)

for n ∈ N+, where Fnδ(dx) = e−nδxF (dx)/f̃(nδ) is the Esscher transform of the df F (see,

e.g., Gerber and Shiu (1994)). Taking the LT on both sides of (4.9) leads to

M̃n(s) =
ṽn(s)

1− f̃(nδ + s)
, (4.10)

where M̃n(s) =
∫∞
0

e−sxMn(x)dx and ṽn(s) =
∫∞
0

e−stvn(t)dt for s > 0. It is immediate from

(4.7) that (4.10) can be re-expressed as

M̃n(s) = ṽn(s)

∫ ∞

0

e−sxe−nδxH(dx) + ṽn(s). (4.11)

Inversion of (4.11) results in (4.8).

In Theorem 11, the nth moment of the total discounted IBNR claim amount is expressed

in terms of vn which in turn is characterized by the lower-order moments of Z(t). Given

that vn itself is of an integral form, the double integral representation (4.8) can be simpli-

fied when interarrival times are independent of the claim severities and reporting lags, i.e.
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PX|τ,W (x|t, w) = PX|W (x|w) and KW |τ (w|t) = K(w) for all x,w, t ≥ 0. The joint distribution

(4.1) then becomes

J(t, w, x) = F (t)K(w)PX|W (x|w), (4.12)

for t, w, x ≥ 0.

Corollary 12. If (4.12) holds, the nth moment of Z(t) can be expressed as

E[Zn(t)] =
n∑

m=1

(
n

m

)∫ t

0

e−nδxE[Zn−m(t− x)]Ξm(t− x)H(dx), (4.13)

where

Ξm(x) =
m∑
k=1

B(k)(1)Bm,k (ξ1(x), ξ2(x), . . . , ξm−k+1(x)) ,

with ξi(x) =
∫∞
x

l(w)iµi(w)K(dw), and E[X i
j,k|τk = t,Wj,k = w] =: µi(w) for all j, k ∈ N+.

Proof. Under (4.12), (4.5) can be rewritten as

vn(t) =
n∑

m=1

(
n

m

)∫ t

0

e−nδxE[Zn−m(t− x)]Ξm(t− x)F (dx). (4.14)

From (4.7), it is clear that H(dx) = F (dx) +
∫ x

0
F (dx − y)H(dy), which allows to rewrite

(4.14) as

vn(t) =
n∑

m=1

(
n

m

)∫ t

0

e−nδxE[Zn−m(t− x)]Ξm(t− x)H(dx)

−
n∑

m=1

(
n

m

)∫ t

0

e−nδxE[Zn−m(t− x)]Ξm(t− x)

∫ x

0

F (dx− y)H(dy). (4.15)

By interchanging the order of integration and later using (4.14), the last term of (4.15)
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becomes

n∑
m=1

(
n

m

)∫ t

0

e−nδxE[Zn−m(t− x)]Ξm(t− x)

∫ x

0

F (dx− y)H(dy)

=
n∑

m=1

(
n

m

)∫ t

0

∫ t

y

e−nδxE[Zn−m(t− x)]Ξm(t− x)F (dx− y)H(dy)

=
n∑

m=1

(
n

m

)∫ t

0

∫ t−y

0

e−nδx−nδyE[Zn−m(t− y − x)]Ξm(t− y − x)F (dx)H(dy)

=

∫ t

0

e−nδxvn(t− x)H(dx). (4.16)

Substituting (4.16) into (4.15) yields

vn(t) =
n∑

m=1

(
n

m

)∫ t

0

e−nδxE[Zn−m(t− x)]Ξm(t− x)H(dx)−
∫ t

0

e−nδxvn(t− x)H(dx).

(4.17)

Equation (4.13) is obtained by further substituting (4.17) into (4.8).

Furthermore, if all batch sizes are of size 1 (i.e., B(z) = z) and l(w) = e−ϵw for ϵ ≥ 0, (4.13)

becomes

E [Zn(t)] =
n∑

m=1

(
n

m

)∫ t

0

e−nδxE[Zn−m(t− x)]

[∫ ∞

t−x

e−mϵwµm(w)K(dw)

]
H(dx), (4.18)

for n ∈ N+, which is a generalization of Equation (2.2) of Léveillé and Garrido (2001b).

4.1.2 Joint moments of IR and IBNR claims

In this section, we consider the joint moments of the total discounted IR claim amount by

time t and the total discounted IBNR claim amount at time t + ∆ (∆ ≥ 0). For claim

reserving purposes, the knowledge of the IR claims up to time t in conjuncture with the

joint moments can help in the prediction of the IBNR claim amount at a future time t+∆.
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The time−0 value of the total IR claim amount up to time t is defined as

Zir(t) =
Nt∑
k=1

CTk∑
i=1

e−δTk l(Wi,k)1{Wi,k+Tk≤t}Xi,k.

For u, v ≥ 0, let Lu,v(t,∆) = E
[
e−uZir(t)−vZ(t+∆)

]
be the joint LT of (Zir(t), Z(t+∆)).

By conditioning on τ1 = x and making use of the law of total probability on the following

three events:

• No claim occurs up to time t+∆ (i.e. x > t+∆), then Zir(t) = Z(t+∆) = 0;

• The first claim occurs at time x ∈ (t, t + ∆], then Zir(t) = 0 and Lu,v reduces to a

univariate LT related to the IBNR component only;

• The first claim occurs by or at time t (i.e. x ≤ t). We further condition on the

characteristics of the first claim causing event and use the regenerating property of

{Nt}t≥0 at τ1 = x;

the joint LT Lu,v can be expressed as

Lu,v(t,∆) = F̄ (t+∆)+

∫ t+∆

t

Lve−δx(t+∆− x)B
(
E
[
e
−ve−δxl(W1,1)X1,11{W1,1>t+∆−x} |τ1 = x

])
F(dx)

+

∫ t

0

Lue−δx,ve−δx(t− x,∆)B

(
E
[
e
−e−δxl(W1,1)X1,1

[
u1{W1,1≤t−x}+v1{W1,1>t+∆−x}

]∣∣∣∣ τ1 = x

])
F (dx).

By appropriately differentiating the joint LT Lu,v(t,∆) and using a similar methodology to

that of Section 4.1.1, the joint moments are given by

E[Zm
ir (t)Z

n(t+∆)] =

∫ t

0

e−(m+n)δxE[Zm
ir (t− x)Zn(t+∆− x)]F (dx) + vm,n,∆(t), (4.19)

for m,n ∈ N+, where

vm,n,∆(t)=
n∑

j=0

m∑
i=0

i+j>0

(
m

i

)(
n

j

)∫ t

0

e−(m+n)δxE[Zm−i
ir (t− x)Zn−j(t+∆− x)]B∗

i,j(x; t, t+∆)F (dx),
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with, for 0 ≤ t1 ≤ t2,

B∗
i,j(·; t1, t2)=

i∑
k=1∧i

j∑
ℓ=1∧j

B(k+ℓ)(1)Bi,k (η1(·, t1), . . . , ηi−k+1(·, t1))Bj,ℓ (ξ1(·, t2), . . . , ξj−ℓ+1(·, t2)) ,

where B0,0(·) = 1, a ∧ b = min{a, b}, and ηi(x, t1) =
∫ t1−x

0
l(w)iµi(x,w)KW |τ (dw|x) for

0 ≤ x ≤ t1 and i = 1, 2, . . . ,m.

Note that (4.19) also holds for n = 0, which yields an expression for the mth moment of

Zir(t). Also, for δ > (=) 0, Equation (4.19) is a defective (proper) renewal equation of

the same form as Equation (4.9). From the proof of Theorem 11, the following result is

immediate.

Theorem 13. For m ∈ N+ and n ∈ N, the joint moments of Zir(t) and Z(t+∆) are given

by

E[Zm
ir (t)Z

n(t+∆)] = vm,n,∆(t) +

∫ t

0

e−(m+n)δxvm,n,∆(t− x)H(dx).

In light of Corollary 12, we provide a similar result in the joint moment setting.

Corollary 14. If (4.12) holds, we have, for m ∈ N+ and n ∈ N,

E[Zm
ir (t)Z

n(t+∆)]

=
n∑

j=0

m∑
i=0

i+j>0

1i+j>0

(
m

i

)(
n

j

)∫ t

0

e−(n+m)δxE[Zm−i
ir (t− x)Zn−j(t+∆− x)]B∗

i,j(x; t, t+∆)H(dx).

By further assuming that all batch sizes are of size 1 and l(w) = e−ϵw, the joint moment
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becomes

E[Zm
ir (t)Z

n(t+∆)]

=
m∑
i=1

(
m

i

)∫ t

0

e−(m+n)δxE[Zm−i
ir (t− x)Zn(t+∆− x)]

∫ t−x

0

e−iϵwµi(w)K(dw)H(dx)

+
n∑

j=1

(
n

j

)∫ t

0

e−(m+n)δxE[Zm
ir (t− x)Zn−j(t+∆− x)]

∫ ∞

t+∆−x

e−jϵwµj(w)K(dw)H(dx),

(4.20)

for m ∈ N+ and n ∈ N.

The above moment representations are in integral form, and their evaluation clearly requires

distributional assumptions. In particular, the flexible mixed Erlang distributional class for

the df F and K allows these quantities to be expressed in terms of Erlang densities (see,

e.g., Landriault and Shi (2014)), from which explicit evaluation of these integrals is straight-

forward but tedious. A particular example is considered next.

Example 4. We assume that K(w) = 1 − e−θw for θ, w ≥ 0 and F (x) = 1 − (1 +

λx)e−λx for λ, x ≥ 0. The renewal function H (defined in (4.7)) is then given by H(t) =(
2λt− 1 + e−2λt

)
/4 for t ≥ 0. From (4.18), one deduces that

E[Z(t)] =
µ1λθ

2(ϵ+ θ)

(
e−(ϵ+θ)t − e−δt

δ − ϵ− θ
− e−(ϵ+θ)t − e−(δ+2λ)t

δ + 2λ− ϵ− θ

)
,

when none of the denominators are 0. Also, the second moment is given by

E[Z2(t)] =
µ1λθ

ϵ+ θ

∫ t

0

e−2δxE[Z(t− x)]e−(ϵ+θ)(t−x)(1− e−2λx)dx

+
µ2λθ

2(2ϵ+ θ)

∫ t

0

e−2δxe−(2ϵ+θ)(t−x)(1− e−2λx)dx,

whose closed form expression, although tedious, can be found explicitly. A similar reasoning

leads to closed-form expressions for the moments of Zir(t), and the joint moments of Zir(t)

and Z(t+∆) using Equation (4.20). We omit the details here.
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Numerical values for the correlation coefficient of Zir(t) and Z(t+∆) are given in Table 4.1.

We assume that λ = 3, θ = 0.5, µ1 = 1, µ2 = 1.1, δ = 0.05 and ϵ = 0.06.

Table 4.1: Correlation coefficients between Zir(t) and Z(t+∆)

t\∆ 0 0.25 0.5 0.75 1 2

1 -0.1371 -0.1162 -0.0963 -0.0802 -0.0673 -0.0355

2 -0.2088 -0.1794 -0.1533 -0.1312 -0.1127 -0.0633

5 -0.2079 -0.1829 -0.1604 -0.1405 -0.1231 -0.0730

10 -0.1426 -0.1261 -0.1111 -0.0978 -0.0861 -0.0516

20 -0.0740 -0.0655 -0.0577 -0.0508 -0.0448 -0.0269

50 -0.0157 -0.0139 -0.0123 -0.0109 -0.0096 -0.0059

100 -0.0013 -0.0012 -0.0011 -0.0009 -0.0008 -0.0005

As expected, we observe that the values of the correlation coefficient are negative indicating

a negative relation between the total discounted IR claim amount and the future discounted

IBNR claim amounts. The influence of the total amount of IR claims on the future IBNR

claims decays as the prediction horizon ∆ increases. Also, for a given prediction horizon

∆, we see that the values of the correlation coefficient first decrease and later increase to

approach an asymptotic value of 0, as expected.

4.1.3 Alternative representation for the LT of the total discounted

sum under certain assumption

Under the general model, the representation (4.3) for the LT of Z(t) seems rather difficult

to work with. However, in what follows, we show that an alternative and more compelling

representation can be obtained when (4.12) holds.

Proposition 15. If the interclaim times are independent of the claim severities and reporting
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lags, i.e. under (4.12), the LT of Z(t) satisfies

Lγ(t) = 1−
∫ t

0

Lγe−δx(t− x)
{
1−B

(
σ̃(γe−δx, t− x)

)}
H(dx), (4.21)

where, for a, y ≥ 0,

σ̃(a, y) = K(y) +

∫ ∞

y

f̃X|W (al(w)|w)K(dw). (4.22)

Proof. Equation (4.3) becomes

Lγ(t) = F̄ (t) +

∫ t

0

Lγe−δx(t− x)B
(
σ̃(γe−δx, t− x)

)
F (dx), (4.23)

with σ̃(a, y) as defined in (4.22). Using the representation that H(dx) = F (dx)+
∫ x

0
F (dx−

y)H(dy), (4.23) can be re-expressed as

Lγ(t) = F̄ (t) +

∫ t

0

Lγe−δx(t− x)B
(
σ̃(γe−δx, t− x)

)
H(dx)

−
∫ t

0

Lγe−δx(t− x)B
(
σ̃(γe−δx, t− x)

) ∫ x

0

F (dx− y)H(dy). (4.24)

Similarly to (4.16), the last term of (4.24) is equivalent to

∫ t

0

[
Lγe−δy(t− y)− F̄ (t− y)

]
H(dy)

which implies that

Lγ(t) = F̄ (t) +

∫ t

0

Lγe−δx(t− x)B
(
σ̃(γe−δx, t− x)

)
H(dx)

−
∫ t

0

(
Lγe−δy(t− y)− F̄ (t− y)

)
H(dy). (4.25)

Equation (4.21) is found by substituting H(x) = F (x) +
∫ x

0
F (x− y)H(dy) into (4.25).
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Moreover, by repeatedly substituting (4.21) within itself, Lγ(t) can be expressed as

Lγ(t) =
∞∑
k=0

Hk(t; γ), (4.26)

where

Hk(t; γ) =

∫ t

0

∫ t−x1

0

. . .

∫ t−
k−1∑
i=1

xi

0

k∏
i=1


B

σ̃(γe
−δ

i∑
j=1

xj

, t−
i∑

j=1

xj)

− 1

H(dxi)

 ,

for k ≥ 1 with initial value H0(t; γ) = 1. Furthermore, Hk(t; γ) can also be computed

recursively via

Hk(t; γ) =

∫ t

0

Hk−1(t− x; γe−δx)
{
B
(
σ̃(γe−δx, t− x)

)
− 1
}
H(dx), (4.27)

for k ≥ 1.

Note that Equations (4.26) and (4.27) generalize their counterparts for the renewal sums of

the discounted claims in Theorem 2.1 of Léveillé et al. (2010).

4.2 IBNR claim number for a Poisson process with

bulk arrivals

We now examine in more detail distributional properties of the IBNR claim number

U(t) =
Nt∑
k=1

CTk∑
i=1

1{Wi,k+Tk>t},

with pmf pn(t) = P(U(t) = n) (n ∈ N), df Pn(t) = 1 − P̄n(t) =
∑n

j=0 pj(t) (n ∈ N),

and pgf P (z; t) = E
[
zU(t)

]
for |z| ≤ 1. In what follows, we assume in this section that

KW |τ (w|t) = K(w) for all w, t ≥ 0 in (4.1) (with, additionally, no consideration given to

claim severities). In other words, we assume that interarrival times (times between claim

causing events) are independent of reporting lags.
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When the number of claim causing event follows a Poisson process with rate λ > 0, and the

reporting lags have df K(x) = 1− e−θx for x > 0, the IBNR claim number U(t) is known to

have pgf

P (z; t) =
∞∑
n=0

pn(t)z
n = exp

(
λ

∫ t

0

{
B
(
1 + e−θx(z − 1)

)
− 1
}
dx

)
, (4.28)

(e.g., Klugman et al. (2013, Chapter 9)). When the batch size pgf is of the combination or

generalized mixture form

B(z) =
∞∑
i=1

wiBi(z), (4.29)

where Bi(z) is a proper pgf and
∑∞

i=1wi = 1, (4.28) can be expressed as

P (z; t) =
∞∏
i=1

Pi(z; t), (4.30)

with

Pi(z; t) = exp

(
λwi

∫ t

0

{
Bi[1 + e−θx(z − 1)]− 1

}
dx

)
. (4.31)

In the mixture case (i.e. wi ≥ 0 for i ∈ N+), (4.30) corresponds to the pgf of a sum of

independent compound Poisson rv’s. Note also that Bi

(
1 + e−θx(z − 1)

)
is the pgf of a

compound distribution with primary pgf Bi(z) and a Bernoulli secondary distribution with

mean e−θx.

4.2.1 Recursion method

We propose to analyze the IBNR claim number U(t) when the batch size pgf is of the form

(4.29) with

Bi(z) = αi + (1− αi)
ϕi

(
β−1
i (1− z)

)
− ϕi(β

−1
i )

1− ϕi(β
−1
i )

, (4.32)
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for i ∈ N+, βi > 0 and 0 ≤ αi ≤ 1, complementing in the process results in Guo et al. (2013).

The class of pgfs (4.32) was proposed by Klugman et al. (2013, Chapter 8) and covers all

distributions in the (a, b, 1) class. In what follows, we further assume that ϕi(x) is the LT of

a nonnegative rv, i.e. ϕi(s) =
∫∞
0

e−sxFi(dx). Thus, ϕi(β
−1
i (1 − z)) is a mixed Poisson pgf,

i.e.

ϕi(β
−1
i (1− z)) =

∞∑
j=0

ri,j(β
−1
i )zj,

where for x > 0, i ∈ N+ and j ∈ N,

ri,j(x) =

∫ ∞

0

(xy)je−xy

j!
Fi(dy). (4.33)

Proposition 16. Assume the claim arrival process follows a compound Poisson process with

arrival rate λ > 0 and secondary distribution with pgf (4.29), where Bi(z) is as defined in

(4.32). When the reporting lag df K(x) = 1 − e−θx for x, θ ≥ 0, the pmf of U(t) can be

obtained recursively as

pn(t) =
λ

nθ

n∑
j=1

pn−j(t)
∞∑
i=1

wi(1− αi)

1− ϕi(β
−1
i )

j−1∑
k=0

[
ri,k(β

−1
i e−θt)− ri,k(β

−1
i )
]
, (4.34)

for n ∈ N+ where

p0(t) = P (0; t) =
∞∏
i=1

exp

(
λwi

1− αi

1− ϕi(β
−1
i )

∫ t

0

[
ϕi(β

−1
i e−θx)− 1

]
dx

)
.

Proof. Indeed, substituting (4.32) into (4.28) results in

P (z; t) = exp

(
∞∑
i=1

λwi
1− αi

1− ϕi(β
−1
i )

∫ t

0

[
ϕi(β

−1
i e−θx(1− z))− 1

]
dx

)
. (4.35)

Using (4.33) and (4.35), it is easily verified that

lnP (z; t) =
∞∑
i=1

λwi
1− αi

1− ϕi(β
−1
i )

∫ t

0

[
∞∑
j=0

ri,j(β
−1
i e−θx)zj − 1

]
dx. (4.36)
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Taking derivative on both sides of (4.36) wrt z results in

∂P (z; t)

∂z
= P (z; t)

∞∑
j=1

[
∞∑
i=1

λwi(1− αi)

1− ϕi(β
−1
i )

∫ t

0

ri,j(β
−1
i e−θx)dx

]
jzj−1

= P (z; t)
∞∑
j=1

[
∞∑
i=1

λwi(1− αi)

1− ϕi(β
−1
i )

∫ t

0

∫ ∞

0

β−j
i e−jθxyje−β−1

i e−θxy

(j − 1)!
Fi(dy)dx

]
zj−1.

(4.37)

Interchanging the order of integration followed by changing the variable of integration x to

x∗ = e−θx in (4.37), Equation (4.34) is obtained by equating the coefficients of zn−1 on both

sides of (4.37).

Example 5. When αi = 0 and ϕi(x) = (1 + x)−ni for ni ∈ N+ in (4.32), Equation (4.29)

becomes

B(z) =
∞∑
i=1

wi

(
βi

1+βi−z

)ni

−
(

βi

1+βi

)ni

1−
(

βi

1+βi

)ni
, (4.38)

which is the pgf of a zero-truncated negative binomial distribution. Given that ϕi(x) is an

Erlang LT, it follows that ϕi(x) =
∫∞
0

e−xy yni−1

(ni−1)!
e−ydy. Therefore, the pmf of the IBNR

claim number is directly obtainable by substituting

ri,k(x) =

(
ni + k − 1

k

)
xk(x+ 1)−ni−k,

for i ∈ N+ and k ∈ N, into (4.34) to obtain

pn(t)=
λ

nθ

n∑
j=1

pn−j(t)
∞∑
i=1

wiβ
ni
i

1−
(

βi

1+βi

)ni

j−1∑
k=0

(
ni + k − 1

k

)[
e−kθt

(e−θt + βi)ni+k
− 1

(1 + βi)ni+k

]
,

for n ∈ N+, with

p0(t) =
∞∏
i=1

exp

 λwi

1−
(

βi

1+βi

)ni

∫ t

0

[(
βi

e−θx + βi

)ni

− 1

]
dx

 .
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Furthermore, assuming that the batch size follows a combination of zero truncated geometrics

(i.e. B(z) is as defined in (4.38) with ni = 1 for all i), the pmf of U(t) satisfies

pn(t) =
λ

nθ

n∑
j=1

pn−j(t)
∞∑
i=1

wi(1 + βi)

[(
1

1 + βi

)j

−
(

e−θt

e−θt + βi

)j
]
, (4.39)

for n ∈ N+, with

p0(t) = P (0; t) =
∞∏
i=1

(
e−θt + βi

1 + βi

)λwi(1+βi)

θ

.

4.2.2 Self-decomposition of limiting distributions

A recursive formula for the pmf of the IBNR claim number is obtained in (4.34). We now

aim to derive an explicit form for the pgf of the IBNR claim number by making use of the

self-decomposability property of the Poisson process (e.g., Steutel and Van Harn (1979)).

We first recall an important theorem on self-decomposability from Klugman et al. (2013,

Theorem 9.9).

Theorem 17. For λ∗, θ∗ > 0 and B∗(z) a pgf, consider the pgf

P∗(z; t) = exp

(
λ∗

∫ t

0

{
B∗
(
1 + e−θ∗x(z − 1)

)
− 1
}
dx

)
.

Then, its limiting pgf

P∗(z;∞) ≡ lim
t→∞

P∗(z; t) = exp

(
λ∗

θ∗

∫ z

1

1−B(y)

1− y
dy

)

is discrete self-decomposable, and thus,

P∗(z;∞) = P∗(z; t)P∗(1 + e−θ∗t(z − 1);∞).

If we further assume that B∗(z) is a zero-truncated mixed Poisson pgf with mixing distribu-
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tion LT f̃0, namely

B∗(z) =
f̃0(1− z)− f̃0(1)

1− f̃0(1)
, |z| ≤ 1,

then

P∗(z;∞) = lim
t→∞

P∗(z; t) = exp

{
− λ∗

θ∗(1− f̃0(1))

∫ 1−z

0

1− f̃0(y)

y
dy

}
. (4.40)

Note that Klugman et al. (2013, Chapter 9) considered models with certain distributional

assumptions for the batch size pgf. In what follows, we complement these results and derive

the limiting pgf of the IBNR claim number when the batch size is modelled as a combination

of zero-truncated negative binomials defined by (4.38). Thus, we define Bi(z) as

Bi(z) =

(
βi

1+βi−z

)ni

−
(

βi

1+βi

)ni

1−
(

βi

1+βi

)ni
,

which is a zero-truncated mixed Poisson pgf with mixing LT

f̃i(s) =

(
βi

βi + s

)ni

. (4.41)

Assuming β∗ := maxi≥1 βi < ∞, the mathematical convenience of rewriting (4.41) using

a common scale parameter for convolution or compounding purposes was illustrated by

Willmot and Woo (2007). Hence, the LT (4.41) can alternatively be rewritten as f̃i(s) =

Qi

(
β∗

β∗+s

)
where Qi(z) =

[
(βi/β

∗)z
1−(1−βi/β∗)z

]ni

. Note that

1−Q(z)

1− z
=

∞∑
n=1

Q̄i,nz
n, (4.42)

where

Q̄i,n =

1, n < ni,

1−
∑n

j=ni

(
j−1
ni−1

) (
βi

β∗

)ni
(
1− βi

β∗

)j−ni

, n ≥ ni.

By making use of Theorem 17, an explicit form for the limiting pgf of the IBNR claim number
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is obtained in the following proposition.

Proposition 18. When the claim number process follows a compound Poisson process with

arrival rate λ > 0 and secondary distribution with pgf (4.38), and the reporting lags have df

K(t) = 1− e−θt for t > 0, the IBNR claim number has a limiting pgf of the form

P (z;∞) =

(
β∗

β∗ + 1− z

)∑∞
i=1 wi

εi
θ

exp {λ∗ (Q∗(z)− 1)} , (4.43)

where εi =
λ(1+βi)

ni

(1+βi)ni−β
ni
i

, λ∗ =
∑∞

i=1wi
εi
θ

∑∞
n=1

Q̄i,n

n
, and

Q∗(z) =
∞∑
n=1

1

λ∗

∞∑
i=1

wiεiQ̄i,n

nθ

(
β∗

β∗ + 1− z

)n

.

Proof. Using (4.40), Equation (4.31) as t → ∞ can be written as

Pi(z;∞) = exp

{
−wi

εi
θ

∫ 1−z

0

1− f̃i(y)

y
dy

}
.

By (4.42), the limiting pgf Pi(z;∞) can be re-expressed as

Pi(z;∞) = exp

{
−wi

εi
θ

∫ 1−z

0

1−Qi(
β∗

β∗+y
)

1− β∗

β∗+y

1

β∗ + y
dy

}

= exp

{
−wi

εi
θ

∫ 1−z

0

1

β∗

∞∑
n=1

Q̄i,n−1

(
β∗

β∗ + y

)n

dy

}
. (4.44)

Evaluating the integral in (4.44) yields

Pi(z;∞) =

(
β∗

β∗ + 1− z

)wiQ̄i,0
εi
θ

exp

{
wi

εi
θ

∞∑
n=1

Q̄i,n

n

[(
β∗

β∗ + 1− z

)n

− 1

]}
. (4.45)

Finally, (4.43) can be easily obtained by substituting (4.45) into (4.30) when t → ∞.

Remark 1. When both
∑∞

i=1wi εi/θ and λ∗ are positive, (4.43) is the pgf of an independent

sum of a negative binomial and a compound Poisson rv’s. Therefore, the limiting pgf (4.43)

is numerically tractable. The condition that
∑∞

i=1wi εi/θ and λ∗ are positive is guaran-

teed when the batch size is a mixture of zero-truncated geometrics. However, it generally
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does not hold true for all combinations of zero-truncated geometrics. A counter-example

consists in setting β1 = 1, β2 = 100 and w1 = 1.1, w2 = −0.1, wi = 0 (i = 3, 4, . . .). The

identification of the limiting distribution of the IBNR claim number is non-trivial in this case.

Numerical values of the pmf and mean of the IBNR claim number U(t) are given when λ = 1,

θ = 2 and the batch size has pgf (4.38) with n1 = . . . = n4 = 1, (β1, β2, β3, β4) = (1, 0.5, 3, 5),

and (w1, w2, w3, w4) = (0.1, 0.2, 0.4, 0.3).

Table 4.2: Pmf and mean of IBNR claim number with mixture of zero-truncated geometric

batch sizes

Items t=1 t=2 t=3 t=4 t=5 t=6 t = ∞

pn(t)

n=0 0.5943 0.5417 0.5346 0.5336 0.5335 0.5335 0.5335

n=1 0.2365 0.2626 0.2662 0.2667 0.2667 0.2667 0.2667

n=2 0.0935 0.1087 0.1108 0.1111 0.1111 0.1111 0.1111

n=3 0.0390 0.0454 0.0463 0.0464 0.0464 0.0464 0.0464

n=4 0.0176 0.0202 0.0206 0.0206 0.0206 0.0206 0.0206

n=5 0.0086 0.0097 0.0099 0.0099 0.0099 0.0099 0.0099

E[U(t)] 0.7321 0.8312 0.8446 0.8464 0.8466 0.8467 0.8467

In Table 4.2, the values of the pmf of the IBNR claim number for a finite t are obtained from

(4.39) while the asymptotic values (as t → ∞) are calculated using (4.43). As expected, we

observe that the average number of IBNR claims initially increases in t. Also, the distri-

bution of the IBNR claim number appears to be stable for large enough t (i.e. ≥ 6 in this

setting).
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4.3 IBNR claim number for a renewal process with

single arrivals

In this section, we focus on the distribution of the IBNR claim number under the assumption

that batch arrivals are all of size 1. Two sources of randomness affecting the IBNR claim

number will be studied: reporting lags and interarrival times. Section 4.3.1 will study the

problem through the specification of the interarrival time distribution, while Section 4.3.2 will

consider this problem under distributional assumptions on the reporting lags. Henceforth,

we assume the existence of the renewal density h(x) (with h(x)dx = H(dx)) for x > 0.

Lemma 19. When all batch arrivals are of size 1, the IBNR claim number U(t) has pgf

P (z; t) = 1 +

∫ t

0

[
(z − 1)K̄(t− x)

]
P (z; t− x)h(x)dx. (4.46)

Proof. Conditioning on the first claim occurrence time, we have

P (z; t) = F̄ (t) +

∫ t

0

[
K(t− x) + K̄(t− x)z

]
P (z; t− x)F (dx). (4.47)

Using (4.7), (4.47) can be re-expressed as

P (z; t) = F̄ (t) +

∫ t

0

[
K(t− x) + K̄(t− x)z

]
P (z; t− x)H(dx)

−
∫ t

0

[
K(t− x) + K̄(t− x)z

]
P (z; t− x)

∫ x

0

F (dx− y)H(dy). (4.48)

Similarly to (4.16), the last term of (4.48) can be shown to be equivalent to

∫ t

0

[
P (z; t− y)− F̄ (t− y)

]
H(dy),

which implies that

P (z; t) = F̄ (t) +

∫ t

0

[
K(t− x) + K̄(t− x)z

]
P (z; t− x)H(dx)

−
∫ t

0

(
P (z; t− y)− F̄ (t− y)

)
H(dy). (4.49)
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Equation (4.46) is found by substituting H(x) = F (x) +
∫ x

0
F (x− y)H(dy) (which is imme-

diate from (4.7)) into (4.49).

Letting P̄ (z; t) = (1− P (z; t))/(1− z) be the pgf of the tail distribution of the IBNR claim

number, it is immediate from (4.46) that

P̄ (z; t) =

∫ t

0

K̄(t− v)P (z; t− v)h(v)dv.

This implies that

˜̄P (z; s) :=

∫ ∞

0

e−stP̄ (z; t)dt = ν̃(z; s)h̃(s), (4.50)

for s > 0, where ν̃(z; s) =
∫∞
0

e−stν(z; t)dt =
∫∞
0

e−stK̄(t)P (z; t)dt. Applying the Final

Value Theorem on the transform relationship (4.50), it follows that

P̄ (z;∞) =
1

µτ

∫ ∞

0

K̄(x)P (z; x)dx, (4.51)

given that lims→0 sh̃(s) = 1/µτ where µτ =
∫∞
0

F̄ (x)dx.

4.3.1 Model with Coxian-n distributed interarrival times

In this sub-section, we assume that the interarrival times {τk}k≥1 are from the Kn-family of

distributions with LT

f̃(s) =
α(s)∏n

i=1(s+ λi)
, (4.52)

where λi > 0 for i = 1, 2, . . . , n, and α(s) =
∑n−1

i=0 αis
i is a polynomial of degree n − 1 (or

less) in s with α0 =
∏n

i=1 λi. It is clear from the definition of the renewal density that

h̃(s) =

∫ ∞

0

e−sxh(x)dx =
f̃(s)

1− f̃(s)
=

α(s)

sr(s)
, (4.53)
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where

r(s) =
n−1∑
i=0

ris
i =

1

s

[
n∏

i=1

(s+ λi)− α(s)

]
,

with rn−1 = 1.

Theorem 20. When interarrival times have LT (4.52), the pgf of U(t) satisfies the nth order

ordinary differential equation (ODE)

n∑
i=1

ri−1

{
∂i

∂ti
P (z; t)

}
= (z − 1)

n−1∑
i=0

αi
∂i

∂ti
[K̄(t)P (z; t)], t ≥ 0. (4.54)

Proof. By substituting (4.53) into (4.50), it follows that

˜̄P (z; s) = ν̃(z; s)
α(s)

sr(s)
,

or equivalently

r(s)
(
1− sP̃ (z; s)

)
= (1− z)α(s)ν̃(z; s). (4.55)

Dividing both sides of (4.55) by sn+1, one finds that

n−1∑
i=0

ri

[
1

sn−i+1
− P̃ (z; s)

1

sn−i

]
= (1− z)

n−1∑
i=0

αiν̃(z; s)
1

sn−i+1
. (4.56)

Inverting the LT in (4.56) yields

n−1∑
i=0

ri

[
tn−i

(n− i)!
−
∫ t

0

P (z;x)
(t− x)n−i−1

(n− i− 1)!
dx

]
= (1− z)

n−1∑
i=0

αi

∫ t

0

ν(z;x)
(t− x)n−i

(n− i)!
dx.

(4.57)

Finally, taking the (n+ 1)th order derivative of (4.57) wrt t results in (4.54).

The general solution to (4.54), which is of a linear form, can be found for some selections of
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K̄(t). From the boundary conditions

P (z; 0) = 1, (4.58)

∂k

∂tk
P (z; t)|t=0 = 0, for k = 1, 2, . . . , n− 1, (4.59)

and P (z;∞) given by (4.51), numerical solutions to the nth order ODE (4.54) are readily

available.

Example 6. Consider a renewal claim arrival process with f̃(s) = (λ/(λ+ s))2. Using

(4.54), the pgf of the IBNR claim number U(t) satisfies the ODE

∂2

∂t2
P (z; t) + 2λ

∂

∂t
P (z; t) + (1− z)λ2K̄(t)P (z; t) = 0. (4.60)

By further assuming that the reporting lags are diatomic rv’s with survival function

K̄(t) =

 a, 0 ≤ t < b,

0, t ≥ b,

where b > 0 and 0 < a ≤ 1, the ODE (4.60) becomes

∂2

∂t2
P (z; t) + 2λ

∂

∂t
P (z; t) + a(1− z)λ2P (z; t) = 0, (4.61)

for t < b, and for t ≥ b,

∂2

∂t2
P (z; t) + 2λ

∂

∂t
P (z; t) = 0. (4.62)

The solution to (4.61) is easily found to be

P (z; t) =
e−λt

2

[
eλt

√
1−a+az + e−λt

√
1−a+az

]
+

e−λt

2
√
1− a+ az

[
eλt

√
1−a+az − e−λt

√
1−a+az

]
,

(4.63)

for 0 ≤ t < b, with the help of the boundary conditions (4.58) and (4.59). Next, we rewrite
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(4.63) into a compound distribution form, i.e.

P (z; t) = Q(1− a+ az; t), (4.64)

where

Q(z; t) =
e−λt

2

[
eλt

√
z + e−λt

√
z
]
+

e−λt

2
√
z

[
eλt

√
z − e−λt

√
z
]

=
e−λt

2

∞∑
m=0

[
(λt

√
z)m

m!
+

(−λt
√
z)m

m!

]
+

e−λt

2
√
z

∞∑
m=0

[
(λt

√
z)m

m!
− (−λt

√
z)m

m!

]
=

∞∑
m=0

e−λt

[
(λt)2m

(2m)!
+

(λt)2m+1

(2m+ 1)!

]
zm,

is a valid pgf. From (4.64), one immediately obtains

pn(t) =
∞∑

m=n

e−λt

[
(λt)2m

(2m)!
+

(λt)2m+1

(2m+ 1)!

](
m

n

)
an(1− a)m−n, n ∈ N, t < b.

Also, for t ≥ b, the solution to (4.62), under boundary condition (4.51), is given by

P (z; t) = (1− e−2λ(t−b))P (z;∞) + e−2λ(t−b)P (z; b−), (4.65)

where P (z; b−) holds for (4.63) with t = b. By inverting (4.65), one finds

pn(t) = (1− e−2λ(t−b))pn(∞) + e−2λ(t−b)pn(b−), (4.66)

for n ∈ N. Note that from (4.51), we have

P̄ (z;∞) =
a

µτ

∫ b

0

P (z; x)dx. (4.67)
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Equating the coefficients of zn for n ∈ N on both sides of (4.67) yields

∞∑
j=n+1

pj(∞) =
aλ

2

∫ b

0

pn(x)dx

=
1

2

∞∑
m=n

(
m

n

)
an+1(1− a)m−n

∫ b

0

e−λx

[
λ2m+1x2m

(2m)!
+

λ2m+2x2m+1

(2m+ 1)!

]
dx

=
∞∑

m=n

(
m

n

)
an+1(1− a)m−n

(
1−

2m∑
j=0

e−λb(λb)j

j!
− e−λb(λb)2m+1

2(2m+ 1)!

)
,

which easily leads to the evaluation of the pmf pn(∞) in (4.66).

4.3.2 (Mixture of) Exponential(s) reporting lags

In this section, we analyze the IBNR claim number by assuming an exponential distribution

with mean 1/θ for the reporting lags. Hence, for s > 0 and |z| ≤ 1, by (4.50),

˜̄P (z; s) = P̃ (z; s+ θ)h̃(s)

=

[
1

s+ θ
+ (z − 1) ˜̄P (z; s+ θ)

]
h̃(s).

By induction, ˜̄P (z; s) can be expressed in terms of the LT h̃(s) of the renewal density as

˜̄P (z; s) =
k∑

n=1

(z − 1)n−1 1

s+ nθ

n−1∏
j=0

h̃(s+ jθ) + (z − 1)k

[
k−1∏
j=0

h̃(s+ jθ)

]
˜̄P (z; s+ kθ), (4.68)

for k ∈ N+. By letting k → ∞, the second term on the right hand side of (4.68) vanishes

and thus,

˜̄P (z; s) =
∞∑
n=1

(z − 1)n−1 1

s+ nθ

n−1∏
j=0

h̃(s+ jθ)

= h̃(s)

[
1

s+ θ
+

∞∑
n=2

∏n−1
j=1 h̃(jθ)

nθ
ãn(s)(z − 1)n−1

]
, (4.69)
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where, for n = 2, 3, . . .,

ãn(s) =
nθ

s+ nθ

n−1∏
j=1

h̃(s+ jθ)

h̃(jθ)
. (4.70)

Note that h̃(s + jθ)/h̃(jθ) for j ∈ N+ is the LT of the Esscher transform of the renewal

density. As such, ãn(s) is the LT of the independent sum of an exponential rv with mean

1/(nθ) and a sequence of rv’s with LT h̃(s+ jθ)/h̃(jθ) for j = 1, . . . , n− 1.

Inverting (4.69) in s yields

P̄ (z; t) =

∫ t

0

e−θ(t−y)h(y)dy +
∞∑
n=2

[∏n−1
j=1 h̃(jθ)

nθ

∫ t

0

an(t− y)h(y)dy

]
(z − 1)n−1, (4.71)

where ãn(s) =
∫∞
0

e−stan(t)dt. Thus, from Willmot et al. (2005, Equation (5.6)), it follows

that

P̄ (z; t) =
∞∑
n=1

E[U (n)(t)]

n!
(z − 1)n−1, (4.72)

where U (n)(t) = U(t)(U(t) − 1) . . . (U(t) − n + 1) for n ∈ N+. By comparing (4.71) and

(4.72), one deduces that

E[U (n)(t)] =


∫ t

0
e−θ(t−y)h(y)dy, n = 1,

(n−1)!
∏n−1

j=1 h̃(jθ)

θ

∫ t

0
an(t− y)h(y)dy, n = 2, 3, . . . .

(4.73)

Also, the tail pmf of the IBNR claim number can be obtained by expanding P̄ (z; t) and

equating the coefficients of zn on both sides of (4.71), namely

P̄k(t) =


∑∞

n=k+1

(
n−1
k

) (−1)n−k−1
∏n−1

j=1 h̃(jθ)

nθ

∫ t

0
an(t− y)h(y)dy, k ∈ N+,∫ t

0
e−θ(t−y)h(y)dy +

∑∞
n=2

(−1)n−1
∏n−1

j=1 h̃(jθ)

nθ

∫ t

0
an(t− y)h(y)dy, k = 0.

(4.74)
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Next, we focus on specifying an(t) for n ≥ 2 under the assumption that the interarrival times

are mixed Erlang distributed with LT

f̃(s) = G

(
β

β + s

)
, (4.75)

where G(z) =
∑∞

n=1 gnz
n. Mixed Erlang distributions are known to be a large class of distri-

bution functions which are mathematically tractable and dense in the set of all continuous

distributions on [0,∞) (see, e.g., Willmot and Woo (2007)). Under (4.75), the LT of the

renewal density is given by

h̃(s) =
G( β

β+s
)

1−G( β
β+s

)
.

For j = 1, 2, . . . , n− 1, we express

h̃(s+ jθ)

h̃(jθ)
= Gj

(
β + jθ

β + jθ + s

)
, (4.76)

where

Gj(z) =
G( β

β+jθ
z)

1−G( β
β+jθ

z)

1−G( β
β+jθ

)

G( β
β+jθ

)
.

We point out that Gj(1) = 1 for j = 1, 2, . . . , n − 1. Given that G(z) is a valid pgf, Gj(z)

is absolutely monotone on (0, 1). From Feller (1971, p.223), Gj(z) is a pgf and (4.76) is a

mixed Erlang LT. Using Equation (2.1) of Willmot and Woo (2007), we propose to convert

the LT h̃(s + jθ)/h̃(jθ) for j = 1, . . . , n − 1, to a mixed Erlang LT with a common scale

parameter. Indeed, given that

h̃(s+ jθ)

h̃(jθ)
= Gj,n−1

(
β + (n− 1)θ

β + (n− 1)θ + s

)
,
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for j = 1, . . . , n− 1 and n = 2, 3, . . ., where

Gj,n−1(z) = Gj

(
β+jθ

β+(n−1)θ
z

1− (1− β+jθ
β+(n−1)θ

)z

)
,

we have

n−1∏
j=1

h̃(s+ jθ)

h̃(jθ)
=

n−1∏
j=1

Gj,n−1

(
β + (n− 1)θ

β + (n− 1)θ + s

)
= G∗

n−1

(
β + (n− 1)θ

β + (n− 1)θ + s

)
, (4.77)

where G∗
n−1(z) =

∏n−1
j=1 Gj,n−1(z) =

∑∞
i=1 g

∗
i,n−1z

i for n = 2, 3, . . .. Thus, (4.77) is also a LT

of a mixed Erlang distribution. Substituting (4.77) into (4.70) followed by a LT inversion,

one finds

an(t) =

∫ t

0

nθe−nθ(t−y)

∞∑
i=1

g∗i,n−1

[β + (n− 1)θ]i yi−1

(i− 1)!
e−[β+(n−1)θ]ydy. (4.78)

Evaluating the integral on the right hand side of (4.78) yields

an(t) = nθe−nθt

∞∑
i=1

g∗i,n−1[β + (n− 1)θ]i
∞∑

m=i

(β − θ)m−itme−(β−θ)t

m!
. (4.79)

The moments and tail pmf of the IBNR claim number can be obtained by substituting (4.79)

into (4.73) and (4.74), respectively.

Remark 2. If the interarrival time LT is further given by (4.52) for a finite n, the LT ãn(s)

defined in (4.70) can be explicitly inverted using partial fraction expansions. Using (4.74),

this would lead to an explicit expression for the tail P̄k(t) for k ∈ N. The calculations are

straightforward but tedious, and thus the details are omitted.

In the following, we take a closer look at the process with a specific choice of interclaim

times. The LT ãn(s) as defined in (4.70) can be explicitly inverted into a more attractive

form.
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4.3.2.1 Specific choice of interclaim times

Here, we assume that the renewal density has LT

h̃(s) =
c0
s

l∏
i=1

1

s+ ci
, (4.80)

with l ≥ 0. This model is still very general and it covers Erlang distributed interclaim times.

The distribution of IBNR claim number can be expressed explicitly in this model as shown

thereafter. Note that the LT (4.80) is a special case of the more general Coxian class of LT

(4.52). For simplicity, we choose to work with (4.80); however, a similar but more involved

methodology will lead to equivalent results in the more general Coxian class as illustrated

in the later time.

In the case where l = 0, (4.80) represents the renewal density for exponentially distributed

interclaim times. The claim number thus follows a Poisson process; the pgf of the survival

distribution of IBNR claim number is easily obtained as

P̄ (z; t) =
1− exp

(
c0(z−1)(1−e−µt)

µ

)
1− z

, c0 > 0,

from (4.28). In the following, we’ll work in the scenarios where l ≥ 1.

Substituting (4.80) into (4.69) results in

˜̄P (z; s) =
∞∑
n=1

cn0 (z − 1)n−1

(
n∏

j=0

1

s+ jµ

)[
l∏

i=1

n−1∏
j=0

1

s+ ci + jµ

]
. (4.81)

Also we know that, for i = 1, 2, . . . , l,

n−1∏
j=0

1

s+ ci + jµ
=

∫ ∞

0

e−sv (1− e−µv)n−1e−civ

µn−1(n− 1)!
dv,

which can be proved via integration by parts or by induction on n. Thus, (4.81) can be
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inverted to a convolution of l + 1 functions and the pgf of the survival function is obtained

as

P̄ (z; t) =
∞∑
n=1

cn0 (z − 1)n−1ϑ0,n ∗ ϑ1,n ∗ · · · ∗ ϑl,n(t),

where

ϑi,n(v) =


(1−e−µv)n

µnn!
, i = 0,

(1−e−µv)n−1e−civ

µn−1(n−1)!
, i = 1, 2, . . . , l.

The survival distribution is then obtained accordingly

P̄k(t) =
∞∑

n=k+1

(−1)n−1−kcn0

(
n− 1

k

)
ϑ0,n ∗ ϑ1,n ∗ · · · ∗ ϑl,n(t), k ≥ 0. (4.82)

If it holds that,

ci + (k − j)µ ̸= 0, for i ∈ {1, 2, . . . , l}, and j, k ∈ {1, 2, . . . , n}

ci + jµ ̸= cm + kµ, if i ̸= m ∈ {1, 2, . . . , l} or j ̸= k ∈ {0, 1, . . . , n− 1}, (4.83)

an alternative simpler expression for (4.82) is available. More specifically, by using partial

fraction expansions, we have

(
n∏

j=0

1

s+ jµ

)[
l∏

i=1

n−1∏
j=0

1

s+ ci + jµ

]
=

vn,0,0
s

+
n∑

j=1

vn,0,j
s+ jµ

+
l∑

i=1

n−1∑
j=0

vn,i,j
s+ ci + jµ

,

where, for i = 1, 2, . . . , l and j = 0, 1, . . . , n,

vn,0,j =
1

µn

 n∏
k=0
k ̸=j

1

k − j

[ l∏
i=1

n−1∏
k=0

1

ci + (k − j)µ

]
,

vn,i,j =

(
n∏

k=0

1

−ci + (k − j)µ

) l∏
m=1

n−1∏
k=0

(m,k) ̸=(i,j)

1

cm − ci + (k − j)µ

 , j ̸= n.
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Thus, (4.82) can be easily re-expressed as

P̄k(t) =
∞∑

n=k+1

(−1)n−1−kcn0

(
n− 1

k

)[ n∑
j=0

vn,0,je
−jµt +

l∑
i=1

n−1∑
j=0

vn,i,je
−(ci+jµ)t

]
. (4.84)

Therefore, if the interclaim times are distributed as a Coxian distribution, the LT of the

renewal density can be expressed as a summation of the form (4.80) by partial fraction

expansions. The survival function of the IBNR claim number can thus be expressed as a

summation of convolutions similar to those defined in (4.82) or exponential terms as defined

in (4.84). To conclude, under the exponential reporting lag assumption, the pmf of the IBNR

claim number is tractable when the interarrival times are Coxian distributed.

Example 7. We assume the interclaim times follow an Erlang-2 with mean 2/λ, then

h̃(s) =
λ

s

λ

s+ 2λ
.

which is a special case of (4.80) with c0 = λ2, c1 = 2λ and l = 1. Since it is unknown whether

(4.83) holds, we use (4.82) to obtain the survival function of the IBNR claim number as

P̄k(t) =
∞∑

n=k+1

(−1)n−1−kλ2n

(
n− 1

k

)
hn(t),

where

hn(t) =

∫ t

0

[
1− e−µ(t−v)

]n
µnn!

(1− e−µv)n−1e−2λv

µn−1(n− 1)!
dv.

The pmf and mean of the IBNR claim number are easily computed, see Table 4.3 for example,

where λ = 1, µ = 1.
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Table 4.3: Pmf and mean of IBNR claim number with exponential reporting lags

Items t = 1 t = 2 t = 5 t = 10 t = 15 t = 20

pn(t)

n=0 0.8094 0.6638 0.5819 0.5792 0.5805 0.5817

n=1 0.1818 0.3008 0.3500 0.3503 0.3491 0.3479

n=2 0.0087 0.0337 0.0625 0.0645 0.0645 0.0645

n=3 0.0002 0.0016 0.0053 0.0057 0.0057 0.0057

E[U(t)] 0.1996 0.3733 0.4920 0.4975 0.4963 0.4950

The IBNR claim number is concentrated around 0 early on. Over time (i.e. as t increases),

the distribution of the IBNR claim number seems to stabilize, and the mean IBNR claim

number first increases and then decreases after it reach its peak.

4.3.2.2 Models with reporting lag distributed as mixture of exponentials

In this section, we generalize the distributional assumption for the reporting lags from ex-

ponential to mixture of exponentials. For illustrating purpose, we first consider

K̄(x) = ρe−b1x + (1− ρ)e−b2x, b1, b2 > 0, 0 ≤ ρ ≤ 1. (4.85)

Substituting (4.85) into (4.50) and taking LT gives

˜̄P (z; s)=

(
ρ

s+ b1
+

1− ρ

s+ b2

)
h̃(s)+ρh̃(s)(z − 1) ˜̄P (z; s+ b1) + (1− ρ)h̃(s)(z − 1) ˜̄P (z; s+ b2).

Using a similar methodology as for the exponential reporting lags of Section 4.3.2, one obtains

˜̄P (z; s) =

(
ρ

s+ b1
+

1− ρ

s+ b2

)
h̃(s) +

∞∑
n=1

(z − 1)n

 ∑
{xi=0,1}1≤i≤n

ρ
∑n

i=1 xi(1− ρ)n−
∑n

i=1 xi

(4.86)

×

[
ρ
∏n

i=0 h̃(yi)

s+ b1 + yn

n∏
i=0

h̃(s+ yi)

h̃(yi)
+

(1− ρ)
∏n

i=0 h̃(yi)

s+ b2 + yn

n∏
i=0

h̃(s+ yi)

h̃(yi)

]}
,

where yi =
∑i

j=1 [b1xj + b2(1− xj)] for i ≥ 1 and y0 = 0. The term in the square bracket of
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(4.86) is easily invertible, as shown in Section 4.3.2.

To obtain a simpler representation for (4.86), we introduce the rv’s Yi=
∑i

j=1(b1Ij + b2[1− Ij])

for i ≥ 1 and Y0 = 0, where Ij (j ≥ 1) are identically distributed and independent Bernoulli

rv’s with mean ρ. Thus Yi is distributed as a linearly transformed binomial(i, ρ) for i ≥ 1.

The term in the brace of (4.86) can be re-written as

EIi, 1≤i≤n

[
ρ
∏n

i=0 h̃(Yi)

s+ b1 + Yn

n∏
i=0

h̃(s+ Yi)

h̃(Yi)
+

(1− ρ)
∏n

i=0 h̃(Yi)

s+ b2 + Yn

n∏
i=0

h̃(s+ Yi)

h̃(Yi)
|Ii, 1 ≤ i ≤ n

]
.

Equation (4.86) can therefore be re-written as

˜̄P (z; s) =
∞∑
n=0

(z − 1)nE{Yi;i=0,1,...,n}

[
ρ

s+ b1 + Yn

n∏
i=0

h̃(s+ Yi) +
1− ρ

s+ b2 + Yn

n∏
i=0

h̃(s+ Yi)

]
.

(4.87)

Similarly to ãn(s), term by term inversion of (4.87) follows under distributional assumptions

for the df F as in Section 4.3.2. The generalization to more general mixtures of exponentials

follows along the same lines.
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Chapter 5

IBNR Claims under a MAP Model

This chapter will study the total discounted IBNR claim amount and the number of IBNR

claims under a Markovian setting. The model considered in this chapter also allows for

claim severities and reporting lags to depend on an underlying continuous-time Markov

chain (CTMC) which can be used to model changes in economic environments, for instance.

As a claim counting process, the MAP model has been extensively studied in the actuarial

literature. For instance, Asmussen (1989) utilized a Markov process to estimate ruin prob-

abilities. See also Bäuerle (1996), Jasiulewicz (2001), and Cheung and Landriault (2010)

for more ruin-related problems under a MAP claim counting process. Ahn et al. (2007)

considered a MAP model under a dividend barrier problem. See also Li and Lu (2007) and

Badescu et al. (2007) for other relevant work on this topic. Moreover, the aggregate claims

under the framework of the MAP model were analyzed by Kim and Kim (2007), where the

first two moments of the discounted aggregate claims were obtained under a Markov modu-

lated Poisson risk model. Ren (2008) further extended Kim and Kim’s results to a general

MAP model. In this chapter, recursive formulas are derived for all finite-order moments of

the total discounted IBNR claim amount and the pmf of the IBNR claim number in the

MAP model with dependence between the interclaim times and claim severities.

In the MAP risk model, there exists a homogeneous CTMC, say J = {J(t); t ≥ 0}, with

finite state space E = {1, 2, 3, . . . ,m} which describes the evolution of an (unobservable)
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environment process. We consider two types of transitions in a MAP risk model:

1. transitions of the CTMC J from state i to state j without a claim occurrence (type-1

transitions); or

2. transitions of the CTMC J from state i to state j with an accompanying claim (type-2

transitions).

In what follows, we refer to either type of transition as a system change. The type-1 tran-

sition is governed by the matrix D = (Dij)i,j∈E. Its (i, j)th element corresponds to the

instantaneous rate of transition from state i to state j (j ̸= i) in E without an accompa-

nying claim. The type-2 transition is governed by the matrix T = (Tij)i,j∈E, for which its

(i, j)th element corresponds to the instantaneous rate of transition from state i to state j

in E with an accompanying claim. The diagonal elements of D are assumed to be negative

such that the sum of the elements on each row of the matrix Q = D+T is zero. Under the

above assumptions, the counting process {Nt}t≥0 is said to be MAP(D,T).

The MAP counting process is very general. It covers many important counting processes.

For example, when D = λ > 0 and T = −λ, it reduces to a Poisson process with intensity λ;

with D = B and T = b⊤α, where α is a vector and b = −Be with e being a vector of 1’s,

it reduces to a renewal process with the interclaim times following a phase-type distribution

with representation (α,B); with D = Q − diag(λi) and T = diag(λi), where diag(λi) de-

notes a diagonal matrix with λi on the diagonal, it reduces to a Markov modulated Poisson

process with rate λi for i ∈ E and infinitesimal generator Q = (qij)i,j∈E. Interested readers

are referred to Neuts (1981), and Latouche and Ramaswami (1999) for a more general intro-

duction on MAPs.

We first introduce the risk model of interest through a series of definitions together with

their underlying assumptions.

1. Let sn denote the time of the nth system change and τn = sn − sn−1 for n ∈ N+ with

s0 = 0. Given that J(sn−1) = j, τn has pdf fj, df Fj = 1− F̄j and LT f̃j.
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2. LetXn be the claim size accompanying the nth system change. We assume thatXn = 0

if the nth system change does not involve a claim while Xn has pdf gjk, df Gjk and LT

g̃jk if the nth system change involves a type-2 transition from state j to state k.

3. Let Wn be the reporting lag for the claim accompanying the nth system change. We

assume that Wn = 0 if the nth system change does not involve a claim while Wn has

df Kjk = 1− K̄jk if the nth system change involves a type-2 transition from state j to

state k.

Given the underlying states {J(t)}t≥0, we further assume that the random vectors (τn,Wn, Xn)n∈N+

are mutually independent. For notational convenience, we express the joint distribution of

(τn,Wn, Xn) (conditional on J(sn−1) = j and J(sn) = k) as

Pr(τn ≤ t,Wn ≤ w,Xn ≤ x|J(sn−1) = j, J(sn) = k) = Fj(t)Kjk|τ (w|t)Gjk|τ,W (x|t, w), (5.1)

for t, w, x ≥ 0 and j, k ∈ E, where given J(sn−1) = j, J(sn) = k, Gjk|τ,W is the df of

Xn|(τn,Wn) and Kjk|τ is the df of the reporting lag Wn|τn. Furthermore, we let g̃jk|τ,W be

the LT of Xn|(τn,Wn), and µ
(i)
jk (t, w) = E[X i

n|τn = t,Wn = w, J(sn−1) = j, J(sn) = k] for

i ∈ N.

We will examine the following two special cases of (5.1):

• Special Case A. Conditional on J(sn−1) = j and J(sn) = k, the interclaim time τn

is independent of the claim severity Xn and reporting lag Wn, i.e. Gjk|τ,W (x|t, w) =

Gjk|W (x|w) and Kjk|τ (w|t) = Kjk(w). Thus,

Pr(τn ≤ t,Wn ≤ w,Xn ≤ x|J(sn−1) = j, J(sn) = k) = Fj(t)Kjk(w)Gjk|W (x|w),

for t, w, x ≥ 0 and j, k ∈ E. Therefore, µ
(i)
jk (w) = E[X i

n|Wn = w, J(sn−1) = j, J(sn) =

k] for i ∈ N.

• Special Case B. Conditional on J(sn−1) = j and J(sn) = k, the interclaim time τn,
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claim severity Xn and reporting lag Wn are all independent, i.e.

Pr (τn ≤ t,Wn ≤ w,Xn ≤ x|J(sn−1) = j, J(sn) = k) = Fj(t)Kjk(w)Gjk(x),

for t, w, x ≥ 0 and j, k ∈ E. Accordingly, E[X i
n|J(sn−1) = j, J(sn) = k] =: µ

(i)
jk for

i ∈ N.

The primary quantity of interest in this chapter is the total discounted IBNR claim amount

Z(t) defined as

Z(t) =
Nt∑
n=1

e−δsnl(Wn)1{Wn+sn>t}Xn,

whose LT is denoted as

Lij(γ, t) = E[e−γZ(t)1{J(t)=j}|J(0) = i],

for i, j ∈ E. Let L(γ, t) = (Lij(γ, t))i,j∈E. Similarly, let

U(t) =
Nt∑
n=1

1{Wn+sn>t}1{Xn>0},

be the IBNR claim number at time t, whose pgf is denoted as P(z; t) with (i, j)th element

Pij(z; t) = E[zU(t)1{J(t)=j}|J(0) = i].

The pgf P(z; t) will be the subject matter of Section 5.2.

5.1 Total discounted IBNR claim amount

In this section, we work under the MAP(D,T) with the dependence structure defined in

(5.1), where Fj(x) = 1 − eDjjx for x ≥ 0 and j ∈ E. Also the probability that the system

change is a transition of J from state j to state k with (without) a claim is given by −Tjk/Djj

(−Djk/Djj for k ̸= j) for j, k ∈ E.

78



Under these assumptions, we derive a renewal equation for the LT of the total discounted

IBNR claim amount. Conditioning on the time and characteristic of the first system change,

it follows that

Lij(γ, t) = eDiit1{i=j} +
m∑

k=1,k ̸=i

Dik

∫ t

0

Lkj(γe
−δx, t− x)eDiixdx

+
m∑
k=1

Tik

∫ t

0

Lkj(γe
−δx, t− x)

[
Kik|τ (t− x|x)+

∫ ∞

t−x

g̃ik|W,τ (γe
−δxl(w)|w, x)Kik|τ (dw|x)

]
eDiixdx.

(5.2)

Each of the three terms on the right-hand side of (5.2) represents

• the state remains in state i and no claim occurs up to time t,

• the first system change is a type-1 transition at time x ≤ t from state i to state k

(i ̸= k),

• the first system change is a type-2 transition at time x ≤ t from state i to state k.

From (5.2), it is immediate that L(γ, 0) = I and L(0, t) = eQt.

5.1.1 Moments of the total discounted IBNR claim amount

Next, we provide a closed-form expression for the expected discounted IBNR claim amount.

We later derive a recursive formula for its higher-order moments. A few definitions are first

introduced to ease the subsequent presentation. For n ∈ N+, x ≥ 0, and i, j ∈ E,

• Let E(n)(x) be a m×m matrix whose (i, j)th entry is

E
(n)
ij (x) = E[Zn(x)1{J(x)=j}|J(0) = i],

• Let µ(n)(x) (or µ(n)) be the m×m matrix whose (i, j)th element is µ
(n)
ij (x) (or µ

(n)
ij ),

• Let B(n)(x) be a m×m matrix whose (i, j)th entry is
∫∞
x

ln(w)µ
(n)
ij (w)Kij(dw).
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Here, for notation convenience, we assume that E(0)(x) = eQx for x ≥ 0. The first-order

moment is obtained by differentiating the LT (5.2) with respect to γ and subsequently

evaluating it at γ = 0. This results in

E
(1)
ij (t) =

m∑
k=1,k ̸=i

Dik

∫ t

0

e−δxE
(1)
kj (t− x)eDiixdx+

m∑
k=1

Tik

∫ t

0

e−δxE
(1)
kj (t− x)eDiixdx

+
m∑
k=1

Tik

∫ t

0

e−δxE
(0)
kj (t− x)

[∫ ∞

t−x

l(w)µ
(1)
ik (w, x)Kik|τ (dw|x)

]
eDiixdx.

Along the same lines, the n-th derivative of (5.2) with respect to γ (which is further evaluated

at γ = 0) yields

E(n)(t) =

∫ t

0

e−nδxe∆x[Q−∆]E(n)(t− x)dx+M(n)(t), (5.3)

for n ∈ N+, where ∆ = diag(Dii) and M(n)(t) is an m×m matrix whose (i, j)th entry is,

M
(n)
ij (t) =

n∑
d=1

(
n

d

) m∑
k=1

Tik

∫ t

0

e−nδxE
(n−d)
kj (t− x)

[∫ ∞

t−x

ld(w)µ
(d)
ik (w, x)Kik|τ (dw|x)

]
eDiixdx,

for n ∈ N+, where M
(n)
ij (0) = 0. Taking LT on both sides of (5.3) yields

Ẽ(n)(s) =
{
I− [sI+ nδI−∆]−1 [Q−∆]

}−1
M̃(n)(s)

= {sI+ nδI−Q}−1 [sI+ nδI−∆]M̃(n)(s), (5.4)

for s ≥ 0. Then, the inversion of the LT (5.4) results in

E(n)(t) =

∫ t

0

e−nδ(t−x)eQ(t−x)[nδI−∆]M(n)(x)dx+

∫ t

0

e−nδ(t−x)eQ(t−x)dM
(n)(x)

dx
dx

=

∫ t

0

e−nδ(t−x)eQ(t−x)

{
[nδI−∆]M(n)(x) +

dM(n)(x)

dx

}
dx,

for n ∈ N+. In the following, we show how the moments can be obtained recursively.

Theorem 21. When the counting process {Nt}t≥0 is a MAP(D,T) and an arbitrary depen-

dence among the interclaim times, claim severities and reporting lags is allowed, the moments
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of Z(t) can be written in a recursion form, i.e.

E(n)(t) =

∫ t

0

e−nδ(t−x)eQ(t−x)

{
[nδI−∆]M(n)(x) +

dM(n)(x)

dx

}
dx,

for n ∈ N+.

More specifically, under Special Case A, it follows

E(1)(t) =

∫ t

0

e−δ(t−x)QE(1)(x)dx+

∫ t

0

e−δ(t−x)
[
T ◦B(1)(x)

]
eQxdx, (5.5)

and for n ≥ 2,

E(n)(t) =

∫ t

0

e−nδ(t−x)QE(n)(x)dx+
n∑

i=1

(
n

i

)∫ t

0

e−nδ(t−x)
[
T ◦B(i)(x)

]
E(n−i)(x)dx. (5.6)

Considering the boundary conditions E(n)(0) = 0 for n ∈ N+ (where 0 is a m×m matrix of

0), the integral equations (5.5) and (5.6) can easily be solved as

E(1)(t) =

∫ t

0

e−δ(t−x)eQ(t−x)
[
T ◦B(1)(x)

]
eQxdx, (5.7)

and

E(n)(t) =
n∑

i=1

(
n

i

)∫ t

0

e−nδ(t−x)eQ(t−x)
[
T ◦B(i)(x)

]
E(n−i)(x)dx. (5.8)

Thus, the first-order moment can be obtained explicitly from (5.7) and the higher-order ones

can be obtained recursively from (5.8).

Example 8. In this example, we provide further detail on the derivation of a closed-form

expression for the first order moment when the underlying CTMC J has two states, i.e.

m = 2. The interclaim times are distributed as a sum of two independent, exponentially

distributed rv’s with rates η and v. Therefore, it follows

Q =

 −η η

v −v

 ,T =

 0 0

v 0

 .
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We further assume that B(1)(x) is of an exponential form for computational convenience,

i.e.

B(1)(x) =

 b11e
−β11x b12e

−β12x

b21e
−β21x b22e

−β22x

 ,

where bij, βij ≥ 0 for i, j ∈ {1, 2}. This assumption covers the case when l(w) is a compound

discount factor, the reporting lags are exponentially distributed (kij is an exponential df) and

the expected individual losses depend on the reporting lags through exponential functions.

Next, let m
(1)
Z (t) = E(1)(t)e, whose ith element is E[Z(t)|J0 = i] for i = 1, 2. From (5.7), it

follows that

m
(1)
Z (t) =

∫ t

0

e−δ(t−x)eQ(t−x)
[
T ◦B(1)(x)

]
edx.

By applying matrix decomposition on Q, it holds that

eQx =

 v
η+v

+ η
η+v

e−(η+v)x η
η+v

[
1− e−(η+v)x

]
v

η+v

[
1− e−(η+v)x

]
η

η+v
+ v

η+v
e−(η+v)x

 .

Then, it is easily obtained that

m
(1)
Z (t) =

 ηv
η+v

(c1(t) + c2(t))

v
η+v

(ηc1(t)− vc2(t))

 ,

where

c1(t) =
b11(e

−δt − e−β11t)

β11 − δ
+

b12(e
−δt − e−β12t)

β12 − δ
,

and

c2(t) =
b11(e

−β11t − e−(η+v+δ)t)

η + v + δ − β11

+
b12(e

−β12t − e−(η+v+δ)t)

η + v + δ − β12

,

provided that all the denominators are not zero. Thus, a closed expression for the first

moment of the total discounted IBNR claim amount is obtained under this setting.
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5.1.2 Laplace transform under Special Case A

In this section, the focus is to find an alternative representation for the LTs of the total

discounted IBNR claims. Under Special Case A, it holds that

Lij(γ, t) = eDiit1{i=j} +
m∑

k=1,k ̸=i

Dik

∫ t

0

Lkj(γe
−δx, t− x)eDiixdx

+
m∑
k=1

Tik

∫ t

0

Lkj(γe
−δx, t− x)Aik(γe

−δx, t− x)eDiixdx, (5.9)

where Aik(a, y) = Kik(y) +
∫∞
y

g̃ik|W (al(w)|w)Kik(dw) for i, k ∈ E and a, y ≥ 0. Thus,

Aik(0, y) = 1 for all y ≥ 0.

Theorem 22. When {Nt}t≥0 is a MAP (D,T) and under Special Case A, the LT of Z(t)

follows

L(γ, t) = I+

∫ t

0

{
D+

[
T ◦A(γe−δx, t− x)

]}
L(γe−δx, t− x)dx, (5.10)

where ◦ is Hadamard product symbol, A(·, ·) is an m×m matrix with Aij(·, ·) as its (i, j)th

element, and I is a m×m identity matrix.

Proof. By making use of the relationship between Fi(x) and its renewal equation mi(x),

namely

mi(dx) = Fi(dx) +

∫ x

0

Fi(dx− y)mi(dy), (5.11)
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(5.9) can be rewritten as

Lij(γ, t) = eDiit1{i=j} +
m∑

k=1,k ̸=i

Dik

−Dii

∫ t

0

Lkj(γe
−δx, t− x)mi(dx)

+
m∑
k=1

Tik

−Dii

∫ t

0

Lkj(γe
−δx, t− x)Aik(γe

−δx, t− x)mi(dx)

−
m∑

k=1,k ̸=i

Dik

−Dii

∫ t

0

Lkj(γe
−δx, t− x)

∫ x

0

Fi(dx− y)mi(dy)

−
m∑
k=1

Tik

−Dii

∫ t

0

Lkj(γe
−δx, t− x)Aik(γe

−δx, t− x)

∫ x

0

Fi(dx− y)mi(dy). (5.12)

By interchanging the order of integration in the last two terms of (5.12) and later using

(5.11), it becomes

Lij(γ, t) = 1{i=j} −
∫ t

0

Lij(γe
−δx, t− x)mi(dx) +

m∑
k=1,k ̸=i

Dik

−Dii

∫ t

0

Lkj(γe
−δx, t− x)mi(dx)

+
m∑
k=1

Tik

−Dii

∫ t

0

Lkj(γe
−δx, t− x)Aik(γe

−δx, t− x)mi(dx). (5.13)

Substituting mi(dx) = −Diidx into (5.13) yields

Lij(γ, t)

= 1{i=j} +
m∑
k=1

Dik

∫ t

0

Lkj(γe
−δx, t− x)dx+

m∑
k=1

Tik

∫ t

0

Lkj(γe
−δx, t− x)Aik(γe

−δx, t− x)dx,

from which (5.10) is obtained directly.

5.2 IBNR claim number

Next, we examine in more detail some distributional properties of the IBNR claim number.

Corollary 23. When {Nt}t≥0 is a MAP (D,T) and under Special Case A, the pgf of U(t)
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is given as

P(z; t) = I+

∫ t

0

{
D+T ◦

[
K(x) + zK̄(x)

]}
P(z; x)dx, (5.14)

where K(x) and K̄(x) are m×m matrices with (i, j)th elements Kij(x) and K̄ij(x), respec-

tively.

Proof. It is directly obtained from (5.10) by letting γ = − ln(z), δ = 0 and all claim sizes

are of size 1 almost surely.

It is obvious that P(1; t) = eQt and P(z; 0) = I. From Magnus (1954), the solution to (5.14)

is in the form of Magnus expansion, i.e. P (z; t) = e
∑∞

k=1 Ωk(z;t), where

Ω1(z; t) =

∫ t

0

A(z; t1)dt1,

Ω2(z; t) =
1

2

∫ t

0

∫ t1

0

[A(z; t1), A(z; t2)]dt2dt1,

Ω3(z; t) =
1

6

∫ t

0

∫ t1

0

∫ t2

0

([A(z; t1), [A(z; t2), A(z; t3)]] + [A(z; t3), [A(z; t2, A(z; t1)]]) dt3dt2dt1,

...

where [A,B] = AB−BA for any matrix A and B and A(z;x) = D+T◦
[
K(x) + zK̄(x)

]
for

x ∈ [0, t]. The calculation of the pmf from Magnus expansion is in general a computationally

intensive task. Next, we provide a recursive formula for the pmf of U(t), which is a m×m

matrix Pn(t) whose (i, j) element is Pr(U(t) = n, J(t) = j|J(0) = i). By taking derivatives

of (5.14) with respect to z and evaluating at z = 0, one finds that {Pn(t)}t≥0 satisfies the

recursion

Pn(t) =

∫ t

0

[T ◦ K̄(x)]Pn−1(x)dx+

∫ t

0

{D+T ◦K(x)}Pn(x)dx. (5.15)

From (5.15), the pmf of the IBNR claim number is expressed in an integral form, which

relies on both the pmf of the same level at previous times and those of lower levels. Also,

explicit expressions for the moments of U(t) can be obtained. First, we define U (n)(t) =
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U(t)(U(t)− 1) . . . (U(t)− n+ 1) for n ∈ N+ and let

E
∗(n)
ij (t) = E[U (n)(t)1{J(t)=j}|J(0) = i],

which can be obtained by taking the nth order derivative of (5.14) with respect to z and

evaluating at z = 1. Furthermore, let m(n)(t) be a vector, whose ith element is m
(n)
i (t) =

E[U (n)(t)|J(0) = i] for i ∈ E. Then, explicit expressions for all the moments can be obtained.

Corollary 24. When {Nt}t≥0 is a MAP (D,T) and under Special Case A, the factorial

moments of U(t) are given as

m(n)(t) = n!

∫ t

0

∫ t1

0

∫ t2

0

· · ·
∫ tn−1

0

n∏
i=1

[eQ(ti−1−ti)T ◦ K̄(ti)]dtndtn−1 · · · dt1e, (5.16)

for n ∈ N+, and t0 = t.

Proof. By utilizing the relationship between m(n) and E(n), one has

m(1)(t) = E∗(1)(t)e

=

∫ t

0

Qm(1)(x)dx+

∫ t

0

T ◦ K̄(x)eQxdxe

=

∫ t

0

Qm(1)(x)dx+

∫ t

0

T ◦ K̄(x)dxe, (5.17)

where the last line holds due to the fact that the Q’s row sums are equal to 0. Taking LT

on both sides of (5.17) yields

m̃(1)(s) = Qs−1m̃(1)(s) + s−1

∫ ∞

0

e−sxT ◦ K̄(x)dxe

= [sI−Q]−1

∫ ∞

0

e−sxT ◦ K̄(x)dxe. (5.18)

Inverting the LT (5.18) gives

m(1)(t) =

∫ t

0

eQ(t−x)[T ◦ K̄(x)]dxe.
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Repeating the above procedure yields

m(n)(t) = n

∫ t

0

eQ(t−x)[T ◦ K̄(x)]m(n−1)(x)dx,

from which (5.16) holds directly by repeated substitutions.

As a special case of the MAP model, the Markov modulated Poisson process (MMPP) is

obtained when D = Q − diag(λi) and T = diag(λi). As a result, only type-1 (type-2)

transitions from state i to j are possible when i ̸= j (i = j). Next, we consider a numerical

example under the MMPP model where

Q =


−9 2 3 4

16/3 −28/3 8/3 4/3

4/3 4/3 −14/3 2

25/3 5/3 5/3 −35/3

 ,

and T = diag(λ1, λ2, λ3, λ4). Also the survival function of the reporting lag K̄ is a diagonal

matrix with K̄11(x) = e−β1x, K̄22(x) = (1+β2x)e
−β2x, K̄33(x) =

(
1

x+1

)β3 and K̄44(x) = e−β4x,

where (β1, β2, β3, β4) = (3, 1, 2, 1). We further assume that (λ1, λ2, λ3, λ4) = (1, 4, 5, 3). The

moments of the IBNR claim number are illustrated in Table 5.1.

Table 5.1: Mean and variance of the IBNR claim number in the MMPP model

Quantity States \t 1 1.25 1.5 1.75 2 2.25 2.5

E[U(t)|J(0)]

J(0)=1 1.773 2.039 2.258 2.439 2.589 2.714 2.819

J(0)=2 2.020 2.261 2.453 2.608 2.734 2.837 2.923

J(0)=3 1.914 2.149 2.345 2.510 2.649 2.765 2.864

J(0)=4 1.826 2.081 2.291 2.464 2.608 2.728 2.830

V ar[U(t)|J(0)]

J(0)=1 2.005 2.305 2.550 2.751 2.916 3.052 3.165

J(0)=2 2.272 2.547 2.762 2.933 3.071 3.182 3.274

J(0)=3 2.126 2.399 2.625 2.813 2.969 3.098 3.206

J(0)=4 2.053 2.344 2.580 2.774 2.933 3.065 3.174

From Table 5.1, the initial state of the CTMC J influences the expectation and also the
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variance of the IBNR claim number within certain periods. For instance, state 2 is a “bad”

environment for insurance companies, since the IBNR claim number is large and uncertain.

Thus, they need to set more reserves to prepare for the future liabilities.
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Chapter 6

Total Discounted Claim Costs under

A Two-sided Exit Setting

In this chapter, the aggregate claims until a randomized observation time is analyzed. We

work with the surplus process as defined in (1.3) with the surpassing times τ+b and τ−0 as

in (1.4) and (1.5) respectively. Among many quantities of interest involving τ+b and τ−0 in

probability analysis, we specially mention the two-sided exit probabilities

mα(u; b) = Pr(τ+b < τ−0 ∧ eα|U0 = u) = E
[
e−ατ+b 1{τ+b <τ−0 }

∣∣∣U0 = u
]
, (6.1)

and

Mα(u; b) = Pr(τ−0 < τ+b ∧ eα|U0 = u) = E
[
e−ατ−0 1{τ−0 <τ+b }

∣∣∣U0 = u
]
, (6.2)

where eα is an exponential rv with mean 1/α, independent of {Ut}t≥0.

In what follows, we propose to enhance the risk analysis on the two-sided exit problem for

the insurance surplus process (1.3) by further examining two specific quantities pertaining

89



to the excursions of {Ut}t≥0 in [0, τ+b ∧ τ−0 ], namely

ϕm,α,δ(u; b) = E

e−ατ+b

N
τ+
b∑

k=1

e−δTkh(Xk)


m

1{τ+b <τ−0 }

∣∣∣∣∣∣∣U0 = u

 , (6.3)

and

Φm,α,δ(u; b) = E

e−ατ−0

N
τ−0∑

k=1

e−δTkh(Xk)


m

1{τ−0 <τ+b }

∣∣∣∣∣∣∣U0 = u

 , (6.4)

for a nonnegative integer m, where δ ≥ 0 and h(·) is a so-called cost function. By def-

inition, ϕm,α,δ(u; b) = Φm,α,δ(u; b) = 0 for u ≥ b and m ≥ 1. Furthermore, we have

ϕ0,α,δ(u; b) = mα(u; b) and Φ0,α,δ(u; b) = Mα(u; b). Note that the expected total discounted

claim costs until ruin (i.e., a special case of (6.4) with m = 1 and b → ∞) was studied by

Cai et al. (2009) and Feng (2009). See also Cheung (2013) for the higher-order moments of

the total discounted claim costs until ruin in a Sparre Andersen risk process.

The two-sided exit probabilities (6.1) and (6.2) have been the subject matter of various risk

analysis. We refer the reader to Kyprianou (2006, Chapter 8) and Kuznetsov et al. (2013)

in the context of the Lévy insurance risk model, and Kyprianou and Palmowski (2008) in its

Markov additive generalization. In this chapter, we consider the insurance surplus process

(1.3) in the framework of the dependent Sparre Andersen risk model (see, e.g., Cheung et

al. (2010)). More specifically, we assume that the pairs {(Wi, Xi)}∞i=1 form a sequence of iid

random vectors distributed as a generic random vector (W,X). Similarly to Willmot and

Woo (2012), the joint pdf fW,X of (W,X) is assumed to be of the form

fW,X(t, x) =
n∑

i=1

λie
−λitgi(x), (6.5)

for t, x ≥ 0, where 0 = λ0 < λ1 < λ2 < . . . < λn for n ≥ 1 and
∫∞
0

|gi(x)|dx < ∞ for

i = 1, 2, . . . , n. It is immediate from (6.5) that the marginal survival function of W is given

by F̄W (t) =
∫∞
t

fW (x)dx =
∑n

i=1 ηie
−λit for t ≥ 0, where ηi =

∫∞
0

gi(x)dx. For convenience,
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we also define g̃i(s) as g̃i(s) =
∫∞
0

e−sxgi(x)dx for all s ∈ R such that the integral exists.

Remark that, if all gi(x)
′s are valid pdfs, (6.5) defines a negative correlation between the

interclaim times and claim severities. In general, a positive dependence is also allowed under

(6.5). A simple example is obtained when n = 2, λ1 = 1, λ2 = 2, g1 = 1.5e−x − e−2x, and

g2 = −0.5e−x + e−2x.

One important example for the joint pdf (6.5) is the Bernstein copula defined in (2.2), where

W is an exponential rv with mean 1/λ and X has a marginal pdf g(·); the joint df of (W,X)

is then given by

fW,X(t, x) = λe−λt

n−1∑
i=0

ℓ−1∑
j=0

an,ℓ

(
i

n
,
j

n

)
Bn−1(i, 1− e−λt)Bℓ−1(j, G(x))g(x),

which is a special case of (6.5) with λi = iλ and

gi(x) =
1

i

n−1∑
k=n−i

(n− 1)!

(n− 1− k)!(n− i)!(k − n+ i)!

ℓ−1∑
j=0

an,ℓ

(
k

n
,
j

n

)
Bℓ−1(j,G(x))g(x),

for i = 1, 2, . . . , n.

Considering the denseness of the Bernstein copula in the space of bounded continuous func-

tions (see Nelsen (1998) for more detail), it follows that the dependence defined in (6.5)

allows a very general model to be studied under the insurance surplus process (1.3). We

refer the reader to Willmot and Woo (2012) for other examples for the joint density (6.5).

The one-sided exit problem involving τ−0 have been extensively examined in the (dependent)

Sparre Andersen risk model (e.g., Li and Garrido (2004, 2005), Gerber and Shiu (2005),

Boudreault et al. (2006) and Cossette et al. (2010)). See also Cheung et al. (2010) for

some extensions. Less attention has been paid to the analysis of two-sided exit problems

in the context of this class of risk processes. In this chapter, we first investigate the two-

sided exit probability mα(u; b)(Mα(u; b)), and the moments of the total discounted claim
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costs ϕm,α,δ(u; b) (Φm,α,δ(u; b)) in the dependent renewal risk model (1.3) whose dependence

is introduced through the joint density (6.5). As expected, the solutions to Lundberg’s

generalized equation E
[
e−αW1es(cW1−X1)

]
= 1 for α ≥ 0 are very relevant in this context,

whose closed-form representation under (6.5) is given by

n∑
i=1

λi

λi + α− cs
g̃i(s) = 1. (6.6)

The rest of the chapter is structured as follows. In Section 6.1, we identify n fundamental

solutions to a given integral equation which will be shown to play a crucial role in the

subsequent analysis. In Section 6.2, we show that the two-sided exit quantities ϕm,α,δ(u; b)

and Φm,α,δ(u; b) satisfy an nth order integro-differential equation (IDE). It is later shown

that the n fundamental solutions derived in Section 6.1 are a group of independent solutions

to the corresponding homogeneous IDEs. From the general theory on IDEs, mα(u; b) and

Mα(u; b) are expressed in terms of the n fundamental solutions together with a particular

solution to the associated IDE. A recursive formula is then provided in Section 6.2 to calculate

the moments under the two-sided exit setting. Section 6.3 provides explicit expressions for

the two-sided exit probabilities under the Farlie-Gumbel-Morgenstern (FGM) copula and

exponentially distributed claim sizes.

6.1 Solutions to integral equations

By conditioning on the time and the amount of the first claim and using the regenerative

property of the aggregate claim process at claim instants, (6.3) can be expressed as

ϕm,α,δ(u; b) =

∫ b−u
c

0

e−(α+mδ)t

∫ u+ct

0

ϕm,α,δ(u+ ct− x; b)fW,X(t, x)dxdt+ vm,α,δ(u; b), (6.7)

for m ∈ N and 0 ≤ u ≤ b, where

vm,α,δ(u; b)=


∑m−1

j=0

∫ b−u
c

0
e−(α+mδ)t

∫ u+ct

0
h(x)m−jϕj,α,δ(u+ ct− x; b)fW,X(t, x)dxdt, m ∈ N+,

e−α b−u
c F̄W

(
b−u
c

)
, m = 0,
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Similarly for Φm,α,δ(u; b) defined in (6.4), we have

Φm,α,δ(u; b) =

∫ b−u
c

0

e−(α+mδ)t

∫ u+ct

0

Φm,α,δ(u+ ct− x; b)fW,X(t, x)dxdt+ Vm,α,δ(u; b), (6.8)

for m ∈ N and 0 ≤ u ≤ b, where

Vm,α,δ(u; b) =
m−1∑
j=0

∫ b−u
c

0

e−(α+mδ)t

∫ u+ct

0

h(x)m−jΦj,α,δ(u+ ct− x; b)fW,X(t, x)dxdt

+

∫ b−u
c

0

e−(α+mδ)t

∫ ∞

u+ct

h(x)mfW,X(t, x)dxdt.

We point out that ϕm,α,δ and Φm,α,δ satisfy integral equations (6.7) and (6.8) respectively,

which are of an identical form. As a cornerstone to the analysis of the solution to (6.7) and

(6.8) is the integral equation

wα(u) =
1

c

∫ ∞

u

e−α y−u
c

∫ y

0

wα(y − x)fW,X

(
y − u

c
, x

)
dxdy, (6.9)

for u ≥ 0. A set of independent solutions to (6.9) plays a similar role in the analysis of the

dependent renewal risk model with joint pdf (6.5) as the scale function and scale matrix

are to the analysis of the Lévy insurance risk process and the spectrally negative Markov-

additive process, respectively.

Next, we focus on solving for a group of independent solutions to (6.9) when fW,X is as given

in (6.5). Thus, (6.9) becomes

wα(u) =
n∑

i=1

λi

c

∫ ∞

u

e−(λi+α) y−u
c

∫ y

0

wα(y − x)gi(x)dxdy. (6.10)

Taking LT on both sides of (6.10) with respect to u yields

w̃α(s) =
n∑

i=1

λi

c

w̃α

(
λi+α

c

)
g̃i
(
λi+α

c

)
− w̃α(s)g̃i(s)

s− λi+α
c

,
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which can be re-organized as

w̃α(s) =
Qn−1(s)∏n

j=1

(
s− λj+α

c

)
+
∑n

i=1
λi

c

{∏n
j=1,j ̸=i

(
s− λj+α

c

)}
g̃i(s)

, (6.11)

where Qn−1(s) is a (n− 1)th order polynomial in s given by

Qn−1(s) =
n∑

i=1

λi

c
g̃i

(
λi + α

c

)
w̃α

(
λi + α

c

){ n∏
j=1,j ̸=i

(
s− λj + α

c

)}
.

We define by {mi,α(u)}u≥0 for i = 1, 2, . . . , n a set of n fundamental solutions to (6.10),

whose LT can be written as

m̃i,α(s) =
si−1∏n

j=1

(
s− λj+α

c

)
+
∑n

i=1
λi

c

{∏n
j=1,j ̸=i

(
s− λj+α

c

)}
g̃i(s)

. (6.12)

Thus, all functions which satisfy the integral equation (6.10) can be expressed as a linear

combination of the fundamental solutions {mi,α(u)}u≥0 for i = 1, 2, . . . , n. By construction,

the n fundamental solutions {mi,α(u)}u≥0 (i = 1, 2, . . . , n) to (6.10) defined through the LT

(6.12) are independent (i.e. no solution can be expressed as a linear combination of the other

(n− 1) solutions). Note that, by the initial value theorem, we have

mi,α(0) = lim
s→∞

si∏n
j=1

(
s− λj+α

c

)
+
∑n

k=1
λk

c

{∏n
j=1,j ̸=k

(
s− λj+α

c

)}
g̃k(s)

= 0,

for i = 1, 2, . . . , n− 1 and mn,α(0) = 1. Thus, together with (6.12), it is immediate that

mi+1,α(x) = m
(1)
i,α(x) = m

(2)
i−1,α(x) = . . . = m

(i)
1,α(x),

for i = 1, 2, . . . , n− 1.

Furthermore, it is obvious that the denominator in (6.11) has the same zeros as Lund-

berg’s generalized equation (6.6). According to Landriault et al. (2014c), for α > 0, by

Rouche’s theorem, there are exactly n zeros (which we denote ρ1,α, ρ2,α, . . . , ρn,α) with a
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positive real part to Lundberg’s generalized equation (6.6). By Cossette et al. (2010, Propo-

sition 4.2) and Klimenok (2001, Theorem 1), for α = 0 and under the safety loading condition

E[cW1 −X1] > 0, (6.6) has a zero ρ1,α = 0 and exactly n − 1 zeros (say, ρ2,α, ρ3,α, . . . , ρn,α)

with positive real parts. Henceforth, we assume that ρi,α ̸= ρj,α for i, j = 1, 2, . . . , n with

i ̸= j.

Note that an alternative and convenient representation for the LT associated with the fun-

damental solution mi,α can be found by tying up (6.12) to the known ladder height LT in

the insurance surplus process (1.3). Indeed from Equation 50 of Cheung et al. (2010) and

Willmot and Woo (2012), we have

m̃i,α(s) =
si−1

∏n
j=1(s− ρj,α)

−1

1− φαr̃α(s)
, (6.13)

for i = 1, 2, . . . , n, where

φα =

∏n
j=1(−ρj,α)−

∏n
j=1

(
−λj+α

c

)
−
∑n

i=1
λi

c

{∏n
j=1,j ̸=i

(
−λj+α

c

)}
g̃i(0)∏n

j=1(−ρj,α)
, (6.14)

and r̃α(s) is the LT of the ladder height density {rα(x)}x≥0 given by

rα(x) =
1

φα

n∑
i=1

λi

c

n∑
k=1


∏n

j=1,j ̸=i

(
ρk,α − λj+α

c

)
∏n

m=1,m ̸=k (ρk,α − ρm,α)


∫ ∞

x

e−ρk,α(y−x)gi(y)dy. (6.15)

From (6.13), a defective renewal equation is easily obtainable for {mi,α(x)}x≥0.

Lemma 25. The integral equation (6.10) has n independent solutions given by

mi,α(x) =
n∑

j=1

ξi,je
ρj,αx + φα

∫ x

0

mi,α(x− y)rα(y)dy, (6.16)

for i = 1, 2, . . . , n and x ≥ 0, where ξi,j = ρi−1
j,α

∏n
k=1,k ̸=j (ρk,α − ρj,α)

−1 for i, j = 1, 2, . . . , n,

and rα(y) is as defined in (6.15).

Also, note that under some distributional assumptions for gi(x) (for instance, if gi has a
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Coxian density function), the LT (6.12) can be inverted directly through partial fraction

expansions.

6.2 Probabilities and moments

In this section, we focus on deriving a nth order IDE for ϕm,α,δ(u; b) and Φm,α,δ(u; b). By

showing that {mi,α(x)}ni=1 are a set of independent solutions to the IDE, we can express

ϕm,α,δ(u; b) and Φm,α,δ(u; b) for m ≥ 0 as a function of their lower-order moments.

6.2.1 A homogeneous IDE and the exit probability mα(u; b)

From (6.7) with the joint pdf (6.5), the two-sided exit probability (6.1) can be expressed as

mα(u; b) =
n∑

i=1

λi

c

∫ b

u

e−(λi+α) y−u
c

∫ y

0

mα(y − x; b)gi(x)dxdy +
n∑

j=1

ηje
−(λj+α) b−u

c , (6.17)

for 0 ≤ u ≤ b. Applying the nth order derivative operator
∏n

i=1

(
D − λi+α

c
I
)
on both sides

of (6.17) yields

n∏
j=1

(
D − λj + α

c
I
)
mα(u; b) = −

n∑
k=1

λk

c

n∏
j=1,j ̸=k

(
D − λj + α

c
I
)∫ u

0

mα(u− x; b)gk(x)dx,

(6.18)

for 0 ≤ u ≤ b where D and I are respectively the identity and the differentiation operators

with respect to u, respectively. By comparing (6.10) and (6.17), it is easily shown that the

fundamental solutions {mi,α(x)}x≥0 also satisfy the IDE (6.18). Thus, {mi,α(·)}ni=1 provide a

set of independent solutions to (6.18). According to the general theory on IDEs, the solution

to (6.17) can be expressed as a linear combination of {mi,α(x)}ni=1, namely

mα(u; b) = β1,bm1,α(u) + β2,bm2,α(u) + . . .+ βn,bmn,α(u), (6.19)

for 0 ≤ u ≤ b, where the coefficients {βi,b}ni=1 can be found through boundary conditions of

mα(u; b) at b. The result is stated in the following theorem.
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Theorem 26. The two-sided exit probability mα(u; b) can be expressed as

mα(u; b) = Z1,α(u; b) +
n−1∑
i=1

νiZi+1,α(u; b), (6.20)

for u ≤ b, where for i = 1, 2, . . . , n,

νi =
n∑

k=i+1

ηk

(
i∏

l=1

λk − λl

c

)
,

Zi,α(u; b) =


m1,α (u)

m2,α (u)
...

mn,α (u)



ᵀ
m1,α (b) m2,α (b) . . . mn,α (b)

χ1,1,α (b) χ2,1,α (b) . . . χn,1,α (b)
...

...
. . .

...

χ1,n−1,α (b) χ2,n−1,α (b) . . . χn,n−1,α (b)



−1

ei,

provided the associated matrix is invertible, and ei is an n-dimensional column vector with

1 at the ith position and 0 otherwise.

Proof. From the representation (6.19), the coefficients {βi,b}ni=1 of the two-sided exit proba-

bility mα(u; b) are derived through a set of equations related to its boundary conditions at b

(i.e., m
(i)
α (b; b) for i = 0, 1, 2, . . . , n− 1). To derive these boundary conditions, we apply the

derivative operator
∏i

j=1

(
D − λj+α

c
I
)
on both sides of (6.17) to obtain

i∏
j=1

(
D − λj + α

c
I
)
mα(u; b) (6.21)

=−
i∑

k=1

λk

c

i∏
j=1,j ̸=k

(
D−λj + α

c
I
)∫ u

0

mα(u− x; b)gk(x)dx+
n∑

j=i+1

ηj

(
i∏

l=1

λj − λl

c

)
e−(λj+α) b−u

c

−
n∑

k=i+1

λk

c

i∑
l=1

(
i−1∏
q=1

λk − λq

c

)
i∏

j=l+1

(
D − λj + α

c
I
)∫ u

0

mα(u− x; b)gk(x)dx

+
n∑

k=i+1

λk

c

(
i∏

q=1

λk − λq

c

)∫ b

u

e−(λk+α) y−u
c

∫ y

0

mα(y − x; b)gk(x)dxdy,
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for i = 1, 2, . . . , n− 1. By substituting (6.19) into (6.21), we have

β1,bm1,α (b) + β2,bm2,α (b) + . . .+ βn,bmn,α (b) = 1,

β1,bχ1,1,α (b) + β2,bχ2,1,α (b) + . . .+ βn,bχn,1,α (b) =
∑n

k=2 ηk
(
λk−λ1

c

)
,

...

β1,bχ1,n−1,α (b) + β2,bχ2,n−1,α (b) + . . .+ βn,bχn,n−1,α (b) = ηn
(∏n−1

l=1
λn−λl

c

)
,

(6.22)

where for i = 1, 2, . . . , n− 1, and j = 1, 2, . . . , n,

χj,i,α (b)=
i∏

l=1

(
D − λl + α

c
I
)
mj,α(b)+

i∑
k=1

λk

c

i∏
l=1,l ̸=k

(
D − λl + α

c
I
)∫ b

0

mj,α(b− x)gk(x)dx

+
n∑

k=i+1

λk

c

i∑
l=1

(
i−1∏
q=1

λk − λq

c

)
i∏

m=l+1

(
D − λm + α

c
I
)∫ b

0

mj,α(b− x)gk(x)dx.

Thus, (6.20) is obtained by some simple matrix operations on the equations in (6.22).

6.2.2 Inhomogeneous IDEs and moments

In this section, we propose to solve the integral equation

Wα(u; b) =
1

c

∫ b

u

e−α y−u
c

∫ y

0

Wα(y − x; b)fW,X

(
y − u

c
, x

)
dxdy + Vb(u), (6.23)

for 0 ≤ u ≤ b, where the joint pdf fW,X is of the form (6.5). It is further assumed that Vb(u)

is n-time differentiable with respect to u on [0, b]. From (6.7) and (6.8), it is clear that the

interest in Equation (6.23) resides in the fact that both ϕm,α,δ(u; b) and Φm,α,δ(u; b) satisfy

an integral equation of this form. More specifically, we have ϕm,α,δ(u; b) = Wα+mδ(u; b) with

Vb(u) = vm,α,δ(u; b) for m ∈ N+ and 0 ≤ u ≤ b. Similarly, for m ∈ N and 0 ≤ u ≤ b,

Φm,α,δ(u; b) = Wα+mδ(u; b) with Vb(u) = Vm,α,δ(u; b).

Similarly as in the homogeneous case, we apply the operator
∏n

j=1

(
D − λj+α

c
I
)

on both
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sides of (6.23) to obtain

n∏
j=1

(
D−λj + α

c
I
)
Wα(u; b)=−

n∑
k=1

λk

c

n∏
j=1,j ̸=k

(
D−λj+α

c
I
)∫ u

0

Wα(u− x; b)gk(x)dx+κb(u),

(6.24)

for u ≤ b, where κb(u) =
∏n

j=1

(
D − λj+α

c
I
)
Vb(u). We remark that κb(u) is independent

of b for the two-sided exit probabilities mα(u; b) and Mα(u; b). However, it is not true in

general for ϕm,α,δ(u; b) and Φm,α,δ(u; b) when m ≥ 1. Thus, the results in Cheung (2013)

to deal with the discounted aggregate claims until ruin cannot be directly applied here. A

particular solution to (6.23) can be found by extending the domain of definition of the IDE

(6.23) to u ≥ 0 and looking for a solution to the resulting IDE:

n∏
j=1

(
D−λj + α

c
I
)
Wα,b(u)=−

n∑
k=1

λk

c

n∏
j=1,j ̸=k

(
D−λj+α

c
I
)∫ u

0

Wα,b(u− x)gk(x)dx+κb(u),

(6.25)

for u ≥ 0, where we extend the definition of κb(u) to u > b. As illustrated later, the solution

to (6.25) on [0, b] is independent of the extended definition of κb(u) on u > b. Thus, we

assume that κb(u) for u > b is arbitrarily defined, but such that κ̃b(s) =
∫∞
0

e−sxκb(x)dx

exists for s > 0. A particular solution, which we denote by {Mα,b(u)}u≥0, to the IDE (6.25) is

found by taking LT on both sides of (6.25) and letting the boundary conditions W
(i)
α,b(0) = 0

for i = 0, 1, . . . , n− 1. It follows that

M̃α,b(s) =
κ̃b(s)∏n

j=1

(
s− λj+α

c

)
+
∑n

i=1
λi

c

{∏n
j=1,j ̸=i

(
s− λj+α

c

)}
g̃i(s)

.

which, using (6.13), can be rewritten as

M̃α,b(s) =
1

1− φαr̃α(s)

κ̃b(s)∏n
i=1(s− ρi,α)

. (6.26)
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By inversion of (6.26), we conclude

Mα,b(x) =
n∑

i=1

ξi

∫ x

0

eρi,α(x−y)κb(y)dy + φα

∫ x

0

Mα,b(x− y)rα(y)dy, (6.27)

for x ≥ 0, where φα and rα(y) are as defined in (6.14) and (6.15) respectively, and ξi =∏n
j=1,j ̸=i (ρi,α − ρj,α)

−1 for i = 1, 2, . . . , n. We further remark that the specification ofMα,b(u)

on u > b is not unique due to the arbitrary extension of κb(u) on u > b.

Thus, Wα(u; b)−Mα,b(u) on u ∈ [0, b] satisfies the IDE (6.18). By utilizing the properties of

inhomogeneous IDEs, the solution to (6.23) is given by

Wα(u; b) = Mα,b(u) + β∗
1,bm1,α(u) + β∗

2,bm2,α(u) + . . .+ β∗
n,bmn,α(u), (6.28)

for 0 ≤ u ≤ b, where {mi,α(x)}ni=1 are given by (6.16) for x ≥ 0.

Note that Equation (6.28) holds for 0 ≤ u ≤ b, and thus makes use of the particular solution

Mα,b(u) (defined in (6.27)) on [0, b] only, which is independent of the extended definition of

κb(u) on u ≥ b.

Theorem 27. The integral equation (6.23) can be represented as

Wα(u; b) = Mα,b(u) + [Vb(b)−Mα,b(b)]Z1,α(u; b)−
n−1∑
i=1

γi,α(b)Zi+1,α(u; b), (6.29)

for 0 ≤ u ≤ b, where

γi,α(b)=
i∏

j=1

(
D − λj + α

c
I
)
Mα,b(b)+

i∑
k=1

λk

c

i∏
j=1,j ̸=k

(
D − λj + α

c
I
)∫ b

0

Mα,b(b− x)gk(x)dx

+
n∑

k=i+1

λk

c

i∑
l=1

(
i−1∏
q=1

λk − λq

c

)
i∏

j=l+1

(
D − λj + α

c
I
)∫ b

0

Mα,b(b− x)gk(x)dx

−
i∏

j=1

(
D − λj + α

c
I
)
Vb(b), (6.30)
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for i = 1, 2, . . . , n− 1.

Proof. Similarly as for the two-sided exit probabilitymα(u; b), for i = 1, 2, . . . , n−1, we apply

the derivative operator
∏i

j=1

(
D − λj+α

c
I
)
on both sides of (6.23) to obtain the boundary

conditions {W (i)
α (b; b)}n−1

i=0 , namely

i∏
j=1

(
D − λj + α

c
I
)
Wα(u; b) (6.31)

= −
i∑

k=1

λk

c

i∏
j=1,j ̸=k

(
D − λj + α

c
I
)∫ u

0

Wα(u− x; b)gk(x)dx+
i∏

j=1

(
D − λj + α

c
I
)
Vb(u)

−
n∑

k=i+1

λk

c

i∑
l=1

(
i−1∏
q=1

λk − λq

c

)
i∏

j=l+1

(
D − λj + α

c
I
)∫ u

0

Wα(u− x; b)gk(x)dx

+
n∑

k=i+1

λk

c

(
i∏

q=1

λk − λq

c

)∫ b

u

e−(λk+α) y−u
c

∫ y

0

Wα(y − x; b)gk(x)dxdy,

for i = 1, 2, . . . , n − 1 and it is also easily known that Wα(b; b) = Vb(b) from (6.23). The

coefficients β∗
1,b, β

∗
2,b, . . . , β

∗
n,b in (6.28) can be determined by (6.31), i.e.

W (i)
α (b; b) = M

(i)
α,b(b) + β∗

1,bm
(i)
1,α(b) + β∗

2,bm
(i)
2,α(b) + . . .+ β∗

n,bm
(i)
n,α(b),

for i = 0, 1, . . . , n− 1.

Thus, the moments of the discounted aggregate claims in the two-sided exit setting are easily

obtainable from (6.29).

Corollary 28. For the insurance risk process (1.3) with joint pdf (6.5), the moments of the

total discounted claims (6.3) and (6.4) are respectively given by

ϕm,α,δ(u; b) = wm,α,δ,b(u)− wm,α,δ,b(b)Z1,α+mδ(u; b)−
n−1∑
i=1

ϑi,m(b)Zi+1,α+mδ(u; b), (6.32)

for m ≥ 1 and

Φm,α,δ(u; b) = Wm,α,δ,b(u)−Wm,α,δ,b(b)Z1,α+mδ(u; b)−
n−1∑
i=1

Θi,m(b)Zi+1,α+mδ(u; b), (6.33)
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for m ≥ 0 and 0 ≤ u ≤ b, where wm,α,δ,b(u) (Wm,α,δ,b(u)) is the particular solution Mα+mδ,b(u)

defined in (6.27) with κb(u) =
∏n

j=1

(
D − λj+α

c
I
)
vm,α,δ(u; b) (κb(u) =

∏n
j=1

(
D − λj+α

c
I
)

Vm,α,δ(u; b)) and ϑi,m(b) (Θi,m(b)) is given by γi,α+mδ(b) defined in (6.30) with Mα+mδ,b(u)

replaced by wm,α,δ,b(u) (Wm,α,δ,b(u)) and Vb(u) by vm,α,δ(u; b) (Vm,α,δ(u; b)).

Note that the terms wm,α,δ,b and Wm,α,δ,b defined in (6.32) and (6.33) respectively only de-

pend on the lower order moments, therefore, the total discounted claim costs as defined in

(6.7) and (6.8) are obtainable recursively.

To illustrate the relationship between the two-sided exit probabilities, for m = 0, we re-write

(6.33) as

Mα(u; b) = W0,α,δ,b(u)−W0,α,δ,b(b)mα(u; b)−
n−1∑
i=1

(Θi,0(b)−W0,α,δ,b(b)νi)Zi+1,α(u; b). (6.34)

Under the independence case (i.e. n = 1), (6.34) recovers the classical result for spectrally

negative Lévy processes (see Kyprianou (2006, Chapter 8)).

6.3 An example under FGM copula

In this section, we consider the FGM copula

CFGM(u, v) = uv + θuv(1− u)(1− v), (6.35)

which is a special case of the Bernstein copula with n = ℓ = 2 and C
(
1
2
, 1
2

)
= 1+θ

4
for

θ ∈ [−1, 1]. We further assume that W is exponentially distributed with mean 1/λ while X

has pdf g and df G(·) = 1− Ḡ(·). Hence, the joint pdf of (W,X) satisfies (6.5) with λ1 = λ,

λ2 = 2λ, g1(x) = [1 − θ + 2θG(x)]g(x) and g2(x) = θ[1 − 2G(x)]g(x). In what follows, we

explicitly exclude the independent case (i.e. θ = 0) as the resulting insurance surplus process

is spectrally negative Lévy. Let 0 ≤ ρ1,α < ρ2,α be the two nonnegative distinct solutions of

(6.6). Then, the two fundamental solutions m1,α and m2,α defined through the LT (6.12) are
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given by

mi,α(x) =
ρi−1
1,α e

ρ1,αx − ρi−1
2,α e

ρ2,αx

ρ2,α − ρ1,α
+

∫ x

0

mi,α(x− y)φαrα(y)dy,

for x ≥ 0 and i = 1, 2, where

φαrα(x) =
λ

c

∫ ∞

x

[
ρ1,α − 2λ+α

c

ρ1,α − ρ2,α
e−ρ1,α(y−x) +

ρ2,α − 2λ+α
c

ρ2,α − ρ1,α
e−ρ2,α(y−x)

]
g(y)[1 + θ(1− 2G(y))]dy

+

(
λ

c

)2 ∫ ∞

x

[
e−ρ1,α(y−x) − e−ρ2,α(y−x)

ρ1,α − ρ2,α

]
2θg(y)[1− 2G(y)]dy.

Furthermore, from Theorem 26, we have

Z1,α(u; b) =
χ2,α(b)m1,α(u)− χ1,α(b)m2,α(u)

χ2,α(b)m1,α(b)− χ1,α(b)m2,α(b)
,

and

Z2,α(u; b) =
m2,α(b)m1,α(u)−m1,α(b)m2,α(u)

χ2,α(b)m1,α(b)− χ1,α(b)m2,α(b)
,

where

χi,α(b) = m′
i,α(b)−

λ+ α

c
mi,α(b) +

λ

c

∫ b

0

mi,α(b− x)g(x) [1 + θ(1− 2G(x))] dx.

6.3.1 The two-sided exit probabilities

From (6.20) and η2 = 0, the two-sided exit probability mα(u; b) is given by

mα(u; b) = Z1,α(u; b).

Also, the other two-sided exit probability Mα(u; b) satisfying IDE (6.24) with

κb(x) =
λ1

c

[
g1(x) +

λ2 + α

c
Ḡ1(x)

]
+

λ2

c

[
g2(x) +

λ1 + α

c
Ḡ2(x)

]
=

λ

c
g(x) +

2λ2 + λα

c2
Ḡ(x) + θ

[
λ

c
g(x)[1− 2G(x)]− λα

c2
G(x)Ḡ(x)

]
.
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Thus, a particular solution to (6.25) is given by

Mα(x) =

∫ x

0

eρ1,α(x−y) − eρ2,α(x−y)

ρ1,α − ρ2,α
κb(y)dy +

∫ x

0

Mα(x− y)φαrα(y)dy,

for x ≥ 0. Finally, the probability Mα(u; b) can be represented as

Mα(u; b) = Mα(u)−Mα(b)mα(u; b)− γα(b)Z2,α(u; b),

for u ≤ b, where

γα(b)=M ′
α(b)−

λ+ α

c
Mα(b)+

λ

c

[∫ b

0

Mα(b− x)g(x)[1 +θ(1− 2G(x))] dx+Ḡ(b)(1−θG(b))

]
.

Example 9. Under the FGM copula (6.35), we consider the two-sided exit probabilitym0(u; b) =

1−M0(u; b). We provide a numerical example for the model where the claim severity X also

follows an exponential distribution with mean 1, the premium rate c = 3 and λ = 2. For

b = 5, we draw the curves of mα(u; b) for different dependence parameters: θ = −1, −0.5,

−0.2, 0, 0.2, 0.5, 1.
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Figure 6.1: The probability of reaching level 5 before ruin under different θ

From Figure 6.1, we can see that the probability that the surplus process reaches level 5 before

dropping below 0 increases with the dependence parameter θ.

6.3.2 Mean of the discounted aggregate claims

From (6.32), we have

ϕ1,α,δ(u; b) = w1,α,δ,b(u)− w1,α,δ,b(b)mα+δ(u; b)− ϑ1,1(b)Z2,α+δ(u; b),

for 0 ≤ u ≤ b, where

w1,α,δ,b(u) =

∫ u

0

eρ1,α(u−y) − eρ2,α(u−y)

ρ1,α − ρ2,α
κ1,b(y)dy +

∫ u

0

w1,α,δ,b(u− y)φα+δrα+δ(y)dy, (6.36)
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with

κ1,b(u) = −λ

c

{
mα(0; b)[1 + θ(1− 2G(u))]ug(u) +

∫ u

0

m′
α(u− x; b)[1 + θ(1− 2G(x))]xg(x)dx

}
+

∫ u

0

mα(u− x; b)

[
2λ2 + λ(α + δ)

c2
+ θ

λ(α + δ)

c2
(1− 2G(x))

]
xg(x)dx,

and

ϑ1,1(b) = w′
1,α,δ,b(b)−

λ+ α+ δ

c
w1,α,δ,b(b) +

λ

c

∫ b

0

w1,α,δ,b(b− x) [1 + θ − 2θG(x)] g(x)dx

+
λ

c

∫ b

0

mα(b− x; b) [1 + θ − 2θG(x)] xg(x)dx.

Similarly, from (6.33), the other expectation is written as

Φ1,α,δ(u; b) = W1,α,δ,b(u)−W1,α,δ,b(b)mα+δ(u; b)−Θ1,1(b)Z2,α+δ(u; b),

for 0 ≤ u ≤ b, where W1,α,δ,b(u) is the same as w1,α,δ,b(u) as defined in (6.36) with κ1,b(u)

replaced by

κ∗
1,b(u) = −λ

c

{
[Mα(0; b)− 1] [1 + θ(1− 2G(u))]ug(u) +

∫ u

0

M ′
α(u− x; b)[1 + θ(1− 2G(x))]xg(x)dx

}
+

(∫ u

0

Mα(u− x; b) +

∫ ∞

u

)[
2λ2 + λ(α + δ)

c2
+ θ

λ(α + δ)

c2
(1− 2G(x))

]
xg(x)dx,

and Θ1,1(b) is given by

Θ1,1(b) = W ′
1,α,δ,b(b)−

λ+ α + δ

c
W1,α,δ,b(b) +

λ

c

∫ b

0

W1,α,δ,b(b− x)g(x) [1 + θ − 2θG(x)] dx

+
λ

c

(∫ b

0

mα(b− x; b) +

∫ ∞

b

)
[1 + θ − 2θG(x)] xg(x)dx.

Example 10. We provide a numerical example with the same setting as for the two-exit

probabilities except that we let λ = 1, β = 1.5, α = 0.1 and δ = 0.05. Figures 6.2 and

6.3 display the expected discounted aggregate claims ϕ1,α,δ(u; b) and Φ1,α,δ(u; b) when the

dependence parameter θ is 0.5 and −0.5 respectively.
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Figure 6.2: The expectation of the discounted aggregate claims with θ = 0.5

Figure 6.3: The expectation of the discounted aggregate claims with θ = −0.5

We point out that the case θ = (−)0.5 corresponds to a positive (negative) dependence between

the interclaim time and the resulting claim size. From Figures 6.2 and 6.3, two notable

observations will be made:
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1. We notice that, for small b, both ϕ1,α,δ(u; b) and Φ1,α,δ(u; b) decrease in u. For larger

b, this monotonicity is lost as middle-range values of initial capital u leads on average

to larger discounted claim amount until the first [0, b] exit.

2. We observe that the ordering of the solid and dashed lines are often reversed. This

can be partially explained from Figure 6.1 as, all else being equal, a smaller dependence

parameter θ leads to a larger exit probability M(u; b) from level 0, which then translates

into a larger value Φ1,α,δ(u; b) (compared to ϕ1,α,δ(u; b)).
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Chapter 7

Concluding Remarks and Future

Work

The time-dependent aggregate claims have been examined in depth in this thesis. In Chapter

3, an integral representation for the transition probabilities of the birth process is derived,

which is then applied to the analysis of the time-dependent claims. The present derivation

is purely analytic, involving only elementary calculus. The sum of time-dependent and not

necessarily identically distributed rv’s is represented as that of iid rv’s. Finally, due to the

conditional (as opposed to marginal) nature of the results, the analysis holds for any Markov

counting process which behaves as a nonhomogeneous birth process beyond a certain point.

As a special case of the time-dependent aggregate claim model, the IBNR claim problem

is considered in Chapter 4. The formulas derived in this thesis for the LT of the total dis-

counted IBNR claim amount extend those obtained by Léveillé and Garrido (2001a, 2001b)

for the discounted renewal sums. The moments and joint moments derived for the discounted

sum recover the results by Léveillé and Adékambi (2010, 2012) and Wang (2010) as special

cases. The nth order ODE for the pgf of the IBNR claim number in the renewal process

with Coxian interclaim times can be solved numerically with constraints to the boundary

conditions. In addition, the closed form for the pmf of the IBNR claim number derived for

models with exponential reporting lags and mixed Erlang interarrival times are very mean-

ingful from the point of view of both mathematical and computational applications. Results
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obtained in the renewal model can be easily extended to the delayed case given that only

the first interarrival time is impacted (see, e.g., Cox (1962) and Ross (1996)). An underlying

environmental process is further incorporated into the analysis in Chapter 5 by considering

a MAP claim arrival process.

Chapter 6 considers the aggregate claims until a randomized time horizon (also called obser-

vation time) instead of a deterministic one as in the previous chapters. However, a generic

randomization of the time horizon does not ease the analysis of the discounted aggregate

claims. Thus, the focus is on examining the moments and probabilities of the aggregate

claims under some specific randomized time horizons, i.e. τ+b and τ−0 . Analysis involving one

passage time τ−0 (or τ+b ) has been extensively studied in ruin theory (dividend payment and

taxation problems). Therefore, the model involving two passage times provides contributions

to the study of the randomized observation problem.

Based on the research topics studied in this thesis, I propose to generalize the aggregate

claim study in the following directions.

First, I propose to continue the analysis of the two-sided exit problem with dependence

in spectrally-negative Markov-additive process (spectrally negative Lévy processes) as an

extension to Chapter 6. Kyprianou and Palmowski (2008) discussed the properties of the

spectrally negative Markov additive process. See also Ivanovs and Palmowski (2012). Later

on, more attention has been paid to analyzing ruin-related problems in the Markov-additive

process (e.g. Asmussen and Albrecher (2010) and reference therein). Introducing this pro-

cess helps to incorporate the influence of the financial markets on an insurer’s surplus process

(e.g., Garrido and Morales (2006)). See also Yang and Zhang (2001). Despite the popularity

of these processes, relatively few papers have examined the properties of the aggregate claims

under a two-sided exit setting in the Markov-additive process. Some earlier attempts involve

considering this problem in a MAP risk model (e.g., Cheung and Landriault (2010)). This

project is aimed at examining probabilities and moments of the aggregate claims until some

randomized time determined by a spectrally-negative Markov-additive process.
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Second, I plan to examine the properties of aggregate claims under the Cox process. Cox

processes, also called doubly stochastic Poisson process, allows for a random arrival rate

over time, and it would be expected to fit the reality better. Assuming a generic stochastic

process for the intensity seems very limited (at least for now) in deriving useful properties

of the aggregate claims. Over the years, many scholars have contributed to deriving prop-

erties of this process by specifying its intensity function and by application of this process

in reality. For instance, Basu and Dassios (2002) calculated the stop-loss expectation of the

counting process by assuming the intensity follows a lognormal process. Bouzas et al. (2002),

on the other hand, derived the pmf of this process and provided two methods for forecast-

ing the relevant parameters using a Gaussian process as the intensity. See also Bouzas et

al. (2006), who considered a periodic intensity. By making use of the infinitesimal genera-

tor, Dassios and Jang (2003, 2005, 2008) addressed this problem by assuming a shot noise

intensity. See also Badescu et al. (2016), where the intensity follows a hidden Markov model.

As a stepping stone, we will first consider a shot noise process due to its simplicity. The shot

noise process is a Cox process with intensity defined as

λt = λ0e
−

∫ t
0 δ(x)dx +

Mt∑
i=1

Yie
−

∫ t
τi

δ(x)dx
, (7.1)

where λ0 is the initial value of λ, Yi is the jump size of catastrophe whose distribution de-

pends on its occurrence time, τi is the time at which catastrophe i occurs, where τi < t < ∞,

δ(x) is the instantaneous exponential decay rate at time x, and {Mt}t≥0 is a (nonhomoge-

neous) Poisson process.

Note that, from (7.1), the intensity λt decays exponentially as time passes since the last

occurrence of a catastrophe event. The decrease continues until another catastrophe occurs

which will bring in a positive jump in the intensity of the shot noise process. Therefore, λt

can be treated as a discounted aggregate claim amount under the Poisson claim count pro-

cesses. Using the techniques for the time-dependent aggregate claims and useful properties
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of Poisson process, interesting results about the Cox process are likely to be found. Further

generalization includes allowing {Mt}t≥0 to be a renewal process.
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[13] Bäuerle, N. Some results about the expected ruin time in Markov modulated risk

models. Insurance: Mathematics and Economics 18(2) (1996), 119–127.

[14] Bell, E. Partition polynomials. Annals of Mathematics 29 (1927), 38–46.

[15] Bernard, C., Ruschendorf, L., and Vanduffel, S. Value at Risk bounds with

variance constraints.

[16] Bingham, N. H., Goldie, C. M., and Teugels, J. L. Regular variation. Cam-

bridge University Press, Cambridge, 1987.

[17] Boogaert, P., and Haezendonck, J. Delay in claim settlement. Insurance:

Mathematics and Economics 8 (1989), 321–330.

[18] Bouzas, P., Aguilera, A., and Valderrama, M. Forecasting a class of doubly

stochastic Poisson processes. Statistical Papers 43 (2002), 507–523.

[19] Bouzas, P., Valderrama, M., and Aguilera, A. On the characteristic functional

of a doubly stochastic Poisson process: application to a narrow-band process. Applied

Mathematical Modelling 30 (2006), 1021–1032.

[20] Brazauskas, V., Jones, B., Puri, M., and Zitikis, R. Estimating conditional

tail expectation with actuarial applications in view. Journal of Statistical Planning

and Inference 138 (2008), 3590–3604.

114



[21] Buhlmann, H. Mathematical methods in risk thoery. Springer-Verlag, 1970.

[22] Cai, J., Feng, R., and Willmot, G. On the total discounted operating costs up

to default and its applications. Advances in Applied Probability 41 (2009), 495–522.

[23] Cai, J., and Tan, K. Optimal rentention for a stop-loss reinsurance under the VaR

and CTE risk measures. ASTIN Bulletin 37 (2007), 93–112.

[24] Chaudhry, M., and Templeton, J. A first course in bulk queues. New York:

Wiley, 1983.

[25] Cheung, E. Moments of discounted aggregate claim costs until ruin in a Sparre

Andersen risk model with general interclaim times. Insurance: Mathematics and Eco-

nomics 53 (2013), 343–354.

[26] Cheung, E., and Landriault, D. Analysis of a generalized penalty function in a

semi-Markovian risk model. North American Actuarial Journal 13(4) (2009), 497–513.

[27] Cheung, E., and Landriault, D. A generalized penalty function with the max-

imum surplus prior to ruin in a MAP risk model. Insurance: Mathematics and Eco-

nomics 46(1) (2010), 127–134.

[28] Cheung, E., Landriault, D., and Badescu, A. On a generalization of the risk

model with Markovian claim arrivals. Stochastic models 27(3) (2011), 407–430.

[29] Cheung, E., Landriault, D., Willmot, G., and Woo, J. Structural properties

of Gerber-Shiu functions in dependent Sparre Andersen models. Insurance: Mathe-

matics and Economics 46 (2010), 117–126.

[30] Cossette, H., Marceau, E., and Marri, F. Analysis of ruin measures for the

classical compound Poisson risk model with dependence. Scandinavian Actuarial Jour-

nal 3 (2010), 221–245.

[31] Cox, D. Renewal theory. Methuen, 1962.

[32] Dario, A., and Simonis, A. Properties of doubly stochastic Poisson processes with

affine intensity.

115



[33] Dassios, A., and Jang, J. Pricing of catastrophe reinsurance and derivatives using

the Cox process with shot noise intensity. Finance and Stochastics 7 (2003), 73–95.

[34] Dassios, A., and Jang, J. Kalman-Bucy filtering for linear systerm driven by the

Cox process with shot noise intensity and its application to the pricing of reinsurance

contracts. Journal of Applied Probabiity 42 (2005), 93–107.

[35] Dassios, A., and Jang, J. The distribution of the interval between events of a

Cox process with shot noise intensity. Journal of Applied Mathematics and Stochastic

Analysis 2008 (2008).

[36] Dickson, D., and Hipp, C. On the time to ruin for Erlang (2) risk processes.

Insurance: Mathematics and Economics 29(3) (2001), 333–344.

[37] Diers, D., Eling, M., and Marek, S. Dependence modeling in non-life insurance

using the Bernstein copula. Insurance: Mathematics and Economics 50 (2012), 430–

436.

[38] Embrechts, P., Hoing, A., and Juri, A. Using copulae to bound the Value-at-

Risk for functions of dependent risks. Finance Stochast 7 (2003), 145–167.
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