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Abstract

Estimation of aggregate claim amounts is a fundamental task in Actuarial science, based on
which risk theory, ruin theory and reinsurance theory can be studied. Properties, includ-
ing moments, Laplace transforms, and probability functions of aggregate claims have been
extensively studied by many scholars under various models (see, e.g., Hogg and Klugman
(1984)). The main classical model is the compound Poisson risk model, where the interclaim
times are independent of the claim severities. Scholars started to explore this problem by
considering more general counting processes, such as mixed Poisson processes (e.g., Will-
mot (1986)) and renewal processes (e.g., Andersen (1957)). Afterwards, the independence
assumptions on multiple risk factors were gradually relaxed. Additionally, the observation

times are further randomized to fit the reality better.

In this thesis, we propose to analyze the aggregate claims until both randomized and deter-
ministic time horizons by incorporating inflation and payment (reporting) delays into the
analysis. Dependence between the claim occurrence times (also interclaim times) and claim

severities is further considered.

A comprehensive review on the study of the aggregate claims is given in Chapter 1. Chapter
2 introduces the relevant preliminary knowledge on the aggregate models and techniques

used in this thesis.

Chapter 3 examines the Laplace transforms of the aggregate claims under a nonhomogeneous
birth process, which covers Poisson, mixed Poisson and linear contagion model. Furthermore,
the claim occurrence times influence the distribution of the claim severities. Under some as-
sumptions on the counting process, the time-dependent aggregate claims are represented as

a random sum of independent and identically distributed random variables.

The aggregate incurred but not reported (IBNR) claims are studied in Chapter 4 due to their
essential role in reserving. A recursive formula is identified for the moments of the total dis-

counted IBNR claims under a generalized renewal risk model where the interclaim times,
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claim severities and random reporting lags have an arbitrary dependence structure. The
probability mass function of the number of IBNR claims is obtained under certain assump-
tions on the marginal distributions of the interclaim times, claim severities and reporting
lags. To address the influence of the economic environment, a Markovian arrival process is
introduced in Chapter 5 to analyze the IBNR claim problem. A straightforward represen-
tation and a closed-form expression are identified for the moments of the total discounted

IBNR claim amount and numbers respectively without adding much difficulty to the analysis.

Instead of a deterministic time horizon as considered in Chapters 3, 4 and 5, attention has
also been paid to the analysis under a randomized observation time (see, e.g., Stanford et
al. (2005) and Ramaswami et al. (2008)). Randomization in the time horizon usually leads
to more tractable expressions for given quantities (e.g., Albrecher et al. (2011, 2013)). How-
ever, in the case of time-dependent aggregate claims, it only adds extra integration to the
expressions of relevant quantities. In this thesis, instead of working with general random
time horizons, we work with some specific random time horizons, i.e. two-sided exit time,
in Chapter 6. The two-sided exit problem has been the subject matter of risk manage-
ment analysis to better understand the dynamic of various insurance risk processes. In the
two-sided exit setting, the discounted aggregate claims are investigated under a dependent
renewal process (also known as dependent Sparre Andersen risk process). Utilizing Laplace
transforms, we identify the fundamental solutions to a given integral equation, which will
be shown to play a role similar to the scale matrix for spectrally-negative Markov-additive
processes (e.g., Kyprianou and Palmowski (2008)). Explicit expressions and recursions are
then identified for the two-sided probabilities and the moments of the aggregate claims re-
spectively. Chapter 7 ends the thesis by some concluding remarks and directions for future

research.
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Chapter 1

Background and Introduction

Insurance is an efficient way to transfer risks. Insurance companies manage risks shifted
from individuals and get compensated by collecting premiums. The number of claims aris-
ing within a given time period from a specified block of insurance is referred to as claim
frequency, which is usually modelled by a discrete random variable (rv). The claim severity,
modelled by a nonnegative rv, gives the size of the individual claim. The premiums charged
are dependent upon the frequency and severities of the claims occurred. Due to the fact that
premiums are usually charged up front for the (non-life) contract, insurers are required by
regulators to set aside adequate reserves to fulfil their promise to compensate the insured in
future’s claim causing events. Thus, accurate modelling of the total claim amount is vital for
insurers in pricing, reserving, meeting solvency requirement and more generally, managing

risks.

The aggregate loss is a mathematical representation of the total claims received by the in-
surer. Many models have been developed for the aggregate risks; the most classical ones are
the individual and collective risk models (see Bithlman (1970) and Klugman et al. (2008,
Chapter 9)). The individual risk model utilizes a sum of a fixed number of independent and
identically distributed (iid) random variables (rv’s) to quantify the aggregate loss. On the
other hand, under the collective risk model, the aggregate loss is represented as a sum of
a random number of iid rv’s. The collective model is constructed based on the assumption

that the claim severities are independent of the claim frequency. However, the assumption



of independence is often viewed as too restrictive in real-world applications. The goal of this
thesis is to study the aggregate claims by allowing dependence between claim severities and
frequency, since adequate modelling of the dependence between different types of risks in
an insurance company is vital. To consider the randomness in the claim severities, generic
rv’s are utilized in modelling. We use a counting process to model claim frequency, since it
describes how the claim numbers develop over time. Dependence structure between them is
introduced with consideration of both generality and tractability. The analysis in this thesis
is very efficient and effective in capturing the properties of the aggregate claims, which are

essential in risk theory, ruin theory and reinsurance theory.

Mathematically speaking, the goal of this thesis is to use the collective model and to quantify

the aggregate claim model defined through the usual compound sum representation

Ny
S, = th (1.1)
i=1

with the convention that S; = 0 if N, = 0, where the claim sizes {Y;}°, are assumed to form
a sequence of positive rv’s. The claim number process {N;}:>o is a counting process with
claim occurrence times {7;}2, starting with 7y = 0, and interclaim times 7; = T; — T;_; for
1 =1,2,.... This thesis first explores the distribution of the aggregate time-dependent claim
amounts until a deterministic time horizon (i.e. ¢ is a constant) by assuming an arbitrary
dependence structure between Y; and T; (or 7;). It allows for the incorporation of the time

value of money and claims inflation, as well as payment delay into analysis.

From the deterministic time framework, many scholars contributed to the analysis of total
time-dependent claim models. For instance, Willmot (1989) studied the total claim amounts
through Laplace transform (LT) under inflationary condition in a mixed Poisson counting
process. Jang (2004) considered a parallel problem under a shot noise counting process.
Léveillé and Garrido (2001a, 2001b) derived a recursive formula for the moments of the dis-
counted renewal sum of claim amounts. See also Woo and Cheung (2013) in the context

of the dependent Sparre Andersen risk process. Kim and Kim (2007) and Ren (2008) also



considered this problem in the framework of the Markovian claim arrival process. Using
differential equations, Wang (2010) studied the moment generating function of a discounted
compound renewal sum with phase-type interarrival times and general claim severities. The
reader is also referred to Léveillé and Adékambi (2011, 2012) where the analysis of the joint

distribution of the discounted compound renewal sums at different time points is considered.

The total incurred but not reported (IBNR) claim amount is defined as

N
Sienr(t) = Z Liryw,>n Y, (1.2)
i=1

where W, is the reporting lag associated with the ith loss Y;. Thus, the IBNR problem is a
particular application of the time-dependent aggregate claim model. In insurance contexts,
IBNR claims arise from the natural lag between the occurrence and the report of a claim to
the insurer. Indeed, insurers should make adequate provision for the total amount of claims
incurred but not yet reported to the insurer. The IBNR claims are thus of central impor-
tance in claim reserving. In practice, the estimation of the IBNR claim amount is based on
the “run-off triangle”, which is a table recording the total reported claim amount by acci-
dent years and development years. Various deterministic (e.g., chain-ladder method (Taylor
(1986)) and stochastic models (e.g., “macro-level” models (Wuthrich and Merz (2008)) are
proposed to predict the IBNR reserving. A comprehensive review on the IBNR problem can
also be found in Badescu et al. (2016) and references therein. However, the existing method
mainly focuses on providing a point estimate for the total IBNR claim amount, which fails
to account for the random variation in the value of variables that contribute to IBNR claims.
The randomness of some important factors in this context, such as reporting lags, incurred
claim severities and time value of money, is considered in this thesis. Guo et al. (2013)
derived the distribution of the IBNR claim number for different distributional assumptions
for the batch sizes, capitalizing on the self-decomposability property of the Poisson claim
arrival process. Note that the IBNR problem has known connections with queueing theory.
For instance, the IBNR claim number is equivalent to the number of busy servers in queues

with infinite servers. More specifically, in this thesis, the IBNR claim number is analogous



to the GI* /G /oo queuing system with bulk arrivals (e.g., Liu et al., 1990). In light of this
connection, we point out that Chaudhry and Templeton (1983) studied the probability gen-
erating function (pgf) of the number of customers in an M~ /M /oo queuing system. Later,
Willmot and Drekic (2001, 2002, 2009) studied the transient distribution of the number of
customers under various distributional assumptions for the reporting lags in a M* /G /oo
queue model. On the other hand, interpreting the reporting lag as an investigation time in
the IBNR analysis leads to problems related to delays in claim settlement (e.g., Boogaert
and Haezendonck (1989)). Therefore, the results obtained in this thesis are also applicable

to address problems related to the reported but not settled claims.

Later on, more attention is paid to the model with randomized time horizon. From this

standpoint, we further introduce an insurance surplus process {U; }+>o defined as

Ut =u-+ct— St7 (13)

where u = Uy > 0 is the initial surplus, ¢ is a positive premium rate and S; is the aggregate
claim amount as defined in (1.1). Of particular interest in the risk analysis of the insurance

surplus process {U, };>o are the first passage times 7;” and 7, respectively defined as
nr=inf{t > 0: U, > b}, (1.4)
and
7, = inf{t > 0: U; < 0}. (1.5)

Analysis of the total claim amount until a specific random time, including ruin time (i.e.
7o ) and the time surpassing certain levels (i.e. 7,7), has attracted extensive attention. For
instance, Albrecher and Teugels (2006) provide exponential estimates for the infinite- (i.e.
Pr(r; < oo|Uy = u)) and finite- (i.e. Pr(ry; < C|Up = w)) time ruin probabilities by using
copula to model the dependence between the interclaim times and claim severities. Ruin

probabilities under the dependent Sparre Andersen risk model were further investigated by



Boudreault et al. (2006), Cossette et al. (2010) and Cheung et al. (2010). Cai et al. (2009)
and Feng (2009a, 2009b) considered the mean of the total discounted operation costs under
the compound Poisson risk model process and the phase-type renewal model, respectively.
Recursive formulas were then derived by Cheung (2013) for the higher-order moments in a
dependent Sparre Andersen risk model. See also Cheung and Landriault (2009) for the anal-
ysis of the maximum surplus level (i.e. max, .- Uy) before ruin in semi-Markov process. As
an extension to the analysis of quantities related to 7, the expected accumulated discounted
tax was investigated by Albrecher and Hipp (2007), which involves 7,7. However, most the
papers mentioned above have focused on Gerber-Shiu discounted penalty functions. Less
attention is paid to the analysis of the total discounted claim amount under the two-sided

exit setting.

The two-sided exit probabilities are well studied under independence assumptions between
the interclaim times and claim severities. We refer the reader to Kyprianou (2006, Chapter
8) and Kuznetsov et al. (2013) in the context of the Lévy insurance risk model. However,
the assumption of independence is often viewed as too restrictive in real-world applications.
Kyprianou and Palmowski (2008) further considered this problem under the Markov additive
process, which can be viewed as a Markov regime switching Lévy insurance risk process. We
further remark that occupation time problems (see Landriault et al. (2016)) and Parisian
ruin problems (see Loeffen et al. (2013)) are both intimately connected to the two-sided
exit problems. In this thesis, we analyze some quantities under a two-sided exit setting by
allowing a (relatively) general dependence structure between the interclaim times and the

claim severities.
To be specific, this thesis is constructed in the following way.
Chapter 2 introduces the mathematical quantities of interest and formally defines the ter-

minology to be used. Relevant properties of some useful distributions and processes are

reviewed.



Chapter 3 studies the distribution of the aggregate time-dependent claims in birth process
claim count models. We derive an integral representation for the density of the claim values
over the interval (s, t] given that N, = k under a factorization assumption. Furthermore, the
factorization assumption is extended to allow for a change point, which results in a piecewise
factorization function. Thereafter, the mixed Erlang properties of the time-dependent sum

are discussed.

In Chapter 4, the time-dependent renewal sum of IBNR claim amounts is investigated
through LTs. Moments of the time-dependent renewal sum of IBNR claim amounts are
obtained through defective renewal equation techniques. An explicit expression for the first
moment is derived, and a recursive formula is identified for the higher-order moments. The
joint distribution of the total discounted IBNR claim amount and the total incurred and
reported (IR) claim amount at possibly different time points is then studied. Thus, the
IBNR claims can be estimated by the known IR claims; this analysis is particularly relevant
for reserving purposes. The self-decomposability of the IBNR claim number process is also
considered when claim causing events arrive according to a compound Poisson process. Fur-
thermore, properties of the IBNR claim number are analyzed under a Coxian distributional

assumption for the interclaim times and exponentially distributed reporting lags.

Chapter 5 reconsiders the IBNR problem by assuming that claims occur according to a
Markovian Arrival Process (MAP). The dynamic of such a process is assumed to change
according to an external environment process. Thus, it allows the claim numbers and sever-
ities to fluctuate according to the state of the business environment. The Markovian arrival
process is very general; it covers the Poisson process, a renewal process with phase-type
interclaim times, and the Markov-modulated Poisson process. On the other hand, it allows
for situation in which the interclaim times and/or claim severities are dependent. An explicit
and simple expression for the first-order moment of the total discounted IBNR claim amount
is derived and recursive formulas for its higher-order moments are obtained. Numerical ap-
plications are provided to examine the properties of the total IBNR claim number, which

has closed-form expressions for its finite-order moments.



Chapter 6 assumes a dependent renewal model, where the pdf of the interclaim times and
claim severities are expressed in the form of a summation of factorizations. In the two-sided
exit setting, the discounted aggregate claim is investigated under a dependent renewal pro-
cess. Utilizing LTs, we identify the fundamental solutions to a given integral equation, which
will be shown to play a role similar to the scale matrix in the analysis of spectrally-negative
Markov-additive processes (e.g., Kyprianou and Palmowski (2008)). Explicit expressions
and recursions are then identified for the two-sided exit probabilities and the moments of
the discounted aggregate claims incurred until the insurance surplus process first leaves the
[0, 0] interval. A numerical example involving the Farlie-Gumbel-Morgenstern(FGM) copula

is considered in the end.

Chapter 7 concludes the thesis and discusses future research directions. Note that most
chapters of this thesis directly relate to scientific papers, and were written independently of
one another. Due to the large amount of notation, efforts have been made to have consistent
notation over the entire thesis to avoid ambiguity. Even though some inconsistencies may

remain, no abuse of notation shall exist within a chapter.



Chapter 2

Preliminaries

This chapter summarizes the mathematical preliminaries relevant in this thesis. We adopt
the conventions that the empty product and sum are 1 and 0 respectively throughout this

thesis. Also, we assume that Nt ={1,2,...} and N={0,1,2,...}.

2.1 Quantities related to the aggregate risk model

The model of interest is the aggregate claim model as defined in (1.1). The distribution
function (df) of Y; is F(-) € [0,1] for i € N*. Whenever the probability density function
(pdf) of Y; exists, we denote it as f;(z) = %Fi(x). Here, we assume Y is a nonnegative rv

unless stated otherwise. The LT of Y; is defined as
fs) = [ eara),
0

for s € C such that the integral exists. An equivalent definition to f (s) being the Laplace
transform of a nonnegative rv is that f(s) is completely monotone (i.e. (—1)"f(s) > 0 for
n € N) and f(0) = 1 (Feller (1971, p. 439)). This characterization is very relevant in the
inversion of Laplace transform. If {Y;}2°, are iid with df F, we define its n-fold convolution

as

F'z)=Pr(Y1+ Yo +...+Y, <ux),



for n € N with the convention that F**(z) = 1 for x > 0. As for the claim count rv N, its
probability mass function (pmf) and pgf are defined as p,; = Pr(N; = n) for n € N and
Pi(z) = > %y Pny2™ for some z € R such that the summation converges, respectively. Also,
in the case where there exists a random risk parameter ©, we let Pi(z]0) be the pgf of V;

given that © = §. The marginal pgf of IV; is expressed as

R(z) = / P(210)dU(9),

where U(6) = Pr(© < 0) is the df of ©. This defines a mixed counting process { N;};>o. The
mixture distributions are motivated as a model to address heterogeneity within population,

and thus improves the fitting power of the model to reality.

Usually at most one arrival is allowed at one time in the ordinary counting process. However,
this assumption is violated in many real-world applications. For instance, buses arrive at
a stop bringing multiple customers at once and people usually go to restaurants in groups
instead of individually. The bulk arrival process (see, e.g., Chaudhry and Templeton (1983))
is utilized to model the counting process in which arrivals occur in groups. The size of an
arriving group may be a random number or a fixed number. In the insurance context, this
process is applicable in the situation where a single claim causing event might bring multiple
claims. In this thesis, we allow the claim number to follow a counting process with random

bulk arrivals.

2.2 Applications of time-dependent claim models

The time-dependent claim model refers to the situation where the claim severities depend
on the time occurrences, interclaim times and other quantities. The two most popular ap-
plications of the time-dependent claim model in insurance practice are the inflation model

and the payment (reporting) delay model.

The inflation model incorporates the time value of money and claim inflation into the analysis



of claim values. We assume that a claim occurring at 0 is distributed as a common “baseline”
rv Y with cdf F(-) and LT f(-). Considering a claim incurred at z, whose baseline rv is Y, its
value at time z is efo vy where doy is the instantaneous rate of claim inflation at time y.
After taking the interest rate d; , into account, the real value of this claim at time 0 carries a
discount factor of e~ Jo % where 0y = 014 — 0o,y is the instantaneous effective interest rate
net of inflation. Therefore, under the assumption that the interest rate is deterministic, the

df of the time-0 value of a claim occurring at x is written as
PI- <€7 fOx 5yde S y) — F (efox 5ydyy> ,

and its LT is expressed as f (e‘ Jo 5ydys). The amount of the discounted aggregate claims is
then expressed as Z]kvil e~ Jo* 0zdry; - Léveillé and Garrido (2001a, 2001b) and Léveillé and
Adékambi (2012) studied its moments by assuming independence between interclaim times
and claim severities in models under both deterministic and stochastic interest rate models.
Woo and Cheung (2013) further analyzed the moments of the discounted aggregate claims,
while relaxing the independence assumption, using moment generating functions and copula

methods.

In the reporting (payment) delay model, we consider the process with bulk arrivals, i.e. a
claim causing event generates a random number of independent claims. For each of the claims
caused by the same claim causing event occurring at x, the claim severities are assumed to
have a common LT fz(z) and to be independent of each other. Furthermore, a natural lag
between the occurrence of a claim and the payment (or reporting) is taken into consideration.
We assume this random delay is distributed as K,(-) for a claim occurring at time z > 0
and all payment delays are independent of other payment delays. If payment delays are
independent of all claim amounts, the LT for the amount of the claim occurring at time x
that has not been paid up to time ¢ is then given as K,(t — z) + K, (t — :z:)fx(z) Therefore,

the total value of all the claims occurring from one claim causing event at time x that has

10



not been paid until ¢ has LT
filele) = Bo (Kot = 2) + Kot = ) ()

where B,(z) is the pgf of the claims occurring at time x. The payment delay problem has
a close mathematical relationship with the inflation model when claim causing events occur
according to a Poisson process (see Klugman et al. (2013, Chapter 9)). The reporting delay
model will be considered in depth under the general renewal process in Chapter 4 of this
thesis. Useful (from the point of view of mathematics and computational feasibility) results

related to the important quantities of this model will be derived.

2.3 Important processes and distribution classes

It is not easy to get closed-form expressions for quantities associated with the (discounted) ag-
gregate claims. Here, we introduce some important distribution classes, which will facilitate
the derivation of closed-form expressions for important quantities related to the aggregate

claim.

2.3.1 Mixed Erlang distributions

The mixed Erlang distributions are frequently utilized to model the quantities associated
with insurance claims. This class is dense, broad and computationally convenient. Klugman
et al. (2013) summarized various contexts in which the use of mixed Erlang distributions is

of interest.

Definition 1. A rv X has a mized Erlang distribution if its pdf is given as

)\nl.n—l —Az

f(z) = Z%T;,> x>0,
n=1 :

where A > 0 and the mizing weights {q,}>2, form a discrete counting distribution with pgf

Q(2) = XpZo ="

11



Thus, the LT of X is easily obtained as

E(e‘sx):Q(A;\_S>.

We further explore the distributional properties of mixed Erlang distribution. The tail

distribution F(z) = f;o f(y)dy can be re-expressed as

o0

)=y 0,20
n=0 ’

where Q, = Yoo 41 G- A special case of the mixed Erlang is the Erlang-r distribution,

whose pdf is given by

Are—kx
(r—1)V

exr(x) = x>0, A\>0, reNF,

and its tail df can be written as

r—1

[ sty =y B

n=0

Moreover, it is of most importance to mention the mixed Erlang representation for exponen-
tial distributions. From Willmot and Woo (2007), exponential distributions can be expressed
as a mixed Erlang distribution with the pmfs of a zero-truncated geometric distribution as

the mixing weights, namely

where \; < A < oo and Q;(z) = %

Thus, it is possible to express multiple mixed Erlang distributions with different scale pa-
rameters as mixed Erlang distributions with a common scale parameter. Therefore, the sum
of independent mixed Erlang distributed rv’s with various scale parameters also has a mixed

Erlang distribution.

12



2.3.2 (Nonhomogeneous) Poisson processes

Poisson process is a classical model for claim frequency. It has broad applications in a
variety of fields, including engineering, statistics and neuroscience. A Poisson process pos-
sesses many desirable properties, including thinning, superposition, and decomposition. The
self-decomposability helps to bridge limiting distribution and its finite-time counterparts.
Thus, it is of utmost importance in the analysis of a counting process through its limiting
behaviour as illustrated in the later time. Here, we omit the detailed definitions of thinning

and superposition; interested readers are encouraged to read Ross (2010, Chapter 5).

Before approaching the definition of Poisson process, we introduce some important definitions

related to a counting process first.

Definition 2. A stochastic process {Ni}i>o is said to have stationary increment if the dis-

tribution of Ny — Ny for t > s depends only on the interval length, i.e. t — s.

Definition 3. A stochastic process {N:}i>o has independent increments if increments for

any set of disjoint intervals are independent.

Definition 4. Conditional on Ny — Ny = k, the successive jump times are distributed as the
order statistics of k iid rv’s with df on [0,t], then we say the process has the order statistic

property (see Feign (1979)).

Poisson process can be defined through multiple equivalent definitions, see He (2014, Chapter
2) and Taylor and Karlin (1998, Chapter 5). We provide a definition next.

Definition 5. The process {Ni}i>o with No = 0 is called a Poisson process if

1. {Ni:}i>0 possesses the independent increment property and the stationary increment

property; and

2. Pr(N; = 1) = M+o(t) and Pr(N; > 2) = o(t), where the intensity A > 0 and o(t)/t — 0

when t — 0.
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The pmf of a Poisson process {N;}:>o with intensity A is thus given by

()\t)ne—)\t

Pr(N; =n) = o

,n=0,1,2,....
and its pgf is
P(z)=E [th] = M),

It is easily verified that P(z) is discretely self-decomposable, i.e. P(z) = P(1 —p+ pz)P,(z)
where P,(z) is itself a pgf for all p such that 0 < p < 1. Also, it is noticed that, for s < ¢,

Pr(N, = k|N; = k 4+ n) = (k +n) <f>k (1 - f)”.

n t t

Thus, Poisson process has order statistics property, i.e. given that n claims occurring in
0, t], the claim times are distributed as the order statistics of n iid rv’s, which are uniformly

distributed on [0, ¢].

Moreover, the interclaim times of a Poisson process are exponentially distributed with mean
of 1/A. Also, a Poisson process can be characterized by its interclaim times, i.e. a counting
process with iid exponentially distributed interclaim times is a Poisson process. See Ross

(2010, Chapter 5) for more detail.

In the case when the intensity rate changes over time but still is deterministic, denoted as

A(t) > 0, we have the nonhomogeneous Poisson process. Its pmf is written as

(i A@)dz)" e firr

n!

Pr(N, =n) = , neN.

It is easily obtained that the nonhomogeneous Poisson process has independent but not sta-

tionary increments. The nonhomogeneous Poisson process also possesses the order statistic
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property, since

Pr(N. = k|N; = k + 1) = (k+n> (J}f A(:c)da:) (1_ fos/\(m)dx> |

n f(f A(z)dz fot A(z)dz

for s € [0, ], where the iid rv’s have a pdf of )\(x)/fot AMy)dy for z € [0,¢].

2.3.3 Mixed Poisson processes

A mixed Poisson process can be viewed as a generalization of a Poisson process when the
intensity of the Poisson process is regarded as a rv. This model accounts for heterogeneity
within the population. Mathematically, for a mixed Poisson process {NV;};>0, we have that

{N:|© = 0}, is a Poisson process with rate 6. Its marginal pmf is given by

00 ne—9t
Pr(N; =n) = /0 %U(d@),

where U is the df of ©. U is called the mixing distribution and also called structure func-
tion. It represents the fluctuations in the risk levels. Various choices of mixing distributions
lead to different models for claim frequency. For example, a mixed Poisson rv with Gamma
distributed intensity follows a negative binomial distribution, see Klugman et al. (2013,

Chapter 7) for more detail.

Let a(s) = [;° e *?dU(6) be the LT of the mixing distribution, then, the pgf of N, satisfies
Fi(z) = aft(l - 2)).

The moments are then easily obtainable via their relationship with the pgf. We compare the

mean and variance of mixed Poisson process here, namely
E[N,] = E[O]t < Var[N,] = E[O]t + Var[O]t>.

The variance is shown to exceed the mean. Thus, mixed Poisson processes have heavier tails
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than Poisson processes; it is then more proper to model long-tailed data. As demonstrated
by McFadden (1965), mixed Poisson processes have stationary but not independent incre-
ments. The mixed Poisson process does have order statistic property and we will illustrate

this later in Chapter 3.

Furthermore, the mixed Poisson process has an important characterization (Grandell (1997,

p. 25-26)) given in the following theorem.

Theorem 1. A pgf P(z) satisfying P(z) # 1,a.s. is a mized Poisson pgf if and only if, as a
function of z, P(1+ (2 —1)/p) is a pgf for all p € (0,1).

Theorem 1 is very relevant in insurance contexts in the sense that it guarantees both num-
bers of the ground-up loss and the claims with deductible are valid counting rv’s. This
characterization theorem also justifies the popularity of applying mixed Poisson processes in

insurance practice.

2.3.4 (Delayed) Sparre Andersen risk processes

Consider a surplus process as defined in (1.3), where the pairs {(7;, Y;)}:2, are iid, and dis-
tributed as a generic pair (7,Y). If 7 and Y are independent of each other, the surplus
process {U; }+>0 as defined in (1.3) is called the Sparre Andersen risk model, where {N;};>o
is an ordinary renewal risk process. Relaxing the independence assumption between 7 and Y
yields the dependent Sparre-Andersen risk process. Thus, the (dependent) Sparre-Andersen
risk process can be treated as a (dependent) renewal process. The Gerber-Shiu discounted
penalty function (first proposed by Gerber and Shiu (1998)) has been well studied under
the Sparre-Andersen risk model. Chapter 6 derived a recursive formula for the moments
of the aggregate claims under the dependent Sparre Andersen risk model. The dependence
assumed between the pair (7;,Y;) helps to model the reality more accurately. For instance,
in catastrophic events, data from practice has shown that a larger accident tends to occur

as the interclaim time increases.

The first interclaim time in a renewal process or Sparre-Andersen risk process may sometimes
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be assumed to have a different distribution than the other interclaim times. This results
in a delayed renewal risk process, where the distribution of the time to the first event is
assumed to be different from that of the subsequent ones, which are assumed to be identically
distributed. Its introduction is mainly motivated by the fact that the starting point 0 (also
called observation time) is arbitrarily chosen, thus, the system might have been idling for
some time. But instead exactly one claim occurs at time 77, T, .. ., thus the other interclaim
times record the exact idling time of the system. The analysis under the renewal process

can usually be extended to the delayed model without adding much difficulty.

2.4 Methodologies and techniques

In this section, we present some relevant mathematical tools and techniques used later in

this thesis.

2.4.1 Lagrange polynomials

Suppose that zq,xs, ...,z for k& > 2 are distinct numbers and h(z) is any polynomial of

degree k — 1 or less. Then, h(z) can be expressed as

h(z) = Zh(xi) LH x‘_‘iﬂj] .

x
=Lj#i

By making use of the Lagrange polynomial expansions, we get the following lemma.

Lemma 2. Consider an equation h(z) = Ef;ol ciw’ +w(x) for k > 2, which has k distinct
2€eros S1, 82, . ..,Sk, then
i r—s
hir) = w(z) =Y wis) ] "
i=1 j=lg#i " J
k k Eo
—_— —_ . J— ] .
~uran L= 3 | T 2% uto
i=1,1#l 1=1,1#l Lj=1,j#1,l

for any 1 € {1,2,...,k} and cxp_y = — S5 w(sy) H§:17j#i ﬁ
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2.4.2 Dickson-Hipp operator

Let s be a (possibly) complex number with a nonnegative real part, and define

Toh(z) = / e (y)dy,

for a function h such that the integral exists. 7, is known as the Dickson-Hipp operator.
The Dickson-Hipp operator is very relevant in ruin theory (see, e.g., Dickson and Hipp
(2001)). For = = 0, it is equivalent to the Laplace transform operator, i.e. T;h(0) = h(s).

Furthermore, for any complex number sy, sg, ..., s, for k > 2, we have
7;1752 ,,,,, Skh(l’) == 7;1,7;2 R ,Ek-h(x)'

More specifically,

Toraah(0) = Topy h(0) = 152 ZAls1).

S1 — S2

for s; # s5. By Li and Garrido (2004), it holds that, if s, s9, ..., s, are distinct,

for x > 0.

2.4.3 Rouche’s theorem

_5W168(CW1_X1)] =1 for 6 > 0 are very

Solutions to Lundberg’s generalized equation E [e
relevant to the analysis of ruin-related quantities. Rouche’s theorem is mainly utilized to
verify the existence of the solutions to Lundberg’s generalized equation with ¢ > 0 in certain

domain. As such, we recall Rouche’s theorem here (see, e.g., Titchmarsh (1939)).

Theorem 3. If h(z) and g(z) are analytic inside and on a closed contour D and |g(z)| <
|h(2)| on D, then h(z) and g(z) + h(z) have the same number of zeros inside D.

As an extension to Rouche’s theorem, Klimenok (2001, Theorem 1) proposed a generalization
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which is particularly relevant in ruin cases where § = 0.

Theorem 4. Let the function g(z) and h(z) be analytic in the open disk |z| < 1 and contin-

uous on the boundary |z| =1 and the following relations hold:

19(2)|j21=1,221 > [P(2)|}21=1,215
g(1) = —h(1) # 0.

Let also the functions g(z) and h(z) have derivatives at the point z = 1 with the following
inequality that holds:

Then the numbers Nyyp, and N, of zeros of the functions g(z) + h(z) and g(z) in the domain

|z| <1 are related as follows:

Ng+h — Ng - 1

2.5 Copula

Copula is a well known distribution-based aggregation method to specify the dependence
structure between risk factors (e.g., Joe (1997), McNeil et al. (2005), and Nelsen (2006)). The
copula method is utilized in this thesis also due to its easy computational implementation.

Let C : [0,1] x [0,1] — [0, 1] be a bivariate copula. Then, for any random vector (X,Y),
Pr(X <az,Y <y) =C(Pr(X <x),Pr(Y <vy)),
for x,y € R x R. Similarly, the survival copula relative to the joint survival function, i.e.

Pr(X > z,Y >y) = C(Pr(X > z),Pr(Y > y)),
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is given by

N

Clu,v) =u+v—1+C(1 —u,1—0),

for (u,v) € [0,1]%. Due to Sklar’s theorem (Nelsen (2006)), the relationship between copula

and distribution functions is uniquely defined for two continuous rv’s X and Y.

Next, we introduce a special copula, called Bernstein copula. For a given copula C, the

Bernstein copula (BC) is defined as

Calw) =33 ¢ (% %) By (i, u)Bi(j,v), (2.2)

i=1 j=1

for u,v € [0, 1], where the indexes n, ¢ are positive integers, and B, (i,p) = (7)p*(1 — p)* ™

for p € [0,1] and i = 0,1,...,n. Here, we adopt the convention that B, (k,p) =0 for n < k

or k < 0. We point out here that FGM copula is a special case of Bernstein copula with
n=(=2and C(1,1) =12 for 0 € [-1,1] ie.

Crem(u,v) = uv + Guv(l —u)(1 —v). (2.3)

It is easily obtainable that Bernstein density is given by

where

i\ i+l j+1\ (i g+l (i j+1 ij
we () =ele () e Gr) e () e Gl

The motivation of introducing the Bernstein copula is also due to its denseness in the space

of bounded continuous functions (see Nelsen (1998) for more detail). This means that for
any continuous copula function in the 2 dimensional hypercube [0, 1], we can represent it as

a Bernstein copula. The flexibility of Bernstein copula allows us to approximate an unknown
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underlying dependence structure in any realistic environment by fitting the Bernstein copula
to the empirical data. See also Diers et al. (2012) for more discussions on the properties of
the Bernstein copula. Chapter 6 will consider the analysis of the moments of the aggregate
discounted claim costs under a two-sided exit setting by assuming the dependence between

claim severities and interclaim times is a generalized Bernstein copula.
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Chapter 3

Time-Dependent Claims in Birth

Process Claim Count Models

In this chapter, we consider the case when {NV,;};>( is a nonhomogeneous birth process, a
model which is shown to be particularly suitable for use in a time-dependent claim context.
We are interested in the behaviour of the process after a fixed time s, given the value of
Ny, say k. Thus, the results hold for any counting process with the Markov property which

behaves like a nonhomogeneous birth process thereafter.

Now, we are going to introduce the main processes under which we will work. First, we
start with a Markovian counting process. A counting process is Markovian, if the manner
in which the process behaves after a certain time, say s, is only related to the scenario at
time s, without depending on the process history before s. Mathematically speaking, for
t > s, the distribution of V; — N, given N; is the same regardless of the values { N, }o<u<s-
For a Markovian counting process, of central importance to the analysis are the transition

probabilities, for n € N, given by,

Drktn(s,t) = Pr(Ny — Ng = n|Ns = k),
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and the pgf is denoted as

Ppsi(z) = E[ZNt_NS

N =k = prrsn(s t)z". (3.1)
n=0

Now we are going to approach the definition of a birth process.

Definition 6. A Markovian counting process {N;}i>o is called a birth process if
pk7k+1 (t, t+ h) = )\k(t)h + O(h),

and

pk7k+n(t,t + h) = O(h)

form =2,3,..., where the functions {\o, A1, ...} are called the transition intensity functions.

In birth process, the marginal probabilities are given (under the assumption that Ny = 0)
by pn(t) = Pr(N; = n) = po»(0,¢). It has been shown that birth process is defined in terms
of the probability transition functions. The transition probabilities are then characterized

by the transition intensities, which also have an alternative formulation, namely
phk(s’ t) — 67 fst )‘k(y)dy7 (32)

for k=0,1,.... For n > 1, pgx4n(s,t) may be obtained recursively in n. The explicit formu-
las for the transition probabilities as a function of transition intensities can be obtained for
some choices of A, (t)s, see Klugman et al. (2013, Chapter 7), Willmot (2010) and reference

therein.

In what follows in this chapter, let the realizations of T,, for m € N*t, be denoted by t,,.
For convenience, we assume Ty = tg = 0. Also, hy(tkt1, tiso, - - -, teen|k, s) represents the
density function associated with the event that there are exactly n claims in (s,¢) at times
tprr < tpio < ... <tpi, where s <ty and ¢, < t, given that Ny = k. This density is of

central importance in what follows, and is now given explicitly.
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Lemma 5. Forn € NT,

Fn (st B, - Bk, 5) = e o Mm@ H Prsm (thsml9), (3.3)
m=1
where
Proof. 1t is clear from (3.2) that for m € N, exp{— j;k Ae+m—1(y)dy} may be interpreted

as the probability that Tj.,, exceeds t., given that Nth_l =k+m—1. Thus, A\grm_1(y)

is the associated failure rate, and (assuming for the moment that ¢, = s) the joint density

of Ty1, T2, - - -, Ten|Ns = k may thus be expressed as
n . .
TT e (i)™ it Mm@,

m=1

In order to have exactly n claims in (s,t), there can be no more claims in (tx4,,t) with

probability exp{ ft Netn (Y y} implying that

it (et thi2, - - - tranl K, S)
— e fttk+n Aotn(y)dy H /\k-i-m—l(tk—i—m) fz::;" | Aktm—1(y)dy
m=1
[ ey T ST M) PYRPRY O R
e s LT Aesmei(tirm)e . (3.5)
m=1
Simple arrangement of (3.5) results in (3.3). O

An explicit expression for the probability transition function follows immediately from Lemma

d.

Lemma 6. The transition probabilities may be expressed as

t
Press (5,1) = / Bt e )t (3.6)
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and for n=2,3,...,

t rletn ()
Prjitn(5,1) :/ / / Pt (thyss s tignl Ky 8) At dtga - dtg gy (3.7)

Proof. Integrating over all possible values of tj 1, t50,. .., tkr, results in (3.6) and (3.7). O

We now turn to the problem of interest, namely the analysis of time-dependent claims. To

this end, the sum total of claim values for claims incurred in (s,t) is denoted as

N

Sst = zt: X;|Ng =k, (3.8)

i=k+1

for ¢ > s, where the claim severities {X;}:2, ., depend on the particular quantity of interest
to be analyzed. See Klugman et al. (2013, Section 9.1) for a discussion of this issue. We
denote the conditional LT of Sy;, given that there are exactly n claims in (s,t) at times
Lttt thyoy - ooy togn DY fn,t(z|k,s,tk+1, ooy tgn). If we further assume that the individual
claim values are independent of all other claim values, with distribution depending on nothing

more than possibly the incurral time, k, s and ¢, then we may write
Fua(2lk, s, tuns o tin) = [ FilzlE, s, tesm). (3.9)
m=1

Note that in (3.9), fi(z|k, s, z) is the LT of the claim value associated with a claim incurral
at x € (s,t). The independence assumption is not necessary, we are now in a position to
state the general results for the aggregate claim values, conditional on Ny = k without the

assumption stated in (3.9).
Theorem 7. Given that N, = k, the aggregate claim values associated with claims incurred

n (s,t) has LT

Ny =k = pes(s,t) + Y Prbsn(s, ) fua(2lk, 5), (3.10)

n=1

E[e‘zs&t
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where

f (Z|k S) _ fst hl,t(tk+1|/€, S)]El,t(Z’k, S, tk+1)dtk+1 (3 11)
1,t ) fst h17t(t1€+1|kﬁ7 S)dtk+1 ) .

and for n=2,3, ...,

f (Z’k 5) = j: fstk+n Coe fstk+2 hn,t(tk+17 cee 7tk+n|k7 S)fmt(Zlk', S, tk+17 s 7tk+n)dtk+1 s dtk+n
R L (b, bl $) b - A '

(3.12)

Proof. Obviously, Ss;; = 0 if N; — Ny = 0, and otherwise (3.10) follows directly by con-
ditioning on Ny — Ny = n, and the n claim times Ty, ..., Tgin, together with (3.6) and
(3.7). O

Clearly, (3.11) and (3.12) imply that the LT f,,(z|k,s,t5s1, ..., tktn) May be represented
as a mixture, with mixing weight proportional to Ay, (g1, - - -, teinlk, s). Also, it is useful
to note that in the important special case when (3.9) holds, (3.3) implies that for any n,
the integrand in (3.12) factors as a function of the integration variables tx 1, tg12,. .., thrn-
We also want to remark that the order of the claim incurral times won’t influence the result

if Ayt (Ekt1s thta, - - s then) 1S @ symmetric function for n > 1. In this case, we can re-write

(3.12) as

7 o) — fst fst o fst Pt (tist, - - teinl Ky 8) T2y fe(zlk, 8, thgm) byt - - - dbggn
n,t 5 - .
fst fst T fst h‘”:t(thrh SR 7tk+n‘k7 S)dtk+1 oo dtkan

3.1 The birth process with factorization assumption

While the representation of Theorem 7 is extremely general, a very useful simplification
results if (3.9) holds and \j(x) for j = k,k+1,... is such that ¢y, (x|s), defined in (3.4)
for m € N, factors (for fixed k and s) as a function of m multiplied by a function of x. This
is the case for (possibly) nonhomogeneous version of Poisson and mixed Poisson processes,
and the contagion models, as is discussed later. This factorization assumption is motivated

by Puri (1982), in the context of the evaluation of the marginal probabilities {p,(t);n € N}.
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In fact, the factorization essentially characterizes the so-called order statistic property (see

Puri (1982)).

Theorem 8. Suppose that (3.9) holds, and \j(x) for j =k, k+1,... is such that
Ortm(T]8) = Qi sb(z|k, 5), (3.13)
for m € N*. Then for n € N,
Diktn(S,t) =€ J: )"“+"(y)dy(1_[nm:;$k’s) {/t b(x|k, s)dx}n, (3.14)
and (3.10) may be expressed in compound form as

E[e~*5¢|N, = k] = Py, {ft(zlkv S)} : (3.15)

where the pgf Py s¢(2) is given by (3.1), and

L bk, s) ful2|k, 5, 2)dx

f(z|k, s) = 3.16
fi(zk, s) [ b(alk, 5)dz (3.16)
s the LT of a mized distribution.
Proof. We utilize the approach of Puri (1982). First note that (3.3) becomes
Pt (trg1s thorzs - - - trgn] b, 8) = € Js Aetn(®)dy { 1T amk} I o(tismlk. s). (3.17)
m=1 m=1
for n € N*. Also, combining (3.9) with (3.17) results in
hn,t(tk+17 tk+2, Ce ,tk+n’]€, s)fnyt(z\kz, S, tk+1, N 7tk+n)
=e” T Nesn(m)dy { H am,k,s} H [b(tk+m|k‘, s)ft(z|k, Sytgtm)| s (3.18)
m=1 m=1

again for n € N*. For n = 1, substitution of (3.17) into (3.6) yields (3.14) after changing
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the variable of integration from ;41 to x. Similarly, (3.6) and (3.11) imply that

t
Dot (5,0 Fra(zlk, 5) = / haa(tesa ks 8) fro (2, 5, boga )b
t
Y / b(alk, 5)fi (=K, 5, 2)da

= pk,k+1(s7 t)flﬁ(/Z’k? S)a

using (3. 16) and (3 18) also. Note that for any integrable function y(z), it follows easily

from v(t) = & f r)dz that
t rle4n trio n 1 t n
/ / / H V(Chtm) ¢ s - Ay = o {/ 7($)d37} ) (3.19)
s Js s m—1 : s
for n = 2,3,.... Thus (3.14), which is essentially given by Puri (1982) for the marginal

rather than the transitional properties, holds for n = 2,3,... by substituting (3.17) into
(3.7) and using (3.19) with y(z) = b(z|k, s). Then (3.7) and (3.12) imply that

pk,k+n(37 t)fn,t(z|k7 S)

t rle4n () B
- / / / Bt tignl $) Foa (21K 5. s - g ) g i
S S

s

n tktn tkt2 n
—e f At (y)d H Qe / / / H tk+m|k5 S ft( ‘k, S,tk+m):| dt:
S m=1

_ (3.20)

where t = [tgy1, ka2, - - - term), using (3.18) as well. Thus, we have

- f Atn (Y t ~ n
Prpn (S, ) fui(2]k, ) = i (H amks) {/ b(a:|k,s)ft(z|k,s,x)dx}
= Prenlst) {ft<z|k, 9},

by (3.19) with v(x) = b(z|k, s) fi(z|k, s, z), where the last line follows from (3.16). Therefore,
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(3.10) becomes

Ele™5 N, = k] = 3 prsn(s, ) { el s) |
n=0
which immediately yields the representation (3.15). Finally, as A, (z) is nonnegative for
m = k,k+1,..., it follows from (3.4) that ¢ri,(x|s) is also nonnegative for m € NT,
and thus it may be assumed without loss of generality that each of ay, s and b(z|k,s) is

nonnegative, implying that (3.16) is a mixture LT of a distribution. O

The representation in Theorem 8 of the distribution of a random sum of conditionally inde-
pendent, but not necessarily identically distributed rv’s as a random sum of iid rv’s is very
convenient from the viewpoint of quantitative analysis. This is particularly true due to the
fact that in many applications the transition probabilities are of a simple and well known

form, as is discussed in further details in the next section.

Furthermore, the results of this section and Theorem 8 in particular make no assumptions
about the behaviour of the process before time s except for the assumption about the Markov
property and k claims have occurred. That is, the process {N;};>¢ needs only be a nonho-

mogeneous birth process beyond a certain point.

Next, we provide some examples involving some common choices of the intensity function

().

Example 1. A delayed nonhomogeneous Poisson process
Suppose that A\p,(x) = Nx) for s <z <t andn =k,k+1,.... Then for m € NT, (3.4)
becomes Qg m(x|s) = A(x), and the results of Theorem 8 may be applied with cuy, ks = 1 and

b(zlk,s) = A(z). Then (3.14) becomes

e~ @] [1) () o}

n!

Dhetn(S, 1) =

a Poisson probability. As pg(s,t) = exp{— f;)\(y)dy}, (3.15) is a compound Poisson LT
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with secondary LT given by (3.16), namely

_ Js A(x)ﬁ(zlk,&x)dx'

~tzk,s ;
Ik, 5) e

Of course, homogeneous Poisson process is obtained when \(x) is a constant on (s,t). Be-
sides, the ordinary nonhomogeneous Poisson process results if A\, (t) = A(t) for all m € N

andt > 0.

Example 2. Linear contagion

In the linear contagion model, we assume that
Aj(t) = (a+ Bj)A(),
for j=k,k+1,.... Thus (3.4) becomes, from m € N*,
Omin(@ls) = {a+ Blk +m — 1)} A(w)e? A0,

implying that for B # 0, Theorem 8 applies with s = m+k — 1+ 5. and b(x|k,s) =
BA(x)el JSAWy - Thenp,

HLﬂ%Mﬁ_Fm+k+%):(n+k+%—l)

n! ~ nll(k+ 3) n

and (3.14) becomes

n+k+5-1 B[P Ax)dz )" —(a E\(z)dz
mwaﬁwz( "5 )@_eBLMM)e<+wLMM.

As in Klugman et al. (2013, p.112), prrin(s,t) is of negative binomial form if B > 0, and
is of binomial form if 5 < 0 with —a/5 a positive integer. Also, the secondary distribution

in the compound LT representation (3.15) itself has LT (3.16), namely

B [FA(@)eP AW f (2| k, s, 2)da
eB LMWy _ ’

f(elk, ) =
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as s easily verified.

Again, we remark that the usual contagion model results when A\p,(x) = (a+ Bm)A(z) for all

m € N, and x > 0. Furthermore, the homogeneous case results with A(z) = 1.

Example 3. The nonhomogeneous mized Poisson case
Let U(A), 6 > 0 be the df of a nonnegative v, and define T'y,(t) = [ 0™e *dU(0) for
m==k,k+1,.... Then consider the intensity function fort > s deﬁned by

)Fm+1 {R(s) + fst r(m)dx}

| [ {R(s) + fst r(m)dx}

where {r(x);s < x <t} and R(s) are nonnegative. For the motivation of this assumption,
see Section 7.2 of Klugman et al. (2013). Then Uy y1(t) = =1 (t), which implies that
Am(t) = —% In Fm{ )+ f dx}. Therefore, for u,v > s,

/u /—lnF { s)+/syr(x)dx}dy

| {R s +f8 r(z dx}
Lo {R(s) + [ r(x)dz}’

., m=kk+1,...,

=1In

resulting in

and

Iy {R(s) + [ r(a:)dx}

Pl ) = T TRG))
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Also, for m € Nt

Prtm(x]s) = Mpgm—1(2)e” Jz Mo W)y = [ Aregm—1.(4)dy

_ () D AH0) + [ ry)dy} Liam {R(5)}
Ciymo1 {R(s) + [T r()dy} Thpm {R(s) + [ r(y)dy}
" Digm—1 {R(3> + ff r(y)dy}
Dipm—1 {R(s)}
Uipm {R(s)}
Cppm—1 {R(s)}

= r(a)

Therefore, Theorem 8 can be applied with

Qs = Ciym {R(s)}
T Thyme1 {R(s)}

and b(x|k,s) = r(x). Then

Corn {B()+ [[r@)y} 1y, (r(op} { LTIy}
Prkin(3,1) = Tirn {R(5)} Tr {R(s)} n! !

1.6.

Toin { R(s) + L r(m)ay} {J! T(@/>dy}n
Pron(s, 1) = T, {R(5)} n! ’

a formula which evidently holds for alln € N. The secondary LT as defined in (3.16) becomes

. B [INfilz|k, s, 2)de
Julzlk, s) = fstr(x)dx

Y

in this case.

The ordinary nonhomogeneous mized Poisson process results if

)Fm {fg r(a:)d:c}
Ly {fot r(x)dx}’
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for all m € N and t > 0. The corresponding homogeneous process results with r(x) being
constant. This process may also be formulated as a conditional Poisson process rather than as

a birth process. See Klugman et al. (2013, Section 7.2) or Grandell (1997) for further details.

In this process, we only consider the situation after time s, no assumption is needed for the
process before time s. However, this process covers the case when it follows nonhomogeneous
mized Poisson process since time 0. To be specific, if {N;,t > 0} follows nonhomogeneous
mized Poisson process, with intensity as Or(t), and © has cdf U(0). Then we have {N; —
Ns|Ns = k} also follow nonhomogeneous mized Poisson process, with intensity as O*r(t),

r(z)dz)*e J§ r(@)dz
and ©* has df Pr(©* < z) = [ (O Jy r(wydnte 21T U(db) for x > 0.

Klpy(s)

In the following, we take a further look at a special case of (3.13), given by
Om(x|s) = aum sb(]$), (3.21)
form=k+1,k+2,.... It follows directly that, for x € [s,¢] and i =1,2,...,n € Nt

Pr(Tiyr < z|Ny=n+k,Ns = k)

:ZPr(Nx:j+k|Nt:n+k,NS:k)

ZPrNt—n+k|N—k:N—j+k)Pr( . =7+ k|Ns=k)
B Pr(N, = n+ k|N, = k)

ZPr (N, = n+k|N, = j + k) Pr(N, = j + k|N, = k)
B Pr(Ny =n+ k|Ns = k) ’

where the last line holds due to Markovian property of the process. By (3.14), we have

Pr(Ti1y < z|Ny =n+k, Ny = k)

n z J t n=j n .
= Z (n> (fs b(y|8)dy) <fx b(y|s)dy> {ef:[kk-s-n(y)—/\k“(y)]dy H Smth,z fa: b(y|x)dy}
=\ : |s)dy

(fst b(y|3)dy> =1 Omtks J, (Y]s
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where the last term can be re-written, by (3.4), as

n t
I P (=M )y Cmth fl; b(ylx)dy
m=j+1 Xmtk.s fgc b(yls)dy
(y)efwy[/\k+m(z)—)\k+m_1(z)]dzdy B

n t
_>\k:+m—1 (y)}dy fx )\k+m71

— I e t : = 1.
m=j+1 I Mg (y)els Piem @A (2142 dy
Hence, it follows that
n—j

o U 0ls)n)’ (Jblols))
P s A ; (J) (s b(y!s)dy>n

Therefore, conditional on N; = n+k, Ny = k, the (k+i)th claim occurrence time is distributed
as the ith order statistic of n iid rv’s with df [ b(y|s)dy/ fst b(y|s)dy for i =1,2,...,n and
€ [s,t]. Then, the resulting process {N;};>s conditional on N; = k has the order statistic

property.

3.2 A birth process model with “two stages”

In this section, we indicate how the representation in Theorem 8 is modified if the factoriza-

tion (3.13) changes form but (3.9) holds. We have the following result.

Corollary 9. Suppose (3.9) holds, and \p,(x) form =k, k+1,... is such that

O i,s01 (2] K, 8) m < ng,
Orim(x|s) = (3.22)

O k.sD2 (x| Ky 8) m > nyg.
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Then, the LT of the total claim size may be expressed as

no
Ele5 N, = k] = 3 prsa(s,§) [zl o))"
n=0
o) t -
£ praenlsst) [ enllbsit) Gaell ) ool s Felbs, ),
n=ng+1 S
(3.23)
where
Dk ktn (S, 1)
(
o= JE Ae(y)dy n =0,
t n
=1 e T Nesn(y)dy szzl am,k,sw 0 <n < nyg,
t x s n ¢ s n=no—
¢yt [ LSl ) > o
and

" b (ylk. ) fi(z|k d
Gr.e(2]k, s) = Js biwlk. $)fi=lk 5, ) y, s<z<t, (3.24)

. !
by (ylk, k. s,y)d
§2,1<Z|k75) — fm 2(ylt S)ft(z| S y) y7 s< 1< t, (325>
[ ba(ylk, s)dy
(J7 by (ylk, s)dy)™ ([* ba(ylk, s)dy)™ "0 by (2 |k, 5)

S bi (i, s)dy)o ([ ba(ylk, 5)dy)»=m0 | ba(alk, 5)do

cn(zlk,s,t) = (3.26)

Proof. Recall that hy, ¢ (tgi1, teta, - tetnlk, s) = e S et () dy [} _; Pktm(tism). For n <
ng, the process is unaffected by the change of factorization and Theorem 8 applies. Thus, we
focus on the case when n > ng. Indeed, substituting the two-stage factorization ¢y, (x|s)

into (3.3) results in

m=1 m=1

, n no n
hn,t(tk—i-h tk+27 s 7t/€+n|k) S) =e Js A @)y H A ks { H bl(tk+m|k7 8)} H b?(tk+m|ku S)'

m=ng+1

(3.27)
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In turn, by using (3.27), the integration of (3.18) becomes
t prtpin lk42 LI
/ / / hn,t(tk+17t/€+27"‘th+n|k78) H ft(z|k787tk+m>dtk+m
s Js s m=1

t  prlegn thtng+2 tetng+1 tpyo MO 5
:// / / / T 01 tesml®. 8) fizlke, 5, thrm) At m

m=1

X( 11 b2<tk+m|k,s>f;<z|k,s7tk+m>dtk+m) e e [T, (3.28)

m=ng+1 m=1

Rearranging the integration field in (3.28) results in

e f: >‘k+n (y)dy

n t gt thotn thtng+3 " ~
X H A ks / / oo / H b2(t/€+m|k7 S)ft(z|k7 S, tk+m)dtk+m
m=1 s lpgng+1 Ylringt1 tktng+1  |m=ng+2
~ n
(fst“"o“ bl(x|k,s)ft(z|k,s,x)dx> ’

X o~ ba(tiimo 1|k, 8) fi (21K, 8, trng 1) dbringi1 (3.29)
0!

Using the similar logic as that in proof of Theorem 8, (3.29) can be simplified to

t tktn T2 i ~
/ / / P (et teras - - tiogn K, ) H fi(2|k, 8, tyrm) dbipm
s Js s me1

/ (2 0ol el )dy) (1 ol o) s pay) ™

nol(n —ng — 1)!

ba(z|k, s) fu(2|k, 5, x)dw

n
t
X ei fs )‘k+n(y)dy H Oém,k,S‘

m=1
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Thus, from (3.10), the LT of Sy, is given by

Ele™ | N, = k]

n, n t 3 n
T 3 o e (H m) e ba(oll, ) (el 5, 2)da)

n!

n=1 m=1

+ f) [/ (J; bilylk, o) fizlk, s, y)dy)™ ([ balylk, s) folz |k, 5, y)dy)" ™!

W nol(n —ng — 1)!

xby(z|k, 5) fi(z|k, s, a:)dx} e Je Meen 