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Abstract

One of the core problems in multiagent systems is how to efficiently allocate a set of in-
divisible resources to a group of self-interested agents that compete over scarce and limited
alternatives. In these settings, mechanism design approaches such as matching mecha-
nisms and auctions are often applied to guarantee fairness and efficiency while preventing
agents from manipulating the outcomes. In many multiagent resource allocation problems,
the use of monetary transfers or explicit markets are forbidden because of ethical or legal
issues. One-sided matching mechanisms exploit various randomization and algorithmic
techniques to satisfy certain desirable properties, while incentivizing self-interested agents
to report their private preferences truthfully.

In the first part of this thesis, we focus on deterministic and randomized matching
mechanisms in one-shot settings. We investigate the class of deterministic matching mech-
anisms when there is a quota to be fulfilled. Building on past results in artificial intelligence
and economics, we show that when preferences are lexicographic, serial dictatorship mech-
anisms (and their sequential dictatorship counterparts) characterize the set of all possible
matching mechanisms with desirable economic properties, enabling social planners to rem-
edy the inherent unfairness in deterministic allocation mechanisms by assigning quotas
according to some fairness criteria (such as seniority or priority). Extending the quota
mechanisms to randomized settings, we show that this class of mechanisms are envyfree,
strategyproof, and ex post efficient for any number of agents and objects and any quota
system, proving that the well-studied Random Serial Dictatorship (RSD) is also envyfree
in this domain.

The next contribution of this thesis is providing a systemic empirical study of the two
widely adopted randomized mechanisms, namely Random Serial Dictatorship (RSD) and
the Probabilistic Serial Rule (PS). We investigate various properties of these two mech-
anisms such as efficiency, strategyproofness, and envyfreeness under various preference
assumptions (e.g. general ordinal preferences, lexicographic preferences, and risk atti-
tudes). The empirical findings in this thesis complement the theoretical guarantees of
matching mechanisms, shedding light on practical implications of deploying each of the
given mechanisms.

In the second part of this thesis, we address the issues of designing truthful matching
mechanisms in dynamic settings. Many multiagent domains require reasoning over time
and are inherently dynamic rather than static. We initiate the study of matching problems
where agents’ private preferences evolve stochastically over time, and decisions have to be
made in each period. To adequately evaluate the quality of outcomes in dynamic settings,
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we propose a generic stochastic decision process and show that, in contrast to static settings,
traditional mechanisms are easily manipulable. We introduce a number of properties that
we argue are important for matching mechanisms in dynamic settings and propose a new
mechanism that maintains a history of pairwise interactions between agents, and adapts
the priority orderings of agents in each period based on this history. We show that our
mechanism is globally strategyproof in certain settings (e.g. when there are 2 agents or
when the planning horizon is bounded), and even when the mechanism is manipulable, the
manipulative actions taken by an agent will often result in a Pareto improvement in general.
Thus, we make the argument that while manipulative behavior may still be unavoidable,
it is not necessarily at the cost to other agents.

To circumvent the issues of incentive design in dynamic settings, we formulate the dy-
namic matching problem as a Multiagent MDP where agents have particular underlying
utility functions (e.g. linear positional utility functions), and show that the impossibil-
ity results still exist in this restricted setting. Nevertheless, we introduce a few classes
of problems with restricted preference dynamics for which positive results exist. Finally,
we propose an algorithmic solution for agents with single-minded preferences that satis-
fies strategyproofness, Pareto efficiency, and weak non-bossiness in one-shot settings, and
show that even though this mechanism is manipulable in dynamic settings, any unilateral
deviation would benefit all participating agents.
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Chapter 1

Introduction

The study and design of autonomous agents that are capable of intelligent decision making
is the cornerstone of artificial intelligence research. Multiagent systems research draws
various techniques from mathematical theory to computational science aiming at creating
autonomous agents that can intelligently behave towards achieving certain goals when in-
teracting with (possibly) uncertain environments. Autonomous agents are often deployed
in various applications such as expert systems, online systems, customer support systems,
healthcare, robotics, transportation and traffic control, computer games, information man-
agement, and electronic commerce [128, 135, , 113]. These applications employ the au-
tonomous agent paradigm to represent users of the system, reason over uncertainties, and
automate their decision making processes. Within artificial intelligence, the subfield of
multiagent systems studies how a group of intelligent agents make decisions when inter-
acting with other agents. A central concept in modeling decision making, particularly in
multiagent systems, is how to handle individual preferences [51,61,73]. Agents often deal
with decision situations and require computational and mathematical models of prefer-
ences to reason over various choices. In multiagent systems, preferences may guide agent
behavior when seeking collective decisions in social choice problems such as voting, or when
making rational decisions while competing or cooperating with other intelligent agents.

One of the core problems in multiagent systems is how to efficiently allocate a set of
indivisible resources to a group of self-interested agents that compete over scarce and lim-
ited alternatives. Individual preferences are key in measuring the quality of allocations and
achieving desirable social outcomes. Multiagent resource allocation leverages techniques
from game theory and economics to ensure various desirable properties based on agent
preferences. In these settings, mechanism design approaches such as matching mecha-



nisms and auctions are often applied to guarantee fairness and efficiency while preventing
agents from manipulating the outcomes.

In many multiagent resource allocation problems the use of monetary transfers or ex-
plicit markets are forbidden because of ethical and legal issues [3,17,39,65,116,117,131]. For
example, when students are assigned housing on campus based on their underlying private
preferences over dormitory residences, it would be unethical (if not unjust) for academic in-
stitutions to ask for payment in lieu of better placements in dormitories. Other real-life ap-
plication domains wherein the use of money is prohibited are assigning teaching load among
faculty, college courses to students, scarce medical resources and organs to patients, and
scientific equipment to researchers within the same organization [13,50,94, 117, 131,132/138].

In several of these settings, the mechanism assigns the set of resources (alternatives)
to agents based on self-reported preferences, and self-interested agents do not necessarily
report their private preferences truthfully. For example, in student placement markets for
assigning students to public schools there is strong evidence that parents misreport their
preferences in order to ‘game the system’ and manipulate the outcome in hopes of securing
better placement for their children [4,5]. The fields of mechanism design and matching
theory precisely address this issue by designing algorithms to promote honest reporting of
preferences without the use of transferable currencies such as money.

Truthful reporting of preferences is key in guaranteeing other desirable properties such
as efficiency and fairness. Without ensuring truthfulness, a matching mechanism can only
guarantee efficient and fair allocations with respect to the, perhaps untruthful, preferences,
and thus, fails to satisfy the desirable economic properties with respect to the true under-
lying preferences. Hence, it is necessary to design allocation mechanisms that provide
incentives to self-interested agents for truthful reporting of their preferences. We refer
to such mechanisms as strategyproof mechanisms where no agent will prefer to strategize
when reporting its preference.

This dissertation investigates mechanism design approaches for matching decisions in
dynamic environments with repeated decisions as well as one-shot and static settings. In
the first part of this thesis, we focus on deterministic and randomized matching mechanisms
in one-shot settings. Matching mechanisms are often used for allocating multiple resources
to each agent while satisfying certain desirable economic properties. In many real-life
applications a social planner needs to assign alternatives to agents based on a given quota.
One might decide to assign the resources to agents according to a predefined quota such
that two or three of agents each receive at least two resources. Moreover, a social planner
may be required to choose which mechanism to use in practice, depending on the population



of agents and their attitude towards risk. In this vein, we address the following crucial
questions:

1. What deterministic mechanisms are appropriate to assign multiple objects to agents
based on a given quota?

2. How does randomization guarantee fairness and truthfulness of quota assignments?

3. Which randomized matching mechanism should a social planner adopt in practice to
ensure a desirable level of social welfare under various risk attitudes?

In the second part of this thesis, we address the issues of designing truthful match-
ing mechanisms in dynamic settings. Many multiagent domains require reasoning over
time and are inherently dynamic rather than static. Agents’ preferences may stochasti-
cally evolve over time, and the population may change according to arrival or departure
of agents. Dynamic mechanism design has emerged as a new paradigm for addressing
resource allocation problems where money is used to facilitate the exchange of resources.
Nevertheless, little has been done in the space of dynamic mechanisms for allocation prob-
lems without monetary transfers (e.g. nurse scheduling, campus housing). The dynamic
nature of the matching problems gives rise to the following key questions:

1. What would be an appropriate model to reason about various economic properties
of dynamic allocations in the ordinal domain?

2. Do the desirable properties of traditional matching mechanisms carry over to dynamic
settings with repeated allocations? and if not,

3. Can we design truthful mechanisms for dynamic matching problems?

1.1 Thesis Statement

This thesis studies the strategic behavior of agents in matching markets where the use of
transferable currencies is prohibited. Matching mechanisms should be designed to provide
truthful incentives to self-interested agents in order to ensure desirable properties such as
efficiency and fairness. The thesis statements are:



e The choice of which matching mechanism to adopt in practice relies heavily on the
type of allocation (single or multiple object), the comparative nature of preferences,
and the risk attitudes of agents, and social planners should take these into consider-
ation.

e The traditional truthful matching mechanisms are highly susceptible to manipula-
tion in dynamic settings. Using our proposed framework for stochastic matching
under dynamic ordinal preferences, it is possible to analyze sequential matching deci-
sions and to design adaptable mechanisms that provide desirable outcomes in certain
structured settings.

1.2 Contributions

In this thesis, we advance the state of the art by addressing the aforementioned questions.
Our first contribution is in the domain of one-shot matching mechanisms. Within deter-
ministic mechanisms, we characterize the set of strategyproof, non-bossy, and neutral quota
mechanisms under lexicographic preferences. We show that under a mild Pareto efficiency
condition, serial dictatorship quota mechanisms are the only mechanisms satisfying these
properties. Dropping the neutrality requirement, this class of quota mechanisms further
expands to sequential dictatorship quota mechanisms. Furthermore, we extend the quota
mechanisms to randomized settings, and show that this class of quota mechanisms are
envyfree, strategyproof, and ex post efficient for any number of agents and objects and any
quota system, proving that the well-studied Random Serial Dictatorship (RSD) satisfies
envyfreeness when preferences are lexicographic.

The second contribution of thesis is an empirical study of the two widely adopted
random mechanisms, namely Random Serial Dictatorship (RSD) and the Probabilistic
Serial Rule (PS). Both mechanisms require only that agents specify ordinal preferences
and have a number of desirable, but orthogonal, economic and computational properties.
However, the induced outcomes of the mechanisms are often incomparable, and thus, in
multiagent settings there are challenges for social planners when it comes to deciding which
mechanism to adopt in practice. In the space of general ordinal preferences, we provide
empirical results on the (in)comparability of RSD and PS and analyze their respective
economic properties. We then instantiate utility functions for agents, consistent with the
ordinal preferences, with the goal of gaining insights on the manipulability, envyfreeness,
and social welfare of the mechanisms under different risk attitude models.



Our third contribution is in the domain of matching with dynamic preferences. We
initiate the study of matching problems where agents’ private preferences evolve stochas-
tically over time, and decisions have to be made in each period. To evaluate the quality of
outcomes in dynamic settings, we propose a generic stochastic decision process and show
that, in contrast to static settings, traditional mechanisms are easily manipulable. The lack
of truthful incentives means that an agent may strategically misreport its true idiosyncratic
preference, which consequently results in inefficient and unfair outcomes. Thus, we pro-
pose a history-dependent matching policy that guarantees some level of global truthfulness
while sustaining the properties of fairness and efficiency in each period.

The final contribution of this thesis is investigating several classes of dynamic prob-
lems where each utility-maximizing agent’s best response is conditioned upon the truthful
revelation of other agents. We show that even under the Markovian assumption and un-
der a linear positional utility function, no optimal matching policy satisfies truthfulness.
Moreover, applying a widely-studied matching mechanism to such settings is still prone to
manipulation. Furthermore, we provide an algorithmic solution for allocating resources to
single-minded agents who only care about their top choices, and show that if agents’ prefer-
ences exhibit certain structures then traditional matching mechanisms can still guarantee
our desired truthfulness property.

Overall, this dissertation combines algorithmic and computational aspects of artificial
intelligence and multiagent systems with insights from theoretical and empirical economics,
spanning the fields of computer science and economic theory.

1.3 Thesis Outline

This thesis is organized in two parts; Part I investigates one-sided matching mechanisms in
one-shot and static settings. Part II focuses on studying matching and allocation mecha-
nisms in dynamic settings. Besides this introductory section, this dissertation has six more
chapters:

e In Chapter 2, we introduce the one-sided matching problem and discuss the literature
on deterministic and randomized matching mechanisms, providing a chronicle of the
matching mechanisms in static settings.

e In Chapter 3, we characterize the set of deterministic matching mechanisms for any
number of agents and objects and any quota system, and provide a randomized
extension for fair assignment of resources.



In Chapter 4, we empirically investigate various desirable properties of two seminal
random matching models, providing insights into practicality of each of these two
matching mechanisms under various risk attitude models.

In Chapter 5, we initiate the study of repeated matching with possibly dynamic
preferences and provide impossibility and possibility results in designing and adopting
truthful matching mechanisms.

In Chapter 6, we focus attention on dynamic matching problems under restricted
settings and cardinal utilities, and propose a few classes of problems with restricted
preference dynamics for which positive results exist.

In Chapter 7, we conclude this dissertation by summarizing the main findings and
outlining a number of intriguing research directions for future study.

Much of the work in this thesis has appeared in the following papers:

Hadi Hosseini, Kate Larson, Strategyproof quota mechanisms for multiple assignment
problems, arXiv preprint (arXiv:1507.07064), 2015 [75].

Hadi Hosseini, Kate Larson, Robin Cohen, Investigating the characteristics of one-
sided matching mechanisms, In Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016), pp. 1443-1444,
2016 [20].

Hadi Hosseini, Kate Larson, Robin Cohen, An empirical comparison of one-sided
matching mechanisms, In The 3rd Workshop on Fxploring Beyond the Worst Case
in Computational Social Choice (EXPLORE) at AAMAS 2016, 2016 [79].

Hadi Hosseini, Kate Larson, Robin Cohen, On manipulability of random serial dic-
tatorship in sequential matching with dynamic preferences, Student Abstract, In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI
2015), pp. 4168-4169, 2015 [77].
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Chapter 2

Background

In this chapter, we describe deterministic and randomized allocation mechanisms for one-
sided matching in one-shot settings, explain the current theoretical and computational
findings, and provide a systematic review of the literature. We also briefly describe the
state of the art on dynamic mechanism design for markets with transferable utilities and
sketch out its connections to matching mechanisms in dynamic and uncertain domains.

2.1 Basic Definitions and Properties

We first provide a general definition for matching problems and explain our desired prop-
erties for matching and resource allocation in multiagent settings, in words. We relegate
the formal description of matching models and the detailed formulations of the desired
properties to the respective chapters.

The one-sided matching problem is a fundamental, yet widely applicable, problem in
economics and computer science [16,30,52, 116].) The goal in a matching problem is to
allocate a set of discrete and indivisible objects to a set of self-interested agents. Consider
a set of M objects, with |M| = m, and N agents, where |N| = n, with private ordinal
preferences over the objects. A matching (or an assignment) is a mapping between agents
and objects that indicates which objects would be allocated to each of the agents. A

'In the literature, these problems are also known as assignment problems or house allocation problems.
In this thesis, we use these terms interchangeably and sometimes refer to such settings as matching
problems, for short.



matching mechanism is a procedure that determines the allocation of objects to agents
according to agents’ preferences.

For clarity, we define some of the main properties that are generally used in multiagent
settings to assess the desirability of matching mechanisms. In the next chapters, we will
introduce our formal model and provide the necessary formalisms to define each of these
properties:

e Pareto efficiency: an allocation is Pareto efficient (or Pareto optimal) if there exists
no other allocation that makes at least one agent better off without making any of
the agents worse off.

e Non-bossiness: a matching mechanism is non-bossy if no agent can change the
allocation of another agent without making its own allocation worse off.

e Strategyproofness: a matching mechanism is said to be strategyproof if no agent
can benefit from misreporting its preference.

e Neutrality: a matching mechanism is neutral if it does not depend on the name of
the objects, i.e. changing the name of some objects results in a one-to-one identical
change in the final allocation.

e Proportionality: a matching mechanism is proportional (or symmetric) if all equal
agents (with equal preferences) are treated equally.

e Envyfreeness: a matching mechanism is envyfree if no agent prefers the allocation
of another agent to its own allocation.

In the next section, we elaborate on some of the main results in the area of matching
and discuss how some of the above properties remain incompatible in multiagent domains.

2.2 Deterministic Mechanisms

In one-shot settings, the problem of allocating indivisible objects to agents can be cate-
gorized into two main settings: standard assignment problems and multiple assignment
problems.

In the standard assignment problem (sometimes known as the house allocation prob-
lem), each agent is entitled to receive exactly one object from the market. Svensson [133,
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| formulated the standard assignment problem (first proposed by Shapley and Scarf [126])
where each agent receives exactly one item, and showed that Serial Dictatorship mecha-
nisms are the only social choice rules that satisfy strategyproofness, non-bossiness, and
neutrality. Pdpai [108] extended the standard model of Svensson [133, 131] to settings
where there are potentially more objects than agents (each agent receiving at most one
object) with a hierarchy of endowments, generalizing Gale’s top trading cycle procedure.
This result showed that the hierarchical exchange rules characterize the set of all Pareto
efficient, group-strategyproof, and reallocation-proof mechanisms.

In the multiple-assignment problem, agents may receive sets of objects, and thus, might
have various interesting preferences over the bundles of objects. Papai [I10] studied this
problem on the domain of strict preferences allowing for complements and substitutes, and
showed that sequential dictatorships are the only strategyproof, Pareto optimal, and non-
bossy mechanisms. Ehlers and Klause [55] restricted attention to responsive and separable
preferences and essentially proved that the same result persists even in a more restrictive
setting. Furthermore, Ehlers and Klause showed that considering resource monotonic
allocation rules, where changing the available resources (objects) affects all agents similarly,
limits the allocation mechanisms to serial dictatorships.

Pépai [109] and Hatfield [72] studied the multiple assignment problem where objects are
assigned to agents subject to a quota. Papai [109] showed that under quantity-monotonic
preferences every strategyproof, non-bossy, and Pareto efficient social choice mechanism
is sequential; while generalizing to monotonic preferences, the class of such social choice
functions gets restricted to quasi-dictatorial mechanisms where every agent except the first
dictator is limited to pick at most one object. Papai’s characterization is essentially a neg-
ative result and rules out the possibility of designing neutral, non-bossy, strategyproof,
and Pareto efficient mechanisms that are not strongly dictatorial. Restricting the prefer-
ences to responsive preferences only and when agents have precisely fixed and equal quotas,
Hatfield [72] showed that the only strategyproof, Pareto efficient, non-bossy, and neutral
mechanisms are serial dictatorships. Figure 2.1 illustrates some of the most important
results in the assignment problems.

In the domain of cardinal utilities, the leading fairness concept of Competitive Equi-
librium from Equal Incomes (CEEI) efficiently assigns objects to agents and is always
guaranteed to exist for divisible objects [139]. However, a CEEI solution may not always
exist for indivisible objects. Moreover, the CEEI solution concept and its randomized
counterpart based on pseudo-markets by Hylland and Zeckhauser [32], are highly sus-
ceptible to manipulation. Zhou [115], based on Gale’s conjecture [01], proved that there
do not exist (randomized) allocation rules that satisfy symmetry, Pareto efficiency, and
strategyproofness.
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2.3 Randomized Ordinal Mechanisms

Randomized matching mechanisms provide a feasible way to fairly assign scarce resources to
agents. In such settings, Random Serial Dictatorship (RSD) and Probabilistic Serial Rule
(PS) are well-known for their prominent economic properties. RSD assigns the alternatives
to agents by choosing a priority ordering of agents uniformly at random, and then running
a serial dictatorship mechanism where each agent picks its desired object from the pool
of available objects according to its preference ordering. PS; on the other hand, simulates
a simultaneous eating algorithm by assuming that resources are divisible. Agents start
consuming from their most desired objects, and move to their next preferred objects upon
exhausting each object. The final fractional allocations can be seen as probabilities for
assigning indivisible objects to each agent.

RSD satisfies strategyproofness, ex post efficiency, and equal treatment of equals [0],
while PS is ordinally efficient and envyfree but not strategyproof [30]. For divisible objects,
Schulman and Vazirani [124] showed that if agents have lexicographic preferences, the
Probabilistic Serial rule is strategyproof under strict conditions over the minimum available
quantity of objects and the maximum demand request of agents. Under indivisible objects,
these strict requirements translate to situations where the number of agents is greater than
the number of objects and each agent receives at most one object. When allocating multiple
objects to agents, Kojima [92] obtained negative results on (weak) strategyproofness of PS
in the general domain of preferences

Random Serial Dictatorship (RSD) satisfies strategyproofness, proportionality, and ex
post efficiency [6]. Bogomolnaia and Moulin noted the inefficiency of RSD from the ex ante
perspective, and characterized the matching mechanisms based on first-order stochastic
dominance [30]. They proposed the probabilistic serial mechanism as an efficient and
envyfree mechanism with regards to ordinal preferences. While PS is not strategyproof,
it satisfies weak strategyproofness for problems with equal number of agents and objects.
However, PS is strictly manipulable (not weakly strategyproof) when there are more objects
than agents [02]. Kojima and Manea, showed that in large assignment problems with
sufficiently many copies of each object, truth-telling is a weakly dominant strategy in
PS [93]. In fact PS and RSD mechanisms become equivalent [11], that is, the inefficiency
of RSD and manipulability of PS vanishes when the number of copies of each object
approaches infinity:.

The practical implications of deploying RSD and PS have been the center of attention in
many one-sided matching problems [3,104]. In the school choice setting with multi-capacity
alternatives, Pathak observed that many students obtained a more desirable random as-
signment through PS in public schools of New York City [113]; however, the efficiency
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difference was quite small. These equivalence results and their extensions to all random
mechanisms [97], do not hold when the quantities of each object is limited to one.

The incompatibility of efficiency and strategyproofness gave rise to a more relaxed no-
tion of strategyproofness for assignment mechanisms [102,105]. These mechanisms provide
partial incentives by adjusting a parameter that sets the degree of strategyproofness and
can be extended to hybrid mechanisms that facilitate the design of partially efficient and
strategyproof random mechanisms [101].

The utilitarian and egalitarian welfare guarantees of RSD have been studied under
ordinal and linear utility assumptions [18, 20]. For arbitrary utilities, RSD provides the
best approximation ratio for utilitarian social welfare when m = n among all mechanisms
that rely only on ordinal preferences [57].

2.4 Computation

Due to the practical implications of economics models in real life, the goal in multia-
gent settings is to design allocation mechanisms that are simple and easy to implement.
Most matching mechanisms that are developed in the literature such as RSD, PS, and
Draft mechanisms are simple to deploy. However, computing allocation probabilities (also
known as fractional assignments) in some randomized mechanisms can be computationally
hard. For example, probabilities that are assigned by PS can be easily computed in poly-
nomial time via the well-known “Simultaneous Eating” algorithm while computing RSD
probabilities have shown to be #P-hard [16, 121].

The equilibrium notions and best-response strategies under PS have recently been stud-
ied [20,56]. Aziz et al. showed that computing expected utility best response is NP-hard,
but for the case of two agents or when preferences are lexicographic, manipulation can be
done in polynomial time [20]. Moreover, they proved the existence of pure Nash equilib-
ria, but showed that computing an equilibrium is NP-hard [19]. Nevertheless, Mennle et
al. [106] showed that agents can easily find near-optimal strategies by simple local and
greedy search. In the absence of truthful incentives, the outcome of PS is no longer guar-
anteed to be efficient or envyfree with respect to agents’ true underlying preferences, and
this inefficiency may result in outcomes that are worse than RSD, especially in ‘small’
markets [50].
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2.5 Dynamic Mechanisms

The temporal nature of the decisions in most allocation settings gives rise to two types of
uncertainties: (1) uncertainty about the population of agents and (2) uncertainty about
the types and preferences of the agents. Dynamic mechanism design [ 11] is a compelling
research area that has attracted attention in recent years and addresses these type of
uncertainties in dynamic settings.

Markets with dynamic population of agents have been studied for their incentive and
efficiency properties in various contexts such as campus housing and organ transplant,
which assume time-invariant preferences [27,96, 138]. In these markets, agents arrive and
depart stochastically and the outcome of matching mechanisms depends heavily on the
reported preferences of agents as well as private information about agents’ departure and
arrival times [2,8,68,96,132]. In the context of organ donation and kidney exchange, several
studies focused on dynamic arrival or departure of patients with multiple (but fixed) types.
Dynamic kidney matching, therefore, has been studied extensively for its efficiency, fairness,
and computational properties [13, 14,50, 117, 138]. Bade studied matching problems with
endogenous information acquisition, and showed that simple serial dictatorship is the only
ex ante Pareto optimal, strategyproof, and non-bossy mechanism when agents reveal their
preferences only after acquiring information about those with higher priorities [23].

There are numerous investigations on the incentive compatibility and efficiency of al-
location mechanisms in settings where agents’ types or preferences are subject to uncer-
tainties. In these settings, agents act to improve their outcomes over time, and decisions
both in the present and in the past influence how the world and preferences look in the
future. The dynamic pivot mechanism for dynamic auctions [25], dynamic Groves mecha-
nisms [11, 111] and many others [15, 110] are a few of myriad examples of mechanisms in
dynamic settings that consider agents with private dynamic preferences. However, almost
all of these works (excluding a recent study on dynamic social choice [112]) assume an
underlying utility function with possible utility transfers. Despite the interest in matching
problems, little has been done in dynamic settings where agents’ preferences evolve over
time.

2.6 Two-Sided Matching

Lastly, we briefly explain some of the findings in two-sided matching, a closely related
matching market without monetary transfers. The desirable properties of matching mech-
anisms in two-sided markets have been extensively studied [62, | 18]. Two-sided matching
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problems deal with mapping a set of agents to another disjoint set, both having private
ordinal preferences over the members of the other set. Although the deferred acceptance
algorithm proposed by Gale and Shapley provides a stable and optimal solution for two-
sided matching [62], several variations such as the school choice problem with indifferences
and college admission with quotas require new mechanisms to satisfy efficiency, strate-
gyproofness, fairness, and stability of the matching markets [1,60,66,95].

The deferred acceptance mechanism have also been studied in dynamic matching prob-
lems where preferences of one side evolves over time [38]. Although incentives for ma-
nipulation in such dynamic settings approaches to zero under some restrictions in large
markets, these settings remain highly manipulable in general settings. In fact, Kennes and
Dur prove that there exists no strategyproof and stable mechanism in dynamic matching
models [51,89].
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Chapter 3

Strategyproof Quota Mechanisms for
Multiple Assignment Problems

The goal in most multiagent systems is to design mechanisms that efficiently allocate re-
sources and objects to agents based on self-reported preferences. Intelligent agents often
behave strategically by reasoning over other agents’ preferences and the allocation mech-
anisms. Hence, it is necessary for mechanism designers of multiagent systems to ensure
the quality of outcomes by carefully crafting mechanisms that satisfy certain desirable
properties.

In this chapter, we focus attention on the problem of allocating indivisible objects to
agents in one-shot, static settings without any explicit market. In many real-life domains
such as course assignment, room assignment, school choice, medical resource allocation,
etc. the use of monetary transfers or explicit markets are forbidden because of ethical and
legal issues [116-118]. Much of the literature in this domain is concerned with designing
incentive compatible mechanisms that incentivizes agents to reveal their preferences truth-
fully. Moreover, the efficiency criterion of Pareto efficiency along with strategyproofness
provide stable solutions to such allocation problems.

We are interested in allocation problems where each agent may receive a set of ob-
jects and thus we search for mechanisms that satisfy some core axiomatic properties of
strategyproofness, Pareto efficiency, and non-bossiness. Examples of such allocation prob-
lems include distributing inheritance among heirs!, allocating multiple tasks to employ-
ees, assigning scientific equipment to researchers, assigning teaching assistants to different

'Here we only consider non-liquid assets that cannot be quickly or easily converted to transferable
assets such as money.
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courses, and allocating players to sports teams. The common solution for allocating players
to teams or allocating courses to students in the course assignment problem is the Draft
mechanism [35], where agents choose one item in each picking round. However, allocation
mechanisms, such as the Draft mechanism, have been shown to be highly manipulable in
practice and fail to guarantee Pareto optimality [35].

Svensson [133, 134] formulated the standard assignment problem (first proposed by
Shapley and Scarf [126]) where each agent receives exactly one item, and showed that Se-
rial Dictatorship mechanisms are the only social choice rules that satisfy Pareto efficiency,
strategyproofness, non-bossiness, and neutrality. In contrast to the standard assignment
problem, in the multiple assignment problem agents may require bundles or sets of ob-
jects according to a predefined quota and might have various interesting preferences (e.g.
complements or substitutes) over these sets. However, the class of sequential dictatorships
mechanisms no longer characterizes all non-bossy, Pareto efficient, and strategyproof social
choice mechanisms. In fact, even with monotonic preferences, the class of such social choice
mechanisms gets restricted to quasi-dictatorial mechanisms where every agent except the
first dictator is limited to pick at most one object [109]. Assuming a fixed quota size for all
agents, serial dictatorships are the only mechanisms satisfying strategyproofness, Pareto
efficiency, non-bossiness, and neutrality [72].

Our work generalizes these results, for a subclass of preferences, by allowing any number
of agents or objects, and assuming that individual agents’ quotas can vary and be agent
specific, imposing no restrictions on the problem size nor quota structures. Instead, we
are interested in expanding the possible quota mechanisms to a larger class, essentially
enabling a social planner to choose any type of quota system. Our main focus is on the
lexicographic preference domain, where agents have idiosyncratic private preferences.

Lexicographic preferences [59] have recently attracted attention among researchers in
economics and computer science [91, 120, 124]. There is plenty of evidence for the presence
of lexicographic preferences among individuals for breaking ties among equally valued
alternatives [52,130], making purchasing decisions by consumers [17,31,111], and examining
public policies, job candidates, etc. [137].

In this vein, allocating indivisible alternatives entails lexicographic choices in many
settings. Examples of such include assigning scientific resources or labs to research groups,
assigning teaching assistants to instructors, etc. Take the example of assigning teaching
assistants to instructors. An instructor requiring three assistants may plan to utilize her
team by delegating the most important tasks (let’s say teaching tutorials) to Alice (her top
choice), perhaps because of past interactions. Thus, she would consider any subset that
includes Alice superior to all those that do not assign Alice to her course.
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Our main results in the lexicographic preference domain are the following:

e We characterize the set of strategyproof, non-bossy, and neutral allocation mecha-
nisms when there is a quota system. We show that serial dictatorships are the only
mechanisms satisfying our required properties of strategyproofness, non-bossiness,
Pareto efficiency, and neutrality. Allowing any quota system enables the social plan-
ner to remedy the inherent unfairness in deterministic allocation mechanisms by
assigning quotas according to some fairness criteria (such as seniority, priority, etc.).

e We generalize our findings to randomized mechanisms and show that random serial
dictatorship quota mechanisms (RSDQ) satisfy strategyproofness, ex post efficiency,
and envyfreeness in the domain of lexicographic preferences. Consequently, we prove
that the well-known Random Serial Dictatorship (RSD) mechanism in standard as-
signment settings satisfies envyfreeness when preferences are lexicographic. Thus,
random quota mechanisms provide a rich and extended class for object allocation
with no restriction on the market size nor quota structure while providing envyfree-
ness in the lexicographic domains, justifying the use of such mechanisms in many
practical applications.

3.1 Related Work

In the standard assignment problem (sometimes known as the house allocation problem),
each agent is entitled to receive exactly one object from the market. Pépai [108] extended
the standard model of Svensson [133, 131] to settings where there are potentially more
objects than agents (each agent receiving at most one object) with a hierarchy of en-
dowments, generalizing Gale’s top trading cycle procedure. This result showed that the
hierarchical exchange rules characterize the set of all Pareto efficient, group-strategyproof,
and reallocation proof mechanisms.

In the multiple-assignment problem, agents may receive sets of objects, and thus, might
have various interesting preferences over the bundles of objects. Papai [110] studied this
problem on the domain of strict preferences allowing for complements and substitutes, and
showed that sequential dictatorships are the only strategyproof, Pareto optimal, and non-
bossy mechanisms. Ehlers and Klaus [55] restricted attention to responsive and separable
preferences and essentially proved that the same result persists even in a more restrictive
setting. Furthermore, Ehlers and Klaus showed that considering resource monotonic allo-
cation rules, where changing the available resources (objects) affects all agents similarly,
limits the allocation mechanisms to serial dictatorships.
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Pépai [109] and Hatfield [72] studied the multiple assignment problem where objects are
assigned to agents subject to a quota. Papai [109] showed that under quantity-monotonic
preferences every strategyproof, non-bossy, and Pareto efficient social choice mechanism
is sequential; while generalizing to monotonic preferences, the class of such social choice
functions gets restricted to quasi-dictatorial mechanisms where every agent except the first
dictator is limited to pick at most one object. Papai’s characterization is essentially a neg-
ative result and rules out the possibility of designing neutral, non-bossy, strategyproof,
and Pareto efficient mechanisms that are not strongly dictatorial. Restricting the prefer-
ences to responsive preferences only and when agents have precisely fixed and equal quotas,
Hatfield [72] showed that the only strategyproof, Pareto efficient, non-bossy, and neutral
mechanisms are serial dictatorships.

Hylland and Zeckhauser’s pseudo-market design based on eliciting cardinal utilities [32]
and its deterministic counterpart based on competitive equilibrium from equal incomes
(CEEI) [139] provide efficient and envyfree solutions but are highly susceptible to ma-
nipulation. Zhou [115], based on Gale’s conjecture [01], proved that there do not exist
(randomized) allocation rules that satisfy symmetry, Pareto efficiency, and strategyproof-
ness.

In the randomized settings, Random Serial Dictatorship (RSD) and Probabilistic Serial
Rule (PS) are well-known for their prominent economic properties. RSD satisfies strat-
egyproofness, ex post efficiency, and equal treatment of equals [6], while PS is ordinally
efficient and envyfree but not strategyproof [30]. For divisible objects, Schulman and Vazi-
rani [121] showed that if agents have lexicographic preferences, the Probabilistic Serial rule
is strategyproof under strict conditions over the minimum available quantity of objects
and the maximum demand request of agents. Under indivisible objects, these strict re-
quirements translate to situations where the number of agents is greater than the number
of objects and each agent receives at most one object. When allocating multiple objects
to agents, Kojima [92] obtained negative results on (weak) strategyproofness of PS in the
general domain of preferences, which was later confirmed for lexicographic preferences by
Hosseini et al. [78]. In contrast, we seek to find strategyproof and envyfree mechanisms
with no restriction on the number of agents or objects under the lexicographic preference
domain, addressing the open questions in [109] and in [124] about the existence of a
mechanism with more favorable fairness and strategyproofness properties.
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3.2 The Model

There is a set of m indivisible objects M = {1,...,m} and a set of n agents N = {1,...,n}.
There is only one copy of each object available, and an agent may receive more than one
object. Let M = P(M) denote the power set of M.

Agents have private preferences over sets of objects. Let P denote the set of all complete
and strict preferences over Ml. Each agent’s preference is assumed to be a strict relation
=€ P.2 A preference profile denotes a preference ordering for each agent and is written
as == (=1,...,>=n,) € P". Following the convention, = ;= (>1,..., =i 1, =it1,--+,>=n) €
P, and thus == (>;,>=_;).

An allocation is a n x m matrix A € A that specifies a (possibly probabilistic) allocation

of objects to agents. The vector A; = (A;1,...,A;m) denotes the allocation of agent i,
that is,

Ay Arg A .0 Al

A A A v Ao
P

An An,l An,Q cee An,m

We sometimes abuse the notation and use A; to refer to the set of objects allocated to
agent . Let A refer to the set of possible allocations. Allocation A € A is said to be
feasible if and only if Vj € M, .\ A;; = {0,1}, no single object is assigned to more
than one agent, that is, A;(A; = 0 for ¢ # j, while some objects may not be assigned.
Note that we allow free disposal, and therefore, | ;. A; € M. For two allocations we
write A; >=; B; if agent ¢ with preferences >; strictly prefers A; to B;. Thus, A; >=; B; and
B; =; A; implies A; = B;.

Preference >; is lexicographic if there exists an ordering of objects, (a,b,c,...), such
that for all A,B € Aifa € A; and a ¢ B; then A; >=; B;; if b € A; and a,b ¢ B; then
A; =; B;; and so on. That is, the ranking of objects determines the ordering of the sets of
objects in a lexicographic manner. Note that lexicographic preferences are responsive and
strongly monotonic. A preference relation is responsive if A;|J B; »=; A;|J B; if and only if
B; ~; B.. Strong monotonicity means that any set of objects is strictly preferred to all of
its proper subsets. We make no further assumption over preference relations.

An allocation mechanism is a function 7 : P* — A, which assigns a feasible allocation
to every preference profile. Thus, agent i’s allocation A; can also be represented as ;.
An allocation mechanism assigns objects to agents according to a quota system g, where

2Preference relations are assumed to be complete, transitive, and antisymmetric.
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¢; is the quota of the ith dictator such that Y ", ¢; < m. Since in our model not all
agents need to be assigned an object, we use the size of quota |¢q| to denote the number of
agents that are assigned at least one object. Thus, we have |¢| < n. From the revelation
principle [18], we can restrict our analysis to direct mechanisms that ask agents to report
their preferences to the mechanism directly.

3.2.1 Properties

In the context of deterministic assignments, an allocation A Pareto dominates another
allocation B at > if 3¢ € N such that A; =; B, and Vj € N A; =, B;, where A; ~; B,
denotes that agent ¢ strictly prefers allocation A; over B;. An allocation is Pareto efficient
at > if no other allocation exists that Pareto dominates it at >.

Since, a social planner may decide to only assign a C' < m number of objects, we
need to slightly modify our efficiency definition. We say that an allocation that assigns
C = " | ¢ objects is Pareto C-efficient if there exists no other allocation that assigns
an equal number of objects, C', that makes at least one agent strictly better off without
making any other agent worse off. A Pareto C-efficient allocation is also Pareto efficient
when Y ¢; = m.

Definition 3.1 (Pareto C-efficiency). A mechanism © with quota q, where C = ). ¢;, is
Pareto C-efficient if for all =& P", there does not exist A € A which assigns C objects
such that for alli € N, A; =; m(>), and A; =; 7;(>) for some j € N.

A mechanism is strategyproof if there exists no non-truthful preference ordering >/,
that improves agent i’s allocation. More formally,

Definition 3.2 (Strategyproofness). Mechanism 7 is strategyproof if for all =€ P™, i € N,
and for any misreport =€ P, we have m;(>) =; m;(>%,>_;).

Although strategyproofness ensures that no agent can benefit from misreporting prefer-
ences, it does not prevent an agent from reporting a preference that changes the prescribed
allocation for some other agents while keeping her allocation unchanged. This property
was first proposed by Satterthwaite and Sonnenschein [122]. A mechanism is non-bossy if
an agent cannot change the allocation without changing the allocation for herself.

Definition 3.3 (Non-bossiness). A mechanism is non-bossy if for all =€ P™ and agent
i € N, for all = such that m;(>) = m; (>}, =_;) we have w(>) = w(>}, >_;).
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Non-bossiness and strategyproofness only prevent certain types of manipulation; chang-
ing another agent’s allocation or individually benefiting from a strategic report. However,
it may still be possible for two or more agents to form a coalition and affect the final
outcome, so that at least one of them improves her allocation ex post.

Definition 3.4 (Group Strategyproofness). A mechanism m is group-strategyproof if for
all >, there does not exist a subset of agents N' C N with >y, such that for all i € N’,
i (= =) =i (=) and for some j € N, w;(=yi, =nwr) =5 ().

The requirement of group-strategyproofness precludes group manipulation as well as
individual agent manipulation.

Our last requirement is neutrality. Let ¢ : M — M be a permutation of the objects.
For all A € A, let ¢(A) be the set of objects in A renamed according to ¢. Thus, ¢(A) =
(p(Ay),...,0(Ay)). For each =€ P" we also define ¢(>) = (¢(>1),...,0(>,)) as the

preference profile where all objects are renamed according to ¢.

Definition 3.5 (Neutrality). A mechanism m is neutral if for any permutation function ¢
and for all preference profiles =€ P, ¢p(n(>=)) = w(p(>)).

In other words, a mechanism is neutral if it does not depend on the name of the objects,
that is, changing the name of some objects results in a one-to-one identical change in the
outcome. It is clear that above conditions reduce the set of possible mechanisms drastically.

3.3 Allocation Mechanisms

Several plausible multiple allocation mechanisms exploit interleaving picking orders to in-
corporate some level of fairness, where agents can take turns each time picking one or more
objects [34,36,90]. An interleaving mechanism alternates between agents, allowing a single
agent to pick objects in various turns. The interleaving mechanisms have been widely used
in many everyday life activities such as assigning students to courses, members to teams,
and in allocating resources or moving turns in boardgames or sport games. To name a
few, strict alternation where agents pick objects in alternation (e.g. 1212 and 123123)
and balanced alternation where the picking orders are mirrored (e.g. agent orderings 1221
and 123321), and the well-known Draft mechanism [35, 36, 38] that randomly chooses a
priority ordering over n agents and then alternates over the drawn priority ordering and
its reverse sequence are the examples of such mechanisms. However, all these interleaving
mechanisms are highly manipulable in theory; computing optimal manipulations under

22



interleaving mechanisms is shown to be easy for a single agent under additive and separa-
ble preferences [33]. Extending to non-separable preferences, deciding a strategic picking
strategy is NP-complete, even for two agents [33]. Kalinowski et al. [35] studied interleav-
ing mechanisms (alternating policies) from a game-theoretical perspective and showed that
under linear order preferences the underlying equilibrium in a two-person picking game is
incentive compatible [36]. Nonetheless, such interleaving mechanisms have been shown to
be heavily manipulated in practice [35].

We generalize such allocation procedures to any mechanism with an interleaving order
of agents with general preferences where at least one agent gets to choose twice, once before
and once after one (or more) agents.

Theorem 3.1. There exists no interleaving mechanism that satisfies Pareto C-efficiency,
non-bossiness, and strategyproofness.

Proof. The proof follows by constructing a manipulable preference profile. Given any
Pareto C-efficient and non-bossy interleaving mechanism, we show that we can construct
an instance (preference profile) at which at least one agent can manipulate the outcome.

Suppose there is a non-bossy and Pareto C-efficient mechanism 7 with at least one
alternation between agents ¢ and j. Note that the alternation could be through a fixed
ordering or through a picking process. Since we are constructing an instance, we can
assume that all other agents k € N \ {i,j} will receive their objects after agents i and j
(or have already received their non-conflicting objects before the two). We now construct
a preference profile such that == (=;, =;, >n{j})-

Let fr denote the agent in the kth picking order, that is, fo = i indicates that the agent
in the second picking order is agent i. Consider the ordering such that for agents 1 and
2 we have f; = f3 = 1 and f; = 2. Assume there are 3 objects available and construct a
preference profile as follows: =1=a = b > ¢ and == 07 > 0y > 03, where o represent
the kth ranked object in 5. By Pareto C-efficiency and non-bossiness of 7, agents final
allocations must preclude any further exchange between the two agents, and no agent can
change the allocation of the other while its own allocation remains unchanged.

Since agent 1 is going to pick first and last according to ordering f, agent 1 can pick
her first choice either at stage 1 or 3 as long as agent 2’s top choice is not equal to
agent 1’s top choice, i.e. 01 € {b,c}. If o = ¢ then there is no conflict between agent
1 and 2 and playing truthfully has the best outcome for agent 1. Thus, it follows that
0o, = b and 0y € {a,c}. Now we only need to construct the rest of agent 2’s ordering
such that agent 1’s top choice, object a, remains in the pool of objects until the last
stage. Thus, for the following preference profile =1= a = b > ¢ and == b > ¢ > «a,
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the interleaving mechanism is manipulable. This implies that no Pareto C-efficient and
non-bossy interleaving mechanism guarantees strategyproofness. O

Clearly, an imposed mechanism that assigns a fixed allocation to every preference profile
is strategyproof and non-bossy but does not satisfy Pareto C-efficiency [110].3

With these essentially negative results for interleaving mechanisms, we restrict our
attention to the class of sequential dictatorship mechanisms, where each agent only gets
one chance to pick (possibly more than one) objects.

3.3.1 Sequential Mechanisms

Let ¢ denote a quota system such that ), ¢; < m. In a sequential dictatorship mechanism
with quota ¢, the first dictator chooses ¢; of her most preferred objects; the second dictator
is chosen depending on the set of objects allocated to the first dictator. The second dictator
then chooses go objects of her most preferred objects among the remaining objects. This
procedure continues, where the choice of the next dictator may be determined depending
on the earlier allocations, until no object or no agent is left.

Let f be a function that, given a partial allocation of objects to some agents, returns
the next dictator. Then, f;(-) = j means that agent j is ranked ith in the ordering of
dictators. There exists an agent f; (first dictator) for each preference profile =€ M, and
an ordering of the remaining dictators such that the ith dictator is identified recursively
by

fi(ﬂf1(>’)7 ce 77Tf¢71(>’))
In other words, the choice of the next dictator only depends on the previous dictators
and their allocation sets and does not depend on the preferences of the previous dictators.
The following example shows why the choice of dictator should not depend on previous
dictators’ preferences.

Example 3.1. Assume three agents and four objects with ¢ = (2,1,1) and consider the
following rule for identifying the order of the dictators: if the first dictator’s preference
is a = b > ¢ > d then the ordering of other agents is (2,3), otherwise the order is (3,2).
Now if agent 2 and 3 have identical preferences as agent 1, then agent 1 can simply change
agent 2 and 3’s allocations by misrepresenting her preference as =; : b = a = ¢ = d while
her allocation remains unchanged. Thus, this sequential dictatorship mechanism is bossy
even though it satisfies Pareto efficiency and strategyproofness.

3An imposed mechanism does not take agents’ preferences into account and prescribes the same allo-
cation to every preference profile.
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Definition 3.6 (Sequential Dictatorship). Let My = P, (M) be the set of subsets of M
of cardinality less than or equal k. An allocation mechanism w : P" — A is a sequential
dictatorship quota mechanism if there exists a quota system q and an ordering f such that

for all =€ P",

(=) ={Z e My, |Z =1 Z' for all Z' € M, }
j=ie1

ﬂ-fi(ﬂ'fl,--.,ﬂ'fi_l)(>) :{Z S Ml]i \ U 7Tfj<>)|Z ~ fi A fO’f‘ all |Z,| = |Qz|}
j=1

A serial dictatorship mechanism is an example of a sequential mechanism where
the ordering is a permutation of the agents, determined a priori, that is, for all »-& P,
7y)(>=) = m;(>). Such mechanisms satisfy neutrality. From now on, we simply use the
vector f instead of f(-) when the ordering is predefined independent of the choice of objects.

3.4 Serial Dictatorship Quota Mechanisms

In this section, we study serial dictatorship mechanisms for quota allocations and charac-
terize the set of strategyproof, non-bossy, neutral, and Pareto efficient mechanisms subject
to various quota systems.

When allocating objects sequentially via a quota system ¢, Pareto C-efficiency requires
that no two agents be envious of each others’ allocations since then they can simply ex-
change objects ex post, implying that the initial allocation is dominated by the new allo-
cation after the exchange. For example, take a serial dictatorship with ¢ = 1 and ¢ = 2
and three objects. Agent 1 will receive her top choice object {a} (since {a} =1 {b} =1 {c})
according to her preference and agent 2 receives {b, c}. However, it may be the case that
{b,c} =1 {a} while {a} »2 {b,c} and both agents may be better off exchanging their
allocations. Thus, we have the following proposition for general preferences.

Proposition 3.1. For general preferences, sequential (and serial) dictatorship quota mech-
anisms do not guarantee Pareto C-efficiency.

In the absence of Pareto C-efficiency in the domain of general preferences, a social
planner is restricted to use only one type of quota system; either assigning at most one
object to all agents except the first dictator (who receives the remaining objects), or setting
equal quotas for all agents [72, 109].
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Due to the impossibility shown in Proposition 3.1, in the rest of this chapter we restrict
ourselves to the interesting class of lexicographic preferences. We show that if prefer-
ences are lexicographic, regardless of the selected quota system, any serial dictatorship
mechanism guarantees Pareto C-efficiency. We first provide the following lemma in the
lexicographic domain.

Lemma 3.1. The following statements hold for two sets of objects when preferences are
lexicographic:

- For all X such that X N A; =0, we have A; =; B; iff A;UX =; B;UX.

- If B; ¢ A; and A; =; B; then there exists an object x € A; such that x »=; X for all
X eP(B;, — A)).

Proof. We provide proof for each of the statements in the lexicographic domain.

e Since B; C A; then all objects in B; are also in A;, and there exists an object z € A;
such that = ¢ B;. By the definition of lexicographic preferences, having an object is
preferred to not having the object (i.e. objects are goods). Therefore, A; >=; B;.

e It is easy to see that adding a set of object X N A; = () to two sets such that A; =; B;
maintains the preference over the two sets. This is because elements in X are added
to both sets and by assumption there is still an element © € A; and z ¢ X that is
preferred to all objects in B;. We should prove the converse that if A,UX »=; B;UX
then A; >=; B;. Suppose not, that is B; =; A;. By adding X = B; — A, to both
sides we have B; U X =; A, UX, that is, B; >=; A; U B;, which contradicts the strong
monotonicity of lexicographic preferences when A; is nonempty.

e Suppose that there does not exist an object x € A; such that = >=; X for all X €
P(B; — A;). The set X can be any power set of B; — A;, and for the sake of this proof
we assume that X = B; — A;. By the second statement in this lemma, for A; >; B;,
we can add any X such that XN A; = () to the both sides and write A;UX =; B;UX,
which holds since X = B; — A;. This states that for any object x € B;, x is also a
member of A; U X, implying that B; C A; U X. Note that B; # A; U X because A; is
considered to be nonempty. Using the first statement in this lemma, if B; C A; U X
then A; U X »; B;. Replacing X with B; — A; and subtracting it from both sides,
we have A; »; (), which implies that there exists an object x € A; such that x ¢ B;
and x >=; B; — A;, contradicting the initial assumption.

26



The above items conclude our proof for the statements in this lemma. O

Proposition 3.2. If preferences are lexicographic, the serial dictatorship quota mechanism
is Pareto C-efficient.

Proof. Consider a mechanism 7 with quota ¢, that assigns C' =) . ¢; objects. Suppose for
contradiction that there exists an allocation B with arbitrary quota ¢’, where C' = %" . ¢/,
that Pareto dominates A = 7(>). We assume C’ = C' to ensure that both allocations assign
equal number of objects (Otherwise by strong monotonicity of lexicographic preferences
and Lemma 3.1 one can assign more objects to strictly improve some agents’ allocations.).

Thus, for all agents j € N, B; =; A;, and there exist some agent ¢ where B; >~; A;.
If for all j € N, |B;| > |Aj] then ¢; > g;. Now suppose for some i, |B;| > [A;|. This
implies that ¢, > ¢;. By adding these inequalities for all agents we have ). ¢, > > ¢,
contradicting the initial assumption of equal quota sizes (C' = C).

For the rest of the proof, we consider two cases; one where the size of B; is greater than
that of A;, i.e., |B;| > |A;|, and one where |B;| < |A,|.

Case I: Consider |B;| < |A4;| and B; =; A;. If B; C A; then monotonicity of lexico-
graphic preferences in Lemma 3.1 implies that A; >; B; contradicting the assumption. On
the other hand, if B; ¢ A; by Lemma 3.1 there exists an object z € B; such that for all
X € P(B; — A;) agent ¢ ranks it higher than any other subset, that is, x >=; X. In this
case, serial dictatorship must also assign = to agent i in A;, which is a contradiction.

Case II: Consider |B;| > |A;| and B; »; A;. The proof of this case heavily relies on
the lexicographic nature of preferences (as opposed to Case I that held valid for the class
of monotonic, and not necessarily lexicographic, preferences). The inequality |B;| > |A;|
indicates that ¢; > ¢;. We construct a preference profile >’ as follows: for each j € N,
if Bj = Aj then =)=, otherwise if B; # Aj; rank the set B; higher than A; in >/
(== Bj = Aj = ...). Now run the serial dictatorship on =’ with quota ¢. Suppose that
B' = n(>'). For agent i, B! is the top ¢; objects of B; where B] C B; and because ¢; is
fixed, then |B}| = |A;|. Given >’ we have B; # A;, which implies that B # A;. By strong
monotonicity for agent ¢ we have B; >=; B >=; A;. However, according to the constructed
quotas we have |B;| > |Bi| but |Bl| = |A,|, where B} # A;. By Lemma 3.1 there exists an
object x € B! which is preferred to all proper subsets of A; — B;. However, if such object
exists it should have been picked by agent ¢ in the first place, which is in contradiction
with agent i’s preference. This concludes our proof. O

Under lexicographic preferences a social planner can use variants of quotas based on
different needs (fairness, seniority, etc.). The ability to use a variety of quotas is crucial
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in many multiagent systems. Suppose that a planner wants to assign a set of services to
a group of agents while ensuring that those with lower priority receive more services or
goods to (partially) compensate for undesirable nature of not being ordered first. In this
case, a social planner may set a quota such that those who are ordered last, at least receive
more objects.

We state a few preliminary lemmas before proving our main result in characterizing
the set of non-bossy, Pareto C-efficient, neutral, and strategyproof mechanisms. Given
a non-bossy and strategyproof mechanism, an agent’s allocation is only affected by her
predecessor dictators. Thus, an agent’s allocation may only change if the preferences of
one (or more) agent with higher priority changes.

Lemma 3.2. Take any non-bossy and strategyproof mechanism w. Given two preference
profiles =, ='€ P" where == (=, =_;) and ='= (=4, >";), if for all j < i we have m,(~
) =7, (=), then mp, (=) = 75, ().

Proof. For all j < i we have 7y, (=) = 7, (>'). By non-bossiness and strategyproofness, for
all =% such that 7;(>) = 7;(=}, =_;) we have 7(~) = 7(=},=_;). In words, non-bossiness
and strategyproofness prevent any agent to change the allocation of other agents with lower
priority (those who are ordered after him), without changing its own allocation.

Let M’ be the set of remaining objects such that M’ = M \ |J,_, 7, (~). Since my, (-
) = 7y, ('), the set of remaining objects M’ under =’ is equivalent to those under >,
implying that 7y, (>) = 7, (>") which concludes the proof. O

The following Lemma guarantees that the outcome of a strategyproof and non-bossy
mechanism only changes when an agent states that some set of objects that are less pre-
ferred to m;(>) under >; is now preferred under >/. Intuitively, any preference ordering >/
which reorders only the sets of objects that are preferred to m;(>) or the sets of objects that
are less preferred to the set of objects allocated via m;(>~) keeps the outcome unchanged.

Lemma 3.3. Let w be a strategyproof and non-bossy mechanism, and let =, '€ P™. For
all allocations A € A, if for all i € N, m(>-) =; A; and m;(>) =i A;, then n(>) = n(>').

Proof. The proof follows similar to Lemma 1 in [134]. First, we show that 7 (>}, >_;) = 7(>
), that is changing i’s preference only does not affect the outcome. From strategyproofness
we know that m;(>;) =; m(>; >_;). By assumption of the lemma we can also write
mi(>=:) =5 m(=5, =_;). However, strategyproofness implies that m;(>%, >=_;) =, m(>;).
Since the preferences are strict, the only way for the above inequalities to hold is when
mi(>4, >=_;) = mi(>). The non-bossiness of 7 implies that 7 (>}, >_;) = w(>).
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We need to show that the following argument holds for all agents. We do this by
partitioning the preference profile into arbitrary partitions constructed partly from > and
partly from ~'. Let =P= (=},..., =) 1,>=,...,>=5,) € P". Thus, a sequence of preference
profiles can be recursively written as =P*'= (=7 =" ).

Using the first part of the proof and by the recursive representation, we can write m(>~?
) =7(~},=",) = 7(=P*1). Now using this representation, we shall write 7(>") = 7(>=""")
and 7(>) = w(>="'), which implies that 7(>) = m(>'). O

The next lemma states that when all agents’ preferences are identical, any strategyproof,
non-bossy, and Pareto C-efficient mechanism simulates the outcome of a serial dictatorship
quota mechanism.

Lemma 3.4. Let m be a strategyproof, non-bossy, and Pareto C-efficient mechanism with
quota system q, and > be a preference profile where all individual preferences coincide, that
is =;=>; for alli,7 € N. Then, there exists an ordering of agents, f, such that for each
k=1,...,|q|, agent fi receives exactly qx items according to quota q induced by a serial
dictatorship.

Proof. Suppose the contrary and let > be an identical preference profile -1=>,=a > b > ¢
such that agent 1 receives a and ¢ while agent 2 receives b. For agents 1 and 2, assume
that they both have received no other objects except the ones stated above (Alternatively,
we can assume that the other objects received by these two agents so far are their highest
ranked objects, and because these objects were assigned in some previous steps, they won'’t
affect the assignment of the remaining objects). For all other agents N \ {1,2} assume
that the allocation remains unchanged, i.e., these agents will receive exactly the same
objects after we change the preferences of agent 1. By Lemma 3.3, since the mechanism is
non-bossy and strategyproof, agent 1’s allocation remains unchanged under the following
changes in its preference ordering:

—1=a=-br-c=>a-c>-b=>c>a>b

Thus, the new preference profile =" would be

= [e]>=T[a]l>b

2 a>[b]>-c

where 7(>-") = m(>). The squares show the current allocation. Since agent 1 is receiv-
ing two objects and agent 2 receives one, for any ordering that is not prescribed by a
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serial dictatorship, agent 2 should be ordered second (otherwise, the ordering is a serial
dictatorship).

More specifically, orderings (1,2) and (2,1) are serial dictatorships. Since agent 2 must
be ordered second, it must be the case that agent 1 goes first and third (otherwise we
are back at (1,2), which results in a serial dictatorship). Agent 1 first chooses object ¢
according to >/, then agent 2 chooses object a according to >, and lastly agent 1 chooses
the remaining object b. Therefore, agent 2 can benefit from manipulating the mechanism
by choosing a instead of b, contradicting the assumption that 7 is strategyproof and non-
bossy. This implies that such agents cannot exist, and concludes our proof. O

Theorem 3.2. If preferences are lexicographic, an allocation mechanism is strategyproof,
non-bossy, neutral, and Pareto C-efficient if and only if it is a serial dictatorship quota
mechanism.

Proof. 1t is clear that in the multiple-assignment problem any serial dictatorship mecha-
nism is strategyproof, neutral, and non-bossy [72, 110]. For Pareto efficiency, in Proposi-
tion 3.2, we showed that the serial dictatorship mechanism is Pareto C-efficient for any
quota, and in fact it becomes Pareto efficient in a stronger sense when all objects are
allocated C' = m.

Now, we must show that any strategyproof, Pareto C-efficient, neutral, and non-bossy
mechanism, 7, can be simulated via a serial dictatorship quota mechanism. Let 7 be a
strategyproof, Pareto C-efficient, neutral, and non-bossy mechanism. Consider >~¢€ P" to
be an arbitrary lexicographic preference profile. Given ¢, we want to show that 7 is a
serial dictatorship mechanism. Thus, we need to find an ordering f that induces the same
outcome as m when allocating objects serially according to quota q.

Take an identical preference profile and apply the mechanism 7 with a quota ¢. By
Lemma 3.4, there exists a serial dictatorial allocation with an ordering f where agent f;
receives ¢, of her favorite objects from M, agent fy receives g¢o of her best objects from
M \ 7, and so on. Therefore, given a strategyproof, non-bossy, neutral, and Pareto C-
efficient mechanism with quota ¢, we can identify an ordering of agents f = (fi,..., fa)
that receive objects according to ¢ = (qi, ..., ¢,). Note that since the ordering is fixed a
priori, the same f applies to any non-identical preference profile.

From any arbitrary preference profile >, we construct an equivalent profile as follows:
Given the ordering f, the first best ¢; objects (the set of size ¢;) according to >y, are
denoted by Ay, and are listed as the first objects (or set of objects of size ¢; since preferences
are lexicographic) in >,. The next g, objects in >, are the first best ¢ objects according
to >y, from M \ Ay, and so on. In general, for each i = 2,...,]|q|, the next best ¢; objects
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Algorithm 1: Constructing an identical preference profile
Data: A preference profile >, an ordering f, and quota ¢
Result: A profile with identical preferences >’ with w(>') = 7(>)
Initialize =<
Initialize set Z = ()
for (i < 1 to |q|) do
7 top(ql-, >f¢> // Most preferred set of size q; from the remaining objects.
>/1<— append(>’1, Z) // Append this set to the preference ordering.
Z <+ 0
for (i < 1 to |f|) do
[ e
return >,

are the best ¢; objects according to >y, from M \ U;jl_l A;. Algorithm 1 illustrates these
steps.

Now we need to show that applying 7 to the constructed identical preference profile
(>') induces the same outcome as applying it to >=. By Lemma 3.2 for each agent f;,
7wy, (=) = 7y, (=) if for all j < i we have 7y, (=) = 7, (>'). That is, the allocation of an
agent remains the same if the allocations of all previous agents remain unchanged. Now
by Lemma 3.3, for any allocation A € A, if for each agent i € N, m;(>') =, A; then we also
have m;(>") =; A;. For each f; where i = 1,...,]|q|, by Lemma 3.3 since 7 is strategyproof
and non-bossy, for any allocation Ay, given the quota ¢ we have 7, =’ Ay, and 7y, =y, Ay,
which implies that 7y, (>') = 74, (>). Therefore, we have 7(>') = w(>). Since > is an
identical profile, w(>') = 7w(>) assigns ¢; objects to each agent according to the serial
ordering f. Thus, 7 is a serial dictatorship quota mechanism. O

The following example illustrates how an equivalent preference profile with identical
outcome is constructed given any arbitrary preference profile, ordering, and quota system.

Example 3.2. Consider allocating 4 objects to 3 agents with preferences illustrated in
Table 3.1 (left), based on the following quota ¢ = (1,2,1). Assume the following ordering
of agents f = (1,2,3). To construct a profile with identical orderings, agent 1’s first best
object according to >, a, is considered the highest ranking object in >.. Agent 2’s best
two objects (go = 2) among the remaining objects ¢ and b are ranked next, and finally
agent 3’s remaining object d is ranked last. Given f and ¢, the two preference profiles
depicted in Table 3.1 have exactly similar outcome (shown with squares).
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=11 [a]>=b>=c>d = [a]l=c>=b>d

2 [¢]>=a>=[b]>d =5 a=[c]-|b]~d

S50 a=c>[d]>=b L asc>b-|d]

Table 3.1: Converting a preference profile to identical orderings, with exact same outcome.

Finally, we show that strategyproofness and non-bossiness are necessary and sufficient
conditions for group-strategyproofness.

Proposition 3.3. A mechanism is group-strategyproof if and only if it is strateqyproof and
non-bossy.

Proof. 1t is easy to see that group-strategyproofness implies strategyproofness and non-
bossiness. We need to show the converse, that is, if 7 is strategyproof and non-bossy then
it is group-strategyproof.* Let N’ C N be a subset of agents, N’ = {1,...,n}, with =/,
such that for all i € N m;(>'\/, =_n/) =; m;(>). Construct an alternative preference profile
= such that for all : € N’ the preference ordering *=; preserves the ordering but moves the
set m;(>="y/, =_n+) to the first rank in the ordering.

For agent 1, if w1 (>, =_n+) >=1 m1(>) then by Lemma 3.2, 71 (>'y,, >_n~) is not in the
list of available sets. Otherwise, m(>\,, =_n7) = m1(>). Thus, strategyproofness implies
that m(>=1,>=_1) = m(>), and by non-bossiness we have 7(=;,=_1) = 7(>). Repeat-
ing the same argument for all other agents in {2,...,n'}, we get (=, =_n/) = 7(>).
Now since 7 is strategyproof and non-bossy, using Lemma 3.3 we have that m (=, = _n
) = w(>'y/,>—n+). This implies that 7(>ns, >_n/) = 7(>), meaning that = is group-
strategyproof. O

Note that group-strategyproofness prevents any subset of agents from misreporting their
preferences and gaining as a group. It is critical to note that under group-strategyproofness
agents in a group cannot gain by misreporting, without being able to swap their objects
after the final allocation. Thus, a group-strategyproof mechanism does not rule out the
possibility of manipulation by a subset of agents that misreport their preferences and then
exchange their allocations ex post. This type of coalitional manipulation requires that two
agents can swap their objects after being assigned by the mechanism. A property that rules
out manipulation by exchange of objects ex post is called reallocation-proofness [108].

The following example illustrates a mechanism that is group-strategyproof but does
not guarantee reallocation-proofness.

4The proof is inspired by Lemma 1 in [105] for single-object allocation.
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=10 [a]>=c>D

=0 [c]=b>a

30 ¢>a>|b]

Table 3.2: An example showing a mechanism that is group-strategyproof but mnot
reallocation-proof.

Example 3.3. Consider three agents with preferences as shown in Table 3.2. A serial
dictatorship mechanism with ordering f = (1,2,3) assigns objects to agents as shown
with squares. Given the serial dictatorship, none of the subset of agents benefit from
misreporting their preferences since the serial dictatorship mechanism is non-bossy and
strategyproof. However, if agents are able to exchange objects ex post, agent 1 and 3 can
form a coalition and strategically report preferences as >|: ¢ = a > b and =4: a > ¢ > b.
Agent 1 receives object ¢, agent 2 receives b, and agent 3 receives object a. Now, after the
allocation is complete, if agents 1 and 3 swap their assignments, they both receive their
top choices, and thus, benefit from this type of reallocation manipulation.

Consequently, it is easy to see that serial dictatorship quota mechanisms are guar-
anteed against group manipulation but do not prevent coalitional manipulation through
reallocation. We rewrite Theorem 3.2 as the following:

Theorem 3.3. Serial dictatorship quota mechanisms are the only neutral, Pareto C-
efficient, and group-strategyproof mechanisms.

3.5 Sequential Dictatorship Quota Mechanisms

In this section, we study a broader class of quota mechanisms by relaxing the neutrality
requirement and allowing for the dictators to be identified in each sequence, as opposed to
fixing the dictatorship orderings apriori.

Proposition 3.4. A sequential dictatorship quota mechanism is Pareto C-efficient under
lexicographic preferences.

Proof. The proof exactly follows as of the proof of Proposition 3.2. n

Characterizing the set of strategyproof, non-bossy, and Pareto C-efficient quota mech-
anisms is similar to our characterization for serial dictatorship mechanisms, but requires a
subtle change in Lemma 3.4.
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Lemma 3.5. Let w be a strategyproof, non-bossy, and Pareto C-efficient mechanism with
quota q, and = be a preference profile where all individual preferences coincide, that
is =i=>; for all i,j € N. Then, there exists an ordering fi, fo(ms(>)), ..., fu(mp (>
)swos T (>)) such that for each i € N agent i receives exactly g; items according to
quota q.

Proof. Let m be a strategyproof, non-bossy, and Pareto C-efficient mechanism with quota
q. By Lemma 3.4, we know that for each identical preference profile, there exists a fixed
ordering f’: (f{,..., f.) such that agent f] receives ¢; objects, agent fj receives ¢z, and so
on. Let f be a dictatorship ordering such that fi, fo(mp (>)), ..., fu(mp (), .., mp_, (>)).
We show that for each ordering of agents, there is an exact mapping from f’ to f. For
all preference profiles, map each agent ordering as follows: fi = fi, fo(mp(>)) = f5, ...,
fe(mp (), ..., mp_, (=) = fi. This implies that f is a dictatorial ordering, which concludes
our existence proof. O

Theorem 3.4. An allocation mechanism is strateqyproof, non-bossy, and Pareto C-efficient
iof and only if it is a sequential dictatorship quota mechanism.

Proof. Sequential dictatorship quota mechanisms are strategyproof and non-bossy. Propo-
sition 3.4 states that when preferences are lexicographic sequential dictatorships are Pareto
C-efficient. Sequential dictatorships are also Pareto efficient when C' = ZL‘L'I G-

We must show the converse. Let m be a strategyproof, Pareto C-efficient, and non-
bossy mechanism with quota q. By Lemma 3.5, given an identical preference profile and
a quota ¢, there exists a sequential ordering f where agent f; receives ¢; of her favorite
objects from M, agent fao(ms (>)) receives go of her best objects from M \ 74, and so
on. Therefore, since the choice of the first dictator is independent of preference profile, we
can identify a sequential ordering f1, fa(ms, (>=)), ..., fu(mpn(>),. .., s, (>)) that receive
objects according to ¢ = (q1, - - -, qx)-

Similar to the proof of Theorem 3.2, we construct an alternate preference profile >,
based on the given preference profile, at which all agents have identical preferences, where
el A

According to function f, the first best ¢; objects according to >y are denoted by
7s, () and are listed as the first objects in >!. The next ¢ objects in >4 are the first
best g2 objects according to >, (x, (~)) from M \ 7, (=), and so on. In general, for each
i € N\ fi1, the next best g; objects are the best g; objects according to > filmg, (=)rms, (5))

from M \ U?jfl 7y, (). These steps are depicted in Algorithm 2.
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Algorithm 2: Constructing an identical preference profile
Data: A preference profile >, first dictator f;, and quota g
Result: A profile with identical preferences >’ with m(>') = 7(>)
Initialize =<
Initialize set Z = ()
for (i < 1 to |q|) do
if (i =1) then
|k < f1 // The first dictator is known.
else
L k <+ fi(ﬂfl(>), - ,Wfi_l(>)) // Identify the next dictator
7 top(qi7 >'k:) // Most preferred set of size q; from the remaining objects.
>-/1<— append(>—'1, Z) // Append this set to the preference ordering.
L Z <+ 0
for (i < 1 to |f]) do
[ =i
return >,

By Lemma 3.2, for any agent in f the outcome of 7(>’) must remain unchanged if
the outcome of all predecessor agents remains unchanged. Thus, by Lemma 3.3, for any
allocation A € A, if for each agent i € N, m;(>'") =i A; then we also have m;(>') =; A;.
For each f;(-) where i = 1,...,|f|, by Lemma 3.3 since 7 is strategyproof and non-bossy,
for any allocation Ay, given the quota ¢ we have
=

T iy (et (7)) fi(mpy (mhoeige_ (-)) Ailpy () gy ()

T fi(mpy (=)o, (=) 2 filmgy )or, o (5)) AfiCrgy ()ms, ()

which implies that 7(>") = 7w(>). Therefore, we identified an sequential ordering of agents
that induces the same outcome as the original mechanism. Thus, 7 is a sequential dicta-
torship quota mechanism. O

3.6 Randomized Quota Mechanisms

So far we identified the class of deterministic strategyproof, non-bossy, and Pareto C-
efficient quota mechanisms. However, deterministic quota mechanisms generally have poor
fairness properties: the first dictator always has strong advantage over the next dictator
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and so on. This unfairness could escalate when an agent gets to pick more objects than
the successor agent, that is, ¢; > ¢; for ¢ < j. Thus, while any profile-independent
randomization over a set of serially dictatorial mechanisms still maintains the incentive
property, randomization over priority orderings seem to be a proper way of restoring some
measure of randomized fairness.

We first need to define a few additional properties in the randomized settings. A random
allocation is a stochastic matrix A with ) .\ A;; = 1 for each j € M. This feasibility
condition guarantees that the probability of assigning each object is a proper probability
distribution. Moreover, every random allocation is a convex combination of deterministic
allocations and is induced by a lottery over deterministic allocations [111]. Hence, we can
focus on mechanisms that guarantee Pareto C-efficient solutions ex post.

Definition 3.7 (Ex Post C-Efficiency). A random allocation is ex post C-efficient if it can
be represented as a probability distribution over deterministic Pareto C-efficient allocations.

The support of any lottery representation of a strategyproof allocation mechanism must
consist entirely of strategyproof deterministic mechanisms. Moreover, if the distribution
over orderings does not depend on the submitted preferences of the agents, then such
randomized mechanisms are strategyproof [115].

We focus our attention on the downward lexicographic dominance relation to compare
the quality of two random allocations when preferences are lexicographic.® Given two
allocations, an agent prefers the one in which there is a higher probability for getting
the most-preferred object. Formally, given a preference ordering »;, agent ¢ prefers any
allocation A; that assigns a higher probability to her top ranked object A;,, over any as-
signment B; with B, ,, < A;,,, regardless of the assigned probabilities to all other objects.
Only when two assignments allocate the same probability to the top object will the agent
considers the next-ranked object. Throughout this thesis we focus on the downward lexi-
cographic relation, as opposed to upward lexicographic relation due to [16]. The downward
lexicographic notion compares random allocations by comparing the probabilities assigned
to objects in order of preference. Thus, it is a more natural way of comparing allocations
and has shown to be often used in consumer markets and other settings involving human
decision makers [84, 137, 114].

Definition 3.8. Agent i with preference »=; downward lexicographically prefers random
allocation A; to B; if

d/ ¢ M:Ai’g > Bi’g A Yk hﬁ:Ai,k:BM.

5In the general domain, this measure corresponds to a stronger notion based on first-order stochastic
dominance [30,69]
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We say that allocation A downward lexicographically dominates another alloca-
tion B if there exists no agent i € N that lexicographically prefers B; to A;. Thus, an
allocation mechanism is downward lexicographically efficient (ld-efficient) if for all prefer-
ence profiles its induced allocation is not downward lexicographically dominated by any
other random allocation. We can see that efficiency under general preferences immediately
implies 1d-efficiency under lexicographic preferences. However, some allocations may only
guarantee efficiency when preferences are lexicographic.

Example 3.4. Consider four agents N = {1,2, 3,4} and four objects M = {a, b, ¢, d} with
quota ¢ = (1,1,1,1) at the following preference profile == ((cabd), (acdb), (cbda), (acbd)).
Note that preferences are only defined over single objects, and we write (cabd) as a short-
hand form of == ¢ = a = b = d. Table 3.3 shows the stochastic efficient allocation in

a b ¢ d a b c d
Ay 0 1/31/21/6 Ay 1/12 1/3 5/12 1/6
Ay 1/2 0 0 1/2 Ay 11/24 0 1/12 11/24
As 0 1/31/21/6 As; 0 5/12 5/12 1/6
Ay 1/21/3 0 1/6 Ay 11/24 1/4 1/12 5/24
(a) sd-efficient allocation (b) ld-dominated but not sd-dominated

Table 3.3: An example showing an allocation that is ld-efficient but not sd-efficient.

comparison with ld-efficient allocation. Here, even though the allocation in Table 3.3b is
ld-dominated by the sd-efficient allocation, it is not stochastically dominated under the
first-order stochastic dominance. This is because agent 2 (similarly agent 4) weakly prefers
the allocation in Table 3.3b if only considering her first two top objects. Thus, the two
random allocations are in fact incomparable with respect to stochastic dominance.

Given an allocation A, we say that agent i is envious of agent j’s allocation if agent
i prefers A; to her own allocation A;. Thus, an allocation is envyfree when no agent is
envious of another agent’s assignment. Formally we write,

Definition 3.9. Allocation A is envyfree if for all agents i € N, there exists no agent-object
pair j € N, £ € M such that,

Aj,@ > ALg N Yk =; (- Ai,k = Aj,k

A mechanism is envyfree if at all preference profiles =€ P" it induces an envyfree
allocation.
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3.6.1 Random Serial Dictatorship Quota Mechanisms

Recall that |g| denotes the number of agents that are assigned at least one object. Given
a quota of size |q|, there are (|Z‘) X |g|! permutations (sequences without repetition) of |q|
agents from N. Thus, a Random Serial Dictatorship mechanism with quota q is a uniform
randomization over all permutations of size |g|. Formally,

Definition 3.10 (Random Serial Dictatorship Quota Mechanism (RSDQ)). Let P(N) be
the power set of N, and f € P(N) be any subset of N. Given a preference profile =€ P",
a random serial dictatorship with quota q is a convexr combination of serial dictatorship
quota mechanisms and is defined as

D rep(vy:|fi=lq £ ()
() < lal!

(3.1)

In this randomized mechanism agents are allowed to pick more than one object accord-
ing to ¢ and not all the agents will be allocated ex post. We can think of such mechanisms
as extending the well-known Random Serial Dictatorship (RSD) for the house assignment
problem wherein each agent is entitled to receive exactly one object. Thus, an RSD mech-
anism is a special case of our quota mechanism with ¢; = 1,Vi € N and |q| = n.

Example 3.5. Consider three agents and four objects. Agents’ preferences and the prob-
abilistic allocation induced by RSDQ with quota ¢ = (2,1,1) are presented in Table 3.4.
Note that the size of ¢ can potentially be smaller than the number of agents, meaning that
some agents may receive no objects ex post.

a b c d
Ay 3/6 1/6 2/6 2/6
Ay 3/6 0 2/6 3/6
A3 0 5/6 2/6 1/6

=1 lc=a=b=d
s |la=c=d>=b
=3 |lc=b>=d>a

Table 3.4: RSDQ allocation with ¢ = (2,1,1).

The weakest notion of fairness in randomized settings is the equal treatment of equals.
We say an allocation is fair (in terms of equal treatment of equals) if it assigns an identical
random allocation (lottery) to agents with identical preferences.

Theorem 3.5. Take any serial dictatorship mechanism © with a quota q. A uniform
randomization over all permutations of orderings with size |q| is strategyproof, ex post C-
efficient, and fair (equal treatment of equals).
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Proof. Showing ex post C-efficiency is simple: any serial dictatorship mechanism satis-
fies Pareto C-efficiency, and thus, any randomization also guarantees a Pareto C-efficient
solution ex post. The support of the random allocation consists of only strategyproof de-
terministic allocations, implying that the randomization is also strategyproof. The equal
treatment of equal is the direct consequence of the uniform randomization over the set of
possible priority orderings. O

Now, we present our main result for envyfreeness of RSDQ regardless of the selected
quota system.

Theorem 3.6. Random Serial Dictatorship Quota mechanism is envyfree with any quota
q, under downward lexicographic preferences.

Proof. Let A denote a random allocation induced by RSDQ with quota ¢ at an arbitrary
preference profile =€ P". Suppose for contradiction that there exists an agent i € N
with random allocation A; that prefers another agent’s random allocation A; to her own
assignment, that is, A; >; A;. Assuming that preferences are downward lexicographic,
there exists an object ¢ such that A;, > A;, and for all objects that are ranked higher
than ¢ (if any) they both receive the same probability Vk >~; ¢ : A;, = Ajj. Thus,
we can write: Y o o Aje = Y a4 Aie. Since preferences are lexicographic, the
assignments of objects less preferred to ¢ become irrelevant because for two allocations A;
and B; such that A;, > B;,, we have A; =; B, for all x <; { where B, , > A; ;. Thus, we
need only focus on object /.

Let F denote the set of all orderings of agents where ¢ is ordered before j or ¢ appears
but not j. Note that since we allow for || = | f| < n, some agents could be left unassigned,
and permuting ¢ and j could imply that one is not chosen under (|Z‘). For any ordering

f € F of agents where i precedes 7, let f € F be the ordering obtained from f by swapping
i and j. Clearly, |F| = |F| and the union of the two sets constitute the set of orderings
that at least one of 7 or j (or both) is present. Fixing the preferences, we can only focus
on f and f.

Let m¢(>) be the serial dictatorship with quota ¢ and ordering f at >. RSDQ is a
convex combination of such deterministic allocations with equal probability of choosing an
ordering from any of F or F.

Given any object y € M, either i receives y in 7y and j gets y in 7f, or none of the
two gets y in any of 7y and mz. Thus, object £ is either assigned to ¢ in 7; and to j in
77, or is assigned to another agent. If 7 gets £ in 7y for all f € F, then j receives £ in 7.
The contradiction assumption A;, > A;, implies that there exists an ordering f where ¢
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receives a set of size ¢; that does not include object ¢ while j’s allocation set includes /.
Let X; denote this set for agent ¢ and X for agent j. Then, X; >=; X;. Thus, by definition
there exists an object ¢’ € X; such that ¢ >; ¢, where ¢’ ¢ X;. Thus, the probability of
assigning object ¢’ >; ¢ to i is strictly greater than assigning it to j, that is, A;» > A, 4.
However, by lexicographic assumption we must have Vk >; ¢ : A;, = A, which is a
contradiction. ]

Theorem 3.7. Under downward lexicographic preferences, a Random Serial Dictatorship
Quota mechanism is ex post C-efficient, strategyproof, and envyfree for any number of
agents and objects and any quota system.

The well-known random serial dictatorship mechanism (RSD), also known as Random
Priority, is defined when n = m and assigns a single object to agents [0]. It is apparent
that RSD is a special instance from the class of RSD(Q mechanisms.

Corollary 3.1. RSD is ex post efficient, strategyproof, and envyfree when preferences are
downward lexicographic.

Proof. The conventional RSD mechanism is equivalent to an RSD(Q mechanism where
agents receive exactly one object, that is, ) . ¢; = m and for each agent 7, ¢; = 1. Therefore,
RSD satisfies ex post efficiency, strategyproofness, and envyfreeness. O

3.7 Discussion

We investigated the strategyproof allocation mechanisms when agents with lexicographic
preferences may receive more than one object according to a quota. The class of sequential
quota mechanisms enables the social planner to choose any quota without any limitations.
For the general domain of preferences, however, the class of strategyproof, non-bossy,
and Pareto efficient mechanisms is restricted to sequential dictatorships with equal quota
sizes. Demanding neutrality, the set of such mechanisms gets restricted to quasi-dictatorial
mechanisms, which are far more unfair [109, 110]. Thus, such mechanisms limit a social
planner to specific quota systems while demanding the complete allocation of all available
objects.

The class of strategyproof allocation mechanisms that satisfy neutrality, Pareto C-
efficiency, and non-bossiness expands significantly when preferences are lexicographic. Our
characterization shows that serial dictatorship quota mechanisms are the only mechanisms
satisfying these properties in the multiple-assignment problem. Removing the neutrality
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a b c
A 172 00 1)2
Ay 1/2 1/6 1/3
A 0 5/6 1/6

Table 3.5: An allocation prescribed by RSD that is envyfree under downward lexicographic
preferences but is not envyfree under the upward lexicographic notion.

requirement, this class of mechanisms further expands to sequential dictatorship quota
mechanisms.

To recover some level of fairness, we extended the serial dictatorship quota mecha-
nisms to randomized settings and showed that randomization can help achieve some level
of stochastic symmetry amongst the agents. More importantly, we showed that RSDQ
mechanisms satisfy strategyproofness, ex post C-efficiency, and envyfreeness for any num-
ber of agents, objects, and quota systems when preferences are downward lexicographic.
The envyfreeness result is noteworthy: it shows that in contrast to the Probabilistic Serial
rule (PS) [30] which satisfies strategyproofness when preferences are lexicographic only
when n > m [121], the well-known RSD mechanism in the standard assignment problem
is envyfree for any combination of n and m. These results address the two open questions
about the existence of a mechanism with more favorable fairness and strategyproofness
properties [109, 124].

Note that our envyfreeness result for RSDQ mechanisms holds under the assumption
of downward lexicographic notion, which is a more natural way of comparing probabilistic
outcomes. The upward lexicographic extension (due to Cho [10]) is a dual to the downward
lexicographic notion, which is based on lexicographically minimizing the probabilities of
less preferred objects. Our envyfreeness results in Theorem 3.6 and Theorem 3.7 do not
hold under the upward extension. For instance, consider three objects and three agents
with the following preferences: == ((a > ¢ > b),(a > b > ¢), (b > a > ¢)). A simple RSD
mechanism will assign probabilities as shown in Table 3.5. This allocation is envyfree under
downward lexicographic preferences; however, under the upward lexicographic relation
agent 2 is envious of agent 3’s allocation because agent 3 is assigned less probability for
object ¢, its least preferred object.

Serial dictatorship mechanisms are widely used in practice since they are easy to imple-
ment while providing stability and strategyproofness guarantees [116]. Serial dictatorship
quota mechanisms and their randomized counterparts provide a richer framework for multi-
ple allocation problems while creating the possibility of fair and envyfree assignments. Our
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characterization for deterministic quota mechanisms justifies the use of quotas in sequential
settings. In randomized settings, however, an open question is whether RSD(Q mechanisms
are the only allocation rules that satisfy the above properties in the multiple assignment
domain. Of course, answering this question, first, requires addressing the open question by
Bade [22] in the standard assignment problem (where every agent gets at most one object):
is random serial dictatorship a unique mechanism that satisfies strategyproofness, ex post
efficiency, and equal treatment of equals?

3.8 Design Recommendations

Characterizing the set of desirable allocation mechanisms is key in choosing which mech-
anisms to adopt in practice and in designing effective mechanisms in multiagent systems.
Consider an online task allocation system for assigning various tasks to workers through
crowdsourcing. Workers may have different preferences over the set of tasks and a mech-
anism designer may require that a subset of workers get assigned to multiple tasks while
the rest only get to complete one task each. In this case, the choice of serial dictator-
ship quota mechanisms and its randomized counterpart (RSDQ) would be appropriate
to ensure Pareto efficiency of the final allocation while preventing agent manipulation by
guaranteeing strategyproofness and non-bossiness.

Fairness is an essential property in many allocation and scheduling settings. Under
downward lexicographic preferences, our proposed RSD(Q mechanism satisfies a strong no-
tion of envyfreeness. Consider an online system for scheduling shifts to nurses or caregivers
based on their preferences. Not only does the RSDQ mechanism prevent manipulation,
but also it satisfies envyfreeness for those with lexicographic preferences. Moreover, a serial
dictatorship quota mechanism enables the social planner to set any desired quota based on
seniority so that senior nurses get to have higher priorities but are required to pick more
than one shift while other junior nurses are ordered last and get to pick shifts later.
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Chapter 4

Empirically Investigating the
Characteristics of One-Sided
Matching Mechanisms

One-sided matching mechanisms have been extensively adopted in many resource alloca-
tion settings such as assigning dormitory rooms or offices to students, students to public
schools, college courses to students, organs and medical resources to patients, and members

to subcommittees [13,38, 100, 117]. Two important (randomized) matching mechanisms
that only elicit ordinal preferences from agents are Random Serial Dictatorship (RSD) [0]
and Probabilistic Serial Rule (PS) [30]. Both mechanisms have important economic prop-

erties and are practical to implement. The RSD mechanism has strong truthful incentives
but guarantees neither efficiency nor envyfreeness. PS satisfies efficiency and envyfreeness;
however, it is susceptible to manipulation. Therefore, there are subtle points to be consid-
ered when deciding which mechanism to use. For example, given a particular preference
profile, the mechanisms often produce random assignments which are simply incomparable
and thus, without additional knowledge of the underlying utility models of the agents, it
is difficult to determine which is the “better” outcome. Furthermore, properties like effi-
ciency, truthfulness, and envyfreeness can depend on whether there is underlying structure
in the preferences, and even in general preference models it is valuable to understand under
what conditions a mechanism is likely to be efficient, truthful, or envyfree as this can guide
designers choices.

In this chapter, we study the comparability of PS and RSD when there is only one
copy of each object, and analyze the space of all preference profiles for different numbers
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of agents and objects. Working in the space of general ordinal preferences, we provide
empirical results on the (in)comparability of RSD and PS and analyze their respective
economic properties.

We show that despite the inefficiency of RSD, the fraction of random assignments at
which PS is strictly outperforms RSD vanishes, especially when the number of agents is
less than or equal to the available objects. We also investigate the manipulability of PS
and show that PS is almost 99% manipulable for any combination of agents and objects,
and the fraction of strongly manipulable profiles goes to 1 as the ratio of objects to agents
increases. We show similar trends on these properties under lexicographic preferences, and
further present results on envy of RSD. Our results show that although the fraction of
envious agents grows with the number of agents, there is a sudden drop in the fraction of
envious agents when there are equal numbers of agents and objects.

In Section 4.4, we instantiate utility functions for agents to gain deeper insights on the
manipulability, social welfare, and envyfreeness of the two mechanisms under different risk
attitudes. Our main result is that under risk aversion, the social welfare of RSD is as good
as PS but RSD does create envy among the agents (though the fraction of envious profiles
and the total envy are small). Moreover, when the number of agents and objects are equal,
RSD assignments are less likely to be dominated by PS and overall RSD assignments create
negligible envy among agents. We also show that PS is highly susceptible to manipulation
in almost all combinations of agents and objects. The fraction of manipulable profiles and
the gain from manipulation rapidly increases, particularly when agents become more risk
averse.

4.1 Model

In this section we describe the basic one-sided matching problem and introduce the two
mechanisms we study in detail, Random Serial Dictatorship (RSD) [6] and Probabilistic
Serial Rule (PS) [30]. We then introduce a number of properties and criteria used to
evaluate these mechanisms.

A one-sided matching problem consists of a set of n agents, N, and a set of m indivisible
objects, M." Each agent i € N has a private strict preference ordering, >=;, over M where
a >; b indicates that agent i prefers to receive object a over object b. We represent the
preference ordering of agent i by the ordered list of objects »=;= a >=; b =; ¢ or »=;= (abc),
for short. We let P denote the set of all complete and strict preference orderings over M.

! This problem is sometimes called the assignment problem or house allocation problem in the literature.
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A preference profile =€ P™ specifies a preference ordering for each agent, and we use the
standard notation >_;= (>1,...,>;_1, ™41, -- ., =) to denote preferences orderings of all
agents except ¢ and thus == (>, = _;).

The goal in a one-sided matching problem is to assign the objects in M to the agents
in N according to preference profiles, under the constraint that no object can be assigned
to more than one agent. If m = n then this means that each agent will receive exactly one
object, however if m < n then some agents will receive no object and if m > n then some
agents may receive multiple objects. An assignment is represented as a matrix

A1 A171 ALQ ce Al,m
A 42 _ A'271 A'272 - A2.7m
A, Ant Ang oo Anm

)

where A, ; € [0, 1] is the probability that agent 7 is assigned object j. We let A denote
the set of all feasible assignments where an assignment A € A is feasible if and only if
VieM, Y yA,; =1 If A e Ais such that A4;; € {0,1} then we say that A is a
deterministic assignment; otherwise, A is a random assignment. Every random assign-
ment can be represented as a convex combination of deterministic assignments [111], and
thus we view random assignments as a probability distribution over a set of deterministic
assignments.

4.1.1 Matching Mechanisms

In general, a matching mechanism, M, is a mapping from the set of preference profiles, P"
to the set of feasible assignments, A. That is, M : P — A. We focus our attention on two
widely studied mechanisms for one-side matching: Random Serial Dictatorship (RSD) [0]
and Probabilistic Serial Rule (PS) [29].

RSD relies on the concept of priority orderings over agents. Such an ordering is an
ordered list of agents where the first agent gets to select its most preferred object from
the set of objects, the second agent then selects its most preferred object from the set
of remaining objects and so on until no objects remain.? Given a preference profile =€
P™, RSD returns an assignment RSD(>) € A which is a uniform distribution over all

2When n < m and agents can receive more than one object, RSD requires a careful method for picking
a sequence at each priority ordering to ensure strategyproofness. As discussed in Chapter 3, this picking
sequence should be based on an arbitrary serial dictatorship quota mechanism, which directly affects the
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deterministic assignments induced from all possible priority orderings over the set of agents.
RSD has been widely adopted for fair and strategyproof assignments for the school choice
problem, course assignment, house allocation, and room assignment [3,0,7,131]

PS treats objects as a set of divisible goods of equal size and simulates a simultaneous
eating algorithm. Each agent starts “eating” its most preferred object, all at the same
rate. Once an object is gone (eaten away) then the agent starts eating its next preferred
object among the remaining objects. This process terminates when all objects have been
“eaten”. Given a preference profile =€ P", PS(>) € A is a random assignment where
A, ; is the probability (fraction) that object j is assigned to (or “eaten by”) agent i.

4.1.2 General Properties

In this section we define key properties for matching mechanisms. To evaluate the quality
of a random assignment, we use first-order stochastic dominance [30,09]. Given a random
assignment A;, the probability that agent 7 is assigned an object that is at least as good
as object ¢ is defined as follows

JEM:jzil

We say an agent always prefers assignment A; to B;, if for each object ¢ the probability
of assigning an object at least as good as ¢ under A; is greater or equal that of B;, and
strictly greater for some object.

Definition 4.1 (Stochastic Dominance). Given a preference ordering =;, random assign-
ment A; stochastically dominates (sd) assignment B;(# A;) if

Vle M, w(>¢,€, Al) > U}(Fi,f, Bz) (42)
A matching mechanism is sd-efficient if at all preference profiles =€ P", for all agents
1 € N, the prescribed assignment is not stochastically dominated by any other assignment.

Definition 4.2 (sd-Efficiency). A random assignment is sd-efficient if for all agents, it is
not stochastically dominated by any other random assignment.

efficiency and envy of the assignments [33, 75]. For simplicity, we use the variant of RSD based on a
quasi-dictatorial mechanism [109] where the first agent selects its most preferred (m —n + 1) objects, and
the rest of the agents choose one object each.
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An important desirable property in matching mechanisms is strategyproofness, that is
the mechanism is designed so that no agent has incentive to misreport its preferences.

Definition 4.3 (sd-Strategyproofness). Mechanism M is sd-strategyproof if at all pref-
erence profiles =& P", for all agents © € N, and for any misreport ~,€ P", such that
A= M(>-) and A’ = M+, =_;), we have:

Vle M, w(=,l,A;) > w(;, ¢, A) (4.3)

Sd-strategyproofness is a strict requirement. It implies that under any utility model
consistent with the preference orderings, no agent can improve her expected utility by
misreporting. We say that a mechanism is weakly sd-strategyproof if at all preference
profiles there is no misreport such that for all £ € M, w(>;, ¢, AL) > w(>;, ¢, A;) with
at least one ¢ € M such that w(>;, ¢, A) > w(>;, 0, A;). Clearly, sd-strategyproofness
implies weak sd-strategyproofness but the converse does not hold.

An assignment is manipulable if it is not sd-strategyproof. If there exists some agent
who strictly benefits from the manipulation, (i.e. the mechanism is not even weakly sd-
strategyproof) then we say the assignment is sd-manipulable (or strictly manipulable).

We are also interested in whether mechanisms are fair and use the notion of envyfree-
ness to this end. An assignment is sd-envyfree if each agent strictly prefers her random
allocation to any other agent’s assignment.

Definition 4.4 (sd-Envyfreeness). Given agent i’s preference =;, assignment A; is sd-
envyfree if for all agents Vk #1i € N,

Vi € M, w(%i,f, AZ) > w(h,é, Ak) (44)

We say an assignment is weakly sd-envyfree if the inequality in Equation 4.4 is strict
for some ¢ € M, but there exists at least one ¢ for which the inequality in Equation 4.4
does not hold. A matching mechanism satisfies sd-envyfreeness if at all preference profiles
—¢c P", it induces sd-envyfree assignments for all agents.

Lastly, we are interested in investigating efficiency, manipulation, and envy of the ran-
dom mechanisms when preferences are lexicographic. Under lexicographic preferences,
given two allocations, an agent prefers the one in which there is a higher probability for
getting the most-preferred object. Recall our definition of downward lexicographic domi-
nance in Chapter 3.
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n>m n<m
PS RSD PS RSD

sd-strategyproof weak v X Vv
sd-efficiency v X v X
sd-envyfree v weak v weak

Table 4.1: Properties of PS and RSD.

Definition 4.5 (Lexicographic Dominance). Given a preference ordering »;, random as-
signment A; lexicographically dominates (ld) assignment B; if

JleM: w(>1,€7141) > U)(>'7;,g, Bz) A (45)
Vkw=;0: w(%i,ﬁ, Az) = U)(>-i,€, Bl>

We say that allocation A downward lexicographically dominates another allocation B
if there exists no agent ¢ € N that lexicographically prefers B; to A;. Thus, an allocation
mechanism is lexicographically efficient (ld-efficient) if for all preference profiles its induced
allocation is not lexicographically dominated by any other random allocation.

4.1.3 Properties of RSD and PS

The theoretical properties of PS and RSD have been well studied in the economics lit-
erature [30], and we summarize the results in Table 4.1. Both mechanisms are ex post
efficient, that is, their realized outcomes cannot be improved without making at least one
agent worse off. PS has been shown to be both sd-envyfree and sd-efficient. However, it
is not even weakly sd-strategyproof when n < m [93] and is only weakly sd-strategyproof
when n > m. On the other hand, RSD is always sd-strategyproof, but it is only weakly
sd-envyfree and is not sd-efficient. Example 4.1 illustrates the sd-inefficiency of RSD.

Example 4.1. Suppose there are four agents N = {1,2,3,4} and four objects M =
{a,b,c,d}. Consider the following preference profile == ((abcd), (abed), (badc), (badc)).
Table 4.2 shows the outcomes for PS(>-) and RSD(>). In this example, all agents strictly
prefer the assignment induced by PS over the RSD assignment. Thus, RSD is inefficient
at this preference profile.
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a b c d a b c d

A 12 0 1/2 0 Ay 5/12 1/12 5/12 1/12
Ay 1/2 0 1/2 0 Ay 5/12 1/12 5/12 1/12
A 0 1/2 0 1/2 A3 1/12 5/12 1/12 5/12
A, 0 1/2 0 1/2 Ay 1/12 5/12 1/12 5/12
(a) Assignment under PS(>) (b) Assignment under RSD(>)

Table 4.2: Example showing the inefficiency of RSD

a b c a b c
A 172 00 1)/2 A 12 00 1)2
Ay 1/2 1/4 1/4 Ay 1/2 1/6 1/3
A 0 3/4 1/4 A; 0 5/6 1/6
(a) Assignment under PS(>) (b) Assignment under RSD(>)

Table 4.3: Incomparability of RSD and PS

4.2 Incomparability of RSD and PS

We argue that the theoretical findings on RSD and PS do not necessarily provide enough
guidance to a market designer trying to select the correct mechanism for a specific setting.
For example, while we know that PS is sd-efficient and RSD is not, this does not mean
that PS assignments always stochastically dominate the assignments prescribed by RSD.

Example 4.2. Suppose there are three agents N = {1,2,3} and three objects M =
{a,b,c}. Consider the following preference profile == ((acb), (abc), (bac)). Table 4.3 shows
PS(>) and RSD(>). Neither assignment dominates the other since agent 1 is indifferent
between the two assignments while agent 2 prefers PS(>) and agent 3 prefers RSD(>-).

If we knew the utility functions of the agents, consistent with their ordinal preferences,
then we might be able to use the notion of (utilitarian) social welfare to help determine
the better assignment.® However, it is easy to construct different utility functions for the
agents in Example 4.2 where both RSD and PS maximize social welfare.

Similarly, the envy of RSD and the manipulability of PS both depend on the structure
of preference profiles, and thus, a compelling question, that justifies studying the practical

3Given utility functions for the agents, where u;(j) is the utility agent i derives from being assigned
object j, the (utilitarian) social welfare of an assignment A is »-; >, A; ju; ().
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(a) The fraction that PS stochastically domi- (b) The fraction that PS lexicographically dom-
nates RSD. inates RSD.

Figure 4.1: The fraction of preference profiles under which PS dominates RSD.

implications of deploying a matching mechanism, is to analyze the space of preference
profiles to find the likelihood of inefficient, manipulable, or envious assignments under
these mechanisms.

4.3 General and Lexicographic Preferences

The theoretical properties of PS and RSD only provide limited insight into their practical
applications. In particular, when deciding which mechanism to use in different settings, the
incomparability of PS and RSD leaves us with an ambiguous choice in terms of efficiency,
manipulability, and envyfreeness. Thus, we examine the properties of RSD and PS in
the space of all possible preference profiles as well as under lexicographic preferences.
Lexicographic preferences are present in various applications and have been extensively
studied in artificial intelligence and multiagent systems as a means of assessing allocations
based on ordinal preferences [51,58, 119]. Under lexicographic preferences, an allocation
that assigns a higher probability to the top ranked object is always preferred to any other
allocation, regardless of the probabilities assigned to objects in the next positions. Only
when two allocations assign equal probabilities to the top ranked object, the probability of
the next preferred object is considered. In the rest of this chapter, we denote the efficiency,
strategyproofness, manipulability, and envyfreeness with ld- (lexicographically dominate)
prefix.
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The number of all possible preference profiles is super exponential (m!)". For each
combination of n agents and m objects we performed a brute force coverage of all possible
preference profiles. Thus, for all subsequent figures each data point shows the fraction of
all possible preference profiles. For the cases of n = 10 and m € {9, 10}, we randomly gen-
erated 1,000 instances by sampling from a uniform preference profile distribution. For each
preference profile, we ran both PS and RSD mechanisms and compared their outcomes in
terms of the stochastic dominance relation. Note that not only is computing RSD prob-
abilities #P-complete (and thus intractable) [16,121], but checking the desired properties
such as envyfreeness, efficiency, and manipulablity of random allocations is shown to be
NP-hard for general settings [20,21]. Thus, for larger settings even if we randomly sample
preference profiles it is not easy to verify the aforementioned properties.

4.3.1 Preliminary Results

Our experimentation discloses several intriguing observations, confirming theoretical re-
sults and providing additional insights into matching markets. A preliminary look at our
empirical results illustrates the following: when m < 2,n < 3, PS coincides exactly with
RSD, which results in the best of the two mechanisms, i.e., both mechanisms are sd-
efficient, sd-strategyproof, and sd-envyfree. Another interesting observation is that when
m = 2, for all n, PS is sd-strategyproof (although the PS assignments are not necessarily
equivalent to assignments induced by RSD), RSD is sd-envyfree, and for most instances
when m = 2, PS stochastically dominates RSD, particularly when n > 4.

4.3.2 Efficiency

Our first finding is that the fraction of preference profiles at which RSD and PS prescribe
identical random assignments goes to 0 when n grows. There are two conclusions that
one can draw. First, this result confirms the theoretical results of Manea on asymptotic
inefficiency of RSD [99], in that, in most instances, the assignments induced by RSD are
not identical to the PS assignments. Second, this result suggests that the incomparability
of outcomes is significant, that is, the social welfare of the random outcomes is highly
dependent on the underlying utility models.

The fraction of preference profiles >¢& P" for which RSD is stochastically dominated by
PS at - converges to zero as ;- — 1. Figure 4.1a shows that when m grows beyond m > 5,
due to incomparability of RSD and PS with regard to the stochastic dominance relation, the
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RSD assignments are rarely stochastically dominated by sd-efficient assignments prescribed
by PS.

We also see similar results when we restrict ourselves to lexicographic preferences (Fig-
ure 4.1b). The fraction of preference profiles =€ P" for which RSD is lexicographically
dominated by PS at = converges to zero as * — 1.

For lexicographic preferences, we also observe that the fraction of preference profiles
for which PS assignments strictly dominate RSD-induced allocations goes to 1 when the
number of agents and objects diverge. The fraction of preference profiles =€ P" for
which RSD is lexicographically dominated by PS at > converges to 1 as |n — m/| grows.
Intuitively, when some agents can receive more than one object (n < m) or when there are
not sufficient objects (n > m) for all agents, in each realized ordering of agents by RSD,
those with higher priority are treated very differently than those in lower priority. Thus,
the RSD outcome tend to be unfair and undesirable for most agents.

One immediate conclusion is that although RSD does not guarantee either sd-efficiency
or ld-efficiency, in most settings when ™ — 1 (and also n < m for sd-efficiency according
to Figure 4.1a), neither of the two mechanisms is preferred in terms of efficiency. Hence,
one cannot simply rule out the RSD mechanism.

4.3.3 Manipulability of PS

One critical issue with deploying PS is that it does not provide incentives for honest
reporting of preferences. Although for n > m PS is weakly sd-strategyproof [30] and Id-
strategyproof [124], when n < m PS no longer satisfies these two properties. The real
concern is that, in the absence of strategyproofness, PS allocations are only efficient (or
envyfree) with respect to the reported preferences. Thus, if an agent decides to manipulate
the outcome by misreporting its preferences, PS will no longer guarantee efficiency, nor
envyfreeness with respect to the true underlying preferences. Thus, we are interested in
understanding the degree to which PS allocations are manipulable.

Figure 4.2 shows that the fraction of manipulable profiles goes to 1 as n or m grow.
PS is almost 99% manipulable for n > 5,m > 5. Another interesting observation is that,
for all n < m, the fraction of sd-manipulable preference profiles goes to 1 as m — n grows
(Figure 4.2b). These results imply that when agents are permitted to receive more than a
single object, agents can strictly benefit from misreporting their preferences.

4A recent experimental study on the incentive properties of PS shows that human subjects are less likely
to manipulate the mechanism when misreporting is a Nash equilibrium. However, subjects’ tendency for
misreporting is still significant even when it does not improve their allocations [31].
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Figure 4.2: Heatmaps illustrating the manipulability of PS.

Moreover, at those instances of problem where PS is sd-strategyproof, the assignment
prescribed by PS most often coincides with the RSD induced assignment. For example,
when n = m = 5, PS is only sd-strategyproof at 11% of preference profiles, 7% of which are
identical to the assignments induced by RSD. This insight further confirms the vulnerability
of PS to misreporting (See Table A.1 in Appendix A for detailed numerical results).

As illustrated in Figure 4.3, the manipulability of PS under lexicographic preferences
has a similar trend when there are more objects than agents (n < m) and the fraction of
ld-manipulable preference profiles converges to 1 even more rapidly when 7 grows.

4.3.4 Envy in RSD

The PS mechanism has a desirable fairness property and is guaranteed to satisfy sd-
envyfreeness, whereas RSD is not sd-envyfree. To further investigate the envy among
agents under RSD, we measured the fraction of agents that are weakly sd-envious of at
least one other agent.

Figure 4.4 shows that for RSD, the percentage of agents that are weakly envious in-
creases with the number of agents. Figure 4.4a reveals an interesting observation: fixing
any n > 3, the percentage of agents that are (weakly) envious grows with the number of
objects, however, there is a sudden drop in the percentage of envious agents when there
are equal number of agents and objects.
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Figure 4.3: The fraction of ld-manipulable profiles under PS.

For better understanding of the population of agents who feel (weakly) envious under
RSD, we illustrate the various envy profiles based on the percentage of envious agents in
all instances of the problem when n = m (Figure 4.4b). One observation is that there
are few distinct envy profiles at each n, each representing a particular class of preference
profiles, and by increasing n, the fraction of agents that are envious of at least one other
agent increases.

4.4 Utility Models

Given a utility model consistent with an agent’s preference ordering, we can find the
agent’s expected utility for a random assignment. Let u; denote agent i’s Von Neumann-
Morgenstern (VNM) utility model consistent with its preference ordering ;. That is,
u;(a) > u;(b) if and only if a >; b. Then, agent i’s expected utility for random assignment

We say that agent ¢ (strictly) prefers assignment A; to B; if and only if E(u;|A;) >
E(u;|B;). A mechanism is strategyproof if there exists no agent that can improve its
expected utility by misreporting its preference ordering.
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Figure 4.4: Plots representing the percentage of (weakly) envious agents under RSD.

Definition 4.6 (Strategyproofness). Mechanism M is strategyproof if for all agentsi € N,
and for any misreport =€ P", such that A = M(>) and A" = M(>},=_;), given a utility
model u; consistent with >;, we have E(u;|A;) > E(u;] AL).

A matching mechanism is envyfree if for all preference profiles it prescribes an envyfree
assignment.

Definition 4.7 (Envyfreeness). Assignment A is envyfree if for all i,k € N, given utility
model u; consistent with >;, we have E(u;|A;) > E(u;| Ag).

Given utility functions for the agents, the (utilitarian) social welfare of an assignment A
is > . E(u;|A;). A random assignment A is sd-efficient if and only if there exists a profile of
utility values consistent with > such that A maximizes the social welfare ex ante [30, 101].
This existence result does not shed light on the social welfare when comparing two random
assignments, since an assignment can be sd-efficient but may not have desirable ex ante
social welfare. Consider the following random assignments: assignment A which is sd-
efficient and assignment B # A which is not stochastically dominated by A. Given a
preference profile, A is guaranteed to maximize the social welfare for at least one profile
of consistent utilities. However, there may be other profiles of utilities consistent with
preferences at which B maximizes the sum of utilities (social welfare).
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Example 4.3. Consider the problem introduced in Example 4.2 with assignments illus-
trated in Table 4.3. Let’s assume that all agents have the same utility model u; = uy = ug
where the utilities are 10,9, 0 for the first, second, and third objects respectively. The sum
of expected utilities under the PS assignment is (% -10 + % -94+0) + (% -10 + }L -9+ }1 :
0)+ (2-10+0-9+ 1 -0), while the sum of expected utilities under the RSD allocation is
(3:10+5-940)+(3-104+5-9+3-0)+ (2-10+0-9+ ¢ -0). It is casy to see that for
this profile, the ex ante social welfare under RSD is larger than that of PS.

Thus, given a profile of utilities we investigate the (ex ante) social welfare of the as-
signments under PS and RSD.

4.4.1 Instantiating Utility Functions

To deepen our understanding as to the performance of the two mechanisms, we investigate
different utility models. In particular we look at the performance of the mechanisms when
the agents are all risk neutral (i.e. have linear utility functions), when agents are risk
seeking and when agents are risk averse.

Our first utility model is the well-studied linear utility model. Given an agent i’s
preference ordering >;, we let r(>-;,j) denote the rank of object j. For example, given
preference ordering a >; b >=; ¢ then r(>;,a) = 1, r(>;,b) = 2 and r(>;, ¢) = 3. The utility
function for agent i, given object j is w;(j) = m — r(>, ).

We use an exponential utility model to capture risk attitudes beyond risk-neutrality. An
exponential utility has been shown to provide an appropriate translation for individuals’

utility models [11]. In particular, we define the exponential utility as follows:
_ 1 —eom=r-ui)) /oy, o0
ulj) = {< e (4.6)
m—r(>i,J), a=0

The parameter a represents the agent’s risk attitude. If & > 0 then the agent is risk averse,
while if @ < 0 then the agent is risk seeking. When a = 0 then the agent is risk neutral
and we have a linear utility model. The value |« represents the intensity of the attitude.
That is, given two agents with a; > as > 0, we say that agent 1 is more risk averse than
agent 2. Similarly if oy < as < 0 then agent 1 is more risk seeking than agent 2. Figure
4.5 illustrates the risk curvature for various risk taking and risk averse a parameters.

Table 4.4 shows sample utility values for various risk taking, neutral, and risk averse
utility profiles. These values show how a utility for objects in various ranking positions
will change according to risk attitude models. Note that we do normalize the utilities such
that all utilities add up to 1.
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Figure 4.5: Utility values for various o under risk taking, risk neutral, and risk averse
models. There are eleven objects ranked from 1 to 11, with linear utilities from 0 (the last
object) to 10 (the top choice). The trendlines fit exponential trends to the discrete alpha
parameters.

rank /a|a=-2 a=-1 a=0 a=1 a=2
1 26.799  6.389 2 0.865 0.491
2 3.195 1.718 1 0.632 0.432
3 0 0 0 0 0

Table 4.4: Sample utility values when there are 8 objects under different risk attitudes and
risk intensities.
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4.5 Results

For our experiments, we vary three parameters: the number of agents n, the number of
objects m, and the risk attitude factor a. Each data point in the graphs shows the average
over all possible preference profiles. We study the same settings as in Section 4.3 when
n > m and n < m. For each utility function, we look at homogeneous populations of agents
where agents have the same risk attitudes but may have difference ordinal preferences.

To compare the social welfare, we investigate the percentage change (or improvement)
in social welfare of PS compared to RSD under various utility models. That is,

2. E(ui| PS(>)) = 32, E(wi|RSD(>-))
2. E(w|RSD(-)) '

To measure the manipulability of PS, we are interested in answering two key ques-
tions: 7) In what fraction of profiles PS is manipulable by at least one agent? and i) If
manipulation is possible, what is the average percentage of maximum gain? That is,

e EPS (=) — Bl PS(-)
; E(w|PS(-)) |

To study the envy under the RSD mechanism, we consider two measures: i) the fraction
of envious agents, and i) the total envy felt by all agents.

4.5.1 Linear Utility Model

We first looked at how RSD and PS perform under the assumption that the utility models
are linear (Figure 4.6). In most cases, the social welfare under PS increases compared to
RSD; however, the social welfare of PS is very close to that of RSD when n = m (less than
0.015 overall improvement in all cases). Interestingly, under RSD the fraction of envious
agents gets close to 0 when n > m. With regards to strategyproofness, PS is manipulable
in most combinations of n and m and the fraction of manipulable profiles and the utility
gain from manipulation increases as the number of objects compared to agents increases.

4.5.2 Risk Seeking

Figure 4.7 presents our results in terms of percentage change in social welfare between PS
and RSD. Positive numbers show the percentage of improvement in social welfare from
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PS to RSD. Negative values represent those cases where RSD has increased social welfare
compared to PS.

Social welfare: Fixing a < 0, for n > m when ™ grows PS improves the social welfare
compared to RSD in all instances of the problem and the percentage of improvement also
increases. A similar trend holds when varying risk intensity « for fixed n and m where
n # m. For n < m, when * grows the fraction of profiles at which PS has higher social
welfare compared to RSD rapidly increases and the percentage change is also noticeably
larger, quickly getting close to 90% improvement (Figures 4.7a, 4.7c, and 4.7e). This social
welfare gap between PS and RSD grows as the risk intensity |«| increases. Surprisingly,
this trend changes for equal number of agents and objects n = m: the more risk-seeking
agents are (larger |«|), RSD becomes more desirable than PS, and in fact, RSD improves

the social welfare in more instances.

Envy: Figure 4.8 shows that for n > m, the fraction of envious agents under all profiles
vanishes and RSD becomes envyfree. This is more evident when agents are more risk-
seeking. Intuitively, these observations confirm our theoretical findings in Chapter 3 about
the envyfreeness of RSD under lexicographic preferences. This is because one can consider
lexicographic preferences as risk-seeking preferences where an object in a higher ranking
is infinitely preferred to all objects that are ranked less preferably [75]. When n < m, our
quasi-dictatorial extension of RSD creates some envy among the agents, because the agent
with the highest priority receives m — n 4 1 objects, while all other agents receive at most
one object. An interesting result is the envy created by RSD starts to fade out when the
risk intensity || increases.

Manipulability: Figure 4.9 shows the manipulability of the PS assignments when
agents are risk seeking. We see that the possibility of manipulation (and any gain) decreases
as the risk intensity increases. When n > m the fraction of manipulable profiles goes to 0
the more risk seeking agents become. However, when n < m even though the fraction of
manipulable profiles (and manipulation gain) decreases, the fraction of manipulable profiles
goes to 1 as ™ grows.

4.5.3 Risk Aversion

Social welfare: Figures 4.7b, 4.7d, and 4.7f show that fixing risk factor o > 0, when
- grows, PS assignments are superior to that of RSD in terms of social welfare in more
instances, and the percentage change in social welfare increases. Fixing risk factor a > 0
and when * grows, RSD is more likely to have the same social welfare as PS, and in fact
in some instances the social welfare under RSD is better than the social welfare under PS.
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Fixing m and n, when the risk intensity a increases RSD is more likely to have the same
social welfare as PS, that is, the welfare gap between PS and RSD closes when agents
are more risk averse (« increases). This result is insightful and states that under risk
aversion the random allocations prescribed by RSD are either as good as PS or in some
cases even are superior to the allocations prescribed by PS due to the underlying shape of
the utility models. Figure 4.12 illustrates the percentage change in social welfare based on
the difference between available objects and agents (m — n) for risk seeking, linear, and
risk averse utilities with different risk intensities.

Envy: In Figure 4.10 we observe that when n > m, the fraction of envious agents
and total envy grows as  — 1. Increasing the risk intensity (|a|), the fraction of envious
agents increases; however, the total envy among the agents remains considerably low. For
n < m, the fraction of envious agents and total envy grows as risk intensity increases. An
interesting observation is that envy is maximized when m =n + 1, and it decreases as ™
grows. This is mostly due to the choice of using randomized quasi-dictatorial mechanism
for implementing RSD where the first dictator receives m + n — 1 objects and all other
agents only receive a single object. Lastly, we noticed that in all instance where RSD
creates envy among the agents, around 25% of agents bear more than 50% of envy. That
is, few agents feel extremely envious while all other agents are either envyfree or only feel
a minimal amount of envy.

Manipulability: Figures 4.11 illustrates the manipulability of the PS assignments
when agents have risk averse preferences. The fraction of manipulable profiles rapidly goes
to 1 as ™ grows. Similarly, as agents become more risk averse (o increases) the fraction of
manipulable profiles goes to 1 and the manipulation gain increases.

4.6 Related Literature

Assignment problems with ordinal preferences have attracted interest from many researchers.
Svensson showed that serial dictatorship is the only deterministic mechanism that is strat-
egyproof, nonbossy, and neutral [131]. Random Serial Dictatorship (RSD) (uniform ran-
domization over all serial dictatorship assignments) satisfies strategyproofness, proportion-
ality, and ex post efficiency [0]. Bogomolnaia and Moulin noted the inefficiency of RSD
from the ex ante perspective, and characterized the matching mechanisms based on first-
order stochastic dominance [30]. They proposed the probabilistic serial mechanism as an
efficient and envyfree mechanism with regards to ordinal preferences. While PS is not
strategyproof, it satisfies weak strategyproofness for problems with equal number of agents
and objects. However, PS is strictly manipulable (not weakly strategyproof) when there
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Figure 4.10: The fraction of envious agents and total envy perceived by agents under risk
aversion. The total envy is shown up to two decimal points.
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are more objects than agents [92]. Kojima and Manea, showed that in large assignment
problems with sufficiently many copies of each object, truth-telling is a weakly dominant
strategy in PS [93]. In fact PS and RSD mechanisms become equivalent [11], that is, the
inefficiency of RSD and manipulability of PS vanishes when the number of copies of each
object approaches infinity.

The practical implications of deploying RSD and PS have been the center of attention in
many one-sided matching problems [3,103]. In the school choice setting with multi-capacity
alternatives, Pathak observed that many students obtained a more desirable random as-
signment through PS in public schools of New York City [113]; however, the efficiency
difference was quite small. These equivalence results and their extensions to all random
mechanisms [97], do not hold when the quantities of each object is limited to one.

Other interesting aspects of PS and RSD such as computational complexity and best-
response strategies have also been explored [19,20,50]. In this vein, Aziz et al. proved
the existence of pure Nash equilibria, but showed that computing an equilibrium is NP-
hard [19]. Nevertheless, Mennle et al. [106] showed that agents can easily find near-optimal
strategies by simple local and greedy search. In the absence of truthful incentives, the
outcome of PS is no longer guaranteed to be efficient or envyfree with respect to agents’ true
underlying preferences, and this inefficiency may result in outcomes that are worse than
RSD, especially in ‘small’ markets [76]. The utilitarian and egalitarian welfare guarantees of
RSD have been studied under ordinal and linear utility assumptions [18,20]. For arbitrary
utilities, RSD provides the best approximation ratio for utilitarian social welfare when
m = n among all mechanisms that rely only on ordinal preferences [57].

4.7 Discussion

We studied the space of general preferences and provided empirical results on the incom-
parability of RSD and PS. It is worth mentioning that at preference profiles where PS and
RSD induce identical assignments, RSD is sd-efficient, sd-envyfree, and sd-strategyproof.
However, PS is still highly manipulable. We further strengthen this argument by providing
an observation in Example 4.4:

Example 4.4. Consider the following preference profile == ((bca), (cab), (bca)). Table 4.5
shows the prescribed random assignment. In this example, with PS as the matching mech-
anism, agent 1 can misreport her preference as == (cba), and manipulate her assignment
to 1/4(b),1/2(c),1/4(a). Tt is easy to see that agent 1’s misreport improves her expected
outcome for all utility models where 2u; (¢) > tu;(b) + t5u1(a) (for example utilities 10,9,0
for b, ¢, a respectively.).

67



a b c
Ay 1/3 1/2 1/6
Ay 1/3 0 2/3
As 1/3 1/2 1/6

Table 4.5: A random assignment for a preference profile wherein PS and RSD both prescribe
an identical matching, i.e. PS(>) = RSD(>).

We investigated various utility models according to different risk attitudes. Our main
results are:

e In terms of efficiency, the fraction of preference profiles =& P" for which PS stochas-
tically (or lexicographically) dominates RSD converges to zero as = — 1. When
instantiating the preferences with actual utility functions, PS allocations are only
slightly better than RSD allocations in terms of social welfare when varying n and
m, particularly under risk averse utilities. In fact, in some cases RSD allocations are
superior in terms of social welfare (see Figure 4.12).

e PS is almost 99% manipulable when n < m and the fraction of sd- and ld- ma-
nipulable profiles rapidly goes to 1 as ™ grows. When instantiating the preferences
with utility functions, the manipulability of PS increases as agents become more risk
averse. Moreover, an agent’s utility gain from manipulation also grows when the risk

intensity increases.

e For risk seeking utilities, when n > m the fraction of envious agents under all profiles
vanishes and RSD becomes envyfree. For risk averse utilities, the fraction of envious
agents increases as agents become more risk averse. However, the total amount of
envy just slightly grows, and surprisingly, only few agents feel extremely envious
while all other agents are either envyfree or only feel a minimal amount of envy.

An interesting future direction is to study egalitarian social welfare of the matching
mechanisms in single and multi unit assignment problems as well as in the full prefer-
ence domain. Another open direction is to provide a parametric analysis of the matching
mechanisms according to the risk aversion factor.
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4.8 Design Recommendations for Multiagent Systems

Our work in this chapter can be used to help guide designers of multiagent systems who
need to solve allocation problems. If a designer strongly requires sd-efficiency then the
theoretical results of PS indicate that it is better than RSD. However, our results show that
PS is highly prone to manipulation for various combinations of agents and objects. This
manipulation and the possible gain from manipulation become more severe particularly
when agents are risk averse, and designers need to take this into consideration. On the
other hand, while RSD does not theoretically guarantee sd-efficiency, our results show that
it tends to do quite well — sometimes even outperforming PS in terms of social welfare.
RSD also has the added advantage of being sd-strategyproof and thus is not prone to the
manipulation problems of PS.

Although computing RSD probabilities (fractional assignments) is #P-hard [16, 121],
just like PS, RSD is easy to implement in practice. However, the welfare cost of adopting
manipulable mechanisms such as PS raises concern and has real consequences [38, 114].
Even though computing optimal manipulation strategies is computationally hard for both
PS and RSD, individuals can easily figure out how to manipulate such mechanisms using
simple greedy heuristics [38, [06]. Our investigations show that in many instances RSD
performs as desirably as PS in terms of social welfare. Conversely, PS assignments are
highly susceptible to manipulation especially when agents are risk averse.

These findings suggest that in multiagent settings where mechanism designers are un-
sure of sincere reporting of their preferences or when agents are mostly risk averse, the
use of RSD is more desirable to ensure truthful reporting while providing reasonable social
welfare. However, PS is still a desirable allocation mechanism for its fairness and efficiency
properties, particularly in settings where agents are sincere.
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Part 11

Dynamic Matching Mechanisms
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Chapter 5

Sequential Matching With Dynamic
Preferences

One-sided matching problems have been extensively studied in the context of microeco-
nomics, artificial intelligence, and mechanism design. Despite the interest in matching
problems, little work has focused on dynamic settings where agents’ preferences evolve
over time. In the real world, decisions do not exist in isolation, but rather are situated in a
temporal context with other decisions and possibly stochastic events. Dynamic mechanism
design [111] is a compelling research area that has attracted attention in recent years. In
these settings, agents act to improve their outcomes over time, and decisions both in the
present and in the past influence how the preferences look in the future. The dynamic pivot
mechanism for dynamic auctions [25], dynamic Groves mechanisms [11], and many oth-
ers [15,110] are a few of myriad examples of mechanisms in dynamic settings that consider
agents with private dynamic preferences. However, almost all of these works (excluding
a recent study on dynamic social choice [I12]) assume an underlying utility function with
possible utility transfers.

In this chapter, we study dynamic matching problems in which a sequence of decisions
must be made for agents whose private underlying preferences may change over time.!
In each period, the mechanism elicits ordinal preferences from agents, and each agent
declares its preferences (truthfully or strategically) so as to improve its overall assignment,
now or in the future. We propose a generic model to study the various properties of such
environments including the strategic behavior of agents. Our model captures a diverse

"'We use the terms matching, allocation, and assignment interchangeably, and further describe our
analogous terminologies in dynamic settings.
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set of real-life scenarios: assigning members to subcommittees each year, tasks among
team members on various projects, nurses to various hospital shifts, teaching loads among
faculty, and assigning students to college housing each year.

Consider the problem of scheduling nurses to shifts (nurse rostering) in multiple plan-
ning periods.? Self-rostering is one of the most advocated methods in nurse scheduling
that caters to individual preferences [10, 129]. Each nurse has some internal preference
over hospital shifts at various times. The process is as follows: every 4-6 weeks, nurses
log in to an online system which enables them to rank their preferences for various shifts
(day, night, weekends, etc.) during that period. At each planning period (typically 4-6
weeks), an assignment decision is made based on the self-reported preferences. This is
in contrast with traditional nurse scheduling systems which do not take nurse preferences
into account. Although self rostering reduces administrative burden and improves nurse
satisfaction, there is evidence that it encourages strategic behavior among nurses [10,19].
The preferences of nurses may change dynamically according to their internal desires and
past assignments and “those who are savvy enough to game the system will always have
an advantage over the procrastinators” [21]. For example, knowing how more challenging
(or less challenging) shifts would affect the preferences of less experienced nurses, a more
senior nurse, given the information about demands and severity of various shifts, may
strategically misreport its preference to influence the preferences of other agents in hopes
of benefiting in the future periods. This example and many other real-life applications
raise several intriguing questions when designing matching mechanisms in dynamic and
uncertain settings.

5.1 Our Model and Contributions

We consider a setting where a sequence of assignments should be made for a fixed number
of agents and alternatives. Agents’ preferences are represented as strict orderings over a
set of alternatives, where these preferences may change over time. Our contributions in
this chapter are:

e We initiate the study of repeated matching with dynamic preferences and provide a
framework for modeling and analysis of ordinal matching decisions in uncertain do-
mains. We formulate a general dynamic matching problem using a history-dependent
matching process. The state of the matching process corresponds to a history of
preference profiles and matching decisions.

2 Assume skill category and hospital constraints are incorporated into shift schedules.
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e We show that one cannot simply deploy conventional matching mechanisms to dy-
namic settings, because strategyproof mechanisms for static and one-shot settings are
prone to manipulation when preferences change dynamically over time. More specif-
ically, We show that simply running a sequence of independent assignments induced
by a strategyproof mechanism in one-shot settings, namely Random Serial Dictator-
ship (RSD), does not satisfy global strategyproofness. Furthermore, we investigate
weak and strong manipulation in sequential matching with dynamic preferences.

e Subsequently, we design a stochastic matching policy based on the RSD mechanism
which takes agents’ histories into account. Our key idea is to extend a notion that
was first introduced for multi-period contracts [136], where future matching decisions
are used to incentivize desirable behavior in the current time period. Nonetheless,
we argue that in the absence of monetary transfers, designing generic mechanisms
that provide truthful incentives in dynamic settings raises several complications.

e Our proposed mechanism satisfies some notion of fairness in repeated matching prob-
lems while providing incentives for truthfulness when agents have similar preference
dynamics. Moreover, given any history of preferences and decisions and particu-
lar preference dynamics, our mechanism prevents any harmful manipulation while
satisfying desirable local properties of ex post efficiency, strategyproofness, and eq-
uitability. We further show that under some mild assumptions an agent’s successful
manipulation (if possible) results in a Pareto improving sequence of matchings in
expectation. Finally, we formulate the notion of envy in the context of sequential
matching by providing a systematic way of measuring the degree of envy towards in-
dividual agents, arguing that our mechanism provides a constant degree of individual
envy by balancing priority orderings.

5.2 A Matching Model for Dynamic Ordinal Prefer-
ences

In this section, we introduce our model for matching in sequential settings when there are
dynamic preferences. We start by introducing key preference and matching terminologies
used in static settings. We then generalize them to the dynamic setting studied in this
chapter.
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5.2.1 Basic Terminology

Thereis aset N = {1,...,n} of agents who have preferences over a finite set of alternatives
M = {1,...,m}, where n > m.®> Agents have private preferences over alternatives. We
use the notation a >; b to mean that agent ¢ strictly prefers alternative a to alternative b.
We let P(M) or P denote the class of all strict linear preferences over M where |P| = m!.
Agent i’s preference is denoted by ;€ P, thus, == (>1,...,>,) € P" denotes the
preference profile of agents. We write =_; to denote (>1,...,>;_1,>it1,.-.,>n), and thus
== (i, =)

A matching, p : N — M, is a mapping from agents to alternatives. We let pu(1)
denote the alternative allocated to agent ¢ under matching p. A matching is feasible if
and only if for all 7,5 € N, u(i) # p(j) when ¢ # j. We let M denote the set of all
feasible matchings over the set of alternatives M. We also allow for randomization where
i denotes a probability distribution over the set of (deterministic) feasible matchings. That

is, 1 € A(M).

5.2.2 Dynamic Preferences

The decision problem in many multiagent settings is dynamic rather than static. Agents
participate in a sequence of allocation decisions and their preferences may change (or
evolve) over time. For example, in a nurse scheduling scenario, one might prefer a day
shift to a night shift on weekdays but prefer a night shift over a day shift on weekends.
The preferences could be more complicated when considering the subtle relations between
allocations: a day shift immediately after a night shift is often considered extremely unde-
sirable. Another interesting example is the problem of assigning computational resources
to scientific groups over time. A researcher may require access to a powerful processor
for running high-performance computations while in the next occasion she prefers a less
powerful core but for a longer period of time. The preference evolution may also be depen-
dent on previous allocations or some idiosyncratic dynamics. In our example, a researcher’s
preference may change given the allocation of a high-performance core (ergo the completion
of a task).

Let 01,09, ...,0, denote the set of objects in ranks 1,2,..., m respectively. Thus, if
a >; b then o, = a and 0, = b. We use this notation because objects may be ranked
differently in each period. The preference ordering of agent i at time ¢ is denoted by 1.

3We accommodate the possibility of n > m by adding dummy alternatives corresponding to a null
assignment.
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For the sake of clarity, at each time ¢ we rank alternatives under preference ordering >!
such that o; =% oy =1 ... >! 0,, denotes the ranking positions, where the index of each
alternative indicates its ranking for agent ¢ at time ¢. Formally, for each agent i € N it
may be the case that a =! b while b ="' a. Thus, it is possible that =!#~! for two
periods ¢ # t'. A preference profile at time ¢ is denoted by == (=%,...,>L) € P™

Following the convention, we write =', to denote the preferences of all agents except i,
thus >'= (>=f, >",).

Example 5.1. Consider three agents 1, 2, and 3 and three objects a, b, and ¢. Table 5.1
illustrates the preference of each agent in different time steps. The preferences of agents 1
and 2 changes from ¢ = 1 to t = 2 while agent 3’s preference ordering remains unchanged.

t=1 t=2 t=3
lLia=tc=1bla=1b=3c
2| b-c-la|b=3a3c
3la=tc=ibla=3c=30b

Table 5.1: Three agents with dynamic preferences over time.

There are various plausible reasons as to why an agent’s preference may change over
time. We will elaborate on these changes in preferences, and further discuss a model where
preferences change depending on previous assignments or uncertain idiosyncratic reasons.

5.2.3 Sequential Matching Mechanisms

In many real-life applications, a set of alternatives are to be allocated repeatedly over time
to a set of agents. In these settings, a series of matching decisions has to be made sequen-
tially over time, with new private information potentially obtained after each matching
decision. Figure 5.1 illustrates a discrete time-line where a (random) matching decision is
made in each period.* We are interested in settings where agents’ preferences evolve over
time. In particular, we assume that the preference held by an agent at time ¢ depends on
the preferences it held earlier along with allocations (i.e. matchings) made previously.

We model the sequential matching mechanism with a discrete-time stochastic decision
process. A matching process consists of a set of joint states denoted by preference pro-
files, a set of joint actions corresponding to matching decisions, and a transition model

“Note that this is different from multiple-assignment problems [55, 110] that was discussed in Chapter
3, where multiple objects can be assigned to each agent. Here, the set of objects is fixed in all sequences,
which are then re-assigned to the agents in each step of the repeated matching.
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Figure 5.1: Timeline for a sequence of matching decisions.

which specifies a possibly stochastic transition function given an allocation determined by
a matching decision and previous states.

We denote a matching at time ¢ by p'. We let h' denote the joint history of the joint
states defined by agents’ preferences and realized matchings up to time ¢ — 1 and including
the joint preferences (preference profile) at time ¢, that is, bt = (=1, pt, ... =1 pt=t =1).
The set H! contains all possible joint histories at time ¢. In other words, ht € H! indicates
the trajectory of states and actions from the first time step until time ¢.

5.2.4 Transition Models

A matching mechanism that bases the decisions only on the current state, and not any
additional information in the history of the process, is Markovian and requires that the
transition probabilities to also be Markovian. Following the convention, we distinguish
between Markovian (or memoryless) transitions and history-dependent transitions [115].

Assuming a memoryless transition function, we define a Markovian model (first order
Markov process) where the transitions are independent of the past history of actions and
decisions, and transitioning to the next state =!*! is only dependent on the matching
decision p' in a state with joint preference =' (see Figure 5.2).

Definition 5.1 (Markovian transition). A transition function is Markovian if the transi-
tions in each state only depend on the current state and action, that is, T(="T1 | =t u').

For a single agent 4, the probability that agent i’s preference ordering changes to =t
in the next time step, given its current preference =! and its allocation p'(i) is denoted
by T; (=i | =1, ut(i)). For all agents, the probability of transitioning to preference profile
=1 given the current matching and preference profile is written as T'(="" | = u), and
we have

DT =1

>_t+1 cpn
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Figure 5.2: Influence diagram representing the conditional dependencies in a Markovian
matching process.

Throughout this work, we assume independence of priors and transitions and write

T =) = [T =1 it ()
iEN

We also consider a different dynamic model where the transitions depend on the history
of previous preferences and matching decisions. Thus, we sometimes assume there is an
underlying history-dependent stochastic model T'(h'™!|ht, ut) which denotes the probability
that agents will transition to joint state h'*! after trajectory h' and matching decision
pt. Similar to the Markovian model described above, throughout this work, we assume
independence of priors and transitions. Figure 5.3 illustrates the conditional dependencies
of a history-dependent process. The transition function assumes that

ZT@tH‘htaMt) -1

ht+1 GHIH—I

Definition 5.2 (History-dependent transition). A transition function is history-dependent
if the probability of transitioning to the next state depends on the history up to time t plus
the decision made at time t, that is, T(h'Ttht, ut).

Clearly, a history-dependent transition can be thought of as a Markovian transition
of order A, where A is a finite planning horizon. Recall that a trajectory (or execution
history) is the entire sequence of state-action pairs up to time t plus the state visited at
time t. A history-dependent function is a more generic model where transitions could
potentially be influenced by the complete history of preferences and decisions. We study
both of these transition models, and following the convention in dynamic mechanism design
literature [25,12,112], assume that the stochastic model, regardless of being Markovian or
history-dependent, is common knowledge.
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Figure 5.3: Influence diagram representing the conditional dependencies in a history-
dependent matching process.

5.2.5 Sequential Matching Policy

A policy prescribes a matching decision to be made at each period, given the information
available to the decision maker at that point in time, which may consist of the entire
sequence of states and actions up to the present time step. We define a discrete-time
sequential matching decision process as a sequence of matchings prescribed by a matching
policy. A matching policy is a sequence of (possibly randomized) matchings, that is,
m = (g', g% ...). We assume stationary policies where the matching mechanism does
not change over time. Given a history h' € H', a matching policy m(u|h') returns the
probability of applying matching u. Given a matching policy, 7, and a history h' the
probability of agent ¢ being allocated alternative x at time t is

pie | B =) m(u|nt). (5.1)

HEM:u(i)=2x

where >,y pi(x | h') = 1. The definition of a matching policy, 7, incorporates ran-
domized or deterministic matching policies. We denote the (random) allocation of agent i
by m;(h'). When it is clear from the context, we will abuse notation and use 7(h") to also
refer to the (random) matching prescribed by policy 7 given the history h'.

Example 5.2. Consider two decision periods and preferences as defined in Example 5.1.
In Table 5.2, policy 7 prescribes feasible matchings u! = 7(>=') and p? = 7(>=2) in the first
and the second periods.
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t=1 t=2
Ll p'(D)=a| p*(1) =0
2| pH(2)=b | p¥(2)=c
3l pu@B)=c|p’@B)=a

Table 5.2: A deterministic policy for two time periods.

5.2.6 Agents’ Strategies

We are interested in dynamic mechanisms in which each agent interacts with the mech-
anism simply by declaring its (perhaps untruthful) preference ordering at each decision
period. These mechanisms are desirable in practice because they remove the computa-
tional and cognitive burden on agents by eliciting agents’ preferences at each time step. In
contrast, under one-shot allocation mechanisms, agents are required to report preferences
for all future (possibly uncertain) periods at the beginning, which could be computationally
challenging.

In the dynamic mechanism, at each period ¢, the mechanism elicits reports from agents
regarding private preferences. Each agent observes its private preference >, and the history
of past preferences and realized matchings h!™', and based on the underlying transition
model, takes an action by declaring a preference ordering for time ¢, >!. Then, given
the local elicited preferences, in each period the mechanism draws a matching u! € M
according to matching policy i = 7(>"). Figure 5.4 shows these steps for two periods of
matching decisions.

it realized i realized

- ’Jj . =2 reported ’J—‘
a 4

m(>1) is taken m(>?) is taken

Figure 5.4: Timeline of two decisions and evolution of preferences.

In each period, an agent’s action is to report an ordering of the objects according to a
strategy, which does not need to be equivalent to the agent’s true underlying preference.
Agent i’s reporting strategy o;(>!) specifies its declared preference = = o;(>!) when its
true private preference is =!. An agent may potentially be aware of its entire history of
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(a) Preference profile at t =1 (b) Preference profile at t = 2

=1 a=c>b 1 a=c>b
=5 b=c=a =2 b=c>a
=3 a=c=b =2 axb>c

Table 5.3: Preferences revealed by three agents att =1 and t = 2.

preferences and allocations, h!. For simplicity, we use o;(>!) instead of o;(h!) throughout

this chapter but assume that in each period an agent may have access to its entire history.

Example 5.3. There are three agents and three objects and two-time periods. Table 5.3a
illustrates the preferences reported by agents at ¢ = 1. After a matching decision ji!
realized, agent’s preference may change to the preferences shown in Table 5.3b.

5.3 Evaluating Sequential Outcomes

A policy prescribes a matching given the current preference profile. To determine whether
a particular matching policy, m, is a good policy, one must make comparisons between
policies. In this chapter, we are interested in settings where agents have ordinal preferences
and so do not rely on particular utility functions. Instead, we compare two sequences of
matchings using a scoring function based on the expected sum of probabilities that a
sequence assigns a more preferred object. For example in a two-period setting, assigning
the top-ranked object to an agent in both periods is preferred to assigning its top-ranked
object in the first period and the last-ranked object in the second period.

Example 5.4. Consider the preferences revealed by agent 3 in Table 5.3. Let (z,y) be
a sequence of decisions in the first and the second periods, respectively. Agent 3 would
prefer receiving (a, a) to (¢,a) and (¢, a) to (a,c), because it preferred ¢ more in the first
period than the second period.

Given a policy 7, we can evaluate it by looking at the score of being allocated alter-
natives in a particular ranking position in the sequence of random matchings from time
t onward. More concretely, let o, be any alternative ranked in position ¢. Given h' and
transition function T, the score that agent i receives alternatives with rankings as good as
¢ under matching policy 7 is defined recursively as

ZPZ (@lh) +> > w(phYTRHR, W (R o) (5.2)

z=01 LEM Rt+1eHt+1
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where At = (At ut, =) is the history at time ¢ + 1, and 0 < v < 1 denotes the
discounting factor. Throughout this chapter, we always assume that the future outcomes
are as important as the immediate outcomes, and thus v = 1.° Intuitively, when v = 1
then W/ (h,0,) is the sum of probabilities that agent i receives alternatives as good as ¢
in current period and all future sequences of matchings up to a desired planning horizon
M. For Markovian processes, we can simplify the above formulation by replacing h! with
=!. Example 5.5 shows how two sequential outcomes can be compared using our scoring
function.

Example 5.5. In this example, we show how to compare two sequential outcomes using
our scoring function. Consider assigning 3 objects in two decision periods to 3 agents
with preference orderings, as shown in Figure 5.5, at periods 1 and 2. For simplicity
assume deterministic transitions that are independent of the realized matching decisions,
and let h' = =! so that the matching starts at t = 1. A matching p = zyz denotes that
agents 1,2, 3 receive objects x, y, z respectively. Consider a policy 7 that prescribes random
matchings @' = (3abe, 3cba) and fi* = (Labe, sach, gcab) at periods 1 and 2 respectively.
Using Equation 5.3, the score that agent 1 receives its first rank alternatives (i.e. 01) in
periods 1 and 2 given the above random decisions is calculated by (highlighted as the left
subtree in Figure 5.5):

Wi (-o) =)+ (G +3) =38

Similarly, we can compute the score that agent 1 receives alternatives with rankings as
good as rank 2 (i.e. 0; and 09) in periods 1 and 2:

Wi(-1o) =G+ +G+35) =5

Intuitively, W (="', 02) is the score of the following possible sequences [u'(1) = o1, (1) =
o], [ (1) = o1, 1*(1) = 0o, [ (1) = 02, p*(1) = 0u], [ (1) = 02, p*(1) = 0] (highlighted
areas in Figure 5.5).

The outcome of a matching policy for all rankings can be represented as the sum of
weights for alternatives in all ranking position o071+ @09+ . . .4+, 0,,, Where o, represents
objects in ranking ¢ and coefficients «; are real non-negative numbers equal to W/ (h', o).
Thus, given h' and transition function 7', an ordinal sequential outcome for agent 7 can be
written as

Wr(n') => Wr(h' x) x (5.3)

zeM

SWithout loss of generality, our results can be extended to problems with diminishing discount factors.
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1/2 cba
=1 a=c>b =% a=b»c
<>§: b>c>a> <>§: b>a>c>

=3 a=c>b =2 b=c=a 1/2 able 16 cab

1/4 1/6 1/12 1/4 1/6 1/12

Figure 5.5: The preferences of agents and the probability tree for the two-time matching
problem in Example 5.5.

When there is only one matching period, the above formulation can be seen as a convex
combination where » . a; = 1.

Our scoring function extends the concept of stochastic dominance [69] to dynamic and
repeated settings, and enables us to compare a large set of matching decisions by looking at
fractional ordinal allocations, without having any information about the underlying utility
models. Even though matching under ordinal preferences provides a natural framework for
a large class of allocation problems, it opens up new challenges with regards to expressive-
ness of ordinal allocations. Next, we discuss this issue of expressiveness when comparing
allocations under ordinal preferences.

5.3.1 Incomparability of Sequences

In the absence of cardinal utilities, two matching sequences can potentially be incomparable
under ordinal preferences. This incomparablity states that the quality of a sequence of
matchings compared to another sequence depends on the underlying utility functions. The
following example illustrates this incomparability under ordinal outcomes.

Example 5.6. Consider the problem of assigning three objects to agent ¢ in two periods,
where a >=; b =; ¢ is a fixed preference in both periods. Let (x,y) be a sequence of
deterministic decisions that assigns object x in period 1 and y in period 2. There are
9 possible sequences of assignments; (a, a), (a,b), (b,a), (a,c), (c,a), (b,b), (b, c), (¢,b), (¢, c).
Clearly, assigning the top choice in both steps, (a,a), is the best sequence and assigning
the last choice (¢, ¢) in both steps is the worst sequence. Since we assumed no discounting,
sequences like (a, b) and (b, a) are treated as equal. Every pair of these sequences are easily
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comparable, meaning that for any utility model consistent with the agent’s preference one
sequence is always preferred to another sequence. However, two sequences (a, ¢) and (b, b)
are not comparable according to agent i’s preferences: (a,c) is preferred to (b, b) if u;(a) =
10, u;(b) = 2, and u;(c) = 1, while (b, b) is preferred to (a,c) under u;(a) = 10,u;(b) = 9,
and u;(c) = 1.

Similarly, a sequence of randomized matchings prescribed by a policy may be incom-
parable with a sequence prescribed by another matching policy. Later in this chapter, we
define how incomparability of outcomes come to play when investigating various proper-
ties such as strategyproofness and manipulation. In the ordinal domain, we define weak
notions for our desirable properties, providing means to measure these in-comparabilities
in sequential settings.

5.4 Properties for the Model

Our goal is to implement stochastic matching policies so that agents truthfully reveal their
preferences, no matter what other agents do, now or in the future. We are interested in
preserving the local properties in each matching period while satisfying global properties
for a sequence of matchings. Local properties hold valid for each matching decision in each
step, independent of future or past decisions, while global properties hold over sequences
of decisions. More specifically, we are interested in matching policies that satisfy global
strategyproofness while inducing a sequence of locally strategyproof and ex post efficient
random matchings. In this section, we formally define these local and global properties.

5.4.1 Local Properties

In each period, a matching decision must satisfy some desired local properties, regardless
of any of the past or future matching decisions. A random matching induced by matching
mechanism 7 stochastically dominates another random matching induced by 7’ if for each
item x € M, the probability of selecting an outcome as good as x by 7 is greater than or
equal to 7'

Definition 5.3. Given a preference profile = at time t, a random matching induced by
7 stochastically dominates (sd) another random matching prescribed by 7', if for all
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agents 1 € N,

Vye M,y > alpl =)= >0 Y w(ul =)

aceM HEM: mEM BEM:
-ty p(i)=z -ty p(i)=z
In other words, in a single-shot setting, every agent with any utility model that is
consistent with the private ordinal preferences will prefer m over 7’ if the random matching
selected by 7 first-order stochastically dominates the random matching selected by 7. A
single-shot matching process is a special case that coincides precisely with the random
assignment problem [0, 30].

A matching policy is locally sd-strategyproof in period t, if an agent’s truthful report
always results in a random matching that stochastically dominates its random matching
under an untruthful misreport. In other words, at each period ¢t no agent can improve its
current random assignment by a strategic misreport.

Definition 5.4. A matching policy 7 is locally sd-strategyproof (lsd-strategyproof)
if and only if truthfulness is a stochastic dominant strategy at all times t, that is, ¥Vt for
any >='€ P", for all agents i € N, Yy € M

SO w L= = D0 Y wul(oa(-), =)

zGM pEM: xEM HEM:
w-iy p(i)=z w-iy p(i)=z
Incentive compatibility notions generally guarantee that no agent can benefit from
misreporting preferences. However, an agent may still behave in a “bossy” manner by
affecting the prescribed random allocation for some other agents while keeping its alloca-
tion unchanged. Satterthwaite and Sonnenschein [122] first introduced the non-bossiness
property as one of the desirable axioms in matching and assignment problems.

A mechanism is non-bossy if an agent cannot change the random allocation without
changing the random allocation for itself. The non-bossiness property is particularly im-
portant in sequential settings as a non-truthful agent may benefit from changing the evo-
lution of other agents’ preferences and consequently improve its sequence of outcomes in
expectation.

Definition 5.5. A mechanism is non-bossy at time t if for all =*€ P" and agent i € N,
for all = such that m;(=") = m((=, =",)) we have w(=") = 7((=5, =1,)).

A matching is Pareto efficient if there is no other matching that makes all agents weakly
better off and at least one agent strictly better off.

Definition 5.6. A random matching is ex post efficient if it can be represented as a
probability distribution over Pareto efficient deterministic matchings.

85



5.4.2 Global Properties

In sequential settings, the desirability of a policy is often characterized by their global
properties. In contrast to local properties that only hold within each period, the global
properties should hold over any sequence of decisions, and thus, guarantee the effectiveness
of policies when operating in dynamic and repeated settings.

Given a transition function, policy m stochastically dominates (sd) policy ©' when for
each rank /, the expected score that alternatives with rankings as good as ¢ get selected
under 7, is greater or equal to the expected score under n’.

Definition 5.7. Given a transition function T, matching policy m stochastically dom-
inates (sd) 7', if at all states h* € H*, for all agentsi € N,

Yo, € M, WT(h,00) > W7 (ht, 00)

Strategyproofness in sequential settings states that not only an agent cannot improve
its current immediate outcome by misreporting its preferences but also the agent’s current
misreport will not make it better off in the future.

Definition 5.8. A matching policy is globally sd-strategyproof (gsd-strategyproof)
if and only if for any transition function T, given any misreport 92 = o;(>") such that
A= (=1 (Lt )t Y at time t, for all agents i€ N,

Yo, € M, WF(ht,00) > W (R, 00)

Global sd-strategyproofness is an incentive requirement which states that under any
possible transition of preference profiles, no agent can improve its sequence of random
matchings (now or in future) by a strategic report. We define a weaker notion for strate-
gyproofness in sequential settings. Weak gsd-strategyproofness guarantees that an agent’s
misreport can never result in an outcome that stochastically dominates its sequence under
truthful reporting. In other words, a misreport either results in a stochastically dominated
outcome or in a sequence that is incomparable to the outcome under truthfulness.

Definition 5.9. A matching policy is weakly gsd-strategyproof if and only if truthful-
ness does not yield to a stochastically dominated outcome, i.e., for any transition function
T, given any misreport =. = o;(>=1) such that ht = (=1, ..., (50, =1 ) pb, ..., pt™L) at time
t, for all agents i1 € N,

J o, € M, WZ(ht,00) > W (h, 0p)
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Clearly, a matching mechanism that satisfies global sd-strategyproofness is also weakly
gsd-strategyproof, but the reverse does not hold.

If a policy is not gsd-strategyproof, an agent can benefit by misreporting its preferences.
A matching policy is weakly manipulable if it is not gsd-strategyproof.

Definition 5.10. A matching policy is weakly manipulable if it is not gsd-strategyproof.

Intuitively, weak manipulation states that there may exist some utility model consistent
with an agent’s preference ordering, under which misreporting would improve the agent’s
expected utilities. Similarly, a matching policy is strongly manipulable if it is not weakly
gsd-strategyproof.

Definition 5.11. A matching policy 7 is strongly manipulable if it is not weakly gsd-
strategyproof.

In other words, given any (possibly time-invariant) utility model consistent with the
agent’s dynamic ordinal preferences, agent 7 is better off deviating from truthful reporting.

5.4.3 Pareto Improvement in Expectation

Recall that we denote a sequence of preference profiles (states) and matchings (actions)
up to time ¢ by Y, that is, h* = (=1, ut,...,="). A sequence of matchings prescribed by
policy m dominates another sequence prescribed by 7’ if there exists one agent i that strictly
prefers m; to m; and all other agents are weakly better off under 7. A sequence of matchings
prescribed by a policy 7 can be determined recursively according to the following: given a
preference profile at time ¢, policy 7 determines a random matching ji* ~ 7(h'), and after
realization of i the system transitions to the next state h'™' ~ T'(-|ht, ut).

Given a sequence of matching decisions, a change in the decision trajectory that makes
at least one agent better off without making any other individual worse off is called a
Pareto improvement. Clearly, a sequence of allocations is Pareto efficient when no
further Pareto improvement can be made.

Definition 5.12. Given a transition function T, a sequence prescribed by policy w is a
Pareto improvement over a sequence prescribed by w' in expectation when the following
two conditions hold at time t:

e There exists an agent i € N such that, 3¢ we have W (h',0,) > W (ht,0,) and for
all other ranking positions ', WT(ht, 0p) > W7 (ht,0p), and;
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e For all other agents j € N \ {i}, for all ¢, WF(h',0,) > WF (h', 0p).

With fixed preferences, any sequence of ex post efficient matchings (see Definition 5.6)
belongs to the set of Pareto efficient sequential allocations since no improvement is possible
in each local matching and any improvement over the sequence of matchings will require
to make at least one agent worse off in some local matchings. Under dynamic preferences,
given a transition model a Pareto improvement may be possible by changing the trajectory
of decisions to less conflicting states, where some agents receive equally good sequences
of outcomes and at least one agent’s allocation is improved. Note that the converse does
not hold since an optimal policy may sometimes yield a locally dominated allocation to
maximize the quality of expected allocations.

5.5 Sequential RSD Policy

A typical goal of a mechanism designer is to allocate the objects to agents efficiently and
fairly. However, ex ante strategyproofness and ex ante efficiency are incompatible in one-
shot settings [30]. This incompatibility persists in dynamic domains, and several other
efficiency notions under ordinal preferences (e.g. rank-maximal matching [33]) have also
been shown to be highly manipulable. Thus, a social planner needs to carefully decide
which one of the two properties he or she deems more crucial. If the goal is to satisfy the
latter, randomizing over all possible serial dictatorships can guarantee strategyproofness
while satisfying some notion of fairness (equal treatment of agents with equal preferences).
Random Serial Dictatorship (RSD) [0] is a widely adopted mechanism that satisfies lsd-
strategyproofness while being extremely easy to implement. In this section, we focus our
attention on the RSD mechanism and ask the question of whether RSD remains strate-
gyproof in sequential matchings with possibly dynamic preferences.

To formally define the RSD mechanism, we first introduce priority orderings and serial
dictatorships. A priority ordering f : {1,...,n} — N is a one-to-one mapping that
specifies an ordering of agents: agent f(1) is ordered first, agent f(2) is ordered second,
and so on.

Given a priority ordering feF and a preference profile >, a Serial Dictatorship,
SD(f,>), is as follows: agent f(1) receives its favorite object m;EM according to its
preference > fx1); agent f(2) receives its favorite object mo€M\{m1}; f(n) receives its best
object m,eM\{my,...,m,_1}.
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Random serial dictatorship is a conver combination of all feasible serial dictatorships,
induced by a uniform distribution over all priority orderings, and it is formally defined as

RSD(») = %ZSD(f, ). (5.4)
T feF

In one-shot settings, RSD is sd-strategyproof, equitable (in terms of equal treatment of
equals), and ex post efficient [(]. Although the RSD mechanism does not satisfy a stronger
notion of sd-efficiency, it is weakly envyfree for any number of agents and objects [30].

5.6 One-Shot Direct Mechanisms

In dynamic mechanism design global strategyproofness is a strong requirement, which
requires agents to be truthful under all possible stochastic events and dynamics. One
plausible way to achieve global strategyproofness in dynamic settings is assigning proba-
bility distributions uniformly over all possible sequences of priority orderings, thus treating
the problem as a single-shot matching problem. The idea is to set all possible priority or-
derings at the initial start state and for any consecutive states up to a planning horizon
(see Figure 5.6 for an example with 3 time steps). In this case, given A decision steps, a
mechanism designer must sample from a uniform distribution over (n!)* possible sequences
of priority orderings.

The mechanism can be thought of as a generalization to the RSD mechanism when all
future decisions are made in the start state; instead of randomizing over priority orderings,
this mechanism randomizes over all sequences of priority orderings.

Although this mechanism satisfies global strategyproofness, it imposes a high cognitive
burden on the agents by trying to elicit agents’ preferences for all the future periods.
Such preference elicitation requires that each agent reasons over its preferences for every
future step while considering uncertainties over idiosyncratic preferences, which could be
computationally expensive. Moreover, randomizing over all sequences of priority orderings
may result in extremely unfair allocations ex post; for example, choosing a sequence of
priority orderings in which agent ¢ is ranked before agent j in every period.

5.6.1 Incentives in Sequential RSD

Due to the shortcomings discussed in the previous section, we focus attention on direct
sequential policies where agents report their preferences in each step and a matching deci-
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Figure 5.6: Possible priority ordering sequences for three-time periods. The labels on the
edges represent a priority ordering, i.e., 21 denotes an ordering f with f(1) = 2, and

f2)=1.

sion is made according to the reported preferences (as illustrated in Figure 5.4). A natural
matching policy is to elicit agents’ preferences and apply the RSD mechanism in each
period to obtain a random allocation.

Definition 5.13. Sequential RSD is a stochastic policy consisting of a sequence of RSD-
induced matchings in each period.

While RSD satisfies Isd-strategyproofness at each decision period, we show that sequen-
tial RSD is prone to manipulation when agents have dynamic preferences. Sequential RSD
selects a random matching at each round independent of the past history of decisions and
preferences.

Theorem 5.1. Sequential RSD (a sequence of RSD induced matchings) is not gsd-strateqyproof.

(a) Truthful (b) Misreport
—1: a=cxb =1: a=c>=b
=9 b=c>a =9: b>=c>=a
=3 a>=cxDb Ss: a>=b>c

Table 5.4: Preferences revealed by three agents.
Proof. Consider 2 decision periods with deterministic preference dynamics known to agents.

Let ﬂi , denote the random matching at ¢ = 2 after assignment yu; at ¢ = 1. With truth-
ful preferences (Table 5.4a), RSD induces the following random matching: (3p1, sp2) =
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Ws(>*, 0r) Ws((=1,>1,), 00)

(
or 5+ [0, +5(a,)] 5+ [E(An,) + 2(An,) + g(i,)]
o 1+ [5(a;,) +5(m,)] &+ [5(an,) + g(in,) + 51, )]
o3 1+1[5(an)+ 5, 1+I[3(a,) + 5(0,) + §(a.,)]

Table 5.5: Fvaluation of the matching policy for agent 3.

(3abe, 3cba). If agent 3 misreports (as shown in Table 5.4b), the probability distribution
would be (% L1, % L2, % ps) = (%abc, %cba, %acb). Assuming truthfulness in the second period,
given a preference profile, identical decisions always result in identical next states. For
each ranking position ¢, we compute Wj(-,0p) as shown in Table 5.5.

To prove that sequential RSD is not gsd—strategyproof, we need to show that there
exists a ranking position ¢ such that Wg((ﬁ—g, =t ) o7) > Ws(>=* 0). For o, we need to
show that 3 + [3(z2,) + 2(i2,) + ¢(a2,)] > 5+ [3 (um) + 3(i2,)], which is simplified to
fi., > fio,,. Therefore, for any matching such that fiz (3) is preferred to fi2,(3), agent 3
would be better off under misreporting. For example, consider a matching that allocates
to agent 3 its top choice with certalnty under 2 (3) = (1oy), but assigns all objects with
equal probability under /2 (3) = (501, 302, 503).

For the sake of completeness, we also consider objects that are ranked as good as second.
For 0y, we must show that 2 + [3(z2 ) + 2(i2,) + ¢(i2,)] > 1+ [5(i2,) + 3(5,)], which
further simplifies to /133 > [LZ2 + 1. Since any allocation at best provides a matching with
the sum of 1 for 0; and 0y, we have that ﬂi3 < 1. Thus, the assignment under truthfulness
is always preferred for objects that are as good as os.

Even though for o, misreporting is not beneficial, it is still possible to benefit from
changing the allocation for the top ranking position. For o; we have Wg((ﬁg, =tJ),01) >

W3(>=*, 01), implying that sequential RSD is not gsd-strategyproof. This concludes our
proof. O]

The following example illustrates a simple scenario wherein sequential RSD can be
manipulated.

Example 5.7. Consider two agents and two objects. Assume the preferences of agents
are as follows: agent 1’s preference is fixed as >=1: @ > b in all periods, while agent 2’s
preference is >5: a > b in the initial state and remains the same if it receives object b.
However, agent 2’s preference will change to b > a if it receives object a and will remain
fixed thereafter, no matter what it receives in the future.
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In this case, agent 1 may misreport its preference in the first period as b > a so that
agent 2 obtains a with certainty in the first period and agent 2’s preference evolve to b > a
in all future periods. This way, agent 1 can avoid competition in the future periods and
benefit from its initial misreport.

In the next section, we will elaborate on possible types of manipulation and how strat-
egyproofness also depends on whether the transitions are Markovian or history dependent.

5.7 Strong and Weak Manipulation of Sequential RSD

So far we showed that manipulation is possible under sequential RSD. However, we did not
show the quality of manipulation (whether weak or strong) nor discussed the possibility
of manipulation with regards to the planning horizon. Recall that a matching policy
is weakly manipulable if it is not gsd-strategyproof, and it is strongly manipulable if it
does not satisfy weak gsd-strategyproofness. This distinction between strong and weak
manipulation is an important factor when measuring the susceptibility of matching policies.
Strong manipulation states that an agent can strategically influence the matching decisions
such that its allocation improves, for all possible utility models that are consistent with its
preference orderings. On the other hand, under weak manipulation an agent may benefit
from a strategic report only for some (but not all) particular utility models.

In this section, we are interested in characterizing the conditions wherein sequential
RSD is susceptible to strong manipulation. We dig deeper on the possibility of weak or
strong manipulation under various transition dynamics and provide results on the number
of future steps required for a strategic agent to benefit from misreporting, looking for-
ward into the future. We first introduce a few lemmas that we will use later to analyze
manipulation strategies.

Lemma 5.1. Let i be a random matching decision, and n = |N|. Then, the probability of
assigning an object to an agent under RSD satisfies the following lower bound and upper
bound:

- Worst-case matching outcome: for all ranking position £, Z;‘:m pi(z|ht) = % In
other words, for all £, pt(oflh') > L.

- Best-case matching decision: for top object o1, pt(o1|h') = 1.
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Proof. Worst-case matching outcome under RSD is when all n participating agents have
identical preferences. In this case, at least in (";!1)! orderings, an agent will be ordered
first and has exactly % chance of receiving its top choice. Since agents have identical
preferences, then there is exactly % probability of being ordered first, second, third, and
so on, implying that for any ranking position p!(os|ht) > % Adding these probabilities for
all ranking positions we have Y% pf(z|h') = £.

r=01

Best-case matching outcome is when no two agents have identical top preferences, that
is, each object is a top choice of only one agent. In this case, for all n! priority orderings
of agents, all agents receive their top object, and thus pk(o;|h") = 1. O

The following lemma states that if a misreport does not change the current matching
decision, it cannot impact the evolution of preferences and the next state, and thus the
decision trajectory, remains unchanged.

Lemma 5.2. Fizing ju € M, for any ="t'e P given agent i’s misreport =,
T =) = T (5, =10, 1)

Proof. Since agent ¢’s true transition is according to its true preference and not the mis-
report, we have Tj(="1 |<! u(i)) = Ty(=""1 | =!, u(i)). By the independence of priors
and transitions and the assumption of no externalities, given a matching decision u, for all
other agents j € N\i we can write,

Ti(=5 (75 =) m(3) = Ty0=5+ | =5, ()

The overall transition is the Cartesian product of all individual transitions, and thus
we have,

~t . .
Tz 1650, w()) = [T T -5 =5 w(6),
jEN jEN
which implies that T(=1 | =t ) = T(=1 (50, =1,), ). O

In other words, given the independence of priors and transitions, agent i’s misreport
only affects the decision trajectory through changing the allocation. The immediate conse-
quence of Lemma 5.2 for random matchings is the following: If a misreport does not change
the random outcome at t, it does not impact the evolution of preferences, and hence, the
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decision trajectory. Thus, a misreport may change the decision trajectory if and only if it
changes the random allocation for some (or all) other agents.

In each step, sequential RSD prescribes a matching decision based on current reported
preferences and independent of the past history. However, agents’ preferences may evolve
based on the history of past allocations and preferences. Therefore, in the sections that
follow we distinguish between history-dependent and Markovian transitions when analyzing
agents’ strategic behavior.

5.7.1 Two Agents

Several decision problems deal with periodically assigning tasks or responsibilities between
two agents with dynamic preferences. For example, co-funders of a small startup may
want to re-assign executive tasks among each other biannually. Similarly, co-advisors may
decide to assign supervision activities periodically based on their (dynamic) preferences
over the tasks.

We first study the strategyproofness of sequential RSD when allocating objects to two
agents. We show that gsd-strategyproofness depends on the planning horizon and the
transition of preferences. Our results show that the sequential RSD policy is not even
weakly gsd-strategyproof when the transitions are history dependent.

Theorem 5.2. Sequential RSD is strongly manipulable for two agents when X\ > 4, under
history-dependent transitions. For A < 4 sequential RSD is gsd-strategyproof under history-
dependent transitions.

Proof. We provide a proof by construction. With two agents and two objects, there are
four distinct preference profiles: two profiles where both agents have the same top choice
and two where the top choices differ. For agent i, we construct the worst-case scenario
under truthful reporting and the best-case scenario under a strategic misreport as follows:

- Let & denote a preference profile where agent i receives its top choice. By Lemma
5.1, the best-case outcome at each period is 7m;(=) = (lo1), which for simplicity we
denote this outcome by /.

- Let = be a profile with the worst possible outcome for agent i. By Lemma 5.1, the
worst-case outcome for agent 4 at each period is m;(>=) = (1/201,1/20,), which we
denote by fi.
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Figure 5.7: History-dependent transitions for two agents.

By Lemma 5.2, agent ¢ can only affect the evolution of preferences by changing the
random outcome prescribed by 7. At current time ¢, given history-dependent transitions,
agent ¢ reports preference %E to change the matching outcome to 7T(>A-§, =t

Considering the best trajectory, W(;—j, > ) will transition the system to a trajectory
with a sequence of best outcomes as shown in Figure 5.7b. Agent ¢’s misreport would
cause an immediate loss at ¢; however, it may take its state to = according to T(h* =
SR Y = 1 for all ¢ > t where b = (=, 1,5 [, ..., >") and ="'= <. However,
under truthful reporting for the worst-case trajectory (as shown in Figure 5.7a) we have
T(h* =|h'=1, u¥'=1) =1 for all #' > t, where h' = (=, f1,>=,...,>") and ="'= =.

We can now compute the score of receiving objects in each ranking position for both
best-case and worst-case scenarios. First consider the top ranked object for A = 4 steps.
For the best-case scenario under misreport, at the current period agent ¢ must report
a preference Qf #>! because there are only two possible preference orderings with two
objects. By lsd-strategyproofness agent i receives a less preferred outcome at ¢ but, given
the best-outcome scenario, in all future steps receives its top choice. Thus, by backward
induction we write Wf(;t,ol) = 3, since for at least 3 steps it receives its top choice.
Similarly, for the worst-case scenario under truthful reporting, by backward induction we
can write W7 (', 01) = 2 + 2. Therefore, W7 (=", 01) > Wr (= 01). Since there are only
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two objects, the allocation of the second ranking position is the complement of the first
ranking position, implying that for A > 4 sequential RSD is strongly manipulable.

We now show that for A < 4, sequential RSD is gsd-strategyproof for two agents.
According to Equation 5.3 for the best-case scenario under the strategic report when A = 3
we can write:

1,1 1
Wi (- 21(5(01 +02)) + 4(2(01 +02)) +
1.1 1 1
5(5(01 + 02)) + 5(201) + 5(01 + 02)
Thus, the score of receiving top choice under truthful reporting is W7 (=% 0;) = 2

which is equal to that of misreport Wf(%t,ol) = 2. Thus, the sequence of matching
under truthfulness stochastically dominates the best possible allocation sequence under a
misreport. ]

Theorem 5.3. Given Markovian transitions, sequential RSD is gsd-strateqyproof for two
agents.

Proof. Proof by construction. We consider two scenarios for agent i: the best trajectory
after misreporting at time ¢, W(;:, ="' ) which will transition the system to a sequence of
best outcomes similar to the sequence shown in Figure 5.7b, and the worst-case scenario
under a truthful report at time ¢. By Lemma 5.1, the worst-case outcome assigns 1/2
probability of getting top object o1, and 1/2 of getting 0,. By lsd-strategyproofness at
t, agent i strictly prefers the immediate outcome under truthfulness, that is m;(>=*) =!

To construct the best-case scenario after misreporting, we assume the following: (i)
given any non-truthful report and any matching the preference profile transitions to a
profile that agent 4 receives its top choice, that is, T(=|=,u) = 1 for any = #> and p,
and (ii) T(=|=, ) = 1 for any profile that assigns top choices to agents.

By the Markovian assumption, in any state =!= > because = is a profile with the
worst-outcome, there is 1/2 probability of choosing decision p and slipping into the best
trajectory as shown in Figure 5.8, and 1/2 probability of making a decision that transitions
agents to profile =. Thus, under truthfulness, for two agents the score (expected sum of
probabilities) can be written in the following closed form

A
=2l

k=1

)\ /{7014‘(;) (01+02>]

MIH

96



To show that sequential RSD is gsd-strategyproof when n = 2, for any A\, we ver-
ify that W;(=' 01) > Wi(=', 01) by induction. For A = 1 the base case holds by lsd-
strategyproofness of sequential RSD. For the induction step, assume that for A we have,

Wi(=',01) > Wi(=', 01) (5.5)

FO= R+ ()2 A1

DO | —

>l

1

Then we need to show that the above holds for A + 1. Since the hypothesis holds for
any arbitrary A, we rewrite it for A + 1:

SIGHA+D) =R+ ()= A+ 1) -1
SOk + (TG 5 = (A1) -1

(& J/

Vv
hypothesis

The hypothesis statement is greater than or equal to A — 1, we need to show that the
rest of the left-hand side is greater than or equal 1:

which holds for any A > 1. Thus, the inequality 5.5 holds for all A\, which concludes
our proof by induction. The sum of probability assignments for second ranking position
complements that of the first ranking position, which implies that sequential RSD is gsd-
strategyproof under Markovian transitions. O

5.7.2 Three or More Agents

In this section, we investigate the weak and strong manipulability of sequential RSD for
settings with three agents, and discuss how these results hold for larger problems with more
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Figure 5.8: Worst-case scenario with Markovian transitions.

agents. We establish a connection between the number of decision steps (planning horizon)
and the possibility of manipulation in such matching mechanisms. We show findings for
three agents and then argue that our impossibility results persist for any larger number of
agents.

History-Dependent Transitions

Theorem 5.4. Let the transition functions be history-dependent. For n = 3, sequential
RSD is strongly manipulable if X > 4, and it is weakly manipulable if 1 < A < 4.

The proof closely follows the proof of Theorem 5.2 by contrasting the worst-case and
best-case scenarios after truthful and strategic reports respectively, and is relegated to
Appendix B.

Markovian Transitions

When the matching policy is independent of history, Theorem 5.4 shows that strong manip-
ulation is possible under history-dependent transitions. In this section, we focus attention
on Markovian transitions as a common practice in the literature of sequential decision
making under uncertainty [25,31,32, 42 115].

98



The following lemma states that if an agent’s strategic report changes the probability
distribution over deterministic matchings, then for at least one deterministic matching
decision, the matching remains in the support of the new random matching.

Lemma 5.3. Let >} and >A—§ denote agent 1’s true and strategic report respectively. There
always exists a subset of Pareto efficient matchings M’ C M with ZM@W W(ulﬁt) > 0
such that 35 o m(p] =*) > .

Proof. The matching decision is a uniform randomization over serial dictatorships that are
prescribed by the set of all possible priority orderings (permutations of agent orderings).
For all serial dictatorships where agent ¢ has the lowest priority, it chooses an object after
all agents receive their objects. Thus, agent ¢ will receive what is left over no matter what
preference ordering it declares, implying that a subset of matchings M’ C M exists with
S ene Tl > 0,

Now we need to show that the probability of this subset of matching decisions is always
greater than or equal to 1/n. Sequential RSD is a uniform distribution over serial dicta-
torships prescribed by n! possible priority orderings. Fixing the preferences of all agent
j € N\ i, there are (n — 1)! priority orderings where all n — 1 agents are ordered before
agent i. Thus, for (n —1)! orderings 7, (p|=") = 7;(u| >=*). This implies that there exists a

subset M’ C M in the support of both random matchings with the probability of at least

n!

Theorem 5.5. Let transition functions be Markovian. Then sequential RSD is weakly
gsd-strategyproof for 1 < X\ < 4 and 1is strongly manipulable for A\ > 4.

The proof is relegated to Appendix C. It uses Lemma 5.3 and follows closely the proof
of Theorem 5.3.

The results on weak and strong gsd-strategyproofness of sequential RSD when there
are three agents are essentially negative results that show the lack of truthful incentives
when using sequential RSD as the matching policy. Therefore, these results can easily
be generalized to larger problems with more agents n > 3. The following example shows
how these findings can be extended to problems with larger number of agents. Consider
a group of agents, three of which are competing over objects and the rest do not impact
the sequential outcome for those three and among themselves. Theorem 5.5 and 5.4 show
that under sequential RSD, there will still be one agent (in the group of three) that can
strongly manipulate the outcome and gain from misreporting its preferences.

Table 5.6 summarizes our results on manipulability of sequential RSD according to
Markovian or history-dependent transitions. Sequential RSD is gsd-strategyproof for two
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Markovian History-Dependent

gsd-strategyproof if A < 4

2 agents | gsd-strategyproof not weakly gsd-strategyproof if A > 4

3 agents | weakly gsd-strategyproof if A < 4 weakly gsd-strategyproof if A < 4
(or more) | not weakly gsd-strategyproof if A > 4 | not weakly gsd-strategyproof if A > 4

Table 5.6: Summary of manipulation results under Markovian and history-dependent tran-
sitions.

agents under Markovian transitions. For three or more agents, sequential RSD does not
even satisfy weak gsd-strategyproofness given either Markovian or history-dependent tran-
sitions, and therefore, it is strongly manipulable.

5.8 Sequential RSD with Adjusted Priorities

In the previous sections, we showed that sequential RSD is prone to manipulation when
agents have dynamic preferences. In this section, we introduce a modification of RSD,
which uses information contained in histories of interactions between agents to overcome
strategic behavior. We start this section with some observations about relationships be-
tween agents.

A key property of RSD is that it prioritizes agents in each round, and an agent with
higher priority gets to choose its more preferred item from the set of remaining objects.
This gives rise to the concept of dictatorial domination.

Definition 5.14. Given a preference profile and the realization of a matching decision, we
say that agent i dictatorially dominates agent j at time t if and only if (i) =% ' ().

We can represent each agent’s dictatorial dominance as a binary relation between every
pair of agents. Each agent’s dictatorial dominance on other agents at time t is represented
by wi = (wj;,...,wj,), where w; ; = 1 denotes that agent i has dominated agent j at time

t. A dominance profile is a matrix of agents’ dictatorial dominances, w' = (W}, ..., wk).

Given a random matching mechanism, the probability that agent ¢« dominates agent j is
equal to the sum of the probabilities of all deterministic matchings wherein agent j prefers
the outcome of agent i to its own outcome.® Given a random matching policy 7 and A,

Deterministic matching is a special case where given p, wf ; = 1iff p*(i) =% p*(j).
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the probability of ¢ dominating j at period t is:

wi(m(Ah) =Y wl(u | 1) (5.6)

HEM:pu(i) = pu(5)
Similarly the probability that agent j prefers its own outcome to agent ¢’s outcome is

wij(m(h')) =1 = wj;(w(h)) (5.7)

RSD ensures equal chance of dictatorships to agents, thus, an agent’s strategic misreport
can only increase its random dictatorial dominance on another agent to % This is because
agent i, knowing the preferences of others, can change the allocation of another agent j
only in those permutations where 7 is prioritized before j. For all other priority orderings,
agent ¢ is ordered after agent j and cannot change agent j’s allocation and increase its
dominance on agent j.

Proposition 5.1. Given RSD, for any ='e P" we have Vi,j € N,w!;(7(~")) < 3, that is,
the probability of agent i dominating another agent j is always bounded.

The proof is relegated to the Appendix D.

The intuition comes from the fact that RSD is a uniform distribution over all priority
orderings. Thus, when two agents have conflicting preferences over some alternatives, RSD
assigns equal probabilities to all orderings that prioritize one agent lower than the other
one.

5.8.1 Adaptive RSD

In this section, we provide a modification to the RSD mechanism based on adjusting agents’
priority ordering. We introduce a simple structure to preserve the history of dominations
throughout the matching process. Formally, let d'~! be a matrix representing the complete
dominance history of agents up to time ¢, where dﬁ;l is agent 4’s history of dominating
agent j up to time t. Since we only require to know one-to-one dominance history of agents,
and because we update the dominance history in each step using exclusive disjunction, we
can summarize the dominance history in a single global variable. As the dominance profile
of agents is attained after realization of decisions (ex post), the state of the mechanism at
t can be summarized by h' = (=, d"!). As shown in Algorithm 3, Adaptive RSD runs as
follows:
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Algorithm 3: RSD with adjusted priorities (Adaptive RSD)

Input: preference profile =!, dominance history d‘~*
Output: A probability distribution prescribed by 7
foreach priority ordering f € F do

=,

=T
for (i=nto 1) do
for (j=ntol)do
if (j <7 and diJé.)’f(i)‘: 1.) then
| f" < Shift(f'(j),i - j);

foreach (p € M) do
if SD(f’,>") = pu then
| w5 dh) = m(p] (- d ) + 5

/ Updating d' after realization of =

or (i=1ton)do

for (j =1ton) do
L dﬁj = fj(ﬂt) © d;’i_l;

If for a pair of agents the dominance history is unbalanced, that is, dﬁj’l = 1, then
for each priority ordering f € F, if agent j is ranked before i, we change the priority
ordering to f’ by shifting the orderings such that j has higher priority than agent 7,
and add the new priority ordering to a new multiset F'.

The matching mechanism then draws a priority ordering from a uniform probability
distribution over the priority orderings in the multiset F’. Then, agents select alter-
natives according to the selected ordering. Note that the multiset F' may contain
several copies of a single priority ordering, and the matching mechanism draws uni-
formly from all n! members of this set, thus, the matching may no longer be uniform
over the set of all possible orderings F.

After the realization of matching decision, and given the dominance profile w' at time
t, the mechanism updates the dominance history according to the following exclusive
disjunction: d! = w' @ (d'~1)T", where (d=1)*" is the transpose matrix of d'~!, i.e.,
for each element dfj_l the transpose element would be d;i_l.
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=1:a>=b>=c
=o:b=a>c
=3:a>=b>c

Table 5.7: A sample preference profile.

RSD Adaptive RSD
1,3,2

)

Y

W W W
N~ N o o
e Sl

W W NN =
DN — W = WD
— N =W NN W

Table 5.8: Priority orderings under RSD and Adaptive RSD given the dominance history
described in the example.

The Shift operation updates the agent ordering by shifting the dominating agent to a
lower ranking immediately after the dominated agent. Consider a problem with 4 agents
with priority ordering of 4,1, 3,2; agent 1 is ordered second and agent 2 is ordered last
(fourth). If d';' = 1, then at time t agent 1’s priority is shifted 4 — 2 = 2 positions
right to be ordered last, and the priority ordering is updated to 4, 3,2,1. Note that when
shifting an agent’s ordering to right, the agents with lower initial priority will be relatively
shifted left. The following example illustrates how Adaptive RSD changes the assigned
probabilities according to the dominance history.

Example 5.8. Consider 3 agents and 3 objects with preferences as shown in Table 5.7.
Assume that the dominance history is do3 = 1 and 0 for all others. Algorithm 3 balances
the priority orderings according to the dominance history. Table 5.8 illustrates the set
of all priority orderings under RSD and Adaptive RSD. For instance, the ordering 1,2,3
would change to 1, 3,2 because agent 2 has dominated agent 3 in some period in the past.
Table 5.9 shows the random allocations under simple RSD and Adaptive RSD.

Proposition 5.2. When the dominance history is balanced, i.e. dﬁ;l = 0,Vi,5 € N,
Adaptive RSD 1is equivalent to RSD.

Proof. According to Algorithm 3, for each priority ordering f € F since for all i,j € N
the dominance history is balanced, i.e., d;;l = 0, it is easy to see that the updated
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a b c a b c

1 3/6 1/6 2/6 1 3/6 1/6 2/6

2 0 4/6 2/6 2 0 2/6 4/6

3 3/6 1/6 2/6 3 3/6 3/6 0
(a) RSD (b) Adaptive RSD

Table 5.9: Allocations under RSD and Adaptive RSD.

Figure 5.9: Influence diagram representing the conditional dependencies for the Adaptive
RSD mechanism.

priority ordering f’ = f. Thus at time ¢, the multiset F’ is equivalent to the set of all
priority orderings F, and the a uniform distribution over F’ is equivalent to the RSD
mechanism. O

Figure 5.9 illustrates the influence diagram for the Adaptive RSD mechanism. Note
that the history of matchings has been compressed into a single dominance variable in each
state.

Avoiding Cycles

One notable property of Adaptive RSD in Algorithm 3 is that it prevents the possibil-
ity of pairwise cycles when updating priority orderings based on the dominance history.
Given the pairwise dominance relation between each two agents, it may be the case that,
using a simple swapping mechanism between two agents, a dominating agent would be
re-prioritized higher than the agent that was dominated. Consider for example an order-
ing of 1,2,3 where da3 = 1 and d;» = 1. If a mechanism first updates the priorities of
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2 and 3 by swapping their orderings, the ordering will be 1,3,2. Now, since agent 1 has
also dominated agent 2, swapping their orderings leads into a priority of 2, 3,1, wherein
a dominating agent 2 has higher priority than agent 3 which was dominated by agent 2.
Likewise, if a mechanism first swaps the priorities of agents 1 and 2, and then agents 2 and
3, the priority ordering will change first to 2,1,3 and finally to 3,1, 2, leaving agent 1 in
higher priority than agent 2, which was dominated by agent 1.

The Adaptive RSD starts by comparing the lowest priority agents with the those in
higher priority orderings, shifting the dominating agent to an order immediately after the
dominated agent. In the above example, the priority ordering will be updated to 3,2, 1.
Thus, under the Adaptive RSD mechanisms dominated agents always get priority over
their dominating agent counterparts.

Local Properties of Adaptive RSD

Another implication of the Adaptive RSD mechanism is that it preserves the local proper-
ties of the RSD mechanism, that is, in each period the allocation is ex post efficient locally.
Moreover, the non-bossiness of Adaptive RSD ensures that any attempt to changing the
allocation of other agents also changes the allocation of a non-truthful agent.

Proposition 5.3. Adaptive RSD is ex post efficient and non-bossy in each period.

Proof. Adaptive RSD prescribes a random matching over serial dictatorship mechanisms
induced by priority orderings. A serial dictatorship mechanism is Pareto efficient, and
thus, randomization over a set of Pareto efficient mechanisms satisfies ex post efficiency.

The non-bossiness is the direct implication of serial dictatorships: the support of the
Adaptive RSD mechanism consists solely of serial dictatorships. Any serial dictatorship

mechanism is non-bossy [133, 134], implying that any distribution over this set that is
independent of reported preferences is also non-bossy. Thus, Adaptive RSD is locally
non-bossy. [

5.8.2 Strategic Behavior

At each period, an agent’s strategic behavior is either through manipulating the immediate
outcome (at the current period) or affecting the decision trajectory to gain advantage
sometime in the future. We first focus on strategic behavior of agents at the current state
and then investigate the types of strategies that an agent may choose to play to obtain a
more preferred outcome (now or in future) by misrepresenting its preferences.
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Lemma 5.4. Given any dominance history d'=', Adaptive RSD is lsd-strategyproof, i.e.,
for each agent i € N,

Vi€ N, Y wlul(-hd)) =) wlul (<=1, d)
pEM: HEM:
w(i) >=tu(d) w(i) >=tu(d)

Proof. When the dominance history is balanced, the proof follows from Proposition 5.2
and sd-strategyproofness of RSD in single-shot settings.

Let F' be the multiset of priority orderings after updating the set F given the dominance
history of agents up to now d!~!. Each priority ordering f’ € F’ correspondents exactly to
a single serial dictatorship. Agent ¢’s strategic report ﬁf does not improve its assignment
in any of the induced deterministic serial dictatorships, that is, for all orderings f’, if
pt = SD(=, f) and ' = SD((=,>! ), f') then p'(i) =! v'(i). Adaptive RSD draws
from a uniform distribution over the multiset F’, implying that for all agents i € N,
Yy e M

S Srl-td ) = Y S (). d )

zeEM: peM: xeEM: peM:
Ty p(i)=z w-ty p(i)=z

Since the equation is valid for every pair of agents, and each matching is a bijective from
agents to alternatives, in the above inequality, for every x,y € M where x > y we replace
x with u(i) and y with u(7). This precisely implies the inequality in Lemma 5.4. O

According to Lemma 5.4, an agent cannot improve its allocation at time ¢ by misre-
porting at time . Lemma 5.2 implies that an agent can only change the decision trajectory
by changing the matching (and hence the allocation of some agents) at time ¢. An agent’s
possible strategy to influence the sequential outcome is through reducing or increasing its
dominance on a subset of agents to affect the priority orderings prescribed by the Adaptive
RSD mechanism in the future.

Given the Adaptive RSD mechanism, the dominance relation between a pair of agents is
not necessarily symmetric, that is, given a preference profile = it is possible for two agents
i and j to have wf;(7(~")) # wi;(7(>~*)). For example, consider a dominance history matrix
of all zeros and three agents with preferences as follows: >':a = b > ¢, =5: b > a > ¢,
and =% a > ¢ = b. Given Adaptive RSD (or sequential RSD), it is easy to see that

1

wiy(m(=")) = ¢ while wi (r(~")) = 2 and wis(w(>")) = 0 while wiy (7 (")) = %.
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One implication of asymmetric dominance relations is that an agent may strategically
change its dominance on other agents by misreporting its current preference to benefit in
the future. We say that an agent’s strategy is dominance reducing if it reports a preference
that minimizes its current dominance on some other agents. This type of strategizing is
similar to dynamic house allocation for 2 periods of decisions where agents can opt out in
the first period to get priority in the second period [2].

t

) att is dominance reducing if given

Definition 5.15. Agent i’s reporting strateqy o;(>
a matching policy 7, for some j € N,

t
%

Wt (m(os (=

i ), =1,)) < ij(ﬂ'(>§7 =)

The next lemma states that given a random matching prescribed by Adaptive RSD,
agent ¢’s strategy to minimize its expected dictatorial dominance on agent j conversely
results in reducing expected dominance caused by agent 7 on agent 4.

Lemma 5.5. Given the Adaptive RSD mechanism, and strategy profile o;(>}), if w;(m(o: (>}
), =14) < wh(m(=1,=1,)) for some j € N, then

w;ii(w(ai(>§), >t—z>> < w;’i(ﬂ-(>§7 >t—z))

Proof. For the ease of notation, and since the history up to now would be fixed for any
strategic report, we write wj; (7 (h')) = wj;(7(~")). By Equation 5.6, the probability that an
agent prefers its own allocation to another agent’s allocation complements the probability
that it prefers the other agent’s allocation to its own, that is, V =€ P", wi(m(=")) +
@};(m(>=")) = 1. According to the dominance reducing strategy, for misreport »; = o;(>})
we should have wfj(w((ﬁﬁ, =) < wi;(m((=},=1,))). Using Equation 5.7, we can write
this inequality as

1— @ (m((=5, 1)) < 1—al(n((-1, =)
L

L)) > wiy(w (-5, =10)))

Thus, by reporting a dominance reducing preference, agent i’s outcome gets improved,
indicating that the probability of obtaining an object that is more preferred compared to
1(7) according to the report >A—: will be higher than the same probability according to the
truthful report =, i.e., @;i(ﬂ((;-z, =15))) > whi(m (=5 =)

For contradiction assume that agent ¢ increased the domination of agent j on himself by
misreporting w§i(ﬂ(§-f, =15)) > whi(m(~4,>=",)). By feasibility of the matching mechanism
we have wh(m((=;, =*,))) < @k (7 (=L, =*,))), which contradicts the above finding. O
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We say that an agent’s strategy is dominance increasing if it reports a preference that
increases its current dominance on some other agents.

Definition 5.16. Agent i’s reporting strategy o;(>") at t is dominance increasing if
given a matching policy m for some j € N,
wij(m(oi(=7), =14)) > wiy(m (=i, -1,))
Note that an agent may play a strategy that is dominance increasing on some agents
while being dominance reducing on some another agents. An agent can manipulate the

allocation of other agents by playing a dominance reducing or increasing strategy to change
the evolution of preferences.

We show that dominance reducing or increasing strategies do not improve an agent’s
outcome, if not accompanied by changing the evolution of preferences. Thus, manipulation
in the global sense may still be possible by changing the allocation, and thus, influencing
the evolution of preferences. Recall that our desired solution concept states that given any
transition model, no agent can obtain a more preferred sequence of outcomes, no matter
how other agents play now or in the future. Therefore, an agent’s misreport requires
changing the current random outcome either to decrease its dominance in the current time
step, in the hope for improved priority (and thus, matchings) in the future, or to increase
its dominance and changing the evolution of preferences to a more preferred trajectory.

Algorithm 3 ensures that after realization of the random decision, a dominating agent
loses priority against a dominated agent in future steps. The next lemma follows directly
from the Adaptive RSD algorithm (see Appendix E for the detailed proof).

Lemma 5.6. Given two states h't! = (=1, d') and h'*' = (=1 d") such that for agents

i,j €N, cifj > di;, we have
D owlp | WY = w(p | Y (5.8)

HEM: HEM:
(@) = ) p(i) =i ()

The implication of this lemma is that if an agent is dominated by another agent in some
previous decisions, for all next steps where their dominance history is unbalanced (i.e., the
dominated agent has not had a chance to benefit from its priority over the dominating
agent), the agent always prefers its own outcome to the outcome of the dominating agent.
In other words, the dominated agent receives higher priority in all future steps until it
dominates the other agent in a matching decision.
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5.8.3 Two Agents

In Section 5.7.1 we showed that gsd-strategyproofness of the sequential RSD mechanism
depends on the planning horizon and the transition functions, and in fact, under history
dependent transitions, sequential RSD is not gsd-strategyproof. Here, we show an intrigu-
ing result about the Adaptive RSD mechanism, which states that given history-dependent
transitions, for any planning horizon, a successful manipulation of Adaptive RSD results
in a Pareto improvement.

Theorem 5.6. Given Adaptive RSD and history-dependent transition, for two agents any
strong manipulation results in a Pareto improvement.

Proof. There are two agents ¢ and j with private preferences over two objects. Assume
agent i’s strategic report >A—§ results in gaining from strong manipulation, i.e., I/VZ-”(((>:it7 >—§-
), d ™Y, 00) > WE((=, d"™1), 00),Vo, € M, with at least one strict inequality. Consider the
case where agent ¢’s strategy is dominance increasing at ¢, that is

~

t Jt— [
wfj(ﬂ-((>_i7 *;)adt ) > ij(7(>t,dt b))

Since 7 has increased its dominance on j, then by Lemma 5.6 in the future steps, Adaptive
RSD prioritized agent j over ¢. However, by assumption agent ¢ has improved its outcome
by misreporting. By Isd-strategyproofness of Adaptive RSD, agent i’s immediate outcome
at t after misreport would not improve, and by Proposition 5.3 it must be the case that
m((=1, dY)) =t (5 ~%),d""")), which implies that agent j may only benefit in the
future steps. With two agents and two objects, there are four possible profiles, (2!)?, in
each period. Thus, increasing dominance means that for agent j’s immediate outcome,
similar to agent 4, we have 7;((~*,d"")) >} (54 =), d ).

By assumption, since agent 4’s outcome has improved in the future, we have W7 (((5;', -
),d'™1),00) > WE((=1,d"™1), 00),Yo, € M. However, agent i’s outcome improves only on
those profiles that its preference ordering is not equal to that of agent j. Thus, in all
periods that ¢ receives its top choice, by symmetry, agent j also receives its top choice,
implying that Vo, € M, Wf(((%t, =£),d71),00) > W (-1, d" 1), 00).

For dominance reducing strategy, when there are two agents, any dominance reducing
strategy by agent ¢ would strictly improve agent j’s immediate outcome. By Lemma 5.5,
agent ¢’s reduction in dominance on agent ;7 would also lead to symmetric decrease in agent
j’s dominance on i. Thus, agent ¢ would not receive a higher priority in the future periods.
The rest of the proof follows exactly as it was stated for the dominance increasing case. [
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1 2 3
<>1:a>b>c> 1 0 1/6 3/6

o1b>=a>c 2 2/6 O 0
=3ra>=c>b 3 3/6 1/6 0

t

(a) A sample preference profile. (b) The dominance profile w', denoting the
dominance relation for every pair of agents.

Table 5.10: An example showing that two agents’ dominance relation depends on the mech-
anism and preferences of other agents.

For two agents, based on Theorem 5.3 it is easy to see that under Markovian transitions
Adaptive RSD and sequential RSD are both gsd-strategyproof. Under history-dependent
transitions, Adaptive RSD aligns the incentives of a strategic agent with improving the
overall optimality of the problem. This alignment of incentives is due to the fact that under
ordinal preferences, the strategic agent’s gain is tightly coupled with the other competing
agent: both agents’ incentives are aligned only when their preferences are unequal (or
unaligned).

In the next section, we show that adding one more agent to the setting requires other
subtle assumptions about how preferences evolve to ensure desirable incentive properties.

5.8.4 Manipulation and Preference Dynamics

Measuring how two agents’ preferences evolve to more conflicting or non-conflicting profiles
depends heavily on the matching mechanism and the preferences of other agents. Not only
does the dominance relation between two agents depend on how their preferences are similar
to one another, but it also depends on other agents’ preferences.

Example 5.9. Consider a preference profile as shown in Table 5.10. Looking only at the
preferences of each pair, it is easy to see that without considering the matching mechanism
or the other agents, since agent 2’s top choice differs from agent 1 and 3’s top choices, agent
2’s preference does not conflict with any of the other two. Thus, neither would dominate
one another. However, a more careful look at the preferences, given RSD as the matching
mechanism, reveals that in a serial dictatorship with agent ordering 3, 1,2, both agents 1
and 3 dominate agent 2. Hence, given RSD as matching policy 7, the dominance relation
for each i and j, wi ;(7(~")), can be shown as illustrated in Table 5.10b.

Using the notion of dictatorial dominance, for each pair of agents we compute the
expected sum over matchings where agent ¢ dominates agent j up to the planning horizon.
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Formally, given a preference profile =!, matching policy 7, and a planning horizon ),
the expected number of matchings wherein agent ¢ dominates agent j in the future (not
including the current decision) is written as

A

E| Y wl(r(="d ") |- (5.9)

T=t+1

In a setting with deterministic allocations but with uncertain preference transitions,
Equation 5.9 shows the expected number of times, looking forward into the future, wherein
agent ¢ dominates agent j. For example, consider a situation where in each period agents’
preferences evolve such that all agents have different top choices. In this case, no agent
dominates another agent in this trajectory of matching decisions. Likewise, if agents have
identical preferences in all possible states (homogeneous preferences), then starting from
the initial period and given sequential RSD, each agent gets the same chance of dominating
another agents.

5.8.5 Manipulation With Dominance Increasing Strategies

We now reach our main results in this section, which depend on how the preferences
evolve to different profiles in the future. We first show that given a transition function,
under Adaptive RSD no agent can benefit from a dominance increasing strategy if, in the
future, preferences evolve such that a dominated agent gets the chance to dominate the
dominating agent. In the next section, we show that even when the above assumption
does not hold, if an agent’s misreport does not cause other agents’ preferences to evolve to
more conflicting trajectories, then a successful manipulation improves the allocation of all
agents in expectation.

Theorem 5.7. Given history-dependent transitions and agent i’s dominance increasing
report ?—E, when other agents report truthfully, Adaptive RSD prevents strong manipulation
if for any j such that wfj(w(ﬁ-f, =14)) > wi;(m(~5, =) we have

A A
E| Y wimr(="d" )| (5= | ZE| D wi(r(=",d" ) |- (5.10)
T=t+1 T=t+1

Proof. Consider history-dependent transition dynamics. For weak gsd-strategyproofness,
we must prove that agent i’s misreport does not improve its overall allocation outcome,
considering both immediate and future possible outcomes. The Isd-strategyproofness of
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Adaptive RSD in Lemma 5.4 implies that no agent can immediately benefit from misre-
porting. Thus, we only need to worry about future possible outcomes.

Let ;Z denote agent ¢’s strategic report at time t. According to Lemma 5.2, if agent
7’s misreport does not affect the random decision at the current state, then the overall
trajectory remains unchanged, looking forward into the future. Thus, agent ¢ can only
change the decision trajectory by changing the random outcome at t. Formally, if 92
results in 7(h') # m(h'), then by lsd-strategyproofness (Lemma 5.4) and non-bossiness
(Proposition 5.3) of Adaptive RSD it must be that m;(h!) ! m(h). Note that strict
inequality is the direct implication of Adaptive RSD’s non-bossiness in Proposition 5.3.
Thus, we can focus on agent i’s strategic report which results in a different random outcome
at the current step.

The state at time ¢ is denoted by h! = (=! d'™!), and assume that d'~! is balanced.
Let d and d! denote the dominance history reporting according to > and = respectively.
For simplicity, we use =' = (=, =% ) to denote the preference profile at which agent i
is misreporting but all other agents are reporting truthfully. Suppose agent i’s misreport
does not change its dominance on a subset of agents while it is dominance increasing for
another subset of agents.

Consider a subset of agents Ny C N such that for each & € N, after misreporting agent
i has less than or equal dominance, that is, w!, (7(=, =) < Wi, (7(>")). By Lemma 5.5
we have wi, (1(=),=1,)) < wi (x(~")) yielding that d, < d.,. Thus, in all future steps,
agent ¢ does not benefit by receiving any priority over k.

We focus on those agents j € N\ N, that agent i increases its dominance on them at
time ¢. By assumption, for each j, wfj(ﬂ(;-f, ='4)) > wi(m(=4,=";)) we have

A A
T T gr— ~t T T T—
E Z wi(m(~",d NI~ | > E Z wi(r(-7,d D) -
T=t+1 T=t+1

which means that if an agent is dominated by i its preferences (along with agent i’s
preferences) evolve such that they do compete over resources in the future. Adaptive RSD
ensures that in all future steps 7 > t, a dominated agent j is prioritized over the dominating
agent 7, which implies that agent 7 would prefer its own outcome to ¢ in the future periods.
By Equation 5.7, we know that wf;(7(h')) = 1 — w};(m(h')). Applying this to the above
inequality we have

A
S - G(=T ) |

T=t+1

A
E| Y 1-wpr(-"d7") | (%,>0)

T=t+1

>E
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which further simplifies to

A A
E| Y @ur(-"d™ )| (== | SE| Y @pr(-"d" ") [ (5.11)
T=t+1 T=t+1

By definition, wj; is the probability that agent ¢ prefers its own outcome to agent j’s
outcome. Thus, a dominated agent will be prioritized over the dominating agent, and given
the assumption in Equation 5.10, it has equal chance of benefiting from this priority and
reciprocating in the future periods.

Since agent ¢ cannot gain immediate benefit at ¢ by misreporting, and by Proposition 5.3
and lsd-strategyproofness of Adaptive RSD we have w;i(ﬂ(ﬁ-t,dtfl)) < @h(m(=1, dh).
Adding this inequality to Equation 5.11, shows that for all agents j, agent ¢ prefers its
outcome to agent j’s under truthful report. This inequality holds for all agents. Therefore,
there exists at least one ranking position o, such that agent i strictly prefers its outcome
under truthfulness, implying that Adaptive RSD is weakly gsd-strategyproof. [

Theorem 5.7 assumes history-dependent transitions. Because Markovian transitions
can be considered as a special case of history-dependent transitions with only one step
memory, Theorem 5.7 similarly holds for Markovian transitions.

Corollary 5.1. Theorem 5.7 holds for Markovian transition dynamics.

Note that Equation 5.10 prevents the transition dynamics to evolve to states that are
non-conflicting for agent ¢ but may result in more conflicting trajectories for all other
agents. This is because a strategic agent can report a preference such that preferences
evolve to states where the dominated agents would not have a chance to reciprocate (due
to completely different and non-conflicting preferences); henceforth, manipulation is still
possible without the assumption in Equation 5.10. It is important to note that Adaptive
RSD only prevents certain types of manipulation (dominance increasing) and cannot pre-
vent all types of manipulations: An agent may still manipulate the outcome by reducing
its dominance on other agents and influencing the evolution of preferences such that its
preferences do not conflict with those of other agents in the future periods.

5.8.6 Pareto Improving Manipulations

We show that even though Adaptive RSD cannot prevent all types of manipulations, under
some mild assumption on preference dynamics, any successful manipulation — whether
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dominance increasing or reducing — that improves an agent’s outcome is harmless to other
agents and leads to a Pareto improvement.

Theorem 5.8. Given history-dependent transitions and Adaptive RSD, agent i’s strategic
report ;z resulting in successful strong manipulation results in a Pareto improvement in
expectation if for all j,k € N \ ¢ we have

A A
E| Y wp(r(-"d™ )| (== SE| Y wp(r(="d" ") [~ (5.12)
T=t+1 T=t+1

Proof. To show that any strong manipulation that improves a strategic agent’s outcome
would cause Pareto improvement, we must show that if Vo, € M, W7 (ht, 0;) > W (h', 00)
with possibly one strict inequality, then for all j € N \ i we have Yo, € M, WT(h',0.) >
Wf(ht, o¢). Note that the assumption in Equation 5.12 prevents the transition dynamics
to evolve to states that are non-conflicting for agent ¢ but may result in more conflicting
trajectories for all other agents.

Let >A-§ denote agent ’s strategic report at time ¢. Recall from Section 5.8.1 that history
at time ¢ can be presented as h! = (=!,d'"!). By lsd-strategyproofness of Adaptive RSD,
agent ¢’s misreport at ¢t cannot improve its immediate outcome. According to Lemma 5.2,
if agent i’s misreport does not influence the random decision at the current state, then the
overall trajectory remains unchanged, looking forward into the future. Thus, agent ¢ can
only change the trajectory by changing the random outcome at ¢. By Proposition 5.3 we
have that 7;(ht) = m;(h).

Assume that agent i’s misreport has either increased or has not changed its dominance
on some agents while strictly reducing its dominance on a subset of agents N; C N.
Formally, Vj € Nd,ng(w(ﬁﬁ,gi)) < wi;(m(=")), where Ny C N denotes a subset of
agents on which ¢’s dictatorial dominance has strictly reduced, and for all other agents
Vi’ e N\Nd,wfj,(ﬂ(g—z, =) = wip(m(=')). Let d' and d' denote the dominance history
after reporting ! and 92 respectively, and assume that the dominance history up until
now is balanced, i.e., V1, 7, dﬁ’;l =0.

The idea is that an agent’s misreport may lead the evolution of preferences to a sequence
where agent i’s allocation improves while (some) other agents get into more conflicting
states with one another (but not agent i), and thus, the misreport may be harmful to
other agents. In the following steps, we show that given our assumption on preference
dynamics (Equation 5.8), such harmful manipulation is impossible.
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Step (4): Vj' € N\Ng,wj;, (m(5,=1,)) > wi; (m(>=")), meaning that agent i’s misreport
increases its dominance on some agents. Since the dominance history up until ¢ is the same,
by the exclusive disjunction for the dominance profile we can immediately write dt , > dt

For Pareto improvement, assume that dt > d 4+, but agent ¢ has changed the decision

trajectory such that Yo, € M, W7 (ht, o) 2 M/f(ht,Og). This means that the expected
dominance of other agents on ¢ is reduced, which implies that the new decision trajectory
consists of profiles, >=", where agent i’s dominance on other agents is decreased (pro-
files where agent 4’s preference is different from others) such that w, (n((~7,d™ 1)) <
wi(m((=7,d™1))). Formally for all j* € N'\ N,

S0 TG (- ) () W (-7, ) <
S0 T I ) () (T )

which for all periods we can write as

A A
E[ Y wi(r(="d ") | (5, =) <E Zw;,(ﬂ(>7,d71))\>t]
T=t+1 T=t+1

Using Equation 5.7, it can be written as

Zw (m(=7,d")) | (55, =) | <E

T=t+1 T=t+1

Z (=7, d™Y)) \>t] (5.13)

Applying Lemma 5.5 to 7 > ¢, it must be the case that for all j' € N \ Ng, wj,; (7 ((>"
adT_l))) < W}/i(ﬁ((PT, d™1))). Given the inequality in Equation 5.12, for all two agents
j'sk € N\ i we can write

A
E| Y @pr(-"d™ ) [ (=, ~L)| 2 E Z Wi (=7,d™)) |>t]
T=t+1 T=t+1

which means that all other agents prefer their sequence of outcomes (in expectation)
under agent ¢’s misreport.
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Step (44): Vj € Ng,w!;(m(=;, =) < wl;(w(=1)), that is, agent i’s strategic misreport
reduces its dominance on a subset of agents. By Lemma 5.5, reducing dominance on
an agent reduces the expected domination on agent 4, thus, Vj € Nd,w;-i(ﬂ(ﬁz, =) <
wh;(m(~")), and cizz < df;. This implies that the immediate dominance between agents i
and 7 has strictly decreased.

Given that agent 7 has improved its overall assignment in the future periods (and not
immediately) by misreporting, implies

E Zwﬂ (=" d)) | (-1 | >E Zwﬁ (=7, d™Y))) |-

Given the assumption, for all j, k € N; we have

A ] Mo
E| Y wpr(="d™ )| (==L | SE| Y wp(r(=".d7 ) |-
T=t+1 T=t+1

which can be written as

A ] A
E| Y @w(=7,d" ) | (75,20 | ZE| D @p(x(=",d") [
| T=t+1 LT=t+1

Adding the inequalities in Step I and Step II, with those of agent ¢ after manipulation,
for all agents in 7 € N we have

>E

ZZ (=", d YY) =t (5.14)

7=t IEN

For each agent j, by Equation 5.7 we know that

Oi(m(A) =Y _m(u| 1)

HEM:p(5) =t pu(4)

which implies that agent j prefers its outcome to agent ¢. By inequality 5.14, each
agent prefers its outcome to all other agents’ allocations. Therefore, for any oy, it must
be that an(((;it7 =), d71),00) > WI((F,d"""),00). This holds for all agents, which
means that in a sequence of random matchings such that at some 7 > t every agent’s as-
signment (including agent i) improves when agent i successfully manipulates the evolution
of preferences, implying that for all agents i € N, W7 (55, =1,),d"™ 1), 00) > Wr((>
,dt_l),Og),VOg e M. ]
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5.8.7 Strategyproofness Guarantee

Theorem 5.7 and 5.8 showed that under certain preference dynamics a strategic agent
cannot benefit from misreporting, and in situations where successful manipulation is pos-
sible, often this manipulation can lead to a Pareto improvement. In this section, we reach
an interesting result, which is independent of the previous assumptions on how prefer-
ences evolve in the future. Without any assumption on transition dynamics, we show that
Adaptive RSD is weakly gsd-strategeyproof if the planning horizon is at most equal to the
number of agents — no strong manipulation is possible.

Theorem 5.9. Adaptive RSD is weakly gsd-strategyproof for all X <n.

Proof. Consider n agents and n objects and a strategic agent ¢ with a misreport >A-f at time
t when its true preference is =!. To prove weak gsd-strategyproofness, we need to show that
strong manipulability is impossible under the Markovian assumption. Formally, we must
show that there exists some ranking position oy such that W7 (=f, 0,) > W7 ((<5, =), 01).

Fixing the dominance history up to time ¢, we assume that the history d'~! is balanced.
Lemma 5.4 implies that agent ¢’s misreport cannot improve its immediate outcome. By
Lemma 5.2, an agent can only influence the evolution of states by changing the decision at
the current time ¢. If & results in w(h') # 7(h'), then by non-bossiness of Adaptive RSD
(Proposition 5.3) agent ¢ cannot change the allocation without changing its own outcome.
By lsd-strategyproofness of Adaptive RSD (Lemma 5.4) it must be that m;(ht) ! m;(h?).
Thus, agent i can change the sequence of outcomes (trajectory) by changing the matching
at time t.

We show that agent i can only weakly manipulate the outcome by potentially changing
the decision trajectory. We provide a proof by construction and show that even if there
exist non-conflicting trajectories, strong manipulation is not possible for A < n + 1.

Suppose that agent i’s strategic report takes the agent to a trajectory where in all steps
agent i receives its top choice. Thus, for agent i we can write,

W (=) = (i) + (A = Din(a), (5.15)

where fit(i) is agent 4’s allocation at the time ¢ when it misreports, and fi(i) is a best-case
outcome where agent ¢ receives its top choice according to Lemma 5.1.

Now we consider agent ¢’s allocation when reporting truthfully. Suppose that agent i’s
allocation at time t consists of a worst-case matching outcome (as introduced in Lemma
5.1). Lemma 5.3 states that in the first period there exists a subset of matchings M’ C M
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with 37 e 7(u[=") > 0 such that > uea T(p| =*) > <. Thus, under truthfulness there
is at least 1/n chance that the policy chooses a matching decision precisely as the decision
under misreport and continue into the same trajectory. Therefore, with the probability of
at least % the evolution of preferences follow the best-case trajectory, while with probability
of "T_l the decision trajectory falls into the worst-case outcome for agent 7 in all future
steps. Thus, agent ¢’s allocation for A planning steps can be written as,

(A=1)(n— 1)[1(01 + .. 4 0n)]

W) = (o4 o) + ()ii(0) + N

which can be written for every ranking position o, as

L
>—Og:Z
1

+ <()\—1)7£n—1))2% (516)

1

S|

For weak gsd-strategyproofness, we must show that at least for one ranking position oy,
the inequality W7 (>, o) > W7 ((=, "), 0¢) holds. Given equations 5.15 and 5.16, and
by replacing fi(7) with top choice oy, we must show that

Yoo

¢

iy (()\ )(n—1) Z

> i)+ (A —1)

S|
SRS

By lsd-strategyproofness of Adaptive RSD we know that agent i’s allocation under
truthfulness stochastically dominates its allocation under misreport. Proposition 5.3 im-
plies that 7(h!) # w(h'). Thus, agent i’s outcome at time ¢, is always worse under misre-
port. Note that in general a misreport may result in an allocation that is as good as the
allocation under a truthful report; however, by Lemma 5.2 such misreport does not affect
the evolution of preferences at all. Therefore, for A = 1 we will have
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We first show that for o;, manipulation is always possible when A > 1. For manipula-
bility, We replace ¢ = 1 and write

Lydoh el e
%+((>\—1)Tln—1)>%< (A—l)rfn—l)(:)
1+((A_1L(”_1>)<(A—1)n—1)<:>
(nfl)Q <(A-1)

which holds for any A > 2 and n > 2, implying that the score of obtaining the first
rank object under the misreport is strictly greater that the score on under truthfulness.

To show that the mechanism is not strongly manipulable, we need to show such in-
equality does not hold for all ranking positions. For all A > 1, we show that there exists a
ranking position ¢ where the following inequality strictly holds

Z%+(/\;1)+<()\—1)75n—1))z

Assume £ = n — 1, then we can simplify the above inequality and write:

Yoy Al Q2N L gyoa e

> ati) + (A= 1)

SEES

%(n—1>+<A;1>+<(A_1)7ff_1)2>>A—1@
R R

Multiplying both sides by n and by algebraic simplification we have,

-1+ (A - e
1+((/\_1>n(n_1>)>)\—1<:>
1>A—1—(<A_1L("_1))<:>
A—1
1> -
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which implies A < n + 1, and states that there is a ranking position at which the
allocation under truthful is strictly better than that of misreporting, implying that the
Adaptive RSD mechanism is weakly gsd-strategyproof. m

Under any type of transition dynamics, a strong manipulation by moving the evolution
of preferences to more desired states is impossible if A < n. Note that our analysis in this
theorem provides a lower bound for A, because it poses no assumption on how preferences
evolve and assumes the discounting factor of v = 1, i.e., future gains are as important as
immediate allocations. Therefore, A < n provides the minimum planning horizon at which
the Adaptive RSD mechanism guarantees weak gsd-strategyproofness. It is still possible
to improve this result for larger planning horizons by considering a diminishing discount
factor for future allocations or by making further assumptions on preference dynamics and
the population of agents with similar preferences.

While an agent can weakly manipulate and receive an incomparable sequence of out-
comes in the future, the manipulation is only harmful to some other agents only if the
strategic agent dominates another agents and can guarantee no conflict of preferences with
those dominated agents in the future. Therefore, the Adaptive RSD mechanism provides
incentives for truthfulness if agents’ preferences dynamics are similar. In many markets,
agents tend to express similar preferences due to similar or cohesive beliefs about the
alternatives [1,9]. In contrast, as we discussed in this section, in markets with diverse
preferences, a strategic agent may still be able to benefit from misreporting by exploiting
the structure and dynamics of other agents’ preferences.

5.9 Fairness in Sequential Matchings

Fairness is a vital desirable property in designing allocation mechanisms in multiagent
settings. Mechanism designers often seek to deploy allocation mechanisms that treat the
participating agents fairly while guaranteeing strategyproofness and efficiency.

In this section, we argue that in contrast to sequential RSD that may result in un-
bounded envy among agents, as a result of balancing priorities, Adaptive RSD satisfies
some desirable notions of local and global fairness.

We consider two notions of fairness in sequential matching problems; a local fairness
notion of equity (equal treatment of equals), and a global notion of ez post envyfreeness.
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Definition 5.17. A sequential matching mechanism is equitable at each time step t if
and only if Vi, j € N with identical dominance histories di; ' = di;', if =1 = > then
Vye M) pi(x|(-d)) = pl(z|(=",d))

acEM:z>—§y wEM:z>—§y

In sequential mechanisms, envyfreeness relies on balancing priorities over the course
of the assignment sequence. Ex post envyfreeness is the strongest notion of fairness that
states that at each time step no pair of agents should be envious of one another. We
consider ex post envyfreeness at each time based on the sequence of decisions up to and
including the current period.

Definition 5.18. Given a sequence of matchings (u',...u'), a matching mechanism is
periodic ex post envyfree (PEF) if at all times t, every two agents have dominated one
another in equal number of matchings, i.e., Vi,j € N, 22:1 wii(p®) = 22:1 wi; ().

The PEF notion of fairness is a strict requirement that is hard to guarantee in most small
markets for allocating indivisible alternatives without the use of monetary compensation.

Proposition 5.4. Adaptive RSD does not satisfy PEF, but does yield a sequence of equi-
table local matchings.

Proof. Consider two agents 7, j with identical preferences over two objects at t = 1, i.e., >}
= >Jl = a = b. Assume that Adaptive RSD assigns the more preferred object to u'(i) = a,
leaving j envious. For all future times, assume the following preferences Vt > 1, =i=b >, a
and >§-: a >; b. Thus, agent j will never dominate 7 and will remain envious of ¢.

To prove the equitability of Adaptive RSD at each round, we need only to show that
Adaptive RSD treats all agents with identical preferences and dominance histories equally.
By Proposition 5.2, we know that Adaptive RSD is equivalent to RSD when d’;fj’l =0,Vi,j €
N, and thus satisfies equitability. By Algorithm 3, Adaptive RSD only adjusts the priority
orderings when agents’ dominance histories are unbalanced. Thus, it assigns the same
weight to the priority orderings of agents with equal dominance histories, that is, for all ¢
when dj; = dj;. O

5.9.1 Degree of Envy

The nonexistence of ex post envyfreeness for n > 2, raises a crucial question of whether
our mechanism ensures some degree of envy. Among several plausible ways of defining
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envy [15], we consider a natural notion of envy; the envy of a single agent towards another
agent. Given a history of assignments h', agent i’s degree of envy with respect to agent j
is
¢
eii(h) = [wh(p®) —wi ()]
s=1

Definition 5.19. A sequential mechanism is c-envious if for all times t, Vi € N agent i
is envious to agent j for at most ¢ assignments. That is, ¢ = max;; e;;(h'), Vt.

Theorem 5.10. An Adaptive RSD matching mechanism is 1-envious.

Proof. By dominance history of Adaptive RSD at all times Vi,j € N, dj; = 1 — dj, =0,
and if dﬁj = 1, then for all future times 7 > ¢t when the dominance history is unbalanced,
f'(j) > f'(i). Thus, agent i cannot dominate j for all future transitions until it gets
dominated by j at least once. Moreover, agent i’s preference dynamic may evolve so that
it never conflicts with agent j’s preference. Thus, V¢, e;;(h') < 1, implying that Adaptive
RSD is 1-envious. m

In fact, Adaptive RSD interplays between random assignments in repeated decisions to
maintain an approximately fair global policy. It is easy to see that the maximum envy of
a society of agents with Adaptive RSD mechanism is @

5.10 Discussion

In this chapter, we studied dynamic matching problems without the use of transferable
currencies. We investigated the incentive and fairness properties of sequential matching
mechanisms when agents have dynamic ordinal preferences. Our contributions in this
chapter are:

A model for dynamic matching

We provided a model for reasoning over and analyzing ordinal matching decisions in dy-
namic settings. We formulated a generic dynamic matching problem using a history-
dependent matching process, with states of the matching process corresponding to a his-
tory of preference profiles and matching decisions, and developed a scoring function for
evaluating sequences of matching decisions. Finally, we introduced a number of properties
we argue are important for matching mechanisms in dynamic settings.
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Extending conventional matching mechanisms

Focusing on a strategyproof matching mechanisms in one-shot settings, namely Random
Serial Dictatorship (RSD), we showed that it is susceptible to manipulation in repeated
allocations with dynamic preferences. Hence, one cannot simply run a sequence of RSD
assignments in dynamic settings. Furthermore, we showed that in general, this manipu-
lation result is strong, that is, for any utility functions consistent with agents’ underlying
preferences, manipulation of the mechanism can be beneficial.

The Adaptive RSD mechanism

We proposed a new mechanism (Adjusted RSD) that maintains a history of pairwise inter-
actions between agents, and adapts the priority orderings of agents in each period based
on this history. We showed that our mechanism is locally strategyproof, and that there
are situations where it is globally strategyproof (e.g. when there are 2 agents, when agents
have similar preference dynamics, and when the planning horizon is bounded), and even
when the mechanism is manipulable, the manipulative actions taken by an agent will of-
ten result in a Pareto improvement in general. Thus, we make the argument that while
manipulative behavior may still be unavoidable, it is not necessarily at the cost to other
agents in the system.

5.11 Future Work

The model and results in this chapter raise a number of interesting future research direc-
tions. Although our proposed mechanism provides a solution for achieving strategyproof
and fair allocations in certain type of situations, designing a matching mechanism that sat-
isfies truthful incentives for any population of agents is still an open problem. Moreover,
characterizing the set of truthful matching policies in dynamic settings is an interesting
future direction, particularly when agents are capable of learning after each matching deci-
sion. One possible first direction is to study deterministic sequential matching mechanisms
and their extensions for repeated allocations when preferences evolve dynamically over
time.

To circumvent the issues of incentive design in dynamic settings, one may consider
matching problems with agents that have particular underlying utility functions (e.g. linear
positional utility functions) or consider problems with a homogeneous set of agents with

123



restricted preference dynamics. In Chapter 6, we focus on these restricted cases, and
introduce particular classes of problems for which positive results exist in dynamic settings.

The incompatibility of ordinal efficiency and strategyproofness in static settings [30]
prevents us from designing truthful optimal policies in dynamic settings. However, there
may exist some approximately efficient random policies in the policy space that incentivizes
truthfulness in sequential settings, perhaps, by renouncing the ex post efficiency or other
local requirements. An important open question is whether in the ordinal domain one can
design a matching policy with desirable incentive properties that guarantees a sequence
from the set of Pareto frontier matchings in expectation.

Finally, in large one-shot markets where there are large number of copies of each object
(such as assigning students to housing), the stochastic inefficiency of the RSD mechanism
vanishes [11]. One potential direction would be to study the efficiency and envyfreeness
of sequential matching problems in markets with multiple capacities and various agent to
object ratios.
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Chapter 6

Matching with Restricted Preference
Dynamics

In Chapter 5, we proposed and analyzed a sequential matching model for dynamic prefer-
ences where monetary payment is not permitted. We showed that simply repeatedly using
the Random Serial Dictatorship (RSD) mechanism (a simple and well-studied matching
mechanism with a number of desirable properties when used in static domains) could lead
to complex strategic behavior by agents. We then proposed a new, history-dependent,
mechanism which guaranteed global strategyproofness under some mild assumptions.

In this chapter, we revisit this general result for a single class of utility functions and
look at overcoming this impossibility result by restricting the preferences. Inspired by the
mechanism design literature on quasi-linear utilities [67] and single-peaked preferences [107,

], we exploit a particular utility function from the literature that allows us to formulate
the matching problem as a planning problem and leverage Markov Decision Process (MDP)
models. We show that the more general impossibility result still holds in this setting.
However, if we place additional restrictions on the dynamics of the agents’ preferences,
then there are interesting subclasses for which possibility results exist.

6.1 The Model

We first describe the matching model for dynamic preferences, one that extends that of
Chapter 5, by showing that under certain assumptions the model can be encoded as a
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Markov Decision Process, and thus the (sequential) matching problem can be modeled as
a planning problem.

Let N = {1,...,n} be a set of agents, and M = {1,...,m} be the set of alternatives to
be assigned to the agents, where n = m.! Each agent has a strict preference ordering over
the set of items at time ¢ denoted by =, where a =! b means that agent i strictly prefers
item a to item b at time ¢t. Let P(M) or P denote the class of all strict linear preferences

over M where |P| = m!. We let >='= (>%,... >!) € P" denote the preference orderings
of the agents at time ¢, and refer to =" as the preference profile. We write =", to denote
(-4, o=t h), and thus ='= (>, >",). In addition, we assume that each

agent is endowed with a private utility function, u;, that is consistent with its preference
ordering, that is, u;(>% a) > u;(>% b) at time ¢ if and only if a >} b. Throughout this
chapter, we often instantiate homogeneous utility functions, that is, agents share the same
form of the utility functions but may have different underlying ordinal preferences.

A matching ' : N — M is a mapping that assigns a unique item to each agent. A
matching is feasible iff for all 4, j € N, p'(i) # p'(j) when i # j. We let M denote the set
of feasible matchings.

A matching mechanism 7 : P" — A(M) returns a probability distribution over the
set of all possible matchings for each time ¢. Thus, m(>") is the induced policy under
preference profile ='. We also write 7(u‘| =) to denote the probability of a deterministic
matching p' given the preference profile ='. Note that a matching mechanism is based on
ordinal preferences (as opposed to cardinal utilities) and returns a (randomized) matching
decision given a profile of reported preferences. Since we assume that agents have utility
functions, given a preference profile =! the expected utility for agent i at time ¢ under
matching mechanism 7 is

Enlus| == wil~}, u(i)) m(ul =) (6.1)
HEM

The basic setup in this chapter is same as the model in Chapter 5, with the addition
of specific utility functions. We are interested in settings where there is a sequence of
matching decisions and agents’ preferences evolve over time. In particular, we assume
that the preference held by an agent at time ¢ depends on the preferences it held earlier
along with allocations (i.e. matchings) made previously. In sequential settings, agent’s
preferences may evolve or change based on idiosyncratic preferences or previous matching
outcomes. Therefore, it could be the case that =!£>='"" ie. a =!b while b =!"" a. We

'For n > m, we add n — m dummy items corresponding to a null assighment to the set M.
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assume there is an underlying stochastic transition model T'(=*1 | =, u!) which denotes
the probability that agents will transition to a state where they have joint preference =**
after matching decision p' in a state with joint preference =‘. Furthermore, we assume
the stochastic transition model is common knowledge and it is independent across agents,
meaning that (=" | =, pt) = [,y T | =4 pd(0).

Given the matching problem description above, we can model it as a multiagent Markov
Decision Process (MDP) (S, A, T, R,~) where S is the state space, A is the action space,
T(-]-,-) is the transition function between states given some action and R : S — R is
the reward function. In particular: The state space S is the set of preference profiles,
i.e. S = P", the action space A is the set of feasible matchings, i.e. A = M, the
transition function between states is precisely defined by the stochastic transition function,
i.e. T(="1 | =t ut), the reward function at state =' given matching p' is R(=' |u') =
Y ien Wi, 1t (7)), and v is a discount factor such that 0 < v < 1. The reward function,
R, in each state is the (utilitarian) social welfare at that state given the utility functions.

Abusing notation somewhat, a policy, for the above MDP, returns a (randomized)
matching for each state (preference profile). Note that a policy, along with the transition
function, implicitly specifies the sequences of future decisions.

For a particular policy 7, given a planning horizon \ and assuming that agents have
revealed = at time ¢, the expected utility of agent 7 is

Vit-"m) =E DA w(=F, p(i)m(ul ")

HEM

The expected value of policy m for preference profile (state) >* is thus

V(=) =Y Vit 7).

1EN

6.1.1 Properties

In Chapter 5, we studied the dynamic matching problem for general preferences, without
any assumption on the underlying utility models. In this chapter, since we are interested
in finding and evaluating matching policies for particular utility models, the problem is
a special case of those studied in Chapter 5. Thus, we are looking for solution concepts
that guarantee equilibria given specific utility models and populations with homogeneous
utility functions and satisfy weaker notions of truthfulness.
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One of the most important goals in sequential matching is to find policies that maximize
the overall utility of the participating agents. In addition, a desirable policy should pre-
scribe an efficient matching decision in each period. An (ex ante) optimal policy maximizes
the expected sum of utilities and is always guaranteed to exist [115].

Definition 6.1 (Optimal Policy). A randomized policy is (ex ante) optimal if,

7 = argmax V(=" ),V =fe P".
mell

Given a utility model, a randomized matching prescribed by policy 7 at time ¢ is (ex
ante) Pareto efficient if no other randomized matching increases the expected utility of one
agent without decreasing the expected utility of all others.

Definition 6.2 (Pareto Efficiency). Given agents’ utility models, a randomized matching
prescribed by 7 at time t is (ex ante) Pareto efficient if for all other randomized policies
7', for every agent i € N we have

E,[ui| =" > Epxfu;] =] (6.2)

Since the preferences of the agents are private, the matching policy relies on having the
agents reveal their preferences at each time step. However, agents may be strategic and
given the matching policy and the preferences of other agents, a strategic agent reports a
preference ordering o;((>~%, =" ,)|7) so as to maximize its own expected utility according to

O-i((>'§7 >l:z)M-) € arg rr%ax v’i(>t7 W((;:’ >iz>)>
Crep
where 7((=, =1 )) is the induced policy when agent i misreports at time ¢ (while all other
agents are truthful), assuming that all agents (including agent ¢) report truthfully in all
future periods.

In dynamic settings, we assume that we have access to the agents’ utility models that are
consistent with their underlying private preferences. The goal is to achieve an equilibrium
in which each agent’s best response is to play the equilibrium strategy, knowing the current
private preferences of other agents and the expectation over future preferences. Namely,
we are interested in within-period ex post Nash equilibrium [15,25,12] as a refinement of
Bayes-Nash equilibrium where a best-response strategy is solely based on the revelation of
other agents’ preferences (or types) at the current period and not the realization of their
future preferences.

A mechanism (policy) is within-period stochastic Ex Post Incentive Compatible (w.p.s
EPIC) if each agent maximizes its utility by reporting truthfully when all other agents are
truthful in the current period and all future periods.
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Definition 6.3 (w.p.s EPIC). A matching mechanism w is within-period stochastic ex post
incentive compatible or w.p.s EPIC if at all periods t, for every agent v € N, for all true
preferences =t€ P, and for any misreport = = o; (=" |r),

Vi(=', (=) = Vi, m (=, ~1,))) (6.3)

Given a randomized matching mechanism, we define the notion of incentive compati-
bility when agents play in equilibrium going forward from the current period, after seeing
the preferences of other agents at the current period and before the realization of the
randomized matching decision. Note that this is a weaker notion compared to the global
stochastic strategyproofness used in Chapter 5, where truthfulness is a dominant strategy
for all possible utility functions.

6.1.2 Utility Function Model

While none of the formalisms so far has relied on the particular instantiation of utility
functions, in this section we introduce the utility functions we use for the rest of the
chapter. In particular, we use a simple linear positional utility function, based on the
Borda score used in both the social choice and matching literature [12,43,53].

Definition 6.4 (Linear Utility). The linear utility of agent i with preference ordering !
for matching u'(i) is

wi(=5, 1 (i) = m — rank(=, ' (4)),

where the function rank : P x M — N returns the rank of item p'(i) in agent’s preference
=t at time t.

6.2 The Sequential RSD Mechanism

In single step matching problems efficiency and incentive compatibility constraints are
incompatible whether in cardinal domains [32, 1415] or ordinal settings [30]. This incom-
patibility persists for optimal matching policies in sequential settings.

Theorem 6.1. Let (P", M, P, R) be a matching MDP. There is no optimal (deterministic
or randomized) matching policy that satisfies w.p.s EPIC.
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Figure 6.1: Three local MDPs.

Proof. Proof by counterexample (Figure 6.1): consider the problem of assigning 3 items
{a,b,c} to 3 agents {1,2,3} in 2 time periods, with 3 local MDPs representing each agent’s
preference model (starting at top states). The optimal policy is a uniform random tie-
breaking over m:(abc, cba) and 7':(cba, cba), with V (=1, 7)=V (="' #')=11. If agent 3 mis-
reports Qé = a > b > ¢, using backward induction the optimal policy of the new joint
MDP would be 7*:(cba, cba) with value 11. Thus, agent 3’s expected utility improves from
SVa(-1m) + Va(-1 ') = 3.5 to V3 (-1, ) = 4. O

This impossibility leads us to consider a well-known strategyproof matching mecha-
nism, Random Serial Dictatorship, as a potential incentive compatible matching policy for
dynamic settings. Note that this impossibility result under a particular utility function
immediately applies to the generic setting we studied in Chapter 5 without any assumption
on the utility models.

In this section, we first revisit the background on Random Serial Dictatorship (RSD)
as a strategyproof mechanism in static settings, and then focus attention on the game-
theoretic properties of RSD in sequential matching settings.

Definition 6.5 (Serial Dictatorship). Given a preference profile = and an ordering of
agents f, simple serial dictatorship (SD) is defined as follows: agent f(1) receives its best
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object my in M according to > suy; agent f(2) receives its best object mo in M\{m1}; agent
f(n) receives its best object my, in M\{mq, ..., m,_1}.

The simple serial dictatorship is the only deterministic mechanism that satisfies strat-
egyproofness, non-bossiness, and neutrality [134]. Thus, randomization over all possible
simple serial dictatorships preserves strategyproofness while satisfying the fair treatment
of equals. Formally, let F be the class of all orderings. An ordering is chosen randomly
from a uniform distribution over all possible orderings F. Given a preference profile ~¢,
the probability of matching decision p prescribed by RSD is

7l =) = SI{f € F 2 8D =) = (6.4)

RSD satisfies strategyproofness for all possible utility models that are consistent with
preference profiles. That is, for all agents ¢ € N and for any w; we have Ez[u;| =" >
Ex[u;| (=1, >",)]. In fact, RSD is the only mechanism that is ex post efficient, strategyproof,
and fair [22].

The sequential RSD is a matching policy that simply prescribes an RSD matching
at each period. A preference ordering that remains unchanged in all periods is called
fixed or time-invariant preference ordering. In sequential settings with fixed underlying
preferences, i.e. for all agents i € N, Vt, =I=>, sequential RSD is incentive compatible.

Theorem 6.2. Given fized preferences, for any utility model consistent with the prefer-
ences, sequential RSD is w.p.s. EPIC.

Proof. By the stochastic strategyproofness of RSD [(], no agent can receive a better random
outcome from misreporting at the current state. Since the preferences are fixed (time-
invariant), by forward induction no agent would be able to gain a better outcome in any
of the future sequences. ]

6.2.1 Truthfulness Under Sequential RSD With Particular Util-
ity Models

In this section, we show that sequential RSD is not w.p.s EPIC even in our restricted
setting with linear utility functions and independent Markovian transitions.

It is possible for an agent to report a preference ordering at time ¢, not equal to its true
preferences, that does not change the matching in that period. Our first lemma shows that
given a fixed deterministic matching, an agent cannot change the underlying preference
dynamics by misreporting it’s true preferences.
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Lemma 6.1 (Lemma 5.2 from Chapter 5). Fizing u € M, for any ="*1€ P" given agent
i’s misreport =,

T(="1 | =t ) = T(=" (55, =10, )

Two Agents: With only two agents, each agent’s strategic behavior is restricted only
to misreporting its top choice in the current period in order to gain expected reward in
the future. By RSD induced decisions, no agent can have an immediate expected gain by
misreporting. With linear utilities, the expected immediate cost of misreporting to agent 1
at time ¢ is defined by the following lemma.

Lemma 6.2. With linear utility functions, for n = 2,

Bl (4, )] =]~ Eelus(4, ) (54 -4)] =
Proof. Let ='= (=%, %) be the preferences of the two agents. Consider first the case
where ! =>1. Tt is clear that expected utility under RSD assignment is % for both agents.
Deviating from a truthful report will result in a deterministic allocation where the strategic
agent’s utility reduces to 0, while the other agent’s utility improves to 1. Now consider the
case where =>4, In this case, both agents will receive their top choices, and thus, any
misreporting would reduce the expected utility for both agents from 1 to % O

The sequential RSD yields a sequence of Pareto efficient matchings while satisfying
incentive compatibility.

Theorem 6.3. The sequential RSD mechanism is w.p.s EPIC for n = 2 when agents have
linear utility functions.

Proof. We must show that V;(=*,7(=")) > Vi(=!,7((=;,=",))), for any =, = o;(>"* |7)
when the other agent reports truthfully. Note that the transition function 7" is known and
common knowledge. We start by proving the case with only 2 time steps (A < 2) and then
the general case (A > 2).

Case A < 2: For contradiction, we assume that V;(>, 7((=1, =) > Vi(=, 7 (1)),
and expand this inequality as follows:

~t ~1
Ealui (5 ) +9 2o TO-" 155w (-1 ) | 1] >
Erlui(=4 1) + 9 2o T =0 p)us (5 ) -]
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where &' = (Q:, > ) is the preference profile at time ¢ when ¢ misreports and all other
agents are truthful. For a stronger result we assume no discounting (v = 1). By rearranging
the immediate utilities and future expected utilities and using Lemma 6.1 we have

Eff[z>-t+1 T(>_t+1 | >_t7/JJ)ui(>_§+1>:u> ‘ ;_t]_
Eal> oo T =0 s (-1 ) [-1] >

7

Eﬁ[ui(>§>“)) |>_t] - ]Efr[ui(>'§nu) | (;:’ >_t—z”

Lemma 6.2 implies that the immediate expected cost of misreporting at any period is %
The agent must report truthfully in the last step (¢4 1), thus a misreport could only affect
the expectation over rewards at t 4+ 1. Applying Lemma 6.2 to time ¢+ 1, the best strategy
only improves the future reward by at most %, which is less than or equal the immediate
cost of misreporting, contradicting the assumption.

Case )\ > 2: Each misreport imposes an expected cost of 1/2. The agent must be
truthful in any step that he wishes to gain more reward, after some number of misreports.
We exploit the 2 time-step model by backward reasoning: at A agent must reveal its true
preference; otherwise there will be an expected loss. At A — 1, similar to the previous case
with 2 time steps, the best response is to report truthfully. Misreporting at A — 2 and then
being truthful from then on yields the expected utility of

B B 1
Ex[ui(=3, )] =] + Eafus (=371, )] =*71)] = 5

which is less than Ez[37, ,u; (=%, p)| =], and so on for all t € X. Therefore, in no
period the agent can gain more than its immediate cost of misreporting. O

Three Agents (and more): In the general problem of matching with dynamic pref-
erences for n > 3, sequential RSD does not satisfy the strong incentive requirement of
strategyproofness in the global sense (Chapter 5, Theorem 5.1). The global strategyproof-
ness requires incentive compatibility for the space of all utilities consistent with preferences.
We show that sequential RSD is still manipulable when the problem is restricted to the
weaker solution concept of within-period stochastic ex post equilibrium.

Theorem 6.4. For agents with dynamic preferences and linear utilities, sequential RSD
1s not w.p.s EPIC when n > 3.

Proof. Consider the problem of assigning 3 items {a,b,c} to 3 agents {1,2,3} in 3 time
periods, with local MDPs representing agents’ preference models (Figure 6.2). Only reach-
able states are shown. The multiagent MDP is shown in Figure 6.3, with “start” showing
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b:[1.0
a:1.0 c:1.0
(a) Agent 1 (b) Agent 2 (c) Agent 3

Figure 6.2: Three dynamic preferences represented via 3 local MDPs, showing only relevant
actions and transitions. Fach state is an ordering, and the transitions are deterministic.

the reported preferences at the beginning, and gray nodes indicating final states. The edges
x,act:y represent the probability = of action ‘act’ (assigning items a,c,t to agents 1,2,3 re-
spectively) according to RSD and transitioning to the next state with probability y. Using
backward induction we compute the value of sequential RSD policy for each agent. The
expected utility for agent 3 is V3(=1,7) = $[1 + Vi(s1,7)] + 5[2 + V3(ss,@)] for both tra-
jectories of decisions. However, agent 3 can improve its expected value by (mis)reporting
Qé :a > b > c at the beginning, and then being truthful thereafter (illustrated in Figure
6.3b). Note that the decision u! = cba is chosen with the exact same probability in both
cases, so any progress from there would be identical. Agent 3’s expected utility after mis-
reporting would be Vi(=1, 7 (=, =1,)) = 2[14Va(s1, T)] 4 £[0+ Vs(s7, )] + 22+ Vi (s9, 7))
Agent 3’s expected utility improves from 222 to %, implying that sequential RSD is not

6
w.p.s EPIC.
]

This impossibility result (Theorem 6.4) raises the question Is there ever any special
circumstance where it is possible to use a policy based on RSD for sequential matching?.
Inspired by research in mechanism design for overcoming impossibility results like the
Gibbard-Satterthwaite Theorem [63,123], we considered two directions. First, Theorem 6.4
used the solution concept w.p.s. EPIC, and thus it might be possible to use a weaker
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(a) Truthful (b) Misreporting

Figure 6.3: A three-agent sequential matching problem in three decision periods, with the
joint MDP representing the induced social problem. Small nodes represent the absorbing
states: no decision is made after reaching these states.

solution concept and derive possibility results (see, for example [98]). However, it is unclear
what would be an appropriate weakening of w.p.s. EPIC, which is already a weakening of
global strategyproofness. The second alternative is to study whether there are interesting
constraints that can be made on the agents preferences (think, for example, of the positive
results for the class of single-peaked preferences [107,125] and quasi-linear utilities [07] in
the mechanism design literature). In the next section we pursue this direction and highlight
several interesting subclasses of preferences for which interesting results are achievable.

6.3 Restricting Preference Dynamics

We consider two restricted cases, namely, myopic agents and rotational preferences. We
show that even though sequential RSD does not generally satisfy the w.p.s EPIC property,
it is incentive compatible under some restriction on agents’ preference dynamics. In the
next section, we focus attention on another special case called single-minded preferences.
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6.3.1 Myopic agents

An agent is called myopic (short-sighted) if it is only concerned with immediate expected
rewards, i.e. its best-response strategy is only dependent on current preferences and deci-
sions. For a myopic agent, the discount factor is v = 0. Thus, we have

Vi(-', %) =E Zv’“ EN ui(F, (i) >'“)]

HeM

=E ZO’“ CY i @) (ul >’“)]

HEM

—E Z (=4, (i) 7 (1 »t)]

LueM
= Er[ui (5, 1(i))] ~']

When an agent is myopic, the expected utility is dependent on the immediate matching,
and not the future possible allocations. The following theorem follows exactly from this
fact.

Theorem 6.5. Given myopic agents, sequential RSD is w.p.s ex post incentive compatible.

Proof. Myopic agents only consider the immediate outcomes. Since RSD is strategyproof
for a single matching decision, an agent does not benefit from misreporting its preferences
at the current period. Thus, sequential RSD is w.p.s ex post incentive compatible when
agents are myopic. O

In this special case, each agent only cares about its current assignment, and thus, does
not benefit from possible gains in the future steps.

6.3.2 Rotational preferences

Often alternatives lose their desirability after being assigned to an agent. People may lose
interest in rereading a book, travelers may prefer a new location after a trip to a specific
location, team members may exchange the tasks among themselves in a new project, etc.
A preference is rotational if for all times, the allocated item at time ¢ becomes the least
preferred item at t 4+ 1. Let p(>£, j) be a function that prescribes agent i’s preference after
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t+1

i

receiving item j when its preference is =!. The preference of agent i, >
assigned item j is defined as:

after being

rank(=1 k) = rank(=t k) -1, =ik

1 )

p(=4,) = { rank(=£, k) = m, itk = j

(2

rank(=1 k) = rank (=t k) Otherwise.

where k denotes the item in ranking & of preference =!, and m = |M| is the last possible
ranking (see Figure 6.4 for an example). The restriction on the reported preferences limits
each agent’s reporting strategy as (i) no agent can insist on the same assignment, (ii) the
only misreport is through claiming an incorrect preference ordering, thus, reporting a low
ranking for an item which would have a high ranking in future steps. With deterministic
transition of preferences, agents are only required to submit a single report at the starting
state.

Theorem 6.6. Given rotational preferences, the sequential RSD mechanism is w.p.s EPIC.

Proof. We must show that for all possible revealing strategies o; (=" |7) = =;, Vi(>=", 7(>"
) > Vi, 7((>;,>";))). Since preference changes are deterministic and rotational, the
center plans all future decisions based on a single initial claim. Suppose agent ¢ misreports
its private preference. Since RSD is strategyproof in each period, for the immediate utility
at time ¢, 3 wi(=;, )7 (=, 1) > 30, wi(~, )7 (=1, =".)). For the next time steps, by ro-
tational preferences E[Vi((i(", (i), =), D) =] > BI(Vi(p(=!, u(0)), =41), 7| (5L, =,
)], implying that at no time agent’s misreport would increase its expected utility, thus, the
RSD is truthful for rotational preferences. O

One might conjecture that restricting preferences to rotational models results in truthful
implementation of an optimal policy. However, by constructing a single-state MDP, it is
easy to see that an optimal policy does not guarantee incentive compatibility.

Theorem 6.7. An optimal matching policy with rotational preferences is not w.p.s EPIC.

Proof. Consider a set of agents (n > 3) with rotational preferences and assume a one-period
matching decision. In one-shot settings, given linear utilities an optimal random matching
is prescribed by the Probabilistic Serial rule [30], which guarantees stochastic dominance
efficiency, but is highly prone to manipulation. Thus, given rotational preferences, an
agent can still manipulate the outcome and immediately benefit from misreporting its
preferences. O
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Figure 6.4: A rotational preference with 3 alternatives.

Stochastic Rotational Preferences: A stochastic preference is rotational when the
probability of transition to the deterministic rotational preference is higher than all other
preferences. Formally, for agent i, the transition model is defined as T;(='" | =%, uf(3)),
such that
T (-4, 1 ()] 4 (0)) > (=0t it (0)),V -1 P,
where =14 (= ut(i)). With stochastic preferences, at each time step agents are
required to report their preference to the center.

When preferences are rotational, after the realization of each matching decision, agents’
preferences evolve such that an allocated item becomes the least desired item. Therefore,
preferences diverge after each matching decision, i.e., competition over similar items de-
creases over time, and preferences get aligned such that agents rank items differently.

Example 6.1. Suppose there are three agents with identical preferences as shown in Table
6.1a. The sequential RSD mechanism assigns equal probabilities to all n! Pareto efficient
allocations. Suppose that the realized matching decision is (a, b, ¢), i.e., agents 1, 2, and 3
receive items a, b, and c respectively. Under rotational dynamic assumption, the preferences
of agents (are more likely) to evolve to the profile as shown in Table 6.1b, and subsequently
after matching (b, ¢, a) to the profile as shown in Table 6.1c.

This observation about how preference profiles change over time prevents strategic
agents to benefit from misreporting in each step. The incentive compatibility property
states that given a common probabilistic model of transitions, an agent’s best response is
to reveal its private preferences truthfully at each step, looking forward into the future.
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—1:[a]=b>c ~2:[b] = c>a 3. c-a=b
<>§:a>@>c> (>§:a>>b> <>-§:a>—b>—c>
=3a = b>-[c] =3 [a] = b= c =3 b>=c-a
(a) Initial profile. (b) Profile after (a,b,c). (c¢) Profile after (b,c,a).

Table 6.1: A sample rotational profile and how it evolves in three periods after the re-

alization of matching decisions. The realized matchings at each period are indicated by
bozxes.

The next theorem shows that when preferences are rotational, no agent can increase its
expected utility by misreporting its preferences.

Theorem 6.8. Given stochastic rotational preferences, sequential RSD satisfies w.p.s in-
centive compatibility.

Proof. Let N (Q; > .) and assume that all agents are truthful going forward after
the current period. For incentive compatibility, we must show that V;(>~*, 7(>")) > V;(>~*
L 7((%8,>1,))). Expanding this inequality we can write

N

Exfus(~' )| =+ B[y T(-" | = ) Vi(=", 7)) =] =

A >_i+l
B
Exfui(=', )= T+ Ex[ Y T(-"" = i) Vi(=", 7)[=]
E N >_t+1 |
D

By the dominant strategy incentive compatibility of RSD misreporting never improves
the immediate outcome, and a misreport only influences the evolution of preferences if it
changes the current allocation, thus we have A > C.

By the definition of stochastic rotational preferences for each agent ¢ we have T;(¢(>!
()] =1 (@) > Tile(=t, u(@)[=", u(i)). If agent i benefits from misreporting, for ex-
pressions B and D we must have D > B. Using the transition independence assumption
and Lemma 6.1, we can compute the transition of preference profile by Cartesian product
and write

E:[)  T(-"" = m)Vi(="1 )= > Ba[ Y TO-" | = )Vi(="+, 7)] -]

wt+1 wt+1
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In each priority ordering, agent ¢ may only benefit by choosing a less desired item and
changing the allocation of some other agent j such that j’s outcome improves. Otherwise,
since preferences are rotational, agent j’s more preferred items remain the same while agent
1 does not immediately benefit from misreporting. Therefore, agent ¢ does not also gain
in the future periods, since both agents will compete over the similar items in the next
periods.

Since after each matching, the preferences converge to less competing states (due to
rotational dynamics), after agent i’s strategic report its expected utility gain is as most
equal to its immediate loss, that is,

E-[Y (- = m)Vi(="1 )= = Ba[ Y T(="" | = ) Vi(=" 7)] =] <

wt+1 s t+1

Eﬁ[ui(>-t, ,u)\ >‘t] - Efr[ux}t?y’)’;t]

The immediate expected utility for agent ¢ decreases as agent i’s misreport influences
more agents’ preference dynamics. In addition, for agent ¢, the difference between expected
utility after truthfulness and misreporting decreases after each rotational update. This
implies that agent i’s future gain cannot exceed its immediate loss, proving that V;(>-*
(1) > Vit 7 ((=;,=";))). Therefore, sequential RSD is w.p.s EPIC when agents
have stochastic rotational preferences. O]

6.4 Single-Minded Preferences

In this section, we restrict ourselves to players with simple preferences called “single-
minded” agents. Single-minded agents have been extensively studied in resource allocation
markets such as combinatorial auction design [258]. We first focus on one-shot settings and
show that even though the RSD mechanism is strategyproof, it does not always guarantee
Pareto efficiency when agents are single-minded. We propose a randomized mechanism
that satisfies a set of desirable properties in static and one-shot settings. Then, we study
the incentive compatibility of our randomized mechanisms in dynamic settings and show
how a unilateral deviation by a strategic agent would impact the social welfare.

A single-minded agent is indifferent between all objects except only one object as its
top choice. Given a utility model, a single-minded agent receives a positive utility for its
top choice and zero otherwise.

Definition 6.6 (Single Minded Preferences). Agent i is single minded if there exists an
item o, € M such that =;= 0 > 01 ~ ...~ 0p_1 ~ Ogy1 ~ ...~ Op.
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An important axiomatic property in designing truthful matching mechanisms is non-
bossiness due to Satterthwaite and Sonnenschein [122]. A mechanism is non-bossy if an
agent cannot change the random allocation without changing the random allocation for
itself.? When a mechanism allows agents to be indifferent among different assignments,
then non-bossiness is a strong condition, since it requires that the allocation exactly remains
the same even when some agents are indifferent between two equally good Pareto efficient
allocations. Henceforth, we define a weaker notion of non-bossiness for agents with single-
minded preferences.

Definition 6.7 (Weak Non-Bossiness (WNB)). A mechanism is weakly non-bossy if for
all =€ P™ and agent i € N, for all =; such that B [u;| =] = E;[w;|(=;, = )], for all agents
j € N we have E[u;] =] = E[u;|(>=;, =_:)].

The strategyproofness and weak non-bossiness of a mechanism together with Pareto
efficiency guarantee the desirability of matching mechanisms. Strategyproofness and non-
bossiness prevent any strategic behavior by agents while Pareto efficiency ensures that the
outcome of a mechanism is stable and desirable by all agents.

When agents are single-minded, even though the RSD mechanism guarantees strate-
gyproofness, it may prescribe Pareto dominated matchings due to underlying indifferences
within agents’ preference orderings. Moreover, under single-mindedness RSD no longer
satisfies non-bossiness nor weak non-bossiness.

Theorem 6.9. Under single-minded preferences, RSD is strategyproof but fails to guaran-
tee Pareto efficiency and weak non-bossiness.

Proof. We need only to show that there exists a serial dictatorship in the support of RSD
that fails to satisfy Pareto efficiency and WNB.

Consider three agents with preferences as following =1=a > b ~ ¢, =s=a > b ~ ¢, and
3= 0 > a ~ c. Given the following priority ordering f = (1,2, 3), the serial dictatorship
runs as follows: agent 1 chooses a, agent 2 is indifferent between b and ¢ so it may choose
b and agent 3 gets the remaining object c. Since agent 2 is indifferent between b and ¢
(meaning that us(>2,b) = us(>2, ¢), for all utility models), but agent 3 prefers object b to
¢, i.e. ug(>3,b) > uz(>3,c). Thus, a matching that assigns ¢ to agent 2 and b to agent
3 strictly improves agent 3’s utility without making agent 1 worse off, implying that even
though RSD is strategyproof, the induced matching is not Pareto efficient.

2Formally, a mechanism is non-bossy if for all =€ P" and agent i € N, for all =; such that m;(~) =
ﬂ—i((;h ~_;)) we have 7r(>t) =7((5i,_4)).
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For WNB, in the above serial dictatorship, agent 2’s decision to pick object b (as
opposed to ¢) does not change its utility but strictly decreases agent 3’s utility. RSD is
a uniform randomization over all serial dictatorship mechanisms, implying that RSD is
neither Pareto efficient nor WNB. O

Inspired by the RSD mechanism, we propose a mechanism, called Random Equiva-
lence Class Assignment (RECA) that ensures our desirable properties. Before describing
the mechanism, we define equivalence classes for single-minded agents, where agents with
similar top choices are assigned to the same equivalence classes.

Definition 6.8. Given a set of agents N, an equivalence class for object x € M is defined
as follows

C, ={i €N :top(>;) = x} (6.5)

Given the definition of equivalence classes, Algorithm 4 shows the steps of our RECA
mechanism. The RECA mechanism (Algorithm 4) allocates objects to agents with single-
minded preferences as follows:

e Initialization: the mechanism creates equivalent classes based on the objects.
e Each agent is assigned to an equivalence class that corresponds to its top choice item.

e For each equivalence class, the mechanism assigns the object associated to that equiv-
alence class to a randomly chosen agent from the set of agents in that equivalence
class.

e While there are unassigned objects, the mechanism randomly assigns an object from
the set of remaining objects to an agent from the set of remaining agents.

We let  be the random matching prescribed by RECA where 7(>) denotes the frac-
tional probabilities before the realization of the matching decision and m; ;(>) denotes the
probability that agent 7 receives object j under RECA.

We show that our algorithm for matching objects to a set of agents with single-minded
preferences satisfies strategyproofness, Pareto efficiency, and weak non-bossiness.

Theorem 6.10. Random Equivalence Class Assignment (RECA) is strategyproof, Pareto
efficient, and weakly non-bossy.
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Algorithm 4: Random Equivalence Class Assignment (RECA)
Input: A preference profile > of single-minded agents
Output: A matching p according to reported preferences >~
// Setting up equivalence classes
A0 ; // Set of assigned agents, initially empty.
B+ 0; // Set of assigned objects, initially empty.
foreach (z € M) do
| Co e {};
foreach (i € N) do
| Clop-) = Crop(-) U {i} 5
foreach ( Equivalence class C,) do
1 < randomly choose an agent from C, ;

(i) =x; // Assign object z to the randomly chosen agent.
A+ AU{i}; // Add agent to the set of assigned agents.
| B+ BU{zr}; // Add object to the set of assigned objects.

foreach ( object z € M \ B) do
i < randomly choose an agent from N \ A ;
(i) = ;
A+ AU{i}; // Add agent to the set of assigned agents.
B+ BU{z}; // Add object to the set of assigned objects.
return u

Proof. Strategyproofness: since agents are single-minded, they are indifferent between
all objects that are not ranked first. Consider a case where agent ¢ misreports its top
object, and thus, top(=;) # top(>;). If no other agent has the same top object, then
agent 4 is in Cy, 2,y and receives that object with certainty. By Algorithm 4 it’s clear that
E,[u;| =] = Exfui|(>=;,=—;)]. If there exists some other agent j with top(>;) = top(>=;),
but no other agent’s top choice is top(>;), i.e. no other agent wants agent i’s top choice
according to its truthful preference, then agent i has some probability of receiving its
top choice. However, since no one else wants agent i’s top choice then Ci,p.,) consists
of only agent ¢, which means that agent i would receive top(>;) with certainty under a
truthful report. This shows that under no condition a strategic agent could benefit from
misreporting.

Pareto efficiency: Let i denote the assignment returned by RECA | and for simplicity
let w;(p(i)) = w;i(>4, (7)) denote agent i’s utility for p(7). Suppose that RECA is not Pareto
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efficient. This means that there are at least two agents ¢ and j such that w;(u(j)) > w;(1(7))
and w;(p(i)) > u;(p(7))-

The inequality w;(u(i)) > u;(p(j)) implies that either agent j is indifferent between
p(i) ~ p(g) or (i) >; pu(g). If p(i) >; pu(j) then changing the assignment of agent j with
¢ would make agent j strictly worse off, which contradicts the assumption. Let’s assume
that agent j is indifferent between (i) and p(y), i.e. w;((i)) = u;(p(j)). Thus, it must
be the case that top(>;) # p(i) # pn(y).

The strict inequality in w;(u(7)) > w;i(w(i)) implies that p(j) =; w(i), and thus by
single-mindedness of preferences it must be the case that p(j) = top(>;). Therefore, we
can conclude that agent i belongs to the equivalence class of C,;). Since pu(i) # p(j)
by definition, it’s clear that Algorithm 4 has not randomly selected agent ¢ from C;),
and agent ¢ was assigned an object from the set of unassigned objects. Thus, p(j) must
be assigned to an agent with k with top(>x) = u(j) who strictly prefers p(j) to (7).

However, we know that j(j) is assigned to j and we showed that w;(u(i)) = u;(u(j)),
which contradicts the assumption.

Weak non-bossiness: The proof follows from the steps in Algorithm 4. A mechanism
is weakly bossy, if an agent reports a preference =; such that its expected utility remains
the same E,[u;| =] = E,[u;|(>4, =_;)] while at least one another agent j’s expected utility
is Eq[uy] =] > Ex[ui| (=, >—4)].

If agent i reports a preference such that top(>=;) # top(>;), then by Algorithm 4 it
loses it chance of getting selected from Cip(;), and thus E;[u;]| =] < Ex[u;| (>, =_;)]. For
all other objects, either the object is a top choice of agent j which would be randomly
assigned to an agent from Cj,p(. ), or the object is not a top choice of agent j, implying
that E[u;| =] = Eq[u;|(>i,>_;)]. Thus, no agent can reduce the expected utility of
another agent while receiving the same expected utility, which shows that RECA is weakly
non-bossy. O]

Computing RSD probabilities for general preferences is #P-complete [16], because the
associated counting problem is intractable and requires n! deterministic matchings to be
computed. In the next theorem, we show that although computing RSD probabilities is
intractable, computing RECA fractional probabilities can be done in polynomial time.

Theorem 6.11. Given single-minded preferences, computing RECA probabilities can be
done in polynomaual time.

Proof. 1t is sufficient to show that the probability that an agent receives each of the objects
can be written in a closed form. Let ¢ denote the number of non-empty equivalence classes.
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Thus, given m objects, according to Algorithm 4 the number of objects that are ranked
first by no agent is m — .

Let m;,; = m; j(>) denote the probability that agent i receives object j under RECA.
For each agent, the probability of receiving the objects in M according to RECA is:

e In each equivalence class, the mechanism assigns the associated object to a randomly
chosen agent from the set of agents in that class. Thus, m; op(s,) = m
op(>=4
e All objects that are ranked first by at least one agent get assigned to a member of

their equivalence classes. Therefore, for m — ¢’ remaining objects, the probability
(1_7ri,top(>i))
m—c’

that agent ¢ receives object j', is m; jy =

e Lastly, no agent can have a chance to receive an object that is not in its own equiva-
lence class, but it is ranked first by another agent. For each object j which is ranked
first by at least one agent, assign probability zero to all agents that top(>;) # 7,
i.e., for each j where 3/’ € N such that j = top(>;), m; = 0 for all ¢ such that

Jj # top(=4).

Each of the above steps can be done in at most O(n?). Thus, RECA probabilities for
single-minded agents can be computed in polynomial time, which completes the proof. [

6.4.1 Dynamic Single-Minded Preferences

Now we are ready to extend our strategyproof, Pareto efficient, and WNB mechanism
to sequential matching problems with dynamic single-minded preferences. In dynamic
settings, a single-minded agent is interested in a single specific item at each period, with
some positive cardinal value if its top item is assigned, and is indifferent about all the other
items. This is different from our initial setting as it permits a special case of indifference
between all objects except the top choice. In dynamic settings, a single-minded agent’s
top choice is time variant, that is, in each period there exists an item o, € M such that
>§:0k>01N...Nok_lwokﬂw...wom.

The next lemma states that, fixing the preference of all agents except agent ¢, if there
is a profile in which agent i’s expected utility improves, then the (ex ante) social welfare
of all agents also improves.
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Lemma 6.3. Consider the RECA mechanism, w, and single-minded agents. Given any
two preference profiles =' and =" such that =" = (=, =1.), if agent i strictly prefers the
matching (=) to w(="), that is Exlu;] =] > Ey[u;]|="], then

ZEﬂ[uz’ >‘t] > ZEﬂ’[ul‘;t]

1EN i€EN

Proof. Note that we are focusing on two different preference profiles where all agents are
truthful (including agent ). Fixing the preferences of other agents >' ;, agent i’s preference

must be Qz # >! in profile st Clearly a change within those objects that are not ranked
first would not make an agent strictly better off. Thus, given any two preference profiles, =*
and =', if an agent is strictly better off under =! compared to =", it has higher probability
of receiving its top choice. Thus, by strictness of the inequality Ex[u;| =] > Ex[us|='], we
know that agent 7 has higher probability of receiving its top choice under .

~t L

If =i# =; then [Cyppity| < |Clop(etyls otherwise if |Cyopty| = [Cy 1| then there are
more than or equal agents in the equivalence class that agent ¢ belongs to, and thus, agent
¢ will not be better off. Since agent ¢’s expected utility improves, then for all agents j
such that top(=") = top(=}), we have » B [u;| =] > 3, E,[u;]|~'] because |Crop(-1y| is

smaller than |C, Note that even though agent j’s expected utility may decrease,

op($§)|‘
the expected sum of utilities does not decrease, and in each equivalence class C,, there
always exists |C,| agents with exactly ﬁ chance of receiving the top choice. For all other

agents j' such that top(=7) # top(~}), RECA chooses an agent from each equivalent class
uniformly at random, there are |Cy,, ¢ )| agents with L

P J’ |Ctop(>;,/)‘
choice. Since the preferences are fixed for all agents, for all such equivalence classes C,

the sum of utilities will be |C,E|‘C—1|, which is greater than or equal to the expected sum

chance of receiving the top

under . Adding this to the sum of utilities of agents in equivalence class Cyy(,t) results
in 3y Exlui] =1 > 3y Exlus| =], implying that the sum of expected utilities does not
decrease if at least one agent’s allocation strictly improves. O]

An interesting consequence of the above lemma is that if a single-minded agent benefits
from misreporting its preferences, changing the evolution of preference dynamics would
improve the overall expected sum of utilities for all agents. In other words, an agent’s
misreport only results in a more efficient matching policy. That is, even if manipulation
in a sequence of RECA assignments (sequential RECA) is possible, the manipulation will
always benefit all agents.
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Theorem 6.12. Given sequential RECA, mw, with single-minded agents, for any agent 1
with misreport =, where =" = (=, >1.) , if Vi(=, 7(=")) > Vi(=!, 7(=")) when all others

are truthful we have

SV (=) > Yo Vil w () (6.6)

€N 1EN

Proof. Tt is easy to see that under sequential RECA even when agents are single-minded, a
strategic agent can benefit from misreporting when n > 3. Consider agent ¢ with misreport
=1 at time ¢ such that V;(>, 7(=")) > Vi(>!,w(~")). For all j € N if top(~") # top(=)
then either |C’t0p(>§_)| is decreased when top(>=}) = top(~}) or agent i’s misreport does
not change other agents’ allocations because of the independence of transitions. Thus,
according to RECA these agents’ expected utilities may improve, that is, E,r[uj|9t] >
E.[u;] =], and the misreport does not change the evolution of preferences for these agents,

thus, V;(=4,7(=%) > V;(=4, 7(=1)).
We need to focus on all j* € N such that top(~’) = top(=). If agent i successfully

gains from manipulating the allocation then we must have V;(=!, (=) > Vi(=t, n(>1)),
which can be written as

Enfui (=", 1) 2] + B[ 3 T(- £, ) Vi(-*+, m)] 1) >
>t+1

Enfus (= )] =+ Ea Y T |0 ) Vi1 )| -]

>t+1

However, by strategyproofness of RECA in one-shot settings, the immediate expected
utility of misreporting is strictly less than being truthful B [u; (=1, 1)|=] < Exlus (=1, p)| =
|. This implies that agent i must have gained in the future periods. For all agents j’

such that top(~') = top(=)), the |C’t0p(>;/)| now includes agent 7, thus the sum over the

immediate expected utility is
; 1
E Ew[uj’|>— ] = |Ctop(>§.,)|

C N
7'€C0p(t,) | t0p(>f’)‘
J

S Eafuyl-

j'eC

DN | —

t
top(>",)
i

Therefore, agent ¢’s misreport decreases the social welfare of all other agents by at most

. . e . ~t
1 — 1, which is exactly equal to the utility loss by agent i. However, by V;(>!,7(*")) >
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Vi(=t, (=), agent ’s allocation has improved in the future by at least the same amount.
Thus, for the future expected value we should have

E.[) T(-" =" m)Vi(=""1 m)=] > Eal ) T(- | =, pVi(="+ m)| =]

o t+1 41

By Lemma 6.1 and since the expectation is over all matchings, we can write the future
transitions as

DY T L =) =D 0 T (=) (6.7)

W=ttt oottt

Thus, for all future utilities we have

SO T - ) (ul SV >SN T ) (= Vi )

n wt+1 I wt+1

By Lemma 6.3, fixing the preferences of all agents j' € N, for preference profile =t*1 at
which agent ¢’s matching is strictly improved, the sum of expected utilities for all agents
gets improved. Agent ¢’s misreport at time ¢ can change the allocation of only one another
agent in equivalence class C, . +. We already know that for all j where top(~}) # top(=))
the allocation, and consequently transitions to the next profile, does not change.

Let C¥',C¥,...,C" denote the equivalence classes in the next periods ¢ > t. Given
RECA, under truthful reporting the sum of utilities is ) _,, |Ct/||0%. Let j’ be an agent

in Ctop 2t where its allocation changes after misreport and its preference evolve such that

top(~ 1“rl) # top(=;""). Thus, there exists an equivalence class C' = C,, . «+1) with one
j,
extra agent 7’ in it. But since agent i’s allocation improves, it cannot be in this equivalence

class, that is, top(>=") # top(=;"). If no other agent is in C,, . ++1), then there exists a
]/

class C’; with one less member, and in each future period the expected sum of utilities for
‘lCt' . Thus,

the sum of utilities for all agents except ¢ remains the same. Given the expected transition
according to Equation 6.7, the expected value for all agents is

SO ST T (Vi ) >

1EN o st+1

SONTS T T (= V(= )

iEN p o =tt+1

all agents improves. Otherwise, the sum of utilities for all agent in Ct/ is |Ct/

This similarly holds for all periods ¢ > t. Therefore, agent i’s misreport has improved
the evolution of matching decisions, and thus, the social welfare for all agents improves. [J
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6.5 Concluding Remarks

We considered matching with evolving preferences and formulated this as a planning prob-
lem by leveraging MDP models. In this framework, we showed that the sequential RSD
mechanism does not satisfy within-period ex post incentive compatibility even when agents
are endowed with linear positional scoring utilities.

In many real-life problems, agents often have structured preferences and these prefer-
ences do not radically change from one period to the next. Motivated by this observation,
we studied subclasses of matching problems with restricted preference dynamics. By ex-
amining some additional mild restrictions on the dynamics of the agents’ preferences, we
were able to create interesting subclasses for which a simple sequential RSD mechanism
satisfies the notion of within-period ex post incentive compatibility. Moreover, we inves-
tigated the problems with single-minded preferences and showed that RSD matchings do
not necessarily satisfy Pareto efficiency even in one-shot settings. To overcome this issue,
we proposed a randomized matching mechanism that satisfies strategyproofness, Pareto
efficiency, and weak non-bossiness in one-shot settings. Even though our mechanism for
assigning objects to single-minded agents in dynamic settings is manipulable, we showed
that any unilateral deviation would benefit all participating agents.

The dynamic matching problem gives rise to several intriguing questions. Although an
optimal policy does not guarantee truthfulness, finding and characterizing truthful match-
ing policies (from the space of all randomized policies) that maximize the social welfare
is still an open problem. In static settings, manipulating random matching mechanisms
(for example, Probablistic Serial Rule [30]) is shown to be NP-hard [20]. One interesting
direction is to study the complexity of manipulating the matching policies in dynamic en-
vironments, and to characterize players’ strategic behaviors under various populations and
utility models. Finally, it would be interesting to further study the incentive and efficiency
properties of dynamic matching policies on the full preference domain with indifferences [37]
and also in large markets [97].
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Chapter 7

Conclusions

The overarching theme of this thesis was investigating ways to efficiently and fairly dis-
tribute a set of discrete resources to a set of self-interested agents, in the absence of mone-
tary transfers. To accomplish this goal, we focused on one-shot matching decisions wherein
players compete over scarce available resources in multiagent settings as well as mechanisms
and strategies that incentivize truthful behavior of agents in repeated matching problems
with uncertainties about preferences. More specifically, we addressed the following ques-
tions:

e What deterministic or randomized mechanisms are appropriate to assign multiple
objects to agents based on a given quota?

e Which randomized matching mechanism should a social planner adopt in practice to
ensure a desirable level of social welfare under various risk attitudes?

e Do the desirable properties of traditional matching mechanisms carry over to dynamic
settings with repeated allocations?

e Can we design truthful mechanisms for dynamic matching problems?

Our findings shed light onto challenges of ensuring desired economic properties such as
fairness and efficiency while guaranteeing strategyproofness. These findings can help mech-
anism designers and social planners when considering which mechanisms and approaches
to deploy in competitive markets. For example, an institution may decide to adopt our
proposed RSDQ mechanism in Chapter 3 to fairly assign teaching loads to faculty under
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a certain teaching quota while ensuring Pareto efficiency and preventing agent manipula-
tion. In a different scenario, a social planner who wants to fairly assign a set of shifts (or
tasks) repeatedly over time to a set of social workers, nursing staff, or any other groups of
players should be cautious about the possibility of manipulation and may decide to adopt
the Adaptive RSD mechanism that we proposed in Chapter 5.

Working in the one-shot settings, in Chapter 3, we investigated the class of determin-
istic matching mechanisms when there is a quota to be fulfilled. We showed that serial
dictatorship mechanisms (and their sequential dictatorship counterparts) characterize the
set of all possible matching mechanisms with desirable economic properties, enabling so-
cial planners to remedy the inherent unfairness in deterministic allocation mechanisms by
assigning quotas according to some fairness criteria (such as seniority, priority, etc.). More-
over, we generalized our findings to randomized mechanisms for lexicographic preferences,
expanding random serial dictatorship mechanisms to quota mechanisms. Our proposed
mechanism satisfies our desired properties such as strategyproofness and ex post efficiency,
while guaranteeing a stronger notion of fairness called envyfreeness. These findings, prove
that the well-known Random Serial Dictatorship (RSD) mechanism in standard assign-
ment settings satisfies envyfreeness when preferences are lexicographic. Random quota
mechanisms provide a rich and extended class for object allocation with no restriction on
the market size nor quota structure while providing envyfreeness in lexicographic domains,
justifying the use of such mechanisms in many practical applications.

In Chapter 4, we provided a systematic empirical study of two seminal random match-
ing mechanisms, namely Random Serial Dictatorship (RSD) and Probabilistic Serial Rule
(PS). Our main goal was to provide better empirical insights to the theoretical findings so
that mechanism designers of multiagent systems can decide which mechanism to adopt in
practice. In the space of general ordinal preferences, we showed that while RSD does not
theoretically guarantee stochastic dominance efficiency, in most cases RSD and PS alloca-
tions are incomparable under stochastic (or lexicographic) dominance. When instantiating
the preferences with actual utility functions, PS allocations are only slightly better than
RSD allocations in terms of social welfare, particularly under risk averse utilities, while in
some cases RSD allocations are superior in terms of social welfare. In addition, we showed
that not only PS is manipulable in most cases, this manipulation and the possible gain
from manipulation become more severe when agents are risk averse, and designers need to
take this into consideration.

Our empirical findings in this thesis complement the theoretical guarantees of match-
ing mechanisms, shedding light on practical implications of deploying each of the given
mechanisms. Another interesting future direction is to investigate how these results com-
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pare to settings where the objectives are expressed based on an egalitarian social welfare
function [71,127] as opposed to our utilitarian approach for social welfare.

Focusing on settings with repeated matching, in Chapter 5 we studied the incentive
and fairness properties of sequential matching with dynamic ordinal preferences. We first
proposed a model, based on stochastic decision processes, for analyzing and reasoning
about stochastic sequences of allocations under ordinal assignment of objects to agents. We
showed that in contrast to one-shot settings, a sequence of RSD-induced matchings is prone
to manipulation under both history-dependent and Markovian transitions. Subsequently,
we proposed a history-dependent matching mechanism that satisfies strategyproofness if
preference dynamics follow a certain type of trajectory, and showed that our proposed
mechanism, called Adaptive RSD, prevents harmful manipulations under a mild assump-
tion while sustaining the local properties of the sequential RSD. Nonetheless, we showed
that a strong manipulation is still possible, but a unilateral manipulation often leads to
a Pareto improving sequence of decisions for all agents. Moreover, removing all the as-
sumptions on how preferences evolve over time, we showed that Adaptive RSD is weakly
gsd-strategyproof if the planning horizon is bounded.

Finally, in Chapter 6 we restricted attention to subclasses of matching problems where
sequential RSD can still be used. We formulated the sequential matching problem as a
Multiagent MDP where agents have linear positional scoring utilities. We showed that even
under this restriction, sequential RSD is only strategyproof when there are two agents and
does not preclude strategic reporting when there are more than two agents. In a number
of real-life applications, agents often have structured preferences and these preferences do
not radically change from one period to the next. Motivated by this observation, we stud-
ied subclasses of matching problems with restricted preference dynamics, and showed that
when agents are myopic or when they have rotational preferences a simple sequential RSD
mechanism satisfies the notion of within-period ex post incentive compatibility. Moreover,
we investigated the problems with single-minded preferences and showed that RSD match-
ings do not necessarily satisfy Pareto efficiency even in one-shot settings. To overcome this
issue, we proposed a randomized matching mechanism that satisfies strategyproofness,
Pareto efficiency, and weak non-bossiness in one-shot settings. Even though our mecha-
nism for assigning objects to single-minded agents in dynamic settings is manipulable, we
showed that any unilateral deviation would benefit all participating agents.
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7.1 Future Work

The decision problem in most multiagent settings is dynamic, rather than static, and
agents’ preferences may change or evolve depending on previous allocations or some un-
certain events. In dynamic settings, we investigated the desirability of different matching
mechanisms for resource allocation that make decisions by eliciting agents’ preferences, and
showed that the traditional matching mechanisms fail to prevent this type of manipulation.
An interesting research direction in dynamic matching is to provide an axiomatic approach
for comparing sequences of allocations by defining new axioms beyond the traditional no-
tion of stochastic dominance in ordinal domains.

In recent years, there have been efforts in designing approximate mechanisms that
partially satisfy the desirable properties such as strategyproofness and efficiency in one-shot
settings [105]. An interesting future direction is study and design sequential mechanisms in
dynamic settings with modifiable parameters that can approximately satisfy truthfulness,
efficiency, or fairness given a set of desired parameters.

In this thesis, we studied the settings where an agent unilaterally misreports its private
underlying preferences. An intriguing future direction concerns with characterizing the set
of matching mechanisms for repeated allocations that globally satisfy strategyproofness
when agents can learn from previous allocations and decisions and their best-response
strategies is dependent on the acquired endogenous information.

Mechanism design approaches for matching in dynamic environments are important
in multiagent resource allocation. Our work in this domain assumed that the population
of agents is fixed over time and only their preferences may evolve. However, in most
multiagent settings, agents arrive and depart stochastically over time and the outcome
of a mechanism depends heavily on the reported preferences of agents as well as private
information about agents’ departure and arrival times [2, 8, 068,96, 132]. An intriguing
research direction is to study a more realistic multiagent setting by combining the two
notions for uncertainty over the population of agents and over agents’ preferences.

Finally, throughout this work we restricted our attention to settings with no positive or
negative externalities. Nonetheless, in many situations agents not only possess an idiosyn-
cratic preferences over alternatives, but they may also have preferences over the outcomes
of other agents as soft or hard constraints [37,70]. A promising future direction is to study
such externalities in dynamic matching when agents’ preferences change over time and
develop algorithmic techniques to ensure the desirable properties of resource allocation in
these multiagent settings.
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Appendix A

Numerical Results of Chapter 4

The following table shows the results of comparing RSD and PS under ordinal preferences
for various combinations of agents and objects. Note that in most instances, RSD and PS
do not induce the same random allocation.

Dominance RSD PS manipulability
n m Equal SD LD weakEnvy weak SD LD
2 2 100% 0% 0% 0% 0% 0% 0%
2 3 2™ 18% 29% 23% 31%  31% 31%
2 4 10% 36% 60% 20% 53%  53%  53%
2 5 3% 39% 8% 16% 8% 8% 8%
2 6 1% 45%  90% 13% 87%  81% 8™%
2 7 0% 46% 95% 12% 95%  95%  95%
2 8 0% 45%  96% 11% 97% 9%  9I™%
2 9 % 47%  96% 11% 100% 100% 100%
2 10 0% 48%  99% 9% 929%  99%  99%
3 2 100% 0% 0% 0% 0% 0% 0%
3 3 6™ 0% 0% 11% 24% 0% 0%
3 4 3% 5%  40% 47% % 5% 5%
3 5 % 4% 5% 46% 9%6%  26% 2™%
3 6 0% 6%  84% 42% 95%  53%  54%
37 % 5% 90% 41% 100% 68%  69%
3 8 0% 5%  93% 39% 100% 80%  83%

‘ Continued on the next page ‘
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Dominance RSD PS manipulability

n m Equal SD LD weakEnvy weak SD LD
39 0% 9%  96% 35% 100%  90%  92%
3 10 0% ™% 95% 34% 100%  94%  94%
4 2 62% 38% 38% 0% 0% 0% 0%
4 3 33% 34%  46% 21% 2% 0% 0%
4 4 21% 3% 8% 27% 2% 0% 0%
4 5 0% 0%  48% 61% 96% 1% 1%
4 6 0% 0%  76% 62% 98% 1%  18%
4 7 0% 0%  84% 62% 100%  33%  35%
4 8 0% 1% 93% 61% 99%  52%  54%
4 9 % 1% 94% 60% 100% 65%  69%
4 10 % 2%  95% 56% 100% 79%  85%
5 2 3% 61% 61% 0% 0% 0% 0%
5 3 8% 34% 83% 27% 66% 0% 0%
5 4 3% 19%  53% 42% 94% 0% 0%
5 5 6% 1% ™% 42% 920% 0% 0%
5 6 0% 0%  58% 69% 100% 0% 0%
5 7 0% 0%  84% 1% 100% 4% 4%
5 8 0% 0%  91% 1% 100% 18% 18%
5 9 0% 0%  94% 1% 100% 32%  36%
5 10 0% 0% 9% 70% 100%  49%  55%
6 2 21% 79% 79% 0% 0% 0% 0%
6 3 2% 1% 96% 31% 59% 0% 0%
6 4 0% 22%  88% 52% 20% 0% 0%
6 5 0% 9%  46% 59% 98% 0% 0%
6 6 3% 1% ™% 54% 96% 0% 0%
6 7 0% 0%  62% 74% 100% 0% 0%
6 8 0% 0% 89% 74% 100% 1% 1%
6 9 0% 0%  95% 5% 100% 8% 9%
6 10 0% 0% 9% 5% 100% 23%  25%
72 12% 88% 88% 0% 0% 0% 0%
7 3 1% 64% 99% 33% 83% 0% 0%
7 4 0% 26% 9% 57% 929% 0% 0%
7 5 0% 8%  8T% 66% 100% 0% 0%

‘ Continued on the next page ‘
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Dominance RSD PS manipulability

n m Equal SD LD weakEnvy weak SD LD
7 6 0% 2%  41% 69% 100% 0% 0%
T 7 1% 1% 6% 61% 9% 0% 0%
7 8 0% 0% 71% 79% 100% 0% 0%
79 0% 0%  93% 79% 100% 0% 0%
7 10 0% 0%  96% 78% 100% 5% 6%
8 2 &% 2%  92% 0% 0% 0% 0%
8 3 % 63% 100%  34% 6% 0% 0%
8 4 % 33%  99% 60% %% 0% 0%
8 5 0% 10%  97% 70% 100% 0% 0%
8 6 0% 4%  83% 74% 100% 0% 0%
8 7 0% 1% 29% 74% 100% 0% 0%
8 8 0% 0% 5% 69% 29% 0% 0%
8 9 0% 0% 70% 81% 100% 0% 0%
8 10 0% 0%  93% 82% 100% 0% 0%
9 2 3% 9% 9% 0% 0% 0% 0%
9 3 0% 76% 100%  35% 0% 0% 0%
9 4 % 33% 100%  62% 100% 0% 0%
9 5 0% 19%  99% 2% 100% 0% 0%
9 6 0% 6%  98% 76% 100% 0% 0%
9 7 % 2% 8% 78% 100% 0% 0%
9 8 0% 0% 26%  78% 100% 0% 0%
9 9 0% 0% 4% 1% 100% 0% 0%
9 10 0% 0%  69% 84% 100% 0% 0%
10 2 2% 99% 99% 0% 0% 0% 0%
10 3 0% 70% 100%  37% 9% 0% 0%
100 4 0% 46% 100%  63% 98% 0% 0%
10 5 0% 17% 100%  73% 9% 0% 0%
10 6 0% 10%  99% 7% 100% 0% 0%
0 7 0% 2% 95% 79% 100% 0% 0%
10 8 0% 1% 7% 80% 100% 0% 0%
10 9 0% 0% 21% 79% 100% 0% 0%
10 10 0% 0% 4% 73% 100% 0% 0%

Table A.1: Experimental results over the space of preference profiles.
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Appendix B

Proof of Theorem 5.4

Proof. The proof follows by constructing an instance of the matching process where an
agent’s strategic report causes the evolution of preferences (and subsequently the trajectory
of decisions) to result in the best expected sequence of decisions for a strategic agent.
There are three steps in the proof: (i) construct a best possible sequence of outcomes for
agent ¢ under her misreport, (ii) construct the worst possible sequence under the truthful
report, (iii) use Definition 5.11 to find the minimum required horizon for achieving strong
manipulation.

Let 7 denote a sequential RSD policy, and T" be a history-dependent transition function.
Let %f be agent i’s best strategic report at time ¢, given its true preference >!. Let oq,. .., 0,
denote a rank-ordered list of alternatives at each time step, that is, o; represents the top
choice alternative according to =!.

In each matching period, let = denote a preference profile where agent i receives its
top choice, and = be a profile with the worst possible outcome for agent i. By Lemma 5.1,
the best possible allocation for an agent is to receive its top choice with certainty, and the
worst possible allocation is to receive every object with the probability of % Note that
under sequential RSD policy, any other randomized outcome would be an improvement
over the worst-case matching. By local strategyproofness of sequential RSD, agent ¢ does
not receive any immediate gain by misreporting. Without loss of generality, we can shift
the time and assume that the matching process starts at time t = 1. For simplicity, let us
assume that agent 7 receives its last choice after misreporting at ¢, that is, (i) = i = op.
Starting at time ¢, there is no information in history so we can write

TR, ) = (-1 1= )
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Constructing the best possible outcome for agent ¢ from time ¢ onwards, we can assume
that for all future time periods we have

T(ht+2|ht+1,ﬂt+1> — 1

where 7(h**?) induces the best outcome for agent i, that is, w(h't?) = [i where fI is
a best outcome for agent ¢ according to Lemma 5.1 where it receives its top choice with
certainty. Now, we can compute the score of assigning all alternatives for A steps:

W (') = i (i) + (A = 1)) (B.1)
=03+ (A—1)o

We now consider the worst sequence of outcomes for agent ¢ when reporting truthfully
at t. Let 1 = m(>") be the worst-case random matching at ¢. Since the transition function is
history-dependent, it may be the case that agents always transition to a worst-case profile,
and hence, receive the worst-case random allocation. In other words, for all matchings
p € M and times t' > ¢, the system transitions to h* where > is a profile with worst-case
outcome for agent i:

T |t ) = 1

where 7(h'') = ji. Thus, for A planning horizon we can write

WE(H) = i) + 5 (= (i) + 5 (A — 1)) (B.2)
= %(01 + 09 + 03) + %()\ — 1)(%(01 + 09+ 03)) + %()\ —1)o;

To prove the possibility of manipulation, we need to show that for some ranking position
¢ the following holds:

Jop € M, Wr(ht, 00) > W (ht, 00) (B.3)

Replacing W7 (h?) with equations solved for truthful report (Equation B.2) and W7 (hf)
with equations solved for the strategic report (Equation B.1), we have

ik O D) > )+ S = D) + (A~ D)
i+ g(x _ D) > 2“_—31“3;1
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For simplicity, we replace the term A — 1 with . Now, writing random matchings
according to Equation 5.3 over alternatives and using Lemma 5.1 we have

+2/\, >2X+3 +2X+3 2N +3
o =No 0 o o
3T gA01 9 1 9 2 9 3
For ¢ = 1 we have

2 2N + 3

g)\/01 > 9+ 01

Thus, strong manipulation may be possible if ' > %, and thus, A > %. Because of

the discrete time assumption, we can write A > 2. To ensure strong manipulability, we
similarly need to show that this inequality holds (at least weakly) for other ranks. For
{ =2 we write
/ /
2/\,> 2\ +3+2)\ +3
37 9 9

which results in A’ > 3. Thus, sequential RSD is strongly manipulable when A > 4.
It is easy to see that sequential RSD is only weakly manipulable for 1 < A < 3. This
concludes our proof. O
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Appendix C

Proof of Theorem 5.5

Proof. Let m be a sequential RSD mechanism, and let == (=, = ) and =’ = (<1, =) be
the profiles where agent i reports truthfully and non-truthfully respectively. We construct
two cases, one where agent i receives a worst sequence under a truthful report and one
where agent ¢ receives a best possible (expected) sequence of allocations under a misreport.
Let = denote a state (preference profile) where agent i receives its top choice, and = be a
profile with the worst possible random matching for agent .

Step (2): Agent i’s strategic report will yield an immediate random allocation of 7 ( %t)
where by local strategyproofness m;(>") =! Wi(;-t). By Lemma 5.2, agent 7 can only affect
the decision trajectory by changing the current random allocation. Assuming the best
possible scenario, we assume that the misreport takes agent i to the best state =, that is,

ST i (plst) =1
HeM

for all t < ¢’ < A, that is, all matchings prescribed by 7 will take the system to state
. Thus, we have

WEE = w2 + 303 TR (& )m (%)

t'=2 peM
=m(=)+ > m(E)
= m(=) + (A= Dm(S)
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Since ;(=) assigns agent i’s top choice with certainty (best case), we can rewrite the
above equation in the following closed form:

~

Wr (=) = m(=") + (A= Dm(*)
= Wi(;-t) +(A=1) o

Step (4¢): This step follows by constructing the worst-case sequence of outcomes under
agent i’s truthful report. Let = be a profile with the worst possible outcome for agent 4
under truthfulness. Then, according to Lemma 5.1, m;(>=") = 1(01 4 02 + 03). Considering
the worst-case scenario for agent ¢, we assume that every decision at ¢t will keep agent i in
state = for all future steps t' > t.

ST = wym(pl =) =1
HneM

By Lemma 5.3, there exists a subset of Pareto efficient matchings that are in 7(>") as

well as 7(="). We denote these two sets as M~ C M and M= C M. Thus, the next
state can be written as

> TS wm(pl =W (=) + Y TS wm(ul =W (%)
N€M>t H€M>
wgrrst bzgt

Using Lemma 5.2, we can further simplify the second statement and write

Y T =5l =OWE (=) + Y T =" wm(ul =YW (=)

N€M>_t MGM;t

With three agents and assuming the worst-case scenario, by Lemma 5.1 and Lemma 5.3
the probability of transitioning to the next state can be written as

2 . 1 .
gw(>-)+§7r(>-)

Thus, by Lemma 5.3 there is % probability of choosing a matching that guides the

trajectory to the best scenario, from where the evolution of preferences continues as in
Step (7). This is because of the memorylessness property of Markovian transitions, that is,
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it is not important how the system ends up in a state and the next-state transitions only
depend on the currents state and decision.

Because of the Markovian assumption, by forward induction, in every next state the
same assumptions hold, meaning that in every future step there is a probability of transi-
tioning to the best state, which takes agent ¢ to the best scenario. Thus, we can recursively
write

o) =5 5 (350 +5mN+ 3ml9) + 3m5) | +3m)
t
o
" t1r2 ’ J
L t43 |

Recall that Wi(;-) = 01. For three objects and )\ planning steps, we can write the above
equation in the following closed forms:

A—1
_ R )
W (- 0) = 3 A+ 3 (g)k()\ — k)
k=1
1<N 2
W (=", 09) = 3 Z(g)k_l
k=1
A
_ 1S 2.,
W (=", 03) = 3 (g)k !
k=1

Note that the feasibility condition states that for any A, the sum of above must guar-
antee the following:
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Step (#22): For strong manipulation, using steps (i) and (ii) we need to show that

Yo, € M, W7 (ht,0,) > W7 (h, o)

with one strict inequality. For o;, we should have

A—1

m(2) 1) > 2 A kz(g)m )

w

By local strategyproofness of sequential RSD, m;(=") is preferred to 7ri(>A—t), implying
that for A = 1, strong (or even weak) manipulablity is impossible. However, for A = 2
because m;(=") # m;(="), we have 1 > 2 + ()2, which also holds for any A > 2, meaning

that misreport will improve the allocation of ranking position o.
For 0y, we must have W7 (=", 0,) > W7 (>, 0,), that is,

~t

m(=)+(A-1) = )

Wl N

1 . 1
3 (5) ()\—k)+52(

A
A+
k=1 k=1

1
3
For o0,, agent ¢’s strategic report that changes the evolution of preferences for other

agents would result in a randomized decision m;(=") with at least & = & probability of
receiving objects ranked first or second. Thus,

It is easy to verify that for any A > 4 the above inequality holds, implying that sequen-
tial RSD is not even weakly gsd-strategyproof for A > 4, while it is only weakly manipulable
for 1 < A < 4. This concludes our proof. O
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Appendix D

Proof of Proposition 5.1

Proof. For contradiction, assume that w!;(m(>)) > 3 for some >'. By Equation 5.6 we
write

> w(u|n') >

BEM:pu(8) =t p(5)

| —

Since RSD induces a probability distribution over all matching u € M,

dowlp| B+ w(u|ht) =1

pEM: HEM:
1(8) =5 u(5) 1(5) =5 (i)

Therefore, by subtracting the above inequalities we have

Sow(u | b < 3wl | 1)

HEM: pEM:
1(3) =5 () (@) =% (5)

which implies that agent j strictly prefers agent i’s assignment to its own assignment.
This immediately contradicts the uniformity of distribution over priority orderings and the
weakly envy-freeness of the RSD mechanism. [
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Appendix E

Proof of Lemma 5.6

Proof. The proof follows directly from Algorithm 3. Here we provide a constructive proof.
Take any two agents 7,5 € N at time ¢ + 1. Consider two different sequence of matchings
resulting in two dominance histories d' and d' such that agent ¢ has dominated agent j in
the trajectory leading to d' compared to df. That is, cﬁ] > di;.

At time t 4+ 1, as shown in Algorithm 3, for each priority ordering where ¢ is ordered
before j the priority ordering changes such that j selects an alternative before agent i,
hence, for agent j we can write

S oal | BT > w(u | B

HEM: pEM:
uj) =1 () u(@) ()

Agent j’s assignment improves given A'*!. Since the random matching induced by Adaptive
RSD is a probability function, for agent ¢ the probability of receiving alternatives that are
preferred to agent j’s assignment is less than or equal the same probability under h!*!.
Note that the equal part in the inequality is only valid in situations where the two agents
are not competing for any of the alternatives at t + 1. m
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