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Abstract

Conditional Source-term Estimation (CSE) is a turbulent combustion model which uses
conditional averages to provide closure for the mean chemical source term and is based
on the same ideas as the Conditional Moment Closure (CMC) approach. CSE applies
first order closure for the conditional averages which are obtained by inverting an integral
equation and has been used to simulate a range of premixed, non-premixed and partially
premixed flames. In the present study, CSE is applied to investigate a high efficient, low
emission combustion process called Moderate and Intense Low Oxygen Dilution (MILD)
combustion. This work represents the first application of CSE for MILD combustion, the
first application of a multi-stream CSE formulation and the first doubly-conditioned CSE
formulation applied in the Large Eddy Simulation (LES) framework.

The objectives of the present study are to (i) investigate the CSE combustion model
for turbulent non-premixed combustion, (ii) develop a CSE formulation for MILD combus-
tion problems, (iii) implement CSE for MILD combustion problems in Reynolds-Averaged
Navier-Stokes (RANS) and LES and (iv) compare the CSE predictions to experimental
and previous numerical results for well documented MILD combustion flames.

Numerical simulations of a confined non-premixed methane flame are completed using
the CSE non-premixed approach. This study investigates the sensitivity to various CSE
model parameters and shows CSE is able to accurately predict non-premixed methane com-
bustion. A detailed study of the inversion problem encountered in CSE is also investigated
using the Bayesian framework. The origin of the perturbation seen in the unconditional
mass fraction in CSE and the impact of a smoothing prior on the recovered solution and
credible intervals are discussed. Different regularization methods are studied and it is
shown that both zeroth and first order Tikhonov are promising regularization methods for
CSE.

In the present work, the non-premixed CSE formulation is extended to include the
impact of radiation of the conditional reaction rates and is applied to a semi-industrial fur-
nace. This study demonstrates that a RANS-CSE simulation is able to accurately predict
the temperature and species concentration, including NOx, for large scale realistic furnace
configurations.

Finally, a multi-stream CSE formulation is developed and applied to the DJHC burners
in the RANS and LES framework. This new CSE formulation is able to predict the tem-
perature and velocity profiles in very good agreement with the experimental data. Further,
the LES multi-stream CSE formulation is able to predict the time-dependent nature of the
DHJC burners.
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tion of axial height using 8 (dashed line) and 12 (solid line) CSE ensembles
for the DJHC-I 4100 flame . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.1 LES computational domain showing one CSE ensemble and boundary con-
ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Resolution of the turbulent kinetic energy on the centreplane using Eq. 7.17
for the two flames under consideration. The isoline corresponding to R =
0.8 is also shown to distinguish between the well-resolved and under-resolved
regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 LES-CSE time-averaged resolved axial velocity profiles in the radial direction
(solid line) compared to RANS-CSE numerical predictions (blue line) and
compared to experimental data [54, 55] (symbols) at various axial locations
for the DJHC-I 4100 flame . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4 LES-CSE time-averaged resolved axial velocity profiles in the radial direction
(solid line) compared to RANS-CSE numerical predictions (blue line) and
compared to experimental data [54, 55] (symbols) at various axial locations
for the DJHC-I 8800 flame . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.5 LES-CSE time-averaged resolved radial velocity profiles in the radial direc-
tion (solid line) compared to RANS-CSE numerical predictions (blue line)
and compared to experimental data [54, 55] (symbols) at various axial loca-
tions for the DJHC-I 4100 flame . . . . . . . . . . . . . . . . . . . . . . . 126

xiv



7.6 LES-CSE time-averaged resolved radial velocity profiles in the radial direc-
tion (solid line) compared to RANS-CSE numerical predictions (blue line)
and compared to experimental data [54, 55] (symbols) at various axial loca-
tions for the DJHC-I 8800 flame . . . . . . . . . . . . . . . . . . . . . . . 127

7.7 LES-CSE time-averaged resolved axial velocity fluctuation profiles in the
radial direction (solid line) compared to experimental data [54, 55] (symbols)
at various axial locations for the DJHC-I 4100 flame . . . . . . . . . . . . 128

7.8 LES-CSE time-averaged resolved axial velocity fluctuation profiles in the
radial direction (solid line) compared to experimental data [54, 55] (symbols)
at various axial locations for the DJHC-I 8800 flame . . . . . . . . . . . . 129

7.9 LES-CSE time-averaged resolved u′v′ profiles in the radial direction (solid
line) compared to experimental data [54, 55] (symbols) at various axial lo-
cations for the DJHC-I 4100 flame . . . . . . . . . . . . . . . . . . . . . . 130

7.10 LES-CSE time-averaged resolved u′v′ profiles in the radial direction (solid
line) compared to experimental data [54, 55] (symbols) at various axial lo-
cations for the DJHC-I 8800 flame . . . . . . . . . . . . . . . . . . . . . . 131

7.11 LES-CSE time-averaged resolved turbulent kinetic energy profiles in the
radial direction (solid line) compared to RANS-CSE numerical predictions
(blue line) and compared to experimental data [54, 55] (symbols) at various
axial locations for the DJHC-I 4100 flame (left) and DJHC-I 8800 flame (right)132

7.12 LES-CSE time-averaged resolved temperature profiles in the radial direc-
tion (solid line) compared to RANS-CSE numerical predictions (blue line)
and experimental data [54, 55] (symbols) at different axial locations for the
DJHC-I 4100 flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.13 LES-CSE time-averaged resolved temperature profiles in the radial direction
(solid line) compared to RANS-CSE numerical predictions (blue line) and
experimental data [54, 55] (symbols) at various axial locations for the DJHC-
I 8800 flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.14 LES-CSE temperature rms profiles in the radial direction (solid line) com-
pared to experimental data [54, 55] (symbols) at various axial locations for
the DJHC-I 4100 flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.15 LES-CSE temperature rms profiles in the radial direction (solid line) com-
pared to experimental data [54, 55] (symbols) at various axial locations for
the DJHC-I 8800 flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xv



7.16 CSE predicted PB1 and PB2 cumulative density functions for the DJHC-I
4100 (solid line) and DJHC-I 8800 (dashed line) flames . . . . . . . . . . . 139
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Chapter 1

Introduction

1.1 Overview

Increased industrialization across the world has led to an increasing demand for energy.
This energy is required for transportation, heating, electrical generation and industrial
processes. Currently, turbulent combustion is primarily used to convert chemically bound
energy into a usuable form. Indeed, turbulent combustion is the most common process
in all practical systems as it allows enhanced mixing and heat release. The high energy
density found in fossil fuels makes combustion attractive for transportation and propul-
sion processes and will likely remain the main method of power for these processes for
the foreseeable future. Additionally, a significant portion of electric power generation is
obtained from the turbulent combustion of fossil fuels. This burning of fossil fuels has
led to an exponential growth in greenhouse gas emissions, which are expected to exceed
40 gigatonnes per year by 2035 [1]. As governments realize the negative impact of green-
house gasses on the planet, a drive to reduce our dependence on fossil fuels and switch
to renewable clean energy sources has begun. However, while reducing our dependence
on fossil fuel is required, this cannot be accomplished instantaneously without a signifi-
cant negative impact on the world economy. Furthermore, it will take time to scale up
renewable clean energy sources to a level that can replace our dependency on fossil fuels.
The United States Energy Information Administration (EIA) predicts that electrical en-
ergy obtained from renewable clean energy will increase from approximately 13% in 2013
to 22% in 2040 [2]. In comparison, the EIA predicts that coal could account for 34% of
energy generation, with natural gas accounting a further 31% [2]. Thus, if we have any
hope to reduce the amount of greenhouse gasses in the near future, then more efficient
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combustion processes are required to reduce both greenhouse gas emissions and pollutants
such as nitrogen oxides (NOx). In conjunction with experimental investigations, numer-
ical simulations of turbulent combustion are required to further understand the physical
phenomena involved and produce processes which are both cleaner and more efficient. The
development of new combustion technologies is now being promoted to meet increasingly
stringent atmospheric emission regulations with the goal of developing highly efficient and
low pollutant combustion processes.

The requirement of highly efficient and low pollutant combustion is not limited to
industrial electric generation, but is also required for the aerospace and transportation
sectors. In 2014, 124.5 million people enplaned and deplaned at Canadian airports. This
represents a growth of 45% since 2004 [3]. In addition, 1.1 million tonnes of freight worth
$116.5 billion dollars was loaded or unloaded at Canadian airports. In 2012, the Canadian
domestic aviation sector emitted 6.1 megatonnes of CO2 equivalent and accounted for 3.7
% of all transport greenhouse gas emissions. However, from 2000-2012 domestic aviation
emissions decreased 20.7% despite increased traffic [3]. This decrease can be attributed
to improved aircraft designs and aviation fuel efficiency, something significantly impacted
by computer simulations of turbulent combustion processes. As a result, designing more
efficient combustion processes has had a dramatic impact on emissions for the aerospace
industry. The reductions are crucial when considering the size of the global aerospace in-
dustry. In 2014, 650 million people flew domestically in the USA [4], while approximately
3.3 billion flew worldwide according to the International Air Transport Association [5].

In the near term, renewable clean energy sources such as wind or solar do not appear to
be feasible options for replacing turbulent combustion as the main source of energy. The
implementation of renewable energy strategies requires overcoming technological issues in-
cluding improving energy densities, increasing supply, storage capacities and large-scale
market implementation, which limits its application in the foreseeable future. In order
to further reduce the greenhouse gas footprint more efficient combustion processes are re-
quired. These new processes and designs can be optimized using computer simulations
with detailed combustion models.

There are many different approaches which have been developed to increase combus-
tion efficiencies in a range of industrial applications. In the present research, we have
been focusing on Moderate and Intense Low Oxygen Dilution (MILD) combustion as it
increases efficiencies, while at the same time reduces emissions. MILD combustion has two
main characteristics: the inlet temperature of the reactants is above the stoichiometric
auto-ignition temperature of the mixture; and the temperature increase of the system is
less than the auto-ignition temperature [6]. High inlet temperatures can be obtained using
exhaust gas recirculation where hot burnt products are mixed with fresh air. This reduces
the oxygen concentration in the oxidizer steam, resulting in low peak temperatures and a
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substantial reduction in NOx, which is responsible for smog and is a potential greenhouse
gas, by up to 50% [6, 7]. The high oxidizer temperature can also increase the thermal
efficiency of the system by up to 30% [7].

In turbulent combustion modelling, the turbulent flow field is modelled using one of
three approaches: Direct Numerical Simulation (DNS), Large Eddy Simulation (LES) and
Reynolds Averaged Navier-Stokes equations (RANS). DNS solves the Navier Stokes equa-
tions without any modelling. This is accomplished by temporally and spatially resolving
the smallest eddies in the flow which requires a very small grid spacing and timestep.
As a result, DNS is limited to simplified flows and geometry due to large computational
costs. Thus, the use of DNS for industrial applications is not practical and is likely to
remain so for the foreseeable future. LES requires less computational resources and has
been shown to accurately describe the turbulent mixing between fuel and oxidizer. This is
possible because the large turbulent eddies are computed without any modelling assump-
tions, whereas the subgrid scale turbulence is modelled. RANS simulations require even
less computational resources but also result in a simplified description of the turbulent flow.
Unlike LES, the RANS method contains modelling at all length scales. Consequently, the
large scale transient motion of the flow is lost. The benefit of RANS is that it is commonly
used in industry and has well-documented deficiencies. Further, the lower computational
resources required make RANS an attractive method for model development. Within the
current research framework, RANS and LES method are considered.

In turbulent combustion, difficulties arise when determining the averaged reaction-rate
terms as the chemical kinetic rates are non-linear and the chemical reactions are strongly
coupled with the micro-scale mixing [8]. Further difficulties are seen in modelling MILD
combustion processes due to the complex interactions between turbulent fluid motion, com-
bustion, radiation and multiphase flow. As the recirculated hot products do not necessarily
have uniform properties this type of combustion is difficult to accurately model with tradi-
tional non-premixed combustion models. Since MILD combustion is a promising method
for improved efficiency and reduced emissions, the development of theoretical models to
predict this type of combustion is required.

1.2 Objectives

A typical MILD combustion burner consists of two parts, a main fuel nozzle and a flow of
recirculated hot products or secondary coflow. In MILD combustion, due to heat lost to the
walls and nonuniform combustion, the temperature and species concentrations may vary
in the secondary coflow and recirculated hot produces. As a result, in MILD combustion,
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models may need to include the variation in the properties of the coflow or recirculated
hot products. One common strategy for extending non-premixed models to this type of
MILD combustion is by including a second conditioning variable that is used to model the
variation in the coflow or by including the effect of temperature on the chemical reaction
rates. Conditional Source-term Estimation (CSE) is a combustion model based on using
conditional averages. In contrast to most commonly used approaches, CSE can model any
turbulent flame regime in any configuration in a relatively simple mathematical form. Thus,
CSE is a good candidate for MILD combustion problems. The present study represents
the first time that MILD combustion has been investigated using the CSE approach.

The proposed research focuses on the development of a combustion model based on the
principles of the CSE method that can accurately model MILD combustion problems. The
objectives of the proposed research can be summarized as follows:

1. Investigation of the CSE combustion model for turbulent non-premixed combustion

2. Development of CSE for MILD combustion problems

3. Implementation of CSE for MILD combustion problems in RANS and LES

4. Comparison of CSE predictions to experimental and previous numerical results for
well documented MILD combustion flames

The purpose of the proposed research is to obtain predictions for temperature, species
concentrations, velocity and flame characteristics such as flame length and lift-off height.
The results will be compared to previous numerical work and experimental results to
ensure the predictions are accurate. Further, the benefits and limitations of using the
CSE to model these types of combustions problems will be determined. The proposed
research is expected to make a significant contribution to the turbulent combustion field
as CSE has never been applied to MILD combustion. This developed model can then
be used in the design of high efficiency low emission furnaces and Homogenous Charge
Compression-Ignition (HCCI) engines [9].

1.3 Overview of the study

In Chapter 2, background on turbulent combustion modelling and MILD combustion is
provided. The governing equations that describe fluid behavior are described and the
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different approaches of simulating turbulence are presented. Next, an overview of the com-
monly used turbulent combustion models and a description of MILD combustion are given.

Chapter 3 outlines the derivation of CSE for non-premixed combustion and inversion
process used in CSE. Numerical simulations of a confined non-premixed methane flame
are investigated using the RANS approach for turbulence modelling and CSE is applied to
provide closure for the chemical source term. The effects of different CSE parameters are
investigated and the CSE predictions are compared with available experimental results.

In Chapter 4, the CSE integral inversion for the combustion problem outlined in Chap-
ter 3 is investigated using a Bayesian framework. Different regularization methods, are
compared and credible intervals are calculated to determine the uncertainty in the re-
covered solution. The origins of the perturbations in the data is investigated and their
magnitude quantified.

Chapter 5 describes the CSE simulations of a semi-industrial MILD furnace using a
non-premixed CSE formulation. This CSE formulation accounts for the large radiative
heat loss experienced in this furnace by including the conditional enthalpy in the tabu-
lated chemistry. The CSE predictions are compared to detailed experimental temperature
and species profiles, including NOx concentrations.

In Chapter 6, a multi-stream CSE formulation is developed to model the three-stream
MILD Delft Jet-in-Hot-Coflow (DJHC) flames. A detailed description of this new CSE for-
mulation is given and numerical simulations are performed in the RANS framework. The
ability of this CSE formulation to model the DJHC flames is investigated by comparing the
numerical predictions to available experimental data for velocity, turbulent kinetic energy
and temperature.

In Chapter 7, the multi-stream CSE formulation outlined in Chapter 6 is extended to
the LES framework for the DJHC flames, representing the first time a doubly conditioned
CSE approach has been extended to the LES framework. The time dependent nature of
the DJHC flames lift-off height and the ignition kernel formation mechanism are predicted
using CSE. These predictions along with velocity, temperature and turbulent fluctuations
of velocity and temperature are compared to available experimental data.

1.4 Author’s current contributions

It is acknowledged that parts of the content presented in Chapter 3-7 are published in the
following articles:

• J.W. Labahn, and C.B. Devaud. Large Eddy Simulations (LES) including Condi-
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Chapter 2

Background

This chapter provides a brief review of background information required for turbulent com-
bustion modeling. This chapter begins with a review of the governing equations that are
used to describe a fluid. An overview of the RANS approach and the details on two RANS
turbulent models, the standard k − ε and Re-Normalization Group (RNG) k-ε turbulent
models are then presented. This is followed by a review of the principles of the LES
approach and details on the Smagorinsky model. A description of the Direct Numerical
Simulation (DNS) is then provided. A review of common non-premixed turbulent combus-
tion modelling methods are also presented. This chapter finishes with details on previous
simulations of MILD combustion.

2.1 Governing equations

The first governing equation that describes any fluid flow is conservation of mass. Conser-
vation of mass, also known as the continuity equation, states that mass cannot be created
or destroyed and is written as

∂ρ

∂t
+

∂

∂xi
(ρui) = 0. (2.1)

In Eq. 2.1, ρ is the density, u the velocity and i the index representing the three spa-
tial coordinates, i = 1, 2, 3. The second governing equation is the conservation of linear
momentum given by

∂(ρuj)

∂t
+

∂

∂xi
(ρuiuj) = − ∂p

∂xj
+
∂τij
∂xi

+Bj, (2.2)
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where p is the pressure, the second term on the Right Hand Side (RHS) the viscous stress
tensor and the last term on the RHS represents any body forces acting on the fluid, such
as gravity. For a multi-species fluid this term can be expanded as

Bj = ρ

N∑
k=1

Ykfk,j, (2.3)

where fk,j is the body force acting on species k in the j-th direction, N is the number of
different species in the fluid and Yk the mass fraction of species k. For a Newtonian fluid
the viscous stress tensor is defined as

τij = −2

3
µ
∂uk
∂xk

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.4)

where µ is the dynamic viscosity and δij is the Kronecker delta. For a multi-species fluid
the conservation of species for species k is given by

∂(ρYk)

∂t
+

∂

∂xi
(ρuiYk) = −∂(jk,i)

∂xi
+ ω̇k for k = 1, N. (2.5)

In Eq. 2.5, jk,i is the diffusive flux of species k, and ω̇k the reaction rate of species k. To
satisfy conservation of mass the sum of all species mass fractions must always equal one.

The third and final governing equation of a fluid is the energy equation. Many different
formulations of the energy equations have been defined based on the total enthalpy, sensible
enthalpy, temperature and internal energy. In combustion modelling, the energy equation
based on the total enthalpy is often selected. The total enthalpy of species k is defined as
the sum of the sensible enthalpy and the enthalpy of formation and calculated as

hk =

∫ T

T0

cpkdT + ∆h0
f,k, (2.6)

where the first term on the RHS represents the sensible enthalpy, cpk the heat capacity of
species k and ∆h0

f,k the heat of formation of species k at reference temperature T0. The
total enthalpy of the mixture is then calculated as the mass-weighted sum of the total
enthalpy for each species:

h =
N∑
k=1

hkYk =

∫ T

T0

cpkYkdT +
N∑
k=1

∆h0
f,kYk. (2.7)

The heat capacity of the fluid is calculated using the same principle, such that

cp =
N∑
k=1

cpkYk. (2.8)

9



The energy equation, based on the total enthalpy, can then be obtained by solving

∂(ρh)

∂t
+

∂

∂xi
(ρuih) =

∂p

∂t
+ ui

∂p

∂xi
+

∂

∂xi
(uiτij)−

∂qi
∂xi

+ Q̇r + uiBi, (2.9)

where the second term on the RHS is the work due by pressure, the third term represents
a source term due to friction and the final term is the work done by volume forces. The
energy flux, qi is calculated as

qi = −λ ∂T
∂xi

+ ρ

N∑
k=1

hkjk, (2.10)

λ being the thermal conductivity of the mixture and jk the diffusive heat flux. The diffusive
heat flux can be calculated using Fick’s first law,

jk = −ρDk
∂Yk
∂xi

. (2.11)

where Dk is the diffusivity of species k.

2.2 Turbulent modelling approaches

2.2.1 Reynolds Averaged Navier-Stokes (RANS)

In RANS, the Navier-Stokes equations are averaged to obtain the mean values of the
turbulent flow. The averaging process results in unclosed terms which require closure. Due
to the large density variations encountered in combustion it is convenient to use density-
weighted averages or Favre-averaged quantities. The Favre-averaged quantities are defined
as

φ̃ =
ρφ

ρ̄
, (2.12)

where φ is any quantity of interest and fluctuations of the Favre-averaged quantity is
defined as

φ′′ = φ− φ̃. (2.13)
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It is also important to note that when using Favre-averaged quantities the following rela-
tionship holds

ρφ′′ = 0, (2.14)

but unlike Reynolds averaging

φ′′ 6= 0. (2.15)

The governing transport equations, neglecting body forces, for RANS are
Conservation of Mass (Continuity)

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0, (2.16)

Conservation of Momentum

∂ρũi
∂t

+
∂

∂xi
(ρũiũi) +

∂p

∂xj
=

∂

∂xi

(
τ ij − ρũ

′′
i u

′′
j

)
, (2.17)

Conservation of Species

∂ρỸk
∂t

+
∂

∂xi
(ρũiỸk) = ω̇k −

∂

∂xi

(
ρu

′′
i Y

′′
k

)
+

∂

∂xi
ρDk

∂Yk
∂xi

, (2.18)

Conservation of Energy

∂ρh̃t
∂t

+
∂

∂xi
(ρũih̃t) +

∂p

∂xi
=

∂

∂xi

(
λ
∂T

∂Xi

− ρũ′′
i h

′′
t

)
+ τij

∂ui
∂xj

+ Q̇r. (2.19)

The unclosed terms in the governing transport equations are modelled using different

methods. For the species and energy transport equation the unclosed terms, ρũ
′′
i Y

′′
k and

ρũ
′′
i h

′′
t , are often closed using a gradient assumption. Using the gradient assumption these

terms are modelled as

ρũ
′′
i Y

′′
k = − µt

Sckt

∂Ỹk
∂xk

and ρũ
′′
i h

′′
t = − µt

Prkt

∂h̃t
∂xk

, (2.20)
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where µt is the turbulent viscosity calculated by the turbulence model, Prkt the turbulent
Prandtl number and Sckt the turbulent Schmidt number for species k. For turbulent

combustion the laminar diffusion flux, λ ∂T
∂Xi

, and the final term in Equation 2.18 are often
omitted using the assumption that at high Reynolds numbers these terms are negligible.
The purpose of turbulent combustion models is to calculate the mean chemical source term,
ω̇k, in Equation 2.18.

Various turbulence models have been developed to close the Reynolds stresses, ũ
′′
i u

′′
j , which

can broadly be classified into four categories: one equation models, two equation models,
algebraic models and Reynolds Stress models (RSM) [10, 11]. In RANS modelling the most
common approach to close the Reynolds stresses are two equation models such as the k-ε
[12] and Re-Normalization Group (RNG) k-ε [10]. These two equation models are based
on the eddy viscosity concept and the Reynolds stresses are calculated as

ρũ′′i u
′′
j = −µt

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3
δij
∂ũk
∂xk

)
+

2

3
ρδij k̃, (2.21)

where k̃ is turbulent kinetic energy defined as

k̃ =
1

2

3∑
k=1

ũ′′ku
′′
k. (2.22)

Turbulence models in RANS

Various turbulence models have been developed to close the Reynolds stresses. For the
current research only the k-ε [12] and Re-Normalization Group (RNG) k-ε [10] turbulence
models are considered and are chosen as they are commonly used in turbulent combustion.
A brief review of these two models is presented. The k − ε model [12] is one of the most
commonly used turbulence model. The transport equations used for the k − ε model are
given by

ρ̄
∂k̃

∂t
+ ρ̄ũi

∂k̃

∂xi
=

∂

∂xi

[(
µ+

µt
σk

) ∂k̃
∂xi

]
+ ρ̄Pk − ρ̄ε̃, (2.23)

and

ρ̄
∂ε̃

∂t
+ ρ̄ũi

∂ε̃

∂xi
=

∂

∂xi

[(
µ+

µt
σε

) ∂ε̃
∂xi

]
+ Cε1

ε̃

k̃
Pk − Cε2ρ̄

ε̃2

k̃
, (2.24)
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where

µt = ρ̄Cµ
k̃2

ε̃
, (2.25)

with Cε1 = 1.44, Cε2 = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3 [12]. The source term Pk is cal-
culated as

Pk = −ρ̄ũ′′
i u

′′
j

∂ũi
∂xj

. (2.26)

One reason for the k − ε model’s popularity is that its deficiencies are well known as are
the modifications to the standard k − ε model to correct these deficiencies. For example,
it is well-known that the standard k − ε model over predicts the spreading rate in round
jets [13, 14]. There are various methods for correcting this behavior. One common method
is to modify the value of Cε1. Dally et al.[15] have shown that a Cε1 value of 1.6 better
predicts spreading rates in non-reacting jets. It has also been shown that this correction
can be applied to non-premixed jet flow combustion [16, 17].

In the RNG k − ε turbulence model, a random forcing function is introduced to the
Navier-Stokes equations to simulate the effects of small-scale turbulence. This is accom-
plished by removing the effects of the small scales of motion from the Navier-Stokes equa-
tions and expressing them in terms of large scaled motion and modified viscosity [10]. The
transport equations used for the RNG k − ε model [18] are given by

ρ̄
∂ε̃

∂t
+ ρ̄ũi

∂ε̃

∂xi
=

∂

∂xi

[(
µ+

µt
σε

) ∂ε̃
∂xi

]
+ C∗ε1

ε̃

k̃
Pk − Cε2ρ̄

ε̃2

k̃
, (2.27)

where

C∗ε1 = Cε1 −
η
(

1− η
η0

)
1 + βη3

, η =
Sk̃

ε̃
, S = (2SijSij)

1
2 , (2.28)

with Sij being the mean strain rate component and the transport equation for k and
turbulent viscosity determined using the same method as in the standard k − ε model.

The constants in the RNG k − ε model [18] are given by:

Cµ = 0.0845, σk = 0.7194, σε = 0.7194, (2.29)

Cε1 = 1.42, Cε2 = 1.68, η0 = 4.38 (2.30)

with β = 0.012 derived from experimental results.
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2.2.2 Large Eddy Simulation (LES)

Large Eddy Simulation is more computationally expensive than RANS, but has several
advantages. In LES, the large scale motion of the fluid is directly computed, while the
smaller scale motion is modelled. Thus, LES simulations are able to accurately simulate
both the large scale motion and mixing field better than RANS simulations. In addition,
the computational cost of LES is significantly lower than for DNS simulations [11]. This
combination makes LES very attractive to industrial simulations. Unlike the RANS ap-
proach, which uses time averaging to obtain the governing transport equations, LES uses
a spatial filtering operation to separate the larger and smaller eddies.

The first step in the LES approach is the selection of a filtering function and a cut-off
width. The purpose of the cut-off width is to determine which length scales are mod-
elled and which are solved directly. Next, the filtering operation is used to decompose the
velocity,

U(x, t) = U(x, t) + u
′
(x, t), (2.31)

where U(x, t) is the filtered velocity component, which represents the fluid motion of the
large eddies, and u

′
(x, t) is the residual velocity component. The filtered velocity is ob-

tained using [19],

U(~x, t) =

∫
V

U(~x, t)G(~x− ~x′) d~x′. (2.32)

In Eq. 2.32 G(~x) is a spatial low-pass filter function at location ~x. Various filtering
functions can be used, such as the top hat filter or Gaussian filter defined as:

Top hat filter

G(~x− ~x′) =

{
1
∆

if |~x− ~x′| ≤ ∆/2

0 otherwise
(2.33)

Gaussian filter

G(~x− ~x′) =

(
6

π∆2

)1/2

exp

(
−6(~x− ~x′)2

∆2

)
(2.34)

where ∆ is the filter size. Following the decomposition of the velocity, the filtered Navier
Stokes equations are derived by substituting Eq. 2.31 into the Navier-Stokes equations,
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resulting in the following filtered governing equations:
Conservation of Mass (Continuity)

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0 (2.35)

Conservation of Linear Momentum

∂ρũi
∂t

+
∂

∂xi
(ρũiũj) +

∂p

∂xj
=

∂

∂xi
[τ ij − ρ (ũiuj − ũiũj)] (2.36)

Conservation of Species

∂ρ̄Ỹk
∂t

+
∂(ρ̄ũiỸk)

∂xi
=

∂

∂xi

(
(D +Dt)

∂Ỹk
∂xi

)
+ ¯̇ωk (2.37)

Conservation of Energy

∂(ρh̃)

∂t
+
∂(ρũih̃)

∂xi
=

∂

∂xi

(
ρ̄(α + αt)

∂h̃

∂xi

)
+
Dp

Dt
+ Q̇r (2.38)

where Dt is the turbulent molecular diffusivity, α and αt are the molecular and turbulent
thermal diffusivity and Dp

Dt
the total derivative of the filtered pressure.

In the conservation of linear momentum, τ ij is the viscous stress tensor given by

τ ij = −µρũ′′i u′′j = −µt
(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3
δij
∂ũk
∂xk

)
. (2.39)

Similar to the RANS approach, the resulting filtered Navier Stokes equations contain an
unclosed term, called the residual-stress tensor (or subgrid-scale (SGS) stress tensor) which
is defined as σij = ρ (ũiuj − ũiũj). Closure for the residual-stress tensor is given by

σij −
1

3
δijσkk = −2ρνtSGS

(
S̃ij −

1

3
δijS̃kk

)
. (2.40)

In Eq. 2.40, νtSGS
is the turbulent SGS viscosity, σkk the isotropic contribution of the

Reynolds stresses and S̃ij the filtered rate-of-strain tensor defined as

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (2.41)
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Various modelling techniques have been developed to provide closure for the turbulent SGS
viscosity. The Smagorinksy SGS model is the simplest of these models and is based the
eddy-viscosity model [10, 11]. In the Smagorinksy SGS model the turbulent SGS viscosity
is calculated as

νtSGS
= (CS∆)2

√
(2SijSij), (2.42)

where Cs is the Smagorinksy coefficient. This constant is either set as a fixed value or
calculated dynamically [20].

2.2.3 Direct Numerical Simulation (DNS)

In the Direct Numerical Simulation (DNS) approach the governing equations are solved
without modelling. Thus, in DNS the grid spacing must be smaller than the smallest
length scale of the smallest eddy. The main advantage of DNS is that no assumptions are
made, thus eliminating modelling error. However, the computational requirements for a
DNS simulation are often prohibitive. For homogeneous turbulence, using pseudo-spectral
methods, the maximum grid spacing in DNS [11] can be calculated using

∆x =
π

1.5
η, (2.43)

where η is the Kolmogorov length scale defined as

η ≡ (ν3/ε)1/4. (2.44)

In Eq. 2.44, ε is the dissipation rate of the turbulent kinetic energy and ν the kinematic
viscosity and the minimal size of the computational domain can be calculated using

κ0L11 =
π

4
, (2.45)

where κ0 is the lowest wave number and L11 is the integral length scale. Using this

information the number of computational cells required is proportional to Re
9
2
λ [11] with

Reλ being the Taylor-scale Reynolds number based on the transverse Taylor length scale
(λg). Reλ is calculated using the turbulent velocity fluctuations (u′) such that

Reλ =
u′λg
ν
. (2.46)

For a typical simulation, a Courant number of approximately 0.05 is imposed and the
simulation time is approximately four times the turbulence time scale, τ = k

ε
. Thus, the
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total number of time steps required is

M =
120

π

L

η
≈ 9.2Re

3
2
λ . (2.47)

Further, the total number of floating-point operations can be calculated for a typical sim-
ulation and is found to be proportional to Re6

λ [11]. If a detailed chemical mechanism is
included for a combustion problem the number of scalars and reactions that need to be
solved can be on the order of tens to hundreds. As a result, DNS for turbulent combustion
is limited to simplified geometry with homogeneous isotropic turbulence or mixing layers
[21, 22] and these results are used to develop other combustion models.

2.3 Non-premixed turbulent combustion models

In turbulent combustion modeling the mean or filtered chemical source term is unclosed as a
result of the averaging or filtering used in RANS or LES turbulence modeing. The purpose
of turbulent combustion modelling is to provide closure to the mean or filtered chemical
source term. Well-known combustion models fall into several catagories: infinitely fast
chemistry models; Laminar Flamelet models [23]; Conditional Moment Closure (CMC) [24];
or Probability Density Function (PDF) models. In non-premixed combustion the mixing
of the fuel and oxidizer and combustion occur simultaneously. Thus, in non-premixed
combustion with fast chemistry, mixing is the rate limiting step and it is convenient to
define a conserved scalar, mixture fraction, which models the mixing between fuel and
oxidizer. This section presents a brief review of the mixture fraction and well-known
combustion models.

2.3.1 Mixture fraction

In non-premixed combustion, the combustion process is controlled by the mixing of the fuel
and the oxidizer. As a result, it is convenient to create a scalar, called mixture fraction, Z,
which is a representative of this mixing. The mixture fraction is defined to have a value of
1 in the pure fuel stream and 0 in the pure oxidizer stream. Between these two limits the
mixture fraction is defined following Bilger [25] as

Z =
Yi − Yi,O
Yi,F − Yi,O

, (2.48)
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where Yi is the mass fraction of element i in the local mixture, and Yi,O and Yi,F is the mass
fraction of element i in the oxidizer and fuel streams, respectively. The mixture fraction is
a conserved scalar meaning there is no source term in its governing transport equation.

If the fast chemistry assumption is applied, all scalar values in turbulent non-premixed
combustion are functions of the mixture fraction only [26]. The resulting Favre-averaged
transport equation for mixture fraction is given by

∂(ρZ̃)

∂t
+

∂

∂xi
(ρũiZ̃) =

∂

∂xi

(
ρD

∂Z

∂xi
− ρũ′′

i Z
′′

)
. (2.49)

Similarly, the Favre-averaged transport equations for mixture fraction variance is

∂(ρZ̃ ′′2)

∂t
+

∂

∂xi
(ρũiZ̃

′′2) = − ∂

∂xi

(
ρu

′′
i Z

′′2
)

︸ ︷︷ ︸
turbulent transport

+
∂

∂xi

(
ρD

∂Z ′′2

∂xi

)
︸ ︷︷ ︸

molecular diffusion

(2.50)

− 2ρũ
′′
i Z

′′︸ ︷︷ ︸
production

− ρχ̃︸︷︷︸
dissipation

. (2.51)

Closure for the turbulent flux, ũ
′′
i Z

′′ is provided using the gradient assumption,

ũ
′′
i Z

′′ = −Dt
∂Z̃

∂xi
, (2.52)

and the mean scalar dissipation rate is defined as

χ̃ = 2D

(
∂Z̃

∂xi

∂Z̃

∂xi

)
. (2.53)

A model for the scalar dissipation rate can be determined by considering its dimension,
inverse time. Thus, the scalar dissipation rate is the inverse of the diffusion time scale,
or diffusivity in mixture fraction space. One model for the scalar dissipation rate derived
using this method is

χ̃ = cχ
ε̃

k̃
Z̃ ′′2 , (2.54)

where cχ is a constant often taken as 2.0 [23].
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2.3.2 Infinitely fast chemistry

In non-premixed turbulent combustion, the limiting time scale for the chemistry process
is the time required for convection and diffusion. This occurs because the chemical time
scale that characterizes the reactions is much smaller than the time scale of convection and
diffusion. As a result, in many non-premixed combustion cases, it is reasonable to assume
infinitely fast combustion for the study of global properties [27]. Using this assumption it
is possible to create a combustion model that relates a conserved scalar to reactive scalars.

A common combustion model that utilizes the infinitely fast chemistry assumption is
the Eddy Dissipation Concept (EDC) model developed by Magnussen [28]. The purpose
of the EDC model is to provide closure for the mean chemical source term. For the EDC
model, closure of the mean reaction rate is given by

¯̇ω1 = Aρ̄
ε

k
min

(
Ỹ1,

Ỹ2

S
,B

Ỹ3

1 + S

)
, (2.55)

where A and B are adjustable parameters, subscripts 1, 2, and 3 denote the fuel, oxidizer
and products respectively, and S represents the oxygen-fuel stoichiometric mass ratio [8]. A
similar expression can be found for LES using the filtered quantities. The EDC model has
the advantage of including finite rate kinetics at lower computational cost when compared
to other combustion models. However, this computational saving comes at a price. First,
the parameters A and B are not universal and require adjustments for each flame [8]. As
a result, this model requires validation for each flow. Second, the model presents a less
accurate description of turbulent temperature fluctuation [29].

Another limitation of the EDC model is that it cannot handle finite-rate chemistry in
its base form. This limitation can be avoided by including information on the chemical
reaction. This is accomplished by replacing the mixing timescale, k/ε, with k/ε + τchem,
where τchem is some measure of the chemical time scale. This modification has allowed the
EDC model to be considered for practical calculations for diesel combustion with detailed
chemistry [8]. However, the modified equation still requires A and B to be determined for
each flame.

2.3.3 Laminar Flamelet model

This method was independently derived by Peters [30] and Kuznetsov [31]. The Laminar
Flamelet model assumes that turbulent diffusion flames consist of an ensemble of stretched
laminar flamelets [32]. For non-premixed combustion the Favre-averaged mass fraction
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species k is calculated using

Ỹk(x, t) =

∫ 1

0

∫ ∞
0

Yk(Z, χst, t)P̃ (Z, χst, x, t)dχstdZ, (2.56)

where χst is the scalar dissipation at the flame surface, P̃ (Z, χst, x, t) is a presumed-PDF
and Yk(Z, χst, t) is an ensemble of laminar flamelets at different strain rates and is tabulated
prior to the CFD calculations. The limitation of the Laminar Flamelet model is that it is
limited to the flamelet regime. In the flamelet regime the integrity of the flame structure
is preserved and the turbulent eddies do not strongly distort the structure of the flame.
Thus, in the flamelet regime the local structure of the flame sheet is the same as a laminar
flame to a very good approximation [8].

2.3.4 Conditional Moment Closure (CMC)

CMC was first proposed independently by Bilger [33] and Kilmenko [34]. In non-premixed
combustion, the conditioning variable is often chosen as the mixture fraction. Thus, in
CMC, the value for the mean scalar is found using,

f̃ =

∫ 1

0

〈f |η〉P̃ (η)dη, (2.57)

where 〈f |η〉 is the conditional average of f̃ determined by solving the CMC equations, η

the sample space variable of Z, and P̃ (η) a presumed PDF. For brevity, the CMC equations
are not given, but can be found in [33, 34].

The main advantage of using conditional averages is that the fluctuations about the
conditional average are much smaller than their unconditioned counterparts. In CMC, the
transport equations are solved in mixture fraction space resulting in unclosed conditional
quantities, such as conditional velocity, 〈ui|η〉, conditional turbulent flux, 〈u′′

i Y
′′

k |η〉 and
conditional chemical source term 〈ωk|η〉. In first order CMC the fluctuations about the
conditional mean are assumed to be negligible. Closure for the chemical source term is
obtained using

〈ω̇k|η〉 ' ω̇(〈Yk|η〉, 〈T |η〉, 〈ρ|η〉). (2.58)

Thus, the conditional chemical source term is a function of conditional scalars which can
be determined. The assumption that the conditional fluctuations can be neglected, can
be avoided by using the second-order CMC approach [8]. Additionally, CMC has been
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shown to perform well for various non-premixed flames [16, 35] and MILD burners [36].
However, since the CMC equations contain unclosed terms and an additional dimension
for each conditioning variable introduced, the computational cost of the CMC approach
is significantly higher than the laminar flamelet approach. The advantage of CMC over
flamelet models is that it is not restricted to the flamelet regime.

2.3.5 PDF methods

The joint PDF transport equation model was first proposed by Pope [37]. In this method,
a transport equation for the joint PDF of velocity, viscous dissipation and reaction scalars
is solved. This transport equation does not contain any information on the mixing time
resulting in an unclosed term that requires modelling [23]. Thus, closure of the mixing
term is required. The main advantage of the joint PDF transport equation model is the
chemical source term appears in closed form and no closure model is required. Further,
this model does not make any fast chemistry assumptions, is valid for premixed and non-
premixed combustion and currently is one of the most complete descriptions of turbulent
reaction flows [8]. It is possible to provide closure to the mixing term by including scalar
gradients in the transport equation at the cost of higher dimensionality and computational
cost. Pope developed the Monte-Carlo simulation technique, using Lagrangian methods
[38], to reduce the computational cost. In the Monte-Carlo method, the fluid is seeded
with virtual particles. By using a random walk method the evolution of these particles
are modelled and represent the macromixing. Using stochastic or deterministic models
including micromixing the scalar concentration are then solved. Similar to other turbulent
combustion models the predictions depend on the quality of the closure models. The dis-
advantages of PDF methods are that they are computationally expensive, mathematically
complex and providing closure for the mixing term is not simple.

2.3.6 Conditional Source-term Estimation

Conditional Source-term Estimation (CSE) is initially proposed by Bushe and Steiner
[39] and is based on the same ideas used to derive CMC. Similar to the CMC method
presented in Section 2.3.4, in non-premixed CSE, first order closure is applied and the
mixture fraction is selected to be the conditioning variable. The major difference between
the CMC and CSE approaches lies in how the conditional averages are found. Unlike
CMC, which determines the conditional averages by solving transport equations, CSE
obtains conditional averages via an integral inversion. Further detail on the derivation and
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implementation is given in Chapter 3. The concept has been evaluated using a − priori
tests including DNS results [39, 40, 41]. CSE has been used for a few cases related to
autoignition [42, 43, 44], premixed combustion [45, 46, 47], non-premixed combustion [48,
49, 50, 51, 52] and partially premixed combustion [53]. The formulation has significantly
evolved from using a collection of flamelet libraries [42] to including chemistry manifold
tabulations [50] with different regularization techniques to invert the necessary integrals.
Some numerical and modelling aspects still need to be clarified and investigated. For
example, CSE assumes spatial homogeneity for the conditional averages within a given
ensemble, corresponding to a CSE domain. The influence of the number and size of CSE
domains on the numerical predictions has not been thoroughly examined in previously
published CSE studies. Further, CSE offers high potential to be extended more easily to
partially-premixed combustion and multi fuel problems.

2.4 Moderate and Intense Low Oxygen Dilution (MILD)

combustion

MILD Combustion belongs to high-temperature combustion technologies (HiCOT), which
encompasses any technologies that use high temperature reactants. MILD combustion has
been investigated world-wide as a method for increasing efficiency and reducing emissions.
In this type of combustion a high temperature oxidizer stream is present and large quanti-
ties of flue gases are mixed with the fuel stream before ignition. This can be accomplished
using a secondary burner to produce a high temperature, low oxygen, oxidizer stream
[54, 55, 56] or using recirculation within the furnace to dilute the oxygen concentration in
the reaction zone while having a high temperature and concentration of flue gases in the
reaction zone [57]. In Japan, MILD combustion was called excess enthalpy combustion [58],
whereas in Germany and the United States it has been called flameless oxidation [59, 60]
and low-NOx injection, respectively. A schematic for MILD combustion is presented in
Figure 2.1.

As can be seen in Fig. 2.1, in both High Temperature Combustion and MILD combustion
the temperature of the reactant is above the self-ignition temperature, TSi. For the pro-
cess to be considered MILD combustion an additional constraint, the temperature increase
within the combustion process, ∆T , is lower than TSi must also be met. In comparison,
feedback combustion has low reactant temperatures and large temperature increases. It
is important to note that unlike feedback and high temperature combustion, MILD com-
bustion is not able to be sustained without the preheating of the reactants [6]. In both

22



Figure 2.1: Inlet temperature (Tin)-maximum temperature increase (∆T) locus of differ-
ent combustion modes for a methane/oxygen/nitrogen, well stirred reactor (WSR) mixture
reproduced from [6]. TSi is the self-ignition temperature

feedback and high temperature combustion, the heat released by the combustion process
is sufficient to maintain the process even if the preheating of the reactants is removed.

Oberlack et al [61] and Peters [62] provide a second definition of MILD combustion for
a well stirred reactor based on the behavior of the ignition and extinction points. They
define MILD combustion as the conditions where a monotonic shift from unburnt to burnt
is observed and both the ignition and extinction points no longer exist.

2.5 Previous simulations of MILD combustion

The development of models for MILD combustion has mainly focused on the extension
of existing non-premixed models. Various combustion models such as the EDC, flamelet,
CMC and transported probability density function have been used with varying degrees of
success.

MILD combustion has been experimentally studied on laboratory and industrial scales.
For laboratory-scale burners, two different experimental data sets, the Delft-Jet-in-Hot-
Coflow (DJHC) [54, 55] and the Adelaide burner [56], have been used to evaluate the
performance of different combustion models simulating MILD combustion. De et al. [29]
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performed RANS simulations using an Eddy Dissipation Concept (EDC) model to sim-
ulate the DJHC flames. In this work the lift-off heights were underpredicted using the
EDC model and the temperatures were found to be significantly overestimated compared
to the experimental data. De et al. [29] found that improved prediction could be ob-
tained by tuning either the volume fraction constant or the time scale constant. In the
LES framework, Kulkarni and Polifke [9] modelled the DJHC burner using a transported
Probability Density Function (PDF) approach including stochastic fields with two mixture
fractions. Significant improvement in the predicted lift-off heights were obtained com-
pared to the RANS simulations, but the temperatures were overpredicted downstream of
the burner. Recently, Bhaya et al. [63] using different transported PDF models simulated
the DJHC flames. The ignition kernel formation mechanism and trend of decreasing lift-
off height with increasing jet Reynolds number were correctly reproduced. However, the
lift-off heights were underpredicted and the temperature was higher than the experimen-
tal data. Similar to the DJHC flames, the Adelaide burner has been studied extensively
using RANS and LES simulations. Conditional Moment Closure (CMC) has been used
to model to the Adelaide burner [36] using a single mixture fraction and modified PDF.
Good agreement with the experimental data was obtained, but NO concentrations were
underestimated. Christo and Dally [64] showed that single conserved scalar-based models
are unable to accurately model the Adelaide burner. In the LES framework, Ihme and See
[65] extended the flamelet/progress variable approach to model the Adelaide burner, by
including two mixture fractions. The inclusion of a second mixture fraction was found to
significantly improve the predictions and a second mixture fraction was required to accu-
rately model the variations present in the coflow. In addition, laboratory-scale furnaces
have been experimentally and numerically studied. Coelho and Peters [66] simulated the
furnace experimentally studied by Plessing et al. [67] using a Eulerian particle flamelet
model and obtained NO predictions in good agreement with the experimental data. For
larger scale furnaces, Kim et al. [68] compared different global reaction mechanisms for
a 2 m x 2 m x 6.25 m furnace using an EDC model. Mancini et al. [60] modelled the
same furnace using an Eddy-break-up model, an EDC model and a PDF/mixture fraction
model and found all predictions were of good quality

2.6 Summary

This section presents relevant background required for the proposed research. Informa-
tion on turbulence modelling and combustion modelling is presented. MILD combustion
modelling is an extension of traditional non-premixed combustion modelling. Various com-
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bustion models such as CMC, Flamelet and EDC have been used to model mild combustion
problems. The Flamelet model has been extended to include a second conserved condition-
ing scalar with promising results. However, the Flamelet model is limited to the flamelet
regime. The CMC method has also been extended to MILD combustion problems by
modifying the presumed PDF. However, determining the modified PDF is not necessarily
straightforward or simple. Further, extending CMC to include a second conserved condi-
tioning scalar results in more complicated transport equations for the conditional averages,
with additional unclosed terms which require closure.

CSE can be extended to include a second conserved conditioning scalar, but is simpler
than CMC as no transport equations are required for the conditional averages. Further,
CSE is not limited to the flamelet regime giving it an advantage over flamelet models.
CSE also been successful in modelling non-premixed flames [48, 49, 50, 51] which suggest
that this method could be promising for modelling MILD combustion problems. The first
step of developing a CSE combustion model is to test the CSE non-premixed combustion
model and determine the sensitivity to the inversion parameters. The following chapter de-
scribes the investigation of the CSE method for non-premixed combustion and a sensitivity
analysis of the inversion parameters.
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Chapter 3

CSE for turbulent non-premixed
combustion

The flame under consideration is the confined turbulent methane-air flame investigated
by Brookes and Moss [69] in atmospheric conditions. Although the experimental study
is focused on soot measurements at atmospheric and high pressures, it provides some
experimental conditions and data useful for model comparison without considering soot
modelling. Methane is the hydrocarbon fuel producing the lowest soot amounts compared
to other hydrocarbons. For the atmospheric turbulent flame, Brookes and Moss [69] report
soot levels comparable to those found in laminar diffusion methane flames: the peak values
of soot volume fraction approximately range between 0.07 ppm and 0.16 ppm for heights
of 300 mm to 425 mm (425 mm, being the axial position where the peak temperature
reaches the centreline). Further, soot is only observed in the downstream region of the
flame after 300 mm. Thus, a lot of soot-free experimental measurements are available for
axial positions between the nozzle exit until 300 mm downstream of the fuel exit. Another
advantage related to the choice of methane for the fuel resides in the chemical kinetics
being better known as compared to other hydrocarbon fuels. The inflow conditions are well
specified in the experiments, the selected confined flame does not impinge on the enclosure
and the experimental set-up is axisymmetric resulting in a straightforward computational
domain and simple boundary conditions. Experimental data is available for mean mixture
fraction, temperature, soot volume fraction and spectral radiation intensity. Comparisons
with the mixture fraction can give a good indication of how well the turbulent mixing
field is predicted. The temperature is mostly affected by concentrations of the major
product species, carbon dioxide (CO2) and water (H2O). Thus, temperature comparisons
indirectly provide information on the accuracy of the CO2 and H2O predictions. Further,
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the same flame is also used for comparison in previous numerical studies including the
eddy dissipation model [70], the flamelet model [17] and CMC [16, 35]. The availability
of experimental data and previous modelling results will serve as a good foundation for
further comparison and analysis using the current CSE results. In the present work, soot
formation is not included and soot modelling is beyond the scope of the present study.
However, the radiative loss due to the main combustion product species H2O and CO2 is
included in the calculations.

To summarize, the objectives of the present chapter are

1. Assessment of the impact of the main numerical parameters in CSE such as the
number of CSE ensembles and the ensemble size used for inversion

2. Comparison of the CSE numerical predictions with available experimental data and
results from previous simulations for the selected flame.

3.1 CSE

3.1.1 Model formulation

Similar to the CMC approach, CSE uses conditional averages to determine the Favre-
averaged quantities in a turbulent reacting flow. In non-premixed combustion the condi-
tioning variable is commonly selected to be mixture fraction, Z. As a result, the condi-
tional average of any quantity, such as species concentration, enthalpy or temperature, at
a particular value of η, in mixture fraction space, is considered. In the present work, the
conditional fluctuations are assumed to be negligible leading to first order closure for the
conditional chemical source terms. This simplification is commonly used in CMC and has
been proven to be a reasonable assumption for attached jet flames far from extinction and
without ignition [24, 71, 72], corresponding to the selected experimental conditions [69].
Thus, the conditional chemical source term of any species k, 〈ω̇k|η〉, may be expressed as

〈ω̇k|η〉 ' ω̇(〈Yi|η〉, 〈T |η〉, 〈ρ|η〉), (3.1)

where 〈Yi|η〉 is the conditional mass fraction for species i, 〈T |η〉 the conditional temperature
and 〈ρ|η〉 the conditional density. However, in contrast to CMC, 〈Yi|η〉 and 〈T |η〉 needed
in Eq. 3.1, are not obtained by solving transport equations. Instead, only transport
equations for Favre-averaged species concentrations are included in the calculations (see
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Section 3.2.2). Thus, in CSE, the determination of the mean unconditional reaction rate
for each species, ω̇k, is the key step using

ω̇k(xj, t) = ρ̄

∫ 1

0

〈ω̇k|η〉
〈ρ|η〉

P̃ (η, xj, t)dη, (3.2)

where xj is the spatial coordinate, t the time and P̃ (η) the Favre-averaged PDF of mixture

fraction. In the present study, a presumed β-PDF distribution is used to model P̃ (η) [73].
The β-PDF is calculated using

βpdf (x, a, b) =
1

B(a, b)
xa−1(1− x)b−1, (3.3)

with a and b the parameters that define the shape of the PDF. B(a,b) is the β-function
calculated using

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, (3.4)

where Γ(x) is the gamma function. In Eq. 3.3, a and b are calculated as

a = x

(
x(1− x)

σ2
− 1

)
and b = (1− x)

(
x(1− x)

σ2
− 1

)
, (3.5)

where x is the mean value of x, and σ2 its variance. In order to calculate 〈ω̇k|η〉, the
conditional species mass fractions, 〈Yk|η〉, are determined from the unconditional Favre-

averaged values, Ỹk by inverting the following integral,

Ỹk(xj, t) =

∫ 1

0

〈Yk|η〉(η, xj, t)P̃ (η, xj, t)dη, (3.6)

where Ỹk and P̃ (η) are known quantities determined by a transport equation and the β-
function, respectively. Thus, in Eq. 3.6, the only unknown is 〈Yk|η〉. In the following
section, further detail is given for the inversion technique required in CSE.

3.1.2 Inversion method

Before inverting Eq. 3.6, some properties related to the conditional averages are considered.
The conditional averages are assumed to be homogeneous within a known ensemble of
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points. This assumption is based on the observation that conditional averages vary much
less in space than unconditional averages [24, 74], which is commonly used in CMC [75, 76].
Thus, for a given ensemble of points, Eq. 3.6 can be rewritten as

Ỹk(xj, t) =

∫ 1

0

〈Yk|η〉(η, t)P̃ (η, xj, t)dη. (3.7)

In practice, the ensemble of points corresponds to a subset of the computational grid. For
example, Salehi et al. [45] select one ensemble covering the entire computational domain
to simulate a premixed flame. In non-premixed turbulent combustion, the ensembles are
typically a set of planes defined in the axial direction [42, 50] making use of the weak radial
dependence of the conditional averages [24]. However, no rigorous sensitivity analysis
has been reported showing how the number of the ensembles could affect the simulation
predictions. This aspect will be investigated in Section 3.3.1.

Equation 3.7 is a Fredholm integral equation of the first kind. Using a numerical
quadrature for the left-hand side of Eq. 3.7, it can simply be written in general form as

A · ~α = ~b, (3.8)

where ~α is the vector including 〈Yk|η〉 at each ηm, m being the mixture fraction bin index,
~b is the vector containing Ỹk at each spatial position xj and A is the matrix of integrated
PDF over a mixture fraction interval, also called bin. It should be noted that A is a N×M
matrix, where N is the number of points (grid nodes) in a given ensemble and M is the
number of bins in mixture fraction space. In matrix notation, the values in A are given by

Ajm =

∫ η2

η1

P̃ (ηm, xj, t) dη, (3.9)

using j for the spatial coordinate index and η1 and η2 are the lower and upper bounds of
the mixture fraction bin, respectively. The solution of Eq. 3.8 is ill-posed, which means
the solution of Eq. 3.8 is sensitive to any small perturbations of the system [77]. Thus, in
order to reach a smooth, stable and unique solution for ~α, a regularization method must
be implemented. A general review on regularization methods for Fredholm equation of the
first kind can be found in [77]. In the present work, Tikhonov regularization is adopted [78].
Other regularization methods exist and could also be applied, for example the Truncated
Singular Value Decomposition (TSVD) [79]. The Tikhonov technique has been shown
to provide a stable and unique solution in previous CSE studies [44, 45, 51]. Thus, this
appears to be a suitable regularization tool for the present investigation. The solution of
Eq. 3.8 is obtained using the following implementation based on the least-square technique

~α = arg min
{∥∥∥ A~α−~b

∥∥∥2

2
+λ2

∥∥∥ I(~α− ~α0)
∥∥∥2

2

}
, (3.10)
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where ||.||2 denotes the L2-norm of a vector, I is the identity matrix , ~α0 the solution from
the previous time step [42], and λ the regularization parameter. Various initial values of
~α0 have been tested [53] and the final solution does not depend on the initial value of ~α0.
The regularization parameter λ is calculated as

λ2 =
Tr(ATA)

Tr(I)
, (3.11)

where Tr is the trace of the matrix [80].
Finally the values for ~α are obtained using LU decomposition to solve Eq. 3.8. For

the solutions to be realistic, ~α, the vector including the conditional species mass fractions,
must contain only positive values since negative terms have no physical meaning. However,
the present regularization method does not impose the positivity condition. In the current
calculations, very small negative values are observed for very rich and lean conditions.
In these regions, no significant chemical activity is expected and the erroneous values
would have a negligible effect on the overall turbulent combustion modelling. In order to
circumvent this nonphysical behaviour, any negative values for ~α are set to zero. Bushe
and Steiner also note the same issue of negative values for ~α after regularization in their
work and as a more general strategy, suggest removing any negative value and then apply a
re-scaling to ~α [40]. Thus, a rescaling is also implemented following the method described
in [40] to find the scaling factor. The final values of ~α noted by ~αfinal, are obtained by

~αfinal = ~α

∑
j Ỹk

∫ 1

0
〈Yk|η〉P̃ (η)dη∑

j

( ∫ 1

0
〈Yk|η〉P̃ (η)dη

)2 . (3.12)

The scaling factor, s, is monitored during the simulations and is shown to be between
0.90 ≤ s ≤ 1.10, confirming the little impact of the scaling process.

To circumvent the problem related to the negative physical values, a different regu-
larization method could be implemented. For example, Salehi et al. [45] use the same
Tikhonov method but with a different expression for λ and TSVD [79] and obtain negligi-
ble differences in the results between the two methods.

It would still remain extremely computationally expensive to invert Eq. 3.7 for each
species present in a detailed chemical mechanism such as GRI 2.11 including 49 species [81].
Instead, the chemistry is tabulated as a function of two variables, 〈YCO2|η〉 and 〈YH2O|η〉.
Further detail is presented in Section 3.1.3. Thus, the inversion process is only required
for two species mass fractions, 〈YCO2|η〉 and 〈YH2O|η〉. Once 〈YCO2|η〉 and 〈YH2O|η〉 are
determined, the conditional reaction rates for each species 〈ω̇k|η〉 is found from the chem-
istry tables. Finally, the unconditional reaction rates for each species k is determined by
integrating the conditional reaction rates with the PDF using Eq. 3.2.
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3.1.3 Chemistry tabulation

The chemical reaction rates are tabulated prior to the simulation using the Trajectory
Generated Low Dimension Manifold (TGLDM) approach [82]. In the present study, the
TGLDM method is based on the technique developed by Huang and Bushe [43] and Pope
and Maas [82]. The principle is to start from a detailed chemistry mechanism that is re-
duced to low-dimensional manifolds in composition space. The resulting TGLDM manifold
for each mixture fraction, η, is stored in tables using two variables, YCO2 and YH2O selected
due to their long formation times [43, 50]. The boundary of the manifold is calculated us-
ing conservation of elements, by determining the maximum and minimum values of YH2O

for given values of YCO2 based on a constant amount of initial fuel. The trajectories are
solved using the governing Ordinary Differential Equation (ODE) equations starting at
each boundary point using a stiff ODE system solver [83],

ρ
∂Yk
∂t

= ẇk. (3.13)

The calculations stop when chemical equilibrium is reached. Once the trajectories for
TGLDM are calculated, redundant points are removed in order to reduce the size of the
tables. Finally, in order to allow for easier location on the manifold, Delaunay triangula-
tion is applied [84].

0 0.055 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1

η

Figure 3.1: Mixture fraction sampling locations

In the present work, 50 TGLDM manifolds are tabulated for 50 different values of η
ranging from 0.00286 to 0.99, with a greater concentration of values around the stoichio-
metric mixture fraction (ηst = 0.055) as shown in Fig. 3.1. One TGDLM manifold is

31



presented in Fig. 3.2 for the stoichiometric mixture fraction value. The detailed mech-
anism used is the GRI-MECH 2.11 [81] for methane-air combustion including 49 species
with 277 reactions. To determine the conditional chemical source terms, two variables
are required, 〈YCO2 |η〉 and 〈YH2O|η〉, resulting in the inversion of two integral equations.
Once the 〈YCO2|η〉 and 〈YH2O|η〉 variables are calculated the conditional reaction rates are
determined for each value of η using Barycentric coordinates for interpolation [85].
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Figure 3.2: TGLDM with Delaunay triangulation for ηst = 0.055
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3.2 Computational details

3.2.1 Experimental conditions

The confined methane-air flame at atmospheric conditions experimentally characterized by
Brookes and Moss [69] is selected. The experimental setup consists of a cylindrical 4.07
mm diameter nozzle for the main fuel flow and an annular pilot nozzle with a width of
160 µ m surrounding the main nozzle. To prevent recirculation around the base of the
flame a flow-straightening diffuser, consisting of two circular perforated metal plates are
used. This provides a flat velocity for the coflowing air. A coflow of air is also present
with a mass flow rate of 708 g/min [69]. The flame is confined by a 155 mm Pyrex tube
and atmospheric air. The bulk velocity of the main fuel is 20.3 m/s, with a mass flow
rate of 10.3 g/min and an exit Reynolds number of 5000. The main fuel and coflow air
enter the combustion chamber at 290 K. The main fuel flow consists of pure methane. The
experimental error on the mean mixture fraction measurements is reported to be equal to
6%.

3.2.2 CFD calculations

Following the experimental setup, the computational domain is cylindrical with a radius of
77.5 mm and a total length of 1000 mm. The geometry is created as a wedge of a small angle
(θ =10◦) with one cell in the θ direction, creating a two dimensional simulation. The grid is
nonuniform with a high density of grid points located close to the nozzle and between 0 and
60 mm in the radial direction where the flame develops. Grid refinement is used at the wall
to properly model the effects of the boundary layer at the wall. The current grid consists
of 58,800 cells. The computational domain with the boundary conditions are shown in Fig.
3.3. Further refinements were made to the mesh and the present results are found to be
grid independent. The inlet boundary conditions consist of non-premixed fuel supplied at
20.3 m/s at the main nozzle and a coflow of air with a velocity of 0.514 m/s. Adiabatic and
no-slip wall conditions are applied to the walls and the outlet pressure is set to atmospheric.
The RANS flow and continuity equations are solved using a finite volume low-Mach number
pressure based approach using OpenFOAM [86]. Transport equations are solved for mass
(continuity), momentum, enthalpy, and the Favre-averaged mass fraction of the major
species (methane (CH4), oxygen (O2), H2O, CO2, carbon monoxide (CO), and hydrogen
(H2)).
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Figure 3.3: Computational grid (not to scale)

The transport equation for the Favre-averaged species mass fraction is given by,

∂ρ̄Ỹk
∂t

+
∂(ρ̄ũiỸk)

∂xi
=

∂

∂xi

( µt
Sct

∂Ỹk
∂xi

)
+ ¯̇ωk, (3.14)

where µt is the turbulent viscosity, Sct the turbulent Schmidt number and ¯̇ωk is the output
from the CSE routines using

¯̇ωk =

∫ 1

0

ω̇TGLDMk P̄ (η)dη, (3.15)

with ω̇TGLDM the conditional chemical source terms for species k, a function of 〈YCO2|η〉
and 〈YH2O|η〉 extracted from the TGLDM tables.

Transport equations for the mean mixture fraction Z̃ and variance Z̃ ′′2 are also solved
which are required to determine the presumed β PDF. A gradient assumption is used to
close the turbulent transport terms. A schematic of how the CSE code and CFD solver
are coupled is given in Fig. 3.4.
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Figure 3.4: CSE code structure.

In order to determine the sensitivity of the simulation to changes in the turbulent
intensity at the inlet, three simulations with different turbulent intensities ranging from
5 to 20% are tested. The mixture fraction profiles obtained from the simulation with 5%
turbulent intensity are in best agreement with experimental measurements near the nozzle.
Farther downstream the effect of the inlet turbulent intensity is negligible. As a result, the
inlet turbulent intensity is set to 5% for the remaining simulations.

In addition, two turbulent Schmidt numbers, 0.7 and 0.9 are tested. The value of 0.7
was found to produce results in better agreement with the experimental data. Thus, a
turbulent Schmidt number of 0.7 is used for the remaining simulations.

The radiation effects are included in the present simulations using an optically thin
radiation model. The radiative heat loss due to H2O and CO2 is only considered and curve
fitting to used determine the Planck absorption coefficients, ap,i, as a function of H2O and
CO2. The parameters for the curve fitting are found on the Sandia website
(http://www.sandia.gov/TNF/radiation.html). Once the Planck absorption coefficients
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are determined, the radiative heat loss, Q is calculated as

Q = Q(T, Yk) = 4σ
( nr∑

1

pk ∗ ap,k
)

(T 4 − T 4
∞), (3.16)

where σ is the Stefan-Boltzmann constant, pk is the partial pressure of species k in atmo-
spheres, T is the local flame temperature (K) and T∞ is the background temperature [87].
Soot concentrations are very small in the selected flame under atmospheric conditions [69].
Thus, no soot model is incorporated and radiation due to soot is also neglected.

3.2.3 Turbulence models

Two turbulence models are used in the simulations. The first of these is the k − ε model
[12]. The standard k − ε model is well-known to overpredict the spreading rate in round
jets [13, 14]. To correct this problem, several strategies can be applied. Modifying the
value of Cε1 is one possibility. For non-reacting jets, Dally et al. [15] have shown that a
Cε1 value of 1.6 better predicts the characteristics of these flows. This correction is also
commonly applied to non-premixed jet flames [16, 17]. The sensitivity analysis applied to
the flame under investigation results in a optimal value of 1.47 for best agreement with
experimental data for mixture fraction and temperature. Thus, Cε1 equal to 1.47 is kept
for the remaining simulations.

In addition to the k − ε approach, the Re-Normalization Group (RNG) k − ε model
[88] is also included for further comparison. The RNG k − ε turbulence scheme models
the effects of small-scale turbulence by including a random forcing function to the Navier-
Stokes equations.

The experimental study does not report any buoyancy effects [69]. Thus, no buoyancy
correction is added to the turbulence model equations, also following what is done in
previous numerical simulations for the same flame [17, 35, 70].

3.2.4 CSE initialization

CSE uses 〈YCO2 |η〉 and 〈YH2O|η〉 as variables to determine the chemical source terms.
However, at the start of the simulation there is no CO2 or H2O in the CFD domain.
Consequently, some initial values for the mass fractions of CO2 or H2O must be set. The
chemical source terms are determined using an assumed form for 〈YCO2|η〉 and 〈YH2O|η〉.
For the initial time steps, conditional values are not determined by inversion, instead
the initial profiles for 〈YCO2|η〉 and 〈YH2O|η〉 are selected such that they lie within the
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fully burning portion of the TGLDM manifold. This ensures that the conditional and
unconditional chemical source terms calculated from the TGLDM table are large. Once
the mass fractions of CO2 and H2O in the CSE domains have reached a level where the
reaction is self-sustaining, the initialization process is turned off and the conditional profiles
for CO2 and H2O are calculated using the inversion process.

3.3 Results

3.3.1 Sensitivity to CSE ensemble number

As described in Section 3.1.2, the conditional averages are assumed to be homogeneous for
a given assemble of points. That means that the computational grid may be divided into
subdomains (CSE ensemble) to represent these ensembles. This approach is similar to the
idea of defining a separate grid for conditional averages superimposed on the CFD mesh
in CMC calculations [24]. The number of CSE ensembles may have an impact on the final
species and temperature predictions.

In this section, a sensitivity analysis is performed by progressively increasing the num-
ber of CSE ensembles in the simulations until no significant change in the Favre-averaged
temperature and species concentrations is observed. To this end, five sets of simulations are
completed including 3, 6, 12, 24 and 32 CSE ensembles. The CSE ensembles are created
over the same CFD grid domain, between 0 and 725 mm in the axial direction, keeping the
entire radial distance and with a slight overlap between the ensembles. All other computa-
tional and modelling parameters are kept the same. The CSE ensemble overlap is included
to prevent any sharp changes in the conditional averages and the resulting chemical source
terms in the species transport equations. It should be noted that the present results are
only used to evaluate the relative change induced by the number of CSE ensembles and are
not compared with experimental results. Thus, radiative heat loss is not included for these
simulations for computational efficiency. Further, the CSE ensembles are always defined
following the axial direction, being cut in the direction normal to the centreline of the jet.
This is explained by the fact that the conditional averages are known to vary more strongly
in the axial direction and much less in the radial direction [24].
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Figure 3.5: Centreline temperature profiles for different numbers of CSE ensembles

The predicted axial centreline temperatures are shown in Fig. 3.5 and the radial profiles
are included in Fig. 3.6. As can be seen in Figs. 3.5 and 3.6, the predictions converge
to a single temperature profile with increasing number of CSE ensembles. It is clear that
a significant variation can be observed between 3 and 32 CSE ensembles. For example,
at 150 mm the difference is approximately 500K corresponding to a 50 % relative change.
Farther downstream, at 425 mm the temperature change is approximately equal to 700 K,
i.e. '35 % difference between these two sets of calculations. However, the temperature
variation using 24 and 32 ensembles is small: less than 3K at 150 mm and approximately
26K at 450 mm. At all positions the relative change is less than 1%, expected to be well
within any experimental uncertainty. In Fig. 3.6 the temperatures profiles for 24 and 32
ensembles coincide for most points and cannot be easily distinguished. Thus, it can be
concluded that the solution obtained with 24 CSE ensembles has converged to a single set
of temperature profiles.
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Figure 3.6: Radial temperature profiles for different numbers of CSE ensembles at different
axial positions, same symbols as in Fig. 3.5

In addition to comparing the Favre-averaged temperature profiles for different CSE
ensembles, the conditional species mass fractions are also examined. Figure 3.7 shows
〈YCO2|η〉 extracted at the same axial position (280 mm) for the different CSE ensembles.
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As for the Favre-averaged temperature profiles, as the number of CSE ensembles increases,
the conditional CO2 mass fraction profiles converge to one profile. This trend further
demonstrates that the number of CSE ensembles used for the simulation is important. If
too few ensembles are included, the conditional averages in those ensembles are far from the
converged solution and provide poor simulation results. Similarly, if too many ensembles
are used the computational cost increases unnecessarily. Consequently, it is important to
find the minimum number of CSE ensembles that produces an independent solution.
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Figure 3.7: Conditional CO2 mass fraction profiles for different numbers of CSE ensembles

For the present simulation the temperature profiles predicted by the 24 and 32 CSE
ensemble simulations are almost identical. The computational time for 32 CSE ensembles
is approximately 30 % larger than that needed for 24 ensembles to obtain a converged
solution. Thus, 24 CSE ensembles are selected for the remaining simulations in order
to save computational time. It should be noted that the simulations are carried out in
parallel via domain decomposition, however each inversion process is computed using a
single processor. In the current work, parallel implementation of the inversion process is not
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considered. Further study is required to determine the benefits of a parallel implementation
of the inversion process.

3.3.2 Sensitivity to the mean mixture fraction range

In this section and the remaining analysis, radiation losses due to H2O and CO2 are included
in the simulations. As presented in Section 3.1.2, CSE obtains 〈YCO2|η〉 and 〈YH2O|η〉 by
performing two integral inversions. Beyond the selection for the number of CSE ensembles,
it is also possible to define a criterion to determine which cells are selected for the inversion
process. For example, the mean mixture fraction may be used, i.e. a computational cell is
included in the inversion process if its mean mixture fraction falls within a predetermined
range. The main advantage of restricting the ensemble size is the potential saving in
computational time. To determine if the CSE results are sensitive to the mixture fraction
range used in the inversion process, two test cases are run. For Test Case 1 the range is
set to 0.015 < Z̃ < 1. The lower limit is determined such that mixtures very close to pure
air are excluded in the inversion. Initially, the calculations are run with all the cells in
the ensemble only excluding pure air and pure fuel, i.e. 0 < Z̃ < 1. The lower bound
is progressively increased to 0.015. For this lower bound value, no significant difference
can be noticed when the final predictions are compared with those using 0 < Z̃ < 1. The
upper bound is not modified as there are fewer cells with fuel-rich mixtures compared to
those with fuel-lean mixtures. A different strategy is applied to Test Case 2. The mean
mixture fraction range is determined using upper and lower flammability limits of methane
in air at atmospheric pressure and a temperature equal to 293K, which are approximately
4.5% and 16% on a volume percentage [89], corresponding to mixture fraction values of
approximately 0.026 and 0.096. In the current calculations, the range is slightly extended
to 0.022 < Z̃ < 0.11 to ensure that all flammable mixtures are included within possible
uncertainties in the calculation of the flammability limits.

To examine the effects of changing the mixture fraction range used for the inversion
process, the centreline and radial temperature profiles are compared for the two test cases
with the experimental data [69] and are shown in Fig. 3.8 and 3.9, respectively. As can
be seen in Fig. 3.8, close to the nozzle, for axial positions between 0 and 50 mm, the
centreline temperature profile shape and magnitude for the two test cases are very similar.
However, farther downstream the two sets of predicted temperature are clearly different.
At an axial position of 250 mm the temperature predicted in Test Case 2 underpredicts
the experimental value by approximately 300 K at 250 mm, whereas that from Test Case
1 overpredicts the experimental data by 125 K. Best agreement with the experimental
values is obtained with the temperatures retrieved from Test Case 1. As shown in Fig.
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3.9, the radial temperatures profiles predicted by Test Case 2 are consistently lower than
the experimental data. In contrast, Test Case 1 tends to overpredict the temperatures
compared to the experiments, except for axial positions between 300 and 425 mm where
the temperatures are underpredicted for radial locations larger than 40 mm. However, Test
Case 1 still provides temperatures much closer to the experimental values.
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Figure 3.8: Centreline temperature profiles for different CSE inversion ranges compared
with experimental data [69]

According to the observations made from Figs. 3.8 and 3.9, the bounds of the mixture
fraction range has an impact on the temperature predictions. If the ensemble size is
too small, the inversion yields erroneous values for the conditional averages leading to
inaccuracies in the mean chemical source terms and Favre averages. The lower and upper
bounds of the mean mixture fraction range needs to be selected with care. For the present
conditions, the flammability limits cannot be used to define the ensemble size. The major
assumption is that the conditional averages are homogeneous for a given ensemble. If
too many cells are excluded, the validity of spatial homogeneity breaks down, i.e the
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conditional averages are homogeneous within the ensemble however, they will be equal to
different values outside the ensemble. Thus, the mean mixture fraction range included in
Test Case 1 is kept for the remaining calculations: negligible differences in the predicted
temperatures compared to those with 0 < Z̃ < 1 and significant computational saving is
achieved: approximately 20% additional computational time is required for the full range
of mixture fraction compared to using 0.022 < Z̃ < 0.11.
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Figure 3.9: Radial temperature profiles at different axial positions for different CSE inver-
sion ranges compared with experimental data [69], same symbols as in Fig. 3.8
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3.3.3 Turbulent mixing field

Figure 3.10 shows the predicted centreline mixture fraction profiles using both turbulence
models, the modified k-ε model with Cε1 = 1.47 and RNG k-ε described in Section 3.2.3,
compared with the experimental values [69]. As can be seen in Fig. 3.10, the RNG k-ε
model overpredicts the centreline mixture fraction values close to the nozzle between 0 and
100 mm, whereas the k−ε model underpredicts the centreline mixture fraction at the same
locations. Farther downstream from 200 to 300 mm, best agreement with the experimental
data is obtained using the corrected k − ε model, whereas the RNG k-ε model is in better
agreement with the experimental data at the 350 and 425 mm locations.
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Figure 3.10: Centreline mixture fraction profiles for different turbulence models compared
with experimental data [69]

Further information can be retrieved from the radial profiles. Figure 3.11 shows the
radial mixture fraction profiles for several axial locations using the same turbulence models
compared with the experimental data.
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Figure 3.11: Radial mixture fraction profiles at different axial positions for different tur-
bulence models compared with experimental data [69], same symbols as in Fig. 3.10

Similar to what is observed in Fig. 3.10, the radial profiles predicted by the corrected k− ε
model match the experimental mixture fraction profiles closely near the nozzle. For axial
positions less or equal to 300 mm, both the RNG and corrected k − ε models predict the
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mixture fraction profile well, with a slight advantage for the corrected k − ε model as the
RNG k-ε model underpredicts the mixture fraction by approximately 10-15% at 250 mm
and 300 mm. Farther from the nozzle at 350 mm, the RNG k-ε model gives values very
close to the experimental data close to the centreline and overpredicts the mixture fraction
past 15 mm in the radial direction. In contrast, for the same position, the centreline mix-
ture fraction from the corrected k− ε model is approximately 30% higher than that in the
experiments, but remains in good agreement with the experimental data away from the
centreline. At 425 mm the RNG k-ε model predicts the centreline mixture fraction well
but overpredicts the mixture fraction away from the centreline. At this location, the over-
prediction is on the order of 30 % for the corrected k− ε model on the centreline. However,
away from the centreline, the predicted values become lower than the experimental data.
In conclusion, both turbulence models reasonably predict the turbulent mixing field com-
pared to the experimental values. The corrected k− ε model appears to perform better in
the first half of the flame, whereas RNG k− ε model is shown to produce better agreement
for mixture fractions in the downstream regions of the jet flame. It is decided to select
the corrected k − ε model in the remaining comparisons for the temperature mainly for
consistency with previous numerical simulations [16, 17, 35, 70] using different turbulent
combustion models applied to the same flame.

3.3.4 Conditional averages

Profiles for the conditional CO2 mass fraction are considered at four different axial loca-
tions and are presented in Fig. 3.12. As seen in Fig. 3.12, the magnitude of the conditional
profiles increases with increasing axial distance from the nozzle, between 50 mm and 275
mm. This is expected since there is little CO2 very close to the nozzle, resulting in lower
conditional profiles for this location. Farther downstream a greater portion of the jet is
burning which produces higher levels of CO2. Further, the shape of the conditional profiles
can be seen to change significantly between 50 mm and 125 mm, a more pronounced peak
is observed at larger axial positions. No experimental data is available for the conditional
averages. However, the present results are qualitatively in agreement with previous CMC
jet flame simulations [71, 90].
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Figure 3.12: Conditional CO2 mass fraction profiles at different axial positions

3.3.5 Temperature field

In this section, the CSE temperature predictions are first compared with the experimental
data [69] and then with previous numerical simulation results [16, 17]. The centreline tem-
perature profiles are shown in Fig. 3.13. The current predictions are in very good agreement
with the experimental values qualitatively and quantitatively. A small underprediction can
be seen very close to the nozzle and farther downstream a slight overprediction is displayed
near the tip of the flame (defined as the centreline location where the peak temperature is
reached), i.e. at 425 mm. For example, the peak temperature is slightly overpredicted by
approximately 200K, on the order of 12%.
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Figure 3.13: Centreline temperature profiles for CSE, CMC [16] and flamelet [17] compared
with experimental data [69]

Similar agreement between the CSE and experimental temperatures can be seen for
the radial profiles shown in Fig. 3.14. The width of the flame is captured very well for
axial positions of 150 mm and 250 mm. At 200 mm the CSE results show a slightly
narrower flame than what is seen in the experimental results. Farther downstream the
CSE temperature predictions follow the same trends as the experimental results with the
peak temperature being slightly overpredicted by approximately 13% at the axial locations
of 300 mm and 350 mm. At 425 mm the CSE predicted flame remains narrower compared
to the experimental profile and and the temperature is underpredicted for radial locations
between 15 to 50 mm.
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Figure 3.14: Radial temperature profiles at different axial positions for CSE, CMC [16, 35]
and flamelet [17] compared with experimental data [69], same symbols as in Fig. 3.13

For comparison, previously published results using the flamelet model [17] and CMC [16,
35] are included. The simulations performed by Kassem et al. [70] focus on implementing
the Eddy dissipation model in OpenFOAM. However, in their work, radiation effects are
not taken into account. As a result, the predicted temperatures are noticeably higher than
those reported experimentally and the numerical results are not as good as those shown
in [16, 17, 35]. Thus, the predictions presented in [70] are not included in Figs. 3.13 and
3.14. Outside the turbulent combustion model, the major difference between the current
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CSE work and previous simulations [16, 17, 35] is related to soot modelling. The studies
presented in [16, 17, 35] include the same optically thin radiation model as that used in
the present work, but soot formation is considered. Similar to the current investigation,
the GRI mechanism is also included in the simulations reported in [16, 35] for methane
combustion. Detailed kinetics are used by Brookes and Moss [17], however no specific
reference is given for the chemistry. In Fig. 3.14, it should be noted that the results from
Brookes and Moss [17] are only available for the axial positions in the downstream region
of the flame, 350 and 425 mm. The CSE predictions are comparable to those obtained in
previous calculations. As expected, the present CSE tends to predict peak temperatures
slightly larger and narrower radial profiles compared to those shown in [16, 17, 35]. This
is likely due to the fact that soot is neglected in the present CSE formulation. Brookes
and Moss state that the selected flame is a mildly nonadiabatic flame, with a radiative
heat loss of less than 20% [69]. To determine the radiative heat loss in the present CSE
simulations a comparison with an adiabatic simulation of the flame is conducted. From this
comparison it is seen that the peak centreline temperature is approximately 15% higher in
the adiabatic case. This suggests that the radiative heat loss due to soot (in the present
case estimated to be on the order of 5%) is less significant than the radiative heat loss due
to gas radiation from the CO2 and H2O.

3.4 Summary

CSE combined with TGLDM for the chemistry tabulation was implemented in order to
simulate a confined non-premixed turbulent methane flame. A sensitivity analysis related
to the number of CSE ensembles and ensemble size was performed. The number of CSE
ensembles was shown to have a significant impact on the results if not selected appro-
priately. For a given simulation case, it may be difficult to know the suitable number of
CSE ensembles required in advance. Thus, a sensitivity analysis is recommended to be
completed for each new CSE application. The number of points in each ensemble was also
shown to have an impact on the predictions. For the present simulation, the ensemble
size was defined based on a mean mixture fraction range, 0.015 < Z̃ < 1, yielding Favre-
averaged temperature predictions equivalent to those using, 0 < Z̃ < 1 but, requiring less
computational resources.

As part of the inversion process, regularization is needed in CSE. The Tikhonov method
was implemented [78]. The regularization was implemented following the procedure used
in previous CSE studies [39, 42]. The present CSE calculations provided stable and con-
verged predictions. Recent CSE studies [45, 46] present a different expression to calculate
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the regularization parameter. Further investigation would be useful in determining the
best expression for the regularization parameter. Future work may also be include testing
different regularization techniques and finding the most appropriate regularization method
depending on accuracy, numerical stability and computational cost, for a given combustion
problem.

Two different turbulence models were used, the k − ε model with a corrected value for
Cε1 and the RNG k − ε model. The corrected k − ε model predicted mixture fractions
accurately for axial locations in the first half of the flame. Farther downstream, the RNG
k− ε model performed better. Overall, the current predictions for the mixture fraction are
in good agreement with the experimental data.

The predicted temperatures using CSE and the k− ε turbulence model with a modified
value of Cε1 = 1.47 were shown to be in very good agreement with the experimental data.
CSE tended to slightly overpredict the peak temperature which is likely to be due to the
lack of a soot model that includes radiation from soot. Further, the current CSE results
were of comparable quality with previous simulations using the flamelet model [17] and
CMC [16, 35].
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Chapter 4

Inverse analysis and regularization in
CSE

Inverse problems involve finding a solution which violates one of Hadamard’s three criteria
for a well-posed problem: a solution exists, is unique, and is not sensitive to small changes
in the initial conditions [91]. Inverse problems can be categorized as rank deficient inverse
problems, where a unique solution does not exist and discrete ill-posed problems, where the
solution is sensitive to small perturbations [77, 91]. For both of these categories, additional
information based on some prior expectation of the solution attributes must be introduced
through regularization to obtain a solution.

The inverse problem found in CSE is discrete ill-posed and is sensitive to small per-
turbations in the data. Thus, a regularization method is needed to stabilize the solution.
Although some aspects of the inversion process have been studied, such as the size of
the ensembles and mixture fraction range used for the inversion process additional anal-
ysis is required. In the present study, the turbulent flow and mixing fields obtained from
the RANS-CSE calculations of a turbulent non-premixed methane jet flame presented in
Chapter 3 are extracted to serve as a baseline for the inverse problem. The current regular-
ization method, zero-order temporal Tikhonov, used in most CSE studies has been shown
to work well in previous simulations. However, a detailed uncertainty analysis has never
been completed.

The first objective of this chapter is to determine the ill-posedness of the CSE inverse
problem to assess how sensitive the solution is to small perturbations in the data. Next, the
origin of these perturbations is investigated. This information is used to determine credi-
bility intervals so that the uncertainty in the recovered solution can be estimated. Bayesian
analysis has previously been used to investigate syngas chemistry models to determine un-
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certainty [92], but has never been applied to CSE. The study of the CSE inversion problem
in the Bayesian framework will allow a systematic method for studying this problem in a
probabilistic manner and obtain statistical information on the inversion problem. Among
the statistical information collected are credibility intervals with and without a smooth-
ing prior, which shows the impact of including a prior on the level of uncertainty in the
solution. Once the credibility intervals are calculated, several regularization methods are
tested using the Bayesian framework to determine the regularization method best suited
to the current problem. Thus, the current study is focused on the amount of uncertainty
introduced into the conditional averages due to different regularization methods.

4.1 Combustion problem

The combustion problem corresponds to the asymmetric jet flame experimentally studied
by Brookes and Moss [69]. The atmospheric non-premixed methane flame is selected due to
the small amount of soot production. In the RANS-CSE simulations performed in Chapter
3, soot modelling was excluded and radiation from CO2 and H2O was modelled using an
optically thin radiation model. In Chapter 3, the ensembles were defined such that they
had an equal size in the axial direction and extended from the centreline to the furthest
radial location. To reduce the computational requirements, only one of these ensembles
is considered in the present study. The methodology and conclusion would be similar for
other ensembles. Figure 4.1 shows some mean mixture fraction contours along with the
location and shape of the CSE ensemble selected for the present study. For methane-air
combustion the stoichiometric mixture fraction value is equal to 0.055. The computational
spatial grid consisted of 58,800 cells in two dimensions. As a result, each CSE ensemble
has approximately 2500 CFD cells. However, only cells that include a mean mixture frac-
tion greater than 0.015 are kept for the inverse problem, while those containing very lean
mixtures outside the flammability range are excluded. The sensitivity analysis performed
on the mixture fraction range included for the inversion process in Chapter 3 showed that
using additional cells with a mean mixture fraction less than 0.015 had a negligible impact
on the results, but significantly increased the computational cost. As a result, for the
inversion process only 798 cells of the 2500 CFD cells are used.
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Figure 4.1: Mean mixture fraction contours and location of CSE ensemble (shaded area)

The conditional mass fraction of H2O and CO2 are obtained by deconvolving a Fredholm
integral equation given by

Ỹk(xj, t) =

∫ 1

0

〈Yk|η〉(η, t)P (η, xj, t)dη, (4.1)

where 〈Yk|η〉 is the conditional mass fraction for species k, Ỹk is the unconditional mass
fraction and P̃ (η) is the Favre-averaged PDF of mixture fraction. These conditional mass
fractions are then used to obtain the conditional reaction rates from chemistry tables.
Further detail on how these tables are generated can be found in Chapter 3. The mean
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reaction rates are then calculated using

ω̇k(xj, t) =

∫ 1

0

〈ω̇k|η〉(η, xj, t)P̃ (η, xj, t)dη, (4.2)

where 〈ω̇k|η〉 is the conditional chemical source term of species k. The mean reaction rates
are then returned to the CFD code to solve the averaged transport equations of species.
Thus, it is extremely important to ensure that the conditional mass fractions of H2O and
CO2 obtained from the inverse problem are accurate. This implies that they must contain
several key attributes. The conditional mass fractions cannot be negative and cannot
be larger than unity due to conservation of mass. In addition, it is expected that the
conditional mass fraction profiles should be spatially smooth in mixture fraction space as
diffusion promotes this behavior. Finally, for methane-air combustion the location of the
peak in mixture fraction space is typically between 0.05 and 0.1 depending on the chemical
mechanism used [23, 93]. All of this information can be included as prior information
to reduce the ill-posedness of the inverse problem. In the remaining sections, tests and
illustrations for the inverse problem will consider only the conditional mass fractions of
CO2.

4.2 Computational details for the inverse problem

In order to study and isolate the effect of regularization on the CSE solution to the com-
bustion case presented in Chapter 3, the inverse problem is decoupled from the CFD
calculations to eliminate transient effects. This means that the A matrix (integrated PDF

over a mixture fraction interval) and ~b vector (unconditional mass fraction) in Eq. 4.3
remain constant,

A · ~α = ~b, (4.3)

where ~α is the conditional mass fraction, 〈Yk|η〉. This is accomplished by obtaining the
unconditional mass fractions of CO2, mean mixture fraction and mean mixture fraction
variance for one ensemble from the converged combustion simulation consisting of 798 cells
completed in Chapter 3. The mixture fraction (η) space is divided into N = 200 equally
spaced bins. Based on the simulations completed in Chapter 3 this results in 200 unknowns
(〈YCO2|η〉), obtained from Eq. 4.1 and 798 equations. The β-PDF is calculated using the
mean mixture fraction and variance extracted from the previously converged turbulent
flame calculations completed in Chapter 3. The A matrix is constructed following Eq. 4.4.
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Ajm =

∫ η2

η1

P̃ (ηm, xj, t) dη, (4.4)

where j is the spatial coordinate index and η1 and η2 are the lower and upper bounds of
the mixture fraction bin, respectively.

One method for determining the ill-posedness of the problem is to perform Singular
Value Decomposition (SVD) on the A matrix to obtain the singular values. For SVD the
A matrix is decomposed such that

A = UΣV T , (4.5)

where U is a column-orthogonal matrix, Σ are the singular values and V is another or-
thogonal matrix [80]. The singular values, σj, which are indicative of the ill-posedness of
the problem, are shown in Fig. 4.2.
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Figure 4.2: Singular values for A matrix for 200 mixture fraction points

The singular values vary by over 15 orders of magnitude, leveling off at at 10−15 for j > 60
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which is typical for an ill-conditioned A matrix generated from a Fredholm integral equa-
tion of the first kind. The condition number of matrix A can be related to the singular
values by the following equation

Cond(A) =
σmax
σmin

, (4.6)

where σmax and σmin are the largest and smallest singular value, respectively. Further,
there is a sharp drop in the magnitude of the singular values initially, showing that the
low frequency components of the solution can be reconstructed from the first few Fourier
coefficients.
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Figure 4.3: SVD solution to Eq. 4.3, with N=200

In an attempt to provide a baseline profile which can be compared to a regularized
solution, a SVD solution to Eq. 4.3 is calculated for the 200 mixture fraction point grid
and is shown in Fig. 4.3. It can be seen that without any regularization, the SVD solution
is nonphysical due to the amplification of discretization error by small singular values. The
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relative error in the solution vector ~α, δ~α, can also be related to the condition number of
matrix A and the error in ~b, δ~b, by

||δ~α||
||~α||

≤ Cond(A)
||δ~b||
||~b||

. (4.7)
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Figure 4.4: Perturbation analysis of Fourier coefficients, error term and singular values
(same notation as in Eq. 4.8)

For further demonstration of the error amplification, a new ~b, referred to as ~bexact, is
calculated by multiplying the same A matrix with a presumed profile for the conditional
CO2 mass fractions, ~x, as shown in Eq. 4.3. For the sole purpose of illustration, any
presumed shape for ~x may be considered; in the current study, experimental values in a
laminar flame are selected [23]. A small perturbation is applied to ~bexact using a normally
distributed noise with zero mean and standard deviation of 10−10 in order to determine the
sensitivity of the solution of Eq. 4.3 to small perturbations. A standard deviation of 10−10
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is selected to demonstrate the ill-possedness of the CSE problem under investigation. 10−10

represents a level of noise that is greater than the accuracy of double precision calculations
but, much smaller than the expected modelling error discussed in Section 4.3.4, on the
order of 10−3. For perturbations larger than 10−10, the solution becomes unrecoverable
without prior information. With SVD ~x may be written as the sum of two components,
the exact solution and the error following

~x = ~xexact + δ~x =
n∑
j=1

Uj ·~bexact
σj

Vj︸ ︷︷ ︸
exact solution

+
n∑
j=1

Uj · δ~b
σj

Vj︸ ︷︷ ︸
error

. (4.8)

Eq. 4.8 can only be used for illustration as in practice ~bexact cannot be distinguished
from δ~b. Figure 4.4 presents the Fourier coefficients Uj ·~bexact, and the error term Uj · δ~b,
compared to the singular values previously shown in Fig. 4.3. It can be seen that without
any perturbations the Fourier coefficients satisfy the discrete Picard condition, which states
the Fourier coefficients must decay to zero faster than the singular values in order to recover
a meaningful solution [94]. However, when ~bexact is perturbed the error term is larger than
the singular values for j ≤ 20. Thus, the Discrete Picard condition is no longer satisfied
and the amplified error will dominate the exact solution. Consequently, Eq. 4.3 is ill-posed
and a regularization method is required to recover a solution.

4.2.1 TSVD

One way to regularize the problem is to simply exclude the summation terms in Eq. 4.8 that
correspond to small singular values; this is called Truncated Singular Value Decomposition
(TSVD), and is based on the fact that the Fourier coefficients that correspond to the
smallest singular values reconstruct the high frequency solution components, and may not
have much physical significance. Thus, TSVD effectively filters out high frequency noise
from the solution by truncating the smallest singular values. The result is a significant
reduction in the noise amplification in the solution while preserving its physicality. The
following equation is used to recover a solution using TSVD [79],

~x =

n−p∑
j=1

Uj ·~b
σj

Vj, (4.9)

where n is the number of singular values, ~b is the unconditional mass fraction, Uj and Vj
are the column vectors obtained from SVD as shown in Eq. 4.5, σj is the jth singular
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value and p is the number of singular values that are truncated. The Fourier coefficients
can be used to estimate the number of singular values to be truncated. According to Fig.
4.4 approximately 180 singular values should be truncated to satisfy the discrete Picard
condition. Figure 4.5 shows the recovered solution and error using TSVD with 184 singular
values truncated. It is found that this degree of truncation produces a recovered solution in
best agreement with the exact solution, with an error of less than 10−3. However, to recover
this solution, with perturbations of 10−10, 92% of the singular values have to be truncated.
With larger perturbations, the accuracy of the TSVD solution will further decrease as the
truncation of additional singular values is required to suppress noise amplification. As a
result, the remaining analysis focuses on zero-order and first order Tikhonov regularization
[78].
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4.2.2 Origin of perturbations

The origin of the perturbations that occur in ~b needs to be identified so that they can
be reduced in the simulations and modelled for the Bayesian analysis. As a first step, it
is important to visualize the perturbations (δb) in the data, which can be estimated as

the differences between ~b obtained from the CFD-CSE simulations from Chapter 3 and ~b
calculated using the least squares solution to Eq. 4.3.
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Figure 4.6: Perturbations in ~bexact from the CSE simulations

Figure 4.6 shows the calculated perturbations as a function of the mean mixture fraction
taken at each cell in the ensemble. Figure 4.6 reveals several important characteristics of
the noise spectrum. First, the magnitude of the perturbations is not constant and highest
at mean mixture fractions between 0.03 and 0.05. Second, for mean mixture fractions less
than 0.04, the perturbations in the data do not appear to be random suggesting that there
may be a correlated error. One possible explanation for this is that the current analysis
does not take into account the variance of the mean mixture fraction. The perturbations
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vary in physical space, but can be more easily expressed as functions of the mean mixture
fraction and its variance in the Bayesian analysis. In the current problem, each cell in
the ensemble has a unique mean mixture fraction and variance. As a result, there are not
enough data points to represent the perturbations in both dimensions. For simplicity, the
perturbations are only modelled as a function of the mean mixture fraction.

Another possible source of perturbations is related to the determination of the uncon-
ditional mass fractions in CSE. In the CSE simulations, the calculated conditional mass
fractions are used to retrieve the conditional chemical source terms from the chemistry
tables. Then, the unconditional chemical source terms are found by integrating the condi-
tional chemical source terms with the PDF in mixture fraction space, as shown in Eq. 4.2.
The mean species reaction rates are returned to the CFD code to solve the unconditional
species concentrations. As a result, any error introduced in the calculation of the condi-
tional averages propagates in the unconditional mass fractions. This would explain why
some perturbations are seen in the unconditional mass fraction profile shown in Fig. 4.6.
The PDF and the related A matrix are both crucial to the inverse problem to determine
the conditional averages. As shown in Eq. 4.7, the A matrix is calculated at every point
in the CSE ensemble in mixture fraction space resulting in 798 profiles for each of the 200
η values. Figure 4.7 displays the range of Ajm values for the entire ensemble for η ≤ 0.026.
It can be seen that the largest range occurs at the first η point equal to 0.003 and the range
of Ajm values decreases with increasing η reaching approximately zero for η equal to 0.5,
not shown in Fig. 4.7. This implies there exist large fluctuations in the PDF for this first
η value. This phenomenon is caused by using a discrete mixture fraction grid. The kernel
(A matrix) fluctuations may be attenuated if a finer mixture fraction mesh is included.
However, an error will always be present due to the lack of information between η = 0 and
the first grid point in η space. This may also occur for the last η value and unity. No peak
is observed for rich mixtures for the present CSE ensemble due to its location in the flame,
farther away from the fuel nozzle exit. Consequently, for a finite uniform mixture grid a
more pronounced correlated error is expected for lean mixtures, as shown in Fig. 4.6.
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4.3 Bayesian analysis

4.3.1 Principle

Using a mixture fraction grid of 200 nodes, the system of equations represented by Eq. 4.3
contains 200 unknowns, the conditional species mass fractions. Each of these unknowns is
equivalent to a solution parameter that may be changed to better match the unconditional
mass fraction of CO2. Bayesian analysis can be used to determine the uncertainty in
each of these solution parameters by estimating the probability that a given value of a
solution parameter satisfies Eq. 4.3 [80]. This is more formally done by computing the
credible intervals on the unknown parameters, where a wider credible interval represents
more uncertainty in the inferred solution and also less influence in inferring a solution. For
example, if the credible intervals extend to infinity, no preferred solution exists and that
parameter has no influence on the inferred solution. It should be stressed that Bayesian
analysis is not, by itself, a regularization method. In Bayesian analysis, diverse sources of
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information, such as measurements and prior knowledge, can be incorporated into a single
estimate. In contrast, regularization is performed by promoting presumed aspects of the
solution through priors in Bayesian analysis, as will be shown in Section 4.3.2.

In the current investigation, the objective is to find the solution that maximizes the
conditional posterior probability, P (~x|~b), defined via Bayes’s rule [95] as

P (~x|~b) =
P (~b|~x) · Ppr(~x)

P (~b)
, (4.10)

where P (~b|~x) is the likelihood of the observed data occurring for a given hypothetical ~x,

Ppr(~x) modifies the modelled probability based on prior knowledge and P (~b) is the marginal
probability of the data, also known as the evidence. For a linear system as shown in Eq.
4.3, a linear model may be applied to determine the likelihood,

P (~b|~x) ∝ exp

(
− 1

2

(
~b− A~x

)T
Γ−1
noise

(
~b− A~x

))
, (4.11)

where Γnoise is the covariance matrix that is assumed to be invertible and is modelled in
Section 4.3.4. The marginal probability, P (~b), can be calculated using

P (~b) =

∞∫
−∞

∞∫
−∞

· · ·
∞∫

−∞

P (~b|~x)PPr(~x)dx1dx2 · · · dxm, (4.12)

and scales the posterior probability so that it satisfies the Law of Total Probability [96].

However, calculating the marginal probability, P (~b), using Eq. 4.12 can be computationally

expensive if m is large or the product P (~b|~x)Ppr(~x) is expensive to solve.

Instead, in order to avoid the direct calculation of P (~b) using Eq. 4.12, Markov-Chain
Monte Carlo (MCMC) is considered. The principle of MCMC is to generate a sequence of
trial points, x that are ergodic to the posterior probability, and can be used to approximate
the posterior probability as a normalized histogram [80, 95]. In MCMC, P (~b|~x) and Ppr
are input parameters, P (~b|~x) is defined using Eq. 4.11 and different expressions for Ppr
are selected, as shown in Section 4.3.2. Tikhonov regularization will be included in Ppr
through Eq. 4.15 or Eq. 4.18. The output from the MCMC algorithm is P (~x|~b).

In a Markov-Chain, the next candidate solution, ~xk+1, depends only on ~xk and is
determined at each ~xk by sampling a trial distribution q (~xk+1|~xk). In MCMC, a random
number between 0 and 1, R0−1, is selected to determine if the candidate solution is accepted.
If R0−1 ≤ α (~xk, ~xk+1) the candidate is accepted, otherwise the candidate is rejected and
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a new candidate solution is selected. The acceptance criterion, α (~xk, ~xk+1), is determined
by

α (~xk, ~xk+1) = min

(
1,
π
(
~xck+1

)
· q
(
~xk|~xck+1

)
π (~xk) · q

(
~xck+1|~xk

) )
, (4.13)

where ~xc, is the candidate solution and π(~x) = P (~b|~x) · PPr(~x). Further detail on MCMC
methods may be found in [95]. The posterior probability is obtained using the slice sam-
pling MCMC algorithm in Matlab [97]. For the current MCMC simulations, 10 000 samples
are included and the MCMC calculation is initialized at the least squares solution of Eq.
4.3 to minimize the burn in period, which involves throwing away iterations at the start
of MCMC simulation. Larger samples were also tested but the estimate trends were found
to be similar, leading to the same analysis and conclusions as those shown.

4.3.2 Prior models

The ill-conditioning of the A matrix leads to an indefinite topography of the likelihood
function. Thus, additional information is required to obtain a solution with a definable
topography. One method to accomplish this is to include the regularization methods and
a priori information as priors. In the present work, two prior distributions are considered.
The first prior is created to disallow negative conditional averages and is defined as

PPr(~x) =

{
0 if ~x < 0

1 if ~x ≥ 0
, (4.14)

which is similar to the truncation of negative values presented in Chapter 3. However, Eq.
4.14 represents a significant improvement as it incorporates the prior information directly
into the problem and post processing nullification and rescaling does not maximize the
posterior probability in Eq. 4.10. As a result, no post processing rescaling is required for
the regularization methods in the Bayesian framework.

The second prior distribution used depends on the type of regularization applied. For
temporal smoothing, which corresponds to the method outlined in Chapter 3, the prior
distribution is defined as

PPr(~x) = exp(−α1(~x− ~xt)
T (~x− ~xt)), (4.15)

where α1 is a regularization parameter and xt is the solution to the previous time step.
This prior corresponds to zero-order Tikhonov regularization [98].
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For spatial smoothing, which corresponds to first order Tikhonov in mixture fraction
space, the following least squares problem is solved

~x = arg min

∥∥∥∥[ AλL
]
~x−

[
~b
0

]∥∥∥∥2

2

, (4.16)

where L is the smoothing matrix defined as

L =

−1 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 1

 ∈ <(m−1)×m, (4.17)

which is a discrete representation of the first derivative operator. The prior distribution
for first order Tikhonov is defined as

PPr(~x) = exp(−α2~x
TLTL~x), (4.18)

where α2 is a regularization parameter [98].

4.3.3 Bayesian credible intervals

As the posterior probability is a continuous function it is convenient to define credible
intervals to quantify uncertainty. Using the method outlined by Charnigo et al. [99] the
95% Bayesian credible interval is defined∫

I

P (~x|~b) = 0.95, (4.19)

where I is the width of the credible interval. Thus, the credible interval is the region which
captures ~x with a 95% probability. However, Eq. 4.19 does not uniquely define the credible
interval. To uniquely define a credible interval an additional constraint is required. In the
present study, the credible intervals are defined following Chen and Shao [100] where the
upper and lower credible intervals are calculated as(

θ(β/2), θ(1−β/2)

)
, (4.20)

where β = 0.05 for the 95% credible interval and θ is the value of the credible interval.
For illustration, Fig. 4.8 shows the 95% credible interval for a hypothetical marginal
probability distribution. As shown in Fig. 4.8, for the 95% credible interval, 2.5% of the
data lie outside each side of the credible interval.
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Figure 4.8: Demonstration of 95% credible interval (shaded area)

4.3.4 Estimation of Γnoise

Before a Bayesian analysis can be completed an estimation of the noise matrix is required.
In experimental studies the noise matrix often takes the form

Γnoise = σ2 × I, (4.21)

where σ is the noise in the experimental signal, frequently taken as a constant and I is
the identity matrix. This definition of the noise matrix is valid when the the noise is
random, homeostatic and uncorrelated. In experimental studies, the noise is often caused
by uncertainties in the measurements which is unbiased and uniform for most measurement
methods allowing Eq. 4.21 to accurately model the noise. As presented in Section 4.2.2 in
the present study, the value of σ is not constant and the perturbations may be modelled
as a function of the mean mixture fraction, Z. Thus, similar to Eq. 4.21, the noise matrix
can be expressed as

Γnoise = σ2(Z)× I. (4.22)

A box filter is used to estimate the correlated error as a function of the mean mixture
fraction, σ(Z). The box filter takes the 12 nearest mean mixture fraction points on either

67



side of the point of interest. Using these 25 points the standard deviation is calculated and
corresponds to an approximation of the error observed in Fig. 4.6 and discussed in Section
4.2.2. Next, the standard deviation profile is smoothed to obtain a continuous function of
Z over the entire range of mean mixture fraction values. Γnoise is calculated using Eq. 4.22
and is included in Eq. 4.11. The unsmoothed and smoothed standard deviation profiles
are shown in Fig. 4.9.
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Figure 4.9: Standard deviation of the unconditional mean mass fraction of CO2 as a
function of mean mixture fraction, unsmoothed (thin) and smoothed (bold)

As part of the Bayesian analysis, the recovered solution from the inverse problem needs
to be compared with the exact solution in order to evaluate different regularization meth-
ods. However, in the current turbulent flame simulations, the exact solution for the con-
ditional species mass fractions is not known. To circumvent this issue, the unconditional
species concentrations corresponding to ~b, obtained from the CFD-CSE calculations per-
formed in Chapter 3, are not considered. Instead, a new ~b is determined using a known
presumed profile for the conditional CO2 mass fractions following Eq. 4.3 keeping the A
matrix from the CFD-CSE simulations. This new~b is referred to as~bexact and the presumed

68



conditional values correspond to ~xexact. The conditional profile for a laminar methane air
flame is obtained from the experimental profile presented by Peters [23]. Similar to what
is done in Section 4.2, any presumed profile for the conditional averages could have been
used. ~bexact is then perturbed at each location by applying normally distributed noise with
zero mean and the standard deviation calculated using the box filter.

4.3.5 Impact of prior on recovered solution

Before calculating the credible intervals it is important to determine how well the Bayesian
solution agrees with the exact solution. This is done by comparing the Maximum a Pos-
teriori (MAP) estimate solution obtained from the MCMC analysis to the exact solution
used to calculate the data vector.
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Figure 4.10: MAP estimate with no smoothing prior (solid line) compared to exact
solution (dashed line)
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The MAP estimate is the solution that maximizes the posterior probability distribution,
and considers both the data contained in b, as well as the additional knowledge incorporated
through the prior. As a first step, only the non-negativity prior is included, e.g. α1 =
α2 = 0. The initial condition for the MCMC analysis is calculated using Matlab’s least
squares solver [101, 102, 103, 104] with the initial guess specified as the exact solution
perturbed with normal noise. Figure 4.10 shows the MAP estimate obtained using the
MCMC algorithm. Figure 4.10 shows that without any smoothing the MAP estimate
contains large oscillations about the exact solution, ~xexact. Further information can be
obtained from the MAP estimate profiles at different values of η.
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Figure 4.11: The effect of the smoothing prior on the maximum a posteriori estimate profile
for two values of η, without a prior, α2 = 0 (dashed line) and with a prior, α2 = 4000 (solid
line)

Figure 4.11 shows the MAP estimate at η = 0.021 (lean) and η = 0.06 (rich) obtained
with and without a prior, α2 = 4000 and α2 = 0, respectively. Without a smoothing
prior the MAP estimate is broad which indicates that no preferred solution exists for these
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locations. To view the impact of a spatial smoothing prior, α2 is slowly increased until
a noticeable difference is observed in the profiles leading to α2 = 4000. This arbitrary
value of α2 is selected only for the present illustration. In Section 4.3.7, α1 and α2 will be
determined in a more rigorous manner. As can be seen in Fig. 4.11, the first noticeable
effect of adding a spatial smoothing prior is that the width of the marginal profile is
reduced by approximately 30% at η = 0.021 and 50% at η = 0.06. More importantly, the
peaks of the profiles are much more pronounced when the smoothing prior is included and
consequently, the MAP is easier to determine. It should be noted that the noisy profiles
presented in Fig 4.11 may indicate that the MCMC has not fully converged. Larger samples
have been tested and the trends were found to be similar, leading to the same analysis and
conclusions as those shown.
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Figure 4.12: The effect of the smoothing prior on the MAP estimate, compared to exact
solution (dashed line)

Figure 4.12 presents the effect that the spatial smoothing prior has on the MAP es-
timate produced by the MCMC method. As can be seen in Fig. 4.12, by including the
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spatial smooth prior the magnitude of the oscillations in the solution is greatly reduced.
In addition, the recovered solution follows the general shape of the exact solution well and
is close to the exact solution between mixture fraction values of 0 and 0.1 corresponding
to the η value where peak chemical activity occurs. Similar observations can be made
if α2 is set to 0 and α1 is increased, corresponding to temporal smoothing. This further
demonstrates the usefulness of including priors in the Bayesian analysis.

4.3.6 Impact of priors on credible intervals

The credible intervals are calculated using MCMC to determine the uncertainty in the
solutions obtained with and without a smoothing prior, α2. It is important to appreciate
that the credible intervals are estimates and are noisy due to the stochastic nature of the
MCMC method. Figure 4.13 shows the 95% credible using only the non-negativity prior.
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Figure 4.13: 95% credible intervals (shaded area) with no smoothing prior compared to
the exact solution (dashed line)
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As can be seen in Fig. 4.13, if no smoothing prior is included, corresponding to α1 = α2 = 0,
the credible intervals for η ≥ 0.15 are large. One explanation is that at lower values of η,
the A matrix contains sufficient data to reconstruct the solution. However, as the maxi-
mum mean mixture fraction seen in the ensemble is approximately 0.11, the PDF values
for η ≥ 0.15 are approximately zero. Thus, any given profile in this region will satisfy
Eq. 4.3. This indicates that the solution at these locations is uncertain and the posterior
probability is indefinable. Since this location of the mixture fraction domain does not have
a significant impact on the reaction rates, this uncertainty is not expected to lead to large
errors in the CFD simulations. It is also important to note that the exact solution falls
within the credible intervals over the majority of the mixture fraction domain. One possi-
ble method for reducing the credible intervals at higher values of η is to increase the size
of the ensemble. As the ensemble increases additional data from cells with higher values
of η are included and additional information will allow for a more accurate reconstruction
of the conditional averages at these values. However, there is a limit to how much these
ensembles can be enlarged as the assumption of spatially homogeneous conditional aver-
ages may break down. As a result, a compromise must be made between increasing the
size of the ensemble, to include additional information and ensuring the assumption that
the conditional averages are homogeneous remains valid.

Although knowing the credible intervals for the whole mixture fraction domain is de-
sirable, the width of the credible intervals for η ≤ 0.15 are more important as this is the
location of maximum chemical reactivity. Figure 4.14 shows the credible intervals for η ≤
0.15 with and without a smoothing prior. When the smoothing prior is not included, the
width of the credible intervals ranges from 0.0028 to 0.1605. This upper limit represents
an uncertainty of over 100% of the exact solution. This uncertainty in the conditional
mass fractions means that the calculated conditional chemical source terms are also highly
uncertain. This uncertainty will also be present in other scalar predictions such as species
concentration and temperature. From the analysis in Section 4.3.5 it is expected that
when the spatial smoothing prior is included the width of the credible intervals will be
reduced which is seen in Fig. 4.14. Further, the credible intervals are much smoother
when the smoothing prior is included. This is expected as the smoothing prior enforces
smoothness of the solution, preventing large oscillations. More importantly Fig. 4.14 also
shows that the width of the credible interval decreases by 55%, with a maximum width
of 0.0685. It can be concluded that the addition of a spatial smoothing prior results in a
solution which is smooth with smaller error bounds. Similar observations can be made for
temporal smoothing corresponding to α2 = 0 by increasing α1 in Eq. 4.15, this further
demonstrating the benefit of priors in Bayesian analysis.
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Figure 4.14: 95% credible intervals (shaded area) for η ≤ 0.15 with and without smoothing
prior compared to the exact solution (dashed line). No smoothing prior corresponds to the
non-negativity prior only, Eq. 4.14 and smoothing prior is spatial smoothing defined by
Eq. 4.18 with α2 = 4000

4.3.7 Temporal smoothing vs spatial smoothing

Bayesian analysis is a powerful tool commonly used to obtain statistical information on in-
version problems, but is also computationally expensive. Cost factors prevent this method
from being used to find a solution to Eq. 4.3 in fully coupled CFD-CSE simulations. For
example, in the turbulent non-premixed flame CSE simulation completed in Chapter 3,
zeroth order Tikhonov regularization is implemented with 50 mixture fraction bins. The
computational time required for the inversion of both CO2 and H2O mass fractions averages
to 0.028 CPU seconds. A similar order of magnitude is expected for first order Tikhonov or
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TSVD. For comparison, the Bayesian analysis presented requires approximately 160 CPU
seconds to complete the MCMC simulations for one species. Thus, the Bayesian analysis
computational cost is more than 5,000 times as large as what is needed for zeroth order or
first order Tikhonov regularization alone. However, statistical information obtained from
the Bayesian analysis can be used to prototype less computationally expensive methods to
determine if they provide an acceptable solution. This can be accomplished by compar-
ing the solution to Eq. 4.3 using different Tikhonov regularization methods. By using the
Bayesian framework, the size of the credible intervals gives an indication of the uncertainty
in the solution and can be used to determine which regularization method is best suited for
this inversion problem. The regularization methods investigated in this section are zeroth
order Tikhonov in time (temporal smoothing) and first order Tikhonov in mixture fraction
space (spatial smoothing). For the two methods the regularization parameters are selected
to be consistent with Eqs. 3.10, from Chapter 3 and 4.16 and are shown in Table 4.1,

Table 4.1: Regularization parameters
Regularization parameter Temporal Spatial

(zeroth order Tikhonov) (first order Tikhonov)

α1
λ2

2σ2 0

α2 0 λ2

2σ2

where σ is the average of the standard deviations calculated in Section 4.3.4 and λ is
calculated using

λ2 =
Tr(ATA)

Tr(I)
, (4.23)

where Tr is the trace of the matrix [80] and I the identity matrix. These definitions of
the regularization parameters are selected so the change in the credible intervals is caused
strictly by the change in the regularization methods.

Two different test cases are selected for temporal smoothing. The first test case repre-
sents the best case scenario, xt in Eq. 4.15, is taken as the exact solution and will give an
indication of what would occur if all errors could be eliminated from the simulation. For
the second test case, xt is generated by perturbing ~bexact and obtaining a new least squares
solution.

Figure 4.15 presents the credible intervals calculated using the two different solutions
for xt and shows that the width of the credible intervals for temporal smoothing are re-
duced by approximately 80% compared to the credible intervals calculated without using a
smoothing prior. When the exact solution is used for xt, the credible intervals are centred
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about the exact solution. However, when the least squares solution is used for xt, the
credible intervals are noisy and follow the shape of xt. Further, the exact solution does
not always fall within the credible intervals. Thus, for temporal smoothing the recovered
solution strongly depends on the quality of xt and λ.
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Figure 4.15: 95% credible intervals (shaded area) for zeroth order temporal Tikhonov with
different specified xt profiles, the exact solution (left) and the least squares solution using
a perturbed b̃ (right) compared to the exact solution (dashed line)

The alternative to temporal smoothing is spatial smoothing using first order Tikhonov
as shown in Eq. 4.18. An attractive feature of spatial smoothing is that it only relies on
one parameter, λ, eliminating xt as a possible source of error. However, it is important
to determine if spatial smoothing results in similar credible intervals. Figure 4.16 shows
the credible intervals calculated for the first order Tikhonov regularization method. The
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width of the credible intervals for spatial smoothing are similar to temporal smoothing, are
not centred about the exact solution and contain small oscillations. Based on these char-
acteristics it appears that first order Tikhonov is a good method for obtaining recovered
solutions with small uncertainties.
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Figure 4.16: 95% credible intervals shaded area) for first order Tikhonov compared to the
exact solution (dashed line) with α2 = λ2/(2σ2), as shown in Table 4.1

It is also important to note that for both temporal and spatial smoothings the width of
the credible intervals is not constant and increases past η = 0.08, but for values of η less
than 0.08 the credible intervals are similar. This can be explained by the fact that for
η ≤ 0.08 the A matrix contains sufficient information to accurately predict the conditional
mass fraction of CO2. Outside this range, the A matrix contains little information and the
retrieved/calculated conditional mass fraction is much more uncertain. Figure 4.17 shows
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the credible intervals for η ≥ 0.2 for temporal and spatial smoothing. As seen from
Fig. 4.17, this increase in uncertainty is better predicted by spatial smoothing as the solu-
tion is not required to be close to any predefined profile. In comparison, the width of the
credible interval remains approximately constant and is centred about the exact solution
when using temporal smoothing. Thus, at this location the recovered solution using tem-
poral smoothing is defined completely by the choice of xt.
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Figure 4.17: 95% credible intervals (shaded area) for temporal and spatial smoothing for
η ≥ 0.2, compared to the exact solution (dashed line)
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It appears that both zeroth order temporal and first order spatial Tikhonov regular-
izations are plausible methods to obtain solutions to Eq. 4.3. However, it is difficult to
determine which method is superior without a fully coupled CFD-CSE simulation compar-
ison. Zeroth order temporal Tikhonov has been applied to actual simulations with good
results. The analysis shows the recovered solution from this method strongly depends on
the solution from the previous time step. However, it does not enforce a smooth solution,
so convergence to a solution may be difficult. This problem can be avoided by including
post-processing smoothing which can stabilize the solution, but this may not be a preferred
step. Further, this method requires additional computational resources as the solution at
the previous time must be stored. This can become problematic as the number of CSE
domain increases or if detailed chemistry is included without tabulated tables. An accu-
mulation of errors is possible when temporal smoothing is considered, which could result
in large errors in the solution or divergence, particularly in areas where very little infor-
mation is available in the A matrix. The problem of error accumulation is not present
in first order Tikhonov as no information about the previous solution is used. This is an
additional benefit of using first order Tikhonov over zeroth order Tikhonov. It should be
noted that divergence of the solution has never been encountered in the fully coupled CSE
simulations completed in Chapter 3. First order spatial Tikhonov regularization does not
require any additional storage and does not rely on previous time steps, which makes this
method attractive for CSE. However, in typical CFD-CSE simulations, the mixture frac-
tion grid is non-uniform. As a result, the formulation for the smoothing matrix, L, must
be defined for each simulation. This process is further complicated if a second condition-
ing variable is introduced as it would be for partially-premixed or MILD combustion. In
this situation, a two dimensional smoothing matrix must be defined. Although first order
spatial Tikhonov regularization is more mathematically complex compared to zeroth order
temporal regularization, it appears to be a promising alternative.

4.4 Summary

A detailed study of the inverse problem encountered in CSE has been completed. It is
found that the unconditional species mass fractions obtained from the CSE simulations
contain perturbations. These perturbations may be caused by the use of a discrete mix-
ture fraction grid, which results in inaccurate predictions of the PDF for very lean mixture
fractions.

The Bayesian framework is used to investigate the impact of a smoothing prior on the
recovered solution and credible intervals. The perturbations are approximated as a func-
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tion of the mean mixture fraction and modelled using a non-uniform standard deviation. A
new data vector is calculated using a known conditional profile and then perturbed at each
location using normal distributed error, to enable a comparison between the recovered and
exact solutions. It is found that including a smoothing prior decreases the credible interval
width and the recovered solution better approximates the exact solution. As well, with the
inclusion of a smoothing prior a narrower marginal probability with a more distinct peak
is seen.

Two regularization methods, zeroth order temporal Tikhonov and first order spatial
Tikhonov, are implemented in the Bayesian framework. Credible intervals are calculated
to determine the level of uncertainty in the recovered solution. The width of the credible
intervals calculated for zeroth order temporal Tikhonov and first order spatial Tikhonov
are found to be similar. Further, for zeroth order temporal Tikhonov the credible intervals
are not necessarily smooth and are dependent on the solution from the previous time step.
In contrast, the credible intervals for first order spatial Tikhonov are smooth and not de-
pendent upon a previous solution. First order spatial Tikhonov is found to better predict
the characteristics of the credible intervals for higher mixture fraction values. Thus, first
order spatial Tikhonov regularization is a promising alternative method for recovering a
solution from the CSE inversion process.
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Chapter 5

CSE simulations of a semi-industrial
furnace

In this chapter, the non-premixed CSE formation from Chapter 3 is extended to include
an enthalpy variable in the TGLDM tabulation. This represents the first time a CSE
formulation which accounts for enthalpy in the TGLDM tabulations is applied to a semi-
industrial MILD furnace. Chapter 3 demonstrated that CSE can accurately predict the
flame characteristics of non-premixed flames, with low radiative heat loss. The semi-
industrial furnace studied in this chapter has a high radiative heat loss which requires an
additional variable in the TGLDM tabulation.

The objective of the current chapter is to determine if a CSE formulation which accounts
for changing enthalpy of the mixture can correctly predict the flow characteristics seen
in the semi-industrial MILD furnace. The CSE predictions are compared to available
experimental data for the mean axial velocity, temperature and species profiles.

5.1 CSE formulation with radiation

The CSE formulation from Chapter 3 is selected to obtain the conditional mass fraction of
CO2 and H2O as outlined in Section 3.1.1 and 3.1.2. In addition, the conditional enthalpy
is calculated by inverting the following integral

h̃(xj, t) =

∫ 1

0

〈h|η(η, t)〉P̃ (η, xj, t)dη, (5.1)
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where xj is the spatial coordinate, t the time and P̃ (η) the Favre-averaged PDF of mixture

fraction. In the present study, a presumed β-PDF distribution is used to model P̃ (η) [73].
With the addition of the conditional enthalpy the TGLDM manifolds are tabulated as a
function of mixture fraction, CO2 and H2O mass fractions, and enthalpy and the mean
chemical source term is retrieved using

ω̇k(xj, t) =

∫ 1

0

〈ω̇k|η〉(〈YCO2|η〉, 〈YH2O|η〉, 〈h|η〉)P (η, xj, t)dη. (5.2)

5.1.1 Ensemble selection

In each ensemble the conditional enthalpy, and CO2 and H2O mass fractions are assumed to
be homogeneous and are obtained via the inversion process. In the past, different methods
were applied to determine the ensembles based on a priori information about the flame.
For premixed flames, a single ensemble covering the entire CFD domain has been defined
in RANS simulations [45, 46], whereas for LES-CSE premixed simulations, the ensembles
have been selected as subsections of the CFD grid [47]. For non-premixed combustion,
the ensembles are usually defined as sections of planes perpendicular to the mean flow
direction for jet flames. In the current study, a weak-strong jet interaction is observed and
significant recirculation of burn products is present. Therefore, the conditional averages
may vary along planes perpendicular to the mean flow direction. Thus, the ensembles are
defined as rectangular sections of the CFD domain with a higher density of CSE ensembles
near the fuel/jet interaction. Two simulations are completed to test the sensitivity of the
CSE predictions to the number of the ensemble, one with 26 ensembles and one with 52
ensembles. Further detail is reported in Section 5.4.4.

5.1.2 Chemistry tabulation

Chemistry is tabulated using the TGLDM approach [105] prior to the simulations, for com-
putational savings. The manifolds are stored in tables and are a function of four variables:
mixture fraction, enthalpy, and CO2 and H2O mass fractions. Detailed chemistry is in-
cluded using the GRI 2.11 mechanism [81] for methane-air combustion. The unconditional
chemical source term is obtained using

ω̇k(xj, t) = ρ̄

∫ 1

0

ω̇TGLDMk

〈ρ|η〉
P̃ (η, xj, t)dη, (5.3)

where
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ω̇TGLDMk = f(〈YCO2|η〉, 〈YH2O|η〉, 〈h|η〉). (5.4)

5.2 Experimental conditions

Experimental data is available from the IFRF experiments for a refractory lined semi-
industrial scale furnace [57]. The furnace dimensions are 2 m x 2 m x 6.25 m and operates
with a single burner. At steady-state operation, a fuel input of 0.58 MW is fed to the
furnace with 0.35 MW of vitiated air. The experimental fuel is natural gas containing
87.8% CH4, 4.6% ethane (C2H6), 1.6% propane (C3H8), 0.5% butane (C4H10) and 5.5%
N2 in volume. The vitiated air consists of 59.1% wet N2, 19.5% wet O2, 6.4% wet CO2,
15% wet H2O and 110 vppm (volume parts per million) dry nitric oxide (NO) [60]. The
inlet temperatures for the fuel and vitiated air are reported to be 298.15 K and 1573.15
K, respectively. The vitiated air is supplied through a 124 mm diameter central jet with a
velocity of approximately 85 m/s, while the natural gas is supplied through two injectors
located 280 mm away from the burner centreline with an injection velocity of approximately
100 m/s. In addition, the furnace exit gases are measured and contain 1.6% wet O2 and
140 vppm dry NOx. Steady state experimental measurements of the temperature and gas
composition are obtained using a suction pyrometer and a gas sampling probe, respectively.
Volume fractions for O2, CO, CO2, CH4, H2, and NOx are determined using a crank probe,
obtained under a quenching rate of 107-108 K/s [57]. Experimental turbulent velocities
were measured using Laser Doppler Velocimetry (LDV) and the furnace wall temperature
is obtained using type B thermocouples. The experimental measurements used in the
present study were obtained by traversing the furnace in the horizontal plane of the two
fuel injectors.

5.3 Computational details

The computational domain closely follows the experimental set-up. Three dimensional
RANS simulations are performed on one quarter of the furnace using two symmetry bound-
ary conditions. The computational domain consists of approximately 520,000 cells with a
higher density of cells near the fuel and vitiated air inlets. A schematic of the computa-
tional domain is also presented in Fig. 5.1.
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Figure 5.1: RANS computational domain showing one CSE ensemble and boundary con-
ditions (not to scale)

Transport equation are solved for mass (continuity), momentum, enthalpy, mixture frac-
tion and its variance, and the mass fraction of H2O and CO2. The mass fraction of CH4,
O2, CO, OH, nitrogen dioxide (NO2) and H2, are obtained by integrating the conditional
mass fraction interpolated from the TGLDM chemistry tables. In addition, a transport
equation for NO is solved in a post-processing step using the steady-state flow-field. First,
the forward and backward reaction rates of NO are obtained from the TGLDM tables
based on the steady state conditional averages of H2O and CO2. Next, the net chemical
source term of NO is calculated as

ω̇NO = ω̇+
NO + YNO

ω̇−NO
Y TGLDM
NO

, (5.5)
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where ω̇+
NO is the production of NO, ω̇−NO the destruction of NO, Y TGLDM

NO the NO mass
fraction from the TGLDM tables and YNO the mass fraction of NO from the CFD domain
[106]. In the transport equation of h, radiation is included using an optically thin radiation
model for the main combustion products H2O and CO2 and the natural gas fuel is approx-
imated as 100% CH4 following the work of Kim et al. [68]. In the present study, conjugate
heat transfer is not included for the furnace walls and the wall temperature is assumed to
be constant with an average temperature estimated from the experimental data. Closure
for the Reynolds stresses is provided using the standard k− ε turbulence model consistent
with previous studies of the same experimental conditions [60, 68, 107, 108].

5.4 Results

Velocity and temperature profiles are compared to available experimental data at six axial
locations. Species predictions for CH4, O2, CO, H2, CO2, H2O and NOx concentrations
are compared at three axial locations, the same as those selected by Kim et al. [68]. All
results presented in Sections 5.4.1-5.4.3 are obtained with 26 ensembles. In addition, the
sensitivity of the predictions to the CSE ensembles is investigated for the temperature and
species concentrations.

5.4.1 Velocity

The axial velocity profiles are compared to the experimental data at six axial locations and
shown in Fig. 5.2. As can be seen in Fig. 5.2, 15 cm downstream of the jet exit, the com-
puted velocity profile for the vitiated air is in very good agreement with the experimental
data. At this location the velocity profile of the fuel stream is slightly shifted towards the
vitiated air stream and is approximately 3 m/s higher than the experimental value at a
radial distance of 25 cm. Farther downstream, at 45 cm, the velocity close to the centreline
is in good agreement with the experimental data and a slight underprediction of approx-
imately 4.5 m/s is seen at a radial location of 25 cm. Past 45 cm, the velocity profiles
close to the centreline match the experimental data very closely. For axial locations larger
than 73 cm, the CSE simulations show a slightly stronger recirculation compared to the
experimental measurements close to the walls. The present results demonstrate that the
current simulations accurately reproduce the weak/strong jet interaction and recirculation
within the furnace.
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Figure 5.2: CSE mean velocity profiles (solid lines) compared to the experimental data
[57] (symbols) at various axial locations

5.4.2 Temperature

The temperature profiles are investigated to determine if the CSE model can accurately
predict the reaction zone location and interaction between the reaction zone and circulating
hot products. The experimental temperature profiles are compared to the CSE results in
Fig. 5.3.
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Figure 5.3: CSE radial temperature profiles (solid lines) compared to the experimental
data [57] (symbols) at various axial locations

Close to the nozzle at 15 cm, the CSE centreline temperature is in good agreement
with the experimental data. At this location, the peak temperature is underestimated by
approximately 5% and the temperature of the fuel jet region is approximately 20% lower
than the experimental data. The underprediction of the temperature may indicate that
the interaction between the recirculated hot products, vitiated air and the cold fuel jet
is not accurately modelled. A similar trend for the temperature is seen in [60, 68]. In
the recirculation zone the temperatures match the experimental profiles very well. Farther
downstream, at 45 cm, the calculated peak temperature is within 3% of the experimental
value, but the location of the peak temperature in the simulations is much closer to the
centreline compared to what is seen in the measurements. This suggests that the mix-
ing between the fuel and vitiated air jet is not accurately reproduced and the fuel jet is
entrained towards the centreline too quickly. At this location, the underprediction of the
temperature for radial distances between 20 and 30 cm has decreased to less than 15%
as the fuel jet continues to mix with the recirculated products. Farther downstream, the
centreline temperature is higher than the experimental data by 14% and 12%, at 73 cm and
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133 cm, respectively. Away from the centreline the predicted temperature is within 5% of
the experimental data. For the last two axial locations, 205 and 322 cm respectively, the
temperature is in good agreement with the experimental profile, with slightly lower tem-
perature compared to what is experimentally observed. The higher temperature observed
near the centreline may be a result of using the optically thin radiation model or may be
due to the overestimation of the centreline temperature upstream. A more advanced and
accurate radiation model may be required to accurately predict the temperature profiles,
and their impact on the simulation results needs to be investigated in the future. Simi-
larly, the lower temperature near the wall for axial locations 133 and 322 cm may be a
consequence of assuming a constant wall temperature for the furnace. In the experimental
data the wall temperature varies by approximately 100 K between an axial height of 15
and 322 cm. Thus, including conjugate heat transfer for the walls is expected to improve
the calculated temperature profiles near the walls.

5.4.3 Species concentration

The CO2 and CO dry volume fractions are compared to the experimental data at three
axial locations and are shown in Fig. 5.4. Near the burner exit very good agreement is
seen between the CO volume fractions and the experimental values. At this location, the
CO2 volume fractions obtained in CSE are lower than the measurements past a radial
distance of 35 cm by approximately 3%. Closer to the centreline where the vitiated air
jet and fuel jets mix, an underprediction of between 10 and 50% is observed. The lower
CO2 volume fraction indicates that production of CO2 is underestimated very close to the
burner exit. Farther downstream, at 73 cm, the CO profiles are in good agreement with the
experimental data with the peak CO volume fraction approximately 10% lower than what
is seen experimentally. The CO2 profiles at this location remain underpredicted for radial
distances between 14 and 25 cm, but follow the general trend seen in the experimental
profiles. Further, the significant increase in CO2 between these locations, which is also
observed experimentally, demonstrates that the CSE model correctly replicates a strong
reaction zone between these two locations. At the final axial location very good agreement
is found between the CSE predictions of CO2 and the experimental data. For CO the
correct magnitude is obtained from the simulations but the general shape of the profile is
not accurately captured.
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Figure 5.4: CSE radial CO2 and CO concentration (volume, dry) profiles (solid lines)
compared to the experimental data [57] (symbols) at three axial locations

The dry volume fractions of CH4 and O2 for the three axial locations are presented in
Fig. 5.5. Near the burner exit, good agreement for the O2 predictions is observed. At
the same axial distance, the peak of the CH4 volume fraction is significantly higher than
what is observed experimentally. A similar trend for the CH4 volume fraction is also seen in
[60, 68], using the EDC, PDF/mixture fraction and EBU combustion models. The difficulty
in accurately predicting the concentration of CH4, CO2 and temperature in the fuel jet has
been observed for different combustion models [60, 68, 108]. Mancini et al. [109] further
investigated this phenomenon and determined that the inability to accurately model the
species and temperature in the fuel jet is not related to the chemistry submodel. Instead,
they determined these errors are due to limitations of the RANS approach to replicate the
structure of the weak jet [109]. Improved modelling for the weak jet structure is expected
using LES, but is beyond the scope of the current study. At 73 cm, the calculated CH4

concentration profile is in good agreement with the experimental value and the peak CH4

volume fraction is within 8% of the experimental data. The CSE simulations show a slightly
narrower CH4 profile with a peak closer to the centreline. This behavior may explain why
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the CSE results produce higher peak temperatures closer to the centreline, as shown in
Fig 5.3. For the O2 volume fraction very good agreement is seen at 15 and 73 cm. Farther
downstream, at 205 cm, the centreline O2 concentration is significantly underpredicted,
consistent with the results of Kim et al. [68] who also estimated the fuel as pure CH4.
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Figure 5.5: CSE radial CH4 and O2 concentration (volume, dry) profiles (solid lines)
compared to the experimental data [57] (symbols) at three axial locations

In addition, the volume fractions of H2 and NOx are also examined and shown in Fig.
5.6. As can be seen in Fig. 5.6, the H2 profiles are not as good as the results for CH4, O2,
CO and CO2. The H2 volume fraction is higher than the experimental profile at 15 cm and
contains two peaks, similar to the EDC predictions of Kim et al. [68]. Farther downstream,
the peak H2 volume fraction is underestimated by approximately 64% and 78% at an
axial height of 73 cm and 205 cm, respectively. The NOx concentrations are in good
agreement with the experimental measurements at 15 and 73 cm. Farther downstream,
at 205 cm, the centreline concentration of NOx is lower than the measurements. The
current TGLDM tables have some difficulty predicting the NOx concentrations due to the
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high level of NO in the oxidizer stream. Currently, the species concentrations at the start
of each trajectory are calculated using conservation of elements and a one-step chemical
mechanism, which excludes NO . The initial NO concentration at each trajectory is then
approximated based on the oxidizer and fuel mixture. Improvement of the NOx predictions
could be obtained by post-processing the NOx reaction rates similar to [60] or by improving
the TGLDM tabulation approach by using a more sophisticated method of estimating the
NO concentrations at the start of each trajectory.
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5.4.4 Sensitivity to CSE ensemble selection

In previous CSE simulations, the conditional and unconditional species mass fractions
have been shown to have some sensitivity to the definition of the ensembles. In the present
study, two different sets of CSE ensembles are selected to ensure the present results are
not affected by the definition of the CSE ensembles. First, the CO2 volume fraction and
temperature are compared. The three axial locations shown in Fig 5.4 are selected to
determine the differences in the CO2 volume fraction and temperature and are included in
Table 5.1.

Table 5.1: Maximum absolute difference between the CSE predictions for 26 and 52 en-
sembles at three axial locations. Species concentration, XCH4 , XCO2 , XO2 , XCO and XH2

are (%, dry). 15, 73 and 205 cm are axial locations

Variable 15 cm 73 cm 205 cm
T (K) 27 49 9
XCH4 1.9 1.3 0.3
XCO2 0.6 0.4 0.1
XO2 0.6 0.5 0.2
XCO 0.3 1.4 0.2
XH2 1.8 1.0 0.4

As can be seen in Table 5.1, the maximum difference in the predicted temperature is less
than 50 K. For the CO2 volume fraction, the maximum difference occurs at 15 cm with
the two simulations predicting a volume fraction of 18.3% and 18.9%, respectively. This
represents a relative difference between the two simulations of approximately 6%. Thus,
the CO2 volume fraction and temperature are not very sensitive to the ensembles selected
in the current study. Also included in Table 5.1 are the differences in the predicted species
volume fraction obtained via the TGLDM tables (CH4, O2, CO and H2). For these species
larger relative differences are seen between the two sets of ensembles. As there is not clear
improvement in the results using the refined set of ensembles, the coarser set of ensembles
is used to reduce the computational requirements of the simulation.
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5.5 Summary

In the present work, the effect of radiation on the conditional reaction rates is accounted
for by calculating the conditional enthalpy. The extended CSE approach is applied with
the standard k − ε turbulence approach to model a semi-industrial MILD furnace with
detailed measurements for temperature, velocity and species concentration.

The peak velocities and general shape of the axial velocity profiles at each axial location
are in good agreement with the experimental data. The recirculation is slightly stronger
than that seen in the experimental results and the axial velocity of the fuel jet region
is slightly underpredicted away from the centreline. The temperature profiles are also in
good agreement for most axial positions. The location of the predicted peak temperature
is closer to the centreline compared to the experimental observations, suggesting that the
mixing between the fuel jet and vitiated air jet is overestimated at this location and the
fuel jet is entrained towards the centreline too quickly. Good agreement between the pre-
dicted species concentrations and the experimental data is observed. Near the burner exit,
the CO2 concentration is lower than the experimental data near the fuel jet and a corre-
sponding higher CH4 concentration is observed, consistent with the results of [60, 68]. The
NOx concentrations are in good agreement with the experimental measurements near the
burner exit. Farther downstream the centreline concentration of NOx is found to be un-
derpredicted. The major species and temperature predictions are shown to be independent
of the CSE ensembles tested. The minor species, (H2 and CO), exhibit some sensitivity to
the CSE ensembles. However, the finer ensemble set does not improve the CSE predictions
significantly.

The current study indicates that RANS-CSE can accurately predict the species concen-
tration seen in a semi-industrial MILD furnace. Improved NOx predictions are expected
by changing the TGLDM tables to properly account for the NO in the oxidizer stream.
Further improvements are expected by extending the current formulation to LES so that
the time dependent and 3-D interaction between the weak and strong jets can be better
modelled. In addition, the implementation of conjugate heat transfer boundary conditions
for the walls and an improved radiation model could be considered to further improve the
species and temperature predictions.
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Chapter 6

Two mixture fraction CSE for MILD
combustion

This chapter is focused applying RANS-CSE in the context of a three stream MILD com-
bustion burner. The objective of the current chapter is to assess the capabilities of CSE
to accurately reproduce the velocity field, temperatures and lift-off height using the Delft-
Jet-in-Hot-Coflow (DJHC) experimental conditions [54, 55]. In the following sections, the
CSE formulation is presented, the experimental conditions and computational details are
given and the CSE results are compared with available experimental data [54, 55], previous
Eddy Dissipation Concept (EDC) results [29] and stochastic fields combustion model [9]
predictions, whenever available.

6.1 Mulitstream CSE formulation

6.1.1 Theory

CSE uses conditional averages to determine the Favre-averaged chemical source term in
a turbulent reacting flow. The principle is similar to the CMC approach. In CMC, the
conditional averages are determined by solving transport equations [24]. In contrast, in
CSE, the conditional averages are calculated by inverting an integral equation. In non-
premixed combustion, a conserved scalar called mixture fraction is commonly used as the
conditioning variable. However, in cases where the coflow is not uniform or when multiple
streams are present, an additional conditioning variable, which accounts for the variation
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in the third stream, is required to obtain accurate predictions. In MILD combustion, where
the oxygen concentration in the coflow is not constant, a second mixture fraction is needed
and can be defined [65] as

W =
YO − Y O(0)

O

Y
O(1)
O − Y O(0)

O

, (6.1)

where Y
O(0)
O and Y

O(1)
O are the minimum elemental oxygen mass fraction in the coflow

and elemental oxygen mass fraction of the air stream, respectively. By defining W in this
manner, it is independent of Z, the first mixture fraction defined according to the amount
of fuel in the flow. Z is equal to zero when no fuel is present and unity when pure fuel is
found. For the two mixture fractions the sample space variables are defined as η for Z and
υ for W . The definition of W can also be derived using elemental mass fractions following
the formulation of Bilger et al. [110], but is found to be more difficult to implement due
to the mixture fraction dependence of W and sensitivity to small errors in the measured
species mass fractions [65]. In a later study, Ihme et al. [111] refine the definition of the
oxidizer split by introducing a dependence on Z and using a modified oxidizer split that
remains statistically independent on Z. The numerical predictions reported in [65] do not
appear to be significantly different than those shown in [111].

In multiple-stream problems, where the conditional averages are conditioned on two
variables, it is reasonable to assume that first order closure is valid, as the fluctuations
about the doubly conditioned averages should be even smaller than the fluctuations about
the singly conditioned scalars [112]. Thus, the conditional chemical source term for the
kth species, 〈ω̇k|η, υ〉 can be assumed to be only a function of 〈Yk|η, υ〉, 〈T |η, υ〉, 〈Yk|η, υ〉
being the conditional mass fraction for species k and 〈T |η, υ〉 the conditional temperature.
The conditional averages are determined by inverting Eq. 6.2

Ỹk(xj, t) =

∫ 1

0

∫ 1

0

〈Yk|η, υ〉(η, υ, xj, t)P̃ (η, υ, xj, t)dηdυ, (6.2)

where xj is the spatial coordinate, t is the simulation time and P̃ (η, υ, xj, t) is the Favre-
averaged joint PDF of Z and W . Since Z and W are independent [65], it is possible

to rewrite the joint PDF as P̃ (η, υ, xj, t) = P̃ (η, xj, t) · P̃ (υ, xj, t). A presumed β-PDF

distribution is used to model P̃ (η) and P̃ (W ) [73]. The mean and variance of W and Z are
needed for the PDFs and obtained by solving transport equations. Equation 6.2 becomes

Ỹk(xj, t)︸ ︷︷ ︸
known

=

∫ 1

0

∫ 1

0

〈Yk|η, υ〉(η, υ, xj, t)︸ ︷︷ ︸
unknown

P̃ (η, xj, t)︸ ︷︷ ︸
known

P (υ, xj, t)︸ ︷︷ ︸
known

dηdυ, (6.3)
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where Ỹk(xj, t) is obtained from mean species transport equations. Thus, the only un-
knowns are the conditional averages, which are calculated via the inversion process. Once
the conditional averages are determined, the conditional chemical source terms are found
in the chemistry look-up tables. Further detail on the chemistry tabulation is given in
Section 6.1.3. Finally, the unconditional chemical source term is obtained using

ω̇k(xj, t) =

∫ 1

0

∫ 1

0

〈ω̇k|η, υ〉(η, υ, xj, t)P (η, υ, xj, t) dηdυ. (6.4)

6.1.2 Inversion method

The main challenge in the CSE combustion model resides in the inversion of the Fredholm
integral equation, as shown by Eq. 6.3. For this process, the CFD domain is divided into
CSE ensembles, consisting of a sub-set of CFD cells. In each ensemble, the conditional
averages are assumed to be homogeneous. This assumption is required for the inversion
process as it removes the spatial dependency of the conditional averages within an ensemble.
It is justified by the fact that conditional averages have been shown to vary less in space
than their unconditional counterparts [24]. Thus, Eq. 6.3 can be rewritten for a given
ensemble as

Ỹk(xj, t) =

∫ 1

0

∫ 1

0

〈Yk|η, υ〉P̃ (η, xj, t)P (υ, xj, t) dηdυ (6.5)

and the same inversion process outlined in Chapter 3 is applied.
The CSE ensembles are selected using a priori knowledge of the characteristics of

the flame. For premixed flames [45, 46], one ensemble has been defined covering the entire
computational domain. In non-premixed combustion, the conditional averages have a weak
radial dependence [24] and the ensembles are taken as a set of planes in the axial direction
[42]. Recently, a more sophisticated method has been investigated to create ensembles
for complex geometries based on a Morton order algorithm [113]. In the current study,
the ensembles are defined following the method used for non-premixed CSE from Chapter 3.

6.1.3 Chemistry tabulation

In the present study, detailed kinetics are included using the GRI-Mech 2.11 mechanism
[81] for methane/air combustion with 49 species and 277 reactions. In principle, CSE can
determine the conditional averages for all species in a given mechanism and does not require
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any chemistry tabulation. However, for computational savings, tabulated chemistry has
always been implemented in past CSE studies [42, 53]. Computational time and storage are
even more critical in LES. In recent LES-CMC calculations, tabulated chemistry has also
been implemented to determine the conditional averages [114]. In the current study, the
chemistry is tabulated using the TGLDM approach [105] prior to the simulations. Other
chemistry tabulation techniques could have been considered, but have not been investigated
in the present work.

Species mass fractions and reaction rates are tabulated as functions of the mixture
fraction, η and the oxidizer split, υ. The initial fuel mass fraction and the composition of
the oxidizer are specified by η and υ, respectively. In TGLDM, the trajectories are then
determined by solving the governing Ordinary Differential Equations (ODEs) using a stiff
ODE system solver for 0-D ignition trajectories. The trajectories end when the equilibrium
composition of the mixture is reached. The effect of strain rate on the reaction rates is
not considered in the current TGLDM tables. Differential diffusion is also neglected as it
is shown to have a minimal impact on the simulation results [29]. Differential diffusion
has also been omitted in previous LES of the same DJHC flames [9]. The experimental
studies do not report any preferential diffusion [54, 55]. The mixture fraction sample
space is discretized into 50 different values ranging from 0.003 to 0.99, with a greater
concentration of points around the stoichiometric mixture fraction of 0.02 [9, 54]. The
oxidizer split is discretized into 10 different values ranging from 0 to 1. Two species mass
fractions are selected to characterize the chemical activity. In the present study, the mass
fraction of YCO2 and YH2O are selected due to their long formation times [43] and have
been shown to work well in previous CSE studies [43, 50, 53]. By selecting these two mass
fractions as tabulation coordinates, the trajectories collapse towards a single trajectory as
the table approaches equilibrium. However, away from equilibrium the tables remain a
strong function of YH2O and YCO2 , as can be seen in Fig. 1 of [50]. Thus, the TGLDM
tables are created as functions of four variables; η, υ, YCO2 and YH2O

6.1.4 Experimental conditions

The axisymmetric burner experimentally studied by Oldenhof et al. [54, 55] is selected for
the current study. The experimental setup consists of a primary burner with a diameter
of 4.5 mm surrounded by a hot coflow, 82.8 mm in diameter, provided by a partially
premixed secondary burner. The main burner uses Dutch natural gas, while the secondary
burner consists of a ring of premixed flames with additional air injected on both sides,
resulting in a hot coflow with low oxygen concentrations. Non-uniform temperature and
species profiles are found in the coflow due to the nature of the secondary burner. The
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burner is also open to atmospheric cold air (third stream). A database for this burner
configuration consisting of different coflow temperatures, oxygen mass fractions and jet
Reynolds numbers can be found in [54, 55]. In the current study, two different burner
configurations are investigated corresponding to two different Reynolds numbers. These
two flames are selected to determine if the LES-CSE simulations can correctly predict the
change in flame characteristics and lift-off height that occurs with a change in Reynolds
number. The inlet boundary conditions for these two cases are given in Table 6.1.

Table 6.1: Experimental conditions selected for the present simulations (Red is the jet
Reynolds number, T cCO−max the maximum coflow temperature and Y c

O2
the calculated mass

flux weighted mean mass fraction in the coflow)

Simulation Case Experimental label [54, 55] Red T cCO−max [K] Y c
O2

DJHC-I 4100 DJHC-I 4100 1540 0.076
DJHC-I 8800 DJHC-I 8800 1540 0.076

Velocity and temperature measurements are available at different heights from the fuel
burner exit, 3, 15, 30, 60, 90, 120 and 150 mm. Note that no temperature measurement
is given at 15 mm and 150 mm for the DJHC-1 8800 flame. In addition for this flame,
few velocity measurements are available at 15 mm and none at 150 mm. Thus, for the
DHJC-I 8800 case, in Section 6.3, the comparison between the numerical predictions and
the experiments will focus on the axial locations of 30, 60, 90 and 120 mm. Mean velocities
and Reynolds stresses were obtained by Laser Doppler Anemometry (LDA). Temperatures
were measured using Coherent Anti-Stokes Raman Spectroscopy (CARS) with estimated
inaccuracy of 20 K [55]. The relative uncertainty in the fuel temperature is given at ± 5%
and the uncertainty in the Reynolds numbers is estimated at ± 200 for Re = 4100 and ±
300 for Re = 8800. The uncertainty in oxygen measurements is specified at ± 0.2%. No
uncertainty is provided for the velocity measurements.

6.2 Computational details

A schematic of the computational domain is shown in Fig. 6.1. The computational domain
is a cylindrical wedge with a radius of 80 mm. As suggested by De et al. [29], the
computational domain is extended past the coflow to allow for entrainment of ambient
air. In the axial direction the computational domain begins 3 mm downstream of the jet
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exit, being the first axial position with experimental data available for the inlet conditions,
and extends an additional 225 mm. Due to symmetry, a two dimensional simulation is
performed using a wedge angle of 5◦. The current grid, consisting of 31250 cells, is non-
uniform with a higher density of cells near the nozzle and close to the centreline. The
current results have been shown to be grid independent.

Figure 6.1: Schematic of the computational domain

The RANS flow and continuity equations are solved using OpenFOAM [86] with a fi-
nite volume low Mach number pressure based solver. Radiation heat loss due to the main
combustion product species, H2O and CO2, is included using an optically thin radiation
model. In previous simulations of the DJHC flames, the effect of radiation is found to be
small [29]. Thus, it is assumed that radiation will have a negligible effect on the conditional
reaction rates and non-strained adiabatic TGLDM manifolds are used.

The boundary conditions for velocity, temperature, ỸO2, turbulent kinetic energy and
turbulent energy dissipation, are determined from the experimental data taken 3 mm above
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the burner. The main fuel burner is modelled as 85% CH4 and 15% N2 by volume, has
the same calorific value as Dutch natural gas [29] and corresponds to Fuel I, from the
experiments [55]. The oxidizer inlet profiles must be approximated as there is no experi-
mental oxygen mass fraction data for radial distances smaller than 7 mm. In the present
study, the coflow boundary condition for W is estimated using the method suggested by
Kulkarni and Polifke [9]. By assuming that the oxygen concentration and temperature are
correlated, W can be calculated using

W (x) =
T ccomax

− T (x)

T ccomax
− Tair

, (6.6)

where T ccomax
is the maximum temperature in the coflow and T (x) is the local tempera-

ture. This approximation is only used to calculate the W boundary conditions for radial
distances, r, equal to or larger than 2.25 mm and is independent definition of W presented
in Eq. 6.6. For r ≤ 2.25 mm, W is set to 0 and Z set to 1. The mass fractions for the
coflow are calculated assuming equilibrium combustion, with the local elemental oxygen
mass fraction estimated using W calculated from Eq. 6.6. It should be noted that Eq. 6.6
neglects the heat transfer that may occur through the burner walls. If this heat transfer is
significant near the inner wall, Eq. 6.6 would overpredict the O2 concentration, which may
lead to an underprediction in the lift-off height. However, without detailed experimental
data estimating the heat transfer through the burner walls, the lift-off height sensitivity to
this assumption cannot be determined.

The CFD code provides the mean mixture fractions, Z and W , their variance, and the
unconditional Favre-averaged mass fractions of CO2 and H2O to CSE. The CSE routine
then calculates the conditional averages for 〈YCO2|η, υ〉 and 〈YH2O|η, υ〉 by inverting Eq.
6.3. Once 〈YCO2|η, 〉 and 〈YH2O|η, υ〉 are found, the conditional chemical source terms are
determined from the TGLDM tables. The unconditional chemical source terms are then
obtained via Eq. 6.4 and passed back to the CFD code as a chemical source term in the
species transport equation. The unconditional Favre-averaged mass fractions can then be
calculated and the process repeats until steady-state is reached. The CSE routine also
requires a minimum number of CFD cells, defined by the size of 〈Yk|η, υ〉, for the inversion
process, the number of Z bins × number of W bins. If fewer CFD cells are present, the
inversion problem becomes rank-deficient and a different regularization method is required.
For the current simulations a minimum of 500 CFD cells are required in each ensemble for
the inversion process. In the current CSE, a progress variable is not included as it would
increase the dimension of the conditional averages. For example, if ten values were used
for the progress variable 5000 conditional averages would be required. This would require
each CSE ensemble to contain a minimum of 5000 CFD cells which is not feasible for the
current RANS simulation.
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6.3 Results

The present results include radial profiles for velocity, turbulent kinetic energy, temperature
and lift-off heights for two flames, DJHC-I 4100 and DJHC-I 8800. The predictions are
compared with the experimental data and previous numerical simulations. Further, the
impact of CSE ensemble selection is examined.

6.3.1 Velocity and turbulent kinetic energy

To ensure that the flow field is properly modelled two turbulence models, the standard
k − ε [115] and realizable k − ε [116] are considered. For the DJHC-I 4100 flame both the
k − ε and realizable k − ε turbulence models are found to predict similar velocity profiles
with a slight advantage to the standard k− ε turbulent model. The radial velocity profiles
using the k − ε turbulence model at various axial locations are shown in Fig. 6.2. As seen
in Fig. 6.2, the CSE velocity profiles are in very good agreement with the experimental
data. For the DJHC-I 8800 flame the realizable k − ε turbulence model is found to better
predict the velocity profile, consistent with the observations of De et al. [29]. The velocity
profiles for the DJHC-I 8800 flame are also in good agreement with experimental data and
are shown in Fig. 6.3.
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Figure 6.2: CSE mean axial velocity profiles in the radial direction (solid lines) compared
to experimental data [54, 55] (symbols) at various axial locations for the DJHC-I 4100
flame
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Figure 6.3: CSE mean axial velocity profiles in the radial direction (solid lines) compared
to experimental data [54, 55] (symbols) at various axial locations for the DJHC-I 8800
flame
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The turbulent kinetic profiles for the two flames are also examined and are shown in
Figs. 6.4 and 6.5. A slight underprediction of the turbulent kinetic energy centreline
profiles is observed in the CSE results for both flames. Downstream of the nozzle past 30
mm the radial turbulent kinetic energy profiles closely follow the experimental data.
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Figure 6.4: CSE mean turbulent kinetic profiles in the radial direction (solid lines) com-
pared to experimental data [54, 55] (symbols) at various axial locations for the DJHC-I
4100 flame
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Figure 6.5: CSE mean turbulent kinetic profiles in the radial direction (solid lines) com-
pared to experimental data [54, 55] (symbols) at various axial locations for the DJHC-I
8800 flame

6.3.2 Temperature

The radial temperature profiles for the DJHC-I 4100 flame are shown in Fig. 6.6 for four
axial locations and compared with the experimental data [54, 55], standard EDC [29] and
LES-stochastic fields [9] results. Close to the nozzle at 30 mm, the CSE results match the
experimental data and previous numerical simulations closely. This location is upstream of
the lift-off height. Thus, the combustion model selected is not expected to have a significant
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impact on the calculated temperature profiles. Farther downstream, at 60 mm, the CSE
temperature profile is very close to the experimental data. Only a slight overprediction on
the order of 10% is seen 10 mm from the centreline, which is similar to the results shown
in the LES-stochastic fields [9]. For comparison, the standard EDC model overestimates
the temperature at this location by approximately 25%. Past 10 mm, when compared to
previous simulations, the CSE temperatures are in better agreement with the experimental
data. Similar trends can also be seen at 90 and 120 mm downstream of the nozzle: the
CSE and LES-stochastic fields overpredict the peak temperature by less than 10% and
for radial distances larger than 15 mm, the CSE temperature profiles are in excellent
agreement with the experimental data. For comparison, previous RANS-EDC overpredict
the peak temperature by approximately 20%-25%. The improvements seen in the CSE
results as compared to the EDC model, can be attributed to the inclusion of a second
mixture fraction. The differences between the CSE predictions and the stochastic fields
model may be due to different mesh geometries and differences in the model formulation.

The predicted radial CSE temperatures are presented in Fig. 6.7 at the same previous
four axial locations for DJHC-I 8800. Note that only the experimental data [54, 55] and
previous LES [9] are available for this flame. At 30 mm downstream from the nozzle, the
CSE temperatures are in close agreement with the experimental values and comparable to
the LES results [9]. Farther downstream at 60 and 90 mm, CSE produces temperatures
that are higher than those seen in the experiments from the centreline to approximately
15 mm. The peak temperature is overpredicted by approximately 10%. The CSE results
are very close to the LES predictions between the centreline and approximately 15 mm
in the radial direction. In the second part of the flame, the predicted temperatures are
in very good agreement with the experimental profiles and CSE performs better than
the LES-stochastic fields. At 120 mm, the temperature overprediction seen at 60 and 90
mm is accentuated and for radial distances larger than 15 mm, the temperatures remain
overpredicted to a smaller extent. For this last location, the LES results are closer to
the experiments for radial locations smaller than 15 mm, but do not agree as well in the
second part of the flame. The CSE temperature overprediction is attributed to inaccurate
modelling of the entrainment between the ambient air and coflow in the current RANS.
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Figure 6.6: CSE radial temperature profiles (solid lines) compared to previous numerical
results, standard EDC [29] (dot dashed line) and stochastic fields combustion model [9]
(dashed line), and experimental data [54, 55] (symbols) at various axial locations for the
DJHC-I 4100 flame
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Figure 6.7: CSE radial temperature profiles (solid lines) compared to previous numerical
results, stochastic fields combustion model [9] (dashed line), and experimental data [54, 55]
(symbols) at various axial locations for the DJHC-I 8800 flame
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6.3.3 Lift-off height

In the experiments [54, 55], the lift-off height is determined using the probability of encoun-
tering a flame pocket, defined as a location containing a OH mass fraction of 10−3. The
same criterion is applied to the LES results [9] and a good agreement is found between LES
and experiments. However, this method needs instantaneous values and is not applicable
to RANS simulations. In the present study, a different criterion is applied, inspired from
the work of De et al. [29]: the mean mass fractions of OH, ỸOH , for cells with mean mixture

fractions in the range 0.065 ≤ Z̃ ≤ 0.075 are plotted as a function of the axial distance for
the two flames. Other mixture fraction ranges are expected to produce different predictions
of lift-off height. However, without being able to apply the experimental criterion, only
approximate values and general trends can be obtained. The lift-off height corresponds
to the axial distance when the mean OH mass fraction reaches 10−3. This method still
provides an indication of the capability of CSE to accurately predict the lift-off height.
For the DJHC-I 4100 and DJHC-I 8800 flames, the CSE lift-off height is found to be 55.5
mm and 46 mm, respectively. With a different criterion, defined based on the probabil-
ity of finding a flame pocket at a given axial location, the experimental lift-off height is
80 mm for DJHC-I 4100 and 78 mm for DJHC-I 8800. RANS-CSE simulations correctly
predict a lower lift-off height for the DJHC-I 8800 flame, due to increased entrainment of
the surrounding coflow, in agreement with the experimental observations. However, the
predicted lift-off height appears to be underpredicted compared to the experimental val-
ues. A possible explanation for the observed underprediction is that a measure of small
scale straining is not included in the current CSE formulation. Thus, the effect of strain
on autoignition and local extinction cannot be captured. This problem could be avoided
by including an additional dimension to the model to account for small scale straining.
For further improvement and direct comparison with the experiments, CSE needs to be
implemented in LES.

6.3.4 Conditional mass fractions

In the current CSE method, the conditional mass fractions are used to determine the
conditional reaction rates. In the present study, conditional profiles are calculated for
〈YCO2|η, υ〉 and 〈YH2O|η, υ〉 for the 12 CSE ensembles. There is no experimental data
available for the conditional averages. For illustration, the conditional mass fraction of
CO2 for the DJHC-I 8800 flame is presented in Figs. 6.8a) and b) at 90 mm and 225 mm,
respectively. As can be seen in Fig. 6.8a), 〈YCO2|η, υ〉 reaches a maximum at Z = 0.0237
and W = 0.11. For comparison, at 225 mm ( Fig. 6.8b)), corresponding to the last
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ensemble, the maximum value of 〈YH2O|η, υ〉 occurs at Z = 0.062 and W = 0.44. This
demonstrates that as ambient air is entrained, the peak of 〈YCO2|η, υ〉 shifts towards the
stoichiometric mass fraction in pure air.
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Figure 6.8: Conditional mass fraction of CO2 at two axial positions, 90 mm and 225 mm

6.3.5 Sensitivity to CSE ensemble selection

The non-premixed CSE simulations from Chapter 3 have shown that the predictions ob-
tained using CSE can be sensitive to the size and location of the ensembles used for the
inversion process. In the current study, two simulations using 8 and 12 CSE domains
have been performed to determine the sensitivity of the CSE predictions to the ensemble
selection. Both the temperature and lift-off height are used as indicators to ensure the
CSE ensembles selected has minimal impact on the solutions. The maximum temperature
difference between the two simulations is approximately 10 K, or less than 1%. Thus, it can
be concluded that the temperature profiles are independent of the CSE ensembles selected
in the present study. Figure 6.9 presents the predicted ỸOH profile for the DJHC-I 4100
flame using 8 and 12 CSE ensembles. For illustration, only the profiles for the DJHC-I
4100 flame are shown, but similar conclusions are found for the DJHC-I 8800 flame. It
can be seen that the ỸOH predictions are very similar until approximately 50 mm in the
axial direction. A small difference is seen between the two simulations at 30 mm but the
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shape remains almost identical. As shown in Fig. 6.9, the predicted lift-off height varies
with the number of CSE ensembles. However, the difference in the predicted lift-off height
is approximately 2 mm which is less than the difference seen by changing the turbulence
model. The number of CSE ensembles may be further increased to refine the lift-off height
predictions. However, there is a limit to how many CSE ensembles can be used, as each
CSE ensemble in the current simulations must contain a minimum of 500 CFD cells for the
inversion process to remain accurate. Further, as shown in Chapter 3 the computational
time required increases as the number of CSE ensembles gets larger. As the temperature
is independent of the CSE ensembles selected and difference in the predicted lift-off height
is small, less than 4%, the present results are considered independent of further CSE en-
semble increase.
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Figure 6.9: Sensitivity to CSE ensemble selection: CSE predicted ỸOH profiles as a function
of axial height using 8 (dashed line) and 12 (solid line) CSE ensembles for the DJHC-I
4100 flame
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6.4 Summary

For the first time, CSE was implemented to model the DJHC burner by introducing a
second mixture fraction to account for the variation in the coflow. Two different flames
were considered corresponding to DJHC-I 4100 and DJHC-I 8800.

For the DJHC-I 4100 flame the standard k−ε turbulence model was found to accurately
predict the radial velocity profiles. The realizable k− ε turbulence model produced better
velocity profiles for the DJHC-I 8800 flame, consistent with the observations of De et al.
[29]. In both flames, the predicted turbulent kinetic energy was in good agreement with
the experimental data.

For the DJHC-I 4100 flame, the radial CSE temperature predictions were in close
agreement with the experimental data and CSE performed better compared to RANS-
EDC [29] and LES-stochastic fields [9]. For the DJHC-I 8800 flame, at 30, 60 and 90 mm
downstream of the nozzle, in the first half of the flame near the centreline, the radial CSE
temperature profiles were slightly larger than the experimental values, but of comparable
quality compared to the LES-stochastic field results [9]. In the second half of the flame,
the CSE predictions were in close agreement with the experimental results. The CSE
temperature predictions were not as good for the last axial location, in particular for
radial distances smaller than 18 mm. The discrepancies in the temperature predictions
were attributed to some inaccuracies in predicting the entrainment of the ambient air and
coflow due to RANS limitations.

CSE correctly predicted the trend of lift-off height decreasing with increasing Reynolds
number. Although the lift-off height criterion is different, the predicted lift-off height
appeared underpredicted compared to the experiments.

Two different numbers of CSE ensemble were tested. The temperatures were found to
be independent of the CSE ensembles selected and the difference in the predicted lift-off
height was less than 4%. Thus, the results are considered to be independent of further
CSE ensemble increase and demonstrate that RANS-CSE using two mixture fractions as
conditioning variables, can capture the main properties of MILD combustion for the DJHC
flame.
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Chapter 7

LES-CSE applied to MILD
combustion

In this chapter, the multistream CSE formulation developed in Chapter 6 is extended to
the LES framework. This represents the first time a double conditioned CSE formulation is
applied in LES. In Chapter 6 this model was used to simulate the Delft-Jet-in-Hot-Coflow
(DJHC) burner using a RANS turbulence model, with good agreement with experimental
data. Due to the transient nature of the lift-off height, the experimental definition of the
lift-off height is based on the probability of finding a flame pocket at a given axial location.
For the RANS simulations, only an approximation of the lift-off height could be made
due to the time-averaging applied in RANS. Further, the RANS simulations were unable
to predict the time-dependent ignition kernel formation mechanism seen in these flames.
Thus, to accurately capture all the flame characteristics, LES is required.

The objective of the current chapter is to further explore the ability of CSE to correctly
predict the flow characteristics seen in the Dutch natural gas DJHC flames. The CSE
predictions are compared to available experimental data [54, 55] for the mean axial velocity,
axial velocity fluctuation, temperature and lift-off height. In addition, the ability of CSE to
reproduce the ignition kernel formation mechanism seen in the DJHC flames is examined.
Finally, the sensitivity to the coflow inlet boundary conditions is investigated.

7.1 LES formulation for mulitstream CSE

In the present work, simulations are performed using the two mixture fraction CSE for-
mulation for multistream combustion problems developed in Chapter 6, applied in the
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LES framework. In the context of LES, the filtered conditional chemical source term is
expressed in terms of conditional filtered means. Following the work of Bushe and Steiner
[39], the doubly conditional filtered operation is defined as

〈f(xj, t)|η, υ〉 =

∫
V
f(x′, t)δ[η − Z(x′, t)]× δ[υ −W (x′, t)] G(xj, x

′)dx′

P (η, υ, xj, t)
, (7.1)

where V is the spatial domain over which the filtering occurs, f may be any scalar of
interest such as species mass fraction, temperature or chemical production, xj is the spatial
coordinate, t the time, δ the delta function and P (η, υ, xj, t) the subgrid joint PDF or
Filtered Density Function (FDF) given by

P (η, υ, xj, t) =

∫
V

δ[η − Z(x′, t)]× δ[υ −W (x′, t)]G(xj, x
′)dx′. (7.2)

A Favre joint FDF, P̃ (η, υ, xj, t), can also be defined as

P̃ (η, υ, xj, t) =
〈ρ(xj, t)|η, υ〉 P (η, υ, xj, t)

ρ(xj, t)
. (7.3)

The unconditional filtered chemical source term for species k, ω̇k, is determined by inte-
grating the conditional filtered chemical source term multiplied by the joint FDF over both
mixture fraction spaces,

ω̇k(xj, t) =

∫ 1

0

∫ 1

0

〈ω̇k|η, υ〉(η, υ, xj, t)P (η, υ, xj, t) dηdυ. (7.4)

Using the fact that Z and W are independent [65], the joint FDF can be rewritten as

P (η, υ, xj, t) = P (η, xj, t) · P (υ, xj, t), (7.5)

with a presumed β-FDF distribution to model P (η, xj, t) and P (υ, xj, t) [73]. The pre-
sumed β-PDF is shown to be inaccurate in the context of premixed combustion [117, 118].
However, it provides a reasonable description of the subgrid mixture fraction distribution
in LES for non-premixed combustion [119] and is commonly used for the mixture fraction
FDF [120]. Without any further information of the FDF shape in the present three-stream
conditions and for consistency with the RANS simulations from Chapter 6, the β presumed
form is selected.

The use of ensembles is similar to what is done in LES-CMC where a coarse CMC grid
is defined for the solution of the CMC equations and the flow equations are solved on the

114



LES grid [121]. This also introduces an inconsistency between the definition of the spatial
LES filter and the coarser spatial filter assumed for the conditionally filtered averages.
However, in LES-CSE, the transport equations for the main species are filtered and solved
at the LES grid level. The size of each ensemble may be compared with the integral length
scale for the current conditions. Further investigation is needed to assess the impact of the
LES-CSE filter width on the numerical predictions.

7.2 Computational details

The three dimensional computational domain closely follows the experimental set-up and
consists of a cylinder with a radius of 80 mm and extends 225 mm in the axial direction.
Boundary conditions for mean velocity and temperature at the inlet are specified based
on measured experimental data corresponding to the two cases shown in Table 6.1. A
schematic of the computational domain is also presented in Fig. 7.1. The grid includes
approximately 1.5 million cells and is non-uniform with a higher density of cells near the
nozzle and close to the centreline. As a result, the filter widths range between 0.16 mm and
2.7 mm. In particular, in the flame stabilization region, the filter width is approximately
0.65 mm and 0.80 mm for the DJHC-I 4100 and DJHC-I 8800 flames, respectively. The
filter width values may be compared with the turbulent length scales determined in the
experiments. In the experimental investigation, the integral and Taylor length scales are
evaluated at two different heights for each flame [54]. For the two flames, the integral
length scale is found to vary between 2 and 5 mm and the Taylor length scales are between
1 and 3.5 mm [54]. The Kolmogorov length scale is estimated to be on the order of 10−4 m
[54]. Thus, the filter widths remain below the experimental values for the integral length
scale, smaller or on the same order as the values reported for the Taylor length scales, and
sometimes close, but always larger than the Kolmogorov length scale, consistent with what
would be expected in well-resolved LES. Several grids were tested by successive refinements
and examination of the variations of time-averaged velocities in non-burning conditions.

The LES simulations are performed using OpenFOAM [86] with a finite volume low
Mach number pressure based solver. Transport equations are solved for mass (continuity),

momentum, enthalpy, the resolved mixture fraction, Z̃, its Sub-Grid Scale (SGS) variance,

Z̃ ′′2, the resolved oxidizer split, W̃ , and its SGS variance W̃ ′′2. The transport equations

for Z̃ and Z̃ ′′2 are

∂ρ̄Z̃

∂t
+
∂(ρ̄ũiZ̃)

∂xi
=

∂

∂xi

(
ρ̄(D +Dt)

∂Z̃

∂xi

)
(7.6)
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Figure 7.1: LES computational domain showing one CSE ensemble and boundary condi-
tions

and

∂(ρZ̃ ′′2)

∂t
+
∂
(
ρũiZ̃ ′′2

)
∂xi

=
∂

∂xi

(
ρ̄(D +Dt)

∂Z̃ ′′2

∂xi

)
− 2ρ̄(D +Dt)

∂Z̃

∂xi

∂Z̃

∂xi
− ρχ̃Z , (7.7)

where D and Dt are the molecular and turbulent diffusivity, respectively. In the present
study, differential diffusion is neglected as it has been shown to have a minimal impact on
the simulation results [29]. Differential diffusion has also been neglected in a previous LES
study of the DJHC burner [9].

The transport equations for W̃ and W̃ ′′2 are

∂ρ̄W̃

∂t
+
∂(ρ̄ũiW̃ )

∂xi
=

∂

∂xi

(
ρ̄(D +Dt)

∂W̃

∂xi

)
(7.8)
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and

∂(ρW̃ ′′2)

∂t
+
∂
(
ρũiW̃ ′′2

)
∂xi

=
∂

∂xi

(
ρ̄(D +Dt)

∂W̃ ′′2

∂xi

)
− 2ρ̄(D +Dt)

∂W̃

∂xi

∂W̃

∂xi
− ρχ̃W . (7.9)

In Eqs. 7.6-7.9, the SGS scalar fluxes are modelled by a standard gradient assumption.

For example, in Eq. 7.6, ũiZ − ũiZ̃ = −Dt
∂Z̃
∂xi

. Closure of the scalar dissipation of the
mixture fraction and oxidizer split is provided using spectral arguments [122] such that

χ̃W = CχW

ε̃sgs

k̃sgs
W̃ ′′2, (7.10)

χ̃Z = CχZ

ε̃sgs

k̃sgs
Z̃ ′′2, (7.11)

where a value of 2 is used for CχW and CχZ . ε̃sgs is calculated internally by OpenFOAM
using

ε̃sgs = cε
k̃sgs

√
k̃sgs

∆
, (7.12)

where ∆ is the filter size, calculated using the cube root volume, ∆ = (∆x∆y∆z)
1
3 with

∆x, ∆y, and ∆z being the grid spacing in each x, y and z direction, respectively, cε is a
specified constant and ksgs is determined based on the SGS closure model, the constant
Smagorinsky model in the present work.

In addition, transport equations for the Favre-averaged mass fraction of the major
species, CH4, O2, H2O, CO2, CO, OH and H2, are solved to allow these species to be
transported by the main flowfield. Mass conservation is enforced for the Favre-averaged
species mass fractions in the LES solver

∂ρ̄Ỹk
∂t

+
∂(ρ̄ũiỸk)

∂xi
=

∂

∂xi

(
(D +Dt)

∂Ỹk
∂xi

)
+ ¯̇ωk. (7.13)

In Eq. 7.13, the SGS scalar fluxes are also modelled by a standard gradient assumption.
A SGS Schmidt number of 0.7 is used.

The chemical source term for each filtered species transport equation is determined in
CSE via Eq. 7.4, where 〈ω̇k|η, υ〉 is the conditional chemical source terms for species k,
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obtained from the TGLDM tables.
The filtered enthalpy equation is also solved using

∂(ρh̃)

∂t
+
∂
(
ρũih̃

)
∂xi

=
∂

∂xi

(
ρ̄(α + αt)

∂h̃

∂xi

)
+
Dp

Dt
−Q, (7.14)

where Dp
Dt

is the total derivative of the filtered pressure, α and αt are the molecular and
turbulent thermal diffusivity and Q is the radiation source term. A turbulent Prandtl
number of 0.7 is used and αt is determined using the gradient assumption. In the current
study, radiation heat loss due to the main combustion product species, H2O and CO2, is
included using an optically thin radiation model.

A first order implicit Euler method is applied to advance the transport equations in
time, using a variable time step with a maximum Courant number of 0.2. A second order
implicit backward differencing time scheme was also tested for the simulation applied to
the DJHC-I 8800 flame. Negligible differences are found for the time averaged velocity and
temperature statistics. Thus, the first order temporal scheme is kept for reduced computa-
tional cost. The convective and diffusive terms are discretized using a Normalized Variable
Diagram (NVD) gamma differencing scheme [123] and a central differencing scheme, re-
spectively. The Pressure-Implicit with Splitting of Operators (PISO) algorithm is applied
for pressure-velocity coupling with Rhie-Chow interpolation.

A constant Smagorinsky model for compressible flows included in OpenFOAM is se-
lected to close the SGS stress terms and SGS scalar fluxes with the SGS eddy viscosity,
µsgs, calculated using

µsgs = (Cs ∆)2|S̃|, (7.15)

where Cs is the Smagorinsky constant and |S̃| the magnitude of the filtered strain rate
tensor. In the OpenFoam implementation, two constants, ck and cε, need to be set. ck and
cε can be related to the standard Cs constant [124] found in the standard Smagorinsky
model using

Cs =
(c3

k

cε

) 1
4
. (7.16)

In the current simulations a range of ck and cε values are tested and best agreement with
experimental data for the velocity field is found with ck = 0.02 and cε = 0.202, correspond-
ing to Cs = 0.079.

The inlet boundary conditions for temperature, velocity and mass fraction of O2 are
determined based on the experimental data available 3 mm downstream of the nozzle.
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Turbulence at the inlet is generated using the synthetic turbulence method of Kornev and
Hassel [125] based on prescribed mean velocity profiles, the corresponding Reynolds stress
tensor and integral length scales. No turbulent fluctuations for temperature, mixture frac-
tion, oxidizer split or species mass fraction are included at the inlet. At the outlet, an
OpenFoam inletOutlet boundary condition is used for the velocity which switches velocity
and pressure between a fixed value and zero gradient depending on the direction of the
velocity. It corresponds to zero gradient for velocity when the flow is out of the domain
and a fixed value, 0.5m/s in the present setup, if there is inflow. A slip boundary condition
is imposed on the side of the domain. The pressure boundary at the inlet is set to zero
gradient and a fixed pressure of 1 atm is imposed at the outlet. The remaining boundary
conditions are identical to those specified in Chapter 6.

In the current investigation, the W inlet boundary condition is approximated based
on the temperature of the coflow. Two methods are used to calculate the temperature of
the coflow based on the available experimental data. The first approach assumes that the
temperature of the coflow is axisymmetric with the temperature calculated from a radial
line stretching from the centreline to the edge of the coflow. The second method calculates
the temperature by averaging the experimental temperature at a given radius. These two
temperature profiles are then used to calculate the W inlet condition using Eq. (6.6). The
difference between the two W profiles at the inlet differ by up to 30% with the largest
difference occurring between 5 and 25 mm in the radial direction. A sensitivity analysis is
performed to determine the effect of the hot coflow temperature on the LES-CSE predic-
tions. The difference in predicted time-averaged temperatures between the two methods
is found to be smaller than 5% across the computational domain for both DHJC flames.
In the DJHC-I 4100 flame, a 10% difference in the predicted lift-off height is seen between
the two methods. For the DJHC-I 8800 flame, the difference between the predicted lift-off
height is much smaller differing by less than 3%. Thus, the temperature predictions do not
appear to be sensitive to W inlet condition for any Reynolds number, whereas the lift-off
height shows some small sensitivity. For the present simulations, the coflow temperature
is calculated by averaging the experimental temperature at a given radius. It should be
noted that Eq. 6.6 neglects the heat transfer that may occur through the burner walls.
If this heat transfer is significant near the inner wall, Eq. 6.6 would overpredict the O2

concentration, which may lead to an underprediction in the lift-off height. However, with-
out detailed experimental data estimating the heat transfer through the burner walls, the
lift-off height sensitivity to this assumption cannot be determined.

In the current implementation of LES-CSE, the resolved mixture fraction, Z̃ and ox-
idizer split W̃ , their SGS variance and the resolved unconditional Favre averaged mass
fractions of CO2 and H2O are first passed to the CSE routines. Based on these inputs, the
conditional averages for 〈YCO2|η, υ〉 and 〈YH2O|η, υ〉 are obtained by inverting the Fredholm
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integral. Using the calculated conditional averages, the conditional chemical source terms
for all the species are found from the TGLDM look-up tables. Next, the unconditional
chemical source terms are obtained via Eq. 7.4 and used by the CFD code as a chemical
source term in the species transport equations. The transport equations for the uncon-
ditional Favre averaged resolved mass fractions are then solved and the process repeats.
An analysis for the computational time required to complete a single time step has been
conducted to determine the relative cost of the CSE combustion model compared to the
LES code. It is found that approximately 80% of the computational time is spent by the
CSE routine. Within the CSE calculations, approximately 66% of the computational time
is used for the integral inversion with the remaining time spent retrieving the conditional
reaction rates from the tables and determining the unconditioned reaction rates. Thus,
by implementing more efficient numerical methods for the integral inversion, a significant
reduction in the computational time required for LES-CSE is expected. The current CSE
implementation follows what is done in the previous RANS-CSE calculations from Chap-
ter 6. Instead of solving the transport equations for the species mass fractions, it is also
possible to retrieve the conditional species mass fractions directly from the TGLDM tables
without solving the transport equations for the species, except for CO2 and H2O. Both
approaches include modelling and numerical errors, which will need to be accurately as-
sessed in the future. The present experimental data sets do not have any measured species
concentrations. Thus, predicted mean or conditional species mass fractions cannot be com-
pared and evaluated against experimental values.

For the inversion, it is assumed that the conditional averages within a given ensemble
are homogeneous and the inversion problem is discrete ill-posed. As a result, a minimum
number of LES cells is required for the inversion process. The minimum number of LES
cells, Nmin, is determined by the number of bins used to discretize the conditional averages
(number of η bins multiplied by number of υ bins). In the event that a CSE ensemble
has fewer LES cells than Nmin the inversion problem becomes rank-deficient and a new
regularization method would be required. In the current simulations, the CSE ensembles
are defined following the method used for non-premixed CSE from Chapter 3. In the pre-
vious RANS-CSE study of the same flames, a minimum of 8 CSE ensembles, defined as
axial slices of the CFD domain, were needed to obtain an ensemble independent solution.
For the present LES, a total of 64 CSE ensembles following the domain decomposition
for parallel computation, are used to ensure an ensemble independent solution. First, the
domain is divided into 32 axial slices, defined as planes perpendicular to the centreline
axis. Each axial slice is further divided in half along the centreline, as shown in Fig. 7.1.
In previous RANS-CSE calculations [46, 53], the predictions are shown to be sensitive to
the number of CSE ensembles, but to a relatively small degree. Further investigation is
needed for the most suitable choice of CSE ensemble in the context of LES.
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For post-processing of the present LES-CSE results, statistics are collected over ten
flow-through times (one flow-through time corresponds to the length of the computational
domain divided by the bulk fuel jet velocity) after steady-state conditions are reached.
This corresponds to approximately 64,000 and 60,000 time steps for the DJHC-I 4100 and
DJHC-I 8800 flames, respectively. For the DJHC-I 8800 flame, data is also collected over
approximately 100,000 time steps to check the sensitivity of the time-averaged values to
the time period. The differences between the statistics calculated using 60,000 time steps
and those computed over 100,000 time steps are found to be negligible. Thus, values are
collected over ten flow-through times to save computational time. The resolved temper-
ature and velocity fields are then time-averaged. The resolved time-averaged fluctuating
quantities are calculated as 〈u′iu′i〉 = (〈(ũi)2〉 − 〈ũi〉2),〈u′iu′j〉 = 〈ũiũj〉 − 〈ũi〉〈ũj〉 where the
brackets represent time averages and ũi is the instantaneous Favre-averaged ith velocity
component. The temperature rms is calculated as 〈T ′〉 = (〈(T̃ )2〉 − 〈T̃ 〉2)1/2 . In the
current study, unresolved fluctuations have been neglected assuming that they have a neg-
ligible contribution to rms, as commonly done in LES [126, 127]. This assumption will
need to be verified in the future. Further, following the method proposed by Veynante and
Knikker [126], time-averaged statistics and time-averaged density weighted statistics (Eq.
8 in [126]) were also calculated and compared as a post-process. The differences between
the two sets are found to be negligible within the flames. Thus, in the present investigation,
the time-averaged statistics are assumed to be representative of the turbulent flow, mixing
and temperatures fields. For consistency with the experimental data, the time-averaged
LES-CSE results are extracted from the (x,z) centreplane.

In addition to the comparison of the LES filter width with the turbulent length scales
included at the beginning of the current section, the present LES resolution may also be
examined in terms of turbulent kinetic energy resolved. A simple criterion may be applied
by calculating the amount of resolved turbulent kinetic energy, kres, relative to the total
kinetic energy, kres + ksgs, such as

R =
kres

ksgs + kres
. (7.17)

In Eq. 7.17, kres corresponds to 1
2
(〈u′2〉+ 〈v′2〉+ 〈w′2〉), and ksgs is retrieved directly from

the LES code using the Smagorinsky model and time averaged. Pope indicates that this
ratio R must be at least equal to 0.8 for well-resolved LES everywhere in the domain
[128]. For the DJHC-I 4100 and 8800 flames, approximately 94% and 91% of the total
turbulent kinetic energy is resolved over the entire computational domain. For illustration,
the values of R are shown on the centreplane in Fig. 7.2 for the two flames selected. As
can be seen in Fig. 7.2, near the centreline and in the fuel/coflow mixing layer over 80% of
the turbulent kinetic energy is resolved, except for a small region close to the nozzle exit.
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(a) DJHC-I 4100 (b) DJHC-I 8800

Figure 7.2: Resolution of the turbulent kinetic energy on the centreplane using Eq. 7.17
for the two flames under consideration. The isoline corresponding to R = 0.8 is also shown
to distinguish between the well-resolved and under-resolved regions

In the shroud air and the beginning of the coflow less than 80% of the turbulent kinetic
energy is resolved, due to the very low turbulence levels at these locations. The kinetic
energy ratio, R, as shown in Fig. 7.2, is similar to what is displayed in Fig. 4 of [63] for
the same DJHC flames.
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7.3 Results

7.3.1 Turbulent flow field statistics

In the absence of detailed experimental measurements for Z, W or any species concen-
trations, the accuracy of the predicted turbulent mixing field cannot be assessed directly.
However, the comparison of the turbulent flow field quantities with available experimental
data may be used as an indicator to determine if turbulent mixing is properly captured
in the present LES. The radial profiles of time-averaged resolved axial velocity, 〈U〉, are
shown in Fig. 7.3 for the DJHC-I 4100 flame and Fig. 7.4 for the DJHC-I 8800 flame,
at different axial locations across the computational domain, and compared with available
experimental data [54, 55].
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Figure 7.3: LES-CSE time-averaged resolved axial velocity profiles in the radial direction
(solid line) compared to RANS-CSE numerical predictions (blue line) and compared to
experimental data [54, 55] (symbols) at various axial locations for the DJHC-I 4100 flame
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As can be seen in Fig. 7.3, for axial locations close to the nozzle, 15 and 30 mm, the
predicted velocity profiles are in excellent agreement with the experimental data. Farther
downstream, past 30 mm, the LES time-averaged axial velocities remain close to the ex-
perimental values, but near the centreline, the axial velocity is underpredicted by between
16% and 19% depending on the axial location.
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Figure 7.4: LES-CSE time-averaged resolved axial velocity profiles in the radial direction
(solid line) compared to RANS-CSE numerical predictions (blue line) and compared to
experimental data [54, 55] (symbols) at various axial locations for the DJHC-I 8800 flame

For the DJHC-I 8800 flame, as displayed in Fig. 7.4, similar trends can be seen. Close
to the nozzle, at 30 mm, the time-averaged resolved axial velocity is well predicted, within
4% of the experimental data. Farther downstream, at 60, 90 and 120 mm, a lower centre-
line velocity is seen in comparison with the experimental values. The underprediction of
the centreline velocity ranges from 30% at 90 mm to 40% at 120 mm. The discrepancies
observed in the predicted axial velocity can be explained by inaccuracies in the modelled
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entrainment of the hot coflow with the fuel jet. It should also be noted that for the DJHC-I
4100 flame, the axial locations of 15 and 30 mm are clearly below the lift-off height and
for the DJHC-I 8800 flame, the lift-off height is approximately 80 mm. Further discussion
on the lift-off height is included in Section 7.3.3. Thus, flow field discrepancies at axial
locations below the lift-off height may be mostly attributed to the modelled turbulent mix-
ing even if some ignition kernels can occur below the lift-off height. At positions inside
the burning region, additional sources of discrepancies are possible and would come from
the description of the turbulence-chemistry interactions and the chemical kinetics. In the
present LES implementation, the constant Smagorinsky SGS model and turbulence inlet
conditions for fuel and coflow are identified as potentially having the largest impact on
the modelled turbulent flow and mixing fields. A sensitivity analysis of the Smagorinsky
constant did not show any significant improvement in the predictions. In a previously
published LES study for the same flames including different PDF models, negligible dif-
ferences are noticed for the velocity and temperature predictions using either a dynamic
Smagorinsky model or a dynamic kinetic energy transport for a given mesh [63].

In the context of LES-CSE, a dynamic Smagorinsky may still improve the predictions
and will be investigated in the future. As described in Section 7.2, inlet turbulence is set
using synthetic turbulence. Close to the nozzle, the time-averaged axial velocity is well-
predicted in comparison to the experimental data, as shown in Figs. 7.3 and 7.4. However,
inaccuracies may be present for the radial velocity components and fluctuating components
which are not visible directly in the axial velocity predictions and may have an impact for
the turbulent flow field farther downstream. These quantities are examined to refine the
assessment of the present LES predictions.

Also shown in Figs. 7.3 and 7.4, are the RANS predictions previously obtained in Chap-
ter 6. In comparison to the LES-CSE results, the RANS-CSE calculations produce higher
centreline velocities. In both flames, at 30mm, the RANS-CSE predictions overestimate
the centreline velocity, whereas the LES-CSE centreline velocity is in very good agreement
with the experimental data at this location. Farther downstream, the RANS-CSE results
are in very good agreement with the experimental data, and agree well with the LES-CSE
results away from the centreline.

The radial profiles of time-averaged resolved radial velocity, 〈V〉, are given in Fig. 7.5
for the DJHC-I 4100 flame and Fig. 7.6 for the DJHC-I 8800 flame, at different heights,
and compared with available experimental data [54, 55]. For both flames, the agreement
between the LES predictions and experimental values are not as good for the radial velocity
component compared to what is observed for the axial component, in particular close to
the nozzle, at 15 mm and 30 mm.
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Figure 7.5: LES-CSE time-averaged resolved radial velocity profiles in the radial direction
(solid line) compared to RANS-CSE numerical predictions (blue line) and compared to
experimental data [54, 55] (symbols) at various axial locations for the DJHC-I 4100 flame

Farther downstream, at 120 mm and 150 mm for the DJHC-I 4100 flame (Fig. 7.5)
and 120 mm for the DJHC-I 8800 flame (Fig. 7.6), the LES radial velocity is in reasonable
agreement with the experimental profiles. For the radial velocity profiles, the RANS-CSE
and current LES-CSE predict similar profiles, both in shape and magnitude. The discrep-
ancies observed close to the fuel and coflow inlets may point towards some inaccuracies
in the inlet conditions. It should be noted that the rms level for the radial component
measured in the experiments is high, exceeding 3.5 m/s for some radial velocities between
-1 and 1 m/s. These conditions are typically more difficult to capture in any simulation.
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Figure 7.6: LES-CSE time-averaged resolved radial velocity profiles in the radial direction
(solid line) compared to RANS-CSE numerical predictions (blue line) and compared to
experimental data [54, 55] (symbols) at various axial locations for the DJHC-I 8800 flame

The time-averaged normal stress 〈u′u′〉 profiles are presented and compared with avail-
able experimental data in Fig. 7.7 for the DJHC-I 4100 flame and Fig. 7.8 for the DJHC-I
8800 flame. As shown in Fig. 7.7, close to the nozzle, at 15 mm, the predicted nor-
mal stresses are in excellent agreement with the experimental data, both in shape and
magnitude. Farther downstream at 30 mm, the shape of 〈u′u′〉 is captured well, but the
centreline values are overestimated by approximately 40%, when compared with the ex-
perimental values. At the axial location of 60 mm, excellent agreement between the LES
results and experimental data is regained. Farther away, past 60 mm, near the centreline,
〈u′u′〉 values are shown to be underestimated, but closely follow the shape of the experi-
mental profiles.
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Figure 7.7: LES-CSE time-averaged resolved axial velocity fluctuation profiles in the
radial direction (solid line) compared to experimental data [54, 55] (symbols) at various
axial locations for the DJHC-I 4100 flame

As can be seen in Fig. 7.8, similar observations can be made for the DJHC-I 8800 flame.
At 30 and 60 mm, the normal stresses are larger than the experimental measurements by
approximately 50%. Farther downstream, the present LES predicts the correct trends, but
underpredict the peak by 30% and 50% at 90 and 120 mm, respectively.
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Figure 7.8: LES-CSE time-averaged resolved axial velocity fluctuation profiles in the
radial direction (solid line) compared to experimental data [54, 55] (symbols) at various
axial locations for the DJHC-I 8800 flame

The shear stress 〈u′v′〉 profiles are presented for five axial locations in Figs. 7.9 and
7.10 for the DJHC-I 4100 case and the DJHC-I 8800 flame, respectively. As shown in Fig.
7.9, near the nozzle at 15 mm and at 30 mm, the shape and magnitude of 〈u′v′〉 match the
experimental profiles closely. Farther downstream, the present LES correctly predicts the
shape and general trend of decreasing 〈u′v′〉 with increased axial distance from the nozzle.
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Figure 7.9: LES-CSE time-averaged resolved u′v′ profiles in the radial direction (solid
line) compared to experimental data [54, 55] (symbols) at various axial locations for the
DJHC-I 4100 flame

As can seen in Fig. 7.10, the predicted 〈u′v′〉 is in good agreement with the experimental
data. The largest discrepancy is shown for the peak values at 30 mm with an overprediction
of approximately 40% compared to the experimental data, and at 90 and 120 mm with
an underprediction on the order of 50%. The fact that 〈u′u′〉 and 〈u′v′〉 are accurately
captured near the nozzle, as shown in Figs. 7.7 and 7.9 at 15 mm, seems to indicate that
the synthetic turbulence produces appropriate profiles for these fluctuating components.
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Figure 7.10: LES-CSE time-averaged resolved u′v′ profiles in the radial direction (solid
line) compared to experimental data [54, 55] (symbols) at various axial locations for the
DJHC-I 8800 flame

Figure 7.11 presents the time-averaged resolved turbulent kinetic energy profiles for the
DJHC-I 4100 and DJHC-I 8800 flames at different downstream locations. The turbulent
kinetic energy profiles reported in the experimental investigations are calculated using the
u′u′ and v′v′ profiles by assuming w′w′ = v′v′ [55]. The numerical resolved turbulent kinetic
energy is determined by extracting 〈u′u′〉, 〈v′v′〉 and 〈w′w′〉, as shown in Section 7.2. In the
DJHC-I 4100 flame, the shape of turbulent kinetic energy profile at 15 mm is well captured.
However, the peak values for the resolved turbulent kinetic energy are underestimated by
approximately 25%. Thus, the time-averaged resolved radial and azimuthal fluctuations at
15 mm must be underpredicted as the simulations accurately reproduce the experimental
values of axial normal stress at this location, as shown in Fig. 7.7.
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Figure 7.11: LES-CSE time-averaged resolved turbulent kinetic energy profiles in the ra-
dial direction (solid line) compared to RANS-CSE numerical predictions (blue line) and
compared to experimental data [54, 55] (symbols) at various axial locations for the DJHC-I
4100 flame (left) and DJHC-I 8800 flame (right)

A lower turbulent kinetic energy may indicate a lower amount of entrainment of the
coflow, compared to the experiment. This effect is not obvious from the time-averaged
resolved axial velocity profiles, as can be seen in Fig. 7.3, due to the low amount of en-
trainment at this location. Farther downstream at 30 and 60 mm, the turbulent kinetic
energy is in good agreement with the experimental data. However, as the 〈u′u′〉 values
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are higher than the experimental data at 30 mm, the 〈v′v′〉 and 〈w′w′〉 profiles are un-
derestimated. For the DJHC-I 8800 flame, the axial velocity underprediction seen in Fig.
7.4, may be linked to the overestimation of the peak turbulent kinetic energy at 30 mm,
by approximately 40%. Thus, at this location the entrainment of the coflow is signifi-
cantly overpredicted and the time-averaged resolved centreline axial velocity is lower for
all downstream positions. For the DJHC-I 4100 flame, at 15mm, LES-CSE and RANS-CSE
simulations yield similar turbulent kinetic energy profiles. Farther downstream at 30mm,
the RANS-CSE centreline values are much lower. Combined with the higher centreline
velocity seen in the RANS-CSE simulations (Fig. 7.3), this suggests that the velocity un-
derpredictions seen in the current LES-CSE may be due to incorrectly capturing the mixing
between the jet and coflow. At 60mm, the turbulent kinetic energy profiles obtained from
the RANS-CSE and LES-CSE calculations follow the same shape with the LES-CSE values
being slightly lower than the experimental data. Similar conclusions can be made when
comparing the turbulent kinetic energy profiles obtained for the LES-CSE and RANS-CSE
calculations of the DJHC-I 8800 flame. The velocity profiles and the Reynolds stress com-
ponents show that accurate modelling of the turbulent fluctuations is needed at the inlet to
accurately capture the mixing between the coflow and the fuel stream. The present results
along with those of Kulkarni and Polifke [9] and Bhaya et al. [63] demonstrate that this is
not a trivial task. The mixing between the fuel, coflow and ambient air is reasonably well
predicted, consistent with previous LES work completed on the DJHC-I 4100 and DJHC-I
8800 flames [9, 63].

7.3.2 Temperature predictions

The predicted time-averaged resolved radial temperature profiles are presented in Fig. 7.12
and 7.13 for the DJHC-I 4100 flame and DJHC-I 8800 flame, respectively. As can be seen
in Fig. 7.12, at 15 and 30 mm, good agreement between the LES-CSE predictions and the
experimental data is observed. As shown in Section 7.3.3, the axial locations of 15 and
30 mm are below the lift-off height and good agreement with the experimental results is
expected. Farther downstream at 60 mm, near the centreline, a slight overprediction of the
temperature can be seen, but the agreement with the experimental values remains very
good. With increasing axial distances, the overprediction of the centreline temperature
increases from 15% at 90 mm to 20% at 150 mm. In comparison with previous RANS-CSE
simulations from Chapter 6, the peak temperatures are better predicted in the current
LES-CSE. Much smoother temperature profiles are obtained in the current simulations, in
agreement with the experimental data.
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Figure 7.12: LES-CSE time-averaged resolved temperature profiles in the radial direction
(solid line) compared to RANS-CSE numerical predictions (blue line) and experimental
data [54, 55] (symbols) at different axial locations for the DJHC-I 4100 flame

For the DJHC-I 8800 flame, as shown in Fig. 7.13, close to the nozzle, at 30 mm, the
predicted temperatures are in very good agreement with the experimental data. An over-
estimation, on the order of 19%, of the centreline temperature can be observed at 60 mm.
By examining the transient evolution of temperature and OH mass fraction in the present
LES, no transient ignition kernels are seen at this location in the present results. Thus, the
higher centreline temperature appears to be caused by inaccuracies in the predictions of
the coflow entrainment. Farther downstream, at 90 and 120 mm, the overprediction of the
centreline temperature increases. At the final axial location, the peak temperature is 7%
higher than the experimental data. In comparison to the previous RANS-CSE simulations,
the current simulations predict the peak temperatures and the shape of the temperature
profile more accurately. At 120 mm, the peak temperature predicted in the simulations
is overestimated by 7%, compared to 20% in the RANS calculations. Thus, the higher
temperature seen in the RANS simulation is most likely caused by inaccurately predicting
the mixing between the ambient cold air, coflow and fuel. Only close to the centreline, the
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RANS predictions are closer to the experimental values compared to what is seen in LES,
for all axial locations. Thus, overall, the present LES-CSE calculations yield improved
predictions over the previous RANS-CSE values. Based on the LES and RANS tempera-
ture profiles, the importance of calculating the correct mixing between the three streams
is reinforced since it has a direct impact on the reaction rates and temperatures predicted
by the CSE combustion model.
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Figure 7.13: LES-CSE time-averaged resolved temperature profiles in the radial direction
(solid line) compared to RANS-CSE numerical predictions (blue line) and experimental
data [54, 55] (symbols) at various axial locations for the DJHC-I 8800 flame
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Figure 7.14: LES-CSE temperature rms profiles in the radial direction (solid line) com-
pared to experimental data [54, 55] (symbols) at various axial locations for the DJHC-I
4100 flame

In addition to the time-averaged resolved temperature profile, the temperature rms fluc-
tuations are also obtained and shown in Fig. 7.14. Similar to the work of Bhaya et al. [63],
no temperature fluctuation is imposed at the inlet of the computational domain. Thus,
the temperature fluctuations in the coflow are expected to be significantly underpredicted
near the nozzle. This can be clearly seen at 15 mm where the temperature rms values at
the centreline are underpredicted by 70 K, whereas the coflow temperature rms fluctua-
tions are underpredicted by 130 K. However, the general shape of the temperature rms
profile is qualitatively similar to the experimental profile. Downstream at 30 and 60 mm,
the rms profiles match the experimental data well close to the centreline. Away from the
centreline, the rms values are underpredicted, but the trend of increased rms fluctuations
near the coflow/air boundary is correctly reproduced. At 90 mm, the general shape of the
temperature rms profile is well captured, but the temperature rms peak, 10 mm away from
the centreline, is lower than the experimental measurement. This trend continues for the
remaining axial locations with the centreline rms fluctuations being accurately captured
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and the peak values being underpredicted.
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Figure 7.15: LES-CSE temperature rms profiles in the radial direction (solid line) com-
pared to experimental data [54, 55] (symbols) at various axial locations for the DJHC-I
8800 flame

The temperature rms fluctuations for the DJHC-I 8800 flame are presented in Fig. 7.15
and compared to experimental data. As can be seen in Fig. 7.15, the temperature rms
values are in very good agreement with the experimental data, both in terms of magnitude
and shape at 30 and 60 mm near the centreline. Away from the centreline, lower rms
values are seen and are caused by assuming zero temperature fluctuations at the inlet.
Farther downstream, at 90 and 120 mm, the general shape of the temperature rms is well
reproduced, but the peak values are lower than the experimental data. At these locations,
a noticeable increase in the temperature rms fluctuations compared to what is observed at
lower axial locations, can be seen for radial positions greater than 10 mm. This increase
in the temperature rms indicates that the interaction between the coflow and ambient air
has an impact on the flame. At the last axial location, 120 mm, the peak temperature rms
occurs at 25 mm in the radial direction and are 50% higher than the fluctuations at the
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same radial positions seen upstream at 90 mm. From the temperature profile at 120 mm,
as shown in Fig. 7.13, it can be seen that the temperature at these radial locations has
decreased compared to the value displayed upstream at 90 mm, from 1248K to 1137K, indi-
cating that colder fluid has been entrained between these positions. The present LES-CSE
calculations capture this phenomenon showing a corresponding decrease in temperature
and increase in temperature fluctuations at these locations. Further improvement in the
LES results may be obtained by including the temperature fluctuations at the coflow inlet.

7.3.3 Lift-off height predictions

Experimentally, the lift-off height is determined using the probability of the presence of
flame pockets [55]. In the experiments, the flame pockets are identified from a series
of instantaneous luminescence images. In the simulations, a criterion needs to be set to
define the flame pocket boundaries. Following what has been selected in previous numerical
results for the same DJHC flames [9, 63], in the present study, a flame pocket is defined
as a region in space where an OH mass fraction reaches a value of 10−3. Further, in
the experiments, two different methods are presented to determine the probability of the
presence of the flame pockets [55]. In the first approach, Pb1 corresponds to the probability
of finding a flame pocket anywhere on a radial line stretching outward from the burner
axis, as a function of axial height. The second definition gives Pb2 as the probability of
finding a flame pocket at a certain axial height. In other words, the first method examines
flame pockets on the centre (x,z) plane assuming that the flame is axisymmetric and the
second approach searches for flame pockets radially at a given height, sweeping over the
azimuthal direction. Consistent with the experimental calculations, in the present LES
results, for each instantaneous OH mass fraction field, a one-dimensional function b(x, t),
representing the flame pocket is applied taking the value of zero when there is no flame
pocket and the value of unity when a flame pocket is present. For Pb1, using only half of the
centre (x,z) plane, at a given axial location and given time, the presence of a flame pocket
is determined, i.e if b(x, t) = 1. This procedure is repeated for every axial location in the
LES grid for a number of time instants equally spread over the entire simulation time. For
the DJHC-I 4100 and 8800 flames 125 and 132 time instants are used, respectively. Thus,
at a given axial location, Pb1 is found by adding the number of flame pocket occurrences,
and dividing this number by the number of time instants. It should be noted that a larger
number of time instants was tested and the differences are found to be negligible with what
is determined with 125 or 132 time instants, depending on the flame. As for Pb2, the exact
same procedure is considered, but instead of considering only half of the centre (x,z) plane,
this is applied to all radial locations and all azimuthal locations at a given axial height.
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The lift-off is defined as the axial location where Pb1 or Pb2 is equal to 0.5. The first lift-off
height, Hb1, is extracted from the profile of Pb1 and the second lift-off height, Hb2, comes
from Pb2. The experimental study indicates that both definitions yield similar trends [55].
It seems that one definition is preferred to another in the experimental studies [54, 55]
depending on the magnitude of the lift-off height and the field of view of the camera.
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Figure 7.16: CSE predicted PB1 and PB2 cumulative density functions for the DJHC-I
4100 (solid line) and DJHC-I 8800 (dashed line) flames

The two probabilities, Pb1 and Pb2, are given in Fig. 7.16 as functions of the axial
distance for the DJHC-I 4100 and DJHC-I 8800 flames. The resulting lift-off heights for
both flames are presented in Table 7.1. It is interesting to note that the lift-off height is
found to be sensitive to fuel composition [55]. In particular, the lift-off height is significantly
altered when the fuel is changed from Dutch natural gas to Fuel I which is close to Dutch
natural gas in composition. The major difference in the composition is the presence of
ethane in Dutch natural gas (3.7% ethane and 0.6% higher alkanes in addition to 14.4% N2

and 81.3% CH4 by volume). The influence of the composition on the lift-off height is visible
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in Table 7.1 by examining the trends between Dutch natural gas and Fuel I. In contrast to
what is seen in Dutch natural gas, the lift-off height for Fuel I is shown to increase as the
Reynolds number changes from 4100 to 8800. As Fuel I is used in the current simulations
the remaining analysis will be compared to the experimental Fuel I data.

Table 7.1: Numerical and experimental lift-off heights using Pb1 and Pb2 for the two DHJC
flames under consideration. Lift-off heights are given in mm. DNG is Dutch natural gas.

Simulation Case LES-CSE LES-CSE DNG Fuel I Fuel I

Hb1 Hb2 Hb1 Hb1 Hb2

DJHC-I 4100 66 59 80 103 85
DJHC-I 8800 89 83 77 160 93

First, the comparison will focus on the values of Hb1. As can be seen in Table 7.1. the
LES-CSE results indicate that the lift-off height is underpredicted by 36% and 44% for
the DJHC-I 4100 and DJHC-I 8800 flames, respectively. However, the trend of increasing
lift-off height with increasing Reynolds number is properly captured. In comparison, the
predicted Hb2 lift-off heights are in good agreement with the experimental data with a
underprediction of approximately 30% for the DJHC-I 4100 flame and 10% for the DJHC-
I 8800 flames. A possible explanation for the lower lift-off heights is that the current
CSE model does not account for small scale straining and its effect on autoignition or
local extinction. This could be accommodated by adding a third conditioning variable, for
example based on strain, temperature or enthalpy, in the CSE formulation.

Another possible improvement in the current LES-CSE lift-off height predictions could
be made by changing the chemistry tabulation. Currently, two species mass fractions, H2O
and CO2, are selected to characterize the chemical activity. Kulkarni and Polifke [9] saw
significant improvements in their lift-off height predictions when changing their progress
variable from CO2 to CH2O + CO + CO2. This could be explained by the fact that H2O
and CO2 have long formation times, and therefore, may be unable to capture accurately
the effect of minor or intermediate species on the formation of OH. A similar approach
could be implemented in CSE by using a composite characteristic mass fraction for the
tables or with the addition of a progress variable as a third conditioning variable. For the
composite characteristic mass fraction, c, defined as c = CH2O + CO + CO2, the tables
would become functions of η, υ and c and a transport equation is solved for c.
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7.3.4 Flame characteristics

The behaviour of jet-in-hot-coflow flames differs significantly from conventional lifted flames,
where a single sharp flame surface moves up or down in a coherent structure and flame
stabilization may be due to flame propagation [55]. In the DJHC flames, the flame stabi-
lization is not due to flame propagation and the flame structure is not coherent or stable
[55]. Instead, flame stabilization is due to the formation of ignition kernels which grow and
convect downstream connecting to form a flame front. Six instantaneous LES snapshots
are taken from the DJHC-I 8800 flame showing the flame front, defined as ỸOH ≥ 10−3, and
velocity vectors along the centreplane are shown in Fig. 7.17. At 0 second, the flame front
is connected and unburnt pockets of reactants are seen within the flame surface. These
unburnt pockets are also seen in the LES of Kulkarni and Polifke [9] for both the DJHC-I
4100 and DJHC-I 8800 flames. After 0.44 ms, an ignition kernel forms in the coflow, in a
region of low relative velocity. At the same time, the size of the unburnt pockets within
the flame front decreases. Over the next 1.36 ms, the ignition kernel grows and is con-
vected downstream by the jet. The ignition kernel then connects with the main flame front
and a second ignition kernel, independent from the first, is seen after 2.17 ms. Thus, the
present LES-CSE calculations correctly predict the flame stabilization mechanism seen in
the DJHC-I flames qualitatively. The LES-CSE results display a flame which does not
have a single sharp flame surface that moves up or down, seen in traditional lifted flames.
Instead, the LES-CSE snapshots show a flame surface that is more random with a lift-off
height that varies significantly. In the current simulations, ignition kernels are seen below
50 mm and 72.5 mm for the DJHC-I 4100 and DJHC-I 8800 flames, approximately 18%
and 15% below the calculated lift-off height. The probability of finding a flame kernel at
or below these axial locations is approximately 0.7% and 0.8% for the DJHC-I 4100 and
DJHC-I 8800 flames, respectively. Experimentally the location of first ignition kernel is
defined as the axial height with a flame pocket probability of 0.25% [55]. For Fuel I, the
first ignition kernel is found to be approximately 18% and 27% below the measured lift-off
height for the DJHC-I 4100 and DJHC-I 8800 flames [55], respectively. Thus, the LES-CSE
results correctly predict a large variation in the flame pocket location as a function of time
consistent with the experimental observations.

141



Figure 7.17: Flame front, defined as ỸOH ≥ 10−3 , and velocity vectors at six instantaneous
time steps for the DJHC-I 8800 flame
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An instantaneous snapshot of the CH4 reaction rate and corresponding instantaneous
temperature profiles are presented in Fig. 7.18(a) and Fig. 7.18(b), respectively, to demon-
strate the chemical activity observed in the DJHC-I 8800 flame. Below 75 mm very little
CH4 is consumed, some reformation of CH4 is observed, and the temperature increases due
to hot coflow entrainment. Above 75 mm, consumption of CH4 occurs where the hot coflow
and fuel have mixed sufficiently, with the peak chemical activity occurring on the outer
edge of the flame. At these locations, a corresponding temperature increase and change
in turbulent structures are also noted. Similar observations are obtained for the DJHC-I
4100 flame.

(a) Instantaneous methane reaction rate (b) Instantaneous temperature

Figure 7.18: Instantaneous methane reaction rate and temperature for the DJHC-I 8800
flame on the centreplane. The black lines at 90 mm and 225 mm correspond to the locations
where the conditional averages are shown in Fig. 7.19
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7.3.5 Conditional mass fractions

The conditional mass fractions of CO2 are investigated to determine whether the DJHC-I
flames require two mixture fractions to accurately capture the mixing between the fuel,
coflow and shroud air. The conditional mass fraction of CO2 for the DJHC-I 8800 flame is
presented in Fig. 7.19 for each half of the computational domain, at two axial locations, 90
mm and 225 mm. At 90 mm, very little shroud air has been entrained with the fuel/coflow
mixture and the turbulent structures are relatively small. Thus, at this location, the
conditional averages are very similar for both halves of the CFD domain with the location
of maximum CO2 occurring at low values of η and υ. With increased axial height additional
shroud air is entrained and the location of maximum CO2 is expected at higher υ values.
Figure 7.19 c) and d) confirm that this expected behavior is captured in the LES-CSE
calculations. In addition, larger variations in the conditional profiles between the two halves
of the domain demonstrate that the amount of entrained shroud air can vary significantly
between the two halves of the domain. The change in the conditional profiles between 90
mm and 225 mm demonstrates that a second mixture fraction is required to accurately
capture the entrainment of the shroud air.

144



υ

η

 

 

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(a) 90 mm Left

υ

η
 

 

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b) 90 mm Right

υ

η

 

 

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(c) 225 mm Left

υ

η

 

 

0 0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(d) 225 mm Right
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7.4 Summary

A two mixture fraction CSE formulation was implemented in LES to simulate two DHJC
flames representative of MILD combustion at a laboratory scale. For the first time, a dou-
ble conditioned CSE model was successfully applied in the LES framework.

Overall, good agreement with experimental data was found for the turbulent flow field
statistics. Some discrepancies were noted, in particular near the centreline for axial loca-
tions greater than 60 mm for both flames due to inaccuracies in the coflow entrainment.
This effect was found to be higher in the DJHC-I 8800 flame. For both flames, the agree-
ment between the LES predictions and experimental values are not as good for the radial
velocity component compared to what is observed for the axial component, in particular
close to the nozzle. The identified sources of discrepancy were the constant Smagorinsky
model used in the present LES, and the inlet turbulence conditions. The present velocity
predictions are found to follow similar trends as those presented in previous LES for the
same flames [9, 63].

The predicted temperatures were also in good agreement with the experimental data.
At axial locations away from the nozzle exit, the centreline temperature is overpredicted
due to early prediction of ignition kernels by CSE and increased coflow entrainment. The
peak temperatures predicted for the DJHC-I 8800 flame by CSE were in good agreement
with the experimental data below 120 mm. At 120 mm, the peak temperature from the
CSE simulation was higher than the experimental data. Compared to the RANS-CSE
results, the peak temperatures and shape of the temperature profiles were better captured
in the present LES-CSE. As for the temperature rms, an underprediction was shown close
to the nozzle due to the fact that no temperature fluctuation was set at the inlet bound-
ary. Farther down, the temperature rms predictions were in reasonable agreement with
the experimental measurements.

The predicted lift-off heights were lower than the experimental values. However, the
trend of increasing lift-off height with increasing Reynolds number was properly captured
when the LES-CSE results were compared with the experimental data using the same fuel
composition as that in the LES-CSE. The lift-off height predictions may be improved by
adding a third conditioning variable that would reflect the effect of straining or changing
the chemistry tabulation using different chemical progress variables. Qualitatively, the
present simulations correctly predicted flame stabilization due to the formation of ignition
kernels which grow and convect downstream to form a flame front.
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Chapter 8

Conclusions and future work

8.1 Summary of main findings

In Chapter 3, CSE coupled with TGLDM for chemistry tabulation was implemented in
order to simulate a confined non-premixed turbulent methane flame. A sensitivity analysis
related to the number of CSE ensembles and ensemble size was performed. The number
of CSE ensembles was shown to have a significant impact on the results if not selected
appropriately and a sensitivity analysis was recommended for each new CSE application.
The number of points in each ensemble was shown to have an impact on the predictions.
The presented CSE calculations provided stable and converged predictions. Two different
turbulence models were used, the k− ε model with a corrected value for Cε1 and the RNG
k− ε model. Overall, the predictions for the mixture fraction were in good agreement with
the experimental data. The predicted temperatures using CSE and the k − ε turbulence
model with a modified value of Cε1 = 1.47 were shown to be in very good agreement with
the experimental data. CSE tended to slightly overpredict the peak temperature, thought
to be due to the lack of a soot model. Further, the current CSE results were of comparable
quality with previous simulations using the flamelet model [17] and CMC [16, 35].

In Chapter 4 the inverse problem encountered in CSE was investigated in a Bayesian
framework. It was found that the unconditional species mass fractions obtained from the
CSE simulations contained perturbations. These perturbations may be caused by the use
of a discrete mixture fraction grid, which resulted in inaccurate predictions of the PDF for
very lean mixture fractions. The Bayesian framework was used to investigate the impact
of a smoothing prior on the recovered solution and credible intervals. It was found that in-
cluding a smoothing prior decreased the credible interval width and the recovered solution
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better approximated the exact solution. Two regularization methods, zeroth order tempo-
ral Tikhonov and first order spatial Tikhonov, were implemented in the Bayesian frame-
work. The width of the credible intervals calculated for zeroth order temporal Tikhonov
and first order spatial Tikhonov were found to be similar. Further, for zeroth order tem-
poral Tikhonov the credible intervals were not necessarily smooth and were dependent on
the solution from the previous time step. In contrast, the credible intervals for first order
spatial Tikhonov were smooth and not dependent upon a previous solution. First order
spatial Tikhonov was found to better predict the characteristics of the credible intervals
for higher mixture fraction values.

In Chapter 5, the effect of radiation on the conditional reaction rates was accounted for
by calculating the conditional enthalpy. The extended CSE approach was applied with the
standard k−ε turbulence approach to model a semi-industrial MILD furnace with detailed
measurements for temperature, velocity and species concentration. The peak velocities
and general shape of the velocity profiles at each axial location were in good agreement
with the experimental data. The recirculation was slightly stronger than that seen in the
experimental results and the velocity of the fuel jet region was slightly underpredicted
away from the centreline. The temperature profiles were also in good agreement for most
axial positions. Good agreement between the predicted species concentrations and the
experimental data was observed. Near the burner exit, the CO2 concentration was lower
than the experimental data near the fuel jet and a corresponding higher CH4 concentration
was observed, consistent with the results of [60, 68]. The NOx concentrations were in good
agreement with the experimental measurements near the burner exit. Farther downstream
the centreline concentration of NOx was found to be underpredicted.

In Chapter 6, CSE was implemented to model the DJHC burner by introducing a sec-
ond mixture fraction to account for the variation in the coflow. Two different flames were
considered corresponding to DJHC-I 4100 and DJHC-I 8800. For the DJHC-I 4100 flame
the standard k − ε turbulence model was found to accurately predict the radial velocity
profiles. The realizable k − ε turbulence model produced better velocity profiles for the
DJHC-I 8800 flame. In both flames, the predicted turbulent kinetic energy was in good
agreement with the experimental data. For the DJHC-I 4100 flame, the radial CSE tem-
perature predictions were in close agreement with the experimental data. For the DJHC-I
8800 flame, at 30, 60 and 90 mm downstream of the nozzle, in the first half of the flame
near the centreline, the radial CSE temperature profiles were slightly larger than the ex-
perimental values and in the second half of the flame in the radial direction, the CSE
predictions were in close agreement with the experimental results. The CSE temperature
predictions were not as good for the last axial location. The discrepancies in the tem-
perature predictions were attributed to some inaccuracies in the predicted entrainment of
the ambient air and coflow due to RANS limitations. CSE correctly predicted the trend
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of lift-off height decreasing with increasing Reynolds number. Although the lift-off height
criterion was different, the predicted lift-off height appeared underpredicted compared to
the experiments. The presented results demonstrated that RANS-CSE using two mixture
fractions as conditioning variables, could capture the main properties of MILD combustion
for the DJHC flame.

Chapter 7 outlined the two mixture fraction CSE formulation implemented in LES to
simulate two DHJC flames. For the first time, a double conditioned CSE model was suc-
cessfully applied in the LES framework. Overall, good agreement with experimental data
was found for the turbulent flow field statistics. The predicted temperatures were also in
good agreement with the experimental data. At axial locations away from the nozzle exit,
the centreline temperature was overpredicted due to early prediction of ignition kernels by
CSE and increased coflow entrainment. Compared to the RANS-CSE results from Chap-
ter 6, the peak temperatures and shape of the temperature profiles were better captured
in the present LES-CSE. The predicted lift-off heights were lower than the experimental
values. However, the trend of increasing lift-off height with increasing Reynolds number
was properly captured when the LES-CSE results were compared with the experimental
data using the same fuel composition as that in the LES-CSE. Qualitatively, the present
simulations correctly predicted flame stabilization due to the formation of ignition kernels
which grow and convect downstream to form a flame front.

8.2 Summary of accomplishments

A list of the main outcomes is presented here:

• Numerical simulations of a confined non-premixed methane flame were completed
using the CSE non-premixed approach. This study investigated the sensitivity to
various CSE model parameters and showed CSE was able to accurately predict non-
premixed methane combustion.

• A detailed study of the inversion problem encountered in CSE was investigated us-
ing the Bayesian framework. This study investigated the origin of the perturbation
seen in the unconditional mass fraction in CSE and demonstrated the impact of a
smoothing prior on the recovered solution and credible intervals. Different regular-
ization methods were studied and it was demonstrated that both zeroth and first
order Tikhonov were promising regularization methods for CSE.
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• The non-premixed CSE formulation was extended to include the impact of radia-
tion of the conditional reaction rates and applied to a semi-industrial furnace. This
study showed that a RANS-CSE simulation was able to accurately predict the tem-
perature and species concentration, including NOx, for large scale realistic furnace
configurations.

• A multi-stream CSE formulation was developed and applied to the DJHC burners in
the RANS framework. This new CSE formulation was able to predict the temperature
and velocity profiles in very good agreement with the experimental data.

• The multi-stream CSE formulation was extended to the LES framework and demon-
strated that CSE was able to predict the time-dependent nature of the DHJC burners.

8.3 Future work

Two of the turbulent flames investigated in the current work use methane as a surrogate
for more complex fuels. Further investigation is needed to extend the TGLDM method
to allow for the tabulation of complex fuels such as syngas. Alternatively, a comprehen-
sive review of different tabulation approaches is required to determine if better tabulations
methods are available for CSE.

In the present work, no optimization of the inversion process has been investigated.
Currently, LU decomposition is applied which produces an exact solution with a deter-
ministic runtime. However, LU decomposition requires a square matrix which involves
calculating the ATA matrix, which can be time consuming. A detailed investigation of
the computation requirements of LU decomposition and alternative solution methods is
needed to optimize the CSE solver for large scale LES simulations.

CSE has been shown to accurately predict laboratory scale burners and semi-industrial
furnaces with simple geometries. Further work is needed to determine how CSE performs
for industrial applications with complex geometries. Specifically, methods to automatically
and dynamically select CSE ensembles during runtime would enable CSE to simulation
burners without a-priori information about the homogeneity of the conditional averages.

With the conclusion of the current work CSE has been successfully applied to non-
premixed, premixed, partially-premixed and multi-stream combustion. A study investi-
gating CSE for multi-room fire modelling would be beneficial as it would demonstrate if
CSE can be applied to fire safety applications. Specifically, an investigation of the relative
run-time requirements and prediction quality when compared to FDS [129] and FireFOAM
[130] would be required.
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