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Abstract 

A system dynamics model first developed using the software Stella 7.0.2, which explores the complex 

behavior of the financially sustainable management of water distribution infrastructure, was 

converted here into a system of coupled non-linear algebraic differential equations (DAEs). Each 

differential equation involved a time derivative on a primary variable specifying the temporal 

evolution of the system. In addition, algebraic (secondary) equations and variables specified the non-

linearity inherent in the system as well as any controls on the primary variables constraining the 

physical evolution of the system relevant to the problem at hand.  While Stella employed a Runge-

Kutta numerical strategy, the numerical DAE method used a fully-explicit, fully-implicit and Crank-

Nicolson Euler scheme combined with a fixed-point iteration to resolve the non-linearity. The Runge-

Kutta and numerical DAE solutions deviate markedly when the non-linearity of the system becomes 

pronounced. I demonstrate point-wise stability of the numerical DAE solution as the timestep is 

refined. Furthermore, the refined numerical DAE solution does not exhibit any of the spurious 

oscillations inherent in the Runge-Kutta solution and is physically correct for the problem at hand. 
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Chapter 1: Literature Review 

1.1 Urban Water Network 

Clean and safe drinking water and proper collection of waste water are essential for a healthy 

community. In 2002, the United Nations (UN) declared right to water as a human right (Knight and 

World Health Organization 2003). In Canada the majority of urban water systems are owned and 

operated by local governments. In Ontario almost all water and wastewater systems are owned by 

the municipalities. Water is recognized as a public good. Public goods are characterized by their 

non-excludability and non-rivalrous nature (Lipsey 1999). During the 1990s, municipal 

governments in Ontario were transferred the responsibility for additional services from the province. 

Amongst the competing demands on the financial resources of municipalities, water and wastewater 

infrastructure often received inadequate attention of the decision makers due to the ‘less visible’ 

nature of these assets (Evengard 2011). 

Water Opportunities and Water Conservation Act 2010, reiterates the requirement of financial 

sustainability plans for water and wastewater systems and in addition requires preparation of an 

asset management plan for physical infrastructure, a water conservation plan, and a risk assessment 

and mitigation plan (Water Opportunities and Water Conservation Act, 2010, S.O. 2010, c. 19 - Bill 

72 n.d.). Mirza and Haider (Mirza and Haider 2003) estimated the total infrastructure deficit in 

Canada over 100 billion dollars. They also estimated that bringing the Canadian water distribution 

systems to an acceptable level of performance would require expenditure of more than 6 billion 

dollars. Citing an earlier study, they report the rehabilitation needs for sanitary and combined sewer 

in excess of 4 billion dollars.  

Infrastructure is basic physical and organizational structures needed for the operation of a society 

or enterprise, or the services and facilities necessary for an economy to function. It can be generally 

defined as the set of interconnected structural elements that provide framework supporting an entire 

structure of development. Water infrastructure has varying definitions for different organizations.  

Major components of an urban system are introduced below (Grigg 2003): 

 Water supply system  

o Water source 

o Intake facilities 

http://en.wikipedia.org/wiki/Organization
http://en.wikipedia.org/wiki/Society
http://en.wikipedia.org/wiki/Business
http://en.wikipedia.org/wiki/Economy
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o Water treatment plants 

o Water distribution networks 

 Wastewater system 

o Collection and transmission plants 

o Wastewater treatment systems 

o Wastewater and sludge disposal systems 

1.1.1 Water Network Sustainability 

Most of the urban water supply networks are facing problems every day that need to be solved in 

an accurate way. In developing countries the networks are involved in several problems related to 

population, water scarcity, environmental pollution management, etc. Moreover, the networks will 

be affected by unexpected problems. The main problems are: 

 Population growth 

 Water scarcity 

 Governmental issues 

In terms of what advanced economies have suggested, the “Dublin Statement on Water and 

Sustainable Development” (The Dublin Statement on Water and Sustainable Development 1992), 

is a good example of the new trend to overcome these new problems. This statement has come up 

with some principles that are of great significance in the urban water supply networks. These are 

the followings: 

1. Fresh water is a finite and vulnerable resource, essential to sustain life, development and the 

environment. 

2. Water development and management should be based on a participatory approach, involving 

users, planners and policy-makers at all levels. 

3. Women play a central part in the provision, management and safeguarding of water. 

Institutional arrangements should reflect the role of women in water provision and 

protection 

4. Water has an economic value in all its competing uses and should be recognized as an 

economic good. 

http://en.wikipedia.org/wiki/Developing_countries
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Water_scarcity
http://en.wikipedia.org/wiki/Environmental_pollution
http://en.wikipedia.org/wiki/Economic_value
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Recently there has been quite much attention to the fact that many publicly owned water utilities 

are not managed in a self-sustainable manner. In other words, their rates do not reflect the full costs 

of providing their services. It is argued that water systems are being subsidized which is not 

economically efficient. Utility rates should reflect both capital and maintenance costs of the 

provided services. Doing so, consumers will receive proper signals about the true cost of the services 

they receive and they will make informed choices about their consumption behavior. The rates 

charged to residential and commercial customers in Ontario are only one-third and one-fifth of the 

marginal costs of water supply and sewage treatment respectively (Renzetti 1999). Under the 

Sustainable Water and Sewage Act (Sustainable Water and Sewage Systems Act, Bill 175 2002), 

Ontario’s public water utilities would be required to generate sufficient revenues to fully recover all 

of the long-term operating and capital costs. To assist the municipalities in preparing financial plans 

for ensuring the sustainability of their water and wastewater systems, Ontario’s Ministry of 

Environment issued guidelines (Younis 2010).  

In case of financial crisis, Ontario’s municipalities will embark on implementing rates based on a 

full cost coverage, which implies significant increases to the prevailing rates.  

1.1.2 Asset Management Models 

At the beginning of the 20th century, there has been little attention to infrastructure rehabilitation. 

Lack of maintenance, aging processes, application of loadings and harsh environmental 

surroundings have deteriorated the infrastructure to the extent that they are in major need of repair. 

Replacement rates of deteriorating infrastructure are less than the wearing out of the public facilities 

(Choate and Walter 1981). Most of infrastructure systems in the urban areas are owned and operated 

by municipal governments. Traditionally infrastructures were owned and operated by Federal and 

Provincial governments. Municipalities are now faced with the problem of limited financial 

resources for rehabilitation and renewal of their infrastructure assets. In this context, asset 

management combines engineering knowledge with economic and financial practices.  

US Federal Highway Administration (FHWA 1999) defines asset management as 

“a systematic process of maintaining, upgrading and operating physical assets cost 

effectively. It combines engineering principles with sound business practices and 

economic theory, and it provides tools to facilitate a more organized, logical 
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approach to decision-making. Thus asset management provides a framework for 

handling both short and long-range planning” 

For wastewater utilities US Environmental Protection Agency (EPA 2002) has defined asset 

management as 

“managing infrastructure capital assets to minimize the total cost of owning and 

operating them, while delivering the service levels customers desire. It is 

successfully practiced in urban centers and large regional sewer collection systems 

to improve operational, environmental and financial performance. Many of these 

large organizations base asset management planning on sophisticated information 

systems and extensive personnel resources” 

Three important factors of asset management are condition assessment, deterioration 

modeling and selection of optimal rehabilitation strategies.  

Fenner and Sweeting (Fenner and Sweeting 1999) presented a decision support system for 

rehabilitation of non-critical sewers. They used GIS techniques to analyze database 

containing asset information and pipe failure history. The authors suggest that given a 

rehabilitation budget, their framework can be used for identification of economically 

optimal group of pipe lengths with priority order for rehabilitation strategies. 

Lalonde et al. (Lalonde and Bergeron 2003) used reliability theory for modeling asset 

failure risk and employed multi-criteria decision support tools in their research. They 

formulated the problem at three level analyses, segment level, network level and strategic 

management. They reported that the segment level problem could be resolved on the basis 

of bi-criteria methods.  

Male et al. (Male, Walski and Slutsky 1990) used a net present value analysis to find the 

optimum replacement policy for a group of water mains.  

Wirahadikusumah et al. (Wirahadikusumah, et al. 1998) used probabilistic dynamic 

programming in conjunction with a Markov chain model to perform life cycle cost analysis.  
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Giustolisi (Giustolisi, Kapelan and Savic 2006) have used and evolutionary polynomial 

regression method to predict the burst rates of water mains. The study compared the 

reduction in burst rates after pipes’ replacement against the cost of replacement. This is 

achieved by means of a genetic algorithm based multi-objective optimization procedure. 

Multi-objective genetic algorithm approach was adopted by Dandy and Engelhardt (Dandy 

and Engelhardt 2006) to develop trade-off curves between economic cost and reliability for 

replacement schedules of water pipes.  

Rehan et al. (Rehan, et al. 2011) recognized the missing components of the water network 

management. As he mentions, these missing components are briefly  

 Water and wastewater infrastructure are treated as separate isolated assets 

 Budgetary constraints are either completely ignored or if considered, dynamic 

interaction with strategic rehabilitation/replacement action is not taken into account 

 The socio-political environment of decision making processes is missing from the 

many of the suggested models.  

He proposed an integrated asset management system for financially self-sustaining water 

and wastewater services which is helpful for municipalities to meet their regulatory 

obligations, using System Dynamics (SD) approach which is a feedback-based modeling 

paradigm having its origin in the work of Forrester (Forrester 1958). In this research, their 

model has been used as a prototype.  

1.1.2.1 Description of Background Research 

Rehan et al. (Rehan, et al. 2011) developed a management model for urban water and wastewater 

systems with interconnected components and complex system behavior. A detailed causal loop 

diagram for management of water and wastewater distribution networks is employed to identify 

feedback loops. The causal loop diagram is then developed into a system dynamics model 

comprising water and wastewater pipes, financial, and consumer sectors. Parameterization of the 

model was done using existing data sources. This was the first known causal loop diagram 

developed for a financially self-sustainable water utility. The model divides the entire water network 

to three sectors  

 Physical infrastructure sector 

 Finance sector 
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 Consumer sector 

Policy levers are included in the model to facilitate formulation of different financing and 

rehabilitation strategies for the wastewater collection network. Financial and service performance 

indicators included in the model allow comparison of different financing and rehabilitation 

strategies. 

They tried various simulation scenarios by changing three different policy levers 

 Rehabilitation Rate (% of network replaced)  

 Enforcing zero Funds Balance or not 

 Price Elasticity of Demand (%/%) 

In this work we replicate Scenario 3C which has the policy levers Rehabilitation Rate = 1.18, zero 

Funds Balance enforced, Price Elasticity of Demand = -0.35. 

 

1.2 System Dynamics and DAE Modeling 

System dynamics evolved in the 1950’s (Forrester 1958) as a computation tool to quantify the 

behavior of complex transient systems. The mathematical vernacular associated with system 

dynamics involves breaking a problem down into stocks, flows, converters and connectors. Stocks 

are used to capture the transient behavior of select variables within the problem using discrete 

time derivatives. Flows, convertors and connectors are used to specify mathematical relationships 

needed to transmit information between the various stocks. Numerous off-the-shelf software 

packages are commercially available, and include: STELLA (isee systems n.d.), SIMILE 

(Simulistics n.d.), GoldSim (GoldSim n.d.), MATLAB/Simulink (MathWorks n.d.) and 

Mathematica (WOLFRAM n.d.). These software packages provide a graphical interface to apply 

the system dynamics vernacular to model a problem, and then allow the user to rapidly 

parameterize, execute and visualize simulations and test hypothesis. The ease by which these 

software packages have enabled the process of developing a prototype application has largely 

been responsible for the widespread use and acceptance of system dynamics in the field of civil 

engineering.  

Sepplet and Richter (Sepplet and Richter 2005) and Rizzo et al. (Rizzo, et al. 2006) have called 

into question of the numerical accuracy of these various software packages. Specifically, they 

observed that for a given problem the various software packages may yield a different solution 

even when the same numerical algorithm to solve the set of equations is chosen. Rehan et al. 
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(Rehan, et al. 2011) present simulation results using STELLA 7.0.2 for which some variables 

exhibit what appear to be spurious oscillations; otherwise, local maxima or minima which may 

indicate non-monotone behavior of the solution. Rehan et al. (Rehan, et al. 2011) do not discuss 

these oscillations and their impact on their proposed financially sustainable strategy for managing 

a water distribution network.  These same spurious oscillations appear in Son and Rojas work 

(Son and Rojas 2011) and in the case of their work, are interpreted as productivity dynamics 

within the context of a construction management system. While these software packages specify 

their respective numerical algorithm for solving the set of equations arising from the system 

dynamics problem, the implementation of the algorithm is proprietary and not open to inspection. 

Clearly there is a need within the civil engineering community to be able to accept solutions 

obtained using system dynamics software packages on a prototype basis, and then be able to 

transition the prototype to a numerical algorithm for which convergence of the variables to a 

unique and physically correct solution is assured. Liability for damages arising from a 

professional engineer accepting simulation results without due diligence are just one example. 

This work centers around the hypothesis that the set of equations developed using system dynamics 

vernacular can be translated directly into a series of coupled and potentially non-linear differential 

equations as well as a series of algebraic equations, commonly termed “differential algebraic 

equations” or DAEs ( (Petzold and Ascher 1998); (Brenan, Campbell and Petzold 1989); (Petzold 

and Ascher 1998) ). The differential equations capture the transient behavior of the primary 

variables, while the algebraic equations represent secondary variables and are used to directly 

specify the non-linearity inherent in the system as well as any controls on the primary variables. 

DAEs have been used in solving problems of various research areas such as; solving control 

problems (Pytlak and Zawadzki 2014), solving non-linear mechanics problems (Liu, Elastoplastic 

models and oscillators solved by a Lie-group differential algebraic equations method 2014), solving 

breakage population balance equations in computer science and informatics (Narni 2013), solving 

mass transfer equations (Liu, On-line detecting heat source of a nonlinear heat conduction equation 

by a differential algebraic equation method 2014). I test the utility of fully-implicit, fully-explicit 

and Crank-Nicolson Euler schemes to discretize the time derivatives inherent in the differential 

equations, with a fixed-point iteration to resolve the non-linearity arising from the coupled 

differential and algebraic equations. Point-wise stability of this numerical DAE scheme dictates that 

as the timestep used to approximate the time derivative is reduced, the solution will converge to a 

single answer (Petzold and Ascher 1998). The rate of convergence is dictated by the order of the 
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error arising from the method used to discretize the time derivative. The premise here is that this 

answer will be absent from any spurious oscillations and be physically correct for the engineering 

problem at hand. Specifically, I revisit the work of Rehan et al. (Rehan, et al. 2011) to demonstrate 

that this hypothesis is correct.  
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Chapter 2: A Numerical DAE Approach for Urban Wastewater 

System 

2.1 A Numerical DAE Approach 

The objective of this work is to specifically focus on Scenario 3C of Rehan et al. (Rehan, et al. 

2011) as a prototype problem to highlight the proposed approach for converting a system dynamics 

problem into a series of coupled non-linear ordinary differential equations.  Rehan et al. [ (Rehan, 

et al. 2011) - Appendix A] present the entirety of the equations constituting the system dynamics 

problem in the STELLA 7.0.2 notation of “stocks”, “flows”, “connectors” and “convertors”. This 

same system is presented graphically on Figures 2 and 3 of Rehan et al. (Rehan, et al. 2011). The 

premise in this section is that the stocks in system dynamics can instead be called primary variables 

within a set of DAEs, with the flows, connectors and convertors constituting the remainder of a 

given DAE as well as secondary equations and variables. The clearest indicator for a stock to 

primary variable representation is that both involve time derivatives. To begin, let 𝑿 denote the 

vector of primary variables identified from a given system dynamics problem and 𝒀(𝑿) be the 

vector of secondary variables, some of which may be non-linearly dependent on the primary 

variables.  The general form of a semi-explicit index-1 DAE system is given by Equation  2-1. 

 
𝜕𝑿

𝜕𝑡
= 𝑓(𝑿, 𝒀, 𝑡) 

𝟎 = 𝒈(𝑿, 𝒀, 𝒕) 

2-1 

 

where 𝜕𝑿 𝜕𝑡 ≡ 𝑿′⁄ , and where (𝜕𝑔 𝜕𝑿′⁄ )−1 exists and is bounded in a neighborhood of the 

solution. In other words, it is possible to differentiate the algebraic equations 𝑔(𝑿, 𝒀, 𝑡) once with 

respect to 𝑿; hence, index-1. The notion of semi-explicit DAE (and explicitness in general) implies 

that the algebraic equations are separated from the differential equations as presented in Equation 

2-1 above. In contrast, an implicit DAE follows from application of the implicit function theorem 

which states that there exists a function 𝑔̃ such that 𝒀 = 𝑔̃(𝑿, 𝑡). Thus, the DAE is equivalent to the 

ordinary differential equation (ODE):  𝜕𝑿 𝜕𝑡 = 𝑓(𝑿, 𝑔̃(𝑿, 𝑡), 𝑡)⁄  . Here I make the distinction that 

in the case of the problem which follows, system dynamics leads to a semi-explicit DAE. The 

function 𝑔̃ does not exist because 𝒀 is non-linearly dependant on 𝑿. 



 

 10 

Brenan et al. (Brenan, Campbell and Petzold 1989) review the application of Runge-Kutta and 

Backward Differentiating Formulations (i.e. Euler methods) for the numerical solution of DAEs.  

For semi-explicit index-1 DAEs, they demonstrate that the use of an Euler method of order 𝑘 ≤ 7 

evaluated with a constant time step size ∆𝑡 converges with an accuracy of order 𝒪(Δ𝑡𝑘) after 𝑘 + 1 

fixed-point iterations provided each fixed point iteration is solved to an accuracy of order 𝒪(Δ𝑡𝑘+1). 

In other words, as the timestep ∆𝑡 is progressively reduced along with the numerical error in 

approximating the time derivative, the solution should converge to a single solution over the entire 

simulation period and thereby exhibit point-wise stability. In fact, Petzold and Ascher (Petzold and 

Ascher 1998) state that application of Euler methods to semi-explicit index-1 DAEs retain all 

properties (i.e. order, stability, convergence) relative to analogous ODEs. For semi-explicit index-

1 DAEs, Bendtsen and Thomsen (Bendtsen and Thomsen 1999) demonstrate that Runge-Kutta 

methods have poor stability properties. In addition, the semi-explicit property whereby the 

differential and algebraic equations cannot be combined and are non-linearly dependent on one-

another creates a situation where the internal Runge-Kutta solutions within the timestep ∆𝑡 must 

also be coupled with algebraic solutions at the same stage. In summary, application of Runge-Kutta 

algorithms to semi-explicit DAEs is not a straight-forward extension of their application to 

analogous ODEs.  

I begin this work by introducing the following numerical (Euler) discretization of Equation 2-1 as: 

𝑿𝑛+1 − 𝑿𝑛

∆𝑡
= 𝜃𝑓(𝑿𝑛+1, 𝒀𝑛+1) + (1 − 𝜃)𝑓(𝑿𝑛, 𝒀𝑛) + 𝒪(Δ𝑡𝑘) 

0 = 𝑔(𝑿𝑛+1, 𝒀𝑛+1, 𝑡) 

2-2 

 

where; 𝜃 = 1.0, 0.5 and 0.0 yields a shift from a fully-implicit, Crank-Nicolson, to fully-explicit 

temporal discretization, yielding a discretization error of order 𝑘 = 1 (i.e. first-order accurate), 2 

(i.e. second-order accurate) and 1, respectively. Note that “fully-implicit” and “fully-explicit” now 

refer to the actual Euler method used to discretize the time derivative, and not the form of the DAE. 

Superscripts 𝑛 + 1 and 𝑛 denote the current and past time solutions separated over an increment of 

time ∆𝑡. For the fully-implicit and Crank-Nicolson discretization, the set of equations involving the 

primary variables 𝑿 leads to a system of equations of the form [𝑎]{𝑿} = {𝑏} which is solved via 

Gaussian elimination. The non-linear dependence expressed by 𝒀(𝑿) is resolved by invoking a 
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fixed-point iteration as illustrated on Figure 3.1. Specifically, the simultaneous solution of the 

primary variables is followed by the sequential solution of the secondary equations. For a given 

timestep, the fixed-point iteration involves looping around the coupled set of equations involving 

the primary and secondary variables until a convergence tolerance is achieved.  

Key outcomes of the numerical DAE approach are: first, to clearly identify the source of non-linear 

dependence and hence the key primary variable(s) 𝑿 limiting convergence; second, to identify those 

secondary variables 𝒀 that serve as controllers on the range of 𝑿 obtained as part of the physically 

acceptable solution. These latter two concepts are illustrated hereafter in the context of Scenario 3C 

of Rehan et al. (Rehan, et al. 2011). 

2.1.1 Physical Infrastructure Network 

Details regarding the formulation and parameterization of the physical infrastructure sector are 

described in Section 4.1 of Rehan et al. (Rehan, et al. 2011) and are not repeated here for brevity. 

However, to clarify our intent to focus on the combined water and wastewater distribution 

network as the infrastructure sector, I rename 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐺𝑟𝑜𝑢𝑝 stocks from Rehan et al. (Rehan, 

et al. 2011) here as 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛. This section presents that component of the system dynamics 

model shown in Figure 3 of Rehan et al. (Rehan, et al. 2011) belonging to the physical 

infrastructure sector, with the presentation involving primary and secondary variables. 

2.1.1.1 Primary Variables and Equations 

Degradation of pipes is captured by the transient accumulation and subsequent depletion of pipe 

lengths in five different age groups over the course of the simulation period.  This processes is 

captured by five primary variables denoted as: 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛0−20
𝑛+1 , 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛20−40

𝑛+1 , 

𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛40−60
𝑛+1 , 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛60−80

𝑛+1  and 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛80−100
𝑛+1   [𝑘𝑚]. The subscript 

indicates the age span for each group, under the assumption that service life of any given pipe is 

100 years. These five primary variables lead to the following five differential equations:  

𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛0−20  
𝑛+1 − 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛0−20

𝑛

∆𝑡

= 𝜃(𝑅𝑒ℎ𝑎𝑏𝐿𝑒𝑛𝑔𝑡ℎ𝑛+1 − 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛20−40
𝑛+1 )

+ (1 − 𝜃)(𝑅𝑒ℎ𝑎𝑏𝐿𝑒𝑛𝑔𝑡ℎ𝑛 − 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛20−40
𝑛 ) 

2-3 
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𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛20−40
𝑛+1 − 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛20−40

𝑛

∆𝑡

= 𝜃(𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛20−40
𝑛+1 − 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛40−60

𝑛+1 )

+ (1 − 𝜃)(𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛20−40
𝑛 − 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛40−60

𝑛 ) 

2-4 

 

𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛40−60
𝑛+1 − 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛40−60

𝑛

∆𝑡

= 𝜃(𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛40−60
𝑛+1 − 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛60−80

𝑛+1 )

+ (1 − 𝜃)(𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛40−60
𝑛 − 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛60−80

𝑛 ) 

2-5 

 

𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛60−80
𝑛+1 − 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛60−80

𝑛

∆𝑡

= 𝜃(𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛60−80
𝑛+1 − 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛80−100

𝑛+1 )

+ (1 − 𝜃)(𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛60−80
𝑛 − 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛80−100

𝑛 ) 

2-6 

 

𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛80−100
𝑛+1 − 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛80−100

𝑛

∆𝑡

= 𝜃(𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛80−100
𝑛+1 − 𝑅𝑒ℎ𝑎𝑏𝐿𝑒𝑛𝑔𝑡ℎ𝑛+1)

+ (1 − 𝜃)(𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛80−100
𝑛 − 𝑅𝑒ℎ𝑎𝑏𝐿𝑒𝑛𝑔𝑡ℎ𝑛) 

2-7 

Initial conditions for these five primary variables are provided on Table 2.1. 

2.1.1.2 Secondary Variables and Equations 

The ageing process of the pipes is facilitated thought the set of secondary variables denoted 

as: 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛0−20
𝑛+1 , 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛20−40

𝑛+1 , 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛40−60
𝑛+1 , and 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛60−80

𝑛+1  

[𝑘𝑚/𝑦𝑟]. These secondary variables are quantified as:  

𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛20−40
𝑛+1 =

𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛0−20  
𝑛+1

20
 2-8 

 

𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛40−60
𝑛+1 =

𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛20−40
𝑛+1

20
 2-9 
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𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛60−80
𝑛+1 =

𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛40−60
𝑛+1

20
 2-10 

 

𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛80−100
𝑛+1 =

𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛60−80
𝑛+1

20
   2-11 

The rate at which capital works is conducted, which involve replacing deteriorated pipes in age 

group 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛80−100
𝑛+1  with newly emplaced pipes in age group 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛0−20

𝑛+1 , is 

controlled by the secondary variable 𝑅𝑒ℎ𝑎𝑏𝐿𝑒𝑛𝑔𝑡ℎ𝑛+1 [𝑘𝑚/𝑦𝑟]. In the context of Scenario 3C of 

Rehan et al. (Rehan, et al. 2011), it is a constant given by:  

𝑅𝑒ℎ𝑎𝑏𝐿𝑒𝑛𝑔𝑡ℎ𝑛+1 = 𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑓𝑃𝑖𝑝𝑒𝑠 ×
𝑅𝑒ℎ𝑎𝑏𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛

100
 2-12 

where the constants 𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑓𝑃𝑖𝑝𝑒𝑠 and 𝑅𝑒ℎ𝑎𝑏𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 are provided on Table 2.1. 

𝑅𝑒ℎ𝑎𝑏𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is manually adjusted to ensure that no more than 5% of the network has pipes in 

𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛80−100
𝑛  for the entire 100-year simulation period. As such, 𝑅𝑒ℎ𝑎𝑏𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is a 

control isolated to the infrastructure sector and independent of the remainder of the system. 

 

The average condition of the pipe network exerts an important influence on operation 

expenditures which are a secondary variable in the finance sector. As such, the average condition 

of the entire network is denoted as 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑛+1 [– ] and is a secondary variable 

calculated as:  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑛+1

= (𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛0−20
𝑛+1 + 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛20−40

𝑛+1

+ 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛40−60
𝑛+1  + 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛60−80

𝑛+1

+ 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛80−100
𝑛+1 ) / 𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑓𝑃𝑖𝑝𝑒𝑠   . 

2-13 

 

Table 2.2 listed the relationship between 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑛+1 and 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑛+1 [−] 

that is used to adjust operation expenditures based on the age of the network. 

 

Table 2.1: Initial conditions and constants 

Physical infrastructure sector 

 Initial conditions 

  𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛0−20
0  140  [𝑘𝑚] 
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  𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛20−40
0  280  [𝑘𝑚] 

  𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛40−60
0  140  [𝑘𝑚] 

  𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛60−80
0  105  [𝑘𝑚] 

  𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛80−100
0  35  [𝑘𝑚] 

 Constants 

  𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑓𝑃𝑖𝑝𝑒𝑠 700  [𝑘𝑚] 

  𝑅𝑒ℎ𝑎𝑏𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 1.18  [% 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑓𝑃𝑖𝑝𝑒𝑠/𝑦𝑟] 

Finance sector 

 Initial conditions 

  𝑈𝑠𝑒𝑟𝐹𝑒𝑒0 3.75  [$/𝑚3] 

  𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒0 0  [$] 

 Constants 

  𝑀𝑎𝑥𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒 0  [$] 

  𝑀𝑖𝑛𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒 0  [$] 

  𝑀𝑎𝑥𝐹𝑒𝑒𝐻𝑖𝑘𝑒 10  [%] 

  𝑈𝑛𝑖𝑡𝑃𝑟𝑖𝑐𝑒𝑂𝑝𝐸𝑥 50  [$/𝑚/𝑦𝑒𝑎𝑟] 

  𝑈𝑛𝑖𝑡𝑃𝑟𝑖𝑐𝑒𝐶𝑎𝑝𝐸𝑥 1000  [$/𝑚] 

Consumer sector 

 Initial conditions 

  𝑊𝑎𝑡𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑0 300  [𝑙𝑝𝑐𝑑]† 

 Constants 

  𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦𝑜𝑓𝐷𝑒𝑚𝑎𝑛𝑑 −0.35  [−] 

  𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐷𝑒𝑚𝑎𝑛𝑑 200  [𝑙𝑝𝑐𝑑]† 

  𝐷𝑒𝑚𝑎𝑛𝑑𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑃𝑒𝑟𝑖𝑜𝑑 20  [𝑦𝑒𝑎𝑟𝑠] 

  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 100,000  [−] 

𝑙𝑝𝑐𝑑  †
denotes  𝑙𝑖𝑡𝑒𝑟 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 𝑝𝑒𝑟 𝑑𝑎𝑦 
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Table 2.2: Relationship of the average condition of the network on operational expenditures. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑛+1 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑛+1 

0.00 0.00 

10.00 1.500 

20.00 3.500 

30.00 6.500 

40.00 11.00 

50.00 18.00 

60.00 26.00 

70.00 38.00 

80.00 55.00 

90.00 75.00 

100.00 100.00 

 

 

2.1.2 Finance Sector 

Details regarding the formulation and parameterization of the finance sector are described in 

Section 4.3 and Figure 3 of Rehan et al. (Rehan, et al. 2011) and are not repeated here for brevity. 

Once again, this presentation involves casting the system dynamics problem into primary and 

secondary variables. 

2.1.2.1 Primary Variables and Equations 

The essence of Rehan et al. (Rehan, et al. 2011) is to explore the financial sustainability of water 

conveyance networks. They achieve this objective by adjusting the amount that the utility charges 

per cubic meter of water consumed and then discharged (i.e. 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1  [$/𝑚3]) so that 

revenues equal expenditures and the utility maintains a zero funds balance, denoted as 

𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 [$].  These two primary variables lead to the following two differential 

equations:  

𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 − 𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛

∆𝑡
= 𝜃(𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑛+1 − 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠𝑛+1) 

+ (1 − 𝜃)(𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑛 − 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠𝑛) 

2-14 
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and 

𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 − 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛

∆𝑡
= 𝜃(𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝐻𝑖𝑘𝑒𝑛+1 − 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝐷𝑒𝑐𝑙𝑖𝑛𝑒𝑛+1) 

+ (1 − 𝜃)(𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝐻𝑖𝑘𝑒𝑛 − 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝐷𝑒𝑐𝑙𝑖𝑛𝑒𝑛)    

2-15 

2.1.2.2 Secondary Variables and Equations 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑛+1 [$/𝑦𝑟] represents the utilities annual income and is generated via the product of the 

unit cost of water consumed and then discharged (i.e. 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1) and the total water 

consumption by residents of the municipality (i.e. 𝑇𝑜𝑡𝑎𝑙𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑛+1 [𝑚3/𝑦𝑟]). This 

is expressed as: 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑛+1 = 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 ×  𝑇𝑜𝑡𝑎𝑙𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑛+1 
2-16 

 

The infrastructure sector of Rehan et al. (Rehan, et al. 2011) is limited to watermain and sanitary 

sewer pipes, with all 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠𝑛+1[$/𝑦𝑟] equal to the sum of operational and capital costs: 

𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠𝑛+1 = 𝑂𝑝𝐸𝑥𝑛+1 + 𝐶𝑎𝑝𝐸𝑥𝑛+1 
2-17 

 

Operational expenditures (i.e. 𝑂𝑝𝐸𝑥𝑛+1 [$/𝑦𝑟]) involve the general maintenance of the water 

conveyance network and increase proportionally with the average age of the network as indicated 

by 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑛+1 on Table 2. Operational expenditures are calculated as: 

𝑂𝑝𝐸𝑥𝑛+1 = 𝑈𝑛𝑖𝑡𝑃𝑟𝑖𝑐𝑒𝑂𝑝𝐸𝑥 ×  𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑓𝑃𝑖𝑝𝑒𝑠 ×  𝜅1

× (1 +
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑛+1

100
) 

2-18 

where 𝜅1 = 1000 𝑚/𝑘𝑚. Capital expenditures involve replacing deteriorated pipe with new 

construction as given by: 

𝐶𝑎𝑝𝐸𝑥𝑛+1 = 𝑈𝑛𝑖𝑡𝑃𝑟𝑖𝑐𝑒𝐶𝑎𝑝𝐸𝑥 ×  𝑅𝑒ℎ𝑎𝑏𝐿𝑒𝑛𝑔𝑡ℎ𝑛+1  ×  𝜅1 
2-19 

 

Financial sustainability, as expressed by a zero funds balance, is the primary control on the 

transient evolution of the system of equations. Hence, a zero funds balance provides the physical 

context for the simulated results in terms of how the utility manages the network. The control is 

used to constrain 𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 should its value deviate beyond a bounded interval demarked 
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by 𝑀𝑖𝑛𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒 and 𝑀𝑎𝑥𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒 [$]. Specifically, if 𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 decreases 

below 𝑀𝑖𝑛𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒 resulting in debt, then 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑅𝑒𝑣𝑒𝑛𝑢𝑒 [$/𝑦𝑟] is calculated to 

eliminate this debt as: 

 if  (𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 < 𝑀𝑖𝑛𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒) 

2-20 
  𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑛+1 = 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠𝑛+1 − 𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1/ 𝟏 

 else 

  𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑛+1 = 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠 𝑛+1 

where “𝟏” denotes a one-year period over which the debt is to be eliminated. In the context of 

Scenario 3C of Rehan et al. (Rehan, et al. 2011), all revenue is generated by increasing the unit 

cost of water 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 billed to the consumers. The rate of increase 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝐻𝑖𝑘𝑒𝑛+1 

[$/𝑚3/𝑦𝑟] is calculated as: 

 if  (𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 > 𝑀𝑎𝑥𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒) 

2-21 

 

  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝐻𝑖𝑘𝑒𝑛+1 = 0  

 else 

  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝐻𝑖𝑘𝑒𝑛+1

= min {𝑀𝑎𝑥𝐹𝑒𝑒𝐻𝑖𝑘𝑒 ×  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1/ 𝟏 ,

(
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑛+1

𝑇𝑜𝑡𝑎𝑙𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑡𝑖𝑜𝑛𝑛+1
− 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1) / 𝟏} 

and remains in place until 𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 exceeds 𝑀𝑎𝑥𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒 in an attempt to 

generate a slight surplus. However, once a surplus in excess of 𝑀𝑎𝑥𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒 is generated, 

the control then decreases the unit cost of water with the rate of decrease 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝐷𝑒𝑐𝑙𝑖𝑛𝑒𝑛+1 

[$/𝑚3/𝑦𝑟] calculated as: 

 if  (𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 > 𝑀𝑎𝑥𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒) 

2-22 

  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝐷𝑒𝑐𝑙𝑖𝑛𝑒𝑛+1 = 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1/ 𝟏

− (
𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠𝑛+1 − 𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1/ 𝟏

𝑇𝑜𝑡𝑎𝑙𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑛+1
) 

 Else 

  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝐷𝑒𝑐𝑙𝑖𝑛𝑒𝑛+1 = 0 

This control on the primary variable 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 as expressed by Equations 2-22 is highly non-

linear and is strongly dependent on both the infrastructure and consumer sectors.  
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2.1.3  Consumer Sector 

Details regarding the formulation and parameterization of the consumer sector are described in 

Section 4.2 and Figure 3 of Rehan et al. (Rehan, et al. 2011) and are not repeated here for brevity. 

This section presents the consumer sector in the context of a numerical DAE approach using 

primary and secondary variables. 

2.1.3.1 Primary Variables and Equations 

A key observation by Rehan et al. (Rehan, et al. 2011) is that individual consumers begin to 

conserve water as its unit price (𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1) increases in a manner dictated by the price 

elasticity of demand. These conservation measures are observed by temporal changes in an 

individual consumers’ 𝑊𝑎𝑡𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑𝑛+1 [𝑙𝑝𝑐𝑑]: 

𝑊𝑎𝑡𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑𝑛+1 − 𝑊𝑎𝑡𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑𝑛

∆𝑡

= 𝜃(−𝐷𝑒𝑚𝑎𝑛𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑛+1) + (1 − 𝜃)(−𝐷𝑒𝑚𝑎𝑛𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑛) 

2-23 

2.1.3.2 Secondary Variables and Equations 

The rate at which water conservation is implemented is governed by the secondary variable 

𝐷𝑒𝑚𝑎𝑛𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑛+1 [𝑙𝑝𝑐𝑑/𝑦𝑟]: 

 if  (𝑡𝑖𝑚𝑒 < 1 𝑦𝑒𝑎𝑟) 

2-24 

  𝐷𝑒𝑚𝑎𝑛𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑛+1

= min {  
𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 − 𝑈𝑠𝑒𝑟𝐹𝑒𝑒0

𝑈𝑠𝑒𝑟𝐹𝑒𝑒0
 

× 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦𝑜𝑓𝐷𝑒𝑚𝑎𝑛𝑑  

×  𝑊𝑎𝑡𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑𝑛+1  ,   𝑊𝑎𝑡𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑𝑛+1

− 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐷𝑒𝑚𝑎𝑛𝑑   } / 𝟏 

 else 
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  𝐷𝑒𝑚𝑎𝑛𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑛+1

= min {  
𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 − DELAY ( 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1, 1 𝑦𝑒𝑎𝑟 )

DELAY (  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1, 1 𝑦𝑒𝑎𝑟 )

× 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦𝑜𝑓𝐷𝑒𝑚𝑎𝑛𝑑

× 𝑊𝑎𝑡𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑𝑛+1 ,   𝑊𝑎𝑡𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑𝑛+1

− 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐷𝑒𝑚𝑎𝑛𝑑  } / 𝟏 

where the function DELAY( 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1, 1 𝑦𝑒𝑎𝑟) returns the value of  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 from the 

current time less 1 year. The constant “𝟏” denotes a one-year period over which residents adjust 

their consumption in response to price changes via 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦𝑜𝑓𝐷𝑒𝑚𝑎𝑛𝑑. More significantly, 

residents will purchase water efficient dish washers, toilets and other durable goods over a period 

of time denoted as 𝐷𝑒𝑚𝑎𝑛𝑑𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑃𝑒𝑟𝑖𝑜𝑑  [𝑦𝑒𝑎𝑟𝑠] to reduce their 

𝑇𝑜𝑡𝑎𝑙𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑛+1 [𝑚3/𝑦𝑟]: 

𝑇𝑜𝑡𝑎𝑙𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑛+1

= SMTH ( 𝑊𝑎𝑡𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑𝑛+1, 𝐷𝑒𝑚𝑎𝑛𝑑𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑃𝑒𝑟𝑖𝑜𝑑 ) 

×  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ×  𝜅3 / 𝜅2 

2-25 

where 𝜅2 = 1000 𝑙/𝑚3 and 𝜅3 = 365 𝑑𝑎𝑦𝑠/𝑦𝑒𝑎𝑟. Because 𝑇𝑜𝑡𝑎𝑙𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑛+1 has 

a direct impact on 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑛+1 in Equation 2-16, any lost revenue due to conservation must be 

recovered by increasing  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 leading to even greater conservation. This feedback loop is 

the main source of non-linearity in the numerical model. The function 

SMTH ( 𝑊𝑎𝑡𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑𝑛+1, 𝐷𝑒𝑚𝑎𝑛𝑑𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑃𝑒𝑟𝑖𝑜𝑑 ) applies exponential smoothing to 

the secondary variable 𝑊𝑎𝑡𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑𝑛+1 over the length of time prescribed by 

𝐷𝑒𝑚𝑎𝑛𝑑𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑃𝑒𝑟𝑖𝑜𝑑. For the case SMTH (𝑋𝑛+1, 𝑇) where 𝑋𝑛+1 is the secondary 

variable 𝑊𝑎𝑡𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑𝑛+1 in the interval  𝑛 + 1 − 𝑇 < 𝑡 < 𝑛 + 1, exponential smoothing is 

denoted by 𝑋̅𝑛+1 as: 

 𝑋̅0 = 𝑋0 as the initial condition; 
 

 𝑋̅𝑛+1 = 𝛼 𝑋𝑛+1 + (1 − 𝛼) 𝑋̅𝑛  for subsequent timesteps; 

which recursively leads to the following series that only includes those terms in the time interval  

𝑛 + 1 − 𝑇 < 𝑡 < 𝑛 + 1; 

 𝑋̅𝑛+1 = 𝛼 { 𝑋𝑛+1 + (1 − 𝛼) 𝑋𝑛 + (1 − 𝛼)2 𝑋𝑛−1 + ⋯ + (1 − 𝛼)𝑛 𝑋0} 
2-26 

Trial and error indicate that STELLA 7.0.2 uses a value of 𝛼 = 0.1. 
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Chapter 3: Results of the Numerical DAE Approach and 

Discussion 

In the context of this work, I restrict our attention to discussing the significance of any potential 

numerical errors in the solution of the Rehan et al. (Rehan, et al. 2011) system dynamics problem. 

Note that interpretation of the physical relevance of the simulation results to the financially 

sustainable management of a water distribution network was the subject of Rehan et al. (Rehan, et 

al. 2011) and is not repeated here for brevity. Earlier, I hypothesised that the Rehan et al. (Rehan, 

et al. 2011) simulation results for Scenario 3C include local minima or maxima and hence may not 

be monotone. This issue is examined by re-simulating Scenario 3C with STELLA 7.0.2 using their 

fourth-order Runge-Kutta algorithm to maximize numerical accuracy. In addition, Scenario 3C is 

also simulated using the numerical DAE approach outlined in Section 2. Initially, I would like to 

ensure that the two algorithms are point-wise stable in that they converge to a single solution as the 

timestep is progressively reduced, along with the numerical error in approximating the time 

derivative.  To illustrate this discussion, Figure 3.2 and Figure 3.3 present all primary and some 

secondary variables over the 100-year simulation period with a logarithmic time scale to focus on 

the key dynamics. The largest timestep is Δ𝑡 = 2−2 𝑦𝑒𝑎𝑟 to conform to the Rehan et al (Rehan, et 

al. 2011) simulation results. The smallest timestep STELLA 7.0.2 would accept was Δ𝑡 =

2−8 𝑦𝑒𝑎𝑟. For the numerical DAE approach, the timestep was progressively halved to Δ𝑡 =

2−9 𝑦𝑒𝑎𝑟. Later in this work I will re-examine the sensitivity of the two primary variables  

𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 and 𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 to the STELLA 7.0.2 and VENSIM 6.0b fourth-order Runge-

Kutta and first-order Euler integration algortihms. 

3.1 Results of the Numerical Modeling 

Figure 3.2(a) shows the condition of the pipes as defined by Equations 2-3 to 2-7. Clearly, both 

Runge-Kutta and the numerical DAE approach produced visually-identical answers over the entire 

simulation period. This result appears to be largely a consequence of the fact that the infrastructure 

sector is independent of the finance and consumer sectors, with pipe condition behaving as a series 

of DAEs. 𝑅𝑒ℎ𝑎𝑏𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is the single control isolated to this sector, and is manually adjusted 

independent of the remainder of the system to ensure that no more than 5% of the network has pipes 

in 𝑃𝑖𝑝𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛80−100
𝑛  for the 100-year simulation period. I conclude that the fourth-order 
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Runge-Kutta approach employed by STELLA 7.0.2 is virtually identical to a numerical DAE 

approach for linear systems. 

 

Figure 3.2 (b) presents simulation results for the primary variable 𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1. These results 

indicate that the funds balance does deviate from “zero” despite the intent of Scenario 3C to signal 

financial sustainability though a zero funds balance. This deviation occurs because the two controls 

𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝐻𝑖𝑘𝑒𝑛+1 (see Equation 2-21 and Figure 3.3 (a)) and 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝐷𝑒𝑐𝑙𝑖𝑛𝑒𝑛+1 (see Equation 

2-22 and Figure 3.3 (b)) impose their effect over a 1-year implementation period, as signaled by 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑛+1 in Equation 2-20. As such, both Runge-Kutta and the numerical DAE 

approach show the same qualitative trends: a peak deficit of approximately $4-to-$5 million around 

year 2, and; a peak surplus of $0.5-to-$1 million around year 6. As the timestep is refined, Runge-

Kutta shows virtually no change in its solution. However, the numerical DAE approach shows a 

progressive convergence to a single solution. The converged numerical DAE solution is absent the 

spurious oscillations that occur in both the Runge-Kutta solution as well as the numerical DAE 

solution with the coarsest timestep, as the peak surplus is spend down to a late-time zero funds 

balance. Examination of the two controls show that they are directly related to the two primary 

variables 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 and 𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 and indirectly to many others through the secondary 

variables. Therefore, the accuracy of the control variables is also 𝒪(Δ𝑡𝑘). Note that that the 

solutions proceed from the end of the first time step which varies due to refinement from Δ𝑡 =

2−2 𝑦𝑒𝑎𝑟 to Δ𝑡 = 2−9 𝑦𝑒𝑎𝑟. The initial condition is not shown on the logarithmic time scale 

because it occurs at time 𝑡 = 0 𝑦𝑒𝑎𝑟. This explains the discontinuity that is seen at the beginning f 

the graph for coarse time steps.  

 

Figure 3.2 (c) and (d) present simulation results for the primary variables  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 (see 

Equation 2-15) and 𝑊𝑎𝑡𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑𝑛+1 (see Equation 2-23), respectively. These two variables 

have a strong non-linear dependence upon one another through the secondary variable 

𝐷𝑒𝑚𝑎𝑛𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑛+1 (see Figure 3.3  (c) and Equation 2-24). As the  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 increases rapidly 

from year 0.1 to approximately year 12, there is a corresponding decrease in 𝑊𝑎𝑡𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑𝑛+1 

and 𝑇𝑜𝑡𝑎𝑙𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑛+1 (see Figure 3.3 (d) and Equation 2-25). The Runge-Kutta and 

numerical DAE solutions deviate markedly beyond year 1. As the timestep is refined, neither 

Runge-Kutta nor the numerical DAE solutions appear to converge to the same solution. However, 
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the numerical DAE solution does exhibit the desired point-wise stability behavior of converging to 

a single solution over the entire simulation period as the timestep is refined.  

 

Figure 3.3 (e) depicts 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑛+1 which is the product of  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 and 

𝑇𝑜𝑡𝑎𝑙𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑛+1  and is quantified by Equation 2-16. Despite the divergence 

between the Runge-Kutta and the numerical DAE solutions for  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 and 

𝑇𝑜𝑡𝑎𝑙𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑛+1, the solution for 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑛+1 remains similar in shape over the 

entire simulation period, with late-time convergence to nearly the same identical solution. This 

similarity is not fortuitous, and is a consequence of two aspects of the Rehan et al. (Rehan, et al. 

2011) system dynamics problem. First, a fundamental attribute of the infrastructure sector is the 

conservation of pipe lengths in that 𝑇𝑜𝑡𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑓𝑃𝑖𝑝𝑒𝑠 remains constant over the simulation 

period. Second, the financial sustainability constraint of a zero funds balance ensures that in the 

long term revenues equal expenses. Total expenses involve the sum of operational and capital 

expenditures on the pipe network (see Figure 3.3 (f), (g) and (h)) and are largely a function of the 

average condition of the network. Deterioration of the pipes is effectively a linear problem that can 

be solved by either the Runge-Kutta or the numerical DAE approach. Therefore, 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑛+1 

ultimately becomes constrained by the physical deterioration of the pipes and the need for the utility 

to maintain the system independent of numerical details associated with the Runge-Kutta and 

numerical DAE algorithms. As a result, at the end of the 100-year simulation period, Runge-Kutta 

over-estimates  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 and proportionally underestimates 𝑇𝑜𝑡𝑎𝑙𝑊𝑎𝑡𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑛+1 in 

order to maintain the same revenue stream relative to the numerical DAE solution. However, only 

one solution can be physically correct. 

 

To demonstrate that the numerical DAE solution is point-wise stable and converging to the correct 

solution, I analyze the order of the timestep error 𝒪(Δ𝑡𝑘)  for the  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 and 

𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 primary variables at year 10 within the 100-year simulation period. This point 

in time was chosen because the Runge-Kutta and the numerical DAE solutions show a clear 

divergence in their values. Table 3.1 and Table 3.2 provide values of these primary variables for the 

numerical DAE solution as the timestep was sequentially halved from Δ𝑡 = 2−2 𝑦𝑒𝑎𝑟𝑠 down to 

Δ𝑡 = 2−9 𝑦𝑒𝑎𝑟𝑠. For all timestep sizes, the fixed-point iteration continued for a given timestep until 

a convergence tolerance of 𝑐𝑡𝑜𝑙 = 10−5on the primary variable  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 was achieved, where:  
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𝑐𝑡𝑜𝑙 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 =
| 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1,𝑘+1 −  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1,𝑘|

| 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1,𝑘|
 3-1 

and 𝑘 denotes the fixed-point iteration level. Figure 3.4 (a) and (b) show the convergence of the 

primary variables  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 and  𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1, respectively, at year 10 for the numerical 

DAE and Runge-Kutta algorithms. Visually it appears that they are converging to entirely different 

values of  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1. However, they seem to be converging to the same value of 

𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1. This latter observation is entirely fortuitous. On Figure 3.4 (b) I see that at year 

10, the numerical DAE  𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 solution using a timestep of Δ𝑡 = 2−9 𝑦𝑒𝑎𝑟𝑠 exhibits a 

downward fluctuation as it recovers from the peak surplus at 7 years, while the Runge-Kutta solution 

exhibits an upward fluctuation as it recovers from the peak surplus at 5 years. The recovery pattern 

of both solutions is entirely different towards a zero funds balance at the end of the 100-year 

simulation period. On Tables 3 and 4, the relative error 𝛿𝑋 is calculated as:  

𝛿𝑋Δ𝑡=2−𝑚 =
|𝑋Δ𝑡=2−𝑚 − 𝑋Δ𝑡=2−𝑚+1|

|𝑋Δ𝑡=2−𝑚|
    𝑚 ∈ {3 … 9} 3-2 

while the ratio of changes Λ𝑋 is calculated as:  

Λ𝑋Δ𝑡=2−𝑚 =
|𝑋Δ𝑡=2−𝑚 − 𝑋Δ𝑡=2−𝑚+1|

|𝑋Δ𝑡=2−𝑚+1 − 𝑋Δ𝑡=2−𝑚+2|
    𝑚 ∈ {4 … 9} 3-3 

The ratio of changes divided by the sequential reduction in timestep size (which is “2” for this 

analysis) effectively yields the order of the algorithm 𝑘 as specified in Equation 2-2. Examination 

of the relative error for both 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 and  𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 indicate that an even finer 

timestep than Δ𝑡 = 2−9 𝑦𝑒𝑎𝑟𝑠 would benefit the solution. The ratio of changes indicates that fully-

explicit, fully-implicit and even Crank-Nicolson temporal weighting are all first-order accurate 

solutions. In the case of Crank-Nicolson, I surmise that the non-smooth behavior of the controls 

𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝐻𝑖𝑘𝑒𝑛+1 and 𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝐷𝑒𝑐𝑙𝑖𝑛𝑒𝑛+1 is impeding the ability of Crank-Nicolson to achieve 

second-order accuracy. This perturbation occurs when the  𝜃(𝒀𝑛+1) and (1 − 𝜃)(𝒀𝑛) solutions 

straddle a discontinuity in the controls.  
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Table 3.1: Point-wise stability analysis of 𝑿 = 𝑼𝒔𝒆𝒓𝑭𝒆𝒆𝒏+𝟏 evaluated using the numerical 

DAE method at simulation time 𝒕 = 𝟏𝟎 𝒚𝒆𝒂𝒓𝒔, as the timestep size is continuously refined. 

Δ𝑡 

 [𝑦𝑒𝑎𝑟𝑠] 

Crank Nicolson Fully-implicit Fully-explicit 

𝑋 

[$/𝑚3] 
𝛿𝑋 Λ𝑋 

𝑋 

[$/𝑚3] 
𝛿𝑋 Λ𝑋 

𝑋 

[$/𝑚3] 
𝛿𝑋 Λ𝑋 

2−2 4.79695   4.77238   4.76565   

2−3 4.95028 0.03097  4.93508 0.03297  4.93378 0.03408  

2−4 5.01210 0.01233 2.48 5.01000 0.01500 2.16 5.01043 0.01530 2.19 

2−5 5.04424 0.00637 1.92 5.04253 0.00640 2.33 5.04143 0.00615 2.47 

2−6 5.08784 0.00860 0.74 5.08604 0.00856 0.74 5.08488 0.00854 0.71 

2−7 5.11760 0.00581 1.46 5.11634 0.0059 1.44 5.11556 0.00510 1.41 

2−8 5.13471 0.00330 1.74 5.13397 0.00343 1.72 5.13353 0.00350 1.71 

2−9 5.14383 0.00177 1.88 5.14343 0.00184 1.86 5.14320 0.00188 1.86 

 

 

Table 3.2: Point-wise stability analysis of 𝑿 = 𝑭𝒖𝒏𝒅𝑩𝒂𝒍𝒂𝒏𝒄𝒆𝒏+𝟏 evaluated using the 

numerical DAE method at simulation time 𝒕 = 𝟏𝟎 𝒚𝒆𝒂𝒓𝒔, as the timestep size is 

continuously refined. 

Δ𝑡 

[𝑦𝑒𝑎𝑟𝑠] 

Crank Nicolson Fully-implicit Fully-explicit 

𝑋 [$] 𝛿𝑋 Λ𝑋 𝑋 [$] 𝛿𝑋 Λ𝑋 𝑋 [$] 𝛿𝑋 Λ𝑋 

2−2 -523,871.90   -441,529.01   -451,688.84   

2−3 -280,303.49 0.87  -269,406.10 0.64  -278,679.60 0.62  

2−4 -62,616.74 3.48 1.12 -61,945.18 3.35 0.83 -69,282.36 3.02 0.83 

2−5 -13,972.03 3.48 4.47 -8,908.15 5.95 3.91 -58,078.02 10.93 3.30 

2−6 -71,776.25 0.81 0.84 -66,490.95 0.87 0.92 -64,019.72 0.91 1.09 

2−7 -111,429.25 0.36 1.46 -107,901.70 0.38 1.39 -106,433.71 0.40 1.37 

2−8 -133,329.47 0.16 1.81 -131,328.84 0.18 1.76 -130,550.25 0.18 1.76 

2−9 -144,593.03 0.08 1.94 -143,533.84 0.08 1.92 -143,137.52 0.09 1.92 
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In summary, I conclude that the numerical DAE solution is behaving as expected. Therefore, the 

numerical DAE solution is physically correct. On a qualitative note, the numerous oscillations in 

the Runge-Kutta solution for 𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 (see Figure 3.2 (b)) during the recovery from the 

peak surplus at 5 years are disconcerting, especially because the converged numerical DAE solution 

is much smoother during the same period. Furthermore, the spurious spike in 𝐶𝑎𝑝𝐸𝑥𝑛+1 at 11 years 

(see Figure 3.3 (h)) occurs only with Runge-Kutta and cannot be rationally explained based on the 

expected system behavior. 

 

Figure 3.5 exhibits the sensitivity of the two primary variables  𝑈𝑠𝑒𝑟𝐹𝑒𝑒𝑛+1 and 𝐹𝑢𝑛𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑛+1 

to the STELLA 7.0.2 and VENSIM 6.0b fourth-order Runge-Kutta and first-order Euler integration 

algorithms, as well as our numerical DAE approach. In all cases, solutions are presented using the 

smallest timestep available (Δ𝑡 = 2−9 𝑦𝑒𝑎𝑟𝑠 for DAE and VENSIM, Δ𝑡 = 2−8 𝑦𝑒𝑎𝑟𝑠  for 

STELLA) to minimize numerical errors. Results indicate that the Runge-Kutta and Euler integration 

algorithms within each of STELLA and VENSIM yield identical answers for their respective refined 

timesteps. However, while STELLA and VENSIM show consistency at early time, their answers 

diverge during periods of non-linearity at around 10 years when the control is required to enforce a 

zero funds balance. Neither STELLA nor VENSIM is an accurate representation of the numerical 

DAE solution. Without having direct access to the source code for STELLA and VENSIM it is 

impossible to definitively state the source of this discrepancy. Based on our attempts to track the 

transient values of primary and secondary variables during a STELLA simulation, I speculate that 

STELLA does not invoke a fixed-point iteration to resolve the nonlinearity. Apart from differences 

in how the equations are formulated and discretized between the numerical DAE and system 

dynamics approaches, which can be found by comparing this paper against Appendix A of Rehan 

et al. (Rehan, et al. 2011), I speculate that the lack of a fixed-point iteration is a significant 

contribution to the observed discrepancy. This speculation is based on our earlier discussion 

surrounding Figure 3.2 (a) in which I observed the numerical DAE approach and STELLA yielded 

virtually identical answers for linear systems. Linear systems do not require a fixed point iteration. 

 

Having established that for the numerical DAE approach, the fully-explicit, fully-implicit and even 

Crank-Nicolson temporal weighting all converge to the same identical solution with Δ𝑡 in the range 

of 2−2 to 2−9 𝑦𝑒𝑎𝑟𝑠, the remaining question then becomes which temporal weighting strategy 

provides the least simulation time for a given Δ𝑡. This question is evaluated on Figure 3.6 which 
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provides the normalized runtime per timestep and per fixed-point iteration using the numerical DAE 

algorithm. With Δ𝑡 = 2−2 𝑦𝑒𝑎𝑟𝑠, all temporal weighting schemes required approximately 8 fixed-

point iterations per timestep for approximately the first twenty years of the simulation. This is the 

time interval during which the non-linearity is greatest. After this time, the number of fixed-point 

iterations diminishes to 2 per timestep as the problem reaches a steady-state. With Δ𝑡 = 2−9 𝑦𝑒𝑎𝑟𝑠, 

approximately 2 fixed-point iterations are required per timestep for all temporal weighting schemes 

for the entire simulation time. I conclude that fully-explicit is the optimal temporal weighting 

scheme for all timestep sizes for the Rehan et al. (Rehan, et al. 2011) system dynamics problem. 

The optimal timestep size depends on the desired level of accuracy and is the subjective choice of 

the professional engineer. 
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Figure 3.1: Flow-chart for implementing a fixed-point iteration. 
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Figure 3.2: Primary variables over the 100-year simulation period. All numerical DAE 

results obtained using Crank-Nicolson weighting. The timestep size 𝚫𝒕 for each line is 

enumerated in the legend, with STELLA simulation results provided by thick lines and 

numerical DAE results by thin lines. 
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Figure 3.3: Secondary variables over the 100-year simulation period. All numerical 

DAE results obtained using Crank-Nicolson weighting. The timestep size 𝚫𝒕 for each 

line is enumerated in the legend, with STELLA simulation results provided by thick 

lines and numerical DAE results by thin lines. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3.4: Convergence of the numerical DAE and STELLA 7.0.2 algorithms as the 

timestep is sequentially halved, for the primary variables  𝑼𝒔𝒆𝒓𝑭𝒆𝒆𝒏+𝟏 and 

 𝑭𝒖𝒏𝒅𝑩𝒂𝒍𝒂𝒏𝒄𝒆𝒏+𝟏 at year 10. The numerical DAE solution was obtained using Crank-

Nicolson, fully-implicit and fully-explicit temporal weighting. 

 

 

Figure 3.5: Sensitivity of the two primary variables (a) 𝑼𝒔𝒆𝒓𝑭𝒆𝒆𝒏+𝟏 and (b) 

𝑭𝒖𝒏𝒅𝑩𝒂𝒍𝒂𝒏𝒄𝒆𝒏+𝟏 to the STELLA 7.0.2 and VENSIM 6.0b fourth-order Runge-Kutta and 

first-order Euler integration algorithms, and the numerical DAE approach. 
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Figure 3.6: Normalized runtime per timestep and per fixed-point iteration using the 

numerical DAE algorithm with Crank-Nicolson, fully-explicit and fully-implicit 

temporal weighting.  

 

3.2 Conclusions 

The system dynamics model of Rehan et al. (Rehan, et al. 2011), which focuses on modeling of a 

financially sustainable water and wastewater distribution network using the software package 

STELLA 7.0.2, provides the prototype problem for this work. Specifically, I illustrate a strategy 

for converting system dynamics mathematical vernacular (i.e. stocks, flows, connectors and 

convertors) into a semi-explicit index-1 DAE system. The differential equations capture the 

transient evolution of the modeled system via a series of independent primary variables that all 

include a time derivative. In addition, a series of algebraic (secondary) equations and variables 

follow that are used to specify the non-linear behavior of the system as well as any controls on the 

physically relevant range (and hence temporal evolution) of the primary variables. In the case of 

the Rehan et al. (Rehan, et al. 2011) system dynamics problem, a secondary variable is identified 

that specifies the non-linear behavior by which consumers adjust their change in demand for water 

as its unit price increases, with this demand change involving the price elasticity of demand for 

water. Also, secondary variables are identified that specify the rate at which the utility should 

adjust the unit price of water in order to achieve financial sustainability, expressed by maintaining 

a zero funds balance with revenues equalling expenditures. These variables act as a control on the 

evolution of the system ensuring that the fee hike (and decline) rate on the unit cost of water never 
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exceeds an upper bound presumably set by the municipal council, while maintaining the funds 

balance within specified upper (surplus) and lower (deficit) bounds. The set of equations is solved 

by discretizing the time derivatives using fully-implict, Crank-Nicolson and fully-explicit 

temporal weighting in a numerical Euler-based DAE scheme with a fixed-point iteration to 

resolve the non-linearity.  

 

Values of primary and secondary variables are presented over the 100-year simulation period of 

the Rehan et al. (Rehan, et al. 2011) system dynamics problem using the numerical DAE approach 

as well as the fourth-order Runge-Kutta algorithm invoked by the STELLA 7.0.2 software 

package. Both algorithms deviate markedly once the non-linearity of the system becomes 

dominant and the control is required to enforce a zero funds balance. Analysis of the numerical 

DAE solution at this point of departure indicate that it is point-wise stable in the sense that the 

primary variables converge to a single solution as the timestep is progressively reduced. The rate 

of convergence to the single solution is proportional to the order of the temporal error used to 

discretize the time derivative. The converged numerical DAE solution obtained does not exhibit 

many of the spurious oscillations inherent in the Runge-Kutta solution. I therefore conclude that 

the numerical DAE solution is physically correct whereas the Runge-Kutta algorithm exhibits 

numerical errors that significantly compromise the relevance of the solution. Despite this, I 

believe system dynamics software packages are invaluable tools to help the civil engineer develop 

prototype numerical models of complex systems. However, it is the due diligence of the civil 

engineer to employ numerical DAE algorithms to ensure that solutions to these complex systems, 

when used in design or planning, conform to expected behaviour and are free from numerical 

aberrations. 

The outcome of this research has been published in the ASCE Journal of Computing in Civil 

Engineering (Shadpour, et al. 2015). 
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Appendix A: numerical modeling of the urban wastewater 

management system 

Coding in MATLAB (Crank-Nicolson scheme): 

%Linear System of Equations by Gaussian Elimination (LU 

Factorization) 

%FULL ITERATION 

clear all; close all; clc 

tic 

%INITIAL CONDITIONS***************************************** 

Cond_20 = 140; 

Cond_40 = 280; 

Cond_60 = 140; 

Cond_80 = 105; 

Cond_100 = 35; 

Cum_CapEx = 0; 

Cum_OpEx = 0; 

Funds_Balance = 0; 

User_Fees = 3.75; 

Water_Demand = 300; 

TotalEx_ToDate = 0; 

Demand_Change = 0; 

%CONSTANTS*************************************************** 

alpha1 = 0.1; 

alpha2 = 0.1; 

alpha3 = 0.1; 

deltaT = 1/64; 

Population = 100000; 

Elasticity_of_Demand = 0.35; 

Maximum_Funds_Balance = 0; 

Minimum_Funds_Balance = 0;  

Minimum_Demand = 200; 
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Unit_Price_CapEx = 1000; 

Unit_Price_OpEx = 50; 

CapEx = 8260000; 

OpEx = 41055000; 

Rehab_Fraction = 1.18; 

Max_Fee_Hike_Rate = 1000; 

Total_Length_Pipes = Cond_20 + Cond_40 + Cond_60 + Cond_80 + 

Cond_100; 

Average_Cond = (Cond_20*20 + Cond_40*40 + Cond_60*60 + Cond_80*80 

+ Cond_100*100)/Total_Length_Pipes; 

Total_Water_Consumption = Water_Demand*Population*365/1000; 

Revenue = User_Fees * Total_Water_Consumption; 

 

    C20(1) = Cond_20/Total_Length_Pipes*100; 

    C40(1) = Cond_40/Total_Length_Pipes*100; 

    C60(1) = Cond_60/Total_Length_Pipes*100; 

    C80(1) = Cond_80/Total_Length_Pipes*100; 

    C100(1) = Cond_100/Total_Length_Pipes*100;  

    F(1) = Funds_Balance; 

    U(1) = User_Fees; 

    O(1) = OpEx; 

    W(1) = Water_Demand; 

    R(1) = Revenue; 

    C(1) = CapEx; 

    E(1) = OpEx+CapEx; 

    T(1) = Total_Water_Consumption; 

     

time = deltaT; 

c = 2; 

while time <= 100 
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    %Saving the variables of the previous time into new variable 

names; 

    %These variables are used in the "b" matrix to keep it unchanged 

during 

    %the iteration: 

    Co100 = Cond_100;  

    Co20 = Cond_20;  

    Co40 = Cond_40;  

    Co60 = Cond_60;  

    Co80 = Cond_80;  

    FB = Funds_Balance;  

    TD = TotalEx_ToDate; 

    UF = User_Fees; 

    WD = Water_Demand; 

     

    xx = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]; 

    y = [0, 1.5, 3.5, 6.5, 11, 18, 26, 38.5, 55, 75, 100]; 

    Average_Cond = (Cond_20*20 + Cond_40*40 + Cond_60*60 + 

Cond_80*80 + Cond_100*100)/Total_Length_Pipes; 

    Condition_Factor = interp1(xx,y,Average_Cond); 

    AC(c) = Average_Cond; 

     

    Rehab_Length = Total_Length_Pipes * Rehab_Fraction/100; 

    Renewal = Rehab_Length; 

     

    Expenditures = CapEx + OpEx; 

 

    %Required_Revenue 

    if (Funds_Balance < Minimum_Funds_Balance) 

        Required_Revenue = Expenditures-Funds_Balance; 

    else 

        Required_Revenue = Expenditures; 
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    end 

     

    %User_Fee_Hike 

    if (Funds_Balance > Maximum_Funds_Balance) 

        User_Fee_Hike = 0; 

    else 

        User_Fee_Hike = min(Max_Fee_Hike_Rate/100*User_Fees, 

(Required_Revenue/Total_Water_Consumption-User_Fees)); 

    end 

     

    %User_Fee_Decline 

    if (Funds_Balance > Maximum_Funds_Balance) 

        User_Fee_Decline = User_Fees - (Expenditures-

Funds_Balance)/Total_Water_Consumption; 

    else 

        User_Fee_Decline = 0; 

    end 

     

    AA = 1000*Unit_Price_OpEx*(1+Condition_Factor/100); 

    BB = 1000*Unit_Price_CapEx*Rehab_Fraction/100; 

     

    UFH = User_Fee_Hike; 

    UFD = User_Fee_Decline; 

    TWC = Total_Water_Consumption; 

    DC = Demand_Change; 

 

    

%****************************************************************

****** 

    %Doolittle Algorithm with Data Structures 
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%****************************************************************

****** 

    %Dara structure of original matrix 

    a = [1+deltaT*Rehab_Fraction/200, deltaT*Rehab_Fraction/200, 

deltaT*Rehab_Fraction/200, deltaT*Rehab_Fraction/200, -

deltaT/40+deltaT*Rehab_Fraction/200,... 

        -deltaT*Rehab_Fraction/200, 1-

deltaT*Rehab_Fraction/200+deltaT/40, -deltaT*Rehab_Fraction/200, -

deltaT*Rehab_Fraction/200, -deltaT*Rehab_Fraction/200,... 

        -deltaT/40, 1+deltaT/40, -deltaT/40, 1+deltaT/40, -

deltaT/40, 1+deltaT/40, deltaT*(AA+BB)/2, deltaT*(AA+BB)/2, 

deltaT*(AA+BB)/2, deltaT*(AA+BB)/2, deltaT*(AA+BB)/2, 1,... 

        -deltaT*Total_Water_Consumption/2, -deltaT*(AA+BB)/2, -

deltaT*(AA+BB)/2, -deltaT*(AA+BB)/2, -deltaT*(AA+BB)/2, -

deltaT*(AA+BB)/2, 1, 1, 1]; 

 

    ia = [1 6 11 13 15 17 24 30 31 32]; 

 

    ja = [1 2 3 4 5 1 2 3 4 5 2 3 3 4 4 5 1  2 3 4 5 6 8 1 2 3 4 5 

7 8 9]; 

 

    idiag = [1 7 12 14 16 22 29 30 31]; 

 

    %Data structure of factored matrix 

    af = [1+deltaT*Rehab_Fraction/200, deltaT*Rehab_Fraction/200, 

deltaT*Rehab_Fraction/200, deltaT*Rehab_Fraction/200, -

deltaT/40+deltaT*Rehab_Fraction/200, 0, 0, 0, 0,... 

        -deltaT*Rehab_Fraction/200, 1-

deltaT*Rehab_Fraction/200+deltaT/40, -deltaT*Rehab_Fraction/200, -

deltaT*Rehab_Fraction/200, -deltaT*Rehab_Fraction/200, 0, 0, 0, 

0,... 
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        0, -deltaT/40, 1+deltaT/40, 0, 0, 0, 0, 0, 0,... 

        0, 0, -deltaT/40, 1+deltaT/40, 0, 0, 0, 0, 0,... 

        0, 0, 0, -deltaT/40, 1+deltaT/40, 0, 0, 0, 0,... 

        deltaT*(AA+BB)/2, deltaT*(AA+BB)/2, deltaT*(AA+BB)/2, 

deltaT*(AA+BB)/2, deltaT*(AA+BB)/2, 1, 0, -

deltaT*Total_Water_Consumption/2, 0,... 

        -deltaT*(AA+BB)/2, -deltaT*(AA+BB)/2, -deltaT*(AA+BB)/2, -

deltaT*(AA+BB)/2, -deltaT*(AA+BB)/2, 0, 1, 0, 0,... 

        0, 0, 0 ,0, 0, 0, 0, 1, 0,... 

        0, 0, 0, 0, 0, 0, 0, 0, 1]; 

     

    iaf = [1 10 19 28 37 46 55 64 73 82]; 

 

    jaf = [1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 

2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 ... 

        1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 

3 4 5 6 7 8 9]; 

 

    idiagf = [1 11 21 31 41 51 61 71 81]; 

 

    n = sqrt(size(af,2)); 

    work(1:n) = 0; 

    marker(1:n) = 0; 

    i = 2; 

    while i <= n 

        for k = ia(i):ia(i+1)-1 

            work(ja(k)) = a(k); 

        end 

        for k = iaf(i):iaf(i+1)-1 

            marker(jaf(k)) = 1; 

        end 

        %************************************************ 
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        %Computation of L\U elements in order:work array* 

        %************************************************ 

        for k = iaf(i):idiagf(i)-1 

            id = jaf(k); 

            mult = work(id)/af(idiagf(id)); 

            work(id) = mult; 

            for kk = idiagf(id)+1:iaf(id+1)-1 

                idd = jaf(kk); 

                if (marker(idd) ~= 0) 

                    work(idd) = work(idd)-mult*af(kk); 

                end 

            end 

        end 

        for k = iaf(i):iaf(i+1)-1 

            af(k) = work(jaf(k)); 

            work(jaf(k)) = 0; 

            marker(jaf(k)) = 0; 

        end 

        i = i+1; 

    end 

    %****** 

    %Solve* 

    %****** 

    b = [(1-deltaT*Rehab_Fraction/200)*Co100-

deltaT*Rehab_Fraction/200*Co20-deltaT*Rehab_Fraction/200*Co40-

deltaT*Rehab_Fraction/200*Co60+(deltaT/40-

deltaT*Rehab_Fraction/200)*Co80,... 

        

deltaT*Rehab_Fraction/200*Co100+(1+deltaT*Rehab_Fraction/200-

deltaT/40)*Co20+deltaT*Rehab_Fraction/200*Co40+deltaT*Rehab_Fract

ion/200*Co60+deltaT*Rehab_Fraction/200*Co80,... 

        (1-deltaT/40)*Co40+deltaT/40*Co20,... 
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        (1-deltaT/40)*Co60+deltaT/40*Co40,... 

        (1-deltaT/40)*Co80+deltaT/40*Co60,... 

        FB-deltaT*(AA+BB)/2*Co100-deltaT*(AA+BB)/2*Co20-

deltaT*(AA+BB)/2*Co40-deltaT*(AA+BB)/2*Co60-

deltaT*(AA+BB)/2*Co80+deltaT*TWC/2*UF,... 

        

TD+deltaT*(AA+BB)/2*Co100+deltaT*(AA+BB)/2*Co20+deltaT*(AA+BB)/2*

Co40+deltaT*(AA+BB)/2*Co60+deltaT*(AA+BB)/2*Co80,... 

        UF+deltaT*(1/2*(User_Fee_Hike-User_Fee_Decline)+1/2*(UFH-

UFD)),... 

        WD+deltaT*(1/2*(-Demand_Change)+1/2*(-DC))]; 

    z = b; 

    for i = 1:n 

        for k = iaf(i):idiagf(i)-1 

            z(i) = z(i)-z(jaf(k))*af(k); 

        end 

    end 

    x = z; 

    for i = n:-1:1 

        for k = idiagf(i)+1:iaf(i+1)-1 

            x(i) = x(i)-x(jaf(k))*af(k); 

        end 

        x(i) = x(i)/af(idiagf(i)); 

    end 

    

%****************************************************************

****** 

            Cond_100 = x(1);  

            Cond_20 = x(2);  

            Cond_40 = x(3);  

            Cond_60 = x(4);  

            Cond_80 = x(5);  
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            Funds_Balance = x(6);  

            TotalEx_ToDate = x(7);  

            User_Fees = x(8);  

            Water_Demand = x(9);  

    %********** 

    %CALCULATE* 

    %********** 

    OpEx = 

Unit_Price_OpEx*Total_Length_Pipes*1000*(1+Condition_Factor/100); 

    CapEx = Renewal*1000*Unit_Price_CapEx; 

     

        %Demand_Change 

        U(c) = User_Fees; 

        if time <= 1 

            Demand_Change = min((User_Fees - 

U(1))/U(1)*Elasticity_of_Demand*Water_Demand, (Water_Demand-

Minimum_Demand)); 

        else 

            Demand_Change = min((User_Fees - U(c-

floor(1/deltaT)))/U(c-

floor(1/deltaT))*Elasticity_of_Demand*Water_Demand, (Water_Demand-

Minimum_Demand)); 

        end 

        if Demand_Change < 0 

            Demand_Change = 0; 

        end 

         

        %Total_Water_Consumption 

        W(c) = Water_Demand; 

        if time <= 20 

            S(1) = W(1); 

            for j = 2:c 
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                S(j) = alpha1 * W(j-1)+(1-alpha1) * S(j-1); 

            end 

            S1 = S; 

            WW = S; 

            for j = 2:c 

                S(j) = alpha2 * WW(j-1)+(1-alpha2) * S(j-1); 

            end 

            S2  = S; 

            WW = S; 

            for j = 2:c 

                S(j) = alpha3 * WW(j-1)+(1-alpha3) * S(j-1); 

            end 

            Total_Water_Consumption = S(c)*Population*365/1000; 

        else 

            S(1) = W(c-floor(20/deltaT)); 

            for j = c+1-floor(20/deltaT):c 

                S(j) = alpha1 * W(j-1)+(1-alpha1) * S(j-1); 

            end 

            S1 = S; 

            WW = S; 

            for j = c+1-floor(20/deltaT):c 

                S(j) = alpha2 * WW(j-1)+(1-alpha2) * S(j-1); 

            end 

            S2  = S; 

            WW = S; 

            for j = c+1-floor(20/deltaT):c 

                S(j) = alpha3 * WW(j-1)+(1-alpha3) * S(j-1); 

            end 

            Total_Water_Consumption = S(c)*Population*365/1000; 

        end 

         

        TWC = Total_Water_Consumption; 
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%         %Revenue 

%         Revenue = User_Fees * Total_Water_Consumption; 

     

        CapEx_Sum = CapEx; 

        OpEx_Sum = OpEx; 

        Cum_CapEx = Cum_CapEx + deltaT * CapEx_Sum; 

        Cum_OpEx = Cum_OpEx + deltaT * OpEx_Sum; 

    

%****************************************************************

****** 

    %Iteration 

    

%****************************************************************

****** 

    %error1: The absolute difference between two successive 

iterations on 

    %User_Fees 

    %error1: The absolute difference between two successive 

iterations on 

    %Funds_Balance 

    error1 = 1; 

    error2 = 1; 

    %error3 = 1; 

    tol1 = 1e-5; 

    tol2 = 1e-5; 

    %tol3 = 1e-5; 

    itt = 0; 

 

    while (error1 > tol1 && error2 > tol2) 

         

        X1 = User_Fees; 
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        X2 = Funds_Balance; 

        %X3 = Water_Demand; 

         

        %Required_Revenue 

        if (Funds_Balance < Minimum_Funds_Balance) 

            Required_Revenue = Expenditures-Funds_Balance; 

        else 

            Required_Revenue = Expenditures; 

        end 

         

        %User_Fee_Hike 

        if (Funds_Balance > Maximum_Funds_Balance) 

            User_Fee_Hike = 0; 

        else 

            User_Fee_Hike = min(Max_Fee_Hike_Rate/100*User_Fees, 

(Required_Revenue/Total_Water_Consumption-User_Fees)); 

        end 

        Y(c) = User_Fee_Hike; 

        %User_Fee_Decline 

        if (Funds_Balance > Maximum_Funds_Balance) 

            User_Fee_Decline = User_Fees - (Expenditures-

Funds_Balance)/Total_Water_Consumption; 

        else 

            User_Fee_Decline = 0; 

        end 

        YY(c) = User_Fee_Decline; 

        xx = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]; 

        y = [0, 1.5, 3.5, 6.5, 11, 18, 26, 38.5, 55, 75, 100]; 

        Average_Cond = (Cond_20*20 + Cond_40*40 + Cond_60*60 + 

Cond_80*80 + Cond_100*100)/Total_Length_Pipes; 

        Condition_Factor = interp1(xx,y,Average_Cond); 
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        AA = 1000*Unit_Price_OpEx*(1+Condition_Factor/100); 

        BB = 1000*Unit_Price_CapEx*Rehab_Fraction/100; 

 

        

%****************************************************************

** 

        %Doolittle Algorithm with Data Structures 

        

%****************************************************************

** 

        %Dara structure of original matrix 

        a = [1+deltaT*Rehab_Fraction/200, 

deltaT*Rehab_Fraction/200, deltaT*Rehab_Fraction/200, 

deltaT*Rehab_Fraction/200, -

deltaT/40+deltaT*Rehab_Fraction/200,... 

        -deltaT*Rehab_Fraction/200, 1-

deltaT*Rehab_Fraction/200+deltaT/40, -deltaT*Rehab_Fraction/200, -

deltaT*Rehab_Fraction/200, -deltaT*Rehab_Fraction/200,... 

        -deltaT/40, 1+deltaT/40, -deltaT/40, 1+deltaT/40, -

deltaT/40, 1+deltaT/40, deltaT*(AA+BB)/2, deltaT*(AA+BB)/2, 

deltaT*(AA+BB)/2, deltaT*(AA+BB)/2, deltaT*(AA+BB)/2, 1,... 

        -deltaT*Total_Water_Consumption/2, -deltaT*(AA+BB)/2, -

deltaT*(AA+BB)/2, -deltaT*(AA+BB)/2, -deltaT*(AA+BB)/2, -

deltaT*(AA+BB)/2, 1, 1, 1]; 

 

    ia = [1 6 11 13 15 17 24 30 31 32]; 

 

    ja = [1 2 3 4 5 1 2 3 4 5 2 3 3 4 4 5 1  2 3 4 5 6 8 1 2 3 4 5 

7 8 9]; 

 

    idiag = [1 7 12 14 16 22 29 30 31]; 
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    %Data structure of factored matrix 

    af = [1+deltaT*Rehab_Fraction/200, deltaT*Rehab_Fraction/200, 

deltaT*Rehab_Fraction/200, deltaT*Rehab_Fraction/200, -

deltaT/40+deltaT*Rehab_Fraction/200, 0, 0, 0, 0,... 

        -deltaT*Rehab_Fraction/200, 1-

deltaT*Rehab_Fraction/200+deltaT/40, -deltaT*Rehab_Fraction/200, -

deltaT*Rehab_Fraction/200, -deltaT*Rehab_Fraction/200, 0, 0, 0, 

0,... 

        0, -deltaT/40, 1+deltaT/40, 0, 0, 0, 0, 0, 0,... 

        0, 0, -deltaT/40, 1+deltaT/40, 0, 0, 0, 0, 0,... 

        0, 0, 0, -deltaT/40, 1+deltaT/40, 0, 0, 0, 0,... 

        deltaT*(AA+BB)/2, deltaT*(AA+BB)/2, deltaT*(AA+BB)/2, 

deltaT*(AA+BB)/2, deltaT*(AA+BB)/2, 1, 0, -

deltaT*Total_Water_Consumption/2, 0,... 

        -deltaT*(AA+BB)/2, -deltaT*(AA+BB)/2, -deltaT*(AA+BB)/2, -

deltaT*(AA+BB)/2, -deltaT*(AA+BB)/2, 0, 1, 0, 0,... 

        0, 0, 0 ,0, 0, 0, 0, 1, 0,... 

        0, 0, 0, 0, 0, 0, 0, 0, 1]; 

     

    iaf = [1 10 19 28 37 46 55 64 73 82]; 

 

        jaf = [1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 

9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 ... 

            1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

1 2 3 4 5 6 7 8 9]; 

 

        idiagf = [1 11 21 31 41 51 61 71 81]; 

 

        n = sqrt(size(af,2)); 

        work(1:n) = 0; 

        marker(1:n) = 0; 

        i = 2; 
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        while i <= n 

            for k = ia(i):ia(i+1)-1 

                work(ja(k)) = a(k); 

            end 

            for k = iaf(i):iaf(i+1)-1 

                marker(jaf(k)) = 1; 

            end 

            %************************************************ 

            %Computation of L\U elements in order:work array* 

            %************************************************ 

            for k = iaf(i):idiagf(i)-1 

                id = jaf(k); 

                mult = work(id)/af(idiagf(id)); 

                work(id) = mult; 

                for kk = idiagf(id)+1:iaf(id+1)-1 

                    idd = jaf(kk); 

                    if (marker(idd) ~= 0) 

                        work(idd) = work(idd)-mult*af(kk); 

                    end 

                end 

            end 

            for k = iaf(i):iaf(i+1)-1 

                af(k) = work(jaf(k)); 

                work(jaf(k)) = 0; 

                marker(jaf(k)) = 0; 

            end 

            i = i+1; 

        end 

        %****** 

        %Solve* 

        %****** 
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        %b = [Co100, Co20, Co40, Co60, Co80, FB, TD, 

UF+deltaT*(User_Fee_Hike-User_Fee_Decline), WD+deltaT*(-

Demand_Change)]; 

        b = [(1-deltaT*Rehab_Fraction/200)*Co100-

deltaT*Rehab_Fraction/200*Co20-deltaT*Rehab_Fraction/200*Co40-

deltaT*Rehab_Fraction/200*Co60+(deltaT/40-

deltaT*Rehab_Fraction/200)*Co80,... 

        

deltaT*Rehab_Fraction/200*Co100+(1+deltaT*Rehab_Fraction/200-

deltaT/40)*Co20+deltaT*Rehab_Fraction/200*Co40+deltaT*Rehab_Fract

ion/200*Co60+deltaT*Rehab_Fraction/200*Co80,... 

        (1-deltaT/40)*Co40+deltaT/40*Co20,... 

        (1-deltaT/40)*Co60+deltaT/40*Co40,... 

        (1-deltaT/40)*Co80+deltaT/40*Co60,... 

        FB-deltaT*(AA+BB)/2*Co100-deltaT*(AA+BB)/2*Co20-

deltaT*(AA+BB)/2*Co40-deltaT*(AA+BB)/2*Co60-

deltaT*(AA+BB)/2*Co80+deltaT*Total_Water_Consumption/2*UF,... 

        

TD+deltaT*(AA+BB)/2*Co100+deltaT*(AA+BB)/2*Co20+deltaT*(AA+BB)/2*

Co40+deltaT*(AA+BB)/2*Co60+deltaT*(AA+BB)/2*Co80,... 

        UF+deltaT*(1/2*(User_Fee_Hike-User_Fee_Decline)+1/2*(UFH-

UFD)),... 

        WD+deltaT*(1/2*(-Demand_Change)+1/2*(-DC))]; 

        z = b; 

        for i = 1:n 

            for k = iaf(i):idiagf(i)-1 

                z(i) = z(i)-z(jaf(k))*af(k); 

            end 

        end 

        x = z; 

        for i = n:-1:1 

            for k = idiagf(i)+1:iaf(i+1)-1 
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                x(i) = x(i)-x(jaf(k))*af(k); 

            end 

            x(i) = x(i)/af(idiagf(i)); 

        end 

        

%************************************************************** 

        Cond_100 = x(1); 

        Cond_20 = x(2);  

        Cond_40 = x(3);  

        Cond_60 = x(4);  

        Cond_80 = x(5);  

        Funds_Balance = x(6);  

        TotalEx_ToDate = x(7);  

        User_Fees = x(8);  

        Water_Demand = x(9);  

        

%************************************************************** 

        %******* 

        %UPDATE* 

        %******* 

        %Demand_Change 

        U(c) = User_Fees; 

        if time <= 1 

            Demand_Change = min((User_Fees - 

U(1))/U(1)*Elasticity_of_Demand*Water_Demand, (Water_Demand-

Minimum_Demand)); 

        else 

            Demand_Change = min((User_Fees - U(c-

floor(1/deltaT)))/U(c-

floor(1/deltaT))*Elasticity_of_Demand*Water_Demand, (Water_Demand-

Minimum_Demand)); 

        end 
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        if Demand_Change < 0 

            Demand_Change = 0; 

        end 

        %Total_Water_Consumption 

        W(c) = Water_Demand; 

        if time <= 20 

            S(1) = W(1); 

            for j = 2:c 

                S(j) = alpha1 * W(j-1)+(1-alpha1) * S(j-1); 

            end 

            S1 = S; 

            WW = S; 

            for j = 2:c 

                S(j) = alpha2 * WW(j-1)+(1-alpha2) * S(j-1); 

            end 

            S2  = S; 

            WW = S; 

            for j = 2:c 

                S(j) = alpha3 * WW(j-1)+(1-alpha3) * S(j-1); 

            end 

            Total_Water_Consumption = S(c)*Population*365/1000; 

        else 

            S(1) = W(c-floor(20/deltaT)); 

            for j = c+1-floor(20/deltaT):c 

                S(j) = alpha1 * W(j-1)+(1-alpha1) * S(j-1); 

            end 

            S1 = S; 

            WW = S; 

            for j = c+1-floor(20/deltaT):c 

                S(j) = alpha2 * WW(j-1)+(1-alpha2) * S(j-1); 

            end 

            S2  = S; 
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            WW = S; 

            for j = c+1-floor(20/deltaT):c 

                S(j) = alpha3 * WW(j-1)+(1-alpha3) * S(j-1); 

            end 

            Total_Water_Consumption = S(c)*Population*365/1000; 

        end 

         

        %Revenue 

        Revenue = User_Fees * Total_Water_Consumption; 

 

        error1 = abs(User_Fees - X1); 

        error2 = abs(Funds_Balance - X2); 

        %error3 = abs(Water_Demand - X3); 

        itt = itt + 1; 

         

    end 

    iteration(c) = itt; 

    

%****************************************************************

****** 

    U(c) = User_Fees; 

    W(c) = Water_Demand; 

    F(c) = Funds_Balance; 

    O(c) = OpEx; 

    R(c) = Revenue; 

    C20(c) = Cond_20/Total_Length_Pipes*100; 

    C40(c) = Cond_40/Total_Length_Pipes*100; 

    C60(c) = Cond_60/Total_Length_Pipes*100; 

    C80(c) = Cond_80/Total_Length_Pipes*100; 

    C100(c) = Cond_100/Total_Length_Pipes*100; 

    C(c) = CapEx; 

    E(c) = Expenditures; 
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    T(c) = Total_Water_Consumption; 

        

    c = c + 1; 

    time = time + deltaT; 

end 

 

runtime = toc 

 

RESULTS = [C20; C40; C60; C80; C100; F; U; W; R]'; 

 

X = linspace(0,100,c-1); 

figure(1); plot(X,C20,'r','LineWidth',2); hold on; 

plot(X,C40,'g','LineWidth',2); hold on;  

plot(X,C60,'b','LineWidth',2); hold on; 

plot(X,C80,'y','LineWidth',2); hold on; 

plot(X,C100,'k','LineWidth',2); grid on 

legend('percent 20','percent 40','percent 60','percent 

80','percent 100'); 

figure(2); plot(X,O,'g','LineWidth',2); grid on; title('OpEx');  

figure(3); plot(X,F,'g','LineWidth',2); grid on; title('Funds 

Balance');   

figure(4); plot(X,U,'g','LineWidth',2); grid on; title('User 

Fees','LineWidth',2);   

figure(5); plot(X,R,'g','LineWidth',2); grid on; title('Revenue');  

figure(6); plot(X,W,'g','LineWidth',2); grid on; title('Water 

Demand');  

%****************************************************************

********** 

 


