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ABSTRACT 

Performance prediction models are a vital component in pavement management systems (PMS). 

Along with decision trees, prediction models are used to set priorities for maintenance and 

rehabilitation planning, and ultimately for budget allocations at the network level. Reliable and 

accurate prediction of pavement deterioration over time helps transportation agencies accurately 

predict future spending and save significant amounts of money. Within a PMS, raw performance 

data is often converted into aggregated performance indices, such as the Riding Comfort Index 

(RCI), to quantify the road’s roughness, or the Distress Surface Index (SDI), to quantify accumulated 

pavement distress. Technology has evolved rapidly in the last two decades, making data collection 

for pavement conditions (i.e. roughness and distress data) more feasible for transportation agencies. 

However, transportation agencies, especially at the municipal level, only maintain condition data to 

evaluate the present pavement status. Only limited attempts have so far been made to develop or 

enhance existing deterioration models in pavement management systems, using periodically 

collected condition data over time. A well-maintained historical database of pavement condition 

measurements and performance indices can be a useful source for the development of performance 

prediction models. In some cases, however, the database may contain incomplete data and 

insufficient information to develop reliable performance models. In addition to inconsistency in the 

historical performance data, the age of the pavement or the date of the last maintenance/ 

rehabilitation treatment may not be available to develop the pavement performance over time. 

The goal of this research is to develop enhanced empirical performance models capable of capturing 

the unpredictable and indeterminate nature of pavement deterioration behavior. This research 

provides a methodology to develop empirical models in the absence of the construction and/or 

rehabilitation dates. The models developed in this research use limited available historical data, and 

examine different parameters, such as pavement thickness, traffic pattern, and subgrade condition. 
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Parameters such as the date of pavement construction and the age of the pavement are also 

incorporated into the proposed models, and are constrained by local experience and engineering 

judgment. A linear programming optimization technique is employed to develop the empirical models 

presented in this research. The approach demonstrated in this research can also be expanded to 

account for additional parameters, and can easily be adapted to match the needs of different 

agencies based on their local experience.  

In addition, the current research develops a second set of deterioration models based on 

mechanistic-empirical principles. Models incorporated into the mechanistic-empirical design guide 

are locally calibrated. A genetic algorithm optimization technique is employed to guide the calibration 

process, in order to determine the coefficients that best represent pavement performance over time. 

The two sets of performance models developed in this research are compared at both the project 

and network level of analysis. A decision-making framework is implemented to incorporate the two 

sets of models, and a comprehensive life cycle cost analysis is carried out to compare design 

alternatives in the project level analysis. The two model sets are also evaluated at the network level 

analysis using a municipal pavement management system. Two budget scenarios are executed, 

based on the developed performance models, and a comparison between network performance and 

budget spending is presented. Finally, a summary and current research contribution to the pavement 

industry will be presented, along with recommendations for future research. 
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1.0 Introduction 

1.1 GENERAL 

Performance measures are essential indicators for transportation agencies in order to 

effectively maintain an adequate level of pavement service in the most cost effective manner. 

Pavement distress conditions and roughness are among the key performance indicators being used 

widely across Canada and globally to evaluate pavement performance and ultimately determine the 

most effective preservation, maintenance and rehabilitation strategies. These performance models 

are usually monitored over time to establish the performance trend of existing infrastructure assets, 

eventually being used for budgeting future funding and resource allocation at the network level and 

Pavement Management Systems (PMS). The literature reports that repair and rehabilitation are 

important decisions for sustaining the serviceability and safety of civil infrastructure (Hegazy, 

Rashedi and Abdelbaset 2012). In the situation of competing treatment alternatives and limited 

resources, performance measures help to efficiently allocate the available resources to road 

networks (Stantec Consulting 2011) and (Haas, Abd El Halim, et al. 2012). On the other hand, 

performance measure models are also currently used at the project level to evaluate different 

rehabilitation strategies and select the best strategy that meets design criteria.  

 

1.2 RESEARCH MOTIVATION 

With the introduction of the new Mechanistic Empirical Pavement Design Guide (MEPDG) in 

2004, new performance models have been introduced that have been developed solely based on 

the mechanistic empirical concept (Applied Research Associates 2004). Fundamentally, it is 

expected that a pavement will deteriorate at the same rate and level regardless of how it is being 
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evaluated within the programing framework scheme. However, project level Mechanistic-Empirical 

(M-E) models have shown different performance and discrepancies in behavior compared to 

traditional models currently used in pavement management systems at the network level. This 

variation is expected due to the nature of each model, as well as the incorporation of other 

parameters into the M-E models. Since the M-E models are more representative of pavement asset 

performance, due to the incorporation of new parameters such as material properties, traffic 

characteristics and environmental impacts, there is a need to explore project level M-E models and 

investigate their suitability at the network level. It is vital to study the impact of these new evolved 

models on the budgeting and allocation strategies and determine their impact on rehabilitation 

selection through life cycle cost analysis. 

 

1.3 SCOPE & OBJECTIVES 

The objective of this research is to improve existing PMS prediction models and explore M-E 

model application at the project and network levels. Existing empirical models used in Canada by 

different agencies at the municipal level will be examined first. An attempt to enhance these models 

will be carried out, which will later be compared to the M-E Models. Pavement deterioration can be 

affected by a number of factors, including pavement age, traffic level, climatic effects and pavement 

structure (Li, Kazmierowski, et al. 2001). Historical performance data will therefore be classified 

according to these parameters, which are known to greatly influence pavement performance. The 

impact of climate change on performance models will be investigated, and models for deferent 

climatic regions will be developed based on available municipal data. Next, an optimization 

technique will be utilized to calibrate M-E models to suit local environments and practice conditions 

in Canada at the municipal level. The enhanced empirical models will be compared against the 

calibrated M-E models for different conditions in Canada, and the possibility of using the calibrated 
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M-E Models at the network level will be investigated. Life cycle cost analysis will be carried out to 

explore the impact of modeling change on strategy selection. It should be noted that this research 

gives greater consideration to the suitability of M-E Models at Project and Network levels and their 

respective impact on planning and budgeting, rather than detailed analysis for MEPDG calibration 

and material properties and modeling. This research will also evaluate the impact of changing the 

performance models and how that affects network optimization and budgeting outcomes. Research 

objectives can be summarized as follows: 

1. Review and identify gaps in existing empirical models used across Canada and define the 

key parameters that influence municipal pavement performance. Special attention will be 

given to climate change and its respective impact on performance. 

2. Examine historical performance data and develop enhanced empirical models classified 

according to parameters identified in the first step. 

3. Review current M-E models incorporated into the (MEPDG) design guide and use 

optimization to calibrate the models to various municipal traffic and climate conditions across 

Canada. 

4. Develop a prototype decision-making framework at the project level to evaluate and compare 

the impact of model changes on maintenance, preservation, and rehabilitation treatment 

selection, as well as associated cost prediction through a detailed life cycle cost analysis. 

5. Study the impact of model type changes on planning and budgeting at the network level 

framework. 
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1.4 RESEARCH HYPOTHESIS 

The hypothesis for this research can be summarized as follows: 

• This research will make use of advances in distress data collection by utilizing a 

comprehensive distress database to develop and enhance existing empirical models 

• Limited research has been conducted to develop prediction models for local municipalities 

and cities, and it is therefore expected that industries and pavement practitioners will benefit 

from the outcomes of this research 

• The database can be used to evaluate the impact of climate change on pavement 

performance 

• Incorporating M-E models into the PMS can improve its capabilities to truly predict actual 

pavement performance, as well as its budgeting and allocation strategies 

• Develop project level decision-support tool to assess engineers select best Rehab strategy   

1.5 RESEARCH METHODOLOGY 

Figure 1-1 outlines the proposed research methodology. Existing empirical models used in 

Canada at the municipal level will be reviewed, and historical data from different municipalities 

across Canada will be utilized to develop new models. Optimization techniques, local experience 

and expert knowledge will all be employed to enhance the empirical models developed. On the other 

hand, preliminary M-E models will be implemented for the same classes that were identified in the 

development of the empirical models. Local data will also be used to calibrate these models through 

the use of optimization techniques. In order to evaluate these new models, a prototype decision-

making framework will be developed, and models change impact will be compared through a 

detailed life cycle cost analysis at the project level for different rehabilitation options. In addition, the 
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impact of model changes on planning and budgeting will be validated through full implementation of 

pavement management systems at a network level of analysis.  

1.6 THESIS ORGANIZATION 

Chapter 1 includes research objectives and motivations, in addition to the scope of the research. 

Chapter 2 includes a literature review, which discusses state-of-the-art methods of pavement 

performance modeling for both empirical models and M-E models, and identifies the factors which 

have the most impact on pavement performance. Chapter 3 discusses existing empirical models 

used in Ontario, as well as possible enhancements to these models, achieved through the use of 

historical performance data and better experimental design to classify models based on traffic 

patterns, subgrade condition, pavement thickness and functional class. Chapter 4 summarizes the 

impact of climate and regional changes on pavement deterioration and how these can influence 

pavement performance. Data from Western Canada will be used to develop models for this region, 

and will be compared to those developed for Eastern Canada. Chapter 5 evaluates Ride Comfort 

Index (RCI) models further, and develops deterioration models for municipalities in Ontario based on 

M-E principles. M-E models in the MEPDG are calibrated using measured data collected in Ontario. 

The calibration process utilizes a fully automated and genetic algorithm optimization technique to 

find the optimum calibration coefficients that represent the Ontario data. Chapter 6 involves the 

development of a decision-making framework to compare the enhanced empirical models developed 

with the new M-E models at the project level of analysis. Chapter 7 involves the implementation of 

the decision support tool, comparing the results of its life cycle cost analysis for rehabilitation 

alternatives, based on the two deterioration models streams. Chapter 8 compares the two types of 

models at the network level analysis. Two budget scenarios, designed to maintain network condition 

at an overall pavement quality index score of 65, are implemented based on the two model streams. 

Comparison between the budget expenditures of each is demonstrated, and the Chapter discusses 

how the prediction models impact decision-making. Chapter 9 summarizes and concludes the 
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outcomes of this research, considering how this work has contributed to advancing the state of the 

pavement industry, as well as making recommendations for future work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Research Methodology 
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2.0 Literature Review 

2.1 INTRODUCTION 

Pavement is one of the most essential elements of modern transportation infrastructure. 

Each year billions of dollars are spent on pavement maintenance and rehabilitation just to keep 

roads in functional service (TAC 2006). This annual investment has forced many transportation 

agencies to monitor factors affecting pavement performance, and to connect them to pavement 

behavior over the course of its service life (TAC 2013). Tracking such factors offers the advantage of 

accounting for their effects at the early stages of design and improving pavement’s performance 

over its life cycle accordingly.  

 

2.2 PERFORMANCE MODELS IN PAVEMENT MANAGEMENT SYSTEM 

A logical approach that includes condition assessment, performance modeling, and 

alternative optimization is essential for the implementation of a Pavement Management System 

(PMS). An integral component of such an approach is pavement performance modeling that predicts 

future pavement conditions based on criteria such as traffic load, subgrade condition, and pavement 

thickness. The successful implementation of a PMS is dependent on how realistic these prediction 

models are, and whether they truly resemble actual pavement performance over time (Shahin 1994).  

Traffic loading is expected to accelerate the deterioration of pavement, with the stress waves 

generated from moving traffic causing permanent deformation and increased crack propagation in 

the inner pavement layers. Climatic factors such as temperature, the freeze-thaw phenomenon, and 

moisture content will also accelerate crack propagation. The propagation of cracks into pavement 
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layers allows water to penetrate into the pavement subgrade layer, further deteriorating its condition 

and eventually resulting in its failure to carry future traffic loads. A realistic prediction model should 

account for all expected parameters known to greatly influence pavement performance; however, 

due to the high complexity and interaction among these parameters, incorporating all of them into a 

prediction model is extremely difficult. Figure 2-1 illustrates the complexity of the performance 

prediction problem. The following subsection discusses some of those parameters that have been 

found to have a strong effect on pavement performance.  

 

2.3 FACTORS IMPACTING PAVEMENT PERFORMANCE 

2.3.1 Performance Concept: 

Pavement performance is defined as the ability of a pavement to satisfactory serve traffic 

over time (AASHTO, 2003). Serviceability is defined as the ability of a pavement to serve the traffic 

for which it was designed for. Integrating both of these definitions yields a new and better 

understanding of pavement performance, which can be interpreted as the integration of serviceability 

over time (Yoder and Witczak 1975). Performance is a broad, general term describing how 

pavement conditions change or how pavement structures serve their intended functions with 

accumulating use. 

Several methods have been developed to measure pavement performance. The Present 

Serviceability Index (PSI), measured on a scale 0 to 5, has been developed based on AASHO road 

test data. PSI was the first approach to be used for subjectively evaluating pavement performance. 

Later, the Pavement Condition Index (PCI), measured on a scale 0 to 100, was developed by the US 

Army Corps of Engineers as a quantitative measure for estimating pavement condition and 

performance (Shahin 1994). 
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Figure 2-1: Factor Impacting Pavement Performance (Ayed, Helali and Zhghloul 2002) 
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Pavement Quality Index, measured on a scale of 0 to 10 were also introduced as performance 

measuring approaches. In general, pavement performance depends on several factors, which can 

be grouped into the following categories, as noted below.  
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2.3.2 Environmental Impact on Pavement Performance 

Several parameters have been identified as having a large impact on pavement 

performance. Seasonal variations of pavement material properties, such as temperature and in-situ 

moisture, have been shown to have a particularly strong effect on pavement performance. The fact 

that long term performance of a pavement structure is strongly dependent on subgrade soil and 

pavement layer properties makes any change in soil and pavement properties of great concern for 

long-term performance. This is particularly true in areas experiencing regular seasonal fluctuation in 

environmental conditions (Janno and Shepherd 2000). Nevertheless, climatic changes from region 

to region, combined with variation of site specific conditions, make it extremely difficult to develop 

prediction models that can fit in all regions. The need to develop regional prediction models is 

therefore an essential requirement for the design, planning and budgeting predictions of most 

transportation departments. The ability to predict regional environmental effects and incorporate 

seasonal variability of pavement materials into current design and planning procedures will greatly 

enhance pavement performance and reduce maintenance expenditures. Several environmental 

factors are reported to highly affect pavement strength and performance (Mrawira and Wile 2000). 

The most important of these include moisture content, the Ground Water Table (GWT), the 

freeze/thaw cycle and duration, and temperature, as illustrated in Figure 2-1. Seasonal variation in 

weather throughout the year plays an important role in changing the properties of pavement 

materials, which then in turn affect pavement stiffness and performance through secondary effects 

on the above named factors. Seasonal variation in weather produces changes in moisture content, 

GWT and the freeze/thaw periods throughout the year. These factors receive high consideration in 

current pavement research and design. The following section demonstrates the significance of these 

parameters by showing their impact on pavement in greater detail. 
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2.3.2.1 Moisture Content  

Moisture content has a significant impact on the moduli of subgrades and unbound layers in some 

cases, which ultimately affecting pavement performance. A dramatic increase in water content (W/C) 

will result in a weakening of the unbound materials, while roadbed soils will reduce the modulus 

values of pavement layers, shortening the pavement service life and significantly increasing 

maintenance costs. Several studies have been conducted in the hope of establishing a relationship 

between moisture content and pavement strength (Janno and Shepherd 2000) and (Ksaibati, 

Armaghani and Fisher 2000). (Ovik, Birgisson and Newcomb 1999) carried out a study to investigate 

the relationship between climatic factors (including moisture content), surface and subsurface 

condition, and pavement material properties. The study confirmed that layer moduli vary with the 

state of moisture in the pavement. It was also shown that the seasonal distribution of the unfrozen 

volumetric moisture content in the base and subgrade layers is related to fluctuations in the stiffness 

of the layers. 

2.3.2.2 Ground Water Table (G.W.T) 

With pavement sites having a higher ground water table, water content becomes an 

important design concern. The existence of adjacent water tables plays an important role in 

increasing pavement moisture content when the water level become close enough to the pavement 

depth to cause a reduction in pavement life. To investigate the effect of GWT, (Ksaibati, Armaghani 

and Fisher 2000) performed a study on several Florida State Roads to evaluate decreases in base 

and subgrade layer strength as a result of proximity to the water table. The main objectives of this 

study were to correlate the depth of the water table to the pavement modulus values, which serve as 

an indicator of pavement performance, as well as to study the effect of high water tables on the 

moisture content of both the base course and the subgrade. The study showed that higher water 

tables result in higher base course and subgrade moisture content. Both Dynaflect and FWD 
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showed that the water table had a significant impact on structural pavement performance. It should 

be noted that there were differences in the percentage increase in moisture content among different 

test sites. Despite such variation, the study conclusively demonstrated a high correlation between 

ground water table and moisture content. 

2.3.2.3 Freeze/Thaw Phenomena 

Pavement in seasonal frost areas experiences freeze-thaw cycles which expose its structure 

to significant moisture and temperature changes. These changes cause environmental fatigue in 

pavement, in addition to permanent fatigue due to vehicle traffic, both of which ultimately impact 

pavement performance over time. In an attempt to investigate this phenomenon, (Kestler and 

Truebe 2000)  observed the relationship among moisture content and pavement layer moduli, 

focusing on the spring thaw period in Montana. As thawing began in early March, moisture sensors 

recorded a large, sharp increase in moisture content to levels well above those observed 

immediately prior to freezing. As thawing progressed, an equally rapid sequential decrease in 

moisture content was observed until a few days after thawing was complete, at which point the slope 

of the moisture content recovery curve significantly flattened. On the other hand, as thawing starts in 

early March, an apparent decrease in subgrade modulus occurs, until it reaches its minimum value 

at a thaw depth of 18”, at which point it starts to recover again as thawing depth increases, until 

thawing is complete. It should be noted that this recovery began at a deeper thawing depth in other 

test sites. 

Another study (Janno and Shepherd 2000), noticed the same behavior for the base and 

subbase moisture content during the thawing period. This study was also carried out in Montana, 

and included 10 flexible pavement test sections. The study came to an interesting conclusion, finding 

that even though thawing officially started on March 30th, when temperatures reached 0°C, thaw-

weakening actually started on March 20, based on moisture contents records. This indicates that 
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predicting the start of thaw-weakening based on base temperature, for both base and subgrade, 

might in fact be misleading. 

2.3.2.4 Temperature Impact  

The structural performance of pavement is typically observed through the measurement and 

observation of pavement deflection. In flexible pavement, the surface deflection and layer moduli are 

significantly affected by the temperature of asphalt concrete, as the stiffness of the asphalt concrete 

layers dramatically influences its structural capacity. As the temperature of asphalt increases, the 

stiffness decreases, leaving it less able to withstand wheel load. A decrease in asphalt concrete 

stiffness results in higher stress being transmitted to the base and subgrade layers.  

2.3.3 Traffic  

 Fatigue caused by traffic loading is one of the main parameters that shortens pavement life, 

causing tension at the bottom and compression at the top. Over time, these stresses result in the 

surface cracking, which allows for moisture to move through pavement sub layers (base and 

subgrade). Ultimately, repeated traffic loading over time will result in further cracking and pavement 

failure. Traffic volume, axle load, the number of equivalent single axle loads (ESAL’s), tire pressure, 

truck type axles, configuration, load application time, and mechanism can be used to describe traffic-

associated stresses on pavement. For this research, the functional classification (Arterial, Local or 

Collectors) in addition to traffic pattern for each road will be used to describe variation in traffic 

loading and volume. Data aggregation will be classified based on the functional traffic classes to 

develop empirical performance models and account for variation in traffic loading. Assumptions may 

be needed when detailed data are missing for M-E modeling to resemble the three traffic pattern for 

road functional classes.  
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2.3.4 Materials 

Pavement layers used during construction play an important role in future pavement 

performance. The asphalt mix in particular should have good blending properties to resist cracking, 

while the base/subbase aggregate must have enough stiffness to resist deformation under repeated 

traffic. These desirable properties can be achieved through a properly performed compaction 

process. The subgrade resilient modulus is considered one of the important parameters used to 

describe pavement strength, since the subgrade is the foundation for all pavement structures. Good 

subgrade materials and condition will result in strong pavement with a long operational life. Several 

studies, such as (Tarefder, et al. 2008), have shown the importance of having a strong subgrade in 

order to increase pavement surface life. In this research, pavement performance models will be 

classified based on subgrade condition. The data used for model development will be aggregated to 

distinguish between performance models of weak subgrade pavement compared to strong subgrade 

pavement. It should be noted that it is not the intention of this study to investigate the impact of 

pavement material characteristics on the performance of prediction models; subgrade strength will 

instead only be employed as an overall parameter that describes pavement strength. 

2.3.5 Other Parameters 

Other parameters, such as geometric features (horizontal/vertical alignment, longitudinal and 

cross slope, provision of drainage facilities); design and construction factors, such as maintenance 

level and surface characteristics; and the quality of construction works, including initial roughness 

level and construction joints; are all known to impact pavement performance over time. Because 

these parameters generally have a small, indirect impact on pavement performance, they will 

therefore not be directly considered in the development and classification of the model.  
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2.3.6 Discussion 

The previous literature review revealed that several parameters have been reported to highly 

affect the pavement performance. As shown in previous sections, moisture content, ground water 

table, temperature and freeze/thaw phenomena are highly correlated to pavement material 

properties. Previous studies have proved that those four environmental factors are strongly affecting 

the pavement performance. The previously mentioned parameters receive high consideration in 

current pavement design procedures and research development. The literature review also showed 

that the impact of seasonal variation on the pavement performance vary from one region to another. 

Some parameters may have significant impact in one region while they might have insignificant 

impact in other region. Models developed based on data collected from one region are valid only for 

similar environmental regions. The current research will develop new enhanced empirical models 

that account for factors that are found to highly affect the pavement performance. The following 

section will review some of the prediction models that have been developed in the past to predict 

future pavement condition or those are currently in use by transportations agencies.   

 

2.4 TYPES OF PERFORMANCE MODELS 

2.4.1 Empirical Models 

The empirical modeling approach is based solely on the results of experiments or 

experience. Observations are used to establish correlations between the inputs and the outcomes of 

a process - e.g., pavement design and performance. These relationships are not directly measured, 

and instead involve engineering judgments such as expected trend directions and expected service 

life. Empirical approaches are often considered appropriate when it is too difficult to theoretically 

define the precise cause-and-effect relationships of a phenomenon. Most empirical models for 
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pavement design purposes were developed at the project level rather than the network level 

analysis. The empirical based design method used by the American Association of State Highway 

and Transportation Officials (AASHTO 1993) is the most commonly used method for design. The 

AASTHO design equation is a regression relationship between the number of load cycles, pavement 

structural capacity, and performance, measured in terms of serviceability. The biggest disadvantage 

of this method is that its regression analysis has many limitations. As is the case for any empirical 

method, regression methods can be applied only to conditions similar to those for which they were 

developed. The AASHTO method, for example, has been adjusted several times over the years to 

incorporate extensive modifications based on theory and experience that allowed the design 

equation to be used under conditions other than those of the AASHO Road Test. Although these 

models can represent and explain the effects of specific factors on pavement performance, their 

limited consideration of materials and construction data results in wide scatter and many 

uncertainties. Their use as pavement design tools is therefore very limited (Schwartz and Carvalho 

2008).  

Several local attempts have been made to develop performance models at the network level 

of analysis that suit agency needs and requirements, mostly for the purpose of implementing 

pavement management systems. One examples of this is the development of performance 

prediction models for the state of Virginia (Sadek, Freeman and Demetsky 1995). In this study, data 

was compiled from annual condition surveys of Virginia's pavement network to develop prediction 

models for the interstate system. The study used regression techniques to select the significant 

predictors of deterioration. Another study based on the regression analysis was the development of 

prediction models for the state of Mississippi (George 2000), in which five pavement families are 

identified for model development: original flexible, overlaid flexible, composite, jointed concrete, and 

continuously reinforced concrete. Models for each family were developed for predicting distresses, 

roughness, and a composite condition index. 
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2.4.1.1 Types of Empirical Performance models 

Various equations, mostly based on regression analysis, have been developed for predicting 

pavement performance. The usefulness of these empirical equations is limited by the scope of the 

database used in their development. These kinds of regression equations are valid only under 

certain conditions and should not be applied when actual conditions differ from these. These models 

can take the form of correlating one parameter that describes pavement condition, such as IRI or 

rutting, with other factors such as age or accumulated traffic over time. Such models are called 

distress-based performance models. On the other hand, performance models can also take the form 

of correlating the condition index to age or accumulated traffic, a process which is called an index-

based model. This index could be an Overall Condition Index (OCI) or Pavement Quality Index 

(PQI), which is in turn driven by other indexes such as the Riding Comfort Index (RCI) or the Surface 

Distress Index (SDI) (TAC 2006). 

 

 

2.4.1.2 HDM-4 Distress Models  

The Highway Design and Maintenance Standards Model (HDM-III) developed by the World 

Bank has been used for over two decades to combine technical and economic evaluation of road 

projects, and to prepare road investment programs  (Archondo-Callao 2004). The International Study 

of Highway Development and Management (ISOHDM) was later carried out to extend the scope of 

the HDM-III model, and to provide a harmonized systematic approach to road management, with 

adaptable and user-friendly software tools. This has produced the Highway Development and 

Management Tool (HDM-4). The HDM-4 is considered the successor to HDM-III, which has been 

used by various road agencies all over the world for the last 20 years. 
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HDM-4 includes a road deterioration framework, which provides a set of generic pavement 

condition deterioration models for various types of pavements. These generic models can then be 

calibrated to specific regions or countries in order to estimate pavement performance. HDM-4 

includes models for predicting various types of distresses, including structural cracking, raveling, 

potholes, skid resistance, rutting, roughness and others. These models are available for both flexible 

and rigid paved roads, as well as surface treated, and unpaved roads. HDM-4 is typically used in 

cases of strategic planning of all roads managed by a road administration, or in cases of 

programming road works for roads in fair to poor condition (Archondo-Callao 2004). Several studies 

have been carried out using HDM-4 (Jorge and Ferreira 2012), (Jain and Parida 2005) and (Lea 

1995) Due to its limited use for developed countries means the HDM-4 models cannot be used in 

North American regions, and as such they are out of the scope of this study. 

 

2.4.2 Mechanistic Empirical (M-E) Models 

M-E methods provide a technical improvement over empirical methods. The induced state of 

stress and strain in a pavement structure due to traffic loading and environmental conditions is better 

predicted using a theory of mechanics. Empirical models link these structural responses to distress 

predictions. Several studies over the past fifteen years have advanced M-E techniques, Including 

those conducted by the Departments of Transportation of Washington State (WSDOT), North 

Carolina (NCDOT) and Minnesota (MNDOT), to name just a few agencies that have developed their 

own M-E procedures. The NCHRP 1-37A project (NCHRP, 2004) delivered the most recent M-E-

based method, which incorporated nationally calibrated models to predict distinct distresses induced 

by traffic load and environmental conditions. The NCHRP 1-37A methodology also incorporated 

vehicle class and load distributions in its design, a step forward from the Equivalent Single Axle Load 

(ESAL) approach used in the AASTHO design equation and other prior methods. The performance 
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computation is done on a seasonal basis to incorporate the effects of climate conditions on the 

behavior of materials. Figure 2-2 shows the M-E process through the design cycle. The most 

important benefit of an M-E approach is its ability to accurately characterize in situ material 

conditions, including subgrade and existing pavement structures. This is typically measured by using 

a portable device such as Falling Weight Deflectometer (FWD) to measure actual field deflection on 

a pavement structure. These measurements can then be used to determine existing pavement 

structural support through backcalculation analysis to determine the approximate remaining 

pavement life. This allows for a more realistic design for the given conditions (Schwartz and 

Carvalho 2008).    

One of the biggest disadvantages of the MEPDG analysis is its lack of consideration for 

pavement preservation. Pavement preservation provides a means for maintaining and improving the 

functional condition of an existing highway system and slowing deterioration. Although preservation 

is not expected to substantially increase structural capacity, it generally leads to improved pavement 

performance and longer service life and should therefore be considered in the pavement design 

process. However, the MEPDG procedure and related performance prediction models focus on new 

design and structural rehabilitation, and do not explicitly consider the contributions of pavement 

preservation treatments to overall pavement performance. There is a need to identify approaches for 

considering the effects of preservation on pavement performance and to develop procedures that 

facilitate consideration of pavement preservation treatments in the MEPDG analysis process (Li, et 

al. 2011). In this research, a life cycle cost analysis, which includes periodical preventive 

maintenance, will be used to compare empirical versus M-E models. In addition, using PMS data in 

the calibration of the MEPDG can produce inaccurate results. M-E Models were developed solely 

based on the LTPP data, which has a different data collection protocol compared to typical PMS 

data collection. Therefore, several considerations need to be accounted for when using the PMS 

data in the MEPDG calibration process (Mamlouk and Zapata 2010).  
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Figure 2-2: Mechanistic Empirical Process (Applied Research Associates 2004)  

2.4.3 Experience Based Models 

These experimental models are typically used in agencies without access to historical data to 

develop either deterministic or probabilistic models. These models are based on engineering 

experience, where serviceability loss or other measure(s) of deterioration vs. age are estimated for 

different combination of variables, typically using Markovian transition process models (N. Li 1997) 

or Bayesian models (Haas 2003) and (Haas and Kazmierowski 1998). Markov Modelling in particular 

was used in several studies, (Abaza 2016), (Mandiartha, et al. 2012), (Ortiz-Garcia, Costello and 
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Snaith 2006), (Reigle and Zaniewski 2002), (Pulugurta, Shao and Chou 2009), (Abaza, Ashur and 

Al-Khatib 2004), (Uchwat and Macleod 2012), (Butt, et al. 1987), (Haider, Chatti and Baladi 2011) 

and (MacLeod and Walsh 1999); however, these models usually do not account for factors 

impacting pavement performance such as climate or traffic, only considering experience and 

engineering judgment. 

2.4.4 Artificial Intelligence Models 

Several attempts have been made in the past to use artificial intelligence techniques in the 

development of pavement prediction models, using different algorithms such as Fuzzy and Gray 

Theories (Wang and Li 2011), (Jiang and Li 2005), (Li, Wang, et al. 2006), (Bianchini and Bandini 

2010), (Pan, et al. 2011); and Artificial Neural Network (Lee, Ker and Liu 2014), (Kargah-Ostadi and 

Stoffels 2015). One study investigated the suitability of artificial intelligence techniques for pavement 

performance modeling, (Thube 2012) summarizing the implementation of a pavement condition 

prediction methodology using the Artificial Neural Network (ANN) to forecast cracking, raveling, 

rutting and roughness for Low Volume Roads in India. The study results suggest that ANN models 

satisfactorily forecast future individual distresses. (Yang, Lu and Gunaratne 2003) also implemented 

an overall pavement condition prediction methodology using ANN. In this study, three individual ANN 

models were developed to predict three key indices - crack rating, ride rating, and rut rating - used 

by the Florida Department of Transportation (FDOT) for pavement evaluation purposes. Results 

from this study suggested that ANN models have the capability to satisfactorily forecast the overall 

pavement condition index. The disadvantage of artificial intelligence models is that their forecasting 

is limited to only five years, which might not be practical for some agencies. Table 2-1 illustrates the 

main differences among various pavement performances models. 
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Table 2-1: Comparison among Different Pavement Performance Models 

Model Advantage Disadvantage 
Empirical • More suitable for network level 

analysis 
• Simple to use 
• Tolerable estimation for short time 

forecasting 

• Typically only addresses visual distress 
• More suitable for network level analysis 
• Only capable of predicting performance 

within its own development context 
• unreasonable estimate for long term 

performance forecasting 
• Only one climatic condition and one 

subgrade type were included in the case of 
AASHTO design guide 

• No Consideration for material properties 
Mechanistic • Always depends on mathematical 

engineering proof 
 

• Only predict based on the mechanic of 
materials theory 

• Models could be away from real behavior 
because it is only based on pure mechanics 

• Do not account for other factors, rather than 
materials, that may impact pavement such 
as environment and traffic 

Mechanistic-
Empirical  

• Can be used for both existing 
pavement rehabilitation and new 
pavement construction (Mechanistic-
Empirical Pavement Design 2008) 

• It uses material properties that relate 
better to actual pavement 
performance 

• It provides more reliable performance 
predictions 

• It accommodates environmental, 
change in load type and aging effects 
on materials 

• It can better characterize materials 
allowing for better utilization of 
available materials, accommodation 
of new materials and an improved 
definition of existing layer properties 

• Typically used at the project level 
• No consideration for periodical pavement 

preservation along pavement design life 

Experience 
Based 
Models 

• Suitable when no historical data is 
available 

• Does not account for factors impacting 
pavement performance such as environment 
and traffic 

Artificial 
Intelligence 
Models 

• More suitable for short term forecast 
mainly at network level 

• Simple to use 

• More site specific and does not account for 
material properties of the pavement 
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2.1 SUMMARY OF GAPS 

A large number of factors have been identified as having a strong influence on pavement 

performance. These parameters are mainly site-specific and may vary from one region to another. In 

order to implement reliable models that can be used by pavement engineers and practitioners, 

model inputs should be simplified and easily quantified and obtained. In light of this, the current 

research prioritizes three parameters seen as having the greatest impacts on municipal roads in 

Canada: traffic, pavement thickness, and subgrade condition. Since traffic classification could vary 

between different municipalities due to different ways of classifying network data, therefore, it was 

essential to classify traffic patterns within each road functional class for different jurisdictions. 

Environmental effects will be considered through their impact on subgrade conditions and the 

comparison between pavement performances in eastern Canada region versus western Canada 

region. The total thickness of the pavement will be used to account for design, structural and 

maintenance impacts, while current research will be limited to the asphalt pavement type. The 

literature review showed that limited attempts have been carried out in the past to implement 

empirical or M-E models for network level analysis at municipal levels in Canada and United States. 

Limited work was done in the past, and the models developed are typically site-specific (Hein and 

Watt 2005), depending mainly on probabilistic models (Silva, et al. 2000) . 

This research will develop reliable empirical models, based on condition data surveys 

collected from several Canadian municipalities over the past twenty years. It will also take into 

consideration changes in climate and traffic demands for Canadian cities. The current research will 

utilize modern automated data collection equipment that was not available in the past for most local 

agencies and municipalities. These new, more comprehensive models will be enhanced further 

through the incorporation of the M-E concept in model implantation. The next Chapter will develop 

empirical models that take into account factors that are highly affecting pavement performance. 
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3.0 Enhancement to Empirical Pavement Performance 

3.1 INTRODUCTION 

Developing the theoretical basis for this research requires an in-depth assessment of current 

municipal empirical models. Empirical performance models are generally being used in Canada 

within the framework of pavement management systems (PMS). Agencies such as municipal 

governments have been working locally to develop their own performance models for their unique 

local conditions. At the provincial level, the provincial ministries of transportation in Canada, such as 

the Ministry of Transportation of Ontario (MTO), have developed their own performance models 

based on historical pavement distress data, collected over more than two decades. However, limited 

efforts have been made at the municipal level to develop performance models. Along with decision 

trees, prediction models are being used to set the priorities for maintenance planning and budget 

allocations at the network level. Within a PMS, raw performance data is often converted to 

aggregated performance indices, such as RCI to quantify road roughness and SDI to quantify the 

extent and severity of surface distress.  

 

3.2 CHALLENGES WITH EMPIRICAL MODELS 

A review of the current practice within local agencies and municipalities in Ontario reveals 

that most municipalities have been using old performance models for decades in their pavement 

management systems. These models need to be revised and updated with the current practice of 

continuous distress data collection for each agency. A historical database with periodical condition 

data and/or pavement performance indices can be used as a source for the development of 

enhanced prediction models for these agencies. However, in some cases the database may suffer 

24 



from missing and/or incomplete data. In addition, the historical performance data, the age of the 

pavement, or the date of the last major rehabilitation are required to develop a relationship between 

the performance data and the age of the pavement, which is almost always missing. 

 

3.3 METHODOLOGY OF ASSESSMENT 

This section provides the research methodology used to develop performance prediction 

models in the absence of original construction or rehabilitation data. Condition survey data from 

different Ontario municipalities over the past ten years will be utilized to develop these performance 

models. This data was collected from different municipalities in Ontario, mainly in the southern 

region. The models developed in this section will be specific for Ontario region while the next chapter 

will be designated for Western Canada model development. In general, Ontario has four seasons: 

summer, fall, winter and spring. January is usually the coldest month of the year, while July is 

usually the warmest. The northern part of the province has longer and colder winters compared to 

Southern Ontario. While the summer season can be very hot and humid, with daytime temperatures 

varying between 20°C and 30°C, winter is cold, with frequent snow and daily and nightly 

temperatures often below 0°C in most of the province. Spring is a rainy season in most parts of 

Ontario. During the fall, the weather gets cooler and the days get shorter. The early part of fall is 

rainy in some parts of Ontario, while In some northern parts of Ontario, it may start snowing in 

October.  

 During the course of reviewing the available data, it was noticed that it lacked the historical 

information necessary to accurately determine when it was last rehabilitated. The models discussed 

herein will use the limited historical data available, accounting for different parameters such as 

pavement thickness, traffic, and subgrade classes (Ayed, Clark and Whiteley-Lagace 2010). The 

pavement construction dates, or age of the pavement, will be incorporated into the proposed model 
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and will be constrained based on local experience and engineering judgment. A linear programming 

technique will be employed to develop the performance prediction models. The approach presented 

in this section can be expanded to incorporate additional parameters and can easily be adapted to 

different agencies based on their local experience. The models presented herein will be compared 

later at project and network level of analysis. 

 

3.4 PERFORMANCE INDEXES IN ONTARIO  

PMS has been used extensively by municipalities across Canada for the last two decades. 

As a result, many of these municipalities in Ontario have multiple years of performance data from 

condition surveys. The three most common performance data recorded for municipalities are 

roughness, distress, and deflection. The raw data is often converted to a Performance Indicator (PI), 

which is then used to qualify pavement performance. It is expected that the pavement will deteriorate 

over time, and that this deterioration can be modeled through the performance indicators. Due to the 

limited data collected for deflection, the following section will focus on development of empirical 

models based on roughness and distress data. 

3.4.1 Riding Comfort index (RCI) 

One of the primary operating characteristics of a road, at least from the user’s perspective, is 

the roughness, which represents the traveling public’s opinion of the smoothness. The negative 

consequences associated with pavements with poor ride characteristics include: 

• Increased vehicle operating costs 

• Increased fuel consumption 

• Increased travel time 
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• Increased vehicle operator discomfort 

• Potential for reduced safety (in extreme cases) 

For years, many cities across Canada, have undertaken data collection surveys to record roughness 

and distress data across their road network. The literature review showed that previous studies 

attempted to develop deterioration models mainly at the state and provincial level using roughness 

data (Kargah-Ostadi and Stoffels 2015), (Xu, Bai and Sun 2014), (Nassiri, Shafiee and Bayat 2013) 

and (Chen and Zhang 2011). 

The ride characteristics of pavement can be objectively measured by commercially available 

equipment, which measures the longitudinal profile of the pavement surface. Profile data is then 

used to calculate an International Roughness Index (IRI), reported at different intervals (typically 30-

metre). Roughness measurements are correlated to an assessment of ride quality, as determined by 

the ratings of a group of representative users of the pavements. This ride quality indicator is the 

Riding Comfort Index (RCI). The IRI, and ultimately the RCI for the pavement section is then based 

on the RCI for all stations included in the section. Theoretically, the RCI can vary from 0 to 100, 

where 0 is considered an extremely rough surface and 100 is an extremely smooth surface. 

However, a realistic minimum would be in the range of 20 to 40, with a value of 20 representing the 

need for complete reconstruction. 

3.4.2 Surface Distress Index (SDI) 

The Surface Distress Index (SDI) is a measure of physical pavement cracking, deformation 

and surface defects, collectively referred to as distresses. This measure provides an excellent 

indicator of material deficiency, rate of deterioration, structural adequacy, and environmental and soil 

type problems. SDI is therefore a key indicator of pavement performance, which may be used to 

monitor the condition of the network. In the past, the only method of completing a pavement 

condition survey was to walk or drive down the road and collect data manually. With advancements 
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in pavement technology, automated data collection vehicles are now used to more accurately and 

quickly collect this data (Chamorro, et al. 2010). Different types of distresses are rated in terms of 

their severity and extent. Similar to the roughness data, the distress data is recorded and 

summarized at different intervals, typically 30-metre stations within each section of the network. The 

distress ratings are then transformed into separate scales from 0 to 100 for each distress type, which 

are further combined using distress-specific weighting factors to generate an overall SDI for each 

station. A sectional SDI score is then computed based on these stational SDI scores. Examples of 

the distresses surveyed under this methodology are shown in Table 3-1, while Figure 3-1 represents 

a sample of manual distress survey form used to collect distress data. 

Table 3-1: Different Types of Measured Distresses 

Different Distress Types 
• Patching • Alligator Cracking 
• Rippling & Shoving • Potholes 
• Raveling/Streaking • Block/Map Cracking 
• Flushing & Bleeding • Longitudinal Cracking 
• Distortion • Transverse Cracking 
• Excessive Crown • Wheel Track Rutting 
• Progressive Edge Cracking  

 

The SDI can vary between 0 and 100. A value of 100 indicates that the pavement surface is 

free of surface defects. Normally, an SDI of 60 to 70 is viewed as the critical range. Scores above 

this range generally indicate that any distresses that might exist are not severe or extensive in 

nature, while a score below this range generally indicate that significant distresses exist on the 

section. A section with an SDI below this range may experience an accelerated deterioration of 

performance due to rapid ingress of moisture, rapid propagation of cracking, increased susceptibility 

to freeze/thaw cycles, or other factors.  
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Figure 3-1: Sample Condition Evaluation Form for Flexible Pavement (Tighe, Capuruço 

and Jeffray 2006) 
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3.5 MODELING APPROACH 

Several mathematical models have been used in the past to describe pavement performance 

at the network level (Karan, et al. 1983) and (Haas, Hudson and Zaniewsk 1994). These models 

varied from empirical, where a response parameter is related to structural or functional deterioration 

through regression, to subjective models where experience may be captured through a transition 

matrix such as the one used for Markovian models (Adedimila, Olutaiow and Kehinde 2009). This 

research uses a combination of experience based and optimization technique to develop 

deterioration models, which represent new evolved models based mainly on mathematical 

regression, and adopted through the use of local historical data and engineering experience. 

A sigmoidal (i.e. S-shaped) form is adopted herein to describe pavement performance over 

time. This function is used widely in several pavement management systems to predict future 

condition of the pavement (Nassiri, Shafiee and Bayat 2013). This model form has a greater degree 

of flexibility in describing the deterioration of pavement performance, as it allows the models 

produced to be concave, convex, S-shaped, or almost linear. The following is the standard sigmoidal 

model form used in this study: 
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……………………………………………(Equation 3.1) 

Where, 

• O    = the initial condition of the pavement, immediately after rehabilitation (at age zero) 

• PI    = the performance index and could be the RCI or SDI parameter 

• Age = the number of years since the last major rehabilitation or construction activity 

• Coefficients A, B, and C are model parameters to be calibrated 
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Although it is expected that there may be some differences in the initial PI of the rehabilitated 

pavement section, based on the type and thickness of the rehabilitation activity, the initial condition 

(performance at age 0) for all rehabilitation activities was assumed to have the same value, which is 

the maximum possible PI value of 100, based on the assumption that a new surface is initially 

expected to be free of distress and have the highest ride comfort level. It should be noted that the 

RCI model, which converts IRI to RCI, has been locally calibrated such that a score of 100 

represents an optimal or acceptable roughness level. 

3.6 DATA AGGREGATION 

The data used in this section was extracted from the PMS for various municipalities in 

Ontario, including Kitchener, London, and the Halton Region. This pavement management database 

contains historical data, collected over a span of almost two decades. Not all sections were surveyed 

during each data collection survey, and surveys were not collected on an annual basis. It is 

recommended that condition surveys for roughness and distress be collected at least every three 

years, with either one-third of the network being collected every year or on a recurring three-year 

basis for the entire network. As previously indicated, roughness and distress measurements are 

collected using automated data collection, and then converted into RCI and SDI scores. Table 3-2 

shows the centerline lane lengths for sections used in the analysis for each city. These lengths are 

for flexible pavement types only. Table 3-3 shows the total number of sections that have been 

extracted from the different systems with observations. The table also indicates how many sections 

have records for each performance index, as well as the number of observations per section. For 

example, there are 16,691 sections that have RCI performance data, of which 2,149 sections have 

four years of RCI performance data. 
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Table 3-2: Sections Lengths 

City Length (KM) 
Burlington 787 
Halton Hills 444 
Halton Region 361 
Kitchener 715 
London 1,676 
Oakville 737 
Richmond Hill 527 
Waterloo 380 
Grand Total 5,628 

Table 3-3: Number of Sections with Observations by PI 

PI 
No. Sections 

with 
Observations 

No. of Observations per Section 
1 2 3 4 5 6 

RCI 16,691 5,138 4,199 3,838 2,149 1,325 42 
SDI 16,986 4 5152 4,430 3,870 2,190 1,296 

 

In order to prepare a dataset that can be used for model development, several steps are 

needed to filter the data and remove outliers and unrealistic records. The first step is to remove 

sections that have only one observation, since they cannot be used to formulate a performance 

trend. As it is rare for sections to go for long periods without any treatment or rehabilitation, sections 

with two or more observations were further investigated and filtered out if the span between 

consecutive observations was too long. In addition, with the absence of any historical records 

regarding construction records, sections that do not have a deteriorating trend were removed from 

the dataset used for model development, as sections are expected to deteriorate over time. It is 

assumed that any increase in performance was the result of a rehabilitation-type activity. 
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3.7 MODEL DEVELOPMENT 

3.7.1.1 Design of Experiment 

In order to estimate future rehabilitation requirements of a pavement network, it is first necessary 

to formulate a series of performance curves that model both RCI and SDI. The rate of deterioration 

depends on many factors (Ayed, Helali and Zhghloul 2002), including, but not limited to: 

• Environment/climate 

• Pavement type 

• Traffic volume 

• Quality of materials used 

• Construction quality 

• Type of treatment strategy (e.g., overlay vs. reconstruction) 

• Subgrade stiffness 

It can be demonstrated, however, that the principal factors are traffic load, the properties and 

thickness of the pavement structure layers, and subgrade strength. There is therefore a need to 

develop deterioration models specific for each condition and class combination. For this study, three 

parameters were selected to classify the pavement condition: 

• Thickness – three levels (thin, medium, thick) based on equivalent granular thickness (EGT) 

• Traffic – three levels (low, medium, high) based on average annual daily traffic (AADT) 

• Subgrade – two levels (weak, strong) based on local knowledge of soil properties 

 

It was found that traffic classification could vary between different municipalities due to different 

ways of classifying network data, so it was essential to classify traffic patterns within each functional 

class within different jurisdictions. For example, medium traffic ranges in the Waterloo region could 
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be different from medium traffic ranges in a higher traffic area such as Richmond Hill. The criteria 

used to reclassify traffic (AADT) and structural threshold levels (EGT) are shown in Table 3-4 and 

Table 3-5, respectively. The subgrade condition is based on subgrade resilient modules. These 

criteria are based on thresholds defined in the 1994 Pavement Design and Management Guide 

published by Transportation Canada (TAC 1994).  

Table 3-4: Equivalent Granular Thickness (EGT) Classification 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-6 shows the number of sections that have been considered in the model development for 

each combination of the three performance classes after data aggregation and filtering. The sections 

shown in Table 3-6 are only for the flexible pavement type, as these represent the vast majority of 

road networks.  

 

 

  EGT (mm) Classification 
Functional Class Thin Med. Thick 

Public Lanes - Residential 330 331 - 631 632 
Public Lanes - Commercial 330 331 - 631 632 
Locals – Residential 330 331 - 631 632 
Locals - Indust/Comm 330 331 - 631 632 
Collector – Residential 330 331 - 631 632 
Collector - Indust/Comm 510 511 - 711 712 
Arterials – Minor 510 511 - 711 712 
Expressways 510 511 - 711 712 
Arterials – Major 710 711 - 911 912 
Freeways 710 711 - 911 912 
Rural – Locals 330 331 - 631 632 
Rural – Collectors 330 331 - 631 632 
Rural – Arterials 510 511 - 711 712 
Rural – Freeways 510 511 - 711 712 
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Table 3-5: Traffic Classification 

  Traffic Classification (AADT) 
Functional Class Typical AADT Low Med High 
Public Lanes - Residential <500 250 251 - 499 500 
Public Lanes - Commercial <1,000 500 501 - 999 1,000 
Locals - Residential <1,000 500 501 - 999 1,000 
Locals - Indust/Comm <3,000 1,500 1,501 - 2,999 3,000 
Collectors - Residential <8,000 4,000 4,001 - 7,999 8,000 
Collectors - Indust/Comm 1,000 - 12,000 1,000 1,001 - 11,999 12,000 
Arterials – Minor 5,000 - 20,000 5,000 5,001 - 19,999 20,000 
Arterials – Major 10,000 - 30,000 10,000 10,001 - 29,999 30,000 
Expressways >10,000 5,000 5,001 - 9,999 10,000 
Freeways >20,000 10,000 10,001 - 19,999 20,000 
Rural – Locals <1,000 500 501 - 999 1,000 
Rural - Collectors <5,000 2,500 2,501 - 4,999 5,000 
Rural – Arterials <12,000 6,000 6,001 - 11,999 12,000 
Rural - Freeways >8,000 4,000 4,001 - 7,999 8,000 

 

Table 3-6: Number of Sections with Records for Model Performance Classes 

  

Thickness Subgrade 
Traffic 

  Low Medium High 

Pe
rf

or
m

an
ce

 In
di

ca
to

r RCI 

Thin 
Weak 3 5 8 
Strong 78 18 1 

Medium 
Weak 125 136 452 
Strong 1,484 939 699 

Thick 
Weak 331 192 196 
Strong 268 354 305 

SDI 

Thin 
Weak 0 5 4 
Strong 27 7 2 

Medium 
Weak 97 91 56 
Strong 1,469 905 431 

Thick 
Weak 300 256 742 
Strong 456 374 750 
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3.7.2 Expected Service Life 

Service life is defined as the number of years between the implementation of the 

rehabilitation activity and the age at which the pavement condition reaches its rehabilitation trigger 

level. Three functional road classes were identified in this research: local, collector and arterial. 

Trigger values were established, as shown in Table 3-7. Once a PI reaches 60 for arterial roads, it is 

expected to undergo some form of major rehabilitation, such as a mill and overlay. In order to 

develop prediction models for each class combination shown in Table 3-6, an expected range of 

service life needs to be established in advance. This expected service life represents the 

incorporation of both experience and engineering judgment into the prediction models. It is expected 

that each road class will have a different life span, with the service life for the “average” condition for 

each functional class assumed at the values shown in Table 3-7. The average condition is defined 

as a flexible pavement with medium thickness, medium traffic, and strong subgrade. Under these 

conditions and characteristics, pavement will have a service life of 25 to 30 years before it will 

require a major rehabilitation, which is reasonable in a municipal environment especially on local low 

volume roads. Figure 3-2 shows trigger values for different road classes.  

In order to predict the life span for other combinations, a reduction/increase factor was 

established for each combination, based on the average combination defined in Table 3-7. Table 

3-8 shows the reduction/increase in factors used for each combination. It should be noted that these 

reductions/improvements in service life are based on experience and engineering judgment 

collected from serval transportation agencies, and as such could vary slightly among different 

agencies. These factors were applied to the life spans of each combination to develop the minimum 

and maximum life span for each functional class. 
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Figure 3-2: Trigger Levels for different Roads 

As shown in Table 3-8, model 8 represents the average condition, with no reduction/increase 

for thickness, traffic and subgrade. Accordingly, different service lives for model combinations were 

estimated and referenced to the best condition, as shown in Table 3-9 to Table 3-11, respectively. It 

should be noted that these values for maximum and minimum expected service life are flexible and 

can be tailored to each agency’s particular practice and needs. As shown in Table 3-9, thick asphalt 

with low traffic and strong subgrade will have an average life span between 33.1 to 39.7 years on a 

local road (model 13). At the other extreme, an asphalt section with a thin pavement structure, high 

traffic volume, and weak subgrade may require major rehabilitation as early as 12.6 to 15.2 years 

(Model 6), given that it has been under-designed based on traffic loading and subgrade strength. As 

compared to a typical design, this would essentially be considered a premature failure. It should be 

noted that the majority of sections fall in the “medium” range, as would be expected. However, 

service lives are developed for all cases, including the over-designed (best case) and under-

designed (worst case) strategies. 

Table 3-7: Trigger Values and Expected Life for Average Conditions 

Functional 
class 

Thickness Traffic Subgrade 
Life (Years) Trigger 
Min Max 

Local Medium Medium Strong 25 30 50 
Collector Medium Medium Strong 20 25 55 
Arterial Medium Medium Strong 15 20 60 
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Table 3-8: Reduction/Increase Factors for each Model Class Combination 

Model ID Thickness Traffic Subgrade Reduction/Increase 
Factors 

1 Thin Low Strong -15% +15% 0 
2 Thin Medium Strong -15% 0 0 
3 Thin High Strong -15% -15% 0 
4 Thin Low Weak -15% +15% -30% 
5 Thin Medium Weak -15% 0 -30% 
6 Thin High Weak -15% -15% -30% 
7 Medium Low Strong 0 +15% 0 
8 Medium Medium Strong 0 0 0 
9 Medium High Strong 0 -15% 0 
10 Medium Low Weak 0 +15% -30% 
11 Medium Medium Weak 0 0 -30% 
12 Medium High Weak 0 -15% -30% 
13 Thick Low Strong +15% +15% 0 
14 Thick Medium Strong +15% 0 0 
15 Thick High Strong +15% -15% 0 
16 Thick Low Weak +15% +15% -30% 
17 Thick Medium Weak +15% 0 -30% 
18 Thick High Weak +15% -15% -30% 

 

Table 3-9: Expected Service Life for Each Model Class Combination (Local Roads) 

Model ID Thickness Traffic Subgrade 

Expected Service Life 
(Years) to Reach Trigger 

Level of 50 
Min  Max 

1 Thin Low Strong 24.4  29.3 
2 Thin Medium Strong 21.3  25.5 
3 Thin High Strong 18.1  21.7 
4 Thin Low Weak 17.1  20.5 
5 Thin Medium Weak 14.9  17.9 
6 Thin High Weak 12.6  15.2 
7 Medium Low Strong 28.8  34.5 
8 Medium Medium Strong 25.0  30.0 
9 Medium High Strong 21.3  25.5 

10 Medium Low Weak 20.1  24.2 
11 Medium Medium Weak 17.5  21.0 
12 Medium High Weak 14.9  17.9 
13 Thick Low Strong 33.1  39.7 
14 Thick Medium Strong 28.8  34.5 
15 Thick High Strong 24.4  29.3 
16 Thick Low Weak 23.1  27.8 
17 Thick Medium Weak 20.1  24.2 
18 Thick High Weak 17.1  20.5 
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Table 3-10: Expected Service Life for Each Model Class Combination (Collector Roads) 

Model ID Thickness Traffic Subgrade 

Expected Service Life 
(Years) to Reach Trigger 

Level of 55 
Min  Max 

1 Thin Low Strong 19.6  24.4 
2 Thin Medium Strong 17.0  21.3 
3 Thin High Strong 14.5  18.1 
4 Thin Low Weak 13.7  17.1 
5 Thin Medium Weak 11.9  14.9 
6 Thin High Weak 10.1  12.6 
7 Medium Low Strong 23.0  28.8 
8 Medium Medium Strong 20.0  25.0 
9 Medium High Strong 17.0  21.3 

10 Medium Low Weak 16.1  20.1 
11 Medium Medium Weak 14.0  17.5 
12 Medium High Weak 11.9  14.9 
13 Thick Low Strong 26.5  33.1 
14 Thick Medium Strong 23.0  28.8 
15 Thick High Strong 19.6  24.4 
16 Thick Low Weak 18.5  23.1 
17 Thick Medium Weak 16.1  20.1 
18 Thick High Weak 13.7  17.1 

Table 3-11: Expected Service Life for Each Model Class Combination (Arterial Roads) 

Model ID Thickness Traffic Subgrade 

Expected Service Life 
(Years) to Reach Trigger 

Level of 60 
Min  Max 

1 Thin Low Strong 14.7  19.6 
2 Thin Medium Strong 12.8  17.0 
3 Thin High Strong 10.8  14.5 
4 Thin Low Weak 10.3  13.7 
5 Thin Medium Weak 8.9  11.9 
6 Thin High Weak 7.6  10.1 
7 Medium Low Strong 17.3  23.0 
8 Medium Medium Strong 15.0  20.0 
9 Medium High Strong 12.8  17.0 

10 Medium Low Weak 12.1  16.1 
11 Medium Medium Weak 10.5  14.0 
12 Medium High Weak 8.9  11.9 
13 Thick Low Strong 19.8  26.5 
14 Thick Medium Strong 17.3  23.0 
15 Thick High Strong 14.7  19.6 
16 Thick Low Weak 13.9  18.5 
17 Thick Medium Weak 12.1  16.1 
18 Thick High Weak 10.3  13.7 
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3.7.3 Model Implementation and Optimization 

The coefficients A, B and C were used to produce a preliminary deterioration model, based on 

engineering judgment related to the initial performance of the pavement. For example, a newly 

constructed pavement would have a high RCI value for the first two years. Over time, as the 

pavement deteriorated, it would decrease at a higher rate. On the other hand, surface distress can 

be expected to start to develop within the first couple of years after rehabilitation. This step was 

performed for each section in the database. As previously indicated, the trigger level for major 

rehabilitation was assumed, as shown in Table 3-7, for all performance indices. Accordingly, it is 

expected that each of the 18 prediction models shown in Table 3-7 to Table 3-11 will reach the 

rehabilitation trigger level within the anticipated range of service life. The following factors were 

taken into consideration as much as possible during the optimization process: 

1) Model Shapes 

• SDI Models 

 Models are developed so that there is a shift horizontally to the left, such that there is an 

immediate decrease in performance within the first 2-3 years 

 The rate of deterioration should be gradual/slow from SDI 70  50 

 An inflexion point to be included at the tail end of the model (SDI at 30-40) such that the 

rate of deterioration increases at the end of the pavement’s life 

• RCI Models 

 May need inflexion point near the end if the model tails off to infinity 
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2) Model Order 

• The relative order among models needs to be maintained, i.e., higher traffic deteriorates 

quicker than lighter traffic, thin pavement structure deteriorates quicker than thick pavement 

structure, and pavements with strong subgrade last longer than pavements with weak 

subgrade 

These factors were taken into consideration through the application of additional constrains 

to the optimization process, on top of the existing constrains to produce the expected performance 

shape. The models also went through several trials with different additional constraints in order to 

produce the final expected shape. The next step was to calculate the error between the measured 

observations and predicted conditions, using the initial prediction model coefficients as shown in 

Figure 3-3. The least square error was calculated for each observation and summed for each 

section, as shown in the following equation: 

                                                               ∑(𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)2 …………………….(Equation 3.2) 

where PI measured is the measured value and PI Predicted is the predicted value at the same age. The 

least squares fitting is a mathematical procedure for finding the best-fitting curve to a given set of 

points by minimizing the sum of the squares of the offsets, or residuals, of the points from the curve 

(Weisstein 1995). Excel solver, which employs linear programming optimization techniques, was 

used to minimize the error between measured and predicted performance indices for each section. 

The optimization process was constrained so that expected service life for each section should fall 

within the expected range, as shown in Table 3-9 to Table 3-11. Other constraints were applied to 

coefficients A, B and C so that the developed model follows the expected shape. Figure 3-4 shows 

the final RCI model for one selected section from the database after running optimization 

procedures. 
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Figure 3-3: Prediction Models before Optimization 

 

Figure 3-4: Prediction Models after Optimization 
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Figure 3-5: Modeling Optimization Process using Microsoft Excel Spreadsheet 

Figure 3-5 shows how the optimization process was modeled using Microsoft excel spreadsheet. 

The graph shows how the measured data was grouped and constrained based on model condition 

index and how sigmoidal function was used to predict future condition using coefficients a, b and c. 

Microsoft Excel Solver was employed to minimize the difference between measured and predicted 

records by changing coefficients a, b and c while constraining the predicted service life (age) to be 

within the expected range. 
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3.7.4 Deterioration Model Results 

  Optimization to minimize error in prediction was applied for each section in the filtered 

database, with a value for the A, B and C coefficients obtained that best characterized the change in 

performance over the pavement life for each section. In addition, the coefficients were grouped and 

averaged for each model class combination. The previous steps were then applied to both 

performance indices presented in this study: RCI and SDI. Due to the lack of data near the end of 

the pavement life, the models resulted in performance classes not reaching the terminal value of 20 

– the point at which total reconstruction is expected. As such, the models could be adjusted after the 

trigger level so that their rate of deterioration remained constant after the expected rehabilitation 

trigger level. A tangent can be drawn once the performance curve reached the terminal level. It 

should be noted that during PMS implementation process, it is not expected for a section to reach 

terminal level without receiving any kind of rehabilitation activity. Figure 3-6 summarizes the 

optimization process to implement the performance models. 

 

Figure 3-6: Data Aggregation and Optimization Process 

1 
• Data Aggregation and Classification 

2 
• Data Filtering 

3 
• Initial Model coefficients (A, B and C) 

4 
• Identification of Service Life Constraints based on Model Class 

5 
• Optimization (Minimize Error between Measured and Predicted Records) 

6 
• Final Performance Models for each Model Class 
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Table 3-12: RCI Models Coefficients for Functional Classes 

M
odel ID

 

Thickness 

Traffic 

Subgrade 

RCI Model Coefficients 

Local Collector Arterial 
a b c Age a b c Age a b c Age 

1 Thin Low Strong 4.8 9.49 2.2 19 4.8 9.53 2.2 18 4.6 9.80 2.2 20 
2 Thin Med. Strong 5.1 10.08 2.2 16 4.9 10.20 2.2 18 4.8 9.95 2.2 17 
3 Thin High Strong 4 .8 10.0 2.2 22 NA NA NA NA NA NA NA NA 
4 Thin Low Weak 4.5 4.32 2.1 15 4.8 7.38 2.2 15 NA NA NA NA 
5 Thin Med. Weak NA NA NA NA NA NA NA NA 4.6 6.01 2.1 12 

6 Thin High Weak 4.6 5.82 2.2 15 4.5 4.83 2.2 13 4.5 4.52 2.1 10 
7 Med. Low Strong 4.8 10.21 2.2 23 4.8 10.89 2.2 23 4.7 11.82 2.2 22 
8 Med. Med. Strong 4.7 11.2 2.2 28 4.8 11.2 2.2 23 4.7 10.06 2.2 19 
9 Med. High Strong 4.9 9.57 2.2 18 4.9 10.06 2.2 17 4.8 9.98 2.2 17 

10 Med. Low Weak 5.0 10.02 2.2 18 4.9 10.01 2.2 17 4.8 10.47 2.2 17 
11 Med. Med. Weak 4.7 5.94 2.1 15 5.0 9.72 2.2 15 4.9 10.06 2.2 15 
12 Med. High Weak 4.7 5.48 2.2 12 4.7 5.72 2.1 12 4.6 5.78 2.1 12 
13 Thick Low Strong 4.6 10.62 2.2 34 4.7 12.49 2.2 29 4.7 12.11 2.2 25 
14 Thick Med. Strong 4.9 11.46 2.2 23 4.7 10.72 2.2 24 4.7 11.81 2.2 22 
15 Thick High Strong 4.9 10.59 2.2 21 4.8 10.56 2.2 20 4.7 10.69 2.2 19 
16 Thick Low Weak 4.9 10.19 2.2 19 4.8 10.18 2.2 20 4.7 10.76 2.2 21 
17 Thick Med. Weak 5.0 10.03 2.2 18 4.9 9.96 2.2 18 4.8 10.61 2.2 17 
18 Thick High Weak 4.9 7.73 2.2 14 4.9 8.53 2.2 15 4.9 9.98 2.2 15 

Note: NA refers to models where no enough data was available to produce models 
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Table 3-13: SDI Models Coefficients for Functional Classes 

M
odel ID

 

Thickness 

Traffic 

Subgrade 

SDI Model Coefficients 
Local Collector Arterial 

 a   b   c  Age  a   b  c Age  a   b   c  Age 
1 Thin Low Strong 4.9 10.70 2.2 20 NA NA NA NA NA NA NA NA 
2 Thin Med. Strong NA NA NA NA NA NA NA NA 5.0 10.40 2.2 14 
3 Thin High Strong 6.0 6.92 1.5 20 NA NA NA NA NA NA NA NA 
4 Thin Low Weak NA NA NA NA NA NA NA NA NA NA NA NA 
5 Thin Med. Weak NA NA NA NA NA NA NA NA 5.0 9.60 2.2 12 
6 Thin High Weak 6.0 5.93 1.5 14 6.0 5.61 1.5 10 NA NA NA NA 
7 Med. Low Strong 4.9 11.81 2.2 22 4.9 12.69 2.2 22 4.9 13.97 2.1 24 
8 Med. Med. Strong 6.0 7.64 1.5 29 6.0 7.22 1.5 23 6.0 6.94 1.5 17 
9 Med. High Strong 5.0 10.88 2.2 18 4.9 10.67 2.2 18 4.9 10.12 2.1 16 
10 Med. Low Weak 5.0 10.44 2.2 18 5.0 10.80 2.2 17 4.9 11.30 2.2 18 
11 Med. Med. Weak 5.0 9.26 2.2 15 5.0 10.10 2.2 15 5.0 10.23 2.2 14 
12 Med. High Weak 5.0 7.95 2.2 12 5.0 8.74 2.2 12 NA NA NA NA 
13 Thick Low Strong 6.0 8.65 1.5 39 5.9 7.49 1.5 30 5.9 6.99 1.4 22 
14 Thick Med. Strong 4.9 11.19 2.2 21 4.9 12.32 2.2 22 4.9 12.39 2.2 21 
15 Thick High Strong 4.9 10.96 2.2 20 4.9 11.56 2.2 19 4.9 12.04 2.2 18 
16 Thick Low Weak 5.0 1.89 2.2 21 5.0 11.86 2.2 20 4.9 11.27 2.2 17 
17 Thick Med. Weak 5.0 10.53 2.2 18 4.9 10.65 2.2 18 4.8 10.13 2.1 17 
18 Thick High Weak 5.0 9.03 2.2 15 5.0 9.93 2.2 15 4.9 10.24 2.2 15 

Note: NA refers to models where no enough data was available to produce models 

 

The coefficients for all models and functional classes are presented in Table 3-12 and Table 3-13. 

As can be seen in these tables, some of the model combinations did not have enough data to 

produce the models, while others did not meet the constraints for expected service life to maintain 

the expected trend for each combination. Model coefficients shown in Table 3-12 and Table 3-13 

represent the best optimization results that can be reached with these constraints. It should be noted 

that coefficient B was sensitive to the second decimal point, while coefficients A and C were 

sensitive only to the first decimal point. 
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Close attention has been given to critical models to improve the optimization results, such as 

number of iteration and initial seeds, in order to meet all constraints and have the service life within 

the excepted ranges. These critical models were identified as follows: 

 The most common municipal pavement condition, Model 8, with medium thickness, medium 

traffic, and strong subgrade 

 The worst-case pavement strategy, Model 6, with thin thickness, high traffic, and weak 

subgrade. Close attention needs to be paid for any weak subgrade in Southern Ontario – it 

would be dealt with during the construction phase. 

 The worst case pavement scenario for the strong subgrade, Model 3, with thin thickness, 

high traffic, and strong subgrade 

 The best case pavement scenario, Model13, with thick thickness, low traffic and strong 

subgrade 

These critical models can be used to build other case scenarios using relative relation among 

different conditions, especially in the absence of enough data. This research focuses mainly on the 

results of critical case scenarios, though models were generated for other conditions when data was 

available. 

Figure 3-7 to Figure 3-12 show the final developed RCI and SDI models at each functional 

class for both RCI and SDI, respectively, after the optimization process. As shown in these figures, 

the critical models (Models 3, 6, 8 and 13) are only shown to avoid model overlap. These models are 

the ones that carry the most expected condition for each category. Although the optimization 

produced better results, interpolation between the two nearest combinations can be used to develop 

these missing models. The empirical models developed herein will be further investigated and 

compared with mechanistic- empirical models in the following Chapters.  
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Figure 3-7: Final RCI Models for Critical Models (Local Roads) 

 

Figure 3-8: Final RCI Models for Critical Models (Collector Roads) 
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Figure 3-9: Final RCI Models for Critical Models (Arterial Roads) 

 

Figure 3-10: Final SDI Models for Critical Models (Local Roads) 
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Figure 3-11: Final SDI Models for Critical Models (Collector Roads) 

 

Figure 3-12: Final SDI Models for Critical Models (Arterial Roads) 
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Figure 3-13 to Figure 3-18 show the average predicted service life and expected service life 

range for all critical models. The graphs also show initial error in model prediction before 

optimization, as calculated from equation 3.2, as well as the final error after the optimization 

procedure. During optimization, there was a trade-off between minimizing the error in model 

prediction and meeting the service life target range. This was in addition to other constraints for 

expected model shape. Priority was giving to minimizing the error in model prediction. As can be 

seen in these graphs, all critical models met the expected service life within acceptable error 

tolerance; however, few other non-critical models did not meet the expected service life, since 

priority was given to reducing error in model prediction. The developed models for these scenarios 

represent the true performance of the pavement under this condition, using real measured data, 

regardless of the resulting service life after optimization.  

 

Figure 3-13: RCI Models Tolerance for Critical Models (Local Roads) 
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Figure 3-14: RCI Models Tolerance for Critical Models (Collector Roads) 

 

Figure 3-15: RCI Models Tolerance for Critical Models (Arterial Roads) 
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Figure 3-16: SDI Models Tolerance for Critical Models (Local Roads) 

 

Figure 3-17: SDI Models Tolerance for Critical Models (Collector Roads) 
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Figure 3-18: SDI Models Tolerance for Critical Models (Arterial Roads) 

 

3.8 DISCUSSION 

These prediction models are based on the assumption that the current performance 

classification is applicable to all historical records. In reality, there may be cases where traffic 

volumes have increased such that a particular section has moved from one performance class to 

another. However, filtering these sections from the analysis would further reduce the number of 

sections available for modeling. These cases are also important, as they are representative of the 

lower end of the service life range. In short, if a section has seen a significant increase in traffic 

volume, it will likely have a higher rate of deterioration, thereby falling within the lower end of the 

service life range. It is important to note that prediction models are intended to represent “average” 

or “typical” conditions. Prediction models are not representative of either the super-achievers 

(pavements that far exceed their expected service life) or the premature failures, which are often due 
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to construction or material quality issues. However, it is notable that pavement design needs to 

account for changes that occur as a result of changes in climate or traffic loads. Due to the sections 

being classified into different performance classes, these prediction models can easily be expanded 

to include other factors, such as climate or environmental zones, as well as to include other 

performance indicators or other performance data stored within the PMS. 

An integral part of the model development is the PMS itself, or, to be more specific, how well 

it is maintained and how often its data is collected and/or updated. If data is not captured in the 

database, it obviously cannot be captured in the modeling. The enhanced prediction models in this 

section will be compared against M-E models at the project and network levels to identify the impact 

of the transition from empirical models to M-E models on strategy selections and budgeting. 

 

3.9 MODEL VALIDATION 

To determine the quality of the developed models, it is essential to quantify and report the 

predictive validity of the derived models. The model validation should be conducted based on data 

collected from sections that were not used in the model development.  As mentioned before in 

section 3.6, sections with no overall deterioration trend were excluded from the study. These 

sections were excluded because they had more than three observations but with no overall 

deterioration trend, however, consecutive deteriorating points in these sections until next peak 

observation can be used to verify the developed models. Therefore, one section for each critical 

condition was identified to verify the developed models. In some cases, the subset for each condition 

was not large enough to find a suitable section for model validation due to large gaps between 

observations, unrealistic deterioration trend or limited number of sections. Therefore, only critical 

conditions with sections contain reasonable observations were included in model validation process. 

Figure 3-19 to Figure 3-24 show the comparison between predicting condition indexes using initial 
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model coefficients before the optimization and after the optimization. Figure 3-19 to Figure 3-21 

show improvement in RCI prediction for the selected sections for different functional classes. Figure 

3-22 to Figure 3-24 show improvement in SDI prediction for the selected sections for different 

functional classes. The graphs show the least square error as calculated from equation 3.2 on a 

logarithmic scale. The graphs show the sum square error using the initial models coefficients before 

applying model optimization and after the use of final optimized models to predict the condition 

index. As shown in all sections selected for validation, the use of the new developed models showed 

a significant improvement in the model prediction and reduction in model errors as a result of using 

the new developed models. Condition 8 in particular received the highest reduction in model sum 

square error. The current analysis demonstrates that the developed empirical models herein have 

the capability to predict reliable future condition of pavement.  

 

 

Figure 3-19: Improvement in RCI Model Prediction (Local Road) 
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Figure 3-20: Improvement in RCI Model Prediction (Collector Road) 

 

 

 

 

 

Figure 3-21: Improvement in RCI Model Prediction (Arterial Road) 
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Figure 3-22: Improvement in SDI Model Prediction (Local Road) 

 

 

 

 

Figure 3-23: Improvement in SDI Model Prediction (Collector Road) 
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Figure 3-24: Improvement in SDI Model Prediction (Arterial Road) 

 

3.10 SUMMARY 

The analysis presented in this section provides a promising approach to improving prediction 

model development when faced with limited historical data for municipal PMS. Its findings can be 

summarized as follows:  

• Through data aggregation and filtering of PMS data, observations were grouped into 18 

performance classes 

• Performance classes represent various levels of pavement thickness, traffic load, and 

subgrade condition 

• Based on engineering judgment and local experience, expected ranges of service were 

developed for each performance class 

• A sigmoidal model was used due to its flexibility in terms of describing the deterioration of 

pavement performance 
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• Initial sigmoidal model coefficients were developed based on engineering judgment and local 

experience 

• Model coefficients were developed for each section in the database, and the least squares 

error was calculated and summed for each section 

• A linear programming optimization technique was employed to minimize the error for each 

section 

• The optimization included a constraint to limit the service life to the pre-defined expected 

service lives for each performance class 

• The various coefficients were evaluated to determine the most representative coefficients for 

each performance class 

 

The next Chapter discusses the impact of climate change on pavement performance and will 

develop preliminary empirical models for Western Canada region and compare it to the one 

developed in this section. 
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4.0 Climatic Impact on Empirical Performance Models 

4.1 INTRODUCTION  

The natural environment is one of the main factors affecting the design and performance of 

roads and other transportation infrastructure. All types of infrastructure, including pavement 

structures, are vulnerable to weather events and climate change, which necessitates good planning 

at all governmental levels. It is always more economical and efficient to design structures to 

accommodate dominant climate conditions before they are built than to conduct retrofits and repairs 

at later stages of the service life of the structure. Major climate changes are inherent to both the East 

and West Coast regions in Canada due to their close proximity to the Atlantic and Pacific oceans. 

More than 80 percent of Canada’s coastline is in the process of submerging due to rising sea levels. 

Areas where the sea level is stable are also at risk because of the significant change in storm 

frequency. Of greatest concern are highly developed areas, such as the lower mainland of British 

Columbia, that have already experienced extensive infrastructure damage (N. R. Canada 2007). 

Although this phenomenon is nationwide, it affects distinct regions in different ways: while the West 

Coast is more prone to changes in both the frequency and pattern of storms, the East Coast is more 

prone to rising sea levels, storm surges, accelerated coastal erosion and hurricanes (E. Canada 

2011).  

Different types of roads (including highways, and arterial, collector and local roads) have 

different types of surface types and road base designs to accommodate for their particular intended 

use. Considering the impact of climate change on road performance, the distinction between the 

types of roads affects how municipalities and government transportation agencies will adapt. For 

instance, severe winters may lead to safety concerns, as icy roads become more prevalent. On the 

other hand, early break-up in spring may reduce the duration of spring load restrictions season, 
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which may lead to an increase in number of trucks travelling on the roads during the shortened 

winter season. 

  Climate change also affects the number of freeze-thaw cycles with long periods of freezing 

increasing during winter seasons in Canada. The increase in wild conditions and freeze-thaw cycles 

in winter allows snow and/or water to dissipate into already cracked pavement. Water expands and 

contracts as it freezes and melts during the freeze-thaw cycles, producing changes in volume that 

may lead to crack enlargement and potholes as the cycles are repeated. It is expected that the rate 

of deterioration between pavement structures will vary due to climatic variation between the eastern 

and western regions of Canada. The following section reports on the development of an empirical 

deterioration model for flexible pavement in Western Canada, comparing it to the one developed 

previously for Ontario. 

4.2 DATA AGGREGATION FOR WESTERN CANADA REGION 

The data used in this section was extracted from the pavement management system used 

for the Cities of Burnaby and Nanaimo in British Columbia. This pavement management database 

contained historical data collected over a span of 18 years. Not all sections were surveyed during 

each data collection survey, and surveys were not collected on an annual basis. As mentioned 

before, it is usually recommended that condition surveys for pavement roughness and distress be 

collected every three years. This would allow transportation agencies to monitor specific conditions 

in their local pavement structures, maximizing the efficiency of such structures. Table 4-1 shows the 

centerline lane lengths for sections used in the analysis for each city. These lengths are for flexible 

pavement types only. Table 4-2 shows the total number of sections that have been extracted from 

the different systems with observations. The table also indicates how many sections have records 

for each performance index, as well as, the number of observations per section. 
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Table 4-1: Sections Lengths 

City Length (KM) 
Nanaimo 419 
Burnaby 725 
Grand Total 1,144 

 

Table 4-2: Number of Sections with Observations by PI for Western Region 

PI 
No. Sections 

with 
Observations 

No. of Observations per Section 
1 2 3 4 

RCI 2,155  1,459 654 2 
SDI 2,402  1,729 672 1 

 

Similar to the steps followed in Chapter 3’s development of the empirical performance model 

for Ontario, several steps were executed to filter the data and remove outliers and unrealistic 

records. Sections that had only one observation were removed, while sections with two or more 

observations were further investigated and filtered out if the span between consecutive observations 

was too long to ensure that no rehabilitation activity had been performed in this period. In addition, 

with the absence of any construction records, sections that did not have a deteriorating trend were 

removed from the data set used in developing the model, as sections were expected to deteriorate 

over time, and it was assumed that any performance enhancement was the result of a rehabilitation-

type activity. Models were developed only for sections where enough reliable data was available to 

produce deterioration models.  

 

4.3 DEVELOPMENT OF ENHANCED EMPIRICAL MODELS FOR WESTERN 
CANADA 

Table 4-3 and Table 4-4 show the final model coefficients for categories in which historical 

data was sufficiently available to produce models for Western Canada. This analysis was carried out 
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using the same principles previously used for the Eastern Canada region, as demonstrated in 

Chapter 3. An optimization technique was employed to minimize the square mean error between the 

actual measurements and the model predictions, while maintaining the pavement service life within 

the ranges expected for each category. This analysis resulted in 18 model coefficients for each 

functional class. Categories in which not enough data was available to produce the models were 

designated with NA. it should be noted that data  

Table 4-3: RCI Models Coefficients for Different Functional Classes (Western Region) 

M
odel ID

 

Thickness 

Traffic 

Subgrade 

RCI Model Coefficients 
Local Collector Arterial 

 a   b   c  Age  a   b  c Age  a   b   c  Age 

1 Thin Low Strong 4.25 3.84 2.13 25.2 4.42 6.44 2.14 22.0 4.52 7.75 2.12 19.5 
2 Thin Med. Strong 4.32 4.25 2.13 22.1 4.06 2.61 2.13 21.3 NA NA NA NA 
3 Thin High Strong 4.39 4.50 2.13 19.4 4.46 5.76 2.17 16.6 4.02 2.58 2.18 14.0 
4 Thin Low Weak 4.79 8.07 2.16 17.8 4.20 3.16 2.14 15.5 NA NA NA NA 
5 Thin Med. Weak 4.37 3.78 2.16 15.7 4.25 3.70 2.20 14.9 NA NA NA NA 
6 Thin High Weak 4.45 3.92 2.13 13.6 4.30 3.34 2.18 11.7 NA NA NA NA 
7 Med. Low Strong 4.14 2.87 2.11 29.8 4.09 3.49 2.11 28.2 NA NA NA NA 
8 Med. Med. Strong 4.26 4.09 2.13 26.1 4.19 3.91 2.14 21.6 4.25 4.72 2.13 16.7 
9 Med. High Strong 4.43 5.53 2.14 22.5 4.53 6.97 2.16 19.1 4.38 6.05 2.16 16.8 

10 Med. Low Weak 4.64 7.59 2.18 20.1 4.03 2.07 2.10 20.1 4.15 3.73 2.13 15.7 
11 Med. Med. Weak 4.42 4.82 2.17 18.1 4.82 8.12 2.20 14.0 NA NA NA NA 
12 Med. High Weak 4.51 4.92 2.14 15.9 4.50 5.05 2.15 13.5 NA NA NA NA 
13 Thick Low Strong 4.35 6.67 2.17 34.3 3.89 1.00 2.10 26.5 3.81 1.38 2.10 25.5 
14 Thick Med. Strong 4.18 3.44 2.10 31.2 4.95 12.61 2.12 24.2 4.26 5.75 2.14 20.9 
15 Thick High Strong 4.56 7.47 2.14 24.9 4.51 7.54 2.17 21.4 4.29 5.45 2.14 18.2 
16 Thick Low Weak 5.15 15.00 2.20 23.6 4.75 9.43 2.14 20.8 3.80 0.95 2.10 18.5 
17 Thick Med. Weak 5.53 14.98 2.10 20.1 NA NA NA NA 4.18 3.85 2.13 15.3 
18 Thick High Weak 4.61 6.10 2.13 17.5 4.65 7.21 2.16 16.1 4.00 2.20 2.11 13.5 

Note: NA refers to models where no enough data was available to produce models 
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Table 4-4: SDI Models Coefficients for Different Functional classes (Western Region) 

M
odel ID

 

Thickness 

Traffic 

Subgrade 

SDI Model Coefficients 
Local Collector Arterial 

 a   b   c  Age  a   b  c Age  a   b   c  Age 

1 Thin Low Strong 5.99 7.87 1.48 29.3 5.99 7.78 1.49 24.4 5.96 7.57 1.5 19.6 
2 Thin Med. Strong 5.99 7.45 1.48 25.5 6.00 7.57 1.5 21.3 NA NA NA NA 
3 Thin High Strong 5.99 6.99 1.48 21.7 5.99 6.88 1.49 18.1 5.98 6.70 1.49 14.4 
4 Thin Low Weak 5.99 6.94 1.49 20.5 6.00 6.66 1.48 17.1 NA NA NA NA 
5 Thin Med. Weak 5.99 6.45 1.48 17.9 NA NA NA NA NA NA NA NA 
6 Thin High Weak 5.99 6.09 1.48 15.2 6.00 5.89 1.48 12.6 NA NA NA NA 
7 Med. Low Strong 5.99 8.30 1.48 34.5 5.99 8.24 1.48 28.8 NA NA NA NA 
8 Med. Med. Strong 5.99 8.00 1.49 30.0 5.99 7.89 1.49 25.0 6.00 7.56 1.49 20.0 
9 Med. High Strong 5.99 7.50 1.49 25.5 6.00 7.28 1.48 21.3 5.99 7.01 1.48 17.0 

10 Med. Low Weak 5.98 7.38 1.49 24.2 6.00 7.29 1.49 20.1 6.00 7.12 1.5 16.1 
11 Med. Med. Weak 6.00 6.93 1.48 21.0 5.98 6.94 1.5 17.5 5.94 6.56 1.5 14.0 
12 Med. High Weak 5.99 6.45 1.48 17.9 6.00 6.34 1.48 14.9 NA NA NA NA 
13 Thick Low Strong 5.99 9.07 1.49 39.7 5.98 8.98 1.5 33.1 6.00 8.35 1.48 26.5 
14 Thick Med. Strong 6.00 8.43 1.48 34.5 6.00 7.83 1.46 28.8 5.99 7.75 1.47 23.0 
15 Thick High Strong 6.00 7.95 1.49 29.3 6.00 7.71 1.48 24.4 5.99 7.50 1.49 19.6 
16 Thick Low Weak 6.00 8.04 1.5 27.8 6.00 7.84 1.5 23.1 6.00 7.55 1.5 18.5 
17 Thick Med. Weak 6.00 7.59 1.5 24.2 5.96 6.71 1.46 20.1 NA NA NA NA 
18 Thick High Weak 6.00 7.11 1.5 20.5 5.98 6.69 1.49 17.1 5.99 6.47 1.49 13.7 

Note: NA refers to models where no enough data was available to produce models 

 

Figure 4-1 to Figure 4-6 show the average predicted service life and expected service life range for 

critical models for the Western Canada region. The graphs also show initial error in model prediction 

before optimization, as calculated from equation 3.2, as well as the final error after the optimization 

procedure. The graphs show that all critical models met the expected service life within acceptable 

error tolerance. 
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Figure 4-1: RCI Models Tolerance for Critical Models Western Region (Local Roads) 

 

Figure 4-2: RCI Models Tolerance for Critical Models Western Region (Collector Roads) 
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Figure 4-3: RCI Models Tolerance for Critical Models Western Region (Arterial Roads) 

 

Figure 4-4: SDI Models Tolerance for Critical Models Western Region (Local Roads) 
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Figure 4-5: SDI Models Tolerance for Critical Models Western Region (Collector Roads) 

 

Figure 4-6: SDI Models Tolerance for Critical Models Western Region (Arterial Roads) 
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4.4 COMPARISON BETWEEN EASTERN AND WESTERN EMPIRICAL MODELS 

Figure 4-7 to Figure 4-9 show the comparison between the RCI models developed for 

Western Canada compared to those developed for Eastern Canada (Ontario), with only the main 

extreme categories shown. It can be seen that the RCI predicted measurements for all functional 

classes indicate that pavement in the western region tends to deteriorate relatively faster than that in 

the eastern region during the first few years of its service life. The RCI pavement condition then 

stabilized during the remainder of the pavement’s service life. Although technology has become 

more readily available for measuring road roughness in recent decades, it has still not fully matured. 

A prevailing sense exists in the road community that if every agency measured the same road with 

their own device, they would each obtain a different result. Errors in profile and discrepancies 

between measurements arise from variations in equipment, inappropriate operating procedures, and 

specific aspects of the pavement surface and surrounding environment. In many cases, these 

factors interact to reduce their repeatability and accuracy (Brown, Liu and Henning 2010). It has 

often been believed that variation in initial roughness is due to the quality of initial construction and 

to the variation in construction practices of different contractor/crews. These practices, along with 

other influencing factors such as environmental condition and traffic patterns, may have contributed 

to the greater rate of deterioration in western Canada region as compared to the eastern region.   

For the SDI index, the relatively mild weather in Western Canada extended the service life of 

the flexible pavement in general compared to that in Eastern Canada. As can be seen in Figure 4-10 

to Figure 4-12, during the first few years of its life, the Western pavement maintained a relatively 

good SDI condition for a longer time when compared to that observed in Eastern Canada. This was 

obviously noticed in arterial and collector sections. After this period of time, the pavement started to 

deteriorate with a more rapidly declining rate as accumulated distresses started to have a negative 

impact on pavement condition. During the late winter and early spring seasons, pavement in the 

eastern region is always subjected to relatively more frequent freeze-thaw cycles that negatively 
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affect the overall SDI pavement condition than in the western region where milder weather 

conditions prevail during this time of the year. It is important to note that in most cases thick 

pavement exhibited longer service life than thin pavement. In addition, pavement condition typically 

does not reach a condition below 20 without preventative maintenance or major rehabilitation 

activity. Therefore, deterioration models below this limit are rarely used.  

Figure 4-13 to Figure 4-18 show a comparison between the resultant service life for the 

eastern and western regions based on both RCI and SDI modeling. It can be seen that for RCI local 

and collector roads, the eastern region has consistently longer predicted service life compared to the 

western region, while arterial sections did not show the same trend for models with data available for 

comparison (Model 6 and Model 8). The modelling based on SDI showed a reverse trend, with 

pavement in the western region tending to have a longer service life when compared to pavement in 

the eastern region. This could be due to the fact that SDI modeling was able to capture the impact of 

harsh weather in the eastern region, since SDI is mainly aggregated from distresses which are 

obviously higher in severity in Eastern Canada when compared to the West. The RCI modeling has 

other parameters that impacted it, such as initial construction and contractor practices, which may 

hinder clear comparison between the eastern and western regions. 
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Figure 4-7: Eastern vs. Western Regions Models Comparison (Local Roads) 

 

Figure 4-8: Eastern vs. Western Regions Models Comparison (Collector Roads) 
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Figure 4-9: Eastern vs. Western Regions Models Comparison (Arterial Roads) 

 

Figure 4-10: Eastern vs. Western Regions Models Comparison (Local Roads) 
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Figure 4-11: Eastern vs. Western Regions Models Comparison (Collector Roads) 

 

Figure 4-12: Eastern vs. Western Regions Models Comparison (Arterial Roads) 
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Figure 4-13: Eastern vs. Western Regions Predicted Service Life (RCI - Local Roads) 

 

Figure 4-14: Eastern vs. Western Regions Predicted Service Life (RCI - Collector Roads) 
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Figure 4-15: Eastern vs. Western Regions Predicted Service Life (RCI - Arterial Roads) 

 

 

Figure 4-16: Eastern vs. Western Regions Predicted Service Life (SDI - Local Roads) 
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Figure 4-17: Eastern vs. Western Regions Predicted Service Life (SDI - Collector Roads) 

 

 

Figure 4-18: Eastern vs. Western Regions Predicted Service Life (SDI - Arterial Roads) 
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4.5 MODEL VALIDATION 

Similar to the model validation process carried out for enhanced empirical model for eastern 

region, the same process was carried out to validate models developed for western region. 

Consecutive deteriorating points in excluded sections due to the absence of deterioration trend were 

used to verify the developed models. One section for each critical condition was identified to verify 

the developed models. Only critical conditions with sections contain reasonable observations were 

included in model validation process. Figure 4-19 to Figure 4-24 show the comparison between 

predicting condition indexes using initial model coefficients before the optimization and after the 

optimization. Similar to eastern region models, the use of the new developed models showed a 

significant improvement in the model prediction and reduction in model errors as a result of using the 

new developed models. The current analysis demonstrates that the developed empirical models for 

western region have the capability to predict reliable future condition of pavement. 

 

 

Figure 4-19: Improvement in RCI Model Prediction (Local Road) 
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Figure 4-20: Improvement in RCI Model Prediction (Collector Road) 

 

Figure 4-21: Improvement in RCI Model Prediction (Arterial Road) 
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Figure 4-22: Improvement in SDI Model Prediction (Local Road) 

 

Figure 4-23: Improvement in SDI Model Prediction (Collector Road) 
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Figure 4-24: Improvement in SDI Model Prediction (Arterial Road) 

 

 

4.6 CONCLUSION 

The analysis in this section aims at developing enhanced empirical models for the Western 

Canadian region in order to better predict pavement performance. Data collected from two cities in 

British Columbia was used to develop models for RCI and SDI scores. Parameters known to highly 

impact pavement conditions were identified as traffic patterns, pavement thickness, and subgrade 

condition. Accordingly, the data was classified based on these factors for each functional class in the 

existing data. This has resulted in 18 pavement classes for each functional class, with expected 

service life ranges identified for each category. An optimization technique was employed to minimize 

the square mean error between the actual and predicted values using the constraints in the 

expected service life ranges. Comparison between the models developed for the western and 

eastern regions revealed that the RCI scores in the western region tended to deteriorate at a faster 

rate compared to those in the east. Variation in construction practices, along with other influencing 
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factors such as environmental condition and traffic patterns, may have contributed to the greater rate 

of RCI deterioration in Western Canada as compared to the eastern region.  

For the SDI index, the relatively mild weather in Western Canada extended the service life of 

the flexible pavement in general in comparison to that in Eastern Canada. Analysis of SDI scores 

revealed that the SDI scores in the Western Canadian region tended to stay in relatively better 

condition during the first few years, before deteriorating in a descending rate after the first few years. 

More condition data in Western Canada is needed to validate these findings, enhance the developed 

empirical models, and to represent more accurately the actual condition of pavement behaviour over 

time. It should be noted that western region models presented in this analysis only reflect conditions 

pertain to the two cites used in the analysis and in order to develop models that accurately represent 

the entire western Canada region, more  data from other municipalities in this region is needed to be 

used in the development of these models. Similarly for eastern region models, the data presented in 

this study reflects only condition for southern Ontario where most of the data was collected, 

however, more data from other municipalities in eastern Canada region will definitely provide broad 

coverage for different conditions in eastern region. The next Chapters will focus on the development 

of new M-E prediction models for the Eastern Canadian region (Ontario), also considering the impact 

of migrating from traditional empirical to M-E models. 
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5.0 Mechanistic-Empirical Models Calibration 

5.1 OVERVIEW OF THE MEPDG ANALYSIS AND DESIGN PROCESS  

The Mechanistic-Empirical Pavement Design Guide (MEPDG) is proposed as an advanced 

pavement design tool that integrates up-to-date pavement practices. Major changes have been 

made in pavement modelling and analysis in the newly developed MEPDG when compared with the 

1993 American Association of State Highway and Transportation Officials AASHTO Pavement 

Design Guide. Since MEPDG was first released in 2004, transportation agencies have continuously 

worked on calibrating and evaluating the program with regard to implementation by provincial and 

local agencies in Canada. The overall MEPDG objective is to provide a state-of-the-practice tool for 

the highway community to use in new and rehabilitated flexible pavement structure design and 

analysis, based on mechanistic-empirical (M-E) principles (Von Quintus 2008). 

MEPDG requires three categories of data as input: traffic, climate, and pavement structure 

(ARA 2004) and (Zaghloul, et al. 2006). There are also three levels of data precision: Level 1 

requires site-specific data, based on laboratory or field tests; Level 2 inputs are derived from other 

material properties measured in either the laboratory or field tests; and Level 3 is estimated from 

designers’ experience. The MEPDG is expected to be adopted by most transportation agencies and 

pavement engineers in the next few years. The MEPDG program was initially implemented to 

provide engineers with a tool for pavement design based on M-E concepts followed by the final 

product M-E AASHTOWare® program. The analysis in this research started when AASHTOWare® 

was still under development; therefore, the MEPDG was used in the analysis. When 

AASHTOWare® became available, a comparison between MEPDG and AASHTOWare® predictions 

showed insignificant differences for LTPP sites in Ontario. Because the prediction models did not 

change significantly since the development of AASHTOWare®, it is not expected to produce 
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variation in model prediction. (S. Kim, H. Ceylan and D. Ma, et al. 2014) carried out a study to locally 

calibrate 25 sites in Iowa, reporting insignificant differences in IRI model prediction for selected 

flexible pavement sections. 

In order to provide a fair comparison between the empirical models developed earlier and the 

mechanistic empirical M-E models, the MEPDG will be used as a tool to develop realistic M-E 

models. These models will be the benchmark for comparison with previously developed empirical 

models. In order to achieve this goal, it is essential to first calibrate the MEPDG models to site-

specific conditions. Specifically, M-E distress models must be locally calibrated to match up 

predicted results with locally measured data. Calibrating distress models inherited in the design 

procedure, however, has proven to be a challenging task for pavement practitioners and experts due 

to the complexity in processing input/output data within the MEPDG application. The dependency of 

models variables on other parameters that may not be available or will need different calibration 

process to predict makes it difficult to calibrate models outside of MEPDG context. The literature 

review showed that the vast majority of calibration techniques currently in use are based solely on 

statistical analysis and trial and error approaches, using different combinations of local calibration 

coefficients to find the best set that converges predicted values to data observed in the field. This 

approach is obviously time consuming, unpractical, and lacks accuracy, considering the limited 

number of trials that can be evaluated. In addition, this approach suffers from the absence of a 

mathematical algorithm to guide the search for the optimum solution.  

This Chapter will use a genetic algorithm (GA) optimization technique to calibrate MEPDG 

roughness models, and ultimately develop site-specific mechanistic empirical models that can then 

be compared to empirical models. The framework for the calibration procedure will be designed to 

simulate the MEPDG calibration process within the genetic algorithm context (Ayed and Tighe 

2015). Site-specific data from different locations in Ontario will be used as inputs for MEPDG, and 

initial calibration coefficient seeds will be introduced into the system to produce an initial output 
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which can be compared to measured field data. The genetic algorithm will then be employed to 

guide the selection of new calibration sets each time an analysis cycle is performed. Crossover and 

mutation processes will be used to produce a new set of chromosomes, which will then be presented 

to the calibration system for a new evaluation cycle in an automated process to overcome the 

drawbacks of traditional trial and error approaches. Calibration framework design and development 

will be discussed in the next sections, along with the results and advantages of using the genetic 

algorithm approach over traditional methods. 

5.2 INTRODUCTION 

5.2.1 Background 

Many provincial and local agencies today collect pavement condition data (e.g. rutting, 

cracking and IRI) using automatic road surveyors in a continuous manner. This data, often stored in 

PMS, indicate not only average pavement performance, but also variations in performance over 

time. Such data can be used in the local calibration of MEPDG design reliability, as previously 

reported in several studies (Wu, Yang and Zhang 2013) and (Hamdi, Tighe and Ningyuan 2014). 

Many studies and projects have developed methods of calibration and validation to adapt MEPDG 

procedure to local conditions. The following summarizes some of the efforts made in North America 

and internationally to locally calibrate MEPDG: 

Tennessee 

A study was carried out to validate MEPDG models with pavement performance data in the 

state of Tennessee (Zhou, et al. 2013). It was found that MEPDG was relatively conservative for 

highway pavements with low traffic levels. However, use of MEPDG with nationally averaged default 

parameters was not sensitive enough to differentiate various climates, traffic, and materials in 

Tennessee for the prediction of a present serviceability index (PSI). The state PMS was found to be 
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a better source for data that can then be used for MEPDG model calibration and validation (FHWA 

2010).  

Iowa  

Several studies were carried out in the state of Iowa using PMS data to calibrate MEPDG (S. 

Kim, H. Ceylan and K. Gopalakrishnan, et al. 2010), (S. Kim, et al. 2010) and (S. Kim, H. Ceylan and 

D. Ma, et al. 2014). A total of 70 sites from Iowa, representing both jointed plain concrete pavements 

(JPCP) and hot mix asphalt (HMA) pavements, were selected, and the accuracy of the nationally 

calibrated MEPDG prediction models for Iowa conditions was evaluated. These studies reported that 

local calibration of the MEPDG performance prediction models seems to have improved the 

accuracy of both JPCP performance predictions and HMA rutting predictions. The locally calibrated 

IRI model for Iowa JPCP improves the accuracy of predictions by tightening the scatter around the 

line of equality.  

Montana 

A study was carried out for the State of Montana. The objective of this study was to develop 

performance characteristics or variables of flexible pavements in Montana, and to use these 

characteristics in the implementation of the distress prediction models or transfer functions included 

in the MEPDG (Von Quintus and Moulthrop 2007).  

Arizona  

A study was conducted for the State of Arizona to implement the DARWin‐ME pavement 

design guide (Darter, Von Quintus, et al. 2014). The study documented a practical stand‐alone 

user’s guide that provides instructions for obtaining inputs, conducting design, and establishing the 

recommended pavement design. The study focused on assembling DARWin‐ME input data from 

180 Long Term Pavement Performance and pavement management system sections of flexible, 
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rigid, composite, and rehabilitated pavements, and calibrating the DARWin‐ME distress and IRI 

prediction models to Arizona conditions.  

Utah  

Another study was carried out in Utah (Darter, Glover and Von Quintus 2009). The 

implementation of the MEPDG as a UDOT standard required modifications in some UDOT 

pavement design protocols (i.e., lab testing procedures, equipment and protocols, traffic data 

reporting, software issues, design output interpretation, and others). In this study, the nationally 

calibrated MEPDG models were evaluated. With the exception of the new hot-mix asphalt (HMA) 

pavement total rutting model, all models were found to be reasonable.  

Indiana  

A study was conducted in the state of Indiana to evaluate the application of MEPDG to 

Indiana conditions (Galal and Chehab 2005). The study focused on modeling and calibrating the 

permeant deformation to Indiana conditions. Design levels and inputs were varied to assess both the 

functionality of the MEPDG and the feasibility of applying M-E design concepts to the particular 

structural pavement design of Indiana roadways. The study also  determined the sensitivity of the 

design parameters and input levels most critical to the MEPDG predicted distresses, as well as their 

impact on the implementation strategy that would be recommended to INDOT.  

Ohio  

A study was conduct in the Ohio (Glover and Mallela 2009) with the objective of 

implementing the MEPDG for the Ohio Department of Transportation (ODOT) and investigating a 

key requirement for integrating the MEPDG into current ODOT pavement design procedures, that is, 

evaluating the adequacy of global calibration factors for predicting pavement performance in Ohio 

and, if needed, developing local calibration factors. The study found that the prediction capacities of 
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the MEPDG new hot mix asphalt (HMA) rutting and smoothness (IRI) models, and the new jointed 

plain concrete pavement (JPCP) IRI model needed to be calibrated for Ohio conditions. 

Arkansas  

A study was conducted in the state of Arkansas (Hall, Xiao and Wang 2011). In this study, 

the procedure for local calibration of the MEPDG was established using LTPP and PMS. The study 

concluded that thermal cracking should be specifically identified in a transverse cracking survey to 

calibrate the transverse cracking model in MEPDG. Calibration coefficients were optimized for the 

alligator cracking and longitudinal cracking models in this study, both of which were improved by 

calibration. 

Texas 

A study was carried out in Texas (Banerjee, et al. 2009), with the objective of producing 

guidelines for local calibration of the MEPDG. Regional calibration factors were obtained by 

minimizing the sum of squared errors between the observed and the predicted distresses, while the 

average of the regional calibration coefficients for AC and subgrade rutting was computed to obtain 

a set of state-default calibration coefficients for Texas.  

Washington  

  A study conducted in the state of Washington (Li, Pierce and Uhlmeyer 2009) presented 

WSDOT's latest efforts at calibrating the flexible pavement portion of MEPDG with data obtained 

from the Washington State PMS. The study concluded that the flexible pavement distress models 

were calibrated successfully, and that WSDOT flexible pavements require local calibration that 

differs from the defaults. A software bug was reported in this study that did not allow calibration of 

the roughness model for local Washington conditions.  
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North Carolina: 

A study carried out in North Carolina presented the calibration of the MEPDG for flexible 

pavements located in the state (Muthadi and Kim 2008). The standard error for the HMA permanent 

deformation model, as well as for the alligator cracking model, was found to be significantly less than 

the global standard error after calibration. It was decided that both models would be kept for a more 

robust calibration in the future that would increase the number of sections and include more detailed 

inputs (mostly Level 1 inputs). 

International: 

A number of studies conducted at the international level have implemented an MEPDG 

calibration adapted to the traffic conditions, climate and material resources of each particular 

country. Research has been undertaken in India (Ghosh, Padmarekha and Murali 2013), Korea 

(Suh, Cho and Mun 2011), China (Zhang, et al. 2015), Chile (Delgadillo, Wahr and Alarc´on 2011), 

Peru (Romero, Garro and Zevallos 2016) and South Africa (Anochie-Boateng and Maina 2012). 

Most of these studies attempted to calibrate MEPDG to local conditions using a trial and error 

approach to close the gap between measured and predicted pavement performance. 

5.2.2 Roughness Model 

Within the MEPDG context, functional performance for all pavements types is defined by 

time (pavement age), dependent on pavement roughness, which is quantified as a predicted 

International Roughness Index (IRI). IRI is predicted using a regression equation with computed 

pavement distresses, initial IRI, and “site/climate” factors as the primary independent variables (Li, 

Mills and McNeil 2011). The roughness model in MEPDG design for overlay of flexible pavement is 

measured using the following equations: 
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𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼𝐼𝐼0 + 0.011505 (𝐴𝐴𝐴𝐴𝐴𝐴) + 0.0035986 (𝐹𝐹𝐹𝐹)𝑇𝑇 + 3.4300573 � 1
(𝑇𝑇𝑇𝑇𝑆𝑆)𝑀𝑀𝑀𝑀

� + 0.000723(𝐿𝐿𝐿𝐿𝑆𝑆)𝑀𝑀𝑀𝑀 +

0.0112407(𝑃𝑃)𝑀𝑀𝑀𝑀 + 9.04244(𝑃𝑃𝑃𝑃)𝑇𝑇 … ….………………………………...... (Equation 5.1) (ARA 2004) 

where: 

IRIo   = Initial IRI measured within six months after construction, m/km,  

Age   = Age after construction, years, 

(𝐹𝐹𝐹𝐹)𝑇𝑇  = Total area of fatigue cracking (low, medium, and high severity levels), percent of 

wheel path area, %. 

(𝑇𝑇𝑇𝑇𝑆𝑆)𝑀𝑀𝑀𝑀   =Average spacing of medium and high severity transverse cracks, m. 

(𝐿𝐿𝐿𝐿𝑆𝑆)𝑀𝑀𝑀𝑀 = Medium and high severity sealed longitudinal cracks in the wheel path, m/km. 

(𝑃𝑃)𝑀𝑀𝑀𝑀  = Area of medium and high severity patches, percent of total lane area, %. 

(𝑃𝑃𝑃𝑃)𝑇𝑇  = Pot holes, percent of total lane area, %. 

 

As shown in the previous equations, the independent variables are correlated to parameters 

related to other distresses that are being predicted/calculated within the MEPDG environment; the 

IRI model cannot therefore be calibrated outside of the MEPDG using these equations, and MEPDG 

needs to be executed iteratively to calculate all inputs needed for the IRI model. 
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5.3 MEPDG CALIBRATION TECHNIQUES 

5.3.1 Scope and limitation for calibrated models 

The literature review revealed that variables such as age, traffic, subgrade condition, road 

functional class, and pavement thickness are the most significant factors in IRI deterioration models 

(Baus. and Stires 2010). Therefore, selected sections from various Ontario municipalities’ PMS 

databases will be classified for the study based on the design of experiment (DOE) that accounts for 

factors known to highly influence pavement performance. Three sections in each DOE class are 

selected to represent different functional classes for local, collector and arterial roads, respectively, 

as shown in Table 5-1. In some conditions, no matching sections were found in the database to 

represent a particular condition. For example, no local sections (0) were found in the medium 

thickness, weak subgrade, and low traffic category, and only collector and arterial sections were 

used (0, 1, 1). Material, traffic and site specific inputs for selected sections were collected from 

different PMS databases and entered into MEPDG, with a total of 42 MEPDG design models were 

prepared for each section. 

Table 5-1: Number of Sections with Records for different DOE Classes 

Index Thickness Subgrade 
Traffic 

Low Medium High 

RCI 

Thin 
Weak 0, 1, 0 0, 0, 1 1, 1, 1 
Strong 1, 0, 1 0, 1, 1 1, 0, 0 

Medium 
Weak 0, 1, 1 0, 1, 1 0, 1, 1 
Strong 1, 1, 1 1, 1, 1 1, 1, 1 

Thick 
Weak 1, 1, 1 1, 1, 1 1, 1, 1 
Strong 1, 1, 1 1, 0, 1 1, 1, 1 

 

5.4 PROBLEM STATEMENT  

The literature review showed that most research efforts aimed at calibrating MEPDG models, 

including roughness, are accomplished mainly based on a “trial and error” statistical approach. In 

other words, local roughness calibration coefficient sets (C1, C2, C3 and C4) are initially introduced 
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to MEPDG, calculated IRI output is compared to measured IRI, and the deference is evaluated 

against a predefined benchmark. Different combinations of calibration coefficient sets are entered a 

number of times, and the set with the least difference is selected as the best set for a particular 

condition. This approach lacks the mathematical logic to guide the search for a new calibration set 

based on the previously selected set of results. 

Optimization algorithms, including genetic algorithms, are suitable to solve these problems 

where a guiding engine is employed to direct the search to the optimum solution. (Jadoun and Kim 

2012) attempted to use the genetic algorithm to calibrate rut and alligator crack in MEPDG. The 

study used an apads.exe (Jadoun and Kim 2012) engine module included in MEPDG to predict 

future distresses. This module cannot be used outside the MEPDG context, however, and a special 

software module was developed just for this study in order to have apads.exe work as a standalone 

module. It cannot therefore be used for other studies or research. 

 

5.5 METHODOLOGY 

To overcome this problem, a genetic algorithm (GA) framework is prepared to optimize 

calibration coefficients. Initial trials attempt to use linear programming optimization approach 

included with Microsoft Excel software (Solver), however, MEPDG outputs results are in excel format 

which conflict and prevent excel solver from executing repetitive trials. Therefore, a genetic algorithm 

programed using Visual Basic platform was developed to have a full control of the optimization 

process. The GA framework implementation includes an MEPDG Engine that receives initial 

coefficient seeds for C1, C2, C3 and C4 from GA, calls MEPDG application, opens a calibration 

screen for IRI (as shown in Figure 5-1), inserts the parameters, executes the analysis based on the 

passed coefficients, closes the MEPDG application, and finally reads the results file to obtain the 
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predicted IRI at different ages. It was essential to automate this process so that it can be included in 

an iterative process later, within a genetic algorithm framework as explained in the next section. 

 

Figure 5-1: MEPDG Screen for entering Roughness Calibration coefficients 

5.6 RCI BACKCALCULATION 

The roughness database is stored in PMS as a Riding Comfort Index (RCI). In order to calibrate the 

MEPDG, the data needs to be converted into actual measured roughness in inch/mile units. The 

transfer function used to by the Ministry of Transportation of Ontario (MTO) (used in the PMS-2 to 

reflect pavement roughness) was therefore utilized to convert scaled (0 to 10) RCI values to 

measured IRI values for flexible pavement (Li, Kazmierowski, et al. 2001).  

𝑅𝑅𝑅𝑅𝑅𝑅 = 8.52 − 7.49 log10(IRI)  …………………………..(equation 5.3) 
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5.7 MEPDG LOCAL CALIBRATION USING GENETIC ALGORITHMS 

5.7.1 Overview of Genetic Algorithms (GA) 

Genetic algorithms (GA) are inspired by Darwin's theory of evolution. The ways in which 

genetic algorithms are used to solve mathematical problems and find optimum solutions. An 

algorithm is started with a set of solutions (represented by chromosomes) called a population. 

Solutions from one population are taken and used to form a new generation. This is motivated by the 

hope that the new population will be better than the old one. Solutions which are selected to form 

new solutions (offspring) are selected according to their fitness. The more suitable they are, the 

more chances they have to reproduce. This is repeated until some condition (for example the 

number of populations or improvement of the best solution) is satisfied. GAs have been successfully 

used to solve many optimization problems in the pavement industry (Golroo and Tighe 2012). This 

includes solving multi-objective maintenance and rehabilitation programming problems at both the 

project and network level of analysis (Chikezie, Olowosulu and Abejide 2013) and (Morcousa and 

Lounisb 2005). 

5.7.2 Modeling Approach 

Genetic algorithm is employed in this study to locally calibrate IRI models included in the 

MEPDG. As shown in Figure 5-2, the process starts by randomly generating four initial seeds 

(chromosomes) for calibration coefficients, with each chromosome consists of C1, C2, C3 and C4, 

representing different combinations of calibration coefficients. Subsequently each chromosome is 

introduced to the automated MEPDG engine to execute the analysis and store roughness results in 

a database, to be used later as well as to be passed back to the GA. The advantage of storing 

analysis results is the possibility that they can be used again if the same chromosome is either 

chosen later or generated randomly as part of a new generation, which will save the MEPDG 
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reprocessing time. The genetic algorithm calculates the fitness of each chromosome using the 

following equations: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

∗  100 (𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 > 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)  
…………………………………………………………………………………………………..(Equation 5.2) 
 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
∗  100 (𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 < 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)  

.…..…..…………………………………………………………………………………………(Equation 5.3) 
 
 

The closer the fitness is to 100%, the more the chromosome has a chance of surviving for 

the next generation. The next step is to identify the best and worst chromosomes in the current 

generation. The worst performing chromosome(s) will be killed to leave room for offspring generated 

as a result of crossover and mutation by the best chromosomes. Next, the fittest parent pair is 

selected to generate new offspring by crossover. Mutation of single chromosome gene was 

performed on a random base only when a random mutation rate exceeded 25%. Mutation of all 

chromosomes was applied when all chromosomes had the same fitness. Fitness for the new 

generation chromosomes was evaluated again, and the process was repeated until the fitness met 

the predefined target level, which is in this case was an accuracy greater than 95%. Figure 5-3 

shows the interface for the genetic algorithm program that has been developed to calibrate the 

MEPDG roughness. 
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Figure 5-2: Framework for Genetic Algorithm used in the Calibration 
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Figure 5-3: Screenshot from Developed Genetic Algorithm Tool for Roughness 

Calibration    
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5.8 RESULTS 

Table 5-2 shows the results for the fittest chromosomes for each DOE category. For 

example, three sections with the functional classes of local, collector and arterial, respectively, were 

calibrated for thin thickness, weak subgrade and high traffic. The best fitness achieved for each 

section was 92%, 90% and 74% respectively. Categories where no section was found in the PMS 

database were designated with NA results. Table 3 shows the details for each section optimum 

solution, along with the measured IRI and the calculated IRI resulting from the GA. As can be seen 

in Table 5-2 and Table 5-3, the majority of chromosomes for selected sections showed fitness above 

90%, with a slight difference between predicted and measured roughness, suggesting that GA is a 

promising tool that can be used to locally calibrate MEPDG distress coefficients. Few sections 

showed low fitness (below 90%), however, the fitness can be improved by changing the mutation 

rate (and/or crossover positioning) to produce a more fit solution to the problem. 

Table 5-2: Fitness Results for MEPDG Roughness Calibration 

Thickness Subgrade 
Traffic 

Low Medium High 

Thin 
Weak NA, 96, NA NA, NA, 93 92, 90, 74 
Strong 54, NA, 94 NA, 97, 96 95, NA, NA 

Medium 
Weak NA, 94, 95 NA, 93, 74 NA, 83, 89 
Strong 89, 85, 84 91, 92, 82 92, 93, 84 

Thick 
Weak 93, 95, 95 95, 92, 93 93, 87, 59 
Strong 78, 81, 97 93, NA, 90 97, 90, 92 
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Table 5-3: Calibration Results for each Selected Section in the DOE 

F.Class Thickness Subgrade Traffic C1 C2 C3 C4 Fitness 
% 

Measured IRI GA IRI 

1 2 1 2 

Lo
ca

l 

Thin Strong Low 42 0.8 0.003 0.018 54.2 170.5   92.5   
Thin Strong High 43 0.6 0.004 0.017 94.9 95.1   90.2   
Thin Weak High 38 0.6 0.006 0.016 92.2 110.9   102.2   

Medium Strong Low 49 0.4 0.008 0.019 89.0 101.1 114.3 94.1 97.1 
Medium Strong Medium 47 0.7 0.005 0.019 91.4 141.8 165.3 138.1 141.3 
Medium Strong High 44 0.3 0.001 0.017 92.3 92.2 107.5 90.1 93.4 

Thick Strong Low 50 0.8 0.005 0.017 77.8 114.3   88.9   
Thick Strong Medium 33 0.5 0.001 0.014 93.4 125.4   134.2   
Thick Strong High 47 0.5 0.003 0.016 97.0 69.9 79.1 71.4 75.9 
Thick Weak Low 50 0.1 0.007 0.019 93.2 146.2   136.2   
Thick Weak Medium 36 0.2 0.008 0.011 94.7 117.9   124.5   
Thick Weak High 31 0.1 0.008 0.016 92.8 54.7 67.8 63.7 68.1 

C
ol

le
ct

or
 

Thin Strong Medium 43 0.3 0.001 0.014 97.1 63.8   61.9   
Thin Weak Low 39 0.4 0.002 0.015 96.3 117.9   122.4   
Thin Weak High 43 0.3 0.001 0.015 90.2 146.2   131.9   

Medium Strong Low 46 0.7 0.005 0.019 84.6 170.5 231.9 164.4 168.6 
Medium Strong Medium 38 0.3 0.001 0.015 92.0 165.3 175.8 155.1 158.6 
Medium Strong High 50 0.4 0.003 0.015 92.9 110.9 137.5 129.2 137.4 
Medium Weak Low 42 0.4 0.006 0.018 94.3 110.9 133.3 121.8 130.1 
Medium Weak Medium 40 0.9 0.002 0.015 92.7 101.1 121.6 116.6 123.3 
Medium Weak High 46 0.8 0.005 0.012 82.6 65.7 79.1 83.8 91.0 

Thick Strong Low 46 0.2 0.005 0.017 81.0 98.0 110.9 82.8 86.0 
Thick Strong High 30 0.6 0.004 0.012 90.5 117.9 129.3 133.6 139.5 
Thick Weak Low 37 0.4 0.001 0.018 94.6 110.9 129.3 111.3 115.8 
Thick Weak Medium 44 0.2 0.009 0.017 91.9 192.8 198.8 177.1 182.7 
Thick Weak High 44 0.6 0.004 0.018 87.2 81.5 117.9 103.3 112.5 

A
rt

er
ia

l 

Thin Strong Low 38 0.8 0.001 0.011 93.7 150.8   160.6   
Thin Strong Medium 48 0.1 0.008 0.013 96.2 137.5   143.0   
Thin Weak Medium 49 0.4 0.006 0.019 92.8 155.5 165.3 143.1 154.7 
Thin Weak High 38 0.4 0.007 0.011 73.5 72.1 98.0 104.4 125.6 

Medium Strong Low 45 0.5 0.007 0.019 83.9 95.1 98.0 79.2 82.8 
Medium Strong Medium 46 0.8 0.002 0.018 81.5 155.5 165.3 127.8 133.7 
Medium Strong High 44 0.6 0.007 0.018 83.9 117.9 117.9 98.9   
Medium Weak Low 46 0.3 0.001 0.018 94.7 110.9 117.9 103.2 113.6 
Medium Weak Medium 46 0.3 0.009 0.017 74.4 146.2 192.8 119.0 130.0 
Medium Weak High 45 0.4 0.002 0.018 89.3 137.5 165.3 128.9 140.2 

Thick Strong Low 40 0.4 0.002 0.016 96.6 133.3 146.2 136.2 139.3 
Thick Strong Medium 41 0.4 0.006 0.018 90.0 146.2 155.5 133.7 137.7 
Thick Strong High 36 0.3 0.001 0.018 91.9 121.6 150.8 123.2 128.2 
Thick Weak Low 35 0.3 0.001 0.017 95.0 110.9 133.3 115.6 125.4 
Thick Weak Medium 32 0.5 0.007 0.011 93.4 76.7 86.7 84.4 90.5 
Thick Weak High 49 0.4 0.006 0.018 58.8 150.8   88.6   
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5.9 COMPARISON BETWEEN EMPIRICAL MODELS AND MECHANISTIC 
EMPIRICAL MODELS 

In order to provide a fair comparison between existing empirical models and the M-E models, 

the sections used in M-E genetic optimization calibration were individually entered into the same 

process presented in Chapter 3, in order to develop deterioration models for these sections. The 

resulting roughness values for each of the 42 M-E models were backcalculated to RCI values using 

the MTO models utilized in section 5.6. The RCI values were scaled back overtime using the years 

from initial values for IRI before optimization was carried out. In this optimization process, the IRI 

results from MEPDG analysis were used as the measured parameters, and the objective function 

was to find the coefficients A, B and C that minimized error between measured and predicted 

parameters. Table 5-4 shows the final coefficients for models developed based on M-E modeling. In 

most of the cases, when compared to empirical models shown in Table 3-12, it can be noted that 

empirical models under-predict pavement condition over time compared to models based on M-E 

principles. This means empirical models tend to predict shorter service life compared to M-E models. 

For example, Table 3-12 shows that the empirical model for thin/low/strong (Model 1 for local roads) 

has a shorter predicted service life (19 years) compared to the corresponding model based on M-E 

principles (26 years). In other cases, the empirical models over-predict pavement service life 

compared to M-E models, as shown in Figure 5-8 where the M-E model for Thick/Low/Strong (Model 

13 for collector roads) has a shorter predicted service life (26 years) compared to the empirical 

model (29 years) under the same conditions. Figure 5-4 to Figure 5-9 show the developed M-E 

models and predicted service life for critical models when compared to empirical models. Four of the 

critical model conditions showed that empirical models under-predict pavement condition over time, 

while other conditions, such as model 3 and model 6 for local roads, showed the same predicted 

service life. 
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Table 5-4: RCI Models Coefficients for Mechanistic-Empirical Modeling 

M
odel ID

 

Thickness 

Traffic 

Subgrade 

RCI Model Coefficients 
Local Collector Arterial 

 a   b   c  Age  a   b  c Age  a   b   c  Age 

1 Thin Low Strong 4.93 11.56 2.10 26.5 NA NA NA NA 4.51 8.58 2.20 19.6 
2 Thin Med. Strong NA NA NA NA 4.91 12.25 2.20 21.3 4.50 6.64 2.10 17.0 
3 Thin High Strong 4.87 10.11 2.15 21.7 NA NA NA NA NA NA NA NA 
4 Thin Low Weak NA NA NA NA 4.53 6.08 2.11 17.1 NA NA NA NA 
5 Thin Med. Weak NA NA NA NA NA NA NA NA 4.50 5.39 2.12 12.5 
6 Thin High Weak 4.68 6.27 2.16 15.2 4.50 4.55 2.10 12.6 4.50 4.77 2.15 10.1 
7 Med. Low Strong 4.71 12.00 2.15 34.5 4.52 9.95 2.20 28.3 4.60 11.22 2.17 25.5 
8 Med. Med. Strong 4.60 10.02 2.20 30.0 4.59 9.90 2.20 25.1 4.62 9.91 2.20 20.0 
9 Med. High Strong 5.00 10.00 2.16 17.9 4.71 10.01 2.20 21.3 4.72 10.03 2.20 17.9 

10 Med. Low Weak NA NA NA NA 4.84 10.00 2.20 17.9 4.73 10.05 2.20 17.9 
11 Med. Med. Weak NA NA NA NA 4.85 10.00 2.20 17.5 4.90 9.93 2.19 14.7 
12 Med. High Weak NA NA NA NA 5.00 8.74 2.20 12.5 4.50 5.09 2.10 11.9 
13 Thick Low Strong 4.55 10.01 2.20 33.1 4.95 15.04 2.20 26.4 4.50 10.56 2.19 26.5 
14 Thick Med. Strong 4.54 10.12 2.20 34.5 NA NA NA NA 4.62 9.98 2.20 20.2 
15 Thick High Strong 5.00 11.45 2.17 21.0 4.50 6.64 2.10 21.0 4.70 10.09 2.20 18.5 
16 Thick Low Weak 4.64 10.01 2.20 27.8 4.65 9.99 2.20 23.1 4.60 10.09 2.20 21.0 
17 Thick Med. Weak 4.72 9.96 2.20 24.2 4.83 9.92 2.20 17.9 4.87 10.00 2.10 17.9 
18 Thick High Weak 5.00 9.06 2.20 14.7 4.87 10.00 2.20 17.1 5.00 10.32 2.20 13.7 

Note: NA refers to models where no enough data was available to produce models 
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 Figure 5-4: Empirical (E) vs. Mechanistic-Empirical (M-E) (Critical Models - Local) 

 

Figure 5-5: Empirical (E) vs. Mechanistic-Empirical (M-E) (Critical Models - Collector) 
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Figure 5-6: Empirical (E) vs. Mechanistic-Empirical (M-E) (Critical Models - Arterial) 
 

 

Figure 5-7: Service Life Empirical (E) vs. Mechanistic-Empirical (M-E) (Local) 
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Figure 5-8: Service Life Empirical (E) vs. Mechanistic-Empirical (M-E) (Collector) 

 

Figure 5-9: Service Life Empirical (E) vs. Mechanistic-Empirical (M-E) (Arterial) 
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5.10 CONCLUSION 

It can be concluded that models based on M-E principles will not necessarily always 

overestimate pavement service life; however, it most pavement practitioners and transportation 

experts believe that M-E models are built on more reliable and accurate principles compared to 

those built on only empirical principles. The previous analysis indicated that in most cases, the 

empirical model underestimated the service life of the pavement. While this might provide 

unnecessary improvement to pavement condition by applying rehabilitation activities earlier than 

expected, it might also create more expenditure for transportation agencies due to an 

underestimated shorter service life. The next Chapters will discuss the application of M-E models at 

the project and network level of analysis, as well as the impact of using these models compared to 

traditional empirical models. 
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6.0 Decision-Making Framework for Rehabilitation Alternative 

Selection using M-E Models at Project Level Analysis 

6.1 INTRODUCTION 

As previously explained, performance models are used in PMS in order to predict future 

pavement performance, and hence identify the time needed for the next rehabilitation. The use of 

performance models starts at the project level, when rehabilitation alternatives are selected based 

on pavement performance over time. The frequency of selecting pavement rehabilitation within 

certain time frames will certainly impact the associated yearly cost incurred by such a strategy, as 

well as strategy selection at an early stage of program planning and construction. In order to validate 

the M-E models developed in the previous section and weigh their impact compared to empirical 

models, they need to be evaluated at the project level through a life cycle cost analysis (LCCA). 

A comprehensive decision-making tool is implemented to carry out detailed LCCA and to 

facilitate selection of the appropriate rehabilitation strategy, based on site-specific conditions. The 

developed tool has the capability to carry out LCCA using both empirical models and M-E models 

simultaneously. This feature can help pavement practitioners and transportation agencies evaluate 

different competing rehabilitation strategies based on prediction models used in the cost analysis, 

and select the most cost-effective strategy based on both economic analysis and confidence in the 

data originally used to develop these models. Using the developed LCCA tool, city staff can enter 

project-specific parameters and quickly have a print out of feasible treatments, along with the 

corresponding life cycle cost analysis for each of these treatments. 
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6.2 SCOPE OF COMPARISON 

It should be noted that these M-E models were only developed for flexible pavement; 

therefore, the decision-making tool for alternative selection considers only asphalt concrete 

rehabilitation options. However, this tool can be expanded to account for other pavement types. In 

addition, the decision-making tool only considers previously developed Ride Comfort Index (RCI) 

models in the deterioration condition of the pavement. If mechanistic-empirical models are to be 

developed in the future for other performance indexes, such as SDI, they should be incorporated into 

this decision tool through an overall pavement quality index (PQI), that includes both RCI and SDI. 

The use of PQI will provide better and more realistic pavement performance over time, and hence 

provide more accurate estimation for alternative rehabilitation costs. This Chapter will provide 

comprehensive details about the economical principles used in the development of decision-making 

frameworks for rehabilitation selection. The next Chapter will describe the implementation of an 

automated decision-making tool that incorporates the decision framework discussed herein. The 

automated tool can be used as a standalone tool to compare competing rehabilitation strategies, 

regardless of performance models used, even though it was only originally developed to compare 

the two performance model types (empirical vs. mechanistic-empirical). 

  

6.3 ECONOMIC ANALYSIS AND PROGRAMMING 

6.3.1 Life Cycle Cost Analysis Modeling 

In this section, the economic LCCA is carried out with the objective of defining the budget 

requirements needed for sustainable pavement performance using different performance models. 

LCCA builds on well-founded principles of economic analysis to evaluate the overall long-term 

economic efficiency of competing alternatives for investment options. The main objectives of 

performing the LCCA are: 
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 To present an economically sound approach justifying the budget needed for sustainable 

pavement conditions. 

 To evaluate the cost-effectiveness of different options among competing maintenance and 

rehabilitations (M&R) strategies. 

 To identify the upper and lower bounds of expected expenditures over the analysis period, 

based on the uncertainty of the analysis inputs. 

 

6.4 DECISION-MAKING FRAMEWORK ANALYSIS ASSUMPTIONS 

6.4.1 Analysis Period and Economic Indicators 

The analysis period used in this study extends over 50 years, where each M&R strategy 

includes at least one complete alternative M&R strategy. However, since this would result in M&R 

strategies with un-equal service lives, the economic indicator used to compare these alternatives is 

the Equivalent Uniform Annual Cost (EUAC) (Farashah and Tighe 2014) and (TAC 2013). The 

EUAC represents all costs of an M&R strategy as if they occurred uniformly throughout the analysis 

period. It is evaluated by first determining the Net Present Worth (NPW) of the M&R strategy using 

the following equation: 

𝑁𝑁𝑁𝑁𝑁𝑁 = ∑ 𝐶𝐶
(1+𝑖𝑖)𝑡𝑡

𝑁𝑁
𝑡𝑡=0 ………………………………………………………(equation 6.1) 

Where:  

𝑁𝑁𝑁𝑁𝑁𝑁 is the total net present worth of the strategy over the analysis period 

𝐶𝐶 is the annual incurred cost at year 𝑡𝑡 

𝑖𝑖 is the discount rate 

𝑡𝑡 is the current year 

𝑁𝑁 is the analysis period (50 years) 
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The EAUC is used to calculate the regular annuity, given the present worth and is calculated as 
follows: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖(1+𝑖𝑖)𝑁𝑁

(1+𝑖𝑖)𝑁𝑁−1
……………………………………………(equation 6.2) 

 

Where:  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is the equivalent annual uniform cost 

𝑁𝑁𝑁𝑁𝑁𝑁 is the total net present worth of the strategy over the analysis period 

𝑖𝑖 is the discount rate 

𝑁𝑁 is the analysis period (50 years) 

The incremental costs of EAUC are calculated similarly to the incremental costs for the present 

worth. First, all the equivalent annual costs are converted to an annual Present Worth cost, and then 

each annual present worth cost is added to the previous annual present worth cost. The analysis is 

performed on assumed cost data for treatments based on engineering experience and some 

historical data from municipalities in Ontario. Relative relation among different cost items was taken 

into consideration for treatments cost estimates. The objective of using cost data is to compare 

different strategies rather than provide the exact value for future expenditures. 

The discount rate reflects the true time value of money. It describes the opportunity value of 

the money, such that money being spent now is more valuable than that being spent in the future, 

since today’s spending could be invested in other projects, which could yield a return. Discount rates 

can significantly affect the analysis results; therefore, reasonable discount rates that reflect historical 

trends over longer periods of time should be used. For public sector projects, a discount rate of 3% 

to 5% has typically been used for economic analysis. For this study, a discount rate of 4% is used, 

though this value can be changed as needed within the developed tool as will be shown later and 

updated cost will be generated automatically.  
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6.4.2 Costs 

The M&R activity unit costs are described in Table 6-1. These estimated costs are based on 

data collected from different transportation agencies in Southern Ontario. These costs represent the 

agencies’ costs only, and do not include any user costs such as the user delay costs, vehicle 

operating costs, etc. The analysis presented herein has the objective of developing a sustainability 

plan for different rehabilitation alternatives both after they are implemented and throughout their 

service life. Therefore, the salvage values are not considered in comparing competing M&R 

strategies between models. Alt1 to Alt9, shown in the cost table, are additional alternatives coded in 

the decision support tool discussed later, which is used to facilitate the addition of new rehabilitation 

alternatives based on user choice.  

6.4.3 Geometry 

It was assumed that the roadway geometry, including the number of lanes, would not change 

during the analysis period (minimum 50 years), since this would result in new construction. 

6.4.4 Maintenance and Rehabilitation Activities 

Different types of rehabilitation activities are typically considered in the LCCA. These 

activities can be generally classified into the following categories: 

• Preventive Maintenance Activities 

• Light Rehabilitation Activities 

• Heavy Rehabilitation Activities 

 

• Construction/Reconstruction 

• Localized Repair 
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Table 6-1: Unit Costs used in LCCA 

Treatment Description Unit Cost 
($/m2) 

Fog Seal Sealant application to prevent weathering and raveling 2.50 
Crk Seal Routing and Sealing of crack 5.00 
Mill 80 mm + 80 mm AC O/L Mill 80 mm AC and Overlay 80 mm of AC 28.10 
100 mm AC O/L Asphalt Concrete Overlay of 100 mm 25.10 
Crk Seal (10% cracking) Assumes 10% of the surface requires crack sealing 0.50 
Crk Seal (15% cracking) Assumes 15% of the surface requires crack sealing 0.75 
Crk Seal (20% cracking) Assumes 20% of the surface requires crack sealing 1.00 
Earth removal Remove 300 mm of earth 19.50 
Mill 50 mm + 50 mm AC O/L Mill 50 mm AC and Overlay 50 mm of AC 18.85 
Pulverize Asphalt Pulverization 6.00 
Pulv + 100 mm AC O/L Pulverize & Pave -– Recon 31.10 
Microsurfacing Microsurfacing 3.30 
50 mm AC O/L Asphalt Concrete Overlay of 50 mm 12.55 
Full Recon - Local Full Reconstruction (AC or COM) for Arterials 100.00 
Cold-in-Place Recycling Cold-in-Place Recycling 31.00 
Strip & AC Overlay Strip All AC 49.00 
Full Recon - Arterial Full Reconstruction for Arterials 194.10 
Full Recon - Collector Full Reconstruction for Collectors 170.60 
80 mm AC O/L Asphalt Concrete Overlay of 50 mm 20.00 
Alt1 Alt1  
Alt2 Alt2  
Alt3 Alt3  
Alt4 Alt4  
Alt5 Alt5  
Alt6 Alt6  
Alt7 Alt7  
Alt8 Alt8  
Alt9 Alt9  
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Preventive maintenance activities are planned activities implemented when the pavement is 

in the excellent to good condition, in order to improve pavement safety or functional conditions 

and/or slow the rate of pavement deterioration. The main purpose of these activities is to reduce the 

water and air infiltration into the pavement structure, slowing the stripping and oxidization process of 

the asphalt and therefore reducing the rate of deterioration of the pavement. These preventive 

maintenance activities include crack sealing, surface treatments, and micro surfacing. It should be 

noted that preventive maintenance is different from corrective maintenance, which is typically 

implemented as a stopgap measure, holding the condition of a pavement section until a 

rehabilitation activity can be implemented. Figure 6-1 shows a typical performance model for a 

pavement section and the impact of preventive maintenance on the pavement performance. As 

shown in the figure, preventive maintenance can either improve the pavement condition or reduce 

the rate of deterioration. In all cases, preventive maintenance can enhance pavement performance 

and reduce the life-cycle costs of highway facilities. Light rehabilitation activities are implemented 

when the pavement condition is relatively fair, where functional improvement might be needed.  

While light rehabilitation activities improve the functional performance and safety of the 

pavement surface, their impact on the structural condition of the pavement is minimal. Examples of 

these activities include mill, overlay and thin overlays activities. Heavy rehabilitation activities are 

needed to improve the structural condition of the pavement by either adding significant thickness or 

replacing a significant portion of the pavement structure. These activities include thick overlays, and 

AC partial reconstruction. Localized repairs are reserved for distressed or failed areas. They are 

typically reactive activities based on inspection data. They include patching, deep patching and 

localized reconstruction due to unaddressed drainage problems. Table 6-2 shows the list of 

rehabilitation maintenance and activities considered in this decision-making framework and model 

comparison, with associated costs presented in Table 6-1.  
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Figure 6-1: Impact of Preventive Maintenance Activities on Pavement Performance (Hein 
and Croteau 2004)  

 

Table 6-2: List of Rehabilitation Activities 

Activity Code Activity Description 

1 Full Reconstruction AC (Arterial) 
2 Mill 80 & overlay 80 
3 Full Reconstruction AC (Collector) 
4 Strip & AC Overlay 
5 Cold-in-Place Recycling 
6 Pulverize & AC Overlay 
7 Full Reconstruction AC (Local) 
8 Overlay  AC 50 mm  
9 Overlay  AC 80 mm 
10 Overlay  AC100 mm 
11 Mill 50 & overlay 50 
12 (Blank for a adding new activity) 
13 (Blank for a adding new activity) 
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6.4.5 Maintenance and Rehabilitation (M&R) Strategies 

In general, there are two strategies that can be considered for the sustainability plan included 

in the decision-making framework. The first strategy is to consider only pavement rehabilitation 

activities, such that the pavement is allowed to deteriorate until it reaches the end of its service life of 

its next construction or major rehabilitation activity, and then another reconstruction or major 

rehabilitation is implemented. The second strategy is to include surface treatments or preventive 

maintenance activities to extend the service life of the pavement. The decision-making framework 

developed has the flexibility to include either of the two strategies based on user selection; however, 

only single light or heavy rehabilitation activities are presented in this study at trigger conditions to 

demonstrate the difference between the models. No localized repair or preventive maintenance 

activates are therefore used at any time in the pavement’s life to isolate variation incurred in cost 

due to rehabilitation change and only the one strategy is included in the comparison. 

6.4.6 Section Selected for Analysis 

To illustrate the difference between the impacts of the models used in the analysis, a section 

with a length of 1.4 km and a 3.5 m lane width is used to calculate the quantities needed for different 

rehabilitations alternatives. 

 

6.5 DECISION-MAKING CONDITIONS 

Classified in a similar fashion to the design of experiment (DOE) previously described in 

Chapter 3, there are 54 conditions resulting from the combination of two subgrade condition types, 

three thickness categories, three traffic levels, and three functional classes, as shown in Figure 6-2. 

Each condition combination in the decision matrix represents a unique condition and has been 

assigned with possible treatment options from the treatment list in Table 6-3. It should be noted that 

more than one rehabilitation alternative could be applicable to the same condition or same 
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rehabilitation alternative for more than one condition-based user decision. Table 6-3 illustrates the 

rehabilitation activities assigned to each condition for model impact comparison. The numbers 

shown in each cell represent the code of possible activities for each condition, as defined in Table 

6-2. The criteria used to classify traffic pattern, subgrade condition and thickness threshold levels 

are similar to the one explained in section 3.7 in Table 3-4 and Table 3-5. 

 

 

 

 

 

 

 

 

 

Figure 6-2: Decision-making Factors 
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Table 6-3: Rehabilitation Activities Assigned for Each Condition 
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tio
na

l 
cl

as
s 

Traffic 
Thickness 

Thin Medium Thick 

W
ea

k 

Lo
ca

l Low 2,4 2,5 5,6 

Medium 7,2 7,4 7,5 

High 7,4 7,5 7,6 
C

ol
le

ct
or

 Low 2,4 4,5 5,6 

Medium 3,2 3,4 3,5 

High 3,4 3,5 3,6 

A
rt

er
ia

l Low 2,4 4,5 5,6 

Medium 1,2 1,4 1,5 

High 1,4 1,5 1,6 

St
ro

ng
 

Lo
ca

l Low 8,4 8,5 8,6 

Medium 9,2 9,4 9,5 

High 10,4 10,5 10,6 

C
ol

le
ct

or
 Low 9,4 9,5 9,6 

Medium 10,2 10,4 10,5 

High 11,4 11,5 11,6 

A
rt

er
ia

l Low 10,4 10,5 10,6 

Medium 11,2 11,4 11,5 

High 2,4 2,5 2,6 

 

6.6 SUMMARY 

This Chapter provided comprehensive details about the economic principles used in the 

development of decision-making framework for rehabilitation selection. The next Chapter will 

describe in details the implementation of an automated decision-making tool that to incorporate the 

decision framework discussed herein. 
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7.0 Development of M-E Model Based Decision-making Tool for 

Rehabilitation Alternative Selection 

7.1 DECISION-MAKING MECHANISM 

The decision-making framework and economic principles presented in previous Chapter are used to 

develop an automated decision-making tool for the alternatives selection. Figure 7-1 illustrates the 

procedures used to develop the tool. The first step is to prepare site-specific data such as project 

geometric data (length and width) and discount rate, followed by classifying the road under 

consideration based on the four DOE conditions and identifying the rehabilitation alternative set 

applicable to each condition. The next step is to carry out a comprehensive life cycle cost analysis 

(LCCA) for each strategy. Two concurrent LCCAs are performed simultaneously for each alternative. 

In the first LCCA scenario, the pavement deteriorates using a traditional empirical model. In the 

second LCCA, pavement deteriorates according to the newly developed M-E model. Once the LCCA 

is executed over a 50-year period, a comparison among possible strategies is presented graphically 

with possible rehabilitation actions.  

Figure 7-1 shows the interface of the developed decision-making tool. It illustrates how the decision 

framework procedures are implemented into the decision support tool. By selecting different factor 

combinations in the inputs section, a new condition is identified and rehabilitation alternatives 

associated with the selected condition are populated accordingly in the rehabilitation option box. The 

tool will calculate the project area based on site-specific geometric data entered in section inputs, 

which will automatically update alternatives in the LCCA. Two sets of incremental equivalent annual 

uniform costs (EAUC) are displayed graphically for each rehabilitation alternative. The first 

incremental EAUC considers pavement deterioration using traditional empirical models, while the 

other incremental EAUC accounts for pavement deterioration following M-E models. The pavement 
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is assumed to return to 100% RCI after the implementation of the rehabilitation activity. RCI 

deterioration over the analysis period is displayed graphically for each model. In addition, the net 

present worth cost is displayed for each alternative considered for each model type.   

  

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7-1: Schematic Decision Framework for Alternatives Selection 
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Figure 7-2: Decision-making LCCA Tool Interface   
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Figure 7-3: Timeline Actions along Analysis Period   

 

Case of Timeline with Detailed Preventive Maintenance Actions 
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7.2 DECISION-MAKING TOOL CAPABILITIES  

7.2.1 Detailed Periodic Timeline Actions 

Selecting individual alternatives from the alternative options box will display the activity 

timeline over the analysis period, as shown in Figure 7-3. This will help plan in advance for the next 

action, especially when the strategy includes several preventive maintenance actions (which are not 

used in this scenario). 

7.2.2 Adding New Rehabilitation Alternative 

The rehabilitation tab shown in Figure 7-3 provides the capability to add additional 

rehabilitation alternatives to any specific condition. Once a new alternative is added, the underlying 

decision matrix presented previously in Table 6-3 is updated to reflect these changes, along with 

associated cost.  

7.2.3 Interactive strategy Actions Update 

The tool has the flexibility to change yearly actions based on user selection to reflect the best 

set of preventive maintenance activities and/or major rehabilitation, as shown in Figure 7-4. If activity 

is changed at any time of the analysis period, the associated cost is updated automatically based on 

selected unit cost activity. 
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50 Years 

 

 

 

Figure 7-4: Interactive LCCA Activity Selection   

7.3 LCCA CASE STUDY  

Figure 7-5 and Figure 7-6 show an example of detailed cost calculation for a 50mm overlay 

strategy. All alternatives listed previously in Table 6-2 are embedded in the tool along with their 

associated costs. These figures illustrate how the change from empirical models to M-E models 

impacted the year when the next rehabilitation was implemented and the corresponding overall 

LCCA of the alternative. 
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Figure 7-5: Detailed Calculation for Empirical-Model Based LCCA Alternative  
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Figure 7-6: Detailed Calculation for Mechanistic-Empirical Model Based LCCA Alternative  

 

7.4 COMPARISON BETWEEN EMPIRICAL AND MECHANISTIC EMPIRICAL 
MODELS ON LCCA 

As discussed previously in Chapter 3, the critical condition models are Models 3, 6, 8 and 13. 

These are the models that carry the most expected condition for each paramter. The following 

section discusses model comparisons for these conditions in more detail: 
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7.4.1 Model 3 Analysis Comparison Results 

 

Figure 7-7: Model 3 Empirical vs. Mechanistic Empirical LCCA Results (Local Roads)     

Model 3 represents pavement deterioration associated with strong subgrade, high traffic and 

thin pavement condition. Models were only developed for local roads. As seen in Figure 7-7, the 

developed M-E models were almost identical to the existing empirical models, producing an 

insignificant impact in cost estimates.  
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7.4.2 Model 6 Analysis Comparison Results 

Models 6 represents pavement deterioration associated with weak subgrade, high traffic and 

thin pavement condition. The predicted service life for the empirical model was very close to the one 

predicted by M-E modeling; no significant impact was therefore noted in cost estimates. This was 

observed for the three functional classes, as shown in Figure 7-8, Figure 7-9 and Figure 7-10. 

 

Figure 7-8: Model 6 Empirical vs Mechanistic Empirical LCCA Results (Local Roads) 
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Figure 7-9: Model 6 Empirical vs Mechanistic Empirical LCCA Results (Collector Roads)   
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Figure 7-10: Model 6 Empirical vs Mechanistic Empirical LCCA Results (Arterial Roads) 

 

7.4.3 Model 8 Analysis Comparison Results 

Model 8 represents pavement deterioration associated with strong subgrade, medium traffic 

and medium thickness conditions. As can be seen from the RCI deterioration models for local 

functional classes, there is almost a two years difference between the trigger year for each model. 

This difference resulted in a 2% deference in cost estimate as shown in Figure 7-11.   
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Figure 7-11: Model 8 Empirical vs Mechanistic Empirical LCCA Results (Local Roads)  

 

For collector roads, empirical models deteriorated relatively quicker compared to local 

empirical models, with a 5 year difference; and much faster by 2 years compared to M-E local 

models. The empirical model tends to deteriorate with a higher rate compared to M-E models, which 

resulted in overestimating the cost by 4% difference as shown in Figure 7-12.   
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Figure 7-12: Model 8 Empirical vs Mechanistic Empirical LCCA Results (Collector Roads)  

 

 

Arterial roads tend to deteriorate at a much faster rate compared to local and collector roads, 

as shown in Figure 7-13. The use of empirical models resulted in a 2% cost overestimation when 

compared to estimates using M-E models. 
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Figure 7-13: Model 8 Empirical vs Mechanistic Empirical LCCA Results (Arterial Roads)  

 

7.4.4 Model 13 Analysis Comparison Results 

Model 13 represents pavement deterioration associated with strong subgrade, low traffic and 

thick pavement. As can be seen from the RCI deterioration models for local functional classes, the 

empirical models tend to over-predict the trigger rehabilitation year later than expected compared to 

M-E models, and accordingly underestimates the present worth cost for the same alternative. There 

is a one-year difference in prediction between the trigger year for each model. However, differences 

in deterioration between the two models resulted in an insignificant difference in cost estimates for 

local roads, as shown in Figure 7-14, due to small differences in the service life.    
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Figure 7-14: Model 13 Empirical vs Mechanistic Empirical LCCA Results (Local Roads)     

For collector roads, even though the deterioration rate for empirical models was relatively 

similar to M-E models for the first few years after the rehabilitation, both models ended up having a 

different predicted service life. Similar to local roads, the empirical models tended to over-predict the 

service life when compared to M-E prediction by almost three years. The use of empirical models 

resulted in underestimating the cost by 3% when compared to estimates using M-E models, as 

shown in Figure 7-15.  
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Figure 7-15: Model 13 Empirical vs Mechanistic Empirical LCCA Results (Collector 

Roads)     

 

The arterial roads shown in Figure 7-16 have a reverse trend when compared to local and 

collector roads. As can be seen from the RCI deterioration models, the empirical model tends to 

under-estimate service life earlier than expected compared to M-E models, and accordingly, 

overestimates the present worth cost for the same alternative. For example, empirical models 

overestimated the cost for a full AC 100mm overlay strategy by an almost 11% difference. 
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Figure 7-16: Model 13 Empirical vs Mechanistic Empirical LCCA Results (Arterial Roads)     

 

7.5 OVERALL MODEL IMPACT COMPARISON 

Figure 7-17, Figure 7-18 and Figure 7-19 show the difference in net present worth cost for all 

possible condition presented in the case study. The percentage in cost difference was calculated 

using the following equation: 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (%)  = 𝑁𝑁𝑁𝑁𝑁𝑁 (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)−𝑁𝑁𝑁𝑁𝑁𝑁 (𝑀𝑀𝑀𝑀)
𝑁𝑁𝑁𝑁𝑁𝑁(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

…………………………………(Equation 7.1) 

Where: 
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 𝑁𝑁𝑁𝑁𝑁𝑁(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) is the total net present worth of the strategy over the analysis period using 

empirical deterioration models. 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑀𝑀𝑀𝑀) is the total net present worth of the strategy over the analysis period using mechanistic-

empirical deterioration models. 

Since the M-E deterioration models are more practical and realistic compared to traditional 

empirical models, they are used as the benchmark for comparison. In most cases, the empirical 

models tend to overestimate the net present worth cost compared to the newly developed M-E 

models. Only three conditions (Models 13 for collector, 14 and 18 for arterial) showed that NPW 

costs predicted using empirical models were less than NPW costs predicted using M-E models. The 

highest difference in cost estimates was noted in model 16 local, where the difference in estimate 

reached almost 27%. While a few models did not show any significant difference in cost estimates 

(0%), other models showed a reverse trend. The difference in cost estimates in non-critical models 

was relatively higher when compared to the difference in critical models. 

 

Figure 7-17: Estimated Cost difference by Condition for Local Roads    
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Figure 7-18: Estimated Cost difference by Condition for Collector Roads     

 

 

Figure 7-19: Estimated Cost difference by Condition for Arterial Roads     
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7.6 CONCLUSION 

This Chapter presented a decision support tool that was programmed on an excel platform to 

encapsulate the developed decision-making framework procedures. The tool incorporates the 

recommendations and analysis from the LCCA performed to provide the most cost-effective 

alternatives, with all flexibility needed to modify project properties such as project geometry, discount 

rate or adding new treatment for future work. The tool provides the user with alternatives based on 

both empirical models and M-E models. This tool is intended to be used as a high-level planning tool 

at the project level, and the final decision on construction strategy should be based on detailed 

engineering analysis and design. The make-up of final decisions for pavement structure needs 

should be assessed in light of load carrying capacity and drainage conditions. The following section 

will provide comparison between empirical model and M-E model impacts at the network level. 
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8.0 Comparison between Empirical and Mechanistic Empirical 

Models at Network Level Analysis 

8.1 INTRODUCTION 

Deterioration models are commonly used in PMSs to account for pavement decay over time. 

Within a PMS context, these models predict when a segment of the road reaches a condition that 

needs rehabilitation. The built-in decision trees, in addition to deterioration models, help select the 

most cost-effective treatment among different rehabilitation options, based on an expected service 

life to attain the best set of alternatives for the network. In order to validate the previously developed 

enhanced empirical models and the new M-E models at the network level, an evaluation through a 

full PMS implementation process is required. To achieve this goal, two budget scenarios were 

implemented at the network level of analysis. The first scenario was based on enhanced empirical 

models, while the other one employed the M-E models, and a comparison between the two 

strategies was conducted. Data collected from one of the cities in Southern Ontario was used as a 

case study to compare the two model-based scenarios and to demonstrate how both models can 

influence decision-making for future funding.  

Initially, a Micropover® application for PMS implementation was selected to implement such 

a comparison. However, the regression deterioration models built in Micropover® did not allow 

loading the developed models that were based on customized sigmoidal models. Therefore, 

RoadMatrix®, one of the most commonly used PMS software in the market, was selected to 

accomplish this task instead. RoadMatrix® is a comprehensive tool used by various municipalities 

across North America to create optimized asset management plans. It was designed specifically for 

municipal agencies to meet their decision-making needs in an efficient manner. It features a logical 

network inventory module to provide instant access to road data, and has the capability to view and 
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update information by street, district, or functional class. In addition, Roadmatrix® can store roadway 

geometry, traffic data, structural composition, work history, and right of way assets, including 

sidewalks. It accommodates multiple types of industry standard condition surveys and inspections, 

and captures roughness (IRI), pavement distress, rutting, and structural (FWD) data. The most 

powerful tool of the software is the budget analysis module that explores multiple scenarios and 

quickly investigates the current present status of the network, as well as how much spending is 

needed for the next programming period to reach a target service level. 

8.2 LOADING DETERIORATION MODELS INTO MUNICIPAL PAVEMENT 
MANAGEMENT SYSTEM 

Roadmatrix® stores data in an SQL server database format. Appendix I shows the SQL 

query scripts that were used to enter the developed empirical models and M-E models into the 

Roadmatrix® system. It should be noted that Roadmatrix® needs 50 years of data points for each 

model category in order to run the analysis. Since the models developed in this study had data for 

only 30 years, the value of year 30 was extended until year 50. However, a road section is typically 

not left for more than 30 years without maintenance.  

 

8.3 PAVEMENT MANAGEMENT SYSTEM IMPLEMENTATION: A CASE STUDY 

8.3.1 Overview 

Historical condition data for the city of London, Ontario was used to evaluate the developed 

models. The network used in the analysis consists of approximately 1,786 centerline kilometres of 

paved roads, of which 1,676 km (or 3,708 lane kilometres) are constructed as flexible pavement. It is 

important for transportation agencies to maintain and update road condition data on a regular basis. 

The advantages of continuously maintaining the pavement management program for municipalities 

and transportation agencies are: 
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 To collect the pavement performance data required to assess the current condition of the 

selected agency’s road network; 

 To estimate the future condition of the pavement network and to determine the rehabilitation 

requirements over the next programming period; 

 To identify feasible rehabilitation alternatives for each road section and, based on this 

information, assemble rehabilitation programs for various funding scenarios; and 

 To estimate the impact that these programs will have on the condition of the network over 

the next programming period. 

Ride comfort data was loaded into the RoadMatrix® and an analysis was conducted to determine 

the present status of all roads in terms of Pavement Quality Index (PQI). The analysis was 

accomplished using the software’s loaded empirical and mechanistic-empirical pavement 

deterioration model, as previously explained to estimate the rehabilitation requirements of the road 

network for a ten-year period, beginning in 2014. From these results, pavement rehabilitation 

programs were developed using a life cycle economic analysis to maintain the network performance 

at PQI = 65 condition, and to estimate the annual road rehabilitation budget needed to achieve this 

goal using the two model schemes. 

8.3.2 Network Sectioning 

Implementation of a pavement management system requires the pavement network to be 

divided into a series of homogeneous sections that share the same traffic pattern, pavement 

thickness, and subgrade condition for each functional class. This step is essential to allow the 

preloaded deterioration model to predict future conditions for sections having the same category, as 

classified by model classes. 
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8.3.3 RoadMatrix® Implementation and Analysis 

Since empirical models and M-E models were only developed for flexible pavement types, it 

was essential to create a subset of the entire network that accounts only for sections with flexible 

pavement type and only for local, collector, and arterial roads. Using the built-in query in 

RoadMatrix®, a subset that consisted of 1,676 centerline kilometres (or 3,708 lane kilometres) was 

generated. The progression of tasks associated with the RoadMatrix® implementation is depicted in 

Figure 8-1. 

             

Figure 8-1: Progression of Tasks for RoadMatrix Implementation 

8.3.4 Pavement Quality Index (PQI) 

The PQI provides an overall indication of the condition of a pavement with regard to present and 

future service to the user. Generally, the PQI is derived from other pavement condition indices such 

as the RCI, the SDI, and (Structural Adequacy Index) SAI. The PQI represents a combination of the 

sectional RCI, SAI, and SDI values. Each municipality uses its own unique formula to formulate PQI 

scores based on a different condition index collected by the agency and how frequent the annual 

TASK 2: AGGRIGATE FIELD DATA ON ENTIRE FLEXIBLE ROAD NETWORK 

TASK 4: RUN 10 YEARS BUDGET SCENARIOS BASED ON TWO MODELS STREAMS  

TASK 5:  ASSESS CURRENT CONDITION OF PAVEMENT NETWORK  

TASK 6: ESTIMATE FUTURE SPENDING OF PAVEMENT NETWORK 

TASK 7: IDENTIFY FEASIBLE REHABILITATION ALTERNATIVES AND DETERMINE TEN YEAR 
REHABILITATION NEEDS 

TASK 3: IDENTIFY DETERIORATION MODEL TO BE USED FOR PROGRAM IMPLEMENTATION  

TASK 1: DEFINE AND PREPARE FIELD SECTIONING OF ENTIRE PAVED ROAD NETWORK 
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condition data is available. For instance, if the agency only collected distress data (no structural or 

roughness data), then only SDI scores will be used to represent the overall pavement quality index 

(PQI). 

Since this case study is concerned about RCI models and the assessment of the newly developed 

mechanistic-empirical models, the PQI was modeled to have RCI scores (i.e., PQI = RCI). PQI 

scores therefore varied from 0 to 100, where 0 represented the poorest possible pavement condition 

and 100 represented the best possible pavement condition. 

8.3.5 Performance Prediction Modeling and Needs Analysis  

Needs analysis was calculated based on PQI scores. The PQI values of pavements typically 

decrease over time. In order to estimate the future rehabilitation requirements of a pavement 

network, it was necessary to model the deterioration of PQI values. When PQI is modeled to have 

RCI scores, PQI will consequently share the same factors that influenced RCI. The PQI deterioration 

models were therefore classified in the current implementation based on traffic loading patterns, the 

properties and thicknesses of the pavement structure layers, and the subgrade condition. This 

resulted in eighteen possible PQI classes for each functional class, as defined previously for RCI.  

8.3.6 Priority Programming Analysis 

An approach utilizing decision trees to identify feasible strategies was employed to 

implement a ten-year rehabilitation program that maximized the benefit of each dollar spent while 

considering the PQI quality constraints, as specified every year during the programming period. In 

addition, a life cycle economic analysis was used to assess the relative effectiveness of each 

strategy. The final result of this analysis was an improvement program stating which pavement 

sections are recommended for rehabilitation, the year in which rehabilitation should be implemented 

for each section, and the type of rehabilitation strategy recommended for each section. The 

rehabilitation analysis required the identification of possible rehabilitation strategies for each section 
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and their associated unit costs. Decision trees identified the appropriate strategies to be considered 

under a range of conditions.  

8.3.7 Budget Analysis 

The decision tree analysis determines the alternatives for rehabilitation purposes. Using 

these alternatives, the unit costs, and the deterioration prediction model, a life cycle economic 

analysis was used to implement rehabilitation strategies in a way that the benefits of capital 

expenditures were maximized while maintaining the overall network condition constraints specified 

for each year in the programming period. Because actual unit costs were unavailable, costs were 

assumed for different treatments. The objective of the study was to evaluate the impact on estimated 

budgets due to model change rather than produce actual budget estimates.  

Two separate 10-year rehabilitation programs were defined in the system to be used in the 

budget analysis: 

 Maintain network condition at PQI = 65 using empirical models 

 Maintain network condition at PQI = 65 using mechanistic-empirical models 

During the various program implementation runs, a rehabilitation project for a section can be 

executed in its needed year or any time thereafter, depending on its cost effectiveness relative to 

other potential projects and on the available budget to maintain network condition PQI = 65. An 

inflation rate of 3% was assumed throughout the entire analysis. 

8.3.8 Analysis Results 

The following sections discuss the present status of the road network. Present status 

analyses were performed using the subset of “Flexible-All”, which includes approximately 1,676 

centerline kilometres (or 3,708 lane kilometres) of flexible roads only. This subset has been used for 

all subsequent analysis and comparison. 
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8.3.8.1 Present Status: Riding Comfort Index (RCI) Analysis 

Figure 8-2 shows the present distribution of RCI values, weighted by lane kilometres. The 

analysis network has a mean RCI of 63.4. As can be seen, the majority of the network falls between 

RCI = 50 and RCI = 80. The results indicate that more than 38% of the road network (weighted by 

lane kilometres) exhibits acceptable ride characteristics above 80, while a small portion 

(approximately 4% of the road sections) have poor ride quality (RCI below 40), based on the most 

recent roughness data collected. It should be noted that the total length shown is Figure 8-3 is the 

length of the lanes in km, which is the centerline length of each road multiplied by its existing number 

of lanes. 

 

Figure 8-2: RCI Network Present Status Distribution     

8.3.8.2 Present Status: Pavement Quality Index (PQI) Analysis 

Each functional classification has been assigned a minimum acceptable PQI trigger value in 

the RoadMatrix® decision trees. This trigger value was used to determine the time when a particular 

road section in a given functional class group requires some form of preventative rehabilitation. 

Since PQI is assigned to be equal to RCI, the trigger values for RCI were used for PQI scores to 

determine the rehabilitation alternatives. For each road functional class, Table 8-1 shows the 
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average PQI and the total lane kilometres that are at or below the minimum acceptable PQI value, 

based on the most recent data collected. 

Table 8-1: Summary of PQI Distribution and Deficiencies by Functional Class 

 
 

 

8.3.9 Improvement Needs Analysis 

The year in which the PQI of a section is equal to or below the minimum acceptable PQI 

level is defined as the Need Year of that section. The Need Year distribution for the pavement 

network is presented in Figure 8-3 using empirical and M-E models, respectively. Using the empirical 

models shown in Figure 8-3, the distribution shows that 1,278 lane kilometres, or approximately 

34.5% of the network, was in need of rehabilitation in 2014. In subsequent years, through the end of 

the 10-year analysis period in 2023, the network needs range from about 8% to 11% annually. 

Overall, approximately 4,289 km of the analysis network has been identified as expecting to require 

some form of rehabilitation during the upcoming ten-year analysis period. 

Using the mechanistic-empirical models shown in Figure 8-3, the distribution shows that only 

1,039 lane kilometres, or approximately 28% of the network, was in need of rehabilitation in 2014. In 

subsequent years, through the end of the 10-year analysis period in 2023, the network needs range 

from about 5% to 7% annually. Overall, approximately 2,931 km of the analysis network has been 

identified as expecting to require some form of rehabilitation during the upcoming ten-year analysis 

period.   

FUNCTIONAL 
CLASS 

AVG 
PQI MIN PQI SECTIONS LANE-KM 

Arterials 68 60 1,437 1,311 
Collectors 65 55 2101 650 

Local Streets 62 50 4,943 1,747 

NETWORK TOTAL   8,481 3,708 
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The previous results illustrate that both models showed the entire network needs some form 

of rehabilitation in the next ten years, but with different needs distributions over the ten-year 

programming period. This analysis indicates that empirical models overestimate the number of 

sections in need of rehabilitation, especially in the first year, compared to mechanistic empirical 

models, which means more spending to improve network conditions when empirical models are 

used in the analysis. Figure 8-4 to Figure 8-6 show the breakdown of the annual network distribution 

needs for each functional class. This analysis shows that local roads will receive most of the 

rehabilitation activities in the first year of analysis period using either empirical or mechanistic-

empirical models, which represents 17% or 11% of total network respectively. 

 

Figure 8-3: Need Year Distribution using Empirical vs. ME Models 
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Figure 8-4: Need Year Distribution using Empirical vs. ME Models (Local) 

 

Figure 8-5: Need Year Distribution using Empirical vs. ME Models (Collector) 
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Figure 8-6: Need Year Distribution using Empirical vs. ME Models (Arterial) 

 

8.3.10 Priority Programming Analysis 

The Priority Programming Analysis was conducted using two different budget scenarios. The budget 

streams were defined as follows: 

 Maintain Network Condition PQI = 65 using empirical models 

 Maintain Network Condition PQI = 65 using mechanistic-empirical models 

 

8.3.11 Network Performance 

Using empirical models, as shown in Figure 8-7, the network average PQI (Budget-Driven) 

over the program period is 65. At the end of the program, the network PQI is 65 with 16.3% of the 

pavement network falling below the minimum acceptable PQI. If each section in the network subset 

had been rehabilitated in its needed year (Need-Driven), the network average PQI would be 69.4. In 
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this case, at the end of the program, the network PQI would be 67.6 with no section (0%) falling 

below the minimum acceptable PQI. The total required budget is $679,586,194. If no rehabilitation is 

performed on the pavement network (Do-Nothing) targeted by this budget, the network is expected 

to have an average PQI of 50.2. In this case, at the end of the program, the network PQI would drop 

to 42 with 92.2% of sections falling below the minimum acceptable PQI.  

On the other hand, when mechanistic empirical models are used, as shown in Figure 8-8, the 

network average PQI (Budget-Driven) over the program period is 65. At the end of the program, the 

network PQI is still 65, with 11.8% of the pavement network falling below the minimum acceptable 

PQI. If each section in the network subset had been rehabilitated in its needed year (Need-Driven), 

the network average PQI would be 68.2. In this case, at the end of the program, the network PQI 

would be 65.8 with 0% falling below the minimum acceptable PQI. The total required budget is 

$463,309,948. If no rehabilitation is performed to the pavement network (Do-Nothing) targeted by 

this budget, the network is expected to have an average PQI of 55.4. In this case, at the end of the 

program, the network PQI would drop to 49.9 with 68.1% of sections falling below the minimum 

acceptable PQI. 
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Figure 8-7: PQI Network Performance using Empirical Models     

 

Figure 8-8: PQI Network Performance using Mechanistic-Empirical Models     
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8.4 COMPARISON OF BOTH BUDGET SCENARIOS 

The difference between the two budget scenarios are summarized in Figure 8-9 by functional 

class, in which the network average PQI was calculated throughout each 10-year program period, 

assuming that the selected rehabilitation strategies had been implemented each year. In each 

scenario, the budget was optimized for different rehabilitation options in order to maintain the overall 

PQI network at 65 each year. The percentage of saving or expense was calculated at each year 

using the following fomula: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (%) 𝑎𝑎𝑎𝑎 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (𝑖𝑖 )  = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)−𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (𝑀𝑀𝑀𝑀)
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

………………… (Equation 8.1) 

Where: 

 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) is the total expected budget to spend at 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (𝑖𝑖) using empirical deterioration 

models. 

 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑀𝑀𝑀𝑀) is the total expected budget to spend at 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (𝑖𝑖) using mechanistic-empirical 

deterioration models. 

Even though both budgets were implemented with the same goal of keeping the network at 

the same condition and for the same subset sections of the network, it was evident that using the 

newly developed M-E models helped save money and more accurately predict future spending. This 

is depicted in Figure 8-9, which illustrates differences in spending differences between the two 

model schemes. With the exception of years 2016 and 2019 budgets for collector roads, the use of 

ME models introduced savings to transportation agencies compared to empirical models. The 

percentage of saving for local roads was noted to be higher rate in first years of analysis period 

when most of the budget is consumed compared to last few years of the analysis period. In the first 

year, it was noted that a relatively higher budget was spent when empirical models were used to 

bring the network to acceptable levels than that spent when mechanistic empirical models were 

used, with the budget stabilized during the following year. This was expected since empirical models 
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showed a greater declining rate of deterioration overall in the first few years compared to those 

predicted by M-E models. However, the current analysis helped quantify the difference in dollars 

between the two models’ utilization.  

These results demonstrated how prediction models play an important role in predicting future 

expenditure for municipal and transportation agencies. It also shows how M-E models supersede 

traditional empirical models in predicting pavement performance and may introduce savings to the 

public in some cases. It is important to note that M-E models will not always present budget savings 

to transportation agencies, as demonstrated in the current case study. Instead, it will present more 

realistic spending estimates based on more factual prediction models. The analysis demonstrates 

how important is to use deterioration models that truly represent the real condition of the overall 

network, and how to accurately predict future pavement performance as shown when mechanistic 

empirical models were used in the current case study. This will definitely assist transportation 

agencies to accurately predict their future funding and network needs.  

  

Figure 8-9: Empirical vs. Mechanistic-Empirical Yearly Budget Spending 
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8.5 SUMMARY  

This Chapter summarized the comparison between the two types of models at the network 

level of analysis. Two budget scenarios to maintain network condition at an overall score of 

pavement quality index 65 were implemented, based on the two model streams. Comparison 

between the two budget expenditures demonstrated that budget scenarios were sensitive to the 

models used to aggregate rehabilitation strategies at each road section. The comparison illustrated 

how crucial it is to use realistic models during budgeting and planning for future expenditure.   
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9.0 Conclusions, Research Contributions and Recommendations 

for Future Research 

9.1 INTRODUCTION 

Performance prediction models are essential components in any efficient pavement 

management system. Accurately predicting pavement performance over time is crucial for better 

planning and budgeting of future maintenance and/or rehabilitation activities. Recently, with the 

evolution in pavement data collection technology, transportation agencies have started to collect 

performance data on a regular basis and at more frequent cycles. However, most of these agencies, 

especially at the municipal level, only collect data for present pavement condition evaluation, while 

limited effort has been made to use performance data collected over previous years. Even with the 

presence of performance data, transportation agencies are faced with the dilemma of limited 

construction activity data essential to developing realistic performance models.  

The current research developed new enhanced empirical models using the performance 

data already collected and stored in various municipal PMSs. The proposed enhanced models are 

innovative in their ability to employ engineering judgment in the absence of historical 

construction/maintenance data to develop more realistic and practical deterioration models. A linear 

programming optimization technique was employed to fit the sigmoidal model and to minimize 

discrepancies between the measured and predicted data. The models were developed for two types 

of pavement performance indices: the Ride Comfort Index (RCI) and the Surface Distress Index 

(SDI). RCI is derived from the International Roughness Index (IRI), which represents the traveling 
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public’s opinion of the smoothness of the road and hence, the quality of service and comfort 

provided by a pavement.  

On the other hand, the SDI has been derived from different measured distresses that are 

rated later, based on their severity and their extent, to determine a final SDI score for homogenous 

sections across the agency’s network. Historical data were categorized based on the design of 

experiment (DOE) that accounts for different parameters found to highly impact pavement 

performance. Traffic pattern, subgrade condition, and pavement thickness were identified through 

literature review to be the most significant parameters greatly influencing such performance. 

Accordingly, models were developed for different category combinations in the DOE.   

Condition data collected from cities in Western Canada, such as Burnaby and Nanaimo in 

British Columbia, was used to develop enhanced empirical models for the western region that were 

later compared to the ones developed for Eastern Canada, in order to evaluate the impact of 

regional and environmental changes on pavement performance. The comparison showed 

performance variations in both regions, which suggested that regional and climatic changes have a 

significant impact on performance. The models developed for the western region provide preliminary 

models that can be used currently by different municipalities that share similar environmental 

conditions. These models can be further enhanced using local and site-specific data. 

Recent changes in pavement design practices from an empirical design approach to a 

mechanistic-empirical design have driven many transportation practitioners to evaluate pavement 

designs based on M-E principles. The mechanistic-empirical design guide (MEPDG) program was 

initially implemented to provide engineers with a tool to design pavement based on M-E concepts. It 

was followed by the final product M-E AASHTOWare® program. Several studies were carried out to 

compare designs based on both traditional empirical and new M-E concepts. However, no efforts 

were made to investigate the application of the performance models incorporated within the MEPDG 

154 



to pavement management system implementation. The use of M-E models derived from 

fundamental engineering properties and mechanistic theory is expected to provide more realistic 

models when compared to empirical models. 

This research developed a second set of performance deterioration models based on M-E 

principles. In order to develop such models, MEPDG needs to first be locally calibrated to site-

specific conditions. Different sections were therefore selected for calibration to sites in Ontario. The 

data required to execute MEPDG pavement design was extracted from different municipal pavement 

management systems. Measured roughness data extracted from PMSs was used to locally calibrate 

the selected sites. Traditional calibration techniques using the “trial and error” approach are found to 

be time consuming and lack the driving mechanism necessary to guide the search to achieve the 

optimum calibration coefficients that converge the predicted IRI to the measured value. Therefore, 

an MEPDG engine was developed to automate the calibration process. The engine uses send key 

commands to open the MEPDG program, to modify calibration coefficients, to run the analysis, to 

close the program, to read the MEPDG output files, and finally to store the results in the database. 

The advantage of automating the MEPDG calibration process gives transportation experts and 

pavement researchers the opportunity to employ different optimization techniques, which was not 

possible using traditional calibration approaches.  

The linear programming optimization technique built in the Excel Solver was initially used to 

solve the optimization problem. However, it was found that the Solver conflicted with the MEPDG 

outputs that were using Excel as an output platform. Genetic Algorithm (GA) optimization technique 

was found to be more suitable for the calibration problem. A GA routine was coded to use the four 

roughness calibration coefficients as the genes for GA chromosomes. The process was repeated for 

each class combination to find the optimum calibration coefficients. The predicted roughness 

resulted from the GA showed promising results when compared to measured roughness, which 

suggested that GA is a suitable tool for MEPDG local calibration problems. 
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The developed models in this study were validated at both the project and network level of 

analysis. At the project level, a decision-making framework was established to provide a realistic tool 

for municipal engineers to compare different rehabilitation alternatives based on both empirical and 

M-E models. The tool provides a comprehensive life cycle cost analysis for different alternatives 

based on the different models’ schemes. In order to further verify the models, a case study was used 

for one of the cities in Southern Ontario to implement two budget scenarios at the network level of 

analysis. The objective was to maintain network conditions at a performance index of 65, using the 

two model schemes. The budget analysis results demonstrated how the migration from empirical 

models to M-E models impacted budget needs during the analysis period. 

9.2 RESEARCH CONTRIBUTIONS 

Based on current developments, this research makes the following contributions: 

 Deterioration Model Development for Municipalities in Canada:  

The literature review showed that no deterioration models have been developed for 

municipalities. Most of the research and industry efforts were devoted to model development 

solely for large-scale agencies such as federal or provincial roads. In addition, it has been 

observed that the majority of municipal agencies currently use old and outdated models that 

are based on limited historical data. Some municipalities use models that have been 

developed for nearby large agencies, which may not reflect the current condition of their own 

network. This research is unique in its approach as the first attempt to use local historical 

data stored in different municipal pavement management systems to develop performance 

models that are more representative of the network condition. The developed performance 

models address various parameters that are commonly known to influence pavement 

performance.  

 Development of Enhanced Empirical Models:  
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The current research employs linear programming optimization techniques to fit measured 

data into a sigmoidal model. The flexibility of sigmoidal models and the presence of three 

model parameters (a, b, and c) allows the application of the selected optimization technique 

to find the optimum prediction model that minimizes the discrepancy between the predicted 

and measured data. 

 Incorporation of Expert Knowledge in Deterioration Models Development:  

The current research presents a methodology to overcome the lack of historical construction 

and maintenance data needed to develop the performance model. The optimization process 

is constrained by the pavement service life, as obtained from pavement engineers, and is 

incorporated into the model. These constraints are flexible in their nature and can be 

customized to reflect other conditions based on the knowledge collected in cases under 

investigation.  

 Better Understanding of Different Pavement Performance in Eastern and Western 

Canada Regions:  

The current research provides enhanced prediction models for Western Canada compared 

to those developed for Eastern Canada. Comparison between both models for each 

performance index reveals variation in pavement performances. Comparison at each class 

helps understand the behaviour of pavement performance and identify terminal service life 

for the two regions. The use of more historical data in the western region will enhance the 

model developed in this study. 

 Deterioration Model Development based on Mechanistic-Empirical Concepts:  
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The current research develops new performance deterioration models that are based on M-E 

concepts. These models are presumably more representative of pavement performance 

compared to traditional models based on empirical concepts.   

 Automation of the Mechanistic-Empirical Calibration Process:  

The current research provides an innovative approach to the M-E model calibration process. 

Moving away from traditional techniques that are based mainly on “trial and error” 

approaches, this research provides a methodology to fully automate the calibration process 

and thus provide an opportunity for pavement engineers and experts to explore the 

application of different optimization techniques to the M-E calibration problem, which is not 

possible using a traditional approach.  

 Development of a Decision-making Framework for Project Level Analysis based on 

Empirical and M-E Models:  

The current research introduces a decision-making support tool at the project level of 

analysis. The incorporation of empirical models and M-E models in the decision-making tool 

allows pavement engineers and decision makers to explore different rehabilitation options 

based on the two model concepts. The selection of any alternative depends on the accuracy 

of the initial data used in developing the models.  

 Investigation of the Impact of Changing Deterioration Models at the Network Level of 

Analysis:  

This research evaluates the impact of changing the deterioration models on program 

planning and budget analysis at the network level of analysis. It has been demonstrated that 

transition from empirical model-based budgets to M-E models can lead to savings, as has 

been shown in the presented case study. While budget savings might not always be the 

158 



case, it is expected that the use of a well-calibrated M-E model will produce realistic models 

that truly represent the actual performance of pavement behaviour over time. 

 

9.3 FUTURE RESEARCH 

 The surface distress index (SDI) presented in this study is aggregated from various 

measured distresses, some of which are not currently presented in the MEPDG. Therefore, 

no M-E models have been developed for SDI in this study. The introduction of a new surface 

distress index that is aggregated from only those distresses that are present in MEPDG will 

facilitate the development of SDI models based on M-E concepts. A correlation between a 

customized SDI index based on distresses presented in MEPDG and the SDI based on all 

distresses would also lead to the development of SDI models based on M-E concepts. 

 Correlation between the developed M-E models and existing empirical models can be 

developed to provide a methodology for DOT agencies to easily convert their exiting PMS 

models into ones based on M-E concepts. 

 The current study only uses data collected for flexible pavement. Similar approaches and 

concepts as those adopted in this study should be expanded to include rigid pavement. 

 This research attempts to use linear programming techniques and employs the genetic 

algorithm to determine the best M-E calibration coefficients. The automation of the calibration 

process presented herein provides an opportunity to employ other optimization techniques to 

the calibration process. In addition, the use of more site-specific data in the current GA 

calibration process, fine-tuning of the current GA optimization procedure (e.g., increases in 

the number of chromosomes or population), and investigation of other optimization 

techniques may produce more accurate calibration coefficients.   
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 The availability of more pavement condition data for other regions across Canada and North 

America will facilitate the further development of realistic models. In addition, the current 

collected data can be further broken down into different sets based on regional municipality 

to develop models that are more site-specific to the agency.  
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Appendix I 

EMPIRICAL MODELS SQL SCRIPTS FOR ROADMATRIX  

INSERT INTO model_pred 
               (pave_code, crvno, fdesc, notes, y01, y02, y03, y04, y05, y06, y07, y08, y09, 
y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, 
y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, y43, y44, y45, 
y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 1, '1-Thin/Low/Strong (E)', 'NULL', 100, 99.5, 97.7, 94.9, 91.4, 87.7, 84, 
80.4, 76.8, 73.5,70.3, 67.4, 64.6, 61.9, 59.4, 57.1, 54.8, 52.7, 50.8, 48.9, 47.1, 45.4, 
43.8, 42.3, 40.8, 39.5, 38.1, 36.9, 35.7, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 
34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, evr_code) 
VALUES (10, 2, '2-Thin/Medium/Strong (E)', 'NULL', 100, 99.6, 97.8, 94.9, 91.1, 87, 
82.8, 78.5, 74.4, 70.5, 66.7, 63.1, 59.6, 56.4, 53.3, 50.4, 47.6, 45, 42.5, 40.2, 37.9, 35.8, 
33.8, 31.8, 30, 28.2, 26.5, 24.9, 23.3, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 
21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 3, '3-Thin/High/Strong (E)', 'NULL', 100, 99.6, 98.2, 95.9, 92.9, 89.6, 86.2, 
82.9, 79.6, 76.5, 73.5, 70.7, 68, 65.5, 63.1, 60.8, 58.7, 56.6, 54.7, 52.9, 51.1, 49.5, 47.9, 
46.4, 45, 43.6, 42.3, 41, 39.8, 38.7, 38.7, 38.7, 38.7, 38.7, 38.7, 38.7, 38.7, 38.7, 38.7, 
38.7, 38.7, 38.7, 38.7, 38.7, 38.7, 38.7, 38.7, 38.7, 38.7, 38.7, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24,  
                                  y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, 
y38, y39, y40, y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 4, '4-Thin/Low/Weak (E)', 'NULL', 98.8, 93.2, 86.7, 80.8, 75.7, 71.3, 67.5, 
64.2, 61.4, 58.8, 56.6, 54.6, 52.7, 51.1, 49.6, 48.2, 46.9, 45.7, 44.6, 43.6, 42.7, 41.8, 41, 
40.2, 39.4, 38.8, 38.1, 37.5, 36.9, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 
36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 1) 
                   INSERT  
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                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 5, '5-Thin/Medium/Weak (E)', 'NULL', 97.3, 88.7, 80.4, 73.5, 67.9, 63.2, 
59.3, 56, 53.2, 50.7, 48.5, 46.5, 44.8, 43.2, 41.8, 40.5, 39.3, 38.2, 37.2, 36.3, 35.4, 34.6, 
33.9, 33.2, 32.5, 31.9, 31.3, 30.8, 30.2, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 
29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 6, '6-Thin/High/Weak (E)', 'NULL', 99.7, 96.6, 91.6, 86.1, 81, 76.3, 72.1, 
68.3, 64.9, 61.8, 59.1, 56.6, 54.3, 52.2, 50.3, 48.5, 46.9, 45.4, 44, 42.7, 41.4, 40.3, 39.2, 
38.2, 37.2, 36.3, 35.4, 34.6, 33.8, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 
33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 7, '7-Medium/Low/Strong (E)', 'NULL', 100, 99.7, 98.4, 96.2, 93.4, 90.2, 
87, 83.8, 80.7, 77.7, 74.8, 72, 69.5, 67, 64.7, 62.5, 60.4, 58.4, 56.6, 54.8, 53.1, 51.5, 50, 
48.5, 47.1, 45.8, 44.5, 43.3, 42.1, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 
41, 41, 41, 41, 41, 41, 41, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24 
y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, 
y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 8, '8-Medium/Medium/Strong (E)', 'NULL', 100, 99.8, 99, 97.5, 95.4, 92.9, 
90.3, 87.6, 85, 82.4, 79.8, 77.4, 75.1, 72.8, 70.7, 68.7, 66.7, 64.9, 63.1, 61.5, 59.9, 58.3, 
56.9, 55.5, 54.1, 52.8, 51.6, 50.4, 49.3, 48.2, 48.2, 48.2, 48.2, 48.2, 48.2, 48.2, 48.2, 
48.2, 48.2, 48.2, 48.2, 48.2, 48.2, 48.2, 48.2, 48.2, 48.2, 48.2, 48.2, 48.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 9, '9-Medium/High/Strong (E)', 'NULL', 100, 99.5, 97.6, 94.6, 91, 87, 83, 
79.1, 75.3, 71.7, 68.3, 65.1, 62, 59.2, 56.5, 53.9, 51.5, 49.2, 47.1, 45, 43.1, 41.3, 39.5, 
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37.8, 36.3, 34.7, 33.3, 31.9, 30.6, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 
29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 10, '10-Medium/Low/Weak (E)', 'NULL', 100, 99.6, 97.9, 95.1, 91.6, 87.7, 
83.8, 79.8, 76, 72.4, 68.9, 65.6, 62.5, 59.6, 56.8, 54.2, 51.8, 49.4, 47.2, 45.1, 43.1, 41.2, 
39.4, 37.7, 36, 34.5, 33, 31.5, 30.2, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 
28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 11, '11-Medium/Medium/Weak (E)', 'NULL', 99.7, 96.7, 91.7, 86.3, 81, 
76.2, 71.9, 67.9, 64.4, 61.2, 58.3, 55.7, 53.3, 51.1, 49.1, 47.2, 45.5, 43.9, 42.3, 40.9, 
39.6, 38.4, 37.2, 36.1, 35.1, 34.1, 33.2, 32.3, 31.4, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 
30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 12, '12-Medium/High/Weak (E)', 'NULL', 99.5, 95.5, 89.4, 83.2, 77.3, 72.1, 
67.4, 63.3, 59.6, 56.3, 53.3, 50.6, 48.2, 45.9, 43.9, 42, 40.2, 38.6, 37.1, 35.7, 34.4, 33.2, 
32, 31, 29.9,  
               29, 28.1, 27.2, 26.4, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 
25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 13, '13-Thick/Low/Strong (E)', 'NULL', 100, 99.7, 98.2, 95.8, 92.8, 89.4, 
85.9, 82.5, 79.2, 76, 73, 70.1, 67.4, 64.9, 62.5, 60.2, 58, 56, 54.1, 52.3, 50.6, 48.9, 47.4, 
45.9, 44.5, 43.1, 41.8, 40.6, 39.4, 38.3, 38.3, 38.3, 38.3, 38.3, 38.3, 38.3, 38.3, 38.3, 
38.3, 38.3, 38.3, 38.3, 38.3, 38.3, 38.3, 38.3, 38.3, 38.3, 38.3, 38.3, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
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VALUES (10, 14, '14-Thick/Medium/Strong (E)', 'NULL', 100, 99.8, 98.9, 97.1, 94.5, 
91.6, 88.5, 85.3, 82.2, 79.1, 76.1, 73.2, 70.5, 67.9, 65.4, 63.1, 60.8, 58.7, 56.7, 54.7, 
52.9, 51.1, 49.5, 47.9, 46.3, 44.9, 43.5, 42.1, 40.8, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 
39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 15, '15-Thick/High/Strong (E)', 'NULL', 100, 99.7, 98.5, 96.3, 93.4, 90.2, 
86.8, 83.4, 80, 76.8, 73.7, 70.7, 67.8, 65.1, 62.5, 60.1, 57.8, 55.6, 53.5, 51.5, 49.6, 47.7, 
46, 44.4, 42.8, 41.3, 39.8, 38.4, 37.1, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 
35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 16, '16-Thick/Low/Weak (E)', 'NULL', 100, 99.6, 98.1, 95.5, 92.2, 88.6, 
84.8, 81.1, 77.5, 74, 70.6, 67.4, 64.4, 61.6, 58.8, 56.3, 53.9, 51.6, 49.4, 47.3, 45.4, 43.5, 
41.7, 40, 38.4, 36.8, 35.4, 33.9, 32.6, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 
31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 17, '17-Thick/Medium/Weak (E)', 'NULL', 100, 99.6, 97.9, 95.1, 91.6, 87.8, 
83.8, 79.9, 76.1, 72.5, 69, 65.7, 62.6, 59.7, 56.9, 54.3, 51.8, 49.5, 47.3, 45.2, 43.2, 41.3, 
39.5, 37.8, 36.1, 34.6, 33.1, 31.7, 30.3, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 
29, 29, 29, 29, 29, 29, 29, 29, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (10, 18, '18-Thick/High/Weak (E)', 'NULL', 99.9, 98.6, 95.1, 90.6, 85.7, 80.8, 
76.1, 71.7, 67.6, 63.8, 60.3, 57.1, 54, 51.2, 48.6, 46.2, 43.9, 41.8, 39.8, 37.9, 36.1, 34.4, 
32.8, 31.3, 29.9, 28.5, 27.2, 26, 24.8, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 
23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
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y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 1, '1-Thin/Low/Strong (E)', 'NULL', 100, 99.5, 97.7, 94.9, 91.4, 87.7, 84, 
80.4, 76.8, 73.5, 70.3, 67.4, 64.6, 61.9, 59.4, 57.1, 54.8, 52.7, 50.8, 48.9, 47.1, 45.4, 
43.8, 42.3, 40.8, 39.5, 38.1, 36.9, 35.7, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 
34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 2, '2-Thin/Medium/Strong (E)', 'NULL', 100, 99.6, 97.8, 94.9, 91.1, 87, 
82.8, 78.5, 74.4, 70.5, 66.7, 63.1, 59.6, 56.4, 53.3, 50.4, 47.6, 45, 42.5, 40.2, 37.9, 35.8, 
33.8, 31.8, 30, 28.2, 26.5, 24.9, 23.3, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 
21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 3, '3-Thin/High/Strong (E)', 'NULL', 100, 99.8, 98.9, 97.3, 95.1, 92.8, 90.2, 
87.7, 85.3, 82.9, 80.6, 78.4, 76.3, 74.3, 72.5, 70.7, 69, 67.4, 65.9, 64.4, 63, 61.7, 60.5, 
59.3, 58.1, 57.1, 56, 55, 54, 53.1, 53.1, 53.1, 53.1, 53.1, 53.1, 53.1, 53.1, 53.1, 53.1, 
53.1, 53.1, 53.1, 53.1, 53.1, 53.1, 53.1, 53.1, 53.1, 53.1, 53.1, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 4, '4-Thin/Low/Weak (E)', 'NULL', 98.8, 93.2, 86.7, 80.8, 75.7, 71.3, 67.5, 
64.2, 61.4, 58.8, 56.6, 54.6, 52.7, 51.1, 49.6, 48.2, 46.9, 45.7, 44.6, 43.6, 42.7, 41.8, 41, 
40.2, 39.4,  
               38.8, 38.1, 37.5, 36.9, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 
36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 5, '5-Thin/Medium/Weak (E)', 'NULL', 97.3, 88.7, 80.4, 73.5, 67.9, 63.2, 
59.3, 56, 53.2, 50.7, 48.5, 46.5, 44.8, 43.2, 41.8, 40.5, 39.3, 38.2, 37.2, 36.3, 35.4, 34.6, 
33.9, 33.2, 32.5, 31.9, 31.3, 30.8, 30.2, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 
29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 1) 
                   INSERT  
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                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 6, '6-Thin/High/Weak (E)', 'NULL', 99.3, 94.8, 88.8, 83.1, 78, 73.6, 69.7, 
66.4, 63.4, 60.7, 58.4, 56.3, 54.3, 52.6, 51, 49.5, 48.2, 47, 45.8, 44.7, 43.8, 42.8, 41.9, 
41.1, 40.3, 39.6, 38.9, 38.3, 37.7, 37.1, 37.1, 37.1, 37.1, 37.1, 37.1, 37.1, 37.1, 37.1, 
37.1, 37.1, 37.1, 37.1, 37.1, 37.1, 37.1, 37.1, 37.1, 37.1, 37.1, 37.1, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 7, '7-Medium/Low/Strong (E)', 'NULL', 100, 99.7, 98.4, 96.2, 93.4, 90.2, 
87, 83.8, 80.7, 77.7, 74.8, 72, 69.5, 67, 64.7, 62.5, 60.4, 58.4, 56.6, 54.8, 53.1, 51.5, 50, 
48.5, 47.1, 45.8, 44.5, 43.3, 42.1, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 
41, 41, 41, 41, 41, 41, 41, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 8, '8-Medium/Medium/Strong (E)', 'NULL', 100, 99.8, 98.7, 96.8, 94.4, 
91.7, 88.8, 86, 83.2, 80.5, 77.9, 75.5, 73.1, 70.9, 68.8, 66.7, 64.8, 63, 61.3, 59.7, 58.1, 
56.6, 55.2, 53.9, 52.6, 51.3, 50.2, 49, 47.9, 46.9, 46.9, 46.9, 46.9, 46.9, 46.9, 46.9, 46.9, 
46.9, 46.9, 46.9, 46.9, 46.9, 46.9, 46.9, 46.9, 46.9, 46.9, 46.9, 46.9, 46.9, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 9, '9-Medium/High/Strong (E)', 'NULL', 100, 99.5, 97.6, 94.6, 91, 87, 83, 
79.1, 75.3, 71.7, 68.3, 65.1, 62, 59.2, 56.5, 53.9, 51.5, 49.2, 47.1, 45, 43.1, 41.3, 39.5, 
37.8, 36.3, 34.7, 33.3, 31.9, 30.6, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 
29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 10, '10-Medium/Low/Weak (E)', 'NULL', 100, 99.6, 97.9, 95.1, 91.6, 87.7, 
83.8, 79.8, 76, 72.4, 68.9, 65.6, 62.5, 59.6, 56.8, 54.2, 51.8, 49.4, 47.2, 45.1, 43.1, 41.2, 
39.4, 37.7, 36, 34.5, 33, 31.5, 30.2, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 
28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 1) 
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                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 11, '11-Medium/Medium/Weak (E)', 'NULL', 99.7, 96.7, 91.7, 86.3, 81, 
76.2, 71.9, 67.9, 64.4, 61.2, 58.3, 55.7, 53.3, 51.1, 49.1, 47.2, 45.5, 43.9, 42.3, 40.9, 
39.6, 38.4, 37.2, 36.1, 35.1, 34.1, 33.2, 32.3, 31.4, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 
30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 12, '12-Medium/High/Weak (E)', 'NULL', 99.5, 95.5, 89.4, 83.2, 77.3, 72.1, 
67.4, 63.3, 59.6, 56.3, 53.3, 50.6, 48.2, 45.9, 43.9, 42, 40.2, 38.6, 37.1, 35.7, 34.4, 33.2, 
32, 31, 29.9, 29, 28.1, 27.2, 26.4, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 
25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 13, '13-Thick/Low/Strong (E)', 'NULL', 100, 99.9, 99.5, 98.4, 96.9, 95.1, 
93, 90.8, 88.6, 86.3, 84.1, 82, 79.9, 77.9, 75.9, 74, 72.2, 70.5, 68.9, 67.3, 65.8, 64.3, 
62.9, 61.5, 60.2, 59, 57.8, 56.6, 55.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 
54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 54.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 14, '14-Thick/Medium/Strong (E)', 'NULL', 100, 99.8, 98.9, 97.1, 94.5, 
91.6, 88.5, 85.3, 82.2, 79.1, 76.1, 73.2, 70.5, 67.9, 65.4, 63.1, 60.8, 58.7, 56.7, 54.7, 
52.9, 51.1, 49.5, 47.9, 46.3, 44.9, 43.5, 42.1, 40.8, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 
39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 15, '15-Thick/High/Strong (E)', 'NULL', 100, 99.7, 98.5, 96.3, 93.4, 90.2, 
86.8, 83.4, 80, 76.8, 73.7, 70.7, 67.8, 65.1, 62.5, 60.1, 57.8, 55.6, 53.5, 51.5, 49.6, 47.7, 
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46, 44.4, 42.8, 41.3, 39.8, 38.4, 37.1, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 
35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 16, '16-Thick/Low/Weak (E)', 'NULL', 100, 99.6, 98.1, 95.5, 92.2, 88.6, 
84.8, 81.1, 77.5, 74, 70.6, 67.4, 64.4, 61.6, 58.8, 56.3, 53.9, 51.6, 49.4, 47.3, 45.4, 43.5, 
41.7, 40, 38.4, 36.8, 35.4, 33.9, 32.6, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 
31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 17, '17-Thick/Medium/Weak (E)', 'NULL', 100, 99.6, 97.9, 95.1, 91.6, 87.8, 
83.8, 79.9, 76.1, 72.5, 69, 65.7, 62.6, 59.7, 56.9, 54.3, 51.8, 49.5, 47.3, 45.2, 43.2, 41.3, 
39.5, 37.8, 36.1, 34.6, 33.1, 31.7, 30.3, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 
29, 29, 29, 29, 29, 29, 29, 29, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (11, 18, '18-Thick/High/Weak (E)', 'NULL', 99.9, 98.6, 95.1, 90.6, 85.7, 80.8, 
76.1, 71.7, 67.6, 63.8, 60.3, 57.1, 54, 51.2, 48.6, 46.2, 43.9, 41.8, 39.8, 37.9, 36.1, 34.4, 
32.8, 31.3, 29.9, 28.5, 27.2, 26, 24.8, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 
23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 1, '1-Thin/Low/Strong (E)', 'NULL', 100, 99.5, 97.7, 94.9, 91.4, 87.7, 84, 
80.4, 76.8, 73.5, 70.3, 67.4, 64.6, 61.9, 59.4, 57.1, 54.8, 52.7, 50.8, 48.9, 47.1, 45.4, 
43.8, 42.3, 40.8, 39.5, 38.1, 36.9, 35.7, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 
34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
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VALUES (12, 2, '2-Thin/Medium/Strong (E)', 'NULL', 100, 99.6, 97.8, 94.9, 91.1, 87, 
82.8, 78.5, 74.4, 70.5, 66.7, 63.1, 59.6, 56.4, 53.3, 50.4, 47.6, 45, 42.5, 40.2, 37.9, 35.8, 
33.8, 31.8, 30, 28.2, 26.5, 24.9, 23.3, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 
21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 21.8, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 3, '3-Thin/High/Strong (E)', 'NULL', 100, 99.6, 98.3, 96, 93.2, 90, 86.8, 
83.7, 80.6, 77.7, 74.9, 72.2, 69.7, 67.3, 65.1, 62.9, 60.9, 59, 57.2, 55.5, 53.9, 52.3, 50.8, 
49.4, 48.1, 46.8, 45.6, 44.4, 43.3, 42.2, 42.2, 42.2, 42.2, 42.2, 42.2, 42.2, 42.2, 42.2, 
42.2, 42.2, 42.2, 42.2, 42.2, 42.2, 42.2, 42.2, 42.2, 42.2, 42.2, 42.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 4, '4-Thin/Low/Weak (E)', 'NULL', 98.8, 93.2, 86.7, 80.8, 75.7, 71.3, 67.5, 
64.2, 61.4, 58.8, 56.6, 54.6, 52.7, 51.1, 49.6, 48.2, 46.9, 45.7, 44.6, 43.6, 42.7, 41.8, 41, 
40.2, 39.4, 38.8, 38.1, 37.5, 36.9, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 
36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 36.3, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 5, '5-Thin/Medium/Weak (E)', 'NULL', 97.3, 88.7, 80.4, 73.5, 67.9, 63.2, 
59.3, 56, 53.2, 50.7, 48.5, 46.5, 44.8, 43.2, 41.8, 40.5, 39.3, 38.2, 37.2, 36.3, 35.4, 34.6, 
33.9, 33.2, 32.5, 31.9, 31.3, 30.8, 30.2, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 
29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 6, '6-Thin/High/Weak (E)', 'NULL', 99, 94, 87.8, 82.1, 77.1, 72.8, 69, 65.7, 
62.8, 60.3, 58, 55.9, 54.1, 52.4, 50.9, 49.5, 48.2, 47, 45.8, 44.8, 43.8, 42.9, 42.1, 41.3, 
40.5, 39.8, 39.1, 38.5, 37.9, 37.3, 37.3, 37.3, 37.3, 37.3, 37.3, 37.3, 37.3, 37.3, 37.3, 
37.3, 37.3, 37.3, 37.3, 37.3, 37.3, 37.3, 37.3, 37.3, 37.3, 37.3, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
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y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 7, '7-Medium/Low/Strong (E)', 'NULL', 100, 99.7, 98.4, 96.2, 93.4, 90.2, 
87, 83.8, 80.7, 77.7, 74.8, 72, 69.5, 67, 64.7, 62.5, 60.4, 58.4, 56.6, 54.8, 53.1, 51.5, 50, 
48.5, 47.1, 45.8, 44.5, 43.3, 42.1, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 
41, 41, 41, 41, 41, 41, 41, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 8, '8-Medium/Medium/Strong (E)', 'NULL', 100, 99.7, 98.4, 96.3, 93.6, 
90.7, 87.7, 84.7, 81.7, 78.9, 76.2, 73.7, 71.3, 69, 66.8, 64.8, 62.8, 61, 59.2, 57.6, 56, 
54.5, 53.1, 51.7, 50.4, 49.2, 48, 46.8, 45.8, 44.7, 44.7, 44.7, 44.7, 44.7, 44.7, 44.7, 44.7, 
44.7, 44.7, 44.7, 44.7, 44.7, 44.7, 44.7, 44.7, 44.7, 44.7, 44.7, 44.7, 44.7, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 9, '9-Medium/High/Strong (E)', 'NULL', 100, 99.5, 97.6, 94.6, 91, 87, 83, 
79.1, 75.3, 71.7, 68.3, 65.1, 62, 59.2, 56.5, 53.9, 51.5, 49.2, 47.1, 45, 43.1, 41.3, 39.5, 
37.8, 36.3, 34.7, 33.3, 31.9, 30.6, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 
29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 10, '10-Medium/Low/Weak (E)', 'NULL', 100, 99.6, 97.9, 95.1, 91.6, 87.7, 
83.8, 79.8, 76, 72.4, 68.9, 65.6, 62.5, 59.6, 56.8, 54.2, 51.8, 49.4, 47.2, 45.1, 43.1, 41.2, 
39.4, 37.7, 36, 34.5, 33, 31.5, 30.2, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 
28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 11, '11-Medium/Medium/Weak (E)', 'NULL', 99.7, 96.7, 91.7, 86.3, 81, 
76.2, 71.9, 67.9, 64.4, 61.2, 58.3, 55.7, 53.3, 51.1, 49.1, 47.2, 45.5, 43.9, 42.3, 40.9, 
39.6, 38.4, 37.2, 36.1, 35.1, 34.1, 33.2, 32.3, 31.4, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 
30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 1) 
                   INSERT  
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                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 12, '12-Medium/High/Weak (E)', 'NULL', 99.5, 95.5, 89.4, 83.2, 77.3, 72.1, 
67.4, 63.3, 59.6, 56.3, 53.3, 50.6, 48.2, 45.9, 43.9, 42, 40.2, 38.6, 37.1, 35.7, 34.4, 33.2, 
32, 31, 29.9, 29, 28.1, 27.2, 26.4, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 
25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 25.6, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 13, '13-Thick/Low/Strong (E)', 'NULL', 100, 99.9, 99.4, 98.2, 96.6, 94.7, 
92.5, 90.2, 87.9, 85.6, 83.4, 81.2, 79.1, 77.1, 75.1, 73.3, 71.5, 69.8, 68.1, 66.5, 65, 63.6, 
62.2, 60.9, 59.6, 58.3, 57.2, 56, 54.9, 53.9, 53.9, 53.9, 53.9, 53.9, 53.9, 53.9, 53.9, 53.9, 
53.9, 53.9, 53.9, 53.9, 53.9, 53.9, 53.9, 53.9, 53.9, 53.9, 53.9, 53.9, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 14, '14-Thick/Medium/Strong (E)', 'NULL', 100, 99.8, 98.9, 97.1, 94.5, 
91.6, 88.5, 85.3, 82.2, 79.1, 76.1, 73.2, 70.5, 67.9, 65.4, 63.1, 60.8, 58.7, 56.7, 54.7, 
52.9, 51.1, 49.5, 47.9, 46.3, 44.9, 43.5, 42.1, 40.8, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 
39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 39.6, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 15, '15-Thick/High/Strong (E)', 'NULL', 100, 99.7, 98.5, 96.3, 93.4, 90.2, 
86.8, 83.4, 80, 76.8, 73.7, 70.7, 67.8, 65.1, 62.5, 60.1, 57.8, 55.6, 53.5, 51.5, 49.6, 47.7, 
46, 44.4, 42.8, 41.3, 39.8, 38.4, 37.1, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 
35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 35.8, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 16, '16-Thick/Low/Weak (E)', 'NULL', 100, 99.6, 98.1, 95.5, 92.2, 88.6, 
84.8, 81.1, 77.5, 74, 70.6, 67.4, 64.4, 61.6, 58.8, 56.3, 53.9, 51.6, 49.4, 47.3, 45.4, 43.5, 
41.7, 40, 38.4, 36.8, 35.4, 33.9, 32.6, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 
31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 31.3, 1) 
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                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 17, '17-Thick/Medium/Weak (E)', 'NULL', 100, 99.6, 97.9, 95.1, 91.6, 87.8, 
83.8, 79.9, 76.1, 72.5, 69, 65.7, 62.6, 59.7, 56.9, 54.3, 51.8, 49.5, 47.3, 45.2, 43.2, 41.3, 
39.5, 37.8, 36.1, 34.6, 33.1, 31.7, 30.3, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 
29, 29, 29, 29, 29, 29, 29, 29, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (12, 18, '18-Thick/High/Weak (E)', 'NULL', 99.9, 98.6, 95.1, 90.6, 85.7, 80.8, 
76.1, 71.7, 67.6, 63.8, 60.3, 57.1, 54, 51.2, 48.6, 46.2, 43.9, 41.8, 39.8, 37.9, 36.1, 34.4, 
32.8, 31.3, 29.9, 28.5, 27.2, 26, 24.8, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 
23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 23.7, 1) 
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INSERT INTO model_pred 
               (pave_code, crvno, fdesc, notes, y01, y02, y03, y04, y05, y06, y07, y08, y09, 
y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, 
y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, y43, y44, y45, 
y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 1, '1-Thin/Low/Strong (M-E)', 'NULL', 100, 99.9, 99.2, 97.8, 95.8, 93.5, 91, 
88.3, 85.6, 83, 80.4, 77.8, 75.3, 73, 70.7, 68.5, 66.3, 64.3, 62.3, 60.5, 58.7, 56.9, 55.3, 
53.7, 52.1, 50.7, 49.2, 47.9, 46.5, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 
45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 2, '2-Thin/Medium/Strong (M-E)', 'NULL', 100, 99.7, 98.3, 96, 93.2, 90, 
86.6, 83.3, 80.1, 77, 74, 71.1, 68.4, 65.8, 63.4, 61.1, 58.9, 56.8, 54.8, 53, 51.2, 49.5, 
47.8, 46.3, 44.8, 43.4, 42, 40.7, 39.4, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 
38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 3, '3-Thin/High/Strong (M-E)', 'NULL', 100, 99.7, 98.3, 96, 93.2, 90, 86.6, 
83.3, 80.1, 77, 74, 71.1, 68.4, 65.8, 63.4, 61.1, 58.9, 56.8, 54.8, 53, 51.2, 49.5, 47.8, 
46.3, 44.8, 43.4, 42, 40.7, 39.4, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 
38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 4, '4-Thin/Low/Weak (M-E)', 'NULL', 100, 99.7, 98.3, 96, 93.2, 90, 86.6, 
83.3, 80.1, 77, 74, 71.1, 68.4, 65.8, 63.4, 61.1, 58.9, 56.8, 54.8, 53, 51.2, 49.5, 47.8, 
46.3, 44.8, 43.4, 42, 40.7, 39.4, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 
38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
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VALUES (13, 5, '5-Thin/Medium/Weak (M-E)', 'NULL', 99.8, 97.3, 92.6, 87.4, 82.4, 77.6, 
73.3, 69.4, 65.9, 62.7, 59.7, 57.1, 54.6, 52.4, 50.3, 48.4, 46.7, 45, 43.5, 42, 40.7, 39.4, 
38.2, 37.1, 36.1, 35, 34.1, 33.2, 32.3, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 
31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 6, '6-Thin/High/Weak (M-E)', 'NULL', 99.8, 97.3, 92.6, 87.4, 82.4, 77.6, 
73.3, 69.4, 65.9, 62.7, 59.7, 57.1, 54.6, 52.4, 50.3, 48.4, 46.7, 45, 43.5, 42, 40.7, 39.4, 
38.2, 37.1, 36.1, 35, 34.1, 33.2, 32.3, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 
31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 7, '7-Medium/Low/Strong (M-E)', 'NULL', 100, 99.9, 99.4, 98.3, 96.7, 94.7, 
92.6, 90.4, 88.1, 85.9, 83.6, 81.5, 79.4, 77.4, 75.5, 73.6, 71.9, 70.1, 68.5, 66.9, 65.4, 64, 
62.6, 61.3, 60, 58.8, 57.6, 56.5, 55.4, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 
54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 8, '8-Medium/Medium/Strong (M-E)', 'NULL', 100, 99.7, 98.5, 96.5, 94.1, 
91.3, 88.6, 85.8, 83.1, 80.6, 78.1, 75.8, 73.6, 71.6, 69.6, 67.8, 66.1, 64.4, 62.9, 61.4, 60, 
58.7, 57.4, 56.2, 55, 53.9, 52.9, 51.9, 50.9, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
50, 50, 50, 50, 50, 50, 50, 50, 50, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 9, '9-Medium/High/Strong (M-E)', 'NULL', 100, 99.6, 98, 95.2, 91.8, 88, 
84.1, 80.3, 76.5, 72.9, 69.4, 66.1, 63, 60, 57.2, 54.6, 52, 49.6, 47.4, 45.2, 43.2, 41.2, 
39.4, 37.6, 35.9, 34.3, 32.7, 31.2, 29.8, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 
28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
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y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 10, '10-Medium/Low/Weak (M-E)', 'NULL', 100, 99.7, 98.5, 96.5, 94.1, 
91.3, 88.6, 85.8, 83.1, 80.6, 78.1, 75.8, 73.6, 71.6, 69.6, 67.8, 66.1, 64.4, 62.9, 61.4, 60, 
58.7, 57.4, 56.2, 55, 53.9, 52.9, 51.9, 50.9, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
50, 50, 50, 50, 50, 50, 50, 50, 50, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 11, '11-Medium/Medium/Weak (M-E)', 'NULL', 100, 99.7, 98.6, 96.7, 94.3, 
91.8, 89.1, 86.5, 83.9, 81.5, 79.2, 77, 74.9, 73, 71.1, 69.4, 67.7, 66.2, 64.7, 63.3, 61.9, 
60.7, 59.5, 58.3, 57.2, 56.2, 55.2, 54.2, 53.3, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 
52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 12, '12-Medium/High/Weak (M-E)', 'NULL', 100, 99.7, 98.6, 96.7, 94.3, 
91.8, 89.1, 86.5, 83.9, 81.5, 79.2, 77, 74.9, 73, 71.1, 69.4, 67.7, 66.2, 64.7, 63.3, 61.9, 
60.7, 59.5, 58.3, 57.2, 56.2, 55.2, 54.2, 53.3, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 
52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 13, '13-Thick/Low/Strong (M-E)', 'NULL', 100, 99.7, 98.6, 96.7, 94.3, 91.8, 
89.1, 86.5, 83.9, 81.5, 79.2, 77, 74.9, 73, 71.1, 69.4, 67.7, 66.2, 64.7, 63.3, 61.9, 60.7, 
59.5, 58.3, 57.2, 56.2, 55.2, 54.2, 53.3, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 
52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 14, '14-Thick/Medium/Strong (M-E)', 'NULL', 100, 99.7, 98.7, 96.9, 94.6, 
92.1, 89.5, 87, 84.5, 82.1, 79.9, 77.7, 75.7, 73.7, 71.9, 70.2, 68.6, 67, 65.6, 64.2, 62.9, 
61.6, 60.4, 59.3, 58.2, 57.2, 56.2, 55.3, 54.4, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 
53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 1) 
                   INSERT  
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                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 15, '15-Thick/High/Strong (M-E)', 'NULL', 100, 99.8, 98.9, 97.1, 94.5, 91.6, 
88.3, 85, 81.7, 78.5, 75.3, 72.3, 69.3, 66.5, 63.8, 61.2, 58.8, 56.4, 54.2, 52, 50, 48, 46.2, 
44.4, 42.6, 41, 39.4, 37.9, 36.4, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 
35, 35, 35, 35, 35, 35, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 16, '16-Thick/Low/Weak (M-E)', 'NULL', 100, 99.7, 98.5, 96.4, 93.8, 91, 
88, 85.2, 82.4, 79.7, 77.2, 74.7, 72.5, 70.3, 68.3, 66.4, 64.6, 62.8, 61.2, 59.7, 58.2, 56.8, 
55.5, 54.3, 53.1, 51.9, 50.8, 49.8, 48.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 
47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 17, '17-Thick/Medium/Weak (M-E)', 'NULL', 100, 99.6, 98.3, 96, 93.2, 
90.1, 86.9, 83.8, 80.7, 77.8, 75, 72.4, 70, 67.6, 65.4, 63.3, 61.4, 59.5, 57.8, 56.1, 54.5, 
53, 51.6, 50.2, 48.9, 47.7, 46.5, 45.3, 44.3, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 
43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (13, 18, '18-Thick/High/Weak (M-E)', 'NULL', 100, 99.2, 96.7, 92.9, 88.4, 83.6, 
78.9, 74.4, 70.1, 66, 62.2, 58.6, 55.2, 52.1, 49.1, 46.4, 43.7, 41.3, 39, 36.8, 34.7, 32.8, 
30.9, 29.1, 27.5, 25.9, 24.3, 22.9, 21.5, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 
20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 1, '1-Thin/Low/Strong (M-E)', 'NULL', 100, 99.9, 99.2, 97.8, 95.8, 93.5, 91, 
88.3, 85.6, 83, 80.4, 77.8, 75.3, 73, 70.7, 68.5, 66.3, 64.3, 62.3, 60.5, 58.7, 56.9, 55.3, 
53.7, 52.1, 50.7, 49.2, 47.9, 46.5, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 
45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 1) 
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                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 2, '2-Thin/Medium/Strong (M-E)', 'NULL', 100, 99.7, 98.3, 96, 93.2, 90, 
86.6, 83.3, 80.1, 77, 74, 71.1, 68.4, 65.8, 63.4, 61.1, 58.9, 56.8, 54.8, 53, 51.2, 49.5, 
47.8, 46.3, 44.8, 43.4, 42, 40.7, 39.4, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 
38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 3, '3-Thin/High/Strong (M-E)', 'NULL', 100, 99.7, 98.3, 96, 93.2, 90, 86.6, 
83.3, 80.1, 77, 74, 71.1, 68.4, 65.8, 63.4, 61.1, 58.9, 56.8, 54.8, 53, 51.2, 49.5, 47.8, 
46.3, 44.8, 43.4, 42, 40.7, 39.4, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 
38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 4, '4-Thin/Low/Weak (M-E)', 'NULL', 100, 99.7, 98.3, 96, 93.2, 90, 86.6, 
83.3, 80.1, 77, 74, 71.1, 68.4, 65.8, 63.4, 61.1, 58.9, 56.8, 54.8, 53, 51.2, 49.5, 47.8, 
46.3, 44.8, 43.4, 42, 40.7, 39.4, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 
38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 5, '5-Thin/Medium/Weak (M-E)', 'NULL', 99.8, 97.3, 92.6, 87.4, 82.4, 77.6, 
73.3, 69.4, 65.9, 62.7, 59.7, 57.1, 54.6, 52.4, 50.3, 48.4, 46.7, 45, 43.5, 42, 40.7, 39.4, 
38.2, 37.1, 36.1, 35, 34.1, 33.2, 32.3, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 
31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 6, '6-Thin/High/Weak (M-E)', 'NULL', 99.8, 97.3, 92.6, 87.4, 82.4, 77.6, 
73.3, 69.4, 65.9, 62.7, 59.7, 57.1, 54.6, 52.4, 50.3, 48.4, 46.7, 45, 43.5, 42, 40.7, 39.4, 
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38.2, 37.1, 36.1, 35, 34.1, 33.2, 32.3, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 
31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 7, '7-Medium/Low/Strong (M-E)', 'NULL', 100, 99.9, 99.4, 98.3, 96.7, 94.7, 
92.6, 90.4, 88.1, 85.9, 83.6, 81.5, 79.4, 77.4, 75.5, 73.6, 71.9, 70.1, 68.5, 66.9, 65.4, 64, 
62.6, 61.3, 60, 58.8, 57.6, 56.5, 55.4, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 
54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 8, '8-Medium/Medium/Strong (M-E)', 'NULL', 100, 99.7, 98.5, 96.5, 94.1, 
91.3, 88.6, 85.8, 83.1, 80.6, 78.1, 75.8, 73.6, 71.6, 69.6, 67.8, 66.1, 64.4, 62.9, 61.4, 60, 
58.7, 57.4, 56.2, 55, 53.9, 52.9, 51.9, 50.9, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
50, 50, 50, 50, 50, 50, 50, 50, 50, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 9, '9-Medium/High/Strong (M-E)', 'NULL', 100, 99.6, 98, 95.2, 91.8, 88, 
84.1, 80.3, 76.5, 72.9, 69.4, 66.1, 63, 60, 57.2, 54.6, 52, 49.6, 47.4, 45.2, 43.2, 41.2, 
39.4, 37.6, 35.9, 34.3, 32.7, 31.2, 29.8, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 
28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 10, '10-Medium/Low/Weak (M-E)', 'NULL', 100, 99.7, 98.5, 96.5, 94.1, 
91.3, 88.6, 85.8, 83.1, 80.6, 78.1, 75.8, 73.6, 71.6, 69.6, 67.8, 66.1, 64.4, 62.9, 61.4, 60, 
58.7, 57.4, 56.2, 55, 53.9, 52.9, 51.9, 50.9, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
50, 50, 50, 50, 50, 50, 50, 50, 50, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
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VALUES (14, 11, '11-Medium/Medium/Weak (M-E)', 'NULL', 100, 99.7, 98.6, 96.7, 94.3, 
91.8, 89.1, 86.5, 83.9, 81.5, 79.2, 77, 74.9, 73, 71.1, 69.4, 67.7, 66.2, 64.7, 63.3, 61.9, 
60.7, 59.5, 58.3, 57.2, 56.2, 55.2, 54.2, 53.3, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 
52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 12, '12-Medium/High/Weak (M-E)', 'NULL', 100, 99.7, 98.6, 96.7, 94.3, 
91.8, 89.1, 86.5, 83.9, 81.5, 79.2, 77, 74.9, 73, 71.1, 69.4, 67.7, 66.2, 64.7, 63.3, 61.9, 
60.7, 59.5, 58.3, 57.2, 56.2, 55.2, 54.2, 53.3, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 
52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 13, '13-Thick/Low/Strong (M-E)', 'NULL', 100, 99.7, 98.6, 96.7, 94.3, 91.8, 
89.1, 86.5, 83.9, 81.5, 79.2, 77, 74.9, 73, 71.1, 69.4, 67.7, 66.2, 64.7, 63.3, 61.9, 60.7, 
59.5, 58.3, 57.2, 56.2, 55.2, 54.2, 53.3, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 
52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 14, '14-Thick/Medium/Strong (M-E)', 'NULL', 100, 99.7, 98.7, 96.9, 94.6, 
92.1, 89.5, 87, 84.5, 82.1, 79.9, 77.7, 75.7, 73.7, 71.9, 70.2, 68.6, 67, 65.6, 64.2, 62.9, 
61.6, 60.4, 59.3, 58.2, 57.2, 56.2, 55.3, 54.4, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 
53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 15, '15-Thick/High/Strong (M-E)', 'NULL', 100, 99.8, 98.9, 97.1, 94.5, 91.6, 
88.3, 85, 81.7, 78.5, 75.3, 72.3, 69.3, 66.5, 63.8, 61.2, 58.8, 56.4, 54.2, 52, 50, 48, 46.2, 
44.4, 42.6, 41, 39.4, 37.9, 36.4, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 
35, 35, 35, 35, 35, 35, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24,  
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                                  y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, 
y38, y39, y40, y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 16, '16-Thick/Low/Weak (M-E)', 'NULL', 100, 99.7, 98.5, 96.4, 93.8, 91, 
88, 85.2, 82.4, 79.7, 77.2, 74.7, 72.5, 70.3, 68.3, 66.4, 64.6, 62.8, 61.2, 59.7, 58.2, 56.8, 
55.5, 54.3, 53.1, 51.9, 50.8, 49.8, 48.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 
47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 17, '17-Thick/Medium/Weak (M-E)', 'NULL', 100, 99.6, 98.3, 96, 93.2, 
90.1, 86.9, 83.8, 80.7, 77.8, 75, 72.4, 70, 67.6, 65.4, 63.3, 61.4, 59.5, 57.8, 56.1, 54.5, 
53, 51.6, 50.2, 48.9, 47.7, 46.5, 45.3, 44.3, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 
43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (14, 18, '18-Thick/High/Weak (M-E)', 'NULL', 100, 99.2, 96.7, 92.9, 88.4, 83.6, 
78.9, 74.4, 70.1, 66, 62.2, 58.6, 55.2, 52.1, 49.1, 46.4, 43.7, 41.3, 39, 36.8, 34.7, 32.8, 
30.9, 29.1, 27.5, 25.9, 24.3, 22.9, 21.5, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 
20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 1, '1-Thin/Low/Strong (M-E)', 'NULL', 100, 99.9, 99.2, 97.8, 95.8, 93.5, 91, 
88.3, 85.6, 83, 80.4, 77.8, 75.3, 73, 70.7, 68.5, 66.3, 64.3, 62.3, 60.5, 58.7, 56.9, 55.3, 
53.7, 52.1, 50.7, 49.2, 47.9, 46.5, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 
45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 45.3, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 2, '2-Thin/Medium/Strong (M-E)', 'NULL', 100, 99.7, 98.3, 96, 93.2, 90, 
86.6, 83.3, 80.1, 77, 74, 71.1, 68.4, 65.8, 63.4, 61.1, 58.9, 56.8, 54.8, 53, 51.2, 49.5, 
47.8, 46.3, 44.8, 43.4, 42, 40.7, 39.4, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 
38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 1) 
                   INSERT  
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                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 3, '3-Thin/High/Strong (M-E)', 'NULL', 100, 99.7, 98.3, 96, 93.2, 90, 86.6, 
83.3, 80.1, 77, 74, 71.1, 68.4, 65.8, 63.4, 61.1, 58.9, 56.8, 54.8, 53, 51.2, 49.5, 47.8, 
46.3, 44.8, 43.4, 42, 40.7, 39.4, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 
38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 4, '4-Thin/Low/Weak (M-E)', 'NULL', 100, 99.7, 98.3, 96, 93.2, 90, 86.6, 
83.3, 80.1, 77, 74, 71.1, 68.4, 65.8, 63.4, 61.1, 58.9, 56.8, 54.8, 53, 51.2, 49.5, 47.8, 
46.3, 44.8, 43.4, 42, 40.7, 39.4, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 
38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 38.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 5, '5-Thin/Medium/Weak (M-E)', 'NULL', 99.8, 97.3, 92.6, 87.4, 82.4, 77.6, 
73.3, 69.4, 65.9, 62.7, 59.7, 57.1, 54.6, 52.4, 50.3, 48.4, 46.7, 45, 43.5, 42, 40.7, 39.4, 
38.2, 37.1, 36.1, 35, 34.1, 33.2, 32.3, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 
31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 6, '6-Thin/High/Weak (M-E)', 'NULL', 99.8, 97.3, 92.6, 87.4, 82.4, 77.6, 
73.3, 69.4, 65.9, 62.7, 59.7, 57.1, 54.6, 52.4, 50.3, 48.4, 46.7, 45, 43.5, 42, 40.7, 39.4, 
38.2, 37.1, 36.1, 35, 34.1, 33.2, 32.3, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 
31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 7, '7-Medium/Low/Strong (M-E)', 'NULL', 100, 99.9, 99.4, 98.3, 96.7, 94.7, 
92.6, 90.4, 88.1, 85.9, 83.6, 81.5, 79.4, 77.4, 75.5, 73.6, 71.9, 70.1, 68.5, 66.9, 65.4, 64, 
62.6, 61.3, 60, 58.8, 57.6, 56.5, 55.4, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 
54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 54.3, 1) 
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                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24,  y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, 
y40, y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 8, '8-Medium/Medium/Strong (M-E)', 'NULL', 100, 99.7, 98.5, 96.5, 94.1, 
91.3, 88.6, 85.8, 83.1, 80.6, 78.1, 75.8, 73.6, 71.6, 69.6, 67.8, 66.1, 64.4, 62.9, 61.4, 60, 
58.7, 57.4, 56.2, 55, 53.9, 52.9, 51.9, 50.9, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
50, 50, 50, 50, 50, 50, 50, 50, 50, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 9, '9-Medium/High/Strong (M-E)', 'NULL', 100, 99.6, 98, 95.2, 91.8, 88, 
84.1, 80.3, 76.5, 72.9, 69.4, 66.1, 63, 60, 57.2, 54.6, 52, 49.6, 47.4, 45.2, 43.2, 41.2, 
39.4, 37.6, 35.9, 34.3, 32.7, 31.2, 29.8, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 
28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 28.4, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 10, '10-Medium/Low/Weak (M-E)', 'NULL', 100, 99.7, 98.5, 96.5, 94.1, 
91.3, 88.6, 85.8, 83.1, 80.6, 78.1, 75.8, 73.6, 71.6, 69.6, 67.8, 66.1, 64.4, 62.9, 61.4, 60, 
58.7, 57.4, 56.2, 55, 53.9, 52.9, 51.9, 50.9, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 
50, 50, 50, 50, 50, 50, 50, 50, 50, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 11, '11-Medium/Medium/Weak (M-E)', 'NULL', 100, 99.7, 98.6, 96.7, 94.3, 
91.8, 89.1, 86.5, 83.9, 81.5, 79.2, 77, 74.9, 73, 71.1, 69.4, 67.7, 66.2, 64.7, 63.3, 61.9, 
60.7, 59.5, 58.3, 57.2, 56.2, 55.2, 54.2, 53.3, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 
52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 12, '12-Medium/High/Weak (M-E)', 'NULL', 100, 99.7, 98.6, 96.7, 94.3, 
91.8, 89.1, 86.5, 83.9, 81.5, 79.2, 77, 74.9, 73, 71.1, 69.4, 67.7, 66.2, 64.7, 63.3, 61.9, 
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60.7, 59.5, 58.3, 57.2, 56.2, 55.2, 54.2, 53.3, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 
52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 13, '13-Thick/Low/Strong (M-E)', 'NULL', 100, 99.7, 98.6, 96.7, 94.3, 91.8, 
89.1, 86.5, 83.9, 81.5, 79.2, 77, 74.9, 73, 71.1, 69.4, 67.7, 66.2, 64.7, 63.3, 61.9, 60.7, 
59.5, 58.3, 57.2, 56.2, 55.2, 54.2, 53.3, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 
52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 52.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 14, '14-Thick/Medium/Strong (M-E)', 'NULL', 100, 99.7, 98.7, 96.9, 94.6, 
92.1, 89.5, 87, 84.5, 82.1, 79.9, 77.7, 75.7, 73.7, 71.9, 70.2, 68.6, 67, 65.6, 64.2, 62.9, 
61.6, 60.4, 59.3, 58.2, 57.2, 56.2, 55.3, 54.4, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 
53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 53.5, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 15, '15-Thick/High/Strong (M-E)', 'NULL', 100, 99.8, 98.9, 97.1, 94.5, 91.6, 
88.3, 85, 81.7, 78.5, 75.3, 72.3, 69.3, 66.5, 63.8, 61.2, 58.8, 56.4, 54.2, 52, 50, 48, 46.2, 
44.4, 42.6, 41, 39.4, 37.9, 36.4, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 
35, 35, 35, 35, 35, 35, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 16, '16-Thick/Low/Weak (M-E)', 'NULL', 100, 99.7, 98.5, 96.4, 93.8, 91, 
88, 85.2, 82.4, 79.7, 77.2, 74.7, 72.5, 70.3, 68.3, 66.4, 64.6, 62.8, 61.2, 59.7, 58.2, 56.8, 
55.5, 54.3, 53.1, 51.9, 50.8, 49.8, 48.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 
47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 47.8, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, 
y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
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VALUES (15, 17, '17-Thick/Medium/Weak (M-E)', 'NULL', 100, 99.6, 98.3, 96, 93.2, 
90.1, 86.9, 83.8, 80.7, 77.8, 75, 72.4, 70, 67.6, 65.4, 63.3, 61.4, 59.5, 57.8, 56.1, 54.5, 
53, 51.6, 50.2, 48.9, 47.7, 46.5, 45.3, 44.3, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 
43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 43.2, 1) 
                   INSERT  
                   INTO     model_pred(pave_code, crvno, fdesc, notes, y01, y02, y03, y04, 
y05, y06, y07, y08, y09, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, 
y23, y24,  y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, 
y40, y41, y42, y43, y44, y45, y46, y47, y48, y49, y50, envr_code) 
VALUES (15, 18, '18-Thick/High/Weak (M-E)', 'NULL', 100, 99.2, 96.7, 92.9, 88.4, 83.6, 
78.9, 74.4, 70.1, 66, 62.2, 58.6, 55.2, 52.1, 49.1, 46.4, 43.7, 41.3, 39, 36.8, 34.7, 32.8, 
30.9, 29.1, 27.5, 25.9, 24.3, 22.9, 21.5, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 
20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 20.2, 1) 
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