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Abstract

A predictive estimator (PE) is a neural microcircuit hypothesized to explain how the
brain processes certain types of information. They participate in a hierarchy, passing pre-
dictions to lower layers, which send back prediction errors. Meanwhile, the network learns
optimal connection weights in order to minimize the prediction errors. This two-way pro-
cess has been used to hypothesize models for brain mechanisms, such as visual information
processing. However, the standard implementation for a PE uses the same weight matrix
for both feed-forward and feed-back projections, which is not biologically plausible. In this
thesis, we investigate the predictive estimator using individual feed-forward and feed-back
connection weights. We extend the model and introduce the Symmetric Predictive Estima-
tor (SPE). We investigate the dynamics of a SPE network, analyze its stability, and define
a general learning rule. A functional model of the SPE is implemented analytically, and
in a neural framework using spiking neurons. Both implementations are built as Python
modules that can accept generic, numerical inputs. With a series of general experiments,
we demonstrate its ability to learn non-linear functions and perform a supervised-learning
task. This variation on the PE may provide insights to the theory of predictive estimators
and their role in the brain.
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Chapter 1

Introduction

Perception is an active process where sensory input and expectation are used to intelligently
perceive one’s surroundings [15]. An example of this two-way process is shown in Figure
1.1. The Necker cube is an optical illusion which provides ambiguity to the human visual
system [29]. What the eyes see as a set of connected lines, the mind interprets as a cube
in one of two different orientations. But what mechanisms in the brain result in these
two different percepts? Another example is how humans may interpret patches of clouds
in the sky differently. The same visual input of a cloud may register differently between
people based on their prior knowledge of objects. How does one’s prior knowledge factor
into perception? How might the brain model a two-way process?

Modeling the dynamics of the brain falls into the field of computational neuroscience.
This interdisciplinary field studies the brain function and structures. The focus is not to
produce models that outperform human intelligence, but to create biologically realistic
models that match the physiological structure and dynamics of biological data. There is
a tremendous amount of research focused on the neuron which is considered the building
block of the brain. Neurons interact with each other in the form of action potentials, an
all-or-nothing spike of voltage between interconnected neurons. There are over 85 billion
neurons present in the human brain [1]. This vast network of “on or off” neurons can be
simulated in the form of spiking neural models, which hypothesize how the brain functions.

A predictive-estimator network harmonizes data given multiple inputs. Cortical circuits
called predictive estimators (PEs) participate in a hierarchy of feed-forward and feed-back
connections. Lower layers pass sensory input to higher layers, while higher layers pass
predictions to lower layers. These PE units learn a set of connection weights that translate
signals between the layers. PE models have been built that represent the visual system,
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Figure 1.1: The Necker cube [29] can be seen with the bottom left face as the outwards face
forming a cube (top) or the top right face can also be seen as the outwards face forming a
similar cube (bottom).

in which the bottom layer (e.g. rods and cones) and top-down prediction from upper
layers (e.g. cognition) form an internal state representation [30]. However, the standard
implementation lacks biological plausibility since it uses the same weight matrix for feed-
forward and feed-back projections. The process of weight copying is considered biologically
implausible due to physical constraints. How could a set of connection weights be copied in
the brain? What biochemical mechanism, operating within a given neuron, could duplicate
the synaptic weight of a connection between two other neurons [16]? In addition, it is
unclear if predictive estimators have been implemented using a spiking neural model, one
that simulates the temporal spiking characteristics of each individual neuron.

In this thesis, we address the biological implausibility of copied connection weights,
by investigating the development of a PE unit with individual feed-forward and feed-back
connection weights. We introduce a variation on the model, called a symmetric predictive
estimator (SPE), that can learn complex, non-linear transformations in a biologically plau-
sible manner. Network connection weights are adjusted using an error signal that is local
to the connection. There is no need for weight copying between feed-forward and feed-back
connections. We also implement the model using the Neural Engineering Framework [12],
which allows us to simulate individual neuron spikes for increased biological plausibility.

This thesis is organized into several chapters that cover topics about the PE and SPE.
Chapter 2 provides an overview of PEs and their usage in neuroscience theory. The mo-
tivation and biological plausibility of the PE are covered. We also discuss the differences
between the SPE and other existing theories. Chapter 3 describes the theory and dynamics
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of a PE implementation with individual feed-forward and feed-back weights. Chapter 4
introduces a variant of the PE model, called the SPE, and the dynamics of the SPE model
are investigated. Chapter 5 details the implementation of the SPE model in an analytical
simulation, and using a neural framework with spiking neurons. Chapter 6 proposes a
series of generic experiments to test the dynamics of the SPE. Details of each simulation
are given, and the results are evaluated. In addition, we compare the results between
the analytical and spiking neuron implementation. Chapter 7 concludes the thesis with
comments and contributions of the SPE. We discuss obstacles with the dynamics of larger
SPE models, and outline the future work.
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Chapter 2

Background and Related Work

2.1 Predictive Coding in Neuroscience

Predictive coding involves the use of predictive estimators connected in a hierarchy, pass-
ing predictions to lower layers, which in turn pass back prediction errors to upper layers.
Bastos et al. [2] provide a thorough overview of predictive coding. They highlight electro-
physiological experiments that are consistent with the predictive coding theory. They find
that the microcircuitry in the cortical columns are similar to the structural connections
in predictive coding. Cortical columns are groups of vertically connected neurons that
express similar receptor field properties. For example, they share a correlated response
to a set of stimulus, such as visual orientation. Bastos et al. [2] formulate a canonical
microcircuit that is suitable for predictive coding, and is consistent with the theory of
cortical columns. This shows that variations of predictive estimators have been formulated
to explain structural functions of the brain.

Feed-back connections were traditionally thought to be weak and modulatory in the
sense they could not elicit spikes in the post-synaptic neuron. They were observed to
only modulate certain transmission aspects in the post-synaptic neuron [35]. Compare
this to feed-forward connections that are stronger, and can elicit spiking in their post-
synaptic neurons [2] [35]. However, recent studies have shown that feed-back connections
can also elicit spikes in the same way feed-forward connections can [8] [9] [27]. This suggests
exploring functional symmetry on the predictive estimator may provide further insights on
predictive coding.

Predictive estimators have also been used to hypothesize a mechanism for the mirror
neuron system [22]. The mirror neuron system has been observed in macaque monkeys
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and is attributed to a link between action execution and action observation [31]. Studies
showed that certain neurons in a monkey would activate when it observed humans picking
up a piece of food. However, these same neurons would activate when the same monkey
picked up the food [11] themselves. These neurons were dubbed as “mirror neurons”,
because the subject’s observation of an action produced mirrored neural activity as if the
same subject performed the action themselves.

Kilner et al. [22] has suggested that the mirror neuron system can be implemented using
the predictive coding framework. Jacob et al. [19] suggest the mirror neuron system does
not account for the intentions of an action. They provide a thought experiment involving a
surgeon in an operating room. When the surgeon is grasping a sharp scalpel, how can the
mirror neuron system differentiate between the intention to cure or the intention to hurt the
patient? The observer may mirror neural activity that correspond to the surgeons motor
actions, but what accounts for the intentions of the action? There should be differences in
perception between the intention to cure and intention to harm, but the differentiation is
not possible in a purely feed-forward system using only visual information.

Kilner et al. [22] argue that the predictive estimator framework supports a feed-back
signal that provides information regarding the context of the action. This allows for mir-
rored neural activity at the kinematic level, but different activity at the contextual level.
They find that predictive estimators can account for the feed-back signal. However no
functional implementation of a predictive estimator model has been provided. We hope
that the work in this thesis may help provide a generic, functional model to help support
existing theories.

The Kalman filter is a popular mechanism used to estimate real-world values that have
a degree of uncertainty [21]. It is widely used in signal processing and is often applied in
navigation systems. A common example is determining the precise location of a vehicle
using the physics of motion and external measurements from a GPS [23] [24]. The vehicle’s
position can be predicted by integrating its velocity over time from its throttle control to
determine the distance travelled, and adding it to its previous position. However this
technique alone would be inaccurate over time because the integration does not account
for external influences on the vehicle. Conversely, a GPS device can provide a measurement
based on triangulated antenna signal strengths, but it still offers a level of uncertainty. The
Kalman filter is able use both the prediction, and a measurement to form a new estimate
of the location at the next point in time. The theory of the Kalman filter has been used
to model brain processes and has been investigated in the Neural Engineering Framework
[12]. It also has been used in neuroscience to replicate a motor control system [10].

The Kalman filter uses a weighted average of the prediction and measurement to form
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an estimate. The weighted average is calculated based on the covariance of its prediction
and measurement. This method is encapsulated into a parameter called the Kalman gain
[21]. This parameter weights the relative influence of the prediction and measurement
on the next calculated state [23]. This draws a similar parallel to the gain parameter,
β, that is used in the SPE model introduced in this thesis. Both the Kalman filter, and
SPE model use a gain parameter in its calculations of the next state value. However, the
primary goal of the Kalman filter is to form a time-dependent estimate on the next state.
The error on the estimate is used to change the Kalman gain to form a better estimate
on the next iteration. Contrast this to the goal of our model, where the SPE is used to
form a hierarchy of multiple state representations, with each level of the hierarchy having
a different interpretation of the input values. An example given in this thesis is Cartesian
co-ordinates in one level predicting the corresponding polar co-ordinates in the next level
of the hierarchy. In addition, the prediction error in the SPE is used to learn connection
weights to translate the state values between each level of the hierarchy. Currently, the
prediction error is not used to affect the gain parameter.

Rao and Ballard introduced the usage of predictive estimators to functionally model
some effects seen in the visual cortex [30], the region of the brain responsible for process-
ing visual information. Their hierarchical model utilizes a feed-back signal that carries
predictions about the input neural activity, and a feed-forward residual error signal. This
residual error is the difference between the prediction and the actual neural activity. It is
important to note that this is not a prediction in the sense of a future point in time, but
rather the effect from an alternative source of information or interpretation of the input
[22].

They designed an experiment and provided a mechanism to explain visual phenomena
observed in the neurons of the visual cortex. Their experiment and method are explained
in more detail in “Appendix B”. They concluded that the behavior of certain neurons in the
visual cortex are not only driven by a feed-forward sensory input, but are also influenced
by a feed-back prediction. Their network of PEs was able to match observations from
biological data. They suggest the PE network might be a mechanism that neurons use in
the visual cortex.

However, their model uses feed-forward and feed-back connection weights that are ma-
trix transposes of each other. The use of copied connection weights may decrease the
biological plausibility of the system [5]. This is because the weight changes from a neural
connection need to be instantly transported to the copied weight connection. The physical
constraints of this process are implausible in the brain [16]. In this thesis we build on the
PE theory and experiment with individual connection weights for the feed-forward and
feed-back connections. The final result is a Symmetric Predictive Estimator (SPE) which
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we test analytically and implement using spiking neurons.

In this thesis, we provide an analytical model of the SPE network which is implemented
using numerical methods (Euler stepping). We also implement the model using the Neural
Engineering Framework (NEF), which is a framework that can construct and simulate
neural systems. An outline of the NEF is given in “Appendix A”.

2.2 Neural Learning

Artificial neural networks are often used to perform supervised-learning tasks on hard-to-
solve problems such as image classification [6]. The design of artificial neural networks
is inspired by the brain’s vast inter-connectivity of neurons. Abstract nodes are used to
mimic the neuron, and nodes can elicit responses in other nodes by modelling the synapse
firing between neurons [20]. Connection weights exist between nodes to communicate
information between them. These connection weights are initially random, and a common
algorithm used to change connection weights between nodes is called backpropagation [33].
Nodes are grouped into an input layer, hidden layer and output layer.

Backpropagation uses a two-phase system to perform a supervised-learning task. First,
the input is fed through the network starting from the input layer, which activates hidden
layer nodes and subsequently output layer nodes. The activation at the output layer is
the result of driving the input through feed-forward connections of the input layer, hidden
layer and then the output layer. An error value is calculated as the difference between the
desired output and the network’s output layer [20]. The second phase consists of updating
these connection weights between the input-to-hidden and hidden-to-output layers. This
is done using gradient descent, calculating the error gradients at each layer using the chain
rule to apply a weight update. This method is highly effective in machine learning tasks
but many argue this is not what the brain does [25] [16].

Bengio et al. [5] suggest reasons why backpropagation is not biologically plausible.
Mainly, the error gradient that is used to calculate each weight is derived from the output
layer and transported instantaneously to each node. This would require the network of
neurons to have a global access point to the output error values, which seems implausible in
a physical system. In addition, there are no feed-back connections in the backpropagation
algorithm, but these connections are observed in brains [7]. If feed-back connections were
used to project the error back through the network, they would require transposed weights
of the feed-forward connections, which requires copying connection weights.

In this thesis, we demonstrate the SPE’s ability to perform a supervised-learning task
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using feed-back connections that provide a local error for learning. The error nodes are
inherent to the dynamics of the SPE model and are not provided by an external value.
In addition, the SPE can be implemented using spiking neurons. This is done using the
NEF and we demonstrate that it can still perform a supervised-learning task. Implemen-
tation into the NEF also introduces temporal delays to the network, thus, addresses the
implausibility of instantaneous transport.

Lee et al. [25] address the biological plausibility of backpropagation with a method
called difference target propagation (DTP). They introduce a learned feed-back function
between layers. The desired value (target) is propagated backwards using feed-back con-
nections and this allows the error to be calculated locally in-between layers. Their im-
plementation provides results comparable to backpropagation. However, there are key
differences between the SPE model and DTP.

First, the goal of the SPE model is to incorporate both bottom-up and top-down input
to form a perception. Contrast this to the goal of backpropagation and DTP, where the top-
down connections are only used to train the feed-forward weights. In a fully trained DTP
network, values at each layer are driven purely from a feed-forward standpoint. However,
our model incorporates a β term which can weight the relative influence of the feed-forward
or feed-back signals on perception.

Secondly, the DTP algorithm appears difficult to implement in a continuous time do-
main, and in a neural framework. The algorithm requires a difference calculation using
the same feed-back connection at two points: the hidden layer’s state, and the target.
If implemented in a framework such as the NEF, two nodes with the same connection
weights would be required to calculate this value. This would require weight copying in
order to evaluate the feed-back function for two different inputs at the same time, which
seems implausible in a physical system [16]. Alternatively, time-slicing could be applied
to evaluate two points with the same connection, but that would also require additional
time synchrony and memory. The SPE model differs because it is derived as a system of
dynamics equations, and can be implemented in a neural framework. In addition, the SPE
does not use a difference in feed-back propagation to calculate the target.

In this thesis, we outline the development of the SPE and the dynamics of a SPE
network. We do not attempt to replicate the experiments mentioned in this chapter.
Instead we test the SPE network using a simplified set of inputs and top-down predictions
as an initial demonstration of the network.
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Chapter 3

Predictive Estimators

3.1 Model

Rao and Ballard introduced a predictive-estimator model for visual processing [30]. Their
model consists of a feed-back signal which carries prediction about the input, and a feed-
forward signal which carries the residual error between the input and prediction.

The work presented in this thesis is inspired by the hierarchical model presented in
Rao and Ballard’s paper [30] and expands on their theory by introducing individual feed-
forward and feed-back transformations. The predictive-estimator (PE) unit consists of two
main components: 1) vi: a state representation and 2) εi: residual error between vi and the
prediction from a higher level vi+1. Between PE levels there is a feed-forward connection,
fi, which conveys the residual error coming from a lower level, and a feed-back connection,
gi, that delivers the prediction from a higher level. Figure 3.1 shows a network diagram
of two PE units connected together. This model introduces individual feed-forward and
feed-back connections in the PE. The connection weights of fi are not the transpose of gi.
The dynamics of the PE unit are governed by the differential equations

τv
dvi
dt

= (1− β)fi−1(εi−1)− βεi, (3.1)

τε
dεi
dt

= vi − gi(vi+1)− εi, (3.2)

where τ represents a time constant, and β acts as a tuning parameter that weights the
feed-forward and feed-back connections. A β value of 0.5 would drive the network in a
balanced state. This parameter can be tuned to drive the network in a purely feed-forward
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Figure 3.1: Two Predictive-Estimator (PE) Units connected together. Each blue circle is
a node representing the value of the respective variable enclosed. The v node represents
a state representation, and the ε node represents the residual error. The layer index is
represented by the subscript i. A solid black arrow represents addition of the tail-end
value to the arrow-end node, while a dotted black arrow represents subtraction. A solid
red arrow implies the tail-end value undergoes a transformation function and is added to
the arrow-end node, while a dotted red arrow implies subtraction. A dotted green arrow
implies a modulating connection, in which connection weights are modified based on the
tail-end node’s value. Note that the recurrent connection from ε to itself, as describedd in
(3.2), has been omitted from the figure for simplicity.

manner, by setting β = 0. This implies there is zero weighting on feed-back connections.
Conversely if β = 1 there is zero weighting on feed-forward connections. The function fi
models how the residual-error will affect a higher-level state, while gi represents how the
prediction affects a lower-level state. The fi and gi functions may be pre-defined; however,
a characteristic of this PE is the ability for the network to learn an internal representation
of feed-forward and feed-back functions that formulate a state representation vi.

3.2 Learning Rule

The PE modifies fi and gi connections in order to minimize the error εi between units.
Learning rules for fi and gi in a one-dimensional linear case are

γf
dfi
dt

= −Kεiεi+1, (3.3)

γg
dgi
dt

= Kvi+1εi, (3.4)
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where γ represents a time constant, and K represents a learning rate. The PE model will
shape the state representation vi such that εi is as close to zero as possible. If εi = 0 then
(3.3) and (3.4) will evaluate to zero, and there will be no changes to the feed-forward and
feed-back mappings. If εi 6= 0, (3.3) and (3.4) will be non-zero, and change the feed-forward
and feed-back mappings in order to find a minimum εi for the system.

3.3 Stability Analysis

Although this model provided a stable system with linear feed-forward and feed-back map-
pings, simulations showed that this system was not stable for non-linear cases. It would
be ideal that the PE is stable for non-linear mappings because many processes are non-
linear in nature. A generic non-linear mapping is taking Cartesian co-ordinates (x, y), and
mapping them to polar co-ordinates (ρ, θ), and vice versa. Figure 3.2 shows a PE network
that models this system. The input to the PE would be x and y co-ordinates, while the
top-down expectation would be the matching ρ and θ values. There is no corresponding v0

state representation because the residual error ε0 can be calculated directly between the
input (Ax, Ay) and prediction g(Vρ, Vθ).

Figure 3.2: Cartesian and Polar PE Units connected. Cartesian co-ordinates Ax and Ay,
are input to the left PE unit and Polar co-ordinates Vρ and Vθ are the predictions for the
right PE unit.

For simplicity, the system to be analyzed has fixed f and g transformations, where f
is a linear mapping for the error, and g is the transformation from polar co-ordinates to
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Cartesian co-ordinates such that

f(ε0) =

[
fsε0x

fsε0y

]
, (3.5)

g(v1) =

[
v1ρ cos v1θ

v1ρ sin v1θ

]
. (3.6)

After running simulations it became apparent that the network is not stable for this map-
ping, even when the f and g mappings are fixed and not changed by (3.3) and (3.4). We
can investigate the stability of this system by analyzing the network. The dynamics of this
system are governed by the differential equations

τε
dε0x

dt
= Ax − v1ρ cos v1θ − ε0x, (3.7)

τε
dε0y

dt
= Ay − v1ρ sin v1θ − ε0y, (3.8)

τv
dv1ρ

dt
= (1− β)fs(ε0x)− βε1ρ, (3.9)

τv
dv1θ

dt
= (1− β)fs(ε0y)− βε1θ, (3.10)

τε
dε1ρ

dt
= v1ρ − Vρ − ε1ρ, (3.11)

τε
dε1θ

dt
= v1θ − Vθ − ε1θ, (3.12)

where the differential equations for ε0, v1 and ε1 are split component-wise, Ax and Ay
represent the components of the input to the PE units, while the corresponding Vρ and Vθ
represent the top-down input.

Let ~S represent state variables in the system where

~S = [ε0x, ε0y, v1ρ, v1θ, ε1ρ, ε1θ]
T . (3.13)

Given an equilibrium point ~S∗, we can linearize the system around that point, and inspect
the sign of the real part of the eigenvalues to analyze the stability. Let our system of
differential equations be written as

τ
d~S

dt
= F (~S), (3.14)

where F is the vector function that evaluates the right-hand sides of all the differential
equations above. Given the equilibrium point ~S∗, we can write ~S in terms of deviations
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from ~S∗,
~S = ~S∗ + ∆~S. (3.15)

Thus, F(~S) = F(~S∗ + ∆~S), and we can write the Taylor expansion of F about ~S∗ as

F (~S∗ + ∆~S) = F (~S∗) +∇F (~S∗)∆~S +O(∆~S2). (3.16)

The stability of the system can be analyzed by using a linear approximation of F(~S). The
first term will equate to zero because it is the equilibrium point, while we can ignore the
third term because higher order terms are negligible with a small step. This simplifies to

F (~S) ≈ ∇F (~S∗)∆~S, (3.17)

which is a linear function of ∆~S. Thus, the dynamics of the system near the equilibrium
can be approximated by

τ
d∆~S

dt
=


∆ε̇0x

∆ε̇0y

∆v̇1ρ

∆v̇1θ

∆ε̇1ρ

∆ε̇1θ

 =


−1 0 − cos v1θ v1ρ sin v1θ 0 0
0 −1 − sin v1θ −v1ρ cos v1θ 0 0

(1− β)fs 0 0 0 −β 0
0 (1− β)fs 0 0 0 −β
0 0 1 0 −1 0
0 0 0 1 0 −1




∆ε0x

∆ε0y

∆v1ρ

∆v1θ

∆ε1ρ

∆ε1θ

 .
(3.18)

Suppose we set β=1
2

and fs=1, and choose some input (Vρ, Vθ) = (2, Vθ), and set (Ax,

Ay) to be the corresponding Cartesian input. It can be shown that ~S1 is an equilibrium
solution where

~S1 = [ε0x, ε0y, v1ρ, v1θ, ε1ρ, ε1θ]
T (3.19)

= [0 , 0 , 2 , Vθ , 0 , 0 ]T . (3.20)

At that equilibrium solution, the eigenvalues of the system matrix in (3.18) can be written
in terms of Vθ, 

−1
2

+ 1
2

√
−1− 3 cosVθ +

√
9 cosVθ

2 − 8

−1
2
− 1

2

√
−1− 3 cosVθ +

√
9 cosVθ

2 − 8

−1
2

+ 1
2

√
−1− 3 cosVθ +

√
9 cosVθ

2 − 8

−1
2
− 1

2

√
−1− 3 cosVθ +

√
9 cosVθ

2 − 8

−1
−1


. (3.21)
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Figure 3.3: Instability of the PE system. Plot of equation (3.22) with respect to Vθ on the
x-axis, and the real-part eigenvalue on the y-axis.

It can be shown that the real part of the eigenvalues are negative except the matching
eigenvalue terms in rows 1 and 3

− 1

2
+

1

2

√
−1− 3 cosVθ +

√
9 cosVθ

2 − 8. (3.22)

The eigenvalue for a given Vθ becomes positive in a certain range, as shown in Figure 3.3.
At least one eigenvalue with a positive real part indicates the system would be pushed away
from an equilibrium point given a perturbation from a steady-state solution [28]. For ~S1, a
Vθ value that falls outside of ±π

2
would yield eigenvalues with a positive real part. Hence,

this network would not settle into a state in which the error node encodes a small value.
This PE network is unable to fully cover the non-linear transform of polar-to-Cartesian
co-ordinates.

This led to the design of the symmetric predictive estimator (SPE), which maintains
the stability, individual feed-forward and feed-back weights, local error connections and is
able to learn more complex transformations.
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Chapter 4

Symmetric Predictive Estimators

4.1 Model

The SPE unit is similar to the PE unit, but contains two error nodes instead of one.
The main difference is that the state representation is sent up in a feed-forward manner
rather than residual error. This forms a symmetry between the feed-forward and feed-
back connections. An outline of a SPE network is given in Figure 4.1. Each SPE unit
consists of 3 nodes: ri the state representation, εi the error between the bottom-up signal
and the state representation, and δi the error between top-down prediction and the state
representation. If the state representation ri matches the input from below and above,
then the error nodes εi and δi will be zero.

The equations that govern the dynamics of the SPE unit are

τr
dri
dt

= (1− β)εi − βδi, (4.1)

τε
dεi
dt

= fi−1(ri−1)− ri − εi, (4.2)

τδ
dδi
dt

= ri − gi+1(ri+1)− δi, (4.3)

where τ represents a time constant, and β acts as tuning parameter for feed-forward and
feed-back weights in a similar manner to the PE model described in 3.1.
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Figure 4.1: Two Symmetric Predictive Estimator (SPE) Units connected. The ε node
represents the feed-forward residual error, r represents the state representation, and δ
represents the feed-back residual error. Note that the recurrent connections from ε to
itself, and δ to itself, as described in (4.2) and (4.3), have been omitted from the figure for
simplicity.

4.2 Feed-forward and Feed-back Mappings

Ideally we would like the ability for the SPE to perform non-linear transformations. These
transformations can be modeled using a linear combination of basis functions. Let the
feed-forward transformation be defined as

f(r) =
N∑
n=1

bnφn(r), (4.4)

where r represents the input, φn represents a basis function such as a linear interpolator
or a Gaussian function, bn represents the basis coefficient and n represents an index from
a discrete set of N basis functions and coefficients. The intuition is that a transformation
f(r) can be represented by a linear combination of N basis functions and bn coefficients.
The feed-back transformation would be defined in a similar manner, but using coefficients
labelled as cn

g(r) =
N∑
n=1

cnφn(r). (4.5)
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4.3 Generalized Learning Rule

The SPE requires a generalized learning rule for the f and g functions. The linear combi-
nations of basis functions, along with the delta rule [32] can be used for the development

of a general learning rule. Let ~b define the coefficients for the basis functions such that

~b = (b1, b2, . . . , bN). (4.6)

The equation for the feed-forward mapping (4.4) can be represented in vector form as

f(ri) = ~φ(ri)
T~b. (4.7)

Consider the change in fi in Figure 4.1. The variable εi+1 is governed by

τε
dεi+1

dt
= fi(ri)− ri+1 − εi+1. (4.8)

At steady state the change in εi+1 should be zero such that

dεi+1

dt
= 0, (4.9)

and the value of εi+1 at equilibrium is

εi+1 = fi(ri)− ri+1 (4.10)

= ~φ(ri)
T~b− ri+1. (4.11)

The error for the feed-forward transformation at steady state can be defined by

E(~b) = ‖εi+1‖2, (4.12)

where error is a function of ~b because the basis functions do not change over time, but the
co-efficients do. The learning will facilitate changes in weight coefficients~b. By substituting
(4.11) into (4.12) we can perform gradient descent on the resulting equation where ~φ(ri)

= ~Φ for the sake of clarity,
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∂

∂~b
E(~b) =

∂

∂~b

∥∥∥~ΦT~b− ri+1

∥∥∥2

=
∂

∂~b

[
(~ΦT~b− ri+1)T (~ΦT~b− ri+1)

]
=

∂

∂~b

[
(~bT ~Φ− rTi+1)(~ΦT~b− ri+1)

]
=

∂

∂~b

[
~bT ~Φ~ΦT~b−~bT ~Φri+1 − rTi+1

~ΦT~b+ rTi+1ri+1

]
=

∂

∂~b

[
~bT ~Φ~ΦT~b− 2~bT ~Φri+1 + rTi+1ri+1

]
= 2~Φ~ΦT~b− 2~Φri+1

= 2~Φ(~ΦT~b− ri+1)

= 2~Φεi+1.

(4.13)

Equation (4.13) shows that the change in coefficients ~b will be governed by the lower
level state representation ri and the residual error between lower and upper level, εi+1.
Thus the learning rule for a feed-forward mapping is

γb
d~b

dt
= −Kεi+1φ(ri), (4.14)

where γb represents a time constant, and K acts as learning rate. Notice that if the error
node from above, εi+1, is zero, no changes will occur to ~b, because there is no error in the
feed-forward mapping. Conversely the learning rule for a feed-back mapping is

γc
d~c

dt
= Kδiφ(ri+1), (4.15)

where ~c represents the coefficients for a feed-back connection gi+1. Note that if δi is zero, no
changes will occur to ~c, because there is no error in the feed-back mapping. The similarity
between learning rules (4.14) and (4.15) is expected due to the symmetry of the SPE unit.

These general learning rules can be applied to multi-dimensional transformations by
having a set of independent f and g functions for each dimension the SPE unit is connected
to. In addition, any error based learning rule can be implemented with this system because
the error nodes δ and ε are a part of the SPE structure. For instance, our analytical model
uses a direct implementation of this learning rule, while our NEF implementation uses a
similar method described in Section 5.2.2.
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4.4 Stability Analysis

The Cartesian and polar co-ordinates example from Section 3.3 can be revisited using
the SPE. A network diagram is given in Figure 4.2. The lower-level SPE represents the
Cartesian space where Cartesian co-ordinates are input into the lower-level εl node. The
upper-level SPE represents the polar space, where polar co-ordinates are input into the
higher-level δu node.

Figure 4.2: Cartesian and Polar SPE Units connected together.

Let the lower layer be represented by the subscript l and the upper layer be u, and the
feed-forward mapping represented by f and the feed-back mapping represented by g. The
function f is set to the Cartesian-to-polar transform, while g is set to the polar-to-Cartesian
transform defined as

f(~rl) =

[√
r2
lx + r2

ly

arctan
rly
rlx

]
, (4.16)

g(~ru) =

[
ruρ cos ruθ
ruρ sin ruθ

]
. (4.17)
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Based on Figure 4.2 the dynamics of the two SPE system is governed by equations

τε
dεlx
dt

= Ax − rlx − εlx, (4.18)

τε
dεly
dt

= Ay − ry − εly, (4.19)

τr
drlx
dt

= (1− β)εlx − βδlx, (4.20)

τr
drly
dt

= (1− β)εly − βδly, (4.21)

τδ
dδlx
dt

= rlx − ruρ cos ruθ − δlx, (4.22)

τδ
dδly
dt

= rly − ruρ sin ruθ − δly, (4.23)

τε
dεuρ
dt

=
√
rlx2 + rly2 − ruρ − εuρ, (4.24)

τε
dεuθ
dt

= arctan
rly
rlx
− ruθ − εuθ, (4.25)

τr
druρ
dt

= (1− β)εuρ − βδuρ, (4.26)

τr
druθ
dt

= (1− β)εuθ − βδuθ, (4.27)

τδ
dδuρ
dt

= ruρ − Vρ − δuρ, (4.28)

τδ
dδuθ
dt

= ruθ − Vθ − δuθ, (4.29)

where Ax and Ay represent the Cartesian input while Vρ and Vθ represent the polar top-
down prediction.

Let ~S represent state variables in the system where

~S = [εlx, εly, rlx, rly, δlx, δly, εuρ, εuθ, ruρ, ruθ, δuρ, δuθ]
T . (4.30)

A stability analysis can be produced by finding the eigenvalues of the system matrix for
the linear approximation about an equilibrium. Using the same derivation in Section 3.3
to find the stability, let ~S∗ be an equilibrium point. Let F (~S) represent the system of
dynamic equations, where the linear approximation is

F (~S) ≈ ∇F (~S∗)∆~S. (4.31)

Thus, the dynamics of the SPE system can be approximated by
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Suppose we set β=1
2
, and choose input (Vρ, Vθ) =

(√
A2
x + A2

y, arctan Ay

Ax

)
and (Ax, Ay)

= (Vρ cosVθ, Vρ sinVθ). It can be shown that ~S1 is an equilibrium solution where

~S1 = [εlx, εly, rlx , rly , δlx, δly, εuρ, εuθ, ruρ , ruθ , δuρ, δuθ]
T , (4.33)

= [0 , 0 , Vρ cosVθ, Vρ sinVθ, 0 , 0 , 0 , 0 ,
√
A2
x + A2

y, arctan
Ay
Ax

, 0 , 0 ]T . (4.34)

At that equilibrium solution, the eigenvalues of the system matrix (4.32) are,

−1
2
− 1

2
i

−1
2

+ 1
2
i

−1
2
− 1

2

√
5i

−1
2

+ 1
2

√
5i

−1
2
− 1

2
i

−1
2

+ 1
2
i

−1
2
− 1

2

√
5i

−1
2

+ 1
2

√
5i

−1
−1
−1
−1



. (4.35)

The fact that the real part of all the eigenvalues is negative, indicate the system would be
pushed toward the equilibrium given a perturbation from the steady-state solution [28].
Hence, the SPE network is stable for a network that models a Cartesian-to-polar transform
and vice versa. Contrast this to the PE model in Section 3.3 where only a certain range
of θ values are stable.
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Chapter 5

Implementation

In this chapter, we discuss the software implementation for the analytical and NEF model
for the SPE. The analytical model was used to simulate the system of differential equations,
while the NEF model allows for the implementation into a functional brain model using
spiking neurons. Both implementations were run on a OS X machine with a 2.4Ghz Intel
Core i7 processor and 8 GB of RAM.

5.1 Analytical Model

The SPE unit was built as a Python module that encompasses ε, r and δ as state variables,
and f and g as functional mappings. Experiments were conducted by simulating small time
steps, dt, that would translate into incremental updates to the SPE unit variables using
the differential equations (4.1)-(4.3). Euler’s method was used to approximate the solution
of the system of differential equations. Randomly generated samples of sensory input were
provided to the lower level SPE units as bottom-up input, while the corresponding top-
down predictions were provided to the top-level SPE units as top-down input. A sample
was held for a constant amount of time steps before switching to another sample.

A simulation consists of initializing SPE modules, and linking the SPE units together
with references to neighboring f or g output functions which are utilized to calculate
updates to state variables in (4.2) and (4.3).
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5.1.1 Functional Mappings

Recall that the feed-forward and feed-back mappings f and g were defined as a linear
combination of coefficients and basis functions in Section 4.2 . In the analytical model, the
mappings utilized a “Tent” linear-interpolation-basis function shown in Figure 5.1. The
equation for the basis function is defined as

φn(r) =


(r−Dn−1)

∆D
Dn−1 ≤ r < Dn,

(Dn+1−r)
∆D

Dn ≤ r < Dn+1,

0 otherwise.

(5.1)

This function provides a linear interpolation based on the nearest discrete domain points

Figure 5.1: A linear combination of N “Tent” basis functions, and coefficients can used to
approximate a function.

from D1 to DN . The functional mappings f and g are implemented as a sum of the basis
functions multiplied by coefficients bn and cn respectively. Figure 5.2 shows the bn weight
coefficients for a learned 1-dimensional surface map for the identity function, with size
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Figure 5.2: Example of feed-forward mapping f as a combination of N=20, “tent” basis
functions scaled by bn. The domain limits are from D1 = -1.25 to D20 = 1.25, where ∆D
= 2.5

19
. The mapping was only trained on values ranging from -1 to 1.

N = 20. Because the basis function is a linear interpolation of the two nearest points,
evaluating the value of the function can be done using linear interpolation as well. For
example, given the learned identity function in Figure 5.2, evaluating f at r=0.23 would
result in an interpolation between n=11 and n=12 where D11 ≈ 0.183 and D12 ≈ 0.335.
The result is f(0.23) ≈ 0.229. This allows us to evaluate the f and g functions without
evaluating every domain point, resulting in faster simulation times.

5.2 Neural Engineering Framework (NEF) Model

The SPE model was implemented into Nengo version 2.1.0. Nengo is a Python implemen-
tation of the NEF, which allows for easy construction and simulation of neural models
[3]. The SPE structure could be translated into Nengo with minor adjustments. Refer
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to “Appendix A” for a explanation of how values and connections are represented in the
framework. The state variables ε, r and δ are represented as neural ensembles in Nengo,
while the learning rules for f and g change the decoding values using the Prescribed Error
Sensitivity learning rule [4]. Every node in the analytical model is implemented as neural
ensembles in Nengo. Like the analytical model, a simulation was defined by initializing
the SPE units inside of a Nengo simulation, connecting the SPE units with each other,
and connecting bottom-up and top-down input nodes to the SPEs. The simulation would
run for a given amount of time T , with randomly generated input samples held for a short
period of time.

5.2.1 Structure

Similar to the analytical model, the components of the SPE were combined into a Nengo
SPE module that encompassed the state variables as neural ensembles. The Nengo SPE is
outlined in Figure 5.3. Auxiliary ensembles post εi and post δi were required to facilitate
scaling the εi and δi ensembles by β. In Nengo, the learning rules are turned on and off by
inhibiting the activity of the neurons that supply the error signal. Inhibiting the activity
of εi or δi would subsequently change the state values of εi and δi to zero within the SPE
system, which is not a desired effect. This is circumvented by creating auxilary ensembles
εi copy and δi copy as the error nodes used for learning. The synaptic time constant for
the auxiliary ensembles were set to 0ms in order to remove delay caused by the additional
synapse. These auxiliary ensembles are for testing purposes and are not inherent to the
structure of the SPE.

5.2.2 NEF Learning Rule

The Prescribed Error Sensitivity (PES) learning rule is an error-based learning rule that
is implemented in Nengo [4], that is derived using gradient descent [26]. Adjustments are
made to decoding weights based on an error value. This fits the SPE model nicely as there
are two readily available nodes, ε and δ, that provide the error value.

The general PES learning rule in Nengo is defined in Bekolay et al. [4] as

∆wij = καjej · Eai, (5.2)

where wij represent connection weight from neuron i to neuron j, αj is a scaling factor, ej
is the NEF encoding vector, E is the error term and ai is the activity of the pre-synaptic
neuron.
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Figure 5.3: SPE Unit implemented into Nengo. Each node is implemented as a neural
ensemble in Nengo, where a population of neurons represent the value. Square nodes with
a black border represent auxiliary ensembles that were added to Nengo in addition to the
analytical SPE model. These ensembles are for testing purposes and are not inherent to
the SPE model.

This learning rule shares similar traits to the generalized learning rule for the SPE
presented in Section 4.3 as (4.14). The change in weights wij bear similar meaning to the

weight coefficients of the basis function, ~b and ~c. The error term E is proportionate to error
nodes εi+1 and δi. Changes in the weights for the PES learning rule stem from changes in
the decoding weights multiplied by the encoders. The decoding weights in the NEF are
essentially the same as the weight coefficients of the basis functions.
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Chapter 6

Results and Evaluation

6.1 SPE Analytical Model

The analytical SPE model allows us to quickly prototype and explore the dynamics of an
SPE network. The following experiments investigate the ability for the SPE to learn the
bn and cn coefficients for the f and g function respectively, such that the activity of the
error nodes ε and δ are minimized. In addition we explore how the β parameter affects
the network. At the beginning of each simulation, the bn and cn coefficients are initiated
with random values. While the simulation runs, the coefficient values change based on
the dynamics equations for learning as outlined in (4.14) and (4.15). For the following
experiments in this section, a time-step of dt=0.001ms and a time constant τ=0.05s was
used.

6.1.1 Identity Mapping

A basic test for the SPE units is to see if a 1-dimensional identity mapping can be learned,
and if the network can remain stable. This experiment consists of two SPE units, l and
u, which receive identical input of values ranging from -1 to 1. A network diagram of this
setup is shown in Figure 6.1. The network was trained for a total time of T=300s with
a β=0.5. Samples were held for 5 seconds each, a learning rate of K=10 was used, and
N=20 coefficients were used for both f and g. The domains {D1, D20} for the f and g
transform were set to [-1.2, 1.2].

Table 6.1 shows examples of the input A and V that are held for 5 seconds. Figure
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Table 6.1: Example of input values for A and V for the SPE units to learn the identity
mapping.

Sim. Time Input (A) Input (V )
0.0 0.45 0.45
5.0 -0.11 -0.11
10.0 0.73 0.73
... ... ...

Figure 6.1: Network of SPE units set up to learn the identity mapping. The weighting
parameter β is set to 0.5, which weights the feed-forward and feed-back mappings equally
at 0.5. The A and V inputs represent the bottom-up input and top-down expectation
respectively, where A=V. The identity transformation is the ideal function in which the f
and g functions should learn in order to minimize residual errors.

6.2 shows the first 50 seconds of the simulation (50000 time-steps) and the state represen-
tations rl and ru compared to the input A and V . Observe that the values of each state
representation do not match the input at first, but over time the learning rules drive the
f and g mappings to minimize error. Figure 6.3 shows the progression of the b coefficients
for the f mapping. As the simulation progresses the feed-forward mapping f starts to
resemble the identity function f(x) = x. The same was observed for the g mapping shown
in Figure 6.4.

Figure 6.5 shows the error units used in calculating the coefficients for bn and cn. They
are being driven to zero over time because the f and g mappings are beginning to match
the identity function. We can demonstrate that the network is functional with the learned
mappings. In order to do this, the learning is turned off by not applying the updates to the
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Figure 6.2: The values of each state representation start to match their respective inputs
over time for each new sample.

dynamical system made by (4.14) and (4.15). We can also drive the network in a purely
feed-forward fashion by setting β = 0. Conversely the network can be purely feed-back by
setting β = 1. This allows us to test the dynamics of the network and state representations
as if there were no bottom-up input A, or top-down input V . Figure 6.6 shows that the
system can be driven in a purely feed-forward or feed-back manner and still maintain the
the correct state representation values in both the lower and upper layer.

The identity mapping experiment showed the basic functions of the SPE unit. It has
the ability to perform learning in a continuous manner of changing inputs, and at the same
time learn individual f and g mappings. It is important to note that the g mapping is

30



Figure 6.3: The b coefficents are random at first (left), and as the simulation runs they
are gradually adjusted to minimize error εu (middle). By the end of the simulation the
coefficients start to match the identity function for a range from -1 to 1 (right).

Figure 6.4: The c coefficents are random at first (left), and as the simulation runs they
are gradually adjusted to minimize error δl (middle). By the end of the simulation the
coefficients start to match the identity function for a range from -1 to 1 (right).

not copying the weights of the f mapping and vice-versa. By modulating the β value,
we also show the versatility of a network of SPE units. The correct value of each state
representation can still be generated if one form of input is cut-off from the network, which
is shown in Figure 6.6.
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Figure 6.5: The error nodes δl and εu get closer to zero with each new sample input. This
is because f and g are changing in order to minimize the errors.
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Figure 6.6: When the simulation is run with learning turned on, the network makes weight
adjustments to learn f and g functions. We can then run the simulation with the learning
turned off and we can show how the network reacts with different β values. The first 40
seconds runs with β = 0.5 (balanced weighting). The state representations of both the
lower and upper SPE do a good job at matching the inputs. From 40s to 80s, β = 0 sets
the network into a purely feed-forward mode. During this time the lower SPE matches the
input perfectly, while the upper SPE is slightly off due to the non-ideal f function. The
same can be said about the reverse non-ideal g function. From 80s to 120s, β = 1 and the
lower SPE is slightly off, while the upper SPE matches the input.
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6.1.2 Cartesian and Polar Mapping

A focal point of the SPE model is its ability to learn individual non-linear feed-forward
and feed-back transformations simultaneously, and have the network remain stable. As
discussed in Section 4.4, an example scenario is the Cartesian-to-polar transformation.
The experimental model is shown in Figure 4.2. The network was trained with T=3000s
with a β=0.5. Samples were held for 2.5 seconds each, and a learning rate of K=50,
and N=50 coefficients were used for both f and g. The learning rate K and number of
coefficients n were increased relative to the identity experiment to facilitate learning a more
complex function.

The domains {D1, D50} of the f transform were set to [-1, 1] for both components,
while the domains of the g transform were set to [0, 1] and [-π, π] for the two components.
Table 6.2 shows examples of input used to train the network. The sample input range for
Vρ was from 0 to 1 and Vθ was from -π to π.

Table 6.2: Example input values for Ax, Ay, Vρ and Vθ for the SPE units to learn the
Cartesian and polar mapping.

Sim. Time Input (Ax) Input (Ay) Input (Vρ) Input (Vθ) in rad
0.0 0.478 -0.043 0.480 -0.090
2.5 0.101 -0.164 0.193 -1.022
5.0 -0.430 -0.489 0.651 -2.293
... ... ... ... ...

Figure 6.7 and Figure 6.8 show the growth of the f and g mappings over the course of
the simulation. They begin to resemble the ideal f and g mappings shown in Figure 6.9
and Figure 6.10.

Aside from just a visual inspection of the mapping functions, we are able to quantita-
tively measure how accurate the learned mappings are. One method to measure accuracy
is by calculating the Root Mean Squared Error (RMSE). However, we are simply looking
to see if the error decreases over time, and we are not making comparisons to other RMSE
values. By testing the learned f and g function with sample test inputs across the domain,
we can calculate the RMSE as

RMSE =

√√√√ 1

m

m∑
i=1

(zi − ẑi)2, (6.1)
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Figure 6.7: The f function is a 2-D mapping of two components f0 (top) and f1 (bottom).
The left plots show the b coefficients which are initiated randomly at t=0. At t=500s, the
coefficients start to resemble the Cartesian-to-polar transformation (middle), and at t=2500
the transformations are very close the ideal transformation (right).

where m represents the number of test inputs, and i denotes the index of the test input.
When evaluating the g function, zi represents the Cartesian co-ordinate from the ideal
transform, and ẑi represents the output from g. When evaluating the f function, zi rep-
resents the input Cartesian co-ordinate, while ẑi represents the output polar co-ordinate
from f converted to a Cartesian co-ordinate using the ideal transform. The error in this
experiment is calculated by the Euclidian distance between zi and ẑi. An amount of m=100
test inputs across the domain were used. Figure 6.11 shows the RMSE calculated in 25s
intervals during the simulation. The results show that the RMSE decreases for both f and
g and at a rate proportional to each other.

This experiment demonstrated that the SPE model can simultaneously learn 2-dimensional
non-linear functions over time. The accuracy of the function mappings begin to increase
over time, however, many more sample inputs were required to get close to the ideal map-
ping compared to the amount of samples used to learn the identity function.
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Figure 6.8: The g function is a 2-D mapping of two components g0 (top) and g1 (bottom).
The left plots show the c coefficients which are initiated randomly at t=0. At t=500s,
the coefficients start to resemble the polar-to-Cartesian transformation (middle), and at
t=2500 the transformations are very close the ideal transformation (right).

This experiment contrasts the ability for the SPE model to learn the full range of polar
to Cartesian mappings, compared to the PE model which could not. These results are
expected with what we found in the stability analysis in Section 4.4.
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Figure 6.9: The ideal Cartesian-to-polar transformation for the range of input values. The
first component (left) is the radius which is calculated from the x and y Cartesian co-
ordinates, and the second component (right) is the angle which is calculated using the
arctan function.

Figure 6.10: The ideal polar-to-Cartesian transformation for the range of input values.
The first component (left) is the x co-ordinate which is calculated using r ∗ cos θ, and the
second component (right) is the y co-ordinate which is calculated using the r ∗ sin θ.

37



Figure 6.11: The RMSE for sample inputs to the learned f (left) and g (right) function
over time.
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6.1.3 Exclusive OR

How does the SPE network react if the inputs to the system have a non-invertible f
function? The common logical operator called the exclusive or (XOR) does not have an
inverse operation. Table 6.3 summarizes the XOR operation and the experimental setup for
the SPE system. The SPE model is similar to the Cartesian-to-polar experiment, except
the upper level SPE is 1-dimensional instead of 2-dimensional. The bottom-up input AX
and AY are randomly generated Cartesian points centered at their respective values from
Table 6.3, while the top-down input VX⊕Y is either 1 or -1 depending on the quadrant the
input is in.

It is expected that the lower level state representation rlX and rlY will hold the bottom-
up AX and AY values, and the upper level state representation ru will hold the XOR
value. However, it is clear that no ideal function g exists such that the value of ru can be
transformed into the correct rlX and rlY values.

This experiment demonstrates the SPE’s ability to learn a feed-forward mapping when
an inverse does not exist. This can also be thought of as a method of supervised machine
learning. Because there is no ideal g mapping, the lower SPE will have a non-zero δl which
will consistently change the feed-back coefficients cn. Since it is the feed-forward function
f that will learn the XOR operation, the experiment parameters are tuned such that the
network focuses more on the feed-forward mapping. To do this, we set β = 0.1, leaving a
0.9 weighting on the forward mapping, and 0.1 weighting on the feed-back mapping.

The network was trained for T=3000s, samples were held for 2.5 seconds each with a
learning rate of K=5, The SPE’s used N=25 coefficients for both f and g, with domains
from [-0.5,0.5] for both components of the f function, and [-1.1, 1.1] for the g function.
Figure 6.12 shows the learned f function at the end of the simulation. Note that the
result represents the desired transform set in Table 6.3. The network was able to learn a

Table 6.3: The truth table for XOR operator, and a table showing the input for both the
bottom-up and top-down inputs for the SPE experiment.

XOR Truth Table SPE Input
X Y X ⊕ Y AX AY VX⊕Y
0 0 0 0.25 0.25 -1
1 0 1 -0.25 0.25 1
0 1 1 0.25 -0.25 1
1 1 0 -0.25 -0.25 -1
*± 0 to .1 noise added to values AX and AY .
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representation for f even while the g function could not represent an inverse. We can turn
learning off and set β = 0 and drive the network in a purely feed-forward manner. The
resulting simulation yields upper level state representation values close to the actual XOR
operation. Figure 6.13 shows the ru state given some sample inputs when β = 0.

Figure 6.12: The learned feed-forward mapping f when the SPE is trained using inputs
resembling the XOR operator.

This experiment demonstrated that the SPE model can perform some supervised-
learning tasks. We are able to tune network parameters in such a way to facilitate one-
directional learning. Although the error node δl is never zero, thus constantly modifying
the g function, the SPE network can still generate an accurate feed-forward mapping.
This shows the SPE model can perform a simple supervised-learning task, similar to how
backpropagation can, but with the use of feed-back connections.
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Figure 6.13: The learned feed-forward mapping can be tested by turning learning off,
setting β=0, and driving the network with some sample inputs. The lower SPE unit is
given sample inputs in each Cartesian quadrant (top). The corresponding response is
shown in the upper SPE unit (bottom). Note that like the XOR function, when both rlX
and rlY are the same value (or close to), the output is -1, and when they are opposite, the
output is 1.

6.2 SPE Nengo Model

The analytical model can be easily translated into a spiking neural model by using the
NEF and Nengo. We can run similar experiments from the analytical model in Nengo,
and see how the SPE model performs using a biologically plausible framework. The Nengo
SPE unit shown in Figure 5.3 was configured with 3000 leaky-integrate-fire neurons per
ensemble. The post-synaptic time constants for each connection was set to 0.05 seconds.
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6.2.1 Evaluating Learned Mappings

Evaluating the learned connections in Nengo is not as simple as displaying the bn and cn
coefficients, as it was done in the analytical model. The use of a “Tent” basis function
allowed for local changes, and in turn, allowed the use of interpolation between neighboring
coefficient values in order to determine the value. On the other hand, the NEF uses
biologically inspired neural tuning curves instead. Changes to connection weights affect
the full range of representation, rather than just neighboring points. In order to evaluate
the learned connections, a uniform sample of data points are sent through the learned
connection as input, and the post connection ensemble is probed for the output response.
The corresponding input and response is plotted as a binned plot. An example of the
output is shown in Figure 6.14.

6.2.2 Cartesian and Polar Mapping

Ideally we would like to reproduce the results we saw in the analytical model using Nengo.
Two 2-Dimensional SPE units were set up in a Nengo simulation in a similar fashion as
Figure 4.1, but using Nengo SPE units instead. The radius of the lower SPE unit ensembles
were set to 1, while the radius of the upper SPE unit ensembles were set to the value of π.
The radius refers to the representational space of the ensemble [3].

The learning rate for the PES learning rule was set to 0.0001 and the initial decoding
weights for the f and g connection were set randomly. Multiple simulations were run in se-
ries, and after each simulation, the learned decoding weights were saved. At the beginning
of each simulation, the decoding weights were loaded into the f and g connections. To en-
sure that these decoding weights would work with each subsequent simulation, the random
seed used configure unique properties of each ensemble was carried over, and loaded for the
next simulation in the series. In between simulations, the learned f and g functions would
be probed with a mesh of data points with the method described in subsection 6.2.1.

Figure 6.14 and 6.15 show the f and g mapping after a total simulation time of 4000
seconds. This is similar to the mappings shown in the analytical model, and is close to
the ideal mappings in Figure 6.9 and Figure 6.10. The Nengo mappings look smoother
compared to the analytical mappings, because the output values for the Nengo mappings
are binned (averaged) responses for the input values. In addition, updates from the learning
rule affect the whole range of values instead of just point changes. This experiment showed
that the SPE model can be implemented using a spiking neural model and retain similar
results to the analytical model.
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Figure 6.14: The learned connection in Nengo that represents the f transformation after
a T=4000 second simulation. The points represent the median values of the post-synaptic
output in a 50 by 50 hexagonal bin.

Figure 6.15: The learned connection in Nengo that represents the g transformation after
a T=4000 second simulation.

6.2.3 Exclusive OR

The XOR setup from subsection 6.1.3 was replicated into Nengo. The inputs to the SPE
units were replicated to match the input conditions outlined in Table 6.3. The learning
rate for the PES learning rule was set to 0.001 and the radius of the lower SPE unit was set
to 1, and the upper SPE unit to 1.1. The simulation was run for a total of 1500 seconds.
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Like the analytical experiment, we also set the β value to 0.1 to emphasize learning on the
feed-forward connection. Figure 6.16 shows the learned f mapping.

Figure 6.16: The learned connection in Nengo that represents the f transformation after
a T=1500 second simulation. The points represent the median values of the post-synaptic
output in a 50 by 50 hexagonal bin.

Comparing analytical results in Figure 6.12 to the Nengo model in Figure 6.16, you
can see that the f map in Nengo infers information about regions it has not seen. In fact,
we can see that the neurons are tuned in a way to actually infer the correct XOR value
on points beyond the given inputs. The network was only trained on points at most 0.35
points away from the origin, however the learning rules inferred the correct output values
beyond those points.

This experiment demonstrates that the XOR SPE model can be implemented with
spiking neurons and neural tuning curves. In fact, this showed a distinct advantage of
using tuning curves as a basis function instead of a localized “Tent” function, as it can
infer information about the data beyond the sampled points.
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Chapter 7

Conclusion and Future Work

In this thesis, we explored the dynamics of a generic PE model. We investigated the PE
model using individual feed-forward and feed-back weights and discovered it was unstable
for non-linear functions, such as the Cartesian-to-polar case. To solve this, we investigated
the dynamics of adding an extra error node to the PE unit, to form the SPE unit. We
demonstrated its ability to learn individual feed-forward and feed-back connection weights
to facilitate non-linear transformations. In addition, we explored the use of a β parameter
to weight the strength of feed-forward and feed-back connections which allows for the
network to operate in a purely feed-forward or feed-back basis, or with both forward and
backward connections simultaneously. We also demonstrated the SPE’s ability to perform
a supervised-learning task with the XOR experiment.

There is an abundance of challenges for the SPE model. Our future work is devoted
to creating deeper networks where the SPE model spans multiple levels of hierarchies.
Unfortunately this posed a few problems. With some preliminary tests, we discovered
that the SPE model requires some additional nodes in order to facilitate deeper learning.
We found an issue when testing the SPE network with a middle layer (3 layers in total).
Experiments showed the middle-layer state held a zero value regardless of the inputs. This
un-interesting representation is a result of the middle-layer state being under-constrained.
It was observed that the learned f and g connections would output zero values into the
middle layer. This would generate zero-valued error nodes ε and δ for the middle layer.
Thus, leading to a zero-valued representation.

We are currently exploring methods to add variability to the middle layer representa-
tion. By destabilizing the feed-forward and feed-back connections, the SPE can be pushed
away from a trivial zero-value representation. In particular, the SPE structure can be
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modified to hold a moving average, and a standard deviation value. When the standard
deviation is near-zero over time (over multiple changing samples), it indicates the f and
g functions are not meaningful. Using the standard deviation, the feed-forward and feed-
back connections can be modulated to form non-zero transformations. The intuition is to
destabilize the representation when there is no variation in the representation despite there
being changes to the input.

Another challenge we encountered with the multi-layer network is that the coefficients of
the f and g values would sometimes reach increasingly large values in the analytical model.
We attempted to address this issue by adding smoothing and zero-mean requirements to
the coefficients. Some success was found with basic identity function learning; however, it
is unclear how these additions would work with more complex experiments. In addition,
these concepts may not seem biologically plausible. However, this domain-of-validity issue
is a result of using linear interpolation to evaluate the f and g mappings. This potentially
can be addressed by using other functional representations of the basis function such as
the leaky integrate-and-fire model. These functions are non-zero over an infinite domain,
and provide meaningful feedback even when values extend beyond the desired domain [12].

The next milestone for the SPE network is to create a working network for larger
experiments. For instance, implementing some functionality of the visual cortex like Rao
and Ballard’s [30] experiment, or attempting some machine learning tasks such as digit
recognition, a popular test for artificial neural networks.

Nonetheless, in this thesis, we laid out the framework for a variation on predictive
estimators. We found that adding symmetry to a PE network allows for some functional
advantages. Meanwhile, we discovered that SPEs are fit to be implemented into spiking
neural models using the NEF. It is our hope that the concept and implementation of our
SPE helps extend the theory of predictive coding and predictive estimators in the brain.
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Appendix A

The Neural Engineering Framework

The brain is an incredibly complex organ and little is known about how the billions of
neurons in the brain process information, interact with each other and perform complex
cognition tasks. The Neural Engineering Framework (NEF) provides a base theory to build
brain models and neural simulations that respect biological constraints [12]. The NEF is
implemented by Nengo, a Python module that we used in this thesis to build the spiking
neural models. The NEF is a versatile framework which has produced a large-scale brain
model capable of performing diverse tasks such as digit recognition, motor control and
pattern completion [13].

The three main principles of the NEF are neural representation, transformation and
dynamics. These principles, alongside Nengo, allowed us to implement the SPE model into
a biologically plausible network of spiking neurons.

A.1 Representation

A.1.1 Encoding

Biological experiments revealed that neurons have characteristic responses to stimulus
called tuning curves [18]. The response is often stated as the number of spikes per second.
Data in the NEF is represented by populations of many neurons with distinct tuning curves.
A diverse group of neurons that respond to the same range of stimulus is called a neural
ensemble. The combined neural activity from the ensemble can encompass data such as a
scalar value or vector. This concept is quite prevalent in neuroscience literature [14].
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In the NEF, the neural activity ai of a neuron in response to a stimulus x, is governed
by the encoding equation

ai(x) = Gi

[
αix · ei + J biasi

]
, (A.1)

where each neuron indexed by i, has a preferred response to a stimulus called an encoding
vector ei. The function Gi represents the neuron model such as the leaky-integrate-fire
(LIF) neuron. The input to the Gi function represents the input current to the neuron,
where Gi reflects the neuron’s response to the current, either in the form of a firing rate or
a time-series of spikes. The variable αi represents a gain term, and J biasi represents a bias
term. Note that the activity of the neuron will be negligible if ei is not in the direction of
neural input x. This equation calculates the activity of a neuron when holding the input
current fixed.

A.1.2 Decoding

From (A.1) we are able to determine the neural activity to a stimulus x. But how does
the NEF decode the value represented by the neural activity? This is known as neural
decoding. The decoded value x̂ is calculated by

x̂ =
N∑
i=1

ai(x)di (A.2)

where N is the number of neurons in the ensemble and di represents the decoding weights.
This is simply a linear combination of neural activity ai(x) each multiplied by their re-
spective decoding weight di. An example decoding result is illustrated in Figure A.1. The
decoding weights are solved by minimizing the least squared error over the range of inputs
X. We can sample the ensemble with this range of inputs to generate a matrix A, such
that each column of the matrix represents the ith neuron, and each row represents a dis-
crete input from the representation range. The value stored in A is the neural activity in
response to input X. The optimal values for decoders can be calculated by minimizing the
error E as

E = ‖AD −X‖2 (A.3)

where D represents the decoding weights in vector form. In addition, decoding weights
can be found for a particular transformation f by substituting f(X) for X.
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Figure A.1: Left: A population of neurons (ensemble) using the LIF model. Each neuron
is distinguished by the colour of the tuning curve. The characteristics of each neuron is
defined by their firing rate with respect the input stimulus. Right: A comparison of the
decoded value x̂ and the input x for an ensemble that represents the identity function. The
decoded value is generated from a linear combination of decoders and the neural activity
of the neurons in the ensemble.

A.1.3 Neuron Models and Temporal Representation

The LIF neuron can be used to represent the single cell model and function Gi. It is also
the model that is used in our Nengo simulations. The membrane potential V , of the LIF
neuron is goverened by the differential equation

dV

dt
=

1

τRC

[
RJ − V

]
(A.4)

where τRC is the neuron membrane time constant, R is the membrane resistance and J is
the input current. The cell model allows us to gauge a neuron’s firing rate given constant
input current J . The model is governed by the equation

Gi(J) =


1

τref−τRC ln
(

1−Jth
J

) J > Jth,

0 otherwise,
(A.5)
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where τref is the refractory period of the neuron, τRC is the neuron membrane time constant
and Jth is the threshold voltage for the neuron. Figure A.1 shows the tuning curves for an
example population of LIF neurons.

The premise of the LIF neuron is that when the membrane potential reaches a certain
voltage via exchange of neurotransmitters, the neuron releases an action potential (spike)
[12]. The NEF can perform temporal representation of neurons, in other words, time-
dependent spikes instead of firing rates. When an LIF neuron spikes, we can think of its
output as a series of as a time-shifted Dirac-delta functions, called a “spike train”. When
the spike train arrives at a synapse, it takes time for the signal to propagate to the next
neuron. This process is modeled by convolving the spike train with a generic post-synaptic
filter h(t). Hence, the post-synaptic current induced from neuron i is proportional to
h(t) ∗ ai(x(t)). By applying the decoding weights and summing up over all the neurons in
an ensemble, it allows for the decoding of the dynamic value represented by the population
of spiking neurons,

x̂(t) =
N∑
i=1

h(t) ∗ ai(x(t))di (A.6)

where x(t) is the time-dependent input to the population. This allows the NEF to simulate
the spike patterns of neurons often seen in biological data.

A.2 Transformation

Transformation describes the process of how distinct ensembles communicate data to each
other. Given two populations of neurons P and Q, we would like a method to communicate
data from P to Q and perform an arbitrary transformation. In a general sense, this involves
decoding the value of the arbitrary function from P and using it to encode the value to Q.
This process can be simplified as weights between ensembles

wij = αjej · di (A.7)

where i represents neuron indicies of P , j represents neuron indicies of Q and αj represents
gain terms for Q. Note that this is simply the outer product between the encoders ej and
the decoders dj. This allows us to formulate the complete all-to-all weight matrix between
encoders and decoders.
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A.3 Dynamics

There are dynamics built into the NEF model that simulate the time dependencies of the
connections between neurons. Like the real world, synapse connections between neurons
are not instantaneous, and introduce a time-delay. This post-synaptic current is modeled
by using a post-synaptic filter h(t). These time-delays introduce some interesting dynamics.

A recurrent connection exists when the neural ensemble(s) are connected and form a
cycle. A simple example is when one ensemble is connected to itself. In the NEF this
introduces the ability to implement differential equations of the form of

τs
dx

dt
= f(x(t))− x(t), (A.8)

where τs is a synaptic time constant. For instance, an integrator can be implemented such
that the ensemble retains its value when the input is zero, and adds the input to the value
when the input is non-zero. The equation of an integrator is modeled by

dx

dt
= f(x(t)), (A.9)

and can be implemented by having a recurrent connection with a transformation that
outputs τsf(x(t)) + x(t). This recurrent connection is actually used in the SPE model for
the state representation ri. If the error values εi=0 and δi=0, the input values to ri are zero
and therefore retains its state representation value. Any non-zero error will subsequently
change the state representation value.
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Appendix B

End-stopping Phenomena in the
Visual Cortex

Rao and Ballard performed an experiment that involved inputting natural images to a
PE network [30]. Examples of natural images include forests, lakes and animals in their
natural habitats. A majority of the images consisted of pixels that are strongly correlated
in a dominant orientation (e.g. horizontal). For example, an image of trees had a strong
vertical correlation of pixel intensities. Sampled image patches of 16 x 16 pixels provided
bottom-up input to their network. The lower-level PE units were connected in a hierarchy
such that the upper-level PE unit’s image patch spanned three overlapping image patches
(16 x 26).

While exposing the network to many different sample images, the PE network changed
connection weights in order to minimize the residual error between PE layers. The re-
duction in residual error resulted in changes to connection weights that predicted mostly
horizontal, vertical and diagonal lines.

They were able to use this result to explain biological phenomenon seen in the visual
cortex. For example, a neuron in the visual cortex that is prone to exhibit neural activity
only when the subject is exposed to horizontally oriented bars, is deemed a neuron that
is tuned for horizontal stimulus. As the width of the horizontal bar increases, so does the
observed spiking rates of the neuron. However, some neurons exhibit a near-zero spiking
rate when the bar extends beyond the neuron’s receptive field. This phenomenon is known
as end-stopping and is shown in B.1 [17].

Rao and Ballard suggest there must be some external influence to the neuron that
changes its behaviour. They suggest a theory that feed-back activity from the upper levels

57



of a visual hierarchy inhibit the neural activity of the lower level. Explained using the PE
model, groups of neighboring lower-level PE units receive a prediction from an upper-level
unit. For example, assume the upper-level unit sends a prediction to the lower-level units
that the input is a horizontal bar that spans the beyond width of the lower-level units. The
residual error between the lower and upper-level units begin to decrease when a horizontal
bar input begins to span the neighborhood of lower-level units. The reduction in neural
activity is explained by a correct top-down prediction.

When the PE network was shown natural images after it was trained, the PE model
generated similar neural responses to those seen in cortical neurons of a squirrel monkey
[34]. The end-stopping phenomenon can be eliminated by freezing a higher layer of a
squirrel monkey’s visual cortex. A similar result occured when eliminating the feed-back
from the PE model. This suggests that feed-back from the upper levels of the visual
hierarchy play a role in the neural activity of lower-level neurons.

Figure B.1: Reproduced from figure in Chapter 4, Page 22 of [17]. Illustration of the end-
stopping cells found in the visual cortex. When the slit of light (solid diagonal) exceeds the
receptor field of the cell (grey rectangle), the firing rate is reduced to zero [17]. Rao and
Ballard introduce a mechanism using predictive estimators to explain this phenomenon
[30].
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