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ABSTRACT 

Renewable energy has been increasing as the demand for cleaner energy increases. The 

introduction of renewable energy into the power grid has however introduced supply and demand 

discontinuities due to the intermittency of renewables. Energy storage implemented alongside 

renewables aids in the management of energy as it allows for load shifting of the intermittent 

energy to optimize its use and better match the supply and demand profiles.  

Energy storage can come in many forms such as batteries or Power-to-gas systems. Batteries 

offer small scale solutions which can be cost effective if repurposed electric vehicle batteries are 

used. Hydrogen can also be produced using excess electricity which can then be stored or 

injected into the natural gas grid. Modeling through a MATLAB model of different scales of 

storage for both batteries and hydrogen demonstrate the economic viability of these projects as 

well as the environmental impact. Policies are also examined and recommendations made 

including: ending the Feed-in Tariff program, providing preferential electricity pricing to energy 

storage projects, and providing an equivalent ethanol subsidy to hydrogen of 79.5 cents per 

kilogram.  
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Chapter 1:  INTRODUCTION 

The electrical system is integral to the daily lives of the modern society. This makes electricity 

a necessity for a jurisdiction to function and the economy to prosper. The type of electricity 

generation that is used, however, has caused contentious debates. Politicians and consumers must 

now way additional factors such emissions and efficiency in decision making for new power 

generation projects. 

Power generation started with water and coal, producing power either from water flow or steam 

heated by coal. These methods of producing electricity produced significant emissions produce 

environmental and health hazards. The Clean Air Task Force has estimated that in 2010, some 

United States jurisdictions mortality rates that could be attributed to coal power plants per 

100,000 persons was greater than 20 people [1]. Coal is also widely known as the biggest emitter 

for power generation and contains a plethora of other harmful chemicals.  

With the knowledge of greenhouse gas emissions and global warming, new power generation 

sources were needed. Solar and wind have begun to increasingly replace coal and other emitting 

electricity sources, with coal being phased out of Ontario in 2014 [2]. This has created an overall 

clean power grid which contains 71% zero or near zero emission power generation sources such 

as nuclear, hydro, wind, and solar [2].  

In Ontario the use of clean, intermittent renewables and nuclear power has caused instability in 

the jurisdictions of the power grid. This can be seen be examining the Hourly Ontario Electricity 

Price (HOEP). The non-weighted average electricity price, that is to say not taking into 

consideration the amount of electricity produced each hour, has an average of approximately $53 

per MWh previous to 2009, which drops to $28 per MWh after the introduction of the Feed-in-
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Tariff program [3] [4]. This program, part of the Ontario Green Energy Act, provides a 

contracted price for solar and wind electricity to be added to the grid. These renewable energies 

are intermittent and do not always create electricity when needed which drives down the market 

price of electricity. Nuclear power also cannot deviate sufficiently to offset production further 

driving down market prices. This has caused the price of electricity to be 0 or negative 10.7 and 

13.0 percent of the hours in 2014 and 2015 respectively [4]. It has also caused higher maximums, 

lower minimums, and higher variability, causing the standard deviation to reach a high of 47 in 

2014 from a low of 19 only two years earlier [5].  

 
Figure 1: Hourly Ontario Electricity Price with average both before and after introduction of the Feed-in-

Tariff program 

 

When the price of electricity is negative, energy is either being wasted or sold to neighboring 

jurisdictions at a negative price. When the energy is sold at a negative price, it means Ontario is 

paying the jurisdiction to take the electricity. To offset the losses a Global Adjustment price is 

calculated and added to the market price. This price is however only paid by customers in the 

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

2004 2006 2008 2010 2012 2014 2016

H
O
EP
	(
$/
M
W
h)

Year



3 

 

jurisdiction. This is economically unbeneficial to Ontario and may be one of the reasons for the 

increase in electricity prices.  

In order to better match the power generation to demand, energy storage can be implemented 

into the power grid. This can be in the form of batteries, flywheels, pumped hydro, compressed 

air, Power-to-gas, and many others. These energy storage projects allow for storage when 

demand is low and then allows power to be injected into the grid when demand is high. These 

systems are another tool for a jurisdiction to monitor, control, and optimize the efficiency and 

the effectiveness of the power grid. 

1.1  Scope and Objective of Thesis 
In this thesis the author examines different energy storage systems and the accompanying 

policies that might be required to make them financially viable. This is especially important as 

authors are demonstrating the technology to be technically viable, however the implementation 

into the grids can differ between jurisdictions due to plethora of market types and policy each 

has. This work therefore specifically examines Ontario, Canada for data, analysis, and policy. 

The objective is to determine policy recommendations that are sustainable, allow for energy 

storage, and promote renewable and low emitting electricity generation sources to further reduce 

the greenhouse gas emissions produced by a jurisdiction. 

In this thesis the effectiveness of policies or programs are examined through economic, 

environmental, and technical analysis of energy storage systems. This is conducted on multiple 

energy storage systems in order to make broad but definitive policy arguments in order to better 

direct the implementation of energy storage in Ontario. 
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1.2  Thesis Outline 
In this thesis, two different forms of energy storage are examined. In, Chapter 2 batteries for 

energy storage are examined in the integration of a green energy hub which includes solar and 

wind power generation. This chapter is used to examine the Feed In-Tariff program in Ontario 

and the use of repurposed batteries. The content was originally published in the International 

Journal of Process Systems Engineering under the title “Economic and environmental analysis 

of a green energy hub with energy storage under fixed and variable pricing structures” in 2015. 

In Chapters 3 and 4 an alternative energy storage type is utilized. Hydrogen for Power-to-gas 

systems are examined to determine the pricing they would need to achieve in order to be 

integrated into the grid. Chapter 3 focuses on the pricing of electricity (input) and hydrogen 

(output) utilizing existing pricing options. The content was originally published in the 

International Journal of Environmental Studies under the title “Market mechanisms in power-to-

gas systems” in 2016. Chapter 4 shifts focus to incentives, specifically examining incentives in 

the transportation sector for ethanol. In both Chapters policy on why these pricing mechanisms 

are required and why the government should implement them are discussed. 

In Chapter 5 the results of the papers are discussed along with their conclusions. The policy 

implications are focused on as they are the important results from this thesis. The policy is for 

Power-to-gas in particular remains as one of the final barriers to implementation and the 

widespread use of energy storage and clean technology.  

1.3  Background 

1.3.1  Energy Hubs 

An energy hub can be defined by a group of connected infrastructure in which energy can be 

converted, conditioned, or stored in order to optimize efficiency [6]. These systems manage 

energy by integrating all forms of energy generation and adjusting, storing, or modifying the 
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energy to be used as an output including the management of electricity and heat [7]. Physically, 

a hub consists of units that convert and regulate the flow of energy, as well as storage units such 

as tanks and/or batteries [8]. The hubs are bi-directionally connected to the power grid and can 

both purchase and sell electricity to the grid in any given hour by utilizing smart grid control 

methods to efficiently control the flow of energy. Mathematically, they can be modeled through 

a series of equations and be controlled through various optimization and control loops. 

Practically, energy hubs can be used to better manage the building load and to allow it to better 

mirror the energy profile given by wind and solar sources. 

An energy hub can control the energy generated from local sources, ranging the combustion of 

gas to woodchips [9]. Installing new energy generation technologies can, however, be extremely 

costly. A system that focuses on pre-existing energy sources already in use by the building is a 

cost-effective component that can be added to an existing commercial building by forming an 

intermediary stage between the building and the grid [10]. 

It has been shown that electric vehicle (EV) batteries are able to provide an effective energy 

storage component to energy hubs, provided that firstly, the discrepancy between energy supply 

and demand is significant and secondly, a curve control market is used [11]. Previous simulations 

consider theoretical cost savings and load profiles but did not focus on the energy transfer 

associated with storage.  

In this thesis, a green energy hub (GEH) which utilizes solar and wind energy as well as energy 

storage from repurposed lithium ion batteries (LIBs) will be explored.  

1.3.2  Energy Storage 

Due to a lack of energy storage on the Ontario electricity grid, all electricity must be 

instantaneously consumed or exported to neighbouring jurisdictions. This is an issue as 
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renewable energy does not produce electricity based on demand but rather based on energy 

availability. As a result of this disjunction between supply and demand, there are times, mostly 

at night, when the supply can not be further lowered causing energy exporting needs to increase. 

This need for electricity consumption at times is so great and it exceeds Ontario’s demand by a 

significant degree it can cause the Hourly Ontario Energy Price (HOEP) to become negative [5]. 

Such pricing necessitates that Ontario pay to export the energy, in addition to the initial cost of 

its generation. 

The seasonal and daily variation in the energy demand of a commercial building often does not 

coincide with the variation and intermittency of renewable energy availability [10]. For example, 

a wind turbine generator profile displays peak generation in the mornings and evenings. This 

contrasts with that of a building’s consumption, which has a year round peak during the day [12] 

[13]. The discrepancy between instantaneous energy demand and generation causes electricity 

to be bought and sold at various market values throughout the day.  

1.3.2.1  Battery Storage 

It is estimated that a Lithium Ion Batter (LIB) from an EV could provide a total of 20 years of 

service [14].  This implies that after 10 years of service in a vehicle, an additional 10 years would 

remain to provide a means of storing energy in a stationary application.  Furthermore, once 

removed from an EV, these batteries retain approximately 80% of their original capacity, 

referred to as an 80% state of health (SOH) [15] [16].  It is also reasonable to expect one way 

charging and discharging efficiencies to each be 80% [11].  This means that, with respect to the 

available capacity, charging will require 20% more energy and discharging will be able to deliver 

80% of the stored energy.  The round trip efficiency for energy transfer to and from the battery 



7 

 

would thus be 64%.  Lastly, the battery pack could be cycled to a maximum depth of discharge 

(DOD) of 80% to avoid deterioration during secondary use [15].  

Considering these figures for the SOH, DOD, and other efficiencies 51.2% (SOH x DOD x 

Discharge Efficiency) of the original capacity is capable of being delivered from the battery to 

supply the loads. This means that a LIB with an original capacity of 24kWh would require 

19.2kWh to reach a maximum storage level of 15.4kWh, which would be able to supply 12.3kWh 

to the energy hub when required. 

1.3.2.2  Power-to-gas Systems 

In many developed nations, there is a push to increase the use of renewable power generation. 

In Ontario specifically, this need is coupled with the operational demand of managing surplus 

base load power that is generated by the province’s large nuclear capacity. Power-to-gas offers 

a system-wide energy storage system, which can store excess surplus power and provided needed 

energy storage to provide consistent output from renewable power sources. Power-to-gas is 

implemented with electrolyzers, which generate hydrogen with surplus or renewable power. This 

provides grid stabilization, seasonal storage of bulk power, geographic transmission of energy 

and dispatchable regeneration of distributed renewable energy [17].  A key advantage of Power-

to-gas is the ability to move energy between the electrical and natural gas systems. The 

conversion of renewable and surplus power to hydrogen through Power-to-gas optimizes the 

natural gas and electricity networks and limits energy waste and exports. In addition to these 

benefits, the use of Power-to-gas provides increases the capacity and efficiency of the electrical 

system without as large a capital cost. A Power-to-gas system can also move energy, in the form 

of a mixed gas, from one location to another, where the gas can be used to generated electricity 

or heat, more effectively. In this example and many others, the natural gas infrastructure can 
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offer the electricity system a large, distributed, energy network that can transport energy from 

one area of the province, or nation, to another while shifting the time between generation and 

end-use from hours to days or months. In Figure 1 below the Power-to-gas, system includes 

multiple sections: energy supply, energy conversion, the transmission and storage systems, 

distribution, conversion and final use. 

When examining the production, or well-to-pump energy consumption and emissions, of 

hydrogen it was shown that, there is a great dependence on both the method of creating hydrogen 

and the method of generating electricity when electrolysis is used [18]. This shows that using 

renewable energy helps significantly reduce emissions and energy consumption, especially over 

hydrogen created through Steam Methane Reformation. Pervious work has shown that hydrogen 

can be used as a mechanism for energy storage and have been compared to other storage means 

[19]. In the Power-to-gas mechanism, hydrogen is created from a surplus of energy from often 

over 20% renewable sources when the generation is greater of electricity by the grid is greater 

than the demand [20]. The energy used to power electrolyzers from grid electricity can be used 

as a method of matching consumption and demand through the provision of ancillary services 

[19], [20]. Once the hydrogen is produced, it can travel along various pathways. The hydrogen 

can be directly passed on as a product for industrial applications or transportation (hydrogen fuel 

cells). Should the hydrogen not immediately be required the hydrogen can be compressed and 

stored for later use, completing something commonly called load shifting [19], [20], [21]. 

Alternatively, the hydrogen can safely enter the natural gas network, maintaining a maximum 

volume concentration of 5% [22] 
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Figure 2: Basic Concept Illustration for Power-to-Gas, Adapted from [23] 
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stored on-site or injected into the natural gas pipelines to create Hydrogen Enriched Natural Gas 
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industrial or transportation use. In places where seasonal energy demand varies due, such as 

Canada, seasonal energy storage and efficient energy distribution is required.  

Power-to-gas, in addition to providing services and flexibility to the energy grids also produces 

an important fuel, hydrogen. Hydrogen is used in the hydrocarbon industry for semiconductors, 

coolants, as an additive in gasoline and could be used in the hydrogen economy as fuel cell 

vehicles are being released by major vehicle companies in the coming years [24]. This potentially 

low cost alternative eliminates the need for Steam Methane Reforming (SMR), which runs on 

carbon-rich fuels and produces CO2. The emissions for production are zero and only emissions 

from the production of electricity would be considered. If the production of electricity for a 

Supply Conversion Conditionning & 

Transportation

Storage Conversion End-Use

Power Grid Power Grid

NG Grid NG Grid

H2 Need
Electrolyzer

Pipeline & 

Compressor

Storage 

Reservoir

Separator

Gas Turbine

1

2 3 5

4

6

Bio-Material Bio-Digestor
Gas 

Clean-up

Power

Hydrogen

Mixture

Natural Gas

Renewable 

Natural Gas



10 

 

jurisdiction is largely nuclear, wind, and solar, which accounts for approximately 60% in 

Ontario, Canada, then the emissions are reduced even further.  

1.3.2.3  Existing Power-to-gas Projects 

There are a number of Power-to-gas demonstration projects globally, with some producing 

hydrogen to be stored in tanks onsite and others using the natural gas infrastructure to distribute 

and store the gas [25]. An example of a Power-to-gas plant using the natural gas pipelines is a 

2MW storage facility in Falkenhagen, Germany, which was developed by E-ON in partnership 

with Hydrogenics and began operation in 2013 [26]. The plant uses surplus energy from 

renewable energy sources to produce hydrogen and injects it into a natural gas (NG) pipeline 

network. Under full operation, the facility feeds approximately 360 Nm3 per hour of hydrogen 

into the NG pipeline system. With the transition of the German power generation system to an 

increasing amount of renewable power, there are over 30 other demonstration projects in various 

stages of implementation [27]. In Ontario a 2 MW demonstration project for Power-to-gas is 

also under development [28].  

1.3.3  Industrial and Commercial Sector Energy 

According to Statistics Canada’s most recent Energy Statistics Handbook, the commercial and 

institutional sectors consumed 11.1%, or 1.3 x 109 Wh, of the total energy produced in Canada 

in 2009 [29]. Solar and wind energy have been utilized by these sectors to offset some of their 

high-energy demands. Wind power alone has increased in Ontario from 0.9% to 3.4% from 2008 

to 2013 [9]. The increase in power output from renewable sources has helped to decrease the 

dependence on coal from 14.5% to 2.1% within the same time period [9]. The provincial goal of 

eliminating coal power by December 31, 2014 will be supported by the 1.3x106W of commercial 

wind power commissioned by the Ontario provincial government in this year [9] [30].  
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1.3.4  Transportation Sector Energy and Emissions 

The transportation energy used by consumers has increased, on average, by 1.9% in Canada from 

1990-2011, with a change of -1.5%, 4.1%, and 1.6% for 2009, 2010, and 2011 respectively [31] 

[32]. The increase comes despite the energy reductions achieved by car manufacturers whom 

have been able to achieve a decline in both energy use and energy intensity of 13.4% and 20.7% 

to 1.82 MJ per passenger-km. There are two causes of energy increase: an increase in consumers’ 

km driven and the increased use of freight vehicles due to online ordering. The energy intensity 

of freight has risen dramatically over the 20-year period. The increase from medium, heavy and 

light freight vehicles ranges from 19.4% to 168.7%, helping the freight intensity to increase by 

14.9% to 1.36 MJ per km. With these large energy increases, academia, industry, and 

governments are attempting to curb energy consumption during the use phase vehicle as well as 

reducing the well-to-pump emissions related to vehicle fuel. Government programs like the 

Corporate Average Fuel Economy (CAFÉ) standards in the United States, which target light to 

heavy-duty vehicles, are also being used in Canada. These energy-efficiency reduction strategies 

will help decrease the secondary energy use in transportation, meaning the energy consumed 

onboard the vehicle.  

Governments are also working to reduce both primary energy and emissions associated with 

transportation fuel. To this end, different energy sources are being examined for the use in 

transportation systems, such as biofuels, hydrogen, and electricity. These fuels vary in their 

implementation, efficiency and emissions. Biofuels, for example, can largely be relatively easily 

with only minor modifications of an internal combustion engine and fuel systems. Although 

biofuels operate with a minimal energy reduction, they can reduce well-to-wheel emissions. 

Electricity and hydrogen however vary with how they are generated and require the powertrain 

of a vehicle to be modified to either partially or wholly run off this energy source.  
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1.3.4.1  Alternative engine fueling 

By making engine modifications an engine can be made to run on a gas, an alternative liquid 

fuel, a blend of traditional and alternative liquid fuel, or a combination of gas and liquid fuels. 

This work focuses on blended fuels and dual fuels, specifically ethanol and biodiesel blended 

fuels and hydrogen diesel blended fuels.  

1.3.4.1.1  Ethanol 

Ethanol has been heavily researched and has multiple benefits in its production and vehicle 

implementation. Ethanol is derived from a variety of sources and can be categorized into sugar-

based and cellulose-based ethanol. Sugar-based ethanol is produced from sugar cane or corn 

whereas cellulose ethanol comes from plants like switch grass. In addition to the different 

sources, there is also a stark difference in the energy and emissions of ethanol production from 

starch and cellulose [18]. For an 85% ethanol blend, starch-derived ethanol varies in energy input 

between 1.5 and 1.8 J of input per J of fuel while cellulose derived ethanol varies between 1.9 

and 2.5 J of input per J of fuel [18]. For the same blends, the well-to-wheel emissions of cellulose 

ethanol are more favorable ranging between 10 and 30 g CO2 eq per MJ of fuel while starch based 

ethanol ranges from 15 to 85 g CO2e per MJ of fuel. Ethanol is combined with gasoline in various 

ratios, and combusted in an internal combustion engine with minor engine modifications. 

Ethanol has been shown to reduce both hydrocarbon and nitrous oxide emissions [33]. Carbon 

dioxide emissions are reduced by 1.4% to 5% during typical vehicle operation and it has 

therefore been noted that the real potential for emissions reduction comes from the production 

or well-to-pump emissions associated with ethanol [34]. It is important to note however that 

slight increases in urban emissions was also seen [34]. 
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1.3.4.1.2  Biodiesel 

Biodiesel is an alternative biofuel that can be combined with regular diesel in an effort to displace 

traditional petroleum products. Biodiesel is created by combining oils such as soybean oil, with 

regular diesel in a ratio of up to 20% (B20). The energy requirements for biodiesel are less than 

that of ethanol-based fuels however have lower differences between blend percentages. The 

energy required for the creation of biodiesel ranges from 1.2J to 1.3J of input per J of fuel for 

0% to 20% biofuels, respectively [18]. The carbon emissions are reduced however with the 

addition of biodiesel and are reduced by up to 8g CO2e per MJ of fuel [18].  Vehicle energy and 

emissions of biodiesel do show positive results for criteria emissions. Using B20, particulate 

matter emissions are reduced by approximately 12%, while hydrocarbon emissions are reduced 

by 20% [35]. Nitrous oxide emissions are however known to increase with biodiesel [35]. There 

are marginal changes to the engine efficiency with biodiesel, showing again how the benefits of 

biodiesel are largely in the production of the fuel and not the onboard operation [36].  

1.3.4.1.3  Hydrogen 

Hydrogen is typically used to power fuel-cell designed vehicles; however, hydrogen is also used 

to fuel an engine in combination with diesel in a duel fuel system, where hydrogen is added to 

the air before the cylinder, to aid in combustion. Hydrogen can be created through a number of 

technologies including thermoelectric composition, electrolysis or steam methane reformation. 

When examining the well-to-pump energy requirements, which includes energy in the finished 

fuel, the well-to-wheel energy varies from 1.6J to 2.9J of input per J of fuel [18]. This large range 

covers electrolytic, gasified, and reformed hydrogen; however, the examination of different types 

of hydrogen production is not the cause of the large range of energy inputs. When looking at just 

gaseous hydrogen, both the smallest and the largest energy requirements are from electrolysis 

process. This is because using non-renewable fuels uses much more energy than renewable 
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energy sources. Using renewable fuels in electrolysis produces the best energy results while 

biomass produces the best emission results, yielding wheel to tank emissions of 10g of CO2e per 

MJ of fuel.  

When hydrogen is injected into a diesel engine, there are multiple benefits as it is a carbon-free 

fuel. The addition of hydrogen has been shown to reduce soot, a significant emission of diesel 

engines, by up to 40% [37]. Due to the higher burning temperature of hydrogen, however, nitrous 

oxide emissions tend to increase [38] with hydrogen dual-fuels [37]. There is, in addition to the 

lack of CO2 emissions, an efficiency increase of up to 37% when compared to a conventional 

diesel engine [39]. 

1.3.5  Carbon Accounting 

Greenhouse gas (GHG) emissions from power generation form the third largest emitting sector 

in Canada at 86Mt in 2012 [29]. GHG emission reporting has historically been associated with 

the energy producer [40]. However, companies who are looking for emission reductions are now 

looking at GHG emissions holistically and including emissions from consumption from sources 

such as electricity [41]. This holistic approach gives companies more opportunities to reduce 

their carbon footprint.  

Electricity consumption can be a major source of emission reduction for companies that do not 

directly emit GHGs [41]. The emission governing body however cannot count consumption-

based emissions to avoid double counting [41]. This makes policy more difficult as emission 

reduction is targeted at one front and not both [40]. A three-scope system has been proposed as 

a standard to be able to account for all emissions while not double counting [41].  

Emissions that are directly produced by a company would be accounted for under Scope 1 

emissions [41]. These emissions can be directly controlled and reduced by means of more 
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efficient or less producing systems. This could be from an electricity generating company 

changing its electricity mix to cleaner sources. Emissions that are indirectly emitted based on the 

consumption of electricity would be accounted for under Scope 2 emissions [41]. These 

emissions can only be minimized through a reduction in the electricity consumed. Scope 3 

emissions are all other indirect emissions [41].  

With the scope of all emissions outlined, the scope 1 and 2 emissions can be calculated from the 

production and consumption of electricity based on source. These calculations could be 

important for government programs for carbon accounting, such as Cap and Trade or Carbon 

Tax. 

1.3.6  Government Policy and Programs 

1.3.6.1  Feed-in-Tariff Program 

Wind and solar power have also been increased through programs in Ontario such as the Feed-

in Tariff (FIT) program. The FIT program is a project that may bring 11x106W of non-hydro 

renewable power to the province [42]. The program operates by utilizing localized energy hubs 

which are macroscopic systems that integrate all energy forms (electrical, gas, heating) into a 

single system and provides management control for the efficient production and consumption of 

energy within the scope [7]. The projects in question have a power capacity greater than 

10x106W and are offered a fixed price for the electricity they provide [43]. The contracted 

pricing is, however, typically above the market price of electricity. In fact, a government report 

has deemed the price to be too high and had called for a reduction of up to 20% in 2012 [42]. 

The FIT price for solar electricity has, as of January 2014, been reduced by approximately 50% 

from its original selling price [43].  
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1.3.6.2  Government Incentives 

Governments are attempting to gain energy independence through the examination of alternative 

fuels. This push is largely seen through government programs, which offer incentives for the 

creation of biofuels. Under the Clean Air Act, the United States Environmental Protection 

Agency (EPA) developed a preliminary Renewable Fuel Standard (RFS) in 2005 under which 

the rules for the mandatory blending of biofuels with gasoline are set [44]. The advantages of 

blending renewable ethanol with gasoline are that there is a resultant lowering of emissions and 

that vehicles in the North American are produced to handle ethanol concentrations of up to 10% 

in their fuel. In the United States, about half of the available gasoline available contains 

renewable ethanol. However, there are troubles distributing ethanol due to the tendency of 

ethanol to cause corrosion in pipelines and the need to send ethanol from Midwestern America 

outward – the opposite direction that oil is transported. In order to meet the standards set by the 

EPA, the various renewable fuels must generate significant savings over the gasoline and diesel 

that they replace. Conventional biofuels, such as corn or sorghum-based ethanols are intended 

to provide a 20% life cycle reduction in emissions. [45] 

In the United States of America (USA), the promotion of renewable biofuels has been undertaken 

by the use of the RFS. The RFS, which passed in 2007, is used by the United States’ 

Environmental Protection Agency (EPA) to set out how much of each type of ethanol must be 

blended with each barrel of gasoline and how much biomass diesel will be needed. Using these 

values, the EPA can set out achievable greenhouse gas emission reductions.  

The production of the various biofuels is supported with tax credits on a per gallon basis. For 

example, the Cellulosic Biofuels Production Tax Credit, which expired at the end of 2012, was 

meant for all types of energy producers and is worth a value of $1.01 per U.S. gallon of eligible 
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biofuel produced. The value of these tax credits is expected to reach over $20 billion dollars by 

2020 [46]. The success of these standards in reducing overall emissions is debatable. Bento et 

al. [47] suggests that the performance of the RFS in reducing emissions is strongly tied to the 

ability of the policy regime to account for carbon leakage. Of specific issue for the generation of 

renewable biofuels is whether the emissions associated with developing the land to harvest these 

crops for fuel, as well as those for food, causes a net-increase in greenhouse gas emissions. One 

approach to this problem is to utilize a multi-sectoral approach for overall greenhouse gas 

emissions reductions. 

1.3.6.3  Cap and Trade 

Cap and trade is another government program that can be used to reduce emissions [48]. It does 

this by setting a limit to the emissions that an individual company can produce [49]. If the 

company can reduce its emissions that it can receive credits for the reduction. These reductions 

can then be sold to companies who are unable to meet the target. This produces a financial 

incentive for both parties to reduce emission and the system has been implemented in multiple 

jurisdictions within North America [50]. 

Cap and trade is an important reason to consider energy storage as the emission reduction 

potential of the system is high, as demonstrated in Chapter 4. Energy storage can allow the for 

the expansion of renewable zero emission energy sources. In the case of Power-to-gas systems, 

clean electrolytic hydrogen can be created from renewable energy to displace steam methane 

reformation. Power-to-gas also has greater emission reduction potential than ethanol for the 

transportation sector as demonstrated in Chapter 4, furthering the credits that could be obtained 

to offset the capital cost. 
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Though cap and trade is not explicitly examined in this work, the emission reductions for these 

systems is analyzed. Therefore, policy inferences for this or other government programs are 

made in the conclusions to show the viability of energy storage systems. 
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Chapter 2:  BATTERY ENERGY STORAGE 

The following chapter details the initial works during my thesis which culminated into a paper 

published in the International Journal of Process Systems Engineering under the title “Economic 

and environmental analysis of a green energy hub with energy storage under fixed and variable 

pricing structures” in 2015. The work was written by me with the support of the other authors 

including Jennifer Cocking who co-wrote the initial report; Dr. Sean B Walker who aided with 

the introduction; Dr. Michael Fowler, Dr. Roydon Fraser, and Dr. Steven B Young who aided 

in editing the work; and Leila Ahmadi, Alan Thai, Jake Yeung, and Arthur Yip who provided 

foundational code and background material. All authors have given approval for use in this 

thesis as the concepts and ideas are solely my own. 

The following chapter describes an energy hub with power generation, consumption, and storage 

in the form or repurposed electric vehicle lithium ion batteries. The energy hub is created at a 

Walmart Inc. distribution center with solar and wind power. The facility has cooling and lighting 

as the main energy sinks, however electrolyzes also are sinks which generate hydrogen to fuel 

the fleet of fuel cell fork lifts. The modeling of the facility examines the financial mechanisms to 

make energy storage viable and contrasts the Feed-in-Tariff to market pricing.  

2.1  Methodology 

2.1.1  Energy Hub Design 

There are many components to the design of a GEH. The system includes energy generating 

systems, load management systems, building loads, and energy storage systems. All of these 

systems work together to create a more efficient system that increases the benefits of renewable 

energy.  
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2.1.1.1  Energy Generating Systems 

The energy generating systems include solar panels and wind turbines that are capable of meeting 

part of the building load requirement. The remaining energy requirements are fulfilled by the 

Ontario power grid. To perform the optimization, two different generation capacities for both 

wind and solar are used creating 4 possible GEH designs. 4 or 5 wind turbines with a capacity 

of 1.5x106W each were examined. Each wind turbine uses a scaled version of the power curve 

shown in Figure 3 to determine the power output according at a given time of day. The wind 

speed is determined by examining the wind speed profile, shown in Figure 4, for a nearby city 

from the National Climate Data and Information Archive [51]. The wind speed profile, in 

combination with the power output curve are thus used to determine the wind energy generated 

for any given hour and was fed directly into the GEH. 

 



21 

 

  
Figure 3: Power curve for a 1.0x106W wind turbine at 80m 
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Figure 4: Wind profile for an average winter’s day 

 

Solar panels, with a total capacity 3.0x106W or 4.0x106W and which would cover a maximum 

of two thirds of the surface area of the Wal-Mart Stores Inc.’s distribution centre are used as a 

basis for the analysis. Solar irradiance data is also collected from the National Climate Data and 

Information Archive. An assumption of 10% efficiency in the solar power generation is made to 

account for the solar array efficiencies, panel angles, and other efficiency losses due to factors 

such as dirt, snow, or ice accumulated on the panel’s surface. An adjustment to the solar profile, 

shown in Figure 5, is made to account for the change in day length in the winter. Four hours of 

solar irradiation are eliminated making the solar profile narrower for the winter season.  
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Figure 5: Solar irradiance profile for an average summer day 

 

There are, therefore, 4 different GEH designs that are considered. The selection of the GEH 

design is based on the optimization of the net renewable energy (NRE), which compares the total 

amount of power created by the renewable power generation sources with the total building and 

forklift load. The net renewable energy does not include consideration of when the energy is 

being produced and consumed meaning not all energy produced is actually used within the GEH. 

For this reason the Grid Reliance (GR) is also examined which compares the amount of power 

drawn from the provincial grid with the total building load. Wal-Mart Stores Inc. wished to 

achieve a 100% net renewable, which is therefore the goal of the GEH.  
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 NRE=
𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑃𝑜𝑤𝑒𝑟 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑎𝑑 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡
 2.1 

 GR=
𝑇𝑜𝑡𝑎𝑙 𝐺𝑟𝑖𝑑 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑎𝑑 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡
 2.2 

 

2.1.1.2  Load Management Systems 

Load management systems are able to control the buildings loads to decrease its peak power 

draw. This is done in two main methods: the adjustment of refrigeration temperature, and the 

adjustment of lighting. By allowing for some temperature fluctuation, the refrigeration load can 

be adjusted as to reduce peak power consumption when local energy is insufficient. Increasing 

the refrigeration load when power is available within the GEH then allows load shifting to occur. 

Utilizing dimmable LED lighting the lighting load can be decreased if power from the GEH is 

insufficient, further reducing the peak load requirements.   

Further load management is conducted through the transformation of electrical energy into 

hydrogen energy. This is done through electrolysers, which can be integrated either outside or 

inside the facility and were part of the GEH created. The HySTAT-60 is considered and has a 

capacity to convert 3.12x105W of power into hydrogen. The hydrogen generated is not converted 

back into electricity and therefore should not be considered an energy storage medium in this 

GEH design but rather a highly variable load. The production of hydrogen is a mechanism to 

capitalize on the excess electricity created within the GEH and is an energy vector solely which 

supplies fuel to the fuel cell powered forklifts used at the distribution centre. The power 

consumed for hydrogen generation is therefore equal to the forklift load. 

2.1.2  System Load Requirements 

The building load is taken from a Wal-Mart Stores Inc. distribution centre in another location 

and scaled to the ca. 74,000m2 facility examined. The load profile is also adjusted to take into 
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consideration the cooler climate at the facility in question which reduces the refrigeration 

requirements. There are three specific building loads considered: refrigeration units, lighting 

systems, and forklifts. The first two are included in the load profile created in Figure 6. These 

loads are adjustable and are controlled using the load management systems.  

 

 

Figure 6: Load profile for a food distribution centre for an average winter day 

 

The forklift load allows the most load management as hydrogen storage vessels allow for 

hydrogen the storage of hydrogen fuel. The storage of hydrogen allows for load shifting to occur 

and forklifts to refuel as required. The model considered 140 forklifts to run the distribution 

centre, with a fuel requirement of X kg H2/day/forklift. This assumption is made using data from 
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forklift consumption run at Balzac, as described in confidential data from Wal-Mart Stores Inc. 

[52]. The total load requirement for the forklifts is determined using Equation 3. This forklift 

load requirement is in addition to the load requirements shown in the load profile. This load is 

added to the appropriate time of the day to increase the system efficiency and is controlled by 

the load management system through the electrolyser. 

 

 
LoadForklift=

(# 𝑓𝑜𝑟𝑘𝑙𝑖𝑓𝑡𝑠)(𝐻2 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)(𝐻2 𝑚𝑜𝑙𝑎𝑟 𝑣𝑜𝑙𝑢𝑚𝑒)(𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)

(𝐻2 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)
 

2.3 

 

The remaining building loads are already considered in the load profile and will not be adjustable 

for the purposes of this model.  

2.1.3  Energy Storage Systems 

Energy storage is an additional layer in the GEH and is examined after the initial GEH is 

completed. Energy storage is incorporated in the form of re purposed batteries from EVs. The 

batteries are integrated into the system and are available for charge and discharge at any given 

moment in the simulation. This allows the GEH to store energy when there is a local surplus and 

provide additional energy when there is a local deficit, decreasing the grid reliance.  

To determine the viability of adding energy storage, multiple simulations were run utilizing 

different number of packs. The simulation was run with a 24kWh new pack capacity, which is 

the capacity of a pure electric vehicle (Nissan Canada, 2014). 

The addition of energy storage completes the GEH. A completed diagram with the energy flow 

is shown in Figure 7. 
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Figure 7: GEH design with energy vector paths 

 

2.2  Simulation  
The simulation is completed in two stages. Both simulations are completed using MATLAB 

software. The first stage determined how renewables are to be integrated into the GEH and 

addressed the load management systems in order to increase GEH’s efficiency. Once the 

renewable generation capacity required to achieve 100% NRE is determined the second stage is 

completed. The second stage entailed modeling the energy storage potential from the addition of 

re purposed batteries into the GEH. 

2.2.1  Simulation: Stage 1 

There are 5 components involved in the Stage 1 model shown in Figure 8. Initialization is 

completed to collect all the data from the external sources that are required for the simulation. 

The simulate component determines the load requirements for the building and the power 

generated from the sources. An energy balance is then run to determine what load could be added 

for the generation of hydrogen. Load adjustment is then completed using the load management 

systems to increase the GEH’s efficiency. The final results from the simulation are then 

examined to allow for further analysis and a calculation of the NRE and GR. 
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Figure 8: Components of the stage one simulation 

 

The simulation only considered factors within the GEH and the only external inputs are the solar 

irradiance and wind speeds. No calculations considers data pertaining to the grid connection or 

electricity price. No consideration of energy storage is completed at this time.  

2.2.2  Simulation: Stage 2 

Energy storage modeling is completed through a second simulation that utilized the output data 

from the stage one simulation.  The Stage 2 simulation does not only utilize data from within the 

GEH but also data from external sources. In addition to the energy generation, load requirement, 

and load shifting data, the Hourly Ontario Electricity Price (HOEP), and the battery’s capacity 

is considered. The HOEP is obtained from the Independent Electricity System Operator (IESO) 

[5]. 

 

 

Figure 9: Components of stage two simulation 

 

The process for the Stage 2 simulation is similar to the Stage 1 simulation. Initialization is 

completed in order to collect the data from the previous stage as well as the HEOP and basic 
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battery parameters such as new capacity, DOD, SOH, and charge efficiency. The battery 

parameters are then used to calculate the usable per pack capacity of the battery packs.  

 

 Usable Per Pack Capacity=(New Capacity)(SOH)(DOD) 2.4 

The storage simulation is then run for multiple numbers of packs. The storage simulation looks 

at three main parameters when deciding whether to charge, discharge, or do nothing. The 

parameters are: the HOEP, the net energy within the GEH, and the state of charge (SOC). From 

these three parameters there are 5 scenarios that determine interaction of the batteries within the 

GEH.  

Table 1: Stage two simulation scenarios 

Case Model Input Model Reaction 

1 Storage available 

HOEP is positive 

GEH has a surplus 

As long as the HOEP is below the transport fee, charge from 

renewables within GEH. Otherwise do nothing 

2 Storage available 

HOEP is negative 

GEH has a surplus 

Charge from renewables within GEH. 

3 Storage available 

HOEP is negative 

GEH has a deficit 

As long as the transport fee is greater than the absolute HOEP, 

charge from the grid. 

Profit from charging calculated. 

4 Energy available 

HOEP is negative 

GEH has a deficit 

As long as the HOEP is greater than the daily average HOEP, 

discharge from battery. 

Savings from reduced grid reliance calculated. 

5 All other combinations No action taken. 

 

Upon completion of the simulation the data is exported to excel. Within excel further post 

processing is completed to determine the economic viability of the GEH. The NRE remains 

unchanged after the Stage 2 simulation as no new end load or source was added to the system. 

The energy was stored in the battery is later used and though it is treated like either a source or 

a load during the simulation, on a longer time scale it acts as neither. The battery however does 
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impact the GR as the battery acts as energy storage and aids with load management, reducing 

the amount of electricity required from the grid when a GEH energy deficit was seen.  

2.2.3  Financial Post Processing 

To determine the economic viability of using repurposed EV LBP for energy storage to generate 

savings from the implementation of energy storage into the GEH, the simple payback period 

(SPP) and internal rate of return (IRR) are calculated. The values are calculated using the capital 

cost of the battery, which includes the physical pack, insulation, and interface equipment, and 

the net yearly savings. There is also an operating and maintenance charge based on the amount 

of electricity discharged from the battery. The net yearly savings are calculated based on the 

savings generated from using the pack minus the operation and maintenance cost of the pack. 

Table 2: Pack cost parameters [15] 

Project Expenses Amount  

Pack Capital Cost 

(per unit) 
$2,712 

Pack Interface Cost 

(fixed) 
$389 

Installation 

(fixed) 
$110 

O&M 

(per MW-year) 
$74 

 

In addition to the HOEP, the delivery rates and Global Adjustment (GA) are considered when 

calculating the buildings electricity cost. The delivery rates are recorded form Hydro One, an 

Ontario electricity distributer. The delivery charges are used as part of simulation to minimize 

the amount of paid in delivery charges by exporting electricity from the GEH. The GA is not 

considered as part of the logic but is rather a fee calculated based on the amount of electricity 

purchased form the grid within each month.  
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Table 3: Delivery rate charges per MWh [54] 

Delivery Charge Amount ($/MWh) 

Debt Retirement Charge 7 

Distribution Volume 

Charge 
41.4 

Transmission Charge 

(Connection) 
3.5 

Transmission Charge 

(Network) 
5.27 

Total 57.17 

 

To calculate the revenue from the sale of electricity two models were explored. The sale of 

electricity was completed using the HOEP with no other fees and with the rates outlined in the 

FIT program. Due to the different rate for solar and wind of a weighted average based on capacity 

was used which was $0.18/kWh. 

The calculation of the IRR for multiple pack capacities allowed two main parameters to be 

determined. The economic threshold for a profitable project, where the IRR is equal to the 

discount rate, was 5% in this calculation. This economic threshold could be used along with 

regression to determine the dollar per kWh cost that must be seen for this system to be profitable. 

Utilizing the dollar per kWh cost and applying it to the results for each battery pack, further 

regression analysis helped to determine the approximate minimum yearly savings required to 

achieve profitability.   

2.3  Results  

2.3.1  Net Renewable Energy 

As described previously, net grid reliance allows one to determine the GEH generation in 

comparison to its consumption. The Stage 1 simulation was completed in for the different cases 

shown in Table 4 to optimize to 100% NRE. This is due to Wal-Mart Stores Inc.’s goal to achieve 

100% renewability, regardless of whether it was used locally or not. To achieve this, 4.0MW of 

solar and 9.0MW of wind power generation must be used. 
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Table 4: Net renewable energy for various solar and wind capacities 

Capacity (MW) Net Renewable 

Energy (%) Solar Wind 

3.0 9.0 87 

3.0 10.5 95 

4.0 9.0 100 

4.0 10.5 108 

 

When 4.0 MW of solar and 10.5 MW of wind are used in the GEH the total generation of 

electricity exceeds the total yearly demand. This leads to a NRE of 108% which is greater than 

the goal. This case would have higher capital cost and risk that is not required or needed in the 

system. Due to this only 4.0 MW of solar and 9.0 MW of wind are further examined. 

2.3.2  Net Grid Reliance 

The GR is not only a function of the GEH design but also of how the renewable energy was sold 

and purchased. By utilizing more local electricity within the GEH the GR can be reduced creating 

a more independent system. To explore how the GR changes 6 cases are put through the 

simulation to show how modifying different parts of the GEH or energy flows within the GEH 

change.  

There are two possible applications of the local solar and wind. The electricity generated could 

be used first to supply the load within the GEH and are designated as Local Renewable Energy 

(LRE). This system would make the GEH like a micro grid which would then bring many other 

benefits to the system [55]. The surplus electricity in a given hour would then be sold to the grid 

under the FIT or the HOEP program. The addition of batteries forms (designated with B) and 

shifting the electrolyser load to high renewable energy times (designated with S) forms 3 

additional cases. 
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The second possibility is to treat the power generation and consumption as two independent 

systems and is designated as Independent Renewable Energy (IRE). This case is the case for the 

current systems under the FIT program in Ontario, Canada. By treating the two systems 

independently all of the electricity generated gets sold directly to the grid. The loads are then 

supplied solely form the grid giving it a GR of 100% as is also the case with the original case. 

Table 5: Grid reliance for different GEH configurations and flow structures 

Case GR 

Original 100.00% 

LRE 27.69% 

LRE-B 27.50% 

LRE-S 23.55% 

LRE-S-B 23.38% 

IRE 100.00% 

 

By designing a more independent GEH that could easily be created into a micro grid the GR was 

decreased to as low as 23.38%. This was achieved in the case where the system was optimized 

to maximize the internal use of electricity. Not only was the renewable energy used locally first 

but also energy storage was used and the electrolyser load was shifted to times where a surplus 

existed.  

The addition of energy storage, whether there was electrolyser load shifting or not, did decrease 

the electrolyser loads. The GR decreased by 0.17% and .19%. Though as a fraction it is small 

the power reduction is ca. 2500kWh and was achieved by using 4 packs with a total usable 

capacity of 76.8kWh. 

2.3.3  Yearly Electricity Costs 

There is a reduction in the yearly electricity cost in all of the 12 cases when compared to the 

original yearly electricity cost. All GEH configurations were run under both the HOEP and FIT 

pricing structures and are compared to the original yearly cost of ca. $1,800,000. When the 
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HOEP pricing is used the yearly electricity cost remains positive and ranges from ca. $320,000 

to ca. $1,400,000. The two largest within the HOEP pricing structure come from when the 

renewable energy is treated as an independent system, while the lowest cost is in the case where 

local energy is utilized and all load shifting measures are implemented. 

Under the FIT structure all yearly electricity costs are negative meaning there is a net income 

from the selling of electricity to the grid. The net revenue ranges from ca. $160,000 to ca. 

$710,000 where the renewable generation acts as an independent system. This is the opposite of 

HOEP structure due to the lucrative selling price set by the FIT program, which is significantly 

higher than the average HOEP price.  

Table 6: Annual electricity cost for all configurations of GEH, pricing structure, and flow structures 

Case Electricity Cost 

Original  $1,779,722.88  

IRE-HOEP-S  $1,365,550.02  

IRE-HOEP  $1,363,099.94  

LRE-HOEP  $372,685.61  

LRE-HOEP-B  $370,424.41  

LRE-HOEP-S  $318,785.78  

LRE-HOEP-S-B  $316,744.89  

LRE-FIT-S-B  $(159,592.18) 

LRE-FIT-S  $(161,026.55) 

LRE-FIT-B  $(190,434.81) 

LRE-FIT  $(192,158.07) 

IRE-FIT-S  $(709,871.78) 

IRE-FIT  $(712,321.86) 

 

2.4   Discussion 

2.4.1  Green House Gas Emissions 

Greenhouse gas emissions of different forms of energy are used to calculate GHG emissions 

using ISO 14001 life-cycle analysis (LCA) methodology. The LCA methodology allows 
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consideration of greenhouse gas emissions emitted during the entire life cycle of the electricity 

generated from each source, Table 7 [56]. 

Table 7: LCA greenhouse gas emissions from power generation sources [56] [57] 

Power Source 

GHG emissions  

(g CO2/kWh) 

Solar 32 

Nuclear 66 

Hydro 10 

Gas 443 

Coal 960 

Wind 10.05 

 

Using the supply mix from both the grid and the GEH the emission factor is determined [9]. The 

LCA emission factor for the grid is determined to be 172g CO2/kWh and for the GEH is 

determined to be 21g CO2/kWh. These factors are then be used, along with the total yearly 

electricity consumption and the GR to obtain the carbon emissions for each case.  

2.4.1.1  Scope 1 Emissions 

Due to the addition of energy production systems there are Scope 1 emissions associated with 

the GEH. Using given LCA emission factors the GEH produces 2.22x108g of CO2 from solar 

and 7.18x107g of CO2 from wind power generation. Though these emissions would not otherwise 

be seen in the GEH, from a province wide power generation perspective the same amount of 

energy generated from coal, which solar and wind are replacing, would have produced 

1.32x1010g of CO2. As a province the addition of solar and wind in localized hubs owned by the 

consumers would reduce the overall emissions as well as shift some of those emissions from 

large generation corporations to more distributed consumers.   

2.4.1.2  Scope 2 Emissions 

GHG emissions related to the power consumption of the building can be considered using Scope 

2 emissions. The emissions considered are therefore based solely on the consumption of 
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electricity in relation to its source. For an independent renewable energy system the electricity 

comes solely form grid so the renewable energy cannot be considered under Scope 2. However 

in a local renewable energy system the GR can be used to determine from where the electricity 

is being produced and can calculate the associated emissions. 

When the design of the system utilizes local energy first, before exporting excess, there are 

significant emissions reductions. By using local solar and wind the GEH can claim 100% of the 

emission reductions from the production of electricity from renewables it consumes. With this 

benefit the Scope 2 emissions are reduced to ca. 1/3 of the original emissions for all cases. There 

are associated emissions from both local and grid power sources however the savings come from 

the difference between the two greenhouse gas emission factors. By using local energy up to 

15.98x108g of CO2 can be eliminated from the Scope 2 emissions. The reduction is primarily 

attributed to the use of localized renewables with ca. 8x107g associated with the shifting of the 

electrolyser load and ca. 4x107g associated with the use of energy storage. 

Table 8: Scope 2 GHG emissions for all cases and difference from original system 

Case 

Emissions 

(g CO2) 

1x108 

Difference 

(g CO2) 

1x108 

Original 23.78 0 

LRE 8.70 -15.08 

LRE-B 8.66 -15.12 

LRE-S 7.83 -15.95 

LRE-S-B 7.80 -15.98 

IRE 23.78 0 

 

2.4.2  Project Economic Viability 

The economic viability of the project is examined by calculating the simple payback period 

(SPP) for each case. There is a large range in the values for the SPP, ranging from 17 to 83 years. 
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This large range is due to the difference between each case and the original yearly electricity 

cost.  

There are four main groupings where the SPP is either the same or extremely similar, which can 

be attributed to two factors: if the renewable energy was treated as an independent system or 

used locally and whether the HOEP or the FIT structure was used. The HOEP structure models 

have longer payback periods, as it does not include any government incentives and only looks at 

market values for the sale of the electricity. When the HOEP structure is used for a GEH that 

treats renewable energy as an independent system, there is no economic viability as the SPP is 

83 and 82 years.  

When the electricity is used locally first the SPP is reduced to 28 or 29 years. This large reduction 

primarily comes from the fact that locally produced and consumed electricity would not be 

subject to any of the auxiliary or generation fee charged by any provincial generator or 

distributor. The auxiliary fees can make up over 50% of the price paid by consumers. The SPP 

was lowered to 28 years by increasing the amount of electricity by shifting the electrolyser load 

to utilize more local electricity. The further increase in local energy use causes a reduction in 

auxiliary fees paid and the overall yearly cost of electricity.  

By introducing government incentives through programs such as the FIT program the SPP can 

be reduced. When using local energy first and selling the surplus under the FIT program the SPP 

was 21 years for all cases, however by treating the two systems as independent the SPP can be 

further reduced to 17 years. This can be explained by the large price differential between the 

fixed FIT pricing structure and the variable HOEP price. By selling the electricity and purchasing 

the same electricity back at a lower price the structure favours the consumer. 
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Table 9: Simple payback period for each case 

Case SPP 

IRE-HOEP-S 83 

IRE-HOEP 82 

LRE-HOEP 29 

LRE-HOEP-B 29 

LRE-HOEP-S 28 

LRE-HOEP-S-B 28 

LRE-FIT-S-B 21 

LRE-FIT-S 21 

LRE-FIT-B 21 

LRE-FIT 21 

IRE-FIT-S 17 

IRE-FIT 17 

 

2.4.3  Energy Storage Benefits 

Energy storage, though when looking at the system is whole plays minimal effect, does 

independently have a much smaller SPP when using the HOEP pricing structure. By examining 

the savings associated with the addition of energy storage and the repurposed LIB capital cost 

the individual SPP is calculated. The savings created relative to the capital investment are much 

higher than the other systems in the GEH. This scenario causes payback periods that are much 

more acceptable. 

Both while shifting the electrolyser load and while not the SPP is less than 10 years, Figure 10. 

By adding one pack to the GEH energy savings would allow for a SPP of 9 years while not load 

shifting and 8 years while load shifting. With the addition of a second pack the SPP equalizes 

and is 6 years for both instances. When the number of packs is increased past 4 packs, not load 

shifting produces more opportunities for energy storage savings and the SPP becomes 5 years. 

By assuming an energy storage lifetime of 10 years the IRR of the energy storage system can be 

calculated [16] [11]. The system shows high payback periods after a minimum of two packs are 

used, Figure 11. Though it was seen that more savings from energy storage could be seen without 
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shifting, it is important to remember that ca. $50,000 in savings can be seen from electrolyser 

load shifting that requires no capital investment. This savings from shifting is significantly 

greater than the capital investment of even 8 repurposed battery packs. This therefore shows that 

adding repurposed packs post load shifting would still be an economically viable addition to the 

GEH. The additional reduction of GHG emissions of 3.46x106g CO2 also makes a strong case 

for the project as an emission reduction project.  

 

 
Figure 10: SPP of multiple 24kWh packs in the GEH 

 

 
Figure 11:  IRR of multiple 24kWh repurposed battery packs in the GEH 
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Though savings can be seen by the addition of energy storage with the HOEP pricing structure 

the opposite is true under the FIT pricing structure. By storing electricity with energy storage the 

consumer loses income from the fixed FIT selling price. With each addition of a repurposed 

battery pack there is a decrease in savings that can be seen, Figure 12. Under a FIT pricing 

structure energy storage becomes not economically viable, though similar savings in GHG 

emissions would still be seen.  

 
Figure 12: changes to savings with each repurposed battery pack added (solid shapes are without load 

shifting) 

 

2.5  Conclusion and Policy Implications 

Using a free market pricing structure, such as the HOEP, can produce cost savings. By making 

the GEH more efficient in its use of electricity by using local electricity, shifting the electrolyser 

load to decrease grid reliance, and implementing energy storage the yearly electricity cost can 

be significantly decreased. The high capital cost however still requires payback periods greater 

than 20 years with the HOEP model, though less than 30 years. Under the current FIT program, 

the consumer’s electricity consumption program becomes a source of revenue income. With a 
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negative yearly electricity cost the program is able to achieve payback periods less than 20 years. 

The GEH however does not gain any GHG emission reduction due from an LCA perspective 

when examining the consumption of electricity under the Scope 2 approach, while reducing the 

province wide Scope 1 emissions. 

It is widely known that the problem of intermittency must be solved and that energy storage 

provides a possible solution. However current programs such as the FIT program in Ontario are 

a deterrent to the creation of micro grids and green energy hubs that optimize the efficiency of 

energy generation and consumption. The more storage added under a FIT model the fewer saving 

would be seen, Figure 12. The program therefore promotes renewable energy in Ontario while 

destabilizing the grid and promoting inefficiencies. This destabilization has caused an increase 

in energy prices and waste in the system as large amounts of electricity must be sold at negative 

prices to elevate the excess generation.  

Ontario is currently examining the FIT program for projects such as this that have a capacity 

greater than 500kWh. Though incentives should still be examined to promote and expand the 

use of renewable energy, an effort to create a program that promotes efficiency, energy storage, 

and the use of micro grids to create a more sustainable future should be explored. Investigation 

into incentive programs such as capital cost investments, renewable energy company 

investments, or green project tax credits that move away from the “per use” program such as the 

current FIT program should be further studied. Further studies that examine different incentive 

models as well as different building load profiles will be examined to explore the possibilities of 

green energy hubs and micro grids in Ontario. 
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Chapter 3:  HYDROGEN MARKET MECHANISMS 

The following chapter details the work during my thesis which culminated into a paper published 

in the International Journal of Engineering and Science under the title “Market mechanisms in 

Power-to-gas” in 2016. The work was written by me with the support of the other authors 

including Dr. Sean B. Walker who assisted with the introduction, Dr. Michael Fowler who aided 

in editing the work, and Ushnik Mukherjee who provided background material. All authors have 

given approval for use in this thesis as the concepts and ideas are solely my own. 

The chapter outlines different pricing structures for hydrogen. The analysis is completed by 

comparing to other energy markets such as natural gas, conventional hydrogen, and ethanol. 

The pricing demonstrates that a Power-to-gas facility can be profitable and can be implemented 

as part of different markets immediately. 

3.1  Methodology 
This analysis of the Power-to-gas facility is completed using two low fidelity user-built 

MATLAB functions. The model considers how a facility with Polymer Electrolyte Membrane 

(PEM) fuel cells would interact with the power grid and the associated performance, revenue, 

and cost. More specifically the model is used to determine the viability and profitability of a 

Power-to-gas system in Ontario between 2011 and 2013. The data is obtained through Ontario 

electricity system operators, which archives information including hourly, demand, generation, 

and price [58].  

3.1.1  Plant Operation Function 

The plant operation function determines both the electricity use and the quantity of hydrogen 

produced. The algorithm operates by defining specific input characteristics as well as logic 

parameters for the facility. These factors include the capacity, minimum and maximum operating 
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percentage, and the electricity pricing information. These factors work together, Figure 13, to 

produce results that are examined in additional functions. 

 

Figure 13: Logic for the determination of plant operation and production 

 

The authors examine the effect of plant size by simulating a 5, 20, 30, and 40 MW plant. These 

facilities have a capacity to produce between 960 and 7690 Nm3 of hydrogen per hour, which is 

the equivalent of 11 and 93 mmBTU of fuel, respectively. In this model, only the base electricity 

price influences when the facility operates at the minimum and maximum operating percentage. 

The plant’s operation is determined by a switch price, determined by the authors, which is built 

into the function shown in Figure 2. The switch price determines when the plant operates at the 

maximum or minimum operating percentage. This means that when the base electricity price is 

less that the switch price, the plant operates at the maximum operating percentage to maximize 

the production and take advantage of low operational costs. Inversely, when the base electricity 

price is above the switch price the plant operates at the minimum operating percentage to 

minimize the impact of higher operational costs. Although PEM electrolyzers can be varied from 

0 to 100%, a more moderate power range of 5% to 93% is used in the model [59]. 

In this analysis, two different scenarios are explored: the reduction of exports and low price 

hydrogen production. These scenarios differ in the switch price that is used in the simulation 

logic. In the first case, 0 CAD per MWh is used as a switch price to examine the benefits of using 
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Power-to-gas to eliminate losses due to electricity exports within a given jurisdiction. The plant 

would take advantage of the negative base electricity price and, as the cost goes negative when 

there is a surplus of electricity and larger exports are required, aid the jurisdiction by utilizing 

more electricity internally. In addition, with proper storage, the energy stored in the form of 

gaseous hydrogen could be utilized later and provide additional benefit by reducing sunk costs 

associated with exports. 

In the second case a switch price of 40 CAD per MWh is used, which is above the weighted 

average price of the Hourly Ontario Electricity Price (HOEP), 30 CAD per MWh, over the three-

year period examined. This is case is used to examine the benefits increasing the time the plant 

operates at a higher operating percentage. This scenario is applicable for many applications 

explored in our team’s other works. 

These scenarios, summarized in Table 10, are run through the same function using the parameters 

previously stated. Utilizing the switch price as the control logic, each hour in the years 2009 to 

2013 are examined to determine the amount of hydrogen produced. To keep the size of the matrix 

and to allow for proper year over year evaluation leap years have been removed. For each hour 

the function determines the amount of hydrogen produced in the hour using the maximum and 

minimum operating percentage. Should the plant switch between the two operating percentages, 

a weighted average is used to determine the hydrogen production. The hydrogen is then stored 

in a three dimensional matrix in the form of power consumption (kWh), volume (Nm3), mass 

(kg), and energy (mmBTU). The matrix can then be used in post processing for financial 

calculations. 
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Table 10: Power-to-gas facility scenarios examined 

Name Scenario Focus 

5MW$0 5 MW capacity with a switch price set at 0 CAD per MWh 

Reduction of electricity exports 

20MW$0 
20 MW capacity with a switch price set at 0  CAD per 

MWh 

30MW$0 
30 MW capacity with a switch price set at 0  CAD per 

MWh 

40MW$0 
40 MW capacity with a switch price set at 0  CAD per 

MWh 

5MW$40 
5 MW capacity with a switch price set at 40  CAD per 

MWh 

Production of hydrogen 

20MW$40 
20 MW capacity with a switch price set at 40  CAD per 

MWh 

30MW$40 
30 MW capacity with a switch price set at 40  CAD per 

MWh 

40MW$40 
40 MW capacity with a switch price set at 40  CAD per 

MWh 

 

3.1.2  Financial Calculation Function 

A MATLAB function is used to determine the feasibility of the system by examining the 

different market mechanisms that must be utilized. This is done in a two-stage process outlined 

in Figure 14. First, a profit matrix is created in which the yearly base electricity cost, additional 

electricity fees, operational cost, and revenue from hydrogen production from 2011 to 2013. This 

matrix is then manipulated to determine the average yearly profit.  

 
Figure 14: Logic for the calculation of financial viability of specific market mechanisms 

 

The base electricity price and maintenance costs are constant when examining the different 

market mechanisms. Though the code is designed to accommodate any 5-year period where 

hourly data is available, only the HOEP is considered in this work. Considering only the HOEP 
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allows the impact the market mechanisms on the profitability of the Power-to-gas facility to be 

considered. Operating and maintenance fees have been set to 0.00446 CAD per MWh [60]. This 

operating and maintenance fee does not include electricity. These constant parameters are used 

in each scenario and case for the 5-year period.  

An additional electricity fee is charged to account for transmission and distribution charges. In 

2012, a review of the export tariff for electricity exports was prepared for the IESO. The export 

tariff at the time was 2 CAD per MWh, and was under review [61]. One option was to set the 

tariff to the Equivalent Average Network Charge (EANC), which is equal to 5.8 CAD per MWh 

[61]. As the electricity for the plant is used internally to the jurisdiction the EANC is used as an 

additional market mechanism for the electricity fee cost. The cost is calculated for each year 

from 2011 - 2013.  

Market mechanisms that treat hydrogen solely as an energy source and as a product are 

considered in this work. Utilizing Henry Hub data obtained from the US Energy Information 

Administration (EIA) for the monthly natural gas price for the examined time period hydrogen 

can be sold for its energy value [62]. The monthly mmBTU is calculated for each year and the 

revenue from selling hydrogen for its energy value is calculated.  

Hydrogen can also be sold as a product on a mass basis. Utilizing data from the Department of 

Energy, a current price of 5.08 CAD per kg is considered [63]. This is equivalent to the total 

hydrogen cost, and includes production and dispensing. This mechanism is used to see if a 

POWER-TO-GAS system with this structure can be competitive with SMR hydrogen production 

and industrial hydrogen practices.  
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Hydrogen can also be sold for its renewable alternative energy value by examining the price of 

ethanol. The current price of ethanol is 2.58 USD/gal, which is equal to 30.47 USD/mmBTU 

[64]. By selling the hydrogen at this price, the energy value of both renewable alternative fuel 

sources is explored. 

After the profit is determined, the capital costs and viability are determined. Capital costs are 

calculated based off numbers given by the industrial partners. The capital cost is calculated by 

setting the low-end cost to 1.5 USD per MW and 1.25 USD per MW installed for a 5 and a 40 

MW plant respectively. The capital cost is then interpolated to obtain the investment for the in 

between plant sizes. Utilizing this profit matrix and the capital cost the function calculates the 

simple payback period (SPP) and the internal rate of return (IRR). A lifetime of 10 years is used 

in this work to calculate the IRR [60]. The results are then used to compare the viability of the 

different mechanisms summarized in Table 11. 

Table 11: Market mechanisms examined in financial simulations 

Parameter Market Mechanism Value 

Electricity Base Price Hourly Ontario Electricity Price IESO hourly data [58] 

Electricity Fees Equivalent Average Network Charge 5.8 CAD/MWh  [61]                     

Operation and 

Maintenance 

Operation and Maintenance excluding 

electricity 

4.5x10-3 CAD/MWh                   

[60] 

Revenue 

Natural Gas Energy Price 
EIA Henry Hub Monthly data         

[62] 

Industrial Hydrogen Price (SMR) 4.68 CAD per kg [63] 

Ethanol Energy Price 33.90 CAD per mmBTU [64] 

 

3.2  Results and Discussion 
Each scenario is analyzed utilizing the natural gas energy value, industrial hydrogen produced 

by SMR, and ethanol hydrogen market mechanisms. Different characteristics of the plant are 

examined for the scenario as well the financial viability of each case. This allows for an 

examination of the systems and mechanisms that need be put in place for Power-to-gas systems.  
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3.2.1  Plant statistics and cost 

The basic plant characteristics do not vary with plant capacity but rather the set point, or switch 

price that the facility switches between the maximum and minimum operating percentages. 

When the switch price is set to 0 CAD per MWh the focus of the plant is to reduce undesired 

exports from the jurisdiction. During the simulation, the plant operated at maximum capacity 

only 2.7% of the time, or had a operating capacity of 0.027. Even though the plant primarily 

operated when the base electricity price was negative the average price is 8.9 CAD per MWh. 

This is positive because the plant operated at 5% capacity at all other times. Though the plant 

could operate at 0%, 5% is chosen to allow other services to be performed during the minimum 

operating capacity performance. When the focus shifts to the production of hydrogen both factors 

increase. The operating capacity increases to .924, or 92.4% of the simulation time. By operating 

at a higher switch price more hydrogen is created and sold with each market mechanism.  The 

increased production does however have additional costs. The average base electricity price at 

this switch price is 23.1 CAD per MWh which is 2.6 times higher than the previous scenario. 

As illustrated in Table 4, though the operating capacity does not change with the plant size the 

costs associated with electricity and operation and maintenance and the costs increase linearly 

with plant capacity. For a .027 operating capacity the total cost is 12,216 CAD per MW, in which 

the base electricity costs accounts for 46% of the cost. When the operating capacity increases to 

.924 the total cost increases to 32,622 CAD per MW. This increase in expense is due to the 

increase in average electricity price and hydrogen production, causing the percent cost associated 

with the base electricity price to increase to 69%. The ratio between the additional electricity 

fees and operation and maintenance fees is constant for all operations.  
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Table 12: Base costs for each scenario including base electricity costs, additional electricity fees, and 

operating and maintenance costs in CAD 

Operating 

capacity 
.027 .924 

Plant Size 5 20 30 40 5 20 30 40 

Base 

Electricity 
28,383 113,530 170,295 227,060 844,723 3,378,894 5,068,341 6,757,788 

Electricity 

Fee 
188,487 73,946 110,919 147,892 212,186 848,745 1,273,117 1,697,490 

O&M 14,211 56,843 85,265 113,686 163,110 652,439 978,659 1,304,878 

Total 61,080 244,319 366,476 488,639 1,220,019 4,880,078 7,320,117 9,760,156 

 

3.2.2  Hydrogen revenue mechanisms and profit 

Hydrogen is sold for the equivalent price of Natural Gas (NG), industrial hydrogen (SMR), and 

ethanol. These different market mechanisms produce different revenues for the facility. The two 

market mechanisms sell hydrogen for their energy value produce very different results. The NG 

mechanism revenue is approximately one tenth of that of the ethanol mechanism as the price is 

significantly smaller. The revenue from NG pricing ranges from ca. 26,000 to 210,000 CAD and 

300,000 to 675,000 CAD for a .027 and .926 operating capacity respectively. This revenue is 

already lower than the total operating costs of the facility making this mechanism not viable, as 

there is a negative profit. The revenue from ethanol pricing ranges from ca. 250,000 to 2,000,000 

CAD and 2,900,000 to 23,000,000 CAD for a .027 and .926 operating capacity respectively. 

This revenue is above the total operating costs and is further explored later in this work.  

Hydrogen is also sold as an industrial hydrogen alternative, utilizing the given DOE current costs 

of SMR hydrogen [63].  This hydrogen market mechanism gives the highest revenue, ranging 
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from ca. 260,000 to 2,100,000 CAD and 3,000,000 to 24,000,000 CAD annually for a operating 

capacity of .027 and .926 respectively. 

 
Figure 15: Hydrogen revenue for each market mechanism at .027 capacity (left) and .926 (right) operating 

capacity 

 

The resulting profit is calculated from the costs in the previous section and each hydrogen market 

mechanism. The revenue when only a .027 operating capacity is used is significantly smaller 

than when a operating capacity of .926 is used. This is due to the significantly larger quantity of 

hydrogen produced with a less significant increase in average base electricity price. The profit 

ranges from 190,000 to 1,600,000 CAD and 1,650,000 to 14,000,000 CAD for each operating 

capacity respectively.  
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Figure 16: Plant profit for each market mechanism at .027 capacity (left) and .926 (right) operating capacity 

 

It is important to note the impact that such pricing can have if the hydrogen is injected into the 

NG grid as is proposed in the Power-to-gas project. By limiting the amount of hydrogen to 5% 

by volume, due to piping concerns, the energy percentage is limited to 1.6% by energy hydrogen. 

The result means that thought the hydrogen market mechanism would be selling energy that is 

10 times higher than NG, the weighted average price would only increase 13%, from 3.89 CAD 

to 4.39 CAD. The mixed gas product could then be sold as renewable natural gas at a premium 

of at least this percentage.  

3.2.3  Market mechanism viability 

The market mechanism viability is determined from the Simple Payback Period (SPP) and the 

Internal Rate of Return (IRR). Since the NG market mechanism is unable to generate positive 

profits, it is no longer considered in this work. Both the SMR and ethanol market mechanisms 

produce positive profits and are detailed in Table 5 below. The SPP for a .027 operating capacity 

are higher than the expected lifetime. The profit is too low and the SPP is significantly higher. 

This makes a low operating capacity not a viable option as the plant would not make its return 

on investment within the 10-year period. So though the market mechanism seems viable it cannot 
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be used. The SPP for a .924 operating capacity however creates substantial profit to see 

reasonable SPP. The SPP ranges from 5 years at low capacities to 4 years at high capacities. The 

SPP is not flat due to the lower per MW plant cost at higher plant capacities. By function of 

design the plant will always do better the larger the plant is.  

Table 13 Simple payback period for all scenarios with NG and ethanol market mechanisms 

Operating 

capacity of 

electrolizer 

.027 .924 

Plant Size 5 20 30 40 5 20 30 40 

SMR 42.5 39.4 37.4 35.4 4.8 4.5 4.2 4.0 

Ethanol 43.9 40.8 38.7 36.6 5.0 4.7 4.4 4.2 

 

The IRR for a .924 operating capacity ranges from 16% to 21% and 15% to 20% for SMR and 

ethanol mechanisms respectively. The plant is profitable and viable with either of the two 

hydrogen market mechanisms with only a 1% difference at each capacity. Selling hydrogen as a 

commodity, or for its equivalent renewable energy value are both possible market mechanism 

that can be pushed for by POWER-TO-GAS plant companies.  
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Figure 17: Internal rate of return for SMR and Ethanol at .924 operating capacity 

 

3.2.4  Additional revenue sources 

Although there are potential profitable streams if industrial hydrogen or ethanol pricing is used, 

the use of natural gas pricing or of a disadvantageous switch price would lead to the necessity of 

adopting government incentives or finding alternative funding sources. As Power-to-gas can be 

injected into natural gas pipelines to create HENG, which burns cleaner than conventional 

natural gas or used for fuel in an emissions free hydrogen vehicle, there is an opportunity for 

funding based on environmental performance. One option is the use of carbons credits for the 

CO2 that is offset by the use of Power-to-gas [65]. This option rewards the hydrogen producers 
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to offset operation costs and rewards consumers of hydrogen by offsetting the high prices asked 

by producers. Other programs encourage investment in environmentally sound projects by 

offering relief in ongoing costs. An example of this is that is often used in housing projects is tax 

increment-based financing which provides an alleviation in taxes equal to the capital investment 

of the project [66]. In California, a self-generation incentive program is used to provide a 

government contribution to the cost of installing renewable energy projects, like clean hydrogen 

projection [67]. More consumer-directed incentives, such as the Ontario Clean Energy Benefit 

aim to encourage energy users to use renewable energy by changing their energy use patterns 

through reduced energy costs [68]. 

3.2.5  Additional benefits 

In addition to significant economic gains, Power-to-gas is able to provide flexible energy storage. 

As shown in Figure 1, hydrogen can be produced from an electrolyzer or from agricultural feed. 

This gas can then be stored with natural gas to form HENG. Due to the enormity of natural gas 

infrastructure available in Ontario, it is conceivable that years’ worth of energy could be stored 

as hydrogen making up only a portion of this space. This length of storage time separates Power-

to-gas from competing technologies and could allow the grid operator to manage periods of 

prolonged surplus or deal with increased loads caused by extreme weather events. The flexibility 

of the hydrogen generation technology also means that Power-to-gas can be used to provide 

frequency regulation services to the grid. In these instances, the electrolyzer power would be 

reduced when the grid demand is high. In 2014, IESO performed tests to verify the electrolyzers 

produced by Hydrogenics could be ramped up and down quick enough to provide ancillary 

services [69]. 
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3.3  Conclusions 
Power-to-gas facilities show potential to provide substantial benefits to power grids, providing 

increased grid management as well as important auxiliary services. The market mechanisms for 

how the facility that created hydrogen in a Power-to-gas system have not yet been determined 

but are an important to determine the viability of Power-to-gas systems. Though hydrogen cannot 

be sold for its energy value at the natural gas price, other mechanisms that compare the hydrogen 

product with industrial steam methane reformed hydrogen as well as renewable ethanol show 

the projects can be viable. This is only true however if higher operating capacities are used, 

meaning the facilities focus cannot solely be the reduction of exports. With high operating 

capacities and appropriate market mechanisms internal rates of return between 15% and 21% are 

seen showing the project viability. These mechanisms should therefore be pushed when speaking 

with governments and organizations on policy matters in addition to all the additional benefits, 

including energy storage, to show the large impact a Power-to-gas system has. 



56 

 

Chapter 4:  HYDROGEN AS A TRANSPORTATION FUEL 

The following chapter details the work during my thesis which culminated in a paper to be soon 

published. The work was written by me with the support of the other authors. All authors have 

given approval for use in this thesis as the concepts and ideas are solely my own. 

The following chapter examines hydrogen as a transportation fuel when created through Power-

to-gas. The model examines the incentives that have been applied to ethanol by the government 

to hydrogen. The case is made that the since the emission reduction potential of Power-to-gas 

hydrogen is greater than ethanol that the same subsidy to ethanol should be applied to hydrogen. 

Other fuels are also examined. 

4.1  Methodology 
This analysis builds off previous work and expands to allow for more flexibility in the operation 

of a Power-to-gas facility [19]. The model considers a Polymer Electrolyte Membrane (PEM) 

electrolyzer, which uses electricity from the Ontario power grid. In addition to examining the 

performance, revenue, and profitability of the Power-to-gas system, the emissions from the 

electrical load of the hydrogen plan are considered in order to analyze the emissions of using 

hydrogen for transportation.  

Emissions reductions associated with using hydrogen as a fuel are obtained through the emission 

reductions that arise from the production of hydrogen and from driving vehicles that utilize 

hydrogen as a fuel. In this analysis, diesel vehicles are compared with dual-fuel diesel/hydrogen 

co-combustion vehicles and with hydrogen fuel cell vehicles (HFCVs). To understand how to 

incentive the use of emission-reducing green hydrogen, an examination of the incentives used to 

support the production of bio-ethanol under the Renewable Fuel Standard. 
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4.1.1  Plant Operational Parameters 

To determine the hydrogen production a script is used to determine how much hydrogen is being 

produced at each hour from 2011 to 2013. To initialize the script the facility parameters must be 

know. First, the capacity of the plant is set to 40MW. This capacity allows the facility to generate 

up to 7690Nm3 of H2 per hour which is sufficient to supply 9714 vehicles for their daily commute 

or could be used in a more integrated system as shown earlier. 

The second parameters required are the minimum and maximum operational limits of the system. 

PEM fuel cells offer improved operational parameters than alkaline fuel cells as they can be 

varied between 0 and 100 percent while operating [59]. A more moderate power range of 5 to 

93 percent is used in this model as it was used in previous studies [19].  

With the plant parameters defined, the operational parameter can be chosen. In previous works, 

this was a cost threshold, which was an electricity price at which the plant operated at the 

minimum operational percentage when the electricity price is above the value at the maximum 

operational percentage when the price is below the value. In this analysis, however two different 

scenarios are used to examine how the facility can be used with either cost or emissions in mind 

to produce a desired result. Therefore, two threshold values are used as an input and are based 

on the Hourly Ontario Electricity Price (HOEP) and the Hourly Ontario Emissions Factor 

(HOEF). 

The first scenario is the cost scenario and a threshold price is used in conjunction with the HOEP 

tabulated between 2011 and 2013. When the cost scenario is selected, the script requires the user 

to input the value desired to use to determine when the plant operates at minimum and maximum 

operating percentages. Using this switch value, the script calculates for each how the amount of 

electricity used hydrogen produced for each hour. 
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The second scenario is the emissions scenario and the HOEF is used with all data tabulated 

between 2012 and 2013. The data could is not tabulated for 2011. When the emission scenario 

is selected the script requires the user to input the value desired and the script runs in the same 

why as in the cost scenario. When the script is complete, the amount of hydrogen is outputted to 

be further analysed. 

 

 
Figure 18: Logic for the determination of plant operation and production 

 

4.1.2  Switch Value Analysis 

In order to compare properly the two scenarios, different cases for each scenario are run to 

analyse the cost and emission impact. As previously mentioned, the model can be controlled 

based on either of these parameters using a switch value to turn the system on and off. These 

allow for the examination of both economically and environmentally driven simulations.  

For economically driven simulations, the HOEP is examined to determine the switch value. In 

order to achieve a capacity factor close to 50% to the median HOEP is used as a base case. This 

was determined to be $25.68 per MWh. The average price however is slighter higher than the 

median due to the high peak energy prices causing a tail in the frequency distribution as shown 

in Figure 19. The mean HOEP between 2011 and 2013 is found to be $25.98 per MWh and is 

used as the second cost-based scenario. As demonstrated in previous works however it can be 

economically desirable for the facility to operate at a higher capacity factor. For this reason, the 
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third cost-based scenario is to utilize a switch value that is equal to the mean plus one standard 

deviation, which is determined to be $47.00 per MWh. 

 
Figure 19: Frequency distribution of Hourly Ontario Energy Price from 2011-2013 

 

For the emission driven simulations, the same scenarios are used. As a base case, the median is 

used as the switch value for facility operation at maximum and minimum capacity. For the 

province of Ontario between 2012 and 2013, the median emission factor is 87kg of CO2e per 

MWh. This relatively low emission factor is due to the nature of the power grid, which consists 

of over 50% nuclear and hydro, which are both low emitting power generation methods. When 

examining the mean emissions factor in the emission scenario there is more of a deviation from 

the mean. The mean is found to be 95kg of CO2e per MWh, which is an increase of 8kg of CO2e 

per MWh. For the final case, the mean plus one standard deviation was also used, to demonstrate 

the economics of more frequently operating the facility. This emissions threshold is evaluated to 

be 142kg of CO2e per MWh. 
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Figure 20: Frequency distribution of emission factors from 2012-2013 for Ontario 

 

4.1.3  Plant Financial Parameters 

Once the plant output of hydrogen is determined and the electricity consumed quantified the 

economic analysis of the scenarios are examined. To do this the base electricity cost, electricity 

cost, operational and maintenance cost, hydrogen selling price, and other revenue are calculated. 

This is completed for each year examined and the average between all years is used as the yearly 

profit. 

The electricity costs are determined through the HOEP and an Equivalent Average Network 

Charge (EANC). The HOEP is already collected between 2011 and 2013 and is therefore 

multiplied by the electricity consumed by the facility. The HOEP is used as the case study 

examines a facility in Ontario. In Ontario, there are additional fees associated with electricity 

that can be used instead of the EANC, such as the Global Adjustment charge. The EANC is used 

however as in previous works the argument was made that energy storage facilities, which aid 

in the management of the jurisdictions resources, should only be charged the same as exporters 

which in a report was argued should pay the EANC [19] [61]. This EANC is equal to $5.8 per 

MWh and is applied based on the electricity consumed. The final cost considered is an operating 

and maintenance fee of $0.00446 per MWh [60]. Two revenue streams are examined in this 
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work, revenue from selling hydrogen and revenue from government incentives. Though 

producing cheaper hydrogen can be desired, previous works showed that a facility can be 

profitable if a Steam Methane Reformation (SMR) hydrogen price is used [19]. Utilizing data 

from the Department of Energy, a price of $5.08 CAD per kg is considered to determine the 

revenue from selling of hydrogen [63].  

As discussed previously there are currently incentives for ethanol as a transportation fuel, from 

the federal government in the United States. These incentives are to offset the cost of ethanol 

and create a market for ethanol fuel. Hydrogen for transportation is another greenhouse gas 

reducing alternative fuel that can be used in automobiles. If a policy were to extend its alternative 

fuel coverage to hydrogen, it would help create the hydrogen economy while achieving 

environmental goals.  

To examine how an incentive similar to that of ethanol could be applied to hydrogen an energy 

equivalency is used. If a $0.46 per gallon subsidy is applied to ethanol than a $0.795 per kg 

subsidy could be applied to hydrogen. By applying the incentive based on an energy equivalency, 

the differences between the fuels can be eliminated. To examine the effect of the tax credit as an 

incentive the simulation is conducted both with and without the credit. This is in effort to show 

how the government can drive innovation and adapt a Power-to-gas system that can have 

environmental benefits. In order to justify the dollar value the emission reduction potential for 

both hydrogen and ethanol are examined. 
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Figure 21: Logic for the calculation of financial viability of specific market mechanisms 

 

4.1.4  Plant Emission Parameters 

Using similar methodology in examining the financial parameters, emission factors for various 

molecules are determined. In addition to the HOEF, the emission factors for carbon monoxide 

(CO) and nitrous oxides (NOx) are also recorded from 2012 to 2013. Using this tabulated 

information the average CO, NOx, and CO2e is calculated based on the total emissions from 

secondary emissions and the total amount of hydrogen produced. From the total emissions data 

it is possible to examine and compare the emissions of hydrogen production and use with other 

fuels, such as gasoline, diesel or ethanol during production and combustion. 

The CO2 emissions from the electrolysis of water to generate hydrogen are determined using 

electrical generation data. In Ontario, this data is available from the Independent Electrical 

System Operator [70], who operates the grid. Using this power generation data, in addition to 

emissions data for each type of power generation, a weighted average is taken to determine the 

amount of emissions per unit energy, measured in kg per MWh, during any given hour. Using 

the efficiency of the electrolysers, this can give the number of kg CO2e per kg H2. Due to the 

province’s reliance on nuclear energy, and its elimination of coal power, the emissions factor for 

Ontario is lower than other provinces like Alberta. 
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4.1.5  Emissions Reductions 

To determine the emissions reductions from using various fuels such as bio-ethanol, gasoline, 

diesel and hydrogen the analysis is broken down into well-to-pump and pump-to-wheel. In Table 

1, for example, the well-to-pump emissions factors for two types of gasoline and corn ethanol.  

Table 14: Gasoline and Renewable Fuel Blending [71] 

Fuel g CO2e per MJ of fuel (well-to-

product) 

Gasoline 18.97 

Oil Sands Gasoline 28.23 

Diesel 17.10 

Corn Ethanol 20.24 

Biodiesel 20.25 

 

Using this data as well as the drive phase, or pump-to-wheel phase data, the total lifecycle 

emissions of each fuel is compared.  

4.1.5.1  Bioethanol Emissions 

The blending of ethanol follows specific volumetric and energy rules. In Table 2, below, the 

properties of straight gasoline, 5% ethanol-gasoline mixtures (E5) and 10% ethanol-gasoline 

mixtures (E10) are shown. As the ethanol-gasoline mixture grades are based on volumetric 

percentages, the energy ratios vary slightly. 

Table 15: Use Phase Emissions for Fuel Blends [71] 

 Blend  Gasoline Ethanol 

Fuel km/MJ 
gCO2e per 

MJ 
% MJ 

km per 

MJ 
gCO2e/MJ 

MJ per 

km 
% MJ 

km per 

MJ 

gCO2e per 

MJ 

Gasoline 0.39 67.47 100 0.39 67.47 2.56 0 - 40.53 

E5 0.40 66.55 96.6 0.39 67.47 2.56 3.4 0.71 40.53 

E10 0.42 65.61 93.1 0.39 67.47 2.56 6.9 0.85 40.53 

 

The addition of ethanol to fuel is intended to provide greenhouse gas reductions, while securing 

the fuel supply and providing a renewable source. An issue raised by Searchinger [72] is that of 

the indirect land use changes that may mitigate some of the CO2e savings attributed to biofuels. 

These indirect land use changes can vary between 20g CO2e per MJ of fuel extracted to 100g 
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CO2e per MJ of fuel [72]. By including the impact of land use change, it is possible to develop 

more accurate emissions factors, in gCO2e per MJ, for different blends of gasoline and ethanol. 

Based on these blending properties, and using the emissions quantities cited above, ranges of life 

cycle emissions are given for different fuel compositions. As can be seen, depending on how 

much emissions are attributed to indirect land use change, the blending of renewable fuels with 

gasoline can result in a net loss or net gain of CO2e emissions.  

Table 16: Total Fuel Cycle Emissions for Blended Fuels [71] 

   Gasoline Ethanol  

Emissions 

Reductions 

Fuel 

km per 

MJ 

MJ per 

km Energy % Energy % 

gCO2e per 

MJ 

gCO2e per 

MJ 

Gasoline - Conventional 0.39 2.56 100% 0% 86.44 
 

Gasoline – Oilsands 0.39 2.56 100% 0% 95.70 
 

E5 with Conventional Gasoline 0.401 2.49 97% 3% 85.85-88.56 -2.12 - 0.59 

E5 with Oilsands Gasoline 0.401 2.49 97% 3% 94.84-97.55 -1.85 - 0.86 

E10 with Conventional Gasoline 0.422 2.369 93% 7% 85.35-91.67 -5.23 - 3.21 

E10 with Oilsands Gasoline 0.422 2.369 93% 7% 93.97-100.29 -4.58 - 3.58 

 

Based on the Total Fuel Cycle Emissions for Blended Fuels, calculated from well-to-pump and 

pump-to-wheel data for ethanol and gasoline blends, provided by Argonne [73] and Gnansounou 

et al. [74], it can be seen that the overall emissions reductions are small and potentially even 

negative, depending on the type of fuel.  

4.1.5.2  Hydrogen-Diesel Dual-Fuel 

The blending of hydrogen with diesel, to generate a dual fuel, can have a significant impact on 

overall emissions. At full load conditions, Deb et al. [75] find that with an addition of hydrogen 

at increasing concentrations causes a correspondent 11%, 17%, 30% and 42% by energy content, 

emissions of CO2 fell from 623 g per kWh to 510, 443, 324 and 248 g per kWh, respectively. 

The levels of NOx, however, increase significantly with the increasing hydrogen concentrations 

from 2.5 g per kWh for pure diesel to 12.5 g per kWh when the mix contains 42% H2 [75].  Lilik 
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et al. [76] also found that brake specific NO and NO2 emissions increased with the addition of 

hydrogen to the fuel mix. This increase in NOx is likely due to the increase in combustion 

temperature that accompanies the addition of hydrogen into the fuel. The addition of hydrogen 

to the fuel mix may also cause a reduced fuel requirement for maintaining idling [77]. In Table 

4, emissions data from three sources for diesel-hydrogen dual fuel engines is given. 

Table 17: Collected emissions data for hydrogen-diesel dual fuel co-combustion 

 

km/M

J [71] 
gCO2 per 

kWh [75] 

gCO 

per 

kWh 

[75] 

gNOx 

per 

kWh 

[75] 

gCO2 per 

kWh 

(40% 

Load) 

[78] 

gCO2 

per 

kWh 

(60% 

Load) 

[78] 

gCO2 

per 

kWh 

(75% 

Load) 

[78] 

gCO2 

per 

kWh 

(100% 

Load) 

[78] 

Diesel 0.38 623 1.76 2,8 862 898 932 924 

11% H2 0.38 510 0.78 9.0     

15% H2 0.38 467 [77]       

17% H2 0.38 443 0.73 9.2     

30% H2 0.38 324 0.59 10.3 683 650 596 651 

42% H2 0.38 248 0.52 12.5     

 

Based on these tests, it can be seen that the addition of hydrogen to a diesel engine causes a 

significant reduction in CO2 emissions while significantly increasing NOx emissions. By 

combining the tabulated data from studies on dual fuel engines, with emissions data from 

Argonne National laboratory, it is possible to estimate emissions levels with different hydrogen 

concentrations. In Table 5, below, the emissions reductions of using a diesel-hydrogen dual fuel 

system is illustrated. 
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Table 18: Collected emissions data for hydrogen-diesel dual fuel co-combustion 

 km/MJ gCO2e per MJ 

Emissions 

reductions % reductions 

Diesel 0.38 92.814   

11% H2 0.38 75.979 16.835 18.1% 

15% H2 0.38 69.573 23.241 25.0% 

17% H2 0.38 65.998 26.816 28.9% 

30% H2 0.38 48.269 44.545 48.0% 

42% H2 0.38 36.947 55.867 60.2% 

 

4.1.5.3  Hydrogen Fuel Cell Vehicle 

The emissions for hydrogen fuel cell vehicles are dependent on the emissions from the 

production of hydrogen and not of its use during the drive-cycle. The emissions of generating 

hydrogen are dependent on the technology. For example, Steam Methane Reforming (SMR) 

produced approximately 9 kg of CO2e per kg of H2 produced [79], [80]. Producing hydrogen by 

electrolysis, however, is dependent only on the type of power generation is being used to generate 

the electricity.  Using the methodology described in subsection 2.1, emissions reductions for 

each of the fuel types given here are determined. 

4.2  Results 

4.2.1  Electricity Price and Emissions 

By varying the switch value for both scenarios, the average HOEF and HOEP change over the 

course of the three-year period. It is found that the largest degree of change occurred in the factor 

that was being controlled for by the switch value. That is to say, when the HOEF is being used 

as a switch value, the average HOEF changed with larger magnitude then that of the average 

HOEP. In addition, when the HOEP is being used as a switch value, the average HOEP changed 

with larger magnitude than that of the average HOEF.  

This phenomenon allows one to operate with relative certainty of the other depending on the 

operational goal of the facility. If the goal is to reduce emissions then the electricity cost can be 
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predicted within a certain realm of certainty. In this analysis, it is shown that though the HOEF 

varies between 61, 64, and 80 kg of CO2e per MWh for the median, mean, and mean +1 standard 

deviation respectively, the HOEP only varies between $19.08 and $21.67 per MWh for the best 

and worst scenario. This shows that though the average emission factor increased by 31%, the 

electricity cost only increased by 14%.  

Alternatively, if the goal is to limit cost, the average HOEF changes with smaller magnitude. 

The average HOEP varies between $16.64, $16.83, and $23.71 per MWh for the median, mean, 

and mean +1 standard deviation respectively, the average HOEF only varies between 82kg and 

94kg CO2e per MWh for the best and worst scenario. However, the electricity price increased by 

42%, the average HOEF only increased by 15%. This demonstrates that controlling the cost has 

marginally more of an effect on the average emissions than controlling the emissions has on the 

cost.  

 
Figure 22: Average emission factor (left) and HOEP (right) utilizing both cost and emission switch values of 

the median, mean, and mean plus one standard deviation 

 

By distinguishing between the two scenarios, cost and emissions, a system can be set up to meet 

the needs of the market. With greenhouse gas emissions being of great importance, being able 

to control the secondary emissions from electricity generation can be of great benefit. It also is 
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of great benefit when considering the well to tank emissions of the fuel sources. By utilizing 

renewable and low emitting electricity, renewable and low emitting hydrogen is created. This 

can help the jurisdiction have an integrated emission reduction strategy, as both hydrogen 

generation and use are a greater improvement over conventional fuels than ethanol. 

4.2.2  Financial Results 

Both emission and cost scenarios show positive results that prove the economic viability of such 

a project. This is shown by examining the simple payback period and the internal rate of return. 

The payback period is what is often used to determine project viability. However, with long-

term projects the internal rate of return can be used to approximate the lifetime return on 

investment. Given the 20-year life span of PEM fuel cells, the internal rate of return is used to 

compare the viability of the project. 

In examining the both cost and emission scenarios without the ethanol tax credit the SPP and 

IRR show promising results. The emission scenario with the median case produces the worst 

SPP which was found to be approximately 6 years. However, given a 20 year life the internal 

rate of return shows a return on investment of 14.88%. This result shows the profitability of the 

facility even in the worst scenario and case. The best scenario and case are with the cost and 

mean plus one standard deviation switch value. This scenario produced a 3.8-year SPP and a 

26.05% IRR that is a large return on investment. 

When adding the ethanol tax credit as a revenue steam the economics of the facility improve. 

The same scenarios are the best and worst, however the return on investment increases by over 

30%, with the worst case SPP and IRR improving to 4.86 years and 20% respectively and the 

best case SPP and IRR improving to 2.9 years and 35% respectively. This large increase would 
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either allow a lower hydrogen price to the consumer, or push for investment in P2G to initiate a 

hydrogen economy. 

 
Figure 23: Simple Payback Period and Internal Rate of Return for both cost and emission scenarios using 

median, mean, and mean plus one standard deviation cases 

 

Both the median and the mean show similar financial results with the mean plus one standard 

deviation showing the economic potential. Upon further analysis, it is shown that the increase in 

economic potential is largely due to more hydrogen being produced. The capacity factor for the 

facility changes relatively little between the median and the mean around 50%. When using the 

mean plus one standard deviation the capacity factor increases to operate a larger percentage of 

the time, 96% for the cost scenario and 82% for the emission scenario. This further supports the 

finding of previous works, which showed that the facility can operate at higher capacity factors 

and therefore can provide addition auxiliary services and further aid the jurisdiction [19]. 
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Figure 24: Capacity factor for both cost and emissions scenarios using the median, mean, and mean plus one 

standard deviation cases 

 

4.2.3  Well-to-Wheel Emissions Reductions 

To examine the overall emissions reductions on the transportation fuel in comparison to gasoline, 

it is necessary to examine both the material extraction phase, or “well-to-pump”, and the drive 

phase, or “pump-to-wheels”. With these two important steps included, it is possible to compare 

the emissions of the different fuel types. In this analysis, E5 and E10 gasoline is compared to 

hydrogen for a hydrogen fuel cell vehicle (HFCV) and a dual-fuel hydrogen/diesel vehicle.  

A number of the previous lifecycle emissions for each of these types of fuels are available and 

have been examined in this paper. In previous sections, the total lifecycle emissions for ethanol 

and gasoline are outlined. Additionally, the burn characteristics of dual-fuel hydrogen/diesel 

engines is also examined in the methodology section of this text. Further, the “pump-to-wheels” 

emissions for hydrogen vehicles are known to be zero due to the behaviour of fuel-cell vehicles. 

Examining the dual-fuel hydrogen/diesel co-combustion vehicles it is necessary to examine the 

well-to-pump emissions of both the hydrogen and diesel components. In Table 6, the emissions 

values of the well-to-pump production for hydrogen and diesel are given on a per MJ basis. 
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Table 19: Well-to-pump emissions for H2 and diesel fuel 

Fuel gCO2e per MJ Fuel 

H2 Emissions avg 21.94 

H2 Emissions mean 24.06 

H2 Emissions mean +1 st.dev. 35.39 

H2 Price switch 44.6 – 48.13 

Diesel 17.095 [71] 

 

The overall lifecycle emission of greenhouse gases, measured in kg of CO2e, is given in Table 7 

below. The fuel blends examined here are 100% diesel, 11% H2 – diesel dual fuel, 30% H2 – 

diesel dual fuel and pure H2. All of the fuels that contain H2 are examined at the highest and 

lowest emissions factors found for hydrogen production, 21.94 and 48.13 g CO2e per MJ, 

respectively. Using the two hydrogen-diesel blends of 11%-H2 and 30%-H2 it is possible to 

compare the lifecycle reductions of using H2 as a co-combustible in diesel engines. The pure 

hydrogen fuel, given in the last two rows, is expected to be used in a pure hydrogen fuel cell 

vehicle instead of the diesel engine used for the other fuels. This means that the energy 

efficiency, measured in MJ per km in this table, is different for the pure H2 fuel. In addition, due 

to the zero-emission nature of HFCVs, the only greenhouse gas emissions for this fuel comes 

from the production of hydrogen itself. 
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Table 20: Total Lifecycle Emissions for Diesel, Hydrogen and Dual Fuel Blends 

Fuel Blend gCO2e 

per MJ 

Fuel 

Produced 

gCO2e per 

MJ Fuel 

Consumed 

gCO2e 

per MJ 

Fuel 

Total 

MJ 

per 

km 

Yearly 

Energy 

MJ for 

25,000 

annual 

km 

Total 

Energy 

(8 years 

use) 

Yearly 

Emissions 

(kg 

CO2e) 

Lifecycle 

Fuel 

Emissions 

(kg 

CO2e) 

% 

Reductions 

Diesel 17.10 173.06 190.15 2.63 65,789 526,316 12,510 100,079   

11% H2 

(max 

emissions) 

20.51 141.67 162.18 2.63 65,789 526,316 10,669 85,356 15% 

11% H2 

(min 

emissions) 

17.63 141.67 159.29 2.63 65,789 526,316 10,480 83,839 16% 

30% H2 

(max 

emissions) 

26.41 90.00 116.41 2.63 65,789 526,316 7,658 61,266 39% 

30% H2 

(min 

emissions) 

18.55 90.00 108.55 2.63 65,789 526,316 7,141 57,131 43% 

H2 (max 

emissions) 

48.13 0.00 48.13 1.36 34,000 272,000 1,636 13,091 87% 

H2 (min 

emissions) 

21.94 0.00 21.94 1.36 34,000 272,000 746 5,968 94% 

 

Next, in order to compare the overall well-to-wheels emissions of each of the fuels and fuel 

blends, it is necessary to use a common point of comparison. Here it is assumed that each vehicle 

is used for 8 years of driving with an annual use of 25,000 km. Under this assumption, one can 

now examine the emission reductions between diesel, the diesel-hydrogen blends and pure 

hydrogen blends. When 11% H2 is used, the reduction in greenhouse gas emissions is 15-16% 

depending on whether the minimum or maximum emissions factor for the production of H2 is 

used. As can be seen in Table 7, the lifecycle emissions reduction for hydrogen-diesel blends 

comes not from the fuel production, but the fuel consumption phase. This can also be seen in the 

11% H2 blend where the emissions reduction ranges between 39% and 43% for the maximum 

and minimum emissions factors for hydrogen production. The use of H2 in the HFCV achieves 

a great magnitude of emissions reductions from its use phase due to its more efficient engine and 

the lack of use-phase emissions. Comparing the results in Table 7 to the questionable data for 
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ethanol-gasoline blends in Table 3 illustrates the advantage of using hydrogen to provide fuel-

cycle emissions reductions.  

4.3  Conclusions 
Moving forward, providing emissions reductions in the transportation sector remains an 

important technological goal of automotive manufacturers and industrial societies. With a target 

of only a 2-degree global temperature increase jurisdictions will have to find innovative ways to 

allow the integration of cleaner intermittent energy and more sustainable transportation fuels. 

The use of electrolytic hydrogen offers an excellent bridge from the current combustion-based 

transportation technologies to a future centered on hydrogen fuel cell vehicles and electric 

vehicles. To move towards these eventual technologies, hydrogen can provide significant 

emissions reductions in dual-fuel applications with diesel. When an 11%-H2, 89%-diesel mixture 

is used greenhouse gas emissions are reduced 15%-16%; while a 30%-H2, 70%-diesel mixture 

provided a reduction of 39%-43% in comparison to diesel. Thus, the use of blended H2-diesel 

fuels provides significant emissions savings when contrasted with the ethanol blending that is 

mandated under the Renewable Fuel Standard. Given these reductions, and the incentives being 

offered to significantly less effective renewable fuels, like ethanol, it makes sense for 

policymakers to provide tools that encourage the production and use of electrolytic H2. 
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Chapter 5:  SUMMARY AND CONCLUSIONS 

5.1  Summary of Conclusions 
Government programs like the Feed-in-Tariff program are a disincentive to energy storage 

and have created instability in the market pricing 

Energy storage is important for expanding the use of intermittent renewable energy. Policy has 

been put in place to increase renewable energy implementation, however it has been correlated 

with market price instability and an increase in adjustment pricing. The policy has also been 

shown to be a deterrent to energy storage by making it less profitable store and use energy 

smartly compared to selling it at the inflated Feed-In-Tariff price. This can be seen in the roughly 

$4,000 gain in profit under a market price contrasted with a roughly $4,000 loss under the current 

FIT program. This promotes a policy that does have benefits as renewable power generation has 

increased, however, it also promotes a policy that is unsustainable and has passed on significant 

cost to the consumer. An energy storage program should replace the Feed-In-Tariff program in 

order to promote renewables in a more sustainable policy. 

Energy storage can be economically feasible if given preferential pricing such as energy 

exporters 

Energy exporters get contracted pricing that does not include the global adjustment. These 

exporters benefit at times from the instability in the market when the market price of electricity 

is negative. To keep profits within the jurisdiction, energy storage should be priced similarly to 

energy exporters and not pay the global adjustment. This would ensure Power-to-gas makes 

economic sense and promote its wide spread use. This would help stabilize electricity pricing 

and reduce the frequency the price becomes negative due to a surplus of generation. By utilizing 
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this pricing structure the Internal Rate of Return varies between 15 and 21 percent. This 

demonstrates the profitability of a Power-to-gas system. 

Power-to-gas offers flexibility and provides benefits to multiple sectors 

Not only can Power-to-gas be profitable but the benefits extend beyond the power grid. While 

stabilizing the power grid the hydrogen product can be used in a plethora of applications. In the 

near future or for heavy duty vehicles, dual fuel vehicles can be used which show anywhere 

between a 15% and 43% lifecycle emission reduction depending on the percentage of hydrogen 

used. The hydrogen can also be used for a fuel cell vehicle for which lifecycle emissions can be 

reduced by up to 94%. This therefore can decrease the emissions from the power grid through 

expanding the use of renewables or near zero emission power generation while also reducing 

emissions from the transportation sector.  

By having the potential to be utilized in both combustion engines and a fuel cell vehicle, Power-

to-gas can act as a bridge between current and future markets. This can be achieved by creating 

small systems that provide the hydrogen for dual fuel, which can be expanded when the demand 

exists due to the prevalence of fuel cell vehicles. This transition not only allows for refinement 

of the systems and controls to stabilize electricity but also answers the infrastructure questions 

about alternative energy vehicles. 

5.2  Concluding Policy Remarks 
Creating a sustainable future is an important project for both government and industry. The 

policies that are created must be sound environmentally but also sustainable economically. The 

policies must be sustainable economically to both achieve political will but also to maintain 

consumer acceptance of the technologies. To ensure the policies are environmentally sound a 

big picture approach will enable a program to benefit multiple sectors, from commercial to 
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transportation. These policies, by taking an integrated approach, will benefit the province in the 

long term providing a clean, efficient, and effective energy future.  

The following policy recommendations based on the conclusions offer sustainable solutions to 

Ontario’s electricity storage problems: 

 End the Feed-in Tariff program and replace it with a program that is not a disincentives 

to energy storage 

 Allow Power-to-gas systems to be installed and price the electricity consumption at the 

market Hourly Ontario Electricity Price without the Global Adjustment 

 Apply an equivalent ethanol tax credit to hydrogen produced by electrolysis of 79.5 cents 

per kilogram 

 

5.3  Recommendations 

5.3.1  Recommendations with respect to works 

As demonstrated in this cumulated work energy storage systems are capable of being 

implemented in various fashions to meet specific needs. To meet the scale of the problem of 

mass electricity exports and negative market prices the scale of the energy storage must match. 

The focus on grid energy and transportation energy at a grid scale, provides the appropriate scale 

but also emissions reduction potential to combat global climate change.  

To make Power-to-gas systems feasible there should be preferential pricing as both the 

implementation of the system and post production use of hydrogen offer substantial reduction of 

emissions for the jurisdiction. Be it a city, province, state or nation, the implementation of energy 

storage such as Power-to-gas should be part of a larger strategy to meet emission reduction 

targets. The energy storage providers should therefore be treated the same as an exporter and not 

have to pay the global adjustment fee as long as they help regulate the market price. By 

stabilizing the electricity prices and providing load shifting services more intermittent renewable 

energy can be implemented furthering the benefits.  
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5.3.2  Recommendations for future analysis 

For future works a more integrated and detailed analysis should be conducted to more accurately 

predict the costs of the systems. These higher fidelity models will be able to prove beyond a 

reasonable doubt the profitability of these systems, making the economic case for clean energy 

and energy storage.  

New policies and programs should be researched to determine the most sustainable solution that 

balances the environment and the economy. These programs could be new preferential pricing, 

or other market mechanisms that show the profitability of Power-to-gas in addition to the large 

environmental impact. 

Power-to-gas utilizes sound technology and can be implemented in the current market. The 

impact of Power-to-gas on the environment, electricity pricing, and transportation energy and 

emissions has been discussed individually but not in an integrated strategy. By creating an 

integrated strategy, the case for Power-to-gas over other storage will be made and the integration 

of Power-to-gas into the power grid will be demonstrated.  
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