
Evaluating the Efficacy of Implicit
Authentication Under Realistic

Operating Scenarios

by

Hassan Khan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2016

© Hassan Khan 2016

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contribution

The content in Chapter 3 and Chapter 6 was co-authored with fellow PhD student Erinn
Atwater, who contributed to the development of Itus. The content in Chapter 4 and
Chapter 5 was co-authored with Prof. Daniel Vogel. The rest of this thesis contains original
content and was authored under the supervision of Prof. Urs Hengartner.

iii

Abstract

Smartphones contain a wealth of personal and corporate data. Several surveys have
reported that about half of the smartphone owners do not configure primary authentica-
tion mechanisms (such as PINs, passwords, and fingerprint- or facial-recognition systems)
on their devices to protect data due to usability concerns. In addition, primary authen-
tication mechanisms have been subject to operating system flaws, smudge attacks, and
shoulder surfing attacks. These limitations have prompted researchers to develop implicit
authentication (IA), which authenticates a user by using distinctive, measurable patterns
of device use that are gathered from the device users without requiring deliberate actions.
Researchers have claimed that IA has desirable security and usability properties and it
seems a promising candidate to mitigate the security and usability issues of primary au-
thentication mechanisms.

Our observation is that the existing evaluations of IA have a preoccupation with accu-
racy numbers and they have neglected the deployment, usability and security issues that
are critical for its adoption. Furthermore, the existing evaluations have followed an ad-hoc
approach based on synthetic datasets and weak adversarial models. To confirm our ob-
servations, we first identify a comprehensive set of evaluation criteria for IA schemes. We
gather real-world datasets and evaluate diverse and prominent IA schemes to question the
efficacy of existing IA schemes and to gain insight into the pitfalls of the contemporary
evaluation approach to IA. Our evaluation confirms that under realistic operating con-
ditions, several prominent IA schemes perform poorly across key evaluation metrics and
thereby fail to provide adequate security.

We then examine the usability and security properties of IA by carefully evaluating
promising IA schemes. Our usability evaluation shows that the users like the convenience
offered by IA. However, it uncovers issues due to IA’s transparent operation and false
rejects, which are both inherent to IA. It also suggests that detection delay and false accepts
are concerns to several users. In terms of security, our evaluation based on a realistic,
stronger adversarial model shows the susceptibility of highly accurate, touch input-based
IA schemes to shoulder surfing attacks and attacks that train an attacker by leveraging
raw touch data of victims. These findings exemplify the significance of realistic adversarial
models.

These critical security and usability challenges remained unidentified by the previous
research efforts due to the passive involvement of human subjects (only as behavioural
data sources). This emphasizes the need for rapid prototyping and deployment of IA for
an active involvement of human subjects in IA research. To this end, we design, implement,

iv

evaluate and release in open source a framework, which reduces the re-engineering effort
in IA research and enables deployment of IA on off-the-shelf Android devices.

The existing authentication schemes available on contemporary smartphones fail to
provide both usability and security. Authenticating users based on their behaviour, as
suggested by the literature on IA, is a promising idea. However, this thesis concludes that
several results reported in the existing IA literature are misleading due to the unrealis-
tic evaluation conditions and several critical challenges in the IA domain need yet to be
resolved. This thesis identifies these challenges and provides necessary tools and design
guidelines to establish the future viability of IA.

Supervisor

� Urs Hengartner

Committee & Examiners

� Danial Vogel

� Ian Goldberg

� Mahesh Tripunitara

� Paul van Oorschot

v

Acknowledgements

I thank Almighty God for giving me the ability to accomplish this. My father has
been my role model and instrumental in helping me become who I am today. His active
involvement throughout my early and university education has provided me with a solid
foundation, which prepared me well for the research challenges that I faced. He has ensured
that I have access to the best possible resources to successfully accomplish my goals. My
mother’s love, support and prayers made this journey much easier. My wife, Asma, has
been incredibly understanding throughout this degree. She has sacrificed several special
occasions to my deadlines, yet she always provided unwavering love and support. My life
has been truly enriched by her presence. Mustafa, my brother, has provided me with a
support system without which I would not have been able to continue my endeavors. Afoo
and Ibrahim’s pictures and videos has kept me cheerful throughout. Awais, my friend, has
always been around. His sincerity and willingness to help is unparalleled.

I would like to thank my advisor, Urs Hengartner. Urs was flexibile in letting me pursue
my research interests, yet thoroughly engaged with my work. He guided, mentored and
challenged me during my research by nudging me to approach my research with clarity
and focus. He was always available to provide assistance on the research challenges that I
encountered. I am truly indebted to him for the way he has shaped me into a researcher.
I could not have asked for a better advisor.

I am grateful to Daniel Vogel for his “informal co-supervision” on some of the research
problems that I worked on. His insightful discussions and suggestions have greatly improved
the quality this thesis. I am grateful to Paul van Oorschot for agreeing to be my external
examiner and for his invaluable critique and constructive feedback. I am thankful to Ian
Goldberg for his comprehensive feedback and Mahesh Tripunitara for agreeing to be on
my examining committee. I would also like to thank members of CrySP for their support
and feedback particularly Erinn, Tariq, Jalaj, Tao and Cecylia. Finally, I am thankful to
my friends and mentors, Khayam and Fauzan, for introducing me to the world of scientific
research.

This research was supported by the Government of Ontario through Ontario Trillium
Scholarship, Google’s Focused Research Award and Cheriton Graduate Scholarship.

vi

Dedication

To Abu, for making all my accomplishments possible..

To Ami, for love & prayers..

To Asma, for loving support..

vii

Table of Contents

List of Tables xiv

List of Figures xv

1 Introduction 1

1.1 Authentication on Smartphones . 1

1.2 Implicit Authentication . 3

1.3 Scope and Threat Model . 3

1.4 Open Challenges . 4

1.5 Thesis Statement . 6

1.6 Main Contributions of this Research . 7

1.7 Overview of Thesis . 8

1.8 Related Publications . 8

2 Background 10

2.1 Smartphone Authentication in Practice . 10

2.1.1 Acceptance of authentication methods 11

2.1.2 Usability issues . 12

2.1.3 Security issues . 13

2.2 Mitigating Usability and Security Issues 14

2.3 Alternate Authentication Proposals . 15

viii

2.3.1 Graphical passwords . 15

2.3.2 Gesture-based authentication . 17

2.4 State of the Art in IA . 18

2.4.1 Classification in machine learning 18

2.4.2 Device usage behaviour-based schemes 19

2.4.3 Gait pattern-based schemes . 21

2.4.4 Text input behaviour-based schemes 22

2.4.5 Touchscreen input behaviour-based schemes 24

2.4.6 Multi-modal schemes . 26

2.4.7 Usability evaluations of IA . 28

2.4.8 Security evaluations of IA . 29

2.4.9 Frameworks for IA deployment . 30

2.5 Rationale for Thesis . 30

3 A Comprehensive Evaluation of IA 32

3.1 IA Schemes Evaluated . 34

3.1.1 Shi-IA . 34

3.1.2 Gait-IA . 34

3.1.3 Touchalytics . 35

3.1.4 Keystroke-IA . 35

3.1.5 SilentSense . 35

3.1.6 TIPS . 36

3.2 Datasets . 36

3.2.1 Netsense dataset . 37

3.2.2 WatApp dataset . 38

3.2.3 Touch input dataset . 39

3.2.4 Text input dataset . 40

3.3 Evaluation Setup . 40

ix

3.4 Evaluation Results . 41

3.4.1 Accuracy evaluation . 41

3.4.2 Data availability . 44

3.4.3 Training delay . 45

3.4.4 Detection delay . 46

3.4.5 Processing complexity . 47

3.4.6 Uniqueness of behavioural features 48

3.4.7 Vulnerability to mimicry attacks . 49

3.4.8 Ease of deployment on mobile platform 51

3.5 Discussion and Open Challenges . 51

3.6 Conclusion . 52

4 Usability and Security Perceptions of IA 54

4.1 Study Goals . 55

4.2 Study Design . 56

4.2.1 Participants . 57

4.2.2 Apparatus . 59

4.2.3 Part 1: Controlled lab experiment 60

4.2.4 Part 2: Field study . 64

4.3 Results . 67

4.3.1 Usability evaluation of IA . 67

4.3.2 Security perceptions of IA . 75

4.4 Discussion . 81

4.4.1 Mitigating the effects of interruptions 82

4.4.2 Opaque deployment of IA . 83

4.4.3 Operating threshold customization 83

4.5 Limitations . 84

4.6 Conclusion . 85

x

5 Mimicry Attacks on Touch IA 87

5.1 Threat Model and Attack Scenarios . 88

5.2 Schemes and Data Evaluated . 89

5.2.1 Schemes evaluated . 89

5.2.2 Data collection . 90

5.2.3 Parameter value selection . 91

5.2.4 Evaluation baseline . 91

5.3 Attack Design . 92

5.3.1 Mimicker for offline training attacks 93

5.3.2 Apparatus for attack evaluation . 95

5.4 Attack Protocol . 95

5.4.1 Participant recruitment and motivation 96

5.4.2 Study procedure . 96

5.5 Attack Evaluation . 98

5.5.1 Attacker success . 98

5.5.2 Attacker effort . 101

5.5.3 Difficult or easy to mimic features 104

5.6 Discussion . 106

5.6.1 Basic shoulder surfing attacks . 107

5.6.2 Attacks with limited knowledge . 107

5.6.3 Effect of operating threshold . 109

5.6.4 Effect of different target swipes . 110

5.6.5 Attacker- or victim-bound success? 110

5.7 Limitations . 111

5.8 Conclusion . 112

xi

6 Itus: A Framework for App-Centric IA Deployment 113

6.1 A case for App-centric IA . 114

6.1.1 Flexibility issues . 114

6.1.2 Extensibility issues . 116

6.2 Evaluation of App-centric IA . 117

6.2.1 Device-centric Touchalytics . 117

6.2.2 App-centric Touchalytics . 119

6.3 Motivation for IA Framework . 121

6.3.1 App Developers . 122

6.3.2 IA Developers . 122

6.4 Design Goals . 123

6.5 Architecture . 125

6.5.1 SecureActivity . 126

6.5.2 Measurement and subclasses . 126

6.5.3 Dispatcher . 127

6.5.4 FeatureVector . 128

6.5.5 DataStorage . 128

6.5.6 Itus Agent . 129

6.5.7 Itus Oracle . 129

6.5.8 Machine Learning Toolkit . 130

6.6 Workflow . 130

6.6.1 App Developers . 131

6.6.2 IA Developers . 131

6.7 Implementation . 132

6.8 Performance Evaluation . 135

6.8.1 Experimental Setup . 135

6.8.2 Evaluation Results . 136

6.9 Limitations . 141

6.10 Conclusion . 141

xii

7 Conclusion and Future Work 143

7.1 Research Contributions . 143

7.2 Future Research . 144

7.3 Conclusion . 146

References 147

APPENDICES 162

A Pre-study Survey for Usability Evaluations 163

B Post-study Survey for Usability Evaluations 165

C SUS Survey for Usability Evaluations 167

D STAI Survey 168

E Semi-structured Interviews for Usability Evaluations 170

E.1 Lab-based experiment . 170

E.2 Field study . 171

xiii

List of Tables

2.1 Device usage behaviour-based schemes. 20

2.2 Gait pattern-based schemes. 21

2.3 Text input behaviour-based schemes. 23

2.4 Touch input behaviour-based IA schemes. 25

2.5 Multi-modal IA schemes. 27

3.1 Statistics of touch points dataset. 40

3.2 Training delays to achieve different accuracy rates for the IA schemes. . . . 46

3.3 CPU and memory performance evaluation of the IA schemes 49

4.1 Demographics and security preferences of the study participants. 58

5.1 Statistics of touch dataset for mimicry attacks. 91

5.2 Demographics of the participants. 98

5.3 Effect of introducing one week delay between shoulder surfing and the attacks.107

5.4 Bypass success rates for offline training attacks when attack attempts are
replayed for different schemes. 108

5.5 Bypass success rates for the attackers for different operating thresholds. . . 110

6.1 Accuracy evaluation of device- and app-centric approaches (95% CI) 119

6.2 CPU time in milli-seconds for different configurations of Itus. 138

6.3 Heap memory in kBytes for different configurations of Itus. 138

6.4 Battery consumption overhead of Itus Prefabs on demo apps. 140

xiv

List of Figures

3.1 Data distribution for Netsense and WatApp datasets. 37

3.2 Accuracy of the IA schemes. 42

3.3 FAR for individual data sources for WatApp and Netsense datasets. 43

3.4 Data availability on real-world datasets. 45

3.5 Detection delay for true rejects for the IA schemes. 47

3.6 Relationship between IA bypass rate and number of users. 50

4.1 The “Age Group” – “Current Authentication Scheme” distribution for study
participants. 59

4.2 Apps’ screens showing different activities for the lab-based experiment. App’s
screens presented here have been modified to show complete activities. . . 61

4.3 The in-situ feedback pop-up after interrupt-authenticate. 65

4.4 Change in the overall task completion time for the non-IA session as com-
pared to the IA session. 68

4.5 Interrupt-authenticate overhead for different activities. 69

4.6 Error rate between interrupted tasks from the IA session and corresponding
uninterrupted tasks from the non-IA session. 70

4.7 Responses for “Do you agree with the statement ‘I think this method is
annoying’?”. 71

4.8 Responses for “How annoying were the interruptions for authentication?”. . 71

4.9 Annoyance against three operating thresholds from the in-situ feedback sur-
vey of the field study. 72

xv

4.10 Average system usability scale (SUS) score for IA and non-IA sessions. . . 74

4.11 Average change in STAI anxiety score for IA and non-IA sessions 75

4.12 Responses to the individual SUS questions. 76

4.13 Responses for “How satisfied are you with the overall level of protection that
is provided?”. 77

4.14 Security perception responses according to different adversaries, device states
and tasks. 78

4.15 Responses for “How secure is this method as compared to your current
authentication method?”. 79

4.16 Responses for “Would you use IA?”. 79

5.1 Accuracy of the IA schemes against the random attacker model. 92

5.2 Screenshot of Mimicker interface. 94

5.3 Bypass success rate for the three IA schemes across all attacker-victim pairs. 99

5.4 Average within window TRR for the three IA schemes across across all
attacker-victim pairs. 100

5.5 Shoulder surfing time for successful attacks. 102

5.6 Proportion of attacker-victim pairs who required training for a window. . . 103

5.7 Windows until bypass for successful attacks. 104

5.8 Difficult to mimic features across failed attempts for all the attackers. . . . 105

5.9 Easy to mimic features across successful attempts for all the attackers. . . 106

6.1 KL divergence score of features across four apps used in this study 118

6.2 Itus framework architecture. 125

6.3 Itus’ development overhead for Zirco Browser 137

6.4 Itus’ CPU and memory overhead for demo apps. 139

xvi

Chapter 1

Introduction

User authentication is the first line of defence as a preventive control to stop unwanted
access to smartphones. This control works effectively when the authentication scheme
is both secure and usable. However, an overwhelmingly large proportion of smartphone
users does not configure the existing authentication mechanisms due to their usability
issues [EJP+14, HVZF+14]. Bring your own devices (BYODs) that contain confidential
corporate data and require complex password policies add an additional layer of complexity
to this problem [Ste14]. Implicit authentication (IA) uses behavioural biometrics to con-
tinuously and transparently authenticate smartphone users. Researchers have suggested
to use IA as a middle ground for smartphone users who do not use primary authentica-
tion mechanisms due to their usability issues or second line of defence for the scenarios
where additional security is desired [FBM+13, LZX13]. In this thesis, we advance research
in the area of implicit authentication through deployability, usability, and security and
performance evaluations of IA schemes.

1.1 Authentication on Smartphones

In order to prevent unauthorized access on smartphones, primary authentication mecha-
nisms (such as PINs, passwords, and fingerprint- or facial-recognition systems) are used.
A major issue with these mechanisms is their all-or-nothing access approach where users
have to pass an authentication challenge in order to access any resource on the device.
This approach is unsuitable for smartphones where 40% of the frequently accessed apps
(such as games, weather, navigation, news and music apps) do not contain confidential
data [HRS+12]. Furthermore, unlike desktops or laptops, smartphone sessions are short

1

and frequent and PIN entry for every short session is inconvenient for users [HRS+12].
Due to these usability issues of primary authentication mechanisms, several independent
studies show that between 40–50% of smartphone owners do not configure them on their
devices [EJP+14, HVZF+14, Loo16].

In addition to the usability issues, primary authentication mechanisms that rely on a
secret that the device owner knows have been subject to operating system flaws [Thr16],
smudge attacks [AGM+10] and shoulder surfing attacks [LZX13]. Operating system flaws
enable an adversary to bypass a primary authentication mechanism altogether [Thr16].
Smudge attacks leverage the oily residue of the finger left on the touchscreen during the
secret entry to significantly reduce the input space for a bruteforce attack on PINs and
pass-locks for an adversary [AGM+10]. Similarly, authentication mechanisms that rely on
who the device owner is have also been subject to novel attacks and both fingerprint- and
facial-recognition schemes have been successfully bypassed by researchers [And16, Zdn16].

Organizations may employ mobile device management (MDM) solutions to enforce
password policies on BYODs to protect corporate data [Ste14]. These solutions require a
device-level authentication scheme, such as a PIN or fingerprint recognition, while com-
plex passwords may be required to further establish identity for corporate email, mes-
saging, or calendar apps. Research efforts have demonstrated that the constrained key-
boards on smartphones are a bottleneck when users are authenticating using complex pass-
words [SDW12]. While MDM solutions can enforce password policies, they aggravate the
usability issues. According to a prediction by Gartner, 20% of enterprise BYOD programs
will fail due to overly restrictive policies of MDMs [Gar16].

Despite these usability and security limitations, primary authentication mechanisms
are the first line of defense against misuse on mobile devices. IA has security limitations
of its own as it is subject to false accepts (type II errors) and detection delays (delay in
classification decision due to the unavailability of behavioural data). Therefore, IA is not
an alternative for primary authentication mechanisms and we strongly advocate the use
of latter as the first line of defence. However, similar to Frank et al. [FBM+13] and Li
et al. [LZX13], we suggest that primary authentication mechanisms can be complemented
using IA schemes to provide a second line of defense for scenarios where additional protec-
tion is required (such as BYOD environments). Furthermore, IA schemes can be used to
provide protection to device owners who do not use primary authentication mechanisms
due to their usability issues.

2

1.2 Implicit Authentication

IA schemes provide authentication by using distinctive, measurable patterns of device use
that are gathered from mobile device users without requiring deliberate actions [CRS13].
For example, a key input behaviour-based classifier learns to recognize a device owner’s
keystroke patterns and then monitors for anomalies in real-time key events to detect misuse.
As a result, when an adversary gains access to the victim’s device and enters some text, IA
may be able to detect the misuse and lock the device or alert the device owner via email.

IA schemes are useful in many scenarios, such as for:

� Enterprises: may use IA to provide additional security for their corporate apps on
BYODs, where the company may be unable to force users to use explicit authenti-
cation or enforce password policies on their device due to usability issues or device
limitations.

� Banks, mail service providers and OSNs: may allow their users to save passwords
on the device to reduce authentication overhead every time users access their apps.
An IA scheme can protect the identity and data of the consumers on mobile devices
where the users are only authenticated in case the IA scheme detects a misuse.

� Security-conscious app developers: can use IA to protect user data in their apps (e.g.,
browser, communication, and photo gallery apps).

To provide IA support on smartphones, many IA schemes have been proposed by
the research community that rely on a diverse set of behavioural features including a
user’s device usage patterns [BDG14, KJB+14, LCPD10, JSGC09, SYJ+11, ZWWZ13],
touchscreen input behaviour [BZL+13, DLHB+12, FLK+12b, FYY+14, FBM+13, LZX13,
LCL13, SLS13, ZFS13], text entry patterns [CF07, DZZ14, FZCS13, GMCB14, HCP09,
MCGCN, ZSKF09], and gait patterns [FMP10, GHS06, JXBJ+12, KWM10, MLV+05,
MM13]. More details on how these IA schemes operate are provided in Chapter 2.

1.3 Scope and Threat Model

In this thesis, we advance the research in the area of IA on smartphones. We specifically
only consider the scenario where IA is used for user-to-device authentication and not for
user-to-remote-site authentication. This scope is also applicable to the other authentication

3

schemes (e.g., PINs and passwords) discussed in this work. Moreover, while similar implicit
factors might be used to establish identity of users on the web [BHvOS15, CPH11] or to
fingerprint devices [VGSPJ16], such use of implicit factors is out of scope.

We use the standard threat model used for IA schemes [BZL+13, LZX13, XZL14]. An
adversary attempts to gain unauthorized access to a victim’s device, which employs an IA
scheme to continuously authenticate the device user. The victim has either not config-
ured a primary authentication scheme (such as a PIN) or the adversary has bypassed it
completely through known mechanisms like shoulder surfing or smudge attacks [AGM+10].
The adversary is aware of the presence of an IA scheme on the victim’s device. Finally,
an adversary may be uninformed or informed about the victim. An uninformed adversary
may be a curious stranger/thief who found/stole a device, while an informed adversary
might be an inquisitive friend, co-worker, or family member. The difference between these
two types of adversary is that the latter may have additional knowledge about the be-
haviour of the victim (e.g., he may know that the victim always uses his right hand for
swiping). Finally, we do not consider authentication secret capture attacks through net-
work interception (which is precluded through our user-to-device authentication scenario)
and malware.

1.4 Open Challenges

The usability and security limitations of primary authentication mechanisms have prompted
researchers to develop IA schemes. The focus of the majority of the existing IA literature is
on proposing novel behavioural biometrics and features to improve the detection accuracy
of IA schemes. Several critical factors in terms of usability, security and deployability of
IA have been neglected in the existing literature. In this section, we provide an overview
of the neglected issues and highlight their significance.

Primary authentication mechanisms operate in a consistent manner. If a user knows
the secret or possesses the required physiologic biometric, she will be able to accurately
establish her identity in a predictable time interval. On the other hand, IA relies on be-
havioural biometrics, which may vary or the data available to establish a user’s identity
may not be sufficient. For a wide-spread adoption of IA, it is critical to demonstrate that
some IA schemes provide acceptable performance across all evaluation metrics that matter
for IA. However, this is challenging since to the best of our knowledge, an exhaustive set of
evaluation metrics for IA has not been provided in the contemporary IA literature. There-
fore, the first challenge is the identification of a comprehensive set of evaluation metrics
for IA. Once evaluation metrics are defined, an unbiased evaluation of IA schemes needs to

4

be performed on real-world datasets to determine whether they provide acceptable perfor-
mance. Another challenge is to elicit users’ preferences to define an acceptable standard
for the performance of IA. If the performance evaluation of IA shows that it meets an
acceptable standard, it will make a stronger case for IA adoption.

Existing IA literature has assumed without empirical evidence that since IA authenti-
cates without requiring explicit input, it is more usable. However, despite the reasonably
high detection accuracy of some IA schemes, these schemes are still subject to false accepts
(type II errors), false rejects (type I errors) and detection delays, which could introduce
new usability issues and affect users’ security perceptions. If IA is unsure about the user’s
identity, it naturally resorts to an interrupt-authenticate approach in which the current
task is pushed to the background and the user has to explicitly authenticate to establish
their identity [FYY+14, LZX13]. This interrupt-authenticate approach for false rejects is
quite different from consistent authentication of primary authentication schemes and it is
unclear how it affects usability. Similarly, it is not obvious whether the usability-security
trade-off offered by IA overcomes the perception of security given the risks of false accepts
and delay in detection of an intruder. Finding answers to these usability aspects and secu-
rity perceptions of IA will determine whether IA is a potential candidate for deployment
to mitigate the usability issues.

To further the evaluation of IA, we aim to investigate the threat of mimicry attacks
on prominent IA schemes. IA schemes rely on distinct patterns of device usage, which
can be observed over-the-shoulder by an adversary or the usage pattern can be recorded
by a malicious application on the device. For the former case, the adversary can try to
mimic the behaviour of the victim to gain access to the device and for the latter case,
the adversary can train himself to behave like the victim. In both cases, it is important
to understand how successful such mimicry attacks are on IA schemes. The resistance
provided by IA schemes against these mimicry attacks will determine the protection level
that they offer in deployments.

Finally, we explore the deployment issues of IA schemes that may impede its adoption.
Since the majority of IA schemes employ behavioural features that can only be gathered at
the system level, IA deployment either requires platform vendor support (to be included at
the application framework level or at the kernel level) or it requires rooting of the device.
However, providing IA support at the system level has flexibility and extensibility issues
of its own. These flexibility issues arise due to the fact that different apps have different
characteristics and a generic system-level IA scheme may not be suitable for different apps.
The difference in app characteristics can also severely reduce the accuracy of IA schemes
by as much as 20% [FYY+14, KH14]. In terms of extensibility, system-level IA mechanisms
would need to be managed by the platform developers or some central authority. However,

5

IA is a relatively new area that still experiences radical revisions due to the research findings
in such areas as the use of novel sensors or wearable devices for IA [MMMC+14, SSTA14],
and the research findings on the usability and acceptance of IA schemes. The platform
developers in this case are more inclined toward accepting mature contributions, which will
lock out many developers. We investigate how these deployment issues can be mitigated
for the deployment of IA on off-the-shelf devices.

1.5 Thesis Statement

The major goal of this research effort is to perform a realistic evaluation of the deployability,
security and usability related issues of IA. Based on the findings of these evaluations, we
also propose strategies to make IA more practical so that it can be adopted. Our thesis
statement is:

Evaluating an authentication scheme based only on accuracy numbers determined from
synthetic datasets and weak adversarial models and neglecting the scheme’s deployment,

usability and security concerns can lead to misleading results, as illustrated for the case of
implicit authentication on smartphones.

Four main research objectives of this thesis are described below:

Objective 1: Identify the key evaluation metrics that should be used to evaluate the
efficacy of IA schemes. Perform an evaluation of existing IA schemes on this ex-
tended evaluation criteria to identify the IA schemes that appear most promising for
extensive deployability, security and usability evaluations.

Objective 2: Determine how the inaccuracy and the detection delay of IA schemes im-
pacts their usability and security perceptions. Ascertain that the usability and secu-
rity perceptions of IA warrant its adoption.

Objective 3: Identify realistic attacks on the most promising IA scheme identified and
perform an evaluation of those attacks to evaluate its security.

Objective 4: Identify the forestalling obstacles to the deployment of IA and address those
by providing a flexible and extensible IA deployment mechanism.

6

1.6 Main Contributions of this Research

This research contributes original ideas and knowledge to the IA domain. We identify an
extensive evaluation criteria for IA and used that to determine which schemes work best
in terms of detection accuracy, detection delay and processing complexity under different
operating conditions in terms of attack scenarios and availability of training and classi-
fication data. We conduct an experiment to mount two realistic attacks on touch input
based IA schemes to determine the susceptibility of these schemes to targeted mimicry
attacks. We conduct the first extensive lab and field study to gain insights into usability
and security perceptions of IA. Finally, we propose an effective deployment scenario for IA
on smartphones and provide a framework to prototype and readily deploy IA schemes.

The main contributions of this research are:

1. We evaluate six diverse IA schemes on real-world datasets using eight evaluation
metrics. Our results show that while the majority of IA schemes provide reasonable
accuracy with low detection delay, IA schemes based on touchscreen input behaviour
outperform others by providing near real-time misuse detection with high accuracy.
We also find that some IA schemes perform well in terms of detection accuracy but
frequently do not have enough data available for classification.

2. We perform the first ever study to evaluate the usability and security perceptions of
IA. We find that in terms of performance, the interrupts due to false rejects impose
overhead for individual authentications, but IA increases amortized task performance
without affecting the error rate. For usability perceptions, while we found no sig-
nificant difference between IA and explicit authentication using the system usability
scale (SUS) survey, more users agreed that IA was more convenient. On the other
hand, annoyance is a potential issue with IA in terms of usability and the detection
delay and false accepts were a security concern for users. We also found that that the
majority of our participants were interested in adopting or trying IA with possibility
of adoption.

3. We propose two realistic attack scenarios from malicious insiders such as shoulder
surfing attacks and offline training attacks (where an attacker trains on a victim’s raw
touch data). We perform the first evaluation of touch input based IA schemes against
these realistic attack scenarios to show that it is surprisingly easy to bypass these
schemes. We show the accepted assumption that shoulder surfing attacks on touch
IA are infeasible due to the hidden nature of some features is incorrect. We outline

7

methods and provide the necessary apparatus for malicious insiders to perform offline
training attacks without installing a malicious app on their victims’ devices.

4. We identify the deployment challenges to IA schemes and show there is a need for a
framework that supports: different behavioural classifiers, given that different apps
have different requirements; app developers using IA without becoming domain ex-
perts; and real-time classification on resource-constrained mobile devices. We develop
Itus, an IA framework for Android that allows the research community to improve IA
schemes incrementally, while allowing app developers to adopt these improvements
at their own pace.

1.7 Overview of Thesis

The remainder of the thesis is organized as follows. Chapter 2 provides necessary back-
ground and an overview of related work on authentication in smartphones, usability eval-
uation of authentication schemes on smartphones and it surveys existing IA proposals and
frameworks. Chapter 3 addresses Objective 1 of Section 1.5. It outlines an extensive eval-
uation criteria for IA evaluations and provides results of an evaluation of six diverse IA
schemes on the outlined criteria. Chapter 4 addresses Objective 2 and presents the results
of our usability and security perception evaluation of IA. To address Objective 3, Chapter 5
investigates the efficacy of two types of attacks on three prominent touch input based IA
schemes. To meet Objective 4, Chapter 6 identifies the deployment challenges to IA, builds
a case for app-level deployment of IA and presents a framework that can be used to deploy
IA at the app level. Finally, Chapter 7 discusses whether our findings support our thesis
statement. It also outlines future research directions and offers concluding remarks.

1.8 Related Publications

Significant parts of the research presented in this thesis have been peer-reviewed and pub-
lished in academic conferences. I am the primary author on the following papers based on
the work from this thesis. As indicated in the statement of contribution, parts of this work
were done in collaboration with fellow PhD student Erinn Atwater, Prof. Daniel Vogel,
and my advisor, Prof. Urs Hengartner.

H. Khan, U. Hengartner, and D. Vogel. Targeted mimicry attacks on touch input implicit
authentication. In the proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2016.

8

H. Khan, U. Hengartner, and D. Vogel. Usability and security perceptions of implicit
authentication: convenient, secure, sometimes annoying. In the proceedings of the 11th

Symposium on Usable Privacy and Security (SOUPS), 2015.

H. Khan, A. Atwater and U. Hengartner. Itus: an implicit authentication framework
for Android. In the proceedings of the 20th Annual International Conference on Mobile
Computing & Networking (MobiCom), 2014.

H. Khan, A. Atwater and U. Hengartner. A comparative evaluation of implicit authenti-
cation schemes. In the proceedings of the 17th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), 2014.

H. Khan and U. Hengartner. Towards application-centric implicit authentication on smart-
phones. In the proceedings of the 15th Workshop on Mobile Computing Systems and
Applications (HotMobile), 2014.

9

Chapter 2

Background

In this chapter, we first outline the primary authentication mechanisms available on mod-
ern smartphones and their usability and security issues. We then discuss the relevant
solutions that have been proposed to mitigate the limitations of primary authentication
mechanisms including the state of the art in the IA domain. Finally, we provide a brief
overview of classification in machine learning and define the relevant terminology that is
used throughout the rest of this thesis.

2.1 Smartphone Authentication in Practice

User authentication on smartphones can be performed using one or more of the following
factors: the knowledge factors, the ownership factors and the inherence factors [ARKR13].
The knowledge factors rely on something that the user knows, such as a text-based pass-
word, a personal identification number (PIN), or a graphical password, such as Android’s
pattern-lock. The ownership factors employ something that the user has, for example, a
smart watch or trusted Bluetooth devices that are in proximity of users’ devices. The
inherence factors leverage something the user is, such as facial- or fingerprint-recognition.

Authentication schemes based on the knowledge factors are the oldest and the most
common form of authentication on smartphones. The proximity-based schemes that rely
on a paired smart watch and a Bluetooth device have been introduced more recently (2014
and 2015, respectively) and they have been advocated as promising approaches to reduce
the authentication overhead [Dro16, Sch16]. It should be noted that these schemes are not
primary authentication mechanisms and in case the device owner is not wearing the smart

10

watch or is not in the proximity of a trusted Bluetooth device, they fall back to the primary
authentication mechanism. Finally, while the majority of recent high-end smartphones are
now equipped with a fingerprint scanner, it is absent on the mid- or low-end models.

2.1.1 Acceptance of authentication methods

Several research efforts have investigated the adoption of authentication schemes on smart-
phones. We provide a brief overview of the findings of these research efforts to gain an
insight into the (un)locking behaviour of smartphone users.

Harbach et al. [HVZF+14] conducted an online survey with 260 participants to un-
derstand their behaviour towards authentication. They found that only 42.7% of the
respondents reported that they configured authentication on their devices and 57% of the
respondents who did not configure authentication cited inconvenience as the reason for
not using a locking mechanism. Furthermore, 46.8% of the respondents who locked their
devices somewhat or fully agreed that unlocking their phones can be annoying.

Egelman et al. [EJP+14] performed 28 qualitative interviews to understand users’ be-
haviours and attitudes towards security on smartphones. They also complemented their
qualitative interviews by conducting an online survey of 2,518 smartphone users to corrob-
orate their findings. The survey results showed that 42% of the respondents reported that
they did not lock their smartphones. Furthermore, 33.6% of the respondents who did not
lock their devices chose to do so because they considered it inconvenient.

Harbach et al. [HDLE16] performed a month-long field study to understand the locking
behaviour of Android users. They found that half of the 71 participants did not lock
their devices. When these participants were asked if they would use authentication if it
was quicker, 62% of them agreed while 16% were neutral. In another study, Harbach
et al. [HDLME16] performed an online survey of smartphone unlocking behaviour with
8,286 participants in eight countries. Similar to the findings of the previous studies, they
found that convenience was a major reason for a 60% of the respondents chose to not
lock their devices. Their survey also found that there are differences in locking behaviour
between people in different countries; however, the causes of the observed differences were
not investigated.

A common finding across the aforementioned surveys is that an alarmingly large number
of users do not configure authentication on their devices due to the usability issues. In
the following section, we look at the research efforts that further investigate the usability
issues with the widely used authentication mechanisms on smartphones.

11

2.1.2 Usability issues

Usability and security perceptions of authentication mechanisms based on knowledge have
been extensively evaluated. Schaub et al. [SDW12] investigated the usability of text-based
passwords with 80 participants and show that while carefully chosen passwords provide
good security, the constrained virtual keyboards on smartphones are a bottleneck when
users are authenticating through text-based passwords. Von Zezschwitz et al. [VZDLH14]
investigated the usability of the creation and entry of alphanumeric passwords on mobile
devices for web-based services. To this end, they performed a lab-based study with 24
participants to show that it is indeed cumbersome to enter alphanumeric passwords using
the virtual keyboards and therefore, users chose simple and thus weaker passwords for
frequently used services.

Ben-Asher et al. [BAKS+11] conducted a survey with 465 participants to evaluate
their satisfaction with PINs to identify the need for different security methods on mobile
phones. They found that 71% of respondents reported that they would use a PIN as
the preferred authentication method on their devices. While they gave diverse options to
the participants (signature, gesture, iris, fingerprint and facial recognition), they did not
investigate the pattern-lock. A usability evaluation of PIN and pattern-lock schemes was
performed by Von Zezschwitz et al. [VZDDL13]. They conducted a three-week field study
with 31 participants for a quantitative and qualitative comparison of both schemes. Their
findings suggest that the PIN outperforms the pattern-lock in terms of input speed and
error rate. However, the participants still favored the pattern-lock and it was rated better
in terms of ease-of-use and likeability.

Some research efforts have used prototypes to evaluate the usability of biometric au-
thentication schemes that have not seen large-scale adoption [BAKS+11, TSK+12]. We
discuss more relevant efforts that have evaluated the biometrics that are available on mod-
ern smartphones (i.e., Apple’s Touch ID and Android’s Face Unlock).

Bhagavatula et al. [BUI+15] performed a within-subject lab study with ten participants,
and an online survey with 198 participants to evaluate the usability of Touch ID and Face
Unlock. Their participants reported that both schemes were easy to use for common
usage scenarios. During the controlled lab study, they found that Touch ID was robust to
hands covered in moisture although there were unlocking issues for dirty hands. Similarly,
they found that Face Unlock failed under poor lightening conditions. An overwhelming
majority of participants perceived Touch ID more convenient than a PIN whereas a PIN
was preferred over Face Unlock by the participants. De Luca et al. [DLHVZH15] conducted
an MTurk survey with 383 participants to understand users’ perceptions of Touch ID and
Face Unlock. Their respondents reported that they considered these biometrics more secure

12

as compared to PINs. However, 47% of Touch ID’s users and 36% of Face Unlock’s users
complained about the slow speed and the inconvenience of these schemes due to external
factors such as oily hands and bad lightening conditions, respectively.

In addition to the usability issues specific to each scheme, a major issue with the
current deployment for primary authentication mechanisms is their all-or-nothing access
approach. Smartphone users have to pass an authentication challenge in order to access
most resources on the device. This approach is unsuitable for smartphones where 40% of
frequently accessed apps (such as games, weather, navigation, news and music apps) do not
contain confidential data [HRS+12]. Furthermore, unlike desktops or laptops, smartphone
sessions are short and frequent and authentication for every short session is inconvenient for
users [HRS+12]. In a field study, Harbach et al. [HVZF+14] demonstrated that smartphone
users considered unlock screens unnecessary in 24% of the situations and they spent up
to 9% of the time they use their smartphones to deal with the unlock screens. Their
field study provides the first conclusive evidence on the inconvenience resulting from the
inflexibility of the all-or-nothing access approach to authentication on smartphones.

2.1.3 Security issues

Primary authentication mechanisms have been subject to several attacks. For PINs, pass-
words and pattern-lock, researchers have demonstrated that due to usability and memo-
rability constraints, users tend to choose weak secrets [ATOY13, MKV+13, VZDLH14].
This enables an adversary to launch a brute force attack. The authentication schemes
based on knowledge are also susceptible to shoulder surfing attacks [HVZF+14]. Aviv
et al. [AGM+10] demonstrated the efficacy of leveraging the oily residue smudges on the
smartphone’s touchscreen to fully or partially identify the pattern-lock with a 68% and
a 92% success rate, respectively. After partial identification, adversaries can significantly
reduce the input space for a brute force attack.

Smartphones have multiple sensors, which can be effectively used as a side-channel to in-
fer PINs and passwords. Cai and Chen [CC11] developed TouchLogger for Android, which
infers PINs on Android using the motion sensor (accelerometer) side-channel. Their evalu-
ation showed that TouchLogger can infer 71.5% of the typed digits. Owusu et al. [OHD+12]
evaluated the accelerometer side-channel to infer text-based passwords on Android. They
showed that accelerometer measurements can be used to extract 6-character passwords in
as few as 4.5 median trials. Miluzzo et al. [MVBC12] developed TapPrints to infer taps
and keystrokes on iOS and Android devices. TapPrints leverages accelerometer and gyro-
scope sensors to infer tap locations across the display and keystrokes with up to 90% and

13

80% accuracy, respectively. Kune and Kim [FKK10] investigated the information leakage
from the audio feedback of the pressed keys. They showed that by using a Hidden Markov
Model, they were able to substantially reduce the search space for a brute force attack.

Operating system flaws may enable an adversary to bypass a primary authentication
mechanism altogether. Operating system flaws have been exploited in several versions of
Android and iOS [Thr16]. Apple’s Touch ID and Android’s Face Unlock have also been
subject to novel attacks. Researchers have demonstrated that the Face Unlock scheme
of Android 4.0 could be easily tricked with a static photograph and the improved Face
Unlock scheme of Android 4.1 (with liveness check) could also be defeated with minor
photo editing [And16]. For Apple’s Touch ID, researchers have leveraged a high resolution
camera, a laser printer and a few household supply items to create a fake finger to bypass
Touch ID [Zdn16, ZXL+12].

2.2 Mitigating Usability and Security Issues

In the previous section, we identified several usability and security issues with contemporary
authentication mechanisms. We now provide a summary of approaches that are available
on modern devices to mitigate these issues.

Several approaches have been introduced in Android Smart Lock [Dro16] that reduce
the authentication overhead. In addition to unlocking the device when trusted Bluetooth
devices are connected, the Android Smart Lock unlocks the device when: a user is in a
trusted location, a trusted NFC tag is nearby, a trusted voice is used to say a known phrase
(“Ok Google”), or when a user is carrying the device on herself (on-body detection using
the accelerometer sensor). These approaches reduce the authentication overhead. However,
a primary authentication mechanism is used when the smart unlock criteria are not met
(i.e., the device is in an unfamiliar location or is not connected to a trusted Bluetooth
device).

Android has introduced support for multi-user accounts since 2014 with Android 5.0.
The multi-user accounts can be used to create multiple profiles with different authentication
configurations and access to apps. This enables a user to create a guest profile and use it
to access the non-sensitive apps without authenticating. This approach has the potential
to mitigate the issues arising from the all-or-nothing access model. Third party apps can
also be used to password protect sensitive apps. AppLock is one such third party app with
between 10-50 million downloads on the Android Play store [App16]. However, since these
apps operate in the user space, an adversary can “force stop” or uninstall them to gain

14

access to the protected app. The wide adoption of these apps indicates that there is a need
for a secure app-aware protection mechanism.

Bring your own device (BYOD) demonstrates one approach to deal with the security
issues with the primary authentication schemes. Employees use BYODs to access cor-
porate files, business apps, email, calendar, and the corporate intranet, which results in
storage of corporate data on their devices [Tho12]. While permitting BYODs is benefi-
cial for organizations, security limitations of primary authentication mechanisms pose a
challenge for the protection of corporate data on BYODs from non-owners. Various Mo-
bile Device Management (MDM) solutions have been developed to address BYOD security
challenges. MDM solutions leverage the device administration APIs to enforce password
policies. MDM solutions enable enterprises to set policies about password type, password
timeout, password expiration and password length.

One limitation of MDM solutions is that they defeat the purpose of BYODs. Employees
want to use BYODs to have the convenience and comfort of their own devices. However,
the device-wide restrictions imposed by MDM solutions (such as longer and complex pass-
words) reduce the appeal of BYODs and aggravate the usability issues. According to a
prediction by Gartner, 20% of enterprise BYOD programs will fail due to overly restrictive
policies of MDM solutions [Gar16].

2.3 Alternate Authentication Proposals

We now provide a brief overview of two alternate authentication proposals from the re-
search community: authentication schemes based on graphical passwords and gestures. IA,
another alternate authentication proposal, is more relevant to our work and we discuss it
in detail in Section 2.4.

2.3.1 Graphical passwords

Many graphical password schemes have been proposed for personal computers as alterna-
tives to text-based passwords. We only discuss graphical passwords on mobile devices and
refer interested readers to the comprehensive overview of published research in the area by
Biddle et al. [BCVO12]. Graphical password systems have been categorized into three cate-
gories: recall-based systems, recognition-based systems and cued-recall systems [BCVO12].
Recall-based systems require the users to recall and reproduce a secret drawing either on
a canvas or on a grid. Recognition-based systems require the users to memorize a set of

15

images during password creation and then recognize their images from a superset includ-
ing decoy images. Cued-recall systems require the users to remember and identify specific
locations within an image.

Dunphy et al. [DHA10] performed a lab-based study with 16 participants to evalu-
ate a recognition-based scheme on phones with physical keyboards. They evaluated two
implementations of their scheme: a high entropy implementation where 36 images were
displayed across four screens in a 3x3 grid and a low entropy implementation where 24
images appeared across six screens in a 2x2 grid. They noted 70% and 84% success rate
for the high entropy and the low entropy version, respectively. In terms of authentication
time, the high entropy and the low entropy schemes on average took 19.8 seconds and 21
seconds, respectively. They also demonstrated that their construction was more resistant
to shoulder surfing attacks than PINs.

Chiang and Chiasson [CC13] evaluated one notable graphical password scheme from
each major category on smartphones and tablets. Their initial experiments with 31 partic-
ipants indicated that recall-based systems had accuracy issues whereas recognition-based
and cued-recall based systems were disliked because participants had to memorize unfa-
miliar images. Based on their findings, they proposed a touchscreen multi-layered drawing
system, which is a recall-based scheme that uses a grid of detached cells to improve ac-
curacy. In a usability evaluation with 90 participants, their proposed scheme received
favorable response.

Schaub et al. [SWKW13] evaluated five graphical password schemes covering all three
major categories with 60 participants. Their quantitative results indicated that PINs pro-
vided comparable or better performance than graphical schemes in terms of authentication
time and login success rate. The qualitative analysis indicated that the usability of graph-
ical password systems was comparable to PINs. Similar to the findings of Dunphy et
al. [DHA10], their evaluations indicated that the graphical passwords were more resistant
to shoulder surfing attacks.

The graphical password proposals outlined in this section report positive user expe-
riences and resistance to shoulder surfing attacks. However, in terms of authentication
time and login success rate, these authentication proposals were not exceptional and were
outperformed by PINs. Therefore, it cannot be conclusively established that these schemes
will mitigate the usability issues with contemporary authentication mechanisms.

16

2.3.2 Gesture-based authentication

Authentication proposals based on gestures can be broadly classified into predefined and
free-form gestures on the touchscreens and device waving gestures. A brief description of
each follows.

Sae-Bae et al. [SBAIM12] evaluated a predefined set of five-finger touch gestures and
showed that touch gestures are distinct for each user (based on biometric features such
as hand size and finger length). They evaluated their scheme to show that it had over
90% accuracy and the overall feedback from participants was positive in terms of usability.
Shazad et al. [SLS13] proposed a predefined gesture scheme where users perform one of
ten predefined gestures to authenticate themselves. Their goal was to build a system
that could resist shoulder surfing attacks. To this end, in addition to the gesture, their
scheme employed the touch behaviour of the user including the touch coordinates, the
finger velocity, the device acceleration, and the stroke time. Their evaluations showed that
by using a single touch gesture, they were able to achieve an EER of 4.8%.

Sherman et al. [SCY+14] explored the security and memorability of free-form gestures
for authentication on smartphones. They conducted experiments where users generated
free-form gestures, repeated the generated gestures, and then later recalled their gestures.
Their experiments showed that signatures and shapes were the best remembered gestures
and that free-form gestures were resistant to shoulder surfing attacks. Yang et al. [YCLO16]
performed a field study with 91 participants to compare the usability of free-form ges-
tures with text-based passwords. They found free-form gestures to be more usable than
text-based passwords. More specifically, password creation and entry times for free-form
gestures were less than those for text-based passwords. They also found that free-form
gestures had similar memorability as text-based passwords.

Yang et al. [YGD+15] proposed OpenSesame — a scheme that uses smartphone waving
gestures for authentication on smartphones. They evaluated four waving gestures and
obtained unique patterns of handwaving actions of the users. Experimental results based
on 200 distinct handwaving actions showed a 15% FAR with a corresponding 8% FRR.
They conducted qualitative interviews in which participants reported that OpenSesame
provided good user experience. Hong et al. [HWY+15] proposed a similar scheme with ten
waving gestures. In an evaluation with eight participants their scheme provided a 4% FAR
with a corresponding 7% FRR.

Our survey of literature on predefined gestures shows that they are subject to a high
number of authentication errors. Furthermore, while the original papers on the predefined
gestures do not report login times, given that they use multi-touch gestures (five-fingers

17

for Sae-Bae et al. [SBAIM12]), login times and the need to use both hands could be a
potential issue. Similarly, while the password creation and entry time for free-form gestures
are lower than for the text-based passwords, they are outperformed by PINs. Finally, the
device waving gestures also suffer from accuracy issues. Our brief survey of gesture-based
schemes indicates that these schemes do not provide a clear advantage over contemporary
authentication mechanisms. We now turn our attention to IA, which circumvents these
issues by verifying the identity of its user without requiring explicit input.

2.4 State of the Art in IA

We review the existing literature on IA in this section. To this end, we first provide a brief
overview of classification in machine learning and define the relevant terminology. We then
survey existing behaviour-based IA proposals, which employ behavioural patterns across
the following five categories: (i) device usage patterns; (ii) gait patterns; (iii) text input
patterns; (iv) touch input patterns; and (v) multi-modal behavioural patterns. Finally, we
review the IA literature that investigates the usability, security, and deployability issues.

2.4.1 Classification in machine learning

IA schemes require learning distinct patterns of device use. The real-time device usage
pattern is compared with that of the device owner to detect anomalous behaviour. Machine
learning is used to solve the user authentication problem, which given an observed device
usage pattern and usage patterns of the device owner determines whether they match. This
is a supervised learning problem where the classifier is provided with labeled usage pattern
instances. A classifier may require negative training samples comprising of instances of
usage pattern from non-owners. The outcome of the classifier is a binary decision which
indicates whether the two patterns matched or not.

The pattern that the classifier has to match contains a finite number of predefined
non-overlapping features. Each IA scheme defines the features that it will employ to learn
the distinct behaviour of the device owner. For example, a keystroke behaviour-based
IA scheme may use the following features to define an instance of usage pattern: the
key pressed, the key hold time, and the touch pressure on the touchscreen of the device.
Instances of usage pattern from the device owner are used as positive training samples for
the classifier. Once a classifier is trained using training data, it generates a training model.
The training model is then used to determine whether a previously unseen pattern matches

18

the device owner’s pattern or not. There are four possible outcomes of the classifier for
the user authentication scenario:

� True accept (TA): A true accept is when a real-time usage pattern of a device owner
is correctly classified. A true accept grants access to the legitimate user of the device.

� True reject (TR): A true reject is when a real-time usage pattern of a non-owner is
correctly classified. A true reject correctly rejects an access attempt of an adversary.

� False accept (FA): A false accept is when a real-time usage pattern of a non-owner
is incorrectly classified. A false accept grants an adversary access to the device.

� False reject (FR): A false reject is when a real-time usage pattern of a device owner is
incorrectly classified. A false reject incorrectly rejects access attempt by a legitimate
user of the device.

We also define two terms that are used to evaluate accuracy of IA schemes. The equal
error rate (EER) of an IA scheme is defined as the operating point where the rate of true
accepts is equal to the rate of true rejects. The accuracy of an IA scheme is defined as:

Accuracy =
TAs+ TRs

FAs+ FRs+ TAs+ TRs
, (2.1)

where TAs, TRs, FAs and FRs are the sum of TA, TR, FA and FR of an experiment,
respectively.

2.4.2 Device usage behaviour-based schemes

IA schemes based on the device usage behaviour (“device usage IA”) identify the device
user based on the way they interact with various services on the device. These schemes rely
on the premise that smartphone owners exhibit habitual behaviour. For example, in their
seminal paper, Jakobsson et al.1 [JSGC09] suggested that smartphone owners generally
visit specific places during a particular time-of-day on a particular day-of-week. They also
suggested that smartphone owners are more likely to call or text a known number than an
unknown number and doing so indicates that the phone is in possession of its owner.

1Jakobsson et al. [JSGC09] have suggested that their proposed approach can be used for both user-to-
device and user-to-remote-site authentication.

19

Table 2.1: Device usage behaviour-based schemes.
Scheme Data sources Classifier Accuracy

Jakobsson et al. (2009)
[JSGC09]

GPS, call logs, text logs, browser
history

Majority score ≈10% EER

Li et al. (2010) [LCPD10] Call logs, Bluetooth, time of use
Neural

Networks
[HDBDJ96]

13.5% EER

Buthpitiya et al. (2014)
[BDG14]

GPS, call logs, text logs, Blue-
tooth, WiFi, calendar

Majority score
93% TAR @
20% FAR

Kayacık et al. (2014)
[KJB+14]

Running apps, WiFi, location,
CPU load, battery, light, noise

Majority score
95% TRR @
1% FRR

Neal et al. (2015) [NWS15] Running apps, WiFi, Bluetooth kNN [CH67] ≈18% EER

Fridman et al. (2015)
[FWGK15]

Running apps, WiFi, GPS,
browser history, stylometry

SVM [CV95] 5% EER

Features employed: Device usage IA models users’ interaction by leveraging data from
various sources on the device including device operations, connectivity services, personal
data management services, ambient sensors and location services. Some of the features
employed by these schemes include:

� Device operations: calls or texts sent or received from known and unknown contacts;
running apps; time of device use; battery level

� Connectivity services: WiFi and Bluetooth scanning results and connection

� Personal data management services: browser history; calendar data

� Ambient sensors: ambient noise and light sensors

� Location services: GPS location and nearby cell towers

Existing schemes: Several device usage IA schemes have been proposed. In Table 2.1,
for each device usage IA scheme, we provide its feature list, classifier and accuracy. The
“accuracy” column in Table 2.1 shows that these schemes report between 5–18% EER. It
also shows that there is a variance among reported accuracy for several schemes that use
similar features (for instance, see Buthpitiya et al. [BDG14] and Kayacık et al. [KJB+14]).
We suspect that the accuracy variations are caused by the biased evaluation due to the
unavailability of real attack data. Device usage IA schemes are evaluated by creating
synthetic attack data by splicing a user’s (Uvictim) behaviour stream with another user’s

20

Table 2.2: Gait pattern-based schemes.

Scheme Approach
Device

placement
Accuracy

Frank et al. (2010) [FMP10] Fix-length Front pocket 0% EER

Kwapisz et al. (2010) [KWM10] Fix-length Front pocket
85% TAR @
3% FRR

Juefei-Xu et al. (2012) [JXBJ+12] Cycle-based Front pocket 3.6% EER

Muaaz & Mayrhofer (2013) [MM13] Cycle-based Back pocket 30% EER

Muaaz & Mayrhofer (2014) [MM14] Fix-length Front pocket 18% EER

(Uadversary) behaviour stream to mimic that Uadversary is in possession of the device of
Uvictim. This results in bias, since the spliced stream of Uadversary will contain calls or texts
to unknown numbers with respect to Uvictim and this bias will result in over-reporting of
the accuracy for these IA schemes.

A limitation of device usage IA is that it requires a large amount of training data to
create a distribution of users’ behaviour. For instance, Jakobsson et al. [JSGC09] and
Fridman et al. [FWGK15] used two and four weeks of training data to create a model of
user behaviour, respectively. Finally, we note that several of these schemes rely on data
from multiple sources. However, for our classification purposes, we do not consider these
schemes as multi-modal since unlike the multi-modal schemes discussed in Section 2.4.6,
these schemes only rely on patterns of habitual device use.

2.4.3 Gait pattern-based schemes

IA schemes based on the gait pattern (“gait IA”) leverage the distinct style of walking of
individuals to identify them. Existing gait recognition schemes employ techniques from
the machine vision domain for gait-based identification of video data [WTNH03] or use
on-body sensors [FMP10]. The latter is relevant to our work. Most modern smartphones
are equipped with accelerometer and gyroscope sensors and these on-board sensors can be
used to learn gait patterns to authenticate the device users.

Features employed: Human walk is cyclic in nature and it consists of one or more gait
cycles, where each gait cycle consists of two steps [MM13]. In order to extract features, a
gait IA scheme follows one of two possible approaches for feature extraction: cycle-based
and fix-length approach. In the cycle-based approach, data from motion sensors is used to
identify and extract complete gait cycles. Template-based classification schemes are then
used to identify the user. In the fix-length approach, data from motion sensors is divided

21

into small fixed length segments and stochastic or machine learning based techniques are
used for user identification.

Existing schemes: In Table 2.2, for each gait IA scheme, we have listed the approach
used, device placement and the reported accuracy. Table 2.2 shows that the scheme pro-
posed by Frank et al. [FMP10] has perfect accuracy. However, their results are based on an
evaluation with only eight participants. Juefei-Xu et al. [JXBJ+12] proposed a pace inde-
pendent gait identification scheme and Muaaz and Mayrhofer [MM14] leveraged gyroscope
data to provide orientation independent gait identification. These gait IA schemes have
been evaluated in restricted and controlled environments where smartphones were placed
in specific pockets of the participants (front pocket [FMP10, JXBJ+12, KWM10, MLV+05,
MM14] or back pocket [MM13] of trouser). Therefore, it is difficult to determine whether
these schemes will provide comparable accuracies in an uncontrolled environment.

2.4.4 Text input behaviour-based schemes

Text input behaviour based on key hold timings and inter-key intervals has been widely
studied for physical keyboards on personal computers (see Banerjee and Woodard [BW12]
and references therein). These approaches have been mapped to smartphones with hard
(physical) keyboards with reasonable success. Modern smartphones are equipped with
soft keypads, which enable users to input data by tapping on a software-based keyboard
rendered on the touchscreen. This tap interaction with the touchscreen provides novel
features such as touch pressure and the width of the finger. Text input behaviour-based IA
(“text IA”) schemes have been revamped to leverage features available on touchscreens.

Features employed: The feature set of a text IA scheme depends on the type of keyboard
on the smartphone. We list the features used by touch IA separately for each type of
keyboard.

� Hard keyboards: Key hold time (time elapsed between a key press event and the cor-
responding key release event); inter-stroke time (time elapsed between a key release
event and the next key press event); error rate (number of corrections made)

� Soft keyboards: Key hold time; inter-stroke time; error rate; touch pressure; touch
area; other spatial features

� Gesture keyboards: Feature set is similar to the touch input behaviour-based IA
schemes (see Section 2.4.5)

22

Table 2.3: Text input behaviour-based schemes.

Keyboard Scheme Features Classifier
Window

size
Accuracy

Hard

Clarke & Funnel
(2007) [CF07]

Key hold time, inter-
stroke time

Neural
Network

6 20.6% EER

Hwang et al.
(2009) [HCP09]

Key hold time, inter-
stroke time, typing ca-
dence

Manhattan
dis-

tance [DHS12]
4 4% EER

Zahid et al.
(2009) [ZSKF09]

Key hold time, inter-
stroke time, error rate

Genetic al-
gos. [RNI95]

8
6% FAR @
3% FRR

Maiorana et al.
(2011) [MCGCN]

Key hold time, inter-
stroke time

Manhattan
distance

26 14.7% EER

Soft

Feng et al.
(2013) [FZCS13]

Key hold time, inter-
stroke time, touch pres-
sure

Naive
Bayes [RNI95]

40
4% FAR @
0.7% FRR

Giuffrida et al.
(2014)
[GMCB14]

Key hold time, inter-
stroke time, accelerome-
ter, gyroscope

Manhattan
distance

9 0.5 % EER

Draffin et al.
(2014) [DZZ14]

Touch location, touch
pressure, touch duration,
touch area

Neural
Network

15
14% FAR

@ 2% FRR

Buschek et al.
(2015) [BDLA15]

Touch pressure, touch
area, hold time, jump
time and distance, drag
angle and drag distance

SVM, kNN 8 10% EER

Gesture
Burgbacher &
Hinrichs (2014)
[BH14]

Ten touch features de-
rived from touch loca-
tion, touch pressure and
touch area

SVM N/A 5% EER

Existing schemes: In Table 2.3, for each keystroke behaviour-based IA scheme, we have
provided the list of features that it uses, the classifier that it employs, the number of
keystroke events that it uses for classification and its accuracy. The “window size” column
represents the number of keystrokes that are used to make a classification decision. For
smartphones with hard keyboards, key hold times and inter-stroke times of users are em-
ployed to create their behaviour profile [CF07, MCGCN]. Hwang et al. [HCP09] also took
into account the differences in the typing cadence of users (artificial rhythms with cues and
natural rhythm without cues) to improve the accuracy of text IA. Zahid et al. [ZSKF09]
used the error rate as an additional feature and performed multiple pre-processing steps

23

using genetic algorithms for accuracy improvements.

Researchers have leveraged features from touchscreens (e.g, the touch area and pressure)
to improve the detection accuracy of text IA [DZZ14, FZCS13]. Giuffrida et al. [GMCB14]
also employed features derived from accelerometer and gyroscope sensors, which capture
the force of the key press, to further increase the accuracy of their scheme for virtual
keypads. Buschek et al. [BDLA15] proposed spatial features (in addition to the existing
temporal features) for virtual keyboards. The spatial features took into account: (i) drag:
the drag that is observed between a key press and the corresponding key release event;
and (ii) jump: the distance between two subsequent touches. They performed evaluations
to show that their proposed spatial features are more unique than the existing temporal
features.

Gesture keyboards allow users to enter words by sliding a finger across the individual
letters of the word (from the first letter to the last). Burgbacher and Hinrichs [BH14]
utilized spatio-temporal features from typing gestures to implicitly authenticate the device
user. They used the following subset of features from a popular touch input behaviour-
based IA scheme (Touchalytics [FBM+13]): the centroid of the subsequence, the median
absolute velocity, the median absolute acceleration, the median fingertip area, the duration,
the end-to-end distance, the mean resultant length and mean direction Their evaluation
showed that they are able to achieve an average EER of 5%.

Soft keyboards are widely used to input text on smartphones. A survey of existing text
IA schemes shows that the proposals by Feng et al. [FZCS13] and Giuffrida et al. [GMCB14]
provide the highest accuracy for soft keyboards. However, the former requires a large
number of key input events to achieve the reported accuracy, which may not be available
for some text entry sessions. A limitation of all text IA schemes is that some sensitive
device usage sessions may not require any text input at all. For instance, browsing a photo
gallery does not require text input and a text IA scheme would be useless for such sessions.

2.4.5 Touchscreen input behaviour-based schemes

Touchscreen input behaviour-based IA (“touch IA”) schemes operate on the premise that
finger movement patterns of smartphone users are distinct enough to identify them. The
capacitive touchscreens on smartphones provide rich biometrics for every touch interac-
tion. More specifically, for every touch point in a swipe, the smartphone operating system
provides: (i) the touch location (x and y coordinates), the touch area, the touch pressure
and the time stamp. This raw data is used to model the touch input behaviour of the user
for their identification.

24

Table 2.4: Touch input behaviour-based IA schemes.

Scheme Features Classifier
Window

size
Accuracy

Frank et al.
(2013)
[FBM+13]

31 features across all touch feature
categories

SVM, kNN 7 5% EER

Li et al.
(2013)
[LZX13]

Nine features related to swipe du-
ration, direction, curvature, length,
pressure and area

SVM 7 8% EER

Bo et al.
(2013)
[BZL+13]

Touch features (pressure, area, du-
ration, position) correlated with ac-
celerometer and gyroscope data

SVM 3 ≈1% EER

Zhao et al.
(2013) [ZFS13]

Performs trace geometry compari-
son in image space

Cross-correl-
ation [DHS12]

6 6.07% EER

Lin et al.
(2013)
[LCL13]

Touch position, touch pressure,
touch area

Weighted kNN 10 16.6% EER

Feng et al.
(2014)
[FYY+14]

Swipe’s length, stroke location,
stroke curvature, stroke size, stroke
speed, running app

DTW [DHS12] 8 8% EER

Xu et al.
(2014)
[XZL14]

38 features across all touch feature
categories

SVM 5 0.98% EER

Lu et al.
(2015) [LL15]

Swipe’s coordinates, touch area and
pressure, direction, angle, duration,
distance, and velocity

SVM, kNN 10 5% EER

Roy et al.
(2015)
[RHM15]

Time stamp, vibration, rotation,
touch pressure, touch area, touch lo-
cation

HMM [DHS12] 9 6% EER

Features employed: The raw touch input data can be used to extract features across
the following categories (see Frank et al. [FBM+13] for more details):

� Location: start and end x and y coordinates of the swipe

� Time: the duration of the swipe and the inter-stroke delay

� Speed: the velocity and the acceleration of the finger on the screen

� Direction: swipe direction and end-to-end line direction

25

� Length: direct end-to-end distance and the length of the trajectory

� Curvature: deviation from end-to-end line and moving curvature of the swipe

� Contact: the touch pressure and the touch area

Existing schemes: A summary of touch IA schemes including their features, employed
classifier, the number of touch events that it uses for classification, and reported accuracy
is provided in Table 2.4. Table 2.4 shows that the majority of touch IA schemes provide
significantly better accuracy as compared to device usage, text input and gait IA schemes.
Moreover, to improve accuracy, Bo et al. [BZL+13] also employ features extracted from
accelerometer and gyroscope sensors to capture the reaction of the device to touch input
events.

Feng et al. [FZD+15] investigated the effect of screen size, physical activity and ap-
plication context of a smartphone on the accuracy of touch IA. Their evaluations show
that a larger screen size provides more potential methods of interacting with the device,
which increases the accuracy of a scheme. Similarly, they show that the application and
physical activity context can be leveraged to increase the accuracy of a scheme. Buschek et
al. [BDLA16] evaluate the effect of the placement and size of UI elements (such as buttons)
on touch IA. They show that small, compactly shaped targets near screen edges yield the
most descriptive touch targeting patterns. They also show that thumb touches are more
unique than index finger ones. Their findings suggest that touch IA should analyze GUI
layouts and infer hand postures to improve their accuracy.

Several touch IA schemes in Table 2.4 provide less than 5% EER with ten or fewer
touch events. Since touch input is the predominant form of interaction on smartphones,
these schemes have sufficient data available to classify a user with reasonable accuracy for
most of the scenarios. Therefore, touch IA seems to be a promising approach for IA.

2.4.6 Multi-modal schemes

We now look at multi-modal IA schemes that combine behavioural data across several
categories (i.e., touch behaviour combined with physical movement patterns) to increase
the accuracy [SYJ+11].

Features employed: Multi-modal IA schemes may combine unrelated features from var-
ious categories. For instance, Shi et al. [SYJ+11] proposed a scheme that combines the
touch input behaviour with the device usage behaviour.

26

Table 2.5: Multi-modal IA schemes.
Scheme Data Source Classifier Accuracy

Shi et al. (2011) [SYJ+11]
Location, voice, touch input, ac-
celerometer

Naive Bayes
97% TAR @
3.6% FAR

Zhu et al. (2013)
[ZWWZ13]

User interaction with apps is corre-
lated with accelerometer data

k-Means
71% TAR @
13% FAR

Murmuria et al. (2015)
[MSBF15]

Touch input, power consumption
and physical movement

Transduc-
tion [Vap98]

7% EER

Micallef et al. (2015)
[MJB+15]

Ambient noise and light, WiFi, ac-
celerometer and magnetometer

J48 [RNI95] Not reported

Sitova et al. (2016)
[SSY+16]

Keystroke, tap, and hand move-
ment, orientation, and grasp

SVM 15% EER

Existing schemes: Shi et al. [SYJ+11] proposed combining the touch input behaviour
with the location and the voice biometric. Murmia et al. [MSBF15] combined the touch in-
put behaviour with power consumption and the physical movement and Sitova et al. [SSY+16]
combined the touch input behaviour with the text input behaviour and hand movement,
orientation and grip patterns.

Some research efforts have focused on leveraging multi-modal implicit factors to reduce
the authentication overhead. Riva et al. [RQSL12] built a prototype to use face recog-
nition, proximity, phone placement, and voice recognition to progressively authenticate.
They employed contextual information to carefully choose when to authenticate a user.
Their prototype on a Windows phone reduced the number of required authentications by
42% as compared to the number of authentications required during normal interaction.
However, their scheme uses a physiological biometric (face recognition) in addition to the
implicit factors. Micallef et al. [MJB+15] evaluated ambient noise, ambient light, WiFi,
and accelerometer and magnetometer patterns to reduce the number of authentications.
Their evaluations showed that based on the implicit factors they are able to reduce the
number of authentications by 71%.

While multi-modal schemes provide more data sources that may assist in IA, these
schemes have lower reported accuracy than touch IA. Furthermore, similar to device usage
IA, the synthetic attack data is used to evaluate the accuracy numbers against some data
sources [MSBF15, SYJ+11].

27

2.4.7 Usability evaluations of IA

The usability issues related to IA have been ignored except for the work by Clarke et
al. [CKF09] and Crawford and Renaud [CR14]. Clarke et al. developed a prototype on
a personal computer for an IA scheme that employed a combination of face, voice and
keystroke biometrics to continuously authenticate users. They evaluated their prototype
using 27 participants and found that 92% of the participants considered it more secure in
comparison to the traditional forms of authentication. The participants were also asked
to rate the convenience on a 5-point Likert scale and although the responses were mixed,
a slight skew towards the system being convenient existed. While Clarke et al. are the
only authors who provide a usability evaluation of the IA scheme that they proposed,
their evaluation was limited because: (i) it was not a strictly behavioural biometric-based
scheme since they used a combination of physiological (facial recognition) and behavioural
biometrics (voice and keystroke data); and (ii) participants evaluated the prototype on a
personal computer instead of a mobile device.

More related to our work is the recent work by Crawford and Renaud [CR14] in which
they determined the security perceptions of IA by conducting an in-lab study with 30
participants. They provided a smartphone with a pseudo-IA scheme and asked the par-
ticipants to perform tasks that required different levels of security. The participants were
divided into three groups:

� G1: the participants started with a low device confidence level. If a participant
wanted to perform a task of medium/high security level, she may increase the device
confidence by providing a matching keystroke or voice biometric or by explicitly
authenticating

� G2: participants were always successfully implicitly authenticated (0% FR rate).
This group was used to get the perceptions of distrustful participants.

� G3: participants always failed implicit authentication (100% FR rate). This group
was used to get the perceptions of frustrated participants.

Crawford and Renaud found that 73% of participants felt IA was more secure than EA and
90% indicated that they would consider adopting it. While Crawford and Renaud provide
the only in-depth study on the security perceptions of IA, it has some limitations including:
(i) no usability evaluation is performed; (ii) annoyance due to FRs is not quantified; and
(iii) security perceptions due to FAs and detection delays are not evaluated

28

2.4.8 Security evaluations of IA

In the existing literature, behavioural biometrics have been subjected to four types of at-
tacks: (i) attacks based on generative algorithms; (ii) crowd sourcing attacks; (iii) shoulder
surfing attacks; and (iv) offline training attacks. A brief description of each and a summary
of published attacks on behavioural biometrics follows.

Generative algorithms based attacks employ general population statistics and have been
proposed for handwriting recognition, keystroke and touch IA. For handwriting recogni-
tion, Ballard et al. [BLM07] showed that a generative model based on concatenative syn-
thesis exceeds the effectiveness of forgeries rendered by skilled humans. Serwadda and
Phoha [SP13a] analyzed keystroke data from over 3000 PC users and observed statistical
traits. These traits were then fed to their generative algorithm to increase the FAR of a
keystroke classifier from 15% to 90%. A generative algorithm based attack on touch IA
has been proposed by Serwadda and Phoha [SP13b]. They showed that a robotic device
equipped with generic traits across touch data poses a major threat to touch IA schemes as
it increases their EER from 5% to 50%. In their model, the attacker required a mechanical
robot to mount the attack, which may be impractical or suspicious in a work environment.
Furthermore, their evaluation showed that their generic attack failed for up to 40% of the
victims because their touch behaviour was different from the inferred generic behaviour.

Crowd sourcing based targeted mimicry attacks have been demonstrated for speaker and
gait verification systems. Panjwani and Prakash [PP14] proposed a method to crowdsource
search for candidate mimics for speakers in a given target population. They showed that
while the probability of finding a successful match is only 3%, MTurk workers are easier and
cheaper to locate and recruit than mimicry artists. Gafurov et al. [GSB07] used a database
of 760 gait sequences from 100 subjects to show that while trained forgery attacks were
unsuccessful for the gait biometric, closest matching subjects from the database could be
used to increase the EER up to 80%. Given that an inter-user overlap exists across touch
and typing behaviour [SP13a, SP13b], similar crowd sourcing attacks might be possible on
these schemes.

Shoulder surfing attacks have been evaluated for IA proposals that employ cognitive
abilities [AGSN15] and eye movement patterns [ERLM15]. Shoulder surfing attacks have
also been evaluated for explicit authentication schemes that employ user defined touch
gestures [SBAIM12, SLS13, SCY+14]. These research endeavors indicated that shoulder
surfing attacks were not a threat for their respective proposals. It is not clear whether such
attacks will be successful on touch IA.

Finally, offline training attacks that train the attackers to mimic their victims have
been demonstrated for gait patterns, handwriting and keystroke biometrics. Kumar et

29

al. [KPJ15] performed offline training attacks on gait IA. They used raw accelerometer
data of victims to train attackers by providing them feedback on how to change their gait
behaviour using a treadmill. Their experiments showed that their attack increased the
average FAR from 5.8% to 43.6%. However, their attack failed for the cases where physical
characteristics of a victim (e.g., height and weight) were remarkably different than the
attacker. For handwriting recognition, Ballard et al. [BLM07] showed that some users —
who are better forgers than others — can be trained using a naive method to successfully
attack the handwriting biometric. Tey et al. [TGG13] used the keystroke data of the victim
to train attackers to mimic two keystroke features on PCs. Their evaluations showed that
with the full knowledge of the keystroke patterns of the victims, 14 of their best attackers
(out of 84 attackers) were able to achieve a 99% bypass success rate. The resistance of text
IA and touch IA on smartphones against these attacks needs to be established.

2.4.9 Frameworks for IA deployment

The research focus of the IA proposals that we discussed in the previous sections is to
show the effectiveness of the behavioural biometrics that they employ for IA. The original
papers of these schemes do not consider the deployment issues of these schemes on smart-
phones. Clarke et al. [CKF09] proposed the design of a framework to support continuous
and transparent authentication using facial, voice and keystroke biometrics. Crawford et
al. [CRS13] proposed a similar system that supports multi-modal combination of these bio-
metrics. Clarke et al. [CKF09] and Crawford et al. [CRS13] only provide design guidelines
for transparent and continuous authentication systems and stop short of providing an im-
plementation against their design that can be used to provide IA support on smartphones.

Damopoulos et al. [DKP14] propose the design of a framework for deploying defense
mechanisms both on the smartphone and the cloud. Their system employs data from a
variety of event sensors and after event processing on the device, it detects misuse on the
device or in the cloud. The focus of their scheme is in providing a synergistic framework
for the cooperation between the smartphone and the cloud for misuse detection. How-
ever, since IA can be performed on the smartphone in real-time with reasonable battery
consumption [XZL14], a hybrid model may not provide a significant advantage.

2.5 Rationale for Thesis

Our survey of IA revealed that much of the published work has focused on proposing novel
behavioural biometrics or improving the accuracy of existing IA schemes. Furthermore,

30

some critical factors have been neglected in the evaluations (e.g., the delay in misuse detec-
tion and the availability of data for classification), which determine the level of protection
provided by these schemes. We also observe significant variance in the reported accuracies
of similar schemes, which emphasizes the need for an evaluation on independently col-
lected, unbiased datasets. Without a comprehensive evaluation, we cannot ascertain the
effectiveness of any scheme for real world usage.

Our survey of the literature on the security evaluation of IA points out some pressing
issues. Mimicry attacks on device usage IA are easily possible since an adversary can
identify patterns when they gain access to the victim’s device. Gait IA has been subjected
to offline training and mimicry attacks [GSB07]. However, shoulder surfing and offline
training attacks have not been investigated for text and touch IA. The resistance offered
by the highly accurate touch IA against these realistic attacks needs to be established to
ensure its suitability as a defense mechanism.

In Section 2.4.7, we identified the limitations of existing usability evaluation studies on
IA. We observed that false rejects, which might be a usability issue, were not considered
during evaluations. Similarly, IA limitations that may have affected security perceptions
(false accepts and detection delay) were not communicated to the participants. Finally,
the existing evaluations were conducted in a lab, which may have failed to capture user
perceptions during the normal device use. These limitations emphasize the need for a
comprehensive usability and security perception evaluation of IA.

Finally, the frameworks that have been proposed for IA deployment do not address the
deployment challenges identified in Section 1.4. Furthermore, the proposed frameworks
only outline design guidelines and fail to provide an implementation that can be used for
rapid prototyping and deployment of IA. There is a need for a system that circumvents
the deployment challenges to IA on off-the-shelf devices.

Given these unaddressed challenges in IA, we begin our research effort with an extensive
evaluation of IA schemes (Chapter 3). We conduct a thorough usability (Chapter 4) and
security analysis (Chapter 5) of the IA schemes that perform better in our extensive eval-
uations. These evaluations provide a clear understanding of the strengths and weaknesses
of IA from perspectives that have largely been ignored. We also propose and evaluate a
framework to address some of the unique challenges to the IA deployment (Chapter 6).

31

Chapter 3

A Comprehensive Evaluation of IA

In Section 2.4, we provided an overview of the existing IA schemes and their reported
accuracies. We also noted significant variance across the reported accuracies of similar
IA proposals. This variances may arise due to the differences in underlying machine
learning classifiers or their parameter values, number of participants and the quality of
the evaluation dataset. For example, some IA schemes based on touchscreen input be-
haviour [FLK+12a, ZFS13] provide exceptional accuracies when they are evaluated on
datasets collected by those individual efforts. However, Feng et al. [FYY+14] showed that
on data collected in an uncontrolled environment, the accuracy of these approaches reduces
significantly. Similarly, due to the unavailability of real-world datasets, it is not possible
for these individual research efforts to accurately report the training and detection delay
in an uncontrolled environment.

A majority of existing IA proposals also fall short of providing performance benchmarks
(in terms of CPU and memory overhead) on smartphones. Consequently, it is difficult to
understand the impact on user experience due to overhead on power-constrained smart-
phones by these schemes. In addition to unreported performance numbers (in terms of
detection delay and computational cost), many IA schemes use behavioural features, for
which it is non-trivial to estimate the frequency or availability of such data. For example,
an IA scheme based on the device owner’s gait pattern may be useful for authentication,
but is not useful if the device owner is stationary most of the time. Therefore, there is
a need not only for datasets that allow IA schemes’ evaluation in realistic scenarios, but
an analysis of real-world behavioural patterns that may influence the appropriateness of
deploying one scheme over another. While evaluation metrics have been defined for user
authentication on the web [BHVOS12] and physiological biometrics [JRP04], these metrics

32

are unique to their respective authentication mechanisms and may not effectively capture
the usability and security properties of IA.

To the best of our knowledge, a comparative evaluation of different IA schemes has
not been performed. Serwadda et al. [SPW13] perform a benchmark evaluation of three
touch IA schemes using ten classification algorithms to evaluate which classifiers work
best. While their analysis provides interesting insights, it fails to provide a comparative
evaluation of IA schemes that employ different behavioural biometrics (i.e., across the five
IA categories discussed in Section 2.4). Furthermore, except Feng et al. [FYY+14], none
of the other authors have provided a comparison with other schemes. We believe this is
due to the effort required to implement another scheme and to collect data to perform
empirical evaluations. Therefore, in addition to providing a comparative evaluation of IA
schemes, by making the implementation and datasets publicly available, we will enable
future researchers to quantify the efficacy of their approach with other related schemes.

In this chapter, we evaluate and compare six IA schemes using four independently
collected datasets from multiple geographic locations, comprising over 300 participants.
The IA schemes evaluated in this work use diverse behavioural biometrics including touch
input patterns, text input patterns, gait patterns, and device usage patterns. We also
select two schemes that combine touch patterns with the device’s micro-movements as
a reaction to touch input and context information. This diversity allows us to better
scrutinize different aspects of these individual IA schemes. We evaluate these IA schemes
on eight criteria: 1) accuracy, 2) data availability, 3) training delay, 4) detection delay,
5) CPU and memory overhead, 6) uniqueness of behavioural features, 7) vulnerability to
mimicry attacks, and 8) deployment issues on mobile platforms.

To achieve the comprehensive evaluation goal, we expand our first research objective
(see Objective 1 in Section 1.5):

� To quantify and compare the accuracies of these IA schemes on independently col-
lected datasets from uncontrolled environments

� To use real-world traces to measure training and detection delays for these IA schemes

� To determine the performance overhead of these IA schemes on mobile devices

� To determine the frequency of data availability for different behavioural features
employed by these IA schemes

� To release open source implementations of these IA schemes for performance bench-
marking.

33

3.1 IA Schemes Evaluated

In this section, we expand the brief description of six IA schemes from Chapter 2 that
we comprehensively evaluate. To meet our objective of diverse IA schemes, we chose
an IA scheme based on device usage patterns [SNJC10], an IA scheme based on gait
patterns [FMP10], an IA scheme based on touch patterns [FBM+13], an IA scheme based
on text input patterns [FZCS13], an IA scheme based on touch input and the corresponding
device’s micro-movement patterns [BZL+13], and an IA scheme based on touch and the
corresponding usage context patterns [FYY+14]. A description of each scheme follows.

3.1.1 Device usage IA scheme by Shi et al. (Shi-IA) [SNJC10]

Shi et al. [SNJC10]1 proposed an IA scheme based on device usage behaviour that uses
good and bad events to determine an authentication score for the user. Good/habitual
behaviour is determined by a phone call/text to a known number, a visit to a familiar
website, and presence at habitual locations around a certain time-of-day. Similarly, bad
behaviour is a phone call/text to an unknown number, a visit to an unfamiliar website,
and presence at previously unseen locations. Passage of time since the last good event is
also treated as a negative event and results in gradual decay of the authentication score.
For empirical evaluations, the authors used data gathered from 50 participants, trained on
2 weeks of their usage data and evaluated on the remaining data. Their results indicated
that 95% of the time an adversary can be detected using 16 or fewer usages of the devices
with negligible false rejects (1 in 165). We choose Shi-IA as a representative device usage
IA scheme because at the time of this writing it provided the best accuracy among device
usage schemes.

3.1.2 Gait IA scheme by Frank et al. (Gait-IA) [FMP10]

Frank et al. [FMP10] proposed a time-delay embedding approach to gait recognition. Time-
delay embedding is employed to reconstruct the state of an unknown dynamical system
from observations of that system taken over time. The authors first extracted features
using time-delay embeddings and then performed noise-reduction over those features using
principal component analysis (PCA) [Jol05] on a short embedding of training data. PCA
produced a projection from the time-delay embedding space to a lower dimension model
space. These resulting features were then employed in an approximate nearest neighbor

1This work is an expanded version of Jakobsson et al. [JSGC09]

34

classifier [AMN+98]. Empirical evaluation on walking data from 25 individuals (with the
device in the front trouser pocket) resulted in 100% detection accuracy. We chose Gait-
IA for empirical evaluations as its implementation and dataset has been made publicly
available, which makes it easier to reproduce their results for verification purposes. Fur-
thermore, Gait-IA has reported perfect accuracy.

3.1.3 Touch IA scheme by Frank et al. (Touchalytics) [FBM+13]

Touchalytics operates by extracting 31 features from the raw data of a single swipe. These
features capture the user behaviour in terms of the touch location on the screen, the length,
direction and duration of a swipe, the velocity and acceleration of a swipe, and the finger
pressure and the area covered by a swipe. The extracted features are then used to classify
a user using an SVM or kNN classifier. The authors evaluated Touchalytics on a dataset of
41 participants and showed that it is able to provide an EER of ≤ 3% with a window size of
13 swipes. For our empirical evaluations, we chose Touchalytics as a representative touch
IA scheme due to its high accuracy and because its implementation is publicly available.

3.1.4 Text IA scheme by Feng et al. (Keystroke-IA) [FZCS13]

Soft keyboards are the predominant form of text entry on the smartphones. Feng et
al. [FZCS13] proposed a text IA scheme for soft keyboards. Their proposed scheme uses
the key hold time, the inter-stroke time and the touch pressure features. Empirical eval-
uations on data collected from 40 users using a Bayesian classifier with a window size of
20 keystrokes provided a FAR of 20% with a corresponding FRR of 4%. With a window
size of 40 keystrokes, they achieved a FAR of 4% with a corresponding FRR of 0.7%. We
choose Keystroke-IA as a representative text IA scheme because at the time of this writing
it provided the best accuracy among text IA schemes.

3.1.5 Touch & device’s micro-movements (SilentSense) [BZL+13]

The authors of SilentSense observed that a combination of the touch input behaviour
and the corresponding reaction of a device (in terms of micro-movements) can be used
to create a more robust model of a user’s touch input behaviour. SilentSense operates
by combining interacting features from touch behaviour (such as pressure, area, duration,
and position) for different touch actions (including fling, scroll, and tap) with the reaction
of device features (acceleration and rotation, which are captured using accelerometer and

35

gyroscope, respectively). For the scenarios where the user is walking, the micro-movement
patterns are perturbed, since the sensory data generated during walking skews the sensory
data generated due to the reaction of the device to touchscreen interactions. To deal with
the walking scenario, SilentSense extracts four features including: (1) vertical displacement
of each step; (2) current step frequency; (3) mean horizontal acceleration for each step;
and (4) standard deviation of vertical acceleration for each step. The authors evaluated
SilentSense on a dataset containing data from 10 users and 90 guests. Their evaluations
showed that with an SVM classifier, they were able to achieve an EER of ≤ 1% by using
a window of three touch strokes. We chose SilentSense for our evaluations because of its
unique feature set and its near perfect detection accuracy.

3.1.6 Touch IA & application context (TIPS) [FYY+14]

The author of TIPS showed that on real-world datasets accuracy degradation is observed
due to variations in usage behaviour. For example, data generated for the same user for
different applications (maps vs. browser) is different enough to cause accuracy degradation.
To mitigate this degradation, they proposed a multi-stage filtering hierarchy consisting of
four levels: (1) foreground application; (2) direction of swipe; (3) swipe length; and (4)
swipe curvature. During the one week training period, TIPS collected 2000 gestures from 23
smartphone users. After generating the templates by performing multi-stage filtering, TIPS
achieved an EER of ≤ 10% using a window of eight swipes. Although TIPS uses features
similar to Touchalytics [FBM+13], we chose TIPS to evaluate the impact of intelligent use
of contextual information.

3.2 Datasets

For the empirical evaluation of the IA schemes, we used real-world and independently
collected datasets that capture the natural behaviour of the participants. We used two real-
world datasets that broadly capture data from devices while users are using them (e.g.,
location, wireless connections including network, bluetooth and WiFi, contacts, battery
status, call logs, text logs, phone orientation, gyroscope and accelerometer readings, and
running apps). These datasets were used to evaluate Shi-IA and Gait-IA. However, these
datasets do not include touch or text input data. We therefore used a third real-world
dataset that captures swipe data and used it for evaluating Touchalytics, SilentSense and
TIPS. Ideally we would gather day-to-day freehand text input from participants. For
privacy reasons, however, we cannot use a user’s real-world communications for text input

36

0 50 100 150

0
20

40
60

80
10

0

Participant ID

D
at

a
D

is
tr

ib
ut

io
n

(%
)

URLs
Texts
Calls
GPS

(a) Netsense dataset

0 10 20 30 40
0

20
40

60
80

10
0

Participant ID

D
at

a
D

is
tr

ib
ut

io
n

(%
)

URLs
Texts
Calls
GPS

(b) WatApp dataset

Figure 3.1: Distribution of URL, text, call and GPS records collected from different partic-
ipants in the Netsense and WatApp datasets, sorted by fraction of GPS data. Percentages
are derived from the number of discrete events collected from each participant.

data. We therefore had users type predefined email and SMS strings to evaluate Keystroke-
IA. In this section, we provide data collection goals, experimental design, and the process
used for collecting the four evaluation datasets. Our methodology of data collection and
reuse of other datasets was reviewed and approved by the ORE of our university.

3.2.1 Netsense dataset [SLM+13]

University of Notre Dame researchers created the Netsense dataset by providing 200 first-
year Notre Dame students with Android smartphones. These devices were modified to
log many events including contacts, texts, voice calls, Wi-Fi scanning results and current
access point, Bluetooth scanning results and connections, browser history, running apps,
battery status, location, email, and port traffic. While the purpose of their study was to
understand social ties, many of these features overlap with the features used by device
usage IA schemes [JSGC09].

37

Data Statistics We contacted Striegel et al. [SLM+13] and requested a chunk of their
dataset. They provided us with data that was logged between 2012-11-01 09:34:35 and
2012-11-30 12:49:50. This chunk of the dataset contained data belonging to 158 partic-
ipants. For our study, we extracted the location, call history, text history and browser
history data. For 158 users, we extracted 125846, 15003, 244627 and 4817 location events,
call events, text events and webpage access events, respectively. The data distribution
across participants is plotted in Figure 3.1(a). We note that this dataset is not labeled;
i.e., there is no way to label the data for instances when the device was voluntarily given
to someone for use by the owner or when it was deliberately misused by a non-owner.

3.2.2 WatApp dataset

While the Netsense dataset is useful for our study, we wanted to collect labeled data. To
this end, we instrument WatApp2 (an Android App widely used by University of Waterloo
students to get information about current weather, searchable maps, class schedules, and
events) to log events on participants’ devices. In addition to logging the same data as
Netsense, WatApp logs gyroscope readings and accelerometer readings. The sensitive fields
are one-way hashed to preserve the privacy of participants. Furthermore, to establish the
ground truth, we ask participants to label the intervals for which they are absolutely certain
that the device was in their possession.

To advertise for participants, we used our university-wide mailing list to advertise for
people who would be interested in a study on “Mobile Misuse Detection”. Participants
were expected to install WatApp on their smartphones for ten weeks. Participants had
the option to opt-out any time they wanted by disabling the data collection mode. Fur-
thermore, if they wanted WatApp to not log data, they were provided with the option to
pause data collection for an indefinite amount of time. We paid the participants $5 for
each week of participation (up to $50 in total for ten weeks of participation).

Data Statistics Our app was downloaded and installed by 74 participants and 42 of
those participants completed the study. In total, we logged 1371908 events over ten weeks.
For 42 users, we extracted 121525, 15962, 28958 and 36178 location events, call events,
text events and webpage access events, respectively. Data distribution across participants
is plotted in Figure 3.1(b). We suspect that the differences in data distribution between
the Netsense and WatApp datasets are due to the fact that participants of the Netsense
project were provided with free unlimited phone plans.

2http://play.google.com/store/apps/details?id=watapp.main

38

3.2.3 Touch input dataset

Frank et al. [FBM+13] and Serwadda et al. [SPW13] have made their touch datasets pub-
licly available and we wanted to use those to generate reproducible benchmarks. However,
their datasets have a few limitations: (i) both datasets have been generated using only two
apps; (ii) for collection of both datasets, predefined tasks were given to the participants
to perform; and (iii) participants used the data collection apps in a lab. We argue that
due to these reasons, the data gathered by Frank et al. and Serwadda et al. falls short of
capturing in-the-wild behaviour of participants.

Our goal was to collect a dataset that captured the natural behaviour of the participants
when they used the touchscreens of their smartphones. We did not want the participants
to perform predefined tasks. We also wanted to study touchscreen input behaviour across
a diverse set of apps. Therefore, to capture data that satisfied our data collection goals, we
instrumented four Android apps: a browser app3, a maps/ navigation app4, a launcher app5

and a comic viewer app6. The apps that we chose belong to diverse categories and helped
us in understanding user behaviour across different apps. To advertise for participants,
we used our university-wide mailing list for people who would be interested in a study on
smartphones apps. Participants were expected to install these apps on their smartphones
for ten weeks. We did not ask the participants to explicitly perform any tasks and partic-
ipants were to use these apps as per their needs. This allowed us to capture participants’
in-the-wild behaviour. We paid the participants $5 for each week of participation (up to
$50 in total for ten weeks of participation).

For data collection, every time a participant interacted with the touchscreen on one of
the provided apps, we recorded: 1) time stamp in milliseconds; 2) x and y co-ordinates of
the touch point, 3) finger pressure on the screen; 4) area covered by the finger on the screen;
5) values from the accelerometer sensor; 6) finger orientation; 7) screen’s orientation; 8)
smartphone’s orientation sensor’s value (roll, pitch and azimuth); and 9) accelerometer
sensor values. These values were temporarily stored on the participant’s device and then
batch transmitted to a server. Before every data transmission, we established the ground
truth (only the participant used the apps) by asking the participants to label the intervals
for which they were absolutely certain that the device was in their possession.

Data Statistics Our apps were downloaded and used by 61 participants. In total,
we logged about 2.49 million touch points comprising over 53,000 swipes in ten weeks.

3http://code.google.com/p/zirco-browser/
4http://code.google.com/p/osmand/
5http://code.google.com/p/android-launcher-plus/
6http://code.google.com/p/andcomics/

39

Table 3.1: Statistics of touch points dataset.

App.
Num. of

touchpoints
Num. of
Swipes

Sessions
Mean (Median)

swipes per session

Launcher 642442 19740 4417 4.46 (2)
Browser 1164011 20139 826 24.3 (16)

Maps 236878 4664 365 12.7 (8)
Comics 445538 8928 272 32.8 (16)

Total 2488869 53471 5880 9.09

The details of swipes, their distribution across apps and distribution across user sessions
is provided in Table 3.1.

3.2.4 Text input dataset

We wanted to collect text input behaviour of participants during their normal usage ses-
sions; however, this was difficult in a privacy preserving manner. Therefore we presented
users with text strings that are used in everyday communication. We chose text strings
from existing publicly available SMS [CK13] and email corpora [KY04]. We developed an
Android app that presented a participant with each string of data that they were expected
to input using the virtual keypad on their smartphone. Once users entered all the strings,
the logged keystroke data was transmitted to our server. To advertise for participants, we
used our university-wide mailing list for people who would be interested in a study on “The
need for auto-complete and auto-correct on smartphones”. To avoid any bias, we did not
tell participants about the real purpose of this study before the conclusion of the study.
Finally, we did not restrict the participants to complete the study in a limited number
of sessions nor asked them to complete it in a lab. We paid $10 to each participant for
completing this study.

Data Statistics We presented participants with 13 strings. These strings contained
43 words and 268 characters in total. We required every participant to input each string
four times to collect 1072 keystrokes from each participant. Our app was installed and
used by 40 participants. The mean time taken to complete the study was eight minutes.

3.3 Evaluation Setup

While most of the evaluation metrics that we use are independent of the underlying imple-
mentation language, we wanted to measure processing complexity on real Android devices.

40

By using Java as our implementation platform, we were able to measure these statistics
easily. Therefore, despite the availability of Matlab source code for Touchalytics [FBM+13],
we re-implemented it in Java. We re-used the publicly available C++ implementation of
Gait-IA [FMP10] via the Android Native Development Kit. We note that evaluating the
Gait-IA scheme as a native app will result in relatively better results for processing over-
head metrics. For the evaluation of other metrics, we used automated scripts on a desktop
machine

For our evaluations, we used the recommended parameter values of IA schemes from
their original papers. If a paper does not specify a recommended value (e.g., the decay
parameter for Shi-IA), we first evaluated the proposed scheme while keeping the classifier
threshold to a constant value to determine the best operating point of the tuning parameter
for which a recommended value is not provided. To evaluate Shi-IA, we used the Netsense
and WatApp datasets. For Gait-IA, we used sensor readings from the WatApp dataset.
Keystroke-IA uses the Keystroke dataset for training and classification purposes. Finally,
the Touchalytics, SilentSense and TIPS schemes all use the Touchscreen Input dataset.

We constructed non-overlapping training and test sets for each of the participants, using
negative instances from other users. In practice, it is recommended that IA classifiers come
prepackaged with such data to be used as negative instances, allowing robust classifiers
to be trained on-device. In our work, the negative training sets of a user for the text
and touch input datasets were constructed by employing usage data from 20 other users.
For the Netsense and WatApp datasets, we used one day of data from 14 other users to
construct two weeks of negative training data. Frank et al. [FMP10] recommend using
a continuous block for training their Gait-IA classifier; consequently, we employed the
largest single block of continuous data for training. For Touchalytics, Keystroke-IA, and
SilentSense, we used half of the data for training, and the remaining data for testing. In the
case of TIPS, we used a 30/70 ratio for training and testing, respectively. This variation in
partition ratios is due to us following the convention established in the respective original
papers, and due to the heterogeneity of the different types of data used by the different
schemes in this work.

3.4 Evaluation Results

3.4.1 Accuracy evaluation

The accuracy of an IA scheme is its most critical evaluation metric. Ideally, the scheme
should have no false rejects (for a seamless user experience of the device owner) and 100%

41

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Accept Rate (FAR)

Tr
ue

 A
cc

ep
t R

at
e

(T
A

R
)

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
● ●

●

●

●

Shi−IA
Gait−IA
Touchalytics
Keystroke−IA
SilentSense
TIPS

Figure 3.2: Accuracy of the IA schemes.

true reject rate (to detect and prevent misuse by an adversary). To understand the accu-
racy of these classifiers, we plot the ROC curve using the True Accept Rate (TAR) and
the False Accept Rate (FAR). To understand the trade-off between TAR and FAR, we
threshold the authentication score. Thresholding provides a means to set different values
for various parameters of the underlying machine learning algorithm to obtain different
values of TARs and corresponding FARs. Thresholding of Shi-IA is performed over the
computed authentication score. Gait-IA and Touchalytics, which use ANN [AMN+98] and
k-NN for classification, are thresholded over the distance function score and over k, re-
spectively. Keystroke-IA implementation uses a Bayesian Network classifier [FGG97] and
is thresholded over the p score. Our implementation of SilentSense uses LIBSVM [CL11]
with a gaussian radial-basis function (rbf) as kernel. For thresholding, we tune the γ and
C parameters to the rbf. TIPS uses Dynamic Time Warping [BC94] to compute a simi-
larity score and we threshold the similarity score. The results of the accuracy evaluation,
averaged across all users, for the six classifiers are provided in Figure 3.2.

42

Call Text URL Location

Data Source

Fa
ls

e
A

cc
ep

t R
at

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 WatApp dataset

Netsense dataset

Figure 3.3: FAR for individual data sources for WatApp and Netsense datasets.

As shown, the TIPS scheme outperforms the others in almost all cases. In particular, it
is able to achieve a TAR of 79% with a FAR of only 0.43%. TIPS and SilentSense together
Pareto dominate all other schemes when the FAR is under 25%. Shi-IA generally under-
performs the other schemes, although it has the distinction of being the only IA scheme to
achieve a TAR of 100% with a FAR of less than 100% (specifically, 71%). Empirically, this
may be due to the fact that Shi-IA uses location information as a discriminator, while the
datasets are mostly taken from students living in tightly grouped geographic areas. Con-
sequently, these results may be different for other types of users (e.g., people who travel
often). We explore this further using the two device usage datasets.

The Netsense dataset only contains data from Notre Dame students who live in four
residence halls on the campus. On the other hand, during the data collection campaign for
the WatApp dataset, we placed no restrictions on the participants. Therefore, the WatApp
dataset has participants that belong to relatively diverse geographical areas. Furthermore,
since the participants of the Netsense dataset are co-located, they have more overlap in

43

terms of people they communicate and interact with. To understand how the performance
of Shi-IA differs among the two datasets, Figure 3.3 plots the FAR against each data source
within two datasets. It shows significantly more false accepts for the Netsense dataset than
the WhatApp dataset for text, browser history (URL) and location data sources. More
specifically, we observe twice as many and three times more false accepts due to texts and
URLs for the Netsense dataset, respectively. Similarly, for the location data source, we
observe orders of magnitude more false accepts for the Netsense dataset. These results
signify the importance of an unbiased dataset for the evaluation of IA schemes.

3.4.2 Data availability

If an IA scheme employs data from a behavioural source that does not have enough data
available to make a classification decision for a significant number of usage sessions, the
IA scheme would be ineffective despite its high detection accuracy. For example, while
Gait-IA outperforms Keystroke-IA in terms of accuracy (see Figure 3.2), Gait-IA will not
be useful if the device user is stationary and is not generating enough data for classification
purposes. We leverage our real-world traces to determine the availability of data for these
IA schemes. To compute the data availability we assume that IA is to be performed only
once during a session (and not performed repeatedly after a predefined interval of time).
We note that an IA scheme may save past authentication scores and re-use them in case
data is unavailable. For example, Gait-IA may compute authentication score prior to the
device usage when accelerometer data is available and then reuse this score to authenticate
future sessions. However, for a fair comparison, to compute the data availability we only
consider data that has been generated during a device usage session.

From the Netsense and WatApp datasets, we calculate the total number of usage ses-
sions (delimited by screen-on events) and the sessions in which enough behavioural features
are available to perform a classification decision for Shi-IA, Gait-IA and Keystroke-IA. For
text input availability, exact text data is not available and so we assume enough data is
available whenever the keyboard is displayed on the screen during the session; note that
this will lead to some overreporting of text input data availability against sessions with
insufficient number of keystrokes. Since the Netsense and Watapp datasets do not log
touch input, for Touchalytics, SilentSense and TIPS, we report data availability against
the four apps used in the touch input dataset. This will also result in some overreporting
of data availability; however, since touch interaction is the primary input mechanism on
modern devices, we expect our results to hold for other apps.

As seen in Figure 3.4, data derived from touch interaction is almost always available,
so IA schemes making use of it are thus most likely to be usable. SilentSense additionally

44

Shi-IA Gait-IA Touchalytics Keystroke-IA SilentSense TIPS

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 s
es

si
on

s.
..

...for which data is:
Sufficient Insufficient Unavailable

Figure 3.4: Data availability on real-world datasets.

makes use of accelerometer data; when the device is resting on a stable surface this data
will not be as meaningful as when the device is being held, but it is still available for
training and classification. Availability of data for Shi-IA is highly dependent upon the
users’ context and is discussed further in Section 3.5. Gait information was generally the
most difficult to find, with enough information available in only 13.1% of sessions.

3.4.3 Training delay

An IA scheme that could employ data from a few sessions to robustly train itself would
be highly desirable. While the IA scheme may explicitly request a user to provide training
data (for example, a text IA scheme asks a user to input a set of strings), most of the
existing schemes rely on collecting data during normal usage for training purposes. We
utilize the datasets as described in Section 3.3 to determine the training delay for each of
the six schemes evaluated in this work. To measure training delay, we set all the tuning
parameters including the classification threshold to a constant value and then train the
classifier by incrementally increasing the size of training data to the classifier. For IA
schemes that employ classifiers that require negative training instances (e.g., Touchalytics

45

Table 3.2: Minimum training delay to achieve accuracy rates of ≥ 70%, ≥ 80%, ≥ 90%.
95% confidence intervals are provided in parentheses. Note that Shi-IA uses the contents
of logs as a whole and as such has no concept of an “event”.

Accuracy ≥ 70% Accuracy ≥ 80% Accuracy ≥ 90%
Events Time (sec) Events Time (sec) Events Time (sec)

Shi-IA N/A 1.7 weeks N/A 3.2 weeks N/A N/A

Gait-IA 1434 159 (32) 1832 205 (47) 2338 287 (59)

Touchalytics 67 106 (10) 165 280 (30) 275 464 (49)

Keystroke-IA 1352 594 (55) 2028 839 (108) 3380 1101 (360)

SilentSense 86 139 (14) 204 346 (36) 272 460 (49)

TIPS 738 1391 (224) 1295 2443 (378) 1611 3034 (445)

and SilentSense), we use equal amounts of out-of-class training instances from 20 out-
of-class sources. For every training session, we measure the accuracy of the classifier by
running it on the test dataset. Using this process, we find the minimum number of events
and the amount of time required to collect these events to obtain an accuracy of ≥ 70%,
≥ 80%, and ≥ 90%. These results are provided in Table 3.2.

Training delays are closely correlated with data availability rates. When gait informa-
tion is available—which is frequently not the case, as discussed previously—Gait-IA takes
the least amount of time to accumulate enough information to train a model with high
accuracy. Touchalytics and SilentSense take only a few minutes extra, as touch input is a
frequent event. Keystroke-IA data takes longer as high accuracy requires the user to type
strings that cover a fair amount of high frequency bigrams (as the training data is derived
from inter-stroke timings). TIPS, despite having the best TAR and FAR overall, requires
approximately one hour of data collection to achieve ≥ 90% accuracy. Shi-IA requires
several weeks’ worth of data, as it relies on user behaviour patterns repeating over large
periods of time.

3.4.4 Detection delay

While the data availability metric determines whether enough data is available across
sessions, we evaluate detection delay for these IA schemes to measure the sensitivity of
these schemes to misuse attempts. Ideally, we would like the detection delay to be as low
as possible to prevent the adversary from accessing confidential data on the device. We
measure detection delay in terms of time elapsed from the start of misuse to the time when
the IA scheme detects the misuse. For detection delay evaluation, we play back negative
instances and look for those that are correctly classified as true rejects by the IA scheme

46

●●
●

●●●

D
et

ec
tio

n
D

el
ay

 (
se

co
nd

s)

S
hi

−
IA

G
ai

t−
IA

To
uc

ha
ly

tic
s

K
ey

st
ro

ke
−

IA

S
ile

nt
S

en
se

T
IP

S

10
0

10
1

10
2

10
3

10
4

Figure 3.5: Detection delay for true rejects (note log scale).

(i.e., we ignore data that results in false accepts).

The detection delay results are shown in Figure 3.5. SilentSense generally detects
non-owners the fastest, in the range of 2–11 seconds. Other schemes generally detect non-
owners in less than 30 seconds, with the exception of Shi-IA. Shi-IA takes more than 15
minutes on average before enough data is available for it to reject a non-owner from the
device. This result is significantly longer than the average session length, and a malicious
user would likely be able to export data from the device before even realizing that an IA
scheme is in use.

3.4.5 Processing complexity

Since the target for these IA schemes is mobile platforms, it is critical for the IA schemes
to have low processing complexity. For complexity evaluations, we measure the perfor-
mance overhead in terms of elapsed CPU time and heap size of the IA scheme for feature

47

collection, training and classification operations. We divide the performance overhead into
these operations to distinguish the one-time (training) and run-time (feature collection
and classification) costs. An efficient IA scheme would have a reasonable one-time cost
and minimal run-time cost.

For execution time calculation, we chose an HTC Nexus 1 and an LG Nexus 4. The
Nexus 1 has Android OS v2.1 on a 1 GHz processor with 512 MB of RAM. The Nexus 4
has Android OS v4.2 on a Quad-core 1.5 GHz processor with 2 GB of RAM. We loaded the
training and test sets for this experiment from a file on the app’s local storage. The size of
the training set used for this experiment corresponds to the number of samples required to
achieve 70% accuracy (see Table 3.2). We repeated each experiment 15 times and report
averages. For the experiment, both devices were configured in the “airplane mode” and
had only the factory provided services running in the background. Execution time results
for both devices are provided in Table 3.3.

The Nexus 4 generally performs operations faster than the Nexus 1, but with marginally
higher memory overhead. In our experience, these small differences are generally due to
changes in the Android API. SilentSense initialization and training take several seconds
due to the SVM classifier used; it also loads negative instances from disk at initialization.
Shi-IA takes 1–2 seconds to extract features from data as it filters call, SMS, and browser
logs. All schemes are able to perform classification in tens of milliseconds in the worst case.

3.4.6 Uniqueness of behavioural features

Jain et al. [JRP04] list distinctiveness as one of the key properties of a biometric-based
authentication system, which requires any two persons to be sufficiently different in terms
of the characteristics measured. While the presence of false accepts in Figure 3.2 indicates
that none of the behavioural features employed in the IA schemes evaluated in this work
is distinct, nevertheless they should provide sufficient discriminatory information among a
sufficiently large set of users to provide an acceptable FAR. To gain insight into this, we
simulate N non-owners attempting to access a protected device, and measure the rate at
which someone is able to successfully bypass IA. By varying the number N , we gain some
sense of the device owner’s uniqueness in a crowd of that size. For each value of N , this
simulation is run using 4-fold cross-validation for each user and the results are averaged.

Figure 3.6 shows the results from this simulation. All of the IA schemes tested appear to
exhibit similar growth patterns in IA bypass rate as the number of users increases. While
TIPS and Shi-IA exhibit the most uniqueness overall, SilentSense is also quite resilient
when faced with 10 or fewer adversaries. Keystroke-IA does not appear to be distinctive

48

Table 3.3: Performance evaluation of the IA schemes. 95% confidence intervals are provided
in parentheses.

CPU (ms) Heap(kB)

Init.
Feature
Extrac-

tion
Training

Classi-
fication

Runtime

Nexus 1

Shi-IA 677 (26) 1758 (31) 13053 (87) 58 (4) 790 (6)
Gait-IA 5 ('0) 7 ('0) 764 (42) 93 (7) 9532 (81)

Touchalytics 5 ('0) <1 ('0) 65 (2) 2 ('0) 59 (1)
Keystroke-IA 21 (2) <1 ('0) <1 ('0) <1 ('0) 3 ('0)
SilentSense 1162 (81) <1 ('0) 10384 (91) <1 ('0) 18 (1)

TIPS 5 ('0) <1 ('0) 35 (2) 1 ('0) 92 (2)

Nexus 4

Shi-IA 575 (24) 1406 (22) 10964 (74) 51 (3) 817 (5)
Gait-IA 4 ('0) 5 ('0) 522 (31) 75 (6.8) 9775 (94)

Touchalytics 3 ('0) <1 ('0) 15 ('0) 1 ('0) 67 (6)
Keystroke-IA 12 ('0) <1 ('0) <1 ('0) <1 ('0) 3 ('0)
SilentSense 972 (67) <1 ('0) 5937 (329) <1 ('0) 21 ('0)

TIPS 3 ('0) <1 ('0) 8 (0.86) <1 ('0) 96 (2)

even in scenarios with few non-owners present, suggesting that it would be wise to pair
these features with other, non-keystroke-derived attributes when creating IA schemes.

3.4.7 Vulnerability to mimicry attacks

While a detailed analysis of vulnerability to mimicry attacks across six IA schemes is
beyond the scope of this thesis, in this section we consider the informed adversary threat
scenario. We evaluate mimicry attacks on Touchalytics and SilentSense in Chapter 5 and
provide a discussion on the possibility of mimicry attacks on other schemes. In Section 1.3,
we outlined our attack model and the two types of adversaries — informed and uninformed
adversaries. In this section, we consider how effortlessly informed adversaries can defeat
an IA scheme.

We argue that in accordance with Kerckhoffs’s principle, the IA mechanism (including
its features and computation of anomaly score) is public knowledge but feature values for
individual users are secret. Consequently, if an adversary can estimate the feature values
for an IA scheme easily and mimic those feature values, he can steal data from the device.
From the approaches that we evaluate, Shi-IA is the most vulnerable to mimicry attacks.
Even an uninformed adversary can scan the device for call/text logs and browser history

49

10 20 30 40

Number of Users

IA
 B

yp
as

s
R

at
e

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6 Shi−IA

Gait−IA
Touchalytics
Keystroke−IA
SilentSense
TIPS

Figure 3.6: Relationship between IA bypass rate and number of users.

and then mimic it to ensure that the device does not lock him out. An informed adversary
would attempt to stay in the same vicinity as the device owner to get an even better
authentication score. During the literature survey (in Section 2.4.8), we noted that while
shoulder surfing attacks on gait IA schemes were not possible [GSB07], offline training
attacks were a serious threat for gait IA [KPJ15]. Keystroke-IA relies on features that
are difficult to estimate by looking over the victim’s shoulder therefore, shoulder surfing
attacks on Keystroke-IA may be difficult to mount.

A more serious attack surface for these IA schemes exists in that many of the features
employed by these schemes can be collected by any app without requiring any special
Android permissions (except Shi-IA, which requires the permissions mentioned in Sec-
tion 3.4.8). Consequently, an adversary might persuade the victim to install a Trojan app
on his device in order to log his behaviour. The adversary can then train himself to mimic
the victim. Tey et al. [TGG13] mounted this attack on a keystroke-based authentication
scheme for traditional keyboards.

50

3.4.8 Ease of deployment on mobile platform

Finally, we look at the deployment related issues for these IA schemes on the popular
iOS and Android platforms. We understand that sufficient changes might be introduced
by the OS providers in future versions to mitigate the deployment limitations of these IA
schemes; nevertheless, we provide an overview of the deployment issues on contemporary
mobile platforms.

The features used by Gait-IA can be collected without requiring any permissions. Fea-
tures employed by Shi-IA can be collected using non-root permissions. More specifically,
on Android five permissions including ACCESS FINE LOCATION, READ SMS, READ CALL LOG,
READ HISTORY BOOKMARKS and READ CONTACTS can be used to implement Shi-IA. Feature
extraction for touch and text IA schemes is more complicated. Due to security and privacy
concerns, iOS and Android only allows a foreground app to receive input events (touch and
keystroke events). Therefore, IA schemes that employ these features (including Touchalyt-
ics, Keystroke-IA, SilentSense, and TIPS) can only be deployed either on rooted devices or
deployed per app instance [KH14]. We discuss these deployment challenges and possible
mitigation strategies in Chapter 6.

3.5 Discussion and Open Challenges

This section discusses lessons from our findings of comparative evaluation of IA schemes
in Section 3.4, and our experience in implementing the schemes on Android devices.

Practical IA is possible with low overhead and in near-real-time. Our results
on Nexus 1 and Nexus 4 devices given in Table 3.3 show there are IA schemes that can
run feature extraction and classification in only milliseconds. Even the worst case training
scenarios take only ten seconds, which is performed one-time only and can be done in a
background thread. In case of misuse by a non-owner, the majority of these IA schemes
are able to detect misuse in under 30 seconds. In terms of accuracy, touch IA approaches
provide ≥ 90% true accepts with ≤ 10% false accepts and might potentially be a good
candidate for secondary authentication. In Chapter 4, we conduct a usability study to
determine whether these accuracy rates are acceptable for users.

Features should be chosen in a complementary and context-aware manner.
Sources for behavioural features must be chosen carefully, and take the intended deploy-
ment context into account. Touch input data is almost always available (see Figure 3.4)
but should be augmented with a secondary source (such as text input data) for better cov-
erage. Taking into account user context information — e.g., whether the user is walking

51

or stationary, which app the user is interacting with — is important for classifying data
from onboard sensors (TIPS), but does not necessarily make a good discriminator by itself
(Shi-IA). No individual source of behavioural data provides a silver bullet for IA.

Devices may not need to be rooted to make use of IA. Android does not
allow background applications to gather input events (touch and text input events) due to
security concerns. Therefore, IA schemes that rely on input events (e.g., touch and text IA
schemes) require root privileges on the device in order to collect data. On the other hand,
Shi-IA and Gait-IA do not require root privileges and only require Android permissions.
Input event data can be collected by individual apps without any additional permissions,
which opens the door for IA protection at the app level instead of the device level. For
example, enterprises can bundle IA schemes within their apps to protect confidentiality
of their corporate data. While providing IA at the app level mitigates the restrictions
imposed by Android, it also imposes significant development overhead. We leverage this
observation to address some deployment challenges to IA in Chapter 6.

Using a realistic threat model and evaluating in an uncontrolled environment
is necessary when evaluating an IA scheme. Some IA proposals are accompanied by
unrealistic evaluations, by having users perform a repeated task in a lab setting to generate
data. When these schemes are then applied in real-world settings, the assumptions made
in the lab may prove false and the scheme’s performance will suffer accordingly. Feng
et al. [FYY+14] demonstrate that on real-world datasets, many existing touch-based IA
schemes have significantly higher EER than reported in the original papers. Our findings
are similar for the IA schemes that had their datasets publicly available [FMP10, FBM+13].
Furthermore, a recent Symantec study finds that 68% of non-owners who attempted to ac-
cess private data on an unguarded smartphone did so on the spot, which would make loca-
tion filtering an unhelpful IA feature [Wri12]. A similar study by Lookout-Sprint [Loo16]
found that 44% of users were primarily concerned with their devices being accessed by
family and friends, as opposed to strangers. Since such adversaries may have multiple
overlapping features (e.g., location and contacts), IA schemes that rely on such features
will not be very effective. Therefore, it is critical to provide protection against a realistic
threat model that captures these security and privacy concerns of smartphone users.

3.6 Conclusion

In this chapter we provided a comparative evaluation of six IA schemes that employ differ-
ent behavioural features. Our empirical evaluations show that IA can be performed with
reasonable accuracy and low complexity with acceptable detection delay on contemporary

52

mobile devices. More specifically, our evaluations show that in addition to adequate data
availability for training and classification, touch IA schemes outperform other schemes in
terms of accuracy and detection delay. We also analyzed real-world traces to show that
while text and gait IA schemes provide reasonable performance, there was not enough
data available for a significant proportion of sessions to make a classification decision. In
terms of evaluation of IA schemes by the research community, our findings emphasize the
significance of evaluation on uncontrolled datasets. Furthermore, an overview of features
employed by device usage IA indicates that there is a need to consider a realistic threat
model.

Finally, while our evaluation quantifies the performance of IA schemes, it does not
provide any empirical evidence on the human side of IA. For instance, the finding that
most touch IA schemes correctly identify over 95% misuse attempts with less than 10%
false rejects in under ten seconds, does not convey whether it is acceptable for users from a
security standpoint. In the following chapter, we bridge this gap by conducting experiments
with human subjects on the usability and the acceptability of the security properties of
IA.

53

Chapter 4

Usability and Security Perceptions of
IA

The high accuracy reported by touch IA schemes has resuscitated the potential of IA to
mitigate the usability issue with primary authentication mechanisms. Touch IA schemes
have gained traction in technology media news with claims like: “Identifying someone by
the way they tap and swipe on a touchscreen might be the more natural, unobtrusive future
of smartphone biometrics” [New16]. However, these claims have not been substantiated.
The review of the existing IA literature in Chapter 2 showed that the focus of the ma-
jority of IA research is on improving the accuracy whereas the usability evaluation has
largely been ignored. Existing IA literature has assumed without empirical evidence that
since IA authenticates without requiring explicit input, it is more usable. For instance,
when Jakobsson et al. introduced the term IA with a device usage IA scheme, they pos-
tulated that “this is a meaningful approach, whether used to increase usability or increase
security” [JSGC09].

Given that IA does not require explicit input to authenticate the device user for every
session, intuitively it seems that IA should reduce the amount of time spent on authen-
tication. However, despite the reasonably high detection accuracy of some IA schemes,
these schemes are still subject to false rejects, false accepts and detection delays (see
Section 3.4.1), which could introduce new usability issues and affect users’ security percep-
tions. If the IA detection model is unsure about the user’s identity, it naturally resorts to
an interrupt-authenticate approach in which the current task is pushed to the background
and the user has to explicitly authenticate to establish their identity [FYY+14, LZX13].
This interrupt-authenticate approach for false rejects is quite different from consistent

54

explicit authentication (EA). It remains unclear how it affects usability in terms of an-
noyance and task performance in terms of time and error. Similarly, it is not obvious
whether the usability-security trade-off offered by IA overcomes the perception of security
given the risks of false accepts and delay in detection of an intruder. Finding answers to
these usability aspects and security perceptions of IA will determine whether IA provides
a competitive advantage in terms of usability over EA.

Our research effort aims to answer the research questions that were not explored in
the previous usability evaluations of IA (see the existing literature on usability evaluations
of IA in Section 2.4.7). More specifically, the existing efforts on usability and security
perceptions evaluations of IA by Clarke et al. [CKF09] and Crawford and Renaud [CR14]
fail to: (i) evaluate IA in the wild; (ii) perform a through usability evaluation given FRs;
(iii) evaluate task performance given the interrupt-authenticates due to FRs; and (iv)
evaluate security perceptions due to FAs and detection delays.

We expand our second research objective (see Objective 2 in Section 1.5) to addresses
the aforementioned limitations of the existing research:

� To conduct a field study to quantitatively and qualitatively evaluate the usability of
IA given FRs

� To determine the security perceptions of IA given all IA schemes are subject to FAs
and detection delays

� To identify whether the usability and security properties of IA are acceptable for
users and whether they are interested in adopting IA

We begin by outlining the aims for our comprehensive user study, which meet the afore-
mentioned objectives.

4.1 Study Goals

We divide our goals to investigate IA usability and perceived security into seven questions.
Later, we organize our study results around these seven questions.

Our main goal regarding IA usability was to test established usability metrics and
commonly accepted usability assumptions, as captured by the following research questions:

U1 Does IA decrease the overall task completion time and the authentication overhead
when compared to EA?

55

U2 Do the interrupt-authenticates in IA increase the error rate of the primary task?

U3 Are fewer but less predictable authentication interrupts of IA less annoying or tolerable
as compared to EA or no authentication at all?

U4 Does IA score higher on the system usability scale [Bro96] as compared to EA?

U1 and U2 address standard usability metrics for time and error as they may be affected by
the interrupt-authenticate model of IA. These metrics have never been evaluated directly
with IA, but they have been used to measure performance impact of similar task inter-
ruptions with personal computers [BK06] and they have been implied as benefits of IA in
previous work [JSGC09]. Furthermore, with desktop systems, Bailey and Konstan [BK06]
found that interruptions increased errors overall so it was an important metric to include.
By answering U3, we will test levels of annoyance caused by FRs and through U4, we
test claims of higher perceived usability for IA compared to the primary authentication
baselines of EA [CKF09, CR14] and no authentication.

Our main goal for the security perceptions of IA was to explore the following research
questions:

S1 Are the security properties of current IA schemes (such as the FA rate) acceptable to
users?

S2 Is the perception of IA security better than common current authentication schemes?

S3 Are smartphone users interested in adopting IA?

S1 has never been explored in the IA literature. S2 has been explored in previous stud-
ies [CKF09, CR14] and we attempt to validate these prior findings. In addition to evalu-
ating the overall perceived level of security, we elicit the perceived level of security against
different types of adversaries, different device states and different types of tasks. Finally,
answering S3 provides an indication of IA deployment potential from a human-centric
perspective since it essentially combines security perceptions and usability.

4.2 Study Design

We use a two-part study for our evaluations. The first part is a lab-based experiment where
each participant performs simulated tasks with IA and with their current authentication

56

scheme. This provides highly controlled, quantitative results. Measuring annoyance and
other subjective feedback caused by IA interruptions is more ecologically valid when evalu-
ated with real tasks over a longer time period, so the second part is a three-day field study
where participants used IA on their own smartphone. For experimental control, both parts
use a pseudo-IA scheme (described below). Our methodology was reviewed and approved
by the ORE of our university.

4.2.1 Participants

The in-lab study was completed by 37 participants and 34 of those same participants com-
pleted the field study. Three participants dropped due to technical issues (two participants
had device encryption enabled and one participant reported a broken device). We recruited
these participants using multiple sources including: (i) an advertisement on Craigslist and
Kijiji in November of 2014, under the “other jobs” section; and (ii) on the university-wide
mailing list. The title of the advertisement was “Participate in a research study on the
efficacy of a novel authentication scheme on smartphones” and it stated that the study was
about the evaluation of a novel authentication scheme and adults who owned and used an
Android-based smartphone for over six months could participate. Those interested were
requested to fill out an online screening survey (provided in Appendix A), which collected
information about their age, gender, profession, security preferences, smartphone make
and model, amount of time they have used a smartphone, and email address. Participants
were paid $35 ($10 for each of two in-lab sessions and $15 for the field study).

Participant demographics, current authentication schemes, and authentication prefer-
ences are summarized in Table 4.1. Current authentication scheme by age group is provided
in Figure 4.1. Overall, our participant pool has good diversity by profession, age, and cur-
rent authentication scheme. For our research questions, this kind of diversity is important.
Similar to the prior studies [EJP+14, HVZF+14], the top reason our participants gave for
not using any authentication scheme was inconvenience. Furthermore, about half of the
participants who used some authentication scheme agreed that it was inconvenient or an-
noying at times. The annoyance was split by current authentication scheme: PIN users
were significantly more likely (53% more) to find their authentication scheme inconvenient
as compared to the pattern lock users (Fisher’s Exact Test, p = 0.028).

In terms of current authentication, 14 participants used no authentication, eleven used
Android’s Pattern Lock, nine used a four-digit PIN and three used other schemes (two
participants used a password and one participant used a longer PIN conforming to his
company policy). We use the participants’ current authentication scheme as an indepen-
dent between-subject variable, which we refer to as Use. Where relevant, we summarize

57

Table 4.1: Demographics and security preferences of the study participants.
n = 37

Gender: 56% Female
43% Male

Occupation: 32% Employed
30% Grad student
24% Undergrad student
13% Unemployed/retired

IT experience: 22% Studied/worked in IT

Current 38% None
authentication 24% PIN

scheme: 30% Pattern-lock
8% Other

Sharing 51% Never
habits: 41% Rarely (once a month)

5% Occasionally (once a week)
3% Daily

Top reasons for 8/14 It’s a hassle/takes time
not using any 5/14 Nothing to hide

authentication: 3/14 Never thought about it

Top reasons 19/23 Protected if lost/stolen
for using 18/23 Protected when unattended

authentication: 12/23 Someone casually picking it
10/23 Unwanted disclosures

Protecting 18/23 Strangers
against: 12/23 Coworkers

8/23 Friends/roommates
7/23 Spouse/own children

Thoughts on 13/23 It is inconvenient sometimes
authentication: 10/23 It is easy

3/23 It takes time

results using groups and subgroups formed by this variable. Specifically, DontUseAuth
is the group of participants who reported that they do not use any authentication and
UseAuth refers to the group of participants who reported that they use some EA scheme.
We further separate UseAuth into two common EA schemes: UsePIN for the subgroup of
UseAuth participants who reported using a PIN and UsePAT for the subgroup of UseAuth
participants using a pattern lock.

58

0

2

4

6

8

10

12

Under 20
years

21 - 25 26-30 31-35 36-40 41-45 Over 55
years

N
u

m
. o

f
Pa

rt
ic

ip
an

ts

Age Group

None

Pattern Lock

PIN

Other

Figure 4.1: The “Age Group” – “Current Authentication Scheme” distribution for study
participants.

4.2.2 Apparatus

We developed two Android apps, Explicit Authentication and Implicit Authentication,
that executed on the devices of the participants during both parts of the study. For the
lab-based experiment, the apps presented a series of tasks to the participants. The apps
contained authentication screens to authenticate the participants using a PIN, Android’s
pattern-lock or a six character password. We used the Android Open Source Project’s UI
and implementation1 for the pattern-lock and used a UI identical to that of Android for PIN
and password screens. We simulated authentication on the participants’ devices using our
apps (explained in Section 4.2.3) to accurately measure the time spent on authentication.
For the field study, the Implicit Authentication app executed as a background service to
simulate FRs. Although IA was simulated, participants were told that all biometric data
remained solely on their device.

Deception: In both parts of the study we used a pseudo-IA scheme that ostensibly

1http://code.google.com/p/android-lockpattern/

59

http://code.google.com/p/android-lockpattern/

employed the touch behaviour biometric. The pseudo-IA scheme interrupt-authenticated
users by triggering authentication screens during their interaction with the device to sim-
ulate FRs. Our pseudo-IA scheme was configurable to simulate different FR rates and
detection delays. We used a pseudo-IA scheme because: it was not possible to intercept
touch input events for IA without rooting the device due to the constraints imposed by
Android [KAH14b]; and a pseudo-IA scheme enabled us to strictly control the frequency
and the detection delay of FRs. Participants were told that the IA scheme on their de-
vice was fully operational and that one of the in-lab sessions served as training for the
IA algorithm (details provided in Section 4.2.3). Furthermore, to reduce the chance of
participants discovering this deception by testing it with other users, we asked them not
to share their devices during the field study arguing that sharing would interfere with the
brief re-training phases required by our early-stage IA scheme. There are limitations of
using a pseudo-IA and we discuss these limitations in Section 4.5.

Configuration parameters selection: A challenging aspect was the selection of IA config-
uration parameters. By choosing different parameter values, we can change the behaviour
of IA schemes. For instance, there is a negative correlation between FAs and FRs, and
increasing detection delay reduces the number of FRs. While there is no recommended
operating threshold, we inspected different operating thresholds because: (i) high accuracy
input behaviour-based IA schemes have deployment constraints as compared to low accu-
racy schemes that can be readily deployed [KAH14a]; (ii) studies report a high degree of
variability for FR rate between users [DZZ14]; (iii) variability in FR rate for an individual
user may be caused by the type of activity that the user is performing [FYY+14]. We
chose a representative and realistic FR rate range based on previous work [KAH14a]. We
evaluated three FR rates: 5%, 10% and 20% that have a corresponding FA rate range
between 3%–18% and 5–30 seconds of detection delay for different IA schemes. We dis-
cuss operating threshold configurations specific to each experiment in Section 4.2.3 and
Section 4.2.4.

4.2.3 Part 1: Controlled lab experiment

The purpose of the controlled lab experiment is to: (i) introduce the participants to IA;
(ii) perform an A/B testing of IA with non-IA (UseAuth or DontUseAuth); (iii) demon-
strate an ostensible TR; (iv) elicit initial feedback on usability and security perceptions of
IA; (v) collect data to evaluate the performance metrics of U1 and U2; and (vi) test the
pseudo-IA scheme on the participants’ devices without any EA scheme configured (this
was not possible in the field study due to data security and privacy threats without EA).

60

(a) Input Activity (b) Selection Activity (c) Reading Activity

Figure 4.2: Apps’ screens showing different activities for the lab-based experiment. App’s
screens presented here have been modified to show complete activities.

Task

Our two apps presented a series of experiment tasks on the participant’s own smartphone.
In the experiment, each task represented a device usage session. The participant waited for
the device to ring (with vibrate) to indicate it was time to perform a task. For the Explicit
Authentication app, the participant turned the screen on, performed authentication if
required, completed an activity, and turned the screen off. For the Implicit Authentication
app, instead of the authentication at the beginning, the participant was interrupted and
authenticated in the middle of an activity (frequency and timing of interrupt-authenticates
are discussed in the Design section). There was no time limit to complete a task. To
simulate longer breaks between real device usage sessions, the participant waited a random
time between 8–15 seconds before performing the next task.

We chose a subset of activities from the primary activities proposed by Bailey and
Konstan [BK06]. We chose those activities that were abstract representations of common
mobile activities and were diverse in terms of difficulty and cognitive load, enabling us to
inspect error rate and interrupt-authenticate overhead. A description of these activities by
increasing level of difficulty due to higher mental loads on working memory (based on the

61

rankings of Bailey and Konstan [BK06]) are provided below (see also screen captures in
Figure 4.2):

� Input Activity: entering a sequence of characters. Our activity required participants
to enter a nine digit number displayed on the screen into an input field. For the in-
put number, we carefully chose permutations that did not overlap with the local area
codes and did not have any consecutive or repeating integers. This activity is rep-
resentative of common smartphone activities like entering search queries, composing
texts, and entering emails.

� Selection Activity: selecting multiple items from a list of items. We used a list of
words with selection checkboxes arranged in a 12-row x 3-column table. Thirty-six
words were randomly chosen from a base set of six words. Participants had to select
each word in the table that matched a given target word (taken from the base set).
This activity is representative of common smartphone activities such as choosing a
number to dial, choosing an app to launch or scanning the results of a search.

� Reading Activity: reading and comprehending information. Participants read a 7–10
sentence narrative passage from Wikipedia and then answered two multiple choice
questions regarding its content. This activity is representative of common smart-
phone reading and comprehension activities such as reading emails or web browsing.

Design

Participants completed the lab-based experiment in two sessions held on different days.
Each session lasted between 45–60 minutes including introduction, pre-survey, experiment
tasks, post-survey, and interview. In each session, experimental tasks were completed
under one of two within-subject conditions: the IA condition when they used IA and non-
IA when they did not use IA. The order of the IA and non-IA sessions was counterbalanced
across participants.

Each session had 30 task trials with each task showing one activity. There were ten
instances of each of the three activity types. Since the activity types were of varying
difficulty level, we did not use simple random sampling to select their order since some
orderings could introduce a confounding effect (e.g., the first 10 tasks are all difficult
activities). Instead, we constrained the random presentation order by creating five blocks
of six tasks where the tasks have two variations of each activity. We then permuted
the order of tasks within each block using the first 5 rows of a 6x6 Latin square. This
counterbalanced the varying difficulty levels of activity types. The same order of blocks

62

and tasks was used across IA and non-IA sessions across all participants to create an
unbiased comparison and to make sessions directly comparable.

For the non-IA session, participants were assigned the same authentication scheme that
they used currently on their device (which could be an EA scheme or no authentication).
For the interrupt-authenticate caused by a simulated FR in the IA session, UseAuth par-
ticipants used their current authentication scheme while DontUseAuth participants were
assigned a scheme that they preferred to use. Although we could have assigned a random
authentication scheme to DontUseAuth participants, this could have introduced negative
bias from dislike or inexperience with the assigned scheme. In both sessions, we were not
interested in the memorability of the secret. Participants could write down their secret or
reset it in between tasks if they wished.

While the input activity naturally generated tapping data, we rendered the reading
activity and the selection activity in such a way that participants had to swipe to scroll to
see their content. This led them to believe that their interactions were used as a biometric.
We also used deception in terms of training by telling the participants who tested IA in their
first session that the data from the first few tasks was used for training. The participants
who tested IA in the second session were told that the data from the first session was used
for training.

We used a 20% FR rate (six interrupt-authenticates in total, twice for each type of
activity) and a detection delay between 5–10 seconds. A lower detection delay (2–4 seconds)
was used for the shorter input activity.

Procedure and data collection

The shortlisted participants were asked to bring their devices to the lab. We started the
first session by showing a two-minute video introducing the apps and activities2. Par-
ticipants were introduced to IA using a three-minute video before the IA session, which
explained the operations of touch behaviour-based IA and the associated FAs, FRs and
operating threshold3. A researcher was available during these video demonstrations to an-
swer any questions. After the briefing, participants downloaded and installed the app for
the session through Google Play Store. They were then asked to set the current authen-
tication scheme to ‘None’ and turn on ‘airplane mode’ on their devices. This eliminated
notifications or interruptions during the experimental tasks and enabled our app to control
all authentications.

2http://youtu.be/qDQm_Oad6Pw
3http://youtu.be/HUR2-bxBtI8

63

http://youtu.be/qDQm_Oad6Pw
http://youtu.be/HUR2-bxBtI8

After device setup, participants completed the state-trait anxiety inventory (STAI)
survey (provided in Appendix D) [Spi83] to provide us with their current state of anxiety.
The participants were then asked to launch the app to configure an authentication secret
and then complete the main experiment tasks. After completing all tasks, they provided
another measurement on anxiety by completing the STAI survey again. The participants
were asked to complete a post-survey (provided in Appendix B) for the non-IA and the IA
sessions. This survey consisted of 12 questions regarding usability and security perceptions
of the authentication schemes that they tested. The participants used the survey to rate
their perceived level of security (overall and for different adversaries, device states, and
different tasks) and usability (in terms of convenience, annoyance, time consuming and
tiring). Participants who tested any authentication scheme during a session were asked
to complete the system usability scale (SUS) survey [Bro96] after the session. The SUS
survey was modified (provided in Appendix C) to explicitly inform the participants that
it was evaluating the authentication scheme, not the apps. We also changed the word
‘system’ to ‘method’ and we dropped the question ‘I found the various functions in this
system were well integrated’ because it was not applicable to our evaluations. Finally, a
semi-structured interview (provided in Appendix E.1) of 10–15 minutes gained insight into
survey answers. The interviews were recorded and later transcribed.

4.2.4 Part 2: Field study

The field study was conducted after the lab study with the same participants. The main
purpose of the field study was to gather realistic data on potential annoyance due to
FRs. In addition, we wanted to subject participants to different operating thresholds to
determine a tolerable one in terms of the frequency of FRs.

Task

The task for the field study was for participants to use their device as usual and handle
simulated IA FRs (experienced as interrupt-authenticate screens) as they occurred. After
each interruption the participant also provided brief feedback through an in-situ pop-up.

Each FR interrupted the current smartphone app with an authentication screen re-
quiring an explicit authentication. These were the same simulated authentication screens
used in the lab experiment. The background service in the Implicit Authentication app
monitored two events: the ACTION SCREEN ON event to keep track of when the users turned
on their screens and the ACTION USER PRESENT event to know when the users were present

64

Figure 4.3: The in-situ feedback pop-up after interrupt-authenticate.

on their devices after dismissing the lock screen. An interrupt-authenticate was triggered
after k ACTION USER PRESENT events (k was controlled during the study, details are in the
Design section).

We were also interested in measuring the annoyance of each FR. After an interrupt-
authenticate, we performed experience sampling with a simple in-situ feedback screen (Fig-
ure 4.3). It asked the participants about their current annoyance on a 5-point Likert scale
(“Very annoying” – “Not annoying at all”). The feedback screen also displayed the current
operating threshold and the associated security strength of that threshold (in terms of the
proportion of strangers that the IA scheme would likely protect against).

Design

We conducted the field study for three days to measure annoyance for different operat-
ing thresholds. FRs were simulated after every k ACTION USER PRESENT events and we

65

randomly chose a value of k for each day to reflect high, medium and low accuracy corre-
sponding to 20%, 10% and 5% FR rates, respectively. Since we were unable to determine
when a participant interacted with the touch screen after an ACTION USER PRESENT event,
we simulated a FR by choosing a random delay between 15–30 seconds. If the participants
turned off the screen before the delay timeout, they were authenticated in the next session
with a reduced delay. The delay value is decreased by five seconds each time down to a
minimum delay value of ten seconds to ensure that the participants with short sessions
also experienced FRs. We did not simulate a FR for the sessions when the call state of the
device was ringing or off-hook.

We allowed participants to reduce the operating threshold if they wished. To ensure that
the participants did not set the operating threshold to zero, the participants’ adjusted value
was only effective for 30 minutes and after that it was reset. This mitigated the possibility of
participants killing the background service if interrupts became too irritating (participants
felt they had some control) and gathered data to study the potential need and utility for
users to control the trade-off between usability and security. The briefing video explained
the trade-off when setting different threshold values. Participants could use the interface
to increase the operating threshold; however, their action had no operational effect. The
assigned security strength corresponded to the best achievable accuracy for the SilentSense
scheme (see Section 3.4.1). We told participants that the IA scheme automatically adjusted
the threshold value after brief re-training phases but they could change it depending on
their desired level of protection. Participants were informed about this behaviour and that
they could dismiss the interrupt-authenticate by pressing the home button but we asked
them to avoid doing so except in extreme cases.

Procedure and data collection

After the second in-lab study session, participants were briefed about the background ser-
vice executing on their devices and the interface of the in-situ feedback pop-up. The Im-
plicit Authentication app was programmed to reject the user on its first use. The researcher
used this feature to perform an ostensible demonstration of a true reject on participants’
device to lead them to believing that the IA scheme was behaving as expected. After
the completion of the three day usage period of the pseudo-IA scheme, the participants
were instructed to contact us through emails to arrange for an in-person semi-structured
interview (provided in Appendix E.2) of 10–15 minutes and to collect the remuneration.
The participants were also debriefed about the deception at the end of this interview.

During the field study, we logged the ACTION SCREEN ON and ACTION USER PRESENT

events. From the in-situ feedback, we logged the level of annoyance of IA and the adjusted

66

value of operating threshold.

4.3 Results

The quantitative and qualitative results of the controlled lab experiment and field study are
presented together organized by the research questions raised in Section 4.1. A discussion
is provided after the results for each research question.

For the in-lab study, participants completed all tasks in 25 minutes on average (median
= 23, sd = 4). During the IA session, participants witnessed 222 FRs in total. For the
field study, on average our app logged 104 ACTION SCREEN ON events (median = 57, sd
= 65) and 63 ACTION USER PRESENT events (median = 42, sd = 28) per participant per
day. In total 10,608 ACTION SCREEN ON events and 6,420 ACTION USER PRESENT events for
34 participants were logged across three days. During the field study, participants also
provided feedback against 693 FRs (98, 214, and 381 for low, medium and high operating
threshold, respectively) and dismissed 42 authentications and feedbacks.

For qualitative analysis of the semi-structured interviews, the researchers coded all par-
ticipant responses using the grounded theory approach [GS09] with meetings to achieve
consensus. For test statistics, we use a t-test when comparing continuous data between
subjects (such as between UseAuth and DontUseAuth or between UsePIN and UsePAT).
We use a paired t-test when comparing continuous data for the within subjects condition
(IA and Non-IA). We use a chi-square test for participants’ responses to categorical Lik-
ert scale questions. We use p < 0.05 to indicate whether the test result is statistically
significant. For multiple comparisons (such as in Section 4.3.1), we use the adjusted p-
value based on Bonferroni correction and set the significance cut-off at α/n, where n is the
number of multiple comparisons [Hol79].

4.3.1 Usability evaluation of IA

U1: Effect of IA on overall task completion time and authentication overhead

Overall task completion time is the total time to complete all 30 tasks including EA au-
thentications or IA interrupt-authenticates if present. We calculate the increase or decrease
in this time for each individual participant for their IA session compared to their non-IA
session. This relative measure compensates for inter-participant differences due to reading
level, motor skills, etc. The time differences are aggregated by UseAuth and DontUseAuth

67

● ●

U
se

A
ut

h
D

on
tU

se
A

ut
h

−200 −100 0 100 200

Time difference between IA and non−IA sessions (in secs)Figure 4.4: Change in the overall task completion time for the non-IA session as compared
to the IA session.

participants (see Figure 4.4). Intuitively, the IA session should take less time as compared
to the non-IA session for UseAuth participants due to fewer authentications, and more
time when compared to the non-IA session for DontUseAuth participants. For UseAuth
participants, the overall task completion time on average decreased by 100 seconds (median
= -103; mean = -101; sd = 59). A paired t-test between the completion times of the IA
and non-IA session for the UseAuth participants indicates that they are significantly differ-
ent (t = -3.6, p = 0.01). The overall task completion time for DontUseAuth participants
increased by 120 seconds on average (median = 107; mean = 122; sd = 52) for the IA
session. A paired t-test between the completion times of the IA and non-IA session for
the DontUseAuth participants indicates that they are significantly different (t = 5.2, p =
0.014).

We also evaluate the interrupt-authenticate overhead, defined as additional time taken
for IA interrupted tasks compared to non-interrupted tasks. For our tasks, interrupt-
authenticate overhead is the difference between the average completion times of an activity,
with each activity type analysed separately. Figure 4.5 shows that on average, DontUse-
Auth participants had an interrupt-authenticate overhead of 8, 15, and 20 seconds for the
interrupted input, selection, and reading activities, respectively. Similarly, on average, the
UseAuth participants had an interrupt-authenticate overhead of 7, 11, and 16 seconds for
the input, selection, and reading activities, respectively. A t-test for interrupt-authenticate
for each activity reveals that the difference is not significant for the input activity between

68

0 5 10 15 20 25

Interrupt-authenticate overhead (in secs)

DontUseAuth

UseAuthInput
Activity

Selection
Activity

Reading
Activity

Figure 4.5: Interrupt-authenticate overhead for different activities (error bars represent
95% confidence intervals).

IA interrupted tasks and non-interrupted tasks (t = 1.6, p = 0.11), but the difference is
significant for the selection (t = 7.8, p = 0.002) and the reading activity (t = 10.5, p =
0.002).

Discussion: While these results indicate that IA imposes an interrupt-authenticate
overhead for the individual interrupted tasks, the total completion time decreased by 7.1%
for UseAuth participants because they did not authenticate for every task. For Don-
tUseAuth participants, we observe an 8.8% increase in the total completion time due to
interrupt-authenticates. It should be noted that the performance gains (or losses) will
be more pronounced when the number of device usage sessions increases. The interrupt-
authenticate overhead was primarily due to the unpredicted or sudden “lock-out” and the
context switch as pointed out by the participants:

“It pops-out very suddenly... in between the tasks at times. I got tensed because
I was worried about completing the task without making the pop-up appear...
getting pop-up in the middle of task was quite distracting” (P10)

“I generally lost my train of thought when it popped up that authentication”
(P37)

69

0.2 0.25 0.3

0 0.1 0.2 0.3

UseAuth

DontUseAuth

UseAuth

DontUseAuth

UseAuth

DontUseAuth

Error Rate

Uninterrupted Tasks
Interrupted Tasks

Input
Activity

Selection
Activity

Reading
Activity

Figure 4.6: Error rate between interrupted tasks from the IA session and corresponding
uninterrupted tasks from the non-IA session (error bars represent 95% confidence intervals).

U2: Effect of IA on the task error rate

We classified errors using simple correctness checks built into the apps. An error occurred
when: entered numbers mismatched in the input activity; incorrect answers were provided
to a question in the reading activity; or a target word was missed or a non-target word
was selected in the selection activity. We calculated the error rate separately for the 222
interrupted tasks from the IA session and for the 222 uninterrupted tasks located at the
same task index from the EA session (see Figure 4.6).

A t-test indicates that the differences in error rates across uninterrupted and interrupted
tasks are not statistically significant for input (t = -1.0, p = 0.69), selection (t = 1.5, p =
0.32) and reading activities (t = -1.8, p = 0.30). There is no evidence that the interrupt-
authenticate model increases the error rate.

Discussion: Our results agree with Bailey and Konstan’s [BK06] findings for personal
computers where interruptions did not increase the error rate of interrupted tasks. How-
ever, they also found that the expectancy of interruptions caused more errors overall (due
to a higher load on the cognitive resources). While our participants complained about
the unpredictability of interrupt-authenticates, a paired t-test reveals that there is no sig-
nificant difference between the error rates of the IA and non-IA session (t = 0.84, p =
0.4).

70

11%

36%

8%

9%

12%

47%

36%

52%

55%

33%

31%

14%

28%

27%

33%

11%

14%

12%

9%

22%

 Strongly disagree Disagree Neither Agree Strongly agree

All

DontUseAuth

UsePIN

UsePAT

UseAuth

Figure 4.7: Responses for “Do you agree with the statement ‘I think this method is an-
noying’?”.

3%

4%

9%

19%

50%

8%

9%

22%

43%

36%

46%

36%

44%

32%

14%

38%

46%

22%

3%

4%

12%

Not annoying at all Not Annoying Tolerable Somewhat annoying Very annoying

All

DontUseAuth

UsePIN

UsePAT

UseAuth

Figure 4.8: Responses for “How annoying were the interruptions for authentication?”.

U3: Effect of fewer but less predictable authentication interrupts on annoyance

After the in-lab sessions, participants answered survey questions regarding annoyance.
The first question asked if they thought the overall experience of IA was annoying (see
Figure 4.7). Overall, 58% did not say IA was annoying, 11% considered IA as an-
noying while the rest were neutral. Furthermore, significantly fewer UseAuth partici-
pants (12% less) thought IA was not annoying compared to DontUseAuth participants
(χ2(1) = 5.1, p = 0.02). There is also a significant difference in annoyance for partici-
pants based on the type of EA currently used: significantly more UsePIN participants (22%
more) found IA to be annoying compared to UsePAT participants (χ2(1) = 4.09, p = 0.04).
We suspect that IA’s lower perceived level of protection by UsePIN participants (discussed
in Section 4.3.2) and consequent low utility is responsible for this.

The second question asked participants how annoying the IA interrupt-authenticates
were (see Figure 4.8). Overall, 35% of the participants found them to be annoying (32%

71

24%

15%

9%

6%

6%

3%

17%

12%

9%

68%

69%

76%

55%

53%

56%

7%

12%

15%

19%

21%

16%

1%

4%

3%

8%

16%

Low

Med

High

Low

Med

High

Not annoying at all Not Annoying Tolerable Somewhat annoying Very annoying

DontUseAuth

UseAuth

Figure 4.9: Annoyance against three operating thresholds from the in-situ feedback survey
of the field study.

somewhat annoying and 3% very annoying), 44% found them to be tolerable and 21%
found them to be not annoying. Furthermore, significantly more UseAuth participants
(28% more) found interruptions to be annoying as compared to DontUseAuth participants
(χ2(1) = 9.4, p = 0.002).

During the field study, we subjected participants to three different operating thresholds
corresponding to 5%, 10% and 20% FR rate with a goal to determine an acceptable thresh-
old (operating thresholds with “tolerable” or better annoyance ratings). The feedback of
participants for annoyance across these FR rates is provided in Figure 4.9. DontUseAuth
participants found interrupt-authenticates to be more acceptable for different thresholds
as compared to UseAuth participants. More specifically, for low, medium and high FR
rates, interrupt-authenticates for DontUseAuth participants were significantly more likely
(14%, 13% and 17% more) to be acceptable as compared to UseAuth participants (χ2(1) =
11.4, p < 0.001), (χ2(1) = 8.2, p = 0.004) and (χ2(1) = 13.2, p < 0.001), respectively. Fig-
ure 4.9 also illustrates responses in terms of the proportion of interrupt-authenticates that
are annoying between low-medium and medium-high thresholds, while differences between
medium-high thresholds are negligible. More specifically when DontUseAuth participants
were subjected to the low threshold, interrupt-authenticates were significantly more ac-
ceptable (8% more) as compared to the medium threshold (χ2(1) = 4.7, p = 0.03). On
the other hand, for DontUseAuth participants the difference in terms of proportion of ac-
ceptable interrupt-authenticates between medium-high threshold was insignificant — 84%
vs. 85% (χ2(1) = 0.07, p = 0.78), respectively. These observations for inter-threshold level
correlations across DontUseAuth participants were also true for UseAuth participants.

Discussion: Although the majority of participants were not annoyed with IA, it is
clear that interrupt-authenticates can cause moderate levels of annoyance, more so for
users who currently use EA. During the qualitative interviews, we asked the participants

72

for the cause of this annoyance and 10/37 participants indicated the unpredictability of
the interrupt-authenticate as the reason:

“I think it is a little bit annoying because there is a little stress [when] you don’t
know what will happen” (P15)

“I am ready to enter a password before I start doing anything whereas for implicit
authentication it catches me off-guard” (P14)

4/37 participants were more annoyed due to a perceived error at the part of IA:

“I thought the interruptions were very annoying, I felt that I was doing the same
thing and it triggered multiple times.” (P8)

“It is the unpredictability of it... I know that I have to enter my PIN every time
and this becomes annoying... it would be frustrating because you don’t know
what was wrong that you did, with PIN you know because it is something wrong
that you entered ” (P14)

“It sure was annoying. I use my phone a lot when I am watching TV and at
times my device turns off due to inactivity. That’s my fault and [it] is under-
standable but when this interrupts me, I think that the operating system is faulty
or something” (P37)

For the field study, eight UseAuth participants had to use IA in addition to their EA
scheme despite their preference to replace their current EA scheme with IA. Two of these
participants mentioned that the cause of annoyance was “redundant authentications”:

“I felt like it was a lot of work with two PINs. At times I would confuse which
one was which and then had to re-enter it. That made it more annoying” (P20)

“I already use a password and after that it was quite annoying to use a second
one. It seemed redundant” (P32)

73

0 10 20 30 40 50 60 70 80 90

Usability Score

EA
IA

All

DontUseAuth

UsePIN

UsePAT

UseAuth

Figure 4.10: Average system usability scale (SUS) score for IA and non-IA sessions (error
bars represent 95% confidence intervals).

U4: Overall usability of IA

The SUS scores for IA and EA are provided in Figure 4.10. Since we used nine ques-
tions from SUS, we report the usability scores out of a total of 90. A higher SUS score
indicates that a system is more usable. A score is unavailable for the non-IA session of
the DontUseAuth participants because they did not authenticate in that session. A t-test
does not indicate any significant differences for the SUS scores between EA and IA (t =
-2.4, p = 0.31). Similarly, a t-test does not indicate any significant differences between
DontUseAuth and UseAuth participants for the IA session (t = 4.7, p = 0.1).

An increase in anxiety of users may result in usability issues. To investigate the effect
of the FRs on anxiety of participants, we calculate the change in the STAI anxiety score
after each lab session. A comparison of the change in the STAI anxiety score between IA
and non-IA sessions is provided in Figure 4.11. A negative change in the STAI anxiety
score indicates the session did not increase the anxiety level of the participant and vice
versa. A pair-wise t-test does not indicate any changes in anxiety across the participants
for the IA and the non-IA session (t = 10.6, p = 0.82).

Discussion: IA did not outperform EA on SUS and we do not observe any significant
differences between the STAI anxiety scores. However, there are interesting differences for
the individual SUS questions between IA and EA. Figure 4.12(a) shows significantly more
participants (26% more) thought that IA was easier to use compared to EA (χ2(1) > 100,
p < 0.001). Supporting comments for the ease of use:

74

-5 -4 -3 -2 -1 0 1 2 3 4 5

Change in STAI anxiety score

Non-IA
IA

All

DontUseAuth

UsePIN

UsePAT

UseAuth

Figure 4.11: Average change in STAI anxiety score for IA and non-IA sessions (error bars
represent 95% confidence intervals).

“I like that it really can be easy if your phone is effective at recognizing you and
doesn’t ask you to enter the password” (P21)

“Actually I found it pretty easy to use and it wasn’t bothersome” (P21)

As would be expected, significantly more participants (24% more) thought that IA
was more inconsistent than EA (χ2(1) = 64, p < 0.001) (Figure 4.12(b)). Furthermore,
significantly more participants (10% more) thought that they need to learn more about IA
(χ2(1) = 15, p < 0.001). In Section 4.3.2, we discuss the learnability issue in detail.

4.3.2 Security perceptions of IA

S1: Perceptions of IA security properties

Participants were made aware of the security properties of IA including FAs, FRs and
the detection delay through the briefing video and the lab-based experiment. We then
asked participants how satisfied they were with the overall level of protection that was
provided by IA (see Figure 4.13). Overall, 81% of the participants were satisfied (22%
very satisfied and 59% were satisfied) with IA, 8% were not satisfied and the rest were
undecided. DontUseAuth participants were significantly more (12% more) likely to be
satisfied with the level of protection that was provided by IA as compared to UseAuth

75

21%

9%

32%

22%

44%

48%

59%

43%

29%

26%

9%

26%

6%

13%

9%

4%

IA

EA

IA

EA

Strongly agree Agree Neutral Disagree Strongly disagree

Is easy to
use?

Would use
frequently?

(a) Usability issue for which the participants favored IA

18%

48%

43%

43%

38%

43%

43%

48%

21%

9%

4%

9%

24%

7% 3%

IA

EA

IA

EA

Strongly disagree Disagree Neutral Agree Strongly agree

Too much in-
consistency?

Need to learn
before using?

(b) Usability issues for which the participants favored EA

Figure 4.12: Responses to the individual SUS questions.

participants (χ2(1) = 9.5, p = 0.001). Two UsePIN participants were not satisfied while
three UsePAT participants were undecided about the overall level of protection that was
provided by IA.

We also asked participants regarding their perceived level of protection against different
adversaries, device states and tasks (see Figure 4.14). Overall, 12%, 6%, 3% and 15% of
the participants were not satisfied with the level of protection that was provided against
coworkers, spouse, friends and strangers, respectively. In terms of different device states,
21%, 6% and 3% of the participants were not satisfied with the provided level of protection
if their device was lost in a public location, unattended at work and unattended at home,
respectively. Finally, 33%, 12% and 9% of the participants were not satisfied if IA was
protecting their device while there was a banking app, email app and photo gallery app on
their device, respectively.

Discussion: Overall, we found that participants were satisfied with the level of security
that was provided by IA. However, 18/37 participants showed some concerns regarding
FAs, detection delays and possible mimicry attacks in IA. We now shed some light on the
concerns based on the participants’ comments. The non-zero FA rate was a concern for
8/37 participants:

“I’m not sure what will happen when it is lost. It will depend on who picks it

76

22%

28%

17%

9%

34%

59%

58%

57%

64%

44%

11%

14%

13%

27%

8%

13%

22%

 Very satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

All

DontUseAuth

UsePIN

UsePAT

UseAuth

Figure 4.13: Responses for “How satisfied are you with the overall level of protection that
is provided?”.

up and I may get unlucky if his behaviour is the same as mine” (P30)

“No one can use the phone without entering the PIN but here someone ‘can’ use
it” (P25)

“Other folks might use the phone the same way you do and you won’t know”
(P21)

10/37 participants were displeased with the delay in detection and expressed concerns that
an adversary may have enough time to look at private data before a TR:

“You know for some of these reading activities, I was not authenticated until I
pressed somewhere on the screen... can’t imagine what would happen if these
were my messages or emails” (P37)

“Like I mentioned before, you can see the screen right away before it can lock
you out and that will make it a little unsettling for me” (P29)

4/37 participants were apprehensive about the feasibility of a mimicry attack. Their
concern was that someone (in particular their friends and family members) might be able
to observe their behaviour and then defeat IA:

“I think implicit provides a better level of authentication initially but if someone
spends too much time with me they might be able to learn it” (P7)

“One thing that I noticed about implicit authentication is and that is my im-
pression of it is that if someone watches you for a longer time then he might be
able to bypass it” (P31)

“Maybe there is a way for them to be aware of your pattern” (P26)

77

35%

26%

28%

38%

24%

24%

36%

18%

24%

26%

35%

38%

47%

32%

32%

58%

32%

24%

47%

53%

18%

30%

22%

15%

23%

12%

29%

26%

18%

12%

9%

6%

3%

12%

15%

6%

3%

21%

6%

3%

3%

3%

6%

12%

6%

6%

Coworker

Spouse

Friends

Strangers

Lost (public)

Unattended (work)

Unattended (home)

Online banking

Emails

Photo Gallery

Very satisfied Satisfied Neutral Dissatisfied Very dissatisfied

Protection
level against
adversaries

Protection
level for

device states

Protection
level when
performing

Figure 4.14: Security perception responses according to different adversaries, device states
and tasks.

S2: Perceptions of IA security vs. current method

We asked participants how secure they thought IA was compared to the authentication
method that they currently used (see Figure 4.15). All DontUseAuth participants perceived
IA to be more secure and 87% of UseAuth participants thought that IA was at least as
secure as their current method or more secure. Only 13% of UseAuth participants perceived
IA to be less secure due to the security concerns discussed in the previous section.

Discussion: Clarke et al. [CKF09] and Crawford and Renaud [CR14] found that 92%
and 73% of their participants considered IA to be more secure as compared to the tradi-
tional authentication schemes, respectively. On the other hand, only 48% of our UseAuth
participants thought that IA was more secure as compared to their authentication schemes.
Our results are not consistent with the previous findings. In the original papers, Clarke et
al. [CKF09] and Crawford and Renaud [CR14] do not mention briefing the participants re-
garding the IA limitations. We suspect that this difference in results is due to the increased
knowledge of our participants about the limitations of IA.

S3: Willingness to Adopt IA

We asked participants how willing they were to use IA with four choices: (i) Yes, I would
replace my current scheme with IA; (ii) Yes, I would use it in addition to my current authen-
tication scheme; (iii) I may use it; and (iv) No, I will not use it. The purpose of introducing

78

32%

50%

22%

27%

22%

36%

50%

26%

27%

33%

24%

39%

19%

34%

8%

13%

27%

11%

 A lot more secure More secure About the same Less secure

All

DontUseAuth

UsePIN

UsePAT

UseAuth

Figure 4.15: Responses for “How secure is this method as compared to your current au-
thentication method?”.

33%

43%

35%

45%

22%

30%

39%

22%

34%

30%

50%

17%

33%

22%

7%

7%

9%

22%

Yes, as primary Yes, as secondary Maybe No

All

DontUseAuth

UsePIN

UsePAT

UseAuth

Figure 4.16: Responses for “Would you use IA?”.

a spectrum of answers was to understand the various types of authentication needs that IA
might be able to satisfy. The response of participants is provided in Figure 4.16. Overall
63% of participants were interested in using IA either as a primary (33%) or a secondary
(30%) authentication mechanism. On the other hand, 30% of participants were not sure
whether they would use IA and 7% did not want to use IA. A further breakdown across au-
thentication preferences indicates that DontUseAuth participants were significantly more
likely (37% more) to be unsure about IA adoption as compared to UseAuth participants
(χ2(1) = 19, p < 0.001). Interestingly, we found 4/7 participants who were not adequately
satisfied with IA’s level of protection (S2) were still interested in using it.

Discussion: Although 63% of our participants were willing to use IA as a primary or
secondary authentication method, this is less than the 90% willingness to adopt IA that
Crawford and Renaud [CR14] found. This difference is likely due to Crawford and Renaud
providing a binary yes-or-no option rather than the spectrum of answers we provide. The
interview provides rationale for the participants’ choices. 6/14 DontUseAuth participants

79

were interested in adopting IA because they thought that it provided convenience and
protection which was better than no authentication:

“It seemed easier than entering a password and more secure than not using
anything” (P30)

“Instead of forcing me to enter the password every time, it offers me not to
enter a password which is my current preferred level of security and it provides
additional security on top” (P14)

On the other hand, seven DontUseAuth participants who said that they may use IA wanted
to test it before making up their minds, for example:

“I would give it a shot for a month and if I see that it is getting a lot better I
will like using it.” (P12)

“I have only used it once so I am not sure. I will have to use it for a longer
duration and would like to test it on other people too” (P7)

One DontUseAuth participant who did not choose to use IA did so because she had
nothing to protect on her device:

“If I had work related data or anything else on my device that needed protection,
I would use it. Right now I don’t have anything that needs protection” (P36)

UseAuth participants who chose to replace their EA scheme with IA did so because
they felt it was more convenient: saves time (6/8) or has fewer authentications (2/8). They
seemed to understand the associated risks but thought the trade-off was reasonable:

“Because in past months I never had a non-approved access to my phone and
in the seven months I have entered my PIN thousands of times and it will be
less annoying to use IA” (P11)

“Even with the disadvantages [perceived low level of protection], I think I like
the less number of authentications, given that I carry my phone with me” (P8)

UseAuth participants who said they would use IA as a secondary authentication did so
to have an additional layer of security (4/9) or to test it further (5/9):

80

“I would be interested since I work at the community center and at times I have
to leave it at places and then I have to worry about it.” (P6)

“It would be beneficial for spouse because they would know your password by
asking it or see you type a lot but they won’t know your pattern [behaviour]”
(P14)

“I think just because of my unfamiliarity with it, passwords, I am accustomed
with it, but perhaps the more I use it, the more I will trust it” (P32)

“I am so used to typing something in that I think it will take me a while to feel
comfortable that authentication has occurred as oppose to you know when you
turn it on and enter it” (P19)

“I feel like, like I said before, I would use it in parallel for a while and if it works
I will use it after the trip period” (P13)

Finally, UseAuth participants who said no to using IA had concerns related to its
detection delay (1/2) or they felt that EA was more suitable for them (1/2):

“Not the best for adoption because people would start looking at my photo gallery
before it would lock them out” (P16)

“I think the current system that I have is enough to deter strangers and for the
cases when the phone gets stolen” (P28)

4.4 Discussion

Our results suggest barriers for IA adoption and deployment along with associated design
implications.

81

4.4.1 Mitigating the effects of interruptions

Overall, participants ranked IA higher than EA in terms of ease of use and the majority
of participants reported that IA and interrupt-authenticates were at least tolerable. How-
ever, interrupt-authenticates did increase task completion time and several participants,
especially those already using EA, felt the interruptions were annoying. Their comments
suggest this was largely due to the unpredictability of interrupt-authenticates and the
context-switch. Mitigating the negative effects of these necessary interrupt-authenticates
remains a challenge for IA. Two participants suggested authentication without interruption
by using the front camera of the device to perform facial-recognition. Similarly, a partic-
ipant who was interested in using IA as a secondary mechanism to protect from misuse
by friends or family members suggested IA took a picture of the perpetrator and email it
to her. Two participants also suggested that instead of instantly locking the user out, the
IA scheme could display an authentication screen in a smaller window on the screen and
allow the user to choose the best moment to context-switch and authenticate:

“PINs were really annoying a lot of times. I would forget what I was about to
say. I was wondering if there was a mechanism where it could indicate that it
was locking on me in three, two, one and show me a small screen on the side
to authenticate in parallel.” (P8)

It is important to understand that interruptions serve a purpose beyond authentication.
Supporting the findings of Crawford and Renaud [CR14], some “annoyed” participants
indicated that while interrupt-authenticates were annoying, they were necessary to indicate
that IA was working and arguably contribute to a perceived sense of security:

“I guess it was frustrating that it kicked me out, but I could deal with that...
and if it did ask for the PIN just knowing that the phone will be secure, it comes
down to that” (P22)

“Yeah the interruptions are annoying and I guess then I have to say to myself,
practically it is not good but as soon as I see it, I know that it is protecting me”
(P5)

Balancing the need for interruptions with potential annoyance is a design challenge.
The alternate authentication methods discussed above could be one approach, but the
visual design of the authentication screen (e.g., choice of colour and language) as well
as the timing of the interruption (e.g., postponing for non-sensitive tasks, slow fade in)
are critical choices. Agarwal et al. [AKH16] have investigated some of these alternate
authentication methods in their recent work.

82

4.4.2 Opaque deployment of IA

Our IA deployment was hidden as a background service, so participants were essentially
unaware of its operation until a FR interrupt-authenticate occurred. While these interrup-
tions currently serve to indicate that IA is working (see above), as IA detection algorithms
evolve and FR rates decrease, these interruptions will become very infrequent and thus
IA will be more opaque. Furthermore, operating at a relaxed operating threshold also
reduces the number of FRs and the consequent visibility of IA. The background operations
(opacity) of IA will raise concerns like:

“So looking at it... I see there is no lock. Sometimes I felt... the lock exists
or not? When PIN is used, I know [it] every time. Now there is no way to
discriminate if someone has hacked my phone and removed the lock. PIN is a
secure feeling that the phone is safe” (P31)

“The main problem for me is that if I am unaware that what I am doing is
authenticated then I don’t know if my device is secure. With this [IA] there
really is no way of knowing that I have been authenticated when I open an
app... How do I know it is not a fluke? Maybe it is no longer running and
protecting, how do I know?” (P19)

The concerns of users regarding the background deployment of IA have never been
raised in existing literature. Since these issues arise due to their inability to tell whether IA
is protecting their device, simple UI changes may be able to address these. For example, an
indicator on the status bar can be used to indicate the current status of IA scheme. While
such an indicator can keep the users up-to-date and act as a deflector against potential
adversaries, it may also notify adversaries and enable them to launch highly focused attacks
to gain access to the target data before being locked out. For IA deployment, the design
and control of an IA status indicator needs to be studied closely and respective trade-offs
need more exploration. To this end, the existing related research on the security cues for
SSL on browsers can be leveraged (see Clark and Oorschot [CvO13] and references therein).

4.4.3 Operating threshold customization

The in-situ feedback screen (see Figure 4.3) provided participants with an option to adjust
the operating threshold during the field study, and we asked them about their experiences
with this functionality. 17/34 participants indicated that they found the customization

83

capability to be useful. A common explanation was that they reduced the operating
threshold when texting or when at home. 5/34 participants indicated that they always set
it to high to get maximum protection (4/5 belonged to DontUseAuth). 12/34 participants
never adjusted the threshold during the field study and relied on the value chosen by the
IA scheme.

These specific results have some limitations since any operating threshold customization
in our app was temporary — the threshold was set to a predetermined value each day of
the three-day field study. Nevertheless, participant comments indicate that there is a need
to explore the various customization options for IA (such as the trade-off between FA and
FR; and the detection delay and FR). For example:

“I think threshold selection bar would be a useful function. I feel having that is
more choice and useful.” (P21)

The threshold customization interface needs to communicate the security and annoyance
trade-off for the chosen threshold so users can make informed decisions.

4.5 Limitations

Our study has reasonable limitations due to the inclusion of human subjects: the scope
is limited to people willing to participate; it contains self-reported and subjective views;
participants might be inclined to provide favorable responses to the researchers; and the
known limited duration of the field study might have made participants more optimistic
about their annoyance. Since these are not easily preventable, we focus on limitations
specific to our study:

1. We use a pseudo-IA scheme to strictly control FR rates and to circumvent restrictions
on Android event data collection. As a result, it was possible for participants to
witness unexpected behaviour of IA (for instance, they may get a FR or a TA for
what they felt was the exact same sequence of touch input).

2. In the field study, all participants of the UseAuth group evaluated IA as a secondary
authentication scheme (including those who indicated they would replace their EA
scheme with IA). This resulted in multiple authentications during a single session (the
system EA first, then an IA interrupt-authenticates), which may have contributed to
feelings of annoyance. However, the deployment of IA as a primary authentication
scheme in the field was not possible due to security and privacy issues.

84

3. When a FR occurred in the field study, participants had to authenticate and pro-
vide in-situ feedback. Although we designed the feedback pop-up to be simple to
complete, it may have increased annoyance. Participants had the option to dismiss
the authentication and the feedback pop-up in extreme situations. Although only
6% of the pop-ups were dismissed, but this may have slightly skewed results by
underreporting annoyance.

4. In this study, we did not compare IA with biometric-based EA schemes, like fingerprint-
or facial-recognition schemes. These alternative biometric-based authentication schemes
have the same limitations of EA schemes (discussed in Chapter 2).

5. The pseudo-IA scheme may have authenticated a participant after at most 30 seconds
of activity in some cases. This introduced a considerable lag between the input event
and the corresponding FR. Since, we were unable to extract input events from the
Android OS, this scenario was not preventable.

6. We report the security perceptions of participants regarding IA. We note that similar
to participants’ views regarding usability, their views on the perceived level of security
are self-reported and subjective. The purpose of soliciting security perceptions was to
understand whether IA satisfies the diverse security requirements of our participants
(see Table 4.1).

Limitations 1 and 2 are attributed to the pseudo-IA scheme, but this is a reasonable
trade-off for the advantages of using pseudo-IA for strict control of FR rates and elimination
of confounds from performance idiosyncrasies of specific IA algorithms. Limitation 3 is a
trade-off for benefits from gathering in-situ feedback. Limitation 4 must be considered in
light of the fact that our study compares IA to no authentication and dominant forms of
EA (PIN and pattern-lock): these arguably form lower and upper baselines for usability
and security perception. For limitation 6, if users perceive IA as more secure than it is
(or vice versa), further briefing is required to ensure that participants perceive the security
properties of IA correctly. Furthermore, for enterprise deployment scenarios of IA, it would
be better to ask IT managers for better informed perceptions.

4.6 Conclusion

Our two-part study on IA usability and security perceptions provides empirical evidence
for the “human side” of IA. In terms of performance, the interrupt-authenticate model

85

may impose overhead for individual authentications, but it increases amortized task per-
formance without affecting the error rate. For usability perceptions, there is no significant
difference between IA and EA for SUS and 26% more of our participants agreed that IA
was more convenient than EA. However, annoyance is a potential issue with IA with 35%
of the participants who found interrupt-authenticates annoying. For security perception,
detection delay and FAs were issues for 27% and 22% participants respectively, and 11% of
our participants were concerned about the feasibility of mimicry attacks. Yet, participants
who currently use explicit authentication perceived IA to be more secure, or at least as se-
cure as their current authentication method. Perhaps most encouraging is that 63% of our
participants were interested in adopting IA and a further 30% were interested in trying IA
out with possibility of adoption. Based on insights gained from post-study interviews, we
propose design implications that may reduce annoyance and increase security perception
even more.

Our findings provide supporting evidence for earlier work’s [JSGC09] postulation: IA
is indeed a meaningful approach with a reasonable trade-off in terms of usability and
security. However, participants voiced their concerns regarding the possibility of mimicry
attacks. In the following chapter, we further our discussion on a realistic threat model
(from Section 3.4.7) and we subject touch IA to mimicry and offline training attacks.

86

Chapter 5

Mimicry Attacks on Touch IA

In Section 3.4.7, we discussed the possibility of mimicry attacks on IA schemes. We dis-
cussed the vulnerability of device usage IA schemes to mimicry attacks and reviewed the
existing literature that presented successful mimicry attacks on gait IA [KPJ15], and text
IA (on personal computers) [TGG13]. In Section 2.4.8, we also presented a generative
algorithm based attack on touch IA, which used a robotic device and generic traits across
touch input data [SP13b]. However, we noted: (i) the impracticality of their attack in a
work or home environment since an attacker is required to carry a mechanical robot; and
(ii) their generic attack failed for up to 40% of the victims because their touch behaviour
was was different from the inferred generic behaviour.

In this chapter, we investigate practical attacks on touch IA. These attacks consider a
more realistic threat model than the one considered in the conventional methodology of IA
evaluation. The accuracy evaluation in existing touch IA proposals follows a conventional
methodology for classifier evaluation. Touch data is collected from users and a classifier
is trained for each user by employing a subset of their data as positive training samples
and other users’ data as negative samples. To calculate accuracy statistics, the remaining
data from other users is used as synthetic attack data. This methodology is followed in
the existing literature and we followed the same during the evaluation of IA schemes in
Chapter 3.

Using random attackers who have no knowledge of their victims’ behaviour fails to
capture more realistic attack scenarios such as shoulder surfing and offline training where
attackers have access to their victims’ raw touch data. Only Bo et al. [BZL+13] and
Frank et al. [FBM+13] acknowledge their evaluations omit these realistic attack scenarios.
Both argue adversaries could not learn invisible features such as touch pressure and swipe

87

acceleration only by shoulder surfing, and Frank et al. [FBM+13] rule out attacks using a
victim’s raw touch data because malware is needed to gather the data. These arguments
have been considered “sound without doubt” by others [SP13b] and to the best of our
knowledge, these attacks have never been evaluated.

We argue that shoulder surfing and offline training are realistic for malicious insid-
ers like friends, family, and colleagues — insiders that are recognized threats [MBK+13].
Unlike random attackers, malicious insiders are able to observe their victims’ behaviour,
giving them an advantage for shoulder surfing attacks. Moreover, an attacker may launch
sophisticated mimicry attacks after gathering the victim’s raw touch data by asking that
victim to perform a task on the attacker’s device. This eliminates the need for malware
or sophisticated logging. Our evaluation of the security perceptions of IA indicated that
shoulder surfing attacks by insiders was a concern for potential early adopters of IA (see
Section 4.3.2). However, previous work provides no evidence that touch IA protects against
these targeted mimicry attack scenarios. We expand our third research objective (see Ob-
jective 3 in Section 1.5) to cover shoulder surfing and offline training attacks for the threat
scenarios where an adversary is able to observe or obtain raw touch data of their victim.
We begin our realistic evaluation of these attacks by outlining the threat model and a
detailed description of the attack scenarios.

5.1 Threat Model and Attack Scenarios

For touch IA, we use the standard threat model used for IA (outlined in Section 1.3) [BZL+13,
LZX13, XZL14]. An adversary attempts to gain unauthorized access to a victim’s device,
which employs a touch IA scheme to continuously authenticate the device user. The vic-
tim has either not configured a primary authentication scheme (such as a PIN) or the
adversary has bypassed it completely through known mechanisms like shoulder surfing or
smudge attacks [AGM+10]. Furthermore, the adversary is aware of the presence of a touch
IA scheme on the victim’s device.

Accuracy numbers reported in the IA literature evaluate this threat model against a
random attacker model. This means that data from random attackers with no knowledge
of their victims’ behaviour is used as synthetic attack data. While this tests scenarios
where attackers have possession of a stranger’s device, it does not cover attacks by mali-
cious insiders seeking to mimic their victim’s behaviour. Smartphone users are concerned
about insider threats from friends, family members, and colleagues [MBK+13]. IA evalua-
tions should also consider this threat. We evaluate two malicious insider mimicry attacks:
shoulder surfing and offline training.

88

Shoulder surfing attacks: Malicious insiders may observe their victims’ interactions.
It is impractical for users to conceal all touch input behaviour by shielding the device
screen or holding the device at extreme angles. While the “invisible nature of features”
argument [BZL+13, FBM+13] is true for a subset of features such as touch pressure, it may
not hold for features such as touch location and swipe duration. Thus, adversaries may
attempt to mimic these observable features. It is unclear whether mimicking observable
features by shoulder surfing provides an advantage.

Offline training attacks: Malicious insiders can gain access to the raw touch data of
their victims through various techniques. Since any foreground app is able to capture touch
input events, malicious insiders can recommend an instrumented app from the official app
store to their victims, which in turn collects and transmits raw touch data to the mali-
cious insiders. Malicious insiders may ask their victims to visit a webpage where HTML5
TouchEvents are used to skim raw touch data. TapPrints uses similar methods to infer tap
locations and corresponding keystrokes by sensing the accelerometer and gyroscope sensors
in the background [MVBC12]. Finally, malicious insiders have the convenient option of
obtaining the raw touch data of their victims by asking them to perform a task (e.g., read
an article or view photos) on the insiders’ device. This eliminates the need to install or
access anything on the victims’ devices. Once the insiders gain access to the raw touch
data, they can use it to train and mimic their victims’ behaviour.

5.2 Schemes and Data Evaluated

In this section, we first provide a brief overview of the three touch IA schemes that we eval-
uate against targeted attacks. We also describe our data collection setup which consisted
of raw touch data and video recordings of “victims.” Raw touch data is used to train IA
classifiers and train attackers for offline mimicry attacks. Video recordings are used for
shoulder surfing mimicry attacks. Note that we received approval from our university’s
ORE for all experiments involving human participants.

5.2.1 Schemes evaluated

We evaluate the Touchalytics [FBM+13], LXG [LZX13] and SilentSense [BZL+13] schemes.
Touchalytics and SilentSense were described in Section 3.1.3 and Section 3.1.5, respectively.
We chose Touchalytics because in addition to its low EER, to the best of our knowledge, it
captures touch input behaviour using the most extensive feature set. We chose SilentSense

89

due to its low EER and its use of micro-movement features in addition to the touch features.
A brief description of LXG follows.

LXG [LZX13]

LXG1 derives following features from a swipe gesture: (1) coordinates of the first touch
point; (2) touch area at the first touch point; (3) moving direction at the first touch
point; (4) moving distance; (5) duration; (6) average moving direction; (7) average moving
curvature; (8) average touch area; and (9) max-area portion. The authors also evaluate the
tap gesture but they propose using it only as an auxiliary gesture due to its high EER. The
authors evaluate LXG with the SVM classifier and they create separate training models
for each of the four swipe directions. Their evaluation on a dataset of 75 participants
indicates that LXG provides an EER of 8% with a window of eight swipes. We selected
LXG because its small feature set complemented our selection of Touchalytics and enabled
us to evaluate the impact of feature set size on the training effort of the attackers.

5.2.2 Data collection

We implemented two Android apps to collect raw touch data using the same tasks as
Touchalytics [FBM+13]: a Wikipedia app collects up and down swipes while users read
articles of their choice; and a “spot the differences” app collects left and right swipes while
users navigate between two slightly different illustrations. Each participant used these apps
on a LG Nexus 5 device while in our lab. No directions were given beyond explaining the
basic tasks of reading articles and finding differences. Each participant interacted until at
least 150 swipes in each direction were logged, the minimum number of training samples
required by the IA schemes.

Logged data: For every touch interaction, we recorded: time stamp in milliseconds;
touch point x and y coordinates; touch pressure; area covered by the finger on the screen;
finger orientation; screen orientation; rotation values from the gyroscope sensor across
three axes; and acceleration values from the accelerometer sensor across three axes. Ac-
celerometer and gyroscope data were collected in a separate thread up to 100 Hz.

Videos for shoulder surfing attacks: We captured video of nine participants while
they used the data collection apps. At least ten swipes in each direction were captured
in two views, above the device and from the side. Each had an unobstructed view of the

1LXG are the initials of the last names of the authors.

90

Table 5.1: Statistics of collected data (n=55)

Swipes Touch points
Accel.

samples
Gyro.

samples

Total 34,889 1,138,199 2,863,809 2,553,233

Avg(Mdn) per user 528 (478) 17,245 (13,329) 43,391 (26,258) 38,685 (26,268)

Avg(Mdn) per swipe - 32(16) 82(69) 73(62)

participant’s finger on the touch screen. All videos were shot in 1080p format (1920x1080
pixels) with a frame rate of 29 FPS. The smartphone occupied 4–5% of the video frame.
Given the open-ended task, the videos were between 23 and 44 seconds (avg 31 secs).

Data statistics: We recruited 55 participants (a subset of these also participated in
the attacks experiment). On average, the participants took 26 minutes to submit data. In
total, we logged about 35,000 swipes comprising over 1.1 million touch points, and over
2.5 million accelerometer and gyroscope sensor readings. Table 5.1 provides the details of
collected data.

5.2.3 Parameter value selection

We fix two tunable parameters in our experiments, operating threshold and window size.
Operating threshold defines the desired values for negatively correlated FA and FR entries.
By increasing the operating threshold, FRs can be decreased at the cost of increased FAs
(and conversely). Theoretically, at lower false accept rates (FAR), it should be difficult
to launch successful mimicry attacks. Therefore, we set FAR for an arguably higher false
reject rate (FRR) of 20% with corresponding FARs of 0.4% for Touchalytics, 4% for LXG,
and 0.2% for SilentSense (see Section 5.2.4). The effect of the operating threshold is further
investigated in Section 5.6.3. Window size defines the number of swipes used to calculate a
user’s authentication score. Larger window sizes increase confidence against classification
scores at the cost of increased detection delay. We set the window size to eight swipes
since the IA schemes we evaluate provide reasonable accuracy at eight swipes or fewer (see
Section 2.4.5).

5.2.4 Evaluation baseline

To establish a baseline, we use our dataset to evaluate the three touch IA schemes against
the random attacker model. We construct non-overlapping training and test sets for each
user using negative instances from other users’ data. Half of the data is used for training,

91

0.0 0.2 0.4 0.6 0.8 1.0

False Accept Rate (FAR)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
A

cc
ep

t
R

at
e

(T
A

R
)

Touchalytics

LXG

SilentSense

Figure 5.1: Accuracy of the IA schemes against the random attacker model with a window
size of eight swipes.

and the remaining for testing. Figure 5.1 shows the ROC curves that plot true accept rate
(TAR) against FAR using an SVM classifier. The ROC curves show an EER of 4% for
Touchalytics, 9% for LXG, and 3% for SilentSense. These low EERs are very similar to
the rates reported in the original papers and establish the efficacy of these schemes against
the random attacker model.

5.3 Attack Design

In this section, we describe apps and tasks used for offline training attacks and for attack
evaluation.

92

5.3.1 Mimicker for offline training attacks

Our Mimicker app trains an attacker to mimic a victim’s behaviour using feedback and
visualizations generated from that victim’s raw touch data. The three main components of
Mimicker are the target swipe selection module, the training interface, and the feedback
module. The target swipe selection module chooses an optimal target swipe from actual
victim swipes. The training interface displays the target swipe so the attacker can swipe
along a similar path (the mimic swipe). If the mimic swipe is rejected by the IA scheme,
the feedback module displays instructions about a single behavioural aspect to bring the
mimic swipe closer to the target swipe (e.g., move start point towards right). The attacker
continues adjusting their swipe based on these instructions until their mimic swipe is
accepted.

Target swipe selection: Any victim’s swipe classified as a true accept can be used
as a target swipe. However, our goal is to present the attackers with an optimal swipe to
increase their chances of success. We do this by selecting a victim’s true accepted swipe
with the highest similarity score with the rest of the victim’s true accepted swipes. This
simple heuristic provides an advantage to the attackers since their mimicry attempts can
focus on the hypothesis space with the maximum concentration of true accepted swipes
(i.e., the victim’s most typical swipes). The target swipe selection module accomplishes
this as follows: It creates a dataset, D, with positive samples from the victim’s swipes
and negative samples from other users’ swipes. It uses the kNN classifier (k = 5) to find
a subset of true accept swipes, STA, from D. For n = |STA|, it identifies the n nearest
neighbours from D for every swipe that belongs to STA. The similarity score is the number
of swipes in the n nearest neighbours that belong to STA. The similarity score of each
swipe is recorded in the similarity rank table and the swipe with the highest similarity
score is returned as the target swipe. We also evaluate using non-optimal target swipes in
Section 5.6.4.

Training interface: Figure 5.2(a) provides a screenshot of the Mimicker user interface.
The target swipe is displayed in green and the last mimic swipe is displayed in black. If the
mimicry attempt is successful, “Accepted” is displayed at the top in green, otherwise the
instruction from the feedback module is displayed in red. In the upper-left, the success or
failure of recent attempts are displayed at swipe-level (using !and #) and window-level

(using "and $). The success criteria for window-level are defined in Section 5.4.

Feedback module: The feedback module is responsible for comparing the mimic
swipe with the target swipe to generate feedback for the attackers. The most obvious
way to achieve this is to give feedback based on the classifier feature with the largest
difference between target swipe and mimic swipe. However, this would not consider that

93

(a) Tracing phase (b) Pseudo-attack phase

Figure 5.2: Screenshot of Mimicker interface.

some features are easier to mimic (e.g., first touch location is easier to mimic compared
to midpoint velocity). To address this, the feedback module selects the first feature with
absolute difference greater than a threshold from feature categories ordered by ease of
adjustment: swipe location, swipe length, swipe duration, touch pressure, touch area,
device rotation, device vibration, and swipe curvature. The feedback module focuses on
features that are more adjustable for attackers and can be visualized or explained in simple
instructions. Some features, like 50%-percentile pairwise velocity and median velocity at
the last three points are hard to adjust for and difficult to comprehend. We emphasize this

94

means our bypass success rates form a lower bound by focusing on low-effort attackers.

5.3.2 Apparatus for attack evaluation

Personal data on smartphones can be broadly categorized as textual (e.g., emails, texts)
and multimedia (e.g., images, videos). Our attack tasks reflect these categories. To further
simulate a realistic mimicry attack scenario, the attacker has to multi-task by searching for
interesting data while mimicking the victim. We introduce two tasks that capture the multi-
tasking nature of real-world mimicry attacks. For attacks on textual data, the attacker
is presented with a browser-like interface with a collection of paragraphs from Wikipedia
where each paragraph discusses a different topic. A question precedes the paragraphs and
the attacker has to swipe up or down to find the paragraph that contains the answer to
the question and then find the answer within that paragraph. For multimedia data, the
attacker is provided with several feline images along with a numeric label for each image
in an image viewer app. The attacker is then provided with a description of a feline (e.g.,
a white kitten) and is asked to swipe left or right to report the numeric label of the image
that matches the description. While the attacker has to tap the target app icon to launch
it, we do not consider the tap gesture since it provides too few features to be discriminative
and has a high EER [FBM+13, LZX13].

At launch time, the apps are trained using the SVM classifier on the victim’s training
model constructed using positive samples from the victim and negative samples from other
users. The apps provide no feedback for individual swipes; however, in case of a reject, the
apps display a popup to inform the attackers of their failure (simulating the point when an
explicit authentication method should appear in a deployed IA scheme). If the attackers
are successful, the apps allow them to complete the task. Finally, the apps record the raw
touch, accelerometer and gyroscope data of the attackers along with the result of their
mimicry attempt.

5.4 Attack Protocol

We now describe the protocol used to conduct attacks. The attack protocol was shaped
by a pilot study with three volunteers from our lab. Relevant results from the pilot with
subsequent changes to the final protocol are noted where applicable.

95

5.4.1 Participant recruitment and motivation

We recruited participants to be attackers in September of 2015 through a university-wide
mailing list and using Craigslist and Kijiji under the “other jobs” section. The title of the
advertisement was “Participate in a research study on mimicry attacks on a novel authen-
tication scheme for smartphones” and it stated adults who owned and used a smartphone
for over six months could participate. Each participant completed a demographic survey
and was invited to our lab for the study.

In a real attack, malicious adversaries are motivated to snoop the devices of their
victims to find valuable information. For our experiments, we motivate participants to
mount best effort attacks with performance-based monetary rewards. All participants
were paid $10, but they could earn another $6 based on performance. If they mounted a
successful mimicry attack on the chosen victim in their first attempt, they received $0.75.
If they mounted a successful attack on the second or subsequent attempt, they received
$0.50.

5.4.2 Study procedure

The procedure began with each participant submitting raw touch data using the collection
apps described in Section 5.2.2. This data forms a baseline to measure adjustments made
by the participant during the attacks. The experimenter then briefed the participant
(using a script and visual aids) with an explanation of touch IA, comprehensible features
of their target IA schemes, the apparatus, tasks, and the performance-based rewards.
We investigate the scenarios where the attackers have limited knowledge of touch IA in
Section 5.6.2.

Each participant mounted shoulder surfing and offline training attacks as explained
below. Attack type order was counterbalanced across participants. For each attack type,
the participant was assigned four victims to mimic up and left swipes. In the pilot study,
each attacker was assigned only two victims and mimicked four swipe directions, but there
were no significant differences in attack success. By reducing to up and left swipes, we
could double the number of victims for each attacker. Testing more attacker-victim pairs is
most relevant to our work, and up and left swipes are predominant directions for viewing
new content. All eight victims assigned to an attacker were unique to avoid carryover
effects.

The four victims for each attack type were split into two groups: two were protected
using either Touchalytics or LXG, and two were protected using SilentSense. We decided

96

to assign either Touchalytics or LXG to make it easier for the attackers to remember their
target IA schemes’ features. The assignment of Touchalytics or LXG, and the order of
the target IA schemes, were both counter balanced across the attackers. Attackers trained
and mounted their attack on one victim swipe direction at a time using the assigned touch
IA scheme and attack type. Swipe direction and the corresponding attack task order was
counterbalanced.

Shoulder surfing attacks: The shoulder surfing attack had two parts: watching
videos of the victim and attacking by mimicking the victim’s swipes while completing the
attack tasks (see Section 5.3.2). The attacker was shown the victim’s shoulder surfing video
clips on a 50” television. The attacker was not allowed to hold a device while watching the
clips. They were informed about the camera angles and told they could watch the clips
from either angle as many times as they wanted. Once the participant indicated they were
prepared, the video was closed and they were given the device to mimic the victim’s swipes
while performing the attack task. Participants were told that if their attack failed, they
could watch the clips again before mounting another attack. In Section 5.6.1, we evaluate
a scenario where the attack occurs one week after shoulder surfing.

Offline training attacks: The offline training attack had two parts: training using
the Mimicker app and attacking by mimicking the victim’s swipes while completing an
attack task. Training and attack were performed on two different LG Nexus 5 devices to
simulate switching to a victim’s device in a real attack.

Training was completed in two phases, a tracing phase (Figure 5.2(a)) with feedback
and the target swipe and a pseudo-attack phase (Figure 5.2(b)) with only feedback overlaid
on the attack task. The participant was informed that they had to bypass the IA scheme
for two consecutive windows during each training phase before proceeding to the actual
attack. If they were not successful, they had to continue the current training phase for at
least ten windows before given another opportunity to bypass the IA scheme. During the
attack, no feedback was provided. Attackers had to set the device down in between the
tracing and pseudo-attack phases.

The pseudo-attack phase was introduced after the pilot study where 25% of the at-
tacks failed despite successful completion of training. This appeared to be caused by the
abrupt change between the tracing phase and the attack task: the attackers did not al-
ways memorize the location of the target swipe during training since Mimicker displayed
the swipe; switching the device after training disrupted their device holding posture; and,
unlike training, the attacks involved performing a task in addition to mimicking. The
pseudo-attack phase increases training quality for attackers: we argue that a real attacker
can leverage similar training mechanisms by approximating the task they plan to attack.

97

Table 5.2: Demographics of the participants (n=32).

Gender: 56% Male
44% Female

Occupation: 31% Employed
63% Grad student
6% Undergrad student

Age group: 41% 18–25 years
31% 26–30 years
28% 31–35 years

IT experience: 53% Studied/worked in IT

For the purpose of our experiment, no feedback was provided for one window (experiment
window) between the two phases to measure the efficacy of introducing the pseudo-attack
phase.

5.5 Attack Evaluation

The study was completed by 32 participants (demographics provided in Table 5.2). In
total, 512 attacks were logged (256 for each attack type), which were mounted by 256
unique attacker-victim pairs in up and left directions. We logged 3656 mimic swipes for
shoulder surfing and 2984 mimic swipes for offline training attacks. During training, 17,064
swipes were logged.

5.5.1 Attacker success

We measure the efficacy of attacks on IA schemes through the bypass success rate at the
victim-level and the TRR at the window-level. The bypass success rate is defined as the
ratio of successful attacks to all attacks of a particular attack type or a particular direction.

Figure 5.3 shows bypass success rate against each IA scheme for both attack types
across all attacker-victim pairs. For shoulder surfing attacks, 75%, 78%, and 92% of the
attacks successfully bypassed against Touchalytics, LXG, and SilentSense, respectively. For
offline training attacks, 81%, 82%, and 91% of the attacks successfully bypassed against
Touchalytics, LXG, and SilentSense, respectively. An independent samples t-test for bypass
success rates between shoulder surfing and offline training attacks for each scheme indicates

98

Shoulder Surfing Offline Training
Attack Type

0.0

0.2

0.4

0.6

0.8

1.0
S

uc
ce

ss
R

at
e

Touchalytics LXG SilentSense

Figure 5.3: Bypass success rate for the three IA schemes across all attacker-victim pairs.

no significant differences. We note that the bypass success rate may be over-reported
due to naturally occurring false accepts; however, for the random attacker model, our
chosen operating threshold has negligible FAR. Compared to the random attacker model
(Figure 5.1) at a FRR of 20%, we observe about 200x, 20x, and 450x increase in FAR for
Touchalytics, LXG, and SilentSense, respectively.

To understand the performance of each scheme against mimicry attacks at the window-
level, we calculate the average TRR across each attack window for all victim-attacker
pairs for both attack types in Figure 5.4. Figure 5.4 shows that significantly lower TRRs
are observed for offline training attacks for Touchalytics (t = 2.12, p = 0.03) and LXG
(t = 3.28, p = 0.001). Lower TRRs are expected for offline training attacks because the
attacks were mounted after the attackers received training. On the other hand, there are no

99

Shoulder Surfing Offline Training
Attack Type

0.0

0.2

0.4

0.6

0.8

1.0
T

ru
e

R
ej

ec
t

R
at

e
Touchalytics LXG SilentSense

Figure 5.4: Average within window TRR for the three IA schemes across across all attacker-
victim pairs. Error bars represent 95% confidence intervals.

significant differences between shoulder surfing and offline training attacks for SilentSense
(t = 0.56, p = 0.57). Since the device reaction features of SilentSense rely on the device
holding posture, the attackers were able to observe and mimic it during shoulder surfing.
Consequently, the attackers performed better for SilentSense for shoulder surfing attacks
when compared with the other schemes.

In terms of swipe direction, the bypass success rate for shoulder surfing attacks was
86% and 82% for up and left swipes. For offline training attacks, the bypass success rates
were 85% and 87% for up and left swipes. An independent samples t-test indicates no
significant differences between attack type for up (t = -0.36, p = 0.71) and left swipes (t
= 1.03, p = 0.3).

100

Note that IA provides continuous authentication so attackers must continue mimicking
a victim swipe after swipe. While our experiments require attackers to bypass their victim
only once, after learning their victims’ behaviour and bypassing IA for one window, they
can mimic the behaviour on subsequent windows. This is shown in offline training, where
attackers must bypass IA for three consecutive windows (two pseudo-attack windows and
one attack window).

5.5.2 Attacker effort

To estimate attacker effort, we define three measures: shoulder surfing time (i.e., time spent
viewing videos) captures attack preparation effort for shoulder shoulder surfing attacks;
the number of windows used during training captures attack preparation effort for offline
training attacks; and the number of windows until bypass (number of attempts required
to mount a successful attack) captures attack execution effort for both types of attacks.

Shoulder surfing time: Figure 5.5 shows the cumulative distribution of time spent
shoulder surfing before successful attacks. For 15% of successful attacks, the attackers
were able to estimate the victim’s behaviour by observing them only for half a minute.
Similarly, 40% and 90% of the successful attackers required less than a minute and less
than two minutes of shoulder surfing time. These results indicate attackers require trivial
shoulder surfing time for successful attacks.

Number of training windows: Figure 5.6 shows the proportion of remaining attacker-
victim pairs who still required training in a particular window and their distribution across
successful (WinS) and failed windows (WinF). Recall that our protocol requires attackers
to successfully mimic two consecutive windows in each phase. This means that 100% of
all attackers will have at least two training windows in both phases in addition to the
experiment window between the two phases. As an example for interpreting Figure 5.6,
consider window 3 of the tracing phase. Here 33% of attacker-victim pairs remain because
they were unsuccessful at mimicking the target swipe in both window 1 and window 2.
Moreover 15% of attacker-victim pairs were successful at mimicking the target swipe while
19% failed in window 3.

Overall, 67% and 77% attacker-victim pairs only required two windows to complete the
tracing and the pseudo-attack phase, respectively. A consistent decrease in the proportion
of remaining attacker-victim pairs and WinF from window 3 to window 7 in the tracing
phase shows that Mimicker feedback was effective. However, after window 7, only 4%
are able to successfully complete the training. Some attacker-victim pairs were unable to

101

0 50 100 150 200 250 300

Shoulder Surfing Time (secs)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

Figure 5.5: Shoulder surfing time for successful attacks.

complete training after ten windows: 11% did not proceed past the tracing phase and 4%
did not proceed past the pseudo-attack phase.

Regarding the efficacy of our pseudo-attack training phase, observe that the special
experiment window (‘E’) with only the attack task and no feedback has a 25% increase
in WinF . This window simulates the same abrupt jump from training to attack, and the
result is the same as the 25% attack failure rate in the pilot. However, attacker-victim pairs
corrected their behaviour when they received feedback: WinF drops to 16% in Window 1
then to 10% in Window 2.

Number of windows until bypass: Figure 5.7 shows the cumulative distribution of
the number of windows until bypass. This captures the attack execution effort in terms
of number of attempts to successfully mount each type of attack. Recall attackers were

102

1 2 3 4 5 6 7 8 9 10 E 1 2 3 4 5 6 7 8 9 10

Window

0.0

0.2

0.4

0.6

0.8

1.0
Tracing phase ends Pseudo-attack phase begins

Remaining
WinS
WinF

Figure 5.6: Proportion of attacker-victim pairs who required training for a window (Re-
maining) and their distribution across successful (WinS) and failed (WinF) windows. Win-
dow (‘E’) is the experimental window.

allowed to retry in case of a failed attack attempt and they could optionally shoulder surf
or retrain before their next attempt. For the shoulder surfing attacks, about 73% of the
successful attackers only required a single window and 93% required three windows or less
to bypass the IA scheme. For offline training attacks, about 85% of the successful attackers
bypassed the IA scheme in their first attempt and 90% required two attempts or less to
gain access to the victim’s device. There were no significant differences across the number
of attempts to bypass for IA schemes or attack types.

Attacker effort and success: For shoulder surfing attacks, a Pearson correlation test
indicates a slightly negative correlation between success rate of an attacker (the ratio of
successful attacks among all attacks of a particular attack type or direction executed by
this attacker) and the amount of time they shoulder surfed (r = -0.07). We also observe a
negative correlation between the success rate and the number of retries (r = -0.19) for the
shoulder surfing attacks. These results indicate that the failed attempts are not due to the
lack of effort by the attackers. A similar analysis cannot be performed for offline training
attacks since Mimicker requires the attackers to attempt training for at least ten windows
before giving up and only the attackers who successfully complete training mount attacks.

103

0 1 2 3 4 5 6

WINs to Bypass

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

Shoulder Surfing

Offline Training

Figure 5.7: Windows until bypass for successful attacks.

5.5.3 Difficult or easy to mimic features

To measure how difficult or easy it was for the attackers to mimic IA schemes, we calcu-
late mismatch and match scores for individual features for successful and failed attempts,
respectively. We first calculate the absolute differences between individual features of the
target and mimic swipes. The target swipe is explicit in offline attacks, but not when shoul-
der surfing. For shoulder surfing, the victims’ swipe that is the nearest neighbour of the
mimic swipe is selected as the target swipe. Mismatch and match scores are calculated by
computing the normalized distribution of the occurrence of features in the top three most
divergent and similar features, respectively. For divergence, we use the Kullback-Leibler
(KL) information divergence measure [KL51]. A brief description of the KL divergence

104

0

0.2

0.4

0.6

0.8

1

20% pct.
accel.

Last Y First 5pt.
accel.

Avg.
pairwise

dir.

1st X 1st area Avg.
curv.

1st X Vibration Rotation

Touchalytics LXG SilentSense

M
is

m
at

ch
 /

K
L

S
co

re

Shoulder Surfing Offline Training KL Divergence

LXG SilentSenseTouchalytics

Figure 5.8: Difficult to mimic features across failed attempts for all the attackers. Mis-
match score is the normalized distribution of the occurrence of a feature in top three most
divergent features.

measure is provided below. For two Probability Mass Functions (PMFs) p and q of a
discrete random variable X, KL divergence quantifies the difference between two PMFs as:

D(p‖q) =
∑
i∈Λ

log

(
p(i)

q(i)

)
p(i), (5.1)

where Λ is the image of X and p(i) and q(i) respectively represent the probability of feature
value i in p and q. To deal with the case when D(p‖q) =∞, if p(i) 6= 0, q(i) = 0; we perform
standard Laplace correction [CG96]. The Kullback-Leibler (KL) divergence [KL51] score
for features is also calculated for the attacker-victim pairs on the raw input data from the
device usage dataset. The KL divergence score provides a baseline for feature similarity
and indicates the extent of adjustments made by the attackers for a feature. A higher KL
divergence score indicates that the feature values are different across the participants.

Figure 5.8 and Figure 5.9 show features with high mismatch and match scores, re-
spectively. Features related to swipe curvature, velocity, and acceleration have higher KL
divergence and mismatch score for both attack types (see Figure 5.8). Mimicker does not
provide feedback for acceleration or velocity related features since they are hard to com-
prehend, so we cannot fully conclude they are hard to mimic for offline training attacks.
However, we can conclude these features are difficult to mimic for shoulder surfing attacks.

105

0

0.2

0.4

0.6

0.8

1

1st Y Line
direction

Duration 1st Y Moving
distance

Duration 1st Y Duration Touch
pressure

Touchalytics LXG SilentSense

M
at

ch
 /

K
L

S
co

re

Shoulder Surfing Offline Training KL Divergence

Touchalytics LXG SilentSense

Figure 5.9: Easy to mimic features across successful attempts for all the attackers. Match
score is the normalized distribution of the occurrence of a feature in top three similar
features.

Figure 5.9 shows that swipe duration and touch pressure are easier to mimic. Some
location based features (first and last touch coordinates) fall in both difficult and easy
to mimic feature groups, especially for shoulder surfing attacks. We suspect that this is
because some attackers are more critical observers than others.

Figure 5.8 shows that for almost all the features, the mismatch score is lower for of-
fline training attacks. Since Mimicker provides feedback, attackers know how to adjust
their behaviour to improve performance. This is quite pronounced for the location-related
features such as ‘1st X’, ‘1st Y’, and ‘Last Y’ because Mimicker renders the target swipe.

There is an anomaly between LXG and SilentSense mismatch scores for the ‘1st X’
location feature for offline training attacks. We suspect the higher mismatch score for
SilentSense is due to its small feature set size and low KL divergence scores for vibration
and rotation features. This indicates an overlap in behaviour across participants, increasing
the chance that ‘1st X’ is in the top three mismatched features.

5.6 Discussion

In this section we discuss constrained attack scenarios and the effect of key parameters.

106

Table 5.3: Effect of introducing one week delay between shoulder surfing and the attacks.
Attack Success Rate

follow up Touchalytics LXG SilentSense
Immediate 80% 90% 95%
Delayed 80% 80% 90%

5.6.1 Basic shoulder surfing attacks

In our evaluation of shoulder surfing attacks, we assume attackers can record a video
of their victims and watch it immediately before launching the attack. We were curious
about the performance of a basic shoulder surfing attack using direct observation with hand
written notes and a delay between observation and attack. To investigate this scenario,
we repeated the shoulder surfing portion of the experiment with ten of the participant
attackers, but inserted a one week delay between watching the videos and the attack.
Each attacker viewed shoulder surfing videos of one victim they did not encounter in the
main experiment. They were encouraged to make notes. One week later, the attacker
returned to mount the attack on the victim. They were encouraged to consult their notes.

Table 5.3 compares mean bypass success rates across attackers for shoulder surfing at-
tacks with delay and without delay (taken from their performance in the main experiment).
Delayed attacks had a bypass success rate of 80%, 90%, and 90%, which an independent
samples t-test did not find significantly different compared to attacks without delay. To
gain insight into what attackers felt was important and what features they were mimicking,
the notes were collected and their content categorized. Eight attackers drew the device
screen with the corresponding location and curve of the swipe. Six of these attackers also
noted the holding posture of the victims by drawing the holding hand and the location of
the fingers of their victims. Two attackers wrote textual notes (such as: “right bottom on
the edge”), seven noted the swipe speed (five noted it as slow/medium/fast; one marked a
location on a continuous scale from slow to fast, and one wrote “one-mississippi”). Three
attackers noted of the swiping finger or thumb of the victim. This small experiment sug-
gests basic shoulder surfing is surprisingly effective, even when behavioural characteristics
are mimicked at a coarse level.

5.6.2 Attacks with limited knowledge

In our evaluation, we assume the attacker has full knowledge regarding the victim’s IA
scheme. We were curious how performance is affected if the attacker has limited knowledge

107

Table 5.4: Bypass success rates for offline training attacks when attack attempts are re-
played for different schemes.

Training Scheme for Attacks
Scheme Touchalytics LXG SilentSense

Touchalytics 81% 84% 73%
LXG 76% 82% 71%

SilentSense 75% 78% 92%

about the IA scheme or its features. In a scheme-oblivious offline attack scenario, the
attacker has the victim’s raw data and a training app like Mimicker, but they do not know
the exact IA scheme used by the victim (e.g., whether it is Touchalytics or LXG). For the
feature-oblivious shoulder surfing attack scenario, the attacker has no knowledge of any
of its features. We evaluate the performance of attacks for these scenarios using the data
from our main evaluation.

Scheme-oblivious offline attacks

We simulate this attack scenario by mounting attacks on a different IA scheme than the
one used for offline training. For example, if an attacker trained and successfully attacked
a victim using Mimicker for LXG, would the attacker have been successful if they trained
for LXG but that victim actually used Touchalytics? We accomplish this by replaying
attack swipes logged during successful attacks in the main experiment on the same victim
protected with a different IA scheme. Note there is some inherent overlap in schemes since
they share some features, or capture touch behaviour across limited dimensions like loca-
tion, pressure, area and speed. However, the specific model built by the scheme classifier
could still be very different.

Table 5.4 shows that after training on Touchalytics, bypass success rates increased by
3% when the victim was actually protected by LXG and decreased by 8% when they used
SilentSense. After training for LXG, bypass success decreased by 6% for Touchalytics and
11% for SilentSense. Finally, after training SilentSense, bypass success decreased by 17%
for Touchalytics and 14% for LXG. There appears to be a greater drop when attackers
train on Touchalytics/LXG and attack SilentSense (and vice versa). This is due to less
overlap between Touchalytics/LXG and SilentSense (more touch features in the former,
more device reaction features in the latter). Overall, 70% or higher bypass success rate for
scheme-oblivious attacks indicates attackers may not even need to know the exact scheme
used by their victims.

108

Feature-oblivious shoulder surfing attacks

We evaluate the success rate for feature-oblivious shoulder surfing attacks with an experi-
ment using ten participants from our data collection (they were not attackers in the main
experiment). The main experiment shoulder surfing attack protocol was followed except
attackers were provided no details about touch IA and were simply told they would at-
tack a device protected using a scheme that employs the touch input and device holding
behaviour.

The results show a bypass success rate of 60%, 50% and 80% for Touchalytics, LXG,
and SilentSense, respectively. Unsuccessful attackers were briefed on the features after
they ended their attempted attacks. These attackers viewed the videos again and mounted
attacks on the victims they failed to mimic. For these retry attempts after a briefing, bypass
success rates were 75%, 80% and 85% for Touchalytics, LXG and SilentSense, respectively.
These results indicate that attackers have a 50% or higher chance of defeating these schemes
without any knowledge of the underlying features, but the chances of success increase with
feature knowledge.

5.6.3 Effect of operating threshold

In the main experiment, we chose a FRR of 20%, which created FAR of 0.4%, 4%, and 0.2%
for Touchalytics, LXG and SilentSense, respectively. To understand the effect of different
operating thresholds on mimicry attacks, we evaluate attacks efficacy at FRRs from 20%
to 35% and corresponding FARs. Note that a FRR of 35% is impractical since the IA
scheme would reject the device owner for a third of their swipes making it quite unusable.
We perform an offline evaluation by replaying the attack data through the IA schemes
with different operating thresholds and log the bypass success rates for each threshold.
A limitation with this simulated evaluation is that offline attackers are likely to perform
better if they trained at the tested FRR. However, these results do provide a lower bound
for bypass success rate.

The results in Table 5.5 show only a 7% decrease in success rate when the FRR is
increased from 20% to 35% for shoulder surfing attacks. For offline attacks, the decrease
in success rate is only 3%. There is a sublinear decrease in bypass success rate for a linear
increase in FRRs, which is similar to the sublinear increase in FAR for linear increase in
FRR (see Figure 5.1). We believe the lower relative decrease in the bypass success rate for
offline training attacks is a result of the low intra-window TRR (see Figure 5.4).

109

Table 5.5: Bypass success rates for the attackers for different operating thresholds.
FRR

20% 25% 30% 35%
Shoulder surfing 84% 81% 78% 77%
Offline training 86% 85% 83% 83%

5.6.4 Effect of different target swipes

The Mimicker target swipe selection module selects the ‘best’ swipe from a set of 150
swipes of the victim (see Section 5.3.1). We were curious how an attacker’s bypass success
rate was affected if they could not collect a large number of their victim’s swipes and
had to train using a suboptimal target swipe. To evaluate this, ten volunteers from the
main experiment participated in a smaller experiment spanning three ten-minute sessions
of offline training attacks, with each session spaced one week apart (to mitigate carry over
effects). Each attacker was assigned two victims; one victim was protected with LXG
and the other with SilentSense. For each session, the attackers performed offline training
attacks using the best, average, and worst swipes (the order was counter balanced across
attackers). The best, average and worst swipes correspond to the top, middle and bottom
locations of the similarity rank table, respectively (see Section 5.3.1). These well-defined
categories of swipes avoided a possible confound when randomly picking a target swipe.

The bypass success rates for the best, average and worst target swipes for LXG were
90%, 100% and 60%, respectively. For SilentSense, the bypass success rates were 100%,
100% and 80% for best, average, and worst swipes, respectively. A one way between
subjects ANOVA score indicates a significant effect of target swipe on the intra-window
TRR for the three target swipe types (F(2, 27) = 9.18, p = 0.0009). Post hoc comparisons
using the Tukey HSD test indicated that the mean for the intra-window TRR for the best
(M = 0.05, SD = 0.07) and average (M = 0.02, SD = 0.04) swipes were significantly
different than the worst swipe (M = 0.47, SD = 0.44). However, the intra-window TRR
for the best swipe did not significantly differ from the average swipe. These results indicate
that while there is a reasonable chance (≥ 70%) of success using any true accepted swipe
as the target swipe, attackers can increase their chances of success by collecting more raw
data to mine for an optimal target swipe.

5.6.5 Attacker- or victim-bound success?

Previous work has shown the performance of a generic attack against touch IA schemes
is victim dependent [SP13b], meaning some victims are easier to attack than others. We

110

investigate if the same is true for mimicry attacks. A Kruskal-Wallis test comparing bypass
success rates found no significant effect across victims, indicating no victims were easier
to bypass than others. The same test comparing bypass success rates found no significant
effect across attackers, indicating no attackers were better at mounting attacks than others.

5.7 Limitations

Like most human subjects studies, the scope is limited to people willing to participate. We
discuss more specific limitations below.

We used similar devices for data collection and attacks. If an attacker collects a victim
data using a device with a different form factor than the victim’s device, a transformation
would need to be applied to the features.

We used the same tasks to collect victim data and evaluate attacker performance. This
setup represents a resourceful adversary able to obtain a victim’s data using an app similar
to the target. Even if an adversary used apps with different input behaviour, the results
will likely be similar (previous work reports 5–8% increase in EER due to significantly
different apps [KH14]).

The participants who volunteered for the additional experiments (reported in Section 5.6)
did not receive remuneration for their participation. Consequently, these participants may
had less motivation, which may have affected their performance.

For our experiments, we omitted difficult to comprehend features from briefings and the
feedback module of Mimicker. We note that dedicated attackers may have increased their
chances of success by training on the omitted features. However, our experimental setup
demonstrates the vulnerability of these schemes against relatively effortless attacks.

Our protocol trained an attacker to mimic their victim’s swipes one direction at a time
excluding multi-touch gestures like pinch to zoom [FYY+14]. This simplified the attack
tasks and expedited attacker training.

It might be difficult for the attacker to mimic multi-touch gestures or multiple swipe
directions simultaneously. However, swipe is the predominant form of gesture and an
attacker can view content using one directional swipe for most target applications (email
and messaging apps using up swipes while gallery app using left swipes). Due to their
infrequent use, Touchalytics also ignores multi-touch gestures. While efficacy of mimicry
attacks on multi-touch gestures is an open research question, we do not address it in this
work to conform to our realistic attack scenario. In terms of mimicry attacks on multiple

111

swipe directions, given the trivial shoulder surfing and offline training time required, the
attacker can leverage Mimicker or observational notes to train for different directions in
real time to mount these attacks.

5.8 Conclusion

We evaluate touch IA against two simple attacks by malicious insiders that effectively
circumvent touch IA. We show that the widely accepted assumption that shoulder surfing
attacks on touch IA are infeasible due to the hidden nature of many touch input features is
incorrect. We also demonstrate how dedicated attackers can use an app like Mimicker to
train themselves to mimic victims offline with very high success. Moreover, mimicry attacks
appear practical even if the attacker has limited knowledge of the victim’s IA scheme or
limited logged examples of the victim’s touch behaviour. Our findings suggest that touch
IA does not provide adequate protection against malicious insiders. Consequently, touch
IA cannot be used as a second line of defense against malicious adversaries that are able to
bypass the primary authentication mechanisms through shoulder-surfing attacks. A focus
for future research in IA should be the identification of a set of mimicry-resilient features
across several behavioural biometrics that bolster IA security. We identify challenges and
propose solutions to achieve this goal in the following chapter.

112

Chapter 6

Itus: A Framework for App-Centric
IA Deployment

The last three chapters conclude that while IA seems promising in terms of usability and on
a set of comprehensive evaluation criteria (see Chapter 3), there are challenges that need
to be resolved. More specifically, in Chapter 3 we observe that app-specific differences
not only influence the accuracy of IA schemes but also dictate the availability of data for
training and classification purposes. In Chapter 4, we note that some users feel the need to
improve the way IA was deployed for evaluation and how FRs were dealt with. Similarly,
Chapter 5 suggests the need to identify a set of mimicry resilient features.

These findings indicate that until the aforementioned issues are investigated, wide-
scale IA support will not be provided. However, IA deployments for specific use cases
can be warranted. For instance, touch IA can protect corporate or personal data on a
lost device since targeted mimicry attacks are not a threat for this scenario. Furthermore,
the annoyance and deployment issues uncovered in Chapter 4 highlight the significance
of active participation by human subjects for IA research, which requires a system for
prototyping and deployment of IA. In this chapter, we investigate challenges in enabling
IA deployment for specific use cases and research purposes.

We expand our fourth research objective (see Objective 4 in Section 1.5) to first identify
the bottlenecks to IA deployment. We suspect that some of the deployment issues arise
from a device-centric IA deployment. We address these issues by proposing an app-centric
approach to IA deployment. To further our objective of flexible and extensible IA deploy-
ment, we identify challenges involved in creating an IA framework that is flexible enough to
be used by a general audience while extensible enough to assist in IA research. We proceed

113

to provide an open source implementation of a framework that meets our flexibility and
extensibility objectives1. We begin our explorations by introducing app-centric IA.

6.1 A case for App-centric IA

Since contemporary IA schemes require the interception of user input events, some re-
searchers have proposed including IA mechanisms at the platform level [CKF09, CRS13,
LZX13, RQSL12], such that the operating system or app framework is responsible for pro-
viding IA to all apps on the system in an app independent manner. However, this approach
has its own limitations in terms of flexibility and extensibility. We explore these limitations
further in the following sections.

6.1.1 Flexibility issues

We investigate the flexibility limitations by comparing between two options on where to
authenticate — at the device level or app level. For the comparison, we analyze how the
outcome of where to authenticate impacts the decisions of when and how to authenticate.

When to authenticate?

A device-centric IA scheme may operate continuously in the background or get triggered
when an app marked as sensitive is launched. However, some apps may not require IA for
all usage scenarios. For example, consider a banking app that enables a customer to query
his account or locate a nearby ATM. For this app, there is no need to authenticate a user
when they are trying to locate an ATM. Similarly for a browser app, there is no need to
authenticate a user when they are reading news. Since a device-centric approach is unaware
of the task that the user is performing within an app, it cannot provide authentication
control at the task level.

On the other hand, if an app can control when to authenticate, the banking app only
authenticates a user when they are querying their account. Similarly, the browser app can
detect when a user is reading news and it may decide not to authenticate them. But when
the user switches to his social network website with saved credentials, IA may be performed.
By delegating the decision of when to authenticate to the app, we can perform task-aware

1https://crysp.uwaterloo.ca/software/itus

114

https://crysp.uwaterloo.ca/software/itus

IA, which reduces unnecessary authentication overhead. Another advantage of task-aware
authentication control is its inherent support for multi-user scenarios. Smartphone owners
share a mean of 12% of their smartphone apps and these apps are primarily entertainment
applications such as games or web browsers [HRS+12]. For these multi-user scenarios, the
non-owner is not supposed to access personal information of the owner on the device. An
app-centric approach allows a non-owner to access content that does not leak personal
information and denies access to the content that may leak personal information (e.g.,
access to a mail portal with saved credentials).

How to authenticate?

A device-centric approach may employ a specific behaviour-based classifier for IA. How-
ever, a classifier may not be suitable for a particular type of application. For example,
during a session in which a user accesses his social network website on the browser using
saved credentials, enough sample values may not be available for text IA to compute an
authentication score. Similarly, a classifier based on touch IA may not have enough sam-
ple values for a messaging app (due to lack of swipes generated by the user). To cater for
these behavioural differences, a device-centric approach may employ multiple classifiers;
however, this will result in significant overhead in terms of feature sampling. On the other
hand, an app-centric approach can leverage the knowledge of an app’s nature to choose
the appropriate IA scheme.

Another limitation of the device-centric approach due to its app-oblivious nature is
the loss of valuable information that may be useful for classification. If the classifier has
additional knowledge about a task that the user is currently performing, it may use that for
robust classification. For example, in Section 6.2 we show that a user’s touch behaviour is
slightly different when he is finding POIs in maps as compared to browsing. Consequently,
in the banking app, if the classifier is aware of the task being performed by the user (finding
nearest ATM or querying his account), it may use this additional information to improve
its accuracy by tuning its features (we demonstrate this in Section 6.2.2).

Discussion

The comparison of app- and device-centric approaches shows that due to the app-aware
nature of the former, fine-grained authentication control is acquired and IA is performed
only when required. This fine grained authentication control also reduces authentication
overhead. The app-centric approach can use its knowledge about an app to determine the

115

appropriate IA scheme for that app. Finally, the app-centric approach can leverage its
knowledge about an app’s nature to improve the accuracy of the classifier by tuning its
features.

6.1.2 Extensibility issues

In terms of flexibility, we note that different apps have different characteristics and a generic
device-level behaviour-based classifier may not be suitable for different apps. To overcome
some of these limitations, a library could be provided at the platform level which provides
an interface to the developer to configure various parameters for IA. However, it is not
certain that IA will get incorporated at the device-level given the unaddressed research
challenges. This severely limits the possibility of limited IA deployments for specific use
cases including protection of corporate data on lost devices.

Furthermore, a device-level library would need to be managed by the platform devel-
opers or some central authority. However, IA is a relatively new area that still experiences
radical revisions in IA schemes due to the research findings in the use of novel sensors or
wearable devices for IA [MMMC+14, SSTA14]. Similarly, the handling of authentication
failures would require revisions due to research findings on the usability of IA schemes. The
platform developers in this case are more inclined toward accepting mature contributions,
which will lock out many app developers who want to deploy features specific to their use
cases.

Finally, a device-level approach does not reduce the re-engineering effort of IA re-
searchers. Since the platform developers are willing to accept mature contributions only,
research prototypes are less likely to be reused. In Chapter 2, we noted a lack of synchro-
nized effort to accelerate the research in the IA domain. For instance, several IA schemes
had only minor differences in terms of employed features or machine learning classifiers, but
each research effort came up with its own implementation. An app-level library can create
an ecosystem that reduces the re-engineering effort. For instance, if an implementation of
Touchalytics is available that provides the researchers values and low level interface of the
features employed, it can reduce the re-engineering effort to determine mimicry resilient
features.

116

6.2 Evaluation of App-centric IA

We empirically evaluate Touchalytics [FBM+13] on our touch input dataset in a device-
centric and app-centric fashion to establish the limitations of the former approach. A
detailed description of Touchalytics and the touch input dataset are provided in Section 3.1
and Section 3.2, respectively. We first apply Touchalytics in a device-centric manner such
that it neither discriminates between data from different apps nor makes any assumptions
about the nature of the app. We then repeat the experiment and compare the results by
applying Touchalytics in an app-centric manner. Similar to our evaluations in Chapter 3,
we set the classifier parameters to the values recommended in the original paper.

6.2.1 Device-centric Touchalytics

We evaluate device-centric Touchalytics using five-fold cross-validation and average the
results across all the users. The accuracy evaluation of Touchalytics on our dataset provides
a FAR of 17% with FRR of 8% on a window size of two swipes. The accuracy on our dataset
is significantly lower when compared to accuracy reported in Touchalytics for the same
window size (7% FAR with 7% FRR). We hypothesize that the variance in app nature and
usage behaviour is responsible for this accuracy degradation. Since Touchalytics only used
data from two apps (an app to read Wikipedia articles and a spot-the-difference game) in
a lab setup and participants performed predefined tasks, their experimental setup did not
capture this behaviour.

In order to evaluate our hypothesis, we use the Kullback-Leibler (KL) information
divergence measure [KL51]. A brief description of the KL divergence measure is provided
in Section 5.5.3. We calculate the intra-user and the inter-user KL divergence score across
the Touchalytics’ features for every app. The intra-user KL divergence score is calculated
between two partitions of a user’s data and the inter-user KL divergence score is calculated
between a user’s data and data samples from the rest of the users. If a feature is a good
discriminating feature, it should have low intra-user KL divergence score and high inter-
user KL divergence score.

Our results show that the majority of the features have low intra- and high inter-user
KL divergence score for a subset of applications only. We show KL divergence scores for
three representative features in Figure 6.1 and omit other qualitatively similar results. In
Figure 6.1, end x-coordinate is a good discriminating feature for the launcher app, but
for the maps app it has a relatively high intra-user KL divergence score. Looking at the
raw data, we can see that this is due to the nature of the maps app. In the maps app,

117

0.0

0.2

0.4

0.6

0.8

1.0

Intra-user Inter-user Intra-user Inter-user Intra-user Inter-user

End x-coordinate Interstroke time Mid-stroke pressure

K
L

D
iv

er
ge

n
ce

 S
co

re

Features

Launcher
Browser
Maps
Comics

Figure 6.1: KL divergence score of features across four apps used in this study

users’ start and end points are more random since they are locating some POI on the
map unlike the launcher app, where a user generally swipes at a specific location on the
screen. Similarly, the browser app fails to provide a high inter-user KL divergence score
for inter-stroke time feature. We suspect that this is due to the dependence of inter-
stroke time on the content that a user is browsing (reading an article might result in
lower inter-stroke times as compared to skimming it). While the majority of the features
are not good discriminating features for all the apps, mid-stroke pressure and mid-stroke
area covered were the only features that had consistently low intra-user and high inter-
user KL divergence scores. Since only two features cannot provide a good separation
boundary between different users’ behaviour (due to more chances of collisions), for efficient
classification all the good discriminating features for an app should be used.

Our analysis of the device-centric approach shows its failure to capture the variance in
apps’ nature. A simple solution to this limitation would be to create a separate behavioural
model of each app at the device level. This would allow the device-centric approach to
compare the runtime behaviour of an app with its behavioural model to get a more accurate
authentication score. While this approach would fix the accuracy degradation to some
extent, it neither provides fine grained authentication control nor mitigates the limitations
due to the device-centric approach’s obliviousness of an app’s nature.

118

Table 6.1: Accuracy evaluation of device- and app-centric approaches (95% CI)
Device-centric App-centric Feature tuned

approach approach app-centric

App FAR FRR FAR FRR FAR FRR

Launcher 16% (5) 6% (3) 11% (4) 4% (4) 7% (3) 3% (3)
Browser 19% (4) 8% (3) 12% (4) 6% (3) 6% (3) 4% (2)

Maps 16% (4) 12% (5) 13% (4) 7% (4) 5% (4) 4% (3)
Comics 17% (3) 7% (4) 8% (5) 6% (4) 6% (4) 4% (3)

6.2.2 App-centric Touchalytics

For effective and pragmatic IA, we propose app-centric IA in which an app decides when
and how to authenticate a user. While designing an app, an app developer first identifies
activities that may lead to potential misuse. For example, for the browser application,
the app developer may consider access to all websites that ask for a user’s credentials as
potential sources of data leakage. After identifying the activities, the app developer only
implicitly authenticates a user when these activities are performed. The app developer
also decides how to authenticate by choosing a suitable classifier for his app (as per the
app’s nature). For example, looking at the user’s interaction with his browser app, an app
developer may choose a classifier based on touch input behaviour (since more swipe data
is readily available than keystrokes data). Finally, the app developer tunes the features
of the classifier as per their app’s nature. We note that these activities increase the app
developer’s development overhead; however, this overhead can be mitigated by providing
a library to the app developer that provides a generic implementation of behaviour-based
classifiers that can be extended and reused. We discuss this further in the following sections.

We now evaluate the sample apps on our dataset in an app-centric approach. To
simplify our evaluations, we assume that these apps require IA for all activities and a
classifier based on touch IA is the right choice for them. We now show how we tuned the
features for these apps and we then present accuracy results.

Feature tuning

For feature tuning, an app developer collects sample data from some test users. They then
determines the features that are good discriminating features for their app and trim the
rest of the feature from the classifier. The app developer can optionally add new features
for robust classification. We now summarize our experience of these feature tuning aspects
for our sample apps.

119

Feature deletion: For each app, we deleted those features that had high intra-user KL
divergence score and low inter-user KL divergence score. This trimming left 27, 25, 22,
and 23 features for the launcher, browser, maps and comics apps (out of 31 total features
of Touchalytics), respectively. Feature trimming ensures that the accuracy of IA scheme
will not suffer due to irrelevant features.

Feature addition: We plotted swipes from users’ interaction with each app to determine
app-specific features. For example, by looking at the users’ swipes for the browser and
launcher apps, we found out that the distance between two consecutive swipes was a good
discriminating feature since users had unique swipe cluster patterns. Similarly, we observed
that the orientation of a phone along its x-axis (pitch) also affected a user’s input behaviour
and we used it as a feature for all the apps.

Other app-specific improvements: We also identified behavioural anomalies that were
specific to an app. For example, looking at the browser’s touchscreen input data, we found
out that when a user had to scroll down on a large document, they did it by rapid vertical
swipes on the touchscreen. This uncommon behaviour was observed for some participants
and Touchalytics was unable to correctly classify it. In order to deal with such behavioural
anomalies, we made appropriate changes to the IA scheme.

Accuracy evaluation

For the accuracy evaluation of the app-centric approach, we tune the app features as
discussed in the last section. We then invoke the classifier based on touchscreen input
behaviour on each app’s data and perform five-fold cross-validation on the training data.
To quantify the impact of app-specific training and classification, and feature tuning sepa-
rately, we report accuracy results for app-centric approach with and without feature tuning.
The accuracy results of our evaluation on app using device- and app-centric approaches
are provided in Table 6.1.

The results show that by using an app-centric approach we are able to reduce FAR by
5%, 6%, 3% and 9% for the launcher, browser, maps and comics apps, respectively. These
accuracy gains are observed since a separate behavioural model is created for every app
and the variation in application nature does not affect the behavioural model. Another
4%, 6%, 8% and 1% reduction in FAR is recorded when we tune features according to
the app nature. In addition to reduction in FAR, a significant and consistent reduction
in FRR is also observed when the app-centric approach is used. These results show that
by using an app-centric approach, we achieved accuracy improvements in addition to low
authentication overhead and fine grained authentication control.

120

Discussion

Empirical evaluations of the app-centric approach show that it provides significant accu-
racy improvements as compared to the device-centric counterpart. This strengthens our
argument that the decisions of when to authenticate, which IA schemes to authenticate
with and feature tuning of the IA scheme should be delegated to the app. This delegation
increases development overhead on the app provider. We now present Itus, a framework
that enables app developers to effortlessly provide IA support in their apps.

6.3 Motivation for IA Framework

In the previous sections we established that the app-centric approach is superior in terms
of usability and extensibility. We now identify the need and expectations from a framework
for the app-centric IA deployment. To this end, we consider our audience to be two-fold:
the app developers who wish to incorporate IA into their apps, and the IA developers who
wish to improve existing IA schemes. In this section, we first discuss some sample apps
and the motivations their developers might have for including IA support.

We consider the following apps as potential candidates for using IA:

An Enterprise Email Client: Provides employees access to corporate emails from
their mobile devices. The email client app gives access to large amounts of sensitive
corporate data. Employees generally want to have access to their corporate email account
from a variety of places, including at home and while traveling to remote sites or client
premises. The bring-your-own-device phenomenon makes it easy and natural for employees
to have access to their corporate email from their personal smartphones, but raises a host
of security issues for the employer. Now that devices are being carried to non-work locales
where unaffiliated parties may gain access to them, the employer will need to add some
form of authentication to the client app. Adding IA at the app level allows the employer to
ensure only authorized users are accessing sensitive emails without disincentivizing users
from installing the app on their own devices due to inconvenient security mechanisms.

A Web Browser: Provides all the standard web browser features including a password
manager. The web browser is an app that allows users to access potentially privacy-
sensitive data from a variety of different sources. The developers of the browser might
be interested in providing IA support for their users in order to allow them to benefit
from the convenience of a password manager without the decreased security that comes
with storing and automatically filling in a user’s passwords. The wide variety of distinct

121

web services now available means the web browser becomes a portal for many different
categories of user interaction patterns, and so a flexible framework would seem to be of
paramount importance in this case.

6.3.1 App Developers

Next, we refine our model of the spectrum of involvement by the app developers adding
support for IA. In particular, we consider two levels of developer interest in IA frameworks:

Cursory interest: app developers who only want to add support for IA to their apps
without tuning its accuracy or providing any application-specific behaviour. There are
several types of app developers that may fall into this category. In the most trivial case,
an app developer may simply be interested in experimenting with IA and wants to add it
to their app without spending significant time on configuration and re-engineering of their
app. Or, the app developer may be developing an app that contains such generic tasks that
the default behaviour is “good enough” out-of-the-box. For example, consider the email
client described above—user typing cadence tends to be unique enough [HCP09] that the
default keystroke classifier can easily deal with most usage scenarios of this app.

Significant interest: app developers who wish to fine-tune an IA scheme for accuracy
and performance. Such developers might do one or more of the following: restricting
calculation of behavioural features to some subset to minimize computational overhead;
configuring parameters of machine learning algorithms; experimenting with beta users to
determine which configurations work best and retaining the data gathered during this phase
for later training. It is important that the framework be able not only to support these
developers in their efforts but to facilitate them by providing tools to assist and automate
in these scenarios.

6.3.2 IA Developers

We now discuss the other class of audience — the developers who wish to contribute to
the framework’s IA schemes. To this end, we consider two representative scenarios.

Consider first those developers who wish to improve existing IA schemes (for example,
investigating a novel set of behavioural features or simply tuning parameters). To demon-
strate the efficacy of their proposal, they need to develop a prototype and evaluate its
performance. Ideally, they should have access to an existing framework, giving them the

122

necessary components to perform tasks common to all IA schemes (e.g., data storage, train-
ing, classification) without re-engineering. The framework should allow these developers
to rapidly prototype their ideas without having their contributions moderated.

Secondly, consider developers who want to add support for behavioural classification
modules that the core framework does not anticipate. Specifically, the framework should
allow for new machine learning classification algorithms and new sensor-derived behavioural
features to be included alongside the core framework.

The framework should support these stakeholders and provide them with interfaces so
that they can use or contribute to the framework as smoothly as possible.

6.4 Design Goals

In the previous section we highlighted the two-fold audience we consider while outlining the
need for an app-centric IA framework: app developers and IA developers. Both groups of
developers are important for a successful IA framework to be adopted and remain relevant
over time. In this section, we outline our design goals for Itus — a framework for app-
centric IA; and how it supports both groups of developers in their efforts to provide usable
IA to end users.

Separation of roles: Performing end-user authentication in a secure, usable manner
is a challenging task that involves collaboration between IA developers and app developers.
Our IA framework should synergize the efforts of different stakeholders to protect user data
on mobile devices. In this spirit, we aim to incorporate a clear separation of roles that
distinguishes between app developers, who may not be domain experts in the mechanisms
underlying the system, from the IA developers or researchers working to improve the
system. We further recognize that security, systems and classification researchers all have
unique contributions to make and strive to make deployment of this individual components
in a full-scale system as painless a task as possible.

Ease of Use: Our framework should not simply permit app developers to provide IA
support in their apps, but also provide the app developer with an API to do so with minimal
effort. App developers should be rewarded for their extra attention to user security, not
punished with a burden of extended development time. Our goal is for Itus to be deployable
in a reasonable default configuration with the absolute minimum number of lines of code
changed as possible. The API should also allow configuration directives to be provided in
as straightforward a manner as possible.

123

Flexibility: While ease of use is critical for adoption of IA by the broader audience of
app developers, it is also important to make considerations for developers who have unique
app needs or who wish to fine-tune the accuracy or performance of the IA scheme to their
app. For example, for the web browser example discussed in Section 6.3, the developer
might be interested in making authentication decisions in a heavily context-aware manner.
To this end, he might decide that after users start playing an embedded video, they are
likely to hand off the device to another person and thus it would be undesirable for the
IA mechanism to interrupt viewing with an explicit authentication prompt. In the case
of the enterprise email client, the company’s IT department may wish to invest heavily
to provide high accuracy to ensure data security. In this case, the app developers should
be able to configure Itus with pre-recorded training data or parametrize the classifier to
improve its accuracy. We consider design features that allow for such examples of app-
specific functionality when providing flexibility to app developers.

Extensibility: Extensibility is a prerequisite design goal of any system that is to be
adopted by the community. Individual IA developers should be able to create and evalu-
ate prototypes for various subcomponents of the Itus framework without any dependence
on a centralized authority, and they should be able to distribute successful IA schemes
independently from the core Itus framework. Ideally, this leads to a situation in which
IA developers are able to deploy iterative improvements to the IA schemes while simul-
taneously allowing app developers to adopt these improvements at their own, perhaps
asymmetric, rate. Our framework should allow each of these groups to make contributions
without becoming embroiled in the specifics of framework subcomponents unrelated to
their particular tasks.

Performance: Finally, performance in terms of computational overhead and power
consumption is important to both the app developers and the researchers working on IA.
App developers are especially concerned with any performance penalty that is going to be
imposed on their apps, as this has a direct effect on their end-users’ experience. Therefore,
it is important that the framework itself consumes minimal resources so as to allow the
behavioural classification subcomponents as much time as possible to perform their tasks
before the end user is able to discern any differences.

To a lesser extent, IA researchers also have a stake in the performance of any IA im-
plementation. If they are to commit to implementing their prototypes in our framework,
then any computational cost added by the framework that comes in addition to the pro-
totype’s cost must be minimal or it may reflect badly on the prototype. To this end, we
consider performance at each stage of the design and implementation of Itus, and conduct
a performance measurement using real-world apps to make sure our goals have been met.

124

6.5 Architecture

SensorManager

Accelerometer Gyroscope

InputEvent

TouchEvent KeyEvent

Android Framework

Android App

Dispatcher

SecureActivity

SecureActivity

FeatureVector

Measurement

MultiMeasure Proximity Touch …

getFeatureVector()

Event Processor & Feature Extractor

Classifiers

kNN SVM …
Statistics Tools

Correlation calc.

Divergence calc.

Machine Learning Toolkit Data Storage

Recent Train
+
-

Classifier Models

Itus Library

Itus Agent & Prefabs

Itus Agent
Touchalytics

SilentSense …

train() classify()

extends

onAuthFail()

instantiates

implements

Figure 6.2: Itus framework architecture. Subclasses that are intended to be contributed
by IA developers are in dark blue dotted boxes. The interfaces exposed to app developers
are in red font.

This section gives an overview of the Itus system architecture. The core architecture of

125

Itus, illustrated in Figure 6.2, is as follows: app developers extend a customized Android
activity called SecureActivity, provided by the Itus library. Itus is then able to intercept
user interaction events, which are passed through feature extractors called Measurements
to obtain feature vectors. The Itus Agent gathers these feature vectors and hands them to
the classification algorithms for training and classification. In the event a classifier returns
a negative result (failed authentication), the Itus Agent then either notifies the parent app
of the failure or independently switches the app view to a lock screen. In what follows, we
will elaborate on how each of these links in the chain fit into the Itus framework.

6.5.1 SecureActivity

Interactive Android apps are composed of one or more “activities”, which are app compo-
nents that present the device user with a user interface to the app’s functionality. When a
developer creates a new Android app, one of the first steps is to create a subclass of An-
droid’s Activity class. Itus provides its own subclass of Activity called SecureActivity.
To add IA to an app using Itus, a developer simply changes any classes that extend
Activity to extend SecureActivity instead. This provides an incredibly simple way for
developers to add Itus to their existing apps, supporting our ease-of-use goal discussed in
Section 6.4. It also makes it trivial for developers to partition apps composed of multiple
activities into those that require authentication and those that do not (for example, a
banking app may not want to authenticate a person when he is locating a nearby ATM);
this supports our flexibility goal. This implementation puts our framework in an ideal place
to intercept user interaction events with the app in order to then use them as behavioural
features for classification.

6.5.2 Measurement and subclasses

Behavioural biometrics research examines a broad array of sensor values that may be useful
for distinguishing between different device users (see Chapter 2). In the Itus framework,
we generalize these widely varying channels to say that behavioural features are generally
calculated using some form of measurements taken from some on-board sensor. Thus we
provide an abstract class in Itus called Measurement, subclasses of which are intended to
extract measurements from any source accessible within the Android API (or extensions).
To further our examples of sensor values, Itus might contain subclasses of Measurement

called Touch, Keystroke, and Movement, respectively.

126

Measurement objects can register to receive events allowing them to process input data,
which are subsequently passed to them via a callback method called procEvent(). There
are two types of sensor readings: event-driven inputs and continuous readings. Event-
driven inputs are intuitive to handle; registered handlers are called to process an event
as soon as it occurs. The touch and keystroke examples are cases of event-driven inputs.
Continuous readings, in which a sensor provides measurements any time it is polled (e.g.,
the accelerometer), are more subtle to handle. To deal with these, we create Periodic

events, which function similarly to clock timer interrupts. Measurement objects analyzing
continuous feedback sensors are then invoked periodically at parameterizable intervals.
Some Measurements may provide feature values calculated from an aggregate of sensor
readings and not at every regular time interval; for these objects, we allow the event-
processing function to simply consume data and indicate that it is not yet ready to provide
any feature values.

It is worth noting at this point that Itus provides the ability for app developers to spec-
ify exactly which subclasses of Measurement they wish to use in their apps. If a particular
configuration of Itus does not use any Measurements that require special app permissions
within Android, then adding the Itus framework in that configuration to the app means
the app itself will also require no new permissions. Since apps are able to interact with the
touchscreen and keyboard automatically when they are running in the foreground, develop-
ers will always be able to add Itus to their app using Touch and Keystroke measurements
without modifying their app’s permissions list.

6.5.3 Dispatcher

In the last subsection, we said that events are given to various Measurement subclasses for
feature extraction. In keeping with our performance goals outlined in Section 6.4, it would
not be efficient to invoke the procEvent method of every single Measurement for every
single event. Instead, we create a Dispatcher class, which is responsible for delegating
event processing to any configured Measurement objects. When Itus is configured at run-
time to use a given Measurement subclass, an initialisation method is run from within that
class. The primary purpose of initialisation method is to register with the Dispatcher and
specify which events the Measurement would like to receive. Any events handled by Itus—
either intercepted from user input by SecureActivity or generated periodically—are thus
given to the Dispatcher, which in turn looks up the event type in a table to see which
Measurements have registered for it, optionally adds context information, and passes them
the event data via procEvent().

127

6.5.4 FeatureVector

As discussed previously, Measurement subclasses are responsible for taking data from events
and turning them into useful feature values. When procEvent() is called to deliver event
data to a Measurement object, the Measurement object will signal the Dispatcher if it has
a new set of feature values ready to be exported. After receiving the signal, the Dispatcher
will invoke the getFeatureVector() method of the Measurement subclass to retrieve these
values. Specifically, the feature values are stored in a class called FeatureVector. This
class is a 2-tuple made up of an array of double values and a boolean representing the
class of the feature vector (valid/invalid user).

6.5.5 DataStorage

A FeatureVector, as obtained above, is processed as follows: if training has already
been performed, then we simply classify this most recent sample. If training has yet
to be performed, the FeatureVector should be stored until enough data is collected to
perform training. In both cases, the Dispatcher will hand the FeatureVector over to
a DataStorage object, which will store the FeatureVector in a list (hereafter called a
“bin”) depending upon the classifier state. In the former case, when training is complete,
the FeatureVector will be placed into a bin labeled bin recent, which can have an upper
limit imposed on its size; this results in a sliding window, or FIFO queue, in which older
data is discarded after consumption by the classification module or upon arrival of newer
data. In the latter case, when training is pending, the FeatureVector is placed in the
longer-term bin training to be used for training once the bin reaches sufficient size.

The bins themselves are stored in a hashmap pointing to lists, and their names are
specified using arbitrary strings. This is to provide further support for our flexibility goal:
developers are able to use the DataStorage object’s functionality for novel purposes other
than the two outlined here. The DataStorage object can write the contents of its bins to
disk when requested, and will load them back each time the app is launched. It reads and
writes only to the app’s internal storage, so no special permissions need be added to the
app.

The DataStorage object is also used to store classifier models once they have been
trained. It has get() and put() methods allowing arbitrary data to be stored, allowing
IA developers to use it as a convenient storage mechanism via the app’s internal storage.

128

6.5.6 Itus Agent

Now that we have discussed the basic modules of our framework, we provide details of
how the actual invocation of training and classification are coordinated. These are done
by a class called Itus, which we refer to as the ‘Itus Agent’. The Itus Agent runs in
a separate thread from the main app. It is the main object that an app developer will
interact with when they are adding the Itus framework to their app and configuring it.
An instance of the Itus Agent class performs the configuration for all subcomponents of
the Itus framework, including which Measurement subclasses are used and which classifiers
are employed (see Section 6.5.8). The Itus Agent drives the periodic events described in
Section 6.5.2, enforces the authentication policy with training/classification and, where
necessary, locks the app in the event of a failure to implicitly authenticate.

In more detail, once training has been completed and a classifier has been obtained, the
Itus Agent then simply runs it periodically against the recent FeatureVectors stored in
bin recent. If a classifier returns a negative result representing an unauthorized user, the
Itus Agent reacts by performing its configured (or default) lock-screen action. If training
has yet to be completed, the Agent explicitly authenticates the user in order to establish
the ground truth for training data.

6.5.7 Itus Oracle

While we separate the domain knowledge of IA from its deployment by providing app
developers with a high-level API to provide IA support in their apps, we understand the
importance of correct selection of behavioural classifiers and suitable parametrization of
the underlying machine learning algorithms. To bridge the gap between app developers’
inexperience with IA schemes and the need for advanced configurations, we provide the Itus
Oracle to automatically determine the right classifier and optimal configuration parameters.

To use the Itus Oracle, the app developer deploys Itus in ‘configuration mode’. In this
mode, Itus collects and logs all feature vectors and gathers other measurements concerning
the data collection and performance of the app, such as timestamps, data sources, and pro-
cessing times. After multiple sessions of beta use in the configuration mode, the developer
then connects the device to a development computer and runs the Itus Oracle. The Itus
Oracle downloads the logged data from the device and analyzes it. It experiments with var-
ious machine learning tools, including any classification algorithms compatible with Itus,
and provides suggestions based on its analysis to the app developer. More information
about the implementation of the Itus Oracle is provided in Section 6.7.

129

6.5.8 Machine Learning Toolkit

The number of viable candidates for machine learning algorithms for classifying behavioural
feature sets is continually expanding. This is due not only to the ongoing research in the
field but also due to the fact that a classifier may work well in combination with a certain
feature set, while other classifiers may perform much better in cases where it is weak.
Therefore, it is highly desirable that the Itus framework be able to add support for many
classification algorithms without the development overhead of coupling them tightly with
the rest of the IA framework.

Itus does this by defining a Classifier interface with two self-documenting meth-
ods: train(List<FeatureVector>) and classify(FeatureVector). The classify()

method should return boolean value true for the positive class (authorized user) and
false for the negative class (unauthorized user). More fine-grained control, such as inter-
acting with confidence values, can be obtained by accessing Classifier objects directly.
The learned classifier is transparently loaded to and from disk between app launches via the
DataStorage object. We initially provide Itus with an implementation of the k-nearest-
neighbours (kNN) classifier, and a wrapper that allows the Java version of libSVM (Support
Vector Machines) [CL11] to be used as Classifiers.

An IA scheme may require use of only a subset of FeatureVectors from the training
set. For instance, the LXG scheme discussed in Chapter 5 only compares the unknown
(to be classified) swipe with positive and negative samples in the same swipe direction.
Such conditions are catered by providing an overloaded version of the train function,
which takes an additional argument of pivotIndex. When the pivotIndex argument is
provided, Itus employs only those FeatureVectors for classification that have matching
pivotIndex value.

Finally, the machine learning toolkit also contains statistics tools to measure correla-
tion and divergence between features to determine effectiveness of features of behavioural
classifiers. The Itus Oracle uses these tools to generate recommendations on features which
should be used for an app.

6.6 Workflow

In this section we outline the workflow that app developers must follow to provide IA
support in their apps using Itus. We also discuss how IA developers can benefit from Itus
and in return how they can contribute.

130

6.6.1 App Developers

As discussed in Section 6.3, we broadly consider two types of app developers: those who
want to use IA out-of-the-box, and those who want to tune the accuracy or performance
of Itus. For the former type, Itus can be effortlessly imported and used in their apps.
The app developer simply (i) identifies activities that should be protected, (ii) extends
the activities from Itus’ SecureActivity class, and (iii) starts the main thread of an
Itus object. Training and classification are performed automatically at this point (see
Section 6.7 for details).

On the other hand, if the developer wants to tune the performance or the accuracy
of a classifier, he uses the Itus Oracle to determine the best configurations for his app.
To this end, the app developer (i) identifies activities that require implicit authentication
and extends them from SecureActivity, (ii) starts Itus in configuration mode and gives
device(s) to beta users for data collection, (iii) connects the device to the Itus Oracle (on
the desktop) so that it can analyze data and generate recommendations, (iv) chooses from
the recommended configurations so that the Itus Oracle can repackage the library, and (v)
adds the repackaged library to the app and disables configuration mode.

Most classifiers require negative (non-owner) training data in order to provide high
accuracy. For this, an app can either use default negative instances included with Itus, or
it may package a subset of data collected during configuration mode as negative training
data. Since data collected during the configuration mode is labeled against each user, the
negative training set of a user is created by excluding his data. We anticipate that after
Itus is released in the public domain, it will also benefit from IA datasets that have been
made publicly available by the research community [FBM+13, SPW13].

6.6.2 IA Developers

Section 6.3 presented two types of IA developers we envision contributing to Itus. Itus
provides deliberate separation for contributions to the IA mechanism. In Section 6.5.2 we
described how new sensor features are added to Itus by extending the Measurement class.
Similarly, Section 6.5.8 described how new classification algorithms are added to Itus be
extending the Classifier class. These subclasses can be contributed to Itus independently
by the second group of IA developers discussed in Section 6.3.2.

Section 6.5.6 explained how app-specific configurations are stored in an Itus object.
Itus can provide for a variety of default configurations by simply distributing pre-built
Itus objects. In the Itus framework, we call such objects Prefabs and implement them by

131

deriving subclasses of Itus. These subclasses inherit all the functionality of the default Itus
Agent, and simply need to add a constructor that performs any configuration directives
that would normally be added by the app developer. These Prefabs can be compiled
and distributed separately from the Itus framework, allowing the first group of developers
discussed in Section 6.3.2 to propose new configurations or even modified behaviour of the
Itus Agent without needing their contribution to be accepted upstream by the core Itus
framework.

6.7 Implementation

We implemented the Itus framework in Android Java and the Itus oracle in Java. Itus is
distributed as a standalone library of and it can be imported and used by any Android
project that supports Android version 2.23 and above. This allows Itus to support the
majority of the Android devices in use today (99.9% Android devices in-the-wild as of
April, 2016 [Goo16b]). In this section, we discuss some of the significant implementation
decisions of Itus.

Event Interception: The API of Itus has been designed to abstract away the under-
lying low-level event collection from the app developer. While there exist mobile sensor
collection frameworks such as SoundSense [LPL+09] and Jigsaw [LYL+10], unfortunately
these frameworks exist for Nokia and Apple iOS and not for the Android OS. For event han-
dling in Android Activities, Android provides EventListener and EventHandler to the
app developers. Every user activity in an app is derived from the Android Activity class
and these events are first delivered to Activity.dispatchTouchEvent(). We provide the
SecureActivity class, which extends the Activity class and additionally provides con-
structs to optionally intercept and copy events before delivering them to the users. App
developers who want to provide IA support in their apps are expected to extend Secure-

Activity for transparent event interception.

Data Storage: For permanent storage, Itus uses an app’s internal storage. We chose
internal storage since: an app’s internal storage can only be accessed by the app itself
and a malicious app cannot gain access to the training model; and accessing an app’s
internal storage space does not require any explicit permissions. We require the training
model classes be Serializeable so they can be written and subsequently read from the
permanent storage automatically.

Training Set Size and Retraining: To perform training when the user first inter-
acts with a new app, a sufficient amount of data must be collected. The definition of

132

‘sufficient’ here has some room for interpretation, and so we provide two distinct ways
for developers to specify the training data threshold: absolutely and empirically. In the
absolute case, the developer sets the minimum threshold to some integer value (N), and
when bin training receives N samples of FeatureVectors, training is triggered. In the
empirical case, the developer specifies some minimum accuracy level to be attained during
training before considering training to be complete. Here, the Itus Agent runs training
periodically and evaluates accuracy using x-fold cross-validation (where x is another pa-
rameter) and stops when it achieves the desired target accuracy. This second method is
obviously significantly more performance-heavy than simply training at N instances, so
the oracle tool in Section 6.5.7 helps developers determine appropriate values of N .

In order to improve the user experience by reducing false rejects, Itus provides app
developers with the option to automatically retrain the classifier to improve its accuracy.
To this end, Itus first temporarily stores the FeatureVectors that are classified as non-
owner’s by the behavioural classifier. It then triggers the lockout activity to explicitly
authenticate the user. If the user successfully authenticates, Itus uses the misclassified
feature vectors to retrain the behaviour-based classifier. While retraining improves the
user experience, in addition to training overhead, it requires additional storage space to
save misclassified FeatureVectors.

Lockout Action: In case of authentication failure, the app developer may launch the
device’s default authentication mechanism (PINs/pass-locks). However, a large number of
device owners do not configure pass-locks on their devices and furthermore, if the attacker
has gained access to the device, he has already compromised the primary authentication
mechanism. Therefore, to support our off-the-shelf design goal, Itus provides app develop-
ers with a default PasswordConfigure activity, which is displayed when the app is launched
for the first time to configure a password that should be used for explicit authentication
in case the IA scheme detects misuse. Itus also provides a LockoutActivity to lock the
app when misuse is detected. The LockoutActivity is also used during the training phase
to establish the ground truth during data collection. The LockoutActivity overrides the
onBackPressed method of Activity to ignore in-app navigation attempts.

In addition to this, we provide the app developer with a more flexible option to deal with
authentication failures. The app developer registers a callback object, implementing our
AuthFailedListenter interface. This interface specifies a single onAuthFailed method,
which will be called whenever a classifier fails to implicitly authenticate the user. The app
developer is then able to handle authentication failure in any manner desired, supporting
our flexibility goal from Section 6.4. For example, a browser might choose to delete the
session cookies for any websites the user is currently logged in to.

133

Managing Timeouts: Itus provides app developers with the ability to pause and
resume IA to reduce performance overheads and to save battery life. Itus also provides
app developers with the functions to configure timeout intervals so that once a user is
successfully authenticated, Itus pauses feature collection and training for the specified
interval and resumes its operations when interval times out. App developer can also specify
whether they want to reset timeouts and resume IA in case of a screen-off event.

Multi-measurements and Multimodal Schemes: For advanced IA scenarios, we
enable the app developers to use multi-measurements by employing feature samples from
different measurement modules. For example, the SilentSense [BZL+13] uses events from
touch input and data from the motion sensor. Itus provides constructs that can be used
by the app developer to define relationships between measurement data from different
sources (MultiMeasurement in Figure 6.2). The app developer simply defines the causal
relationship between two events and the resultant FeatureVector is automatically gener-
ated. Similarly, Itus provides high-level constructs to the app developer to use multiple
behavioural classifiers. These constructs can be used by the developers to combine the
authentication score from different behavioural classifiers in a pre-condition or majority
score setting. For example, the enterprise email client might use a location-based classifier
as a pre-condition to trigger a touch-based classifier.

Itus Oracle: The Itus Oracle identifies suitable classifiers, optimal feature sets, and
operating threshold recommendations for the app developer. It determines an appropriate
classifier by evaluating the accuracy of Itus Prefabs on the data collected during the con-
figuration mode. This decision also takes into account the availability of data for different
Itus Prefabs. The optimal feature set for a particular app is determined by calculating
information gain for each feature on collected data. For example, for a navigation app,
Itus would automatically detect that the direction of a swipe is not a good feature (due
to its high variance on sampled data). Finally, the Itus Oracle provides the app developer
with the optimum threshold values by determining the operating point with the highest
accuracy.

Prefabs Selection: In the future, we envision using the Oracle as a method of curating
the implementations of IA presented to app developers. This will allow us to prevent ma-
licious schemes from entering the ecosystem, such as an IA developer creating a keystroke
Measurement that also functions as a keylogger. However, as running the Oracle or accept-
ing its recommendations are not necessary steps in order to use Itus, this approach allows
for researchers to freely experiment with IA, and for IA developers to distribute standalone
extensions to Itus. For now, we want to provide a diverse set of prefabs with Itus to demon-
strate its extensibility. To this end, we choose a keystroke classifier [FZCS13], a classifier
based on touch behaviour (Touchalytics) [FBM+13] and a classifier based on the micro-

134

movements of the mobile device caused by touch (SilentSense) [BZL+13]. The keystroke
classifier and Touchalytics only use user generated events (KeyEvent and TouchEvent, re-
spectively) while SilentSense uses data that merges user generated events (TouchEvent)
with periodic events (accelerometer data). Furthermore, the keystroke classifier and Touch-
alytics use kNN for classification while SilentSense employs SVM for classification.

6.8 Performance Evaluation

To provide a seamless user experience, it is critical for Itus to have minimum performance
overhead. Furthermore, since smartphones are power constrained devices, high battery
consumption of Itus may reduce its utility. In this section, we first discuss the experimen-
tal setup that we use for performance evaluation and we then provide the results of our
evaluation.

6.8.1 Experimental Setup

Device Selection: For performance evaluations, we use an HTC Nexus 1 and an LG
Nexus 4. The HTC Nexus 1 has Android OS v2.23 (Gingerbread) on a 1 GHz processor
with 512 MB of RAM. The LG Nexus 4 has Android OS v4.4 (KitKat) on a quad-core
1.5 GHz processor with 2 GB of RAM. Our selection of these diverse devices supplies an
overview of Itus performance on both old and recent hardware.

Performance Metrics For empirical evaluations, we are interested in the performance
of Itus against the IA schemes employed. For performance evaluations, we measure the
performance overhead in terms of elapsed CPU time and heap size of the app. We also
evaluate the battery consumption overhead of Itus. Finally, we evaluate the impact of Itus
on user experience by measuring the relative performance overhead of Itus with our demo
apps.

Demo Apps For demo apps to evaluate for performance purposes, we choose: (i)
Zirco Browser2: an open-source browser with between 50,000 and 100,000 installs at the
Google Play Store; and (ii) TextSecure3: a popular open-source encrypted communication
app with between 100,000 and 500,000 installs at the Google Play Store. These apps
were selected as our demo apps for two reasons: (i) both apps manage private data of the

2https://play.google.com/store/apps/details?id=org.zirco
3https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms

135

https://play.google.com/store/apps/details?id=org.zirco
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms

user, and (ii) usage of these apps results in different event types (TouchEvent for Zirco
and KeyEvent for TextSecure), which allows us to test the different classifiers discussed in
Section 6.7.

6.8.2 Evaluation Results

Development Overhead: For a developer who is employing Itus Prefabs, the develop-
ment overhead is minimal. While quantification of development overhead is a non-trivial
task, we herein provide our experience of adding Itus to the demo apps. To avoid any
bias due to the absence of a learning curve, we only report development overhead in terms
of the number of lines of code added/modified. To provide default IA support in Zirco
Browser and TextSecure, in addition to importing the Prefab class, we only modified 2
lines of code. As discussed in Section 6.6, the app developer extends the SecureActivity

class and launches a suitable Prefab (both operations are highlighted in Figure 6.3(a)).

However, if the app developer wants to optimize the classifiers, there would be more
development overhead (depending on the type of optimizations). The app developer can
use the Itus Oracle to perform optimizations automatically or choose to manually perform
optimizations in order to control certain aspects of IA scheme. In Figure 6.3(b), we show
one of the possible workflows an app developer might follow to manually employ touch
behaviour features for IA using the SVM classifier. The 10 lines of code (Lines 132–144)
in Figure 6.3(b) show how the developer: (i) instantiates Itus (Line 132); (ii) defines a
list of feature that should be used by the Measurement module (Lines 133, 139, 140); (iii)
configures parameters of the SVM classifier (Lines 135–137); and (iv) configures Itus to
use the Measurement and Classifier objects, and starts the Itus Agent (Lines 141–144).

Performance Evaluation of Itus: We instrument Itus to measure its performance
overhead in terms of elapsed CPU time and size of heap memory for different runtime
configurations. Since the operations of Itus depend on events that cannot be accurately
controlled manually, for repeatable experiments we use Monkey scripts [Goo16a] to sim-
ulate event generation. We repeat each experiment 15 times for three different runtime
configurations and report averages.

Table 6.2 and Table 6.3 show that both the keystroke classifier and Touchalytics require
low amount of CPU time and heap memory, respectively. More specifically, the feature
extraction and classification operations that are triggered for every input event, take under
1 and under 2 ms for the keystroke and Touchalytics classifiers, respectively on the Nexus
4 device. On the other hand, SilentSense — which uses SVM — takes close to 1 and 6
seconds for initialization and training, respectively. The CPU and memory overhead in

136

(a) Using a Prefab to provide IA support

(b) Using low-level constructs to provide IA support

Figure 6.3: Itus’ development overhead for Zirco Browser

137

Table 6.2: CPU time in milli-seconds for different configurations of Itus. 95% confidence
intervals are provided in parenthesis.

Initialization
Feature

Extraction
Training Classification

Nexus 1
Keystroke 21 (2) <1 ('0) <1 ('0) <1 ('0)

Touchalytics 5 ('0) <1 ('0) 65 (2) 2 ('0)
SilentSense 1162 (81) <1 ('0) 10384 (91) <1 ('0)

Nexus 4
Keystroke 12 ('0) <1 ('0) <1 ('0) <1 ('0)

Touchalytics 3 ('0) <1 ('0) 15 ('0) 1 ('0)
SilentSense 972 (67) <1 ('0) 5937 (329) <1 ('0)

Table 6.3: Heap memory in kBytes for different configurations of Itus. 95% confidence
intervals are provided in parenthesis.

Initialization
Feature

Extraction
Training Classification

Nexus 1
Keystroke 185 (6) <1 ('0) <1 ('0) 3 ('0)

Touchalytics 17 (3) 8 ('0) 49 (1) 51 (1)
SilentSense 1236 (15) 15 (1) 2472 (18) 4 ('0)

Nexus 4
Keystroke 186 (2) <1 ('0) <1 ('0) 3 ('0)

Touchalytics 16 ('0) 11 ('0) 53 ('0) 56 (5)
SilentSense 776 (34) 17 ('0) 2453 (39) 4 ('0)

the initialization process is due to the loading of negative instances from an app’s internal
storage. However, this overhead is incurred only once; after the creation of the training
model, feature extraction and classification takes less than a millisecond for a swipe. The
execution results show that both devices are able to extract features, and classify in a
reasonable amount of time.

Battery Consumption Overhead of Itus: We use PowerTutor [ZTQ+10] to mea-
sure battery consumption overhead by Itus. Micro-level overheads are recorded only during
individual user input events and are computed relative to the individual demo apps, while
macro-level overheads are recorded across a longer period of usage and computed relative
to the device. For reproducible experiments, we do not perform any network operations
(i.e., swipes are made on pre-downloaded pages in Zirco and for TextSecure the typed
message is not transmitted). Finally, battery consumption overhead results do not include
the one-time training cost of Itus prefabs.

For overhead at the micro-level, we measure the power consumption of the Keystroke
prefab by generating 160 keystroke events for classification. Similarly, we generate 40
swipe events for classification by the Touchalytics and SilentSense prefabs. Our empirical

138

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

Nexus-1 Nexus-4 Nexus-1 Nexus-4

Zirco TextSecure

E
la

p
se

d
 C

P
U

 T
im

e
 (

m
s)

Zirco

Zirco-Touchalytics

Zirco-SilentSense

TextSecure-Keystroke

TextSecure

(a) CPU Overhead

0
2

0
0

4
0

0
6

0
0

8
0

0

Nexus-1 Nexus-4 Nexus-1 Nexus-4

Zirco TextSecure

H
e

a
p

 S
iz

e
 (

k
B

)

Zirco

Zirco-Touchalytics

Zirco-SilentSense

TextSecure-Keystroke

TextSecure

(b) Memory Overhead

Figure 6.4: Itus’ CPU and memory overhead for demo apps. Error bars represent 95%
confidence intervals.

139

Table 6.4: Battery consumption overhead of Itus Prefabs on demo apps with a Nexus 1
device. Standard deviations are calculated across every hour of testing for each of 12 hours,
and are shown in parentheses.

Overhead
on the app

Overhead on
the device

Keystroke 39% (3) 1% ('0)

Touchalytics 9% ('0) 4% ('0)

SilentSense 14% (1) 6% (1)

evaluation results, provided in the “overhead on the app” column of Table 6.4. The battery
overhead for TextSecure is significantly higher because the battery consumption for normal
operation is negligible (unlike Zirco which requires relatively expensive graphic rendering
when swiped).

Computation of the macro-level overhead is a non-trivial task due to the large number
of variables involved, such as the number of running apps, network connection (3G/WiFi)
and the usage of other apps by the device user. To mitigate these variations, we create
a simple setup in which Nexus 1 devices are only executing the demo app, the Google
Mail app, the Google Talk app and the Launcher app. These devices are also executing
the default supporting systems Network Location, User Dictionary, Media Server and the
Radio and WiFi subsystems. Monkey scripts [Goo16a] were used to generate 40 swipe and
160 keystroke events after every 10 minute interval for 12 hours. Table 6.4 provides the
results for the macro level overhead in the “overhead on the device” column. It can be
observed from these results that all Itus Prefabs incur reasonably low overhead (1%, 4%
and 6% for Keystroke, Touchalytics and SilentSense prefabs, respectively) even on Android
devices with a minimal set of apps running.

Performance Overhead on Demo Apps: In addition to the performance evaluation
of standalone Itus, we also measure the performance overhead imposed by Itus on two demo
apps. The objective of this evaluation is to show that the relative performance overhead of
Itus is negligible enough to not compromise user experience. We instrument and measure
elapsed CPU time and heap memory size for the demo apps with and without Itus. The
experiment with Zirco was conducted by accessing the BBC and CNN homepages using
Zirco and swiping 20 times on each website without any delays. The experiment with the
TextSecure app was conducted by composing a text message of 160 characters (network
transmission was not included). Figures 6.4(a), 6.4(b) show the CPU overhead and memory
overhead for demo apps, respectively. It can be observed from Figure 6.4 that the CPU
and memory overhead for Itus is acceptable and Itus can be used without compromising
user experience.

140

6.9 Limitations

There are a few limitations to deployment the deployment of Itus on old and low-end
Android devices. Processing intensive IA schemes on Android devices with low-end pro-
cessors might affect user experience. Similarly, for IA schemes that rely on sensor data
from different on-board sensors, the accuracy of Itus will be negatively affected on some of
the old devices with low sampling rates. However, these are trivial limitations given the
high penetration of modern Android devices.

Another limitation of our approach is that each instance of Itus executes in isolation
from other instances on the same device. Therefore, every app that uses Itus requires a
separate training model and an instance of the Itus library in memory. This requires addi-
tional storage and increases apps’ memory footprints. Finally, while independent execution
of multiple Itus instances precludes any information sharing across these instances, this is
by design to prevent any potential security issues arising from malicious apps.

Itus deployment is of course subject to all the limitations of existing IA mechanisms.
For example, if an intruder comes across a device resting on a stable surface and protected
by the SilentSense prefab, there would be no movement data available to classify him.
Similarly, it may be possible for attackers to use mimicry attacks to defeat IA (similar
to the ones uncovered in Chapter 5). One of the benefits of providing an extensible IA
framework is that it can easily incorporate defences against mimicry attacks as soon as they
are proposed by security researchers. Furthermore, the low-level constructs provided by
Itus can be leveraged to identify mimicry resilient features to further research on building
secure IA schemes that are not vulnerable to such attacks.

6.10 Conclusion

We have proposed Itus, a framework for providing IA support on smartphones, and pro-
vided an open-source implementation for Android. Itus separates the domain knowledge
of IA from its deployment to bridge the gap between IA research and practice. The archi-
tecture of Itus is designed with flexibility in mind for app developers, allowing them choice
between modular subcomponents implementing different mechanisms for behavioural fea-
ture classification. The Itus framework is easily extensible to allow IA developers to easily
provide such subcomponents. Itus also provides app developers with the ability to option-
ally configure the behaviour of the IA mechanism to their application’s needs by using an
Oracle program to determine suitable classifiers and configuration parameters. The API of

141

Itus has been designed to effortlessly provide IA in Android apps. Empirical evaluations of
Itus in real-world demo apps show that it has acceptably low overhead. We have made Itus
publicly available in open-source for Android. We hope that Itus will enable the research
community to collaborate better to further research in the IA domain and also to enable
the adoption of IA.

142

Chapter 7

Conclusion and Future Work

To conclude this thesis, we summarize our research contributions, discuss research direc-
tions based on this work and offer concluding remarks.

7.1 Research Contributions

Our major objective was to perform a realistic evaluation of the usability, security, and
deployability related issues of IA. To this end, we reviewed existing IA literature to uncover
serious limitations including: (1) IA proposals are evaluated on limited evaluation criteria
on synthetic datasets and weak adversarial models; (2) the existing IA literature on us-
ability evaluations reports results only on lab-based experiments and without briefing the
participants on the limitations of IA; (3) shoulder surfing attacks on IA have been dismissed
without empirical evaluations; and (4) the existing IA framework proposals have failed to
provide any working implementation for IA deployments. Some of these limitations have
led to misleading results in terms of the efficacy of IA.

To further gain insight into these limitations, we evaluated six diverse IA schemes
on real-world datasets using eight evaluation metrics including: (1) accuracy; (2) data
availability; (3) training delay; (4) detection delay; (5) CPU and memory overhead; (6)
uniqueness of behavioural features; (7) vulnerability to mimicry attacks; and (8) deploy-
ment issues on mobile platforms. Our results showed that while the majority of IA schemes
provided reasonable accuracy with low detection delay, touch IA outperformed others by
providing near real-time misuse detection with high accuracy. We also found that except
touch IA schemes, IA schemes frequently did not have enough data available for classifica-
tion and incurred significant training and detection delays. These findings provide a holistic

143

picture of the performance of IA and confirm the significance of the extended evaluation
criteria. Similarly, we noted lower accuracy than the accuracy reported in the original
papers, which indicates the importance of using real-world datasets for evaluations.

We performed lab- and field-based evaluations to establish the usability and security
perceptions of IA. To this end, we found no significant difference between IA and explicit
authentication using the system usability scale, although more users agreed that IA was
more convenient. We also found that the majority of our participants were interested in
adopting or trying IA with possibility of adoption. On the other hand, annoyance was a
potential issue with IA in terms of usability. Our debriefing of IA along with its limitations
and the field experience of the participants also uncovered that the detection delay and
false accepts were a security concern.

We scrutinized the weak adversary model by evaluating two realistic attack scenarios
from malicious insiders on touch IA. Our evaluation showed that it is surprisingly easy to
bypass these schemes using shoulder surfing and offline training attacks. We showed the
fallacy of the accepted assumption that shoulder surfing attacks on touch IA are infeasible
due to the hidden nature of some features. We also make available the necessary apparatus
for researchers to evaluate these attacks on future IA proposals.

Finally, we identified some of the deployment challenges to IA and showed there is
a need for a framework that supports: (1) different behavioural classifiers, given that
different apps have different requirements; (2) app developers using IA without becoming
domain experts; and (3) real-time classification on resource-constrained mobile devices.
We developed Itus, an IA framework for Android that allows the research community
to further research in the IA domain without excessive re-engineering while allowing app
developers to adopt these improvements with minimum effort.

7.2 Future Research

We have described several possible avenues for future work in the previous chapters. We
now consolidate these to outline key challenges that we believe are detrimental to IA
adoption.

In Chapter 3, we noted the significance of using real-world traces for the evaluation of
IA schemes. We also noted the unavailability of publicly available, real-world datasets of
user behaviour on smartphones. A major factor that prohibits data sharing for a majority
of data collection campaigns is privacy of the users. A system that gathers, curates and

144

provides access to unbiased behavioural data while preserving privacy of the users can
prove to be beneficial to the IA research community.

Chapter 4 provided empirical evidence for the human side of IA. However, our focus was
only on the accuracy and detection delay metrics. Other metrics identified in Chapter 3
(such as training delay or battery consumption due to CPU overhead) may also contribute
to the users’ willingness to (not) adopt IA. Furthermore, we observed that the detection
delay was a concern for several users. The emphasis of multi-modal IA proposals is to
improve the accuracy. Instead, multi-modal IA proposals should intelligently combine
data from various sources to reduce the detection delay. It is important that the detection
delay is used as a critical evaluation metric for multi-modal IA proposals to alleviate users’
concern regarding the security of IA.

Our usability evaluations of IA were based on a pseudo-IA scheme. This enabled us to
control the frequency and timings of false rejects during the three day field study. While we
chose realistic false reject rates, the behaviour of the pseudo-IA scheme was different from
a real IA scheme. A longer evaluation study that employs a fully operational IA scheme to
further demonstrate true rejects needs to be performed to establish more accurate security
perceptions and willingness to adopt IA.

In Chapter 5, we established the susceptibility of touch IA to shoulder surfing and offline
training attacks. Similar attacks were successfully mounted on gait IA (see Section 2.4.8).
However, it is unclear whether keystroke IA and multi-modal IA schemes are subject to
similar attacks. Furthermore, our investigations of touch IA showed that some features
were easier to mimic than others. It needs to be established whether a multi-modal fusion
of behavioural features or filtering of easier to mimic features will reduce the severity of
these attacks. Establishing the mimicry resilience of IA, in our opinion, is the most pressing
avenue of future work in the IA domain.

Chapter 6 introduced Itus, which can be used by the IA research community to further
research in IA and by app developers to provide IA support on off-the-shelf Android devices.
In terms of IA deployment in the enterprise environment, there are scenarios where it is
beneficial to share the authentication score or behavioural data across apps. For instance
the enterprise calendar and email apps can share some of Itus’ state information (such
as the most recent authentication score) to better authenticate the users. It would be
useful to provide interfaces in Itus to enable state sharing across apps from the same app
providers.

We also introduced the Itus Oracle, which performs automated evaluations to deter-
mine a suitable classifier based on the data availability and accuracy. The Itus Oracle
can be extended to support other evaluation metrics that we identified in Chapter 3. By

145

supporting other evaluation metrics, Itus will provide a holistic view of IA schemes’ perfor-
mance. Finally, Itus requires ongoing maintenance from the research community in terms
of novel measurements and corresponding features.

7.3 Conclusion

Our goal in this thesis was to perform a realistic evaluation of IA to determine whether
state of the art IA proposals can mitigate the usability and security limitations of primary
authentication mechanisms. However, our evaluations indicated that several critical chal-
lenges in terms of security properties and usability of IA need to be resolved before IA
is ready for wide scale deployments. To help resolve these challenges, we provide design
guidelines and an open source framework. We emphasize the need for more comprehensive
and rigorous evaluations of IA with active involvement from human subjects (for usability
and stronger adversarial model perspective) than done by the current state of the art.

146

References

[AGM+10] Adam J Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and Jonathan M
Smith. Smudge attacks on smartphone touch screens. In 4th Usenix Confer-
ence on Offensive Technologies. Usenix Association, 2010.

[AGSN15] Asadullah Al Galib and Reihaneh Safavi-Naini. User authentication using
human cognitive abilities. In 18th International Conference on Financial
Cryptography and Data Security. Springer, 2015.

[AKH16] Lalit Agarwal, Hassan Khan, and Urs Hengartner. Ask me again but don’t
annoy me: Evaluating re-authentication strategies for smartphones. In 12th
Symposium on Usable Privacy and Security. USENIX Association, 2016.

[AMN+98] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and An-
gela Y Wu. An optimal algorithm for approximate nearest neighbor searching
fixed dimensions. Journal of the ACM, 45(6):891–923, 1998.

[And16] Android Authority. Android Jelly Bean Face Unlock liveness check easily
hacked with photo editing. http://www.androidauthority.com/android-
jelly-bean-face-unlock-blink-hacking-105556/, March 2016.

[App16] AppLock. Third party app to password protect apps. https:

//play.google.com/store/apps/details?id=com.sp.protector.free,
March 2016.

[ARKR13] Kumar Abhishek, Sahana Roshan, Prabhat Kumar, and Rajeev Ranjan. A
comprehensive study on multifactor authentication schemes. In Advances in
Computing and Information Technology. Springer, 2013.

[ATOY13] Panagiotis Andriotis, Theo Tryfonas, George Oikonomou, and Can Yildiz.
A pilot study on the security of pattern screen-lock methods and soft side

147

http://www.androidauthority.com/android-jelly-bean-face-unlock-blink-hacking-105556/
http://www.androidauthority.com/android-jelly-bean-face-unlock-blink-hacking-105556/
https://play.google.com/store/apps/details?id=com.sp.protector.free
https://play.google.com/store/apps/details?id=com.sp.protector.free

channel attacks. In 6th ACM Conference on Security and Privacy in Wireless
and Mobile Networks. ACM, 2013.

[BAKS+11] Noam Ben-Asher, Niklas Kirschnick, Hanul Sieger, Joachim Meyer, Asaf
Ben-Oved, and Sebastian Möller. On the need for different security meth-
ods on mobile phones. In International Conference on Human Computer
Interaction with Mobile Devices and Services. ACM, 2011.

[BC94] Donald J Berndt and James Clifford. Using dynamic time warping to find
patterns in time series. In KDD Workshop, 1994.

[BCVO12] Robert Biddle, Sonia Chiasson, and Paul C Van Oorschot. Graphical pass-
words: Learning from the first twelve years. ACM Computing Surveys,
44(4):19, 2012.

[BDG14] Senaka Buthpitiya, Anind K Dey, and Martin Griss. Soft authentication with
low-cost signatures. In International Conference on Pervasive Computing
and Communications. IEEE, 2014.

[BDLA15] Daniel Buschek, Alexander De Luca, and Florian Alt. Improving accuracy,
applicability and usability of keystroke biometrics on mobile touchscreen
devices. In 33rd Annual ACM Conference on Human Factors in Computing
Systems. ACM, 2015.

[BDLA16] Daniel Buschek, Alexander De Luca, and Florian Alt. Evaluating the influ-
ence of targets and hand postures on touch-based behavioural biometrics.
In 34th Annual ACM Conference on Human Factors in Computing Systems.
ACM, 2016.

[BH14] Ulrich Burgbacher and Klaus Hinrichs. An implicit author verification system
for text messages based on gesture typing biometrics. In 32nd Annual ACM
Conference on Human Factors in Computing Systems. ACM, 2014.

[BHVOS12] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano.
The quest to replace passwords: A framework for comparative evaluation of
web authentication schemes. In IEEE Symposium on Security and Privacy.
IEEE, 2012.

[BHvOS15] Joseph Bonneau, Cormac Herley, Paul C van Oorschot, and Frank Stajano.
Passwords and the evolution of imperfect authentication. Communications
of the ACM, 58(7):78–87, 2015.

148

[BK06] Brian P Bailey and Joseph A Konstan. On the need for attention-aware
systems: Measuring effects of interruption on task performance, error rate,
and affective state. Computers in Human Behavior, 22(4), 2006.

[BLM07] Lucas Ballard, Daniel Lopresti, and Fabian Monrose. Forgery quality and
its implications for behavioral biometric security. IEEE Transactions on
Systems, Man, and Cybernetics, 37(5):1107–1118, 2007.

[Bro96] John Brooke. SUS – a quick and dirty usability scale. Usability Evaluation
in Industry, 189(194), 1996.

[BUI+15] Chandrasekhar Bhagavatula, Blase Ur, Kevin Iacovino, Su Mon Kywe, Lor-
rie Faith Cranor, and Marios Savvides. Biometric authentication on iphone
and android: Usability, perceptions, and influences on adoption. In NDSS
Workshop on Usable Security, 2015.

[BW12] Salil P Banerjee and Damon L Woodard. Biometric authentication and iden-
tification using keystroke dynamics: A survey. Journal of Pattern Recogni-
tion Research, 7(1):116–139, 2012.

[BZL+13] Cheng Bo, Lan Zhang, Xiang-Yang Li, Qiuyuan Huang, and Yu Wang.
Silentsense: silent user identification via touch and movement behavioral
biometrics. In 19th Annual International Conference on Mobile Computing
& Networking. ACM, 2013.

[CC11] Liang Cai and Hao Chen. Touchlogger: Inferring keystrokes on touch screen
from smartphone motion. In Usenix HotSec. Usenix Association, 2011.

[CC13] Hsin-Yi Chiang and Sonia Chiasson. Improving user authentication on mo-
bile devices: a touchscreen graphical password. In 15th International Con-
ference on Human-computer Interaction with Mobile Devices and Services.
ACM, 2013.

[CF07] Nathan Clarke and Steven Furnell. Authenticating mobile phone users using
keystroke analysis. International Journal of Information Security, 6(1), 2007.

[CG96] Stanley F Chen and Joshua Goodman. An empirical study of smoothing tech-
niques for language modeling. In Proceedings of the 34th annual meeting on
Association for Computational Linguistics. Association for Computational
Linguistics, 1996.

149

[CH67] Thomas M Cover and Peter E Hart. Nearest neighbor pattern classification.
IEEE Transactions on Information Theory, 13(1):21–27, 1967.

[CK13] Tao Chen and Min-Yen Kan. Creating a live, public short message ser-
vice corpus: The NUS SMS corpus. Language Resources and Evaluation,
47(2):299–335, 2013.

[CKF09] Nathan Clarke, Sevasti Karatzouni, and Steven Furnell. Flexible and trans-
parent user authentication for mobile devices. In Emerging Challenges for
Security, Privacy and Trust. Springer, 2009.

[CL11] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vec-
tor machines. ACM Transactions on Intelligent Systems and Technology,
2(3):27, 2011.

[CPH11] Prima Chairunnanda, Nam Pham, and Urs Hengartner. Privacy: Gone with
the typing! identifying web users by their typing patterns. In IEEE 3rd
International Conference on Social Computing Privacy, Security, Risk and
Trust. IEEE, 2011.

[CR14] Heather Crawford and Karen Renaud. Understanding user perceptions of
transparent authentication on a mobile device. Journal of Trust Manage-
ment, 1(7), 2014.

[CRS13] Heather Crawford, Karen Renaud, and Tim Storer. A framework for con-
tinuous, transparent mobile device authentication. Computers & Security,
39:127–136, 2013.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[CvO13] Jeremy Clark and Paul C van Oorschot. SoK: SSL and HTTPS: Revisiting
past challenges and evaluating certificate trust model enhancements. In IEEE
Symposium on Security and Privacy. IEEE, 2013.

[DHA10] Paul Dunphy, Andreas P Heiner, and N Asokan. A closer look at recognition-
based graphical passwords on mobile devices. In 6th Symposium on Usable
Privacy and Security. ACM, 2010.

[DHS12] Richard O Duda, Peter E Hart, and David G Stork. Pattern Classification.
John Wiley & Sons, 2012.

150

[DKP14] Dimitrios Damopoulos, Georgios Kambourakis, and Georgios Portokalidis.
The best of both worlds: a framework for the synergistic operation of host
and cloud anomaly-based IDS for smartphones. In 7th European Workshop
on System Security. ACM, 2014.

[DLHB+12] Alexander De Luca, Alina Hang, Frederik Brudy, Christian Lindner, and
Heinrich Hussmann. Touch me once and I know it’s you!: implicit authenti-
cation based on touch screen patterns. In 30th Annual ACM Conference on
Human Factors in Computing Systems. ACM, 2012.

[DLHVZH15] Alexander De Luca, Alina Hang, Emanuel Von Zezschwitz, and Heinrich
Hussmann. I feel like I’m taking selfies all day!: Towards understanding
biometric authentication on smartphones. In 33rd Annual ACM Conference
on Human Factors in Computing Systems. ACM, 2015.

[Dro16] DroidLife. Smart lock. http://www.droid-life.com/tag/smart-lock/,
March 2016.

[DZZ14] Benjamin Draffin, Jiang Zhu, and Joy Zhang. Keysens: Passive user authen-
tication through micro-behavior modeling of soft keyboard interaction. In
Mobile Computing, Applications, and Services. Springer, 2014.

[EJP+14] Serge Egelman, Sakshi Jain, Rebecca S Portnoff, Kerwell Liao, Sunny Con-
solvo, and David Wagner. Are you ready to lock? In ACM SIGSAC Con-
ference on Computer & Communications Security. ACM, 2014.

[ERLM15] Simon Eberz, Kasper B Rasmussen, Vincent Lenders, and Ivan Martinovic.
Preventing lunchtime attacks: Fighting insider threats with eye movement
biometrics. In 22nd Annual Network & Distributed System Security Sympo-
sium, 2015.

[FBM+13] Mario Frank, Ralf Biedert, Eugene Ma, Ivan Martinovic, and Dawn Song.
Touchalytics: On the applicability of touchscreen input as a behavioral bio-
metric for continuous authentication. IEEE Transactions on Information
Forensics and Security, 8(1):136–148, 2013.

[FGG97] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network clas-
sifiers. Machine learning, 29(2-3), 1997.

151

http://www.droid-life.com/tag/smart-lock/

[FKK10] Denis Foo Kune and Yongdae Kim. Timing attacks on pin input devices. In
ACM SIGSAC Conference on Computer & Communications Security. ACM,
2010.

[FLK+12a] Tao Feng, Ziyi Liu, Kyeong-An Kwon, Weidong Shi, Bogdan Carbunar, Yifei
Jiang, and Ngac Ky Nguyen. Continuous mobile authentication using touch-
screen gestures. In Symposium on Technologies for Homeland Security. IEEE,
2012.

[FLK+12b] Tao Feng, Ziyi Liu, Kyeong-An Kwon, Weidong Shi, Bogdan Carbunar, Yifei
Jiang, and Nhung Nguyen. Continuous mobile authentication using touch-
screen gestures. In Symposium on Technologies for Homeland Security. IEEE,
2012.

[FMP10] Jordan Frank, Shie Mannor, and Doina Precup. Activity and gait recognition
with time-delay embeddings. In AAAI Conference on Artificial Intelligence,
2010.

[FWGK15] Lex Fridman, Steven Weber, Rachel Greenstadt, and Moshe Kam. Active au-
thentication on mobile devices via stylometry, application usage, web brows-
ing, and gps location. arXiv preprint arXiv:1503.08479, 2015.

[FYY+14] Tao Feng, Jun Yang, Zhixian Yan, Emmanuel Munguia Tapia, and Weidong
Shi. Tips: Context-aware implicit user identification using touch screen in
uncontrolled environments. In 15th Workshop on Mobile Computing Systems
and Applications. ACM, 2014.

[FZCS13] Tao Feng, Xi Zhao, Bogdan Carbunar, and Weidong Shi. Continuous mobile
authentication using virtual key typing biometrics. In 12th International
Conference on Trust, Security and Privacy in Computing and Communica-
tions. IEEE, 2013.

[FZD+15] Tao Feng, Xi Zhao, Nick DeSalvo, Tzu-Hua Liu, Zhimin Gao, Xi Wang,
and Weidong Shi. An investigation on touch biometrics: Behavioral factors
on screen size, physical context and application context. In International
Symposium on Technologies for Homeland Security. IEEE, 2015.

[Gar16] Gartner, Inc. Predicts 2014: Mobile and wireless. https://www.gartner.

com/doc/2620815/predicts--mobile-wireless, March 2016.

152

https://www.gartner.com/doc/2620815/predicts--mobile-wireless
https://www.gartner.com/doc/2620815/predicts--mobile-wireless

[GHS06] Davrondzhon Gafurov, Kirsi Helkala, and Torkjel Søndrol. Biometric gait
authentication using accelerometer sensor. Journal of Computers, 1(7):51–
59, 2006.

[GMCB14] Cristiano Giuffrida, Kamil Majdanik, Mauro Conti, and Herbert Bos.
I sensed it was you: Authenticating mobile users with sensor-enhanced
keystroke dynamics. In Detection of Intrusions and Malware, and Vulnera-
bility Assessment. Springer, 2014.

[Goo16a] Google Play. Android UI/Application Exerciser Monkey. https://

developer.android.com/tools/help/monkey.html, March 2016.

[Goo16b] Google Play. Google play install stats. http://developer.android.com/

about/dashboards/index.html, March 2016.

[GS09] Barney G Glaser and Anselm L Strauss. The discovery of grounded theory:
Strategies for qualitative research. Transaction Publishers, 2009.

[GSB07] Davrondzhon Gafurov, Einar Snekkenes, and Patrick Bours. Spoof attacks
on gait authentication system. IEEE Transactions on Information Forensics
and Security, 2(3):491–502, 2007.

[HCP09] Seong-seob Hwang, Sungzoon Cho, and Sunghoon Park. Keystroke
dynamics-based authentication for mobile devices. Computers & Security,
28(1):85–93, 2009.

[HDBDJ96] Martin T Hagan, Howard B Demuth, Mark H Beale, and Orlando De Jesús.
Neural network design, volume 20. PWS Publishing Company, 1996.

[HDLE16] Marian Harbach, Alexander De Luca, and Serge Egelman. The anatomy of
smartphone unlocking. In 34th Annual ACM Conference on Human Factors
in Computing Systems. ACM, 2016.

[HDLME16] Marian Harbach, Alexander De Luca, Nathan Malkin, and Serge Egelman.
Keep on lockin’ in the free world: A multi-national comparison of smartphone
locking. In 34th Annual ACM Conference on Human Factors in Computing
Systems. ACM, 2016.

[Hol79] Sture Holm. A simple sequentially rejective multiple test procedure. Scan-
dinavian journal of statistics, pages 65–70, 1979.

153

https://developer.android.com/tools/help/monkey.html
https://developer.android.com/tools/help/monkey.html
http://developer. android.com/about/dashboards/index.html
http://developer. android.com/about/dashboards/index.html

[HRS+12] Eiji Hayashi, Oriana Riva, Karin Strauss, AJ Brush, and Stuart Schechter.
Goldilocks and the two mobile devices: going beyond all-or-nothing access to
a device’s applications. In 8th Symposium on Usable Privacy and Security.
ACM, 2012.

[HVZF+14] Marian Harbach, Emanuel Von Zezschwitz, Andreas Fichtner, Alexander
De Luca, and Matthew Smith. It’s a hard lock life: A field study of smart-
phone (un) locking behavior and risk perception. In 10th Symposium on
Usable Privacy and Security, 2014.

[HWY+15] Feng Hong, Meiyu Wei, Shujuan You, Yuan Feng, and Zhongwen Guo. Wav-
ing authentication: your smartphone authenticate you on motion gesture.
In 33rd Annual ACM Conference Extended Abstracts on Human Factors in
Computing Systems. ACM, 2015.

[Jol05] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2005.

[JRP04] Anil K Jain, Arun Ross, and Salil Prabhakar. An introduction to biometric
recognition. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 14(1), 2004.

[JSGC09] Markus Jakobsson, Elaine Shi, Philippe Golle, and Richard Chow. Implicit
authentication for mobile devices. In 4th Usenix Conference on Hot Topics
in Security. Usenix Association, 2009.

[JXBJ+12] Felix Juefei-Xu, Chandrasekhar Bhagavatula, Aaron Jaech, Unni Prasad,
and Marios Savvides. Gait-id on the move: pace independent human identi-
fication using cell phone accelerometer dynamics. In 5th International Con-
ference on Biometrics: Theory, Applications and Systems. IEEE, 2012.

[KAH14a] Hassan Khan, Aaron Atwater, and Urs Hengartner. A comparative evalu-
ation of implicit authentication schemes. In Recent Advances in Intrusion
Detection. Springer, 2014.

[KAH14b] Hassan Khan, Aaron Atwater, and Urs Hengartner. Itus: an implicit authen-
tication framework for android. In 20th Annual International Conference on
Mobile Computing & Networking. ACM, 2014.

[KH14] Hassan Khan and Urs Hengartner. Towards application-centric implicit au-
thentication on smartphones. In 15th Workshop on Mobile Computing Sys-
tems and Applications. ACM, 2014.

154

[KJB+14] Hilmi Günes Kayacık, Mike Just, Lynne Baillie, David Aspinall, and Nicholas
Micallef. Data driven authentication: On the effectiveness of user behaviour
modelling with mobile device sensors. In Mobile Security Technologies, 2014.

[KL51] Solomon Kullback and Richard A Leibler. On information and sufficiency.
The annals of mathematical statistics, 22(1):79–86, 1951.

[KPJ15] Rajesh Kumar, Vir V Phoha, and Anshumali Jain. Treadmill attack on
gait-based authentication systems. In 8th International Conference on Bio-
metrics: Theory, Applications and Systems. IEEE, 2015.

[KWM10] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Cell phone-based
biometric identification. In International Conference on Biometrics: Theory,
Applications and Systems. IEEE, 2010.

[KY04] Bryan Klimt and Yiming Yang. Introducing the enron corpus. In CEAS,
2004.

[LCL13] Chien-Cheng Lin, Chin-Chun Chang, and Deron Liang. A novel non-
intrusive user authentication method based on touchscreen of smartphones.
In International Symposium on Biometrics and Security Technologies. IEEE,
2013.

[LCPD10] Fudong Li, Nathan Clarke, Maria Papadaki, and Paul Dowland. Behaviour
profiling on mobile devices. In International Conference on Emerging Secu-
rity Technologies. IEEE, 2010.

[LL15] Li Lu and Yongshuai Liu. Safeguard: User reauthentication on smartphones
via behavioral biometrics. IEEE Transactions on Computational Social Sys-
tems, 2(3):53–64, 2015.

[Loo16] Lookout Blog. Sprint and lookout consumer mobile behavior sur-
vey. http://blog.lookout.com/blog/2013/10/21/sprint-and-lookout-
survey/, March 2016.

[LPL+09] Hong Lu, Wei Pan, Nicholas D Lane, Tanzeem Choudhury, and Andrew T
Campbell. Soundsense: scalable sound sensing for people-centric applica-
tions on mobile phones. In 7th International Conference on Mobile systems,
Applications, and Services. ACM, 2009.

155

http://blog.lookout.com/blog/2013 /10/21/sprint-and-lookout-survey/
http://blog.lookout.com/blog/2013 /10/21/sprint-and-lookout-survey/

[LYL+10] Hong Lu, Jun Yang, Zhigang Liu, Nicholas D Lane, Tanzeem Choudhury,
and Andrew T Campbell. The jigsaw continuous sensing engine for mobile
phone applications. In 8th ACM Conference on Embedded Networked Sensor
Systems. ACM, 2010.

[LZX13] Lingjun Li, Xinxin Zhao, and Guoliang Xue. Unobservable reauthentica-
tion for smart phones. In 20th Network and Distributed System Security
Symposium, 2013.

[MBK+13] Ildar Muslukhov, Yazan Boshmaf, Cynthia Kuo, Jonathan Lester, and Kon-
stantin Beznosov. Know your enemy: the risk of unauthorized access in
smartphones by insiders. In International Conference on Human-Computer
Interaction with Mobile Devices and Services. ACM, 2013.

[MCGCN] Emanuele Maiorana, Patrizio Campisi, Noelia González-Carballo, and
Alessandro Neri. Keystroke dynamics authentication for mobile phones. In
Symposium on Applied Computing. ACM.

[MJB+15] Nicholas Micallef, Mike Just, Lynne Baillie, Martin Halvey, and Hilmi Güneş
Kayacik. Why arent users using protection? investigating the usability of
smartphone locking. In 17th International Conference on Human-computer
Interaction with Mobile Devices and Services, 2015.

[MKV+13] Michelle L Mazurek, Saranga Komanduri, Timothy Vidas, Lujo Bauer, Nico-
las Christin, Lorrie Faith Cranor, Patrick Gage Kelley, Richard Shay, and
Blase Ur. Measuring password guessability for an entire university. In ACM
SIGSAC Conference on Computer & Communications Security. ACM, 2013.

[MLV+05] Jani Mantyjarvi, Mikko Lindholm, Elena Vildjiounaite, S-M Makela, and
HA Ailisto. Identifying users of portable devices from gait pattern with
accelerometers. In International Conference on Acoustics, Speech, and Signal
Processing, volume 2. IEEE, 2005.

[MM13] Muhammad Muaaz and René Mayrhofer. An analysis of different approaches
to gait recognition using cell phone based accelerometers. In International
Conference on Advances in Mobile Computing & Multimedia. ACM, 2013.

[MM14] Muhammad Muaaz and Rene Mayrhofer. Orientation independent cell phone
based gait authentication. In 12th International Conference on Advances in
Mobile Computing and Multimedia. ACM, 2014.

156

[MMMC+14] Shrirang Mare, Andres Molina-Markham, Cory Cornelius, Ronald Peterson,
and David Kotz. Zebra: Zero-effort bilateral recurring authentication. In
IEEE Symposium on Security and Privacy. IEEE, 2014.

[MSBF15] Rahul Murmuria, Angelos Stavrou, Daniel Barbará, and Dan Fleck. Con-
tinuous authentication on mobile devices using power consumption, touch
gestures and physical movement of users. In Research in Attacks, Intru-
sions, and Defenses. Springer, 2015.

[MVBC12] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and
Romit Roy Choudhury. Tapprints: your finger taps have fingerprints. In
10th International Conference on Mobile Systems, Applications, and Ser-
vices. ACM, 2012.

[New16] New Scientist. Touchscreen phones know it’s you from taps and
swipes. http://www.newscientist.com/article/dn24193-touchscreen-

phones-know-its-you-from-taps-and-swipes.html, March 2016.

[NWS15] Tempestt J Neal, Damon L Woodard, and Aaron D Striegel. Mobile device
application, bluetooth, and wi-fi usage data as behavioral biometric traits.
In 8th International Conference on Biometrics: Theory, Applications and
Systems. IEEE, 2015.

[OHD+12] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang.
Accessory: password inference using accelerometers on smartphones. In 12th
Workshop on Mobile Computing Systems and Applications. ACM, 2012.

[PP14] Saurabh Panjwani and Achintya Prakash. Crowdsourcing attacks on bio-
metric systems. In 10th Symposium On Usable Privacy and Security. Usenix
Association, 2014.

[RHM15] Aditi Roy, Tzipora Halevi, and Nasir Memon. An hmm-based multi-sensor
approach for continuous mobile authentication. In IEEE Military Commu-
nications Conference. IEEE, 2015.

[RNI95] Stuart Russell, Peter Norvig, and Artificial Intelligence. Artificial Intelli-
gence: A Modern Approach. Prentice-Hall, 1995.

[RQSL12] Oriana Riva, Chuan Qin, Karin Strauss, and Dimitrios Lymberopoulos. Pro-
gressive authentication: deciding when to authenticate on mobile phones. In
21st USENIX Security Symposium, 2012.

157

http://www.newscientist.com/article/dn24193-touchscreen-phones-know-its-you-from-taps-and-swipes.html
http://www.newscientist.com/article/dn24193-touchscreen-phones-know-its-you-from-taps-and-swipes.html

[SBAIM12] Napa Sae-Bae, Kowsar Ahmed, Katherine Isbister, and Nasir Memon.
Biometric-rich gestures: a novel approach to authentication on multi-touch
devices. In 31st Annual ACM Conference on Human Factors in Computing
Systems. ACM, 2012.

[Sch16] Schneier on Security. Using the iwatch for authentication. https://www.

schneier.com/blog/archives/2013/02/using_the_iwatc.html, March
2016.

[SCY+14] Michael Sherman, Gradeigh Clark, Yulong Yang, Shridatt Sugrim, Arttu
Modig, Janne Lindqvist, Antti Oulasvirta, and Teemu Roos. User-generated
free-form gestures for authentication: Security and memorability. In 12th
Annual International Conference on Mobile Systems, Applications, and Ser-
vices. ACM, 2014.

[SDW12] Florian Schaub, Ruben Deyhle, and Michael Weber. Password entry usability
and shoulder surfing susceptibility on different smartphone platforms. In
Proceedings of the 11th International Conference on Mobile and Ubiquitous
Multimedia. ACM, 2012.

[SLM+13] Aaron Striegel, Shu Liu, Lei Meng, Christian Poellabauer, David Hachen,
and Omar Lizardo. Lessons learned from the netsense smartphone study. In
5th ACM workshop on HotPlanet. ACM, 2013.

[SLS13] Muhammad Shahzad, Alex X Liu, and Arjmand Samuel. Secure unlocking
of mobile touch screen devices by simple gestures: you can see it but you can
not do it. In 19th Annual International Conference on Mobile Computing &
Networking. ACM, 2013.

[SNJC10] Elaine Shi, Yuan Niu, Markus Jakobsson, and Richard Chow. Implicit
authentication through learning user behavior. In Information Security.
Springer, 2010.

[SP13a] Abdul Serwadda and Vir V Phoha. Examining a large keystroke biometrics
dataset for statistical-attack openings. ACM Transactions on Information
and System Security, 16(2):8, 2013.

[SP13b] Abdul Serwadda and Vir V Phoha. When kids’ toys breach mobile phone
security. In ACM SIGSAC Conference on Computer & Communications
Security. ACM, 2013.

158

https://www.schneier.com/blog/archives/2013/02/using_the_iwatc.html
https://www.schneier.com/blog/archives/2013/02/using_the_iwatc.html

[Spi83] Charles D Spielberger. Manual for the State-Trait Anxiety Inventory STAI
(Form Y). 1983.

[SPW13] Abdul Serwadda, Vir V Phoha, and Zibo Wang. Which verifiers work?:
A benchmark evaluation of touch-based authentication algorithms. In 6th
International Conference on Biometrics: Theory, Applications and Systems.
IEEE, 2013.

[SSTA14] Babins Shrestha, Nitesh Saxena, Hien Thi Thu Truong, and N Asokan. Drone
to the rescue: Relay-resilient authentication using ambient multi-sensing. In
18th International Conference on Financial Cryptography and Data Security,
2014.

[SSY+16] Zdenka Sitova, Jaroslav Sedenka, Qing Yang, Ge Peng, Gang Zhou, Paolo
Gasti, and Kiran Balagani. Hmog: New behavioral biometric features for
continuous authentication of smartphone users. IEEE Transactions on In-
formation Forensics and Security, 11(5):877–892, 2016.

[Ste14] Paul Steiner. Going beyond mobile device management. Computer Fraud &
Security, 2014(4):19–20, 2014.

[SWKW13] Florian Schaub, Marcel Walch, Bastian Könings, and Michael Weber. Ex-
ploring the design space of graphical passwords on smartphones. In 9th
Symposium on Usable Privacy and Security. ACM, 2013.

[SYJ+11] Weidong Shi, Jun Yang, Yifei Jiang, Feng Yang, and Yingen Xiong. Sen-
guard: Passive user identification on smartphones using multiple sensors. In
7th International Conference on Wireless and Mobile Computing, Network-
ing and Communications. IEEE, 2011.

[TGG13] Chee Meng Tey, Payas Gupta, and Debin GAO. I can be you: Question-
ing the use of keystroke dynamics as biometrics. 20th Annual Network &
Distributed System Security Symposium, 2013.

[Tho12] Gordon Thomson. Byod: enabling the chaos. Network Security, 2012(2):5–8,
2012.

[Thr16] Threatpost. Lock Screen Bypass Flaw Found in Samsung An-
droids. http://threatpost.com/lock-screen-bypass-flaw-found-

samsung-androids-030413/77580, March 2016.

159

http://threatpost.com/lock-screen-bypass-flaw-found-samsung-androids-030413/77580
http://threatpost.com/lock-screen-bypass-flaw-found-samsung-androids-030413/77580

[TSK+12] Shari Trewin, Cal Swart, Larry Koved, Jacquelyn Martino, Kapil Singh, and
Shay Ben-David. Biometric authentication on a mobile device: a study of
user effort, error and task disruption. In 28th Annual Computer Security
Applications Conference. ACM, 2012.

[Vap98] Vladimir Vapnik. Statistical Learning Theory. Wiley New York, 1998.

[VGSPJ16] Tom Van Goethem, Wout Scheepers, Davy Preuveneers, and Wouter Joosen.
Accelerometer-based device fingerprinting for multi-factor mobile authenti-
cation. In International Symposium on Engineering Secure Software and
Systems. Springer, 2016.

[VZDDL13] Emanuel Von Zezschwitz, Paul Dunphy, and Alexander De Luca. Patterns
in the wild: a field study of the usability of pattern and pin-based authen-
tication on mobile devices. In 15th International Conference on Human-
computer Interaction with Mobile Devices and Services. ACM, 2013.

[VZDLH14] Emanuel Von Zezschwitz, Alexander De Luca, and Heinrich Hussmann.
Honey, i shrunk the keys: influences of mobile devices on password composi-
tion and authentication performance. In 8th Nordic Conference on Human-
Computer Interaction: Fun, Fast, Foundational. ACM, 2014.

[Wri12] Scott Wright. The Symantec Smartphone Honey Stick Project. Symantec
Corporation, Mar, 2012.

[WTNH03] Liang Wang, Tieniu Tan, Huazhong Ning, and Weiming Hu. Silhouette
analysis-based gait recognition for human identification. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(12):1505–1518, 2003.

[XZL14] Hui Xu, Yangfan Zhou, and Michael R Lyu. Towards continuous and passive
authentication via touch biometrics: An experimental study on smartphones.
In 10th Symposium On Usable Privacy and Security. USENIX Association,
2014.

[YCLO16] Yulong Yangt, Gradeigh D Clarkt, Janne Lindqvistt, and Antti Oulasvirta.
Free-form gesture authentication in the wild. In 34th Annual ACM Confer-
ence on Human Factors in Computing Systems. ACM, 2016.

[YGD+15] Lei Yang, Yi Guo, Xuan Ding, Jinsong Han, Yunhao Liu, Cheng Wang,
and Changwei Hu. Unlocking smart phone through handwaving biometrics.
IEEE Transactions on Mobile Computing, 14(5):1044–1055, 2015.

160

[Zdn16] Zdnet. Apple iPhone fingerprint reader confirmed as easy to
hack. http://www.zdnet.com/apple-iphone-fingerprint-reader-

confirmed-as-easy-to-hack-7000021065/, March 2016.

[ZFS13] Xi Zhao, Tao Feng, and Weidong Shi. Continuous mobile authentication
using a novel graphic touch gesture feature. In 6th International Conference
on Biometrics: Theory, Applications and Systems. IEEE, 2013.

[ZSKF09] Saira Zahid, Muhammad Shahzad, Syed Ali Khayam, and Muddassar Fa-
rooq. Keystroke-based user identification on smart phones. In Recent Ad-
vances in Intrusion Detection. Springer, 2009.

[ZTQ+10] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P Dick,
Zhuoqing Morley Mao, and Lei Yang. Accurate online power estimation and
automatic battery behavior based power model generation for smartphones.
In 8th IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis. ACM, 2010.

[ZWWZ13] Jiang Zhu, Pang Wu, Xiao Wang, and Joy Zhang. Sensec: Mobile secu-
rity through passive sensing. In International Conference on Computing,
Networking and Communications. IEEE, 2013.

[ZXL+12] Yang Zhang, Peng Xia, Junzhou Luo, Zhen Ling, Benyuan Liu, and Xinwen
Fu. Fingerprint attack against touch-enabled devices. In 2nd ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices. ACM, 2012.

161

http://www.zdnet.com/apple-iphone-fingerprint-reader-confirmed-as-easy-to-hack-7000021065/
http://www.zdnet.com/apple-iphone-fingerprint-reader-confirmed-as-easy-to-hack-7000021065/

APPENDICES

162

Appendix A

Pre-study Survey for Usability
Evaluations

For the pre-study screening, in addition to collecting their name, email address, gender,
age group, device that they owned (such as Nexus 4, Samsung SIII, LG G2), profession,
domain (such as technology, medicine) and how long they have used an Android device,
we asked the participants:

1. Which protection mechanism do you use on your smartphone:

(a) None; (b) PIN (4 digit or more); (c) Password (characters and numbers); (d)
Pattern Lock; (e) Face recognition; (f) Fingerprint recognition; (g) Other (please
specify)

2. IF NO AUTHENTICATION Why do you not use any protection mechanism
(choose all that apply):

(a) It’s too much of a hassle / takes time; (b) There is nothing on my phone that I
need to hide; (c) No one would care about what’s on my phone; (d) In an emergency,
others can use my phone; (e) I’ve never thought about it; (f) Other (please specify)

3. IF SOME AUTHENTICATION Which of the following scenarios do you want
to protect against (choose all that apply):

(a) Phone protected if stolen; (b) Phone protected if lost (c) Phone protected if
misplaced; (d) Phone protected if left unattended (e) Someone casually picking up
the phone; (f) Unwanted disclosure, pranks; (g) Other (please specify)

163

4. IF SOME AUTHENTICATION Which of the following describes you (choose
all that apply):

(a) Unlocking my phone is annoying sometimes; (b) I like the idea that my phone is
protected from unauthorized access; (c) It takes too much time; (d) Unlocking my
phone is easy

5. IF SOME AUTHENTICATION Which of the following attackers do you want
to protect from (choose all that apply):

(a) Coworker; (b) Spouse; (c) Roommate; (d) Own children; (e) Other unwanted
individual/stranger; (f) Friends; (g) Other (please specify)

6. Do you sometimes take additional measures to protect your smartphone (choose all
that apply):

(a) None; (b) I leave my phone in a safe place before going somewhere; (c) I conceal
my smartphone in my clothes or in a bag (d) I have changed security settings on my
device to improve security (such as reduced automatic lock time) (e) I have enabled
device encryption on my smartphone (f) Other (please specify)

7. Do you share your smartphone with your friends or family members:

(a) Never; (b) Rarely (once a month); (c) Occasionally (once a week); (d) Daily

164

Appendix B

Post-study Survey for Usability
Evaluations

The following questions were asked in the post-survey conducted after each in-lab session
in which a participant tested an authentication scheme (IA or EA). The questions that
were only asked after the IA session are marked [IA only].

1. How satisfied are you with the level of protection that is provided against: (5-point
Likert scale “Very satisfied”–“Very dissatisfied”)

(a) Coworkers; (b) Spouse; (c) Roommate; (d) Own children; (e) Friends; (f) Strangers

2. How satisfied are you with the level of protection that is provided against the following
phone states: (5-point Likert scale “Very satisfied”–“Very dissatisfied”)

(a) Lost at public location; (b) Lost at work; (c) Unattended at work; (d) Unattended
at home

3. How satisfied are you with the level of protection that is provided when you are per-
forming following tasks on your Smartphone: (5-point Likert scale “Very satisfied”–
“Very dissatisfied”)

(a) Online banking; (b) Online shopping; (c) Checking emails; (d) Checking texts;
(e) Social networking (Facebook); (f) Checking photo gallery

4. How satisfied are you with the overall level of protection that is provided? (5-point
Likert scale “Very satisfied”–“Very dissatisfied”)

165

5. Do you agree with the statement “I think this method takes a lot of time”? (5-point
Likert scale “Strongly agree”–“Strongly disagree”)

6. Do you agree with the statement “I think this method is annoying”? (5-point Likert
scale “Strongly agree”–“Strongly disagree”)

7. Do you agree with the statement “I think this method is tiring”? (5-point Likert
scale “Strongly agree”–“Strongly disagree”)

8. How annoying were the interruptions for authentication? (5-point Likert scale “Very
annoying”–“Not annoying at all”)

9. [IA only] How annoying were the interruptions for authentication as compared to
your current authentication method? (5-point Likert scale “Very annoying”–“Not
annoying at all”)

10. [IA only] How secure this method is as compared to no authentication? (5-point
Likert scale “A lot more secure”–“A lot less secure”)

11. [IA only] How secure this method is as compared to your current authentication
method? (5-point Likert scale “A lot more secure”–“A lot less secure”)

12. [IA only] Would you use this authentication method?

� Yes, I would replace my current scheme with IA

� Yes, I would use it in addition to my current authentication scheme

� I may use it

� No, I will not use it.

166

Appendix C

SUS Survey for Usability Evaluations

The modified SUS form [Bro96] that was completed by participants after each in-lab session
in which they tested an authentication scheme (IA or EA). For each question, participants
responded on a 5-point Likert scale (“Strongly agree”–“Strongly disagree”).

1. I think that I would like to use this method frequently

2. I found this method unnecessarily complex

3. I thought this method was easy to use

4. I think that I would need the support of a technical person to be able to use this
method

5. I thought there was too much inconsistency in this method

6. I would imagine that most people would learn to use this method very quickly

7. I found this method very cumbersome to use

8. I felt very confident using the system

9. I needed to learn a lot of things before I could get going with this system

167

Appendix D

STAI Survey

The STAI form that was completed by participants before and after each in-lab session in
which they tested an authentication scheme (IA or EA). For each question, participants
responded on a 4-point Likert scale (“Not at all”–“Very much so”).

Directions: A number of statements which people have used to describe
themselves are given below. Read each statement and then select the appro-
priate options to the right of the statement to indicate how you feel right now,
that is, at this moment. There are no right or wrong answers. Do not spend too
much time on any one statement but give the answer which seems to describe
your present feelings best.

1. I feel calm

2. I feel secure

3. I am tense

4. I feel strained

5. I feel at ease

6. I feel upset

7. I am presently worrying over possible misfortunes

8. I feel satisfied

168

9. I feel frightened

10. I feel comfortable

11. I feel self-confident

12. I feel nervous

13. I feel jittery

14. I feel indecisive

15. I am relaxed

16. I feel content

17. I am worried

18. I feel confused

19. I feel steady

20. I feel pleasant

169

Appendix E

Semi-structured Interviews for
Usability Evaluations

Participants were asked the following open-ended questions during the semi-structured
interviews:

E.1 Lab-based experiment

� What did you like about IA?

� What did you dislike about IA?

� Why did you perceive a specific protection level for IA?

� Why do you think IA will provide more/less/same protection as compared to your
current scheme?

� Why (or why not) would you use IA?

� IF NOT SATISFIED WITH IA PROTECTION LEVEL: Why would you
still use IA?

� IF IA IS ANNOYING: Why would you still use IA?

� Any particular scenarios where you think IA will be particularly useful/useless?

170

� IF INTERRUPT-AUTHENTICATES ARE ANNOYING: How do you think
we can mitigate the annoyance?

E.2 Field study

� How was your longer term experience of IA?

� Have you changed your opinion about IA? If yes, why?

� How annoying were the interruptions for authentication?

� Which apps were you using on your device when the interruptions were particularly
annoying?

� Which apps were you using on your device when then interruptions were not annoy-
ing?

� Any particular scenarios where you think IA will be particularly useful/useless?

� Did you find the threshold adjustment bar useful? Why or why not?

171

	List of Tables
	List of Figures
	Introduction
	Authentication on Smartphones
	Implicit Authentication
	Scope and Threat Model
	Open Challenges
	Thesis Statement
	Main Contributions of this Research
	Overview of Thesis
	Related Publications

	Background
	Smartphone Authentication in Practice
	Acceptance of authentication methods
	Usability issues
	Security issues

	Mitigating Usability and Security Issues
	Alternate Authentication Proposals
	Graphical passwords
	Gesture-based authentication

	State of the Art in IA
	Classification in machine learning
	Device usage behaviour-based schemes
	Gait pattern-based schemes
	Text input behaviour-based schemes
	Touchscreen input behaviour-based schemes
	Multi-modal schemes
	Usability evaluations of IA
	Security evaluations of IA
	Frameworks for IA deployment

	Rationale for Thesis

	A Comprehensive Evaluation of IA
	IA Schemes Evaluated
	Shi-IA
	Gait-IA
	Touchalytics
	Keystroke-IA
	SilentSense
	TIPS

	Datasets
	Netsense dataset
	WatApp dataset
	Touch input dataset
	Text input dataset

	Evaluation Setup
	Evaluation Results
	Accuracy evaluation
	Data availability
	Training delay
	Detection delay
	Processing complexity
	Uniqueness of behavioural features
	Vulnerability to mimicry attacks
	Ease of deployment on mobile platform

	Discussion and Open Challenges
	Conclusion

	Usability and Security Perceptions of IA
	Study Goals
	Study Design
	Participants
	Apparatus
	Part 1: Controlled lab experiment
	Part 2: Field study

	Results
	Usability evaluation of IA
	Security perceptions of IA

	Discussion
	Mitigating the effects of interruptions
	Opaque deployment of IA
	Operating threshold customization

	Limitations
	Conclusion

	Mimicry Attacks on Touch IA
	Threat Model and Attack Scenarios
	Schemes and Data Evaluated
	Schemes evaluated
	Data collection
	Parameter value selection
	Evaluation baseline

	Attack Design
	Mimicker for offline training attacks
	Apparatus for attack evaluation

	Attack Protocol
	Participant recruitment and motivation
	Study procedure

	Attack Evaluation
	Attacker success
	Attacker effort
	Difficult or easy to mimic features

	Discussion
	Basic shoulder surfing attacks
	Attacks with limited knowledge
	Effect of operating threshold
	Effect of different target swipes
	Attacker- or victim-bound success?

	Limitations
	Conclusion

	Itus: A Framework for App-Centric IA Deployment
	A case for App-centric IA
	Flexibility issues
	Extensibility issues

	Evaluation of App-centric IA
	Device-centric Touchalytics
	App-centric Touchalytics

	Motivation for IA Framework
	App Developers
	IA Developers

	Design Goals
	Architecture
	SecureActivity
	Measurement and subclasses
	Dispatcher
	FeatureVector
	DataStorage
	Itus Agent
	Itus Oracle
	Machine Learning Toolkit

	Workflow
	App Developers
	IA Developers

	Implementation
	Performance Evaluation
	Experimental Setup
	Evaluation Results

	Limitations
	Conclusion

	Conclusion and Future Work
	Research Contributions
	Future Research
	Conclusion

	References
	APPENDICES
	Pre-study Survey for Usability Evaluations
	Post-study Survey for Usability Evaluations
	SUS Survey for Usability Evaluations
	STAI Survey
	Semi-structured Interviews for Usability Evaluations
	Lab-based experiment
	Field study

