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Abstract

The responses of zooplankton to the hydrodynamic variables of their environment, such
as shear, are not well understood. We examine stochastic swimming models of the run and
tumble type for plankton moving in a velocity field induced by internal waves in a channel.
The swimming of individual plankton is modelled as a random walk, modified to include a
shear response and a biased swimming towards a preferred light level. An inertial particle
model is developed from first principles, and compared to a particle model based on the
integral curve definition. In all, twelve particle models for the motion of plankton under
advection and their own propulsion are considered. The model which includes the forces of
gravity, biased swimming, and a freeze in shear response predicts aggregation of plankton
populations along the bottom boundary of high shear regions. It is also shown that all
models considered predict vertical patches.
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Chapter 1

Introduction

1.1 Some Background

Water-dwelling organisms continually encounter characteristics of the flow they may find
undesirable. It is theorized that some species of copepods may avoid regions of high
turbulence or shear [39]. The reasons for this response are also theoretical: turbulence could
potentially enhance encounter rates of predators and prey, which could lead prey to avoid
these regions [49], turbulence may make swimming difficult, or high shear could simply
be uncomfortable [61]. This aversion to high shear regions would change the distribution
of the population as the individuals in that population avoid those conditions which they
find undesirable.

Several studies have considered the interaction of upward swimming plankton with
the passage of internal waves. Stastna et al. [56] considered the interaction of internal
solitary waves with plankton using Lagrangian models based on the Langevin equation.
In the absence of a biased swimming behaviour, plankton followed a diffusion process
and hence observations showing an increased concentration of plankton at certain depths
were impossible to reproduce. For plankton which had a preferred light level, and that
would swim vertically to maintain that light level, a fully nonlinear internal solitary wave
of depression would advect plankton downward as they passed through the wavefront,
causing the plankton to swim upwards to return to their preferred light level. As the
plankton population passed the wave’s crest, the wave-induced currents forced it upward
again. Combined with the swimming of the plankton, this led the population to overshoot
their preferred light level, creating an aggregation region at the rear of the wave and above
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the preferred light level. After the wave had passed, the plankton slowly drifted down
to their preferred light level. Lennert-Cody and Franks [35] also discussed perturbation
from a preferred light level from an Eulerian perspective with linear and weakly nonlinear
waves in a two layer fluid. They found that the interaction of internal waves and swimming
plankton could produce along-isopycnal patchiness in plankton blooms. Scotti and Pineda
[52] found that swimming upwards as a response to downwelling currents associated with
gravity currents allows for Lagrangian transport of plankton over large distances. All of
these examples illustrate that the passing of internal waves can have a direct effect on the
spatial distribution of plankton with preferred light levels.

The effect of shear on plankton populations has been studied before as well. Ianson et
al. [25] noted that in Knight Inlet, British Columbia, Euphausia pacifica are observed below
their preferred light level when close to a sill. The authors attempted to explain this with a
variety of simulated shear responses, and chose a shear response of downward swimming as
the model that most closely matched acoustic data. Gyrotactic phytoplankton were found
to collect in a shear layer in [15], and aggregated as a result of interaction with a simple
vortical flow in [14], leading to the prediction that motility characteristics may drive spatial
cell distributions. An experimental example of this ‘unmixing’ was presented in [13], in
which upward swimming produced nonuniform plankton distributions in a vortical flow.
Gyrotactic trapping in a shear layer was examined in [24]. The primary effect of shear in
these last four publications was as a trigger to reorient gyrotactic phytoplankton. Following
[25], in this paper we examine the response of zooplankton to shear directly, sometimes
called rheotaxis (see [46]).

Knight Inlet, British Columbia, Canada is a fjord with strong tidal flows driving internal
wave generation over the large amplitude bottom topography of a glacial sill. It has been
the site of a number of field studies, including the well-documented Knight Inlet Sill-Flows
experiment [28], as well as a number of theoretical/numerical studies ([33], [2], [55], [11]).
The flow over the Knight Inlet sill is extremely rich dynamically, yielding examples of
flow separation from the bottom, shear instability, large amplitude breaking internal waves
(see for example Figures 10 to 16 in [33]), as well as an upstream response that includes
internal solitary waves [17], and significant spatiotemporal variation in the intensity of
turbulence [29]. The field situation is further complicated by an asymmetry in the vertical
stratification profile between the two sides of the sill [28], and significant transverse flows
due to flow separation from the complex shoreline (Figures 6 and 7 of [27]). The coherent
dynamical features near the sill are depicted schematically in Figure 1.1. Figures 10 to 16
of [33] provide a more dynamic picture based on simulations. It is important to note, that
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this is one point of view on the dynamics, one largely based on coherent structures such
as large amplitude internal waves, with the temporal averages of the turbulent dissipation
shown in Figure 3 of [29] offering a different point of view.

separation

Internal 
Wave

barotropic

tidal

current

Figure 1.1: A schematic of the tidally driven, coherent motions near a large amplitude sill
such as the one at Knight Inlet. Large amplitude internal waves form in the lee of the sill.
Smaller scale shear instabilities are not shown. The accelerated flow downslope is indicated
by a green arrow. This flow induces separation from the bottom boundary (indicated by
the dotted line and the blue arrow beneath it), which in turn leads to shear instability and
turbulence production.

A hierarchy of physical models can be employed to describe the effects of the ocean
environment on plankton. Direct numerical simulations which resolve both turbulence and
nonhydrostatic motions could be used to completely describe the stratified turbulent flow
experienced by plankton on scales relevant to the plankton themselves. However the man-
ner in which the turbulent flow is coupled to the complex shape of the plankton is beyond
the present generation of numerical models. On larger scales, such as those associated with
hydraulic flows in fjords [33] approximations are required in order for the model to handle
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the discrepancy between vertical horizontal scales as well as the full range of motions. As
an example, the model employed by Lamb [33] uses a finite volume method that allows
for an accurate representation of the non-hydrostatic flow over the Knight Inlet sill. This
model has the drawback that it can only simulate a two-dimensional (along-fjord vs depth)
slice. Larger scale models often make even more drastic approximations, most notably the
hydrostatic approximation which neglects vertical acceleration. In the context of Knight
Inlet the hydrostatic Hallberg Isopycnal Model was used by [28], and a modification of the
two-dimensional, non-rotating, hydrostatic Princeton Ocean Model outlined in [10] was
employed in [25]. While many of the commonly used approximations are successful in
answering targeted scientific questions, it is important to not lose sight of the approxima-
tions, especially when attempting to link motions on different scales (e.g. internal waves
and their effects on plankton). The model employed below is conceptual in the sense that
it is simple to write down analytically, and well grounded in the physical oceanography lit-
erature since linear internal waves are commonly discussed in many introductory physical
oceanography textbooks (e.g. [21], [53]). Linearity implies that we are free to superpose
solutions, and beyond the understanding that linear theory is less and less accurate as
amplitude increases, amplitude can be chosen at our discretion. This gives us a parameter
to vary while we focus on the plankton’s shear response mechanism. The flow should be
contrasted with the internal solitary waves in Stastna et al. [56], which are exact solutions
of the stratified Euler equations, but whose properties are difficult to tune a priori.

The idea that simple mechanistic responses of individuals heavily influence population
distributions led us to construct the models outlined in this paper. These models consider
both shear responses and preferred light levels from a Lagrangian (i.e. individual based)
perspective. This work was inspired primarily by Ianson et al. [25]. In that work encoun-
tering the bottom boundary layer was synonymous with encountering shear, but shear can
occur anywhere in fluid (e.g. due to shear instabilities). Thus, while the boundary layer
will certainly contain some shear, near a sill boundary layer separation may transport a
significant portion of this shear into the fluid interior as well by a process similar to that
described in [41]. Shear can also occur with the passage of internal waves, which were not
mentioned in [25], but have been documented at Knight Inlet by several authors [16]. We
investigate the effect of a shear response occurring away from the boundary through a set
of numerical models 1. Throughout, we use Knight Inlet as the motivating example for
flow parameters, and Euphausia pacifica as an example of zooplankton, but the principles
presented are more general.

1All simulations were carried out in MATLAB.
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The remainder of the thesis is organized as follows. We discuss the Euler equations
and linear internal waves, and describe the setup of our problem. We then develop several
models for swimming particles from first principles, and compare and contrast those models,
one of which is tuned to the parameters of the zooplankton species Euphausia pacifica. We
review the results of our numerical experiments, which show that aggregations of Euphausia
pacifica occur below regions of high shear, and that a wide variety of patches of plankton
can develop in the vertical due to the passage of internal waves.

1.2 The Euler Equations and Linear Internal Waves

Flow over topography yields internal waves or billows which are observed away from the
boundary (see [33], figures 10 to 16). Consider a flow in a two dimensional channel, rep-
resenting a horizontal strip of the water column, which we will fill with linear internal
waves representative of the actual flow. Label the x axis as horizontal and the z axis as
vertical. Make the rigid lid assumption, giving us impermeable barriers at both z = 0 and
z = H(= 20 m in our case). We employ the stratified Euler equations under the Boussi-
nesq approximation, a standard approximation used in environmental and geophysical fluid
dynamics because naturally occurring density changes are typically on the order of one per-
cent or less [31]. These equations can be reduced to a single linear equation for channel
flow as follows. We decompose the density as ρ = ρ0[ρ̄(z) + ρ′(x, y, z, t)], for a reference
density ρ0, and a non-dimensional stratification ρ̄(z) and perturbation ρ′. Here ρ′ is ex-
pected to be small compared to ρ̄. We also write the pressure as p = pH(z)+pNH(x, y, z, t)
for the hydrostatic and nonhydrostatic pressure components. We then linearize around
a state of rest, which means the reference frame is moving with the barotropic current.
The linearized stratified Euler equations under the Boussinesq approximation for the two
dimensional velocity field (u,w) = (u(x, z, t), w(x, z, t)) then reduce to

ρ0
∂u

∂t
= −∂pNH

∂x
(1.1)

ρ0
∂w

∂t
= −∂pNH

∂z
− ρ0ρ

′g (1.2)

∂u

∂x
+
∂w

∂z
= 0 (1.3)

∂ρ′

∂t
+ w

∂ρ̄(z)

∂z
= 0. (1.4)
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They can be reduced to a single equation as follows: Cross differentiate equations (1.1)
and (1.2) and introduce a stream function ψ which we know is possible by equation (1.3).
Using the density equation (1.4) and defining the buoyancy frequency as N2(z) = −g ∂ρ̄

∂z

gives us (
∇2ψ

)
tt

+N2(z)ψxx = 0 (1.5)

where subscripts denote partial derivatives. Assuming a traveling wave solution of the form
ψ = exp[i(kx − σt)]φ(z) for wave number k, frequency σ, and vertical structure function
φ, substitution into (1.5) yields

φzz +

(
N2(z)

σ2
− 1

)
k2φ = 0 (1.6)

To make analytical progress we assume that the background stratification is linear so that
the buoyancy frequency is constant, meaning ρ̄(z) = 1−∆ρz/H so that

N2(z) = −g∂ρ̄
∂z

= g
∆ρ

H
≡ N2

0

By definition, this linear stratification means the density increases linearly with depth.
This is in sharp contrast to the more physical choice of density change over the water
column occurring in a relatively thin pycnocline. For an example of this type see [56],
which considered the interaction of swimming plankton and internal solitary waves in a
hyperbolic tangent stratification. Two layer models take this a step further, specifying
a discontinuous jump in density across the pycnocline. For the case at hand, by letting

m2 =
(
N2

σ2 − 1
)
k2, substitution into (1.6) yields the simple harmonic oscillator

φzz +m2φ = 0 (1.7)

Since our boundaries at z = 0 and z = H are impermeable we specify no normal flow
boundary conditions. With these conditions we obtain an analytic solution for the stream-
function in the form

ψ(x, z, t) = cos(kx− σt) sin(mz) (1.8)

where m = nπ/H and σ = Nk/
√
k2 +m2. The frequency is thus quantized. Notice that

(1.5) is linear, so that we may also consider superpositions of solutions. The dispersion
relation quantifies the fact that different modes travel at different speeds, and in particular
higher vertical modes are slower. This means that each wave in a superposition of different
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vertical modes travels at a different speed. Linear internal waves have been studied in a
variety of contexts but the most relevant to this paper is that of plankton patchiness [35].
For our experiments a superposition of two solutions is considered, a vertical mode one
wave with a mode two perturbation, giving velocity field components of the form

u(x, z, t) = A1m1 cos(k1x− σ1t) cos(m1z) + A2m2 cos(k2x− σ2t) cos(m2z) (1.9)

w(x, z, t) = A1k1 sin(k1x− σ1t) sin(m1z) + A2k2 sin(k2x− σ2t) sin(m2z) (1.10)

where Ai, ki,mi, σi are all constants. The ki are the horizontal wavenumbers and the mi are
the vertical wavenumbers. We also have σi as the frequencies and the Ai as the amplitudes.
The values of Ai are presented in 3.1.1, and the rest of the constants are presented in table
4.1 of 4.3. The flow geometry is presented in Figure 1.2.
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Figure 1.2: The stream function solution of the linear internal wave equation: the flow is
along lines of constant color where the red gyres are counterclockwise and the blue gyres
are clockwise. The whole map moves slowly from left to right. The initial position of the
plankton is shown as a white line.
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1.3 Model Initialization

Many zooplankton follow a diel migration and have a daylight preferred light level [34] 2.
For example Euphausia pacifica are observed in thin layers during daylight hours at depths
ranging from 60 to 95 meters ([25] figure 2). Since the daily migration and tidal forces are
on different periods, there are a range of possible depths at which a thin plankton layer
may encounter shear generated by tidal flow over topography. We may therefore choose the
preferred light level of the plankton within our horizontal strip to display the mechanisms
outlined below. For the chosen background flow we found that setting that zL = 7 meters
allowed strong interaction of the populations with the high shear field.

Since zooplankton are observed in nepheloid layers, to initialize the simulation, an
ensemble, (N = 10000) of plankton is introduced into the channel at zL. These zooplankton
swim at a fixed speed of vswim = 0.1 m/s according to the models developed and described
in section 2. This value for vswim is on the high end of the observed values in table 2 of [12],
and matches that used by [25]. The simulations model approximately 67 minutes of real
world time, over which the values of both zL and the flow parameters may be assumed to
be near constant. The boundary conditions for the plankton at the impermeable barriers
at z = H and z = 0 are reflective. This choice does not really affect the fluid particle
model, but it does make the Stokes’ inertia model described in 2 less physical very close to
the boundary because there is an instantaneous change of direction in z. However, since
we are using the Euler equations with free-slip conditions, the flow near the boundary is
unphysical in itself, and we will accept the simplified near boundary behavior for now.
In the future, when we move to the full Navier-Stokes equations, we can revisit these
conditions.

2The adaptive significance of this is thought to be the avoidance of predators during daylight hours [4]
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Chapter 2

Modeling the Motion of Plankton

This research was inspired primarily by [25], in which several responses of plankton to
shear were modelled and the results compared to acoustic data from Knight Inlet in British
Columbia, Canada. In the simulations in that paper, encountering the bottom boundary
layer triggered the shear response. It is true that shear is created near the bottom boundary,
but shear could occur anywhere else in the fluid as well. We wish to build a plankton motion
model which will account for this fact. This gives us the following list of features that are
important for a descriptive model of the motion of zooplankton.

1. Accurate Physics

2. Swimming

3. A Shear Response

We will address each in turn.

2.1 Particle Models:

2.1.1 An Overview of Particle Models:

First, we need to model the motion of plankton as they are advected by seawater. Zoo-
plankton are small, on the order of a centimeter [25]. Due to the discrepancy in size with
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flow features we will consider them as point mass particles. The dynamics of two-way
models (in which the particles actively modify the flow) are necessarily more complicated
due to the coupling of the effects. For example, Wallner and Meiburg [60] found that
using a two-way model led to differences in vorticity at the center of gyres in particle laden
mixing layers. The importance of two-way coupling is quantified in [9] by considering the
Stokes numbers of the particles as well as the ratio of their aggregate volume to the volume
of the fluid in which they are suspended. In our exploration of parameter space, we find
that across all models, before they are stochastically perturbed by swimming, our Stokes
numbers remain less than one, so that particles follow the flow closely. Our volume ratios
remain small as well, so that according to Crowe et al’s [9] criterion we are well-justified in
employing one-way models. While two-way models are, in principle, more accurate than
one-way models because they take into account both effects, for particles of small mass
and size the assumption that the presence of the particles does not affect the motion of
the fluid is a physically plausible approximation. This is the “passive tracer” assumption,
and following the literature we will assume its validity in all of our models.

We will focus on models for which it is assumed the particles in question are spherical.
The first reason is because this is simpler. The second is that the natural case to try after
spherical is ellipsoid, and it is not clear that the population distribution would be greatly
affected by this change. For instance, see [24] for an analysis where they concluded that for
nearly stable organisms the effects of making the particles elliptic could be ignored for the
case of Kelvin Helmholtz billows. Euphausia pacifica are nearly stable organisms according
to the formulae presented in [24], and Kelvin Helmholtz billows are a significant event for
a population to pass through, so we have doubts that a choice of elliptical particles would
make much difference in the internal wave induced flows that we consider. Any number
of more complicated geometries may be considered in the future should those effects prove
important. While the hydrodynamics of the propulsion of individual plankters is interesting
(see for example [42]), we are interested in population dynamics and are satisfied with
this approximation. Under the passive tracer and spherical particle assumptions we can
consider the hierarchy depicted in Figure 2.1.
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Rotation and Inertia Change shape from sphere

Inertia no rotation Rotation and “Stokes’ inertia” Rotation but no inertia

“Stokes’ inertia” no rotation

No inertia or rotation

Figure 2.1: A hierarchy of possible particle models. Here the dotted arrows mean “simplify”
and the solid arrows mean “complicate.”

By “Stokes’ inertia” we mean the inertial particle model we will develop in section 2.1.4,
a simplified form of the Maxey-Riley equations. A model which includes all effects of both
rotation and inertia is the most complicated model in this hierarchy. If we wish to simplify
it we have several layers of simplifying choices, which produce the above hierarchy.

Models including the effects of torques, and therefore rotations, are called gyrotactic
models. Many species of phytoplankton swim up and are bottom heavy [15]. In such
cases shear flows can rotate the plankton so that their ascent is halted, and they form
a layer. This case was examined in both [24] and [15] and elsewear. While interesting
and explanatory for these single celled organisms, rotation by shear is only one way that
zooplankton may be affected by shear.

The Kolmogorov length is the scale at which mechanical energy is dissipated into heat.
Ianson et al. [25] give estimates of the dissipation of turbulence kinetic energy in Knight
Inlet, and these values show that the Kolmogorov length scale is longer than the phyto-
plankton by an order of magnitude, but shorter than the zooplankton by about two orders
of magnitude ([15], [25]). Therefore viscosity dominates in the regime where phytoplankton
live, but not in the regime where zooplankton live. This means that zooplankton may be
affected by more turbulent flows and shear at much longer length scales. These conditions
may not only rotate their bodies to confound their swimming, but also compress or shear
their bodies. We expect flows which affect them in any of these ways to be high shear.
Therefore by building in a more general shear response we are incorporating a response
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to more than just reorientation. For this reason we will not study gyrotactic models for
plankton response to shear, which have been studied in, for example, [15], [14], [24].

2.1.2 The Fluid Particle Model

At the bottom of the hierarchy in Figure 2.1 we have no inertia or rotation, which is the
first model we consider. Fluid particles follow integral curves of the flow exactly, which
means they change their motion instantaneously to match the flow. In this sense they
have no set orientation or inertia. We refer to this model as “the fluid particle model”.
Mathematically, for a flow (u,w) in two dimensions we have the position (x, z) of a fluid
particle given by

ẋ = u(x, z, t)

ż = w(x, z, t)

The fluid particle model for the motion of plankton is simply to transport the plankton as
though they were a fluid particle.

While mathematically convenient, the following argument shows that the fluid particle
model is too simple because it ignores both inertia and buoyancy. In [54], the parameter
α is introduced to measure the importance of viscous effects compared to inertial effects.
For Euphausia pacifica, using the value for the density in [22] we obtain,

α ≡ 6πaµ

mp + 1
2
mf

=
6π · 0.004 · 10−3

4
3
π0.0043 · 1063 + 2

3
π0.00431027

≈ 0.1784

so that inertia is important. The parameter β measures the importance of gravitational
effects compared to viscous effects.

β ≡ (mp −mf )g

6πaµ
=

(
4
3
π0.0043 · 1063− 4

3
π0.00431027

)
9.81

6π · 0.004 · 10−3
≈ 1.256

so gravity is important. By extension then, the relative importance of gravity to inertia is
then given by
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αβ ≈ 0.224

which means that inertial effects are important compared to gravitational effects. Therefore
inertia should be considered. As we will see, the method with which we model inertia will
also include a term modelling the buoyancy.

2.1.3 A Particle Model with Inertia

For a general inertial particle of mass mp = 4
3
πa3ρp, the velocity v is given by Newton’s

second law and we get the system

mpv̇ = Fundisturbed flow + Fbuoyancy + FStokes’ drag + Fadded mass

+ Fviscous memory + Fvorticity induced lift + Fpropulsion

ẋ = v

where Fpropulsion is the force caused by the swimming of the particle. The list of forces on
the right hand side are approximated by the Maxey-Riley equations [7]:

mpv̇ = mf
D

Dt
u− 1

2
mf

(
v̇ − D

Dt

[
u +

1

10
a2∇2u

])
− 6πaρfν

(
v − u− 1

6
a2∇2u

)

+ (mp −mf )g − 6πa2ρfν

t∫
0

∂

∂τ

(
v − u− 1

6
a2∇2u

)
dτ√

πν(t− τ)

where the values of u are taken at the position of the particle, g is the force of gravity,
mf is the mass of the fluid displaced by the particle, ρf is the density of the fluid, ν is the
kinematic viscosity of the water, and a is the radius of the spherical particle. The terms
in this equation correspond to the forces above except for the propulsion of the particle,
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which we return to in section 2.2. In non-dimensional form we have [51]

Fundisturbed fluid flow ↔ +
3R

2

Du

Dt

Fbuoyancy ↔ +

(
1− 3R

2

)
g

FStokes’ drag ↔ −
R

St

(
v − u− a2

6
∇2u

)
Fadded mass ↔ +

Ra2

20

D

Dt
∇2u

Fviscous memory ↔ −R
√

9

2πSt

t∫
0

1√
t− s

(
v̇(s)− d

ds

(
u +

a2

6
∇2u

))
ds

Fvorticity induced lift ↔ +
6.46R

4
3
πa

√
1

Re|ω|
(v − u)× ω

Where the mass ratio parameter R =
mf

mp+ 1
2
mf
∈ (0, 2) captures the range of dynamics

caused by differing densities and St = 2
9
a2< is a Stokes number. Now we’ve accounted for

all the forces except those caused by the propulsion of the particle. A few ways of adding
noise to the Maxey-Riley equations are explored in [51]. The authors drive an electrolytic
fluid electromagnetically and find that their tracers display stochastic fluctuations not
predicted by Maxey-Riley. In an attempt to model the observed fluctuations they try
simplified Maxey-Riley models with additive and multiplicative white noise, as well as with
additive coloured noise. After some analysis they select the additive colored noise version
as the most effective stochastic model to match experimental results. While interesting,
this type of stochastic Maxey-Riley model requires coefficients that must be determined
experimentally, which is of no help to those of us who do not have their experimental
apparatus. Additionally, we wish to focus on swimming, which is not directly related to
their problem. We will also find that the introduction of noise in all terms is unnecessary,
because the physical assumptions of our model will let us drop some of the terms altogether.
For this reason we will return to the propulsion force effects at the end of the justification
of our model.
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2.1.4 The Stokes’ Inertia Model

The Maxey-Riley equations are complex enough to be numerically expensive to simulate
(especially the memory term, sometimes referred to as the Basset term), so we make
some reasonable approximations. In this paper we are considering Euphausia pacifica
as a concrete example. The individuals in this zooplankton species measure one to two
centimeters in length [25]. The memory integral term accounts for the effects of viscosity on
the particle in the past that are relevant to its current motion. The low kinematic viscosity
of seawater gives us a high Reynolds number. This fact combined with the small particle
radius, allows us to omit the memory integral as an approximation. Since we are working
with very long waves and a small particle radius we can omit the terms involving a2∇2u,
which means we simplify both the added mass and Stokes drag forces. A full discussion
of the terms in the Maxey-Riley equations can be found in [7], and this reference provides
more detailed justification for the claims made in this paragraph. Dropping the terms just
described, the Maxey-Riley equations become

v̇ =
1

mp + 1
2
mf

·
(

3

2
mf

Du

Dt
− 6πaρfν(v − u) + (mp −mf )g

)
(2.1)

Now we have the system

v̇ =
1

mp + 1
2
mf

·
(

3

2
mf

Du

Dt
− 6πaρfν(v − u) + (mp −mf )g

)
ẋ = v

The integral curves of this equation are approximate time evolution paths for particles with
inertia advected by a background flow. The only term that is left to model inertia, besides
the gravity term, is the Stokes’ drag term. This is why we refer to this model as “Stokes’
inertia.” Stokes drag is valid in the low Reynolds number limit [31], so we are taking this
as an approximation (see 2.3.2 for a discussion). We have thus moved up one rung in the
hierarchy depicted in 2.1.1. Equations similar to this simplified Maxey-Riley equation have
been studied in [23], [57], and [3] in different contexts. Consider the dynamics described
by these equations. Suppose u is constant, and a neutrally buoyant particle is released
into the flow from rest, so that v(0) = 0. Since the flow is constant and the particle is
neutrally buoyant, equation 2.1 simplifies to

v̇ =
−6πaρfν(v − u)

mp + 1
2
mf

= −C(v − u)
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for a positive constant C. With initial condition v = 0 the solution is just

v = u(1− exp(−Ct))

so that the particle will accelerate in the direction of u until it approaches v = u, at which
point the acceleration will be v̇ ≈ 0. Let’s consider a few limiting cases for

C =
6πρfaν

mp + 1
2
mf

(2.2)

as ρp changes. Notice that this means mp = 4
3
πρpa

3 will change as well. We have

lim
ρp→∞

C = 0

lim
ρp→0

C =
6πρfaν
1
2

4
3
πa3ρf

=
9ν

a2

From the first limit we have that a particle of infinite mass will not be accelerated, as
expected. The more useful idea is that following F = mv̇, the more massive the particle,
the less acceleration it will experience for a given constant force. For the second limit we
see that for particles of small mass it is the ratio of viscosity to radius squared that matters.
The acceleration is proportional to the viscosity, and inversely proportional to the surface
area. This means that more viscous fluids will accelerate a particle to agree with the fluid
velocity faster than less viscous fluids, and that smaller particles will be accelerated to
agree with the fluid velocity faster than larger particles. All of this confirms our intuition
of what an equation which captures inertia should do: gradually accelerate a particle to
agree with the fluid velocity, with that acceleration depending on the mass, viscosity, and
size. An example is shown in Figure 2.2. We note that we need not start the particle at
rest: the particle will be accelerated over time to agree with the fluid flow regardless of
initial state. If gravity is included then the difference in mass is important. In this case
the particle is accelerated to agree with a combination of the fluid flow and gravitational
forces.

17



Figure 2.2: The paths followed by a fluid particle (in blue) and a particle with inertia (in
red), released from the origin. The inertial particle is initially at rest, and is gradually
accelerated to match the speed of the flow u = (0.1, 0). The fluid particle matches the flow
exactly.

Now consider the case where u is not constant. Take a small time interval ∆t, and
approximate the value of u at the particle’s location by a constant vector over ∆t. We
can then apply the same analysis as in the constant case in each short time interval. If
∆t is made smaller than the time step in our simulation that is sufficient. In particular,
for sufficiently smooth u, and sufficiently small ∆t, we can approximate the value of the
vector field over the time interval by its value at one of the endpoints. The point is that
the same analysis holds: the particle will be accelerated over time to agree with the fluid
flow and if the fluid flow is changing, so is the acceleration. This can be seen in Figure
2.3. Once again if the particle is not neutrally buoyant then the particle is accelerated by
a combination of the gravity and fluid forces during each short time interval.
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Figure 2.3: The trajectory of an inertialess particle in blue matches a randomly changing
u. In red, a particle with inertia initially at rest at the origin is gradually accelerated
to match the speed of the flow, but with every change of the flow’s direction we get a
new acceleration. For this simulation we took the flow’s magnitude to be constant, with
randomly changing direction. It is clear that the inertia acts to smooth the particle path.

2.1.5 The Effects of Relative Density

The difference between the models with inertia and those without depends on the density
of the particle. As mentioned, the mass ratio parameter R =

mf

mp+ 1
2
mf
∈ (0, 2) captures the
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range of dynamics caused by differing densities [7]. If particles have higher density than
the fluid R < 2

3
, and they are referred to as ‘aerosols.’ If particles have lower density than

the fluid R > 2
3
, and they are referred to as ‘bubbles.’ When gravity is included aerosols

sink and bubble float. Using a perturbation analysis, Maxey [40] was able to show that
aerosols tend to move away from regions of high vorticity and bubbles tend to move to the
center of regions of high vorticity. Intuitively we can think of these effects as the result of
centrifugal forces acting on the particle.

It should also be noted that although [7] and [40] characterize the effects of changing
R in terms of the intensity of the vorticity, there is more subtlety here. The particles are
not attracted to or repelled by regions of high vorticity as the following examples show.
First, consider the shear flow (z2, 0), which has vorticity 2z, a linear dependence on z. A
bubble accelerated from rest by this flow (without gravity included) will be pushed to the
right, but if it seeks high vorticity regions it must also move upward, to higher vorticity,
and there is no mechanism to do so. So bubbles do not seek regions of high vorticity.

Now consider the example of an irrotational vortex, which has no vorticity. An aerosol
will still be pushed out of such a vortex by inertia. Mathematically we can see that the
term 3R

2
Du
Dt

controls the acceleration of the particle by the background fluid. For bubbles
with mp << mf ,

3R
2
≈ 3, so that the acceleration is about 3 times higher than that

experienced by a fluid particle. Since the acceleration in a gyre is towards the center,
bubbles congregate there. Likewise for aerosols with mp >> mf ,

3R
2
≈ 0 and there is

very little acceleration by the fluid, as expected, so particles leave regions of high vorticity.
However, as our counterexamples show, it is not vorticity that is the mechanism, but
the acceleration direction which causes these effects, and in particular the component
of acceleration normal to the pathline. Therefore these ‘vorticity preference effects’ are
actually the result of the interaction of inertia with the curvature of the pathlines. It does
seem plausible that generally high acceleration and pathline curvature occur with intense
vorticity, but a thorough investigation of this relationship is beyond the scope of the current
investigations. We will follow the literature and characterize the effects of changing R as
‘vorticity preference effects’, but the subtleties outlined here should not be forgotten.

In the neutrally buoyant case, mf = mp, R = 2
3
, and there are no gravitational or vor-

ticity preference effects. This choice also ensures that the acceleration by the background
flow 3R

2
Du
Dt

reduces to Du
Dt

, which is the same acceleration experienced by a fluid particle.
Although neutrally buoyant particles experience the same same acceleration by the back-
ground flow, neutrally buoyant particles still do not follow the integral curves described by
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fluid particles because they have nonzero inertia. This is reflected in our models through
the effects of drag and gravity. We will refer to the Stokes’ inertia model with R = 2

3

as the “neutral buoyancy Stokes’ inertia” model. There is a good review of the neutrally
buoyant case in [7], but the relavant points can be summarized once we define a few more
quantities. Toward this, the Okubo-Weiss parameter is given by

Q = − det

(
ux uz
wx wz

)
It turns out that when Q > 0 deformation dominates, as it does around hyperbolic stag-
nation points, and if Q < 0 rotation dominates, as around elliptic stagnation points. We
also define the Stokes number 1

St =
U(mp + 1

2
mf )

6πaρfνL

where U is a characteristic speed of the flow, and L is a characteristic lengthscale of the
flow. The Stokes number represents the dimensionless decay time of the particle velocity,
so that with large St, the particle has less dependence on the fluid flow. Notice that
St = U

LC
where C is the constant from equation 2.2 of section 2.1.4 which controls the

time it takes a particle to agree with the background flow. Since U
L

is fixed, we have the
following correspondences

large St↔ small C ↔ gradual agreement with the flow

small St↔ large C ↔ rapid agreement with the flow

For neutrally buoyant particles near a hyperbolic stagnation point Q > 0, so that deforma-
tion dominates. If Q > 1

St2
, particle and flow trajectories separate exponentially [7]. Over

the range of flows in our simulations Q << 1
St2

and we cannot conclude that particle and
flow trajectories separate exponentially, and indeed from observation we have no indication
that this is the case. This makes sense since the Stokes number remains small so we would
expect particles to quickly follow the flow. Over the parameter space we tested the main
difference in the neutrally buoyant Stokes’ inertia model from the fluid particle model was
that the drag causes the particle trajectories to lag behind where they would be in the fluid
particle model. Neutrally buoyant particles in our model follow integral curves closely for
slow fluid speeds, but this ‘tracking’ approximation gets worse as fluid speed is increased.

1some authors would call this St
R , but we will not.
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For the slower fluid speeds, over a range of mass, (and so R) values, the vorticity
preference effects were hardly noticeable because the vorticity was small. In future work
we will consider turbulent flows in the coastal ocean which can have regions of high vorticity
on a scale comparable to the size of Euphausia pacifica. In the current work we consider
linear superpositions of waves having regions of vorticity orders of magnitude larger than
the size of the particles in question. We expect these vorticity preference effects to be
negligible, even when gravity is not included. When R 6= 2

3
and gravity is included, it can

play a very important role in the dynamics. For sufficiently dense particles the tendency to
leave regions of high vorticity is a relatively small factor compared to the acceleration due
to gravity. In fact for the range of flow speeds we considered, even for particles with a 1%
density difference from the fluid, corresponding to R = 0.6623 < 2

3
and R = 0.6711 > 2

3
,

the dominance of gravity is immediate and the more subtle vorticity preferences of the
particles are imperceptible.

One may object, noting that inertia was deemed more important than gravity in the
scaling arguments presented in section 2.1.2. However those arguments are for flows in
general, meaning they attempt to make a statement about all flows. Our flows have no
small scale structure, which we believe goes a long way to explaining why the effects of
inertia were so small in our simulations. So while the scaling arguments demand that we
consider inertia, the specific flow in question seems to be an exception to the predictions
made by those arguments. In future work we may consider realistic flow over topography,
in which case there may be a great deal of small scale structure, and inertia may once
again become important even at the level of populations.

For R ≈ 2
3
, the effects of gravity are small and the vorticity preference effects are very

small. In this case the Stokes’ inertia and neutral buoyancy Stokes’ inertia models are
very similar on short timescales to the fluid particle model, but over longer time scales
even slight gravitational effects cause a very different evolution. When R 6≈ 2

3
, the Stokes’

inertia model diverges significantly from the other two models due to gravitational effects
that overshadow vorticity preference effects. Flows with different relative values of Q and
St could display different dynamics, but for the values in our simulations this paragraph
summarizes the dynamics well. This brings our exploration of the possible particle models
to a close. For now, we are satisfied with examining the first two rungs on the hierarchy
of 2.1.1.
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2.2 Swimming:

2.2.1 The (Discrete) Run and Tumble Model

The second step in developing our model is to add swimming. The Lagrangian particle
model was constructed to emulate the in situ measurements of Euphausia pacifica provided
in [12]. During the day, when the layer is stationary at the preferred light level, Figure 8 of
[12] shows a roughly uniform distribution of swimming direction in a vertical cross-section.
We therefore adopted the discrete “run and tumble” swimming model [58].

b) Freeze in shear

✓1

✓2
✓3

a) Run and Tumble

Figure 2.4: a) The discrete run and tumble model of plankton swimming. b) A variant of
run and tumble where the plankton do not swim if the shear is too high.
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This model describes the swimming of plankton as a sequence of straight-line trajecto-
ries interrupted by instantaneous, uniformly random changes in direction, as illustrated in
Figure 2.4 a). The plankton “run” a certain duration and then “tumble” to change their
trajectory. The following assumptions are also made:

1. Decisions to change direction while swimming follow a Poisson process, so that the
times between tumbles follow an exponential distribution.

2. The speed of the plankton while swimming is a constant vs.

3. Each plankter moves independently of all others. The plankton do not interact.

The assumptions of discrete run and tumble were originally made in order to facilitate
a classical Fokker-Planck analysis, rather than for their realism. One might ask why we
did not adopt a more realistic swimming model, or even one of the other versions of run
and tumble which lead to more physical trajectories. First, the discrete run and tumble
model is easy to understand, code and modify, but there are more important reasons.

One reason to use this model is that the inclusion of inertia already leads to physically
plausible trajectories. The term ‘discrete’ refers to the fact that the runs are uncorrelated.
There is also a continuous model discussed in [58] where runs are correlated, leading to
trajectories with a more consistent direction. While this makes the trajectory of an indi-
vidual plankter more physically plausible, as we saw in 2.1.4 and 2.3, the addition of inertia
also smooths out jagged paths, leading to physically plausible trajectories. Correlated runs
would mean that a plankter would tend to head in the direction they were already headed
but that is exactly inertia’s effect. In light of this, it is our contention that the additional
computational cost of correlating runs is not worth the gain in realism.

Another reason for this choice is that we are interested in the population dynamics in
aggregate, rather than the modeling of individual plankton trajectories for their own sake.
No matter how a correlated run was initialized, this effect would diminish over time, so
that in large ensembles, and for times exceeding a few correlation periods, the effect of
run correlations on the overall population dynamics are expected to be vanishingly small,
especially when inertia is included.

For all these reasons we select the discrete run and tumble model (henceforth simply
run and tumble), as the swimming component of the model. Mathematically we have
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(us, ws) = vswim(cos(θ(t)), sin(θ(t))) where θ(t) is drawn from a uniform distribution over
(0, 2π).

2.2.2 The Fluid Particle Model with Run and Tumble

Adding swimming to the fluid particle is completely straightforward. Mathematically we
have

ẋ = u(x, z, t) + us

ż = w(x, z, t) + ws

where the swimming in run and tumble is given in vector form by (us, ws) and the gov-
erning ODEs are considered to hold over the segments of time in which swimming occurs,
separated by instantaneous changes in direction. All we have done is added the swimming
to the definition of an integral curve. Physically, these equations tell us that the velocity
of the particle is given by the velocity of the seawater plus the velocity of the swimming.
The particles do not follow the same integral curve throughout the simulation because their
swimming causes them to change which curve they are following. This coupling of two very
simple models has led us to a model which is much more difficult to analyze than either one
on its own. However, this is completely straightforward to simulate and computationally
inexpensive. The effect of adding stochastic swimming is to make the paths continuous
but only piecewise smooth.

2.2.3 Stokes’ Inertia with Run and Tumble

We need to add swimming to the Stokes’ inertia model as well, which corresponds to
accounting for Fpropulsion in the force balance equation. Again, we will adopt the run and
tumble model. As mentioned, in this model each plankter swims at a uniform speed so that
in between turning events the swimming is a constant vector. Therefore we can apply the
same analysis used when there was no swimming by considering the swimming to be part
of the background flow. Instead of constant u, the constant background is s + u, where s
is the swimming vector. This constant background changes every small timestep ∆t. That
is, we are stochastically perturbing the flow by the swimming, and using the result as our
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flow. In light of all the arguments, we now define

v̇ =
1

mp + 1
2
mf

·
(

3

2
mf

Du

Dt
− 6πaρfν(v − (s + u)) + (mp −mf )g

)
(2.3)

ẋ = v (2.4)

as the evolution equations for Stokes’ inertia with run and tumble. Note we did not add
swimming to the material derivative because it is piecewise constant and so has either a
zero or undefined derivative. When this equation is discretized it will always be defined,
and will be zero. Physically, this is an appeal to the passive tracer assumption: since
the swimming of the plankton does not affect the flow, it should not affect the force on
the plankton by the undisturbed flow either. Note that this has also added swimming to
the neutral buoyancy Stokes’ inertia model since that model corresponds to the choice of
mp = mf .

2.2.4 The Effects of Density under Run and Tumble

Now that we have added swimming to all three models, it is natural to ask what the
differences between them are. As when we compared these two models without swimming
in section 2.1.5, we first consider the zero gravity version of the Stokes’ inertia model.
Run and tumble is an isotropic diffusion process so if the water is motionless the plankton
should approach a uniform distribution in the domain. The Stokes’ inertia model includes
both vorticity preference effects and swimming. Aerosols tend to move away from regions
of high vorticity anyway, and will now be more likely to do so as they swim according to
a diffusion process. Bubbles, on the other hand, can reach a balance where their tendency
to seek out the center of vortices is counteracted by the tendency of swimming to increase
variance. The vorticity preference effects are the result of consistent acceleration towards,
or away from, the center of the vortex. This consistency is interrupted by the random
nature of the swimming, but can be overcome by sufficiently strong vortices, or sufficiently
extreme values of R. Clearly the strength of the vorticity preference effects will depend on
some balance of vorticity, relative masses, the scale of the vorticity regions, and the swim
speed, but exactly how these interact is beyond the scope of our current investigations.

Once gravity is included, for the flows tested, simulations show that the inclusion of
an isotropic swimming component to the Stokes’ inertia model, resulting in equation 2.3,
leads to gravity dominated dynamics for R 6≈ 2

3
. For R ≈ 2

3
the effects of gravity are small
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and the vorticity preference effects are very small, leaving the swimming and fluid drift to
compete for dominance in the almost neutrally buoyant dynamics. Once again, in broad
terms it seems that neutrally buoyant Stokes’ inertia is well approximated by the fluid
particle model with a slight lag time in following integral curves, and Stokes’ inertia is well
approximated by the neutral buoyancy Stokes inertia with an additional, small, evolution
downward.

Without swimming, both the fluid particle and Stokes’ inertia models are deterministic,
and we can think in terms of integral curves the particles are on (or near). Swimming causes
the particles to randomly change which integral curves they are on, or close to. The speed
of the swimming is fixed, which limits these changes to integral curves which are nearby.
Since the flow structures in our case are large, with gently curving streamlines, we expect
swimming to not change the trajectory too much over short timescales. Of course as the
process of swimming is repeated many times these small changes may make an enormous
difference, and we cannot say what will happen to a given plankter, even approximately.
As we saw in Figure 2.3, inertia acts as a smoother to the motion of the particle perturbed
by the water around it. This creates a difference in the nature of the trajectories as we
expected: the Stokes’ inertia plankton trajectories are more physical than the relatively
more jagged trajectories of the plankton from the fluid particle model. Whether this has
an appreciable affect on the population dynamics remains to be seen.

2.2.5 Stokes’ Inertia with Run and Tumble: Our Specific Case

Up until now, we have considered the dynamics of the equations 2.1 and 2.3 in general.
Our model is flexible, but we will focus on the zooplankter Euphausia pacifica in order to
provide a concrete example. These zooplankton are one to two centimeters in length and
sink at a rate of 0.5 cm/s in still water when not swimming [25]. It is not clear from the
literature that this value is the actual sinking speed of Euphausia pacifica. However, this
was the value used by [25] and it seems to be correct at least up to order of magnitude from
observations. See for example [50], which is the paper they cite as justification for their
value, in which the sinking speeds of many copepods are recorded, although not actually
Euphausia pacifica. One of the contentions of [50] is that the downward migration portion
of the diel cycle could be attributable entirely to passive sinking. If this is true then in situ
measurements such as those presented in [43] give some possible justification for taking
this value, although measurements suggest the sinking speed may be faster than the value
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taken. Since we are following [25] for the other constants, we will follow them here as well.

Approximating a plankter as a sphere of the same mass gives a rough estimate of
a = 0.004 m. Using the Stokes’ settling velocity formula [31], we have 2

0.005 =
2

9

(ρp − ρf )
µ

g · a2 =
2

9

(ρp − 1027)

1.6 · 10−3
9.81 · 0.0042

ρp = 1027.2293 ≈ 1027.23
kg

m3

By construction then, this density value was chosen to make the dynamics physical. Picking
a constant value for the density is necessary for the model but some zooplankton can
regulate their buoyancy, which makes any value chosen an “effective density” rather than
an actual one. There is a great deal of literature on plankton buoyancy regulation. To
quote [30], “The mechanisms by which zooplankton regulate buoyancy (Bidigare and Biggs,
1980; Mills, 1984; Sanders and Childress, 1988), and the significance of specific internal
structures, cf. the oil sac of C. Finmarhicus (Miller it al., 1988; Francis et al., 1999),
should deserve particular attnetion with respect to mass density determinations and the
animals’ life history strategies.” The density of Euphausiids change over their lifetime.
See for example figure 2 of [48]. Due to the composition of their bodies, the buoyancy of
plankton changes with depth [6]. They also argue that zooplankton must have some kind
of buoyancy regulation mechanisms:

“Whether an animal floats or sinks depends on the density difference between it and
the surrounding seawater. Thus, a neutrally buoyant animal must have the same aggre-
gate density as the surrounding seawater. However, the greater compressibility of lipids
compared to seawater means that any depth of neutral buoyancy will not be stable. In
other words, below the depth of neutral buoyancy, lipid will become denser (as pressure
increases), and thus the aggregate density of the animal will become greater as well. The
converse is also true. Therefore, any displacement of the animal away from its depth of
neutral buoyancy should result in it accelerating away from that depth. Hence, the presence
of lipids is more than a barrier to downward migration (as suggested by Yayanos et al.
1978), or a means to promote upward migration (as suggested by Visser & Jónasdóttir
1999); it actually represents an impediment to maintaining position in the water column.
Moreover, as we will illustrate, the buoyancy properties of an animal are extremely sensitive
to the relative composition of its biochemical constituents... the buoyancy properties of an
individual are extremely sensitive to the relative biochemical composition (see above), and

2The value of µ here assumes the water is around 10 degrees Celsius.
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biochemical composition does change. In the example presented here, a change of only a
few percent makes a tremendous difference on the buoyancy properties of the animal (Fig.
1). It is therefore not unreasonable to expect large changes in the buoyancy properties of
individuals as they grow, mature and reproduce. It is also not unreasonable to expect them
to possess a buoyancy control mechanism of some sort to deal with those changes.” [6]

While [22] gives a value of 1063 kg m−3 for the density, [25] assumes a density ratio of
plankton to seawater of 1.045 which means they’re assuming a plankton density of about
1073 kg m−3. There are other similar estimates used in the literature (see [6], [50], [26]).
All of these values are much higher than our value of 1027.23, but maintain the chosen
sinking rate. A dynamic buoyancy could be introduced in a subsequent model, but for now
we will assume a constant effective density rather than a measured one.

This gives us an R value of

R =
mf

mp + 1
2
mf

=
ρf

ρp + 1
2
ρf

=
1027

1027.23 + 1
2
1027

= 0.6665 . . . <
2

3

making Euphausia pacifica a very slight (R ≈ 2
3
) aerosol. From now on when we refer to

the “Stokes’ inertia model” we mean the Stokes’ inertia model with this R value. For short
times our plankton can be considered neutrally buoyant to a good approximation because
the effects of both gravity and vorticity preference will be very small. On longer time
scales simulations show that these small effects matter, as we will see in section 3. From
our work in previous sections we know that the combined effect of our regular, low Q flows,
and fairly low St particles will be that the plankton quickly follow the sum of the flow and
their swimming in between turning events while being continually pulled downward by the
force of gravity.

2.2.6 Biased Swimming

As one final variant, we return to our swimming model and make a slight modification.
Euphausia pacifica are advected away from zL by currents and so must swim to maintain
this preferred light level. We model this return to preferred light level swimming as a
modified version of the discrete run and tumble model. Instead of picking the angle of
swimming as θ ∈ (0, 2π), we take θ ∈ (0, π) if the plankter is below the preferred light level,
and θ ∈ (π, 2π) if the plankter is above the preferred light level. Since the z component of
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the swimming is given by sin(θ), this means the plankter swims up if is below, and down
if it is above, the preferred light level. The net effect is a discrete run and tumble model
where the new direction is chosen so as to approach the preferred light level, albeit at a
possibly oblique angle. As we shall see, this biased swimming has a profound effect on the
dynamics.

2.3 Completing the Models

Let’s review what we have determined so far. Recall that we had identified three key
mechanisms that must be present in our plankton models

1. Accurate Physics

2. Swimming

3. A Shear Response

This analysis completes the basic description of both one and two on this list. We now
consider the third item on the list before discussing some theoretical concerns.

2.3.1 Plankton Response to Shear

Several shear responses are considered in [25] (see their table 1), including an escape
response, swimming down, and freezing and sinking. The authors chose the swimming
down response as the most explanatory. However if the shear encountered is strong enough
to interfere with navigation, or if currents are stronger than propulsion then this response
is not possible. The response of stopping swimming (i.e. “freezing”) in high shear is always
an option, and this is the response we chose. For the fluid particle and neutrally buoyant
Stokes’ inertia models the freeze in shear response leads to pure advection of the particle.
For the Stokes’ inertia model, the freezing leads to a sinking at 0.5 cm/s, a response which
Ianson et al. [25] call “freeze and sink” ( Figure 2.4 b)).

This alternate choice of shear response does not necessarily conflict with the findings
of [25]. In their model only the bottom boundary would induce the shear response, but in
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our model there is potential for more of the domain to trigger the shear response, which
means more time is spent in the shear triggered state of sinking. Put simply, sinking at a
slow rate for a longer time could lead to similar population distributions to those resulting
from swimming at a faster rate for a shorter time.

The dynamics of the models including this shear response are a hybrid of their deter-
ministic and swimming versions. Where the shear is high, the swimming stops, and the
time evolution of the system proceeds according to the models without swimming. Where
the shear is low, the evolution proceeds according to the models which include swimming.
This switching back and forth is visualized in the spacetime plot Figure 2.5. The dynam-
ics of these systems were individually discussed above, and we will examine the results of
including this response in section 3.

Since our plankton must respond to shear wherever they find it, how should shear be
modelled, and what value of shear is “high enough” that the plankton stop swimming?
Clearly in order to run a simulation that includes a shear response, we need a way to
mathematically describe shear. The shear is calculated from the rate of strain tensor, and
since it is a physical quantity, we need something to capture shear which is invariant under
physical coordinate transformations. The rate of strain tensor has three invariants in three
dimensions [20]. A quick calculation for a basic shear flow shows that the first and third
invariants are zero, while the second invariant is not. For this reason we characterize shear
using this invariant, as is done for non-Newtonian fluids (for example, see [44]). In two
dimensions, this invariant is

I2(x, z, t) =
∂u(x, z, t)

∂x

∂w(x, z, t)

∂z
− 1

4

(
∂u(x, z, t)

∂z
+
∂w(x, z, t)

∂x

)2

=
∂u

∂x

∂w

∂z
− 1

4

(
∂u

∂z
+
∂w

∂x

)2

Written this way the first term captures the normal strain rates and the second term
captures the shear strain rates. Both are important because it is reasonable to assume
that an organism which would avoid shear would also avoid being crushed or torn apart.
This scalar field quantifies the shear, and we can designate a critical value c, so that when
|I2| > c the plankton consider the fluid to be high shear. The units of this scalar field are
1/s2.

There does not appear to be any agreement on the value of the critical shear for
zooplankton in the literature. As mentioned there are some qualitative theories on why
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Figure 2.5: A spacetime plot of the fluid particle model with the freeze in shear response.
The smooth curves from the linedrop at t = 0 correspond to plankton which are frozen
in shear, and so are deterministically advected by the flow, whereas the jagged curves
correspond to the plankton in low shear which swim as they are advected. This effect can
be seen to vary over time with the trajectory of any given plankter, as they switch back
and forth between swimming and freezing in shear.
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plankton might not prefer high shear areas, but there are no quantitative results. Shear is
quantified using ∂u

∂z
in [15] for the case of the phytoplankter C. nivalis and a critical value

of 0.2 is chosen. In this case ∂u
∂z

is objective because they have a shear flow, but in general
this is not an objective measure. Additional barriers to comparison are that the shear’s
function in those simulations is to apply torque to the single celled phytoplankter rather
than shear across the length of their bodies, and that there is no reason to think that two
different sizes should have the same critical value. This if further exacerbated by the fact
that in cases such as Knight Inlet, phytoplankton may live below the Kolmogorov scale
while zooplankton may live above it. We came to the conclusion that it is best to test a
range of critical values for shear affecting zooplankton to give us a small exploration of
parameter space.

The Stokes’ inertia model is the only model to include the effect of gravity, leading to
an evolution of the population downward at the settling velocity 0.005 m/s in still water
when they are not swimming. However the plankton in this model only stop swimming
in high shear and the water is not actually still in those regions. Instead, non-swimming
plankton are accelerated to agree with a combination of the flow and the effect of gravity.
If the vertical fluid speed is less than or equal to the settling velocity gravity dominates
the evolution because the vertical advection is also downward some of the time, so that on
average the net force is downward. Advection upward must compete against gravity, but
must also be sustained to overcome the inertia of the plankton. The vertical component of
the flows tested in section 3 oscillates, so those flows with mean vertical fluid speeds on the
order of the settling velocity are still dominated by gravity because fully half of the time
the flow is downward. For this reason we will call the regime where mean vertical fluid
speeds are on the order of the settling velocity, or slower, “the settling regime.” Note that
plankton will only settle in the Stokes’ inertia model, and then only in high shear regions.

2.3.2 Theoretical Concerns

Technically, in order to use the Maxey-Riley equations with confidence we must first check
that our model satisfies the basic assumptions that the equations are based on. The
Maxey-Riley equaitons assume the particle diameter is much less than the Kolmogorov
length scale. As mentioned, we’re off by at least an order of magnitude here. It is also
assumed that the shear Reynolds number ReΓ = a2Γ/ν << 1 where Γ is a typical velocity
gradient for the flow. We tested a range of flows which had the same geometric structure
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but different speeds, and found that ReΓ < 0.5 was satisfied for all flows, which we consider
acceptable.

Another assumption is that the particle Reynolds number, Rep = a|v−u|/ν will remain
small. We initialize the model with v = u to ensure that Rep starts small. Depending on
fluid speeds, plankton swimming speeds may not be small in comparison, so that Rep may
not remain small. We find that the average Rep over the range of flows tested is under
350 for swimming plankton, although faster flows included particle Reynolds numbers as
high as 6250. This is far too high. We can note that we are not employing the full
Maxey-Riley equations, and so it is probably better to use the validity of Stokes’ drag
as a guide for the validity of these equations, since it is the only force besides gravity
considered. However Stokes drag assumes low Reynolds numbers which is an assumption
we do not satisfy. There are corrections available making a Stokes drag type equation
valid for various ranges of particle numbers [37]. Alternatively, in a future modification
of the model we could move to a more general drag force such as the drag equation Fd =
π
2
ρf (v − u)2cda

2 (see [31]). This would require a value for the drag coefficient cd, which
depends on the Reynolds number. The values of cd are not based on a theoretical derivation,
but on phenomenological observation. Values for cd at high Reynolds number have been
calculated in [1]. However, the Stokes’ drag has the advantage that it does not have
such a coefficient, but is describable in terms of known quantities based on the flow and
particle properties. Additionally, all of these alternatives for the drag force employed in
this paper are corrections for spherical particles, and Euphausia pacifica, as well as many
other zooplankton, are not close to spherical. These organisms are also changing shape
as they constantly reorient and propel themselves. There are many possible avenues for
improvement on drag value accuracy which could be examined in future work.
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Chapter 3

Results

3.1 Setup

3.1.1 Parameter Space

We chose to look at four critical values for the shear, and a range of flows for each. To
capture the interaction of swimming with the high shear response, for each critical value we
considered three flows: one for which 25% the domain was considered high shear according
to I2, one for which it was considered 50% high shear, and one for which it was considered
75% high shear. To minimize variation between cases, we elected to change the speed of
the flow only. This was accomplished by making the amplitudes in (1.9) dependent on a
third parameter s in the following way:

A1 = αs

A2 = s
√

1− α2

where α = 0.9 was a fixed splitting factor. Varying s generates a one parameter family of
solutions which vary the speed of the fluid, but not the geometry of the streamlines. This
allows us to take values of s corresponding to specific quantiles of area considered high
shear by the plankton for different critical values. Plots of the percentage of the domain
considered high shear by the plankton, as a function of s, are shown in Figure 3.1.
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Figure 3.1: Fraction of the domain considered high shear as a function of s in centimeters.
Lighter curves correspond to smaller critical shear values. All curves asymptote to filling
the domain with high shear, but curves for larger critical values do so more slowly.

Tables 3.1 and 3.2 give some basic metrics of these flows. By choosing values to get
the quantiles we want, we have also chosen twelve flows of increasing speed. By panel b)
of Table 3.1 we see that the settling regime for this exploration of parameter space is the
slowest five flows. Since the swimming speed of the plankton is fixed at vswim = 0.1 m/s,
from Table 3.2 we see that the flows range in speed from an order of magnitude slower
than that of the plankton, to an order faster. Shear quantile stills are shown in Figure 3.2.

36



critical value
(

1
s2

)
25% 50% 75%

5× 10−6 0.16 0.26 0.48
5× 10−5 0.5 0.81 1.49
5× 10−4 1.56 2.54 4.71
5× 10−3 4.91 8.03 14.87

(a)

critical value
(

1
s2

)
25% 50% 75%

5× 10−6 0.0019 0.0030 0.0056
5× 10−5 0.0058 0.0094 0.0173
5× 10−4 0.0181 0.0295 0.0547
5× 10−3 0.0570 0.0932 0.1725

(b)

Table 3.1: Values of s corresponding to high shear area quantiles for the four critical values
tested are shown in panel a). Mean vertical fluid speeds over the domain at t = 0 are shown
in panel b), by the definition in the text, these values show that for this parameter space
exploration the settling regime consists of the slowest five flows.

critical value
(

1
s2

)
25% 50% 75%

5× 10−6 0.0445 0.0724 0.1336
5× 10−5 0.1392 0.2254 0.4147
5× 10−4 0.4342 0.7069 1.3108
5× 10−3 1.3665 2.2348 4.1385

(a)

critical value
(

1
s2

)
25% 50% 75%

5× 10−6 0.0000 0.0001 0.0002
5× 10−5 0.0002 0.0006 0.0019
5× 10−4 0.0021 0.0055 0.0191
5× 10−3 0.0207 0.0554 0.1901

(b)

Table 3.2: Maximum speeds at t = 0 in m/s are shown in panel a). Max values of |I2|
over the domain at t = 0 are shown in panel b). Note the max shear is smaller than our
accuracy in the first row of b).

Figure 3.2: Red represents high shear regions. From left to right these are 25%, 50%, and
75% high shear quantiles.
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In the analysis that follows, when we refer to “the range of flows” we mean these 12.

As shown in equation 1.9, a superposition of two solutions was considered: a mode one
(m1 = 1) solution of amplitude A1 and a mode two (m2 = 2) perturbation of amplitude
A2, where A1 > A2. Each of the two solutions in the superposition had fixed frequencies σi
and fixed wavenumbers ki and mi across all simulations, so that the phase speeds of each
solution in the superposition were also fixed across all simulations. The phase speed of the
primary solution in the superposition is

V =
σ1

k1

= 0.1249 m/s (3.1)

This is the number we will use in our analysis because the phase speed σ2
k2

= 0.0636
m/s of the perturbation determines a small deformation of the primary solution which
travels slower than the primary solution. This means that V is the speed of interest when
considering transport and trapping because it gives a good estimate of the peak wave-
induced speed. An alternative would be to use the weighted average of the solutions to
give

αV +
√

1− α2 0.0636

α +
√

1− α2
≈ 0.1048 m/s < V

as we might expect since the perturbation is slower than the primary solution. For our
small exploration of parameter space either value would have worked, so we will stick with
V . The purpose of this value is to give a rough baseline value for the Lagrangian frame
speed, and it serves this purpose well.

Having each solution propagate at a different speed provides a shear field which evolves
in time rather than simply propagating. It also breaks the symmetry to better approximate
the background flow as a version of the flow depicted in Figures 10 to 17 of [33].
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Figure 3.3: The initial position of the plankton is shown in the first panel, the second panel
is at t = 8 s, the third is at t = 56 s. This is the base fluid particle model with swimming,
outlined in section 2.2.2. This flow is the first quantile of the 5 × 10−4 critical value, so
a medium speed flow from the regime. The red gyres are counterclockwise and the blue
gyres are clockwise which clearly advects the plankton cloud as they swim.

Every simulation begins as in Figure 3.3: the plankton are dropped at their preferred
light level and begin to swim while being advected by the flow according to the model
which has been selected from section 2. The simulation then runs for 4000 seconds.

3.1.2 Model Selection

Many versions of the models described in section 2 were considered, some of which yielded
no useful results. For any attribute of a population, including swimming speed or shear
response, variance of that attribute within the population is expected on biological grounds.
Variants of the fluid particle model which included variation by introducing substantial
variance in both critical shear level and swim speed were considered. No meaningful
differences were found in large ensembles. There were small quantifiable differences, such
as slight variations in scalar measures, but no overall trends to speak of. Population
variation can easily be added again at any stage, but for now populations without it are
considered so that the effects of the mechanisms at work can be identified as easily as
possible. For this reason we focus on the 12 models from Table 3.3. From now on when we
refer to “the three models” we mean Stokes’ inertia with the R value calculated in 2.2.5
(making the plankton a slight aerosol), neutral buoyancy Stokes’ inertia, and the fluid
particle model. Finally, when we consider any of the three models without either a shear
response or biased swimming we will call that variant “the base model.”
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Model Options Freeze Bias
Stokes’ inertia yes / no yes / no
neutral buoyancy Stokes’ inertia yes / no yes / no
Fluid Particle yes / no yes / no

Table 3.3: We consider models corresponding to all possible ways of filling out this chart,
so each model has the four choices of no freeze or biased swimming, both, or only one of
freeze or biased swimming, for a total of 12 models.

3.1.3 Tools

One classical metric when dealing with a randomly walking population is to consider the
(total) variance (i.e. the trace of the covariance matrix) as a function of time. In the
classical analysis if there is no drift and the initial conditions of the Fokker-Planck equation
are taken to be a delta function of position, so that it is assumed the initial position of the
plankton is a single point. The motion of the population then follows a diffusion process,
featuring a linear increase of variance over time. It is unsurprising that one parameter
should capture the growth of a diffusion process because of the isotropy of the process.
The introduction of a background drift can have profound consequences on the geometry of
a diffusing population, and so variance becomes an inadequate tool for analyzing these more
diverse geometries. What we found was that any anomaly in the variance plots required
us to return to the animations for an explanation anyway. For our situation variance plots
were an analytic tool with no predictive or descriptive power. See 4.5 in the appendix for
a longer discussion.

Variance was not the only measure we tried. We also considered interparticle distances,
so that the ensembles were tracked in pairs. Interpreting the output of the simple measures
we tried always required reference back to the simulations, so that those measures were
of no use in isolation. It is certainly possible that a useful measure could be constructed,
but we were unable to do so within the confines of the Master’s duration. Perhaps in the
Doctorate.

That said, the most powerful tool we have is also the simplest: animations of the results
of our numerical experiments. These animations are the analogues of film of physical
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experiments, and allow us to carry out all of the same analyses. Science depends on
observations, and direct observations depend on the use of our eyes, so that science has a
long history of dependence on our visual analytical abilities. Fortunately, the human eye is
able to observe patterns subtle enough that is is difficult to express them in any language,
including that of mathematics. This is what makes the animations so useful.

3.2 Analysis of the Mechanisms

Our models and their variants employ the mechanisms of a freezing in shear response and
of swimming in both unbiased and biased versions. Although our exploration of parameter
space is small, when combined with the different models and their variants we have many
cases to consider. To make progress in our analysis we first observe a similarity between
two of our three models, and then build up our intuition of, and nomenclature for, the
differences and similarities of all the models and their variants, and what we observe in the
plankton populations we simulate by them.

3.2.1 Comparing the Fluid Particle and Neutrally Buoyant Stokes’
Inertia Models

As mentioned in section 2.1.5, the fluid particle model and the neutrally buoyant Stokes’
inertia models (R = 2

3
) agree well over all the variants, and over the range of flows tested.

The dynamics of the models cannot actually be the same, as the following thought exper-
iments show: take both models and include a shear response and suppose a plankter from
each population is being accelerated along an integral curve contained inside a high shear
region. Assume this integral curve turns sharply near the boundary of that region to stay
inside it. In this case the inertia of the Stokes’ inertia model plankter can carry it out
of the high shear region while the inertialess fluid particle plankter remains inside. This
is the situation in Figure 3.4 a). Similarly, motion along an integral curve inside a high
shear region travelling parallel to the boundary and then sharply crossing it could carry
the inertialess plankter with it, but leave the Stokes’ inertia plankter inside. This is the
case in Figure 3.4 b).
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Figure 3.4: Red is high shear and blue is low shear. Panel a) shows inertia carrying a white
plankter modelled under the neutrally buoyant Stokes’ inertia model out of a high shear
region while a plankter modelled under the fluid particle (in green) follows the integral
curve and stays inside. Panel b) shows inertia keeping a plankter inside a high shear
region.

For the two fastest flows the variant with both a shear response and biased swimming
showed a separation of these models significant enough to be worthy of mention, but over
the range of flows tested, the neutrally buoyant Stokes’ inertia and fluid particle models
agreed extremely well in the majority of cases.
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3.2.2 Trapping: Base Models

Consider the three base models. Our flows translate at the same speed V = 0.1249 m/s
> vswim = 0.1 m/s. Lamb [33] points out that, in the fluid particle model, if the horizontal
fluid speed u(x, z, t)+uswim ≥ V for a constant uswim, plankton will be trapped in the wave
and advected along with it. In our situation the swimming speed is not constant but the
maximum possible swim speed in the horizontal direction is vswim = 0.1 m/s. Therefore
if u(x, z, t) − vswim ≥ V the population of plankton is trapped and transported by the
wave. If u(x, z, t) − vswim < V plankton are not trapped. Trapping occurred in all three
base models for the eight fastest flows. This was predicted accurately by the inequality
condition used with the values of Table 3.4 a).

critical value
(

1
s2

)
25% 50% 75%

5× 10−6 0.0445 0.0724 0.1336
5× 10−5 0.1392 0.2254 0.4147
5× 10−4 0.4342 0.7069 1.3108
5× 10−3 1.3665 2.2348 4.1385

(a)

critical value
(

1
s2

)
25% 50% 75%

5× 10−6 0.0048 0.0078 0.0144
5× 10−5 0.0150 0.0243 0.0446
5× 10−4 0.0467 0.0760 0.1410
5× 10−3 0.1470 0.2404 0.4452

(b)

Table 3.4: Maximum values of the components of the velocity field at t = 0. Panel (a)
shows the horizontal component and (b) shows the vertical. By smoothness and periodicity
we take these values to be representative of the values over the entire time domain.

Where trapping exists, it often exhibits a geometric character. There are points where
u(x, z, t) = 0 and by spatial periodicity of the flow these points are in coherent bands where
u(x, z, t) ≈ 0. As plankton approach a band, u diminishes, and we have u(x, z, t) +vswim ≤
V , because vswim < V and u is small. In this case the region where u ≈ 0 becomes a
kind of stable region: plankton swim slower than the wave, so if they approach this region
from behind they cannot pass it on their own, and if they fall behind this region u can
increase to where u > V and they are accelerated towards it. Similarly if they approach
this region from the front they cannot fall too far behind it. This stability creates a sharp
boundary which is most clear in the Stokes’ inertia model because gravity causes that
population to congregate near the bottom of the channel. These band formations are a
kind of trapping, and so were only observed in the fastest eight flows, as seen in Table 3.4.
Note that this table also justifies why the horizontal flow components are considered in the
trapping analysis: the vertical components of the flow are an order of magnitude weaker

43



than the horizontal components. To summarize, we have found that the eight fastest flows
exhibit trapping in band formations for all three base models.

3.2.3 Trapping: Biased Swimming

Now consider all three models with biased swimming towards the preferred light level of
zL = 7 m but no shear response. In this case the most relevant speeds for trapping are not
the maximum horizontal speeds throughout the domain, but those at the preferred light
level. This gives us Table 3.5.

critical value
(

1
s2

)
25% 50% 75%

5× 10−6 0.0204 0.0332 0.0613
5× 10−5 0.0639 0.1035 0.1904
5× 10−4 0.1993 0.3246 0.6019
5× 10−3 0.6247 1.0261 1.9001

(a)

critical value
(

1
s2

)
25% 50% 75%

5× 10−6 0.0044 0.0072 0.0133
5× 10−5 0.0139 0.0225 0.0414
5× 10−4 0.0433 0.0705 0.1308
5× 10−3 0.1364 0.2230 0.4130

(b)

Table 3.5: Maximum values of the components of the velocity field at t = 0 and z = 7 m.
Panel (a) shows the horizontal component and (b) shows the vertical. By smoothness we
take these values to be representative of the values near z = 7 as well. By periodicity we
take these values to be representative of the values over the entire time domain.

The biased swimming behaviour causes the line z = 7 m to be a stable region for the
plankton because they always swim back to it. The only mechanism that can perturb the
plankton away from this line is a strong vertical current. Note that since the swimming
is not directly up or down, the mean swimming speed up or down when away from the
preferred light level is

v̄ = 〈vswim sin(θ)〉θ =
vswim

π

π∫
0

sin(θ) dθ ≈ 0.06366

Table 3.5 shows that the slowest seven flows satisfy w(x, 7, t) < v̄, which results in a layer
of plankton at zL = 7. In this case the same trapping analysis as in section 3.2.2 can be
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applied: trapping occurs when u(x, zL, t)− vswim ≥ V , which we see from Table 3.5 is true
for the fastest five flows. Once again this inequality condition predicted the presence of
trapping in simulations. This means that trapping does not occur for the flows satisfying
w(x, zL, t) < v̄. Trapping does occur for the flows where w(x, zL, t) ≥ v̄, but since the
vertical currents are also strong we get a more interesting structure to the population than
a simple layer of plankton at zL. We also get trapping in gyres for the fastest four flows.
This will be discussed further in section 3.2.7.

3.2.4 Trapping: Shear Response

Now consider all three models with the freeze in shear response, but no biased swimming.
Since plankton do not swim when they’re in high shear, the trapping requirements are
different inside and outside of the high shear regions. Outside we still have the u(x, z, t)−
vswim ≥ V requirement, but inside u(x, z, t) ≥ V is sufficient. This latter requirement is
satisfied for the fastest ten flows as we can see in Table 3.4. This table also outlines how
much of the domain satisfies each inequality. So for example the 25% quantile flow for the
5 × 10−5 critical value meets the trapping criteria for the 25% of the domain that is high
shear, but not for the 75% of the domain which is low shear. This example also shows
another subtlety, as the fastest horizontal currents occur along the bottom boundary, where
the free-slip conditions cause low shear. In that flow we do not observe trapping because
the high shear region and maximal horizontal fluid speed region do not coincide, but we
do get what is essentially trapping as depicted in the left panel of Figure 3.5 for all three
models.
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Figure 3.5: The fluid particle model is shown in magenta, the neutral buoyancy Stokes’
inertia in yellow, and the Stokes inertia in green. In the left panel (t = 3000 s) we see
all three populations caught below a region of high shear, shown in black. As they swim
up they are advected by the high shear zone and the net effect is that they are essentially
trapped despite being predomininantly outside the high shear region. The right panel
(t = 3200 s) shows the Stokes inertia model trapped between the bottom boundary and a
high shear region enclosing it.

As another example, for the 75% quantile 5× 10−6 flow we get trapping for the Stokes’
inertia model only, where gravity has caused the separation that led to a population being
trapped between high shear and the bottom boundary. This trapping could, in principle,
also occur in the other two models, it is just that in the Stokes’ inertia model gravity led to
the population being in the appropriate location to begin with. We therefore conclude that
in our flows u(x, z, t) ≥ V is a good indicator of the presence of trapping, and we see that
the ten fastest flows satisfy this criteria by looking at Table 3.4. These examples show that
the varying trapping criteria over the domain makes predicting the presence of trapping
effects difficult, but that trapping occurred in the u(x, z, t)− vswim ≥ V sense in the eight
fastest flows, and by shear trapping in the cases mentioned, so that the ten fastest flows
exhibit trapping. We also found that the force of gravity caused significant separation
of the Stokes’ inertia model from the fluid particle and neutrally buoyant Stokes’ inertia
models in the variant with a shear response and unbiased swimming. We will return to
this in section 3.2.8.
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3.2.5 Trapping: Biased Swimming and Shear Response

Finally, we consider all three models with both a shear response and biased swimming.
Once again it is Table 3.5 which is most relevant. Following the same analysis as for the
shear response with unbiased swimming variants we expect trapping in the seven fastest
flows because those are the flows for which u(x, zL, t) ≥ V holds. Experiments show that
this is the case.

3.2.6 Trapping in Gyres

A stronger type of trapping occurs if the fluid speed is much faster than the wave speed.
In this case the integral curves of the gyres are nearly closed (in a frame moving with the
wave), and the plankton get caught in gyres. This occurred in all three models and in all
variants, provided the flow was fast enough. Trapping in gyres requires faster fluid speeds
than trapping in bands but how fast depends on the model variant: the variant with biased
swimming but no shear response only showed this effect in the fastest four flows, as we
will discuss in section 3.2.7. The variants with the shear response had this effect occur in
the fastest seven flows, so in those flows outside the settling regime. The models with the
shear response have less swimming overall, and so are trapped more easily. Trapping in
gyres is more difficult to quantify, and so we base our analysis on the more direct trapping
in bands analysis, since it can be characterized by tables like 3.4.

3.2.7 Light Attractors

As mentioned in section 3.2.3, for all three models with biased swimming and no shear
response when w(x, zL, t) ≥ v̄ as for the fastest five flows, we get very different dynamics
than for the w(x, zL, t) < v̄ case. By Table 3.5, trapping occurs for all five of these flows,
giving us three mechanisms: biased swimming and currents stronger than swimming in the
vertical, and strong currents in the horizontal. The interplay of these mechanisms leads
to coherent structures of plankton that we will refer to collectively as “light attractors”, a
name chosen by analogy with attractors of dynamical systems.

For the slowest of the five flows satisfying w(x, zL, t) ≥ v̄, w(x, zL, t) ≈ v̄ and the
perturbation by the flow is small, leading to a trapping in a band as described in 3.2.2
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1. Over the four fastest flows we tested, light attractors do not form in bands because
bands form at regions where the vertical currents are strongest, and in particular are
much stronger than the swimming of the plankton. However, at the centre of gyres the
vertical currents are small enough that the swimming can overcome them. As the plankton
are perturbed by the vertical currents and pass through the domain, they are constantly
swimming toward their preferred light level zL. If they reach zL near the center of a gyre,
the vertical currents are too weak to perturb them away from zL. Additionally, horizontal
currents are at their weakest at the center of a gyre, but are still an order of magnitude
stronger than the vertical currents. This means that near the center of a gyre is a region
where the vertical currents are smaller than the swim speed, but the horizontal currents
are faster than the swim speed. If zL is near the center of the gyre then we have a region
where the swimming is essentially in the vertical and the advection is in the horizontal but
in opposite directions above and below the gyre. The bias in the swimming causes them
to alternate above and below zL at the center of the gyre, which means they alternate the
direction of their advection as well. Finally, since currents increase in strength away from
the center of the gyre, the further away from the center of the gyre they get the stronger
the restoring force. This process induces a light attractor at the center of gyres whose
centers are near zL, and the gyres themselves are advected at the wave speed V . We will
call these light attractors “stable light attractors.” This does not mean they cannot be
destroyed. The gyres are not static as they are advected, and as they change shape they
may do so in such a way that their center is no longer close to zL. Additionally, since
the trapping of these attractors does not occur at the maximum horizontal velocities, it is
possible for them to drift out of the center of the gyre as it travels, meaning the trapping
is enforced elsewhere. Still, these light attractors are stable in the sense that if they are
advected in a stable gyre they will persist.

1We will not give this structure a special name. It is essentially the layer of plankton observed in the
slowest seven flows, but collected into a smaller region by the trapping mechanism.
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Figure 3.6: We see patches of all three populations, in black, white, and magenta, in
the form of two unstable and stable light attractor pairs. Times from left to right are
2396, 2596, and 3356 s. The unstable light attractors in the middle two gyres feed the
stable light attractors in the outer two gyres, and in the end the left unstable attractor
has almost been destroyed by this process. Note the horizontal axes: this process occurs
in the Lagrangian frame.

For stable light attractors, the stabilization is a result of the alternating of the plankton
above and below zL. If zL is not at the center of the gyre but is still within it, the plankton’s
swimming towards zL leads to the plankton filling and often spilling out of the gyre. As the
plankton swim towards zL they get closer to the edge of the gyre, and the edge of the gyre
includes more integral curves which leave it. Simulations show that for gyres with centers
above zL, plankton form disks which leaked plankton into adjacent gyres, whose centers
were closer to zL, to form primary light attractors. Since these structures are the result
of biased swimming, we still call them light attractors. However, due to their tendency to
feed into stable light attractors we call these “unstable light attractors.” Both of these are
shown in Figure 3.6.

The existence and stability of light attractors depends very much on the flow geometry
and nature of the preferred light level. Our flows are a one parameter set of linear solutions
to the internal wave problem, and as such are a series of gyres of approximately the same
size and shape. More complicated flows, especially those featuring turbulence, or different
Q or St values, could be entirely different. Although our flows represent a simple case, we
know that many flows are smooth to a good approximation, and could feature common
structures like gyres. Additionally, had we chosen a preferred light level which did not
coincide with the center of some of our gyres, it is possible that we may have had no stable
light attractors at all. Our terms are relatively loose, as we’ve seen that stable attractors
can be destroyed, and unstable attractors are eventually destroyed, but these structures are
difficult to describe simply and we feel these terms capture the intuition of the situation.
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3.2.8 Shear Attractors

Now consider all three models without biased swimming but with the freezing in shear
response. This response induces another set of coherent structures of plankton which we
will call “shear attractors.” Across the range of flows tested, shear attractors resulted from
the freezing in shear response by one of two mechanisms. The first can be described as
follows: a small band of integral curves of the flow which pass out of a region of high shear
and then back in again collect plankton by advecting them into the high shear region. The
plankton are then carried through the high shear region until they are advected out of the
high shear region close to their original entry point2. Their next few swimming decisions
are crucial. Since the swimming decisions are unbiased, if they swim back into the high
shear region they will be frozen and advected through it again, and if they swim away
from it they may not swim far enough to avoid being pulled back in anyway. This creates
coherent structures of rings of plankton advected by the flow as in the top left panel of
Figure 3.7. Clearly the formation and shape of these structures is highly dependent on the
flow geometry, but these were observed in the seven fastest flows in all three models and
constitute a form of trapping as discussed in section 3.2.6.

2Close in Lagrangian coordinates. The entire flow may have been translated, but the structure has
retained its identity.
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Figure 3.7: The top left panel (t = 1000 s) shows patch formation by ring shaped shear
attractors for all populations: fluid particle in magenta, neutrally buoyant Stokes’ inertia
in white, and Stokes’ inertia in black. Note the trapping in a band as well around x = −25.
The top right and bottom panels (t = 1200 s) show filament shear attractors. The third
panel shows the the shear field plotted at the same time as the second panel, high shear
in black and low shear in white. The color of neutrally buoyant Stokes’ inertia has been
changed from white to yellow and the color of Stokes’ inertia has been changed from black
to green. This panel clearly shows the separation of the Stokes’ inertia model (green) from
the other two (yellow and magenta), as well as trapping below the high shear region.
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The second mechanism for generating shear attractors is more subtle. The interaction
of the collection of plankton along high shear region boundaries, advection, swimming in
low shear regions, and, in the case of the Stokes’ inertia model, gravity, combine to give
a myriad of coherent structures of plankton which we will also call shear attractors. This
is a large grouping to make, but they do have a common defining feature: filaments of
plankton whose thickness depends on the shear quantile. Some examples of these filament
structures are shown in the bottom panel of Figure 3.7, where the dependence on the
amount of shear has clearly influenced the shape, particularly along the bottom boundary.
This makes sense because plankton swim in low shear, diffusing to fill the domain over time.
If the low shear covers only 25% of the domain it occurs in narrower structures than if it
was 50% or 75%. In the six slowest flows, the effect of gravity in the Stokes’ inertia model
causes significantly different population dynamics than for the models without inertia. In
particular, the concentration of that population along the bottom boundary was blocked
from above by high shear regions and advected back down, similar to the shear trapping
mechanism described in section 3.2.4. See the top right and bottom panels of Figure 3.7
for an example.

3.2.9 Shear and Light Attractors

Now consider the model variants where both a freezing in shear response and a biased
swimming toward the preferred light level are included. With the freezing in shear response
we get shear attractors as described in section 3.2.8, but now the nature and evolution of
these attractors depends on the location of the high shear zone with respect to zL. As we
saw in section 3.2.7, without a shear response, for slower flows the plankton form a thin
layer near zL, and for more powerful flows light attractors form, and this is still the case
in the low shear portion of the domain. There are two-ways to think about these new
structures: either as light attractors whose evolution is interrupted by the freezing in high
shear response, or as shear attractors whose evolution depends on their distance from zL.
For this reason we will call these attractors “shear and light attractors.” As was the case
for light attractors these can be stable or unstable, depending on whether they contain zL
and the center of a gyre.

To better understand the combined effects of the shear response and biased swimming
mechanisms consider the trajectory of a single plankter. As noted in 3.2.8, the swimming
decisions of a plankter as they are advected out of a high shear zone are crucial for de-
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termining its trajectory over a long time period afterward, but if the swimming is biased,
once they are advected out of a high shear region they immediately start swimming in the
direction of zL, which essentially gives four possibilities: 3

1. they are advected out of the top of a high shear region and zL is below them, so they
swim back into the high shear region.

2. they are advected out of the top of a high shear region and zL is above them, so they
swim farther from the high shear region.

3. they are advected out of the bottom of a high shear region and zL is below them, so
they swim farther from the high shear region.

4. they are advected out of the bottom of a high shear region and zL is above them, so
they swim back into the high shear region.

3One might ask about them swimming out “the side” but it is the z axis preference that is important.
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Figure 3.8: The four basic possibilities of a plankter with a preferred light level leaving a
high shear region. Red is high shear and blue is low shear.

Figure 3.8 shows these four possibilities. Notice that, in particular, if the high shear
region contains zL, then rather than swimming in a random direction, they immediately
swim back into the high shear region. This is like a shear attractor but even more coherent
because the swimming back onto the attractor is guaranteed. If the high shear region does
not contain zL then the plankter immediately swims away from it, making it more difficult
to create a shear attractor. The similarities to the light attractor cases are clear: if zL is
contained in a high shear region we can get a gathering effect analogous to stable light
attractors, and if zL is not contained in a high shear region we can get a gathering effect
analogous to unstable light attractors. The difference is that the shear response of freezing
interrupts the formation of light attractors. An example is given in Figure 3.9.
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Figure 3.9: The left panel (t = 796 s) shows an unstable and stable attractor pair on the
left, and on the right a shear and light attractor containing zL. The right panel (t = 1356
s), is after the unstable attractor has been destroyed. The light attractor containing zL
has shrunk to match the evolution of the high shear region.

At the level of populations, the interaction of biased swimming and shear response
led to a variety of coherent structures. The time evolution of shear and light attractors
showed significant variation as well: the shear response can lead to a different number of
attractors than without it, it can both increase and decrease the rate of decay of unstable
attractors, or it can change the population dynamics to the point where the variants with
shear and biased swimming and the variants with biased swimming but without shear bear
little resemblence. In simulations it was often the case that a shear attractor would form
in a high shear region containing zL and the high shear region would shrink over time,
leading to the formation of a stable light attractor. The reverse of this process was also
common. For all three models, those flows with less of the domain considered high shear
followed the dynamics of the models with biased swimming and no shear response more
closely than those flows with more of the domain considered high shear. That is to say,
the biased swimming has less of a chance to act when more of the domain is high shear
and less swimming actually takes place. As in 3.2.7 we saw these attractors in the fastest
four flows considered in all three models with both shear response and biased swimming.
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3.3 Aggregation and Vertical Patch Formation

Having outlined the mechanisms present in the various models and how they compare
across the range of flows tested, we now consider the major results of this thesis:

• The Stokes’ inertia model predicts aggregation of plankton populations along the
bottom boundary of high shear regions containing the preferred light level.

• All three models allow formation of plankton patches in the vertical.

3.3.1 Aggregation Below Regions of High Shear

The Stokes’ inertia model with both biased swimming and a shear response predicts plank-
ton aggregation along the bottom boundary of high shear regions by the following process.
As mentioned in section 3.2.3, outside high shear regions in the seven slowest flows, layers
of plankton form around zL when the vertical advection is less than v̄ = 0.06366 m/s.
This layer formation can be interrupted by high shear regions, and as mentioned in 3.2.6,
there is no trapping in gyres in the settling regime, which means these layers of plankton
are not advected into ring shaped shear and light attractors, but stay in a more gently
deformed layer as they are advected. Since the plankton are initialized at zL, partially in
a high shear region, at least some of the population immediately begins to settle. This
means that for the plankton in high shear, of the four cases depicted in Figure 3.8, the
fourth case is the most likely: the particles leave the high shear region at the bottom and
zL is above them, so they swim back into the high shear region. However, as soon as they
enter the high shear region they stop swimming, leading them to settle once more. As in-
dividuals this leads to an oscillation across the bottom boundary of the high shear region,
and as a population this leads to an aggregation along the bottom boundary of high shear
regions containing zL. That is, plankton populations aggregate below high shear regions
containing the preferred light level.

Note that since the effect of gravity is the key mechanism for this aggregation to occur
and be maintained the fluid particle and neutral buoyancy Stokes’ inertia models do not
produce these results: these two models may form shear attractors along the bottom
boundaries of high shear regions, but without the effect of gravity these shear attractors
are advected through the high shear regions with no mechanism to maintain the aggregation
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along the lower boundary. Gravitational effects cannot be ignored, even for these small
organisms. In the settling regime the inclusion of gravity introduces a vertical component
to the evolution, which in turn yields a significant horizontal separation of the plankton
populations of the Stokes’ inertia model from the other two models. Figure 3.10 depicts
the second slowest flow, where a horizontal separation on the order of 100 meters is created
between the model with gravity and the two without.

Figure 3.10: Both panels (t = 3920 s) show the aggregation of plankton along the bottom
boundary of high shear regions as predicted by the Stokes’ inertia model (black in left,
green in right). The left panel shows the stream function and the right shows high shear
in black. Note the horizontal separation of the fluid particle and neutral buoyancy Stokes’
inertia model from the Stokes’ inertia model. This substantial separation is a result of
gravity acting to separate the populations in the vertical so that the populations are at
different locations as the shear regions evolve. In this case the Stokes’ inertia model has
led to about half the plankton aggregating below high shear, and the other half in two
groups at the preferred light level on either side of the other two models.

3.3.2 Vertical Patch Formation

Vertical plankton patchiness is mentioned in the literature, but there is not much discussion
of its causes. Over large enough scales the shallow water assumption is made, and vertical
structure is ignored altogether, so this may at least partially explain this lack of interest.
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The mechanisms of the models considered above are sufficient to generate a variety of
vertical structures.

Figure 3.11: Two examples of vertical patch formation in the base models. The left panel
(t = 200 s) shows the fastest flow tested. Patches are formed by trapping in gyres, as all
populations curl around the blue gyres, and are fairly dense in the central red gyre. Also
note the relatively sharp vertical bands at x = −125, 100 m. The right panel (t = 1400
s) shows the slowest flow where trapping occurred. The background is u(x, z, t), and we
clearly see the Stokes’ inertia model in black separated to the bottom of the channel and
trapped in the horizontal.

For the base models, recall from section 3.2.2 that the eight fastest flows produced
trapping in bands, and that some of the fastest flows produce trapped rings of plankton
in advected gyres. Both bands and rings are examples of vertical patchiness, as shown
in Figure 3.11. For the models with biased swimming only, the primary and secondary
light attractors as described in section 3.2.7 are examples of patchiness in the vertical, as
depicted in Figure 3.6. For the models with a shear response and no bias in the swimming
we have vertical patch formation in great variety. A few examples are given in Figure 3.7.
Vertical patch formation is also clear in Figure 3.9 for the models which include both a
shear response and biased swimming.
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Chapter 4

Discussion

4.1 Directions for Future Research

4.1.1 Light sensing in Zooplankton

As outlined in [19], the light could act as a cue for plankton in several different ways:

• spectra

• polarization pattern

• absolute intensity

• rate of change of intensity

In our simulations we assumed a constant preferred depth because we were assuming
constant light which is reasonable if we assume our simulations do not take place at sunrise
or sunset: our simulations were 4000 seconds long, which is about 67 minutes. Care must
be taken here as well, because it is tidal forces which cause internal wave trains, and
so the relative timing of the lunar and solar cycles is a factor for determining whether
the assumption of a constant light level is reasonable: if the internal waves are strongest
at sunrise or sunset then assuming constant light levels over an hour which contains the
sunrise or sunset is not reasonable. Additionally, a constant light level is a less plausible
assumption over longer timescales, for example approaching a day. We also don’t know
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which of the four mechanisms listed above is the one which Euphausia pacifica key off of,
or if perhaps it is a combination of the mechanisms that matters.

Note that all four of these could be affected by refraction through turbulent waters. It
is therefore possible that plankton use light alone to maintain position below high shear
regions. Light shining through a high shear region may have a different quality than
that shining through a low shear region, and it is possible that the plankton can tell the
difference. It is also possible that the difference in light quality confuses the plankton into
thinking that they are at their preferred light level, perhaps through a lensing effect which
increases the perceived light. This could happen if the plankton are triggered by maximum
light intensity rather than average intensity. It seems unlikely that the layers of plankton
below high shear regions actually form because they continually swim up, notice it’s high
shear, and then sink back down.

4.1.2 Modelling

First, our model equations for the streamfunction were based on the Euler equations under
the Boussinesq approximation linearized about a state of rest. The travelling wave solutions
which gave us the streamfunction are therefore a perturbation, and must remain small to
be approximately valid. A good measure of “small” is that the fluid speeds remain less
than the phase speed, so that there is no wave breaking. However in the parameter space
exploration of this paper only the slowest two flows satisfy that criterion. That means
that strictly speaking much of our analysis takes place in a non-physical regime. Although
the billows of the streamfunction are still qualitatively representative of observed flows,
they no longer satisfy the underlying physical requirements of the governing equations.
As a result, in the paper we wrote based on this thesis, we did not push the fluid speed
much beyond the phase speed. In subsequent simulations we will move to direct numerical
simulation so that we may be more confident of the physics.

Second, as we saw in 2.3.2, the Stokes’ inertia particle model is based on an equation
being applied outside its intended realm of application. However, as described in 2.2, the
main effect of using these equations for non-neutrally buoyant cases was that caused by
gravity. The more subtle vorticity preference effects were undetectable compared to that
of settling. In the end, then, the Stokes inertia model consists of two terms: one drag, one
gravitational. Because gravity is so strong, the main function of the drag term is to have
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settling particles reach the correct terminal settling velocity. By ignoring the imperceptible
vorticity preference effects, we can move back to a kinematic model where we simply use
the fluid particle model with a settling term in the vertical component:

ẋ = u(x, z, t) + uswim

ż = w(x, z, t) + wswim + wsettling

Over the more physical flow speeds just described, the differences in population distribu-
tion predicted by this model with biased swimming and freeze in shear and those predicted
by the Stokes’ inertia model with biased swimming and freeze in shear are imperceptible.
This descriptive fluid particle model with settling is much simpler to implement, and gives
the same dynamics for the flows we tested. So it seems the effects of inertia on population
distribution may be ignored for some sections of parameter space, provided we account for
gravity.

4.2 Conclusions

The Stokes’ inertia model incorporates all the mechanisms considered. In the settling
regime this model leads to aggregation of plankton populations below regions of high shear
containing the preferred light level. The mechanisms the model is based on are simple
enough that we expect this result to be resilient to changes in flow geometry and speeds
within the settling regime. Additionally, typical values of density for plankton are greater
than that of seawater (see [6], [50], [26]). Therefore any species of plankton with a freeze
in shear response and biased swimming towards a preferred light level may be observed in
layers below their preferred light level when high shear conditions are met in the settling
regime. While the actual critical values for the shear are unknown the critical value choice
would change the size of the high shear zones, not their existence. This result should
therefore hold over a set of parameters encompassing many geophysical flows and for many
species of plankton with a freeze in shear response.

Outside the settling regime, shear and light attractors in the form of rings were ob-
served in the five fastest flows. Since plankton are often observed in nepheloid layers, it is
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reasonable to ask if these simulations are truly representative of the actual flows in which
Euphausia pacifica find themselves. The flows relevant to their environment vary with the
tide, which means that the slower flows tested may reasonably emulate the flow conditions
during periods near slack tide, including the settling regime, where aggregation occurred.
The faster flows evolve large shear and light attractors, but it is important to remember
that it was assumed the stratification was linear in order to reach these solutions. In real-
ity, a well-defined pycnocline will be present [33]. This means that the restoring force will
compress much of the dynamics around this pycnocline, which would likely change the dy-
namics as well: since the swim speed of the plankton remains unchanged there is no reason
to think these structures would scale down without significant structural change. However,
in Knight Inlet, our motivating example, the largest change in the pycnocline [33] is far
above the preferred light level of Euphausia pacifica [25] and hence the weakly stratified
region below the main pycnocline could be approximated by a linear stratification. The
case of fully nonlinear waves in a fluid stratified to represent the conditions of Knight Inlet
can be simulated numerically in order to address these concerns, and this is something we
will return to in future work.

These aggregations only formed for the Stokes’ inertia model with biased swimming
and a shear response, in the settling regime where the the magnitude of the mean vertical
advection was comparable to the settling velocity. As we saw in Figure 3.10, the effect
of gravity in this model leads to a separation of the particle cloud, when compared to
those produced by the two models without gravitational effects. The mass of an individual
plankter is relevant for determining the overall distribution of the population, and as we
saw in section 2.1.5, over the range of flows we tested, gravity overshadows the other
effects of inertia. Given the similarity of the neutrally buoyant Stokes’ inertia and fluid
particle models as described in section 3.2.1 it may be possible to adequately describe the
motion of plankton in any flow using the fluid particle model with an added gravity term.
This would be the cheapest model computationally, but whether it would be the most
descriptive depends on whether gravity always overshadows all other effects of inertia for
the flows in which Euphausia pacifica find themselves. Thus the consideration of model
flows representing more localized features (e.g. localized vortices, shear instability) merits
further investigation.

It is not clear that there actually is a freezing in shear response. If the response to shear
is to freeze, for plankton to aggregate along the bottom boundary of a high shear region
there needs to be mechanisms to push them back onto the boundary from both above
and below. Inside the high shear region, provided vertical advection is not too strong,
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gravity pulls the plankton downward to the boundary. Outside the high shear region
biased swimming propels the plankton upward to the boundary. If the fluid moves too fast
in the vertical it may cancel the downward stabilizing effect of gravity. If it is faster still it
may cancel the upward stabilizing effect of biased swimming. However the freeze in shear
response was not chosen by Ianson et al. [25] as the most explanatory, but rather they
selected a response where the plankton swam down when they encountered the bottom
boundary layer, which in their case was synonymous with high shear. If this response was
applied to high shear throughout the water column, then swimming would replace gravity
as the stabilizing force inside the high shear region. Since swimming (0.1 m/s) is much
stronger than the settling velocity (0.005 m/s), this would lead to aggregation along the
bottom boundary of high shear regions for much faster vertical fluid speeds than those in
the settling regime. However their model had shear only in the bottom boundary layer, and
did not include a shear response elsewhere in the water column. Our models have free-slip
boundary conditions, and so no bottom boundary layer, and shear throughout the water
column. Because of these differences it may be that a freezing in shear response, rather
than a downward swimming response, is adequate to explain the Knight Inlet acoustic
data. Again, a test of these models under conditions more closely resembling those of
Knight Inlet is required.

If there is a shear response, the critical value of shear at which this response is triggered
is unknown. This is a value that could be tuned once we have a simulation of Knight Inlet
running, and perhaps reverse engineered through comparison with available acoustic data.
While it is conducive to mathematical analysis, our selection of 25, 50, and 75% quantiles
is not realistic in this sense: it is not reasonable to assume that Euphausia pacifica refuse to
swim in 1/2 or 3/4 of their environment, although 3/4 could be plausible during energetic
transient events such as passing through a KH billow or being struck by an internal wave.
Given a realistic set of conditions, one could ask how much of the domain is it reasonable
to assume that the plankton consider high shear, or how much of the time is it reasonable
to assume that the plankton should be swimming. For now we will be satisfied with our
four test values for the critical shear, but it is possible that questions of this type could lead
to rough estimates. One could also consider what shear value causes Euphausia pacifica
to have difficulty propelling or reorienting themselves, although that problem is currently
beyond my abilities to solve.

Throughout the analysis of the numerical experiments we relied heavily on still frames
of the animations. It is clear that additional metrics are desirable, but as yet we have found
that everything the scalar metrics convey, the animations convey much better. For instance
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it is difficult to express trapping in gyres with a scalar metric, but it is completely clear
in animations. We did try several statistical measures, like variance of the particle cloud.
We also tried some scalar measures based on the percentage of particles in high shear.
Both of these groups of metrics required comparison with the animations to be interpreted
correctly, and so were unconvincing by themselves. The greatest intuitive clarity comes
from observation of experiment.

When we move to more realistic waves, there is also the question of considering moving
to fully three dimensional simulations. As pointed out in [52], two dimensional, steady
flows exclude the possibility of chaos, but our flows are time dependent so chaos is possi-
ble. Additionally, since plankton are observed in layers, there is good reason to consider
two dimensions to be sufficient to represent the plankton component of the model. The
preferred light level means that any minor three dimensionality can be overcome by swim-
ming. At the same time, only three-dimensional hydrodynamics can lead to a transition to
turbulence. However, given the computational expense and difficulty of rationally analyz-
ing a three dimensional flow, for now a logical next step is to move to more realistic waves
and topography, but stay in the two dimensional case. Once such simulations are done, it
is entirely possible that we will have a reason to go to three dimensions, for example to
consider internal solitary waves with a trapped core (see [32] for numerical simulations and
[36] for field observations).

Our work has moved us one rung from the bottom of the hierarchy in 2.1.1. Swimming
was also added to the particle model, and we could consider more complicated particle or
swimming models in future work. There are many other avenues of possible research we
have yet to fully explore. Formal analyses on the interplay of vorticity, relative masses and
swim speed in our model could be carried out. A two-dimensional model in the horizontal
might be considered important, in which case gravity would be omitted, and vorticity
preference effects could become important for some species of plankton. A more formal
justification of the inclusion of swimming in our inertial model might yield more nuanced
results than those presented here. As a final example, we could include some of the terms
we omitted from the Maxey-Riley equations and see how much of a difference they make
to the dynamics.

In conclusion the Stokes’ inertia model predicts aggregation of plankton populations
below high shear regions, as theorized. Our work shows that the mechanisms of advection,
gravity, a shear response which can be triggered anywhere in the water column, and biased
swimming towards a preferred light level are sufficient to produce population distributions
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similar to those observed.
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APPENDICES

4.3 Model Values

Model Values
Parameter Symbol Value Units
horizontal wavenumber 1 k1

2π
L

= 0.0314 m−1

horizontal wavenumber 2 k2
0.79π
L

= 0.0124 m−1

vertical wavenumber 1 m1
π
H

= 0.1571 m−1

vertical wavenumber 2 m2
2π
H

= 0.3142 m−1

buoyancy frequency N0 0.02 s−1

frequency (mode 1) σ1
N0k1H√
π2+k21H

2
= 0.0039 s−1

frequency (mode 2) σ2
N0k2H√
4π2+k22H

2
= 7.8938× 10−4 s−1

timestep dt 0.04 s
gravitational constant g 9.81 m s−2

swim speed vswim 0.1 m s−1

particle radius a 0.004 m
seawater density ρf 1027 kg m−3

plankton effective density ρp 1027.23 kg m−3

kinematic viscosity ν 10−6 m2 s−1

mass of displaced water mf
4
3
πa3ρf = 2.7532× 10−4 kg

mass of particle mp
4
3
πa3ρp = 2.7538× 10−4 kg

mean trajectory duration ζ ≈ 4 s

diffusion constant D
v2swimζ

2
= 0.02 m2 s−1

Peclet number (base fluid particle) Pe 1600 ≤ Ls
D
≤ 148700 1

Table 4.1: The amplitudes s for the streamfunction vary according to the scheme presented
in 3.1 of 3.1.1. The model parameters which are held constant are presented here. The
Peclet numbers and diffusion constant are for the base fluid particle model. The inertial
model diffusion constant should be similar, with the inertial effects averaging out, but I
have not included a proof of this fact.
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4.4 Classical Analysis: Adding Fluid Drift to Run and

Tumble

In this section we carry out a classical Fokker-Planck analysis of the problem of adding
fluid drift to the diffusion of plankton according to the discrete run and tumble model 1

This type of analysis requires a diffusion constant and Visser [58] appeals to a widely used
result that the diffusion constant in n dimensions under all of these assumptions of discrete
run and tumble is given by

D =
1

n

v2
swimζ

1− ψ

Where here the reorientation angles are θi for the angle chosen after run i, ψ = 〈cos(θi)〉,
which measures the correlation between the runs, and ζ is the mean trajectory duration.
Since Visser’s model relies completely on the accuracy of this expression in order to make
the jump to a Fokker-Planck description, it is worth taking the time to derive it from first
principles.

4.4.1 The Diffusion Constant: One Dimensional Derivation

For this first derivation we will only consider the case where we’re in one dimension and
where ψ = 0. This derivation has the appeal that it does not depend on other results.

For a random (Brownian motion) walk along the x axis with step size δ = vswimt where
t is the time between events we have

x(N) = x(N − 1)± δ

where N is the number of turning events in total time T . Squaring this relation, and
subsequently averaging, gives us

x2(N) = x2(N − 1)± 2δx(N − 1) + δ2

〈x2(N)〉 = 〈x2(N − 1)〉+ 〈±2δx(N − 1)〉+ 〈δ2〉
〈x2(N)〉 = 〈x2(N − 1)〉+ 〈δ2〉

1This technical discussion is based on a course project for AMATH 777.
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where the second term on the right vanishes because we step to the left or right with equal
probability. Notice 〈x2(N)〉 = N〈δ2〉 by a simple induction. But now for large total time
T we have that N = T

ζ
is a good approximation. Therefore

〈x2(N)〉 = N〈δ2〉 =
T

ζ
〈δ2〉 =

T

ζ
v2

swim〈t2〉

Since we are assuming that the decision events follow a Poisson process, then the time
between events follows an exponential distribution and we have that

〈t2〉 = 2〈t〉2 = 2ζ2

so that

〈x2(N)〉 = N〈δ2〉 =
T

ζ
v2

swim〈t2〉 =
T

ζ
v2

swim2ζ2 = 2
(
v2

swimζ
)
T.

However we also know that 〈x2(N)〉 = 2DT for a random walk in one dimension, which
means

D = v2
swimζ.

This final expression establishes the one dimensional result.

4.4.2 The Diffusion Constant: Three Dimensional Derivation

Now we turn to the source that [5] itself cites as reference, namely [38]. We now follow
their derivation for the more general case beginning in section 4 of that paper. Consider a
particle diffusing isotropically in n dimensions, then the mean square distance traveled in
time T is [8]

〈r2(T )〉 ≈ 2nDT

for large total time T where D is the diffusion constant 2. We now appeal to [18] a book by
Nobel Prize-winning Chemist Paul Flory. In a now standard polymer chemistry argument
he develops the formula for the mean end to end distance of a freely rotating polymer chain

2This is the total variance of displacement, meaning the trace of the covariance matrix. It is a straight-
forward calculation to show that it takes this form, so we omit it. Mean square distance is a physical
interpretation.
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with fixed bond lengths and bond angles 3. Without going into all the details [38] extend
this argument to uncorrelated bond angles and lengths. Let 〈l〉 be the mean bond length
and 〈l2〉 be the mean square bond length, their arguments lead to

〈r2〉 ≈ N〈l2〉
1 + (2 〈l〉

2

〈l2〉 − 1)ψ

1− ψ

where N is the (large) number of bonds in the chain and as above ψ is the mean cosine
between successive bonds. As in the figure, we see that this polymer argument superim-
poses well onto our image of a run and tumble random walk: bond lengths are run lengths
and tumbles are angles between bonds. Therefore we think of 〈l〉 as the mean run length
and 〈l2〉 as the mean square run length. Comparing this formula with 〈r2(T )〉 ≈ 2nDT we
have

D ≈ N〈l2〉
2nT

1 + (2 〈l〉
2

〈l2〉 − 1)ψ

1− ψ

Again we have the time between decisions as t, with 〈t〉 = ζ, and here again since N, T are
large we take the approximation N = T

ζ
. If we now make the assumption, as in run and

tumble, that l = vswimt for constant vswim, we have

D ≈ Nv2
swim〈t2〉
2nT

1 + (2
v2swim〈t〉

2

v2swim〈l2〉
− 1)ψ

1− ψ

=
v2

swim〈t2〉
2nζ

1 + (2 ζ2

〈l2〉 − 1)ψ

1− ψ

but now since t is exponentially distributed we have 〈t2〉 = 2ζ2 as above, so that

D ≈ v2
swim2ζ2

2nζ

1 + (2 ζ2

2ζ2
− 1)ψ

1− ψ

=
v2

swimζ

n(1− ψ)

and so Visser uses this n dimensional result

D =
v2

swimζ

n(1− ψ)

3Covering all the details of Flory’s and Lovely and Dahlquist’s arguments is beyond the scope of this
outline.
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There are far more rigorous derivations available. For instance see [45]. We take the above
derivations as sufficient for our purposes. We will also see that we can computationally
simulate Visser’s run and tumble model, and so avoid the quagmire of references to direct
derivations of the diffusion constant.

4.4.3 Modified Run and Tumble Models: Run and Tumble with
Fluid Drift

We now take Visser’s discrete run and tumble model in two dimensions for our swimming,
and take the two dimensional drift to be our fluid velocity field v = (u,w). We can write
down the corresponding Langevin equations for the position (X(t), Z(t)) of a plankter as

dX(t)

dt
= u(X(t), Z(t), t) +

√
2DΓ(t)

dZ(t)

dt
= w(X(t), Z(t), t) +

√
2DΓ(t)

where Γ(t) is Gaussian white noise. This gives us the Fokker-Planck equation

∂f(x, z, t)

∂t
= −∂(fu)

∂x
− ∂(fw)

∂z
+D

∂2f

∂x2
+D

∂2f

∂z2

In our case of two dimensional swimming (n = 2), D has the form

D =
1

2

v2
swimζ

1− ψ
but ψ = 〈cos(θi)〉 and we will assume the θi are uniformly random, as Visser does for much
of his paper. Therefore

ψ = 〈cos(θi)〉 = 0

should be a very good approximation for large ensembles. Therefore we can write

D =
1

2
v2

swimζ

and substitute this value into our equations. Note that diffusivity therefore scales as the
square of swim speed, and that

√
2D =

√
2

1

2
v2

swimζ = vswim

√
ζ
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so that our Langevin equation’s coefficient on GWN is linearly dependent on the swim
speed.

More generally, we have now progressed from a simple geometric model of the swim-
ming pattern of plankton to a correlation time function and diffusion constant D =
D(vswim, ζ, ψ). This gives us both the Langevin equations and the Fokker-Planck equa-
tion (henceforth FPE) for our swimming model, but requires us to determine vswim, ζ, and
ψ.

4.4.4 FPE for Run and Tumble with Fluid Drift

Now that we have a FPE, we have obtained a measure of success. However, our FPE has a
simple form when written as above, but even if we consider the model where the plankton
only swim in the z direction, we get the FPE

∂f(x, z, t)

∂t
= −∂(fu)

∂x
− ∂(fw)

∂z
+D

∂2f

∂z2

which, after taking derivatives of the analytically specified velocity field becomes

∂f

∂t
= −(−A1 sin(k1x− σ1t)k1 cos(m1z)m1 − A2 sin(k2x− σ2t+ φ)k2 cos(m2z)m2)f

− (A1 cos(k1x− σ1t) cos(m1z)m1 + A2 cos(k2x− σ2t+ φ) cos(m2z)m2)
∂f

∂x
− (A1 sin(k1x− σ1t)k1 cos(m1z)m1 + A2 sin(k2x− σ2t+ φ)k2 cos(m2z)m2)f

− (A1 sin(k1x− σ1t)k1 sin(m1z) + A2 sin(k2x− σ2t+ φ)k2 sin(m2z))
∂f

∂z

+ A
∂2f

∂z2

Even this simpler model’s FPE appears to be impossible to solve in closed form by
hand4. Of course the full model’s FPE would have even more terms. At this point we have
two choices

1. Try a simpler flow which may have a closed form solution.

4in fact Maple doesn’t solve it either
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2. Solve the FPE numerically.

For point 1, the flow we have selected is already about as simple as it gets if you want
the flow to be physical and have a closed form. There is thus no point in passing to an
nonphysical flow to do an analysis. We care about plankton swimming in a flow that could
actually exist, at least to a good approximation. Therefore we reject option 1.

For point 2, we can absolutely solve the full model’s FPE numerically. However this
brings up an important point. We did all of this analysis, including assumptions on the
swimming of the plankton, appealing to results from polymer chemistry, deriving the dif-
fusion constant, and passing to the FPE and Langevin equations, only to find that we are
left with an equation we cannot solve. Is numerically solving this equation really the best
step to take? To answer this question, let’s consider the model once more.

4.4.5 Re-evaluating the Model

Notice that without appealing to the result in [5] about the diffusivity constant that we
outlined above there is no obvious direct way to write down a Langevin or Fokker-Planck
equation from the discrete run and tumble model because the randomness in the model is
based on a Poisson process, not Gaussian white noise.

Lets look at the Langevin equations as a description of the motion with fresh eyes. The
equations say that the motion of a plankter is described by the multivariable stochastic
process (X(t), Z(t)) such that

dX(t)

dt
= u(X(t), Z(t), t) + αΓ(t)

dZ(t)

dt
= w(X(t), Z(t), t) + αΓ(t)

for a constant α. These equations say that the plankton are being advected by the fluid
flow in the x direction just as a deterministic particle would be, but in the z direction they
are being advected and are also swimming, where the speed of the swimming depends on
α.

These are the same equations, but they can be rooted in different assumptions:
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1. Visser assumes the decisions to change direction while swimming follow a Poisson
process, so that the tumble times follow an exponential distribution. However we
can assume instead that decisions are evenly spaced in time because we’ve passed to
Gaussian white noise.

2. Visser assumes that the speed of the plankton is uniform, but we can assume instead
that the plankton swim with speed dictated by α. Note that for a particular real-
ization this means that at any given time the speed could be different as we sample
increments of the Wiener process and get different values.

That is to say, we could propose an alternate model of plankton swimming based on
these equations: that every ∆t seconds the plankton make a random choice of swim speed
and direction according to a Gaussian distribution. So while the run and tumble model
dictates constant speed and varying times between tumbles, this model would make the
times between tumbles constant and vary the speed.

This is worth mentioning because in the process of approximating to get these equations
we have lost sight of how we have assumed an individual plankter moves. Even though
we are, in general, interested in the motion of colonies of plankton, we are also interested
in retaining as much information as possible about the swimming of individuals. From a
practical standpoint it is important to be able to describe the motion of a single plankton
in order to carry out simulations. It also allows the simple simulations to be extend to
biologically relevant situations such as predation. Our classical analysis has led us to
equations of motion that we cannot solve, and which do not retain enough information for
our purposes.

4.4.6 Run and Tumble with Fluid Drift and Shear Response

There’s one more model we wish to consider before we proceed. It has been observed that
some species of plankton will stop swimming if there is sufficient shear at their location
in the fluid [25]. This means that as long as the shear remains high enough, say greater
than or equal to a constant value c, the plankton are passively advected by the flow. The
standard way to characterize shear in fluids is by the second invariant of the rate of strain
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tensor [44], which in two dimensions turns out to be

I2(x, z, t) =
∂u(x, z, t)

∂x

∂w(x, z, t)

∂z
− 1

4

(
∂u(x, z, t)

∂z
+
∂w(x, z, t)

∂x

)2

=
∂u

∂x

∂w

∂z
− 1

4

(
∂u

∂z
+
∂w

∂x

)2

We need to cause our plankter to stop swimming if this function exceeds a constant c at
its location. It is natural to define the shear response as

R(x, z, t) ≡ 1−H(I2(x, z, t)− c)

where H(x) is the Heaviside step function. This takes the value 0 whenever the shear
is greater than or equal to c, and is 1 otherwise. This allows us to define our diffusion
constant as

D(x, z, t) = D0R(x, z, t)

where D0 is Visser’s diffusion constant for 2 dimensions D0 =
v2swimζ

2
. Now since the

coefficient of white noise in the Langevin equation depends explicitly on position, we get
multiplicative noise and spurious drift. We also have a choice to make as to the integration
scheme: Ito, Stratonovich, or any of the other continuum of less popular choices available.
The real problem though, is that R is not smooth enough for us to have a well-defined FPE
no matter what scheme we use. Even if we take the derivative of the Heaviside function to
be a delta function, which is itself an approximation, we still need a derivative of the delta
function, which leads us into distribution theory and all kinds of considerations beyond
the scope of this paper.

We could use some other function instead of R. A cutoff function of sufficient smooth-
ness must exist by some standard analysis arguments, such as those used in proving the
existence of a partition of unity. Even if we do this we see that we will get a very large and
complicated partial differential equation, which of course has no guarantee of having an
analytical solution. This equation is even more difficult than the FPE from section 4.4.4
that did not include a shear response, and we could not solve that one either. The hope
of making analytic progress on this one seems slim at best.

However, since the point of the Fokker-Planck equation is to get the time dependent
probability distribution that describes our process, if we can get that information another
way we will be satisfied. We have the following situation:
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Swimming Model Simulation

Langevin Equations FPE

code

approximate

We notice that the classical analysis we carried out above included many assumptions
which were made in an attempt to make analytic progress, and yet with all of this approxi-
mation and compromise, we were still led to a difficult or perhaps impossible Fokker-Planck
equation to solve. Lets reexamine some of the assumptions we’ve made in an attempt to
make analytic progress. Recall from section 2.2.1 that

1. Decisions to change direction while swimming follow a Poisson process, so that the
times between tumbles follows an exponential distribution.

• Biologists do not measure the times between tumbles for plankton, this is just
an idea. Why should a living thing behave according to the same pattern as
radioactive decay?

2. The speed of the plankton while swimming is a constant vswim.

• Plankton are living things, and most living things move at more than one speed.
Even if we picked two discrete times at which our plankton moved, it could vastly
complicate our model.

3. Each plankter moves independently of all others. The plankton do not interact.

• This may be true if they are sufficiently spread out, but there is no particular
reason to think this is true. As a limiting case, a high enough concentration of
them would mean they were physically in each other’s way.

We can see from this list that the real problem with this model is that the plankton, though
simple creatures, have agency. They get tired, so in some sense their position process is
not really Markovian, and this entire analysis is questionable. They search for food, which
may not be evenly distributed in their environment. They do not turn instantaneously or
travel in perfectly straight lines. Their agency poses a challenge to modelling their group
behaviour.

No model is perfect, so one may object to our picking it apart. After all, a model that
is a perfect representation of nature loses its usefulness, because it is just as complicated.
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A model must simplify what it represents in such a way that it retains the information
that we deem to be most important. The run and tumble model seems more like a model
of opportunity in the sense that the polymer chain argument could be adapted by making
the observation that if constant speed was assumed then the length of the bonds could be
replaced by swim trajectories. This was done before the advent of cheap computing power,
and is understandable as it gave those involved a way to make analytic progress.

The point here is that we made many assumptions in order to get to our diffusion
constant, which puts the value of that constant in serious doubt. We were unable to make
analytic progress on the standard model, and as soon as we add another factor, in this
case the shear response, we get a Fokker-Planck equation that is even more intractable.
So as valuable as all of this classical analysis can be, we see that the process of making
assumptions in order to make analytic progress has not been a worthwhile compromise in
this case because in the end we were not able to make enough analytic progress to actually
get to our answer.

We can see that there is room for a better model of plankton motion that makes different
assumptions and in fact there are more models, but examining and comparing all of them
or developing a new model is beyond the scope of this paper. Instead we focus on discrete
run and tumble with all of its imperfections, and set ourselves the task of finding the
information that the probability density function from the Fokker-Planck equation would
provide.

We will proceed using simulation. It is true that we could simulate the associated
Langevin equations to the Fokker-Planck equation we cannot solve, but we can simulate
their motion according to the run and tumble assumptions directly, so there is no reason
to. We could also numerically attempt to solve the Fokker-Planck equation, but again,
after viewing the assumptions made and the resulting compromises, it is much more direct
to simply simulate the swimming model. For this reason we reject option 2: numerical
integration of the FPE mentioned in section 4.4.4.

4.4.7 Conclusion

The limitations of the classical approach are now clear. Even the simple case of adding a
shear response halted our progress. For this reason we abandoned this approach early on.
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Additionally, we wish to consider arbitrary starting geometries and the effects of inertia,
neither of which we attempted in the classical framework, but which would also complicate
the analysis. It is for all these reasons that this analysis features in the appendix rather
than in the main body of the work.

4.5 On the Inadequacy of Variance for our Problem

One classical metric when dealing with a randomly walking population is to consider the
(total) variance 5 as a function of time. In the classical analysis if the initial conditions
of the Fokker-Planck equation are taken to be a delta function of position, so that it is
assumed the initial position of the plankton is a single point, without drift the motion of the
population is like a diffusive process, featuring a linear increase of variance over time. It is
unsurprising that one parameter should capture the growth of a diffusion process because
of the isotropy of the diffusion. The introduction of a background drift can have profound
consequences on the geometry of a diffusion population, yet it is sometimes claimed in the
plankton literature, for example see [59], that on a large scale, this linear increase idea still
applies to the motion of plankton. This view leads to some obvious questions:

1. What about drift? In the case of plankton motion, the drift is given primarily by
the motion of the seawater in which they live. There are an infinite variety of possible
drift configurations. Why would we think that a one-parameter idea like variance as
a function of time could capture anything meaningful about all of them?

2. Does variance increase linearly with time? Over the points in parameter space
we tested, a linear increase of variance over time was not the norm. Those plots that
looked most linear increased at a different rate than predicted by the theory. We
found that the linear increase over time idea was not even helpful for the sake of
intuition.

3. What do we mean by “large scale”? If we consider large enough scales we can
consider the location of a group of plankton as a point, and perhaps average out
all the flow detail to get the perspective that plankton spread in the ocean as dye
diffuses in a still glass of water. However at these scales the relatively slow swimming
of plankton means they can be approximated as passive tracers.

5That is, the trace of the covariance matrix
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We found variance to be essentially useless as a metric for comparing or analyzing runs.
The one thing we could say is that at our scales the idea of treating the plankton motion
as a diffusion process was woefully inadequate to describe the results of our simulations.
There are papers which study the variance as a function of wavenumber in Fourier space,
see [47] for an overview. We may do the same in the future. What we did find, was that the
linear increase of variance over time was not helpful in our analyses, and that any anomaly
in the variance plots required us to return to the animations for an explanation anyway. In
this situation variance plots were an analytic tool with no predictive or descriptive power.
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