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Abstract

With the fast development of 3D acquisition, communication, processing and display tech-

nologies, automatic quality assessment of 3D images and videos has become ever important.

Nevertheless, recent progress on 3D image quality assessment (IQA) and video quality as-

sessment (VQA) remains limited. The purpose of this research is to investigate various

aspects of human visual quality-of-experience (QoE) when viewing stereoscopic 3D im-

ages/videos and to develop objective quality assessment models that automatically predict

visual QoE of 3D images/videos.

Firstly, we create a new subjective 3D-IQA database that has two features that are

lacking in the literature, i.e., the inclusion of both 2D and 3D images, and the inclusion of

mixed distortion types. We observe strong distortion type dependent bias when using the

direct average of 2D image quality to predict 3D image quality. We propose a binocular

rivalry inspired multi-scale model to predict the quality of stereoscopic images and the

results show that the proposed model eliminates the prediction bias, leading to significantly

improved quality predictions.

Second, we carry out two subjective studies on depth perception of stereoscopic 3D

images. The first one follows a traditional framework where subjects are asked to rate

depth quality directly on distorted stereopairs. The second one uses a novel approach,

where the stimuli are synthesized independent of the background image content and the

subjects are asked to identify depth changes and label the polarities of depth. Our analysis

shows that the second approach is much more effective at singling out the contributions

of stereo cues in depth perception. We initialize the notion of depth perception difficulty

index (DPDI) and propose a novel computational model for DPDI prediction. The results

show that the proposed model leads to highly promising DPDI prediction performance.

Thirdly, we carry out subjective 3D-VQA experiments on two databases that contain

various asymmetrically compressed stereoscopic 3D videos. We then compare different

mixed-distortions asymmetric stereoscopic video coding schemes with symmetric coding

methods and verify their potential coding gains. We propose a model to account for

the prediction bias from using direct averaging of 2D video quality to predict 3D video

quality. The results show that the proposed model leads to significantly improved quality
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predictions and can help us predict the coding gain of mixed-distortions asymmetric video

compression.

Fourthly, we investigate the problem of objective quality assessment of Multi-view-

plus-depth (MVD) images, with a main focus on the pre- depth-image-based-rendering

(pre-DIBR) case. We find that existing IQA methods are difficult to be employed as a

guiding criterion in the optimization of MVD video coding and transmission systems when

applied post-DIBR. We propose a novel pre-DIBR method based on information content

weighting of both texture and depth images, which demonstrates competitive performance

against state-of-the-art IQA models applied post-DIBR.
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Chapter 1

Introduction

1.1 Motivation

Over the past decade, we have observed an exponential increase in the demand for 3D image

and video services. High-quality 3D movies can now be seen in thousands of new generation

3D theaters all around the world. Meanwhile, 3D TV has become technologically mature

and won an increasing market share in the consumption market since 2011, where non-

cinematic 3D contents could be obtained from various sources such as Blu-ray 3D and 3D

broadcasting [1]. Looking forward, it is expected that mobile phones will be the largest

3D display application on a unit shipment basis in 2018, when 71 million units will have

3D capability [55].

Nevertheless, 3D contents are not universally accepted. Indeed, they are also widely

criticized. These criticisms mainly focus on the following aspects: 1) Brightness loss;

2) Fakedness (No 3D effect as it claims); 3)Unnaturalness; 4) Discomfortness (eyestrain,

nausea and headaches) and 4) Inconvenience (must wear thick 3D glasses for some 3D

displays). It is worth noting that nearly all these criticisms are regarding certain perceptual

quality aspects of stereoscopic images/videos.

Automatically assessing the quality of 3D visual experience is a challenging prob-

lem [134, 8, 84], especially due to the sophistication and interaction between multiple

1



3D visual cues including image quality, depth quality and visual comfort [119, 26]. As a

result, recent progress on 3D image and video quality assessment remains limited. This

lack of successful objective quality assessment methods for 3D visual experience has limited

the development of 3D imaging applications and services. Therefore, with the fast develop-

ment of 3D acquisition, communication, processing and display technologies, in contrast to

the slow progress on the understanding of 3D visual quality, automatic quality assessment

of 3D images and videos has become ever more important. Consequently, the development

of objective visual quality assessment models of 3D images and videos is highly desirable.

1.2 Objectives

The objectives of this research is to investigate various aspects of human visual quality-

of-experience (QoE) when viewing stereoscopic 3D images/videos and to develop objective

quality assessment models that automatically predict visual QoE of 3D images/videos.

1.3 Contributions

The main contributions of this thesis are summarized as follows:

• A new subjective 3D image quality assessment (IQA) database is developed that has

two unique features − the inclusion of both 2D and 3D images that allows for direct

observation of the relationship between 2D and 3D quality; and the inclusion of mixed

distortion types that allows for studying human behaviors at handling complicated

distortion scenarios. A strong distortion type dependent bias is observed when using

the direct average of 2D image quality of both views to predict 3D image quality.

• A binocular rivalry inspired multi-scale 2D-to-3D model is proposed to predict the

quality of stereoscopic image from that of its single-view images that leads to signifi-

cantly improved quality prediction performance without explicitly identifying image

distortion types.
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• A novel subjective 3D depth quality experiment is carried out that is effective at

singling out the contributions of stereo cues in depth perception, resulting in several

interesting findings regarding distortion type dependency, image content dependency,

and the impact of symmetric and asymmetric distortions on the perception of depth.

• A notion of Depth Perception Difficulty Index (DPDI) is proposed based on the

percentage of correct and incorrect subject judgements to quantify depth perception

induced by stereo cues. A novel computational model for DPDI prediction that leads

to highly promising DPDI prediction performance.

• Two new subjective 3D video quality assessment (VQA) databases are developed that

have two unique features − the inclusion of both 2D and 3D videos, and the inclusion

of asymmetrically compressed stereoscopic 3D videos obtained from mixed-resolution

coding, asymmetric transform-domain quantization coding, their combinations, and

multiple choices of postprocessing techniques.

• A comparison of different mixed-distortions asymmetric stereoscopic video coding

schemes with symmetric coding methods is conducted to verify their potential coding

gains. A model to predict the quality of stereoscopic video from that of its single-view

videos is proposed, leading to significantly improved quality prediction performance,

which can help us predict the coding gain of mixed-distortions asymmetric video

compression.

• A novel pre- depth-image-based-rendering (pre-DIBR) 2D-to-3D method based on

information content weighting of both texture and depth images is proposed, which

demonstrates competitive performance against state-of-the-art IQA models applied

post-DIBR.

1.4 Thesis Outline

The outline of this thesis is organized as follows:

Chapter 2 discusses the related work on the topics addressed in the thesis. We starts

with a brief introduction about the characteristics of traditional 2D visual data followed
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by a summary of existing 2D-IQA models. We then perform an overview of well-known

3D visual quality issues followed by a summary of existing 3D subjective and objective

IQA/VQA studies.

In Chapter 3, we create a new subjective 3D-IQA database that has two unique features

− the inclusion of both 2D and 3D images, and the inclusion of mixed distortion types.

Second, we observe strong distortion type dependent bias when using the direct average

of 2D image quality of both views to predict 3D image quality. Third, we propose a

series of binocular rivalry inspired multi-scale Full-reference (FR) and No-reference (NR)

models to predict the quality of stereoscopic images from that of its single-view 2D images.

Our results show that the proposed model, without explicitly identifying image distortion

types, successfully eliminates the prediction bias, leading to significantly improved quality

prediction of stereoscopic 3D images.

In Chapter 4, we carry out two subjective studies on depth perception of stereoscopic

3D images. The first one follows a traditional framework where subjects are asked to rate

depth quality directly on distorted stereopairs. The second one uses a novel approach,

where the stimuli are synthesized independent of the background image content and the

subjects are asked to identify depth changes and label the polarities of depth. Our analysis

shows that the second approach is much more effective at singling out the contributions of

stereo cues in depth perception. We propose the notion of DPDI and a novel computational

model for DPDI prediction. Our results show that the proposed model, without explicitly

identifying image distortion types, leads to highly promising DPDI prediction performance.

In Chapter 5, we carry out subjective 3D-VQA experiments on two databases that

contain various asymmetrically compressed stereoscopic 3D videos obtained from mixed-

resolution coding, asymmetric transform-domain quantization coding, their combinations,

and multiple choices of postprocessing techniques. We compare different mixed-distortions

asymmetric stereoscopic video coding schemes with symmetric coding methods and verify

their potential coding gains. We observed a strong systematic bias when using direct

averaging of 2D video quality of both views to predict 3D video quality. We propose a model

to account for the prediction bias, leading to significantly improved quality predictions of

stereoscopic videos. We show that the proposed model can help us predict the coding gain

of mixed-distortions asymmetric video compression.
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In Chapter 6, we investigate the problem of objective quality assessment of Multi-view-

plus-depth (MVD) images, with a main focus on the pre-DIBR case. We find that although

existing IQA methods can be applied post-DIBR to provide reasonable quality prediction of

MVD images, they are difficult to be employed as a guiding criterion in the optimization of

MVD video coding and transmission systems. We propose a novel pre-DIBR method based

on information content weighting of both texture and depth images, which demonstrates

competitive performance against state-of-the-art IQA models applied post-DIBR.

Finally, Chapter 7 concludes the thesis and discusses different avenues for future re-

search.
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Chapter 2

Background

This chapter starts with a brief introduction about the characteristics of traditional 2D vi-

sual data followed by a summary of existing 2D-IQA models. We then overview well-known

3D visual quality issues followed by a summary of existing 3D subjective and objective

IQA/VQA studies. The review focuses on the most relevant results in the literature.

2.1 2D Image Quality Assessment

Natural photographical images refer to the visual data obtained by a camera − these

include pictures of physical scenes, man-made objects and natural environments. The

“amount” of incoming photons entering a camera, through an open aperture, is recorded

on an array of charge-coupled device (CCD) receptors. The analog values measured in

the form of difference of voltage are converted to digital form using an analog-to-digital

converter. The digital data is then transformed into an array of pixels (picture elements).

The current state of research in the area of natural image statistics has not yet been able

to find a comphrehensive natural image model. The main observations include:

• second-order pixel correlations [39];

• importance of phases [18];
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• heavy-tail non-Gaussian marginals in wavelet domain [27, 30];

• near elliptical shape of joint densities in wavelet domain [129];

• decay of dependency in wavelet domain [80];

A common assumption in computational vision is that the Human Visual System (HVS)

is optimized for processing the spatial information in natural visual images [98]. In the clas-

sical approach for image quality assessment, researchers use a bottom-up approach that

attempts to emulate the computational system of the HVS in order to reach a realistic

model of image quality perception [31, 77]. A top-down philosophy, towards image quality

assessment, makes hypotheses about the overall functionality of the HVS. The main pur-

pose of such an approach is to use a simpler solution by treating HVS as a black-box and

concentrating only on its input-output relationship [125, 153]. The desirable properties in

an image and video quality assessment method include:

• high correlation with subjective opinions;

• low computational complexity;

• accurate local quality prediction that can help determine local quality variations;

• good mathematical properties, for example, a valid distance metric, convexity, dif-

ferentiability, symmetry, etc;

which are no doubt desirable properties for 3D image and video quality measures also.

Reviews of existing 2D-IQA methods are given in [150]. Among existing methods, the

best known and most widely used models are Mean Squared Error (MSE)/Peak Signal-

to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) [153]. The remainder of

this section introduces MSE/PSNR and SSIM and also provides their comparison with

subjective scores.
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2.1.1 Mean Squared Error and Peak Signal-to-Noise Ratio

The goal of an image/video fidelity measure is to provide a quantitative comparison be-

tween two images/videos, where one of the image/video is considered pristine or treated as

a reference that has perfect quality. The most widely used method to measure image/video

fidelity is PSNR, a monotonic function of MSE. The MSE between two images y and ŷ is

MSE(y, ŷ) =
1

L1L2

L1∑
i1=1

L2∑
i2=1

(y(i1, i2)− ŷ(i1, i2))2, (2.1)

where L1 and L2 are the height and the width of the images, respectively. As MSE

computation is based on the error signal, e = y − ŷ, between the reference image, y, and

its distorted version, ŷ, it can be regarded as a measure of image quality degradation.

In image and video processing literature, MSE is often converted to PSNR using the

expression:

PSNR(y, ŷ) = 10 log10

R2

MSE(y, ŷ)
(2.2)

where R is the dynamic range of image pixel intensities e.g. for an 8-bit/pixel gray-scale

image, R = 28− 1 = 255. The only advantage of PSNR over MSE, as a perceptual quality

measure, is its capability to provide normalized meaning for images with different dynamic

ranges.

2.1.2 Structural Similarity

The SSIM index is a method for measuring the similarity between two images that has

shown superior performance over MSE in predicting visual quality of 2D images [151].

SSIM and its derivations have been applied to a broad range of applications, ranging from

image restoration and compression, to visual communication and pattern recognition [151].

The basic spatial domain SSIM algorithm is based upon separated comparisons of local

luminance, contrast and structure between an original and a distorted images. Given two

local image patches x = {xi|i = 1, 2, · · · , L} and y = {yi|i = 1, · · · , L} extracted from
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the original and distorted images, respectively, the luminance, contrast and structural

similarities between them are evaluated as

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1

(2.3)

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2

(2.4)

s(x,y) =
σxy + C3

σxσy + C3

(2.5)

respectively. Here, µx, σx and σxy represent the mean, standard deviation and cross-

correlation evaluations, respectively. C1 = (K1L)2, C2 = (K2L)2, C3 = C2/2 are small

constants that have been found to be useful in characterizing the saturation effects of the

visual system at low luminance and contrast regions and stabilizing the performance of the

measure when the denominators are close to zero. The local SSIM index is defined as the

product of the three components, which gives

SSIMlocal =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2.6)

When this local measurement is applied to an entire image using a sliding window approach,

an SSIM quality map is created. The overall SSIM value of the whole image is simply the

average of the SSIM map.

It has been found that the performance of the direct single-scale SSIM algorithm de-

pends upon the scale it is applied to [158]. In [158], a Multi-scale Structural Similarity

Index (MS-SSIM) approach was proposed that incorporates SSIM evaluations at different

scales. Psychovisual experiments were carried out to find the relative weights between

scales. Interestingly, the measured weight function peaks at middle-resolution scales and

drops at both low- and high-resolution scales, consistent with the contrast sensitivity func-

tion extensively studied in the vision literature [141]. Let xj,i and yj,i be the ith local

image patches (extracted from the ith evaluation window) at the jth scale, and let Nj

be the number of evaluation windows in the scale, then the jth scale SSIM evaluation is
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computed as

SSIMj =
1

Nj

∑
i

c(xj,i,yj,i)s(xj,i,yj,i) (2.7)

for j = 1, · · · ,M − 1, and

SSIMj =
1

Nj

∑
i

l(xj,i,yj,i)c(xj,i,yj,i)s(xj,i,yj,i) (2.8)

for j = M . The overall MS-SSIM measure is defined as

MS-SSIMj =
M∏
j=1

(SSIMj)
βj (2.9)

where the βj values were obtained through psychophysical measurement [158].

By combining information content weighting with MS-SSIM, an Information Content

Weighted Structural Similarity Index (IW-SSIM) was obtained [154]. Let wj,i be the in-

formation content weight [154] computed at the ith spatial location in the jth scale, the

jth scale IW-SSIM measure is defined as

IW-SSIMj =

∑
i

wj,ic(xj,i,yj,i)s(xj,i,yj,i)∑
wj,i

(2.10)

for j = 1, · · · ,M − 1, and

IW-SSIMj =
1

Nj

∑
i

l(xj,i,yj,i)c(xj,i,yj,i)s(xj,i,yj,i) (2.11)

for j = M . The final overall IW-SSIM measure is then computed as

IW-SSIMj =
M∏
j=1

(IW-SSIMj)
βj (2.12)

using the same set of scale weights βj’s as in MS-SSIM.
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SSIM, MS-SSIM and IW-SSIM algorithms do not involve any training process or any

new parameters for tuning. All parameters are defined in [153, 158]. These include K1 =

0.01 and K2 = 0.03 from [153]; M = 5 from [158]; and the fine-to-coarse scale weights

{β1, β2, β3, β4, β5} = {0.0448, 0.2856, 0.3001, 0.2363, 0.1333} from [158].

2.1.3 Subjective 2D-IQA Studies and Objective Evaluations

The ultimate goal of a 2D-IQA algorithm is to predict subjective quality scores of 2D

images. To the best of our knowledge, there are currently seven publicly available subject-

rated image databases that are widely recognized in the IQA research community. These

databases include:

• The Cornell-A57 database [22] was created at Cornell University. It contains 54

distorted images with six types of distortions including a) quantization of the LH

subbands of a 5-level discrete wavelet transform, where the subbands were quantized

via uniform scalar quantization with step sizes chosen such that the root mean-

squared contrast of the distortions was equal; b) additive Gaussian white noise; c)

baseline JPEG compression; d) JPEG2000 compression without visual frequency

weighting; e) JPEG2000 compression with the dynamic contrast-based quantization

algorithm, which applies greater quantization to the fine spatial scales relative to the

coarse scales in an attempt to preserve global precedence; and f) blurring by using a

Gaussian filter.

• The Categorical Image Quality (CSIQ) Database [71] was developed at Oklahoma

State University. 30 original images were used to create a total of 866 distorted im-

ages using six types of distortions at four to five distortion levels. The distortion types

include JPEG compression, JPEG2000 compression, global contrast decrements, ad-

ditive pink Gaussian noise, and Gaussian blurring.

• The IVC database [93, 92] was developed at Ecole Polytechnique de l’Universit’e de

Nantes. It includes 185 distorted images generated from 10 pristine images. There are

four types of distortions that are a) JPEG compression; b) JPEG2000 compression;

c) Local adaptive resolution (LAR) coding; and d) Blurring.
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• The LIVE database [124] was developed at The University of Texas at Austin. It

contains seven data sets of 982 subject-rated images, including 779 distorted images

created from 29 pristine images with five types of distortions at different distortion

levels. The distortion types include a) JPEG2000 compression (2 sets); b) JPEG

compression (2 sets); c) White noise contamination (1 set); d) Gaussian blur (1 set);

and e) fast fading channel distortion of JPEG2000 compressed bitstream (1 set). The

subjective test was carried out with each data set individually. A cross-comparison

set that mixes images from all distortion types is then used to help align the subject

scores across data sets. The subjective scores of all images are then adjusted accord-

ingly. The alignment process is rather crude. However, the aligned subjective scores

(all data) are still very useful references, which are particularly important for testing

general-purpose IQA algorithms, for which cross-distortion comparisons are highly

desirable.

• The Tampere Image Database 2008 (TID2008) [103, 104] was developed with a joint

international effort between Finland, Italy, and Ukraine. It includes 1700 distorted

images generated from 25 pristine images with 17 distortion types at four distortion

levels. The types of distortions include: a) Additive Gaussian noise; b) Additive

noise in color components is more intensive than additive noise in the luminance

component; c) Spatially correlated noise; d) Masked noise; e) High frequency noise;

f) Impulse noise; g) Quantization noise; h) Gaussian blur; i) Image denoising; j) JPEG

compression; k) JPEG2000 compression; l) JPEG transmission errors; m) JPEG2000

transmission errors; n) Non eccentricity pattern noise; o) Local block-wise distortions

of different intensity; p) Mean shift (intensity shift); and q) Contrast change.

• The Tampere Image Database 2013 (TID2013) [106, 105] was developed with a joint

international effort between Finland, France, Italy, Ukraine and USA. It includes

3000 distorted images generated from 25 reference images with 24 distortion types at

five distortion levels. The types of distortions include: a) Additive Gaussian noise; b)

Additive noise in color components is more intensive than additive noise in the lumi-

nance component; c) Spatially correlated noise; d) Masked noise; e) High frequency

noise; f) Impulse noise; g) Quantization noise; h) Gaussian blur; i) Image denoising;
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j) JPEG compression; k) JPEG2000 compression; l) JPEG transmission errors; m)

JPEG2000 transmission errors; n) Non eccentricity pattern noise; o) Local block-wise

distortions of different intensity; p) Mean shift (intensity shift); q) Contrast change;

r) Change of color saturation; s) Multiplicative Gaussian noise; t) Comfort noise;

u) Lossy compression of noisy images; v) Image color quantization with dither; w)

Chromatic aberrations and x) Sparse sampling and reconstruction.

• The Toyama-MICT database [54] was created at University of Toyama. It contains

196 images, including 168 distorted images generated by JPEG and JPEG2000 com-

pression.

Five evaluation metrics are widely used to compare the performance of IQA measures.

Some of the metrics were included in previous tests carried out by the Video Quality

Experts Group (VQEG) [46]. Other metrics are adopted from previous publications [103,

126]. These evaluation metrics are Pearson Linear Correlation Coefficient (PLCC), Mean

Absolute Error (MAE), Root Mean Squared Error (RMSE), Spearman’s Rank Correlation

Coefficient (SRCC), and Kendall’s Rank Correlation Coefficient (KRCC).

• PLCC after a nonlinear mapping between the subjective and objective scores. For

the ith image in an image database of size N , given its subjective score oi mean

opinion scores (MOS) or difference of MOS between reference and distorted images)

and its raw objective score ri, we first apply a nonlinear function to ri given by [126]

q(r) = a1{
1

2
− 1

1 + exp[a2(r − a3)]
}+ a4r + a5 , (2.13)

where a1 to a5 are model parameters found numerically using a nonlinear regression

process in MATLAB R©optimization toolbox to maximize the correlations between

subjective and objective scores. The PLCC value can then be computed as

PLCC =

∑
i(qi − q̄)× (oi − ō)√∑
i(qi − q̄)2 × (oi − ō)2

. (2.14)
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• MAE is calculated using the converted objective scores after the nonlinear mapping

described previously

MAE =
1

N

∑
|qi − oi| . (2.15)

• RMSE is computed similarly as

RMSE =

√
1

N

∑
|qi − oi|2 . (2.16)

• SRCC is defined as:

SRCC = 1− 6
∑N

i=1 d
2
i

N(N2 − 1)
, (2.17)

where di is the difference between the ith image’s ranks in subjective and objective

evaluations. SRCC is a nonparametric rank-based correlation metric, independent of

any monotonic nonlinear mapping between subjective and objective scores.

• KRCC is another nonparametric rank correlation metric given by

KRCC =
Nc −Nd

1
2
N(N − 1)

, (2.18)

where Nc and Nd are the numbers of concordant and discordant pairs in the data set,

respectively.

Among the aforementioned metrics, PLCC, MAE and RMSE are adopted to evaluate

prediction accuracy [46], and SRCC and KRCC are employed to assess prediction mono-

tonicity [46]. A better objective IQA measure should have higher PLCC, SRCC, and

KRCC while lower MAE and RMSE values.

The performance comparison of PSNR, SSIM, MS-SSIM and IW-SSIM on the above-

mentioned seven 2D-IQA databases is conducted and reported in Table 2.1. We can observe

that SSIM and its variants perform significantly better than PSNR, in predicting subjective

scores of all the databases. As a result, we can conclude that SSIM is a better 2D perceptual

quality measure as compared to MSE and a new 3D perceptual quality measure may be

built upon SSIM and its variants.
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Table 2.1: Performance comparison of 2D-IQA models on 2D-IQA databases

Cornell A57 Database CSIQ Database
2D-IQA PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE
PSNR 0.6346 0.6176 0.4301 0.1900 0.1607 0.7605 0.8053 0.6081 0.1705 0.1339
SSIM 0.8019 0.8067 0.6063 0.1469 0.1209 0.8569 0.8718 0.6858 0.1354 0.1007

MS-SSIM 0.8604 0.8415 0.6483 0.1253 0.1007 0.8903 0.9061 0.7298 0.1196 0.0897
IW-SSIM 0.9035 0.8713 0.6846 0.1054 0.0892 0.9017 0.9108 0.7390 0.1135 0.0841

IVC Database LIVE Database
2D-IQA PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE
PSNR 0.6719 0.6884 0.5218 0.9023 0.7191 0.9302 0.9092 0.7484 8.4819 6.3731
SSIM 0.9119 0.9018 0.7223 0.4999 0.3777 0.9455 0.9496 0.8149 7.5252 6.0247

MS-SSIM 0.9108 0.8980 0.7203 0.5029 0.3813 0.9468 0.9512 0.8181 7.4379 5.9897
IW-SSIM 0.9231 0.9125 0.7339 0.4686 0.3694 0.9515 0.9604 0.8379 7.1116 5.6548

TID 2008 Database TID 2013 Database
2D-IQA PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE
PSNR 0.5235 0.5531 0.4027 1.1434 0.8680 0.6775 0.6394 0.4699 0.9119 0.6801
SSIM 0.7732 0.7749 0.5768 0.8511 0.6546 0.7895 0.7417 0.5588 0.7608 0.5926

MS-SSIM 0.8451 0.5768 0.6568 0.7173 0.5578 0.8329 0.7859 0.6047 0.6861 0.5309
IW-SSIM 0.8579 0.8511 0.6636 0.6895 0.5276 0.8319 0.7779 0.5977 0.6880 0.5290

Toyama-MICT Database
2D-IQA PLCC SRCC KRCC RMSE MAE
PSNR 0.7328 0.7221 0.5398 0.8983 0.6999
SSIM 0.9125 0.9023 0.7250 0.5401 0.4030

MS-SSIM 0.9154 0.9070 0.7316 0.5315 0.3995
IW-SSIM 0.9401 0.9289 0.7693 0.4502 0.3437

2.2 3D Visual Quality Factors

In this section, we will give a brief overview of widely recognized 3D visual quality factors.

More specific reviews for subjective 3D-IQA studies and objective 3D-IQA studies will be

presented in Section 2.3 and Section 2.4, respectively.

2.2.1 Impact of Eye Dominance

Eye dominance is a common visual phenomenon, referring to the tendency to prefer the

input from one eye to the other, depending on the human subject [67]. Several studies were

devoted to identify the impact of eye dominance on image quality. In [119, 63, 81], no

impact of eye dominance was noticed for image quality assessment. Nevertheless, in [128],

it was observed that eye dominance improves the performance of visual search task by

aiding visual perception in binocular vision, and the eye dominance effect in 3D perception

and asymmetric view coding was also analyzed.
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2.2.2 Impact of Image Distortions

Image distortions in stereoscopic images can be grouped into two categories based on

their dimensionality: monocular (bi-dimensional) image distortions and binocular (three-

dimensional) image distortions. Typical monocular distortions include noise, blurriness,

blockiness, transmission errors, mean shift, contrast change and so forth [104], while typi-

cal stereoscopic distortions includes crosstalk, keystone distortion, depth-plane curvature,

puppet theater effect, crosstalk, cardboard effect, shear distortion, picket-fence effect, and

image flipping [84, 32]. In this work, we will focus on the impact of monocular distortions.

A short review and discussion on existing findings will be given in Section 2.5.

2.2.3 Impact of Depth Perception

Depth quality is no doubt an essential aspect of human QoE when viewing stereoscopic 3D

images. Existing studies on the topic appear to be unconclusive, limited, and sometimes

conflicting. In [53], it was reported that the perceived depth performance cannot always

be predicted from displaying image geometry alone, while other system factors, such as

software drivers, electronic interfaces, and individual participant differences, may also play

significant roles. In [119, 26], subjective studies suggested that increasing the degree of

binocular depth does increase the perceived depth quantity. In [119, 64], it was suggested

that depth quality may need to be considered independently from perceived 3D image

quality. The results in [119] showed that increased JPEG coding has no effect on depth

perception however a negative effect on image quality. In [26, 137], subjective studies

suggested that 3D image quality is not sensitive to variations in the degree of binocular

depth.

Other studies pointed out perceptual depth quality as an important component in

the holistic 3D QoE. In [177], a blurring filter, where the level of blur depends on the

depth of the area where it is applied, is used to enhance the viewing experience. In [116],

subjective studies revealed that humans tend to prefer DCT compressed stereopairs over

the monoscopic single-views even though the blocking artifacts are annoying. In [69],

depth naturalness is shown to be a useful ingredient in the assessment of 3D video QoE.
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Similarly, in [56], the added value of depth naturalness has been verified for pristine and

blurred stereoscopic images. In [70], stimuli with various stereo depth and image quality

were evaluated subjectively in terms of naturalness, viewing experience, image quality,

and depth perception, and the experimental results suggested that the overall 3D QoE is

approximately 75% determined by image quality and 25% by perceived depth. In [24],

Chen et al. showed that subjective evaluation of depth quality has a low correlation with

that of 3D image quality and verified that the overall 3D QoE can be predicted using a

single linear model from 3D image quality and depth quality.

Meanwhile, several studies have been proposed to objectively predict perceived depth

quality and subsequently to predict 3D quality by combining depth quality and 2D im-

age quality. A comprehensive review and discussion on existing objective depth quality

assessment methods will be given in Section 4.1.

2.2.4 Impact of Visual Discomfort

In the literature, several factors have been found to affect visual comfort negatively, which

can be grouped into five categories: (a) accommodation-vergence conflict; (b) parallax

distribution; (c) binocular mismatches; (d) depth inconsistencies; and (e) cognitive incon-

sistencies [136].

In [120], subjective studies showed that increased JPEG compression has a negative

effect on visual discomfort, In [24], Chen et al. showed that there are diverse opinions in

interpreting visual discomfort across different human subjects.

Meanwhile, several studies have been conducted to develop objective quality metrics

on predicting visual discomfort. In [68], stereoscopic impairments caused by inappropri-

ate shooting parameters or camera misalignment were detected and the induced excessive

horizontal and vertical disparities were measured as a visual discomfort prediction met-

ric. In [29], Choi et al. proposed a visual fatigue evaluation method using spatial and

temporal complexities, depth position and scene movement of the 3D video. In [28], a

visual discomfort prediction model was built on principal component analysis of visual dis-

comfort features including spatial complexity, depth position, temporal complexity, scene
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movement, crosstalk, brightness, and different degrees of brightness. In [62], Jung et al.

developed a visual comfort metric that quantifies the level of visual discomfort by fast

salient object motion information. In [97], a model-based neuronal and statistical frame-

work was developed to automatically predict visual discomfort be employing two types

of features: 1) coarse features derived from the statistics of binocular disparities and 2)

fine features derived by estimating the neural activity associated with the processing of

horizontal disparities. In [96], a 3D visual discomfort prediction model that accounts for

both accommodation and vergence was proposed and shown to perform superior to prior

models that rely on a computed disparity distribution only.

2.2.5 Overall 3D Quality-of-Experience

In [119], it was hypothesized that the 3D QoE can be predicted by combining image quality

and depth quality. Several studies have been devoted to explore the effect of each 3D

visual criterion on the overall 3D QoE. In [70], stimuli with various stereo depth (camera

base distances and screen disparity) and various image quality (white Gaussian noise and

Gaussian blur) were subjectively evaluated in terms of naturalness, viewing experience,

image quality, and depth perception. The experimental results showed that naturalness

is the most appropriate concept to evaluate 3D quality of stereoscopic images, which is

approximately 75% determined by image quality and approximately 25% by perceived

depth. In [24], Chen et al. conducted a study on the human perception of image quality,

depth quality, visual comfort and overall 3D QoE and verified that the overall 3D QoE can

be predicted using a single linear model from 3D image quality and depth quality.

2.3 Subjective 3D Image/Video Quality Assessment

2.3.1 Subjective 3D-IQA Studies

To the best of our knowledge, there are currently 9 subject-rated image databases that are

widely recognized in the 3D-IQA research community. Table 2.2 lists these databases with
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detailed descriptions. Among them LIVE 3D Image Quality Database Phase I, LIVE 3D

Image Quality Database Phase II, IRCCyN/IVC 3D Images Database, Ningbo University

3D Image Quality Assessment Database Phase I and Phase II, MCL 3D Image Database,

and MMSPG 3D Image Quality Assessment Database are publicly available.

• LIVE 3D Image Quality Database Phase I [90] was developed at The University

of Texas at Austin. The LIVE 3D Image Quality Database Phase I only includes

symmetrically distorted stereoscopic images. It contains a data set of 385 subject-

rated stereoscopic images, including 365 distorted images created from 20 pristine

images with five types of distortions at different distortion levels. The distortion

types include a) JPEG2000 compression; b) JPEG compression; c) White noise con-

tamination; d) Gaussian blur; and e) fast fading channel distortion of JPEG2000

compressed bitstream. The resolution of the images is 640 × 360 pixels. A sin-

gle stimulus continuous quality scale (SSCQS) protocol with hidden reference was

adopted in the study. The continuous quality scales are labeled by equally spaced

adjective terms: bad, poor, fair, good, and excellent. The study was conducted using

a iZ3D 22-inch 3D monitor with a native resolution of 800 × 600 and a passive polar-

ized 3D glasses. The viewing distance was four times the screen height. Thirty-two

subjects with a male-majority population participated in the experiments.

• LIVE 3D Image Quality Database Phase II [23] was developed at The University

of Texas at Austin. The LIVE 3D Image Quality Database Phase II includes both

symmetrically and asymmetrically distorted stereoscopic images. It contains a data

set of 368 subject-rated stereoscopic images, including 360 distorted images created

from 8 pristine images with five types of distortions at different distortion levels.

The distortion types include a) JPEG2000 compression; b) JPEG compression; c)

White noise contamination; d) Gaussian blur; and e) fast fading channel distortion of

JPEG2000 compressed bitstream. For each distortion type, every reference stereopair

was processed to create 3 symmetrically distorted stereopairs and 6 asymmetrically

distorted stereopairs. The resolution of the images is 640 × 360 pixels. A SSCQS

protocol with hidden reference was adopted in the study. The continuous quality

scales are labeled by equally spaced adjective terms: bad, poor, fair, good, and
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excellent. The study was conducted using a Panasonic 58-inch 3D TV (TC-P58VT25)

with a native resolution of 1920 × 1080 and an active shutter glasses. The viewing

distance was four times the screen height. Thirty-three subjects participated in the

experiments, six females and twenty-seven males, aged from 22 to 42 years.

• IRCCyN/IVC 3D Images Database [10] was developed at Ecole Polytechnique de

l’Université de Nantes. The IRCCyN/IVC 3D Images Database only includes sym-

metrically distorted stereoscopic images. It contains a data set of 96 subject-rated

stereoscopic images, including 90 distorted images created from 6 pristine images

with three types of distortions at different distortion levels. The distortion types in-

clude a) JPEG2000 compression; b) JPEG compression; c) Gaussian blur. The mean

resolution of the images is 512 × 448 pixels. A multistimuli continuous quality scale

experiment with explicit and hidden references, namely as SAMVIQ, was adopted

in the study. The study was conducted using a Samsung SyncMaster 21” 1100 MB

monitor with a native resolution of 1024 × 768 and an active shutter glasses. The

viewing distance was three meters. Seventeen subjects participated in the experi-

ments, mostly males familiar with subjective quality tests, with an average of 28.2

years and a standard deviation of 6.7.

• MICT 3D Image Quality Evaluation Database [113] was developed at University of

Toyama. The MICT 3D Image Quality Evaluation Database includes both symmet-

rically and asymmetrically distorted stereoscopic images. It contains a data set of

500 subject-rated stereoscopic images, including 490 distorted images created from

10 pristine images with only one type of distortions at different distortion levels. The

distortion type is JPEG compression. The resolutions of the images is 640 × 480

pixels. A SSCQS protocol with hidden reference was adopted in the study. The con-

tinuous quality scales are labeled by equally spaced adjective terms: bad, poor, fair,

good, and excellent. The study was conducted using an autostereoscopic (SANYO)

display. Twenty-four non-expert subjects participated in the experiments, twelve

females and twelve males, aged from 19 to 32 years.

• Ningbo University 3D Image Quality Assessment Database Phase I [148] was devel-

oped at Ningbo University. The Ningbo University 3D Image Quality Assessment
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Database Phase I only includes asymmetrically distorted stereoscopic images (right-

view distortion only, left-view pristine). It contains a data set of 410 subject-rated

stereoscopic images, including 400 distorted images created from 10 pristine images

with four types of distortions at different distortion levels. The distortion types

include a) JPEG2000 compression; b) JPEG compression; c) White noise contami-

nation; d) Gaussian blur. The resolution of the images is from 1252 × 1110 to 1390

× 1110 pixels. A double stimulus continuous quality scale (DSCQS) protocol was

adopted in the study. The continuous quality scales are labeled by equally spaced

adjective terms: bad, poor, fair, good, and excellent. The study was conducted

by a linear polarization stereoscopic display system. Twenty non-expert subjects

participated in the experiments, aged from 20 to 25 years with an average of 23.

• Ningbo University 3D Image Quality Assessment Database Phase II [175] was devel-

oped at Ningbo University. The NingBo University 3D Image Quality Assessment

Database Phase II only includes symmetrically distorted stereoscopic images. It con-

tains a data set of 324 subject-rated stereoscopic images, including 312 distorted

images created from 12 pristine images with five types of distortions at different

distortion levels. The distortion types include a) JPEG2000 compression; b) JPEG

compression; c) White noise contamination; d) Gaussian blur; e) H.264 compression.

A DSCQS protocol was adopted in the study. The continuous quality scales are la-

beled by equally spaced adjective terms: bad, poor, fair, good, and excellent. The

resolution of the images is from 480 × 270 to 1024 × 768 pixels. The study was

conducted by a linear polarization stereoscopic display system. The viewing distance

was 2 to 2.5 times the screen height. Twenty-six non-expert subjects participated in

the experiments, aged from 20 to 25 years.

• Tianjin University 3D Image Quality Assessment Database [164] was developed at

Tianjin University. The Tianjin University 3D Image Quality Assessment Database

only includes symmetrically distorted stereoscopic images. It contains a data set of

300 subject-rated stereoscopic images, including 270 distorted images created from

30 pristine images with three types of distortions at different distortion levels. The

distortion types include a) JPEG2000 compression; b) JPEG compression; c) Gaus-
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sian blur. The resolution of the images is from 320 × 240 to 1024 × 768 pixels. A

DSCQS protocol was adopted in the study. The study was conducted using a 3D

FreeEyE (4210) display with a native resolution of 1380 × 768 and a Philips display

with a native resolution of 1024 × 768.

• MMSPG 3D Image Quality Assessment Database [43] was developed at MULTIME-

DIA SIGNAL PROCESSING GROUP MMSPG. The MMSPG 3D Image Quality

Assessment Database contains a data set of 100 subject-rated stereoscopic images

including 10 different scenes. For each of the scenes 6 different stimuli have been

considered corresponding to different camera distances. The resolution of the images

is 1920 × 1080 pixels. A SSCQS protocol was adopted in the study. The continuous

quality scales are labeled by equally spaced adjective terms: bad, poor, fair, good,

and excellent. The study was conducted using a 46-inch polarized stereoscopic dis-

play (Hyundai S465D) with a native resolution of 1920 × 1080 pixels. The viewing

distance is approximatively two meters which is equal to the height of the screen

multiplied by factor 3. Seventeen non-expert subjects participated in the test, one

female and sixteen males, aged from 22 to 53 years with an average of 30.

• MCL 3D Image Database [132] was developed at University of Southern California.

The MCL 3D Image Database contains a data set of 693 subject-rated stereoscopic

images from 9 pristine image-plus-depth source contents with seven types of distor-

tions at different distortion levels. The distortion types include a) JPEG2000 com-

pression; b) JPEG compression; c) White noise contamination; d) Gaussian blur;

e)Transmission error; and f) Rendering distortions. The resolution of the images is

1024 × 768 and 1920 × 1088 pixels. A pairwise comparison experiment was adopted

in the subjective study. The study was conducted using a 46.9-inch polarized stereo-

scopic display (LG 47LW5600) with a native resolution of 1920 × 1080 pixels. The

viewing distance was 3.2 meters away from the display screen. 270 subjects partic-

ipated in the experiments, 100 females and 170 males, aged mostly from 21 to 30

years. Among them, 34 (or 13%) were experts and 236 (or 87%) were non-experts.

Subjective data is essential in understanding the impact of various distortions on the

perceptual quality of stereoscopic images. Ideally, we would need a complete set of sub-
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Table 2.2: Summary of existing 3D image quality databases

Database Subjects Protocol Display Images Resolutions Distortions
LIVE Phase I [90] 32 SSCQS Passive 385 640× 360 JPEG2000, JPEG, white noise,

gaussian blur, fast fading
LIVE Phase II [23] 33 SSCQS Active 368 640× 360 JPEG2000, JPEG, white noise,

gaussian blur, fast fading
IRCCyN/IVC [10] 17 SAMVIQ Active 96 512× 448 JPEG2000, JPEG, gaussian blur
MICT [113] 24 SSCQS Auto 500 640× 480 JPEG
Ningbo Phase
I [148]

20 DSCQS Passive 410 1252×1110 to
1390× 1110

JPEG2000, JPEG, white noise,
gaussian blur

Ningbo Phase
II [175]

26 DSCQS Passive 324 480 × 270 to
1024× 768

JPEG2000, JPEG, white noise,
gaussian blur, H.264 compression

Tianjin [164] N/A DSCQS Auto 300 320 × 240 to
1024× 768

JPEG2000, JPEG, white noise

MMSPG [43] 17 SSCQS Passive 100 1920× 1080 Different camera distances
MCL [132] 270 pairwise Passive 693 1024 × 768 &

1920× 1080
JPEG2000, JPEG, white noise,
gaussian blur, transmission loss,
rendering distortions

jective test on an image database that contains both 2D (single-view) and stereoscopic 3D

images, both symmetrically and asymmetrically distorted images at different distortion

levels, as well as both single- and mixed-distortion images. The above-mentioned exist-

ing 3D image quality databases are highly valuable but limited in one aspect or another.

Specifically, IRCCyN/IVC 3D Images Database, Tianjin University Database, Ningbo Uni-

versity Database Phase II, and LIVE 3D Image Quality Database Phase I only include

symmetrically distorted stereoscopic images. Ningbo University Database Phase I only

includes asymmetrically distorted stereoscopic images. MICT 3D Image Quality Evalu-

ation Database contains both cases but only for JPEG compressed images. The most

recent LIVE 3D Image Quality Database Phase II includes both symmetric and asymmet-

ric cases as well as five distortion types. Unfortunately, 2D-IQA of single-view images are

missing, making it difficult to directly examine the relationship between the perceptual

quality of single-views and stereoscopic images. In addition, asymmetric distortions with

mixed distortion types are missing in all existing databases, making it hard to validate the

generalization capability of 3D quality prediction models.
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2.3.2 Subjective 3D-VQA Studies

To the best of our knowledge, there are currently 6 subject-rated video databases that are

commonly recognized in the 3D-VQA research community. Table 2.3 lists these databases

with detailed descriptions.

• LIVE 3D Video Quality Database [24] was developed at The University of Texas at

Austin. The LIVE 3D Video Quality Database contains a data set of 54 subject-

rated stereoscopic videos created from 6 pristine videos. The resolution of the videos

is 720 × 480 pixels. Two of these videos are fifteen seconds long, while the rest are

ten seconds long. The frame rate of the videos is 25 frames per second. H.264/AVC

coding was chosen as the compression method and every reference stereoscopic video

was processed to create 3 symmetrically compressed stereoscopic videos and 6 asym-

metrically compressed stereoscopic videos. A SSCQS experiment with hidden refer-

ence protocol was adopted in the study. The continuous quality scales are labeled

by equally spaced adjective terms: bad, poor, fair, good, and excellent. The spatial

quality, depth quality, visual comfort and overall 3D quality were graded individually.

The study was conducted using an Alienware OptX AW2310 full HD 3D monitor and

an NVIDIA 3D VisionTM2 active shutter glasses. The viewing distance from subjects

to screen was fixed at 23 inches, which is 3 times the screen height. Twenty-seven

subjects participated in the test, four females and twenty-three males, aged from 24

to 50 years.

• StSD 3D Video Database [34] was developed at University of Surrey. The StSD 3D

Video Database contains a data set of 116 subject-rated stereoscopic videos create

from 14 pristine videos. The resolution of the videos is 960 × 1080 pixels. All

videos are eight seconds long. The frame rate of the videos is 25 frames per sec-

ond. H.264/AVC and HEVC coding were chosen as the compression method and

every reference stereoscopic video was processed to create symmetrically compressed

stereoscopic videos and asymmetrically compressed stereoscopic videos. A DSCQS

protocol was adopted in the study. The continuous quality scales are labeled by

equally spaced adjective terms: bad, poor, fair, good, and excellent. The study
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was conducted using a 46-inch JVC GD-463D10 passive stereoscopic display with a

2D equivalent resolution of 1920 × 1080. The viewing distance is 3.75 meters away

from the screen, which is approximately 5.5 times the picture height. 16 non-expert

observers participated in the test. The average age of the subjects was 33 years.

• Tampere 3D Video Database [61] was developed at Tampere University of Technology.

The Tampere 3D Video Database contains a data set of 60 subject-rated stereoscopic

videos create from 4 pristine videos. The resolution of the videos is 720 × 480 pixels.

All videos are ten seconds long. The frame rate of the videos is 30 frames per

second. H.264/AVC coding was chosen as the compression method. Every reference

stereoscopic video was processed to create 15 symmetrically compressed stereoscopic

videos with 3 depth levels and 5 QP levels. An absolute category rating (ACR)

protocol with 11-points unlabelled scales was adopted in the study. The study was

conducted using a portable autostereoscopic LCD display with horizontal double

density pixel (HDDP) arrangement produced by NEC LCD. The physical size of the

display is 3.5 inch and the resolution is 427 × 240 pixels at 155 DPI. The viewing

distance between the display and the viewer was set to 40 cm. Thirty subjects

participated in the test, 15 females and 15 males, aged from 18 to 45 years.

• NAMA3DS1-COSPAD1 3D Video Database [139] was developed at l’Université de

Nantes and Universidad Politécnica de Madrid. The NAMA3DS1-COSPAD1 3D

Video Database contains a data set of 110 subject-rated stereoscopic videos create

from 10 pristine videos. The resolution of the videos is 1920 × 1080 pixels. 99

sequences are sixteen seconds long and 11 sequences are thirteen seconds long. The

frame rate of the videos is 25 frames per second. JPEG 2000 and H.264/AVC coding

were chosen as the compression method. Every reference stereoscopic video was

processed to create symmetrically compressed stereoscopic videos. Besides, one pre-

processing (downsampling) and one post-processing (sharpening) were included to

generate test sequences. An absolute category rating with hidden reference (ACR-

HR) protocol with 5-points labelled from 1 (bad) to 5 (excellent) was adopted in the

study. The study was conducted using a Philips 46PFL9705H 46-inch stereoscopic

display with an active shutter glasses. The viewing distance is 172 cm, which is three
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times the height of the screen. Twenty-nine subjects participated in the test, 12

females and 17 males, aged from 18 to 63 years.

• MMSPG 3D Video Quality Assessment Database [42] was developed at MULTIME-

DIA SIGNAL PROCESSING GROUP MMSPG. The MMSPG 3D Video Quality

Assessment Database contains a data set of 36 subject-rated stereoscopic videos in-

cluding 6 different scenes. The resolution of the videos is 1920 × 1080 pixels. The

frame rate of the videos is 25 frames per second. For each of the scenes 6 different

stimuli have been considered corresponding to different camera distances. A SSCQS

protocol was adopted in the study. The continuous quality scales are labeled by

equally spaced adjective terms: bad, poor, fair, good, and excellent. The viewing

distance is approximatively two meters which is equal to the height of the screen mul-

tiplied by factor 3. Twenty non-expert subjects participated in the test, six females

and sixteen males, aged from 24 to 37 years with an average of 27.

• UBC Digital Multimedia Lab 3D Video Database [6, 7] was developed at University

of British Columbia. The UBC Digital Multimedia Lab 3D Video Database contains

a data set of 64 subject-rated stereoscopic videos create from 5 pristine videos. The

resolution of the videos is 1920 × 1080 pixels. The frame rates of the videos are

24, 30, 48 and 60 frames per second. 3D HEVC coding standard was chosen as the

compression method. Every reference stereoscopic video was processed to create

compressed stereoscopic videos at four QP levels. A single stimulus procedure using

an 11-grade numerical categorical scale protocol was adopted in the study. The study

was conducted using a 64-inch full HD 3D TV with a circularly passive polarized

glasses. Sixteen subjects participated in the test, aged from 19 to 37 years.

• 3DVCL@FER Video Database [36] was developed at University North in Croatia and

University of Coimbra in Portugal. The 3DVCL@FER Video Database contains a

data set of 184 subject-rated stereoscopic videos create from 8 pristine videos. The

resolution of the videos is 1920 × 1080 pixels. All videos are sixteen seconds long.

The frame rate of the videos is 25 frames per second. A total of 22 degradation types

are adopted to generate test sequences including 3D HEVC coding, H.264/AVC cod-

ing, JPEG2000 compression, geometric distortion, horizontal and vertical disparity,
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packet losses, frame rate reduction, frame-freeze, etc. An ACR-HR protocol with a

pseudo-continuous scale from 0 to 5 with a step of 0.1 was adopted in the study. The

picture quality, depth quality and visual comfort were graded individually. The test

in Croatia was conducted using a 32 inch Samsung UE32H6400 with an active shutter

glasses; while the test in Portugal was conducted using a 27-inch ASUS VG278 HR

with active shutter glasses. The average viewing distance is 1.2 meters. Thirty-five

subjects participated in the test, aged from 20 to 48 years.

Table 2.3: Summary of existing 3D video quality databases

Database Subjects Protocol Display Videos Resolutions FPS Controlling Parameters
LIVE [24] 27 DSCQS Active 54 720× 480 25 H.264 compression
StSD [34] 14 DSCQS Passive 116 960× 1080 25 H.264 & HEVC compres-

sions
Tampere [61] 30 ACR Auto 60 1024× 768 30 Depth levels & H.264 com-

pression
MMSPG [42] 20 SSCQS Passive 36 1920×1080 25 Different camera distances
NAMA3DS1-
COSPAD1 [139]

29 ACR-HR Active 110 1920×1080 25 H.264 & JPEG2000 com-
pression, downsampling &
sharpening

UBC [6, 7] 16 SSNCS Passive 64 1920×1080 24, 30, 48, 60 3D HEVC compressions &
Frame rates

3DVCL@FER [36] 35 ACR-HR Active 184 1920×1080 25 3D HEVC, H.264,
JPEG2000 compres-
sion, Geometric distortion,
Packet losses, Frame rates
& Frame-freeze

2.4 Objective 3D Image/Video Quality Assessment

Existing objective 3D-IQA/VQA models may be grouped into two categories. The first type

of approaches are built directly upon successful 2D-IQA/VQA methods. These approaches

can be further divided into two subcategories, depending on the use of depth or disparity

information. Methods in the first subcategory do not explicitly use depth information.

2.4.1 Objective 3D-IQA Studies

In [19], four 2D-IQA metrics, namely SSIM, Universal Quality Index (UQI) [149], C4 [21]

and Reduced Reference Image Quality Assessment (RRIQA) [157] as well as three ap-

27



proaches, called average approach, main eye approach, and visual acuity approach, were

tested for measuring the perceptual quality of stereoscopic images. The experimental

results show that C4 outperforms the other three metrics on IRCCyN/IVC 3D Images

Database.

The second subcategory of methods incorporates depth information with 2D-IQA.

In [10, 11], disparity maps between left- and right-views were estimated, followed by 2D

quality assessment of disparity quality using SSIM and C4, which was subsequently com-

bined with 2D image quality to produce an overall 3D image quality score. The results

claimed that C4 outperforms SSIM on both evaluating stereoscopic image pairs and dis-

parity maps on IRCCyN/IVC 3D Images Database and also suggested that the 3D-IQA

performance of SSIM can be improved when adding depth quality. You et al. [168] investi-

gated the capabilities of evaluating stereopairs as well as disparity maps with respect to ten

well-known 2D-IQA metrics, i.e., PSNR, SSIM, MS-SSIM [158], UQI, Visual Information

Fidelity (VIF) [123], etc. Their results suggested that an improved performance can be

achieved when stereo image quality and depth quality are combined appropriately. Simi-

larly, Yang et al. [164, 163] proposed a 3D-IQA algorithm based on the average PSNR of

left- and right-views and the absolute difference with respect to disparity map. However,

none of these more sophisticated 3D-IQA models perform better than or in most cases,

even as good as, direct averaging 2D-IQA measures of both views [23].

The second type of 3D-IQA approaches focus on building 3D quality models directly

without relying on existing 2D-IQA algorithms. In [45], Gorley et al. computed quality

scores on matched feature points delivered by SIFT [76] and RANSAC [40]. The experi-

mental results showed that the stereo band limited contrast model performs better than

PSNR. In [127], an estimation of stereo image quality was proposed based on a multiple

channel HVS model.

Of particular interests are several models that consider binocular visual characteris-

tics. The quality metric presented in [12] is based on binocular energy contained in the

left- and right-views calculated by complex wavelet transform and Bandelet transform and

the results showed that it outperforms the no-reference 3D-IQA model proposed in [113].

In [108], a new quality metric for stereoscopic images based on binocular perception model

and three components of SSIM was proposed. The experimental results showed that this
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binocular perception model performs better than PSNR, SSIM as well as 3D-IQA mod-

els [10, 163] on IRCCyN/IVC 3D Images Database. In [74], a quality assessment algorithm

of stereoscopic image compression based on binocular combination and binocular frequency

integration was proposed. The experimental results showed that the binocular integration

model performs better than 3D-IQA models [45] and [50], but not good as [10], [168]

and [25] on LIVE 3D Image Quality Database Phase II. In [121], a stereoscopic image

is separated into different binocular regions, each evaluated independently by consider-

ing their visual properties, followed by an integration step to produce an overall quality

score. The experimental results showed that the region-based model outperforms PSNR,

MS-SSIM and VIF as well as 3D-IQA models [10, 168] on Ningbo University 3D Image

Quality Assessment Database Phase II. In [25], a “cyclopean” 3D-IQA model accounting

for binocular rivalry was proposed and the experimental results showed that the framework

significantly outperforms conventional 2D-IQA metrics PSNR, SSIM, MS-SSIM and VIF

as well as [10], [168], [45], and [50] on LIVE 3D Image Quality Database Phase II.

2.4.2 Objective 3D-VQA Studies

Similarly, existing objective 3D-VQA methods may be grouped into two categories. The

first type of approaches are built directly upon successful 2D-IQA/VQA methods. In [51,

166], 2D-IQA measures, including PSNR, SSIM and video quality metric (VQM) [102],

were applied to the left- and right-view images/videos of 3D videos separately and then

combined to a 3D quality score. Both experimental results showed that VQM performs

better than PSNR and SSIM. In [138], PSNR and VSSIM [155], which is a version of

SSIM adapted for video, were compared to measure the perceptual 3D quality and the

VSSIM was found to be closer to the subjective evaluation results. In [24], PSNR and MS-

SSIM were applied to estimate 3D image quality and overall 3D quality-of-experience. The

subjective testing results showed that MS-SSIM slightly outperforms PSNR with respect

to both 3D visual experience criteria.

The second type of 3D-VQA approaches focus on building 3D quality models directly

without relying on existing 2D-IQA/VQA algorithms. In [176], Zhu et al. proposed a

3D-VQA model by considering depth perception and their experimental results showed
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that it performs better than MSE and PSNR. In [58, 59], Jin et al. proposed a 3D-VQA

model based on 3D-DCT transform. Similar blocks from left- and right-views are found by

block-matching, grouped into 3D stacks and then analyzed by 3D-DCT. The experimental

results showed that the model outperforms PSNR, SSIM, MS-SSIM and UQI on Tampere

3D Video Database [61]. In [111], a SSIM-inspired 3D-VQA model using depth map

segmentation was proposed followed by an extensive subjective test. The results indicated

that the model can predict perceived 3D video quality effectively. In [118], an objective

3D-VQA algorithm using blocking artifacts, blurring in edge regions, and video quality

difference between two views was proposed. The subjective testing results showed that

the model outperforms SSIM and VQM. In [34], a binocular suppression inspired StSD

metric was proposed based on a comprehensive subjective study. The results indicated

that the StSD model significantly outperforms SSIM and the aforementioned 3D-VQA

models [58, 118] on StSD 3D Video Database [34].

2.5 Discussion on existing 3D-IQA and 3D-VQA stud-

ies

Recent subjective studies suggested that in the case of symmetric distortion of both views

(in terms of both distortion types and levels), simply averaging state-of-the-art 2D-IQA

measures of both views is sufficient to provide reasonably accurate image quality predic-

tions of stereoscopic images. In particular, in [90], it was shown that averaging PSNR,

SSIM, MS-SSIM, UQI and VIF measurements of left- and right-views performs equally

well or better than the advanced 3D-IQA models [10, 164, 168, 163, 45, 127, 176, 50],

and [4] on LIVE 3D Image Quality Database Phase I. Similar results were also observed

in [23], where averaging SSIM and MS-SSIM measurements of both views outperformed

advanced 3D-IQA models [10, 168, 45, 74, 50], and [4] on LIVE 3D Image Quality Database

Phase II. In [121], it was reported that directly averaging MS-SSIM outperformed 3D-IQA

models [10, 168] on Ningbo University 3D Image Quality Assessment Database Phase II.

The performance comparison of direct averaging PSNR, SSIM, MS-SSIM, IW-SSIM

and VQM on the above-mentioned two 2D-VQA databases, i.e., NAMA3DS1 and StSD
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3D video databases, is conducted and reported in Table 2.5. We can observe that in the

cases of symmetric compressions or slightly asymmetric compressions, simply averaging

state-of-the-art 2D-IQA/VQA measures of both views is sufficient to provide reasonably

accurate video quality predictions of stereoscopic videos.

Table 2.4: Performance comparison of 2D-to-3D prediction models on NAMA3DS1-
COSPAD1 Video Database

2D-IQA/VQA PLCC SRCC KRCC RMSE MAE
Average PSNR 0.7104 0.6931 0.5102 0.8231 0.6391
Average SSIM 0.8037 0.7753 0.5916 0.6959 0.5348

Average MS-SSIM 0.8060 0.7942 0.6031 0.6922 0.5322
Average IW-SSIM 0.9082 0.8902 0.7126 0.4895 0.3798

Average VQM 0.8919 0.8782 0.6990 0.5289 0.3997

Table 2.5: Performance comparison of 2D-to-3D prediction models on StSD 3D Video
Database

2D-IQA/VQA PLCC SRCC KRCC RMSE MAE
Average PSNR 0.8016 0.9346 0.8981 0.9584 0.9098
Average SSIM 0.8200 0.9456 0.9250 0.9569 0.9229

Average MS-SSIM 0.6157 0.7935 0.7549 0.8315 0.7542
Average IW-SSIM 0.1311 0.2193 0.2193 0.2193 0.0910

Average VQM 0.1025 0.1891 0.1891 0.1891 0.0666

Compared with the case of symmetric distortions, quality assessment of asymmetrically

distorted stereoscopic images is a much more challenging problem. In [23], it was reported

that there is a large drop in the performance of both 2D-IQA and 3D-IQA models from

quality predictions of symmetrically to asymmetrically distorted stereoscopic images on

LIVE 3D Image Quality Database Phase II.

It is worth noting that previous studies exhibit somewhat conflicting observations and

opinions regarding the effect of asymmetric distortions. For image blur, evidence in [83]

shows that the quality of asymmetrically blurred images is more affected by the higher

quality view, which is generally consistent with the results given in [148]. For image

blockiness, it was reported in [120] that 3D image quality should be approximated by
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averaging the quality of high quality and low quality views but there is a tendency towards

the low quality view and this tendency becomes stronger when compression levels are

high and images contain homogeneous areas. In [83], an under-weighting when direct

averaging the quality of both views is found for monocular blockiness from MPEG-2 codec.

In [148], it was suggested that the best strategy of asymmetric quality assessment for JPEG

compressed images should be content and texture dependent.
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Chapter 3

Quality prediction of asymmetrically

distorted stereoscopic 3D images

In this chapter, we first build a database that contains both single-view and symmetrically

and asymmetrically distorted stereoscopic images. We then carry out a subjective test,

where we find that the quality prediction bias of asymmetrically distorted images could lean

towards opposite directions (overestimate or underestimate), depending on the distortion

types and levels. Our subjective test also suggests that eye dominance effect does not

have strong impact on visual quality decisions of stereoscopic images. We then develop an

information content and divisive normalization based pooling scheme that improves upon

SSIM in estimating the quality of single-view images. Finally, we propose a binocular

rivalry inspired multi-scale model to predict the quality of stereoscopic images from that

of the single-view images. Our results show that the proposed model, without explicitly

identifying image distortion types, successfully eliminates the prediction bias, leading to

significantly improved quality prediction of stereoscopic images.
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3.1 Introduction

Objective quality assessment of distorted stereoscopic images is a challenging problem,

especially when the distortions in the left- and right-views are asymmetric. As we discussed

in Section 2.4, existing studies suggest that simply averaging the quality of the left- and

right-views well predicts the quality of symmetrically distorted stereoscopic images, but

generates substantial prediction bias when applied to asymmetrically distorted stereoscopic

images.

In this chapter, we focus on how to predict the quality of a stereoscopic 3D image from

that of the 2D single-view images. First, we carry out a subjective quality assessment

experiment on a database that contains both single-view images and stereoscopic images

with symmetric and asymmetric distortion types and levels. This database allows us to

directly study the quality prediction performance from single-view images to stereoscopic

images, for which we observe that simply averaging the quality of both views creates

substantial bias on asymmetrically distorted stereoscopic images, and interestingly, the

bias could lean towards opposite directions, largely depending on the distortion types.

We then develop an information content and divisive normalization based pooling scheme

that improves upon SSIM in estimating the quality of single-view images. Furthermore,

by incorporating spatial frequency tuned mechanisms of the HVS, we propose a series

of binocular rivalry inspired models (FR and NR) to account for the bias, which not only

results in better quality prediction of stereoscopic images with asymmetric distortion levels,

but also well generalizes to the case of asymmetric distortions with mixed distortion types.

3.2 Subjective Database

3.2.1 Waterloo-IVC 3D Image Quality Database Phase I

The new Waterloo-IVC 3D Image Quality Database Phase I is created from 6 pristine

stereoscopic image pairs (and thus their corresponding single-view images) shown in Fig-

ure 3.1, all collected from the Middlebury Stereo 2005 Datasets [114]. The original res-

34



(a) (b) (c)

(d) (e) (f)

Figure 3.1: The 6 pristine images in Waterloo-IVC 3D Image Database Phase I. Only the
right-views are shown here. (a) Art. (b) Books. (c) Dolls. (d) Moebius. (e) Laundry. (f)
Reindeer.

olution of single-view images is 1390 × 1100 or 1342 × 1100. All single-view images and

stereopairs were slightly cropped to fit a display of 1920× 1080 resolution. Table 3.1 lists

the original resolution and the displayed resolution of all training and testing images.

Each single-view image was altered by three types of distortions: additive white Gaus-

sian noise contamination, Gaussian blur, and JPEG compression. Each distortion type

had four distortion levels, where the distortion control parameters were decided to ensure

a good perceptual separation between distortion levels as reported in Table 3.2 and Ta-

ble 3.3. More specially, additive white Gaussian noise was applied equally across the R,

G and B color channels. Similarly, Gaussian blur was simulated by applying a Gaussian

low-pass filter to each of the color channels. For both noise and blur, the control parameter
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Table 3.1: Resolutions of training and testing images in Waterloo-IVC 3D Image Database
Phase I

Image Original Resolution Adjusted Resolution Usage
Art 1390 × 1100 1390 × 1080 Testing

Books 1390 × 1100 1390 × 1080 Testing
Dolls 1390 × 1100 1390 × 1080 Testing

Moebius 1390 × 1100 1390 × 1080 Testing
Laundry 1342 × 1100 1342 × 1080 Testing
Reindeer 1342 × 1100 1342 × 1080 Testing

Computer 1330 × 1100 1330 × 1080 Training
Drumsticks 1390 × 1100 1390 × 1080 Training

was the variance of the Gaussian. JPEG Compression was simulated using MATLAB R©’s

JPEG compression utility imwrite (Write True Color Image to JPEG). Consequently, 72

distorted single-view 2D images (24 each for Noise, Blur and JPEG) were created, which

were named as W1 to W4, G1 to G4 and J1 to J4, respectively. PSNR and SSIM [153]

evaluations of the simulated distorted single-view 2D images are reported in Table 3.4 and

Table 3.5, respectively.

Table 3.2: Value ranges of control parameters for distortion simulation for Waterloo-IVC
3D Image Database Phase I

Distortion Control Parameter Range
White Noise Variance of Gaussian [0.105 0.390]

Gaussian Blur Variance of Gaussian [2.40 20.00]
JPEG Compression Quality Parameter [3 10]

The single-view images were employed to generate distorted stereopairs, either sym-

metrically or asymmetrically. Altogether, there are totally 78 single-view images and 330

stereoscopic images. Table 3.6 categorizes these images into seven groups with detailed de-

scriptions. Group 3D.1, Group 3D.2 and Group 3D.3 cover all combinations while Group

3D.4 includes a random subset from all possible fusions. For mixed distortion types and

levels, there are 48 possible combinations for each source image and 288 in total. These

are too many combinations in the subjective test that could raise major concerns on visual
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Table 3.3: Values of control parameters for distortion simulation for Waterloo-IVC 3D
Image Database Phase I

Art

White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.115 G1 3.00 21 J1 10

W2 0.170 G2 5.10 31 J2 7

W3 0.250 G3 8.10 45 J3 5

W4 0.350 G4 13.00 71 J4 3

Books

White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.125 G1 2.40 15 J1 10

W2 0.190 G2 4.00 27 J2 7

W3 0.280 G3 6.80 41 J3 5

W4 0.350 G4 11.50 61 J4 3

Dolls

White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.120 G1 2.80 19 J1 10

W2 0.190 G2 4.70 29 J2 7

W3 0.275 G3 7.40 41 J3 5

W4 0.390 G4 11.75 61 J4 3

Laundry

White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.120 G1 2.60 17 J1 10

W2 0.185 G2 4.40 27 J2 7

W3 0.270 G3 7.00 41 J3 5

W4 0.390 G4 11.75 61 J4 3

Moebius

White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.105 G1 2.90 21 J1 10

W2 0.155 G2 5.10 31 J2 7

W3 0.215 G3 8.60 47 J3 5

W4 0.300 G4 15.00 81 J4 3

Reindeer

White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.105 G1 2.90 21 J1 10

W2 0.155 G2 5.70 33 J2 7

W3 0.215 G3 10.00 55 J3 5

W4 0.300 G4 20.00 91 J4 3
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Table 3.4: PSNR evaluations of distorted 2D images on Waterloo-IVC 3D Image Database
Phase I

White Noise
LEVEL W1 W2 W3 W4

Art 22.57 19.46 16.57 14.32
Books 21.85 18.63 15.83 13.70
Dolls 21.94 18.59 15.87 13.65

Moebius 23.20 19.98 17.41 15.09
Laundry 22.04 18.51 15.75 13.56
Reindeer 23.65 20.47 17.88 15.42

Gaussian Blur
LEVEL G1 G2 G3 G4

Art 28.85 26.13 23.99 22.11
Books 25.97 23.65 21.59 19.71
Dolls 28.33 25.73 23.66 21.68

Moebius 29.15 26.76 24.83 22.80
Laundry 27.26 24.78 22.70 20.77
Reindeer 28.63 25.96 23.83 21.24

JPEG Compression
LEVEL J1 J2 J3 J4

Art 32.41 30.69 28.94 26.27
Books 30.67 29.18 27.58 25.02
Dolls 31.58 29.88 28.18 25.57

Moebius 32.03 30.48 28.89 26.33
Laundry 32.04 30.26 28.57 25.98
Reindeer 32.40 30.72 29.04 25.93
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Table 3.5: SSIM evaluations of distorted 2D images on Waterloo-IVC 3D Image Database
Phase I

White Noise
LEVEL W1 W2 W3 W4

Art 0.8003 0.7037 0.5986 0.5030
Books 0.8146 0.7203 0.6188 0.5275
Dolls 0.8050 0.7032 0.6001 0.4990

Moebius 0.8081 0.7018 0.6025 0.5013
Laundry 0.8038 0.6983 0.5986 0.4977
Reindeer 0.8011 0.6996 0.6025 0.5032

Gaussian Blur
LEVEL G1 G2 G3 G4

Art 0.8521 0.7054 0.5509 0.4056
Books 0.8578 0.7057 0.5396 0.3857
Dolls 0.8562 0.7089 0.5582 0.4078

Moebius 0.8515 0.7070 0.5566 0.4102
Laundry 0.8546 0.7116 0.5574 0.4050
Reindeer 0.8571 0.7023 0.5559 0.4017

JPEG Compression
LEVEL J1 J2 J3 J4

Art 0.9211 0.8812 0.8308 0.7388
Books 0.9261 0.8908 0.8482 0.7568
Dolls 0.9239 0.8830 0.8321 0.7318

Moebius 0.8994 0.8469 0.7954 0.6943
Laundry 0.9362 0.9012 0.8606 0.7686
Reindeer 0.9010 0.8546 0.8224 0.7132
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fatigue. Thus we divided all possible combinations into 12 clusters based on distortion

types and levels and randomly selected one from each cluster. Table 3.7 lists all possible

combinations of mixed distortion types and levels and how we define these clusters. The

details of the random selections in Group 3D.4 of Waterloo-IVC 3D Image Database Phase

I can be found in Table 3.8.

Table 3.6: Categories of test images on Waterloo-IVC 3D Image Database Phase I

Group # of images Description
2D.0 6× 1 Pristine single-view images
2D.1 6× 12 Distorted single-view images

3D.0 6× 1 Pristine stereopairs
3D.1 6× 12 Symmetrically distorted stereopairs with the same distortion

type and distortion level
3D.2 6× 12 Asymmetrically distorted stereopairs with distortion on one

view only
3D.3 6× 18 Asymmetrically distorted stereopairs with the same distortion

type but different levels
3D.4 6× 12 Asymmetrically distorted stereopairs with mixed distortion

types and levels

3.2.2 Waterloo-IVC 3D Image Quality Database Phase II

The new Waterloo-IVC 3D Image Quality Database Phase II with more diverse image

content is created from 10 pristine stereoscopic image pairs (and thus their corresponding

single-view images) shown in Figure 3.2. All images were collected from previous subjective

3D quality studies [139, 100]. The original resolution of single-view images is 1920×1080 or

1920×1088. All single-view images and stereopairs were slightly cropped to fit a display of

1920× 1080 resolution. Table 3.9 lists the original resolution and the displayed resolution

of all training and testing images. Each single-view image was altered by the same three

types of distortions and each distortion type had the same four distortion levels. Values

of control parameters for distortion simulation are reported in Table 3.10 to Table 3.12.

PSNR and SSIM evaluations of the simulated distorted single-view 2D images are reported

in Table 3.13 and Table 3.14, respectively.
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Table 3.7: All possible combinations of mixed distortion types and levels

Cluster 1 Cluster 4 Cluster 7 Cluster 10
LeftG1 RightW1 LeftG2 RightW1 LeftG3 RightW1 LeftG4 RightW1
LeftG1 RightW2 LeftG2 RightW2 LeftG3 RightW2 LeftG4 RightW2
LeftG1 RightW3 LeftG2 RightW3 LeftG3 RightW3 LeftG4 RightW3
LeftG1 RightW4 LeftG2 RightW4 LeftG3 RightW4 LeftG4 RightW4

Cluster 2 Cluster 5 Cluster 8 Cluster 11
LeftG1 RightJ1 LeftG2 RightJ1 LeftG3 RightJ1 LeftG4 RightJ1
LeftG1 RightJ2 LeftG2 RightJ2 LeftG3 RightJ2 LeftG4 RightJ2
LeftG1 RightJ3 LeftG2 RightJ3 LeftG3 RightJ3 LeftG4 RightJ3
LeftG1 RightJ4 LeftG2 RightJ4 LeftG3 RightJ4 LeftG4 RightJ4

Cluster 3 Cluster 6 Cluster 9 Cluster 12
LeftW1 RightJ1 LeftW2 RightJ1 LeftW3 RightJ1 LeftW4 RightJ1
LeftW1 RightJ2 LeftW2 RightJ2 LeftW3 RightJ2 LeftW4 RightJ2
LeftW1 RightJ3 LeftW2 RightJ3 LeftW3 RightJ3 LeftW4 RightJ3
LeftW1 RightJ4 LeftW2 RightJ4 LeftW3 RightJ4 LeftW4 RightJ4

Table 3.8: Group 3D.4 of Waterloo-IVC 3D Image Database Phase I

Art Books Dolls Laundry Moebius Reindeer

ArtW1G1 BooksG1W2 DollsW1G1 LaundryG1W2 MoebiusG1W3 ReindeerW1G1
ArtJ3G1 BooksJ1G1 DollsJ1G1 LaundryJ1G1 MoebiusG1J3 ReindeerG1J3
ArtJ2W1 BooksW1J4 DollsW1J3 LaundryW1J4 MoebiusJ2W1 ReindeerW1J1
ArtG2W2 BooksG2W4 DollsW1G2 LaundryG2W1 MoebiusW2G2 ReindeerW1G2
ArtG2J2 BooksJ1G2 DollsG2J1 LaundryJ3G2 MoebiusG2J1 ReindeerJ3G2
ArtJ2W2 BooksW2J4 DollsJ3W2 LaundryJ1W2 MoebiusW2J2 ReindeerJ1W2
ArtW3G3 BooksW2G3 DollsG3W4 LaundryG3W3 MoebiusG3W4 ReindeerW3G3
ArtJ1G3 BooksJ4G3 DollsG3J3 LaundryG3J1 MoebiusG3J3 ReindeerG3J1
ArtJ1W3 BooksW3J2 DollsJ2W3 LaundryJ2W3 MoebiusJ1W3 ReindeerW3J3
ArtG4W2 BooksG4W2 DollsG4W4 LaundryG4W3 MoebiusG4W2 ReindeerG4W2
ArtG4J1 BooksJ2G4 DollsG4J1 LaundryG4J2 MoebiusG4J2 ReindeerG4J2
ArtJ3W4 BooksW4J2 DollsJ2W4 LaundryJ4W4 MoebiusW4J2 ReindeerJ3W4
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Table 3.9: Resolutions of training and testing images in Waterloo-IVC 3D Image Database
Phase II

Image Original Resolution Adjusted Resolution Usage
Barrier 1920 × 1080 1920 × 1080 Testing

CraftLoom 1920 × 1080 1920 × 1080 Testing
Dancer 1920 × 1088 1920 × 1080 Testing

Hall 1920 × 1080 1920 × 1080 Testing
Laboratory 1920 × 1080 1920 × 1080 Testing

OldTownCar 1920 × 1080 1920 × 1080 Testing
Persons 1920 × 1080 1920 × 1080 Testing
Soccer 1920 × 1080 1920 × 1080 Testing
Tree 1920 × 1080 1920 × 1080 Testing

Umbrella 1920 × 1080 1920 × 1080 Testing

Basketball 1920 × 1080 1920 × 1080 Training
Gym 1920 × 1080 1920 × 1080 Training

Table 3.10: Value ranges of control parameters for distortion simulation for Waterloo-IVC
3D Image Database Phase II

Distortion Control Parameter Range
White Noise Variance of Gaussian [0.080 0.530]

Gaussian Blur Variance of Gaussian [2.00 20.00]
JPEG Compression Quality Parameter [3 10]
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Table 3.11: Values of control parameters for distortion simulation for Waterloo-IVC 3D
Image Database Phase II

Barrier
White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.110 G1 2.50 15 J1 10
W2 0.160 G2 4.60 31 J2 7
W3 0.240 G3 7.50 43 J3 5
W4 0.340 G4 11.75 61 J4 3

CraftLoom
White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.110 G1 2.70 21 J1 10
W2 0.170 G2 4.70 31 J2 7
W3 0.250 G3 7.50 45 J3 5
W4 0.360 G4 12.00 65 J4 3

Dancer
White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.110 G1 2.50 15 J1 10
W2 0.160 G2 4.60 29 J2 7
W3 0.230 G3 8.00 45 J3 5
W4 0.320 G4 15.00 81 J4 3

Hall
White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.140 G1 2.20 13 J1 10
W2 0.220 G2 3.50 23 J2 7
W3 0.320 G3 5.30 31 J3 5
W4 0.440 G4 8.70 47 J4 3

Laboratory
White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.100 G1 3.20 21 J1 10
W2 0.160 G2 5.70 33 J2 7
W3 0.230 G3 9.00 51 J3 5
W4 0.320 G4 14.00 75 J4 3
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Table 3.12: Values of control parameters for distortion simulation for Waterloo-IVC 3D
Image Database Phase II

OldTownCar
White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.110 G1 2.90 21 J1 10
W2 0.170 G2 4.90 31 J2 7
W3 0.240 G3 7.60 43 J3 5
W4 0.340 G4 11.20 61 J4 3

Persons
White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.080 G1 3.30 21 J1 10
W2 0.130 G2 6.00 35 J2 7
W3 0.190 G3 10.80 61 J3 5
W4 0.260 G4 20.00 91 J4 3

Soccer
White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.170 G1 2.00 13 J1 10
W2 0.250 G2 3.10 21 J2 7
W3 0.370 G3 5.10 31 J3 5
W4 0.500 G4 7.80 45 J4 3

Tree
White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.170 G1 2.20 13 J1 10
W2 0.260 G2 3.40 21 J2 7
W3 0.380 G3 5.00 31 J3 5
W4 0.530 G4 7.60 45 J4 3

Umbrella
White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.140 G1 2.20 13 J1 10
W2 0.210 G2 3.60 23 J2 7
W3 0.300 G3 5.70 33 J3 5
W4 0.400 G4 9.20 51 J4 3
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Table 3.13: PSNR evaluations of distorted 2D images on Waterloo-IVC 3D Image Database
Phase II

White Noise

LEVEL W1 W2 W3 W4

Barrier 22.97 19.99 16.94 14.54

CraftLoom 23.02 19.54 16.64 14.17

Dancer 23.10 20.03 17.20 14.86

Hall 21.04 17.55 14.91 12.98

Laboratory 24.08 20.27 17.41 14.97

OldTownCar 23.21 19.80 17.21 14.73

Persons 25.97 22.18 19.22 16.79

Soccer 19.14 16.27 13.85 12.42

Tree 19.18 16.01 13.68 12.11

Umbrella 21.04 17.96 15.41 13.55

Gaussian Blur

LEVEL G1 G2 G3 G4

Barrier 27.80 25.27 23.67 22.35

CraftLoom 28.77 26.33 24.62 23.06

Dancer 27.09 24.78 22.78 20.45

Hall 25.24 23.13 21.81 20.57

Laboratory 28.60 25.37 23.07 21.07

OldTownCar 27.95 25.67 24.08 22.81

Persons 27.60 24.67 21.95 19.18

Soccer 25.60 23.72 22.07 20.84

Tree 24.07 22.04 20.67 19.48

Umbrella 26.30 24.38 23.11 21.99

JPEG Compression

LEVEL J1 J2 J3 J4

Barrier 31.50 29.88 28.22 25.83

CraftLoom 32.18 30.42 28.66 25.91

Dancer 30.15 28.92 27.78 25.47

Hall 29.64 28.09 26.62 24.45

Laboratory 34.25 32.29 30.15 27.13

OldTownCar 32.35 30.59 28.79 26.10

Persons 34.59 32.74 30.34 27.05

Soccer 29.48 27.86 26.29 23.85

Tree 28.34 26.85 25.41 23.17

Umbrella 29.27 27.80 26.39 24.24
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Table 3.14: SSIM evaluations of distorted 2D images on Waterloo-IVC 3D Image Database
Phase II

White Noise

LEVEL W1 W2 W3 W4

Barrier 0.8008 0.7061 0.5921 0.4913

CraftLoom 0.8189 0.7141 0.6084 0.4998

Dancer 0.8035 0.7069 0.6030 0.5051

Hall 0.8140 0.7105 0.6087 0.5179

Laboratory 0.8190 0.7023 0.5990 0.5030

OldTownCar 0.8093 0.7025 0.6066 0.5037

Persons 0.8250 0.7079 0.6038 0.5143

Soccer 0.7913 0.7037 0.5995 0.5094

Tree 0.8110 0.7175 0.6180 0.5196

Umbrella 0.8067 0.7074 0.6059 0.5187

Gaussian Blur

LEVEL G1 G2 G3 G4

Barrier 0.8622 0.7026 0.5670 0.4575

CraftLoom 0.8571 0.6994 0.5496 0.4157

Dancer 0.8566 0.7049 0.5584 0.4204

Hall 0.8562 0.7056 0.5657 0.4167

Laboratory 0.8597 0.7028 0.5553 0.4291

OldTownCar 0.8504 0.7054 0.5677 0.4550

Persons 0.8554 0.7084 0.5505 0.4295

Soccer 0.8686 0.7294 0.5500 0.4052

Tree 0.8524 0.7024 0.5522 0.3992

Umbrella 0.8591 0.7103 0.5629 0.4183

JPEG Compression

LEVEL J1 J2 J3 J4

Barrier 0.8980 0.8526 0.7988 0.7143

CraftLoom 0.9226 0.8822 0.8292 0.7296

Dancer 0.8772 0.8464 0.8020 0.7246

Hall 0.9226 0.8848 0.8402 0.7644

Laboratory 0.9270 0.8917 0.8466 0.7620

OldTownCar 0.9179 0.8763 0.8198 0.7279

Persons 0.9197 0.8904 0.8581 0.7976

Soccer 0.9475 0.9181 0.8765 0.7730

Tree 0.9368 0.9033 0.8597 0.7720

Umbrella 0.9085 0.8577 0.8019 0.6974
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.2: The 10 pristine images in Waterloo-IVC 3D Image Database Phase II. Only
the right-views are shown here. (a) Barrier. (b) CraftLoom. (c) Dancer. (d) Hall. (e)
Laboratory. (f) OldTownCar. (g) Persons. (h) Soccer. (i) Tree. (j) Umbrella.

The single-view images were employed to generate distorted stereopairs, either sym-

metrically or asymmetrically. Altogether, there are totally 130 single-view images and 460

stereoscopic images. Table 3.15 categorizes these images into seven groups with detailed

descriptions. Group 3D.1 and Group 3D.2 cover all combinations. Group 3D.3 includes

those combinations that the difference of the distortion levels is higher than ONE while

Group 3D.4 includes a random subset from all possible fusions. For mixed distortion types

and levels, there are 48 possible combinations for each source image and 480 in total. Sim-

ilarly, we divided all possible combinations into 12 clusters based on distortion types and

levels and randomly selected one from each cluster. Table 3.7 lists all possible combinations

of mixed distortion types and levels and how we define these clusters. The details of the

random selections in Group 3D.4 of Waterloo-IVC 3D Image Database Phase II can be

found in Table 3.16.

47



Table 3.15: Categories of test images on Waterloo-IVC 3D Image Database Phase II

Group # of images Description
2D.0 10× 1 Pristine single-view images
2D.1 10× 12 Distorted single-view images

3D.0 10× 1 Pristine stereopairs
3D.1 10× 12 Symmetrically distorted stereopairs with the same distortion

type and distortion level
3D.2 10× 12 Asymmetrically distorted stereopairs with distortion on one

view only
3D.3 10× 9 Asymmetrically distorted stereopairs with the same distortion

type but different levels
3D.4 10× 12 Asymmetrically distorted stereopairs with mixed distortion

types and levels

3.2.3 Summary

To the best of our knowledge, there are two unique features of the current database when

compared with existing publicly known 3D-IQA databases. First, this is the only database

that allows us to perform subjective test on both 2D and 3D images. The inclusion of

2D images allows us to directly examine the relationship between the perceptual quality

of stereoscopic images and that of its single-view images. This is advantageous against

previous studies which do not have ground truth of 2D image quality but have to rely on

objective 2D-IQA measures to provide estimates. Second, this is the only database that

contains mixed distortion types in asymmetrically distorted images.

The motivation of including different asymmetrical distortion levels and various mixed

distortion types is threefold. First, purely for scientific curiosity, we are interested in

knowing how the HVS behaves in the cases of asymmetrical/mixed distortions. Second,

asymmetrical/mixed distortions are realistic in practice. For example, in the case of multi-

exposure stereo images [135], because of the different exposure levels being used on different

views, the amount of noise coming into the left- and right-view image sensors is different.

For another example, asymmetric blur distortions and asymmetric blocking artifacts can

be found in the case of mixed-resolution coding and asymmetric transform-domain quanti-
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Table 3.16: Group 3D.4 of Waterloo-IVC 3D Image Database Phase II

Barrier CraftLoom Dancer Hall Laboratory

BarrierW2G1 CraftLoomG1W1 DancerG1W4 HallW4G1 LaboratoryW4G1
BarrierJ2G1 CraftLoomG1J2 DancerG1J1 HallJ4G1 LaboratoryG1J3
BarrierW1J4 CraftLoomJ1W1 DancerJ1W1 HallJ4W1 LaboratoryW1J2
BarrierW1G2 CraftLoomG2W1 DancerW2G2 HallG2W2 LaboratoryG2W4
BarrierG2J1 CraftLoomJ4G2 DancerJ1G2 HallG2J4 LaboratoryG2J1
BarrierJ3W2 CraftLoomW2J1 DancerJ1W2 HallW2J3 LaboratoryW2J2
BarrierG3W3 CraftLoomG3W1 DancerW3G3 HallG3W3 LaboratoryG3W2
BarrierJ2G3 CraftLoomJ3G3 DancerG3J4 HallG3J2 LaboratoryJ3G3
BarrierW3J4 CraftLoomW3J2 DancerJ3W3 HallW3J4 LaboratoryJ2W3
BarrierW2G4 CraftLoomG4W1 DancerW4G4 HallW4G4 LaboratoryW4G4
BarrierG4J3 CraftLoomG4J2 DancerG4J3 HallG4J4 LaboratoryJ3G4
BarrierJ3W4 CraftLoomW4J3 DancerW4J4 HallJ2W4 LaboratoryJ4W4

OldTownCar Persons Soccer Tree Umbrella

OldTownCarW1G1 PersonsG1W4 SoccerG1W2 TreeG1W1 UmbrellaW3G1
OldTownCarG1J1 PersonsG1J1 SoccerJ3G1 TreeJ1G1 UmbrellaJ2G1
OldTownCarW1J1 PersonsJ3W1 SoccerJ1W1 TreeW1J4 UmbrellaW1J3
OldTownCarG2W4 PersonsG2W3 SoccerG2W3 TreeG2W3 UmbrellaW3G2
OldTownCarG2J1 PersonsG2J1 SoccerJ4G2 TreeG2J3 UmbrellaG2J3
OldTownCarW2J3 PersonsW2J1 SoccerW2J4 TreeW2J1 UmbrellaJ1W2
OldTownCarW3G3 PersonsW3G3 SoccerG3W4 TreeW2G3 UmbrellaG3W3
OldTownCarJ3G3 PersonsG3J1 SoccerJ2G3 TreeJ4G3 UmbrellaJ1G3
OldTownCarW3J3 PersonsW3J4 SoccerJ3W3 TreeJ3W3 UmbrellaJ4W3
OldTownCarG4W3 PersonsW1G4 SoccerW2G4 TreeW2G4 UmbrellaG4W2
OldTownCarJ3G4 PersonsG4J3 SoccerG4J4 TreeJ1G4 UmbrellaJ3G4
OldTownCarW4J4 PersonsW4J4 SoccerJ1W4 TreeW4J2 UmbrellaW4J4
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zation coding, and such distortions could have mixed types when postprocessing techniques

(deblocking or blurring) are employed. Moreover, many 3D images are captured by a tex-

ture image view plus a depth map, where the texture image, which could contain noise, is

used as one view, and the other view can be synthesized by combining the texture image

with the depth map. Such a stereoscopic image contains both noise and mixed types of

distortions. Third, the inclusion of these images provides the potential of a much stronger

test on 3D-IQA models on their generalizability. Such test has been largely lacking in pre-

vious studies where the development of objective 3D-IQA models only took into account

asymmetric distortions of specific and very limited distortion types such as compression

only.

3.3 Subjective Test

The subjective test was conducted in the Lab for Image and Vision Computing at University

of Waterloo. The test environment has no reflecting ceiling walls and floor, and was not

insulated by any external audible and visual pollution. An ASUS 27” VG278H 3D LED

monitor with an NVIDIA 3D VisionTM2 active shutter glasses shown in Figure 3.3 is used

for the test. The default viewing distance was 3.5 times the screen height. In the actual

experiment, some subjects did not feel comfortable with the default viewing distance and

were allowed to adjust the actual viewing distance around it. The details of viewing

conditions are given in Table 3.17. Figure 3.4 shows the experimental setup we have used.

In Phase I, twenty-four näive subjects, 14 males and 10 females aged from 22 to 45,

participated in the study. In Phase II, Twenty-two näive subjects, 11 males and 11 females

aged from 21 to 34, participated in the study . A 3D vision test was conducted first to

verify their ability to view stereoscopic 3D content. In Phase I, three of them (1 male,

2 females) failed the vision test and did not continue with the subsequent experiment; in

Phase II, no one failed the vision test. As a result, a total of twenty-one and twenty-two

subjects proceeded to the formal test in Phase I and Phase II, respectively. While a visual

acuity test was not performed in this study, a verbal confirmation was obtained prior to

the experiment and subjects were asked to use their eyeglasses or contact lenses to correct
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Figure 3.3: ASUS 27” VG278H 3D LED monitor with NVIDIA 3D VisionTM2 active shutter
glasses.
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Figure 3.4: Experimental setup: the subject is facing the 3D LED monitor with active
shutter glasses using a holder to control the viewing distance.

52



Table 3.17: Viewing conditions of the subjective test

Parameter Value
Subjects Per Monitor 1

Screen Resolution 1920 × 1080
Screen Diameter 27.00”

Screen Width 23.53”
Screen Height 13.24”

Viewing Distance 45.00”
Viewing Angle 29.3◦

Pixels Per Degree 65.5 pixels

their visual acuities.

Following previous works [119, 26], and [24], the subjects were asked to evaluate four as-

pects of their 3D viewing experience, including the perception of 3D image quality (3DIQ),

Depth quality (DQ), Visual comfort (VC) and 3D Quality-of-Expeirence (3DQoE). The de-

tailed descriptions of each aspects of visual experience including 2D image quality (2DIQ)

are elaborated in Table 3.18. Since to visualize every 3D stereoscopic image, the subjects

need to readjust their eyes so as to adapt to the content of the scene and establish 3D per-

ception, using a double stimulus approach leads to interruptions of the viewing experience.

Therefore, to reduce this effect, we choose to use the single stimulus procedure using an

11-grade numerical categorical scale protocol.

Table 3.18: Description of visual experience criteria

Criterion Description
2DIQ The single-view image content quality
3DIQ The image content quality without considering depth and comfortness
DQ The amount, naturalness and clearness of depth perception experience
VC The comfortness when viewing stereoscopic images

3DQoE The overall 3D viewing experience

Our pilot tests showed that one-pass experiment (where a subject gives 2DIQ, 3DIQ,

DQ, VC, and 3DQoE scores to each stereoscopic image in one trial) may cause significant

visual fatigue of the human subjects within a short period of time. To avoid this problem,
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we resorted to a multi-pass approach [26] in the formal test, where within each pass, the

subject gives one of the four scores. We also found that the 2D perceptual quality of

left- and right-views are so close to each other at the same distortion types and levels, so

that the difference in their Mean Opinion Scores (MOS) is negligible. Thus in order to

control the scale of this subjective experiment, only one of the views were tested (randomly

picked) in Group 2D.0 and Group 2D.1 in the formal test. The sequence of these 2D and

3D sub-tests was determined based on the following considerations:

• The 2DIQ test should be scheduled prior to any 3D sub-tests;

• The 3DIQ test could be scheduled at any place as its goal is the most straightforward

to subjects;

• DQ and VC are relatively weaker visual experience criteria, which should be not

scheduled after the 3DIQ test;

• The VC test should be scheduled at a more comfortable position.

• The 3DQoE test should not be scheduled prior to any other 2D or 3D sub-tests.

Figure 3.5 shows the detailed procedure of our formal subjective test. For Phase I, the

test was scheduled on two consecutive days for each subject. Day 1 (2 hours) was dedicated

to 2DIQ, VC and 3DIQ tests, and Day 2 (2 hours) to DQ and 3DQoE tests. Currently,

only 2DIQ and 3DIQ sub-tests were conducted on Phase II. Thus all sub-tests for Phase

II were finished in a single day. Figure 3.6 shows a test image in visual comfort test. The

left side “Comfort” reminds subjects of the purpose of the test.

There are two kinds of training in our subjective test. First, a general introduction

was given after the 3D vision test. All 3D visual experience criteria (3DIQ, DQ, VC

and 3DQoE) were introduced and their definitions were given to subjects in both written

and oral forms. After this general introduction, a preliminary understanding of four 3D

visual experience criteria was expected for the subjects. Second, specific instructions and

training sessions were given before each sub-test (2DIQ, 3DIQ, DQ, VC and 3DQoE). In

each sub-test, the corresponding rating strategy was first introduced and the subjects were
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3D Vision Test (5 
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2D Test: 2DIQ 
Training and Test 
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3D Test: VC 
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(2 X 20 mins)

3D Test: 3DIQ 
Training and Test 
(2 X 20 mins)

3D Test: Depth 
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(10 mins)

3D Test: DQ 
Training and Test 
(2 X 20 mins)

3D Test: 3DOoE 
Test (2 X 20 mins)

Phase I: 
Day 1

Phase I: 
Day 2

3D Vision Test (5 
mins)

2D Test: 2DIQ 
Training and Test 

(20 mins)

3D Test: General 
Introduction (5 

mins)

3D Test: 3DIQ 
Training  and Test 

(3 X 20 mins)

Phase II: 
Day 1

Figure 3.5: The procedure of the subjective test in Waterloo-IVC 3D Image Database
Phase I and Phase II.

Figure 3.6: A test image in VC test: the right-view is JPEG distorted while the left-view
is noise distorted.
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then required to practice by giving scores to training images until they fully understood

the criteria and built their own scoring strategies. Note that the training processes were

different depending on the characteristic of each criterion:

For both 2DIQ and 3DIQ sub-tests, we use three types of images in the training phase:

pristine images, moderately distorted images, and highly-distorted images. The subjects

were told to give scores at the high end (close to 10 pts) to the pristine images, at the

mid-range to the moderately distorted images, and at the low end (close to 0 pts) to the

highly-distorted images.

For DQ sub-test, a self-training process was employed to help the subjects establishing

their own rating strategies with the help of a depth comparison test (stimuli with the

same source image but different depth levels were presented to help subjects establish the

concept on the amount of depth), and subjects were introduced to build their own rating

strategies. Previous works reported that the perception of depth information is both highly

content and texture dependent [120] and subject dependent [26, 24]. Therefore, it is not

desirable to educate the subjects to use the same given rating strategy. Thus after a depth

comparison test (Please refer to Section 4.2 for more details), the 3D pristine stereopairs

were first presented and the subjects were instructed to give high scores (close to 10 pts) to

such images, and the 2D pristine images (with no depth from stereo cues) were presented

and the subjects were instructed to give low scores (close to 0 pts). Next, stereopairs of

different types/levels of distortions were presented and the subjects were asked to practice

by giving their ratings on DQ between 0 to 10 pts. During this process, the instructor also

repeated the definition of DQ and emphasized that there is not necessarily any correlation

between DQ and the type/level of distortions.

For VC sub-test, similar to DQ, it is not desirable to educate the subjects to use

the same given rating strategy, because previous work found that visual comfort is highly

subject dependent [24]. A similar self-training process is employed for this training session.

In the training process, different types/levels of distorted stereopairs including pristine

stereopairs were presented and the subjects were asked to practice by giving their ratings

on VC between 0 pts to 10 pts. During this process, the instructor repeated the definition

of VC and emphasized that there is not necessarily any correlation between VC and the

type/level of distortions.
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Figure 3.7: Rating strategies for 2DIQ, 3DIQ, DQ, VC and 3DQoE.

For the overall 3DQoE sub-test, there is no training session. The subjects were asked

to rate each stereopair based on their overall impression. They were asked to consider the

previously introduced visual experience criteria 3DIQ, DQ and VC and were encouraged

to use their own strategies to use these criteria. For example, some subjects focus on

image content while some others consider depth information to be more important. There

are also subjects who seem to dislike 3D images in general and put visual comfort on top

priority.

Figure 3.7 summaries all these rating instructions. It is worth mentioning that we

carried out a supplementary depth subjective experiment with the same type/level of

distortions in order to single out the contributions of stereo information from those of

monocular cues, which provide useful insights in the future development of comprehensive

3D QoE models that aim to achieve a good balance between perceptual 3D image quality,

depth quality, and visual comfort. This new depth subjective experiment will be discussed

in Chapter 4.

All stimuli were shown once in each sub-test. However, in Phase I, there were 6 rep-
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etitions for single-view images and 12 repetitions for stereopairs, which means that for

each subject, her/his first 6 single-view images and first 12 stereopairs were shown twice;

in Phase II, there were 20 repetitions for single-view images and 20 repetitions for stere-

opairs. Table 3.19 reports the mean absolute difference (MAD) values of the repeated

scores (on the scale between 0 and 10) with respect to different visual experience criteria.

The small MAD values suggest that the current experiment, which does not repeat most

of the stimuli, obtains reasonably reliable scores.

Table 3.19: Mean MAD values on repetitions

Phase I 2DIQ 3DIQ DQ VC 3DQoE
µMAD 1.0089 0.9588 1.0884 1.0395 0.9063

Phase II 2DIQ 3DIQ DQ VC 3DQoE
µMAD 1.0099 1.0272 N/A N/A N/A

The order of stimuli was randomized and the consecutive testing single-view images

or stereopairs were from different source images. All single-view images or around 160

stereopairs were evaluated in one session. In Phase I, the 2DIQ sub-test, including 84

testing single-view images with 6 repetitions, was finished under 10 minutes. For 3DIQ ,

DQ , VC and 3DQoE sub-tests, 342 testing stereopairs with 12 repetitions were partitioned

into two sessions and each single session (171 stereopairs) was finished in 15 to 20 minutes.

Sufficient relaxation periods (5 minutes or more) were given between sessions. The test

duration on each single day is 2 hours.

In Phase II, the 2DIQ sub-test, including 150 testing single-view images with 20 rep-

etitions, was finished under 15 minutes. For 3DIQ sub-tests, 480 testing stereopairs with

20 repetitions were partitioned into three sessions and each single session (160 stereopairs)

was finished in 15 to 20 minutes. The total test duration for Phase II is 2 hours.

Moreover, we found that repeatedly switching between viewing 3D images and grading

on a piece of paper or a computer screen is a tiring experience. To overcome this problem,

we asked the subject to speak out a score between 0 and 10, and a customized graphical

user interface shown in Figure 3.8 on another computer screen was used by the instructor

to record the score. All these efforts were intended to reduce visual fatigue and discomfort

of the subjects and to reduce the interference between different visual experience criteria.
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Figure 3.8: The customized GUI application for recording scores

3.4 Impact of Eye Dominance

Eye dominance is a common visual phenomenon, referring to the tendency to prefer the

input from one eye to the other, depending on the human subject [67]. When studying

visual quality of asymmetrically distorted images, it is important to understand if eye

dominance plays a significant role in the subjective test results. For this purpose, we carried

out a separate study on the impact of eye dominance in the perception of asymmetrically

distorted stereoscopic images.

Twenty subjects (12 males and 8 females) participated in the experiment. The side of

the dominant eye under static conditions was checked first by Rosenbach’s test [107]. This

test examines which eye determines the position of a finger when the subject is asked to

point to an object. Ten subjects (7 males, 3 females) had a dominant left eye, and the others

(5 males, 5 females) are right-eye dominant. A subjective test was conducted with the same

test settings and viewing conditions as described in Section 3.3. All test images are selected
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from Waterloo-IVC 3D Image Database Phase I, which are the case of strong asymmetric

distortions (Group 3D.2) and mixed distortions (Group 3D.4). Each asymmetric image

creates two test cases, with the left- and right-views exchanged. Altogether, there are

totally 78 symmetric stereoscopic images and 144 pairs (288 singles) of asymmetrically

distorted stereoscopic images.

The 3DIQ MOS scores for each image were computed for left-eye dominant subjects and

right-eye dominant subjects, denoted as 3DIQL and 3DIQR, respectively. We employed the

one-sample t-test to obtain a test decision for the null hypothesis that the difference between

3DIQL and 3DIQR, i.e., 3DIQD = 3DIQL− 3DIQR, comes from a normal distribution with

of zero-mean and unknown variance. The alternative hypothesis is that the population

distribution does not have a mean equaling zero. The result h is 1 if the test rejects

the null hypothesis at the 5% significance level, and 0 otherwise. The returned p-values

for symmetric and asymmetric images are 0.3801 and 0.1322, respectively, thus the null

hypothesis cannot be rejected at the 5% significance level, which indicates that the impact

of eye dominance in the perception of asymmetrically distorted stereoscopic images is not

considered significant. This is consistent with the “stimulus” view of rivalry that is widely

accepted in the field of visual neuroscience [15]. A comprehensive review and discussion

on the question of “stimulus” rivalry versus “eye” rivalry can also be found in [15, 81].

3.5 Analysis and Key Observations

3.5.1 Subjective data analysis

The raw scores 2DIQ, 3DIQ, DQ, VC and 3DQoE given by each subject were converted

to Z-scores and the entire data set was rescaled to fill the range from 1 to 100. The MOS

scores with each 2D/3D visual criterion for each 2D and 3D image were then computed

after removing outliers [101]. Figure 3.9 and Figure 3.10 show the distributions of MOS

scores for each 3D visual criterion on Phase I and Phase II, respectively.

For each single-view image or stereopair, the standard deviation of Z-scores represents

the degree of variation and the means of these standard deviations are reported in Ta-
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Figure 3.9: MOS scores of all stimuli in Waterloo-IVC 3D Image Database Phase I. (a)
3DIQ. (b) DQ. (c) VC. (d) 3DQoE.
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Figure 3.10: 3DIQ-MOS scores of all stimuli in Waterloo-IVC 3D Image Database Phase
II.

ble 3.20, which indicate large variations in DQ, VC and 3DQoE scores. Table 3.21 reports

the PLCC, SRCC and KRCC values between the MOS scores and the individual scores

given by each subject, which reflect the degree of agreement among the subjects, where it

can be observed that DQ and VC scores show less correlation with MOS compared with

2DIQ and 3DIQ scores and 3DQoE scores show more correlation than DQ and VC scores

but less than 2DIQ and 3DIQ scores as well.

Table 3.20: Mean of Standard deviations of individual scores

Criterion Mean of standard deviation of individual scores

Phase I

2DIQ 9.7338
3DIQ 12.0041
DQ 20.0122
VC 19.4743

3DQoE 17.5495

Phase II
2DIQ 9.2411
3DIQ 11.2551

Table 3.22 reports PLCC, SRCC and KRCC values between 3D visual experience crite-

ria on individual scores, where it can be observed that 3DIQ and DQ have higher correla-
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Table 3.21: Mean and Standard deviation of correlations between individual scores and
MOS scores

Waterloo-IVC 3D Image Database Phase I
PLCC SRCC KRCC

Criterion Mean Std. Mean Std. Mean Std.
2DIQ 0.9014 0.0241 0.8645 0.0341 0.7263 0.0410
3DIQ 0.8045 0.0675 0.7762 0.0745 0.6315 0.0713
DQ 0.7414 0.1447 0.7298 0.1481 0.5838 0.1292
VC 0.7222 0.0941 0.7068 0.0977 0.5623 0.0881

3DQoE 0.7732 0.1281 0.7603 0.1314 0.6148 0.1150

Waterloo-IVC 3D Image Database Phase II
PLCC SRCC KRCC

Criterion Mean Std. Mean Std. Mean Std.
2DIQ 0.9111 0.0222 0.9086 0.0269 0.7825 0.0330
3DIQ 0.8789 0.0438 0.8847 0.0462 0.7410 0.0496

tions with 3DQoE, which is consistent with previous studies that the 3D visual experience

can be predicted by a combination of image quality and depth quality [119]. Second, VC

has the lowest correlations with other 3D visual experience criteria, indicating that VC is

a more independent 3D visual criterion.

3.5.2 Key observation: Distortion type dependency

The raw 2DIQ and 3DIQ scores given by each subject were converted to Z-scores, respec-

tively. Then the entire data sets were rescaled to fill the range from 1 to 100 and the MOS

scores for each 2D and 3D image was computed after removing outliers. Given the subjec-

tive data, the main question we would like to ask in the current work is how the single-view

2D image quality predicts the 3D image quality (3DIQ scores in the subjective test), espe-

cially for the case of asymmetric distortions. The most straightforward 2D-to-3D quality

prediction method is to average the MOSs of the left- and right-view images. Figure 3.11

(a) to Figure 3.15 (a) show the corresponding scatter plots for Waterloo-IVC database

Phase I while Figure 3.11 (c) to Figure 3.15 (c) show the scatter plots for Waterloo-IVC

database Phase II. Table 3.23 reports PLCC, SRCC, KRCC, RMSE and MAE between
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Table 3.22: Correlations between 3D visual experience criteria on individual scores in
Waterloo-IVC 3D Image Database Phase I

PLCC
3DIQ DQ VC 3DQoE

3DIQ 1 0.6749 0.6590 0.7326
DQ 0.6749 1 0.6555 0.7235
VC 0.6590 0.6555 1 0.6579

3DQoE 0.7326 0.7235 0.6579 1

SRCC
3DIQ DQ VC 3DQoE

3DIQ 1 0.6631 0.6427 0.7188
DQ 0.6631 1 0.6379 0.7151
VC 0.6427 0.6379 1 0.6503

3DQoE 0.7188 0.7151 0.6503 1

KRCC
3DIQ DQ VC 3DQoE

3DIQ 1 0.5564 0.5431 0.6116
DQ 0.5564 1 0.5362 0.6076
VC 0.5431 0.5362 1 0.5457

3DQoE 0.6116 0.6076 0.5457 1
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Table 3.23: Performance comparison of 2D-to-3D quality prediction models on Waterloo-
IVC 3D Image Database

Waterloo-IVC 3D Image Database Phase I Waterloo-IVC 3D Image Database Phase II
Group PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE
All 3D 0.8835 0.8765 0.7161 7.3700 5.3293 0.8763 0.8820 0.7145 9.2201 6.7164

Symmetric 0.9801 0.9657 0.8482 3.8266 2.9160 0.9799 0.9696 0.8557 4.0525 3.1712
Asymmetric 0.8572 0.8471 0.6780 7.9895 5.8643 0.8418 0.8501 0.6693 10.4221 7.9037
Group 3D.1 0.9801 0.9657 0.8482 3.8266 2.9160 0.9799 0.9696 0.8557 4.0525 3.1712
Group 3D.2 0.6613 0.5433 0.4406 11.6394 9.0069 0.6121 0.5874 0.4524 14.2881 11.6204
Group 3D.3 0.9666 0.9164 0.7597 3.6078 2.7578 0.9471 0.8898 0.7176 5.7909 4.4262
Group 3D.4 0.9223 0.8271 0.6390 5.9710 4.5387 0.9225 0.8798 0.7047 7.0928 5.4776

3DIQ-MOS scores and the average 2DIQ-MOS scores, including the results for all stereo-

scopic images and for each test image group. PLCC, RMSE and MAE are adopted to

evaluate prediction accuracy [46] and SRCC and KRCC are employed to assess prediction

monotonicity [46]. Higher PLCC, SRCC and KRCC or lower RMSE and MAE values

indicate better consistency with human opinions of quality. PLCC, RMSE and MAE are

usually computed after a nonlinear mapping between the subjective and objective scores

and the results may be sensitive to the choice of the mapping function. SRCC and KRCC

are nonparametric rank order-based correlation metrics, independent of any monotonic

nonlinear mapping between subjective and objective scores but do not explicitly estimate

the accuracy of quality prediction.

From Table 3.23 and Figure 3.11 to Figure 3.15, it can be observed that the best pre-

diction occurs in Group 3D.1, which is the category for symmetrically distorted 3D images

(consistent with the literature [90, 23]). By contrast, the PLCC, SRCC, KRCC, RMSE

and MAE values drop significantly in other test groups (corresponding to asymmetrical

distortions) as well as in the all-image group. The drops of correlation coefficient values

are also reflected in the scatter plots shown in Figure 3.11 to Figure 3.15, where this simple

averaging prediction model generates substantial bias of many stereopairs. Most interest-

ingly, this bias leans towards opposite directions, largely depending on the distortion types.

In particular, for noise contamination and JPEG compression, average prediction overes-

timates 3D quality of many images (or 3D image quality is more affected by the poorer

quality view), while for blur, average prediction often underestimates 3D image quality (or

3D image quality is more affected by the better quality view). Furthermore, Table 3.23

suggests that the worst performance occurs in Group 3D.2, where only one view image is
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Figure 3.11: 3DIQ-MOS versus predictions from 2DIQ-MOS of 2D left- and right-views.
(a) All Images, Average 2DIQ-MOS on Waterloo-IVC Phase I. (b) All Images, Weighted
2DIQ-MOS on Waterloo-IVC Phase I. (c) All Images, Average 2DIQ-MOS on Waterloo-
IVC Phase II. (d) All Images, Weighted 2DIQ-MOS on Waterloo-IVC Phase II.
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Figure 3.12: 3DIQ-MOS versus predictions from 2DIQ-MOS of 2D left- and right-views. (a)
Noisy Images, Average 2DIQ-MOS on Waterloo-IVC Phase I. (b) Noisy Images, Weighted
2DIQ-MOS on Waterloo-IVC Phase I. (c) Noisy Images, Average 2DIQ-MOS on Waterloo-
IVC Phase II. (d) Noisy Images, Weighted 2DIQ-MOS on Waterloo-IVC Phase II.

67



0 20 40 60 80 100
0

20

40

60

80

100

Average 2DIQ−MOS

3D
IQ
−

M
O

S

 

 

Blurred Images
Other Images

(a)

0 20 40 60 80 100
0

20

40

60

80

100

Weighted 2DIQ−MOS

3D
IQ
−

M
O

S
 

 

Blurred Images
Other Images

(b)

0 20 40 60 80 100
0

20

40

60

80

100

Average 2DIQ−MOS

3D
IQ
−

M
O

S

 

 

Blurred Images
Other Images

(c)

0 20 40 60 80 100
0

20

40

60

80

100

Weighted 2DIQ−MOS

3D
IQ
−

M
O

S

 

 

Blurred Images
Other Images

(d)

Figure 3.13: 3DIQ-MOS versus predictions from 2DIQ-MOS of 2D left- and right-views.
(a) Blurred Images, Average 2DIQ-MOS on Waterloo-IVC Phase I. (b) Blurred Images,
Weighted 2DIQ-MOS on Waterloo-IVC Phase I. (c) Blurred Images, Average 2DIQ-MOS
on Waterloo-IVC Phase II. (d) Blurred Images, Weighted 2DIQ-MOS on Waterloo-IVC
Phase II.
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Figure 3.14: 3DIQ-MOS versus predictions from 2DIQ-MOS of 2D left- and right-views. (a)
JPEG Images, Average 2DIQ-MOS on Waterloo-IVC Phase I. (b) JPEG Images, Weighted
2DIQ-MOS on Waterloo-IVC Phase I. (c) JPEG Images, Average 2DIQ-MOS on Waterloo-
IVC Phase II. (d) JPEG Images, Weighted 2DIQ-MOS on Waterloo-IVC Phase II.
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Figure 3.15: 3DIQ-MOS versus predictions from 2DIQ-MOS of 2D left- and right-views.
(a) Mixed Distortion, Average 2DIQ-MOS on Waterloo-IVC Phase I. (b) Mixed Distortion,
Weighted 2DIQ-MOS on Waterloo-IVC Phase I. (c) Mixed Distortion, Average 2DIQ-MOS
on Waterloo-IVC Phase II. (d) Mixed Distortion, Weighted 2DIQ-MOS on Waterloo-IVC
Phase II.
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distorted and thus the quality difference between two views is maximized.

It is interesting to compare our observations regarding distortion type dependency with

those published in the literature. For image blur, it was reported in [148, 83] that 3D image

quality is less affected by the view with lower quality, which is consistent with our result.

For image blockiness from JPEG compression, in [120], it is claimed that 3D image quality

is approximately the average of the higher quality and the lower quality but there is a ten-

dency towards the lower quality view, which is consistent with our observations especially

when one of view is highly compressed and the other keeps uncompressed. Meanwhile,

in [148], no bias was discovered when lower levels of asymmetric JPEG compression were

evaluated. These seemingly controversial results are well explained by the scatter plots

shown in Figure 3.14 and the 2D-line plot shown in Figure 3.16, which shows 3DIQ-MOS

versus average 2DIQ-MOS minus 3DIQ-MOS for the case of strong asymmetric compres-

sions (Group 3D.2) on Waterloo-IVC Phase I and Phase II. From these figures, it can be

observed that the bias of the averaging prediction model increases with the level of dis-

tortions, and thus the strength of the bias is pronounced depending on the quality range

being investigated.

3.6 Objective Study I: 2D-to-3D Quality Prediction

We opt to use a two-stage approach in the design of an objective 3DIQ predictor. The first

stage aims to evaluate the perceptual quality of single-view images, while in the second

stage, a binocular rivalry inspired multi-scale model is developed to combine 2D image

quality of both views into a quality estimation of 3D image quality.

3.6.1 Objective 2D Quality Assessment

In the literature, the SSIM index [153] as well as its derivatives MS-SSIM [158] and IW-

SSIM [154] have demonstrated competitive performance in 2D objective IQA tests [154].

An advantage of the SSIM approach is that it provides a quality map that indicates the

variations of image quality over space [153]. It was shown that spatial pooling built upon
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Figure 3.16: 3DIQ-MOS versus average 2DIQ-MOS - 3DIQ-MOS for Group 3D.2 on
Waterloo-IVC 3D Image Database Phase I and Phase II.
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the quality map based on information content weighting or distortion weighting further

improves the performance [154]. Here we build our 2D-IQA model upon SSIM, but improve

it further by incorporating an information content and divisive normalization based pooling

scheme.

A general form of spatially weighted pooling is given by

Q2D =

∑N
i=1wiqi∑N
i=1 wi

, (3.1)

where qi and wi are the local quality value (e.g., local SSIM value) and the weight assigned

to the i-th spatial location (i-th pixel), respectively. The assumption behind information

content weighted pooling is that the spatial locations that contain more information are

more likely to attract visual attention, and thus should be given larger weights. Let xi and

yi be the local image patches extracted around the i-th spatial location from the refer-

ence and the distorted images, respectively. Following the information content evaluation

method in [156], we compute the weighting factor by

wici = log

[(
1 +

σ2
xi

C

)(
1 +

σ2
yi

C

)]
, (3.2)

where σxi and σyi are the standard deviations of xi and yi, respectively, and C is the noisy

visual channel power.

Another useful pooling strategy is distortion weighted pooling, which is based on the

intuitive idea that the spatial locations that contain more distortions are more likely to

attract visual attention, and thus should be given more weights. Since the local quality has

been gauged by qi (e.g., the SSIM value at location i), it is straightforward to convert it to a

local distortion measure, for example, let di = 1− SSIMi. Divisive normalization has been

recognized as a perceptually and statistically motivated non-linear transformation [140].

We apply divisive normalization to the local distortion map and define a normalized dis-

tortion based weighting factor by

wdi =
di√∑

j∈Ni
d2
j +D0

, (3.3)
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where Ni denotes the set of neighboring pixels surrounding the i-th spatial location, and

D0 is a stability constant.

The final weighting factor is obtained by combining information content and divisive

normalization-based distortion weighting factors

wi = max
{(
wici
)2
,
(
wdi
)2
}
. (3.4)

where the max operation is based on the strategy to choose either wic or wd, depending

on which one is more significant.

Applying this weighted pooling approach to the SSIM map, we obtain an Information

Content and Distortion Weighted Structural Similarity Index (IDW-SSIM) measure. This

has led to significant performance improvement when tested using the single-view images

in our new Waterloo-IVC 3D Image Database Phase I and Phase II. Quantitative measures

of PLCC, SRCC, KRCC, RMSE and MAE can be found in Table 3.24.

3.6.2 2D-to-3D Quality Prediction Model

The competition between binocular fusion and binocular rivalry [66] provides a potential

theory to develop 2D-to-3D quality prediction models. When the left- and right-view

images are consistent, they are fused in the visual system to a single percept of the scene,

known as binocular fusion. On the other hand, when the images of the two views are

inconsistent, instead of the two images being seen superimposed, one of them may dominate

or two images may be seen alternately, known as binocular rivalry [66]. Although there

is a rich literature on binocular fusion and rivalry in biological vision science [66] and [60]

(where simple and ideal visual stimuli are often used), how to apply the principle to 3D-

IQA remains an active research topic. Since in 3D-IQA we need to work on complicated

scenes and distortions, simplifications are essential to create practical solutions.

As shown in Figure 3.17, our work is motivated by existing vision studies on binocular

rivalry [72, 14, 37], and [35], where it was found that for simple ideal stimuli, an increasing

contrast increases the predominance of one view against the other. Also note that in

complicated scenes the contrast of a signal increases with its signal strength measured
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Table 3.24: Performance comparison of 2D-IQA models on Waterloo-IVC 3D Image
Database (Single-view Images) and other 2D-IQA databases

Waterloo-IVC 3D Image Database Phase I Waterloo-IVC 3D Image Database Phase II
2D-IQA PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE
PSNR 0.7862 0.4800 0.3552 11.8402 9.5212 0.7086 0.3885 0.2832 13.1298 11.1620
SSIM 0.8740 0.7726 0.5715 9.3099 7.7367 0.7643 0.6232 0.4441 11.9994 10.3491

MS-SSIM 0.8440 0.6402 0.4821 10.2769 7.8258 0.7429 0.5049 0.3590 12.4564 10.6135
IW-SSIM 0.8615 0.7696 0.5909 9.7299 8.3574 0.7683 0.6310 0.4640 11.9118 10.1677

IDW-SSIM 0.9572 0.9311 0.7605 5.5437 4.4359 0.9352 0.9327 0.7758 5.6271 4.3880
Cornell A57 Database CSIQ Database

2D-IQA PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE
PSNR 0.6346 0.6176 0.4301 0.1900 0.1607 0.7605 0.8053 0.6081 0.1705 0.1339
SSIM 0.8019 0.8067 0.6063 0.1469 0.1209 0.8569 0.8718 0.6858 0.1354 0.1007

MS-SSIM 0.8604 0.8415 0.6483 0.1253 0.1007 0.8903 0.9061 0.7298 0.1196 0.0897
IW-SSIM 0.9035 0.8713 0.6846 0.1054 0.0892 0.9017 0.9108 0.7390 0.1135 0.0841

IDW-SSIM 0.8842 0.8683 0.6832 0.1148 0.0961 0.8756 0.8884 0.7060 0.1268 0.0931
IVC Database LIVE Database

2D-IQA PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE
PSNR 0.6719 0.6884 0.5218 0.9023 0.7191 0.9302 0.9092 0.7484 8.4819 6.3731
SSIM 0.9119 0.9018 0.7223 0.4999 0.3777 0.9455 0.9496 0.8149 7.5252 6.0247

MS-SSIM 0.9108 0.8980 0.7203 0.5029 0.3813 0.9468 0.9512 0.8181 7.4379 5.9897
IW-SSIM 0.9231 0.9125 0.7339 0.4686 0.3694 0.9515 0.9604 0.8379 7.1116 5.6548

IDW-SSIM 0.9198 0.9081 0.7301 0.4780 0.3696 0.9576 0.9627 0.8381 6.6573 5.0979
TID 2008 Database TID 2013 Database

2D-IQA PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE
PSNR 0.5235 0.5531 0.4027 1.1434 0.8680 0.6775 0.6394 0.4699 0.9119 0.6801
SSIM 0.7732 0.7749 0.5768 0.8511 0.6546 0.7895 0.7417 0.5588 0.7608 0.5926

MS-SSIM 0.8451 0.5768 0.6568 0.7173 0.5578 0.8329 0.7859 0.6047 0.6861 0.5309
IW-SSIM 0.8579 0.8511 0.6636 0.6895 0.5276 0.8319 0.7779 0.5977 0.6880 0.5290

IDW-SSIM 0.7427 0.6546 0.5718 0.8985 0.6571 0.7569 0.7267 0.5479 0.8102 0.6069
Toyama-MICT Database

2D-IQA PLCC SRCC KRCC RMSE MAE
PSNR 0.7328 0.7221 0.5398 0.8983 0.6999
SSIM 0.9125 0.9023 0.7250 0.5401 0.4030

MS-SSIM 0.9154 0.9070 0.7316 0.5315 0.3995
IW-SSIM 0.9401 0.9289 0.7693 0.4502 0.3437

IDW-SSIM 0.9132 0.9030 0.7272 0.5381 0.4012
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using energy. This inspires us to hypothesize that the strength of view dominance in

binocular rivalry of stereoscopic images is related to the relative energy of the two views.

The diagram of the proposed method is shown in Figure 3.18. Let (Ir,l, Ir,r) and (Id,l,

Id,r) be the left- and right-view image pairs of the reference and distorted stereoscopic

images, respectively. We first create their local energy maps by computing the local vari-

ances at each spatial location, i.e., the variances of local image patches extracted around

each spatial location from the reference or the distorted images are computed, for which

an 11× 11 circular-symmetric Gaussian weighting function w = {wi|i = 1, 2, · · · , N} with

standard deviation of 1.5 samples, normalized to unit sum (
∑N

i=1 wi = 1), is employed.

The resulting energy maps are denoted as Er,l, Er,r, Ed,l and Ed,r, respectively.

The local energy maps E are displayed in Figure 3.19 using the reference or distorted

images as the background, and the pixels with local energy larger than 50 are highlighted as

black. In the reference energy map, the high-energy are concentrated at structural regions;

in the noise energy map, the high-energy are across the whole image; in the blur energy

map, the high-energy appears only in areas surrounding the structural regions; and in the

JPEG energy map, the high-energy not only appears on structural regions but also on at

regions as blocking artifacts. In general, compared with the reference image, blur images

contain less energy while noise or JPEG images have more energy.

The local energy ratio maps R = Ed/Er are displayed in Figure 3.20 using the reference

or distorted images as the back ground, and the pixels with local energy ratio larger than

1 are highlighted as black. It can be observed that for noisy images, the energy ratios are

all larger than 1 while for JPEG images, the energy ratios are larger than 1 specifically

on both structural regions and areas with blocking artifact. For blur images, larger energy

ratios only appear in areas surrounding structural regions, which may be explained by the

leakage of energy from highly structural regions to their surrounding areas due to low-pass

filtering. Thus these local energy ratio maps are spatially similar with local energy maps

while as the normalized signals, these local energy ratios are used in the pooling stage.

Examples are given in Figure 3.21 and Figure 3.22, where the reference or distorted

images are used as the background, and the pixels with local energy larger than 50 are

highlighted as black. In Figure 3.21, the left-view is original and the right-view is blurred.
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Figure 3.17: Binocular fusion versus Binocular Rivalry.
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Figure 3.18: Diagram of the proposed 2D-to-3D quality prediction model.

The structural consistency between two-views is affected. The left-view may dominate the

right-view at any time instance. In Figure 3.21, the left-view is original and the right-

view is JPEG compressed. The structural consistency between two-views is affected. The

right-view may dominate the left-view at any time instance.

Assume that the reference stereopair has perfect quality with strong 3D effect, where

binocular fusion prevails. When at least one of the single-view images is distorted at some

spatial locations, the distortion may affect the consistency between the image structures

from the two views, and thus binocular rivalry prevails. As a result, one view may dominate

the other at any time instance. Based on our hypothesis, we compute the local energy ratio

maps in both views:

Rl =
Ed,l
Er,l

and Rr =
Ed,r
Er,r

. (3.5)

The energy ratio maps provide useful local binocular rivalry information, which may be

combined with the qualities of single-view images to predict 3D image quality. A pooling

stage is necessary for this purpose. High-energy image regions are likely to contain more

information. If the ultimate goal of visual perception is to efficiently extract useful infor-

mation from the visual scene, then the high-energy regions are more likely to attract visual
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(a) (b)

(c) (d)

Figure 3.19: Local Energy Map E. (a) Reference. (b) Noise. (c) Blur. (d) JPEG.

attention, and thus should be given more importance. To emphasize on the importance

of high-energy image regions in binocular rivalry, we adopt an energy weighted pooling

method given by

gl =

∑
Ed,lRl∑
Ed,l

and gr =

∑
Ed,rRr∑
Ed,r

, (3.6)

where the summations are over the full energy and ratio maps. Here gl and gr are estima-

tions of the level of dominance of the left- and right-views, respectively.

Meanwhile, the study presented in [37] suggests that the dominance of one view over
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(a) (b)

(c) (d)

Figure 3.20: Local Energy Ratio Map R. (a) Reference. (b) Noise. (c) Blur. (d) JPEG.

the other in binocular rivalry depends on the spatial frequency content of the stimuli used.

Psychophysical experiments have shown that the spatial frequency sensitivity of human

stereopsis behaves similar to the visual contrast sensitivity function (CSF) [165], which

accounts for the visual contrast sensitivity as a function of spatial frequency [9]. We

take advantage of this similarity and treat different spatial frequency subbands based on

CSF. Specifically, we divide an image into multiple scales, by employing an iterative low-

pass filtering and downsampling procedure, and subsequently calculate the level of view

dominance for every subband of the left- and right-view images. We then combine the
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(a) (b)

Figure 3.21: Binocular Rivalry Example 1. (a) Left-view: Reference. (b) Right-view: Blur

scale level dominance values of the left- and right-view images and the overall levels of

dominance gl and gr are given by:

gl =
Ns∑
i=1

αigi,l and gr =
Ns∑
i=1

αigi,r , (3.7)

where gi,l and gi,r denote the levels of dominance of the ith scale of the left- and right-view

images, respectively. Ns is the number of scales and αi denotes the perceptual importance

of the ith scale determined using the CSF formula given by [9]:

S(u) =
5200e(−0.0016u2(1+100/L)0.08)√(

1 + 144
X2

o
+ 0.64u2

)(
63
L0.83 + 1

1−e(−0.02u2)

) , (3.8)

where u, L, and X2
o denote spatial frequency in cycles/degree, luminance in cd/m2, and

angular object area in square degrees, respectively. αi values are calculated using

αi = S(f c
i ) , (3.9)

where f c
i denotes the center spatial frequency of the ith scale.
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(a) (b)

Figure 3.22: Binocular Rivalry Example 2. (a) Left-view: Reference. (b) Right-view:
JPEG.

Given the values of gl and gr, the weights assigned to the left- and right-view images

are given by

wl =
g2
l

g2
l + g2

r

and wr =
g2
r

g2
l + g2

r

, (3.10)

respectively.

Finally, the overall prediction of 3D image quality is calculated by a weighted average

of the left- and right-view image quality:

Q3D = wlQ
2D
l + wrQ

2D
r , (3.11)

where Q2D
l and Q2D

r denote the 2D image quality of the left- and right-views, respectively.

In our previous work, preliminary results on simplified single-scale model of the pro-

posed approach that ignores the variation of visual sensitivity across scales were reported

in [145] and [144].
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3.6.3 Validation

We use two 3D image quality databases to test the proposed algorithm, which are the

new Waterloo-IVC 3D Image Database (Phase I and Phase II) and the LIVE 3D Image

Database Phase II [23]. The latter is a recent database that contains both symmetrically

and asymmetrically distorted images. Note that the parameters of the proposed 2D-to-3D

quality prediction method are selected empirically when working with Waterloo-IVC 3D

Image Database Phase I, but are completely independent of the Waterloo-IVC 3D Image

Database Phase II and the LIVE 3D Image Database Phase II.

We test the proposed 2D-to-3D quality prediction model on all 3D images in Waterloo-

IVC 3D Image Database Phase I and Phase II by applying it to the ground truth 2DIQ-

MOS scores. The PLCC, SRCC, KRCC, RMSE and MAE values between 3DIQ-MOS and

the predicted Q3D value for all stereoscopic images and for each test image group are given

in Table 3.25. The corresponding scatter plots are shown in Figure 3.11 to Figure 3.15.

From Table 3.25 and Figure 3.11 to Figure 3.15, it can be observed that the proposed

model outperforms the direct averaging method in almost all cases, and the improvement

is most pronounced in the case of strong asymmetric distortions (Group 3D.2) or when

all test images are put together (All 3D image case). By comparing different figures in

Figure 3.11 to Figure 3.15, we observe how the proposed 2D-to-3D prediction model affects

each image distortion type. For different distortion types, although the direct averaging

method produces different levels of quality prediction biases towards different directions,

the proposed method, which does not attempt to recognize the distortion types or give

any specific treatment for any specific distortion type, removes or significantly reduces

the prediction biases for all distortion types. Moreover, as mentioned earlier, the mixed

distortion case provides the strongest test on the generalization ability of the model, for

which the proposed method maintains consistent performance.

We also test the proposed 2D-to-3D quality prediction model by applying it to different

base 2D-IQA approaches on both databases. Note that exactly the same 2D-to-3D quality

prediction model obtained from 2DIQ-MOS and 3DIQ-MOS scores with Waterloo-IVC

database Phase I is used and thus the model is completely independent of any tested

objective 2D-IQA approaches including PSNR, SSIM and IDW-SSIM. The comparison
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Table 3.25: Performance comparison of 2D-to-3D quality prediction models on Waterloo-
IVC 3D Image Database: 2DIQ-MOS and IDW-SSIM

Waterloo-IVC 3D Image Database Phase I Waterloo-IVC 3D Image Database Phase II
2DIQ-MOS PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE

All
Average 0.8835 0.8765 0.7161 7.3700 5.3293 0.8763 0.8820 0.7145 9.2201 6.7164
Weighted 0.9561 0.9522 0.8162 4.6108 3.5645 0.9568 0.9477 0.8080 5.5655 4.3371

Sym.
Average 0.9801 0.9657 0.8482 3.8266 2.9160 0.9799 0.9696 0.8557 4.0525 3.1712
Weighted 0.9801 0.9657 0.8482 3.8266 2.9160 0.9799 0.9696 0.8557 4.0525 3.1712

Asym.
Average 0.8572 0.8471 0.6780 7.9895 5.8643 0.8418 0.8501 0.6693 10.4221 7.9037
Weighted 0.9522 0.9452 0.8026 4.7406 3.6791 0.9511 0.9424 0.7977 5.9620 4.6683

3D.1
Average 0.9801 0.9657 0.8482 3.8266 2.9160 0.9799 0.9696 0.8557 4.0525 3.1712
Weighted 0.9801 0.9657 0.8482 3.8266 2.9160 0.9799 0.9696 0.8557 4.0525 3.1712

3D.2
Average 0.6613 0.5433 0.4406 11.6394 9.0069 0.6121 0.5874 0.4524 14.2881 11.6204
Weighted 0.9286 0.9160 0.7556 5.7574 4.7098 0.9414 0.9497 0.8070 6.0932 4.8568

3D.3
Average 0.9666 0.9164 0.7597 3.6078 2.7578 0.9471 0.8898 0.7176 5.7909 4.4262
Weighted 0.9714 0.9307 0.7789 3.3391 2.6247 0.9602 0.9318 0.7745 5.0392 4.0923

3D.4
Average 0.9223 0.8271 0.6390 5.9710 4.5387 0.9225 0.8798 0.7047 7.0928 5.4776
Weighted 0.9656 0.9357 0.7822 4.0179 3.2243 0.9549 0.9320 0.7803 5.4557 4.2124

IDW-SSIM PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE

All
Average 0.7800 0.7572 0.5779 9.8471 7.5579 0.7790 0.7700 0.5858 12.0013 9.2888
Weighted 0.9273 0.9156 0.7494 5.8899 4.7668 0.8896 0.8645 0.6852 8.7435 7.0266

Sym.
Average 0.9579 0.9371 0.7725 5.5328 4.5967 0.9360 0.9017 0.7242 7.1484 5.6536
Weighted 0.9580 0.9375 0.7732 5.5320 4.5966 0.9360 0.9017 0.7242 7.1488 5.6529

Asym.
Average 0.7475 0.7111 0.5333 10.3042 7.8824 0.7480 0.7410 0.5509 12.8163 9.9539
Weighted 0.9278 0.9112 0.7435 5.7887 4.6891 0.8903 0.8648 0.6826 8.7937 7.1850

3D.1
Average 0.9579 0.9371 0.7725 5.5328 4.5967 0.9360 0.9017 0.7242 7.1484 5.6536
Weighted 0.9580 0.9375 0.7732 5.5320 4.5966 0.9360 0.9017 0.7242 7.1488 5.6529

3D.2
Average 0.5496 0.3465 0.2818 12.9639 10.9663 0.5406 0.4850 0.3626 15.2005 12.1859
Weighted 0.9170 0.8969 0.7298 6.1906 5.0713 0.8729 0.8860 0.6943 8.8172 7.0825

3D.3
Average 0.9065 0.7384 0.5577 5.9426 4.7459 0.8673 0.6200 0.4520 8.9802 7.2966
Weighted 0.9383 0.8393 0.6550 4.8674 3.9636 0.9048 0.7820 0.5798 7.6819 6.3187

3D.4
Average 0.8702 0.6984 0.5248 7.6114 5.8683 0.8578 0.7469 0.5726 9.4437 7.3285
Weighted 0.9308 0.8657 0.6804 5.6461 4.5552 0.9021 0.8343 0.6610 7.9272 6.3546
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results with the direct averaging method are shown in Table 3.26 to Table 3.28, where it

can be seen that the proposed method significantly improves most base 2D-IQA methods.

The only exception is PSNR, which might be due to its poor performance in 2D image

quality assessment, and thus merely changing 2D to 3D prediction method would not lead

to any meaningful result. The scatter plots of 3DIQ-MOS scores versus predictions by

averaging IDW-SSIM and weighting IDW-SSIM are shown in Figure 3.23 to Figure 3.27,

the (a) and (b) are the corresponding scatter plots for Waterloo-IVC 3D image database

Phase I while the (c) and (d) are the scatter plots for Waterloo-IVC 3D image database

Phase II. From Table 3.26 to Table 3.28 and Figure 3.23 to Figure 3.27, it can be observed

that the proposed 2D-to-3D model produces the most significant performance improvement

from symmetric to asymmetric distortions in the case of using IDW-SSIM as the base 2D-

IQA approach.

Table 3.26: Performance comparison of 2D-to-3D prediction models on Waterloo-IVC 3D
Image Database: All Images

Waterloo-IVC 3D Image Database Phase I Waterloo-IVC 3D Image Database Phase II
2D-IQA PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE

Average 2DIQ-MOS 0.8835 0.8765 0.7161 7.3700 5.3293 0.8763 0.8820 0.7145 9.2201 6.7164
Weighted 2DIQ-MOS 0.9561 0.9522 0.8162 4.6108 3.5645 0.9568 0.9477 0.8080 5.5655 4.3371

Average PSNR 0.6914 0.5209 0.3775 11.3689 9.1715 0.6304 0.4964 0.3521 14.8577 12.2310
Weighted PSNR 0.7419 0.5192 0.3830 10.5514 8.7829 0.7186 0.4948 0.3605 13.3107 11.2477
Average SSIM 0.6771 0.5963 0.4354 11.5794 9.3504 0.5197 0.4684 0.3316 16.3519 13.3223
Weighted SSIM 0.8035 0.6712 0.5047 9.3675 7.6946 0.7257 0.5640 0.4090 13.1691 11.2493

Average MS-SSIM 0.6629 0.5034 0.3614 11.7821 9.6847 0.5178 0.4182 0.2948 16.3736 13.6070
Weighted MS-SSIM 0.7723 0.5380 0.4128 9.9964 7.8308 0.7066 0.4728 0.3412 13.5430 11.4356
Average IW-SSIM 0.6595 0.5900 0.4433 11.8286 9.4377 0.5311 0.4845 0.3471 16.2168 12.9443
Weighted IW-SSIM 0.8025 0.6841 0.5245 9.3890 7.8411 0.7456 0.5906 0.4354 12.7550 10.7761
Average IDW-SSIM 0.7800 0.7572 0.5779 9.8471 7.5579 0.7790 0.7700 0.5858 12.0013 9.2888
Weighted IDW-SSIM 0.9273 0.9156 0.7494 5.8899 4.7668 0.8896 0.8645 0.6852 8.7435 7.0266

Benoit [10] 0.6812 0.5961 0.4293 11.5208 9.0513 0.5344 0.4492 0.3138 16.1770 12.8308
Chen [25] 0.7327 0.6831 0.5223 10.7095 7.7474 0.6130 0.5781 0.4165 15.1222 11.7693
Yang [164] 0.7061 0.6107 0.4429 11.1428 9.1004 0.6742 0.5873 0.4181 14.1355 11.5621
You [168] 0.6720 0.5969 0.4352 11.6526 9.3838 0.6383 0.5874 0.4136 14.7335 12.1816

We have also compared the proposed method with state-of-the-art 3D-IQA approaches [23,

10, 164, 168], and [25] using both databases, and the results are shown in Table 3.29 and

Table 3.30, respectively. The proposed method achieves the best performance in both

databases among all objective IQA methods. The highly competitive performance in the

Waterloo-IVC 3D Image Database Phase II and LIVE 3D Image Database Phase II is a

more convincing result because no parameter has been determined using the Waterloo-IVC

85



Table 3.27: Performance comparison of 2D-to-3D prediction models on Waterloo-IVC 3D
Image Database Phase I: Symmetric vs. Asymmetric

PLCC SRCC KRCC RMSE MAE
2D-IQA Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym.

Average 2DIQ-MOS 0.9801 0.8572 0.9657 0.8471 0.8482 0.6780 3.8266 7.9895 2.9160 5.8643
Weighted 2DIQ-MOS 0.9801 0.9522 0.9657 0.9452 0.8482 0.8026 3.8266 4.7406 2.9160 3.6791

Average PSNR 0.7877 0.7223 0.4565 0.5561 0.3492 0.4037 11.8784 10.7284 9.4310 8.5327
Weighted PSNR 0.7877 0.7876 0.4572 0.5593 0.3505 0.4093 11.8786 9.5591 9.4311 7.9879
Average SSIM 0.8611 0.6843 0.7517 0.5694 0.5615 0.4171 9.8040 11.3126 7.7319 8.9344
Weighted SSIM 0.8611 0.8338 0.7517 0.6631 0.5615 0.4985 9.8041 8.5642 7.7317 7.0285

Average MS-SSIM 0.8245 0.6834 0.6048 0.5043 0.4580 0.3608 10.9108 11.3254 8.1563 9.2084
Weighted MS-SSIM 0.8245 0.8082 0.6048 0.5503 0.4580 0.4182 10.9107 9.1361 8.1557 7.2159
Average IW-SSIM 0.8611 0.6508 0.7582 0.5501 0.5729 0.4153 9.8034 11.7784 8.0576 9.1672
Weighted IW-SSIM 0.8611 0.8278 0.7584 0.6688 0.5735 0.5119 9.8032 8.7042 8.0573 7.2423
Average IDW-SSIM 0.9579 0.7475 0.9371 0.7111 0.7725 0.5333 8.0576 10.3042 4.5967 7.8824
Weighted IDW-SSIM 0.9580 0.9278 0.9375 0.9112 0.7732 0.7435 8.0573 5.7887 4.5966 4.6891

Benoit [10] 0.8563 0.6986 0.7427 0.5880 0.5622 0.4218 9.9599 11.0993 8.6247 8.5279
Chen [25] 0.9521 0.7306 0.9250 0.6441 0.7558 0.4860 5.8938 10.5920 4.9568 7.6630
Yang [164] 0.8347 0.7149 0.6670 0.6106 0.4827 0.4434 10.6175 10.8465 8.8134 8.6119
You [168] 0.8572 0.6818 0.7517 0.5706 0.5615 0.4175 9.9290 11.3482 7.7502 8.9733

Table 3.28: Performance comparison of 2D-to-3D prediction models on Waterloo-IVC 3D
Image Database Phase II: Symmetric vs. Asymmetric

PLCC SRCC KRCC RMSE MAE
2D-IQA Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym.

Average 2DIQ-MOS 0.9799 0.8418 0.9696 0.8501 0.8557 0.6693 4.0525 10.4221 3.1712 7.9037
Weighted 2DIQ-MOS 0.9799 0.9511 0.9696 0.9424 0.8557 0.7977 4.0525 5.9620 3.1712 4.6683

Average PSNR 0.6878 0.6576 0.3430 0.5573 0.2593 0.3976 14.7395 14.5480 12.5625 11.6053
Weighted PSNR 0.6878 0.7669 0.3429 0.5746 0.2597 0.4192 14.7393 12.3924 12.5623 10.3401
Average SSIM 0.7463 0.5273 0.5933 0.4541 0.4250 0.3212 13.5161 16.4072 11.6680 13.0249
Weighted SSIM 0.7463 0.7668 0.5933 0.5822 0.4249 0.4208 13.5154 12.3952 11.6674 10.3845

Average MS-SSIM 0.7165 0.5412 0.4456 0.4475 0.3190 0.3192 14.1639 16.2377 12.0754 13.2690
Weighted MS-SSIM 0.7165 0.7527 0.4456 0.5236 0.3191 0.3764 14.1633 12.7136 12.0748 10.5823
Average IW-SSIM 0.7680 0.5208 0.6345 0.4521 0.4668 0.3195 13.0045 16.4850 11.0739 12.8515
Weighted IW-SSIM 0.7680 0.7849 0.6348 0.5941 0.4669 0.4326 13.0036 11.9658 11.0728 9.8922
Average IDW-SSIM 0.9360 0.7480 0.9017 0.7410 0.7242 0.5509 7.1484 12.8163 5.6536 9.9539
Weighted IDW-SSIM 0.9360 0.8903 0.9017 0.8648 0.7242 0.6826 7.1488 8.7937 5.6529 7.1850

Benoit [10] 0.7488 0.5480 0.5589 0.4466 0.3925 0.3136 13.4575 16.1520 11.2175 12.4789
Chen [25] 0.8202 0.6317 0.7581 0.5627 0.5635 0.4055 11.6165 14.9701 9.6565 11.6210
Yang [164] 0.7495 0.6850 0.5602 0.5997 0.4006 0.4225 13.4422 14.0686 11.0352 11.3139
You [168] 0.7917 0.6404 0.6631 0.5944 0.4850 0.4154 12.4031 14.8307 10.8100 11.9458
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Figure 3.23: 3DIQ-MOS versus predictions from IDW-SSIM of 2D left- and right-views.
(a) All Images, Average IDW-SSIM on Waterloo-IVC Phase I. (b) All Images, Weighted
IDW-SSIM on Waterloo-IVC Phase I. (c) All Images, Average IDW-SSIM on Waterloo-IVC
Phase II. (d) All Images, Weighted IDW-SSIM on Waterloo-IVC Phase II.
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Figure 3.24: 3DIQ-MOS versus predictions from IDW-SSIM of 2D left- and right-views. (a)
Noisy Images, Average IDW-SSIM on Waterloo-IVC Phase I. (b) Noisy Images, Weighted
IDW-SSIM on Waterloo-IVC Phase I. (c) Noisy Images, Average IDW-SSIM on Waterloo-
IVC Phase II. (d) Noisy Images, Weighted IDW-SSIM on Waterloo-IVC Phase II.
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Figure 3.25: 3DIQ-MOS versus predictions from IDW-SSIM of 2D left- and right-views.
(a) Blurred Images, Average IDW-SSIM on Waterloo-IVC Phase I. (b) Blurred Images,
Weighted IDW-SSIM on Waterloo-IVC Phase I. (c) Blurred Images, Average IDW-SSIM
on Waterloo-IVC Phase II. (d) Blurred Images, Weighted IDW-SSIM on Waterloo-IVC
Phase II.
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Figure 3.26: 3DIQ-MOS versus predictions from IDW-SSIM of 2D left- and right-views. (a)
JPEG Images, Average IDW-SSIM on Waterloo-IVC Phase I. (b) JPEG Images, Weighted
IDW-SSIM on Waterloo-IVC Phase I. (c) JPEG Images, Average IDW-SSIM on Waterloo-
IVC Phase II. (d) JPEG Images, Weighted IDW-SSIM on Waterloo-IVC Phase II.
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Figure 3.27: 3DIQ-MOS versus predictions from IDW-SSIM of 2D left- and right-views.
(a) Mixed Distortion, Average IDW-SSIM on Waterloo-IVC Phase I. (b) Mixed Distortion,
Weighted IDW-SSIM on Waterloo-IVC Phase I. (c) Mixed Distortion, Average IDW-SSIM
on Waterloo-IVC Phase II. (d) Mixed Distortion, Weighted IDW-SSIM on Waterloo-IVC
Phase II.
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Phase II and the LIVE database. Another important observation is that there is a large

performance drop in all other objective methods from symmetric to asymmetric distortions,

whereas the drop is much smaller in the proposed method.

Table 3.29: Performance comparison of 2D-to-3D prediction models on LIVE 3D Image
Database

LIVE 3D Image Database Phase I LIVE 3D Image Database Phase II
2D-IQA PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE

Average PSNR 0.8370 0.8341 0.6298 8.9738 7.0181 0.7546 0.7303 0.5372 7.4068 5.8369
Weighted PSNR 0.8352 0.8328 0.6288 9.0185 7.0448 0.7764 0.7528 0.5531 7.1132 5.6647
Average SSIM 0.8766 0.8765 0.6791 7.8913 6.0833 0.8024 0.7925 0.6016 6.7366 5.1798
Weighted SSIM 0.8742 0.8740 0.6761 7.9634 6.1388 0.8433 0.8408 0.6444 6.0671 4.7670

Average MS-SSIM 0.9301 0.9239 0.7487 6.0227 4.7112 0.7947 0.7774 0.6067 6.8509 5.1541
Weighted MS-SSIM 0.9317 0.9250 0.7498 5.9550 4.6816 0.9079 0.9096 0.7342 4.7322 3.6490
Average IW-SSIM 0.9417 0.9335 0.7667 5.5190 4.3693 0.7842 0.7491 0.5920 7.0040 5.1988
Weighted IW-SSIM 0.9450 0.9359 0.7709 5.3617 4.2582 0.9123 0.9132 0.7417 4.6225 3.5126
Average IDW-SSIM 0.9281 0.9237 0.7471 6.1053 4.7562 0.8177 0.7987 0.6191 6.4979 4.9159
Weighted IDW-SSIM 0.9295 0.9244 0.7485 6.0477 4.7298 0.9152 0.9178 0.7425 4.5493 3.5763

Benoit [10] 0.8836 0.8835 0.6861 7.6793 6.0346 0.7554 0.7409 0.5674 7.3967 5.6058
Chen [25] 0.9241 0.9157 0.7368 6.2681 4.8262 0.9073 0.9013 0.7307 4.7464 3.5824
Yang [164] 0.8131 0.8143 0.6099 9.5452 7.4921 0.7344 0.7210 0.5327 7.6604 6.0953
You [168] 0.8677 0.8765 0.6792 8.1517 6.2893 0.7974 0.7924 0.6015 6.8108 5.2472

Table 3.30: Performance comparison of 2D-to-3D prediction models on LIVE 3D Image
Database Phase II: Symmetric vs. Asymmetric

PLCC SRCC KRCC RMSE MAE
2D-IQA Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym.

Average PSNR 0.7839 0.7237 0.7764 0.6974 0.5814 0.5106 7.7512 6.9944 5.9384 5.5623
Weighted PSNR 0.7841 0.7654 0.7770 0.7149 0.5823 0.5223 7.7485 6.5228 5.9352 5.2701
Average SSIM 0.8517 0.7665 0.8256 0.7360 0.6327 0.5516 6.5430 6.5098 5.0729 5.0304
Weighted SSIM 0.8519 0.8394 0.8256 0.8318 0.6324 0.6364 6.5394 5.5082 5.0723 4.2911

Average MS-SSIM 0.9266 0.7187 0.9121 0.6842 0.7425 0.5219 4.6939 7.0471 3.6498 5.4580
Weighted MS-SSIM 0.9271 0.8912 0.9124 0.8950 0.7430 0.7156 4.6809 4.5970 3.6387 3.5482
Average IW-SSIM 0.9458 0.6986 0.9314 0.6397 0.7694 0.4951 4.0528 7.2515 3.1837 5.6560
Weighted IW-SSIM 0.9463 0.8852 0.9324 0.8876 0.7705 0.7091 4.0357 4.7151 3.1755 3.6293
Average IDW-SSIM 0.9363 0.7383 0.9227 0.6902 0.7545 0.5216 4.3849 6.8363 3.4405 5.2556
Weighted IDW-SSIM 0.9367 0.8974 0.9231 0.9011 0.7559 0.7225 4.3706 4.4720 3.4311 3.5202

Benoit [10] 0.8812 0.7026 0.8547 0.6747 0.6593 0.5124 5.9011 7.2116 4.7997 5.6079
Chen [25] 0.9384 0.8753 0.9252 0.8538 0.7599 0.6783 4.3129 4.9020 3.3895 3.6553
Yang [164] 0.7481 0.7029 0.7282 0.6787 0.5386 0.4942 8.2854 7.2087 6.4751 5.7345
You [168] 0.8411 0.7556 0.8256 0.7358 0.6327 0.5513 6.7537 6.6383 5.4177 5.0773

Moreover, we have also tested the proposed method with state-of-the-art 3D-IQA ap-

proaches on Ningbo 3D Image Database Phase I (Asymmetric distortion) and Phase II

(Symmetric distortion), IVC 3D Image Database (Symmetric distortion) and MCL-3D Im-
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age Database (Symmetric distortion), and the results are shown in Table 3.31, Table 3.32

and Table 3.33, respectively.

Table 3.31: Performance comparison of 2D-to-3D prediction models on Ningbo 3D Image
Database

Symmetric Asymmetric
2D-IQA PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE

Average PSNR 0.8867 0.9040 0.7189 7.9429 5.7697 0.7982 0.8364 0.6288 7.5908 5.1413
Weighted PSNR 0.8864 0.9033 0.7181 7.9542 5.7861 0.7439 0.5463 0.3739 8.4211 6.4544
Average SSIM 0.8887 0.9013 0.7203 7.8781 5.6587 0.8032 0.8431 0.6338 7.5073 5.2828
Weighted SSIM 0.8886 0.9013 0.7204 7.8794 5.6614 0.9345 0.8982 0.7227 4.4856 3.1651

Average MS-SSIM 0.9216 0.9241 0.7475 6.6672 4.9693 0.8373 0.8676 0.6645 6.8896 4.5837
Weighted MS-SSIM 0.9216 0.9240 0.7472 6.6690 4.9717 0.9034 0.8794 0.6887 5.4041 3.8208
Average IW-SSIM 0.9432 0.9344 0.7692 5.7060 4.2819 0.7856 0.8240 0.6114 7.7960 5.4199
Weighted IW-SSIM 0.9432 0.9344 0.7691 5.7073 4.2851 0.9375 0.9002 0.7243 4.3863 3.1087
Average IDW-SSIM 0.9379 0.9305 0.7630 5.9591 4.5166 0.6999 0.7726 0.5503 9.0001 6.8424
Weighted IDW-SSIM 0.9379 0.9306 0.7631 5.9583 4.5173 0.8704 0.8559 0.6559 6.2040 4.6081

Benoit [10] 0.7298 0.7253 0.5275 11.7456 8.8430 0.7542 0.7891 0.5682 8.2745 6.1042
Chen [25] 0.9109 0.9077 0.7208 7.0879 5.3972 0.8600 0.8377 0.6266 6.4303 4.7547
Yang [164] 0.8835 0.9044 0.7179 8.0486 5.8571 0.7815 0.8276 0.6163 7.8621 5.3697
You [168] 0.8884 0.9010 0.7196 7.8869 5.6766 0.8042 0.8432 0.6338 7.4891 5.2717

3.7 Objective Study II: Blind 2D-to-3D Quality Pre-

diction

3.7.1 Introduction

NR or blind image quality assessment (BIQA) predict perceived quality of a test image

without referring to an original image that is assumed to have pristine quality [152]. BIQA

is highly challenging not only because of the difficulty in accurately estimating human

behaviors in evaluating image quality across different visual content, distortion types and

distortion levels, but also because real-world applications such as online quality monitoring

often require the image and video streams to be evaluated at high speed, ideally in real-time.

Therefore, 3D-BIQA is an even more challenging problem, especially when the distortions

in the left- and right-views are asymmetric.

Table 3.34 to Table 3.38 report PLCC, SRCC, KRCC, RMSE and MAE between

3DIQ-MOS and averaging some state-of-the-art 2D-BIQA estimations of both views on
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Table 3.32: Performance comparison of 2D-to-3D prediction models on IVC 3D Image
Database

2D-IQA PLCC SRCC KRCC RMSE MAE
Average PSNR 0.5936 0.5552 0.3978 17.7548 14.5179
Weighted PSNR 0.5936 0.5552 0.3973 17.7550 14.5219
Average SSIM 0.7674 0.6899 0.5416 14.1455 10.4948
Weighted SSIM 0.7674 0.6899 0.5416 14.1452 10.4945

Average MS-SSIM 0.7701 0.6858 0.5416 14.0746 10.3848
Weighted MS-SSIM 0.7701 0.6859 0.5421 14.0737 10.3842
Average IW-SSIM 0.8096 0.6979 0.5730 12.9488 9.0842
Weighted IW-SSIM 0.8097 0.6979 0.5730 12.9475 9.0831
Average IDW-SSIM 0.8120 0.7171 0.5935 12.8756 8.9459

Weighted IDW-SSIM 0.8120 0.7174 0.5940 12.8759 8.9471

Benoit [10] 0.5051 0.4940 0.3603 19.0406 15.6000
Chen [25] 0.6152 0.6043 0.4482 17.3939 13.7941
Yang [164] 0.5976 0.5432 0.3928 17.6896 14.2696
You [168] 0.7669 0.6902 0.5421 14.1590 10.5039

Table 3.33: Performance comparison of 2D-to-3D prediction models on MCL-3D Image
Database

2D-IQA PLCC SRCC KRCC RMSE MAE
Average PSNR 0.8320 0.8405 0.6406 1.4435 1.1383
Weighted PSNR 0.8323 0.8407 0.6409 1.4420 1.1371
Average SSIM 0.8935 0.9034 0.7201 1.1682 0.9214
Weighted SSIM 0.8938 0.9036 0.7203 1.1670 0.9206

Average MS-SSIM 0.8644 0.8750 0.6837 1.3081 1.0197
Weighted MS-SSIM 0.8647 0.8752 0.6839 1.3068 1.0188
Average IW-SSIM 0.9197 0.9260 0.7564 1.0213 0.8079
Weighted IW-SSIM 0.9198 0.9261 0.7564 1.0206 0.8071
Average IDW-SSIM 0.8682 0.8792 0.6907 1.2910 1.0314

Weighted IDW-SSIM 0.8681 0.8792 0.6907 1.2913 1.0307

Benoit [10] 0.6330 0.6359 0.4562 2.0142 1.6316
Chen [25] 0.8528 0.8587 0.6627 1.3586 1.0726
Yang [164] 0.8346 0.8445 0.6455 1.4331 1.1255
You [168] 0.8922 0.9037 0.7205 1.1750 0.9271
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LIVE 3D Image Database Phase II, Waterloo-IVC 3D Image Database Phase I and Phase

II. The ten tested state-of-the-art 2D-BIQA metrics include Blind Image Quality Index

(BIQI) [88], BLind Image Integrity Notator using DCT-Statistics II (BLIINDS-II) [109],

Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) [86], Codebook Repre-

sentation for No-Reference Image Assessment (CORNIA) [167], Distortion Identification-

based Image Verity and INtegrity Evalutation (DIIVINE) [89], Local Pattern Statistics

Index (LPSI) [160], M3 [161], Naturalness Image Quality Evaluator (NIQE) [87], Quality-

Aware Clustering (QAC) [162] and Distortion Type Classification and Label Transfer

(TCLT) [159]. Among them, BIQI, BLIINDS-II, BRISQUE, CORNIA, DIIVINE, M3

TCLT are opinion-aware (OA) BIQA methods that require subject-rated images for train-

ing, and are trained using all images from LIVE Image Quality Assessment Database

Release 2 [126]. LPSI, NIQE and QACS are opinion-free (OF) BIQA methods, and are

tested directly with their default parameters.

Table 3.34: Performance comparison of 2D-BIQA models on Waterloo-IVC 3D Image
Database

Waterloo-IVC 3D Image Database Phase I Waterloo-IVC 3D Image Database Phase II
2D-IQA/BIQA PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE

Average 2DIQ-MOS 0.8835 0.8765 0.7161 7.3700 5.3293 0.8763 0.8820 0.7145 9.2201 6.7164
Weighted 2DIQ-MOS 0.9509 0.9413 0.8045 4.8718 3.6164 0.9507 0.9382 0.8012 5.9343 4.5083
Average IDW-SSIM 0.7800 0.7572 0.5779 9.8471 7.5579 0.7790 0.7700 0.5858 12.0013 9.2888
Weighted IDW-SSIM 0.9259 0.9071 0.7372 5.9437 4.7332 0.8864 0.8637 0.6860 8.8609 7.1558

Average BIQI 0.7824 0.7708 0.5752 9.8001 7.4893 0.6129 0.5861 0.4192 15.1227 11.9554
Weighted BIQI 0.8664 0.8432 0.6586 7.8584 6.1899 0.7409 0.6756 0.5054 12.8539 10.4482

Average BLIINDS-II 0.7314 0.6494 0.4773 10.7309 8.3156 0.7425 0.7031 0.5202 12.8207 10.2602
Weighted BLIINDS-II 0.7705 0.6614 0.4926 10.0308 7.5943 0.7812 0.7213 0.5406 11.9483 9.5227

Average BRISQUE 0.8216 0.8062 0.6331 8.9700 6.9088 0.8135 0.8184 0.6410 11.1299 8.6111
Weighted BRISQUE 0.8856 0.8459 0.6846 7.3088 5.7013 0.8809 0.8641 0.6973 9.0570 7.0220
Average CORNIA 0.8295 0.8216 0.6384 8.7894 6.8598 0.8223 0.8200 0.6364 10.8927 8.4097
Weighted CORNIA 0.8741 0.8446 0.6638 7.6428 6.0783 0.8844 0.8636 0.6882 8.9323 7.0463
Average DIIVINE 0.4623 0.3663 0.2736 13.9531 10.7008 0.4699 0.4424 0.3211 16.8952 13.0883
Weighted DIIVINE 0.5353 0.4516 0.3433 13.3895 10.3664 0.5848 0.5214 0.3856 15.5261 12.1795

Average LPSI 0.5777 0.5882 0.4236 12.8446 10.0398 0.6029 0.6295 0.4465 15.2703 12.0742
Weighted LPSI 0.6156 0.6395 0.4606 12.4005 9.8048 0.7015 0.7194 0.5204 13.6410 11.4144

Average M3 0.8437 0.8326 0.6531 8.4461 6.4844 0.7934 0.7834 0.5970 11.6509 9.0754
Weighted M3 0.9122 0.8968 0.7317 6.4482 5.0033 0.8692 0.8416 0.6643 9.4625 7.5488

Average NIQE 0.7635 0.6461 0.4714 10.1628 8.3894 0.6278 0.5461 0.3851 14.8974 12.3827
Weighted NIQE 0.7975 0.6429 0.4806 9.4946 7.9265 0.7300 0.5677 0.4108 13.0805 10.9013
Average QACS 0.7360 0.6241 0.4460 10.6522 8.6039 0.6995 0.6146 0.4375 13.6778 11.4087
Weighted QACS 0.7909 0.6203 0.4510 9.6292 7.8129 0.7677 0.6225 0.4519 12.2637 10.2884
Average TCLT 0.6809 0.6425 0.4733 11.5245 9.2046 0.6262 0.6032 0.4348 14.9220 11.9369
Weighted TCLT 0.8236 0.7459 0.5782 8.9248 7.0218 0.7525 0.7036 0.5360 12.6055 10.1367
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Table 3.35: Performance comparison of 2D-BIQA models on LIVE 3D Image Database

LIVE 3D Image Database Phase I LIVE 3D Image Database Phase II
2D-IQA/BIQA PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE

Average IDW-SSIM 0.9281 0.9237 0.7471 6.1053 4.7562 0.8177 0.7987 0.6191 6.4979 4.9159
Weighted IDW-SSIM 0.9263 0.9216 0.7443 6.1800 4.7894 0.8984 0.8982 0.7166 4.9582 3.8889

Average BIQI 0.8715 0.8652 0.6764 8.0415 6.1198 0.7541 0.7304 0.5378 7.4128 5.9455
Weighted BIQI 0.8480 0.8354 0.6480 8.6901 6.4033 0.7962 0.7721 0.5771 6.8289 5.3989

Average BLIINDS-II 0.7754 0.7749 0.5692 10.3554 8.1994 0.6359 0.6213 0.4371 8.7113 7.2177
Weighted BLIINDS-II 0.7657 0.7633 0.5564 10.5476 8.2967 0.6610 0.6549 0.4625 8.4703 6.9385

Average BRISQUE 0.8879 0.9010 0.7144 7.5440 6.0948 0.7890 0.7698 0.5698 6.9345 5.5640
Weighted BRISQUE 0.8819 0.8959 0.7064 7.7311 6.2119 0.8062 0.8002 0.5989 6.6780 5.2926
Average CORNIA 0.8636 0.8827 0.6862 8.2669 6.6521 0.8002 0.7766 0.5815 6.7693 5.3646
Weighted CORNIA 0.8559 0.8754 0.6754 8.7508 7.0928 0.8249 0.8054 0.6089 6.3801 5.0358
Average DIIVINE 0.8337 0.8577 0.6544 9.0556 7.2598 0.6891 0.6594 0.4748 8.1793 6.6609
Weighted DIIVINE 0.8310 0.8539 0.6479 9.1222 7.3540 0.7406 0.7011 0.5105 7.5847 6.0300

Average LPSI 0.8191 0.8058 0.5877 9.4057 7.3925 0.5997 0.5532 0.4053 9.0327 7.3449
Weighted LPSI 0.8207 0.8055 0.5878 9.3684 7.4189 0.6914 0.6202 0.4633 8.1547 6.5399

Average M3 0.8814 0.8894 0.7018 7.7443 6.0212 0.7782 0.7831 0.5865 7.0883 5.6512
Weighted M3 0.8756 0.8834 0.6931 7.9195 6.1613 0.8058 0.8116 0.6153 6.6844 5.2443

Average NIQE 0.8624 0.8544 0.6535 8.3005 6.5169 0.7681 0.7553 0.5549 7.2270 5.8560
Weighted NIQE 0.8557 0.8475 0.6468 8.4841 6.5726 0.7900 0.7810 0.5819 6.9202 5.4231
Average QACS 0.8917 0.8966 0.7069 7.4207 5.7564 0.8054 0.7858 0.5896 6.6898 5.2544
Weighted QACS 0.8851 0.8898 0.7005 7.6320 5.8229 0.8522 0.8376 0.6437 5.9061 4.6317
Average TCLT 0.8577 0.8577 0.6590 8.4310 6.5665 0.7371 0.7292 0.5384 7.6278 6.1020
Weighted TCLT 0.8491 0.8490 0.6489 8.6611 6.6977 0.7355 0.7386 0.5429 7.6471 6.2115

It can be observed from Table 3.34 to Table 3.38 that for most of the tested 2D-BIQA

methods, simply averaging 2D-BIQA measures of both views provides reasonably accurate

image quality predictions of symmetrically distorted stereoscopic images but there is a

significant drop in the performance for asymmetrically distorted stereoscopic images on

all tested 3D databases, which is consistent with the trend we have observed with the FR

2D-IQA methods.

A more straightforward way to examine the relationship between the perceptual quality

of stereoscopic images and that of its single-view images is to perform subjective test on

both 2D and 3D images. In Section 3.5.2, it was found that for symmetrically distorted

stereoscopic images, directly averaging the 2DIQ-MOS of both views provides excellent 3D

image quality predictions, while for asymmetrically distorted stereoscopic images, a similar

performance drop as of those in objective methods is observed. The performance drop is

largely due to the significant prediction bias that could lean towards opposite directions

(either overestimate or underestimate image quality), depending on the distortion types

and levels. In Section 3.6, a binocular rivalry inspired multi-scale model to predict the
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Table 3.36: Performance comparison of 2D-BIQA models on Waterloo-IVC 3D Image
Database Phase I

PLCC SRCC KRCC RMSE MAE
2D-IQA/BIQA Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym.

Average 2DIQ-MOS 0.9801 0.8572 0.9657 0.8471 0.8482 0.6780 3.8266 7.9895 2.9160 5.8643
Weighted 2DIQ-MOS 0.9801 0.9460 0.9657 0.9324 0.8482 0.7890 3.8266 5.0298 2.9160 3.7254
Average IDW-SSIM 0.9579 0.7475 0.9371 0.7111 0.7725 0.5333 5.5328 10.3042 4.5967 7.8824
Weighted IDW-SSIM 0.9580 0.9254 0.9371 0.9002 0.7728 0.7273 5.5313 5.8810 4.5953 4.6420

Average BIQI 0.8674 0.7820 0.7965 0.7582 0.5951 0.5624 9.5962 9.6679 7.4527 7.4405
Weighted BIQI 0.8671 0.8864 0.7957 0.8528 0.5937 0.6692 9.6037 7.1801 7.4604 5.7658

Average BLIINDS-II 0.7583 0.5545 0.6766 0.5850 0.4983 0.4366 10.1131 16.0459 7.9037 12.2592
Weighted BLIINDS-II 0.8061 0.7925 0.6913 0.5854 0.5161 0.4359 9.1798 11.7597 6.9777 8.9039

Average BRISQUE 0.9371 0.8012 0.9102 0.7800 0.7536 0.6020 6.7321 9.2833 5.0274 7.2133
Weighted BRISQUE 0.9371 0.8873 0.9096 0.8339 0.7529 0.6705 6.7324 7.1541 5.0278 5.6135
Average CORNIA 0.9097 0.8252 0.8638 0.8150 0.6737 0.6309 8.0060 8.7630 6.3190 6.7914
Weighted CORNIA 0.9096 0.8847 0.8635 0.8470 0.6730 0.6675 8.0103 7.2326 6.3209 5.6995
Average DIIVINE 0.5872 0.3974 0.5753 0.3261 0.4399 0.2439 15.6071 14.2353 11.5002 10.8804
Weighted DIIVINE 0.5872 0.4937 0.5753 0.4269 0.4399 0.3219 15.6072 13.4909 11.5002 10.3680

Average LPSI 0.7642 0.5512 0.7165 0.5891 0.5431 0.4171 12.4367 12.9439 9.6287 10.2910
Weighted LPSI 0.7642 0.6118 0.7165 0.6353 0.5431 0.4542 12.4369 12.2705 9.6291 9.9735

Average M3 0.9418 0.8265 0.9147 0.8114 0.7602 0.6279 6.4801 8.7335 4.8622 6.7558
Weighted M3 0.9418 0.9154 0.9147 0.8942 0.7602 0.7274 6.4812 6.2436 4.8638 4.8895

Average NIQE 0.8276 0.7871 0.6395 0.6617 0.4752 0.4810 10.8217 9.5685 8.5048 7.8259
Weighted NIQE 0.8276 0.8311 0.6395 0.6596 0.4752 0.4920 10.8217 8.6277 8.5047 7.2452
Average QACS 0.8077 0.7627 0.5620 0.6448 0.4039 0.4635 11.3686 10.0337 8.9479 8.1177
Weighted QACS 0.8077 0.8291 0.5620 0.6456 0.4039 0.4720 11.3689 8.6731 8.9481 7.1790
Average TCLT 0.8609 0.6624 0.7632 0.6245 0.6004 0.4524 9.8091 11.6216 7.9132 9.1888
Weighted TCLT 0.8609 0.8438 0.7620 0.7612 0.5997 0.5868 9.8103 8.3259 7.9145 6.5492
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Table 3.37: Performance comparison of 2D-BIQA models on Waterloo-IVC 3D Image
Database Phase II

PLCC SRCC KRCC RMSE MAE
2D-IQA/BIQA Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym.

Average 2DIQ-MOS 0.9799 0.8418 0.9696 0.8501 0.8557 0.6693 4.0525 10.4221 3.1712 7.9037
Weighted 2DIQ-MOS 0.9799 0.9433 0.9696 0.9302 0.8557 0.7874 4.0525 6.4106 3.1712 4.9383
Average IDW-SSIM 0.9360 0.7480 0.9017 0.7410 0.7242 0.5509 7.1484 12.8163 5.6536 9.9539
Weighted IDW-SSIM 0.9360 0.8844 0.9017 0.8630 0.7244 0.6833 7.1483 9.0137 5.6541 7.3627

Average BIQI 0.7343 0.6089 0.6239 0.5795 0.4650 0.4062 13.7833 15.3174 11.4632 11.9922
Weighted BIQI 0.7344 0.7695 0.6239 0.7071 0.4650 0.5279 13.7813 12.3321 11.4618 9.9003

Average BLIINDS-II 0.7774 0.4747 0.7586 0.5962 0.5673 0.4364 12.1457 17.8708 9.7039 14.1579
Weighted BLIINDS-II 0.8223 0.7389 0.7829 0.5951 0.5970 0.4355 10.9899 13.6824 8.7019 11.3054

Average BRISQUE 0.9293 0.6577 0.9022 0.7957 0.7360 0.6119 7.4978 14.5464 5.7534 11.8813
Weighted BRISQUE 0.9293 0.8780 0.9023 0.8627 0.7362 0.6957 7.5007 9.2444 5.7546 7.1089
Average CORNIA 0.9370 0.6490 0.9160 0.7877 0.7417 0.5993 7.0948 14.6912 5.9472 12.0882
Weighted CORNIA 0.9369 0.8762 0.9164 0.8535 0.7422 0.6751 7.0994 9.3076 5.9524 7.2591
Average DIIVINE 0.6512 0.4449 0.6234 0.3920 0.4879 0.2768 15.4101 17.2936 11.9414 13.2858
Weighted DIIVINE 0.6513 0.5905 0.6238 0.4910 0.4884 0.3533 15.4068 15.5844 11.9394 12.0956

Average LPSI 0.7526 0.5859 0.7809 0.6076 0.6052 0.4224 13.3701 15.6488 10.9118 12.9794
Weighted LPSI 0.7526 0.7092 0.7809 0.7207 0.6052 0.5165 13.3692 13.6140 10.9111 11.5828

Average M3 0.9114 0.7618 0.8713 0.7553 0.6978 0.5638 8.3555 12.5095 6.7502 9.7012
Weighted M3 0.9114 0.8644 0.8717 0.8399 0.6985 0.6594 8.3541 9.7096 6.7487 7.6974

Average NIQE 0.7429 0.6468 0.5282 0.5758 0.3853 0.4104 13.5916 14.7272 11.3547 12.0440
Weighted NIQE 0.7429 0.7656 0.5284 0.6103 0.3856 0.4433 13.5920 12.4224 11.3547 10.2187
Average QACS 0.7715 0.7125 0.5305 0.6567 0.3803 0.4721 12.9173 13.5501 10.9738 11.1365
Weighted QACS 0.7716 0.7994 0.5303 0.6757 0.3801 0.4958 12.9168 11.6028 10.9734 9.6357
Average TCLT 0.8135 0.6075 0.7099 0.5735 0.5470 0.3984 11.8072 15.3378 9.4792 12.3072
Weighted TCLT 0.8136 0.7558 0.7098 0.7177 0.5468 0.5430 11.8051 12.6452 9.4774 10.0603
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Table 3.38: Performance comparison of 2D-BIQA models on LIVE 3D Image Database
Phase II

PLCC SRCC KRCC RMSE MAE
2D-IQA/BIQA Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym.

Average IDW-SSIM 0.9363 0.7383 0.9227 0.6902 0.7545 0.5216 4.3849 6.8363 3.4405 5.2556
Weighted IDW-SSIM 0.9365 0.8601 0.9231 0.8539 0.7554 0.6652 4.3796 5.1696 3.4354 4.0833

Average BIQI 0.8350 0.6794 0.8278 0.6247 0.6293 0.4514 6.8700 7.4372 5.2966 6.0588
Weighted BIQI 0.8351 0.7455 0.8276 0.6971 0.6296 0.5119 6.8671 6.7552 5.2924 5.3710

Average BLIINDS-II 0.6649 0.5520 0.6243 0.5334 0.4471 0.3725 9.3253 8.4510 7.9703 6.9464
Weighted BLIINDS-II 0.6649 0.6146 0.6237 0.6011 0.4453 0.4218 9.3257 7.9951 7.9667 6.5302

Average BRISQUE 0.8688 0.6993 0.8491 0.6670 0.6506 0.4829 6.1821 7.2445 4.9924 5.8667
Weighted BRISQUE 0.8575 0.7513 0.8493 0.7365 0.6512 0.5406 6.4229 6.6890 5.0676 5.3923
Average CORNIA 0.8748 0.7026 0.8748 0.6778 0.6852 0.4940 6.0485 7.2123 4.7592 5.7550
Weighted CORNIA 0.8749 0.7567 0.8752 0.7398 0.6863 0.5471 6.0461 6.6254 4.7531 5.2791
Average DIIVINE 0.7835 0.6035 0.7808 0.5536 0.5800 0.3914 7.7664 8.0815 6.1737 6.6866
Weighted DIIVINE 0.7697 0.6764 0.7806 0.6196 0.5797 0.4428 7.9702 7.4646 6.2219 6.0382

Average LPSI 0.7611 0.4898 0.7483 0.4051 0.5612 0.2955 8.0976 8.8361 6.3656 7.2424
Weighted LPSI 0.7611 0.6056 0.7488 0.4979 0.5621 0.3718 8.0979 8.0653 6.3685 6.5092

Average M3 0.8512 0.7136 0.8480 0.7126 0.6607 0.5184 6.5532 7.1006 5.0660 5.6436
Weighted M3 0.8329 0.7695 0.8476 0.7668 0.6593 0.5682 6.9095 6.4727 5.4987 5.0552

Average NIQE 0.7801 0.7383 0.7592 0.7120 0.5719 0.5161 7.8110 6.8359 6.1195 5.5881
Weighted NIQE 0.7801 0.7751 0.7585 0.7557 0.5710 0.5605 7.8107 6.4037 6.1182 5.0662
Average QACS 0.8821 0.7388 0.8727 0.6960 0.6741 0.5101 5.8806 6.8305 4.7616 5.3262
Weighted QACS 0.8822 0.8169 0.8728 0.7858 0.6741 0.5963 5.8791 5.8453 4.7609 4.4927
Average TCLT 0.8252 0.6961 0.7972 0.6564 0.6044 0.4797 7.0526 7.2769 5.5719 5.8691
Weighted TCLT 0.8253 0.7093 0.7981 0.6845 0.6055 0.4974 7.0503 7.1447 5.5708 5.7172
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quality of stereoscopic images from that of the single-view images was applied to 2DIQ-

MOS scores and different base 2D-IQA measures. The experimental results showed that the

quality prediction performance is significantly improved for most base 2D-IQA methods as

well as with 2DIQ-MOS scores. Unfortunately, the model proposed in Section 3.6 requires

access to the pristine reference stereopairs, which are not available in the case of 3D-BIQA.

In this section, we aim to develop an objective 3D-BIQA predictor. We take advantage

of the previous findings on the relationship between the perceptual quality of stereoscopic

images and that of its single-view images. We assume that existing successful 2D-BIQA

methods are reliable for evaluating single-view images, and what is missing is an effective

blind 2D-to-3D prediction model to combine single-vew quality scores, so as to eliminate the

prediction bias for asymmetric distortions. Therefore, we opt to use a two-stage approach.

The first stage builds a binocular rivalry inspired multi-scale 2D-to-3D quality prediction

model without referring to the original images. In the second stage, this quality prediction

model is applied to combine state-of-the-art 2D-BIQA estimations of both views, resulting

in a 3D image quality estimation.

3.7.2 Blind 2D-to-3D Quality Prediction

In Section 3.6, motivated by existing vision studies on binocular rivalry, where it was

found that for simple ideal stimuli, an increase in contrast enhances the predominance of

one view against the other, we showed that the strength of view dominance in binocular

rivalry of stereoscopic images is related to the relative energy of the two views. However,

the computation of the relative energy involves the original left- and right-view images,

which are not available in the case of 3D-BIQA. In this section, to overcome the problem,

we apply a divisive normalization transform (DNT) [48, 131, 41] to the distorted left- and

right-view images, and then estimate the strength of view dominance from DNT domain

representations.

A DNT is typically built upon a linear image decomposition, followed by a divisive

normalization stage [73]. The linear transformations may be discrete cosine transform

or wavelet-type of transforms. Here, we assume a wavelet image decomposition, which

provides a convenient framework for localized representation of images simultaneously in
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Figure 3.28: Diagram of the proposed blind 2D-to-3D quality prediction model.

space, frequency (scale) and orientation. The DNT image representation of the image

is then calculated by dividing each wavelet coefficient by a local energy measure based

on its neighboring coefficients. The DNT image representation is not only an effective

way to reduce the statistical redundancies between wavelet coefficients [73], but is also

highly relevant to biological vision [20]. In [110], a divisive normalization framework was

applied to develop a computational model that trades off between binocular rivalry and

suppression, and the predictions were confirmed with psychophysical tests. This binocular

perceptual relevance of divisive normalization representation leads us to design a multi-

scale and multi-orientation DNT domain 2D-to-3D prediction model without referring to

the original left- and right-view images.

The diagram of the proposed method is shown in Figure 3.28. Let (Id,l, Id,r) be the

left- and right-view image pairs of the distorted stereoscopic images. To compute the DNT

representation of Id,l and Id,r, we first apply a 3-scale, 2-orientation steerable pyramid

wavelet transform [130] to decompose Id,l and Id,r into 6 oriented subbands (2 for each

scale) and a highpass and a lowpass residual subbands, respectively.

At the i-th oriented subband, for each center coefficient yc, we define a DNT neigh-

boring vector Y that contains 11 × 11 coefficients from the same subband (including the

center coefficient itself). As such, the corresponding DNT center coefficient ỹc at the i-th
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normalized subband is computed as

ỹc =
yc∑
|Y |+ c

, (3.12)

where c = 1.

For each divisive normalized subband, we estimate its energy by computing the local

variances at each spatial location, i.e., the variances of local patches extracted around each

spatial location from the DNT coefficients are computed, for which an 11 × 11 circular-

symmetric Gaussian weighting function w = {wi|i = 1, 2, · · · , N} with standard deviation

of 1.5 samples, normalized to unit sum (
∑N

i=1wi = 1), is employed. The resulting mean

energies for the i-th normalized subband in the Id,l and Id,r are denoted as Ei,l and Ei,r,

respectively. The overall energy estimations in both views are computed as the sum of the

energies of all divisive normalized subbands

gl =
6∑
i=1

Ei,l and gr =
6∑
i=1

Ei,r , (3.13)

Here gl and gr are estimations of the level of dominance of the left- and right-views,

respectively. Given the values of gl and gr, the weights assigned to the left- and right-view

images are given by

wl =
g2
l

g2
l + g2

r

and wr =
g2
r

g2
l + g2

r

, (3.14)

respectively.

Finally, the overall prediction of 3D image quality is calculated by a weighted average

of the left- and right-view image quality:

Q3D = wlQ
2D
l + wrQ

2D
r , (3.15)

where Q2D
l and Q2D

r denote the 2D image quality of the left- and right-views, respectively.
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3.7.3 Validation

We use three 3D image quality databases to test the proposed algorithm, which are the

Waterloo-IVC 3D Image Databases Phase I and Phase II and the LIVE 3D Image Database

Phase II. All these databases contain both symmetrically and asymmetrically distorted

stereoscopic images. The parameters of the proposed blind 2D-to-3D quality prediction

method are selected empirically when working with Waterloo-IVC database Phase I, but

are completely independent of Waterloo-IVC database Phase II and the LIVE database

Phase II.

Blind 2D-to-3D quality prediction with 2D-BIQA

We first test the proposed blind 2D-to-3D quality prediction model on all 3D images

in Waterloo-IVC database by applying it to the ground truth 2DIQ-MOS scores. The

PLCC, SRCC, KRCC, RMSE and MAE values between 3DIQ-MOS and the predicted

Q3D value for all stereoscopic images and for each test image group are given in Table 3.39

(Please refer to Section 3.2 for categories of Waterloo-IVC database). The comparison

results with our FR 2D-to-3D quality prediction model (Section 3.6.2) are also given in

Table 3.39. The corresponding scatter plots are shown in Figure 3.29 to Figure 3.33. From

Table 3.39, it can be observed that the proposed blind model performs as well as the FR

2D-to-3D quality prediction model. The proposed model outperforms the direct averaging

method in almost all cases, and the improvement is most pronounced in the case of strong

asymmetric distortions (Group 3D.2) or when all test images are put together (All 3D

image case). By comparing different sub-figures of Figure 3.29 to Figure 3.33, we observe

the impact of the proposed blind 2D-to-3D prediction model on each image distortion type.

For different distortion types, although the direct averaging method produces different

distortions and levels of quality prediction biases, the proposed method, which does not

attempt to recognize the distortion types or give any specific treatment for any specific

distortion type, removes or significantly reduces the prediction biases for all distortion

types. Moreover, for the mixed distortion case that provides the strongest test on the

generalization ability of the model, the proposed method maintains consistent performance.
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Table 3.39: Performance comparison of 2D-to-3D quality prediction models (direct average,
FR (Section 3.6.2), and the proposed blind prediction model), where the single-view quality
is given by ground truth 2DIQ-MOS

Waterloo-IVC 3D Image Database Phase I Waterloo-IVC 3D Image Database Phase II
Group Method PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE

All
Average 0.8835 0.8765 0.7161 7.3700 5.3293 0.8763 0.8820 0.7145 9.2201 6.7164

FR 0.9561 0.9522 0.8162 4.6108 3.5645 0.9568 0.9477 0.8080 5.5655 4.3371
Proposed 0.9509 0.9413 0.8045 4.8718 3.6164 0.9507 0.9382 0.8012 5.9343 4.5083

Sym.
Average 0.9801 0.9657 0.8482 3.8266 2.9160 0.9799 0.9696 0.8557 4.0525 3.1712

FR 0.9801 0.9657 0.8482 3.8266 2.9160 0.9799 0.9696 0.8557 4.0525 3.1712
Proposed 0.9801 0.9657 0.8482 3.8266 2.9160 0.9799 0.9696 0.8557 4.0525 3.1712

Asym.
Average 0.8572 0.8471 0.6780 7.9895 5.8643 0.8418 0.8501 0.6693 10.4221 7.9037

FR 0.9522 0.9452 0.8026 4.7406 3.6791 0.9511 0.9424 0.7977 5.9620 4.6683
Proposed 0.9460 0.9324 0.7890 5.0298 3.7254 0.9433 0.9302 0.7874 6.4106 4.9383

3D.1
Average 0.9801 0.9657 0.8482 3.8266 2.9160 0.9799 0.9696 0.8557 4.0525 3.1712

FR 0.9801 0.9657 0.8482 3.8266 2.9160 0.9799 0.9696 0.8557 4.0525 3.1712
Proposed 0.9801 0.9657 0.8482 3.8266 2.9160 0.9799 0.9696 0.8557 4.0525 3.1712

3D.2
Average 0.6613 0.5433 0.4406 11.6394 9.0069 0.6121 0.5874 0.4524 14.2881 11.6204

FR 0.9286 0.9160 0.7556 5.7574 4.7098 0.9414 0.9497 0.8070 6.0932 4.8568
Proposed 0.9370 0.9141 0.7542 5.4196 4.4380 0.9459 0.9482 0.8001 5.8624 4.7605

3D.3
Average 0.9666 0.9164 0.7597 3.6078 2.7578 0.9471 0.8898 0.7176 5.7909 4.4262

FR 0.9714 0.9307 0.7789 3.3391 2.6247 0.9602 0.9318 0.7745 5.0392 4.0923
Proposed 0.9772 0.9427 0.7969 2.9870 2.3547 0.9665 0.9380 0.7867 4.6340 3.6830

3D.4
Average 0.9223 0.8271 0.6390 5.9710 4.5387 0.9225 0.8798 0.7047 7.0928 5.4776

FR 0.9656 0.9357 0.7822 4.0179 3.2243 0.9549 0.9320 0.7803 5.4557 4.2124
Proposed 0.9664 0.9366 0.7862 3.9740 3.1426 0.9652 0.9496 0.8101 4.8031 3.6934
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Figure 3.29: 3DIQ-MOS versus predictions from 2DIQ-MOS of 2D left- and right-views.
(a) All Images, predictions by direct averaging the 2DIQ-MOS scores of both views on
Waterloo-IVC Phase I. (b) All Images, predictions by the proposed model on Waterloo-
IVC Phase I. (c) All Images, predictions by direct averaging 2DIQ-MOS scores of both
views on Waterloo-IVC Phase II. (d) All Images, predictions by the proposed model on
Waterloo-IVC Phase II.
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Figure 3.30: 3DIQ-MOS versus predictions from 2DIQ-MOS of 2D left- and right-views.
(a) Noisy Images, predictions by direct averaging the 2DIQ-MOS scores of both views on
Waterloo-IVC Phase I. (b) Noisy Images, predictions by the proposed model on Waterloo-
IVC Phase I. (c) Noisy Images, predictions by direct averaging 2DIQ-MOS scores of both
views on Waterloo-IVC Phase II. (d) Noisy Images, predictions by the proposed model on
Waterloo-IVC Phase II.
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Figure 3.31: 3DIQ-MOS versus predictions from 2DIQ-MOS of 2D left- and right-views.
(a) Blurred Images, predictions by direct averaging the 2DIQ-MOS scores of both views on
Waterloo-IVC Phase I. (b) Blurred Images, predictions by the proposed model on Waterloo-
IVC Phase I. (c) Blurred Images, predictions by direct averaging 2DIQ-MOS scores of both
views on Waterloo-IVC Phase II. (d) Blurred Images, predictions by the proposed model
on Waterloo-IVC Phase II.
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Figure 3.32: 3DIQ-MOS versus predictions from 2DIQ-MOS of 2D left- and right-views.
(a) JPEG Images, predictions by direct averaging the 2DIQ-MOS scores of both views on
Waterloo-IVC Phase I. (b) JPEG Images, predictions by the proposed model on Waterloo-
IVC Phase I. (c) JPEG Images, predictions by direct averaging 2DIQ-MOS scores of both
views on Waterloo-IVC Phase II. (d) JPEG Images, predictions by the proposed model on
Waterloo-IVC Phase II.
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Figure 3.33: 3DIQ-MOS versus predictions from 2DIQ-MOS of 2D left- and right-views.
(a) Mixed Distortion, predictions by direct averaging the 2DIQ-MOS scores of both views
on Waterloo-IVC Phase I. (b) Mixed Distortion, predictions by the proposed model on
Waterloo-IVC Phase I. (c) Mixed Distortion, predictions by direct averaging 2DIQ-MOS
scores of both views on Waterloo-IVC Phase II. (d) Mixed Distortion, predictions by the
proposed model on Waterloo-IVC Phase II.
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Blind 2D-to-3D quality prediction with 2D-BIQA

Before applying the proposed blind 2D-to-3D quality prediction model on the base 2D-

BIQA methods, we first examine these 2D-BIQA methods’ abilities in predicting 2DIQ-

MOS scores of single-view images in Waterloo-IVC 3D Image Database. Table 3.40 reports

PLCC, SRCC, KRCC, RMSE and MAE values between 2DIQ-MOS scores and 2D-BIQA

estimations. From Table 3.40, it can be seen that BRISQUE, CORNIA and M3 archive

the highest correlations with subjective data among all tested 2D-BIQA methods.

Table 3.40: Performance comparison of 2D-BIQA models on Waterloo-IVC 3D Image
Database (Single-view Images)

Waterloo-IVC 3D Image Database Phase I Waterloo-IVC 3D Image Database Phase II
PLCC SRCC KRCC RMSE MAE PLCC SRCC KRCC RMSE MAE

BIQI 0.8694 0.7790 0.5911 9.4664 7.5939 0.7098 0.5798 0.4182 13.1089 11.0148
BLIINDS-II 0.8169 0.5977 0.4397 11.0524 8.5587 0.5436 0.6752 0.5067 15.6194 12.2840
BRISQUE 0.9223 0.8912 0.7136 7.4047 5.6882 0.9238 0.8892 0.7207 7.1251 5.4293
CORNIA 0.9260 0.8861 0.7096 7.2333 5.9434 0.9306 0.8934 0.7250 6.8119 5.3488
DIIVINE 0.5943 0.5804 0.4406 15.4111 10.9213 0.5660 0.5631 0.4247 15.3409 11.1501

LPSI 0.7537 0.6679 0.5052 12.5940 9.8846 0.7478 0.6962 0.5237 12.3556 10.0321
M3 0.9353 0.9040 0.7329 6.7794 5.0253 0.9038 0.8534 0.6661 7.9632 6.4404

NIQE 0.8423 0.6685 0.5038 10.3296 8.5242 0.7384 0.5616 0.4016 12.5496 10.8120
QACS 0.7920 0.5543 0.3813 11.6987 9.3612 0.7692 0.5452 0.3865 11.8906 9.9032
TCLT 0.8471 0.6977 0.5591 10.1840 7.6408 0.7900 0.6345 0.4793 11.4086 9.0854

We then test the proposed blind 2D-to-3D quality prediction model by applying it to

different base 2D-BIQA approaches on all three databases. Note that exactly the same

blind 2D-to-3D quality prediction model obtained from 2DIQ-MOS and 3DIQ-MOS scores

with Waterloo-IVC 3D image database Phase I is used and thus the model is completely

independent of any base objective 2D-BIQA approaches. Table 3.34 to Table 3.38 report

PLCC, SRCC, KRCC, RMSE and MAE values between 3DIQ-MOS and the predicted Q3D

value with the direct averaging method and the proposed blind 2D-to-3D quality prediction

model. Note that the cases of using 2DIQ-MOS and IDW-SSIM are also included for

comparison.

From Table 3.34 to Table 3.38, it can be seen that the proposed method significantly

improves most base 2D-BIQA methods on both databases. On the Waterloo-IVC 3D

Image Database, BRISQUE, CORNIA and M3 perform better than all competing 2D-

BIQA methods with both the direct averaging and the proposed prediction model, which
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is consistent with their performance on single-view images. Interestingly, the performance

of these 2D-BIQA methods approximates that of IDW-SSIM, which gives the most accurate

prediction among FR 2D-IQA methods on both Waterloo-IVC 3D and LIVE 3D database

(See Section 3.6.3). This suggests that a good 2D-BIQA method can predict symmetrically

distorted stereoscopic images with good accuracy, and when properly combined with a 2D-

to-3D quality prediction model, can also well predict asymmetrically distorted stereoscopic

images.

On the LIVE 3D Image Database Phase II, the proposed method achieves the best

performance in the case of using QAC and also pronounces competitive performance with

BRISQUE, CORNIA and M3. However, there is a large gap when compared with the FR

IDW-SSIM’s prediction performance. This suggests that there is still potential to further

improve 2D-BIQA methods in terms of robustness and generalizability.

We have also compared the proposed method with state-of-the-art 3D-BIQA approaches [23,

122, 4, 47] on the LIVE 3D image database Phase II. The PLCC, SRCC, KRCC, RMSE

and MAE values are reported in Table 3.41. From Table 3.35 and Table 3.41, it can be seen

that the proposed method, when combined with QAC, performs better than [122, 4, 47]

but not as good as [23], which is a training-based method and the results reported here

are median performance of 1000 trails, each uses 80% of the data for training and 20% for

testing.

Table 3.41: Performance comparison of 3D-BIQA models on LIVE 3D image database
Phase II

3D-BIQA PLCC SRCC
Akhter [4] N/A N/A 0.4200 0.5170
Chen [23] N/A N/A 0.9180 0.8340
Gu [47] 0.0994 0.2271 0.1760 0.1141

Shao [122] 0.9119 0.5651 0.8966 0.5244
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Computational complexity analysis

Speed is another important performance factor in evaluating a BIQA method. We use

program running time in the test stage of all competing methods as an estimate of com-

putational complexity. The average processing time for a single-view image and for a

stereopair on Waterloo-IVC database Phase II and LIVE database Phase II is summarized

in Table 3.42. The system platform is Intel(R) Core(TM) i7-3770 @3.40GHz, 16.0 GB

RAM and Windows 7 64-bit version. All methods are tested with the MATLAB R2015a

software. Note that the resolutions of the single-view images are 1920 × 1080 and 640 ×
360 for Waterloo-IVC database Phase II and LIVE database Phase II, respectively. Also,

the average running time for the proposed 2D-to-3D quality prediction model is 1.8079s

for Waterloo-IVC database Phase II and 0.2175s for LIVE database Phase II. The total

processing time for a stereopair should be computed as twice of the processing time for

a single-view image plus the time for 2D-to-3D prediction. From Table 3.42, it can be

seen that BLIINDS-II and DIIVINE are the slowest, while LPSI and M3 are the fastest.

Generally speaking, BRISQUE and M3 achieve excellent tradeoffs between accuracy and

complexity.

Table 3.42: Complexity comparison of 2D-BIQA models on 3D image databases based on
average running time (seconds)

2D-BIQA Waterloo 2D Waterloo 3D LIVE 2D LIVE 3D
BIQI 0.7211 3.2501 0.4539 1.1253

BLIINDS-II 435.1705 872.1489 48.4902 97.1979
BRISQUE 0.5219 2.8517 0.1510 0.5195

CORNIA 3.9315 9.6709 2.4399 5.0973
DIIVINE 86.1006 174.0091 11.8495 23.9165

LPSI 0.1220 2.0519 0.0130 0.2435
M3 0.3095 2.4269 0.0347 0.2869

NIQE 1.3471 4.5021 0.1181 0.4537
QACS 0.4539 2.7157 0.0483 0.3141
TCLT 8.7635 19.3349 1.1605 2.5385
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3.8 Summary

The major contributions of the current chapter are as follows: First, we create a new sub-

jective 3D-IQA database that has two unique features − the inclusion of both 2D and 3D

images, and the inclusion of mixed distortion types. Second, we observe strong distortion

type dependent bias when using the direct average of 2D image quality of both views to

predict 3D image quality. Third, we observe that eye dominance does not have strong im-

pact on visual quality evaluations of asymmetrically distorted stereoscopic images. Fourth,

we develop an information content and divisive normalization based pooling scheme that

improves upon SSIM in estimating the quality of single-view images. Fifth, we propose a

binocular rivalry inspired multi-scale model to predict the quality of stereoscopic images

from that of its single-view 2D images. Our results show that the proposed model, without

explicitly identifying image distortion types, successfully eliminates the prediction bias,

leading to significantly improved quality prediction of stereoscopic 3D images. The perfor-

mance gain is most pronounced in the case of asymmetric distortions. Sixth, we propose

a binocular rivalry inspired multi-scale model to predict the quality of stereoscopic images

from that of the single-view images without referring to the original left- and right-view

images. We apply the proposed blind 2D-to-3D quality prediction model to ten state-of-

the-art base 2D-BIQA measures for 3D-BIQA. Among all the base 2D-BIQA methods,

BRISQUE and M3 achieve excellent tradeoffs between accuracy and complexity.
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Chapter 4

Quantifying Perceptual Depth

Quality in Distorted Stereoscopic

Images

Subjective and objective measurement of the perceptual quality of depth information in

symmetrically and asymmetrically distorted stereoscopic images is a fundamentally impor-

tant issue in stereoscopic 3D imaging that has not been deeply investigated. Here we first

carry out a subjective test following the traditional absolute category rating protocol widely

used in general image quality assessment research. We find this approach problematic be-

cause monocular cues and the spatial quality of images have strong impact on the depth

quality scores given by subjects, making it difficult to single out the actual contributions

of stereoscopic cues in depth perception. To overcome this problem, we carry out a novel

subjective study where depth effect is synthesized at different depth levels before various

types and levels of symmetric and asymmetric distortions are applied. Instead of following

the traditional approach, we ask subjects to identify and label depth polarizations, and a

notion of Depth Perception Difficulty Index (DPDI) is proposed based on the percentage

of correct and incorrect subject judgements. We find this approach highly effective at

quantifying depth perception induced by stereo cues and observe a number of interesting

effects regarding image content dependency, distortion type dependency, and the impact of
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symmetric versus asymmetric distortions. Furthermore, we propose a novel computational

model for DPDI prediction. Our results show that the proposed model, without explicitly

identifying image distortion types, leads to highly promising DPDI prediction performance.

We believe these are useful steps towards building a comprehensive understanding on 3D

QoE of stereoscopic images.

4.1 Introduction

Depth quality is an essential aspect of human QoE when viewing stereoscopic 3D images.

Existing studies on the topic appear to be unconclusive, limited, and sometimes conflicting.

In [53], it was reported that the perceived depth performance cannot always be predicted

from displaying image geometry alone, while other system factors, such as software drivers,

electronic interfaces, and individual participant differences, may also play significant roles.

In [119, 26], subjective studies suggested that increasing the degree of binocular depth does

increase the perceived depth quantity. In [119, 64], it was suggested that depth quality

may need to be considered independently from perceived 3D image quality. The results

in [119] showed that increased JPEG coding has no effect on depth perception however a

negative effect on image quality. In [26, 137], subjective studies suggested that 3D image

quality is not sensitive to variations in the degree of binocular depth.

Other studies pointed out perceptual depth quality as an important component in

the holistic 3D QoE. In [177], a blurring filter, where the level of blur depends on the

depth of the area where it is applied, is used to enhance the viewing experience. In [116],

subjective studies revealed that humans tend to prefer DCT compressed stereopairs over

the monoscopic single-views even though the blocking artifacts are annoying. In [69],

depth naturalness is shown to be a useful ingredient in the assessment of 3D video QoE.

Similarly, in [56], the added value of depth naturalness has been verified for pristine and

blurred stereoscopic images. In [70], stimuli with various stereo depth and image quality

were evaluated subjectively in terms of naturalness, viewing experience, image quality,

and depth perception, and the experimental results suggested that the overall 3D QoE is

approximately 75% determined by image quality and 25% by perceived depth. In [24],
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Chen et al. showed that subjective evaluation of depth quality has a low correlation with

that of 3D image quality and verified that the overall 3D QoE can be predicted using a

single linear model from 3D image quality and depth quality.

Meanwhile, several studies have been proposed to objectively predict perceived depth

quality and subsequently to predict 3D quality by combining depth quality and 2D image

quality. In [166], PSNR, SSIM [153] and VQM [102] were employed to predict perceived

depth quality, and PSNR and SSIM appear to have slightly better performance. In [10,

11], disparity maps between left- and right-views were estimated, followed by 2D quality

assessment of disparity quality using SSIM and C4 [21], which was subsequently combined

with 2D image quality to produce an overall 3D image quality score. The results suggested

that C4 outperforms SSIM on evaluating stereoscopic image pairs and disparity maps on

IRCCyN/IVC 3D Image Database [10] and also showed that the 3D-IQA performance of

SSIM can be improved when adding depth quality. You et al. [168] evaluated stereopairs as

well as disparity maps with respect to ten well-known 2D-IQA metrics, i.e., PSNR, SSIM,

MS-SSIM [158], UQI [149], VIF [123], Visual Signal-to-noise Ratio (VSNR) [22], etc. The

results suggested that an improved performance can be achieved when stereo image quality

and depth quality are combined appropriately. Similarly, Yang et al. [164, 163] proposed

a 3D-IQA algorithm based on the average PSNR of left- and right-views and the absolute

difference with respect to disparity map. In [176], Zhu et al. proposed a 3D-VQA model

by considering depth perception, and the experimental results showed that the proposed

HVS based model performs better than PSNR.

Nevertheless, in [90, 23, 121], comparative studies show that none of these 3D-IQA/VQA

models, with depth information involved, perform better than or in most cases, even as good

as, direct averaging 2D-IQA measures of both views. In particular, in [90], it was shown

that averaging PSNR, SSIM, MS-SSIM, UQI and VIF measurements of left- and right-

views performs equally well or better than the advanced 3D-IQA models [10, 168, 164, 176]

on LIVE 3D Image Quality Database Phase I. Similar results were also observed in [23],

where averaging SSIM and MS-SSIM measurements of both views outperformed advanced

3D-IQA models [10, 168] on LIVE 3D Image Quality Database Phase II. In [121], it was re-

ported that directly averaging MS-SSIM outperformed 3D-IQA models [10, 168] on Ningbo

University 3D Image Quality Assessment Database. All these observations suggest that
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the progress on how to automatically predict depth quality and how to combine 3D image

quality and depth quality remains limited. This lack of successful objective QoE methods

for 3D visual experience has limited their applications in the development of 3D imaging

applications and services.

In this chapter, we carry out two subjective experiments on depth quality. The first

one adopts a traditional ACR [146] protocol widely used in general IQA research. We find

this approach problematic in this scenario because monocular cues and the spatial quality

of images have strong impact on the depth quality scores given by subjects, making it

difficult to single out the actual contributions of stereoscopic cues in depth perception.

To overcome this problem, we conduct the second subjective study where depth effect

is synthesized at different depth levels before various types and levels of symmetric and

asymmetric distortions are applied. Instead of following the traditional approach, we ask

subjects to identify and label depth polarizations, and a DPDI is developed based on

the percentage of correct and incorrect subject judgements. We find the second approach

highly effective at quantifying depth perception induced by stereo cues. We then carry out a

series of analysis to investigate the impact of image content, distortion type, and distortion

symmetricity on perceived depth quality. Furthermore, we propose a novel computational

model for DPDI prediction. Our results show that the proposed model, without explicitly

identifying image distortion types, leads to highly promising DPDI prediction performance.

4.2 Subjective Study I

4.2.1 Image Database

The Waterloo-IVC 3D Image Quality Database Phase I was created from 6 pristine stereo-

scopic image pairs and their corresponding single-view images. Each single-view image was

altered by three types of distortions: additive white Gaussian noise contamination, Gaus-

sian blur, and JPEG compression, and each distortion type had four distortion levels. The

single-view images are employed to generate distorted stereopairs, either symmetrically or

asymmetrically. There are totally 78 single-view images and 330 stereoscopic images in
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the database. More comprehensive descriptions are in Section 3.2. Here we focus on the

depth perception part, where the definition of depth quality is the amount, naturalness

and clearness of depth perception experience.

4.2.2 Subjective Test

The subjective test was conducted in the Lab for Image and Vision Computing at University

of Waterloo. The test environment has no reflecting ceiling walls and floor, and was not

insulated by any external audible and visual pollution. An ASUS 27” VG278H 3D LED

monitor with NVIDIA 3D VisionTM2 active shutter glasses is used for the test. The default

viewing distance was 3.5 times the screen height. In the actual experiment, some subjects

did not feel comfortable with the default viewing distance and were allowed to adjust the

actual viewing distance around it. The details of viewing conditions are given in Table 3.17.

Twenty-four näıve subjects, 14 males and 10 females aged from 22 to 45, participated in

the study. A 3D vision test was conducted first to verify their ability to view stereoscopic

3D content. Three of them (1 male, 2 females) failed the vision test and did not continue

with the subsequent experiment. As a result, a total of twenty-one subjects proceeded to

the formal test.

We followed the ACR protocol and the subjects were asked to rate the depth quality of

each image between 0 and 10 pts. A self-training process was employed to help the subjects

establishing their own rating strategies with the help of the depth comparison test (stimuli

with the same source image similar to what are used in the formal test but different depth

levels were presented to help the subjects establish the concept on the amount of depth),

and subjects were introduced to build their own rating strategies.

The motivation of introducing a depth comparison test is to help human subjects under-

stand the amount of depth perception for each pristine stereopairs from their own preference

and thus let them focus on evaluating the depth quality degraded by different distortions

in the following depth quality test. The six pristine stereopairs from Waterloo-IVC 3D

image database were utilized in this test. For each pristine stereopair, a single-view image

(view 1) was firstly displayed to help the subjects get familiar with image content and then

six different stereopairs with an increasing amount of depth were presented, which are S1
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Art Single View: 
View 1

Art Stereopair 1: 
View 1 and View 

3

Art Stereopair 2: 
View 1 and View 

4

Art Stereopair 3: 
View 1 and View 

5 (Default)

Art Stereopair 4: 
View 1 and View 

6

Art Stereopair 5: 
View 1 and View 

7

Figure 4.1: Procedure of the depth comparison test: Art Stereopairs.
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Figure 4.2: Means and standard deviations of depth preference scores in depth comparison
test.

(view 1 and view 3), S2 (view 1 and view 4), S3 (view 1 and view 5), S4 (view 1 and view

6) and S5 (view 1 and view 7) as shown in Figure 4.1. Subjects were allowed to compare

these six stereopairs back and forth and then to rank them based on their own preference

for depth perception. Some subjects favored S5 with the largest amount of depth while

others preferred the mid-level S3 as they felt the 3D objects presented in S5 come too close

to their faces. The depth preference score is assigned from 1 to 5 pts, for which 1 repre-

sents the least preferred and 5 the most preferred. The means and standard deviations of

depth preference scores are shown in Figure 4.2, where we observe high variations between

subject scores, suggesting diverse subject opinions in depth preference.

Previous works reported that the perception of depth quality are both highly content
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and texture dependent [120] and subject dependent [26, 24]. Therefore, it is not desirable

to over-educate the subjects to use the same given rating strategy. Thus after the depth

comparison test, the 3D pristine stereopairs were first presented and the subjects were

instructed to give high scores (close to 10 pts) to such images, and the 2D pristine images

(with no depth from stereo cues) were presented and the subjects were instructed to give

low scores (close to 0 pts). Next, stereopairs of different types/levels of distortions were

presented and the subjects were asked to practice by giving their ratings on depth quality

between 0 and 10 pts. During this process, the instructor also repeated the definition of

depth quality and emphasized that there is not necessarily any correlation between depth

quality and the type/level of distortions.

In the formal test, all stimuli were shown once. However, there were 12 repetitions,

which means that for each subject, her/his first 12 stereopairs were shown twice. These

repeated stimuli are to check whether the subjects perform consistently at the beginning

and the end of the experiments, an indicator that reflects the strength of fatigue effect in

the experiment. The order of stimuli was randomized and the consecutive testing stere-

opairs were from different source images. 342 testing stereopairs with 12 repetitions were

partitioned into two sessions and each single session (171 stereopairs) was finished in 15 to

20 minutes. Sufficient relaxation periods (5 minutes or more) were given between sessions.

Moreover, we found that repeatedly switching between viewing 3D images and grading on

a piece of paper or a computer screen is a tiring experience. To overcome this problem,

we asked the subject to speak out a score, and a customized graphical user interface on

another computer screen was used by the instructor to record the score. All these efforts

were intended to reduce visual fatigue and discomfort of the subjects.

4.2.3 Observations and Discussions

In Section 3.3, the 2D image quality (2DIQ) and 3D image quality (3DIQ) tests on

Waterloo-IVC 3D Image Quality Database were introduced. The raw 2DIQ and 3DIQ

scores given by each subject were converted to Z-scores, respectively. Then the entire data

sets were rescaled to fill the range from 1 to 100 and the mean opinion scores (MOS)

for each 2D and 3D image was computed. The detailed observations and analysis of the
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relationship between MOS 2DIQ and MOS 3DIQ and how to predict the image content

quality of a stereoscopic 3D image from that of the 2D single-view images can be found in

Section 3.5.2 and Section 3.6.2.

In this work, the raw depth quality (DQ) scores given by each subject were converted to

Z-scores. Then the entire data set was rescaled to fill the range from 1 to 100 and the MOS

DQ for each image was computed. For each stereopair, the standard deviation of Z-scores

represents the degree of variation and the means of these standard deviations are 12.00

for 3DIQ scores and 20.01 for DQ scores, respectively, indicating large variations in DQ

scores. Table 4.1 reports PLCC, SRCC and KRCC between individual 3DIQ/DQ scores

and MOS 3DIQ/DQ scores, which reflect the degree of agreement of 3DIQ/DQ scores

among the subjects. PLCC is adopted to evaluate prediction accuracy [46] and SRCC

and KRCC are employed to assess prediction monotonicity [46]. Higher PLCC, SRCC and

KRCC indicate better consistency with the average human opinions of quality. PLCC is

usually computed after a nonlinear mapping between the subjective and objective scores

and the results may be sensitive to the choice of the mapping function. SRCC and KRCC

are nonparametric rank order-based correlation metrics, independent of any monotonic

nonlinear mapping between subjective and objective scores but do not explicitly estimate

the accuracy of quality prediction. From Table 4.1, it can be observed that DQ scores

show less correlation with MOS compared with 3DIQ scores. To further understand this,

Figure 4.3 shows a comparison of two subjects’ 3DIQ and DQ scores on the Art stereopairs.

It can be observed that these two subjects exhibit general agreement on 3DIQ scores but

behave drastically differently in giving DQ scores.

Table 4.1: Mean and standard deviation of correlations between individual scores and MOS

PLCC SRCC KRCC
Criterion Mean Std. Mean Std. Mean Std.

3DIQ 0.8045 0.0658 0.7762 0.0726 0.6315 0.0695
DQ 0.7414 0.1410 0.7298 0.1443 0.5838 0.1259

Thus our preliminary analysis shows that there is a large variation between subjects on

depth quality scores as different people may have very different perception and/or opinions

about perceptual depth quality. The rest of this section will focus on the relationship
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Figure 4.3: Comparison of two subjects’ 3DIQ and DQ scores on the Art stereopairs.

between DQ scores and the 3DIQ scores.

Figure 4.4 shows the scatter plots of MOS 3DIQ vs. averaging MOS 2DIQ of left-

and right-views and MOS 3DIQ vs. MOS DQ. Figure 4.4 (a) suggests that there exists a

strong distortion type dependent prediction bias when predicting quality of asymmetrically

distorted stereoscopic images from single-views [144, 145]. Specifically, for noise contam-

ination and JPEG compression, average prediction overestimates 3DIQ (or 3DIQ is more

affected by the poorer quality view), while for blur, average prediction often underestimates

3DIQ (or 3DIQ is more affected by the better quality view).

From Figure 4.4 (b), it can be observed that human opinions on 3DIQ and 3D DQ are

highly correlated. This is somewhat surprising because 3DIQ and DQ are two different

perceptual attributes and the stimuli were generated to cover all combinations between

picture qualities and stereo depths. Through more careful observations of the data and

discussions with the subjects who did the experiment, we found two explanations. First,

psychologically humans have the tendency to give high DQ scores whenever the 3DIQ is

good and vice versa, and the strength of such a tendency varies between subjects. Second,

humans interpret depth information using many physiological and psychological cues [85],

including not only binocular cues such as stereopsis, but also monocular cues such as

retinal image size, linear perspective, texture gradient, overlapping, aerial perspective, and

shadowing and shading [82, 95]. In the real world, humans automatically use all available
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Figure 4.4: Relationships between (3DIQ and 2DIQ) and (3DIQ and 3D DQ) in Subjective
Study I.

depth cues to determine distances between objects but most often rely on psychological

monocular cues. Therefore, the DQ scores obtained in the current study are a combined

result from many monocular and binocular cues, and it becomes difficult to gauge the role

of stereopsis.

However, what we are interested in the current study is to measure how much stereo

information can help with depth perception. Based on the explanations above, in tradi-

tional ways of subjective testing like the current one, many depth cues are mixed together

and the results are further altered by the spatial quality of the image, making it difficult

to quantify the real contributions of using stereoscopic images in depth perception. This

inspires us to design a novel depth perception test, which will be presented in the next

section.
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4.3 Subjective Study II

4.3.1 Image Database

We created a new Waterloo-IVC 3D Depth Quality Database from 6 pristine texture im-

ages (Bark, Brick, Flowers, Food, Grass and Water) as shown in Figure 4.5. All images

were collected from the VisTex Database at MIT Media Laboratory [2]. A stereogram can

be build by duplicating the image, selecting a region in one image, and shifting this region

horizontally by a small amount in the other one. The region seems to virtually fly in front

of the screen, or be behind the screen if the two views are swapped. In our experiment, six

different levels of Gaussian surfaces (with different heights and different widths) were ob-

tained by translating and scaling Gaussian profiles, where the 6 depth levels (where Depth

1 and Depth 6 denote the lowest and highest depths, respectively) were selected to ensure

a good perceptual separation. Thus each texture image was used to generate 6 stereopairs

with different depth levels. By switching left- and right-views, the hidden depth could be

perceived towards inside or outside and we denote them as inner stereopairs and outer

stereopairs, respectively. As such, for each texture image, we have 12 pristine stereopairs

with different depth polarizations and depth levels. In addition, one flat stereopair without

any hidden depth information is also included.

Each pristine stereopair (inner, outer and flat) was altered by three types of distortions:

additive white Gaussian noise contamination, Gaussian blur, and JPEG compression. Each

distortion type had four distortion levels as reported in Table 4.2 and Table 4.3, where the

distortion control parameters were decided to ensure a good perceptual separation. PSNR

and IW-SSIM evaluations of the simulated distorted single-view 2D images are reported in

Table 4.4 and Table 4.5, respectively.

The distortions were simulated either symmetrically or asymmetrically. Symmetrically

distorted stereopairs have the same distortion type and level on both views while asym-

metrically distorted ones have the distortion on one view only. Altogether, there are 72

pristine stereoscopic images and 1728 distorted stereoscopic images (864 symmetrical and

864 asymmetrical distortions) in the database. In terms of the depth polarity, there are
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: The texture images used in Subjective Study II. (a) Bark. (b) Brick. (c)
Flower. (d) Food. (e) Grass. (f) Water.

Table 4.2: Value ranges of control parameters to generate image distortions for Waterloo-
IVC 3D Depth Quality Database

Distortion Control Parameter Range
White Noise Variance of Gaussian [0.11 1.12]

Gaussian Blur Variance of Gaussian [1.50 11.00]
JPEG Compression Quality parameter [1 10]
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Table 4.3: Values of control parameters to generate image distortions for Waterloo-IVC
3D Depth Quality Database

Bark

White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.32 G1 2.20 15 J1 10

W2 0.46 G2 3.20 21 J2 6

W3 0.63 G3 4.20 27 J3 3

W4 0.83 G4 5.70 33 J4 1

Brick

White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.14 G1 2.40 15 J1 10

W2 0.20 G2 3.80 25 J2 6

W3 0.29 G3 5.60 35 J3 3

W4 0.39 G4 8.60 47 J4 1

Flower

White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.41 G1 1.60 11 J1 10

W2 0.55 G2 2.30 15 J2 6

W3 0.71 G3 3.20 21 J3 3

W4 0.91 G4 4.30 27 J4 1

Food

White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.41 G1 1.80 13 J1 10

W2 0.56 G2 2.70 17 J2 6

W3 0.74 G3 3.70 25 J3 3

W4 0.95 G4 4.90 31 J4 1

Grass

White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.52 G1 1.50 11 J1 10

W2 0.69 G2 2.10 13 J2 6

W3 0.87 G3 2.90 21 J3 3

W4 1.12 G4 3.70 25 J4 1

Water

White Noise σ Gaussian Blur σ Width JPEG Quality

W1 0.11 G1 2.70 19 J1 10

W2 0.16 G2 4.20 27 J2 6

W3 0.22 G3 6.40 41 J3 3

W4 0.30 G4 11.00 61 J4 1
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Table 4.4: PSNR evaluations of distorted 2D images on Waterloo-IVC 3D Depth Quality
Database

White Noise

LEVEL W1 W2 W3 W4

Bark 14.95 12.72 11.22 10.21

Brick 20.60 17.71 15.10 13.46

Flower 13.27 11.84 10.85 10.12

Food 13.37 11.92 10.94 10.28

Grass 11.98 10.70 9.90 9.21

Water 22.68 19.46 16.91 14.81

Gaussian Blur

LEVEL G1 G2 G3 G4

Bark 22.58 20.18 18.83 17.61

Brick 28.72 26.73 25.47 24.41

Flower 18.26 17.08 16.31 15.80

Food 19.34 17.69 16.57 15.71

Grass 14.05 12.99 12.32 11.96

Water 28.66 26.54 25.08 23.80

JPEG Compression

LEVEL J1 J2 J3 J4

Bark 28.31 25.80 22.35 21.39

Brick 30.50 28.48 25.47 25.13

Flower 21.08 19.58 17.59 17.13

Food 22.52 20.99 18.93 18.38

Grass 18.17 16.90 15.29 14.94

Water 32.07 29.58 27.07 26.78
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Table 4.5: IW-SSIM evaluations of distorted 2D images on Waterloo-IVC 3D Depth Quality
Database

White Noise

LEVEL W1 W2 W3 W4

Bark 0.8022 0.7060 0.6016 0.5015

Brick 0.8073 0.7132 0.6010 0.5083

Flower 0.8003 0.7060 0.6088 0.5113

Food 0.8048 0.7077 0.6054 0.5095

Grass 0.8047 0.7011 0.6062 0.5022

Water 0.8108 0.7047 0.6013 0.5027

Gaussian Blur

LEVEL G1 G2 G3 G4

Bark 0.8540 0.6994 0.5596 0.4064

Brick 0.8557 0.7038 0.5575 0.4079

Flower 0.8499 0.7135 0.5536 0.4064

Food 0.8522 0.7082 0.5523 0.4017

Grass 0.8458 0.7099 0.5404 0.4081

Water 0.8479 0.7041 0.5534 0.3993

JPEG Compression

LEVEL J1 J2 J3 J4

Bark 0.9722 0.9478 0.8781 0.8451

Brick 0.9171 0.8504 0.6935 0.6543

Flower 0.9648 0.9354 0.8474 0.8115

Food 0.9655 0.9389 0.8718 0.8469

Grass 0.9779 0.9613 0.9170 0.9018

Water 0.8974 0.8080 0.6647 0.6441
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684 inner stereopairs, 684 outer stereopairs and 432 flat stereopairs. An example of the

procedure of generating a symmetrically blurred stereopair is shown in Figure 4.6.

For each image, we provide the subjects with four available choices to respond, i.e.,

inner, outer, flat and unable to decide. The motivation of introducing the last choice

is that for some distorted stereopairs, the subjects can perceive the existence of depth

information but feel difficult to make confident judgements on depth polarity.

There are three important features of the current database that distinguish it from

others. First, the depth information embedded in each stereopair is independent of its 2D

scene contents, such that subjects can only make use of stereo cues to identify depth change

and judge the polarity of depth. Second, the database contains distorted stereopairs from

various distortion types, allowing us to compare the impacts of different distortions on

depth perception. Third, the current database contains both symmetrically and asymmet-

rically distorted stereopairs, which allows us to directly examine the impact of asymmetric

distortions on depth perception. This may also help us better understand what are the

key factors that affect depth quality in stereoscopic images.

4.3.2 Subjective Test

The subjective test was conducted in the Lab for Image and Vision Computing at University

of Waterloo with the same test environment, the same 3D display system, and the same

viewing conditions as described in Section 4.2. Thus here we only describe some important

differences from Subjective Study I. Twenty-two naive subjects, 11 males and 11 females

aged from 21 to 34, participated in the study and no one failed the vision test. As a

result, a total of twenty-two subjects proceeded to the formal test. The training process

is fairly straightforward. Twelve stereopairs with different depth configurations including

polarities and levels were presented to the subjects. Subjects were asked to speak out their

judgements for these training stereopairs as an exercise. Then a multi-stimulus method was

adopted to obtain subjective judgements for all test stereopairs. Each stimulus contains

six stereopairs with the same depth level and the same image content but different depth

polarity or image distortion. All stimuli were shown once and the order of stimuli was

randomized. 75 stimuli were evaluated in one session and each session was controlled to
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Figure 4.6: Procedure of generating a symmetrically blurred stereoscopic image in Subjec-
tive Study II.
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be within 20 minutes. Similarly, subjects only needed to speak out their judgements and

an instructor was responsible for recording subjective results.

We observe a significant variation between subjects’ behaviors, which is expected as

humans exhibit a wide variety of stereoacuity and stereosense [169]. The rest of this section

focuses on the impact of depth level, depth polarity, image content and image distortion.

More detailed analysis of the other aspects of the subjective data will be discussed in the

future work.

4.3.3 Depth Perception Difficulty Index (DPDI)

For each test image, there are 3 possible ground-truth polarity answers - inner, outer

and flat. Meanwhile, pooling the subjective judgements on the image leads us to four

percentage values, denoted by {Pin, Pout, Pflat, Punable}, corresponding to the percentages

of subject judgements of inner, outer, flat and unable to decide, respectively, and Pin +

Pout + Pflat + Punable = 1. Given these values, we define a novel measure named Depth

Perception Difficulty Index (DPDI), which indicates how difficult it is for an average subject

to correctly perceive the depth information in the image. Specially, if the ground-truth is

an inner image, we define

DPDI = min{1, Pflat + Punable + 2Pout}
= 1−max{0, Pin − Pout}. (4.1)

Similarly, for an outer image

DPDI = min{1, Pflat + Punable + 2Pin}
= 1−max{0, Pout − Pin}. (4.2)

This DPDI is bounded between 0 and 1. The values of DPDI in some extreme cases are

as follows: when we have {1, 0, 0, 0} for inner images or {0, 1, 0, 0} for outer images, DPDI

equals 0; when we have {0.25, 0.25, 0.25, 0.25}, which is equivalent to the case of random

guess, DPDI equals 1.
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4.3.4 Analysis and Key Observations

Table 4.6 shows the mean DPDI values for different depth levels for the cases of all images,

inner images and outer images. Unsurprisingly, DPDI drops with increasing depth in each

test group. A much more interesting observation here is that with a given level of depth,

inner images generally have lower DPDI values and the difference in mean DPDI values

between inner and outer images increase with the level of depth. This indicates that it

is easier for humans to perceive depth information when objects appear to be behind the

screen than in the opposite case.

Table 4.6: Average DPDI values of different depth levels

Depth Levels Inner Outer Outer − Inner All
Level 1 0.9196 0.9146 -0.0050 0.9171
Level 2 0.7605 0.7883 0.0278 0.7744
Level 3 0.5829 0.6721 0.0892 0.6275
Level 4 0.4095 0.5732 0.1637 0.4914
Level 5 0.3409 0.5008 0.1599 0.4209
Level 6 0.2811 0.4474 0.1663 0.3643

Table 4.7 reports the mean DPDI values for different background image contents. First,

it appears that DPDI is highly image content dependent as it varies significantly across

content. In general, DPDI decreases with the increase of high-frequency details, which is

consistent with the previous vision research [117] that stereo gain is higher for the high

spatial-frequency system than the low spatial-frequency system. Second, although inner

images always have higher DPDI values, the gap between inner and outer images is image

content dependent.

Table 4.8 shows the mean DPDI values of different distortion types and levels. First,

across distortion types, noise contamination has more impact on depth perception than

JPEG compression and Gaussian blur. Second, more interestingly, although the cases of

symmetric distortions double the total amount of distortions than asymmetric distortions

(because the same level of distortions is added to both views), the DPDI gap between

asymmetric and symmetric distortions is distortion type dependent. The gaps in the case
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Table 4.7: Average DPDI values of different image contents

Image Contents Inner Outer Outer − Inner All
Bark 0.4831 0.5793 0.0962 0.5339
Brick 0.7562 0.9226 0.1664 0.8209

Flower 0.4232 0.4985 0.0753 0.4545
Food 0.4948 0.6007 0.1059 0.5448
Grass 0.2646 0.4315 0.1669 0.3620
Water 0.8712 0.8846 0.0134 0.8794

of noise contamination is much higher than those of Gaussian blur and JPEG compression.

The point worth noting is that adding blur or JPEG compression to one view of stereopair

results in similar difficulty in depth perception as adding the same level of distortion to

both views. This is quite different from the distortion type dependency in 3D image

quality perception, as shown in Figure 4.4 (a). It is interesting to note that some of our

new observations are somehow implicitly consistent with previous vision studies [44, 49].

For example, in [49], Hess et al. found that stereoacuity was reduced when one view was

severely blurred by filtering off high spatial frequencies and loss of acuity was much less

severe when both views are blurred.

Table 4.8: Average DPDI values of different distortion types and levels

Distortions All Level 1 Level 2 Level 3 Level 4
Noise Sym. 0.7986 0.6275 0.7412 0.8838 0.9419

Noise Asym. 0.6504 0.5215 0.6477 0.7058 0.7500

Blur Sym. 0.5470 0.4962 0.4912 0.5492 0.6515
Blur Asym. 0.5431 0.3902 0.4975 0.6048 0.6528

JPEG Sym. 0.5660 0.4444 0.5278 0.6187 0.6730
JPEG Asym. 0.5473 0.4470 0.5265 0.5871 0.6679

4.3.5 Impact of Eye Dominance

Eye dominance is a common visual phenomenon, referring to the tendency to prefer the

input from one eye to the other, depending on the human subject [67]. When studying
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visual quality of asymmetrically distorted images, it is important to understand if eye

dominance plays a significant role in the subjective test results. For this purpose, we

carried out a separate analysis on the impact of eye dominance in the depth perception

of asymmetrically distorted stereoscopic images. The side of the dominant eye under

static conditions was checked first by Rosenbach’s test [107]. This test examines which

eye determines the position of a finger when the subject is asked to point to an object.

Among twenty subjects who finished the formal test Subjective Study II, ten subjects (6

males, 4 females) had a dominant left eye, and the others (5 males, 7 females) are right-eye

dominant.

The DPDI for each image in Waterloo-IVC 3D Depth Quality Database were com-

puted for left-eye dominant subjects and right-eye dominant subjects, denoted as DPDIL

and DPDIR, respectively. We employed the one-sample t-test to obtain a test decision

for the null hypothesis that the difference between DPDIL and DPDIR, i.e., DPDID =

DPDIL − DPDIR, comes from a normal distribution of zero-mean and unknown variance.

The alternative hypothesis is that the population distribution does not have a mean equal-

ing zero. The result h is 1 if the test rejects the null hypothesis at the 5% significance level,

and 0 otherwise. The returned p-values for symmetric and asymmetric images are 0.3448

and 0.3048, respectively, thus the null hypothesis cannot be rejected at the 5% significance

level, which indicates that the impact of eye dominance in the perception of depth quality

of asymmetrically distorted stereoscopic images is not significant.

It is worth noting that in Section 3.4 we found that the eye dominance effect does not

have strong impact on the perceived image content quality of stereoscopic images. Our two

observations are consistent with the “stimulus” view of rivalry that is widely accepted in

the field of visual neuroscience [15]. A comprehensive review and discussion on “stimulus”

rivalry versus “eye” rivalry can be found in [15, 81].
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4.4 Objective Study: Prediction Of Depth Perception

Difficulty Index

4.4.1 DPDI Prediction Model

We opt to use a multiple-stage approach in the design of an objective DPDI predictor.

The first stage aims to predict the DPDI for different depth levels HL(evel) and image

contents HC(ontent), while in the second stage, a patch-structure representation is developed

to predict the DPDI for different distortion types and levels HD(istortion). Finally, these

components are combined to yield an overall DPDI prediction model.

In Section 4.3.4, DPDI is found to increase with the depth level monotonically. Here we

look for an efficient approach to predict DPDI values of different levels using stereo match-

ing, which is an active research area in computer vision over the last few decades [115].

Specially, given a stereopair of xl and xr for the left-view and right-view reference im-

ages, respectively, we first estimate the disparity map Dlr, which is simply done by using

MATLAB R©’s utility disparityMap [52]. The ground truth and the estimated dispar-

ity maps for different depth levels are shown in Figure 4.7 and Figure 4.8, respectively.

The mean values of the ground truth and the estimation errors of the disparity maps are

reported in Table 4.9, where it can be seen that the estimations on the disparities are ac-

curate, allowing us to design a simple approach to predict how DPDI changes with depth

levels. We denote µDlr
as the mean of disparity values and apply a nonlinear mapping on

µDlr
to predict the DPDI values of different depth levels:

HL =
α

(µDlr
)β + γ

, (4.3)

where the best parameters are found to be α = 0.4, β = 1 and γ = 0.47.

In Section 4.3.4, we found that DPDI is highly image content dependent as it varies

significantly across content. In general, DPDI decreases with the increase of high-frequency

details or energy. We measure the energy by computing the local variances at each spatial

location, i.e., the variances of local image patches extracted around each spatial location,
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: The ground truth disparity maps for different depth levels from the pristine
Bark stereopair used in Subjective Study II. Brighter pixels represent higher disparity
values. (a) Level 1. (b) Level 2. (c) Level 3. (d) Level 4. (e) Level 5. (f) Level 6.

Table 4.9: Ground truth (G.T.) and mean estimation errors of disparity maps for different
image contents

Levels G. T. Bark Brick Flowers Food Grass Water
Depth 1 0.0080 0.0012 0.0020 0.0015 0.0017 0.0016 0.0022
Depth 2 0.0349 0.0031 0.0030 0.0024 0.0030 0.0026 0.0038
Depth 3 0.1045 0.0034 0.0034 0.0036 0.0035 0.0032 0.0063
Depth 4 0.2553 0.0045 0.0038 0.0040 0.0045 0.0037 0.0070
Depth 5 0.5402 0.0042 0.0044 0.0038 0.0045 0.0021 0.0075
Depth 6 1.0370 0.0052 0.0037 0.0026 0.0032 0.0319 0.0081
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: The estimated disparity maps for different depth levels from the pristine Bark
stereopair used in Subjective Study II. Brighter pixels represent higher disparity values.
(a) Level 1. (b) Level 2. (c) Level 3. (d) Level 4. (e) Level 5. (f) Level 6.
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for which an 11×11 circular-symmetric Gaussian weighting function w = {wi|i = 1, 2, ·, N}
with standard deviation of 1.5 samples, normalized to unit sum (

∑N
i=1wi = 1), is employed.

The mean of local variances is used to measure the energy E. Empirically, we observe that

E shows a high dependency with DPDI for different image contents at different levels of

complexity. The relationship can be well accounted for by the following nonlinear mapping:

HC =
τ

log(Eλ)
, (4.4)

where the best parameters are found to be τ = 21.9 and λ = 6.

Any image patch can be represented in a unique and adaptive way by three conceptually

independent components: mean intensity, signal strength and signal structure [78]. This

novel representation has been found to be useful in IQA of multi-exposure image fusion [79]

and contrast changed images [147]. In this work, we show that this representation can well

explain the distortion type dependency observations we described in Section 4.3.4.

Given a
√
N×
√
N local image patch x that is represented as an N -dimensional vector,

we decompose it by

x = µx + ||x− µx|| ·
x− µx

||x− µx||
= cx1 · vx

1 + cx2 · vx
2 , (4.5)

where || · || denotes the l2 norm of a vector, µx is the mean intensity of the patch. x is now

represented as a linear combination of two unit-length vectors,

vx
1 =

1√
N
· 1 and vx

2 =
x− µx

||x− µx||
, (4.6)

each associated with a coefficient

cx1 =
√
Nµx and cx2 = ||x− µx|| , (4.7)

here 1 denotes a column vector with all entries equaling 1. Since vx
1 is fixed, each source

patch x can be uniquely represented by three components cx1 , cx2 and the unit-length vector
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vx
2 , which denote the mean intensity, signal strength and signal structure, respectively.

The representation or decomposition is adaptive, where the basis vx
2 points to a specific

direction in the signal space and is adapted to the input signal.

Now assume x and y are the co-located patches in the reference and distorted images,

respectively. Then from Equation (4.5), we have vx
2 and vy

2 , which represent the signal

structures of the reference and distorted images, respectively. We denote the angle between

the orientations of vx
2 and the structural distortion vector (vy

2 − vx
2 ) as ∆θ. Then cos ∆θ

can be computed as

cos ∆θ =
|vx

2 · (v
y
2 − vx

2 )|
||vx

2 ||||v
y
2 − vx

2 ||
, (4.8)

and ∆θ can be subsequently obtained through an arc-cosine function. Note that ∆θ is the

angle between two orientations and thus has a dynamic range between 0 and π
2
. Table 4.10

reports the mean values of ∆θ for each distortion type and level. Interestingly, the results

show a strong distortion type dependency of ∆θ. In particular, for noise contaminated

image, ∆θ is close to π
2

(90◦); for blurred image, ∆θ is below π
6

(30◦); and for JPEG

compressed image, ∆θ typically lies between π
4

(45◦) and π
3

(60◦).

Table 4.10: Mean Values of ∆θ for different distortion types and levels

Distortion Noise Blur JPEG
Level 1 83.27◦ 24.05◦ 62.87◦

Level 2 81.98◦ 19.00◦ 58.02◦

Level 3 80.95◦ 15.44◦ 50.74◦

Level 4 79.96◦ 12.71◦ 48.59◦

Some qualitative explanations of this phenomenon are as follows. When left- and right-

views are both noise contaminated, the distortion vectors vy
2 − vx

2 are orthogonal to the

original vectors vx
2 , thus the original necessary information used to establish stereoscopic

cues is affected by independent noise only. In this case, the impact of distortion on the

depth quality is additive. As such, the gap of DPDI between noise added to one-view

and two-views is much higher than those of Gaussian blur and JPEG compression because

twice amount of noise is added. On the other hand, when left- and right-views are either

blurred or JPEG compressed, the distortion vectors vy
2 − vx

2 can be decomposed into two
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orthogonal components, one of which aligns with and the other is orthogonal to the original

vector. The original necessary information used to establish stereoscopic cues is affected

by not only the relative strength of these two components, but also the consistency of such

relative strengths on the left- and right-views. When deterministic distortions such as blur

or JPEG compression are applied equally to both views, high consistency is expected. In

this case, the impact of blurriness or compression artifacts on the depth quality is more

dependent on the lower quality view with more structural distortions. As such, the gap of

DPDI between one-view and two-views is reduced.

The above analysis shows that this patch-structure representation provides useful cues

to account for the distortion type dependency we observed in Section 4.3.4. This inspires

us to develop an objective model to automatically predict DPDI for different distortion

types and levels.

Let (xl, yl) and (xr, yr) be the co-located patches in the reference and distorted left-

and right-views images, respectively. Let dl and dr denote the local distortion measures

for (xl, yl) and (xr, yr), respectively. We characterize the local measure of DPDI by

HD = (|dl|p + |dr|p)
1
p , (4.9)

where p ≥ 0 is an exponent parameter. With various choices of the value of p, this general

formulation leads to a family of combination rules with different physical meanings. The

larger the p value, the more emphasis is put on the patches that have relatively larger

distortion between left- and right-view. Specifically, p = 1 corresponds to length-weighted

averaging; p = 2 corresponds to energy-weighted averaging; and p = ∞ corresponds to

picking the patch that has the larger distortion.

It remains to determine the value of p. Instead of fixing p to be a constant for each

distortion types and levels, here we propose an automatic approach that chooses p at each

spatial location adaptively. From Equation (4.5), we have (vxl
2 , vyl

2 ) and (vxr
2 , vyr

2 ) for left-

view and right-view, respectively. We denote ∆θl as the angle between vxl
2 and vyl

2 − vxl
2

and ∆θr as the angle between vxr
2 and vyr

2 − vxr
2 . cos ∆θl and cos ∆θr are computed using
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Equation (4.8), then p is determined by

p = (1 + cos ∆θl + cos ∆θr)
2 . (4.10)

The motivation of using adaptive-p in Equation (4.9) is to automatically adjust the

weighting strategies of the left- and right-views for symmetric and asymmetric distortions at

different distortion types and levels. In particular, when both views are noise contaminated,

∆θl and ∆θr are close to π
2
, cos ∆θl and cos ∆θr are close to 0, and thus p is close to 1,

then we have

HD ' (|dl|+ |dr|) ; (4.11)

when only one view (e.g. left-view) is noise contaminated and the other one (e.g. right-

view) is pristine, ∆θr is 0 and cos ∆θr is 1, p goes relatively larger, then we have

HD ' max {|dl|, |dr|} . (4.12)

When both views are blurred or JPEG compressed, ∆θl and ∆θr are close to 0 or around π
4
,

cos ∆θl and cos ∆θr are close to 1 (for higher JPEG compression levels), thus p is relatively

large; when only one view (e.g. left-view) is blurred or JPEG compressed and the other one

(e.g. right-view) is pristine, ∆θr is 0 and cos ∆θr is 1, and thus p is also a larger number.

In both cases, we have

HD ' max {|dl|, |dr|} . (4.13)

As such, the value of p is automatically determined, without recognizing the distortion

types explicitly.

Once the value of p is determined at each spatial location, the local HD measure is

computed using Equation (4.9). The global HD measure is the average of the local HD

across all spatial locations. Finally, the three components, HL, HC and HD are combined

to yield an overall DPDI prediction

H = HL ·HC ·HD . (4.14)
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4.4.2 Validation

We use the new Waterloo-IVC 3D Depth Quality Database to test the proposed DPDI pre-

diction model. First, DPDI predictions from HD only are computed for each depth level

and each image content. PLCC, SRCC and KRCC between the observed and the predicted

DPDI values are reported in Table 4.11 and Table 4.12, where the results are summarized

as the average performance for each image content. The direct averaging (Ave.) method

corresponds to the case of p = 1 in Equation (4.9), while in the adaptive-p (Adpt.) method

the value of p is adaptively determined using Equation (4.10) to Equation (4.13). PSNR,

SSIM [153], MS-SSIM [158] and IW-SSIM [154] are employed to create the base single-view

distortion measurements d, where we let d = 50 − PSNR and d = 1 − SSIM or its deriva-

tives. For fairness, a global approach to compute HD is adopted, i.e., an average spatial

pooling on cos ∆θl and cos ∆θr is applied to the left- and right-view, respectively, and thus

p is determined globally. From Table 4.11, it can be observed that the adaptive-p model

outperforms the direct averaging method in almost all cases. In addition, MS-SSIM and

IW-SSIM pronounce larger improvements than PSNR and SSIM. Considering the perfor-

mance and computational complexity, MS-SSIM is chosen as the distortion measurement

method in the subsequent tests.

Table 4.11: Performance comparison of DPDI estimations using different base 2D distortion
measures. Ave.: direct averaging; Adpt.: adaptive-p model.

PLCC
Bark Brick Flower Food Grass Water

2D-IQA Ave. Adpt. Ave. Adpt. Ave. Adpt. Ave. Adpt. Ave. Adpt. Ave. Adpt.
PSNR 0.3770 0.5700 0.1643 0.3330 0.5028 0.7621 0.2673 0.4848 0.3961 0.7177 0.2358 0.3168
SSIM 0.5272 0.6458 0.2937 0.4457 0.5182 0.7420 0.3423 0.5054 0.4638 0.6152 0.2167 0.3275

MS-SSIM 0.6046 0.7365 0.4139 0.6013 0.6435 0.7647 0.4364 0.5575 0.5932 0.6964 0.4426 0.5519
IW-SSIM 0.5921 0.7061 0.5521 0.6230 0.6296 0.7079 0.3647 0.5236 0.5849 0.6639 0.5575 0.5645

SRCC
2D-IQA Ave. Adpt. Ave. Adpt. Ave. Adpt. Ave. Adpt. Ave. Adpt. Ave. Adpt.
PSNR 0.3925 0.5563 0.1781 0.3029 0.5787 0.7104 0.2834 0.4101 0.5131 0.5942 0.2140 0.1862
SSIM 0.4654 0.6142 0.1753 0.2984 0.4771 0.6037 0.2566 0.3501 0.3319 0.4016 0.2784 0.2253

MS-SSIM 0.5588 0.6587 0.3277 0.4830 0.5785 0.6310 0.3013 0.3679 0.4881 0.5001 0.3924 0.4207
IW-SSIM 0.5133 0.6204 0.3673 0.4840 0.5552 0.6000 0.2637 0.3254 0.4868 0.4978 0.5094 0.5443

KRCC
2D-IQA Ave. Adpt. Ave. Adpt. Ave. Adpt. Ave. Adpt. Ave. Adpt. Ave. Adpt.
PSNR 0.2969 0.4216 0.1364 0.2184 0.4389 0.5546 0.2104 0.2985 0.3839 0.4468 0.1606 0.1411
SSIM 0.3470 0.4710 0.1360 0.2165 0.3519 0.4563 0.1834 0.2530 0.2497 0.2988 0.2165 0.1790

MS-SSIM 0.4157 0.5017 0.2391 0.3550 0.4328 0.4804 0.2232 0.2725 0.3596 0.3740 0.2955 0.3099
IW-SSIM 0.3779 0.4666 0.2652 0.3559 0.4108 0.4553 0.1912 0.2405 0.3584 0.3712 0.3903 0.4138

142



Table 4.12: Performance comparison of DPDI estimations using different base 2D distortion
measures (Averaged prediction performance from Table 4.11). Ave.: direct averaging;
Adpt.: adaptive-p model.

PLCC SRCC KRCC
2D-IQA Ave. Adpt. Ave. Adpt. Ave. Adpt.
PSNR 0.3239 0.5307 0.3600 0.4600 0.2712 0.3468
SSIM 0.3937 0.5469 0.3308 0.4156 0.2474 0.3124

MS-SSIM 0.5224 0.6514 0.4411 0.5102 0.3276 0.3822
IW-SSIM 0.5468 0.6315 0.4493 0.5120 0.3323 0.3839

Table 4.13 shows PLCC, SRCC and KRCC results for DPDI predictions from all indi-

viduals and combinations of HL, HC and HD for all stereopairs and each distortion type.

It can be seen that DPDI prediction performance from HL only and HC only are similar,

which indicates that depth level and image content are about equally important to DPDI

estimation, and their combination, not surprisingly, provides a relatively better DPDI pre-

diction performance. It can also be observed that DPDI predictions from HD only are not

as good as those from HL only or HC only, even though the adaptive-p method reduces the

prediction bias. When HL, HC and their combination are combined with HD, significant

improvements are obtained, but in the case of using the adaptive-p method only and not

in the case of direct averaging.

The best prediction happens in the case that all DPDI prediction components are

included. For all images and each distortion type, the proposed method, when combined

with MS-SSIM as the base 2D distortion measure, without attempting to recognize the

distortion types or giving any specific treatment for any specific distortion type, leads to

highly promising DPDI prediction performance.

Moreover, Table 4.14 and Table 4.15 reports PLCC, SRCC and KRCC values of the

overall DPDI predictions for different depth levels and different image contents, respec-

tively. Interestingly, it can be observed that improvements are most pronounced at the

middle depth levels (Level 2 and Level 3) or at the textural contents of middle complexity

(Bark and Flower), which indicates that the impact of symmetric and asymmetric distor-

tions on the perception of depth is more significant in these “middle” cases.
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Table 4.13: Performance comparison of DPDI estimations using different combinations of
prediction components

All Noise
Method PLCC SRCC KRCC PLCC SRCC KRCC
HL 0.5773 0.6160 0.4576 0.6253 0.6686 0.5034
HC 0.5452 0.5331 0.4087 0.3433 0.3117 0.2338

HL +HC 0.7278 0.7393 0.5680 0.6840 0.6972 0.5307
HD for p = 1 0.3189 0.3441 0.2390 0.4102 0.3508 0.2471

HD for adaptive p 0.4077 0.3917 0.2716 0.4040 0.3931 0.2797
HL +HD for p = 1 0.5885 0.5873 0.4212 0.6933 0.6853 0.5054

HL +HD for adaptive p 0.6555 0.6583 0.4810 0.7203 0.7216 0.5403
HC +HD for p = 1 0.5173 0.5249 0.3724 0.5266 0.5101 0.3691

HC +HD for adaptive p 0.6258 0.6299 0.4534 0.5489 0.5297 0.3873
HL +HC +HD for p = 1 0.7104 0.7160 0.5327 0.8046 0.7861 0.6072

HL +HC +HD for adaptive p 0.7970 0.8018 0.6190 0.8118 0.7964 0.6199

Blur JPEG
Method PLCC SRCC KRCC PLCC SRCC KRCC
HL 0.6281 0.6676 0.5051 0.4988 0.5752 0.4291
HC 0.6200 0.6168 0.4816 0.6832 0.6663 0.5153

HL +HC 0.7995 0.8072 0.6374 0.7543 0.7616 0.5929
HD for p = 1 0.1913 0.1748 0.1232 0.5022 0.4899 0.3427

HD for adaptive p 0.2313 0.2307 0.1627 0.6112 0.5853 0.4178
HL +HD for p = 1 0.4885 0.4952 0.3475 0.6722 0.6755 0.4902

HL +HD for adaptive p 0.6160 0.6169 0.4424 0.7366 0.7421 0.5534
HC +HD for p = 1 0.4392 0.4165 0.2959 0.6326 0.6262 0.4493

HC +HD for adaptive p 0.6455 0.6262 0.4580 0.7151 0.6878 0.5090
HL +HC +HD for p = 1 0.6698 0.6758 0.4959 0.7713 0.7761 0.5844

HL +HC +HD for adaptive p 0.8205 0.8248 0.6452 0.8415 0.8404 0.6577

Table 4.14: Performance comparison of DPDI Estimations for different depth levels

Depth Levels Level 1 Level 2 Level 3
Method PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC

HL +HC +HD for p = 1 0.4830 0.5664 0.4342 0.6630 0.6470 0.4805 0.6786 0.6714 0.4959
HL +HC +HD for adaptive p 0.7294 0.6696 0.5280 0.8045 0.8182 0.6398 0.8140 0.8197 0.6379

Depth Levels Level 4 Level 5 Level 6
Method PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC

HL +HC +HD for p = 1 0.6435 0.6218 0.4485 0.6564 0.6403 0.4586 0.6258 0.5980 0.4292
HL +HC +HD for adaptive p 0.8201 0.7873 0.5914 0.8288 0.7956 0.5926 0.8224 0.7765 0.5791
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Table 4.15: Performance comparison of DPDI Estimations for different image contents

Image Contents Bark Brick Flower
Method PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC

HL +HC +HD for p = 1 0.7009 0.7026 0.5190 0.5747 0.5741 0.4198 0.7190 0.7248 0.5392
HL +HC +HD for adaptive p 0.8288 0.8267 0.6382 0.6299 0.6620 0.4933 0.8146 0.8025 0.6169

Image Contents Food Grass Water
Method PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC

HL +HC +HD for p = 1 0.6104 0.6035 0.4384 0.6529 0.6302 0.4610 0.6745 0.5991 0.4589
HL +HC +HD for adaptive p 0.7645 0.7572 0.5664 0.7490 0.7073 0.5312 0.6711 0.6274 0.4930

4.5 Discussions

A main issue with the traditional subjective testing approaches such as that used in our first

subjective test (Section 4.2) is the difficulty in singling out the contribution of stereo cues

in depth perception, and the subjective scores collected through such experiments show

strong correlations between 3D image quality and depth quality scores, even though they

are substantially different perceptual attributes. The second subjective testing method

introduced in Section 4.3 is an attempt to overcome this problem. To observe it more

closely, for each stereopair on the new Waterloo-IVC 3D Depth Database, we estimate its

3DIQ using the binocular rivalry-inspired weighting method presented in [142] and its DPDI

using the proposed DPDI prediction model, respectively. Table 4.16 shows the PLCC,

SRCC and KRCC values between the predicted 3DIQ and DPDI. It is important to note

that the correlations between 3DIQ and DPDI predictions are relatively low, which is quite

different from the observations in the first subjective test we discussed in Section 4.2.3.

This result suggests that our new subjective testing approach is able to provide more

independent information on the depth perception aspect of 3D visual perception.

In Section 4.2.3, we described that there exists a strong distortion type dependency

with 3D image quality [142]. Then in Section 4.3.4, a different distortion type depen-

dency in depth perception has been discovered. The discovery of such a distortion type

dependency in depth perception not only has scientific values in understanding depth per-

ception in the HVS, but is also desirable in the practice of 3D video compression and

transmission. The distortions involved in 3D video coding/communication are not only

compression artifacts. The practical encoder/decoder also needs to decide on whether

inloop/out-of-loop deblocking filters need to be turned on, and whether mixed-resolutions
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Table 4.16: Correlations between 3DIQ and DPDI predictions

Depth Levels PLCC SRCC KRCC
Depth 1 0.5680 0.5512 0.4020
Depth 2 0.5673 0.5496 0.4014
Depth 3 0.5669 0.5509 0.4011
Depth 4 0.5498 0.5274 0.3842
Depth 5 0.5521 0.5202 0.3782
Depth 6 0.4989 0.4476 0.3333
Average 0.5505 0.5245 0.3834

of the left/right-views should be used. Mixed-resolution coding, asymmetric transform-

domain quantization coding, and postprocessing techniques (deblocking or blurring) can

be employed individually or collectively. Previously in [133, 17] and [3], the extent of

the downsampling ratio that can be applied to a low quality view without a noticeable

degradation on the 3D quality has been investigated. In [3], symmetric stereoscopic video

coding, asymmetric quantization coding and mixed-resolution coding have been compared

and the results suggested that mixed-resolution coding achieves the best coding efficiency.

In [143], different levels of Gaussian blurring are applied after asymmetric quantization and

a significant bit rate reduction has been achieved for this joint asymmetric compression

and postprocessing method. However, here our new observations indicate that asymmetric

compression and asymmetric blurring will influence the perceived 3D depth quality, i.e.,

adding blur or JPEG compression to one view of stereopair has similar effect in depth per-

ception as adding the same level of distortion to both views. This is quite different from the

distortion type dependency in 3D image quality perception. Therefore, the current study

suggests that mixed-resolution coding, asymmetric transform-domain quantization coding,

and postprocessing schemes need to be carefully reexamined and redesigned to maintain a

good tradeoff between perceptual 3D image quality and depth quality. One possible solu-

tion is that a threshold on H may be used as a constraint in the process of asymmetrical

bit allocation, ensuring that the quality of depth perception will not be severely affected.
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4.6 Summary

In this chapter, we have carried out two subjective studies on depth perception of stereo-

scopic 3D images. The first one follows a traditional framework where subjects are asked to

rate depth quality directly on distorted stereopairs. The second one uses a novel approach,

where the stimuli are synthesized independent of the background image content and the

subjects are asked to identify depth changes and label the polarities of depth. Our analysis

shows that the second approach is much more effective at singling out the contributions

of stereo cues in depth perception, through which we have several interesting findings

regarding distortion type dependency, image content dependency, and the impact of sym-

metric and asymmetric distortions on the perception of depth. Furthermore, we propose

a novel computational model for DPDI prediction. Our results show that the proposed

model, without explicitly identifying image distortion types, leads to highly promising

DPDI prediction performance. We believe these findings provide useful insights in the

future development of comprehensive 3D QoE models for stereoscopic images, which have

great potentials in real-world applications such as asymmetric compression of stereoscopic

3D videos.

147



Chapter 5

Asymmetrically Compressed

Stereoscopic 3D Videos: Quality

Assessment and Rate-Distortion

Performance Evaluation

In this chapter, we first carry out subjective quality assessment experiments on two databases

that contain various asymmetrically compressed stereoscopic 3D videos obtained from

mixed-resolutions coding, asymmetric transform-domain quantization coding, their combi-

nations, and multiple choices of postprocessing techniques. We compare these asymmetric

stereoscopic video coding schemes with symmetric coding methods and verify their poten-

tial coding gains. We observe a strong systematic bias when using direct averaging of 2D

video quality of both views to predict 3D video quality. We then apply a binocular rivalry

inspired model to account for the prediction bias, leading to a significantly improved qual-

ity prediction model of stereoscopic videos. The model allows us to quantitatively predict

the coding gain of different variations of asymmetric video compression, and provides new

insight on the development of high efficiency 3D video coding schemes.
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5.1 Introduction

In Chapter 3, we presented a systematic study on quality prediction of asymmetrically

distorted stereoscopic 3D images and revealed a strong distortion type dependent predic-

tion bias when predicting quality of asymmetrically distorted stereoscopic images from

single-views. Studying the impact of asymmetric distortions on the quality of stereo-

scopic images not only has scientific values in understanding the HVS, but is also desirable

in the practice of 3D video compression and transmission. The distortions involved in

3D video coding/communication are not only compression artifacts. The practical en-

coder/decoder also needs to decide on whether deblocking filters need to be turned on,

and whether mixed-resolutions of the left/right-views should be used. Mixed-resolutions

coding, asymmetric transform-domain quantization coding, and postprocessing techniques

(deblocking or blurring) can be employed individually or collectively. Previously, with re-

gard to transform-domain quantization coding, Saygili et al. found that asymmetric coding

can perform better than symmetric coding when the lower quality view is encoded above a

threshold value [112]. The subjective studies in [33] showed that stereoscopic asymmetry

introduced by way of asymmetric blurriness is preferred over asymmetric blockiness, which

is agreed by [5], where low-pass filtering shows no negative effect on the perceived 3D qual-

ity, sharpness and depth. In 1992, Perkins [99] introduced the idea of mixed-resolutions

coding for stereoscopic video and implemented a mixed-resolutions coding scheme with a

subsampling factor of 4, which can reduce the bit rate by 46% and resulted in little sub-

jective degradation in picture quality and only moderate degradation in perceive depth.

Brust et al. conducted subjective and objective tests on full and mixed-resolutions stereo

video coding with a downsampling factor of 2 [17]. Experimental results showed that at

low bit rates mixed-resolutions coded sequences have better perceptual qualities and the

optimal bit rate allocation strategy is 30% to 35% of the total bit rate for the lower quality

view. In [133], different vertical and horizontal spatial low-pass filtering on the right-view

video were applied and subjective results showed that the perceived spatial quality and

sharpness have a strong tendency towards the higher quality view and the perceived depth

was unaffected. Aflaki et al. investigated the extent of downsampling ratios that can be

applied to a low quality view without a noticeable degradation on the 3D quality [3]. They
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also compared the coding efficiency of symmetric quantization coding, asymmetric quanti-

zation coding and mixed-resolutions coding and found that mixed-resolutions coding can

pronounce a similar 3D quality to that of symmetric coding with a significantly reduced

computational complexity. Several observations in [142] provide useful implications on

stereoscopic image/video coding. Specially, for JPEG compression, 3D image quality is

more affected by the poorer quality view; while for blur, 3D image quality is more affected

by the better quality view. Such distortion type dependency is more pronounced for strong

asymmetric distortions. Moreover, for mixed-distortions types, when one view is JPEG

compressed and the other is blurred, the JPEG compressed view dominates quality judge-

ment regardless of their distortion levels. These observations suggest that simply coding

one view at high rate and the other at low rate may not be a wise choice. This also suggests

that a significant coding gain may be achieved by mixed-resolutions coding, followed by

postprocessing techniques. However, in the literature, systematic studies on subjective and

objective quality assessment of these variations of asymmetric stereoscopic video coding

are still lacking, making it difficult to directly compare different coding strategies, nor to

derive 3D-VQA models to guide asymmetrical 3D video coding.

In this chapter, we first carry out subjective quality assessment experiments on two

databases that contain various asymmetrically compressed stereoscopic 3D videos cre-

ated by mixed-resolutions coding, asymmetric transform-domain quantization coding, their

combinations, and multiple choices of postprocessing techniques. We compare different

variations of asymmetric stereoscopic video coding schemes with symmetric coding meth-

ods and verify their potential coding gains. We also observe a strong systematic bias when

using direct averaging of 2D video quality of both views to predict 3D video quality. We

then apply a binocular rivalry inspired model to account for the prediction bias, leading

to a significantly improved quality model for stereoscopic videos. The model allows us

to quantitatively predict the coding gain of different variations of asymmetric video com-

pression, and provides new insight on the development of high efficiency 3D video coding

schemes.
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5.2 Subjective Study

5.2.1 WATERLOO-IVC 3D Video Quality Databases Phase I

and Phase II

The new Waterloo-IVC 3D Video Quality Database Phase I is created from 4 pristine

multi-view 3D videos, i.e., Balloons, Book, Kendo and Lovebird, which are commonly

used 3D HEVC testing sequences. The new Waterloo-IVC 3D Video Quality Database

Phase II is created from 6 pristine stereoscopic 3D videos, i.e., Barrier, Craft, Laboratory,

Soccer, Tree and Dancer, which were collected from previous subjective 3D video quality

studies [139, 100]. The details of the all test videos are given in Table 5.1. All videos are

in YUV4:2:0 format. Sample frames for each test sequence are shown in Figure 5.1 and

Figure 5.2.

Table 5.1: Test videos in Waterloo-IVC 3D Video Databases Phase I and Phase II

Resolution Length Frames/Second Views
Book 1024×768 6s 16.67 View 6 & View 8

Balloons 1024×768 10s 30.00 View 1 & View 3
Kendo 1024×768 10s 30.00 View 1 & View 3

Lovebird 1024×768 10s 30.00 View 4 & View 6

Barrier 1920×1080 10s 30.00 N/A
Craft 1920×1080 10s 30.00 N/A

Laboratory 1920×1080 10s 30.00 N/A
Soccer 1920×1080 10s 30.00 N/A
Tree 1920×1080 10s 30.00 N/A

Dancer 1920×1088 10s 30.00 View 1 & View 5

Waterloo-IVC 3D Video Database Phase I include stereoscopic 3D videos obtained

from symmetric and asymmetric transform-domain quantization coding followed by dif-

ferent levels of low-pass filtering. Each single-view video was compressed using an HEVC

encoder by five levels of transform-domain quantization with QP = {25, 35, 40, 45, 50}
in low-delay main profile. The single-view videos were employed to generate compressed
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(a) (b)

(c) (d)

Figure 5.1: Sample frames from the pristine videos used in the subjective study in Waterloo-
IVC 3D Video Database Phase I. Only the right-views are shown here. (a) Balloons. (b)
Book. (c) Kendo. (d) Lovebird.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Sample frames from the pristine videos used in the subjective study in Waterloo-
IVC 3D Video Database Phase II. Only the right-views are shown here. (a) Barrier. (b)
Craft. (c) Laboratory. (d) Soccer. (e) Tree. (f) Dancer.
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stereoscopic videos, either symmetrically or asymmetrically. There are 11 different kinds

of combinations as listed in Table 5.2. The lower and higher QP views are assigned to the

left-view or the right-view randomly. Moreover, for each QP combination, four levels of

Gaussian low-pass filtering with σ = {0, 3.5, 7.5, 11.5} are applied to the higher QP (lower

quality) views. Altogether, there are totally 176 3D videos in the database.

Waterloo-IVC 3D Video Database Phase II include various stereoscopic 3D videos ob-

tained from mixed-resolutions coding, asymmetric transform-domain quantization cod-

ing, their combinations, and different levels of low-pass filtering. Three choices of pre-

processing, i.e., pre-downsampling by 2, pre-downsampling by 4, and pre-processed low-

pass filtering with σ = 2.5, are applied to each single-view video. Then the single-view video

was compressed using an HEVC encoder by different levels of transform-domain quantiza-

tion with QP = {25, 30, 35, 40, 45} in low-delay main profile. The single-view videos were

employed to generate compressed stereoscopic videos after upsampling if needed, either

symmetrically or asymmetrically. Table 5.2 categorizes all combinations into nine groups

with detailed descriptions. The lower- and higher-quality views are assigned to the left-

or right-view randomly. Moreover, for each combination, two levels of Gaussian low-pass

filtering with σ = {3.5, 5.5} are applied to the lower-quality views. Altogether, there are

totally 222 2D videos and 528 3D videos in the database.

There are two unique features of the new databases (including both Phases I and II)

when compared with existing publicly known 3D-VQA databases. First, these are the

only databases that allow us to perform subjective test on both 2D and 3D videos. The

inclusion of 2D videos allows us to directly examine the relationship between the perceptual

quality of stereoscopic video and that of its single-view videos. This is advantageous against

previous studies which do not have ground truth of 2D video quality but have to rely on

objective 2D-VQA measures to provide estimates. Second, these are the only databases

that contain asymmetrically compressed stereoscopic videos from mixed-resolution coding,

asymmetric transform-domain quantization coding and their combinations, followed by

different levels of low-pass filtering. This provides the potential of a much stronger test on

3D-VQA models on their generalizability to real world applications. Such test has been

largely lacking in previous studies where the development of objective 3D-VQA models only

took into account asymmetric distortions of specific and very limited distortion types such
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Table 5.2: Test videos on Waterloo-IVC 3D Video Databases Phase I and Phase II

Waterloo-IVC 3D Video Database Phase I
Group # of Videos Description Combination
3D.1.a 4× 4 Symmetrically compressed stereoscopic videos

(QP1, QP2) = (25,25), (35,35), (40,40) and
(50,50)

3D.1.b 4× 4 Postprocessing P1 σ = 3.5
3D.1.c 4× 4 Postprocessing P3 σ = 7.5
3D.1.d 4× 4 Postprocessing P4 σ = 11.5
3D.2.a 4× 7 Asymmetrically compressed stereoscopic

videos (QP1, QP2) = (25,35), (25,40), (25,45),
(25,50), (35,45), (35,50) and (40,50)3D.2.b 4× 7 Postprocessing P1 σ = 3.5

3D.2.c 4× 7 Postprocessing P3 σ = 7.5
3D.2.d 4× 7 Postprocessing P4 σ = 11.5

Waterloo-IVC 3D Video Database Phase II
Group # of Videos Description Description
2D.1.a 6× 4 Compressed single-view videos

QP = 30, 35, 40 and 452D.1.b 6× 4 Postprocessing P1 σ = 3.5
2D.1.c 6× 4 Postprocessing P2 σ = 5.5
2D.2 6× 4 Compressed single-view videos with pre-

processing S1 σ = 2.5
QP = S1-30, S1-35, S1-40 and S1-45

2D.3.a 6× 4 Compressed single-view videos with pre-
downsampling by 2 QP = D2-25, D2-30, D2-35 and D2-40

2D.3.b 6× 4 Postprocessing P1 σ = 3.5
2D.3.c 6× 4 Postprocessing P2 σ = 5.5
2D.4.a 6× 3 Compressed single-view videos with pre-

downsampling by 4 QP = D4-20, D4-25 and D4-30
2D.4.b 6× 3 Postprocessing P1 σ = 3.5
2D.4.c 6× 3 Postprocessing P2 σ = 5.5

3D.3.a 6× 4 Symmetrically compressed stereoscopic videos
(QP1, QP2) = (30,30), (35,35), (40,40) and
(45,45)

3D.3.b 6× 4 Postprocessing P1 σ = 3.5
3D.3.c 6× 4 Postprocessing P2 σ = 5.5
3D.4.a 6× 6 Asymmetrically compressed stereoscopic

videos
(QP1, QP2) = (30,35), (30,40), (30,45),
(35,40), (35,45) and (40,45)

3D.4.b 6× 6 Postprocessing P1 σ = 3.5
3D.4.c 6× 6 Postprocessing P2 σ = 5.5
3D.5 6× 10 Asymmetrically compressed stereoscopic

videos with pre-processing S1 σ = 2.5
(QP1, QP2) = (30,S1-30), (30,S1-35), (30,S1-
40), (30,S1-45), (35,S1-35), (35,S1-40), (35,S1-
45), (40,S1-40), (40,S1-45) and (45,S1-45)

3D.6.a 6× 8 Asymmetrically compressed stereoscopic
videos with pre-downsampling by 2

(QP1, QP2) = (30,D2-25), (30,D2-30),
(30,D2-35), (35,D2-30), (35,D2-35),
(35,D2-40), (40,D2-35), (40,D2-40)3D.6.b 6× 8 Postprocessing P1 σ = 3.5

3D.6.c 6× 8 Postprocessing P2 σ = 5.5
3D.7.a 6× 8 Asymmetrically compressed stereoscopic

videos with pre-downsampling by 4
(QP1, QP2) = (30,D4-20), (30,D4-25),
(30,D4-30), (35,D4-25), (35,D4-30),
(35,D4-35), (40,D4-25), (40,D4-30)3D.7.b 6× 8 Postprocessing P1 σ = 3.5

3D.7.c 6× 8 Postprocessing P2 σ = 5.5
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as compression only. Meanwhile, a broader variety of test scenarios allows us to perform

a more comprehensive comparison on different variations of asymmetric stereoscopic video

coding schemes with symmetric coding methods and thus to evaluate their potential coding

gains.

5.2.2 Subjective Test

The subjective test was conducted in the Lab for Image and Vision Computing at University

of Waterloo. The test environment has no reflecting ceiling walls and floor, and was not

insulated by any external audible and visual pollution. An ASUS 27” VG278H 3D LED

monitor with NVIDIA 3D VisionTM2 active shutter glasses is used for the test. The default

viewing distance was 3.5 times the screen height. In the actual experiment, some subjects

did not feel comfortable with the default viewing distance and were allowed to adjust

the actual viewing distance around it. The details of the viewing conditions are given in

Table 3.17.

In Phase I, twenty-two näıve subjects, 12 males and 10 females aged between 22 and 35,

participated in the study. In Phase II, thirty-two näıve subjects, 20 males and 12 females

aged between 24 and 37, participated in the study. A 3D vision test was conducted first to

verify their ability to view stereoscopic 3D content and no one failed the vision test. As a

result, a total of twenty-two and thirty-two subjects proceeded to the formal test in Phase

I and Phase II, respectively. While a visual acuity test was not performed in this study, a

verbal confirmation was obtained prior to the experiment and subjects were asked to use

their eyeglasses or contact lenses to correct their visual acuities.

The subjects were asked to evaluate their overall 3D viewing experience − 3D video

quality (3DVQ) in this study. Since to visualize every stereoscopic 3D video, the subjects

need to make readjustment so as to adapt to the content of the scene and establish 3D

perception, using a double stimulus approach leads to interruptions of the viewing experi-

ence. To reduce this effect, we chose to use the single stimulus procedure using an 11-grade

numerical categorical scale protocol. A general introduction was given at the beginning of

the whole test, and more specific instructions and training session were given afterwards.

The rating strategy was introduced and the subjects were required to practice by giving

156



scores to training 2D/3D videos until they fully understood the criteria and built up their

own scoring strategies. For both Phase I and Phase II tests, we use three types of videos in

the training phase: pristine 2D/3D videos, moderately distorted 2D/3D videos, and highly-

distorted 2D/3D videos. The subjects were told to give scores at the high end (close to 10

pts) to the pristine 2D/3D videos, at the mid-range to the moderately distorted 2D/3D

videos, and at the low end (close to 0 pts) to the highly-distorted videos. With regard

to Phase II, we also found that the 2D perceptual quality of left- and right-view videos

are very close to each other at the same compression or postprocessing levels, and the

difference in their MOS is negligible. Thus in order to control the scale of this subjective

experiment, only one of the views were tested (randomly picked) in Group 2D.1 to Group

2D.4 in the formal test.

All stimuli were shown once in each test. However, there were 12 repetitions for single-

view or stereoscopic videos, which means that for each subject, her/his first 12 single-view

or stereoscopic videos were shown twice. The order of stimuli was randomized and the

consecutive testing stereoscopic videos were from different source contents. There are

three sessions for the 3D test in Phase I, while in Phase II, there are three sessions for the

2D test and nine sessions for the 3D test. Each single session, where around 80 single-

view or 60 stereoscopic videos were evaluated, was finished in 15 to 20 minutes. Sufficient

relaxation periods (5 minutes or more) were given between sessions. Thus in Phase I all

sessions were finished in 2 hours in one day. In Phase II, the test was scheduled on two

consecutive days for each subject. Day 1 (2 to 2.5 hours) was dedicated to all 2D sessions

and the first three 3D sessions and Day 2 (2 to 2.5 hours) to the remaining six 3D sessions.

Figure 5.3 shows the detailed procedure of our formal subjective test.

Moreover, we found that repeatedly switching between viewing 3D videos and grading

on a piece of paper or a computer screen is a tiring experience. To overcome this problem,

we asked the subject to speak out a score between 0 and 10, and a customized graphical

user interface on another computer screen was used by the instructor to record the score.

All these efforts were intended to reduce visual fatigue and discomfort of the subjects.
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3D Vision Test (5 
mins)

Phase II: 
Day 1

2D Test: 2DVQ 
Training (10 mins)

2D Test: 2DVQ Test 
(3 X 15 mins)

3D Test: 3DVQ 
Training  (10 mins)

3D Test: 3DVQ Test 
(3 X 20 mins)

3D Test: 3DVQ 
Training  (10 mins)

3D Test: 3DVQ Test 
(6 X 20 mins)

Phase II: 
Day 2

3D Vision Test (5 
mins)

3D Test: 3DVQ 
Training  (10 mins)

3D Test: 3DVQ Test 
(3 X 20 mins)

Phase I: 
Day 1

Figure 5.3: The procedure of the subjective test in Waterloo-IVC 3D Video Database
Phase I and Phase II.

5.2.3 Impact of Eye Dominance

Eye dominance is a common visual phenomenon, referring to the tendency to prefer the in-

put from one eye to the other, depending on the human subject [67]. When studying visual

quality of asymmetrically compressed stereoscopic videos, it is important to understand if

eye dominance plays a significant role in the subjective test results. For this purpose, we

carried out a separate analysis on the impact of eye dominance in the perception of asym-

metrically compressed stereoscopic videos in Phase II. The side of the dominant eye under

static conditions was checked first by Rosenbach’s test [107]. This test examines which

eye determines the position of a finger when the subject is asked to point to an object.

Among thirty-two subjects who finished the formal test in Phase II, thirteen subjects (8

males, 5 females) are left-eye dominant, and the others (12 males, 7 females) are right-eye

dominant.

The 3DVQ MOS scores for each video in Phase II were computed for left-eye dominant

subjects and right-eye dominant subjects, denoted as 3DVQL and 3DVQR, respectively.

We employed the one-sample t-test to obtain a test decision for the null hypothesis that

the difference between 3DVQL and 3DVQR, i.e., 3DVQD = 3DVQL− 3DVQR, comes from

a normal distribution of zero-mean and unknown variance. The alternative hypothesis is

that the population distribution does not have a mean equaling zero. The result h is 1
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if the test rejects the null hypothesis at the 5% significance level, and 0 otherwise. The

returned p-values for different test video groups are reported in Table 5.3. From Table 5.3,

it can be seen that the null hypothesis cannot be rejected at the 5% significance level,

which indicates that the impact of eye dominance in the perception of asymmetrically

compressed stereoscopic videos is insignificant.

Table 5.3: p-values from the one-sample t-test for different test video groups

Group p-values
Group 3D.3.a 0.5901
Group 3D.4.a 0.4255

Group 3D.3.b-c and Group 3D.4.b-c 0.1401
Group 3D.5 0.6637

Group 3D.6.a 0.6833
Group 3D.6.b-c 0.3172
Group 3D.7.a 0.4379

Group 3D.7.b-c 0.3495

It is worth noting that similar conclusions were reached in our earlier studies on the

impact of eye dominance on the quality of asymmetrically distorted stereoscopic images in

Section 3.4 and on the depth perception induced by stereo cues of asymmetrically distorted

stereograms in Section 4.3.5. These observations are consistent with the “stimulus” view

of rivalry that is widely accepted in the field of visual neuroscience [15]. A comprehensive

review and discussion on “stimulus” rivalry versus “eye” rivalry can be found in [15, 81].

5.3 Analysis and Findings

5.3.1 Relationship between 2D and 3D Video Quality

The raw 2D video quality (2DVQ) and 3DVQ scores given by each subject were converted to

Z-scores, respectively. Then the entire data sets were rescaled to fill the range from 1 to 100

and the MOS scores for each 2D and 3D video was computed after removing outliers [101].

Given the subjective 2D and 3D data, we are interested in how single-view 2D video
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quality predicts stereoscopic 3D video quality, especially for the case of asymmetrically

compressed and post-processed stereoscopic videos. The most straightforward 2D-to-3D

quality prediction method is to average the qualities of the left- and right-view videos.

Table 5.4 shows PLCC, SRCC, KRCC, RMSE and MAE values between 3DVQ-MOS scores

and average 2DVQ-MOS scores (Phase II Only), where the 2D-IQA/VQA measurements

include PSNR, SSIM, MS-SSIM [158], IW-SSIM [154], and VQM [102] for all stereoscopic

videos in Phase I and Phase II. Table 5.5 and Table 5.6 reports PLCC, SRCC, KRCC,

RMSE and MAE values for different test video groups in Phase I and Phase II, respectively.

PLCC, RMSE and MAE are adopted to evaluate prediction accuracy [46] and SRCC and

KRCC are employed to assess prediction monotonicity [46]. Higher PLCC, SRCC and

KRCC and lower RMSE and MAE values indicate better consistency with human opinions

of quality. PLCC, RMSE and MAE are usually computed after a nonlinear mapping

between the subjective and objective scores and the results may be sensitive to the choice

of the mapping function. SRCC and KRCC are nonparametric rank order-based correlation

metrics, independent of any monotonic nonlinear mapping between subjective and objective

scores but do not explicitly estimate the accuracy of quality prediction.

In Table 5.5 and Table 5.6, we first compare the performance of symmetrically com-

pressed 3D videos without postprocessing against asymmetrically compressed 3D videos

without postprocessing. Unsurprisingly, accurate predictions are obtained in the category

of symmetrically compressed 3D videos. By contrast, the performance drops for asymmet-

rically compressed 3D videos. In Section 3.5.2, we reported that for JPEG compression,

average prediction overestimates 3D quality (or 3D quality is more affected by the poorer

quality view). More importantly we found that for blockiness, the bias of the averag-

ing prediction model increases with the level of distortions, and thus whether the bias is

pronounced depends on the quality range being investigated. With respect to blockiness

created from HEVC compression, this overestimated prediction bias is still pronounced,

but not as strong as JPEG compression, which is likely due to the reduction of blocking

artifacts in HEVC.

We then compare the performance of compressed 3D videos without postprocessing

against compressed 3D videos with postprocessing. From Table 5.5 and Table 5.6, it can be

observed that the direct averaging model performs well for 3D videos without postprocess-
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Table 5.4: Performance comparison of 2D-to-3D quality prediction models on Waterloo-
IVC 3D Video Databases Phase I and Phase II

Waterloo-IVC 3D Video Database Phase I
Method PLCC SRCC KRCC RMSE MAE

Average 2DVQ-PSNR 0.7085 0.5336 0.3849 15.4507 12.5201
Weighted 2DVQ-PSNR 0.8980 0.8366 0.6150 9.6344 7.3743

Average SSIM 0.3964 0.2872 0.2065 20.1010 16.4217
Weighted SSIM 0.8905 0.8393 0.6553 9.9615 7.7379

Average MS-SSIM 0.4072 0.2969 0.2142 19.9978 16.3647
Weighted MS-SSIM 0.8838 0.8287 0.6458 10.2448 7.9117
Average IW-SSIM 0.4833 0.2787 0.1943 19.1683 15.5577
Weighted IW-SSIM 0.8942 0.8364 0.6514 9.8035 7.5736

Average VQM 0.7912 0.6321 0.4648 13.3905 10.6730
Weighted VQM 0.9191 0.8655 0.6860 8.6273 6.6545

Waterloo-IVC 3D Video Database Phase II
Method PLCC SRCC KRCC RMSE MAE

Average 2DVQ-MOS 0.6912 0.6277 0.4530 8.9039 7.2380
Weighted 2DVQ-MOS 0.8829 0.8727 0.6873 5.7849 4.5634

Average PSNR 0.3699 0.3414 0.2368 11.4465 8.9958
Weighted PSNR 0.5590 0.5109 0.3552 10.2154 8.0058
Average SSIM 0.3303 0.2589 0.1777 11.6291 9.2110
Weighted SSIM 0.7571 0.7309 0.5375 8.0487 6.6116

Average MS-SSIM 0.3034 0.2503 0.1724 11.7395 9.3157
Weighted MS-SSIM 0.6813 0.6377 0.4565 9.0188 7.3775
Average IW-SSIM 0.3243 0.2459 0.1699 11.6545 9.1862
Weighted IW-SSIM 0.7677 0.7423 0.5498 7.8943 6.2250

Average VQM 0.7019 0.6287 0.4491 8.7759 6.9395
Weighted VQM 0.8496 0.8042 0.6017 6.4976 5.0903
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Table 5.5: Performance comparison of 2D-to-3D quality prediction models on Waterloo-
IVC 3D Video Database Phase I

PLCC SRCC KRCC RMSE MAE
Method Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym.

Average PSNR 0.9839 0.8217 0.9581 0.8226 0.8619 0.6436 5.3453 10.8551 4.1647 8.1225
Weighted PSNR 0.9839 0.8798 0.9581 0.8311 0.8619 0.6489 5.3437 9.0531 4.1615 6.9529
Average SSIM 0.9876 0.8560 0.9478 0.7960 0.8285 0.6223 4.6806 9.8468 4.0762 8.4597
Weighted SSIM 0.9877 0.8843 0.9478 0.8335 0.8285 0.6489 4.6782 8.8952 4.0733 7.6126

Average MS-SSIM 0.9851 0.8445 0.9478 0.7990 0.8285 0.6277 5.1417 10.2018 4.5230 8.7625
Weighted MS-SSIM 0.9851 0.8746 0.9478 0.8363 0.8285 0.6489 5.1391 9.2357 4.5202 7.9473
Average IW-SSIM 0.9937 0.9304 0.9581 0.9017 0.8452 0.7447 3.3373 6.9836 2.8170 5.5954
Weighted IW-SSIM 0.9937 0.9322 0.9581 0.9012 0.8452 0.7341 3.3379 6.8942 2.8181 5.5290

Average VQM 0.9876 0.8831 0.9669 0.8283 0.8787 0.6436 4.6878 8.9408 3.8242 6.7432
Weighted VQM 0.9876 0.8770 0.9669 0.8527 0.8787 0.6755 4.6893 9.1511 3.8347 7.2326

Symmetric compression: Group 3D.1.a; Asymmetric compression: Group 3D.1.b.
PLCC SRCC KRCC RMSE MAE

Method N.P. W.P. N.P. W.P. N.P. W.P. N.P. W.P. N.P. W.P.
Average PSNR 0.9131 0.7382 0.8922 0.6580 0.7416 0.4860 9.6120 18.7419 7.2835 14.3622
Weighted PSNR 0.9146 0.8750 0.8831 0.8165 0.7268 0.6270 9.5338 10.1255 7.5099 8.2308
Average SSIM 0.9193 0.4824 0.9028 0.2621 0.7438 0.1869 9.2752 18.3211 7.6274 14.3547
Weighted SSIM 0.9358 0.8876 0.9197 0.8056 0.7629 0.6184 8.3072 9.6338 6.9238 7.5056

Average MS-SSIM 0.9132 0.5315 0.9009 0.2701 0.7416 0.1918 9.6036 17.7168 7.8953 13.8141
Weighted MS-SSIM 0.9299 0.8798 0.9202 0.7896 0.7629 0.6040 8.6678 9.9415 7.2522 7.6940
Average IW-SSIM 0.9601 0.5935 0.9446 0.3262 0.8117 0.2299 6.5882 16.8340 5.3686 13.1710
Weighted IW-SSIM 0.9641 0.8977 0.9491 0.8135 0.8180 0.6272 6.2567 9.2176 5.0623 6.9820

Average VQM 0.9265 0.8733 0.9076 0.7140 0.7607 0.5365 8.8679 10.1899 6.7266 8.2099
Weighted VQM 0.9282 0.9341 0.9041 0.8414 0.7544 0.6602 8.7715 7.4652 6.8871 5.8199

No Postprocessing: Group 3D.1.a and Group 3D.2.a; With Postprocessing: Group 3D.1.b-d and Group 3D.2.b-d.

162



Table 5.6: Performance comparison of 2D-to-3D quality prediction models on Waterloo-
IVC 3D Video Database Phase II

PLCC SRCC KRCC RMSE MAE
Method Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym. Sym. Asym.

Average 2DVQ-MOS 0.9676 0.8645 0.9470 0.8387 0.8116 0.6512 5.2708 6.3878 4.0883 5.3093
Weighted 2DVQ-MOS 0.9676 0.9002 0.9470 0.8984 0.8116 0.7225 5.2708 5.5350 4.0883 4.4378

Average PSNR 0.7717 0.3718 0.7191 0.3323 0.5217 0.2289 13.2946 11.7976 11.1093 9.6099
Weighted PSNR 0.7716 0.5027 0.7191 0.4468 0.5217 0.3122 13.2957 10.9864 11.1104 8.8680
Average SSIM 0.9236 0.5454 0.8974 0.5332 0.7246 0.3721 8.0089 10.6524 6.6367 8.6164
Weighted SSIM 0.9236 0.7625 0.8974 0.7610 0.7246 0.5602 8.0091 8.2224 6.6369 6.7762

Average MS-SSIM 0.8733 0.4658 0.8609 0.4431 0.6739 0.3025 10.1749 11.2459 8.4206 9.1572
Weighted MS-SSIM 0.8733 0.6697 0.8609 0.6534 0.6739 0.4647 10.1751 9.4382 8.4207 7.7728
Average IW-SSIM 0.9335 0.5460 0.9209 0.5253 0.7754 0.3680 7.4910 10.6476 6.4055 8.5251
Weighted IW-SSIM 0.9335 0.7836 0.9209 0.7828 0.7754 0.5834 7.4923 7.8957 6.4065 6.2687

Average VQM 0.9586 0.8107 0.9226 0.7731 0.7319 0.5788 5.9446 7.4397 5.0367 5.8921
Weighted VQM 0.9586 0.8633 0.9226 0.8457 0.7319 0.6473 5.9448 6.4137 5.0372 5.0633

Symmetric compression: Group 3D.3.a; Asymmetric compression: Group 3D.4.a, Group 3D.5, Group 3D.6.a and Group 3D.7.a.
PLCC SRCC KRCC RMSE MAE

Method N.P. W.P. N.P. W.P. N.P. W.P. N.P. W.P. N.P. W.P.
Average 2DVQ-MOS 0.8769 0.7800 0.8540 0.7394 0.6718 0.5499 6.6768 6.9184 5.4546 5.3439
Weighted 2DVQ-MOS 0.9144 0.8603 0.9097 0.8414 0.7425 0.6479 5.6234 5.6356 4.4358 4.4276

Average PSNR 0.4205 0.4204 0.3811 0.3772 0.2627 0.2711 12.6039 10.0312 10.1841 7.5662
Weighted PSNR 0.5411 0.5773 0.4905 0.5385 0.3445 0.3767 11.6823 9.0271 9.4612 6.9474
Average SSIM 0.5841 0.2596 0.5694 0.2459 0.4017 0.1706 11.2760 10.6766 9.0407 8.1984
Weighted SSIM 0.7890 0.7493 0.7835 0.7084 0.5851 0.5199 8.5352 7.3217 7.1101 5.8585

Average MS-SSIM 0.5111 0.2911 0.4868 0.2286 0.3359 0.1621 11.9400 10.5769 9.7166 8.0969
Weighted MS-SSIM 0.7040 0.6708 0.6864 0.6014 0.4951 0.4295 9.8656 8.1992 8.2704 6.5705
Average IW-SSIM 0.5710 0.3875 0.5520 0.3427 0.3896 0.2391 11.4040 10.1920 9.0301 7.8493
Weighted IW-SSIM 0.8068 0.7588 0.8002 0.7159 0.6051 0.5277 8.2076 7.2011 6.5355 5.5883

Average VQM 0.8231 0.8051 0.7911 0.7155 0.5981 0.5158 7.8901 6.5569 6.1850 5.2176
Weighted VQM 0.8840 0.8326 0.8674 0.7590 0.6777 0.5500 6.4932 6.1242 5.1306 4.7356

No Postprocessing: Group 3D.3.a, Group 3D.4.a, Group 3D.5, Group 3D.6.a and Group 3D.7.a;
With Postprocessing: Group 3D.3.b-c, Group 3D.4.b-c, Group 3D.6.b-c and Group 3D.7.b-c.
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Figure 5.4: 3DVQ-MOS versus predictions from 2DVQ-MOS of 2D left- and right-views
on Waterloo-IVC 3D Video Database Phase II. (a) Average of 2DVQ-MOS. (b) Weighted
average of 2DVQ-MOS by the proposed method.

ing (by Gaussian blurring). By contrast, the correlation values drop significantly for videos

with postprocessing. The Figure 5.4 and Figure 5.5 to Figure 5.9 show the correspond-

ing scatter plots between 3DVQ-MOS scores and 2DVQ-MOS scores or 2D-IQA/VQA

measurements, where the simple averaging prediction model generates substantial bias on

many stereoscopic videos. In Section 3.5.2, we reported that for blurriness, average predic-

tion often underestimates 3D quality (or 3D quality is more affected by the better quality

view). Here the same kind of prediction bias is clearly observed, as direct averaging of

state-of-the-art 2D-IQA/VQA metrics always underestimates 3D video quality for these

post-processed videos.

5.3.2 Quality of Asymmetric Stereoscopic Video with Postpro-

cessing

Given the subjective data, the second question we would like to ask is how Gaussian low-

pass post-filtering affects the perceptual 3D quality of asymmetrically compressed stereo-
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Figure 5.5: 3DVQ-MOS versus predictions from 2D-IQA/VQA estimations of 2D left- and
right-views. (a) Average of PSNR on Waterloo-IVC Phase I. (b) Weighted average of PSNR
by the proposed method on Waterloo-IVC Phase I. (c) Average of PSNR on Waterloo-IVC
Phase II. (d) Weighted average of PSNR by the proposed method on Waterloo-IVC Phase
II.
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Figure 5.6: 3DVQ-MOS versus predictions from 2D-IQA/VQA estimations of 2D left- and
right-views. (a) Average of SSIM on Waterloo-IVC Phase I. (b) Weighted average of SSIM
by the proposed method on Waterloo-IVC Phase I. (c) Average of SSIM on Waterloo-IVC
Phase II. (d) Weighted average of SSIM by the proposed method on Waterloo-IVC Phase
II.
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Figure 5.7: 3DVQ-MOS versus predictions from 2D-IQA/VQA estimations of 2D left- and
right-views. (a) Average of MS-SSIM on Waterloo-IVC Phase I. (b) Weighted average of
MS-SSIM by the proposed method on Waterloo-IVC Phase I. (c) Average of MS-SSIM on
Waterloo-IVC Phase II. (d) Weighted average of MS-SSIM by the proposed method on
Waterloo-IVC Phase II.

167



Average IW-SSIM
0.7 0.75 0.8 0.85 0.9 0.95 1

3D
V

Q
-M

O
S

0

20

40

60

80

100

No Postprocess.
With Postprocess.

(a)

Weighted IW-SSIM
0.7 0.75 0.8 0.85 0.9 0.95 1

3D
V

Q
-M

O
S

0

20

40

60

80

100

No Postprocess.
With Postprocess.

(b)

Average IW-SSIM
0.7 0.75 0.8 0.85 0.9 0.95 1

3D
V

Q
-M

O
S

0

20

40

60

80

100

No Postprocess.
With Postprocess.

(c)

Weighted IW-SSIM
0.7 0.75 0.8 0.85 0.9 0.95 1

3D
V

Q
-M

O
S

0

20

40

60

80

100

No Postprocess.
With Postprocess.

(d)

Figure 5.8: 3DVQ-MOS versus predictions from 2D-IQA/VQA estimations of 2D left- and
right-views. (a) Average of IW-SSIM on Waterloo-IVC Phase I. (b) Weighted average of
IW-SSIM by the proposed method on Waterloo-IVC Phase I. (c) Average of IW-SSIM on
Waterloo-IVC Phase II. (d) Weighted average of IW-SSIM by the proposed method on
Waterloo-IVC Phase II.
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Figure 5.9: 3DVQ-MOS versus predictions from 2D-IQA/VQA estimations of 2D left- and
right-views. (a) Average of VQM on Waterloo-IVC Phase I. (b) Weighted average of VQM
by the proposed method on Waterloo-IVC Phase I. (c) Average of VQM on Waterloo-IVC
Phase II. (d) Weighted average of VQM by the proposed method on Waterloo-IVC Phase
II.
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scopic videos. Table 5.7 and Table 5.8 report 3DVQ-MOS changes after applying different

levels of Gaussian low-pass filtering with respect to different QP combinations and blurring

levels for Phase I and Phase II, respectively. It can be observed that for symmetrically

compressed 3D videos, blurring reduces perceptual 3D video quality in most cases. By

contrast, for asymmetrically compressed 3D videos, blurring on the lower quality views

improves the perceptual 3D video quality when the quality difference of left- and right-

view is high. Generally, the improvement increases with the level of blurring and with the

quality difference between the higher view and the lower view. Table 5.8 also includes the

cases of asymmetrically compressed stereoscopic videos with pre-downsampling by factors

of 2 and 4, where it can be seen that this 3DVQ-MOS improvement is less pronounced

especially for the case of pre-downsampling by 4. This analysis verifies that the adop-

tion of certain postprocessing techniques such as blurring could improve the efficiency of

stereoscopic video coding but may not always work well for the cases of pre-downsampling.

Table 5.7: 3DVQ-MOS changes after applying different levels of Gaussian blurring as
postprocessing on Waterloo-IVC 3D Video Database Phase I

Combinations 3DVQ-MOS Changes
QPl QPh P1 σ = 3.5 P3 σ = 7.5 P4 σ = 11.5
25 25 -10.96 -16.15 -11.35
35 35 -0.19 -7.31 -4.81
40 40 -3.46 +0.19 -1.35
50 50 +1.54 +1.15 -0.96
25 35 -2.50 -3.27 -1.35
25 40 +7.69 +6.92 +7.12
25 45 +2.12 +16.92 +14.23
25 50 +14.81 +31.35 +27.12
35 45 +11.92 +13.08 +17.50
35 50 +11.35 +24.23 +29.62
40 50 +7.31 +16.35 +19.42

170



Table 5.8: 3DVQ-MOS changes after applying different levels of Gaussian blurring as post-
processing on Waterloo-IVC 3D Video Database Phase II

Original Resolution
Combinations 2DVQ-MOS 3DVQ-MOS Changes
QPl QPh 2DVQh 2DVQl P1 σ = 3.5 P2 σ = 5.5
30 30 97.85 97.85 -12.58 -11.61
35 35 90.04 90.04 -7.40 -7.40
40 40 69.10 69.10 -1.67 -5.32
45 45 48.75 48.75 +9.68 +6.40
30 35 97.85 90.04 -1.93 -3.76
30 40 97.85 69.10 +5.72 +3.62
30 45 97.85 48.75 +7.80 +11.40
35 40 90.04 69.10 +1.66 +2.52
35 45 90.04 48.75 +5.54 +5.48
40 45 69.10 48.75 +2.35 +0.90

Downsample by 2
Combinations 2DVQ-MOS 3DVQ-MOS Changes
QPl QPh 2DVQh 2DVQl P1 σ = 3.5 P2 σ = 5.5
30 D2-25 97.85 85.75 -1.34 -3.66
30 D2-30 97.85 76.83 -3.76 -5.22
30 D2-35 97.85 61.18 +0.43 -0.91
35 D2-30 90.04 76.83 +1.18 -1.99
35 D2-35 90.04 61.18 +4.14 +3.39
35 D2-40 90.04 39.73 +6.45 +6.88
40 D2-35 69.10 61.18 +1.40 -0.81
40 D2-40 69.10 39.73 +2.10 +1.94

Downsample by 4
Combinations 2DVQ-MOS 3DVQ-MOS Changes
QPl QPh 2DVQh 2DVQl P1 σ = 3.5 P2 σ = 5.5
30 D4-25 97.85 57.58 +2.47 +0.81
30 D4-30 97.85 50.75 -0.97 -2.58
30 D4-35 97.85 39.73 +1.72 -1.02
35 D4-25 90.04 57.58 +0.59 -1.05
35 D4-30 90.04 50.75 -1.02 -2.69
35 D4-35 90.04 39.73 +1.94 -0.05
40 D4-25 69.10 57.58 +3.12 +3.49
40 D4-30 69.10 50.75 +5.97 +1.94
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5.3.3 Rate-Distortion Performance of Mixed Distortions Asym-

metric Stereoscopic Video

The third question we would like to ask is what is the rate-distortion (R-D) performance of

different mixed-distortions asymmetric stereoscopic video coding schemes. Table 5.9 and

Table 5.10 report the so-called Bjontegaard delta rate (BD-Rate) in terms of 3DVQ-MOS

by comparing the mixed-distortions asymmetric stereoscopic video coding schemes with the

symmetric coding method for each test sequence in Phase I and Phase II, respectively [13].

It can be seen that most mixed-distortions asymmetric stereoscopic video coding schemes

achieve better R-D performance over the symmetric coding method (Group 3D.1.a in Phase

I and Group 3D.3.a in Phase II).

Table 5.9: R-D Performance comparisons of asymmetric stereoscopic video coding in terms
of 3DVQ-MOS on Waterloo-IVC 3D Video Database Phase I (Anchor: symmetric stereo-
scopic video coding)

3DVQ-MOS
Group Balloons Book Kendo Lovebird Average
3D.2.a +88.3% +37.5% +55.8% +164.2% +86.4%
3D.2.b +60.2% +16.0% +39.4% +50.6% +41.6%
3D.2.c -16.8% -0.6% +23.2% -26.1% -5.1%
3D.2.d -25.7% -30.0% -14.4% -9.5% -19.9%

For Phase I, the asymmetric compression-only scheme (Group 3D.2.a) degrades the R-D

performance significantly due to the fact that 3D quality had a tendency towards the lower

quality view with respect to blockiness [142]. However, this degradation is less pronounced

and is even reverted when we increase the level of Gaussian low-pass post-filtering (Group

3D.2.b-d), but the optimal level of this postprocessing is content dependent.

For Phase II, similarly, the asymmetric compression plus postprocessing scheme (Group

3D.4.b-c) improves the R-D performance while the asymmetric compression-only scheme

(Group 3D.4.a) reduces the R-D performance. It can also be observed that the proposed

pre-downsampling plus postprocessing asymmetric coding schemes perform even better

than the asymmetric compression plus postprocessing scheme, which is consistent with the
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Table 5.10: R-D Performance comparisons of asymmetric stereoscopic video coding on
Waterloo-IVC 3D Video Database Phase II (Anchor: symmetric stereoscopic video coding)

3DVQ-MOS
Group Barrier Craft Laboratory Soccer Tree Undo Average
3D.4.a +8.4% +10.1% +11.3% +3.9% +7.9% +16.8% +9.7%
3D.4.b -7.2% -8.3% -17.1% -7.7% -5.4% -11.1% -9.5%
3D.4.c -10.5% -12.9% -14.4% +0.6% -9.1% -12.6% -9.8%
3D.5 -22.0% -6.8% -11.5% -8.6% -14.6% -8.4% -12.0%
3D.6.a -13.8% -8.2% -9.0% -17.9% -9.9% -9.7% -11.4%
3D.6.b -32.3% -17.3% -16.1% -16.3% -31.8% -19.4% -22.2%
3D.6.c -17.8% -22.1% -11.3% -13.7% -25.4% -13.9% -17.4%
3D.7.a -28.5% -13.4% -11.6% -6.5% -28.8% -15.9% -17.5%
3D.7.b -27.0% -14.5% -17.2% -14.3% -25.6% -14.3% -18.8%
3D.7.c -27.2% -14.4% -16.6% -10.2% -19.0% -7.2% -15.7%

Average 2DVQ-MOS
Group Barrier Craft Laboratory Soccer Tree Undo Average
3D.4.a +12.3% +13.4% +11.2% +23.8% +19.0% +22.3% +17.0%
3D.4.b +35.6% +33.7% +24.3% +103.3% +109.9% +43.6% +58.4%
3D.4.c +148.9% +79.0% +56.9% +208.5% +405.1% +97.1% +165.9%
3D.5 -7.0% -10.9% -10.3% +4.5% -4.4% -3.7% -5.3%
3D.6.a +5.9% +7.0% +2.7% +34.5% +17.3% +19.9% +14.5%
3D.6.b +42.4% +39.3% +16.7% +110.0% +110.2% +55.0% +62.3%
3D.6.c +132.0% +98.7% +68.7% +194.3% +366.2% +97.7% +159.6%
3D.7.a +23.6% +20.9% +5.4% +92.4% +45.8% +26.9% +35.8%
3D.7.b +64.4% +62.3% +38.9% +124.9% +149.1% +60.3% +83.3%
3D.7.c +146.0% +106.6% +91.3% +199.8% +438.4% +111.4% +182.3%

Weighted 2DVQ-MOS
Group Barrier Craft Laboratory Soccer Tree Undo Average
3D.4.a +10.1% +10.0% +9.6% +19.4% +13.0% +17.3% +13.2%
3D.4.b -15.4% -9.4% -10.6% -7.4% -13.8% -8.3% -10.8%
3D.4.c -9.6% -5.2% -12.6% -2.8% -12.6% -1.9% -7.4%
3D.5 -13.7% -12.6% -9.6% -10.6% -13.1% -9.5% -11.5%
3D.6.a -16.1% -10.1% -10.0% -8.2% -16.3% -5.4% -11.0%
3D.6.b -23.9% -14.6% -20.0% -14.3% -24.0% -14.0% -18.5%
3D.6.c -21.0% -10.0% -18.0% -12.5% -21.9% -11.0% -15.7%
3D.7.a -23.3% -13.3% -16.1% -12.2% -24.2% -13.7% -17.2%
3D.7.b -24.0% -10.8% -15.5% -16.2% -24.0% -12.8% -17.2%
3D.7.c -21.2% -9.1% -15.3% -14.6% -21.6% -8.8% -15.1%
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previous subjective studies [3] that mixed-resolution stereoscopic video coding can achieve

the best coding efficiency. By comparing different postprocessing levels, it is found that

the scheme that applies pre-downsampling by a factor of 2 followed by postprocessing P1

(σ = 3.5), (i.e., Group 3D.6.b), provides the best overall performance. It is also interesting

to note that for the case of no pre-downsampling or pre-downsampling by 2, the proposed

postprocessing step increases the R-D performance significantly; while for the case of pre-

downsampling by 4, the proposed postprocessing does not help in improving the R-D

performance.

5.4 A Model for 2D-to-3D Quality Prediction

5.4.1 2D Video Quality Prediction

We first examine the capabilities of state-of-the-art 2D-IQA/VQA methods to predict

perceptual quality of single-view 2D videos with different pre- and post- processing proce-

dures. The tested full reference 2D-IQA/VQA methods include PSNR, SSIM, MS-SSIM,

IW-SSIM, and VQM. Table 5.11 reports PLCC, SRCC and RMSE results between 2DVQ-

MOS scores and 2D-IQA/VQA measurements, where it can be observed that IW-SSIM

and VQM provide the most accurate quality predictions.

Table 5.11: Performance comparison of 2D-to-3D quality prediction models on Waterloo-
IVC 3D Video Database Phase II

Method PLCC SRCC KRCC RMSE MAE
PSNR 0.7122 0.6488 0.4816 16.8383 13.2672
SSIM 0.8371 0.7660 0.5853 13.1235 10.5683

MS-SSIM 0.7787 0.7116 0.5368 15.0502 12.1960
IW-SSIM 0.8821 0.8474 0.6604 11.2982 9.0892

VQM 0.8997 0.8665 0.6926 10.4689 8.1712
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5.4.2 2D-to-3D Quality Prediction

The diagram of the proposed method is shown in Figure 5.10. Let (Ii,r,l, Ii,r,r) and (Ii,d,l,

Ii,d,r) be the i-th left and right frames of the reference and compressed stereoscopic videos,

respectively. We first create their local energy maps by computing the local variances

at each spatial location, i.e., the variances of local image patches extracted around each

spatial location, for which an 11 × 11 circular-symmetric Gaussian weighting function

w = {wi|i = 1, 2, · · · , N} with standard deviation of 1.5 samples, normalized to unit sum

(
∑N

i=1wi = 1), is employed. The resulting energy maps are denoted as Ei,r,l, Ei,r,r, Ei,d,l

and Ei,d,r, respectively. We then compute the local energy ratio maps in both views:

Ri,l =
Ei,d,l
Ei,r,l

and Ri,r =
Ei,d,r
Ei,r,r

. (5.1)

The energy ratio maps provide useful local binocular rivalry information, which may be

combined with the qualities of single-view frames to predict 3D quality. A pooling stage

is necessary for this purpose. High-energy image regions are likely to contain more infor-

mation content. Based on the principle exploited in [154], if the ultimate goal of visual

perception is to efficiently extract useful information from the visual scene, then the more

informative regions are more likely to attract visual attention, and thus should be given

more importance. The modeling in [154] suggests more informative regions typically have

higher energy. To emphasize on the importance of high-energy image regions in binocular

rivalry, we adopt an energy weighted pooling method [156] given by

gi,l =

∑
Ei,d,lRi,l∑
Ei,d,l

and gi,r =

∑
Ei,d,rRi,r∑
Ei,d,r

, (5.2)

where the summations are over the full energy and ratio maps. Here gi,l and gi,r are

estimations of the level of dominance of the i-th left and right frames, respectively. Let N

denotes the frame number of the entire 3D video sequence, we compute

gl =
1

N

N∑
i=1

gi,l and gr =
1

N

N∑
i=1

gi,r , (5.3)
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Figure 5.10: Diagram of the proposed 2D-to-3D quality prediction model.

where gl and gr denote the level of dominance of the left- and right-view video, respectively.

If we consider a video signal as 3-D volume data, then it can also be viewed from the

side or the top. This has been explored by the poly-view fusion method, which has been

shown as a simple and effective strategy to account for the temporal correlation and motion

information contained in video signals [172, 171]. Instead of only estimating the level of

dominance form the front-view, here we apply a poly-view fusion strategy to estimate the

overall level of dominance from the front-view, the top-view, and the side-view together.

We first compute the levels of dominance using Equation (5.1) to Equation (5.3) for the

front-view, the top-view, and the side-view, separately, and denote them as gFl , gTl and

gSl for the left-view video, and gFr , gTr and gSr for the right-view video, respectively. Then

the overall level of dominance of the left- and right-view video after poly-view fusion is

computed as

gOl = gFl + gTl + gSl and gOr = gFr + gTr + gSr , (5.4)

respectively.

Given the values of gOl and gOr , the weights assigned to the left- and right-view videos
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are given by

wl =
gOl

2

gOl
2

+ gOr
2

and wr =
gOr

2

gOl
2

+ gOr
2
, (5.5)

respectively.

Finally, the overall prediction of 3D video quality is calculated by a weighted average

of the left- and right-view video quality:

Q3D = wlQ
2D
l + wrQ

2D
r , (5.6)

where Q2D
l and Q2D

r denote the 2D video quality of the left- and right-view videos, respec-

tively.

5.4.3 Validation

The proposed 2D-to-3D video quality prediction model is tested on all 3D videos in the

new database by applying it to the ground truth 2DVQ-MOS scores (Phase II only) and

different base 2D-IQA approaches (Phase I and Phase II).

The PLCC, SRCC and RMSE values between 3DVQ-MOS and the predicted Q3D value

are given in Table 5.4 (all videos), Table 5.5 (different groups in Phase I) and Table 5.6

(different groups in Phase II). The corresponding scatter plots are shown in Figure 5.4

to Figure 5.9. It can be observed that the proposed 2D-to-3D model outperforms the

direct averaging method significantly with respect to 2DVQ-MOS scores and all tested

2D-IQA/VQA approaches. For different levels of compressions, pre- and post- processing,

the proposed method, which does not attempt to recognize the distortion types or give any

specific treatment, removes or significantly reduces the 2D-to-3D quality prediction biases.

Furthermore, the R-D performance of different variations of asymmetric stereoscopic

video coding in terms of the average and weighted 2DVQ-MOS for each test sequence in

Phase II are reported in Table 5.10. Again, we use the BD-Rate as the test criterion,

which provides a useful quantitative measure to evaluate the R-D performance. From

Table 5.10, it can be seen that, compared with the bit rate savings measured by 3DVQ-

MOS, the direct averaging 2DVQ-MOS generates substantial bias for all sequences and
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all mixed-distortions combinations. On the other hand, the proposed weighting 2DVQ-

MOS significantly reduces the biases and indicates highly consistent bit rate savings with

3DVQ-MOS. This demonstrates great potentials of the proposed method to be employed

in perceptually inspired R-D optimization of stereoscopic video coding systems.

5.5 Summary

The major contributions of this chapter are as follows: first, we carried out subjective qual-

ity assessment experiments on two databases (Waterloo-IVC 3D Video Database Phase

I and Phase II) that contain various asymmetrically compressed stereoscopic 3D videos

obtained from mixed-resolution coding, asymmetric transform-domain quantization cod-

ing, their combinations, and multiple choices of postprocessing techniques. Second, we

compared different mixed-distortions asymmetric stereoscopic video coding schemes with

symmetric coding methods and verified their potential coding gains. Third, we observed

a strong systematic bias when using direct averaging of 2D video quality of both views to

predict 3D video quality. Fourth, we proposed a model to account for the prediction bias,

leading to significantly improved quality predictions of stereoscopic videos. Fifth, we show

that the proposed model can help us predict the coding gain of mixed-distortions asym-

metric video compression, and provides new insight on the development of high efficiency

3D video coding schemes.
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Chapter 6

Quality Assessment of

Multi-View-Plus-Depth Images

In this chapter, we focus on quality assessment of MVD Images. MVD representation has

gained significant attention recently as a means to encode 3D scenes, allowing for intermedi-

ate views to be synthesized on-the-fly at the display site through DIBR. Automatic quality

assessment of MVD images/videos is critical for the optimal design of MVD image/video

coding and transmission schemes. Existing IQA methods are applicable only after the

DIBR processes. Such post-DIBR measures are valuable in assessing the overall system

performance, but are difficult to be directly employed in the rate-distortion optimization

process in MVD image/video coding. Here we make one of the first attempts to develop a

pre-DIBR IQA approach for MVD images by employing an information content weighted

approach that balances between local quality measures of texture and depth images. Ex-

periment results show that the proposed approach achieves competitive performance when

compared with stat-of-the-art IQA algorithms applied post-DIBR.
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6.1 Introduction

Many advanced 3D video systems are based on MVD representation [91], where typically

two or three views of texture and depth videos are encoded. This allows for intermedi-

ate views to be synthesized on-the-fly at the display site from the decoded texture and

depth views by means of DIBR [65]. Objective quality assessment of 3D synthesized im-

ages/videos from DIBR is a challenging problem [16]. Oh et al. defined a rendering view

distortion function and presented an efficient depth map coding scheme [94]. Fang et al.

proposed an analytical model to estimate the synthesized view quality in 3D video with the

consideration of texture image characteristics and quality, depth map errors and rendering

process [38]. Liu et al. conducted a subjective study of synthesized single-view videos with

texture and depth compression and proposed an objective quality assessment algorithms

for synthesized videos with emphasis on temporal flicker distortion induced by depth com-

pression and view synthesis processes [75]. These existing studies are valuable but limited

in one common aspect, i.e., the quality assessment process is applicable only after the

DIBR process. The drawback of such methods, which we call post-DIBR approaches, is

that they are difficult to be directly employed in the design and optimization of MVD

based 3D video coding systems, because the actual texture and depth video signals being

encoded and transmitted are the views before DIBR. Jang et al. proposed a fast quality

metric purely for depth maps without view synthesis [57]. However, the impact of texture

distortions and the interaction between texture and depth distortions are not taken into

consideration, which is critical in guiding MVD coding schemes for optimal bit allocation.

The main purpose of this work is to develop a pre-DIBR IQA approach for MVD

images, aiming for establishing a more convenient IQA model that can be used in the

design of MVD coding schemes. A diagram that explains the difference between the two

types (pre-DIBR and post-DIBR) of MVD quality assessment problems, as well as how

multiple texture and depth images are used to synthesize stereoscopic 3D images are shown

in Figure 6.1. In fact, in addition to all existing stereoscopic 3D-IQA models, any 2D-IQA

method may also be applied for post-DIBR quality assessment by averaging 2D-IQA results

of stereoscopic views. But none of them has been shown to be useful in the pre-DIBR case.

Our work starts by observing how human subjects evaluate synthesized MVD images, how
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post-DIBR methods perform in predicting subjective quality, and how the performance

varies depending on distortion types. Such observations help us develop our pre-DIBR

algorithm, which demonstrates competitive performance against post-DIBR approaches.

6.2 Post-DIBR Quality Assessment

Subjective testing is critical in understanding IQA problems and validating IQA models.

A highly valuable subjective study was introduced in [132], which resulted in an MCL-3D

Image Database for 3D-IQA using 2D-image-plus-depth source. The database was created

from nine pristine image-plus-depth source contents shown in Figure 6.2 and Figure 6.3.

The resolution of texture and depth images is 1920×1080 or 1024×768. Each texture and

depth image was altered by six types of distortions: additive white Gaussian noise con-

tamination, Gaussian blur, downsampling blur, JPEG compression, JP2K compression and

transmission loss. Each distortion type had four distortion levels. Three types of rendering

combinations, i.e., distorted texture images and original depth maps (Texture-Distortion-

Only), original texture images and distorted depth maps (Depth-Distortion-Only), and

distorted texture images and distorted depth maps (Texture-Depth-Distortion), are used

as the input into the DIBR software to render the distorted stereopairs. In total, there are

657 rendered stereoscopic images (including 9 “original” stereopairs). Figure 6.1 shows the

building process of MCL-3D Image Database. Pair-wise comparison was adopted in the

subjective test and the mean opinion score (MOS) was computed for each distorted ren-

dered stereopair. More detailed descriptions of this database and the subjective experiment

can be found in [132].

Post-DIBR methods directly work on synthesized stereoscopic pairs. Let (Ro,l, Ro,r)

and (Rd,l, Rd,r) be the left- and right-view image pairs of the rendered stereoscopic images

from the original and distorted texture images and depth maps, respectively. For the post-

DIBR case, we are interested in investigating the appropriateness of existing 2D/3D-IQA

methods to predict 3D quality of synthesized views by comparing (Ro,l, Ro,r) and (Rd,l,

Rd,r).

We first test 2D-IQA methods, which can be applied to the left- and right-view images
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Figure 6.1: Two types of quality assessment of stereoscopic 3D images rendered from
MVD representations. (To,1, Do,1), (To,2, Do,2), (To,3, Do,3) and (Td,1, Dd,1), (Td,2, Dd,2),
(Td,3, Dd,3) are the (texture, depth) images for 3 views in the original and distorted MVD
representations, respectively. (Ro,l, Ro,r) and (Rd,l, Rd,r) are the (left, right) views of
DIBR-synthesized original and distorted stereoscopic 3D images, respectively. Type 1:
post-DIBR 3D-IQA; Type 2: pre-DIBR 3D-IQA.
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(d) (e) (f)

(g) (h) (i)

Figure 6.2: All texture images in MCL-3D database. (a) Balloon. (b) Kendo. (c) Lovebird.
(d) Dancer. (e) GtFly. (f) MicroWorld. (g) PoznanHall. (h) PoznanStreet. (i) Shark.

independently and then averaged to predict 3D quality. Previous studies suggested that

in the case of symmetric distortion of both views (in terms of both distortion types and

levels), simply averaging state-of-the-art 2D-IQA measures of both views is sufficient to

provide reasonably accurate quality predictions of stereoscopic images [23, 142] and stereo-

scopic videos [143]. Note that multi-view rendering and coding schemes usually generate

symmetrically distorted or compressed stereopairs. The methods being tested include FR

methods PSNR, SSIM [153], MS-SSIM [158], IW-SSIM [154] and IDW-SSIM [145], and

NR methods BIQI [88], BLIINDS-II [109], BRISQUE [86], CORNIA [167], DIIVINE [89],
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.3: All depth maps in MCL-3D database. (a) Balloon. (b) Kendo. (c) Lovebird.
(d) Dancer. (e) GtFly. (f) MicroWorld. (g) PoznanHall. (h) PoznanStreet. (i) Shark.

LPSI [160], M3 [161], NIQE [87], QAC [162] and TCLT [159]. Table 6.1 reports PLCC,

SRCC, KRCC, RMSE and MAE between 3D-MOS scores and the average 2D-IQA mea-

surements and Figure 6.4 to Figure 6.8 show the corresponding scatter plots for PSNR,

SSIM, MS-SSIM, IW-SSIM and IDW-SSIM. From Table 6.1 and Figure 6.4 to Figure 6.8,

it can be observed that directly averaging the FR 2D-IQA measures of both views provides

accurate image quality predictions of rendered stereopairs, which is consistent with pre-

vious findings in [23, 142, 143]. However, if the “reference” stereopairs are not available,

there is a large drop in the performance from FR to NR models.
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Table 6.1: Performance Comparison of 2D/3D-IQA Models on the MCL-3D Image
Database

Category Method PLCC SRCC KRCC RMSE MAE

Post-DIBR

FR 2D-IQA

PSNR 0.8320 0.8405 0.6406 1.4435 1.1383
SSIM [153] 0.8935 0.9034 0.7201 1.1682 0.9214

MS-SSIM [158] 0.8644 0.8750 0.6837 1.3081 1.0197
IW-SSIM [154] 0.9197 0.9260 0.7564 1.0213 0.8079
IDW-SSIM [145] 0.8682 0.8792 0.6907 1.2910 1.0314

NR 2D-IQA

BIQI [88] 0.3370 0.3135 0.2029 2.4495 2.0468
BLIINDS-II [109] 0.5046 0.4994 0.3440 2.2461 1.8395
BRISQUE [86] 0.6860 0.6472 0.4559 1.8930 1.5424
CORNIA [167] 0.7401 0.7344 0.5338 1.7495 1.3900

M3 [161] 0.5900 0.5059 0.3498 2.1007 1.7413
DIIVINE [89] 0.5747 0.4169 0.2779 2.1292 1.7402
LPSI [160] 0.5027 0.4490 0.2970 2.2490 1.8744
NIQE [87] 0.7430 0.5994 0.4431 1.7412 1.3909
QAC [162] 0.6534 0.6475 0.4564 1.9695 1.5981
TCLT [159] 0.6371 0.4871 0.3324 2.0054 1.6352

FR 3D-IQA

Benoit [10] 0.6330 0.6359 0.4562 2.0142 1.6316
Chen [25] 0.8528 0.8587 0.6627 1.3586 1.0726
Lin [74] 0.8700 0.8690 N/A 1.2850 N/A

Shao [121] 0.8480 0.8530 N/A 1.3800 N/A
Yang [164] 0.8346 0.8445 0.6455 1.4331 1.1255
You [168] 0.8922 0.9037 0.7205 1.1750 0.9271

Zhang [174] 0.9340 0.9390 N/A 0.9300 N/A
Pre-DIBR Proposed 0.9107 0.9164 0.7433 1.0745 0.8237
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Figure 6.4: 3D-MOS versus predictions from PSNR of 2D left- and right-views. (a) By
different rendering combinations. (b) By different distortion types.
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Figure 6.5: 3D-MOS versus predictions from SSIM of 2D left- and right-views. (a) By
different rendering combinations. (b) By different distortion types.
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Figure 6.6: 3D-MOS versus predictions from MS-SSIM of 2D left- and right-views. (a) By
different rendering combinations. (b) By different distortion types.
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Figure 6.7: 3D-MOS versus predictions from IW-SSIM of 2D left- and right-views. (a) By
different rendering combinations. (b) By different distortion types.
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Figure 6.8: 3D-MOS versus predictions from IDW-SSIM of 2D left- and right-views. (a)
By different rendering combinations. (b) By different distortion types.

We also test some recent methods that are designed for FR 3D-IQA. The results on

MCL-3D database are given in Table 6.1, where it can be seen that most FR 3D-IQA

methods do not show superiority over FR 2D-IQA methods. The best result is obtained

by the 3D-MAD method [174], which demonstrates similar performance as compared to

IW-SSIM [154], a purely 2D algorithm.

6.3 Pre-DIBR Quality Assessment

6.3.1 Distortion type dependency

As mentioned earlier, in the rendering process of MCL-3D Image Database, three types of

combinations, i.e., Texture-Distortion-Only, Depth-Distortion-Only, and Texture-Depth-

Distortion, were adopted to create different kinds of distorted stereopairs. Figure 6.9

shows 3D-MOS scores for different distortion types and different rendering combinations.

We compute SSIM between (Ro,l, Rd,l) to measure local quality/distortion of the distorted
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rendered left-view images. The resultant SSIM index maps for the cases of Texture-Depth-

Distortion, Texture-Distortion-Only and Depth-Distortion-Only are denoted as ST+D
R,l , STR,l

and SDR,l, respectively, as shown in Column (a), (b) and (c) in Figure 6.10, where brightness

indicates the magnitude of the local SSIM index (i.e., brighter = better quality).

From Figure 6.9 and Figure 6.10, it can be observed that there exists a specific distor-

tion type dependency with respect to 3D-MOS scores for different rendering combinations.

For blur, JP2K, JPEG and downsample distortion, 3D-MOS scores for Texture-Depth-

Distortion and Texture-Distortion-Only images are very close, which both are strictly

decreasing with the increase of distortion level. For Depth-Distortion-Only images, 3D-

MOS scores are always at a high quality level and not falling down with the increasing

level. Similar observations can be found in Figure 6.10. For Texture-Depth-Distortion

and Texture-Distortion-Only images at Column (a) and (b), the SSIM maps exhibit al-

most the same local spatial variations and intensity levels, indicating a very close overall

quality for both cases; for Depth-Distortion-Only images, a significantly better overall

quality is presented as darker pixels only appear in a very small region. For noise and

transmission loss, 3D-MOS scores lie in different quality levels for different rendering com-

binations with the increasing order of Texture-Depth-Distortion, Texture-Distortion-Only

and Depth-Distortion-Only. Also, 3D-MOS scores decrease with the increase of distortion

levels in all cases. While in Figure 6.10, the SSIM maps for Texture-Depth-Distortion

and Texture-Distortion-Only images exhibit similar spatial variations but relative brighter

pixels can be seen in the Texture-Distortion-Only case, indicating a better overall quality;

for Depth-Distortion-Only images, an even better overall quality compared to the Texture-

Distortion-Only images is pronounced as darker pixels are significantly less visible.

In general, the distortions from noise contamination and transmission loss affect the 3D

quality of rendered stereopairs more significantly than from blur, JP2K, JPEG and down-

sampling. Another important observation is that the impact of texture image distortions

are much stronger compared to depth map distortions.
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Figure 6.9: 3D-MOS scores for different distortion types and different rendering combi-
nations. (a) Noise. (b) Blur. (c) JPEG. (d) JP2K. (e) Downsample. (f) Transmission
Loss.
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Figure 6.10: SSIM maps of the rendered Balloon images for all distortion types at level
4. (a) Rendered, Texture-Depth-Distortion. (b) Rendered, Texture-Distortion-Only. (c)
Rendered, Depth-Distortion-Only.
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Figure 6.11: Diagram of the proposed 2D-to-3D quality prediction model.

6.3.2 Pre-DIBR 3D-IQA algorithm

Let (To,1, Do,1), (To,2, Do,2), · · · , (To,M , Do,M) be the original texture images and their as-

sociated depth maps, and (Td,1, Dd,1), (Td,2, Dd,2), · · · , (Td,M , Dd,M) be the corresponding

distorted texture images and depth maps for M views. Figure 6.1 gives an example for

the case of M = 3. We propose a top-down model to predict the 3D quality of synthesized

views before DIBR. Specially, the prediction of Q3D is calculated by directly averaging

each view’s quality Q3D
k :

Q3D =
1

M

M∑
k=1

(
Q3D
k

)
. (6.1)

The procedure to compute each view’s quality Q3D
k is shown in Figure 6.11. We define an

overall quality map SO,k, which is a combination of the k-th view’s texture induced quality

map ST,k and depth induced quality map SD,k:

SO,k = wT,kST,k + wD,kSD,k , (6.2)

where wT,k and wD,k are the weights assigned to ST,k and SD,k, respectively. Q3D
k is obtained

by spatially average pooling over SO,k.

The key step is to determine the adaptive weighting factors wT,k and wD,k. Here we use

an information content weighting approach, where the perceived local information content

is quantified as the number of bits that can be received from a statistical image information

source that passes through a noisy visual channel. Assume that the source power is P and

the channel noise power is C. The mutual information between the source and destination
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(a) (b)

Figure 6.12: Information maps of the pristine Balloon texture and depth images. (a)
Texture Information Map. (b) Depth Information Map.

is

I =
1

2
log

(
1 +

P

C

)
. (6.3)

Now assume that the source power of a local image patch can be estimated as σ2
T,k and

σ2
D,k for texture images and depth maps, respectively, then the information maps from the

k-th view’s texture image and depth map are given by

IT,k = log

(
1 +

σ2
T,k

C

)
and ID,k = log

(
1 +

σ2
D,k

C

)
, (6.4)

where σ2
T,k and σ2

D,k are the local variance maps by computing local variances at each

spatial location. Given the information maps IT,k and ID,k, the weights assigned to the

k-th texture and depth induced quality maps are given by

wT,k =

∑
IT,k∑

IT,k +
∑
ID,k

and wD,k =

∑
ID,k∑

IT,k +
∑
ID,k

, (6.5)

where a spatially average pooling is applied to both IT,k and ID,k.

For the k-th original texture image To,k and distorted texture image Td,k, SSIM is used

to compute local quality/distortion and the SSIM index map ST,k is obtained. Sample ST,1
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maps are shown in Column (a) in Figure 6.13. For all distortion types, it can be observed

that the SSIM maps ST,1 and STR,l exhibit highly similar local spatial variations. Thus we

denote ST,k as the texture induced quality map for the k-th view.

For the k-th original depth map Do,k and distorted depth map Dd,k, SSIM is again

employed to compute local quality/distortion and the SSIM index map SD,k is obtained.

Sample SD,1 maps are shown in Column (b) in Figure 6.13. Unlike texture distortion,

SSIM maps SD,1 and SDR,l look significantly different in terms of spatial variations. We

found that the impact of depth distortions on the rendered image is more correlated with

the information map of the corresponding texture image IT,k. As a result, when depth

distortion occurs in structural regions in the texture images, the quality of rendered images

is more affected. Thus we apply a spatial normalization to SD,k with IT,k and denote the

resultant map S ′D,k as the depth induced quality map for the k-th view:

s′D,k,j =
iT,k,jsD,k,j∑N
j=1 iT,k,j

, (6.6)

where sD,k,j and s′D,k,j are the local quality values in SD,k and S ′D,k, respectively, and iT,k,j

is the weight assigned to the j-th spatial location (j-th pixel) from IT,k. Subsequently, the

overall quality map SO,k is combined as the weighted average between ST,k and S ′D,k using

Equation (6.2).

Finally, to emphasize the importance of the information content of texture images, a

spatially weighted pooling with the texture information map IT,k is applied to the overall

quality map SO,k:

Q3D
k =

∑N
j=1 iT,k,jsO,k,j∑N

j=1 iT,k,j
, (6.7)

where sO,k,j and iT,k,j are the local quality value in SO,k and the weight assigned to the

j-th spatial location from IT,k, respectively.

We test the proposed algorithm on the MCL-3D Image Database. The PLCC, SRCC,

KRCC, RMSE and MAE values between 3D-MOS and the predicted Q3D value for all

images are given in Table 6.1 and the corresponding scatter plots are shown in Figure 6.14,

where we can see that the proposed method performs equally well or better than state-
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Figure 6.13: SSIM maps of the source Balloon images for all distortion types at level 4.
(a) Source, Texture. (b) Source, Depth.
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Figure 6.14: 3D-MOS versus predictions from the proposed Pre-DIBR method. (a) By
different rendering combinations. (b) By different distortion types.

of-the-art FR IQA models applied post-DIBR. Since it is applied pre-DIBR, it has great

potentials to be employed in perceptually inspired rate-distortion optimization of MVD

video coding systems.

6.4 Summary

We investigated the problem of objective quality assessment of MVD images, with a main

focus on the pre-DIBR case. We found that although existing IQA methods can be applied

post-DIBR to provide reasonable quality prediction of MVD images, they are difficult to

be employed as a guiding criterion in the optimization of MVD video coding and trans-

mission systems. We proposed a novel pre-DIBR method based on information content

weighting of both texture and depth images. Experimental results show that the proposed

method demonstrates competitive performance against state-of-the-art IQA models applied

post-DIBR. Future work includes incorporating the proposed model in the rate-distortion

optimization process of visual perception-based MVD 3D video coding schemes.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The goal of this thesis is to investigate and understand different aspects of human visual

QoE of stereoscopic 3D images and videos. In this chapter, we first summarize the con-

tributions to the scientific community that were brought forward in this thesis. We then

discuss different avenues for future research. Publications during the period of the thesis

are listed at the end of the chapter.

In Chapter 3, we focus on how to predict the quality of a stereoscopic 3D image from

that of the 2D single-view images by carrying out a subjective quality assessment exper-

iment on a database that contains both single-view images and stereoscopic images with

symmetric and asymmetric distortion types and levels. The major contributions are as

follows:

• A new subjective 3D-IQA database is created that has two unique features − the

inclusion of both 2D and 3D images, and the inclusion of mixed distortion types;

• A strong distortion type dependent bias is observed when using the direct average of

2D image quality of both views to predict 3D image quality;
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• A binocular rivalry inspired multi-scale 2D-to-3D model is proposed to predict the

quality of stereoscopic images from that of its single-view 2D images, which without

explicitly identifying image distortion types, successfully eliminates the prediction

bias, leading to significantly improved quality prediction of stereoscopic 3D images;

• A binocular rivalry inspired multi-scale model to predict the quality of stereoscopic

images from that of the single-view images without referring to the original left- and

right-view images is proposed.

In Chapter 4, we demonstrate two subjective studies on depth perception of stereoscopic

3D images. The first one follows a traditional framework where subjects are asked to rate

depth quality directly on distorted stereopairs. The second one uses a novel approach,

where the stimuli are synthesized independent of the background image content and the

subjects are asked to identify depth changes and label the polarities of depth. The major

contributions are as follows:

• A novel subjective 3D depth experiment is carried out that are much more effective

at singling out the contributions of stereo cues in depth perception;

• Several interesting findings are obtained regarding distortion type dependency, image

content dependency, and the impact of symmetric and asymmetric distortions on the

perception of depth;

• A novel DPDI index is developed based on the percentage of correct and incorrect

subject judgements for quantifying depth perception induced by stereo cues;

• A novel computational model for DPDI prediction is proposed that leads to highly

promising DPDI prediction performance without explicitly identifying image distor-

tion types.

In Chapter 5, we focus on how to predict the quality of a stereoscopic 3D videos from

that of the 2D single-view videos by carrying out subjective quality assessment experiments

on two databases that contain various asymmetrically compressed stereoscopic 3D videos.

The major contributions are as follows:

198



• Two new subjective 3D-VQA databases are built that have two unique features −
the inclusion of both 2D and 3D videos, and the inclusion of asymmetrically com-

pressed stereoscopic 3D videos obtained from mixed-resolution coding, asymmetric

transform-domain quantization coding, their combinations, and multiple choices of

postprocessing techniques;

• A comparison of different mixed-distortions asymmetric stereoscopic video coding

schemes with symmetric coding methods is performed to verify their potential coding

gains;

• A strong systematic bias when using direct averaging of 2D video quality of both

views to predict 3D video quality is found;

• A model to predict the quality of stereoscopic video from that of its single-view videos

is proposed, which leads to significantly improved quality prediction performance,

which can help us predict the coding gain of mixed-distortions asymmetric video

compression.

In Chapter 6, we investigate the problem of objective quality assessment of MVD im-

ages, with a main focus on the pre-DIBR case. We find that although existing IQA methods

can be applied post-DIBR to provide reasonable quality prediction of MVD images, they

are hard to be employed as a guiding criterion in the optimization of MVD video coding and

transmission systems. We propose a novel pre-DIBR method based on information content

weighting of both texture and depth images, which demonstrates competitive performance

against state-of-the-art IQA models applied post-DIBR.

7.2 Future Work

The research work presented in this thesis aims to investigate various aspects of human

visual QoE when viewing stereoscopic 3D images/videos and to develop objective quality

assessment models that automatically predict visual QoE of 3D images/videos. Automat-

ically assessing the quality of 3D visual experience is a challenging problem due to the
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sophistication and interaction between multiple 3D visual cues. The current work initial-

ized several new ideas in this exciting area, but significant effort is still needed to have

deep understandings of the problems and to provide useful practical solutions. Some of

the possible directions for further research work are described as follows.

7.2.1 Research on Depth Quality, Visual Comfort and Overall

3D Quality-of-Experience

Subjective testing is important in understanding IQA problems and validating IQA models

and becomes even more critical in the scenario of 3D-IQA. From Figure 4.4 (b), we show

that human opinions on 3DIQ and DQ are highly correlated in the first subjective study.

This is somewhat surprising because 3DIQ and DQ are two different perceptual attributes

and the stimuli were generated to cover all combinations between picture qualities and

stereo depths. Exactly the same observation can be also found with regard to 3DIQ

and VC. Although many efforts were intended to reduce visual fatigue and discomfort

of the subjects and to reduce the interference between different visual experience criteria

(Section 3.3), the traditional experimental design is problematic because monocular cues

and the spatial quality of images have strong impacts on the DQ/VC scores given by

subjects. Psychologically, humans have the tendency to give high DQ/VC scores whenever

the 3DIQ is good and vice versa. We then design and carry out the second subjective study

where depth effect is synthesized at different depth levels before various types and levels of

symmetric and asymmetric distortions are applied, in order to single out the contributions

of stereo cues in depth perception. Consequently, a new distortion type dependency with

respect to depth perception has been identified.

Some potential questions on depth quality, visual comfort and the overall 3D QoE are

listed below. All of these are very challenging topics and the traditional IQA methodologies

might not be sufficient to account for them. However, the successful experience from the

depth quality study encourages us to look for possible novel approaches.

• Depth Quality: deeper understanding of the impact of monocular cues and binocular

cues is lacking; the relationship between them also needs to be studied.
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• Visual Comfortness: discussion on can/how we design a feasible subjective test? New

experiments that are able to separate out the input of 3DIQ and depth perception

need to be carefully designed.

• 3D Overall QoE: study on the tradeoff between perceptual 3DIQ and DQ is needed to

account for the two different distortion type dependencies; the best way to combine

3DIQ, DQ and VC needs to be investigated.

7.2.2 Quality Assessment of Asymmetrically Distorted Videos

In Chapter 5, we propose a binocular rivalry inspired 2D-to-3D model to predict the quality

of stereoscopic videos from that of its single-view 2D videos. Previously in vision science

studies, most studies focus on the investigation of binocular fusion versus binocular rivalry

merely with regard to stereoscopic images but none of them extends it to stereoscopic

videos. The inconsistency induced by specific temporal artifacts such as flickering and

ghosting [170, 173] between left- and right-view videos should not be overlooked and could

also result in binocular rivalry. In Chapter 5, we apply a poly-view fusion strategy to

estimate the overall level of dominance from the front-view, the top-view and the side-view

together as a practical solution. In the future, more theoretical studies and experiments

should be conducted to develop a complete 2D-to-3D video quality prediction model that

can accurately account for the level of dominance both in spatial and temporal domain.

7.2.3 Quality Assessment of Multi-View-Plus-Depth Images

In Chapter 6, we investigate the problem of objective quality assessment of MVD images

based on the MCL-3D database, which is highly valuable but limited in one aspect or

another. It is desirable to build new MVD 3D images databases with the following new

features: First, different rendering algorithms should be compared in the new subjective

testing as such we can examine whether or not the impact of distortions in the DIBR pro-

cesses is significant. Second, multiple synthesized 3D views should be included in the new

database. Only one synthesized view is subject-rated in the existing MCL-3D database,
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making it difficult to examine and compare the potential quality difference across different

views. Third, subjective tests on both 2D and 3D images should be performed. This al-

lows us to directly examine the relationship between the perceptual quality of synthesized

stereoscopic images and that of its single-view rendered images. Fourth, the selection of

the distortion/degradation on the original texture images and depth maps should be more

realistic, so as to guide the rate-distortion optimization process in visual perception-based

MVD 3D video coding schemes.
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