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Abstract

In physics, specially in optics, ray models are commonly used to simplify problems
and further design devices for a diverse variety of applications. This diversity runs from
mass-oriented products, such as cameras, to more sophisticated needs, such as wireless com-
munications. Ray models frequently make use of Snell law to describe the rays’ trajectories.
Snell law is omnipresent practically in all optics applications; however, its applicability is
limited to homogeneous half space.

Nowadays, advanced materials could further improve the characteristics of current de-
vices and expand the applications by using inhomogeneous media. Designers and scientists
typically avoid working with inhomogeneous media due to difficulties in predicting wave
behaviour. In this thesis, I present a general and simple formulation to predict refraction
from inhomogeneous electrically-thin media. This formulation can accurately describe re-
fraction from inhomogeneous slabs just as Snell law predicts the refracted ray in a half
space system.

Naturally, the first application that comes to mind are lenses used to form images
and concentrate energy. Similarly, parabolic reflectors could potentially be substituted
by inhomogeneous media devices with planar geometries. In this work, the models and
concepts usually applied in optics are implemented and adjusted to electrically smaller
devices for microwave applications. Based on ray models, an electrically-thin flat lens
and reflector are introduced. The lens and reflector are designed to exhibit a refractive
index gradient which results in a phase shift profile at the exiting face of the device. The
concept of phase shifting to converge rays is validated with a case study at 10 GHz with
a lens and a reflector having a diameter of 8 λ. High contrast in the fields within the
proximity of the focal point demonstrates the performance of the lens. Additionally, the
lens has appreciably low spherical aberration. To obtain this characteristic, in the proposed
design methodology, the electrical thinness of the lens is crucial. A complete analysis of
monochromatic spherical aberration is performed and compared to classical gradient index
rods.

Given the costly computation burden of large structures when using full-wave sim-
ulations, an analytic model is proposed to model 2D (constant refractive index in one
direction) inhomogeneous electrically-thin media. For 3D lenses (radially varying refrac-
tive index in two dimensions), the analogous analytic model is developed using infinitesimal
dipoles. This model exhibits good agreement with full-wave simulations and requires lower
computation resources than that of numerical simulations.

In addition to lenses and reflectors, there are important applications for electrically-thin
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inhomogeneous films. For instance, monostatic cloaking to conceal objects from radars is
introduced here. An important decrease in the radar cross-section ratio is demonstrated.
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Chapter 1

Introduction

1.1 Motivation

Tailoring electromagnetic (EM) waves at convenience is highly desired in applications like
imaging systems, cloaking, energy concentrators for communication or even for energy
harvesting, among others. Nowadays, there are variety of technologies available for such
applications. Dielectric lenses, parabolic reflectors, prisms, metamaterials, and gradient
index (GRIN) rods are some examples of devices used to reshape electromagnetic waves.
Most of these technologies are based on Snell law to refract rays, or rely on phase dis-
continuities to bend the rays [1, 2, 3, 4]. In particular, commercially available devices
for reshaping a wavefront into a focal point are typically bulky and heavy such as di-
electric lenses and parabolic reflectors. Such devices involve complex geometrical designs.
Parabolic reflectors, commonly used in high-gain radar and antenna applications, are in-
expensive relative to the cost of the radar system. However, their transportation logistics
are very expensive, especially for satellite applications.

Lenses have been used for centuries [5, 6]. Curved lenses are commonly used in optics to
concentrate light onto a focal point. These curved lenses have been the subject of a myriad
of studies and optimization processes that aim to decrease monochromatic aberrations
[7, 8], which is a type of deformation of the image. Aberration is caused by the geometry
of the lenses and its analysis is mostly based on ray path models. Blurred or distorted
images are the main effect of aberrations.

Based on ray optics, designers use Snell law to follow the refraction paths of the rays
to design and optimize curved lenses. The usefulness and importance of this millennial

1



law is not in doubt. Snell law applies to the case where a ray (or wave) travels from one
homogeneous material to another through a flat interface, or locally flat interface. However,
Snell law is not applicable to interfaces involving inhomogeneous media. An exception was
made for GRIN rods but only due to the slowly varying index material. Therefore, GRIN
rods had been considered locally homogeneous for design purposes [9]. Other formulations
like the Generalized Snell law [2, 10] were proposed to explain refraction due to sudden
phase jumps. However, this formulation does not apply to inhomogeneous media.

Besides the scientific curiosity behind developing a formulation for inhomogeneous me-
dia, there remains the question of whether focusing can be achieved by using inhomoge-
neous media and whether is it possible to predict refraction at a particular location from
the known parameters of an inhomogeneous lens.

In this thesis, a formulation to predict refraction from electrically-thin inhomogeneous
media is presented. The limitation of the electrical thinness comes from the coupling
phenomena between adjacent materials as will be discussed later. An electrically-thin flat
lens as well as a reflector are presented here as applications of the new formulation for
refraction from inhomogeneous electrically-thin media. Furthermore, the lens is proven to
have insignificant spherical aberration. An analytical formulation is also presented to help
reduce design time for electrically-thin lenses and reflectors. In addition, a monostatic
cloaking device is presented based on the same concept. In the following sections of this
chapter an overview of previous research and outline of the thesis are presented.

1.2 Snell law

Snell law has been the foundation for prediction and designing lenses for centuries. Snell law
originates from applying boundary conditions (BC) that require the continuity of the tan-
gential field components. The boundary conditions are as important as Maxwell equations
are to electromagnetic problem. Without them a problem cannot be defined completely
and a unique solution cannot be obtained. In order to deal with problems effectively, un-
derstanding boundary conditions is essential. BCs are derived from the integral form of
Maxwell equations, given that the differential form is suitable for continuous medium only.
In order to find the boundary conditions of the tangential fields at the interface between
two homogeneous materials, first, I recall Maxwell-Ampere law and Faraday’s law given
by

˛
c

H · dl =
d

dt

¨
S

D · dS +

¨
S

J · dS (1.1)
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˛
c

E · dl = − d

dt

¨
S

B · dS−
¨
S

M · dS (1.2)

where H is the magnetic field intensity, D is the electric flux density, J is the electric
current density, E is the electric field intensity, B is the magnetic flux density, and M is
the magnetic current density. An imaginary small rectangular frame can be constructed at
the interface of two materials with one of its sides in medium n1 and the other in medium n2

(see figure 1.1). The length is ∆l and the width is ∆t which is considered vanishingly small
(∆t → 0). Calculating the line integral on the left side of equation 1.1 and considering
that ∆t→ 0, the boundary conditions are found as follows,

n̂× (H2 −H1) = Js (1.3)

n̂× (E2 − E1) = −Ms (1.4)

where Js is the current surface density,Ms is the magnetic surface density, the subscripts
1 and 2 corresponds to the fields at the materials n1 and n2, respectively (on each side of
the interface).

n1

n2

n̂
t̂

Δl

n̂
ΔS ΔtΔt

Figure 1.1: Boundary between two different media. An imaginary small rectangular frame
is shown at a discontinous interface on the left side of the figure and an imaginary thin
pillbox at the interface is shown on the right side of the figure. n̂ is the normal unit vector
(normal to the surface) and t̂ is the tangential unit vector.
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Equations (1.3) and (1.4) show discontinuity in the tangential components of both
electric and magnetic fields. However, as the magnetic current does not exist, the tangential
component of the electric field is always continuous. Thus,

n̂× (E2 − E1) = 0 (1.5)

In order to find the boundary conditions for the normal components, let’s recall Gauss
law ‹

S

D · dS =

˚
V

ρedV (1.6)

‹
S

B · dS = 0 (1.7)

where ρe is the electric charge density. Similarly, applying Gauss law to a pillbox over a
boundary where ∆t→ 0 (see figure 1.1), the normal components are found as,

n̂ · (D2 −D1) = ρe,s (1.8)

n̂ · (B2 − B1) = 0 (1.9)

where ρe,s is the surface electric charge density

In order to find Snell law a plane wave (or ray) illuminating an interface between
two half-spaces with an arbitrary angle of incidence is considered. Notice that a wave
can be modelled by rays propagating perpendicularly to the phase front of the wave.
For illustration, the case of E-polarization where the incident field has an electric field
component polarized in the x-direction is considered as shown in figure (1.2). The total
tangential electric field on the left side of the interface equals the total tangential electric
field on the right side of the interface, as dictated by equation (1.5). Therefore, the
boundary condition leads to,

e−jβ1(y sin θi+z cos θi) +Re−jβ1(y sin θr−z cos θr) = Te−jβ2(y sin θt+z cos θt) (1.10)

where β1 is the wavenumber in medium 1 (where the wave is coming from), β2 is the
wavenumber in medium 2 (to the right of the interface), θi is the incident angle of the ray,
θr is the reflected angle of the ray, θt is the transmitted angle of the ray, R is the index
of reflection, T is the index of transmission, y and z are values of the coordinate system.
While equation (1.10) is valid only at the interface z = 0, the variable z is intentionally
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kept in the equation for reasons that will become clear in Chapter 2. Matching the phase
at z = 0 leads to,

β1(y sin θi + z cos θi) = β2(y sin θt + z cos θt) (1.11)

which when enforced at z = 0 results in the statement of Snell law:

β1 sin θi = β2 sin θt (1.12)

Note that in the case of lossy media only the real part of the wavenumbers is included
for phase matching because the loss factors out on the phase exponential as attenuation.
Therefore, there is no effect in the phase term.

Er

Ei

Et

Hr

Ht

Hi

y

z
θr
θi

θt

ϵ2
μ2

ϵ1
μ1

Figure 1.2: Snell law. Incident ray reflecting and refracting from a homogeneous flat
interface between two homogeneous media.

It is worth noting that Snell law was derived considering an infinitely large interface.
In other words, the formulation (equation (1.12)) is meant for a plane wave (which ex-
ists everywhere in space) and illuminates the infinite interface. From figure 1.2 it can be
concluded that the flat interface leads to an invariant system in ŷ due to its homogene-
ity. Consequently, equation (1.12) is valid for any y. Evidently, the same equation is
not applicable if one of the materials was inhomogeneous (ε(y) and/or µ(y)) given that
equation (1.12) has no dependence on y. Therefore, Snell law is valid for planar (locally
flat) interfaces of homogeneous materials. In optics, a lens is locally flat (see figure 1.3)
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because of its electrically large dimensions (λ � D), where D is the diameter of a lens
and it is usually several orders of magnitude larger than the wavelength. As a result, the
localized wavefronts at the interface of a lens impinge an approximately flat interface. For
this reason, the local waves can still be modelled as rays in the optical regime. Hence,
Snell law can be used for analysis, prediction and design of optical lenses.

Locally 
flat

Convex 
Lens

Source

Figure 1.3: Snell law applied to electrically large convex lenses. Arrows represent localized
wavefronts.

1.3 Background

Refraction, reflection and even diffraction are often used to form an image or reshape
a wave. The desired quality of the image, power concentration, fabrication complexity,
costs and application, all dictate which is the most convenient physics to be used. Market
competitiveness has increased the expectation for smaller and more efficient devices. Re-
liability and transportability of devices are two features that typically have lower interest
amongst engineers and scientists in general. Convex lenses and parabolic reflectors used
nowadays have not evolved significantly over the past hundred years aside from refined fab-
rication processes and improved polishing techniques. Lenses, which have been the subject
of fascination and study for centuries remain complex in shape requiring three-dimensional
fabrication techniques. Convex and concave geometries result in images with aberration,
which means that the images become blurry and distorted [7, 8]. Although, Snell law
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and ray tracing analysis are used to decrease aberrations, the topic remains a challenge.
Lenses, in general, are relatively very expensive to fabricate in comparison to the cost of
an imaging system such as a camera or a telescope. Fresnel lens, which is a thinner version
of convex lenses have been used to concentrate energy for solar applications and to colli-
mate rays for light houses. This lens has the same properties of a convex lens, in terms of
concentrating the rays; however, with the inconvenience of a more intricate geometry and
losses related to such geometry [11, 12, 13, 14, 15, 16]. Parabolic reflectors, which are very
common in high-gain radar and antenna applications, are relatively very inexpensive in
comparison to the cost of the radar system, however, they are awkward and expensive to
transport, especially for satellite applications. Another energy concentrator is the Fresnel
zone plates. This plates make use of the interference phenomenon by reflecting part of the
wave and letting the other part of the wave pass [17, 18, 19, 20]. At the focal point the half
of the cycle that passed through the plates interfere constructively. However, the power of
other half of the cycle is lost. In addition, the resulting image is aberrated. [17]

In an attempt to mitigate aberration in convex lenses, Pendry proposed a flat lens
[21, 22, 23, 24, 25, 26, 27]. Unlike the classical lenses, Pendry’s ”perfect lens” use a
negative refractive index metamaterial and a flat surface such that rays impinging refract
rays with negative angle following Snell law. The unique property of Pendry lens is its
ability to reconstruct not only the propagating harmonics but also the evanescent ones.
Pendry’s lens is able to reproduce the source’s original travelling and evanescent spectra
as long as the source is sufficiently electrically-close to the lens. Rudolph and Grbic [28]
fabricated a 3D version of Pendry lens, thus overcoming the challenges that over a decade
questioned its realizability. The major limitation of Pendry lens, nevertheless, is its inherent
inability to work in the far field, requiring the source to be in the close proximity of the
lens. This fundamental limitation precludes Pendry lens from imaging distant objects.
Jacob et al. and Liu et al. [29, 30], introduced a new lens design concept referred to
as a superlens, where the evanescent spatial harmonics are converted into propagating
waves suitable for electrically-long transmission. The superlens is positioned at a close
proximity of the source, thus making it more suitable for information transmission rather
than imaging of electrically distant objects. Transformation optics had been introduced in
recent years to bend electromagnetic fields using an anisotropic medium [31, 32, 33, 34].
However, the implementation of such designs becomes very restrictive and complex due to
the requirements of artificial media having anisotropic properties. Additionally, the flat
lenses designs using transformation optics are electrically thick.

In recent years, the interest in designing flat lenses has gained significant momentum.
The advantages of a flat lens are fabrication cost and transportability. In [1, 2, 3], thin
flat lenses were made of resonating metallic inclusions where very low aberration was
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achieved. These flat lenses were based on creating a phase discontinuity through the use
of resonant metallic inclusions. In this case, the classical Snell law is not applicable. For
this reason, the generalized Snell law which is a formulation based on differential calculus
and Snell law was introduced in [2]. According to this formulation, the phase jumps are
responsible for refraction over the flat lenses. The authors in [2] subtract the phase term
of two infinitesimally close paths and equates it to zero, the phase jump term allows the
difference between two different paths to be zero. Impedance mismatch and resonance,
both contributed to the low efficiency and narrow bandwidth, respectively. Others have
used metamaterials with impedance matching layers [35]. However, the lenses are still
limited by the resonance disadvantages including narrow bandwidth and losses.

In the 19th century, Maxwell, proposed a spherical gradient refractive index (GRIN)
lens [36]. The resolution and quality of this lens continues to be debated [37]. In 1905,
Wood presented the first design for a flat GRIN lens [9]. Wood’s flat electrically-thick
lens bends rays through a gradient index material similar to the ray bending in the desert
mirage phenomenon. Such a lens is subject to aberration due to high coupling between the
different materials of the lens, which in turn causes image distortion. Wood’s design was
based on several approximations and assumptions that constrain its applicability to sources
and images very far from the lens, including the use of Snell’s law (locally) in a slowly
varying inhomogeneous interface [9]. In recent years, advances in materials and fabrication
techniques lead to a renewed interest in GRIN lenses [38, 39, 40, 41, 42, 43]. Metamaterial
GRIN lenses were introduced using designs based on optics transformation resulting in
anisotropic space-dependent permittivity and permeability material [31, 32, 33, 34, 44, 45].
Unlike must lenses, the design of this metamaterial lens is not based on Snell law, instead
the design requires of a much more complicated calculation to find the characteristics of the
lens. In addition, the implementation of such metamaterials is very restrictive due to design
complexity and lens size. Although, discretization of the gradient index metamaterials to
simplify the design has been proposed [46, 47], the anisotropy of the material and high
losses represent an appreciable challenge. In [48], a gradient index metamaterial obtained
by etching the dielectric around the SRRs at different depths was reported.

In summary, the most remarkable techniques used to reshape waves include positive and
negative refractive index materials (Snell law), parabolic reflectors (reflection), phase dis-
continuities (generalized Snell law), anisotropic materials (transformation optics), Fresnel
zone plates (diffraction) and slowly varying gradient index lenses (Snell law). In contrast
to the physics used to design those devices, in this manuscript I propose a new formulation
to predict refraction and design devices made of electrically-thin inhomogeneous media.
The recent development of new materials and fabrication techniques allows to customize
solutions to tailor electromagnetic waves at convenience. The most widely used, hence
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attractive solution, are energy concentrators such as lenses and reflectors. In this work, I
present electrically-thin lenses and reflectors based on refraction from inhomogeneous me-
dia. A simple design methodology is developed and validated through numerical examples
and experimental work. In addition an analytical model is presented as a tool to verify
and optimize designs time effectively with a significant reduction in time compared to
numerical simulations. Furthermore, the lens is proven to have minimal spherical aberra-
tion. Besides the classical examples of lenses and reflectors to reshape waves, a monostatic
cloaking device is designed and numerically validated.

1.4 Outline of the thesis

Chapter 1 consists of the introduction. The state of art for several design techniques, en-
ergy concentrators and lenses are presented. These techniques include refraction between
homogeneous materials, reflection, diffraction, phase discontinuities and Optical Transfor-
mation. Given that this work presents a refraction formulation for inhomogeneous media,
essential theoretical background material on Snell law was included.

In Chapter 2, Huygens principle is explained in detailed, including examples when
applied to reflection, refraction and diffraction phenomena. Furthermore, the formulation
for refraction at electrically-thin inhomogeneous slabs is derived and discussed based on
Huygens principle model and boundary conditions. An example is shown to validate the
law of refraction for inhomogeneous electrically-thin media at microwave frequencies.

Chapter 3 includes two application examples: an electrically-thin flat lens and a reflector
at microwave frequencies. A design methodology is developed and reduced to a simple
equation for the profile of the lens and reflector. Experimental results of 2D lenses and
reflectors are presented. Also, far-field patterns are presented for the case when the lens
and reflector operate as collimators.

In Chapter 4, an analytical model for the lens and reflector is introduced. This analyti-
cal model aims to reduce design’s validation time. The model is compared to the full-wave
numerical simulation that embodies all the electromagnetic phenomena.

In Chapter 5 a complete analysis and evaluation of the spherical monochromatic aber-
ration of the electrically-thin flat lens is given. This lens is compared to the classical GRIN
lens.

Chapter 6 includes an introduction to cloaking devices for microwave frequencies. A
monostatic cloaking device is proposed. The device is presented as a module, such that it
may be used repeatedly over large areas.
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Finally, Chapters 7 and 8 present the contribution of the thesis and future research
directions.
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Chapter 2

Law of refraction for inhomogeneous
electrically-thin media

2.1 Introduction

The most widely known law of refraction is Snell law. Recently a group [2] proposed the
generalized Snell law based on Fermat principle, differential calculus and the conventional
Snell law. The objective behind the generalized Snell law was to explain refraction from
ultra-thin flat lenses made of metallic inclusions [2]. The classical formulation is based on
phase matching to ensure the phase continuity, whereas the generalization pertained to the
case of phase discontinuity along an interface created by the metallic resonant structures.
Yu et al. [2] considered two infinitesimally close paths and equated the phase difference
of those paths to zero. By following these the rays’ trajectories, it was found that the
distance between the rays at the interface lead to a gradient phase discontinuity.

Refraction, as will be shown in this chapter, can also be created by linear gradient
index materials. This new formulation for refraction can be used to design new devices
such as flat electrically-thin lenses and reflectors as will be shown in the next chapter.
The refraction of a perpendicularly incident plane wave at a planar interface is physically
explained through the phase advance of the rays within the medium. Huygens principle
is then used to construct the refracted wavefront. The formulation is validated using
numerical full-wave simulation for an example where the refractive angle is predicted with
good accuracy. Furthermore, the formulation gives a physical insight to the phenomenon
of refraction from electrically-thin inhomogeneous media.
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2.2 Theory

In order to derive the formulation for inhomogeneous media, some wave propagation con-
cepts are necessary. First, to characterize a wave, it is necessary to have an analytical
model. One of the classical models to analytically characterize a wave is a plane wave. For
example, an electric field propagating in the ẑ direction can be given by,

E = E0e
jωt−β·z (2.1)

where E0 is the electric field vector, t corresponds to time, ω is the radian frequency, β is
the wave vector and z is the distance vector.

This equation gives fundamental information about the wave such as the wave velocity.
Phase velocity is defined as the rate at which the phase of a wave propagates in a medium.
In a dispersive material, the phase velocity for each frequency component travels at a
different speed according to the refractive index of the corresponding frequency. The
phase velocity is given by,

vp =
ω

β
(2.2)

where ω is the frequency in radians and β is the wave number.

In 1678, Christiaan Huygens proposed that wave-fronts in light can be modeled using
wavelets. A wave propagating in a medium is equivalent to allocating point sources along
the wave-front and finding the contribution of all secondary spherical wave-fronts as they
propagate outward. Each point source has an infinitesimal amplitude. The sources inter-
fere forming a new wave-front formed by tangential lines joining equi-phase points of the
wavelets’ phase-fronts (see figure 2.1). The substitution of the wave-front can be performed
by a step-by-step process, progressively advancing the phase and position of the wave. [49]

Figure 2.1(a) shows the reflection of a ray from a perfectly reflecting surface in terms of
Huygens principle model. The ray is shown with arrows, whereas the incident phase-fronts
are shown with blue lines. The reflected wave-front (green lines) is formed by a group of
point sources’ wavelets (orange spherical wave-fronts). Notice that different phase-fronts
arrive at the reflecting surface at different times. For this reason the point sources at
the surface have different phases. Figure 2.1(b) shows the refraction of rays in terms of
Huygens principle over infinite half-planes of two different materials with refractive index
n1 and n2. The refracted wave is formed by a set of spherical wave-fronts originating at
the interface.
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Figure 2.1: Understanding reflection using Huygens principle model (a). Refraction
between two homogeneous half-space materials (b). Diagram of diffraction explained by
Huygens principle (c).

Huygens principle can also be used to explain the phenomenon of diffraction. Diffraction
is defined as the spreading of the wave due to an obstacle or when part of the wave is
removed by an aperture [49]. Figure 2.1(c) shows the Huygens principle for diffraction.

2.3 Design for refraction at inhomogeneous electrically-

thin media

In order to evaluate refraction from inhomogeneous electrically-thin materials, a design of a
flat lens and reflector is proposed here. The lens is composed of slabs of different materials
in two-dimensional space that refracts the wave with a specific angle. The reflector has
additionally a perfect electric conductor in the back of the slabs. Figure 2.2 shows a thin
slab of inhomogeneous material illuminated by a plane wave that is incident normally on
the flat surfaces. The phase of the incident plane wave at the left side of the slab is uniform.
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For the lens case, as the incident wave propagates through each layer, it experiences a phase
shift proportional to the refractive index of each layer. These phase shifts translate into
proportional delays in time domain. In other words, the peak of the wave exits different
layers at different times. This phase difference is the one responsible to refract the incident
wave. The same concept is used in the reflector except that the wave have to travel twice
the distance within the media. Once when it is incident and once when it reflects back.

The slab depth (or thickness) d is considered to be much smaller than the wavelength
(d � λ) of the incident field. This assumption implies minimal coupling between the
dielectric layers, which indicates that the emerging incident field from each dielectric layer
can be considered as an independent source in a manner similar to the application of
Huygen’s theory to the problem of scattering from electrically-small apertures.

To obtain an angled wave-front, the optical paths of all rays traversing the lens to a
desired phase-front are equated. Notice that the phase-front is not unique but the angle
the phase front makes with the y-axis is unique. This leads to

e−jkMd−jhMk0 = e−jkmd−jhmk0 (2.3)

where k0 is the wavenumber of vacuum, km is the wavenumber at the mth layer, kM is the
wavenumber at the M-layer, d is the thickness of the lens, hm is the distance from the mth

layer to the wavefront and hM is the distance from the M-layer to the wavefront (see figure
2.2). The equation (2.3) may be simplified as follows,

nMd+ hMn0 = nmd+ hmn0 (2.4)

where n0 is the refractive index of vacuum, nm is the refractive index of the mth layer, and
nM is the refractive index of the M-layer.

In section 2.5, the scattered fields of a design following equation 2.4 will be compared
to the refraction formulation for inhomogeneous media presented in the following section.
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Figure 2.2: Side view of an inhomogeneous refractive lens (a). Side view of an inhomoge-
neous refractive reflector (b).

2.4 Formulation: refraction from electrically-thin in-

homogeneous media

Snell law is a powerful formulation. However, the considerations mentioned in section 1.2
bound the designs to the classical two-media optical systems. Nowadays, the advances
in material science provide an additional degree of freedom to alternative solutions. It
is worth noticing that inhomogeneous materials has not been the greatest interest for
electromagnetic applications in the past. Mainly because of its lack of simple formulations
to predict its behaviour. Here, a simple formulation to predict such behaviour is presented.

Figure 2.3 shows the designed (see equation 2.4) lens highlighting the rays’ trajectories
as they propagate through the lens layers. Considering each individual ray, Snell law
would predict a perpendicular outgoing ray. In ray theory, rays represent the direction of
propagation which is perpendicular to the phase front of the plane waves. The dashed lines
in figure 2.3 show a uniform phase front on the right side of the lens. Considering the first
two slabs formed with ε1 and ε2, it is clear that by the time the phase of the ray entering
at y1, z = 0 reaches z = d, the ray that entered at y2, z = 0 has already exited the lens.
In a gradient index material varying linearly with respect to y, the red dashed line would
represent the phase front of a wave. Therefore, the ray or direction of propagation according
to ray theory corresponds to a vector pointing perpendicularly to this phase front as shown
in figure 2.3. The delay of a wave in one medium with respect to the other one results in an
angled phase front that changes the direction of propagation. This steered ray is formed
by constructive interference between rays emerging from each slab. Notice that each slab
produces multiple rays in accordance with Huygens principle. Figure 2.3 highlights only
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Figure 2.3: Refraction in inhomogeneous media.

the multiple rays emerging from the slab with material ε2. The phase front is constructed
by tangentially joining equi-phase points of the spherically propagating point sources given
by Huygens principle. This approximation holds for layers of electrically small height and
width. The third layer (y3) can be designed as well to provide the appropriate phase to
achieve an angled phase front. In order for a wave to be discernible it requires that locally
a few layers of material share identical gradient. The layers can then create a beam or
wave refracting as a function of their gradient.

The formulation derived here phase matches the rays at layers y1 and y2. Based on the
boundary conditions previously discussed (section 1.2), equation (1.11) is rewritten here
for convenience,

β1(y sin θi + z cos θi) = β2(y sin θt + z cos θt) (2.5)

Considering y1 as the reference (see Fig 2.3). Equation (2.5) is subsequently evaluated
at y = y1 and z = d,
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β1(y1 sin θi + d cos θi) = β0(y1 sin θt + d cos θt) (2.6)

where θi is the incident angle which is perpendicular to the second interface for the case
presented in figure 2.3. Therefore, for both layers θi = 0.

Typically, equation (2.6) would be simplified by setting z = 0 and generalized for all
y. However, in this case, the same boundary conditions enforced at the second interface
are formulated where z cannot be zero for all y because the phase of each ray would
have propagated through the inhomogeneous slab of thickness d. Additionally, fields are
dependent on y.

For the second layer (material ε2) evaluating equation 2.5 at y = y2 and z = d gives

β2(y2 sin θi + d cos θi) = β0(y2 sin θt + d cos θt) (2.7)

The left terms of equations (2.6) and (2.7) correspond to the phase of the rays at the right
side of the respective slab. Comparing the left terms (left to the equal sign) of equations
(2.6) and (2.7), it can be noticed that for θi = 0 there is a difference in phase between them
which can be represented as ∆φ (see figure 2.3). Thus, for the rays to emerge from the
right side of the lens and create a wavefront, the left term of equation (2.7) plus a phase
difference ∆φ need to equal the right term of equation (2.6):

β2(y2 sin θi + d cos θi) + ∆φ = β0(y1 sin θt + d cos θt) (2.8)

∆φ = β0(y1 − y2) sin(αt) represents the desired (designed) phase difference between the
two rays on the right side of the slab (see figure 2.3).

By comparing the right term of equations equation (2.6) and equation (2.8) it is clear
that each term (left and right to the equal sign) are the same for both equations. Equating
the left side of equations equation (2.6) and equation (2.8) and evaluating at θi = 0 to
account for the perpendicular incidence,

β2d+ β0(y1 − y2) sin(90− θt) = β1d (2.9)

where ∆φ was substituted by β0(y1− y2) sin(αt) and αt = 90− θt (see Fig 2.3). In the case
of oblique incidence, each ray incident on a dielectric segment will have, at the lens entry
point, a phase difference from a ray that is incident on the adjacent dielectric segment.
The phase difference between the two rays at the entry plane (which is oblique to the plane
of the incident wave) will translate into the same phase difference at the exit side of the
lens unless the two dielectric segments have different dielectric constants. This is because
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Huygens principle remains applicable irrespective of the wave incidence angle. Therefore,
the formulation remains valid for oblique incidence. This specific formulation applies to a
refracted wavefront having the angle θt as shown in figure 2.3. Also notice that each ray
entering any slab will emerge from the right side in full accordance with Huygens principle.
Only the rays that have the proper angle (dictated by the design equation) will contribute
to a uniform phase front corresponding to that particular angle.

Unlike classical Snell law where the angle of incidence and the refractive index of the
materials are sufficient to determine the refracted wave angle, here, additional parameters
are required to predict the refracted wave (such as the distance between the center of the
layers, thickness of the slab and refractive index of the materials). Additionally, the Snell
law version for inhomogeneous media presented here includes dimension terms to account
for the gradient of the refractive medium where the contrast and location of the refractive
index among adjacent layers are important.

The extension to linear gradient index materials such that the relation between each
adjacent material slabs leads to the same refractive angle is direct. The equation for such
lens is given by (see Fig 2.3),

βMd+ β0(ym − yM) sin(90− θt) = βmd (2.10)

where βM is chosen to be the reference and βm is calculated for each m-th layer.

2.5 Validation

In order to validate the formulation, a case study is proposed in figure 2.4 where a 2D
reflector (layers infinite in the y-direction) composed of 40-layers is designed to produce a
30◦ refracted wave. Each layer is chosen to be λ/10 height and the thickness d/2=λ/20.
The thickness is represented as d/2 because the wave propagates through the material two
times, once when it is incident and once when it is reflected back.

Figure 2.5 shows the numerical solution of the scattered electric field given by the
reflector. Both, the design and the Law of Refraction for inhomogeneous electrically-thin
media (equation (2.10)) agree with the full wave simulation. All numerical simulations in
this work were performed using CST MICROWAVE STUDIO r(CST MWS) [50]).

In the example shown previously, the design of the refractor was meant to redirect the
plane wave to one fixed angle by varying linearly the refractive index (fixed gradient). The
significance of such result leads to question whether it is possible or not to tailor the rays
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Figure 2.4: Study case. Schematic of a 30◦ angle refraction from a perpendicularly incident
plane wave over a flat reflector.

to focus at one spot. In order to do so, the refractive gradient index must vary along the
inhomogeneous media (variable gradient). Notice that locally every few slabs refract a ray
that points towards the focal point (see Fig 2.6). The behaviour of such lens, could not be
explained using Snell law locally or even the generalized Snell law.

In the next chapter a design methodology for an electrically-thin flat lens and reflector
are proposed.
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Figure 2.6: Operation of the electrically-thin lens made of inhomogeneous slabs illumi-
nated by a plane wave. Yellow lines represent the phase front of the wave and the brown
arrows represent the direction of propagation.
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2.6 Conclusion

A new formulation to predict the refracted angles from electrically-thin lenses and reflectors
was presented. In such lenses, Snell law cannot be used as it is applicable only when plane
waves are incident on planar homogeneous slabs. In the case of electrically-thin inhomoge-
neous media, reflection and refraction analysis using plane waves cannot be applicable. By
modeling the incident electromagnetic energy locally as a ray and invoking Huygens prin-
ciple, a foundation for the generalization of refraction at inhomogeneous media is provided.
The generalization presented in this chapter provides physical insight into refraction from
electrically-thin inhomogeneous media that might appear as counterintuitive, particularly
in the case of refraction with a specific angle from a flat reflector. An example to show the
validity of this formulation and the compatibility of the ray model approach with full-wave
numerical simulations embodying all physical interaction between waves and media were
presented.
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Chapter 3

Electrically-thin lenses and reflectors

3.1 Introduction

The focusing in a conventional convex lens is achieved by physically fabricating curved air-
dielectric interfaces such that the incoming collimated rays are refracted towards the focal
point of the lens. The interest in constructing a perfect lens perhaps dates back centuries
ago when lenses were first invented or even possibly when the laws of refraction were first
conceived [5, 6]. The definition of a perfect lens, in fact, remains elusive. Clearly, reflection,
refraction, diffraction, coordinates transformation and resonance were all exploited in the
quest for the ultimate focusing (see Section 1.3). In this work, theoretical findings are
presented behind a focusing technique that is based on inhomogeneous media refraction.
The designs here are limited to far-field focusing (i.e., focusing of an incident plane wave
arriving from infinity onto a specific focal point in the proximity of the lens).

A flat lens design that provides focusing with no aberration is presented in this chapter.
By profiling the refractive index of the lens to generate a converging spherical wavefront
at the exit side of the lens, the transmitted fields concentrate at a specified focal point.
Numerical examples show that focusing without aberration can be achieved at a specific
frequency and that focusing is possible over a band of frequencies provided minimal dis-
persion. Additionally, the same principle used to design the lens can be used to design flat
reflectors with a focal point.

The fabrication, testing, experimental setup and results of a 2D electrically-thin lens
and reflector are presented in this chapter. Focusing at 9.45 GHz is demonstrated using
a lens fabricated with commercially available dielectric materials. In addition to focusing,
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the flat lens proposed here demonstrates relatively high power gain at the focal point. I also
present a flat reflector based on the same concept. I believe that the proposed dielectric
lens and reflector are strong candidates to replace heavy metallic dishes and reflectors used
in a variety of applications especially satellites.

3.2 Flat lens

The flat lens proposed here consists of multiple concentric annular rings with a radial re-
fractive index profile (see figure 3.1). The refractive index can be realized using a dielectric
or magneto-dielectric material [51, 52]. Consider figure 3.2 where the lens is positioned in
the x− y plane. A plane wave is assumed incident on the lens from the left hand side with
a propagation vector in the +z direction. The incident plane wave propagates parallel to
the normal of the lens with a uniform phase front at z=0. To achieve focusing, i.e., ray
convergence at a specified focal point, labeled as F in figure 3.2, the two ray trajectories
ABF and CDF are required to have equivalent optical paths. In other words, the two rays
impinging on A and C must experience identical phase shift from the instant they enter
the plate (z=0) to the instant they arrive at F such that the interference of the rays be
constructive (see figure 3.2). Notice that the propagation vector of the incident wave is
in the +z direction which is parallel to the boundaries of the dielectric rings, while the
exiting rays propagate towards the focal point.

Continuing on with the ray model for the incident plane wave, each ray traveling
through each ring experiences a phase shift of nmk0d, where nm is the refractive index
of the mth ring given by

√
εm µm and k0 is the free space wave number. m designates the

ring number starting with m=1 corresponding to the center disk at x=y=z=0 and final-
izing with m=M corresponding to the outermost ring (see figure 3.1). Setting the phase
shift of the two paths ABF and CDF to be identical gives:

n1k0d+ k0F = nmk0d+ k0hm (3.1)

where hm is the distance from the focal point to the middle of the mth ring (see figure 3.2).

The first term in equation (3.1) is the phase shift the incident wave experiences as it
travels across the center ring and through free space to the focal point F . The second term
corresponds to the phase shift across the mth ring and to the focal point.

Eliminating k0 from both sides of equation (3.1), it becomes,

n1d+ F = nmd+ hm (3.2)
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Figure 3.1: Cross section view of the lens in the z=0 plane.

which gives the design equation for nm in terms of n1 or vice versa.

By selecting the refractive index of any of the M-ring, the refractive index of all other
rings is fixed via equation (3.2). Expressed in terms of the angle αm,

n1 = nm +
F

d

(
1

cos(αm)
− 1

)
(3.3)
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Figure 3.2: Cross section view of the lens in x=0 plane.
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Once nM and n1 are fixed, the refractive indexes of the remaining rings will be selected
according to equation (3.3). The number of rings M will only dictate the resolution of the
lens.

If the dielectric material used has low dependence on frequency, at least over a specific
frequency range, equation (3.3), similarly, will have low dependence on the frequency over
the same frequency range.

In earlier works [35, 53, 54], it was demonstrated that a gradient index microwave lens
can increase the gain of horn antennas by focusing the beam. In fact, equation (9) of [54]
reduces to equation (3.3) above. It is interesting that reference [54] arrived at this equation
using a different approach involving differential calculus, whereas the derivation here was
based on convergence of rays and equivalence of optical paths. It is worth noticing that
in equation (9) of [54], the authors do not consider multiple reflections inside the lens.
Their thick lens creates actual cavities which generates modes and unpredicted behaviors.
Additionally, there is a coupling effect between adjacent layers which is not negligible
for lenses comparable or thicker than a wavelength as the case presented in [54]. In this
chapter, however, the derivation was based on building an electrically-thin lens. This design
criteria allows to assume reasonably that the waves at each layer are confined and will not
reflect on the interface between layers, thus achieving zero monochromatic aberration,
characteristic that could not be achieved with the methodology in [54]. Furthermore, to
account for the diffraction given by the lens edges, the refractive index at layer M is chosen
equal to be 1 (nM = 1). This means that vacuum is actually accounted as a layer.

To test the validity of equation (3.2), consider as an example, a lens with a radius
and focal length of 4λ0. These two parameters are considered as the primary design
parameters. The remaining lens parameters such as the thickness of the lens, d, the width
of the dielectric rings, lm and the lens dielectric medium parameters, can all be chosen
with some flexibility. To start, the lens depth d needs to be electrically small in order
to preserve the ray-like behavior of the incident field as it penetrates the lens. For the
example chosen here, d = λ0/10, where λ0 is the free-space wavelength. Figure 3.3 shows
the calculated refractive index profile along the y axis (or the radial) of the λ0/10 thick
lens for three different focal lengths.

Notice that the design equation provide a degree of flexibility in terms of the profile of
the refractive index and also the selection for the relative permittivity and permeability
for each annular ring. In fact, such flexibility allow for choosing the permeability and
permittivity equal to achieve impedance matching for the incident wave and eliminate
reflections which in turn helps increase the focusing efficiency considerably. This design
flexibility that allows for the possibility of impedance matching can be viewed as a contrast

25



to previous flat lens designs that necessitated the use of thin film to minimize reflections
which in turn confine the lens operation to a narrow frequency band.

Full-wave electromagnetic simulation tool CST was used to simulate the performance
of the lens. Figure 3.4 (a) shows the total electric field magnitude distribution over the
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Figure 3.4: Magnitude of the total electric field over the x=0 plane. Color scale extends
from -6.85 V/m (deep blue) to 6.85 V/m (deep red) (a). Magnitude of the z-directed
Poynting vector over the x=0 plane. Color scale extends from 0 V A/m2 (green) to 0.202
V A/m2 (deep red) (b).
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Figure 3.5: Magnitude of the normalized z-directed Poynting vector over the z = 4λo
plane.

x=0 plane for a plane wave incident from z = −∞ and for a fixed instant in time. Clearly
visible in the figure the spherical wavefronts generated on the right-hand side of the lens
on both sides of the focal point as the waves converge and then start diverging as they
leave the focal point. Figure 3.4 (b), shows the magnitude of the z-directed Poynting
vector, demonstrating high power concentration within close proximity of the focal point.
Figure 3.5 shows a normalized contour plot of the Poynting vector at the focal point plane
(z = 4λ0).

Note that equation (3.2) indicates that the rings’ design, and consequently the focusing
depended slightly on the frequency as long as the refractive indexes of the rings used to
construct the lens varied slightly with frequency. This design, namely equation (3.2), was
based on the assumption that a ray enters each of the annular rings and experiences a
phase shift as it propagates through the lens along the +z direction. If the thickness of the
lens is increased, or alternately, is no longer electrically small, coupling is expected to take
place between adjacent rings in a manner highly similar to coupling between closely spaced
transmission lines [55, 56]. If the lens width increases, then the coupling can increase to
sufficiently disturb the phase profile that was designed for at the exit side of the lens at
z=d. From an optical point of view, the longer the path d, the larger the spreading of
the wave, and hence the higher coupling between adjacent rings. If the coupling between
adjacent layers increases, which would be the case when the thickness of the lens increases,
the phase profile on the right-hand-side (z=0 in figure 3.2) would be different from what it
is designed for, thus leading to a type of aberration or de-focusing. Therefore, even under
the assumption that each ring has minimal or even zero dispersion, it should be kept in
mind that the design equation was based on the assumption that each ray entering a ring
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is confined to that ring until its exit. While a theoretical analysis to gauge the effect of
the coupling cannot be foreseen at this time, the effect of such coupling, if needed, can be
gauged numerically.

3.3 Flat reflector

The same strategy for inducing a scattered field that focuses at a specific point can be
used to design a reflector that would focus the field at a specific focal point. Such reflector
would perform the function of a paraboloid (dish reflector) as shown in figure 3.6. The
reflector can be designed using the same principle of requiring the rays of an incident field
that arrive normal to the reflector to scatter at different angles and converge at a focal
point. The primary difference from the lens, however, is that the dielectric rings are now
backed by a perfectly conducting sheet (at z=d/2) as shown in figure 3.7, thus forcing the
incident ray to traverse the lens twice. Since the thickness of the reflector is chosen to be
d/2, the design equation remains the same as the one for the lens (equation 3.2).

To validate the reflector design, consider a reflector disk with a radius and focal length
of 4λ0. The thickness of the reflector would be half that of the lens designed earlier
(d/2=λ0/20). A perfectly conducting plate is positioned behind the dielectric multi-ring
disk. Similar to the lens case, the incident plane wave arrives at the surface of the lens
with uniform phase, it then propagates through the lens a round trip exiting with a phase
profile designed to achieve convergence at the focal length. Figure 3.8-a shows the scattered
electric field distribution on the x=0 plane. The profile of a spherical wavefront imploding
at the focal point is visible. Figure 3.8-b shows the z-directed Poynting vector on the same
plane of x=0; again showing strong concentration of the scattered field.
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(a) (b)

Figure 3.6: Cross section view at the center of a classical paraboloid reflector (a). Cross
section view of a flat focusing reflector proposed in this paper (b).
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Figure 3.7: Cross section schematic of the reflector in the x=0 plane.
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Figure 3.8: Magnitude of the scattered electric field over the x=0 plane. Color scale
extends from -5.11V/m (deep blue) to 5.11V/m (deep red) (a). Magnitude of the z-directed
Poynting vector over the x=0 plane. Color scale extends from 0 V A/m2 (green) to 0.239
V A/m2 (deep red) (b).
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3.4 Fabrication and experimental results

A 2D lens and reflector were fabricated, tested and compared to numerical simulations. In
contrast to the 3D lenses and reflectors presented in the previous section, the 2D concen-
trators are comprised of slabs of dielectric material infinite in the x direction instead of the
concentric annular rings presented earlier. The design equation (equation (3.2)) remains
the same. The difference here is that the focusing is over a focal axis instead of a focal
point and the refractive index variation of the 2D devices is over the y direction. The 2D
structures are used due to the building simplicity given that all building components are
flat. On the other hand, the disadvantage is that the device is sensible to polarization on
the incident wave.
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Figure 3.9: Relative permittivity for the electrically-thin flat lens as obtained from the
design equation. Inset shows the absolute error (designed refractive index values minus
dielectric used).

A flat lens was designed measuring 6λ in height and d = λ/5 in thickness. The lens
consisted of 30 layers each λ/5 in height. A focal length of 9λ is chosen to obtain a dielectric
profile that can be implemented with commercially available material. The refractive index
profile of the design had a slight deviation from the fabricated lens due to difficulty in
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finding dielectric material corresponding perfectly to the design values (see figure 3.9). For
each lens’ layer, the material was selected from dielectric laminates available from Rogers
Corporation. Under the assumption that the layer thickness is electrically small (d� λ),
during the fabrication of the final prototype, if a close dielectric match was not found in
the available Rogers products, two dielectric layers were connected together to achieve an
effective phase shift of k0nmd = k0

√
εeffd. For such layer, the effective permittivity εeff is

calculated by using two available permittivities ε1 and ε2 as follows:

εeff =

(√
ε1∆z +

√
ε2(d−∆z)

d

)2

(3.4)

where d is the thickness of the layer and ∆z is adjusted to achieve the desired εeff . There-
fore, the electric field of the plane wave have to be selected in the x̂ direction.

The lens was simulated using the commercially available CST full-wave electromagnetic
simulation tool [50]. Figs 3.10 and 3.11 show the Poynting and total electric field vectors
in the y − z plane simulated at 9.45 Ghz. Field concentration is clearly visible in and
around the focal point which is 9λ from the surface of the lens. The bandwidth of the
lens is mainly affected by the bandwidth of the dielectric materials. Figure 3.12 shows the
x̂ directed electric field along the focal point axis for the f=9.45 Ghz (central frequency)
and for ±20%, ±10% and ±5% of the central frequency. The gain (equation 3.5) of the
simulated frequencies remains within 4.1 dB and 4.5 dB for all cases.

Lens
z

y

F

Figure 3.10: Magnitude of the simulated z-directed Poynting vector over the y− z plane.
Linear color scale extends from -0.00687 VA/m2 (deep blue) to 0.00687 VA/m2 (deep red).
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Figure 3.11: Magnitude of the simulated x-directed total electric field over the y−z plane
for a 6λ 2D lens and a focal point designed at 9λ. Linear color scale extends from -1.91
V/m (deep blue) to 1.91 V/m (deep red).
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axis for a 6λ 2D lens and a focal point designed at 9λ.
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Figure 3.13: The 2D electrically-thin lens implemented by stacking dielectric layers (a).
The lens placed in a Styrofoam frame (b).

Figure 3.13 shows the fabricated lens. Figures 3.14 and 3.15 show the experimental
setup where an Agilent E8257D signal generator at 9.45 Ghz was used as the microwave
source along with a high gain horn antenna to generate a plane wave at the surface of the
lens. The horn was placed at an electrically far distance (approximately 45λ from the lens)
such that the lens experienced a plane wave. The received power was measured along the
focal axis (x = 9λ for the lens and x = 4.1λ for the reflector) by an electrically-small probe
positioned on a movable plexiglass fixture. Figure 3.14 (a) shows the schematic diagram
of the lens focusing experiment.

Figure 3.16 shows the normalized detected power across the focal point axis (y-axis at
x = 9λ). The normalization is made with respect to the highest power magnitude. The full-
wave simulations and measurements show strong agreement in the vicinity of the focal point
except for a slight vertical shift in the focal point due to possible misalignment between the
probe’s path and the y-axis of the lens. Possibly, the side lobes of the simulated patterns
were not fully captured by the measurement probe due to potential multiple factors that
include the probe’s sensitivity and dynamic range and wave reflections in the laboratory
environment. The numerical simulations assumed a perfect detection system with a probe
having no dimensions and operated under negligible impedance loading.

Given that the lens was made of unmatched dielectric slabs of material, the efficiency
is an important feature to consider. The definition used for this case was the ratio of the
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Poynting vector integration along the focal axis (with the lens) over the Poynting vector
integration over the same line without lens. The total efficiency calculated from simulation
data was 77%.

Furthermore, to characterize the focusing effect and hence to demonstrate the power
enhancement, the power gain of the lens can be defined in terms of the incident and the
focused fields according to the following definition [45],

Gain = 20log10(|Ef |/|Ei|) (3.5)

where Ef is the electric field at the focal point in the presence of the lens and Ei is the
electric field of the incident plane wave at the focal point in absence of the lens. The power
gain was measured to be approximately 4.2 dB. The gain calculated by CST full-wave
simulator at the central frequency was 4.29 dB.

For the case of the reflector, the focal point is chosen such that the same lens is used.
From equation (3.2), when the thickness of the dielectric slabs is doubled, the focal point
distance FR would be approximately half of the one for the lens. The approximation comes
from the fact that the distance between the center of the reflector and the mth layer (hm)
remains the same. Therefore, the implemented values are best fitted to a reflector’s design
having a focal point of 4.1λ. The absolute error between design and fabrication is shown
in figure 3.17.

The reflector was constructed by using the same lens but placing an aluminum sheet on
one side as discussed above. Figure 3.14 (b) shows the schematic diagram of the reflector
focusing experiment. The normalized power at the focal axis of the reflector (z = −4.1λ)
is shown in figure 3.18. The power gain of the reflector was also measured using the same
definition as in [45] and was found to be 7.7 dB. The theoretical gain was calculated by
the CST full-wave simulator to be 10.19 dB. Clearly, both the lens and reflector provide
considerable enhancement of power even considering that the layers were not matched to
free space.

35



Styrofoam 

frame

Lens

Position of 

sensor for 

the lens

Horn antenna

Signal generator

Spectrum Analyzer

(a)

z

x

y

Reflector

Position of 

sensor for 

the reflector

Horn antenna

Signal generator

Spectrum Analyzer

Styrofoam 

frame

(b)

Aluminium 

laminate

z

x

y

Figure 3.14: Diagram of lens (a) and reflector (b) focusing experiment. The lens and
reflector were framed using Styrofoam. In the case of the lens, an electrically-small sensor
was placed on the back of the lens and a horn antenna was placed in front of the lens. In
the case of the reflector, the horn antenna and the sensor were placed on the same side
(front of the reflector).
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Figure 3.15: Received power measurement system. The lens was framed with Styrofoam.
On one side of the lens an electrically small sensor was placed over a plexiglass moving
fixture for power sweeping. Over the other side of the lens, a signal generator with a horn
antenna at an electrically-long distance provided plane wave illumination.
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Figure 3.16: Normalized power of the electrically-thin flat lens across the focal point axis
(z = 9λ, see Fig 3.2) obtained using simulation (green solid curve) and measurements (blue
dash-dotted curve).
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Figure 3.17: Relative permittivity for the electrically-thin flat reflector as obtained from
the design equation. Inset shows the absolute error (designed refractive index values minus
dielectric used).
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Figure 3.18: Normalized power of the electrically-thin flat reflector across the focal point
axis (x = 4.1λ) simulation (green solid curve) and measurements (blue dash-dotted curve).
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3.5 Electrically-thin lens and reflector for an enhanced

dipole directivity

The electrically-thin lens and reflector can be used as collimators. The electrically-thin
lens and reflector were designed such that a plane wave focuses at a single point. Strictly,
the electromagnetic reciprocity theorem cannot be used to generate a plane wave from a
point source since a plane wave can only be generated by a source of infinite current sheet
or a line source placed at infinity. Nevertheless, significant (but not perfect) collimation
can be achieved as demonstrated here. In fact, using a dipole fed by a finite current
would approximate the field at a focal point obtained for the incident plane wave focusing
scenario.
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Figure 3.19: Simulation results for the far field pattern of a dipole antenna (solid black
curve), with an electrically-thin lens (dashed red curve) and an electrically-thin reflector
(dash-dotted green curve).
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To determine the potential of the lens or reflector for increasing the directivity of
antennas, I used an electrically-small printed dipole (total length of 8 mm) miniaturized
with one 1 nH inductor on each arm. Figure 3.19 shows the directivity enhancement for a
lens and a reflector. The directivity of the dipole is 2 dBi, whereas the directivity of the
lens and reflector is 8.5 dBi and 10.8 dBi, respectively. Of course, the presence of a lens or
reflector increased the radiation aperture size of the new radiator (i.e., the dipole and the
lens/reflector), the advantage of employing the lens or reflector for increased directivity is
cost, power efficiency and simplicity when compared to a typical large aperture radiator
that would employ a more complex feeding circuitry and topology. I also observe that the
performance of the reflector was better than the lens (by 2.3 dB) which can be attributed
to the mismatching taking place at the lens interface.

3.6 Conclusion

In conclusion, a thin flat lens based on designing the refractive index to achieve a phase
profile sufficient for ray convergence at a specified focal point was presented. The design
is based on the assumption that the lens is electrically-thin, thus being fundamentally
different from gradient-index techniques which bend the rays within an electrically-thick
lens [9]. A numerical example was presented where aberration-free focusing was achieved
at a specific focal point. The design provides the flexibility of not requiring the focal point
to be in the far field.

Because of the ray behavior assumption of the field interaction with the dielectric layers
of the lens, the design is most suitable for large aperture lenses. Furthermore, using the
same methodology presented here for lens design, a flat reflector can be designed with a
focal point. The results for the 3D lenses and reflectors presented in this chapter were purely
based on full-wave electromagnetic simulation. For the examples presented, the dielectric
material needed for building the lens and reflector requires the availability of a material
with refractive index ranging from 1 to 18. To minimize reflection, the permeability and
permittivity can be chosen to be equal to the refractive index.

Furthermore, a 2D electrically-thin flat lens and reflector were designed and constructed
using available printed circuit board dielectrics. The designs for the lens and reflector were
implemented with the available materials which in some cases lead to a combination of
thinner slabs of different dielectric constants that achieved the effective permittivities de-
sired. The designs and formulations of sections (3.2) and (3.3) were validated through
experimentation by proving the concentration of energy in a focal point for the imple-
mented lens and reflector. Even though mismatching existed between the dielectric layers
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comprising either the lens or reflector and free space, both, the lens and reflector showed
an appreciable gain enhancement at the focal point compared to the incident wave with
no concentrator. Additionally, numerical simulation demonstrated that the reflector can
be effective collimators. Both showed a significant improvement in directivity. Overall, the
reflector with a dipole showed the best performance. The experimental lens and reflector
can be improved further by using matched materials which are not commercially available.
However, closely matched materials have been subject of study and have been successfully
fabricated [52]. The authors in [52] presented a variety of materials with similar permit-
tivity and permeability values, and relatively high refractive indexes. These materials may
be used to substitute the circuit boards such that matching with free space is improved
and the reflections minimized.
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Chapter 4

Analytical model of electrically-thin
inhomogeneous media

4.1 Introduction

This chapter presents analytical models for two-dimensional (2D) and three-dimensional
(3D) electrically-thin lenses and reflectors. The 2D formulation is based on infinite current
line sources, whereas the 3D formulation is based on electrically-small dipoles. These
models emulate the energy convergence of an electrically-thin flat lens and reflector when
illuminated by a plane wave with specific polarization. The advantages of these models are
twofold: first, prediction of the performance of electrically-thin flat lenses and reflectors
can be made significantly faster than full-wave simulators, and second, providing insight
on the performance of these electrically-thin devices. The analytic models were validated
by comparison with full-wave simulation for several interesting examples. The validation
results show that the focal point of the electrically-thin flat lenses and reflectors can be
accurately predicted through a design that assumes low coupling between different layers
of an inhomogeneous media.

Full-wave electromagnetic simulation gives high accuracy that encompasses the full
”spectrum” of wave phenomena including reflection, refraction and even diffraction. The
only drawback from using full-wave simulation is its high computational cost (computer
memory and time). For the type of problems encountered in flat lenses and reflectors,
the desired focal point might fall within the near or far field, which necessitates the in-
clusion of relatively large space in the computational domain. This makes the solution
very time consuming and memory intensive, especially for optimization and design. The
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models presented here are not restricted to lenses and reflectors but can be used for general
inhomogeneous slabs.

4.2 Theory

An analytical model aims to reproduce the physics of a problem accurately while preserving
a low complexity. Solving the scattered field of electrically short slabs illuminated by a
plane wave tends to be a more difficult problem than solving problems where only current
sources or electrically small dipoles in free space are involved.

For the case of electromagnetic problems of sources in free space, there is a variety
of different alternatives to solve them. One of the alternatives is finding an intermediate
vector that leads to the desired field similar to the use of auxiliary variables when solving
integrals.

The calculation of electric fields is often simplified by this ”intermediate vector” which
is named magnetic vector potential. The models presented in the current chapter are
formulated based on this vector. For this reason, the theory of the magnetic vector potential
(A) is presented here. The formulation of the vector A is based on the following vector
identity,

∇ · (∇× a) = 0 (4.1)

In Maxwell equations, the curl of the magnetic induction does not vanish, but its
divergence does. Given the identity in equation (4.1); then, it is possible to assume that
the magnetic field H be represented by [57, 58],

H = ∇×A (4.2)

where A is the magnetic vector potential. This vector has no physical interpretation by
itself. Instead, it is a mean to find the electric or magnetic field.

Then, by Maxwell equations it can be found that,

∇×H = ∇×∇×A = J + jωεE (4.3)

where J is the source or impressed current, E is the electric field, µ is the permeability and
ε is the permittivity.
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Considering Faraday’s law,
∇× E = −jωµH (4.4)

Substituting the magnetic field from equation (4.2) into equation (4.4), then,

∇× (E + jωµA) = 0 (4.5)

Considering and comparing the following identity to equation (4.5),

∇× (∇a) = 0 (4.6)

In words, a curl free vector is the gradient of a scalar. Then, it is possible to define
E + jωµA of equation (4.5) as a gradient of a scalar,

E + jωµA = −∇Φ (4.7)

where Φ is the electric scalar potential.

Substituting equations (4.2) and (4.7) into Ampere’s law, leads to [57],

∇×∇×A− k2A = J− jωε∇Φ (4.8)

where Ampere’s law is given by ∇×H = jωεE + J and k is the wave number.

By vector identity, equation (4.8) becomes,

∇(∇ ·A)−∇2A− k2A = J− jωε∇Φ (4.9)

By choosing,

∇ ·A = −jωεΦ (4.10)

Then, equation (4.9) simplifies to the so called Helmholtz equation,

∇2A + k2A = −J (4.11)

Finally, rewriting the magnetic field and finding the electric field solved in terms of the
magnetic vector potential [57],
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E = −jωµA +
1

jωε
∇(∇ ·A) (4.12)

H = ∇×A (4.13)

For the case of a 2D electrically-thin flat slab (slab located in the x-z plane with
refractive index variation in ŷ direction only), the scattered field of a wave illuminating the
slab can be modeled by two dimensional sources of cylindrical waves as will be discussed
in the next section. These waves are independent of the z-coordinate, i.e. infinite current
sources. The solution to equation 4.11 that represent outward-traveling waves is a Hankel
function zeroth-order, second kind,

Az = CH
(2)
0 (kρ) (4.14)

where ρ is the distance from the source to the observation point and C is a constant
determined by,

Hφ = −∂Az
∂ρ

= −C ∂

∂ρ
H

(2)
0 (kρ) (4.15)

where limρ→0

¸
Hφρ dφ = I

Solving equation (4.15) for kρ→ 0, the constant C yields,

C =
I

4j
(4.16)

Then, the magnetic vector potential of an infinite current line on the z-axis is given by
[57],

Az =
I

4j
H

(2)
0 (kρ) (4.17)

Although infinite current lines are useful for modeling 2D inhomogeneous media, they
are not suitable to model 3D cases (electrically-thin in ŷ with refractive index variation in
x̂ and ẑ slab). A more convenient source to be use in 3D cases is an infinitesimal electric
dipole. Small dipoles can account for variations in the refractive index of a slab or film.
The x-z plane can be discretized to allocate dipoles in order to calculate the scattered fields.
The solution for A in equation (4.11) corresponds to the solution a second order partial
differential equation. Given that this equation is linear, its solution can be expressed as a

45



linear superposition of point sources’ solutions. Therefore, the solution of equation (4.11)
is given by,

A(r) =

˚
V

J(r’)G(r, r’)dV ′ (4.18)

where G(r, r’) = e−jk|r−r’|

4π|r−r’| is the Green’s function for free space.

Then, the magnetic vector potential for infinitesimal electric dipoles can be expressed
as [57, 58],

A(r) =
1

4π

˚
V

J(r’)
e−jk|r−r’|

|r− r’|
dV ′ =

1

4π

ˆ l/2

−l/2
Iẑ
e−jk|r−r’|

|r− r’|
dz′ =

Ile−jk|r−r’|

4πr
ẑ (4.19)

In the next section, magnetic vector potential of cylindrical current sources infinite in
ẑ and infinitesimal current sources are used to find the electric field distribution of the
scattered field due to a perpendicularly incident plane wave.

4.3 Model for 2D lenses and reflectors

Considering slabs in two-dimensional space. Figure 4.1(a) shows a thin slab of inhomoge-
neous material illuminated by a plane wave that is incident normally on the flat surface.
The phase of the incident plane wave at the left side of the slab is uniform as shown in
figure 4.1(a). As the incident wave propagates through each layer, it experiences a phase
shift proportional to the refractive index of each layer. These phase shifts translate into
proportional delays in time domain. In other words, the peak of the wave exits different
layers at different times. Figure 4.1(a) shows a generic phase profile of the incident plane
wave at the right hand side of a slab composed of M dielectric layers. The assumption
that the slab depth (or thickness) d is much smaller than the wavelength of the incident
field results in minimal coupling between the dielectric layers (see section 3.2). Minimal or
negligible coupling between the dielectric layers indicates that the emerging incident field
from each dielectric layer can be considered as an independent source in a manner similar
to the application of Huygen’s theory to the problem of scattering from electrically-small
apertures. Therefore, each layer can be modeled as an independent line source (infinite
current source in two-dimensional space) as shown in figure 4.1(b)). The line sources are
polarized in the ẑ direction. Each current source is assigned a phase shift corresponding
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to the distance d multiplied by the wave number of the respective dielectric layer. The
phase shifts or phase differences between current lines are presented as a time difference of
the expanding wave fronts (in red) shown in Fig 4.1(b). The time difference is expressed
in the different radii of the propagating wavefronts (peak values of the waves) diverging
from the current filaments. Since each current source is independent, its field can be cal-
culated using cylindrical waves. For normal plane wave incidence (in the ŷ direction (see
Fig 4.1(a)) the amplitude of each current source is kept uniform.
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Figure 4.1: Electrically-thin inhomogeneous slab illuminated by a plane wave (a). Infinite
current line model (b).

For a slab with M dielectric layers, the solution of one current filament (which models
one layer), can be constructed using the magnetic vector potential (see equation 4.17),

Az =
Ie−jdkm

4j
H

(2)
0 (k0 | ~ρ− ~ρ′ |) (4.20)

where H
(2)
0 is the zeroth order Hankel function of the second kind, k0 is the wave number

in free space, I is the current magnitude, e−jdkm is the phase of the wave at the exit side of
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the slab (phase of the current in the model), d is the slab’s thickness, km is the wavenumber
of the mth layer and | ~ρ− ~ρ′ | corresponds to the radial distance between the source and the
observation point in the cylindrical coordinate system. The electric and magnetic fields
can then be derived from the magnetic potential using equations (4.12) and (4.13),

Ez =
−k20Ie−jdkm

4ωε0
H

(2)
0 (k0 | ~ρ− ~ρ′ |) (4.21)

Hφ =
−k0Ie−jdkm

4j
H

(2)
0
′(k0 | ~ρ− ~ρ′ |) (4.22)

Equations (4.21) and (4.22) represent the fields on the right-hand-side of the slab due
to the mth current filament that corresponds to a single electrically-thin dielectric layer of
refractive index nm.

To obtain the total field contribution of all layers, the coordinates of equation (4.21)
have to be transformed to the mth layer position. Therefore, the field contribution due to
all layers is the sum over all layers

ETz =
M∑
i=1

−k20Ie−jdkm
4ωε0

H
(2)
0 (k0 | ~ρ− ~ρ′i |) (4.23)

where ~ρ′i is the location of the ith current source, ~ρ is the location of an arbitrary observation
point located on the right-hand-side of the slab. This formulation was programmed using
Matlab to find the field at each observation point of interest.

Three different examples are presented here. A random refractive index profile is used
with the solely purpose of validating the analytical model, whereas the two other examples
are applications: a 2D flat converging lens and a 2D Off-axis reflector.

2D Random Inhomogeneous Medium

In order to validate this model, a 2D inhomogeneous flat slab was considered as an
example. The slab has a dimension of 6λ and divided into 60 dielectric layers of thickness
λ/10. In this particular example, for the purpose of validation only and not any useful
objective, the refractive index profile was selected randomly and is shown in figure 4.2.

Figure 4.3 shows the z-polarized electric field obtained from the full-wave numerical sim-
ulation of the slab (full-wave simulation was performed using CST MICROWAVE STUDIO
r(CST MWS) [50]) and the electric field obtained using the analytic formulation presented
here. Strong agreement is found between the two solutions except in the region very close
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Figure 4.2: Randomly chosen refractive index profile of the dielectric layers comprising a
flat slab.
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Figure 4.3: Two-dimensional distribution of the electric field on the righ-hand-side of a
6λ inhomogeneous slab with a refractive index profile shown in figure 4.2 obtained using
full-wave simulation (a), current line model without additional current line sources (b),
and current line model with additional current line sources (c).

to the slab. The discrepancies in the near-field region is attributed to the fact that the
model considers a finite number of current lines corresponding to the number of dielec-
tric layers, while the simulation considers a continuous medium and a plane wave that
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propagates everywhere in space.

For this particular example with arbitrary dielectric profile, the objective was not to
achieve any particular convergence of the waves and, thus, spreading of the waves across
the entire space to the right of the slab is expected. Notice that in this case, the incident
plane waves that do not impact the slab will contribute to the total field value. Additional
current lines were added at the top and bottom of the lens in order to account for these
plane waves that do not impact the slab. However, these additional current lines did
not improve significantly the total field. Figure 4.3 shows the z-polarized electric field
distribution to the right of the slab for the full-wave simulation.

2D Flat Converging Lens

The 2D current model can be used to predict the performance of a 2D flat converging
lens significantly much faster than full-wave simulation. As an example, a 2D lens with
a height of 6λ is considered. The thickness and width of each layer is λ/10. The design
formulation (equation (3.2)) results in the refractive index profile shown in figure 4.4.
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Figure 4.4: Refractive index design profile.

Figure 4.5 shows the electric field of the converging lens using full-wave numerical
simulation and the current lines model in equation (4.23). Figure 4.6 shows the electric
field along an axis parallel to x at y=4 λ. Notice that adding additional line sources
improved the accuracy of the analytical model. Strong agreement is found between the
full-wave numerical simulation and the analytic solution. In fact, the strong agreement
further validates the assumption that the coupling between the layers of different materials
is negligible provided that the lens is electrically thin. Notice that all currents in the model
have the same amplitude but defer in phase. The converging phase front is a consequence
of the designed phase profile assigned to each line. Remind that current lines model
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Figure 4.5: Two-dimensional distribution in the x-y plane of the electric field for a 6λ
lens obtained using full-wave simulation (a) and the current line model (b).
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Figure 4.6: One-dimensional distribution of the normalized magnitude and phase of the
electric field for a 6λ lens along a line parallel to the x-axis and at y=4λ obtained using full-
wave simulation (solid line), current line model employing 60 line currents (dotted lines)
and current line model employing 120 uniformly distributed line currents (dashed-dotted
lines).

assumes no coupling between the sources. Although the numerical simulation accounts for
any possible coupling, the strong agreement between the two solutions indeed validate the
assumption of low coupling between adjacent dielectric layers. Naturally, the effectiveness
of the analytical model decreases if the lens becomes thicker. In figure 4.7, the magnitude
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and phase of the electric field is shown for two lenses having thickness of 1λ and 2λ, where
λ is the wavelength in free space. It is interesting that the line currents model still gives
a reasonable approximation for the magnitude of the field even for a 2λ-thick lens. The
deterioration in the phase, however, seems to be more pronounced with thickness.
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Figure 4.7: One-dimensional distribution of the normalized magnitude and phase of the
electric field for a 6λ lens along a line parallel to the x-axis and at z=4λ, where z=0 is at
the exiting side of the lens, for thickness of 1λ (a) and 2λ (b). Full-wave simulation (solid
line), current line model employing 120 uniformly distributed line currents (dashed-dotted
lines).

2D Off-axis reflector

A flat reflector’s design is dictated by equation (3.2) with half the thickness of the lens
design. Rewriting the equation for convenience,

nfd/2 + F = nmd/2 + hm (4.24)

where nf is the refractive index at the focal axis, hm is the distance from the focal point
to the middle of the mth layer, nm is the refractive index of such layer, F is the distance
from the reflector to the focal point, and d/2 is the thickness of the reflector’s dielectrics
(see Fig 4.8).

The layers of the reflector are numbered from m=1 to m=M (see Fig 4.8). The focal
axis is considered to be at layer m = f (with refractive index of nf ), where f < M/2. The
refractive index of the region extending from m=f up to m=M is calculated first. Vacuum
is considered as layer m = M . The reason for designing the dielectrics from m = f to
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m = M is for maintaining low dielectric values as practically possible. Equation (4.24)
shows that the refractive index increases monotonically until the maximum is reached at
m=f. According to (4.24), if the region m = 1 < i < m = f is chosen first and the first
refractive index is chosen to be 1, then negative refractive index materials would be needed
at some point in the region m = f < i < m = M . In order to avoid the use of negative
refractive index materials, (4.24) is solved by calculating the refractive index of each layer
with vacuum as the reference for the first region. For the second region which includes
the layers from m=f to m=M, the refractive index mf is set as a reference to calculate the
remaining values.

Figure 4.9 shows the scattered z-polarized electric field of a 6-lambda flat reflector. The
reflector is λ/20 thick. The focal point is at F = 4λ and the focal axis was chosen 2λ from
the top of the reflector (see Fig 4.8). Notice that for the case of the scattered field there is
no need to add additional current lines at the top and bottom of the reflector as was done
in the case of the random refractive index flat lens since only the reflected (scattered) wave
is calculated.
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Figure 4.9: Two-dimensional distribution of the scattered electric field from a 6λ off-axis
reflector obtained using full-wave simulation (a) and the current line model (b).

4.4 Model for 3D lenses and reflectors

In contrast to the 2D case where the lens and reflector are made of rectangular layers
(infinite in the third dimension), the 3D lens is formed by concentric annular rings of
different refractive indexes. In addition to the primary feature of a 3D lens in converging
energy in three-dimensional space, the 3D lens has dual polarization property. The 3D lens
is able to receive any polarization as long as the lens is illuminated by a normally incident
plane wave (normal to the plane of the lens).

The analytic model for the 3D lens is formed by replacing the concentric rings in
Figure 4.10(a) by infinitesimal electric dipoles as shown in Figure 4.10(b). The phase of
the infinitesimal dipoles corresponds to the phase of the wave at the exit side of the lens for
each ring. This phase represents the delay the wave experiences as it propagates through
the dielectric medium of each ring. The dipoles are aligned and polarized according to the
polarization of the incident plane wave (selected to be in ẑ direction). The field due to each
dipole is derived using the magnetic vector potential (equation 4.19) and then the electric
field is calculated from the potential function. The vector potential is given by [58],

Az =
µ0Ile

−jdkm

4πr
e−jk0|r−r’| (4.25)

where µ0 is the permeability of free space, I is the current magnitude, dkm is the phase
of the wave at the exit side of the lens (same as the phase of the current in the model),
km is the wave number of the mth ring, d is the thickness of the lens, l is the length of
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Figure 4.10: Electrically-thin lens illuminated by a plane wave (a). Infinitesimally electric
dipole model (dipoles are shown for the mth layer only) (b).

the filament, r is the distance from the filament to an observation point and k0 is the
wavenumber of free space.

The electric field in the same direction of the current is given by [58],

Ez = −jωµA+
1

jωε
∇(∇ · A) (4.26)

Equations (4.25) and (4.26) correspond to a single infinitesimal dipole. To obtain the
total contribution of all positions, the coordinates of equation (4.26) have to be transformed
to the mth position. Then, the contributions of the M-layers must be summed to find the
total electric field distribution.

ETz =
D∑
i=1

−jωµ

(
µ0Ie

−jdkml

4π | ~r − ~r′i |
e−jk0|~r−

~r′i|

)
+

1

jωε
∇

(
∇ ·

(
µ0Ie

−jdkml

4π | ~r − ~r′i |
e−jk0|~r−

~r′i|

))
(4.27)

where | ~r − ~r′i | is the distance between the observation point ~r and the ith infinitesimal
dipole ~ri

′.
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In order to validate the 3D model, the lens example from section (3.2) is used here to
validate the analytical model. A total of 4515 dipoles were used in the analytical model.
The central disc was replaced by 5 dipoles, whereas the rest of the rings were replaced by
a number of dipoles proportional to the circumference of the mth ring such that all dipoles
were uniformly spaced. Note that for the particular lens example considered here (8 λ
diameter and ring width of λ

10
), the lower limit on the number of dipoles for the analytical

model would be 903 based on using one dipole for the central disc and incrementally
increasing the number of dipole by one for each consecutive larger ring. In figure 4.11,
the one-dimensional normalized (with respect to the maximum value) distribution for the
z-polarized electric field for the lens using full-wave simulation, analytical model using 903
dipole and analytical model using 4510 dipoles is presented. It can be noticed that lower
number of dipoles break the symmetry in the solution. Clearly, the higher the number of
dipoles used in the analytic model, the higher the solution accuracy; however, the trade-off
is higher computational cost.

Figure 4.12 shows the z-polarized electric field obtained using the full-wave simulation
and the infinitesimal dipole model. Strong agreement is observed between the two solutions.
The slight differences are because the model considers a finite number of infinitesimal
dipoles while the full-wave simulation considers an incident plane wave that illuminates
the entire space. In comparison to the 2D slab of randomly chosen dielectric layers where
40 additional current lines were added to account for the incident plane wave, the 3D lens
required only 2 additional rings of infinitesimal dipoles (with no phase shift).

Figure 4.13 shows the Poynting vector profile over the designed focal point plane at
x = 4λ0 obtained using full-wave simulation (a) and using the infinitesimal dipoles model
(b). The computation time was approximately 2.5 days using full-wave simulation of the
3D 8λ-diameter lens on a 4x8 core computer (2 GHz, RAM 255 GB), whereas the dipole
model simulation time was approximately 2 hours on a 1x4 core computer (2.33 GHz, RAM
8 GB). The large RAM memory computer was needed to solve the 8λ lens because of the
relatively electrically large dimensions needed for the computational box which should be
sufficiently large to prevent any spurious reflections from the computational boundaries.
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Figure 4.11: One-dimensional distribution of the normalized magnitude and phase of the
electric field for a 8λ lens along a line parallel to the x-axis and at x=3.1λ obtained using
full wave simulation (solid line), dipole model employing 903 dipoles (dotted lines) and
dipole model employing 4515 dipoles (dashed-dotted lines).
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4.5 Conclusion

An analytic model for a 2D and a 3D electrically thin inhomogeneous lenses and reflectors
was presented. The effectiveness of the analytic models presented here is largely due to
the fact that the lenses or reflectors are electrically thin which precludes any significant
coupling between the dielectric layers comprising the lenses or reflectors. Several examples
were presented to validate the analytic models. The advantages of the analytic models
are twofold: First, flat lens or reflector design can be made possible without the need
for expensive full-wave simulation tool, and, second, the analytic models provide highly
efficient solution procedure that can be performed using widely available and inexpensive
calculation libraries such as Matlab. In fact, the analytic models presented in this work
can be highly effective for optimization of lens/reflector design.
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Chapter 5

Spherical aberration in
inhomogeneous lenses

5.1 Introduction

Historically, studies of lenses have focused on the quality of the image. Old and new
applications of lenses continuously seek to improve imaging. Aberration of lenses, which
results in blurry and distorted images, is a major concern in many applications[7, 8, 59,
60, 61, 62]. Traditionally, optical systems and improved fabrication techniques aim to
minimize aberration and to increase focusing power.

Aberrations are defined as undesired image defects caused by non-converging rays at
the focal point. These non-converging rays in terms of waves translate into non perfect
spherical wave-fronts converging at a focal point.

Material dispersion of lenses at any optical system affects the refraction angle due to
different phase velocities at different frequencies. As a result, different frequencies may
have different focal points along the optical axis. This kind of distortion is named chro-
matic aberration (frequency band) [63]. In contrast, distortions corresponding to a single
frequency are called monochromatic aberrations. Several applications such as professional
cameras, typically decrease the chromatic aberrations by cascating a set of several con-
vex and concave lenses. In this sense monochromatic aberrations are more challenging to
address than that of the chromatic kind.

Primary monochromatic aberrations subdivides into spherical, coma, astigmatism, field
curvature, and distortion. Special attention will be given to spherical aberration since a
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complete analysis of this aberration for the electrically-thin lens is given in the following
sections.

A complete analysis of monochromatic spherical aberration and a comparison of the
electrically-thin flat lens and the classical GRIN rods is presented in this chapter.

5.2 Classical gradient index rods

More than a century ago, the father of electromagnetics, James Maxwell, proposed a spher-
ical gradient index (GRIN) lens with the gradient in the radial direction [36]. The perfor-
mance of Maxwell’s design has been debated extensively [37]. Subwavelength resolution in
Maxwell’s lens was claimed by Leonhardt [64] and contested by others [37]. In 1905, Wood
proposed a radially gradient index rod [9]. Inspired by the desert mirage, Wood formulated
a design equation similar to the thin convex lens equation. Although Wood claimed that
the formulation was suitable for both paraxial and marginal rays, the simplifications and
assumptions of his formulation constrained the problem to sources and images far from the
lens. In spite of the image quality[65], the class of GRIN rods developed by Wood proved
to be useful in a variety of applications including photocopiers, scanners [66], fiber optics
[67] and endoscopy [60] among others.

In classical gradient index rods design, incident rays are assumed to enter and exit the
lens at shallow angles whereas within the gradient index material the rays are assumed
to follow a circular trajectory as shown in figure 5.1. This trajectory is described by a
radius r, an angle θ and an arc length s. The first approximation performed by Wood in
his design formulation is given by,

θ =
s

r
≈ d

r
(5.1)

Here, the validity of the approximation depends on the curvature of the trajectory. For
cases where the curvature is comparable to the thickness of the rod the approximation
holds. This approximation is used to find a relation between β and γ by applying simple
geometry for triangles (see inset figure 5.1),

θ = 180− (90− β)− (90− γ) (5.2)

Making use of approximation (5.1) the ray angles of the circular trajectory at the
boundaries can be related by,

61



γ =
d

r
− β (5.3)

In order to relate the angles of the ray within the rod with those outside the rod (at
the boundaries), Snell law is applied. Although Snell law is valid only for homogeneous
interfaces, as discussed on Chapter 2, Wood assumes that the slope of the refractive index
on the lens is almost zero (small refractive index variation along electrically comparable
distances of x) such that it may be considered to be locally homogeneous for incident rays.

sinα

sin β
=

n

n0

(5.4)

sin δ

sin γ
=

n

n0

(5.5)

where n0 = 1 is the refractive index of free space.

Furthermore, another approximation is made by assuming that the rays enter and exit
the lens at shallow angles such that the small angle approximation holds,

sin(β) ≈ β (5.6)

β =
α

n
(5.7)

γ =
δ

n
(5.8)

This approximation limits the use of the formulation since the source and focal point
have to be at a large distance compared to the radius of the lens. Combining equations
(5.3), (5.7) and (5.8),

δ =
x

f2
=
nd

r
− α =

nd

r
− x

f1
(5.9)

Finally the formulation leads to a relationship similar to the curved lens equation,

x

f1
+
x

f2
=
nd

r
(5.10)
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Figure 5.1: Gradient index (GRIN) lenses schematic.

In order to substitute r for a known variable, two closely spaced curved trajectories are
considered and they are related by the radius of the curves and the corresponding phase
velocities,

r

r + dx
=
v

v′
=
n+ dn

n
(5.11)

where v is the phase velocity for the curve of radius r and v′ is the phase velocity for the
curve of radius r+dx. Notice that phase velocity is inversely proportional to the refractive
index.

Then, the variation of the refractive index with respect to the radial distance is,

rdn = −ndx (5.12)

This refractive index can be modeled as a polynomial of infinite order, as follows,

n = f(x) = n1 + c2x+ c3x
2 + c4x

3 + ... (5.13)

where n1 corresponds to the refractive index at the axis. By symmetry (with respect to
x), c2 = 0, c4 = 0, and so on, for the odd exponents.

63



As a first degree approximation, the refractive index may be expressed as,

n = f(x) = n1 + c3x
2 (5.14)

The derivative of equation (5.14) corresponds to,

dn

dx
= 2xc3 (5.15)

Substituting equation (5.12) in (5.10) and then using equation (5.15) ,

x

f1
+
x

f2
= −d

dn

dx
= −2xc3d (5.16)

Since c3 and d are constants, the equation can be compared to the thin convex lens’
design equation of classical optics. Dividing by x on both sides of the equal sign and
comparing to the thin convex lens equation,

1

f1
+

1

f2
=
−dn
dx

d

x
=

1

p
(5.17)

where p corresponds to the focal length

From this relation, the right hand side (to the right of the second equal sign) and center
term (between the two equal signs) of equation (5.17) can be integrated,

pnd = −x
2

2
+ n1 (5.18)

where n1 is the constant of the integration and corresponds to the refractive index of the
center of the lens as mentioned earlier.

n = − x2

2pd
+ n1 (5.19)

It is worth mentioning that the author in [9] attempts to extend his work to a lens
where the rays impinge on at large angles (”rays farther removed from the axis,” [9]).
However, his reasoning is problematic. He turned to equation 5.17. The problem here is
that equation 5.17 was based on the approximation sin β ≈ β. This is a fundamental flaw
in the derivation and the conclusion. In other words, Woods formula (equation 5.17) does
not hold for any value of x but rather small incident and transmitted angles.
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5.3 Spherical aberration

The image of a point source with aberration is usually a bright dot surrounded by a halo
of light with lower contrast and higher blurriness when compared to the non-aberrated
image. Spherical aberration can be defined as the variation of focus with aperture [68].
Figure 5.2 shows an schematic of a point source situated on the optical axis at a distance
s to the convex surface. Formally, the analytical definition of on-axis spherical aberration
is given by [69],

a(Q) = (PQI − POI) = (ln0 + l′n1)− (sn0 + s′n1) (5.20)

where PQI and POI are optical paths from the source to the focal point. Aberration in
a ray happens when a(Q) 6= 0. Strong aberration comes from having many rays with
a(Q) 6= 0. Rays close to the optical axis converge into the so-called paraxial (rays within
close proximity to the axis) focus (see figure 5.3). Typically, in classical convex lenses the
distance between the paraxial focus and the intersection of an incident ray with the optical
axis increases as the height of such ray increases.

s’sP

Q

O

n1n0

l l’

I

Figure 5.2: Spherical aberration definition schematic.

One of the most commonly used tools to analyze aberration is ray tracing technique
[70]. In ray tracing, several rays are traced from the source, passing through the optical
system to finalize at the image. Given that the magnitude of the aberration is related
to the height of the ray in convex lenses, it is convenient to relate these two variables,
such that the contribution of marginal (rays close to the margin or edge of the lens) and
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Figure 5.3: Longitudinal and transverse aberrations.

paraxial rays to aberration may be determined. This relation may be obtained by plotting
the longitudinal (LA) and transverse aberrations (TA). Longitudinal aberration refers to
the distance between the intersection of the ray with the optical axis and the paraxial
focus, whereas transverse aberration refers to the distance between the intersection of the
ray with the paraxial plane and the paraxial focus (see figure 5.3).

Aberration can also be analyzed and quantified in terms of the converging phase front by
determining the optical path difference (OPD). Fig 5.4 shows the schematic of a converging
wave front (solid line) obtained from an optical system and a perfectly spherical wave front
used as a reference sphere. The OPD is the radial shift from the focal point given by the
distance between the wave front and the reference sphere. The function that relates the
OPD to the angle α, or height Y , is the wave aberration function (WAV ). The root mean
squared (RMS) WAV value is commonly used as a parameter to determine the quality of
a lens [61, 67, 71]. This RMS value is particularly suitable for abrupt irregular wave fronts.
WAVRMS is defined as [61],

WAVRMS = 〈WAV 〉2 −
〈
WAV 2

〉
(5.21)

The wave nature of light limits the quality of the image that can be obtained due to
diffraction. It is worth noticing that a perfect lens does not necessarily lead to a perfect
image. An image is formed by the convergence of a wave and not the perfect convergence
of rays. The ray model is simplification of the real physics that although it has proven
its usefulness, it cannot fully describe the physics. For instance, the finite dimension of
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a lens leads to a diffraction pattern which cannot be described by the ray model. This
pattern is formed by an Airy disk (central bright point in the diffraction pattern) and a
few noticeable surrounding rings. The difference of aberrated and non-aberrated images
rests in the contrast of the Airy disk with its zeros (dark rings) and the brightness of the
surrounding rings. For the case of a perfect lens, 84% of its energy is concentrated within
the Airy disk [67].

In order to evaluate the overall quality of the image a criterion must be defined. As
mentioned above, diffraction establishes a limit to the performance of a perfect lens. There-
fore, a criterion can be defined based on the best resolution that two image points are said
to be resolved limited by diffraction (the optical system in this case is comprised of two
sources, one lens and the resulting two images). Each image point has its own Airy disc
and surrounding rings that interfere with each other as they move closer. If they move close
enough the images can only be resolved as one. The most commonly used standard for
resolution is the Rayleigh Criterion that states the separation between the two maximums.
(see figure 5.5).

Reference 
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L LAm

xβ

Focus

Figure 5.4: Optical path difference (OPD) in spherical aberration. M is the marginal
focal point and LA is the longitudinal aberration.
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0.74

0.61λ/N.A.

0.74

Figure 5.5: Normalized resolution schematic of Raileigh criterion. The individual images
are depicted by the dashed orange lines. Solid blue line indicates the interference of the
combined diffraction pattern. N.A. stands for Numerical Aperture and represents the ratio
of the focal length over the diameter of the lens.

P-V OPD WAVRMS Energy % in Airy disk

0.0 0.0 84
λ/16 0.018λ 83
λ/4 0.07λ 68

Table 5.1: Optical Path Difference relationship with WAVRMS and Energy percentage in
the Airy disk[67]

Under this parameters, the Rayleigh criterion for one image point allows not more than
λ/4 peak-valley (P-V) OPD variation on the wavefront, such that the image is ”sensibly”
perfect. This λ/4 OPD variation corresponds to an Airy disk with an energy of 68 percent
(see Table 5.1). Marechal criterion which is the Rayleigh limit for defocusing, states that
WAVRMS < λ/14 (≈ 0.07λ) leads to a small but appreciable amount of aberration (see
equation 5.21). Here, the dominant term is diffraction. Then, for most applications the
aberration is considered insignificant at this limit [61, 67].

5.3.1 Optical path difference (OPD) analysis

In order to evaluate the electrically-thin flat lens spherical aberration performance and to
compare it with the classical GRIN rod lens, two lenses were designed. An 8λ diameter
lens for each class of the two lenses considered here was designed comprising 40 concentric
rings for each one. The rings have a radial thickness of λ/10. The length d of the thin
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lens was λ/10 whereas the length d of the rod was 2λ (commercially available thick rods
have much larger dimensions; however, because of computational limitations, in particular
computer memory, the lenses designed here were limited to a thickness of 2λ and a diameter
of 8λ. For the purpose of analysis, the lens was still considered electrically thick). Figure
5.6 shows the design of an electrically-thin flat lens (solid line) and a GRIN rod (dashed
line). The profiles were obtained through equations (3.2) and (5.19) for the respective
cases. Both lenses were designed to have a focal point 4λ from the surface of the lens at
the rays exit side.
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Figure 5.6: Solid line design of the refractive index for the electrically-thin lens, and
dashed line the classical gradient index rod.

Notice that the thickness of the lens is electrically small (i.e., d � λ), which leads to
minimal coupling between layers [72, 73]. Hence, aberrations are expected to be small
and the designed focal point to be highly accurate for both paraxial and marginal rays
[67]. I anticipate the sources of aberration to be the discretization of the gradient index
and the non-zero coupling between adjacent dielectric layers (in addition another source
of aberrations can be caused by fabrication tolerance limitations.) The profile for the
electrically-thin lens extends from a refractive index of n=1 to 18. Notice that the design
equation has some degrees of freedom that can decrease the refractive index if needed by
changing the thickness or the focal point. In fact, a lens with the highest refractive index of
n=12.85 was fabricated and tested at microwave frequencies using commercially available
dielectric material typically used for printed circuit boards (see Section (3.4)). Recent ad-
vances in materials lead us to foresee the implementation of such lenses in higher frequency
regimes [74]. Although, metamaterials are good candidates for engineering dielectrics that
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are not readily available, their narrow bandwidth and high losses preclude their practical
use [75].

In contrast, the classical gradient index (GRIN) rod is electrically-thick, designed by
considering a number of important assumptions that can generate aberrations. First, the
rays are considered to impinge on the lens from shallow angles so that the small angle
approximation holds (see [9], pages 86-89). Therefore, the focal point and source should
be far from the rod, contrary to the statement concluded in [9] where all rays are designed
with the same approximation and claimed to be valid at any incident angle. Second, the
incident and transmitted rays follow Snell law at both boundaries of the rod (see figure
5.1), which means that the rod is considered to be locally homogeneous. Consequently,
the gradient refractive index should be sufficiently shallow to satisfy the local homogeneity
condition such that Snell law results in refraction where the rays exit with an angle different
from the incident one. Third, it is assumed that the rays within the rod follow a curve as
shown in figure 5.1.

The two lenses were modeled and simulated using the full-wave three-dimensional mod-
eling software CST MICROWAVE STUDIO (CST MWS) [50]. Figs. 5.7 and 5.8 show the
ẑ directed electric fields of the electrically-thin lens and GRIN rod, respectively, in isoline
format for easy recognition of the wave fronts. The reference spherical wavefront is also
depicted on the figures for qualitative comparison.

I observe that the wavefront of the thin lens and the reference sphere are overlapping
over most of the curve, whereas the wavefront of the GRIN rod differs from the reference
sphere significantly. From these extracted results, the WAVRMS is found to be WAVRMS ≈
λ
40

for the thin lens and WAVRMS ≈ 6λ
10

for the GRIN rod. According to Marechal criterion,
the spherical aberration arising from the thin lens is minimal whereas the aberration due
to the GRIN rod is significant. Figure 5.9 shows a plot of the OPD as a function of the
distance from the center of the lens for the electrically-thin lens and the GRIN rod. The
deviation from the perfect spherical wavefront (OPD=0 mm) is clearly much larger for the
rod than the thin lens.

5.3.2 Third-order aberration

Ray tracing is another method commonly used to calculate aberrations where aberrations
are determined by the deviation of the rays from the paraxial image point [76]. Aberration
polynomials are analytical equations based on the ray trajectory used to determine the
coordinates of a ray in the image surface [67].
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Figure 5.7: Cross section of the electric field (isoline format) of the electrically-thin lens.
The lens wavefront is shown in solid lines and the reference spherical wavefront in dotted
line.
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Figure 5.8: Cross section of the electric field (isoline format) of the rod. The lens wavefront
is shown in solid lines and the reference spherical wavefront in dotted line.
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Figure 5.9: Optical path difference (OPD) as a function of the distance from the center
of the lens. The solid line corresponds to the electrically-thin lens. The dashed line
corresponds to the GRIN rod. (To extract the OPD, the phase in the proximity of the
first zero phase wavefront immediately after the lens was computed from the numerical
simulation. Since the discretized values were not exactly zero, the values were rounded
and selected by a Matlab code that classified the rounded zero phase coordinates of every
point on the zero phase wavefront.)

In many optical applications, the spherical aberration is dominated by the third-order
term of the polynomial. The effect of the third order spherical aberration can be visualized
by plotting the longitudinal aberration (LA) which corresponds to the distance between
the intersection of the converging rays with the optical axis and the focal point. This term
can be found by representing LA as a series[67],

LA = aY 2 + bY 4 + cY 6... (5.22)

where a = LAm

Y 2
m

and b = c = ... = 0 for the third order term. Additionally, the longitudinal

aberration at the edge of the aperture is derived by finding the angle α (see figure 5.4),

α =
(LAm)sin(β)

L
(5.23)

From the inset of figure 5.4 that corresponds to a zoom of the indicated area the
following relationship is found,

α =
(LAm)sin(β)

L
(5.24)
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Then, combining equation 5.23 and 5.24 and solving for LAm,

LAm =
1

sin(α)/L

dOPD

dY
(5.25)

Third-order longitudinal aberration was found by applying equation (5.25) to the OPD
results (figure 5.9), LAm was calculated to plot equation (5.24). Figure 5.10 shows the lon-
gitudinal aberration of the electrically-thin lens and the GRIN rod. Clearly, the electrically-
thin lens has a superior performance. It is important to notice that this longitudinal aber-
ration is calculated considering the designed focal point P as the reference point. However,
this focal point might not be the location of highest concentration of rays along the optical
axis. If another reference point was chosen, the OPD could be improved possibly leading to
a decrease in the spherical aberration. The difference between the reference point and the
actual focal point is typically referred to as the defocusing of the system. The third-order
OPD with defocusing of δ is given by [67],

OPD =
1

2
nsin2(α)

[
δ − 1

2
LAm

(
Y

Ym

)2
]

(5.26)

where n is the refractive index of the medium where the image is reconstructed (vacuum
or free-space in this work). By minimizing the RMS value of equation (5.21), δ is found
to be δ = 4.111mm for the electrically-thin lens and δ = −28.1mm for the GRIN rod.
Clearly, the magnitude of the defocusing is much smaller in the thin lens than the GRIN
rod. Figure 5.11 shows the third-order OPD and LA for defocusing of δ as a reference
point. Even at the defocusing point the thin lens shows minimal aberration.
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Figure 5.10: Y as a function of the longitudinal aberration (LA). Solid blue line corre-
sponds to the electrically-thin lens. Dashed green line corresponds to the GRIN rod.
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Figure 5.11: Third-order OPD with defocusing (a). Third order LA with defocusing (b).
Solid blue line corresponds to the electrically-thin lens. Dashed green line corresponds to
the GRIN rod. The plots were produced using the format used in [67].
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5.4 Conclusions

The design of electrically-thin flat lenses aims to minimize spherical aberration by equal-
izing all paths from the source to the focal point. A spherical aberration analysis of the
electrically-thin lens is presented here and compared to that of the classical GRIN rod.
Appreciable difference in aberration was found between the two designs. One of the rea-
sons for the poor performance of the GRIN rod is the use of small angle approximations.
Although the design of the GRIN rod was derived for small angles, the rod equation was
generalized to larger angles which leads to higher errors. In the GRIN rod design, the cases
where a focal point and/or a source are close to the lens, the aberration due to marginal
rays increases significantly. Therefore, the GRIN rod design equation proved to be inaccu-
rate for large numerical apertures. Furthermore, Snell law was used by Wood to formulate
the design equation of the GRIN rod. Snell law, however, cannot explain refraction when
plane waves are incident perpendicularly. Specifically, for zero angle of incidence, Snell law
predicts that the rays would exit the lens at zero angle. The reason for this contradiction is
that Wood used Snell law as another approximation which again deteriorates the resulting
image. For the electrically-thin lens, Snell law is not applicable to predict refraction since
the medium is locally inhomogeneous. A more robust formulation that predicts refraction
from inhomogeneous electrically-thin lenses is based on Huygens principle [77].

The WAVRMS values quantifies the amount of spherical aberration. For the thin lens,
WAVRMS was lower than the Marechal criterion, thus its aberration was due mostly to
diffraction. On the other hand, the GRIN rod exceeds the Marechal limit significantly,
which means that diffraction has small contribution to the GRIN rod spherical aberration.
Instead, other factors such as design approximations, simplifications and coupling between
rings lead to a distorted and blurry image. The OPD and LA plots are consistent with
the WAVRMS value. Although, a decrease in aberration can be achieved by setting the
defocusing as a reference, the GRIN rod maintains higher aberration than the thin lens.
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Chapter 6

Monostatic cloaking

6.1 Introduction

For decades, popular culture and scientific community have been fascinated with cloaking
devices for diverse applications. However, several challenges have prevented the realiza-
tion of a practical device. Early research included studies on several geometrical shapes
with and without dielectric coatings to decrease the Radar Cross Section (RCS) for struts.
Although the RCS was improved, this stealth technology is still limited by the shapes,
orientation of the materials with respect to the incident wave, polarization and electri-
cal dimensions [78]. Transformation optics (TO) is probably the most noteworthy work
on the subject [31, 32, 33, 34]. More than a decade ago, TO opened the possibility of
tailoring electromagnetic fields at will. TO is based on Maxwell equations’ coordinate
system invariance. A Jacobian matrix relating the virtual and the physical domains leads
to the transformation from which the permittivity and permeability values are calculated.
TO have been applied to an important number of applications, including sensors [79],
radar targets [80] and even sound waves [81]. More recently, an invisibility cloak based
on complementary media was conceived to cloak objects outside the cloaking shell [82].
Nevertheless, the resulting design of the cloaking devices, whether they were designed us-
ing complementary media or not, were anisotropic and typically the design required close
to zero permittivity components. With these values in mind, the initial implementations
of the cloaking devices were constructed using metamaterials. The performance, however;
is limited by losses and reflections of the metallic resonant structures. Furthermore, the
bandwidth of such structures is narrow.

Given the challenges posed by metamaterials, many researchers have proposed different
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alternatives. For instance, cloaks with homogeneous isotropic concentric (electrically thin)
cylinders were designed to achieve an anisotropic behaviour that can be used to build
a cloaking device [83]. Although, the design complexity is greatly reduced, every other
cylinder must have a permittivity smaller than one. This implies that metamaterials or
materials like silver should be used in the resonance region to achieve such requirement.

Recently, relaxations to classical cloaking approach were proposed by including amplitude-
only cloaking devices. ”L” shape cloaking devices, Fresnel lenses and mirror arrangements
were explored [84]. Although these solutions provide cloaking, must of these solutions are
bulky and the images become degraded in terms of quality and/or size. Therefore, these
solutions are not practical in terms of use. More recently, paraxial ray optics cloaking
was proposed [85]. This group succeeded in cloaking objects for an optical wide band
using off-the-shelf lenses. The environment behind the object was reconstructed using a
set of aligned lenses, whereas the cloaked region was defined around the focal points and
intermediate lenses of the system. Aberrations and unwanted marginal rays in a paraxial
design are among the challenges that this unidirectional system experience.

In order to increase the bandwidth of cloaking devices in the microwave range, a set of
plates closely matched to free space were proposed [86, 87]. The conducting plates guided
the waves around the object to be hidden. The geometry of the plates lead the wave to
propagate around a central opening, hiding the object. This geometry; however, is complex
and bulky.

Gradient index (GRIN) materials have also been used for cloaking. They were first
proposed for ”under the carpet” cloaking applications [88]. Then, broadband GRIN rods
were used to hide objects around the focal point [89, 90], which is not practical in some
cases.

It is important to notice that efforts have been focused on reducing both monostatic
and bistatic cases. In the monostatic case, the object is invisible from the source. In
other words, the monostatic setting involves a source that illuminates the cloaking device
which in principle would appear as a dark spot for an observer at the same location of the
source. Even if other objects are located behind the cloaked object, none of them would
be detected. On the other hand, the bistatic case implies that the object is invisible for
an observer at any point in space. Therefore, a wave traversing a perfect cloaking device
should remain intact, which means that no reflections or losses should be noticed in any
direction.

In this work, an arrangement of materials that interfere to cloak an object for radar
applications (monostatic setting) is used. The concept of using interference to tailor the
electromagnetic fields using electrically-thin gradient index material for focusing was intro-
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duced in the previous sections as well as in [72, 73, 91]. Refraction at those electrically-thin
inhomogeneous lenses and reflectors agreed with the law of refraction for inhomogeneous
media [77], leading to a better understanding of the physics that are used here. A linear
gradient index to refract the rays with a predetermined angle for unidirectional cloaking
is used. The wave is deviated and follows a trajectory determined by the refractive index
profile. The cloaking devices are made of simple inexpensive dielectrics. In addition, I
demonstrate the enhancement in performance through numerical simulations and show a
promising bandwidth.

6.2 Design methodology

An electrically-thin gradient index material backed up by an electric conductor was de-
signed in [72] to refract the rays into a focal point. In contrast, here I design a gradient
index material to refract the rays from a perpendicularly incident wave into a fixed angle
(see figure 6.1) such that the scattered field in the direction of the source is minimized.
The orthogonal rays traverse the gradient index material twice due to the perfect electric
conductor (PEC) on the back of the material. If the material is chosen to follow a linear
gradient index along y-axis, then a linear phase profile is created at the exit surface of the
device. This phase profile results in angled rays due to constructive interference, similar
to a current sheet with varying phase. Figure 6.1 shows a perpendicularly incident plane
wave illuminating a 2D reflector (layers infinite in x-direction). It can be noticed that the
phase of the incident wave over the left side of the lens is the same for all layers. The
path of each ray traversing on a roundtrip each refractive index and reaching the desired
(designed) phase front have to be equal. Therefore, the design equation to refract such
wave is as follows,

nMd+ n0hM = nmd+ n0hm (6.1)

where nM is the refractive index of the M-layer, n0 is the vacuum refractive index, nm
is the refractive index of the mth layer, d/2 is the thickness of the dielectrics, hm is the
distance from the mth layer to the designed wave front and hM is the distance from the
layer-M to the designed wave front. Notice that the wave within each material is assumed
to be confined. The reason for this consideration is due to the electrical thinness of the
reflector which results in minimal coupling between layers.
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Figure 6.1: Constructive interference for an angled-refracted exiting wave over the
electrically-thin flat reflector.

6.3 2D reflector

An example of a 3.5λ height, d/2 = λ/20 thick 2D-reflector composed of 35 layers was
design to demonstrate that refraction of fixed angles can be used to minimize the scattered
field that propagated towards the source once the wave reflects on the PEC. In the case
presented here, the upper half gradient index of the reflector was designed to refract the
wave with an 80 degree angle, whereas the lower half of the reflector was designed to
refract the ray on a -80 degree angle. Figure 6.2 shows the design of the refractive index
as a function of the y − axis.

Figure 6.3 shows the scattered electric field for an x̂ polarized incident electric field
illuminating the reflector. The scattered field was obtained using the commercially available
full wave numerical simulation software CST [50]. It is clear from the figure that the
incident wave was splitted in two waves moving to the top and bottom of the device.
The designed directions are indicated in the figure by arrows. While must power was
scattered and dispersed towards the top and bottom of the reflector, the scattered field on
the direction of the source was minimized to values close to zero in the far field. Figure 6.4
shows the Poynting vector of the total field. Clearly, the total power close to the reflector is
deviated outwardly. Therefore, an important portion of the power is redirected around the
cloaking device. Figure 6.4 shows how the scattered fields have no effect on the Poynting
vector in the direction of the source.
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Figure 6.2: Design of the refractive index profile for a 2D cloaking device. The linear
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Figure 6.3: Scattered electric field for +/− 80◦ angle refraction design of a 2D reflector.
The plane wave is polarized in the x̂ direction. Color scale extends from -10.7 V/m (deep
blue) to 10.7 V/m (deep red).
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Reflector

Figure 6.4: Poynting vector of the total field. The incident plane wave propagates from left
to right. The left most arrows are almost perfectly horizontal. Although the scattered field
is strong close to the reflector, the Poynting vector shows low reflections in the direction
of the source.
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6.4 3D reflector

Although, the 2D reflector concept showed promising results, the reflector has the limitation
that it is polarization sensitive. Additionally, the design of the 2D reflector is meant to
conceal long flat electric conductors with certain polarization. In order to address such
inconvenience, the design of an squared reflector made of concentric annular squared rings
(see figure 6.5) is presented. A PEC is placed on the back of the dielectric materials
such that a plane wave impinges the reflector perpendicularly and the wave traverse the
dielectrics and bounce back at the PEC.
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Figure 6.5: Electrically-thin flat reflector schematic front view (a). Side view (b).

The refractive index of the squared rings determine the phase front velocity as well as
the phase at the exiting surface of each ring. As shown in figure 6.5(b), perpendicularly
incident waves can be spread in different directions other than towards the source by
properly designing the gradient index material. In the case of a unidirectional radar an
insignificant fraction of power returns to the source.

The formulation (equation (6.1)) used to design the refracted angle of a 2D reflector can
also be employed to design a (3D) reflector that is not sensitive to polarization. Considering
a unidirectional cloak system, squared tales of gradient index material with electrically-
thin concentric squares are proposed to account for any polarization. Figure 6.5 shows the
schematic of the dual polarizable reflector for unidirectional cloaking. The intention with
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the squared design is to have units of electrically-thin material that can cover any arbitrary
electrically large geometry, such as airplanes.

The concept is validated with an example of a 2 λ reflector made of 10-squared rings,
d/2 = λ/20 thickness. The gradient index profile varies from 1 to 10 and it is designed
according to equation (6.1) to have an angle close to ±87 degrees with respect to the
normal. The permittivity and permeability are chosen to be equal to minimize reflections
in the first surface. Figure 6.6 shows results for the numerical simulation of the cloaking
device concealing an electrically large PEC object (2λ ∗ 2λ ∗ λ). Figure 6.6(a) shows the
total electric field with no cloaking device, whereas figure 6.6(b) shows the total electric
field with the cloaking device. Clearly, the scattered field increases the total field in the
direction of the source for the first case. For the second case, the reflected field in the
direction of the source is minimal and the wave is redirected to the sides.

PEC 
Object

Cloaking 
device

PEC 
Object

(a)

(b)

Plane wave

Plane wave

Figure 6.6: Total electric field of a 10 GHz plane wave perpendicularly incident to a
PEC object (Color scale extends from -2.59 V/m (deep blue) to 2.59 V/m (deep red)) (a).
Total electric field of a plane wave perpendicularly incident to an electrically-thin cloaking
(reflector) device concealing a PEC object (Color scale extends from -20.5 V/m (deep blue)
to 20.5 V/m (deep red)) (b).
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The monostatic radar cross section (RCS) is plotted for both cases for frequencies
between 9 GHz and 11 GHz (see figure 6.7). The best RCS was found at 10 GHz with an
RCS difference of −11dBm2. Figure 6.7 shows promising bandwidth for radar applications.

Figure 6.7: Monostatic radar cross section (RCS) of a PEC object with a cloaking device
(solid blue line) and without a cloaking device (green dashed line).

6.5 Conclusion

Two designs for cloaking an electrically large object at microwave frequencies were pre-
sented. Typical cloaking applications implies expensive fabrication, geometry limitations
of the object, high reflections or very narrow bandwidth. The designs are based on sim-
ple dielectric geometries and conductors which decreases costs significantly. Numerical
simulations show low monostatic radar cross section and a promising bandwidth for the
3D reflector. The designs were inspired by the electrically-thin energy concentrators [72],
where a phase profile can be designed to reflect the rays in the desired direction. The
diverging ray cloak reflector can be envisioned as unit cell stickers or gradient index paint
meant to be used in airplanes as a low cost solution.
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Chapter 7

Conclusions

7.1 Contributions

The importance of Snell law is out of question. This simple equation have been a solid
foundation over which a wide number of designs and optimizations are developed. However,
Snell law is limited by cases where a wave travels between two homogeneous materials
through a planar interface. Although, in many applications designers and researchers
choose to use homogeneous materials for simplicity, recent advances in material science have
led to a wider spectrum of materials broadening the possibilities in terms of applications
and designs.

In this thesis, several applications and designs involving inhomogeneous materials were
introduced. Here, an analytical solution based on simple boundary conditions and a care-
fully performed phase matching was developed to find a formulation that predicts refraction
in electrically-thin flat inhomogeneous media. A wave with normal incidence to a planar
electrically-thin inhomogeneous media should have a zero angle of refraction according to
the classical formulation. However, as it was shown in several numerical examples and ex-
periments, there is refraction. The formulation presented here predicts with high accuracy
the refraction of rays in such materials.

Contribution on the law of refraction for electrically-thin inhomogeneous media was
published in the Journal of the Optical Society of America A [77]. Also, this work was
presented in the 2016 IEEE International Symposium on Antennas and Propagation and
North American National Radio Science meeting (APS/URSI) [92].

In addition to this analytical formulation, an electrically-thin flat lens and reflector
were proposed. An accurate and simple design formulation based on phase compensation
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and Huygens principle were presented. Both designs showed high energy concentration
while yielding insignificant spherical monochromatic aberration.

Contribution on the design methodology and numerical validation of flat lenses and re-
flectors was published in the journal Progress on Electromagnetic Research Symposium
(PIERS)[72]. Also, this work was presented in the 2013 IEEE International Sympo-
sium on Antennas and Propagation and North American National Radio Science meeting
(APS/URSI)[93] and the 2013 Mediterranean Microwave Symposium [73].

An analysis based on the wave aberration function (WAVRMS) and optical path differ-
ence was performed. The electrically-thin lens was demonstrated to have lower (WAVRMS)
than the Marechal criterion which means that most aberration in the image is due to
diffraction. Hence, for most applications the lens can be considered spherical aberration
free.

For a better evaluation and understanding of the lens performance, the electrically-thin
flat lens was compared to the classical gradient index (GRIN) rod. The rod’s design was
proposed more than a hundred years ago. However, the gradient index rods are found in a
number of modern applications including copy machines, fiber optics and even in endoscopy.
In chapter 5, the electrically-thin lens provided better performance than the GRIN rod.
Several assumptions and approximations in the GRIN rod design lead to aberrated images.

Contribution to aberration analysis was submitted to the Journal of the Optical Society
of America A. To date, favorable comments were received from the reviewers and the final
decision is pending.

Besides the electrically-thin lens and reflector for power concentration, an off-axis
electrically-thin reflector and a cloaking device were presented. Both applications showed
strong performance and viability for practical applications. This work is being prepared
for submission to Applied Physics Letters.

An analytical model based on infinite current lines (for 2D flat lenses and reflectors)
and on infinitesimally small dipoles (for 3D flat lenses and reflectors) were introduced.
Both models were validated through numerical simulation and showed accurate results.
Given that the models were based on current lines and small dipoles, the close resemblance
in the results indicate that the coupling between dielectric layers is not significative for
electrically-thin layers. In addition, the models allow to decrease the simulation time and
computer resources significantly. This work was published in the Journal of the Optical
Society of America A [73].

In addition to the numerical validation, an experiment was performed to further validate
the quality of the lens and the reflector. A lens and a reflector were made of commercially
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available low-loss dielectrics. Both devices were tested at microwave frequencies. The gain
of the lens at the focal point with respect to the power at the same point with no lens was
4.2 dB, whereas the same gain for the reflector was 7.7 dB. Even though the dielectrics
were not matched to free space, they showed an image pattern similar to the one obtained
through simulation.

Also, using numerical simulation the electrically-thin lens and reflector had good per-
formance as collimators. The far-field pattern showed an important gain in the direction
of the device in the case of the lens (opposite to the device in the case of the reflector).

Contribution on the experimental validation of the electrically-thin lens and reflector
and directivity enhancement through full-wave simulations were published in the Journal
of the Optical Society of America A[91].

In summary, the electrically-thin flat lens and reflector were validated through analyti-
cal models, numerical simulations and experiments. Furthermore, the law of refraction for
electrically-thin inhomogeneous media presented here provides a physical explanation for
the refraction phenomena at planar interfaces for normally incident plane waves. A number
of applications proved the versatility, usefulness and quality (very low spherical aberrated
images) of the devices, including lenses, reflectors, off-axis reflectors and cloaking devices.
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Chapter 8

Future directions

Several applications based on the same concepts and designs presented here could be
developed. Some of the applications include hyperthermia, which is microwave heating
of tissues for cancer treatments. Current devices use an array of (around) four dipole
antennas to focus the power within the body. Given that the dipole radiates radially (ρ̂),
the power efficiency is not optimal. Using flat or even cylindrical lenses could improve
not only the power efficiency but also reducing the area of power concentration to avoid
heating healthy tissue.

Another application that can be developed is decoupling closely spaced antennas or
transmission lines. In the case of a lens, the design is meant to focus the waves into a
single point. Instead, an inhomogeneous media could be designed to spread the waves
that propagate between sources, decreasing the power received between each other. The
coupling between antennas or transmission lines could potentially decrease by properly
design an inhomogeneous slab between them.

From the theoretical perspective, it would be interesting to explore the extension of the
refraction formulation presented here. As mentioned through-out the thesis, the refraction
formulation as well as the designs are valid under the assumption of the electrical thinness
of the inhomogeneous media. Understanding the validity of these formulations in electri-
cally thick (a few free-space wavelengths thick) inhomogeneous materials could expand the
applications and even the working frequency regime.

From the experimental perspective, a lens in higher frequencies could be fabricated.
Some groups [74] have developed high dielectric constant materials at infrared frequencies.
A possible future direction would be to fabricate a film (lens) at higher frequencies for
infrared cameras that could be used in military or even rescue mission applications.
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Appendix A

MATLAB Script to model the
Electromagnetic fields of a flat 2D
lens with infinite current lines

\begin{verbatim}

clc

clear all

%% Based on Harrington page 223

%% currents flowing in z direction -> Az. Beta in x direction

%%%%%%%%%%%%%%%%%%%%%%% Data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[rd1,er] = textread(’profile6Lv1.txt ’, ’%f%f’); %er dielectric

cte each ring (CHECK FILE)

sizer=size(er);

%%%%%%%%%%%%%%%%%%%%% Constants %%%%%%%%%%%%%%%%%%%%%%%%%%%

J0=10/ sizer (1,1);

f=10e9; u0=4*pi*10^( -7); e0=8.854187817*10^( -12);

c0=1/ sqrt(u0*e0); w=2*pi*f; k0=w/c0; lambda=c0/f;

d=lambda /10; % thickness of the lens

Layer_height=rd1( sizer (1,1))-rd1(sizer (1,1) -1);

add_space =2* Layer_height; % additional space on the top and

bottom (added on each) of the lens to be plotted

if add_space >0 %% to automatically add a free space on the top
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and bottom of the lens (0 phase shift currents)

rdp=((rd1( sizer (1,1))+ Layer_height): Layer_height:

(rd1(sizer (1,1))+ add_space)) ’;

rdn=((rd1(1,1)- add_space): Layer_height: (rd1(1,1)-

Layer_height)) ’;

sizdrp=size(rdp);

rd1=[ rdn;rd1;rdp];

erp=ones(sizdrp (1,1) ,1);

er=[erp;er;erp];

end

kd=w.*sqrt(er.*e0*u0); %wavenumber of each layer

rd=rd 1*0.001; %radius at the center of each layer

JS=J0*exp(-j.*kd*d); %

sizer=size(er);

%%%%%%%%%%%% temporal angle for testing

ang=pi/2;

%%%%%%% Evaluation in r %%%%%%%

rdel =1/25* lambda; %resolution in focal axis direction

resy =0.0005; %resolution (perpendicular to F axis)

rf=6* lambda;

r=rdel:rdel:rf; % magnitude from rdel to rf FOCAL AXIS [x]

sr=size(r);

ry=(-3*lambda -add_space *0.001):resy :(3* lambda+add_space *0.001); %

number of evaluated points in y

sy=size(ry);

%%%%%%%%%%%%%%%%%%%%%%%%%% VECTOR -Az %%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

At=zeros(sr(1,2), sy(1,2));

for yAxisL =1:sy(1,2)

for xAxisL =1:sr(1,2)

%%% vector -Az Integration %%%

for layer =1: sizer (1,1)
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R(xAxisL , layer)=sqrt((r(xAxisL))^2 +(rd(layer)- ry(yAxisL))^2-

2* (rd(layer)- ry(yAxisL))* r(xAxisL)* cos(ang));

Hv2_0( xAxisL)=besselh (0,2,k0*R(xAxisL , layer));% %% Hankel

function %% besselj(0,k0*R(xAxisL ,

layer))-j*bessely(0,k0*R(xAxisL , layer));

Az(xAxisL)=Hv2_0( xAxisL)*JS(layer)/(4*j);

At(xAxisL , yAxisL)=At(xAxisL , yAxisL)+ Az(xAxisL);

end

end

end

clf

%%%%%%%%%%%%%%%%%%%%%%%%%%%% VECTOR -Az ends %%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%% H=curl Az %%%%%%%%%%%%%%%%%%%%%%%%%%%

for yAxisL =1:sy(1,2)

for xAxisL =1:sr(1,2)

if xAxisL ~=sr(1,2)

Hy(yAxisL , xAxisL)=-(At(xAxisL ,yAxisL)- At(xAxisL+1,yAxisL))/

(r(xAxisL)- r(xAxisL +1)); %%

end

if xAxisL ==sr(1,2)

Hy(yAxisL , xAxisL)=Hy(xAxisL -1);

end

end

end

%% plot H

[Y,X] = meshgrid(ry,r);

mesh(real(Hy));

axis ([0.003 6 -0.120 0.120 -80 80]);
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figure (1)

surf(real(Hy),’EdgeColor ’,’None ’);

xlabel(’x’)

ylabel(’y’)

view (2);

%%%%%%%%%%%%%%%%%%%%%%%%%% H=curl ends %%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%% E field %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Ez=-j*k0^2/(w*e0)*(At); %%

[Y,X] = meshgrid(ry,r);

mesh(real(Ez));

figure (2)

surf(real(Hy),’EdgeColor ’,’None ’);

xlabel(’x’)

ylabel(’y’)

view (2);

\end{verbatim}
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