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Abstract 

Crash models for predicting long-term crash risk at some specific components of a road network are 

fundamental to road safety analyses such as network screening and countermeasure studies. These 

models are often calibrated using historical crash data from the sites of interest, aiming at capturing the 

underlying relationship between crash risk and various risk factors. Based on how the relationships are 

determined, crash models can be classified into two types: parametric or nonparametric. Parametric 

models represent the state of the art and practice methodology for road safety analyses. While this 

approach provides an easy-to-implement and easy-to-interpret tool, they come at the cost of the need 

for pre-selection of model forms, which, without knowing the true relation of crash and risk factors, 

could easily lead to misspecifications and biased estimations. In contrast, a nonparametric approach 

does not pre-specify a model structure but instead determines the structure from data, thereby providing 

greater flexibility to capture underlying complex relations. Despite this advantage of being a 

specification free approach, nonparametric models have not yet been accepted as part of the mainstream 

methodologies for road safety analyses. Little were known about their relative performance in 

comparison to parametric models and the practical implications of their applications for the common 

road safety analysis tasks such as network screening and countermeasure effectiveness estimation.  

Furthermore, crash data for road safety analysis and modeling are growing steadily in size and 

completeness with the advancement in information and sensor technologies. It is, however, unclear 

what implications this increased data availability has for road safety analyses in general and crash 

modeling in specific.  Will a data-driven nonparametric technique become a more attractive alternative 

for addressing the complex problem of crash modeling in this era of Big Data?  

 

In this thesis, we have introduced one of the most popular nonparametric techniques - kernel regression 

(KR) - as an alternative for crash modeling. One of the uniqueness of this method is that it takes a fully 

data-driven approach in determining the relationship between crash frequency and risk factors. 

Compared to other nonparametric methods, it does not contain any hidden structures to train. Therefore, 

when a new crash dataset is available, it can be used directly in updating crash prediction without re-

calibrating the underlying models.  We made two methodological contributions to facilitate the 

application of a nonparametric model for road safety analyses.  We first extended the KR method, 

similar to Empirical Bayesian (EB) method using parametric models, to account for the site-specific 
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crash history in predicting risk.  We then developed a bootstrap-based algorithm for identifying the 

important variables to be included in a nonparametric model.  

 

The research also made significant knowledge contributions to the practice field related to applications 

of nonparametric models for road safety analyses. First, we benchmarked the crash prediction 

performance of the KR model against the mainstream model – Negative Binomial (NB) model.  Using 

three large crash datasets, we investigated the performance of the KR and NB models as a function of 

the amount of training data. Through a rigorous bootstrapping validation process, we found that the two 

approaches exhibit strikingly different patterns, especially in terms of sensitivity to data size. While the 

performance of the KR method improved significantly with increase in data size, the NB model showed 

less sensitivity. Meanwhile, the KR method outperformed the NB model in terms of predictive 

performance, and that performance advantage increased noticeably by data size.  Secondly, we 

compared the two approaches in their ability to capture the underlying complex relationships between 

crash frequency and predicting variables. The KR method was shown to yield more sensible results on 

the effects of various risk factors in both case studies as compared to the NB model. 

  

Our other main contribution comes from the investigation on  the practical implications of applying the 

KR models for two critical road safety analyses tasks – network screening and countermeasure study. 

Both KR method and NB model were employed in a case study under the two popular network 

screening frameworks, i.e., regression-based and EB-based. Their performances were compared in 

terms of site ranking and identification of crash hotspots. The two approaches were found to yield more 

similar rankings when applied in the EB-based framework, irrespective of the ranking measures (i.e., 

crash frequency or crash rate), than in the regression-based framework. Similar comparative results 

were obtained in locating the crash hotspots. Likewise, for countermeasure studies, the two popular 

approaches – the before-after EB study and the cross-sectional study – were considered in case studies 

using both KR and NB crash prediction models. As expected, the two different crash modeling 

techniques showed significant differences in their estimates on crash modification factors (CMF).  

Different from the NB model based approach, the KR-based method was able to capture the sensitivity 

of CMFs to traffic levels as well as combine the effect of multiple countermeasures without requiring 

any assumptions on the interaction between the countermeasures.  
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Chapter 1 

Introduction 

1.1 Background 

Modern society runs on road transportation mainly due to the flexibility and convenience provided by 

affordable roads that move people and goods on a large scale. For this reason, governments spend a 

huge amount of resources on constructing and maintaining extensive road networks. However, the net 

result of the development of road network is like a double-edged sword. Extensive road transportation 

encourages individuals to own vehicles, allowing them to move and work farther away than what would 

have been possible without the roads. On the other hand, the increase in motorization rises traffic 

interaction among the road users, thereby causing serious road safety problems. In addition, many other 

factors, such as poor road design, adverse environmental conditions, human errors and vehicle defects 

could trigger road safety problems, leading to an increase in crashes related to property damages, 

injuries and fatalities. These effects, in turn, cause travel time delays that have substantial direct 

economic and social costs. Furthermore, travel time delays themselves create several additional indirect 

costs, such as an increase in fuel consumption, increase in air and noise pollution, and additional health 

treatment costs associated with the pollution. The fact that road transportation incurs lower 

infrastructure and maintenance costs compared to other modes of transportation (e.g., airway, railway) 

could be offset by all the significant economic and social losses incurred by road safety problems. 

 

From a global perspective, every year, road crashes result in a large number of deaths and extensive 

property damage.  The World Health Organization (WHO) has identified traffic crashes as one of the 

most critical public health issues around the world. According to the WHO’s global status report on 

road safety, more than 1.2 million people die every year and as many as 50 million people suffer non-

fatal injuries because of road crashes (WHO, 2015). Meanwhile, the majority of the people involved in 

traffic crashes are the economically active population. This study also shows that traffic crashes are the 

ninth leading cause of death, and they are projected to be the seventh in the year 2030 with an estimated 

annual fatality of 2.4 million people. In addition to the social costs due to deaths, there is a significant 

economic burden imposed due to the property damages and injuries. The estimated cost is 1% of the 

gross national product (GNP) for low-income countries, 1.5% for middle-income countries and 2% for 

high-income countries (Jacobs et al., 2000).  
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Similarly, other indirect costs of traffic crashes, such as traffic congestion and air/noise pollution caused 

by traffic crashes, are difficult to quantify in monetary terms but are likely to be substantially high. 

According to Garrison and Mannering (1990), each minute of traffic congestion resulting from crashes 

was associated with an equivalent loss of over 2000 dollars. Based on this rate, the estimated annual 

crash delay cost in the City of Seattle, U.S., alone was over 250 million dollars. Similarly, the cost 

mentioned above was estimated to be 501.9 million dollars for highways in Ontario, Canada (Vodden 

et al., 2007).  

 

The sheer magnitude of road crash consequences has resulted in an increasing public demand for safer 

roads. Road agencies around the world have been expending significant resources on various programs 

to counteract road safety problems. The root cause of these problems mainly lies in the interactions of 

the four main components of the system: road users, roadways, environment and vehicles (HSM, 2010). 

Human factors include driver’s characteristics such as age, judgment capacity, driving skills and 

experience, and physical state (e.g., fatigue, alcohol or drug usage level). Similarly, roadway and 

environmental factors include geometric alignment, cross-section elements, traffic control devices, 

weather factors and road surface conditions. Meanwhile, vehicle conditions, including the capacity to 

brake and steer smoothly, are equally important. The impacts of all these factors can be proactively 

reduced by implementing various road safety improvement programs that involve applying proper 

engineering treatments, educating road users, enforcing traffic laws, improving emergency response 

services, and improving vehicle safety technologies.  

1.2 Road Safety Analysis 

Prior to launching any road safety improvement programs, a systematic road safety analysis is 

necessary to investigate safety-related issues. This includes identification of crash hotspots by 

systematically screening a list of candidate locations (e.g., roadway segments or intersections) with 

high-risk levels. This is critical especially when the resources available to implement safety treatments 

on selected locations are limited. Therefore, network screening has been a standard procedure for 

launching cost-effective safety programs. Similarly, countermeasure studies are another important task 

which involve quantifying the effects of specific road safety treatments, such as signalizing 

intersections, converting a two-lane to a multiple-lane road and adding a median to an undivided road 

section. Both of the components of a systematic road safety analysis involve a detailed exploration of 
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historical crash data and require appropriate modeling techniques to quantify risk levels from the given 

data. The following sections provide a brief discussion of these components.  

1.2.1 Network Screening  

The process of network screening involves ranking the sites of interest by a specific ranking measure 

related to crash risk level. For example, sites could be ranked on the basis of crash rate (crashes per 

vehicle-kilometers or per entering vehicles), crash frequency (crashes per km-year or crashes per year) 

or weighted crash severities (Laughland et al., 1975; Deacon et al., 1975; Mcguigan, 1981; Mcguigan, 

1982; Stokes and Mutabazi, 1996; HSM, 2010). Sites could also be ranked by the probability that the 

crash frequency exceeds what is normal to reflect the potential benefit from applying safety treatments. 

The Highway Safety Manual (HSM) has listed 13 different ranking measures, suggesting that a wide 

choice of measures for ranking can be adopted for network screening. Broadly, the approach of 

determining these measures can be categorized into two groups. The first is the direct method where 

the risk level associated with each unit (section or intersection) can be measured by direct counting of 

observed crash frequency (or rate). The second is the regression-based approach, where risk levels are 

estimated in terms of expected long-term effects of given conditions by using some crash models.  

 

In the past, when the use of regression-based approach was not common, transportation agencies 

frequently applied the direct method. The ranking measures in this approach are determined mainly 

based on the arithmetic means of the observed historical crash data.  This method is very simple and 

easy to apply; however, there are few limitations from a statistical point of view.  First, it lacks a 

probabilistic approach for determining the ranking measure, thereby ignoring the inherited randomness 

of crash occurrence. Moreover, it represents a short-term measure derived simply from the observed 

crashes and may not represent a reliable estimate of long-term safety effects. Such bias in the measure 

of safety effects is known as regression-to-mean (RTM) bias effect (HSM, 2010; Hauer, 1997). 

Furthermore, this approach cannot take into account site-specific factors, such as road geometric design 

features, weather conditions, traffic level and other factors, which may be useful indicators for 

measuring crash risk. A failure to account for all these issues may lead to a selection of a biased list of 

crash hotspots, and consequently, launching a safety program may result in a huge waste of resources. 

 

Recently, the regression-based approach has been quite popular as it addresses the RTM problem and 

considers the effects of external factors causing crash risks by modeling crashes under a parametric 
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framework. An extension of the regression-based approach, known as the Empirical Bayesian (EB) 

method, has been the state-of-art methodology for network screening and other road safety studies. This 

method provides a framework to combine estimates from a crash model and the site-specific crash 

history through some weighting schemes (Hauer, 1997). As a result, the crash model remains the most 

critical element of the EB approach (Hauer, 1997; Miranda-Moreno et al., 2005; Montella, 2010; HSM, 

2010; Zou et al., 2013).  

 

Statistically, there are two approaches to modeling crashes, namely, parametric and nonparametric 

approaches. To the best of our knowledge, all past network screening studies depended on the former 

technique for estimating the long-term effects of crash risk.    

1.2.2 Countermeasure study 

A countermeasure study involves evaluating the safety effects of one or more treatments, such as 

changing intersection’s control type, adding a rumble stripe along the edge of a paved road section, and 

adding a median to an undivided road section. The effectiveness is commonly measured by a crash 

modification factor (CMF), which is obtained from a countermeasure study. CMFs can be used to select 

the best treatment option in terms of reducing crash risk in the identified hotspot sections. Our focus is 

on the methodological part of how CMFs can be obtained.  

 

The CMF related to a treatment is determined by comparing the safety levels before and after the 

treatment conditions. The two main approaches are the before-after study and the cross-sectional study 

(Benekohal and Hashmi, 1992; Hauer, 1997; Gross et al, 2010; HSM, 2010). Before-after studies are 

further categorized into simple before-after, comparison before-after and EB-based before-after. 

Among these, the latter approach based on the EB method is the most popular as it reduces bias of RTM 

effects (Council and Stewart, 1999, Persaud et al., 2001; Srinivasan and Kockelman, 2002; Miaou and 

Song, 2005; Harkey et al., 2008; HSM, 2010; Li et al., 2008).  

 

While the before-after EB-based study is the state-of-art approach in the study of countermeasures, it 

should be noted that some treatments may present a data restriction problem. This could include some 

extremely rare cases where treatments are applied to collect enough crash data.  For example, when 

determining the safety effectiveness of widening shoulder or median widths, it is less practical for on-

site modifications of these features to be made to allow for the collection of their before-after crash 
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data. Meanwhile, such treatments have a wide range of possible design options to consider for 

determining their corresponding CMFs. These studies are common mainly in the context of determining 

the CMFs of roadway characteristics that extend along the road sections, such as altering shoulder, lane 

and median widths, and treating road shoulders with rumble strips (Lord & Bonneson, 2007; Fitzpatrick 

et al., 2008; Stamatiadis et al., 2009; Zeng & Schrock, 2013; Park et al., 2014; Park & Abdel-Aty, 

2015). In such cases, a cross-sectional study is recommended whereby the data from similar sites are 

analysed using a crash model in a framework of with and without the treatment conditions (Gross et 

al., 2010). While the decisions on which study approach (i.e., before-after EB-based or the cross-

sectional) to consider could be contextual, the improvement of crash models involved in both 

techniques remains the most critical issue. 

 

As mentioned in the previous section, two approaches are usually used to modeling crashes: parametric 

and nonparametric. Among these categories, the parametric approach has been the mainstream 

technique to determine the CMFs of safety treatment measures. There have been very limited 

applications of the nonparametric approach for such studies (e.g., Park & Abdel-Aty, 2015).  

1.3 Issues with a Parametric Approach 

As previously discussed, crash models are required by the two most important components of road 

safety analyses. This significance of crash models has stimulated significant past efforts which have 

led to the development of a large number of statistical models, such as Poisson (Jovanis and Chang, 

1986; Miao and Lum, 1993), Negative Binomial (NB) (Miaou, 1994; Persaud, 1994; Shankar et al., 

1995; Council and Stewart, 1999), Poisson-Lognormal (PL) (Aguero-Valverde and Jovanis, 2008; 

Usman et al., 2012), Zero-inflated Poisson (ZIP) and Zero-inflated Negative Binomial (ZINB) 

(Lambert, 1992; Washington et al., 2003). These models are all parametric, posessing the following 

limitations: presumption of a specific probability distribution for crash data, and pre-specification of a 

functional form for the relationship between the expected crash frequency and the predicting variables. 

 

For the probability distribution of crash occurrence, various distributions have been assumed in the 

crash models. For example, the Poisson model assumes that the frequency by which crashes occur 

follow a Poisson distribution where the mean and variance of the distribution are equal. However, crash 

data are often found to be over-dispersed, thereby resulting the variance to be greater than the mean 

(Miaou et al., 1993; Miaou and Lum, 1993; Shankar et al., 1997; Lord and Miranda-Moreno, 2008). 
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Therefore, a number of parametric models have been developed to deal with this limitation of Poisson 

model. Some of the examples include NB, PL, Generalized negative binomial (GNB) and Zero-inflated 

NB models. However, these models suffer from various issues. For example, NB model considers a 

constant dispersion parameter which may not reflect the actual heterogeneity condition in the crash 

data. Generalized negative binomial model has been developed to address the limitations of the NB 

model by specifying the over-dispersion parameter as a function of a set of covariates; however, this 

approach again has a problem of requiring an assumption on such specification. Similarly, Zero-inflated 

count models (ZIP and ZINB) have also been developed based on the assumption of the existence of 

the dual states, namely, safe and unsafe state. Although this particular form of models may increase the 

goodness-of-fit, they do not reflect the real data generating process due to the unrealistic assumption of 

absolute safe conditions in the road network.  

 

The next common assumption in all parametric models is the specification of their model mean 

structures, i.e., the relationship between crash frequency and its predicting variables. This relationship 

is represented by an equation comprising a set of variables and its associated coefficients. The most 

common choice for the function (equation) that models the relationship between the expected crash 

frequency and various factors that affect the occurrence of crashes is an exponential function. While 

the model in a single equation form may be relatively easy to interpret and apply, the need for prior 

specification may limit its flexibility to improve estimation accuracy. That is, the functional form 

imposes a certain shape restriction without providing the full flexibility needed to reflect the actual 

crash data characteristics. Moreover, these specified functional forms are able to capture only the 

monotonic relation between crashes and the predicting variables. In other words, these relations 

represent either only increasing or decreasing trends without having enough flexibility to capture 

composite trends across the full range of values that variables could take. Such common practice of 

pre-specifying a functional form without any supporting theory may lead to erroneous and biased 

inferences. Meanwhile, the model coefficients associated with each predicting variables are estimated 

globally (e.g., maximum likelihood estimation method) using a given crash dataset.  In the presence of 

outliers or some extreme cases, estimated model coefficients from such a global perspective can easily 

influence their magnitudes. 

  

Once the model mean structure is defined, the most commonly used technique to estimate the model 

parameters (i.e., coefficients associated with predicting variables) is by using the maximum likelihood 
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estimation (MLE) technique. In this technique, the model parameters are estimated by maximizing the 

probability for obtaining the observed crash data under a given distribution (e.g., Poisson, NB and 

others). Recently, the use of Bayesian techniques has also become quite popular. In this technique, the 

estimation of model parameters is improved through the use of prior information for the parameters of 

interest.  However, choosing the right prior information could be as challenging as selecting the right 

functional forms. It is also noted that the Bayesian approach performs comparatively better than the 

MLE approach when the sample size and crash frequency is low (Lord and Miranda-Moreno, 2008). 

However, it is anticipated that the volume of crash-related data collected from the field will grow 

significantly due to the advancement in traffic-related technologies, thus providing the benefit of larger 

data size. This means that these estimation techniques for crash modeling would yield similar results 

when data become large enough.  

 

Parametric models also lack the power to identify the interaction effect of multiple variables. For 

example, Shankar et al. (1995) explored the interaction effect of weather and geometric factors using 

the NB model with some assumptions about their interaction terms (e.g., snowfall-grade and snowfall-

curve interactions). The problem with such an approach once again lies in pre-specifying the form of 

interaction with little basis. Because of this challenge to identify the interaction effects of multiple 

factors, the current version of the Highway Safety Manual (HSM) determines the joint CMF simply by 

multiplying the CMFs of individual countermeasures. The underlying assumption of this action is the 

strong assumption that their effects are independent from each other.  

1.4 Potential of Data-driven Nonparametric Approach  

The nonparametric approach is different from the parametric approach because it does not require 

specification of model functional form, especially in an equation structure, for the relation between 

dependent and independent variables. Therefore, the estimation is purely data-driven and is expected 

to be less biased as this approach avoids the misspecification issues of parametric models. Hauer (2015) 

also mentions, “Even when masterfully executed, the parametric fit will suffer from all the shortcoming 

of nonparametric one.”  

 

Despite its advantages over parametric models, the data-driven nonparametric approach has not been 

accepted as a mainstream alternative due to some commonly cited challenges. The first challenge is 

that a nonparametric analysis is data hungry - it requires much larger sample sizes than a parametric 
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method due to its lower convergence rate. However, recent advances in information and sensor 

technologies has increased the availability and completeness of crash data reducing the significance of 

this issue, especially in the context of future applications. Another commonly cited issue of a 

nonparametric method is the difficulty in direct interpretation of how each variable influences crash 

risk. However, such interpretations are not always necessary, especially when applied in network 

screening and countermeasure study. Furthermore, if required, we can easily generate the effect of each 

variable in a graphical form (Thakali et al., 2014).   

 

In the past, a few studies have investigated the application of nonparametric methods, including 

artificial neural network (ANN), classification and regression tree (CART), multivariate adaptive 

regression splines (MARS). Karlaftis and Golias (2002) employed CART to explore the effects of rural 

road geometry and traffic volumes on crash rates. Similarly, Chang (2005) and Xie et al. (2007) applied 

ANN to model crash frequency based on highway geometric variables, traffic characteristics, and 

environmental factors. Likewise, Abdel-Aty & Haleem (2011) and Park et al. (2014) employed MARS 

in their road safety studies. However, these efforts are mostly limited to the effort of modeling crashes. 

Furthermore, these methods are often characterized as “Black Box” approach due to the involvement 

of some complex hidden model structures in their modeling frameworks, which also raises difficulty in 

interpreting their underlying relations between dependent and independent variables. 

 

In this thesis, we propose alternative nonparametric methods to crash modeling that are fully data-

driven. Apart from the motivation of reducing specification problems of traditionally used parametric 

models, this thesis also intends to explore some of the research gaps in implementing a nonparametric 

approach which have not been studied extensively in the past, as summarized in the following section:  

 Most of the previous nonparametric methods (e.g., ANN, MARS, and CART) applied in road 

safety studies are relatively complex and require extensive effort for training due to the 

involvement of hidden model structures. There is a need for alternative nonparametric methods, 

especially with a full data-driven feature and relatively fewer model parameters or hidden 

structures. 

 

 Compared to the parametric approach, the nonparametric approach is characterized as a data-

hungry technique. It is believed that, with advancement in information technologies, crash data 
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for road safety modeling will grow steadily in size. However, it is little known on the practical 

implication of data size on crash modeling and road safety analysis. It is also of interest to 

investigate how the relative performance of these two different approaches differs with growing 

data size.  

 

  Nonparametric methods typically lack a variable selection process. Addressing this issue may 

not be as simple as in a parametric method where the significance of a variable can be easily 

tested statistically. This is another important issue that needs to be addressed for a newly 

introduced nonparametric method.   

 

 The EB approach provides a framework to determine a long-term crash risk of a site by 

combining two different sources of evidence: site-specific observed crashes and the expected 

crash frequency. It has been one of the most popular and extensively used method by road 

agencies. For example, the Interactive Highway Safety Design Model (IHSDM) developed by 

the Federal Highway Administration (FHWA), US, and the SafetyAnalyst tool developed by 

the American Association of State Highway and Transportation Officials (AASTO) are both 

based on the EB approach. However, one of the issues with this approach is that it depends on 

a parametric crash model for estimating the “expected crash frequency”. As previously 

discussed, the parametric models have specification problems, an issue that could be reduced 

by applying a data-driven nonparametric method; however, there is a need of a methodology 

to incorporate this alternative method within the popular EB framework.   

 

 While some of the past studies have demonstrated the use of a few nonparametric methods, 

their efforts have been mostly limited to crash modeling.  Without their applications in road 

safety analyses such as identification of crash hotspots and countermeasure studies, their 

significance may not be fully recognized.  

1.5 Research Objectives 

As discussed in the previous section, parametric models, the commonly applied methods for road safety 

analyses, have some issues mainly due to the need for model specifications. The primary goal of this 

research is to investigate the application of a nonparametric approach for its potential to address some 
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of the limitations possessed by parametric approach. The particular objectives of this thesis are as 

follows: 

1. Apply a nonparametric approach for modeling traffic crashes and investigate its applications 

and features for road safety analysis. 

2. Perform a comparative study of parametric and nonparametric approaches from both theoretical 

and practical points of view.  

3. Develop a framework to combine site-specific safety records and expected crash risk from a 

nonparametric model, similar to the EB framework using parametric models. 

4. Develop a framework for the application of nonparametric methods (objective 1 and 3) to road 

safety analysis- network screening and countermeasure studies, including a few relevant case 

studies for each type.  

1.6 Overview of Chapters 

This thesis is organized into seven chapters. Chapter 1 provides an overview of the road safety problems 

including some of the research gaps in analysing the safety problems and the study objectives. Chapter 

2 presents a brief literature review on various components of road safety analysis and their relation to 

the road safety modeling techniques. It also includes a comprehensive review of parametric and 

nonparametric methods that are common in the past road safety studies. Chapter 3 focuses on a 

proposed study methodology, describing the proposed crash estimation methods-both parametric and 

nonparametric approaches and the use of these models in an Empirical Baye’s (EB) framework. 

Meanwhile, an algorithm is introduced for the nonparametric method to identify a list of relevant 

variables for the modeling purpose. Chapter 4 presents a comprehensive comparative study of 

parametric and nonparametric approaches for modeling crashes. In addition, this chapter also 

demonstrates the application of variable selection algorithm for the nonparametric method proposed in 

this thesis. Chapter 5 and 6 present the applications of proposed crash estimation methods in network 

screening and countermeasures studies, respectively. Finally, Chapter 7 highlights the main 

contribution of thesis and makes some suggestions for future research. 
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Chapter 2 

Literature Review 

Road safety studies involve analyzing various crash-related issues, identifying high crash risk sites, 

selecting effective countermeasures, and evaluating safety effects of treatment measures after their 

implementations. All these studies require crash models to estimate the expected crash risk of study 

sites. In road safety literature, parametric models have been proposed as dominant means for estimating 

crash risk as supported by a large body of literature and applications. However, these models possess 

various assumptions and specification issues which will be critically assessed in this chapter. 

 

This chapter has three main parts. The first part, Section 2.1 to 2.3, provides a brief description of road 

safety analysis procedures with focus on its two main components, namely, network screening and 

countermeasure study. The second part, Section 2.4, discusses the concept of parametric approach and 

presents some of the commonly adopted models in road safety studies. Finally, the third part, Section 

2.5, presents a brief review of past efforts on modeling crashes in a nonparametric approach. 

2.1 Road Safety Analyses 

Road traffic system consists of four basic components: road network, road users, vehicles and 

environment. Any adverse conditions in these four components, such as poor road designs, human 

errors, vehicle defects or adverse environmental conditions increase the likelihood of vehicle crashes. 

Traffic interactions between road users including other components of the road system also contribute 

to the safety problems, and these effects are expected to grow continuously as travelers increasingly 

depend on road transport. To counteract these increasing road safety problems, a comprehensive safety 

improvement programme plays a crucial role.  

 

A safety improvement programme often consists of one or more of the five main safety strategies, 

including engineering, education about road safety, enforcement, improvement of emergency response 

service, and advancement of vehicle safety technologies (HSM, 2010). However, before launching a 

safety program, road agencies need to perform a systematic analysis to identify safety issues, quantify 

risk level, and identify suitable treatment measures. The Highway Safety Manual (HSM) provides six 

interrelated analytical steps in a framework of road safety management process that consists of network 

screening, diagnosis, countermeasure selection, economic appraisal, projects prioritization and 
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countermeasure study. In our following review, we focus on the two main components, i.e., network 

screening and countermeasure study.  

2.2 Network Screening 

Networking screening is a systematic process of ranking sites that suffer from unacceptably high levels 

of crash risk. It provides a low-cost strategy in road safety management where a small group of sites is 

selected from a large population so that the available resources can be effectively deployed to relatively 

risk-prone areas thereby increasing the overall safety of the road network. 

2.2.1 Network Screening Process 

Figure 2-1 presents a framework for network screening as detailed in the HSM (2010). A brief 

discussion of each step is given below.   

 

Establish focus: The first step in network screening is to establish the study focus which could be either 

to identify a list of hotspots in a network for safety improvement (applicable to this thesis) or to evaluate 

the network in terms of safety performance for formulating some specific policies.  

 

Identify sites and establish reference population: This involves identification of a set of sites or 

facilities for screening. Normally, the facilities with similar characteristics are grouped together; for 

example, highway road sections and city roads are considered differently. Similarly, road sections and 

intersections are studied separately. This is important as the crash related data and the processing steps 

might vary depending on the nature of the study group.   

 

Select performance (ranking )measures: Performance measures, also referred as the ranking measures, 

are used to gauge the relative risk levels of the study sites. Therefore, the methods used to estimate 

these risk measures are crucial as their accuracies vary accordingly. The HSM (2010) has identified 13 

potential measures including crash frequency, crash rate and others. These measures can be determined 

either using crash counts directly or by employing crash models. The latter approach is, however, 

preferred as the crash models help to reduce the regression-to-mean (RTM) problem of the former 

approach. One of the objectives of this thesis is to apply alternative crash modeling techniques to 

improve the estimates of risk measures. We will provide a brief review on past practices in the next 

section.  
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Screen and evaluate result: Finally, the study sites are ranked based on the magnitude of estimated risk 

measure and a list of top high-risk sites, also known as crash hotspots, are selected for a further detailed 

investigation so that suitable countermeasures could be recommended for reducing their safety 

problems.  

 

Figure 2-1: Framework for network screening (HSM, 2010) 

2.2.2 Methods for Estimating Performance Measures 

As mentioned in the earlier discussion, risk measure plays a key role in network screening.  In the past, 

when the statistical techniques were not widely applied, road agencies simply used observed crash 

frequency (or rate) as the risk measure. However, this conventional approach does not account for the 

uncertainty in crash occurrence and thus suffers from the RTM effect. Recently, the regression-based 

and Empirical Bayesian (EB) approaches have been  the popular techniques employed to estimate the 

risk measures needed in  network screening as these address the RTM problem and consider the effects 

of external factors through the effort of modeling under a parametric framework.  

 

A number of studies that involve in comparing the performance of these mentioned approaches are 

found in literature. For example, Cheng and Washington (2005) evaluated the performance of 

conventional approach of using simple crash count and the Empirical Baye’s (EB) based approach in 

estimating risk measures. For the conventional approach, two measures were used. The first was the 

observed crash frequency where a set of sites was ranked in a descending order and the top most sites 

were selected as hotspots. The second was establishing a threshold value and comparing it with the 

observed crash counts. In the latter, the threshold value was calculated as a summation of the average 

observed crashes and the confidence interval. When the observed crashes exceeded the threshold value, 

then the sites were classified as hotspots. Similarly, for the EB-based approach, the risk measure was 

an EB estimated crash frequency. This study showed that the EB-based approach significantly 

outperformed the conventional method in identifying hotspots. The study further concluded that the 

importance of an EB-based approach is especially critical when there are high heterogeneities in crash 

data. Similar conclusions were also drawn in a study by Elvik (2008). 
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Recently, the EB-based and regression-based approaches have been the most extensively used 

techniques for network screening. The commonly used risk measure, i.e., expected crash frequency and 

crash rate, are obtained using parametric crash models such as Poisson and NB models calibrated from 

the maximum likelihood estimation (MLE) technique (Saccamanno et al., 2001; Greibe, 2003; 

Saccamanno et al., 2004; Mirinda-Moreno, 2005; Geedipally and Lord, 2010). Meanwhile, these 

measures can also be obtained from an EB approach where the NB model is extended in a framework 

of Bayesian approach (Higle & Witkowski 1988; Hauer, 1996; Montella, 2010; Persaud et al., 1999; 

AASHTO, 2010). Mathematically, the EB estimates are a combination of estimates from a crash model 

and site-specific observed crashes. Therefore, this approach is not appropriate in the absence of site-

specific historical crash data (HSM, 2010). Other advanced forms of parametric models exist such as 

the full Bayesian approach (Miaou and Song, 2005; Miranda-Moreno et al., 2005; Miranda-Moreno et 

al., 2007; Huang et al., 2009; Miranda-Moreno et al., 2013; Wang et al., 2014). However, it is shown 

that in the case of a relatively large dataset and sample mean, the use of full Bayesian approach does 

not significantly contribute to the improvement of estimation results of the traditional MLE approach 

(Lord & Miranda-Moreno, 2008; Miranda-Moreno et al., 2013).  

 

Some studies have compared regression-based and EB-based estimation techniques for network 

screening. For example, Saccamanno et al. (2001) applied Poisson model and EB method for 

identifying hotspots in a two-lane highway in Italy using crash frequency as the risk measure. They 

concluded that the numbers of hotspots identified by the EB estimate were less than that of the Poisson 

model. Furthermore, the authors mentioned that the results from the Poisson model may have been 

biased due to its inability to account for over-dispersion in crash data. Comparatively, the EB method 

has two main advantages. First, it includes NB model, thereby taking account of over-dispersion in the 

data structure, which would not be possible using a Poisson model. Second, the precision of crash 

estimation is improved by considering site-specific crash history under a Bayesian framework. 

Similarly, in another study by Miranda-Moreno et al. (2005), a significant difference was observed 

between the EB and regression-based approaches used in ranking of highway-railway grade crossings, 

thus underscoring the importance of method selection.  

 

Similarly, Huang et al. (2009) compared EB and full Bayesian approach using NB and Poisson-

lognormal model structure to identify crash hotspots of signalized intersections. First, the sites were 
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ranked based on the average crash frequency estimated from individual methods using five years of 

crash data. Among them, a specific number of sites (e.g., 5%, 10% of total sites) were considered as 

hotspots. These hotspots were then compared with the “true” hotspots obtained from crash counts using 

ten years of crash data (1997-2006). These hotspots identified using observed crashes directly were 

considered as the true hotspots by following a logic that the crash data collected with a relatively longer 

duration is expected to capture both randomness in crashes and actual risk level of study sites. The 

study concluded that the full Bayesian approach showed better performance in identifying the actual 

hotspots. 

 

In a nutshell, all these previous network screening studies employed parametric models to fulfill their 

need for crash modeling. One of the least explored approaches in this decision-making process is the 

use of the data-driven nonparametric approach as an alternative technique. The fact that this approach 

is specification free may provide a significant advantage in improving the accuracy of risk measure 

(e.g., crash frequency or crash rate) and eventually in the identification of crash hotspots (Persaud et 

al., 1999).  

2.3 Countermeasure Study  

Determining the effectiveness of countermeasures is crucial as this allows road agencies to conduct 

cost-benefit analysis such that the most cost effective treatment measures can be selected. In general, 

preference is given to the countermeasure with high safety benefits unless there is a significant cost 

associated to it.  

2.3.1 Crash Modification Factor (CMF)  

Typically, the effectiveness of a countermeasure is represented by a measure called the crash 

modification factor (CMF), which is defined on the basis of the safety status of two different conditions 

(illustrated in Figure 2.2). Mathematically, the CMF can be calculated as follows: 

𝐶𝑀𝐹 =
𝐶𝑎

𝐶𝑏
 (2-1) 

where,  

Ca= expected crash frequency for condition “a” i.e., after or with the treatment.  

Cb = expected crash frequency for condition “b” i.e., before or without the treatment. 
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Figure 2-2: Determining CMF in a before-after or with-without study framework 

 

CMFs appear as the multiplicative factors when computing the crash risk of implementing alternative 

treatments and/or designs in a given roadway section. For example, when a treatment has a CMF of 0.6 

and the expected crashes without the treatment is 2 crashes per year, then expected crashes after the 

treatment becomes 1.2 crashes per year (i.e., CMF×2= 0.6×2).  Most importantly, the magnitudes of 

CMFs can be used to interpret safety effectiveness of implementing the specific treatments. A CMF 

value below one indicates a reduction in expected crash frequency and vice versa for the value greater 

than one as compared to the before treatment condition. This factor could also be indirectly interpreted 

in terms of percentage decrease or increase in expected crash frequency. For the same example here, 

the treatment with CMF of 0.6 indicates that by implementing this countermeasure, the crash frequency 

is expected to reduce by 40 percent (i.e., (1-CMF) ×100 = 40%). Therefore, transportation planners 

and designers’ interest lies in the countermeasures that have lower CMF values.  

 

There are two popular approaches for determining the CMFs: before-after study and cross-sectional 

study (Benekohal and Hashmi, 1992; Hauer, 1997; Persaud et al., 1999; Harwood et al., 2002; Gross et 

al., 2010).  The CMF measure in Equation (2-1) is either a single value or a functional form depending 

on the approach. A before-after study results in a single CMF value, whereas a cross-sectional study 
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specifically using a crash model (parametric model) results CMF in an equation form.  Therefore, often 

the CMFs from the latter approach are named as crash modification functions (Gross et al., 2010). An 

extensive list of CMFs obtained from both the approaches are documented in the HSM manual and the 

FHWA Clearinghouse web application (HSM, 2010; FHWA, 2015). The following section provides a 

brief review of each approach. 

2.3.2 CMF: Before-After Study 

The before-after study is commonly used approach to evaluate the safety effects of traffic controlling 

measures, such as adding left and/or right-turn lanes at intersections, converting an intersection to a 

roundabout (Hauer & Persaud, 1987; Harwood et al., 2002; Persaud et al., 1999; Persaud et al., 2001). 

It involves a direct comparison of site-specific risk levels of before and after the treatment conditions; 

therefore, in the case of enough observed before-after crash data, this approach is highly recommended 

(Gross et al., 2010). This approach is further categorized into three types: simple before-after, 

comparison before-after and EB-based before-after study.  

 

In a simple before-after study, before-crash risk (Cb) is estimated using either the previous year’s crash 

records or an arithmetic mean of crashes occurring in the past few years. However, obtaining estimates 

of crash risk from only the observed crashes are questionable because there are chances that some 

external factors could influence the safety of the treated sites. For example, there could be an increase 

in traffic volume, changes in weather conditions, modification in road design features and others. In 

such cases, the safety effect of a specific treatment is difficult to distinguish from those of the external 

factors. 

 

Another before-after study type is using comparison (or control) sites where the crash data from sites 

with similar features are used to adjust the potential temporal change of before-crash risk (Cb) over the 

treatment period. One of the disadvantages of this method is the need of a relatively detailed crash data 

from multiple sites. Some research in the past have compared its performance with other alternative 

methods. For example, Benekohal & Hashmi (1992) conducted a before-after study in a two-lane 

highway to evaluate the highway improvement program that consisted of resurfacing, restoration and 

rehabilitation of road surface. Crash reduction factor (or 1- CMF) was determined using crash data from 

51 treated sites and 31 control sites. The two approaches considered were model-based and comparison 

before-after approaches. In the model-based approach, two crash models were calibrated, each for 

before and after treated conditions using their respective crash data. Then, these models were used to 



 

 32 

estimate before (Cb) and after (Ca) crash risks and finally determined the reduction factor. For the 

second approach of using comparison sites, before and after crash data for the treatment were directly 

compared with an adjustment made from the crash data of the control sites. A slight deviation was 

observed between the crash reduction factors from these two selected approaches. The study 

recommended using before-after study with comparison sites whenever detailed data are available. 

Similarly, Griffith (1999) applied before-after comparison study to evaluate the safety benefits of 

adding shoulder rumble strips on freeways. The treatment sites were selected based on their sequence 

of surface improvement rather than from a list of hotspot sections. Thus, the study makes an argument 

that those selected sites do not have a selection bias, and therefore, the EB method is not required over 

the before-after comparison approach. 

  

Before-after study based on EB technique is the most widely used approach compared to the two 

previously discussed study types.  One of the main benefits of the EB method is the use of a crash 

model that helps to reduce the RTM problem. Harwood et al. (2002) applied before-after studies based 

on comparison and EB method to evaluate safety effects of providing left and right-turn lanes at the 

intersections. The CMFs from EB estimates were found relatively lower, and the fact that the EB 

method accounts for the RTM effect, the results from this method were considered more accurate. 

Similarly, there are a number of past countermeasure studies using the before-after EB approach (Hauer 

& Persaud, 1987; Al-Masaeid, 1997; Elvik et al., 2001; Persaud et al., 2001; Bahar et al., 2004; Lyon 

et al., 2005; Choi et al., 2015). 

 

Recently, the full Bayesian (FB) technique has been applied as an alternative to the EB method for 

determining the safety effectiveness of countermeasures (Persaud et al., 2010; Lan et al., 2009). The 

main difference between these two techniques lies in the selection of priors for their model parameters. 

In the EB method, priors are commonly obtained from the parametric model (e.g., NB model) calibrated 

using MLE technique, whereas in the FB method, they are either selected from past studies or obtained 

by assuming some vague non-informative values, i.e., large variance for a typical prior distribution 

(Miranda-Moreno et al., 2013). Despite this, studies have shown significance of the FB technique over 

a non-Bayesian method (e.g., NB model calibrated using MLE technique) when the data size is 

relatively small (Lord & Miranda-Moreno, 2008; Persaud et al., 2010; Miranda-Moreno et al., 2013).  
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2.3.3 CMF: Cross-sectional Study 

Cross-sectional studies using a crash model are among the most frequently used methods for estimating 

the CMFs (Wu et al., 2015). This approach involves establishing a relationship between crash frequency 

and predicting variables, which is then used to estimate safety effect of a countermeasure with and 

without applying it. These two conditions are compared to obtain the countermeasure specific CMF. 

The most widely used crash models are parametric models, and of the parametric models the NB model 

is most often used as it has an ability to account for over-dispersion of crash data (Council & Steward, 

1999; Lord & Bonneson, 2007; Fitzpatrick et al., 2008; AASHTO, 2010; Zeng & Schrock, 2013; Park 

et al., 2014; Wu et al., 2015; Park & Abdel-Aty, 2015). In the study using parametric models, the model 

coefficients of the variables are directly used to estimate their CMFs. Note that a CMF can represent 

the safety effectiveness measure of a single treatment or combination of multiple treatments. The 

approach to determine CMFs of these two categories (single and multiple factors) may vary slightly.  

The following presents some of the past-related studies for each category.   

1. CMF for single treatments 

Council and Stewart (1999) adopted a cross-sectional study to evaluate safety effects of converting a 

two-lane highway to a four-lane highway, as typically for such conversions, before and after crash data 

are not easily available. Separate NB models were developed for each highway type using crash data 

from four different states in the U.S.  Then, for the comparisons, the most typical sections were selected, 

i.e., for the two-lane section- shoulder width of 1.83 m and surface width of 7.32 m, and similarly, for 

the four-lane section- shoulder width of 3.05 m and surface width of 3.66 m. Meanwhile, same exposure 

levels were assumed for both the highway types (i.e., AADT and length). The results showed that 

converting two-lane to four-lane with divided section with varying condition of exposure levels, the 

crash reduction was expected to be in the range of 40 to 60 percent or in terms of CMF in the range of 

0.6 to 0.4.  

 

Lord & Bonneson (2007) developed CMFs for some road geometric elements such as changing lane 

and shoulder widths, extending edge markings for a rural frontage road and others. An exponential 

form of NB model was calibrated to compute the CMFs for these features. The results showed that 

increasing lane and shoulder widths were associated with lower CMF values, indicating that their safety 

effects are positive. Likewise, an increase in proportion of edge marking of a road section indicated a 

relatively safer conditions. Similarly, Fitzpatrick et al. (2008) applied NB model to quantify the effects 
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of widening median width (with rigid barrier), widening left shoulder width including few other factors 

in freeways and rural multilane highways. As in other studies using NB model, the regression 

coefficients were used to determine the CMFs. The study showed that widening both the median and 

left shoulder widths resulted in reduction of crash risk. 

 

Other similar applications of cross-sectional study in developing CMFs of road geometric elements 

include the works by Zeng and Schrock (2013) and Choi et al. (2015).  Zeng and Schrock (2013) 

focused on developing CMF of varied shoulder width of rural two-lane highway using crash data from 

Kansas State. Four years (2003- 2007) of crash data were processed annually for the winter and non-

winter seasons, and the datasets were used for calibrating the NB models (for each season) where 

shoulder width was considered as a categorical variable (total ten types). The result showed that 

widening of shoulder width resulted in increasing safety benefits. Meanwhile, the CMF of changing 

shoulder width for winter seasons was slightly larger with a variance of 13 to 25 percent. Similarly, 

Choi et al. (2015) developed two NB models, each for horizontal curve deflection and vertical grade, 

using a crash data from a Korean Expressway. Additional variables included in the models were length 

and AADT. The model coefficients were used to compute their CMFs. The result showed that sections 

with higher horizontal curve radius and lower vertical grades have a lower risk of crashes. However, 

this study using two separate models for each factor with limited variables is likely to have excluded 

the effects of important omitted variables.    

 

As the method of cross-sectional study using parametric model is one of the most frequently used 

approaches to quantifying safety benefits of road geometric features, it is important to validate their 

results and at the mean time know their strengths and limitations. For this, we refer to the work of Wu 

et al. (2015) which presents a comprehensive simulation study for validating the CMFs. In this study, 

a crash dataset was generated by fixing following conditions: 1) assumed CMFs for three variables-

lane width, curve density and pavement friction, 2) assumed a safety performance function (SPF) (or 

crash model) from the HSM manual. The SPF, which represented the base conditions, was multiplied 

by CMFs to form a complete model. Then this complete model was finally used to generate a simulated 

crash data. A number of NB models were calibrated using the simulated crash data with a variation in 

number of predicting variables included in the models. The CMFs were then back calculated using 

model coefficients for respective scenarios. The result showed that when all the variables are included, 

the estimated CMFs had much less deviation from their original values. However, when the variables 
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were omitted in the model, the resulting CMFs were biased. The main finding from this study is that 

parametric crash models, such as NB model, can be effective in estimating CMFs only when a complete 

information is available including their model functional forms. However, in a real case study, a true 

model form between crashes and predicting variables is unknown. Therefore, the findings based on 

parametric model forms (SPFs) can hardly be generalized.  

2. CMF for multiple treatments 

Determining CMFs for multiple treatments is relatively a complex process as their simultaneous effects 

are difficult to capture mainly due to the practical difficulty of getting enough data. They are generally 

derived by an indirect approach by combining the CMFs of single treatments as discussed in NCHRP 

(2008).  Among all, the method involving simple multiplication of individual CMFs is the most popular 

one (HSM, 2010). This is based on the assumption that the effects of individual factors are independent, 

which means that there are no interaction effects between the treatment measures. Similarly, other 

methods mentioned in NCHRP (2008) are designed to calculate CMF of multiple factors by combining 

their individual CMFs where less important factors are penalized by using some weighting schemes. 

Critical to this indirect approach is the CMF of a multiple treatment depends on the quality of CMF of 

individual treatments and the validity of the assumptions made to combine their effects.  

 

Only a few studies have focused on developing CMFs for multiple treatments by considering their 

actual interaction effects.  For example, Park et al., (2014) tried to estimate the CMF of combined 

treatments of adding shoulder rumble strip and widening shoulder width for rural multilane highway 

sections by applying the before-after and cross-sectional approaches. For the latter approach, a NB 

model with an exponential form was considered. The variables in the model were shoulder rumble strip 

(categorical form), shoulder width and their interaction term. The interaction term was not found 

significant in the model; however, it was still used to interpret their combined effects. As an alternative, 

only the interaction term could have been considered in the crash model, similar to the work of Bauer 

& Harwood (2012). However, the authors argue that such partial form of model may provide a biased 

result. The study showed that the wider shoulder widths with rumble strip on shoulder showed greater 

safety benefits and vice versa for the narrow shoulder widths. Another important finding from this study 

is the CMFs of single treatments obtained from before-after and cross-sectional studies only differ 

slightly (8%), suggesting that the latter method could be a viable alternative t when a before-after study 

is not feasible.   

 



 

 36 

In contrast to the parametric approach, only one study had applied a nonparametric approach, i.e., by 

Park & Abdel-Aty (2015). They applied a nonparametric model called applied the multivariate adaptive 

regression spline (MARS) as well as NB model for estimating CMF using a crash dataset from a case 

study of multilane rural highways with the following roadside features: driveway density, pole density, 

distance to trees and others. The CMF obtained from the MARS method consists of a set of basis 

function (local parametric models) involving significant variables together with their corresponding 

model coefficients. Note that the model coefficients are obtained through a calibration process (i.e., 

training process) similar to other parametric models.  CMFs from the two approaches are not 

comparable, as their true values are not known. Therefore, the study drawed a conclusion that since 

MARS outperformed the NB model in terms of model performance, the CMFs from MARS are 

expected to be more accurate.  

2.4 Parametric Models 

A crash model represents the conditional expectation of crash frequency as a function of a set of 

covariates. Consider Y as a random variable representing the number of crashes occurring during a 

specified time period (e.g., hour, month or year) and X, a vector of covariates, representing the potential 

factors such as traffic characteristics, weather conditions, and geometric features. The conditional 

expectation of the crash frequency is given by Eq. 2-2. 

 

𝐸(𝑌|𝑋 = 𝑥) = 𝜇(𝑥; 𝛽) (2-2) 

 

where, 

𝜇(. ) = expected crash frequency, which is a function of x and 𝛽, with a known form.  

𝛽 = a vector of regression coefficients associated with the covariates x. 

 

In a parametric approach, the conditional probability of crash frequency is assumed to follow a specific 

distribution defined by its respective parameters. Its expected crash frequency, i.e., 𝜇(. ), which is a 

systematic component of a model, is then assumed to be a function of a given set of variables 

 𝑥1, 𝑥2, … . , 𝑥𝐷 along with a set of regression coefficient  𝛽1, 𝛽2 … … 𝛽𝐷. The associated regression 

coefficients define the direction and magnitude of the effect of corresponding factors on crash 

frequency. This process of defining a shape of the relation between crashes and covariates is the basic 

approach in conventional parametric models. Again, the parameter estimation depends on the methods 
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being applied. Two methods, namely, maximum likelihood method and Bayesian method are 

commonly used, which will be briefly discussed in Section 2.4.2 and 2.4.3, respectively.   

2.4.1 Parametric Model Functional Forms 

Specifying a functional form for the expected crash frequency, i.e., 𝜇 = 𝜇(𝑥) for a given x, is one of 

the critical parts in the parametric approach. A wide spectrum of functional forms have been postulated 

in the past. All these forms can be generalized under a common structure given by Eq. 2-3 where the 

crash exposure and the crash risk, as a set of explanatory variables, appear in a multiplicative form. 

 

Crash frequency ~ crash exposure × crash risk (2-3) 

 

Crash exposure represents the traffic level on the road entities of interest, representing the chances of 

exposing to crashes. If the entities of interest are road segment, it could be measured by traffic volume 

and the segment length. These factors appear in a model either as a product of individual effects (i.e.,  

(𝑡𝑟𝑎𝑓𝑓𝑖𝑐)𝛽1 × (𝑙𝑒𝑛𝑔𝑡ℎ)𝛽2) or as a combined effect ((𝑡𝑟𝑎𝑓𝑓𝑖𝑐 × 𝑙𝑒𝑛𝑔𝑡ℎ)𝛽1), as shown in Table 2-1. 

This structuring of crash frequency model by specifying the crash exposure and crash risk in a 

multiplicative form supports the logic of “no traffic flows or no length” means no crash.   

Table 2-1: Common functional forms of parametric crash models 

S.N. Model functional form References 

1 

𝜇 = 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 × 𝑙𝑒𝑛𝑔𝑡ℎ × (𝛽𝑜 + ∑ 𝛽𝑑𝑥𝑑

𝐷

𝑑=1

) 

Jacobs and Sayer, 1983; Okamoto 

and Koshi, 1989; Zegeer et al., 

1991; Miaou and Lum, 1993; Hong 

et al., 2005. 

2 𝜇 = 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 × 𝑙𝑒𝑛𝑔𝑡ℎ ×  𝑒𝛽𝑜+∑ 𝛽𝑑𝑥𝑑
𝐷
𝑑=1  Miaou et al., 1992; Miaou, 1994; 

HSM, 2010; Ahmed et al., 2011.  

3 𝜇 = 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝛽1 × 𝑙𝑒𝑛𝑔𝑡ℎ ×  𝑒𝛽𝑜+∑ 𝛽𝑑𝑥𝑑
𝐷
𝑑=2  HSM (2010) (undivided rural 

multilane and urban suburban 

arterial roads); Persaud et al., 1999; 

Montella, 2009.  
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S.N. Model functional form References 

4 𝜇 = (𝑡𝑟𝑎𝑓𝑓𝑖𝑐 × 𝑙𝑒𝑛𝑔𝑡ℎ)𝛽1  × 𝑒𝛽𝑜+∑ 𝛽𝑑𝑥𝑑
𝐷
𝑑=2  Hauer et al., 1996; Miaou, 1994; Fu 

et al., 2005; Usman et al., 2012; Wu 

et al., 2015. 

5 𝜇 = 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝛽1 × 𝑙𝑒𝑛𝑔𝑡ℎ𝛽2  × 𝑒𝛽𝑜+∑ 𝛽𝑑𝑥𝑑
𝐷
𝑑=3  Hadi et al., 1993; Washington et al., 

2003; Qin et al., 2004; Miranda-

Moreno, 2006; El-basyoung and 

Sayed 2009. 

Note: 𝜇 = expected crash frequency; 𝑥𝑑 = predicting variables, 𝛽𝑜= intercept; 𝛽𝑑= regression coefficient 

of 𝑥𝑑; 𝛽1 and 𝛽2 (in model 5) = regression coefficient of exposure variables, D is number of covariates. 

 

Similarly, crash risk represents the effect of factors on crash such as road geometric features and 

weather variables. The effects of these factors are commonly defined by a simple functional form, a 

linear or an exponential function, as shown in Table 2-1. In a linear functional form, covariates appear 

in an additive form with its effect quantified by respective regression coefficients (𝛽). This form is 

generally used in linear regression (Jacobs and Sayer, 1983; Miaou and Lum, 1993).  However, the 

main limitation of a linear functional form is that it does not guarantee a non-negative outcome, which 

may easily violate the basic requirement of crashes as a count process. 

 

To overcome the statistical constraint of a linear form, an exponential function has been widely used in 

crash models, where the linear form of covariates is linked by an exponential function (Table 2-1). This 

form is also known as “log-linear function” in literature as the same expression can be interpreted by 

the log of the dependent variable on the left side (crash frequency) linked to a linear form of covariates 

on the right side of the mathematical expression. Such a functional form ensures that the crash 

frequency always results a non-negative value (Miaou and Lum, 1993; Miaou, 1994). Due to 

exponential function in these forms, the elasticity of predicting variables on accident frequency can be 

easily expressed by the individual regression coefficients (Shankar et al., 1995; Milton and Mannering, 

1998; Washington et al., 2003; Chang, 2005; Usman et al., 2012). Elasticity is interpreted as a measure 

of percentage change of effect of a certain factor on crashes occurrence provided that the other factors 

remain constant.  
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The fundamental problem with both the linear and exponential specifications and any other defined 

forms is that the relation between crash frequency and influencing factors is not known in advance. 

This parametric approach where the functional forms are arbitrarily selected only quantifies the 

magnitude of the coefficients for the assumed model and has no flexibility to detect the true shape of 

the underlying relation.  As a result, the model outcomes obtained are limited to the general trend, and 

cannot detect a complex relation with potential irregularities, such as peak, valley, and point of 

inflection lying within the relation domain.  Therefore, this potential problem in misspecification on 

which the whole estimation of regression coefficients depends on can easily run into a risk of biased 

estimates of model coefficients. Consequently, other derived measures such as model elasticity can 

easily lead to misinterpretations. 

2.4.2 Maximum Likelihood Approach 

As previously mentioned, there are two common parametric approaches for estimating the parameters 

of a model, namely, maximum likelihood estimation (MLE) and Bayesian approach. In the MLE 

technique, the most commonly used  crash models are a group of parametric models namely Poisson, 

Negative Binomial (NB), Poisson-lognormal (PL), Zero-inflated Poisson (ZIP) and Zero-inflated 

Negative Binomial (ZINB), Generalized Negative Binomial (GNB), random-effect and random-

parameter models. Fundamentally, they are all variants or extensions of the Poisson model. 

Details on the MLE method used in various crash models can be found in McCullgh & Nelder (1989) 

and Washington et al. (2003). We have summarized the overall process into the following five steps:  

Step 1: Specification of crash distribution 

Consider Y represents crash frequency, a random variable, which are independently and identically 

distributed with an assumed probability distribution 𝑓𝑌 (𝑦; 𝜃)  in which θ is the model parameter. 

We denote the distribution of Y as:  

𝑌~𝑓𝑌 (𝑦; 𝜃)  (2-4) 

where, 

𝑓𝑌 (. )  is the adapted distribution for Y 

𝜃 is distribution parameter which is a function of 𝜇 (. ) and conditional on the given error term 𝜖; 

here, 𝜇(. ) is expected value of Y and is conditioned on a set of covariates. Note that the 

parameter 𝜃 might have different forms, depending on the model type.  
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Step 2: Specification of functional form of model, i.e., 𝜇(. ) 

Pre-define model functional form for expected crash frequency, i.e., 𝜇(. ), expressed by a set of 

covariates (𝑥) as shown in Eq. 2-5. This model form is the core output of the modeling. The role of 

coefficients of covariates (𝛽) depend on how the function 𝜇(. ) is specified. Some of the functional 

forms common in road safety studies are discussed in Section 2.5.1. 

𝐸(𝑌|𝑋 = 𝑥) = 𝜇(𝑥;  𝛽) (2-5) 

where,  

𝜇(. ) is a function relating x on Y through the regression coefficients 𝛽. 

 

Step 3: Specification of error term 

In order to capture the variability of model, in most of the models, an error term (𝜖) is considered 

and specified with a specific probability distribution f (𝜖; 𝜑).  

𝜖~𝑓(𝜖; 𝜑)  (2-6) 

          

Step 4: Construction of likelihood function 

A likelihood function L(.) is defined mathematically as:   

𝐿(𝜃) = ∏ 𝑓𝑌(

𝑛

𝑖=1

𝑦𝑖; 𝜃) (2-7) 

where, 𝑦𝑖 is observed crashes, n is number of observations.  

Step 5: Model calibration 

The likelihood function L(.) can be transformed into sum of the probabilities of observed  crash 

occurrences using a logarithmic functions LL(.)  (Eq. 2-8).  

𝐿𝐿(𝜃) = ∑ 𝑙𝑛  𝑓𝑌(𝑦𝑖; 𝜃

𝑛

𝑖=1

)  (2-8) 

 

The model coefficients β, which is part of 𝜃 parameter as explained in Eq. 2-4 and 2-5, are estimated 

by maximizing the LL(.) function. The main advantage of the MLE technique is that a closed function 

exists for the family of commonly used probability distributions (e.g. in Poisson, NB, GNB, PLN, ZIP, 

ZINB models). A simulation approach is required for some models where the LL function does not 

have a closed form (e.g., random effect model).  
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A number of parametric models are used in road safety analyses which are based on different 

assumptions made on a probability distribution of crash occurrence and its associated error structure. 

In the following section, some of the commonly used parametric crash models are reviewed. 

1. Poisson Model 

Poisson model is a single parameter model in which crash occurrence is assumed to follow a Poisson 

distribution. This model overcomes the statistical problem caused by discrete and non-negativity in a 

linear model (Jovanis and Chang, 1986; Jones et al., 1991; Miaou, 1994).  From the statistical property 

of the Poisson distribution, the conditional expectation and variance are equal to the model parameter, 

i.e., 𝜇 (. ) Mathematically, 

𝑌~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃) 

𝜃 = 𝜇(. )  

𝐸(𝑌|𝑋 = 𝑥) =  𝜇(𝑥;  𝛽) 

𝑉𝑎𝑟(𝑌|𝑋 = 𝑥) = 𝜇(𝑥;  𝛽) 

 

(2-9) 

where,  

y is crash counts,  

𝜇(.) is expected crash frequency as defined in Eq. 2-5, 

x is a vector of covariates,  

𝛽 is a vector of regression coefficients associated with covariates x. 

 

One of the limitations of the Poisson model is that the crash data are most likely to be over-dispersed 

thereby resulting the variance to exceed the mean (Maher and Summersgill, 1996; Cameron and Trivedi 

1998; Lord and Mannering, 2010). This may easily violate the mean-variance constraint imposed in the 

Poisson model which eventually misleads the asymptotic covariance estimate of regression coefficient 

i.e., β, in Eq. 2-5 affecting the standard error of model coefficients. Consequently, the biased estimate 

of standard error may invalidate the hypothesis testing on each coefficient (Jovanis and Chang, 1986; 

Miaou et al., 1992; Miaou and Lum, 1993; Fu et al., 2005; Miranda-Moreno, 2006). This may result in 

either inclusion or exclusion of variables failing to catch their effects. Therefore, given that the observed 

data are most likely to be over-dispersed, the use of Poisson model may lead to a biased inference. 
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2. Negative Binomial (NB) Model  

The most popular model used in road safety analysis is the Negative Binomial (NB) model. NB model 

also known as Poisson-gamma model, is a derived from the Poisson model by including a gamma 

distributed error term (Lawless, 1987; Miranda-Moreno, 2006). Mathematically, it is given below in 

Eq 2-10. 

 

𝑌~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃) 

𝜃 = 𝜇(. )𝑒𝜖 

𝑒𝜖 ~ Gamma (φ, δ) 

𝑌~𝑁𝐵(𝜇(. ), 𝛼) 

𝐸(𝑌|𝑋 = 𝑥) =  𝜇(𝑥;  𝛽) 

𝑉𝑎𝑟(𝑌|𝑋 = 𝑥) = 𝜇(𝑥;  𝛽) +  𝛼 × 𝜇2(𝑥;  𝛽) 

 

(2-10) 

As seen above, the error term, i.e., 𝑒𝜖   is gamma distributed with parameters φ >0 and δ >0. This 

distribution ensures that 𝜇(. ) > 0 since 𝑒𝜖  > 0. Furthermore, by specifying φ = δ, crash occurrence 

will follow a NB distribution where E(𝑒𝜖) = 1 and Var (𝑒𝜖) = 1/φ= α (Lawless, 1987).  The term α is 

usually defined as the over-dispersion parameter. If 𝛼 → 0, then this model converges to a Poisson 

model. Thus α represents the difference between these two forms of parametric models. The expected 

crash frequency, i.e.,𝜇 (. ) is specified as a function of a set of covariates similar to a Poisson model. In 

this model, the inclusion of an error term provides the flexibility to permit the variance greater than the 

mean, which allows capturing any unmeasured heterogeneity in a dataset (Lord and Mannering, 2010).  

 

Given this advantage of adjusting potential over-dispersed characteristics of crash data, NB model has 

been the most widely used model in road safety analysis (Hadi et al., 1993; Miaou, 1994; Shankar et 

al., 1995; Milton and Mannering, 1998; Harwood et al., 2000; Miaou and Song, 2005). NB model is a 

further extended by modeling dispersion parameter with all the other assumptions remaining 

unchanged. This form of model is sometimes referred as Generalized NB model. The over-dispersion 

parameter is generally specified as a linear combination of covariates linked by an exponential function. 

This has been proved to increase model fitness as compared to NB and PL models (El-Basyouny and 

Sayed, 2006; Usman et al., 2012). 
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3. Poisson-lognormal Model 

Poisson-lognormal (PL) is also a variant of Poisson model, similar to the NB model. This model is 

obtained by replacing the Gamma distributed error term in NB model with Normal distribution with 

the mean equal to zero and variance σ2.  Note that if σ2 → 0, mean and variance are reduced to mean 

and variance of the Poisson model. PL was found to be advantageous for addressing spatial variation 

pattern of crashes (Milton et al., 2008; Li et al. 2008; Anastasopolos and Mannering 2009; El-basyoung 

and Sayed 2009).  

 

4. Zero-inflated Models 

Zero-inflated Poisson (ZIP) and zero-inflated Negative Binomial (ZINB) models are used when the 

over-dispersion of data are caused by excess zeroes (Miaou, 1994; Cameron and Trivedi, 1998). In 

addition to crashes being rare events, the problem of excess zeroes can appear when the roadway’s 

geometric factors are considered by dividing roadway into short homogenous segments (Ahmed et al., 

2011). To overcome such an inflated data structure, the ZIP and ZINB model structure defines a two-

state regime (i.e., truly safe state and unsafe state) of crashes (Shankar et al., 1997; Qin et al., 2004). 

 

Miaou (1994) employed Poisson, ZIP and NB models, and compared the model performance for truck 

crash frequency and suggested that the ZIP model is a good candidate model when the crash data 

exhibits excess zeros. However, these sets of models have limitations. The assumption of dual-state is 

not a true representation of an underlying crash occurrence process. There is no existence of the 

complete safe state. On the contrary, the reasons for excess zeros could be due to one of the following 

reasons: (1) sites with a combination of low exposure, high heterogeneity; (2) small time or spatial 

scales; (3) data with a relatively high percentage of missing or misreported crashes; and (4) crash 

models with omitted important variables (Lord et al., 2005). Therefore, such models may misrepresent 

the practical phenomena of crash occurrence.  

 

5. Random Effect Count Models  

In all the previously mentioned parametric models, there could be some unobserved site-specific 

factors, such as functional class of road, degree of side slopes, pavement surface conditions, users 

driving behavior, and temporal correlation which are not captured by the models (Shanker et al., 1997; 

Chin and Quddus, 2003). Such effects can be addressed by an alternative specification of random 



 

 44 

effects in a count model. Washington et al. (2003) considers NB as one of the examples of random 

effect model in a Poisson model setting, where a random effect parameter (i.e., error) is assumed to 

follow the Gamma distribution.  This results in consideration of an over-dispersed nature of crashes as 

discussed in NB model. However, this model does not take into account of a location-specific variation 

and time correlation effect which are introduced through the random effect of models. This benefit of 

considering site-specific parameter was observed in a median crossover crash study by Shankar et al. 

(1997).   

 

6. Random Parameter Count Model 

A random parameter model is another variant of a Poisson model. In all the previous models, regression 

coefficients of covariates (𝛽𝑖, known as parameter in this section) are considered fixed across all the 

observations which may however vary in reality. Therefore, to capture such potential heterogeneity in 

a data structure, random terms are introduced in the given parametric specification of the functional 

form of a count model. This provides flexibility for the parameters to vary over the observations (Milton 

et al., 2008; Anastasopoulos and Mannering, 2009).  

 

Anastasopoulos and Mannering (2009) compared the statistical fit of a random parameter NB model 

(random parameter defined by a normal distribution) and the traditional NB model in establishing an 

empirical relation of crashes with various road geometric features and traffic exposure. The NB random 

parameter model was found to be superior to the traditional NB model. Unlike the previous parametric 

models, the log likelihood function for this model is computationally complicated due to the integration 

function of normal count model over the assumed normal distribution function of a random parameter. 

Therefore, a simulation based maximum likelihood method is commonly used for parameter estimation. 

2.4.3 Bayesian Approach 

The Bayesian approach is an alternative parameter estimation technique which overcomes some of the 

limitations imposed by the MLE technique. In this approach, both the response variable (here crash 

frequency) and the model parameters are considered as random variables defined by specific probability 

distributions. The probability structure of the response variable remains the same as in the MLE 

approach (e.g., Poisson and NB distribution). Additional flexibility is introduced by considering model 

parameters (mean crash frequency and over-dispersion parameter) following prior distribution defined 
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by a set of parameters known as hyper-parameter (Tunaru, 2002; Miaou et al., 2003; Miaou and Song, 

2005; Song et al., 2006).  

 

Similar to the MLE technique, the Bayesian approach consists of various assumptions on probability 

distribution and model functional form at different levels. This is described in following four steps:  

 

Step 1: Specification of crash frequency distribution 

Consider crash frequency (Y) as a random variable with assumed probability distribution 𝑓𝑌(𝑦; 𝜃) 

where, θ represents the model parameter. Note that the following probabilistic function of model 

at this step is similar to the MLE approach. 

𝑌~𝑓𝑌(𝑦; 𝜃) (2-11) 

where, 

𝑓𝑌 (. )  is the adapted distribution for Y 

𝜃 is distribution parameter which is a function of 𝜇 (. ) and conditional on the given error term 𝜖; 

here, 𝜇(. ) is expected value of Y and is conditioned on a set of covariates. Let’s assume 𝜖 

follows a probability distribution f (𝜖; 𝜑). Note that the parameter 𝜃 might have different 

forms depending on the model type.  

 

Step 2: Specification of functional form of model (𝜇(. )) 

Expected value of Y, i.e., 𝜇(. ), is expressed as a function of a set of covariates (x) with assumed 

functional structure (Eq. 2-12). The coefficients of covariates (𝛽) depend on how the function 𝜇(. ) 

is specified as in the MLE method. Some of the functional forms common in crash models are 

discussed in Section 2.4.1. 

𝐸(𝑌|𝑋 = 𝑥) =  𝜇(𝑥; 𝛽) (2-12) 

 

Step 3: Specification of prior distribution for model parameters 

The model parameters that include model coefficients in μ(.) (𝑖. 𝑒. , 𝛽 in Eq. 2-12) and 𝜀 in Eq. 2-11 

are considered as random variables with assumed probability distributions 𝑓𝛽(. ) and 𝑓𝜑(. ), 

respectively. Let’s say their parameters (also known as hyper-parameter) are σ and γ, respectively 

(Eq. 2-13). Note that the number of hyper-parameters depends on the distribution type. 

𝛽~𝑓𝛽 (. , σ) (2-13) 
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𝜑~𝑓𝜑 (. , γ) 

         

Prior distributions may be either informative or non-informative. Informative priors are those based 

on previous research. Often the prior information on dispersion parameter, the parameter describing 

error term specially for the NB model i.e., 𝜑, can be drawn from the estimated result of the MLE 

models (Ma and Kockelman, 2006; Miranda-Moreno et al., 2013). Meanwhile, non-informative 

priors are used when there is a lack of past information (Ahmed et al., 2011; Miaou and Song, 2005). 

This is especially applicable for the model coefficient in μ(.), i.e., 𝛽. Studies have shown that the 

choice of prior information is especially critical for data with small sample sizes but is negligible 

for data with a large sample sizes (Kass and Wassermann, 1996). Similarly, a few studies have 

concluded that the use of prior information on the dispersion parameter in NB model increases the 

accuracy of the estimate when the sample size and crash mean are low (Nathan and Gary, 2006; 

Song et al., 2006; Lord and Miranda-Moreno, 2008; Miranda-Moreno et al., 2013). Therefore, in 

such cases, the use of non-informative priors can be problematic, resulting inaccuracy in parameter 

estimation.  

 

In addition to the availability of information, the specification of prior distribution is based on the 

conjugal distribution that produces the full posterior distribution of the same form as the parent 

distributions, and can be computed easily (Miranda-Moreno, 2006). For example, in a Poisson 

lognormal Bayesian model, the inverse-gamma prior is selected for the hyperparameter as its 

combination with the normal distribution results in a conjugal distribution.   

 

 Step 4: Bayesian inference for model coefficient (𝛽) 

Based on Bayes’ theorem, the posterior distribution of a parameter is constructed through prior 

information on the model coefficient 𝛽 and the current information from the likelihood specification 

as shown in Eq. 2-14). The posterior distribution 𝑓𝛽𝑝
(. ) is proportional to the product of likelihood 

function L(.) and the prior distribution 𝑓𝛽(.) as:  

𝑓𝛽𝑝
( 𝛽) =

𝐿 (𝛽, 𝜑) 𝑓𝛽 (σ) 

∏ 𝑓𝑌(𝑦𝑖)𝑛
𝑖=1

∝ 𝐿 (𝛽, 𝜑) 𝑓𝛽(σ) (2-14) 

  

where, the likelihood function 𝐿 (. )  is defined by: 
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𝐿 (𝛽, 𝜑) =  ∏ 𝑓𝑌(

𝑛

𝑖=1

𝑦;  𝛽, 𝜑) (2-15) 

where, 

𝑦𝑖 is ith observed crash counts, 

n is number of observations. 

𝑓𝑌(. ) is the marginal probability distribution of Y.    

 

Finally, the posterior inference for model coefficients (𝛽) given by Eq. 2-16 is computed using 

Markov Chain Monte Carlo (MCMC) sampling method (Ntzoufras, 2008). 

𝐸(𝛽) =  ∫ 𝛽 × 𝑓𝛽𝑝
( 𝛽)𝑑𝛽 (2-16) 

 

Some of the commonly used Bayesian models in the road safety analysis are reviewed in the following 

section. 

1. Poisson-Gamma (NB) Bayesian Model  

The Negative Binomial distribution has been the most widely used probabilistic structure for the 

Bayesian crash model as it offers the simplest way to accommodate over-dispersion. In addition, its 

marginal distribution has a close form with many prior distributions (Gamma and Normal distribution) 

(Hauer, 1997; Lord and Miranda, 2008).  The following specifications are assumed for the crash 

distribution and its associated priors. 

𝑌~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃) 

𝜃 = 𝜇(. )𝑒𝜖 

𝑒𝜖  ~ Gamma (φ, φ) 

𝐸(𝑌|𝑋 = 𝑥) =  𝜇(𝑥;  𝛽) 

Prior distribution 𝜑 ~𝑓𝜑(. ) and 𝛽~𝑓𝛽 (. ) 

(2-17) 

 

where, 𝜇 (. ) is the model functional form (Section 2.4.1), x is a vector of covariates, 𝛽  is a vector of 

regression coefficient, 𝜑 is a dispersion parameter. The specification for the main distribution 

(including error term) is same as the NB-MLE method mentioned in Section 2.4.2. The only difference 

with the NB-MLE method is the additional specification on prior distribution. Two different types of 
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prior distributions (i.e., non-informative or informative) are specified for dispersion and model 

regression coefficients.  

 

Ahmed et al. (2011) used non-informative priors to model crashes on mountainous freeways since the 

prior information for such types of road sections was lacking. Similarly, Miranda-Moreno et al. (2013) 

considered three different types of distributions for over-dispersion (Gamma distribution, Christiansen 

distribution, Uniform distribution), and investigated the performance of the model under these priors 

for four-lane rural highways and three-legged rural intersections. The model hyper-parameters for these 

respective distributions were derived statistically from several past studies using the MLE approach. In 

addition, they also considered non-informative gamma distribution priors to observe if any significant 

difference exists between the two sets of priors. In contrary to the over-dispersion parameter, the priors 

for the set of regression coefficient are generally considered non-informative and flat, defined by 

normal distribution with a large variance, e.g., 𝛽~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝛽′, 10000) (Ahmed et al., 2011; Miranda-

Moreno et al., 2013). Using different sets of data the results showed that for lower sample size and 

mean, the informative priors outperformed far above the non-informative flat priors, and specifically, 

Gamma and Uniform priors performed better. This shows that the selection of informative priors and 

distribution type is sensitive. 

  

Similarly, in order to account for spatial variation (e.g., correlation between adjacent road segments), 

an additional parameter is often introduced in Bayesian framework described by a prior distribution. 

Normal distribution is commonly considered for computational convenience. This particular structure 

of model was proved to be a better fit compared to the zero inflation models that are designed to 

overcome dispersed data (Huang et al., 2010).  Ahmed et al. (2011) compared the performance of 

spatial-effect model and NB model under a Bayesian approach, with non-informative priors and, 

concluded that the spatial effect was redundant while including well-defined geometric variables. 

Moreover, the author also concluded that these Bayesian-based models outperformed Poisson model 

by the MLE approach for the same set of data by accounting for over-dispersion. 

2. Poisson-Lognormal Bayesian Model 

In a Poisson-Lognormal Bayesian model, the error term follows a lognormal distribution. Since the 

conjugate distribution of Normal distribution (defining error term) is an inverse Gamma function, the 

hyperparameter of the error term is specified by the Gamma distribution (Lord and Miranda-Moreno 

2008, Miranda-Moreno et al., 2013). These models are recommended over the Poisson–Gamma model 
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when the prior information is missing and crash data characterized by low sample means (Lord and 

Miranda, 2008). 

2.5 Nonparametric Models 

Nonparametric methods provide a conditional expectation of crash frequency as a function of a set of 

predicting variables based on some defined data-driven rules. Examples of nonparametric methods 

employed in past studies for modeling crashes include Classification and Regression Tree (CART) 

(Karlaftis and Golias, 2002; Chang & Wang, 2006), Artificial Neural Network (Mussone et al.,1999; 

Abdelwahab and Abdel-Aty, 2001; Chang, 2005; Xie et al., 2007), Multivariate Adaptive Regression 

Splines (Abdel-Aty & Haleem, 2011; Park & Abdel-Aty, 2015), and Kernel Regression (Thakali et al., 

20141; Thakali et al., 20162). These methods have varied data-driven rules and are briefly discussed in 

the following sections.  

1. Classification and Regression Tree (CART) 

 

The CART method applies a tree like structure for predicting a dependent variable from a given set of 

input variables. It involves recursively partitioning data points (i.e., training set) where each parent 

node is split into a binary node based on a selected predicting variable until it reaches to the terminal 

nodes (Karlaftis and Golias, 2002) (Figure 2-3). Critical to this method is making a choice of the 

variable at each split and its value to perform a binary split at each node. A numerical search algorithm 

is used such that the split at each node generates the greatest prediction accuracy, which is usually 

measured with node impurity measures, and in the meantime, to make sure that there is a greater relative 

homogeneity (the inverse of impurity) in the terminal nodes. Before application, CART requires 

training to determine this tree like structure with if-then splitting rules. Whenever a new prediction is 

to be made, we apply the if-then-else rule which will lead to one of the terminal nodes, and the average 

value of the terminal node provides the estimated value. However, when an updated training data set is 

available, the CART model structure needs re-training in order to update the if-then-else rule. 

 

                                                      
1 Thakali, L., Fu, L., & Chen, T. (2014). A Comparison between Parametric and Nonparametric Approaches for Road Safety Analysis - A Case Study of Winter Road Safety. 

In Transportation Research Board Annual Meeting (Vol. 6, pp. 1–17). 

2 Thakali, L., Fu, L., & Chen, T. (2016). Model Based versus Data-driven Approach for Road Safety Analysis : Does More Data Help? Transportation Research Record: 

Journal of the Transportation Research Board, No. 2601. 
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Figure 2-3: A typical structure of CART 

2. Artificial Neural Network (ANN) 

 

The architecture of an ANN model consists of an input layer, hidden layers and an output layer as 

shown in Figure 2-4. (Chang, 2005; Xie et al., 2007). The nodes in the input layer receive a set of 

predicting variables which are then processed through the hidden and output layers to obtain a final 

output. Each node in these layers (hidden and output) acts as a computational unit where the inputs 

coming to the node are first weighted, and then an activation function is used to transform the result. 

Finally, this becomes an input to the next layer as directed by the connections in the network. The ANN 

method requires a few pieces of prior information such as number of hidden layers, number of units 

(nodes) in each hidden layer, a network-learning rate (to controls size of weights) and activation 

functions. Some learning processes are used to determine the weights; for example, one of the most 

commonly used algorithm to train the model is the back-propagation algorithm (Rumelhart et al., 1986). 

Additionally, assumptions are needed on activation functions and a number of hidden layers are 

typically determined by trial-and-error process. This approach may have less control over negative 

outcomes, especially, when a dataset is dominated by a large number of zero crash counts. Note that 

whenever a new data set is available, the ANN approach requires training of the network model in order 

to update the weights assigned to each neuron that links predictors and the target variables.   
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Figure 2-4: A typical structure of ANN with one hidden layer 

3. Multivariate Adaptive Regression Splines (MARS) 

 

This method consists of multivariate-segmented regressions which are defined by a set of basis 

functions for modeling a relationship (Friedman, 1991). Theoretically, this method is similar to a 

parametric model as there involve model coefficients associated with each basis function which are 

determined through a calibration process using a training dataset. The model coefficients are obtained 

through minimization of sum of residuals. However, compared to parametric models, there is a greater 

flexibility to capture any nonlinear and complex relationship by considering a large number of basis 

functions. Often the input variables to this method are identified using some alternative methods such 

as random forest technique (Abdel-Aty & Haleem, 2011).   

4. Kernel Regression (KR) 

 

This is a fully data-driven nonparametric method, and is relatively simple to understand as the 

parameters involved (i.e., bandwidths) are easily interpretable. The KR method requires a kernel 

function and bandwidths that are determined from training data set along with existing data points to 

make a new prediction. These parameters control the weight on each data point with closer data points 

getting larger weights compared to the farther ones. Due to its physically interpretable parameters, KR 

is often called a “grey-box” (Brown et al., 2011). Most importantly, unlike in previously discussed 

nonparametric methods, only a few parameters are required, and there are no hidden model structures 

to train. For example, ANN has layers of input, hidden and output layers with many different weights 

to train. Similarly, MARS has a set of basis functions whose corresponding coefficients need calibration 

.
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and CART has a tree-like structure to generate if-then rules. These methods are often characterized as 

“Black Box” due to their complexity for direct interpretation.  

 

Meanwhile, when it comes to updating of the results using a new dataset, the KR method is more 

adaptive. This is because the KR method is a fully data-driven technique, i.e., it uses the raw data points 

directly to make a prediction. Therefore, the newly collected data set can be easily combined with the 

existing set and update the results in a real-time. Of course, the bandwidths can be updated by learning 

from the updated new training set, but still without this step, the KR method can easily make use of 

new information. However, in other nonparametric methods, unless their hidden structures are re-

trained using new training set, we cannot make use of new information. Details about the KR method 

are provided in next chapter.   

2.6 Summary  

The first part of this chapter (Section 2.1-2.3) discussed about road safety studies, including network 

screening and countermeasure studies, which are very popular for an effective management of road 

safety problems. Past studies showed that a large amount of research has contributed to developing and 

investigating alternative techniques, and have focused mainly on addressing the problem of data 

availability and improving risk estimation. In all these past efforts, whenever a crash model is involved, 

there is a skewed preference for parametric models. In particular, the NB model has been the most 

popular, whether it be in an EB framework or applied independently. While there is a continuous effort 

to improve the crash modeling component required for road safety studies, much less attention has been 

given to the use of a nonparametric approach. 

 

The second and third part of this chapter (Section 2.4 to 2.5) briefly reviewed various statistical 

techniques (parametric and nonparametric) used for modeling crashes. Examples of parametric models 

include the standard Poisson, NB, Poisson-lognormal, zero-inflated Poisson, zero-inflated Negative 

Binomial models and a few others. While this approach provides an easy-to-apply tool due to its defined 

mathematical form (i.e., equation) and allows for convenient interpretation of the results, it comes at a 

cost: the need to pre-select a model form, which, without knowing the true relation is nothing but a 

guess. Also discussed were the two model calibration techniques commonly applied in the parametric 

approach: MLE method and the Bayesian technique. The latter approach is important to improve the 

models mainly when the sample size of crash data is small. Similarly, typical nonparametric models 
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including CART, ANN, MARS, and kernel regression were discussed. Compared to parametric models, 

these methods do not make any assumptions about their model forms; but rather they are assumed to 

follow a certain data-driven rule to capture the relation of dependent and independent variables.   
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Chapter 3 

Proposed Methodology 

This chapter provides a detailed description of kernel regression (KR), a nonparametric method which 

is relatively less complex compared to some of the previously applied similar methods that require 

explicit training of their hidden model structures ( e.g., tree-like structures in CART, basis functions in 

MARS, hidden layer components in ANN). While the application of the KR method is widely found in 

the field of social science and is growing in the field of engineering, its usage in road safety analyses 

has been relatively less explored. One of the limitations of this method is lack of systematic approaches 

to identify a list of important variables to feed into the process of crash prediction. Therefore, to 

overcome this issue of variable selection, an algorithm is developed which fully runs in a nonparametric 

framework. Furthermore, we propose an extended form of the KR method to account for the site-

specific risk levels, similar to the Empirical Bayesian (EB) method based on parametric models. Lastly, 

a brief description of negative binomial (NB) model is also included, as this model is used for 

benchmarking the performance of the KR method in latter chapters. 

3.1 Nonparametric Approach: Kernel Regression (KR) 

Kernel regression (KR) is one of the most commonly used forms of nonparametric techniques in applied 

economics (Livanis et al., 2009). It was originally proposed by Nadaraya (1964) and Watson (1964); 

therefore, it is also known as the “Nadaraya–Watson” estimator. KR can be used to identify the 

functional relationship between a dependent variable and potential covariates without the need to pre-

specify a functional form and probability distributions like in a parametric model. Apart from KR, there 

are other similar data-driven nonparametric methods available, such as spline and orthogonal 

polynomial. However, it is argued that all these methods are, in an asymptotic sense, equivalent to the 

KR method (Hardle and Mammen 1993; Silverman, 1984; Hardle, 1994); as a result, this research 

focuses on the KR method. 

  

To briefly explain how the KR method works, we assume a dataset consisting of a set of Y and X 

variables, where Y is a dependent random variable representing the number of crashes per unit time and 

X is a vector of D-dimensional covariates, i.e., X1, …XD. A regression function m(.) is defined by a set 

of covariates X with error 𝜖 , where crash counts are assumed to be independent and identically 

distributed across road segments. Like any paramateric models, the KR method considers the 
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conditional expectation of the dependent variables (here crash frequency) given a set of covariates (Eq. 

3-1). This form of regression is estimated through the data-driven nonparametric approach of kernel 

density estimation (Eq. 3-2). 

𝑌 = 𝑚(𝑥) +  𝜖 (3-1) 

where,   

𝑚(𝑥) = 𝐸(𝑌|𝑋 = 𝑥), 

x is realization of X covariates with D-dimensional vector form, i.e., 𝑥 = (𝑥1, 𝑥2, … . 𝑥𝐷)′,  

𝐸(𝜖|𝑋) = 0 , and 

𝑉𝑎𝑟(𝜖|𝑋 = 𝑥) = 𝜎2(𝑥) , which is finite.   

𝐸(𝑌|𝑋 = 𝑥) =  ∫ 𝑦
𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑋(𝑥)
𝑑𝑦 (3-2) 

where,   

y = realization of Y response variable, 

𝑓𝑋,𝑌(𝑥, 𝑦) =  joint distribution function of covariates X and Y, and 

𝑓𝑋(𝑥) =  marginal distribution function of covariates X. 

 

The foundation of the KR method is based on the stochastic framework that begins with an estimation 

of the nonparametric density, thereby without considering any prior information. This approach can 

identify any irregularities in the density, which are difficult to capture by a parametric approach. A 

general form of the multivariate kernel density estimator for the case of D-dimensional covariates is 

defined by Eq. 3-3 (Hardle 1990; Li and Racine, 2003).  

𝑓𝑘(𝑥1, 𝑥2, … . 𝑥𝐷) =  
∑ ∏ 𝑘 (

𝑥𝑑 − 𝑥𝑖,𝑑

𝑏𝑑
)𝐷

𝑑=1
𝑛
𝑖=1

𝑛 ∏ 𝑏𝑑
𝐷
𝑑=1

 (3-3) 

where,  

𝑓𝑘(. ) = multivariate kernel density function,  

𝑘(. ) = kernel function — a continuous bounded and symmetric function i.e., k (u) = k (-u), 

∫ 𝑘(𝑢)𝑑𝑢 = 1, ∫ 𝑢𝑘(𝑢)𝑑𝑢 = 0, ∫ 𝑢2𝑘(𝑢)𝑑𝑢 > 0,  

𝑥𝑑 = point of evaluation for the dth variable (d= 1…D), 

𝑥𝑖,𝑑 = observed value for the dth variable, 

𝐷 = number of covariates, 

𝑛 = sample size, and  

𝑏𝑑 = bandwidth (a positive number) of dth variable, such that:𝑏𝑑
(𝑛)

↓ 0 (goes down to 0 monotonically) 

and n𝑏𝑑
(𝑛)

→ ∞ for all 𝑑 = 1, … , 𝐷.  
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The conditional expectation of crash frequency (the dependent variable) is given by Eq. 3-2. By 

substituting the kernel density estimate for the corresponding marginal and joint density given by the 

above-mentioned concept of density estimation process, the expression is deducted to Eq. 3-4.  

𝑚̂(𝑥1, 𝑥2, … . 𝑥𝐷) =  
∑ ∏ 𝑘 (

𝑥𝑑 − 𝑥𝑖,𝑑

𝑏𝑑
) 𝑦𝑖

𝐷
𝑑=1

𝑛
𝑖=1

∑ ∏ 𝑘 (
𝑥𝑑 − 𝑥𝑖,𝑑

𝑏𝑑
)𝐷

𝑑=1
𝑛
𝑖=1

   

=  ∑ 𝑤𝑖(𝑥1, 𝑥2, … . 𝑥𝐷)𝑦𝑖

𝑛

𝑖=1

 

 (3-4) 

where:  

𝑚̂(. ) = estimator of 𝑚(. ) in Eq. 3-1 (i.e., expected crash frequency), 

𝑦𝑖 = observed crashes per unit time interval, 

𝑤𝑖(𝑥1, 𝑥2, … . 𝑥𝐷) =   a weighting factor which equals to  
∏ 𝑘(

𝑥𝑑−𝑥𝑖,𝑑
𝑏𝑑

)𝐷
𝑑=1

∑ ∏ 𝑘(
𝑥𝑑−𝑥𝑖,𝑑

𝑏𝑑
)𝐷

𝑑=1
𝑛
𝑖=1

, and 

All other notations remain same as in Eq. 3-3. 
 

Variance of estimate, i.e., 𝑚̂(. ), is given by Eq. 3-5 (Silverman, 1986; Hardle, 1994; Hyfield & Rachin, 

2008).   

𝑉𝑎𝑟[𝑚̂(𝑥1, 𝑥2, … . 𝑥𝐷)] =
𝜎̂2(𝑥1, 𝑥2, … . 𝑥𝐷)𝑅(𝑘)

𝑛 ∏ 𝑏𝑑  𝐷
𝑑=1 𝑓(𝑥1, 𝑥2, … . 𝑥𝐷)

 (3-5) 

where, 

𝑅(𝑘) = ∫ 𝑘2(𝑢)𝑑𝑢
∞

−∞
 , also known as kernel roughness. Note that 𝑅(𝑘)for the Gaussian kernel is 

1/2√𝜋, i.e., 1.57; 

𝜎̂2(𝑥1, 𝑥2, … . 𝑥𝐷) =  
∑ ∏ 𝑘(

𝑥𝑑−𝑥𝑖,𝑑
𝑏𝑑

)𝜖𝑖
2𝐷

𝑑=1
𝑛
𝑖=1

∑ ∏ 𝑘(
𝑥𝑑−𝑥𝑖,𝑑

𝑏𝑑
)𝐷

𝑑=1
𝑛
𝑖=1

,  𝜖𝑖 
is error for the ith observation; and 

All other notations remain same as in Eq. 3-3. 

 

Hyfield & Rachin (2008) have also proposed a bootstrapping approach as an alternative technique to 

determine the variance.  

 

As shown in Eq. 3-4, estimating dependent variable “Y” for a given condition is a weighted average of 

observed values, i.e., 𝑦𝑖’s, where the weights are determined jointly by a kernel function and 

bandwidths. It is easy to show that the weighting factor 𝜔𝑖(. ) has the following properties: 𝑤𝑖(. ) > 0 
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and ∑ 𝑤𝑖(. )𝑛
𝑖=1 = 1. Intuitively, for the fixed bandwidths, the weights are bigger for the observed points 

that are closer to evaluating point and smaller or possibly 0 when they are remote. This aspect makes 

the KR method straightforward and understandable unlike in other data-driven approaches, such as 

ANN and MARS, where interpretation of how a dependent variable is linked to a set of independent 

variables is relatively complex. Furthermore, the weighting approach of each observed 𝑦𝑖’s to estimate 

the value for a given point of interest indicates that the KR method is a local fitting technique as opposed 

to a parametric method that selects a single curve of a certain shape to fit the given entire data points. 

By down weighting the observations that are further apart, the kernel nonparametric estimator uses 

more relevant information for estimation, hence it could capture variations that are overlooked by 

parametric models. However, one of the similarities between the two approaches is that both are 

determined based on a probabilistic framework (details in Pagan and Ullah, 1999).  

 

In this method, we need to decide two things prior to the estimation: the kernel function and the variable 

bandwidths. The most common choice for the kernel function is the Gaussian kernel, but alternatives 

such as the Epanechnikog, triangular, and uniform kernels also exist. Note that for a large sample size, 

any kernel will be close to the optimum kernel (Pagan and Ullah, 1999). For this study, Gaussian kernel 

is selected as it has higher differentiability properties and less computation time compared to other 

kernel functions (Lavergne and Vuong, 2000). 

 

Another important component of the KR method is the bandwidth of each variable. As discussed 

previously, bandwidths play a crucial role in KR estimates as they determine the size of the 

neighborhood for averaging. Though the kernel regression estimator is free from misspecification, i.e., 

it converges to the truth when sample size approaches infinity, it is biased for a finite sample. A smaller 

bandwidth reduces the bias but inflates the variance, while a bigger bandwidth reduces variance at the 

cost of bigger bias. This natural trade-off between the bias and variance helps to pin down the desirable 

bandwidth that minimizes the mean squared error of the estimator. A detailed discussion of various of 

bandwidth estimation methods could be found in Pagan and Ullah (1999). This includes methods from 

a simple rule of thumb to some advanced approaches such as cross- validation method (CV) (Racine, 

2008; Hall et al., 2007; Parmeter et al., 2007; Zhang et al., 2009; Brown et al., 2011; Kohler et al., 

2014). One of the limitations of the CV method is, for a large data size, a normal computer requires a 

substantial computation time to use the method. Therefore, in this thesis, we adopt a variation of the 

Silverman’s rule of thumb to avoid this issue of computation (Silverman, 1986; Simonoff, 1996). A 

file:///C:/Users/Lalita/Dropbox/4.%20WorkingFolder/2.RegressionYearly/2.%20NetworkScreening/A.%20NetworkScreening.docx%23_Pagan_A.,_&Ullah
file:///C:/Users/Lalita/Dropbox/4.%20WorkingFolder/2.RegressionYearly/2.%20NetworkScreening/A.%20NetworkScreening.docx%23_Pagan_A.,_&Ullah
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similar method is also applied in past studies (Lavergne and Vuong, 2000; Gu et al., 2007; Dudek, 

2012). We calculate the bandwidth for the jth variable as:  

𝑏𝑑 =  (
4

2𝐷 + 1
)

1
4+𝐷

× 𝜎𝑑 × 𝑛−
1

4+𝐷 

 

(3-6) 

where,  

𝜎𝑑 = standard deviation of the corresponding dth variable, 

D = total number of variable, and 

others are same as in Eq. 3-3. 

3.2 Variable Selection  

The data-driven and specification free nature of the KR method are appealing to modeling crashes and 

analyzing road safety problems. However, a few issues need to be addressed before it can become a 

potential tool to be applied by front-line practitioners. One of the important issues is the need for a 

systematic process to identify a set of input variables that feed into a modeling framework. Similar to 

regular parametric regression models, it is necessary to determine the variables that have a significant 

influence on crash predictions and filter out the unnecessary ones. Meanwhile, particularly for the KR 

method, fewer numbers of variables are favorable to avoid the curse-of-dimensionality effect, 

especially when the sample size of a dataset is relatively small (Silverman, 1986; Pagan & Ullah, 1999).  

An increasing number of variables reduces the number of data points available in the neighborhood of 

a point of interest, which may eventually affect the accuracy of predictions. In the past studies, the issue 

of variable selection for the KR method has not been explored extensively, which is also true for other 

nonparametric methods including artificial neural network (ANN), multivariate adaptive regression 

splines (MARS) and others applied for modeling crashes. 

 

Developing a variable selection algorithm for a nonparametric method may not be as straightforward 

as in a parametric method. The normally used procedure in the latter method is to follow either 

backward or forward selection process where potential variables are successively included in the model, 

and the insignificant ones are excluded. This decision is made based on testing a certain hypothesis 

with an assumption of some parametric distributions for the test statistic. For example, the  most 

commonly used is the t-test (or its equivalent Wald test) in a parametric model, which checks whether 

or not a calibrated variable coefficient is significant at a certain confidence level by stating a null 
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hypothesis that the coefficient is of zero magnitude (Washington et al., 2003). Rejecting this null 

hypothesis means the variable is significant. For this, a test statistic is evaluated by assuming it follows 

a normal distribution with the mean equal to zero and that it has a certain variance. This value is then 

compared to a critical value from a standard normal distribution for a fixed confidence level. When the 

test statistic is larger or greater than the critical value, then the null hypothesis is rejected, thus 

suggesting that the variable is significant and should be included in the model. Thus, due to this 

convenience of the testing procedure, the approach of variable selection in a parametric method 

becomes a straightforward process.  

 

In contrast, similar testing is not possible in a nonparametric method as there is no any definite model 

coefficient related to each  variable by which a test can be conducted. Moreover, a situation may exist 

where a single parameter (i.e., for each variable) may not be sufficient to represent an underlying 

relation between a dependent and a predicting variable. For example, let us say that there is a non-

linear, non-monotonic relation between a dependent variable “x” and an independent variable “y”.  In 

the case of a linear model, we could simply test the significance of the variable by determining whether 

the slope of the proposed relation is zero or not. However, in a nonparametric approach, which is 

expected to capture a nonlinear relation, in some ranges of x values the relation may be flat indicating 

an insensitive relation, whereas it may be highly sensitive in other ranges of x values. Therefore, in a 

nonparametric method, testing whether a variable is significant or not requires special approach. 

  

A few indirect approaches do exists. Examples include selecting variables that have been found to be 

significant in past-related studies or on the basis of the recommendations of road safety experts. 

However, these approaches could result in a subjective list of candidate variables that may not 

completely reflect the safety problems that are specific to study area. Another approach could be by 

making use of the findings from some parametric studies.  That is, we could first, calibrate a certain 

parametric model following their standard procedure of testing variable significance levels, and then 

identify the final list of candidate variables to be included in the KR method. This was the approach 

taken in our previous study, which was reasonable as the main objective was to compare the NB model 

and the KR method (Thakali et al., 2014). Similarly, Li et al. (2008) applied support vector machine to 

predict crashes with variables selected using traditional NB model. Meanwhile, in some past safety-

related studies that applied nonparametric methods, such ANN, this issue of variable selection was not 

explicitly explored (Xie et al., 2007; Chang 2005). Another alternative approach could be by conducting 
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an exhaustive search for a subset of variables that has the optimum performance (Goethals et al., 2001; 

Cateni et al., 2011; Cateni et al., 2012; Dudek, 2012). However, such an approach lacks detailed 

information and insights of variable effects at their individual levels.   

3.2.1 Proposed Methods 

In this section, we propose a two-step approach to select the variables in the KR method. The first step 

is to apply a bootstrap algorithm, which determines the relative variable importance (VI’) of each 

potential factor. The VI’ measure, as detailed in the following section, is used to decide whether a 

specific variable should be included or excluded from the model. A detailed explanation is given in 

Section 3.2.2. Note that Prinzie & Poel (2008) and Hossain & Muromachi (2012) applied a slightly 

similar method in their studies. However, their focus was to solve some classification problems, such 

as classifying consumer preferences and classifying real-time crash risk level of a freeway, and 

therefore, do not directly fulfill the need of a regression problem.   

 

The second step is to measure the overall performance of the model.  This is a supplementary step to 

the previous algorithm. After knowing importance level of each variable, the final decision of what 

variables to include or exclude, especially those at marginal VIs’, are made by measuring the overall 

performance of the KR method. This is the essence of a regression model where optimum performance 

is desired. The indicator used is a mean absolute error (MAE) which is given by Eq. (3-7). We adopt a 

backward selection approach where the least important variable is excluded step-by-step until we reach 

to optimum performance. 

𝑀𝐴𝐸 =
∑ |𝑦𝑖̂ − 𝑦𝑖|𝑛

𝑖=1

𝑛
 (3-7) 

    

where,  

𝑦𝑖= ith observed crash frequency, 

𝑦𝑖̂= estimated crash frequency for ith observation, and 

n = total number of observations. 

3.2.2 Algorithm for Determining VI’ 

We propose a bootstrap-based algorithm to quantify impact level of each variable. The idea behind the 

bootstrapping is to create a large number of sample datasets by resampling the original dataset. These 

generated datasets provide an opportunity to produce a number of possible outcomes, thereby providing 



 

 61 

a better representation of the imaginary population. The measure of outcome, for example, could be the 

model goodness-of-fit. Finally, the average statistic obtained from the bootstrapping process can be 

used for making decisions.  

 

This algorithm follows the idea of bootstrapping approach by generating some random samples (also 

termed as bootstrap samples) a part of which are then used as a training set for the KR method. Note 

that the KR method uses these sampled datasets to determine the bandwidth of variables. At first, all 

the potential variables are included in the training set and the final decision to select variables are made 

based on their individual average performance level measured as relative variable importance (VI’). 

The entire process involved in determining the VI’ is presented in Figure 3-1, and a detailed explanation 

is given below.   

 

1. Select all the potential variables (D) from a given dataset that could have effects on the 

dependent variable.   

2. Generate B random datasets- bootstrap samples, from a given dataset of N sample size and D 

number of variables. For each bootstrap sample (b), split the dataset into a training set (Tb) and 

a validation set (Vb). This means, a total of B training sets and corresponding B validation sets 

are generated. The percentage split between Tb and Vb is 80/20. 

 

In the case of a case study that consisted of crash data measured over a period for the same unit 

(sections), in that case, we preferred to split the initial training (Tb) and validation set (Vb) by 

a certain time horizon. For example, consider a situation where the first few years are assigned 

to Tb’ and last few years to Vb. Now, the final training set (Tb) for each tree is selected by 

randomly considering 90% of the initial training set (Tb’). However, note that the validation set 

is fixed. This approach is taken to have a more representative validation set to test the 

performance of the KR method. 

     

3. For each bootstrap sample, calculate the bandwidth of each variable using Tb set and estimate 

the crash frequency for its corresponding Vb set using KR method. Then, calculate prediction 

error of each tree on its Vb set as: 

𝑆𝐴𝐷𝑏 =  ∑ |𝑦𝑖 − 𝑦𝑖̂
𝑛
𝑖=1 | 

where,  
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𝑆𝐴𝐷𝑏 = sum of absolute deviation for bootstrap “b”, 

𝑦𝑖= observed crash frequency, 

𝑦𝑖̂= estimated crash frequency, 

𝑛= number of observations in Vb. 

4. Permute each variable one at time and recalculate the percentage increase in prediction error 

as below:  

𝑃𝐸𝑑
𝑏 =

𝑆𝐴𝐷b − 𝑆𝐴𝐷𝑑
𝑝b

𝑆𝐴𝐷b
 

where,  

𝑃𝐸𝑑
𝑏= prediction error for bootstrap sample ”b” and “d” variable,  

𝑆𝐴𝐷𝑑
𝑝b = performance measure after permuting the variable “d” in bootstrap sample “b”. 

The idea of permuting a variable is fundamental for measuring its variable importance (VI). A 

similar concept can be found in a random forest method (Breiman, 2001). When a variable is 

important for a model, then permuting its values is expected to increase the model prediction 

error (or decrease model accuracy) and vice versa when the variable is less important (Prinzie 

& Poel, 2008; Hossain & Muromachi, 2012). Therefore, there is a positive correlation between 

the magnitude of VI and the impact level of a variable.     

5. Repeat step 4 for each variable.  

6. Repeat step 3 to 5 for each bootstrap sample “b”. 

7. Calculate VI of each variable as: 

𝑉𝐼𝑑 =
∑ 𝑃𝐸𝑑

𝑏𝐵
𝑏=1

𝐵
  

where,  

𝑉𝐼𝑑= variable importance of variable d, 

𝐵 = total number of bootstrap samples.  

8. Rank the variables based on their magnitude of VI. 

9. Find the relative importance of each variable (VI’) by comparing to the highest VI. 
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Figure 3-1: A bootstrap algorithm for variable importance 

3.3 Parametric Approach: Negative Binomial Model 

The Negative Binomial (NB) model has been the model most extensively used by transportation 

agencies for crash modeling and road safety analyses (Hadi et al., 1993; Miaou, 1994; Shankar et al., 

1995; Persaud et al., 1997; Milton and Mannering, 1998; Harwood et al., 2000; Persaud, 2001; Miaou 

and Song, 2005; Lord and Mannering, 2010). It has also been recognized as the mainstream model and 

documented in the highway safety manual.  

 

The NB model, also known as Poisson-gamma model, is derived from the Poisson model that includes 

a gamma-distributed error term (Maher and Summersgill, 1996; Lord and Mannering, 2010; Cameron 
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and Trivedi 2013). As we explore the conceptual background of NB model, we can see that there are a 

few pre-specification requirements prior to the model calibration. Let 𝑌 be a number of crashes 

occurring at a certain site for a specified time period (here year). Assuming 𝑌 follows a Poisson 

distribution i.e., mathematically, Y~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃), where 𝜃 = 𝜇(. ) ∗ 𝑒𝜀
 
 and 𝑒𝜀 follows a Gamma 

distribution (a two-parameter distribution), by specifying both parameters of the gamma distribution 

equal and greater than zero results in the NB model. Then the conditional expected crash frequency 

over the specified time period, 𝐸(𝑌|𝑋 = 𝑥) or 𝜇 (.), is written as in Eq. 3-8. 

𝐸(𝑌|𝑋 = 𝑥) = 𝜇(𝑥;  𝛽) (3-8) 

where, 

𝜇(. ) = a parametric function representing the relationship between crash frequency and a set of 

covariates (x), and  

𝛽 = a set of model coefficients to be calibrated 

 

Generally, an “exponential function”, as shown in Eq 3-9, is used for 𝜇(. ) as it ensures that the crash 

frequency is always non-negative value (Miou and Lum, 1993; Miaou, 1994 and more references given 

in Section 2.5.1).  

𝜇(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒, 𝑥2….𝑥𝐷; 𝛽0, 𝛽1 … . . 𝛽𝐷) = (𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒)𝛽1𝑒(𝛽0+∑ 𝛽𝑑∗𝑥𝑑
𝐷
𝑑=2 ) (3-9) 

 

where, 

𝜇(. ) =  expected crash frequency,  

exposure = generally defined as the product of total traffic volume and the road section length, 

β1  = exponent of the exposure variable, 

β0 = intercept, 

βd = coefficient of explanatory variable xd, 

xd = dth explanatory variable, and 

D = number of covariates. 

 

The model coefficients in Eq. 3-9 can be estimated with the maximum likelihood method using a crash 

dataset. Meanwhile, a backward selection approach could be employed to determine those variables 

that are significant at a given level of significance (e.g., 5%).  
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3.4 Empirical Bayesian (EB) Approach  

As mentioned in Chapter 2, EB method has been the state-of-art approach for estimating crash risk both 

in network screening and countermeasure studies. This section provides an overview of the EB method 

including its current practices and potential extension for the nonparametric analysis    

3.4.1 Concept of EB Approach 

EB method provides a framework to determine the long-term crash risk of a site by combining risk 

measures from two clues- site-specific observed crashes and the expected crash frequency. The latter 

represents the risk of a site estimated from reference sites with similar features which is achieved 

through an effort of crash modeling. The use of the first measure, site-specific observed crashes, alone 

is not sufficient to capture uncertainty in crash occurrence as it is expected to fluctuate over time. This 

uncertainty phenomenon of crash occurrence in road safety studies is also known as regression-to-mean 

(RTM) effect (Figure 3-2). Consequently, this value must be supplemented by an estimate from a crash 

model, which forms the basis of the EB approach. 

  

Following Hauer’s (1997) notations, the expected crash frequency at a site is expressed as a weighted 

average of crash frequency obtained from a reference population “𝐸(𝑘)” and the observed crash counts 

on that site (K). Mathematically, 

𝐸(𝑘/𝐾) = 𝑤𝐸(𝑘) + (1 − 𝑤)𝐾 (3-10) 

 

where, 

𝐸(𝑘/𝐾) = expected number of crashes at a given site (e.g., a road segment, or an intersection) given 

that K crashes occurred,  

𝐸(𝑘)= expected value for mean crash frequency (i.e., k) as referenced to similar units,  

𝐾 = observed number of crashes at that given site, 

𝑤 = weight.  

𝑤 =  
1

1 +
𝑉𝑎𝑟(𝑘)

𝐸(𝑘)

 
(3-11) 

where,          

𝑉𝑎𝑟(𝑘) = variance of mean crash frequency. 
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Figure 3-2: Regression-to-mean effect and EB estimate 

As seen in Eq. 3-10, an EB estimate is a weighted average of observed crashes and the expected crash 

frequency obtained from reference sites. In this equation, the weighing factor (w) is the key input which 

can be derived from two different approaches. The first method is using the Bayesian approach of 

combining priors and data likelihood following the Baye’s rule (see Appendix A. 1). Note that the EB 

is different from the full Bayesian approach in selecting the priors. In the EB method, the priors come 

from crash data that are used to calibrate the crash models; whereas in the full Bayesian approach, some 

distributions are assumed on the bases of previous relevant studies. The second method is using the 

concept of combining two random variables aimed to minimize their resultant variance (see Appendix 

A. 2). Hauer (1997) showed that these two approaches are equivalent, yielding the same final 

expression, i.e., Eq. 3-11, for the weighing factor. The detailed steps involved for the derivations are 

included in Appendix A. Note that in this thesis we aim to incorporate the KR method into the EB 

framework by considering the second approach.  

 

As seen in Eq. 3-10 and 3-11, the EB framework requires estimates of two measures to calculate the 

weight and expected crash estimate from reference sites:  𝐸(𝑘) and 𝑉𝑎𝑟(𝑘). Hauer (1997) proposed 

the following two methods to estimate 𝐸(𝑘): (1) method of sample moment, and (2) method of 

multivariate regression. In the first method, a simple sample mean is used to estimate the value of E(k). 

While this method is simple to apply with only a few assumptions, it, however, does not account for 
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possible effects of safety related factors. This issue is addressed by using second method, i.e., regression 

approach. This approach takes into account of effects due to crash causing factors by developing their 

relation with crash frequency. In the past, use of multivariate regression from a family of parametric 

models have been the standard process.  

 

Similarly, the estimate of site-specific variance (i.e., Var(k)) is needed to determine the weight. Hauer 

(1997) and Hauer (2015) define this as a function of the variance of crash counts and the model 

estimates (Eq. 3-12). The further details related to this are presented in Appendix A. 

𝑉𝑎𝑟(𝑘) = 𝑉𝑎𝑟(𝐾) − 𝐸(𝑘) (3-12) 

where, 

𝑉𝑎𝑟(𝐾) = variance of crash counts and other terms same as in previous definitions. 

 

Again, Hauer (1997) proposed two methods to estimate the variance: (1) method of sample moment, 

and (2) regression method. In the first method, the variance is directly estimated as sample variance 

minus the sample mean of crash counts. Note that, in this method, no safety impacts of crash-related 

factors are considered. In the second approach of using regression, the variance is determined based on 

two measures: crash counts and estimated mean crashes. By imagining a population where each unit 

(row in the dataset) is a sample of one, we estimate the sample variance of crash counts by the square 

difference (SD) between the observed crash counts and fitted values from a crash models.  Then 

replacing SD in Equation (3-12), we obtain: 

𝑉𝑎𝑟(𝑘) = 𝑆𝐷 − 𝐸(𝑘) (3-13) 

where,  

SD is defined as the square difference between the observed crash counts and crash estimates from a 

model. Details are presented in Appendix A.  

 

In the past, the use of parametric models has been the common tradition to estimate all the parameters 

required for an EB estimate. This include Poisson-gamma model, also known as NB, (Hauer, 1997; 

Persaud et al., 1997, Miranda-Moreno et al., 2005; HSM, 2010; Zou et al., 2013), Poisson-lognormal 

model, Sichel model (Zou et al., 2013) and Poisson-lognormal model (Miranda-Moreno et al., 2005). 

As discussed in Chapter 2, all these models use a pre-specified mathematical equation to specify a 

relation of crashes and predicting variable. However, if an improper function is specified, the resulting 
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risk estimates may be biased. To address this specification problem, we propose to employ the KR 

method.   

3.4.2 NB-based EB Method 

Referring to Eq. 3-10, an EB estimate requires three main inputs: crash counts (K), expected crash 

frequency 𝐸(𝑘) and a weighing factor (w). Obtaining first input is straightforward as we can directly 

extract it from a historical crash dataset.  For the latter two inputs, they depend on the choice of crash 

modeling approach. Note that the weighing factor “w” depends on the precision of estimate from a 

crash model. The larger the variance less is the weight given to the model estimate and more on site 

specific crash counts; and vice versa for the case of smaller variance. Similarly, it has an inverse relation 

to the model estimate.  

 

In the road safety field, it is well known that among the various options available for modeling crashes, 

the NB model is the most extensively used method. In this section, we obtain the two inputs (i.e., E(k) 

and w) as follows:  

 

 E(k): obtain from NB model (i. e. , 𝜇(. )), as given in Eq. 3-9. 

 Weight (w): As shown in Eq. 3-11, this is a function of the mean (E(k)) and variance (Var(k)). 

Hauer & Persaud (1987), in their study using NB-based EB method, observed a systematic 

relation between these two measures. A quadratic function, given by Eq. 3-14, was used to fit 

the relation. After substituting the values of mean and variance back in Eq. 3-11, the final 

expression obtained for weight is represented by Eq. 3-15.  Since then, in NB-based EB method, 

it has been a standard procedure to apply this proposed relation of mean-variance to calculate the 

weights (Persaud et al., 1999; HSM, 2010). It is also noted that there is an inverse relationship 

between the weight and the over-dispersion parameter and weight and NB estimate. 

 

𝑉𝑎𝑟(𝑘) = [𝐸(𝑘)]2 ∗ 𝛼 (3-14) 

𝑤 =  
1

1 +
[𝐸(𝑘)]2 ∗ 𝛼

𝐸(𝑘)

=  
1

1 + E(k) ∗ 𝛼
=  

1

1 + 𝜇(. ) ∗ 𝛼
 

(3-15) 

 

where, 𝛼 is over-dispersion parameter  
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3.4.3 KR-based EB Method 

In this section, we propose a KR-based EB method adopting a specification free and data-driven 

approach of the KR method for estimating crash frequency. Although the fundamental derivation of 

this proposed nonparametric approach is not based on Bayes’ rule; instead, it follows the approach of 

combining two random variables, we still use the term “KR based EB method” to reflect its similarity 

with  the original NB-based EB framework. The following explains how E(k) and weight (w) are 

obtained. 

  

 E(k): Obtained from an estimate of 𝑚̂(. )  using from Eq. 3-4.  

 Weights (w): The steps involved for determining the weights (w) are not as straight forward as 

in previously discussed NB-based EB method. For this particular method, we trace back to its 

initial form in Eq. 3-11, where it is represented as a function of variance and mean of crash 

estimates. The following three steps are needed to determine the weights:  

1.  Estimate the variance associated with each site using Eq. 3-13. 

2.  Use KR approach to establish a relation of mean and variance. The detailed process is 

described in Section 3.2. Note that, establishing a mean-variance relation here is a 

univariate case.  

3. Use Eq. 3-11 to calculate weights associated with each site.  

4. Finally, use Eq. 3-10 to obtain the final KR-based EB estimates by substituting the 

values of E(k) and w.  Figure 3-3 provides an illustration of steps from 1 to 4 which is 

also applicable to NB-based EB method. 
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Figure 3-3: Steps to determine EB estimate 

3.5 Summary 

In this chapter, we proposed kernel regression (KR), a data-driven nonparametric approach, for crash 

modeling. The problem of how to select the appropriate variables to be included in a KR model has not 

been explored extensively. We proposed a variable selection algorithm which is able to detect the 

importance of variables at their individual levels. We also discussed the negative binomial (NB) model, 

one of the most commonly used parametric models, as it is employed in later chapters for comparisons 

with the KR method. Another extensively used estimation method in road safety studies is the Empirical 

Bayesian (EB) method for which the NB model has been the most extensively used model. We 

introduced an EB extension of the KR method so that two important measures of crash risk (site-specific 

crash history and estimates from a crash model) can be combined in the final estimate.. The main 

motivation was to improve crash modeling through a data-driven technique.  It should be noted that, 

similar to the NB-based EB model, the proposed KR-based EB method still subject to the issue of using 

the crash data twice - one for regression modeling and the other for EB adjustment. 
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Chapter 4 

Performance Comparison of Parametric and Nonparametric Crash 

Modeling Techniques  

In road safety studies, parametric models have been the most popular choice for predicting crash risk. 

While parametric models are relatively convenient to apply and comprehend due to their defined 

mathematical functions between crashes and potential explanatory variables (e.g., traffic exposure, 

geometric features), pre-specifying such relations is one of their critical issues. This could easily be 

overcome by implementing a nonparametric approach where no prior specification of a model form is 

required. However, this approach is often characterized as a data-hungry technique, thereby demanding 

a larger data set.  The good news is that crash data for road safety analysis and modeling are growing 

steadily in size due to recent advancements in information and sensor technologies, thereby motivating 

us to explore the nonparametric methods. 

 

In this chapter, we apply two popular techniques from the two approaches: negative binomial models 

(NB) for the parametric approach and kernel regression (KR) for the nonparametric counterpart. Our 

main objective is to compare performance of these two methods and investigate how their relative 

performance varies with the data size. This helps answer our research question that whether or not we 

could benefit from adopting a nonparametric approach to road safety analysis in a scenario of growing 

crash data. For this, case studies consisting of three large crash datasets: hourly winter road crash dataset 

from 31 patrol routes in the province of Ontario in Canada, yearly crash dataset from Highway 401 of 

Ontario in Canada and yearly crash dataset from the rural highways of Colorado State in the U.S. were 

used. Prior to this comparative study, we present results of variable selection for the KR method, which 

is based on the proposed algorithm described in Chapter 3.  Furthermore, we extended our analysis to 

compare how the KR and NB methods perform for modeling the relationship of crashes and predicting 

variables by studying their individual effects on crash frequency.  

4.1 Description of Crash Datasets 

This section briefly describes the crash datasets, including the data sources and the steps involved in 

data processing. These datasets are used in different case studies for performance comparison of the 

KR and NB methods. 
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4.1.1 Crash Dataset 1: Highway 401 (Multilane Access Controlled Highway) 

This dataset consists of historical crash data from 2000-2008, along with traffic and road geometric 

data from Highway 401 in Ontario, Canada, one of the busiest highway in North America (map in 

Appendix B.1). The highway extends across the Southern, Central and Eastern regions of Ontario from 

Quebec in the east to the Windsor-Detroit international border in the west. According to the 2008’s 

traffic volume data, the annual average daily traffic (AADT) ranges from 14,500 to 442,900, indicating 

an extremely busy road corridor. Its total length is 817.9 km of which approximately 800 km was 

selected for this study. The details on the data sources and processing steps are explained below.   

 

Data Sources 

The databases used in this dataset include: 1) historical crash records from 2000 to 2008 extracted from 

MTO’s Accident Information System (AIS); 2) historical AADT data for the same years from MTO’s 

Traffic Volume Inventory System (TVIS); and 3) road geometric features from MTO’s Highway 

Inventory Management System (HIMS) database. Note that each record in these databases is referenced 

to MTO’s linear highway reference system (LHRS), a one-dimensional spatial referencing system with 

a unique five-digit number representing a node/link on a particular highway. LHRS can be used to 

locate the position of features on a map using a Geographical Information System (GIS) tool.  

 

Road Segmentation and Geocoding 

Crashes are aggregated on an annual basis over the individual homogenous sections (HSs), each of 

which represents a segment with similar characteristics such as number of lanes, shoulder width, the 

presence of median, curvatures, and other roadway features. As previously mentioned, all the data 

(crash, road geometry and traffic data), are spatially referenced to MTO’s LHRS system. All features 

were geocoded in the GIS map through a multi-step procedure (see Figure 4-1). First, the geometric 

features from the HIMS database, which was in a spreadsheet format, were geocoded in the GIS 

platform. There were a total of 244 records in the HIMS layer, each representing a road section with a 

set of uniform road geometry features. However, as the road curvature was missing in the database, 

further geoprocessing was needed to obtain the final set of HS sections. For this, curve sections were 

first demarcated on a map using a GIS tool, thus generating a curve layer. This tool automatically 

created an attribute table for the curve layer with detailed information such as LHRS number, start 

point, length and radius related to each curve. For a refined set of HS sections, the initial HIMS layer 

was split at the intersection of the curve layer, and the segmented HIMS layer was spatially joined to 
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the curve layer in order to transfer all the curvature related information. As each road section’s initial 

HIMS may have one or more curvature sections, these were disaggregated into smaller subsections 

thereby including an additional level of homogeneity. Note that the shortest length of HS section was 

0.2 km. This selection of a certain lower threshold value complies with literature as it had been 

suggested that very short road segments might have higher uncertainty and lower exposure problems 

(Council and Stewart, 1999; Begum et al., 2009; HSM, 2010; Ahmed et al., 2011). Finally, these HSs, 

assigned with unique IDs, were used as the spatial unit for integrating crash and traffic volume data. 

There are a total of 418 unique HS sections covering 800.03 km, or 97.9%, of Highway 401.  

 

Data Aggregation and Integration 

Crash data are stored in two different databases: one on property damage only (PDO) crashes and the 

other on fatality & injury (FI) crashes.  The PDO records are managed at the vehicle level, whereas the 

FI crashes are organized at the person level. The summary result presented in Appendix B.2 showed 

that the total PDO crashes were approximately three times that of total FI crashes. These two datasets 

were then combined into one dataset with only crash level information extracted. Note that each crash 

is represented by a unique ID. The extracted crashes were geocoded using the linear referencing tool in 

a GIS platform, resulting in a crash layer (Appendix B.3). This crash layer was spatially mapped to the 

previously generated HS layer, thereby associating each crash to a specific HS section. Finally, the 

crashes were aggregated by individual HSs on annual basis. The distribution of crash counts is 

presented in Appendix B.4. 

 

Traffic count data consist of AADT and average annual commercial vehicle counts for the period 2000-

2008. As each observation recorded LHRS and offset information, the traffic counts were spatially 

located using the linear referencing GIS tool. Each HS was then assigned the nearest traffic observation. 

Note that a total of 170 traffic counting stations were available for the 418 HSs. Approximately 85% 

of the HSs have traffic values assigned from its nearest count station within 2 km distance indicating 

that the coverage of traffic monitoring was quite extensive on this particular highway (Appendix B.5). 

Finally, the processed crash and traffic data were integrated into a single dataset with HS and year as 

the mapping fields that resulted in a total of 3762 records. Table 4-1 shows the summary statistics of 

final processed dataset, and the distributions for individual factors included in the dataset are given in 

Appendix B.6.  
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Figure 4-1: A framework for data processing and integration 

 

Table 4-1: Descriptive Statistics- Dataset 1 

 
Total Crash 

(per year) 

AADT 

(veh/day) 

Exposure  

(million vehicle-

kilometer) 

Commercial 

AADT 

(veh/day) 

Mean 23.81 76633 41.79 13993 

St.dev. 50.02 91476 54.05 6719 

Min 0 12000 1.66 0 

Max 468 442900 611.41 42076 

Road geometric 

data
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Sample size 3762 3762 3762 3762 

 
Median width 

(m) 

Shoulder 

width-right (m) 

Curve deflection 

(1/km) 

shoulder width-

left (m) 

Mean 11.11 3.14 0.19 1.60 

St.dev. 6.14 0.28 0.35 1.19 

Min 0.60 2.60 0.00 0.00 

Max 30.50 4.00 1.86 5.19 

Sample size 3762 

 

4.1.2 Crash Dataset 2: Ontario Multilane Highways  

This dataset was originally prepared by Usman et al. (2012) for winter road safety analysis. The dataset 

consists of historical crash data for six winter seasons (2000-2006), along with traffic count, weather, 

and road surface condition data from different sources for 31 highway patrol routes in Ontario, Canada 

(map in Appendix B.1). These selected patrol routes belong to either Highway 1 or 2 and are used as 

the spatial analysis unit for processing the data. A brief description on data sources and processing steps 

is given below. 

 

Crash data come from Ministry of Transportation, Ontario (MTO), and are originally collected by the 

Ontario Provincial Police. This database includes information about each crash at personal level 

including crash time, crash location, crash type and severity, weather and road surface conditions. 

Hourly traffic count data was extracted from loop detector data obtained from MTO’s COMPASS 

system and permanent data count stations. The average value was taken for highway sections with 

multiple count data. Similarly, hourly weather data such as temperature, precipitation, visibility, wind 

speed were collected from nearby Road Weather Information System and Environment of Canada 

weather stations. The Road Surface Index (RSI) variable was constructed as a surrogate measure based 

on MTO’s road surface condition weather information system. It measures the frictional levels of road 

sections. All these data sets were merged into a single hourly data set using date, time and location as 

the basis of merging for each selected highway section. Finally, only the hours defined by snow storm 

events for the given six winter seasons were considered. A summary of the dataset is presented in Table 

4-2, and the distribution of each factor included in the dataset is given in Appendix B.7. 
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Table 4-2: Descriptive Statistics- Dataset 2 

  
Crashes 

 

Temp 

(C ) 

Wind 

speed 

(km/hr) 

Visibility 

(Km) 

Precipitation 

(cm/hr) 
RSI 

Exposure 

(*10000) 

VKT) 

Length 

(Km) 

Mean 0.02 -5.12 16.28 11.16 0.24 0.745 5.7 58.08 

St.Dev 0.18 5.56 9.62 7.91 0.37 0.197 8.08 33.2 

Min 0 -33.55 0 0 0 0.05 0.004 12.9 

Max 7 28 69 40.2 13.8 1 154.59 139.5 

Sample size: 122058  

VKT is vehicle kilometer traveled, RSI is road surface index 

4.1.3 Crash Dataset 3: Colorado Two-lane Rural Highways 

This dataset contains crash data from rural two-lane highways in the Colorado State, U.S., and it was 

downloaded from http://extras.springer.com (Hauer, 2015). The reasons for using this dataset are as 

follows. First, it represents a case of two-lane rural roads with an average AADT of approximately 

2200, which is significantly lower than the two multiplane highway cases described previously. Second, 

this dataset covers a total of 4593 unique sections (section length larger than 200 m) with observations 

from 1991 to 1998, which can be considered to be large in sample size. A summary of the dataset is 

given in Table 4-3, and the histograms showing the distribution of included factors are given in 

Appendix B.8. 

Table 4-3: Descriptive Statistics- Dataset 3 

 
Total Crash 

(per year) 

AADT 

(veh/day) 

Length 

(km) 

Mean 0.9 2217 2.1 

St.dev. 2.2 2534 2.4 

Min 0.0 40 0.2 

Max 54.0 21720 31.8 

Sample size 36743 

 

http://extras.springer.com/


 

 77 

4.2 Comparing Crash Models 

This section provides the modeling results for the previously presented three datasets including model 

coefficients for NB model, bandwidths for KR method and their goodness-of-fit measures. Eq. 4-3 to 

4-5 present the summary results of crash models with their details included in Appendix B.9. Note that 

the results of the KR method do not have any reportable model forms like in the NB models, as this 

method follows a fully data-driven approach for predicting crashes. At this initial stage of modeling, 

the model variables are selected based on some prior evidence on their safety effects from the past road 

safety studies. However, we will discuss more about their individual effects and the selection process 

in next section. Note that in this thesis, we used a statistical software platform “R” wherever required 

by the methods (http://www.r-project.org/). 

 

To compare the performance of the two approaches, two goodness-of-fit measures, namely, mean 

absolute error (MAE) and root mean square error (RMSE), are used. As given by Eq. 4-1 and 4-2, these 

measures quantify the average deviation of the estimated crash frequencies from the observed values. 

Therefore, smaller the magnitude of these measures better is their performance level. Note that the 

difference between these two performance measures is how the residuals are weighted. In MAE, equal 

weights are given to the residuals from the observed points, whereas in RMSE larger residuals are given 

greater weights by squaring the deviation. For example, an estimation that is two units off the observed 

data produces a weight four in RMSE compared to two in MAE. As a result, RMSE is always greater 

than MAE. When the values of MAE and RMSE are close, we can also conclude that the residuals are 

more concentrated to unit values. 

𝑀𝐴𝐸 =
∑ |𝑦𝑖̂ − 𝑦𝑖|𝑛

𝑖=1

𝑛
 (4-1) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖̂−𝑦𝑖)2𝑛

𝑖=1

𝑛
  (4-2) 

 

where,  

𝑦𝑖= ith observed crash frequency, 

𝑦𝑖̂  = estimated crash frequency for ith observation, and 

n = total number of observations. 

Case 1: Highway 401 

 𝜇𝑁𝐵1 = 𝑒−1.04+0.82  ln(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒)+0.001𝐴𝐴𝐷𝑇𝐶−0.02𝑀𝑊−0.09𝑆𝑊𝑙+0.16𝑆𝑊𝑅−0.17𝐶𝐷  (4-3) 
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 where,  

𝜇𝑁𝐵1 = crash frequency (per year), 

exposure= million vehicle kilometer travelled, 

𝐴𝐴𝐷𝑇𝐶= commercial AADT (veh/day), 

MW= median Width (m), 

𝑆𝑊𝑙= shoulder width- left (m),  

𝑆𝑊𝑅= shoulder width – right (m),  

CD= curve deflection (1/km). 

 Bandwidths for the KR method: 21.08, 2621, 2.39, 0.465, 0.11, 0.13 (variables are in the same order 

as in the NB model)  

(MAENB= 11.86; RMSENB= 26.64, MAEKR= 7.34, RMSEKR= 14.81) 

Case 2: Ontario multilane highways 

 𝜇𝑁𝐵2 = 𝑒−2.58+0.72 ln(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒)−2.83𝑅𝑆𝐼−0.01𝑃−0.04𝑉+0.01𝑊𝑆−0.0001𝑇  (4-4) 

where,  

𝜇𝑁𝐵2 = crash frequency (per hour), 

exposure = vehicle kilometer travelled (‘0000), 

RSI = road surface index, 

P = precipitation (cm/hr), 

V = visibility (km), 

WS = wind speed (km/hr), 

T = temperature (C). 

 Bandwidths for the KR method: 2.23, 0.054, 1.53, 2.65, 2.17, 1.53 (variables are in the same order 

as in the NB model) 

(MAENB= 0.046; RMSENB= 0.178, MAEKR= 0.031, RMSEKR= 0.137) 

 

Case 3: Colorado two-lane rural highways 

 𝜇𝑁𝐵3 = 𝑒−8.03+0.95𝑙𝑛(𝐴𝐴𝐷𝑇)+1.07𝑙𝑛 (𝐿)      (4-5) 

where,  

𝜇𝑁𝐵3= crash frequency (per year), 

AADT= vehicle per day, 
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L= length of highway section (km). 

 Bandwidths for the KR method: 423.48, 0.4 (variables are in the same order as in the NB model) 

(MAENB= 0.781; RMSENB= 1.529, MAEKR= 0.752, RMSEKR= 1.333) 

 

As seen in Eq. 4-1 to 4-3, the KR method performed better in comparison to the NB model (measured 

in terms of MAE and RMSE) in all the case studies. This could be due to the fact that the KR method 

does not impose any functional form on the relationship between the expected crash frequency and the 

predicting variables, thereby allowing its data-driven process to capture the underlying shape of the 

relation. On the other hand, this flexibility may have been restricted in the NB model due to its need 

for the pre-specification of model form (here the exponential form). However, the performance 

comparison in this section is based on the entire datasets, i.e., without holding a validation set. 

Therefore, to address this issue, we apply a bootstrap validation approach, which is discussed in Section 

4.4. Prior to that, we will first discuss the variable selection process of the KR method based on the 

algorithm we proposed in Chapter 3.   

4.3 Variable Selection for KR Method 

As discussed in Chapter 3, a bootstrap-based algorithm was proposed to solve the problem of variable 

selection in the KR method. This algorithm determines the impact level of each variable as it feeds into 

the model, using an indicator called relative Variable Importance (VI’). A larger value of VI’ means 

that the given variable is relatively more important or influential in predicting crash risk. We applied 

the algorithm to all the previously presented crash datasets, and meanwhile, compared the results to 

their corresponding variable selection process in the parametric counterpart, i.e., the NB model. 

4.3.1 Variable Selection: Case Studies 

Case study 1: The data split for the algorithm is as follows: (1) training set ‒ crash data from 2000-

2006 (90% of the data is randomly selected for each bootstrap training set), (2) validation set ‒ crash 

data from 2007-2008. There are a total of six potential variables that are crash-related whose impact 

levels need to be determined. Figure 4-2 (a) presents relative variable importance (VI’) of each variable 

after applying the bootstrap-based algorithm. As seen, the exposure factor appears to be the most 

influential variable whereas the shoulder width the least influential one.  

 

Furthermore, we compare the magnitude of VI’ of each variable to its corresponding t-value obtained 

from the parametric NB model. The t-value in the NB model is used to test a null hypothesis to infer 

whether or not a given variable has a significant effect on the dependent variable - crash frequency. 
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The larger t-value (absolute) implies that the given variable has a higher impact level, whereas the value 

close to zero implies that its effect is negligible. The results from the NB model show that all the 

variables are significant at 5% significance level. Meanwhile, comparing the impact levels of the 

variables (VI’s) in the KR method with the t-values in the NB model, we observed a similar trend 

(Figure 4-2(c)). For example, the exposure variable in both methods has the highest explanatory power 

as indicated by their respective measures, i.e., t-value of 49.91 in the NB model and VI’ value of 100 

in the KR method. Similarly, both methods showed the safety effect of shoulder width to be minimal, 

i.e., t-value of 3.32 in the NB model and VI’s of 11 in the KR method. By referring to a relatively high 

VI’s values in Figure 4-2 (a), we make an intuitive decision to select all the variables for the KR method. 

We also confirmed this based on the findings that it has the highest performance compared to those 

using other subsets of variables.  

 

We also conducted a hypothetical analysis on the effect of excluding the least important variable. As 

in this particular case study, shoulder width has the least VI’, therefore, this factor was excluded. This 

is similar to the backward elimination process of a parametric modeling technique.  The updated result 

for this hypothetical scenario is shown in Figure 4-2 (b) where their relative effects are found similar 

to the previous result in Figure 4-2 (a) with a slight change in their magnitudes.  

 

(a) KR method- with all variables 

 

 

(c) NB model- with all variables 

 

(b) KR method- with all variables except 

shoulder width 

Figure 4-2: Variable selection: (a) and (b) KR method, (c) NB model. 
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Case Study 2: The data split for the algorithm is as follows: (1) training set ‒ crash data from 2000-

2004 (90% of the data is randomly selected for each bootstrap training set), (2) validation set ‒ crash 

data from 2004-2006. The proposed bootstrap-based algorithm was applied using these training and 

validation sets. There are six variables that could potentially cause traffic crashes. Note that this 

particular case study represents road safety in winter conditions where poor road surface condition is 

expected to impose a relatively high crash risk. Figure 4-3 (a) presents the result of relative variable 

importance (VI’) of each variable, where, as expected, the exposure and RSI factors seem to have a 

relatively large effect on crash risks. Meanwhile, other variables, such as temperature, precipitation, 

visibility and wind speed, also showed high VI’s (Figure 4-3 (a)). Also, the optimum performance of 

the KR method appeared when all the variables were included.  

 

Similar to the previous case study, we also compared the VI’ of each variable to its corresponding t-

value from the NB model. As shown in Figure 4-4(b), the orders of the variables’ influence on crash 

risk are overall similar. Regarding the significance of variables tested in the NB model, temperature 

and precipitation are insignificant at 5% significance level. This might be due to the existence of some 

nonlinear relations between these variables and the crash frequency as detailed in Section 4.5. Note 

again that the KR method is capable of capturing nonlinear relations, which might explain why the 

method had yielded high VI’s for these two variables.  

 

(a) KR with all variables 

 
 

(b)  NB model with all variables 

Figure 4-3: Variable selection- (a) KR method; (b) NB model. 

Case Study 3: The data split for this case study is as follows: (1) training set ‒ crash data from 1991-

1996 (90% of the data is randomly selected for each bootstrap training set), (2) validation set ‒ crash 

data from 1997-1998. Similar to previous case studies, the proposed bootstrap-based algorithm was 

applied using these training and validation sets to determine the significance of two variables ‒ Traffic 
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Coefficients Std. error t-score p-value

(Intercept) -2.58 0.08 -30.83 <0.00

log(exposure) 0.72 0.02 43.58 <0.00

RSI -2.83 0.09 -33.06 <0.00

Visibility -0.04 0.00 -12.03 <0.00

Wind speed 0.01 0.00 4.00 <0.00

Precipitation 0.01 0.06 0.27 0.789

Temperature 0.00 0.00 -0.02 0.983
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and length. Figure 4-4 (a) presents the result of relative variable importance (VI’) of each variable, 

where length appears to have a slightly larger effect than the AADT on crash risks. Similar trend is 

observed from the NB model with both variables appearing significant at 5% significance level (Figure 

4-4(b)).   

 

Figure 4-4: Variable selection- (a) KR method; (b) NB model 

4.3.2 Variable Selection: Simulation Study  

We also conducted a simulation study to test the robustness of the proposed algorithm as the simulated 

results can be easily validated by comparing  them to their true values. For this, we first generated two 

datasets by assuming two different parametric model forms. Then, the previously described algorithm 

was applied to quantify effect of each variable on the dependent variable and the results obtained were 

compared to the parametric models by re-calibrating their individual models using the original model 

specifications. Note that a re-calibrated parametric model represents the true relation between 

dependent and independent variables. The paragraphs below provide a description of the two simulated 

datasets. 

Linear model: A linear model consisting of three predicting variables- X (i.e., x1, x2 and x3) - of varying 

magnitude of impacts on a dependent variable (y) was assumed (Eq. 4-6). X variables were randomly 

generated using a normal distribution with mean of 10 and standard deviation (sd) of 5. Meanwhile, 

some noise was added to the model by assuming a normal distribution (mean= 0, sd= 5). Finally, a new 

external variable (x4 ) was introduced (mean= 10, sd= 5). A sample of 1000 observations were simulated 

from the assumed model setting. A summary of the dataset is provided in Appendix B.10.  

 

𝑦 = 10𝑥1 + 5𝑥2+2𝑥3+error 

 
(4-6) 

Coefficients Std. error t-score p-value

Intercept -8.03 0.07 -121.00 <0.001

ln(AADT) (veh/day) 0.95 0.01 115.60 <0.001

ln(Length) (km) 1.07 0.01 119.70 <0.001

(b)
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Nonlinear model: An exponential form of model given by Eq. 4-7 was considered. Predicting variables 

were randomly generated using a normal distribution (mean= 20, sd= 5). Meanwhile, some noise was 

added in the model by assuming it to follow a normal distribution (mean= 0 and sd= 0.5). Similar to 

the previous dataset, a new external variable (x4) was introduced by assuming a normal distribution 

(mean= 20, sd= 5). A total of 1000 observations were simulated from the assumed model setting. A 

summary of the dataset is provided in Appendix B.11.  

 

𝑦 = 𝑒0.05𝑥1+0.03𝑥2-0.005𝑥3+𝑒𝑟𝑟𝑜𝑟 
 

(4-7) 

The training and validation sets required in the algorithm were obtained by randomly splitting the given 

dataset into two groups containing 80 and 20 percent of the data, respectively. Figure 4-5 (a) and (b) 

present the results of VI’ of each variable for the above mentioned linear and nonlinear models, 

respectively (VI is presented in Appendix B.9 (b) and (d)).  As seen, the relative magnitude of VI’ of 

variables are such that the x1 has the highest influence, followed by x2, x3 and x4 variables. This shows 

a strong correlation between the impact levels of variables indicated by VI’s and their corresponding 

coefficients in their original models. It is also noted that the variable “x4”, which was not a part of the 

original models, shows a negligible effect.  

 

Furthermore, we validate the performance of the algorithm by comparing VI’s of variables to their 

corresponding t-values obtained from the parametric models. For this, models were re-calibrated 

following the same specifications as in their original forms i.e., linear and nonlinear (Eq. 4-6 and 4-9 

respectively). Table 4-4 shows the model coefficient associated with each variable and their 

corresponding t-value. As seen, there is a strong correlation between these measures- VI’s and t-values. 

For example, x1 appears to be the most influential variable in both methods as indicated by its highest 

VI’ and t-value. Similarly, the x4 variable appears to be insignificant in 95% confidence interval in the 

parametric models and its corresponding VI’ appears to be close to the zero value, suggesting its 

exclusion from the final model set.  
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Figure 4-5: VI’s of variables- linear and nonlinear models 

 

Table 4-4: Summary results of calibrated models 

Variable coefficient 
Std. 

error 
t-value p-value Variable coefficient 

Std. 

error 
t-value 

p-

value 

1) Linear model 2) Nonlinear model 

X1 10.03 0.03 367.19 <0.001 X1 0.05 0.00 75.77 <0.001 

X2 5.00 0.03 185.30 <0.001 X2 0.03 0.00 43.82 <0.001 

X3 1.98 0.03 72.09 <0.001 X3 -0.01 0.00 -9.52 <0.001 

X4 0.00 0.03 0.11 0.917 X4 0.00 0.00 -0.23 0.822 

4.3.3 Summary: Variable Selection  

While the data-driven nonparametric KR method can be considered as an alternative approach to crash 

modeling, the issue of selecting what variables to include has been relatively less explored. To address 

this issue, we proposed a bootstrap-based algorithm (in Chapter 3) in which an indicator‒ relative 

Variable Importance (VI’) is used to measure the impact level of each variable. Most importantly, this 

indicator in the algorithm is estimated by applying the KR method itself.   

 

The previous sections presented the results of studies comparing the proposed algorithm with its 

parametric counterpart. First, three real case studies were considered to test the algorithm. Second, 

simulated datasets were used to validate the results as the parametric approach represented the true 

state. In all these cases, strong correlations were observed between the VI’ measures from the algorithm 

and the t-values generated from their corresponding parametric models. From this, we can make the 
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following two conclusions. First, the proposed algorithm appears quite robust in capturing impact levels 

of variables at their individual levels. Second, we could employ a parametric model for selecting 

important variables in a nonparametric method. However, the result from this short-cut approach is 

expected to be less biased only when the model specification of a selected parametric model is relatively 

accurate.  

4.4 Bootstrap-based Performance Comparison3 

In this section, we propose a bootstrap-based validation approach to complement the performance 

comparison of the nonparametric and parametric models presented in Section 4.2. In a commonly 

applied validation approach, the original dataset is split into two sets: the first, known as a training set, 

is used for model calibration, and the second, known as a validation set, is used for testing. However, 

we extend this traditional approach in two aspects. First, we adopt a bootstrap-based validation (BV) 

approach in which the standard validation process is designed to repeat a large number of times (here 

100 for small dataset and 25 for large dataset) with training set being selected randomly in each step.  

Second, we also evaluate the sensitivity of data size to the model performance (both KR and NB 

methods), by sub-setting the original training set into different sample sizes. The following eight steps 

describe the proposed validation approach and the flow chart related to these steps is given in Appendix 

B.13. 

1. Split a given dataset into two subsets, one for calibration (i.e., training set), and other for 

validation (i.e., validation set). The following are the case study specific splits.  

 Case study 1‒ Highway 401, Ontario: First seven years of crash data (2000-2006) as a 

training set and last two years (2007- 2008) as a validation set. The sample size for the 

training set is 2926 and the validation set is 836. 

 Case study 2‒ Patrol routes, Ontario: First four years of crash data (2000-2004) as a 

training set and last 2 years (2004- 2006) as a validation set. The sample size for the 

training set is 85183 and the validation set is 36875.  

 Case study 3‒ Two-lane rural highway, Colorado State: First six years of crash data 

(1991-1996) as a training set and last 2 years (1997-1998) as a validation set. The 

sample size for the training set is 27558 and the validation set is 9186. 

                                                      
3  Thakali, L., Fu, L., & Chen, T. (2016). Model Based versus Data-driven Approach for Road Safety Analysis : Does More Data Help? Transportation Research 

Record: Journal of the Transportation Research Board, No. 2601. 
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2. For the model set, specify split percentage (s) starting at 5%. This results in a certain sample 

size. 

3. Select the final model set randomly as "s” % of the original training set defined in step 1. 

4. Using the model set in step 3, estimate performance measures (MAE and RMSE) for the 

validation set. 

5. Repeat steps 3 to 4 100 times to generate bootstrapping samples. As we randomly select the 

final model set in Step 3, MAE and RMSE are expected to vary.  

6. Increase the split percent “s” by 5% and go to step 2. 

7. Repeat steps 2 to 6 until “s” is 95%. 

8. Finally, for each split, calculate the percentage of times that the KR method outperformed NB 

(i.e., out of 100 samples).  

Figure 4-6 shows the results of bootstrap-based validation using boxplots for all three case studies 

discussed in Section 4.2. Figure 4-6 (a), (b) and (c) are the boxplots of performance measure MAE 

using KR method for case studies of Highway 401, the 31 highway patrol routes and the two-lane rural 

highways, respectively, whereas, Figure 4-6 (d), (e) and (f) are the boxplots of MAE for their 

corresponding NB models. Results for the RMSE performance measure are presented in Appendix 

B.14. 

 

From the first case study (Figure 4-6 (a) and (d), we can draw two important findings.  First, on average, 

regardless of the sample size, the KR method has higher estimation accuracy compared to the NB 

model.  Secondly, the performance of the KR method increases with increasing sample size. In contrast, 

the average performance of the NB model varied little with change in the sample size (although its 

reliability did improve as in the KR method). Similar trends were observed in the case of Colorado 

rural highways except that at the lower data size (<30% split) the KR method showed lower 

performance.  Meanwhile, in the case of the 31 patrol routes, the performance of both methods were 

less sensitive to the data size. One of the reasons could be due to its relatively large data size when 

compared to the two other crash datasets. The overall findings presented in these boxplots suggest that 

the nonparametric KR approach sensitive to the data sample size as compared to its parametric 

counterpart.  
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The boxplots that presented results of 100 BVs for each model split4 (i.e., each data size) are further 

summarized by calculating a new performance indicator measured as the percentage of times the KR 

method outperformed the NB model. Figure 4-7 illustrates this comparison results for all the case 

studies. The results show that in case study first and second, at all the sample sizes, the KR method 

outperformed the NB model in all bootstrapping instances. Similarly, Figure 4-7 illustrates the result 

for the two-lane rural road where the comparison indicators are found to increase in the direction of 

increasing sample size, suggesting that KR performance is correlated with sample size. Therefore, this 

result further confirms the sensitivity of the KR method to data sample size. The larger the data size 

available, the higher is its estimation accuracy. 

 

                                                      
4 25 BV in case study 2 
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Figure 4-6: Boxplots- (a), (b) and (c) represent MAE of KR for case study 1, 2 and 3, respectively; 

(d), (e) and (f) represent MAE of NB for case study 1, 2 and 3, respectively 

 

 

(a)
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Figure 4-7: Bootstrap validation (BV) results:  (a) Case study1- Highway 401; (b) Case study 2- 

Patrol routes; (c) Case study 3- Two-lane rural highway 

 

In summary, this section conducted a comprehensive comparative study of nonparametric (KR) and 

parametric (NB) approaches by using three relatively large datasets, all related to road safety. 

Bootstrapping validation results showed that the KR method has comparatively better performance 

compared to the NB model. This could be due to the advantage of adopting a data-driven nonparametric 

approach used in the KR method.  Furthermore, this section also investigated the question of how the 

relative performance of these two alternative approaches changes as a function of data size. The 

findings suggested that the KR method performance increases significantly with the growing sample 

size, unlike the NB model. Based on this finding, a spectrum of crash estimation methods could be 

recommended that varies according to data size. If the spectrum were arranged according to data size, 

with the left side having smaller data sizes and the right side having larger data sizes, then the NB 

model calibrated from the maximum likelihood (MLE) approach would be located towards the left side 

of the spectrum while the KR method would be on the right side. Accordingly, NB and similar models 
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calibrated using Bayesian approach would appear at the far left end of the spectrum, as they have been 

shown to be able to address the problem of relatively small data size in the past studies.    

4.5 Comparisons of Factors Effecting Road Safety5 

This section describes two case studies to demonstrate the differences between the two approaches (i.e., 

KR and NB) in modeling the effects of various factors on crash risk. For this, we use two crash models 

from previous case studies presented in Section 4.2.  The first case study is Highway 401 with annual 

crash data. This dataset is used to illustrate the safety effects of various road geometric elements. The 

second case study is highway patrol routes with hourly winter crash data and this study illustrates safety 

effects of various weather and road surface related factors that have direct implications on winter road 

maintenance.  Note that in an analysis of a given factor, all the remaining factors are fixed at their mean 

levels and the result is presented using a regression plot. The following two sections provide case 

specific findings.  It is important to note that our interpretation of the regression plots will focus on the 

general trends and the regions within which there are sufficient data for reliable estimates from the 

models.  This is especially relevant for the KR method regression curves which may yield local 

unsmoothed waving and unreliable estimates at the boundary region of the variables. 

4.5.1 Case Study 1: Highway 401 

Effects of exposures: Figure 4-8 (a) and (b) illustrate the effects of traffic exposures, including total 

traffic in million-vehicle-kilometers traveled and commercial traffic in AADT, on the expected 

frequency of crashes on individual sections of Highway 401. As expected, both models show a positive 

correlation with the traffic level. However, there are differences in capturing the underlying 

nonlinearity patterns between the two models. For example, in the range of exposure 100 MVK to 200 

MVK, the safety effect is relatively constant based on the KR model, while it shows a continuous 

increasing trend according to the NB model. Likewise, the crash frequency estimated by the KR method 

is relatively higher at the upper ranges of the exposure as compared to the NB method. Similarly, the 

KR model shows that the relative effect of commercial traffic is negligible when its volume is below 

22500 and it then increases sharply until the AADT reaches 32500 veh per day. However, the NB model 

                                                      

5  A part of the results is based on “Thakali, L., Fu, L., & Chen, T. (2014). A Comparison between Parametric and 

Nonparametric Approaches for Road Safety Analysis - A Case Study of Winter Road Safety. In Transportation Research 
Board Annual Meeting (Vol. 6, pp. 1–17)”. 
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has a smooth and continuous increasing trend with increasing commercial traffic volume. These 

peculiar nonlinearity patterns that were captured by the KR model appear to make physical sense as the 

interactions between vehicles are often minimal under low traffic and then increase quickly as traffic 

reaches to a certain level. This reason has also been used to explain the fact that traffic speed is usually 

insensitive to traffic volume when the traffic volume is low but decreases quickly when it approaches 

to the capacity of the road.  Overall, the findings from both methods are expected and consistent with 

those from the literature (Miaou, 1994; Hauer et al., 1996; Usman et al., 2012).  

 

Effects of Road Geometric Features: The road geometric features included in the analysis are three 

cross-sectional elements: median width, median shoulder width (left) and shoulder width (right), and 

an alignment element ‒ horizontal curvature. Both methods show a smooth linearly decreasing trend 

with respect to median width, with the NB model indicating slightly larger effects, which is consistent 

with those from the past studies (HSM, 2010).  However, the effects of median shoulder width (i.e., on 

left) from the two models are different.  The NB model shows a slight negative correlation between 

crash risk and shoulder width, suggesting that larger shoulder widths are favorable in reducing crash 

risk. The KR model shows a non-monotonic relationship: adding a one meter shoulder is beneficial in 

reducing the risk but wider shoulders have a negative effect on safety. For the right shoulder width, 

results from the KR and NB methods are somehow inconsistent. While the NB model shows an 

increasing trend of crash risk with widening of shoulder width, an almost constant trend could be 

observed from the KR model suggesting the insensitivity of crash risk to right-side shoulder width 

(beyond the commonly used width of three meters).   

 

Horizontal curve deflection (CD) is measured as the reciprocal of curve radius, where small values 

indicate relatively flat sections and vice versa for the large ones. A straight road section has zero curve 

deflection. As shown in Figure 4-8 (f), the NB method suggests a decreasing crash risk as curve 

deflection increases (or decreasing radius).  The KR model, however, shows a clear non-linear and non-

monotonic relation between crash risk and curve deflection. While overall there is a general trend of 

decreasing risk with CD (similar to the finding from the NB model), there is a range of CD values (CD 

= 0.50~0.75) over which curves have in fact a negative effect on safety.  The general trend from both 

models are inconsistent with those from the safety literature which have generally concluded that crash 

risk should increase as the curve radius increases (Hauer, 1999). This could be due to the fact that the 
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highway being analysed – Highway 401– is a freeway system with a minimum radius greater than 500 

meters, which is beyond the sensitive range that has been identified in literature.  The non-monotonic 

patterns identified from the KR model appear to make intuitive senses from a driver’s behaviour point 

of view. For example, it has long been recognized that straight sections are prone to causing driving 

fatigues and higher speeds.  Furthermore, drivers tend to be more alert and cautious when driving on a 

curved section.  Note that these findings from the KR model could have significant implications to the 

geometric design of highways such as Highway 401. 

 

 

Figure 4-8: Factors affecting crash frequency (Case study 1) 
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4.5.2 Case Study 2: Highway Patrol Routes 

Effect of Road Surface Conditions (RSI): Figure 4-9 (a) shows the effect of RSI on the expected crash 

frequency from the two modeling approaches. According to the KR method, the average crash 

frequency is fairly constant for RSI ranging from 0.4 to 1.0.  The crash risk starts to increase drastically 

as the RSI drops below 0.4. Meanwhile, the expected number of crashes estimated by the NB model is 

much lower than those from the KR method, especially for the low range RSI values.  This is mainly 

due to the fact that the NB being a parametric approach focuses on a global statistical fit to the assumed 

functional relationship while the KR method places more weights on the local information. Another 

noticeable difference is that the KR method result shows a clear two-regime relationship with a turning 

point located around 0.4. Interestingly, literature aimed at determining a relation between crash risk 

and the frictional level of road pavements has shown a similar turning point. For example, Wallman 

and Astrom (2001) identified a threshold friction value of 0.45, and suggest that frictions below this 

value increases the crash risk exponentially (see Appendix B.15). Overall, the nonlinear result revealed 

by the KR model is important as it could have a significant implication to the establishment of optimal 

maintenance policy.  

 

Effect of Exposure: Traffic exposure is defined as the total Vehicle-Kilometers Travelled (VKT) as in 

most past road safety studies (Jovanis & Chang, 1986; Miaou & Lum, 1993; Usman et al., 2012). As 

expected, both approaches show a general increasing trend in the expected crash frequency with respect 

to the exposure, as shown in Figure 4-9 (b). This result is consistent with past road safety studies 

(Jovanis & Chang, 1986; Miaou & Lum, 1993; Miaou, 1994; Hauer et al., 1996; Usman et al., 2012). 

Additionally, the KR method shows significant nonlinearity. Initially, the crash risk increases linearly 

until it reaches to the point of 0.015 million VKT, then the trend remains constant between 0.015 to 0.5 

million VKT, and finally, rises again. This nonlinearity in relationship could possibility be the reflection 

of driver’s behavior at different exposure level. In contrast, the parametric NB model shows a smooth, 

uniform increasing trend with respect to exposure, which is likely due to the pre-defined functional 

form. 

 

Effects of Weather Conditions: Figures 4-9 (c)–(e) shows the effect of weather conditions on the crash 

risk. Both approaches show a negative correlation of visibility to crash risk (Figure 4-9 (c)), which also 

confirms from past studies (e.g., Al-Ghamdi, 2007). Comparatively, the effect of visibility is slightly 

underestimated by the NB model.  Similar to the effect of other factors, the NB model shows a smooth 
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linearly decreasing trend with respect to visibility. The KR modeling result, however, shows that the 

crash risk is sensitive to visibility only at low range values (< 15 km), which makes an intuitive sense.  

When the visibility reaches to a certain high level, it no longer imposes any effect on driving and thus 

safety.  This nonlinear effect of visibility on safety is not captured by the NB model.   

 

A significant nonlinear relationship between crash frequency and precipitations is captured by the KR 

method, as illustrated in Figure 4-9 (d). When the precipitation intensity is low (< 0.5 cm/hr), its effect 

on road safety is fairly minor and constant. After the precipitation rate passes this value, it starts to have 

a negative effect on crash risk.  This trend starts to reverse after the precipitation intensity reaches 1.3 

cm/hr.  When the precipitation intensity increases passing 2 cm/hr, its effect becomes relatively small. 

The later patterns may be attributed to the behavior response of the drivers who are likely to drive more 

cautiously and slowly under heavy snowfalls. In contrast, the parametric NB model shows that the 

effect of precipitation is negligible throughout the whole range of precipitation intensity, which does 

not make intuitive sense and contradicts with the results from past studies (Knapp et al., 2000; Andreay 

et al., 2001).  

 

According to both modeling approaches, the effect of temperature on crash risk is minimal (Figure 4-9 

(e)). While past studies have shown mixed results regarding its direction of influence on crash risk, 

both decreasing (Scott, 1986) and increasing (Antoniou et al., 2013; Karlaftis and Yannis, 2010), no 

such notable relations are observed in this case study. Similarly, the effect of wind speed on crash 

frequency is illustrated in Figure 4-9 (f), where both KR and NB methods show a slightly increasing 

trend, though with low effects. This effect of wind speed on crash risk in snow-storm conditions makes 

intuitive sense, and is also confirmed from the literature (e.g., Baker and Reynolds, 1992; Knapp et al., 

2000).     
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Figure 4-9: Factors affecting crash frequency (Case study 2) 

4.5.3 Summary: Comparing Effect of Variables  

This section compared the crash modeling results from the nonparametric (KR) and parametric (NB) 
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that the KR method was able to capture some nonlinear and non-monotonic effects of some risk-related 

factors, whereas the NB model failed to do so due to its pre-specified model form. This could be the 

main reason that in our previous study of performance comparison, the KR method showed better 

results.  
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Chapter 5 

Network Screening: Nonparametric and Parametric Approaches 

Network screening is one the most important components of road safety analysis and involves selecting 

a list of crash hotspots so that a countermeasure program can be launched effectively. A hotspot is the 

site with a relatively high level of crash risk as determined by a crash prediction technique. Broadly, 

there are two commonly used statistical approaches for estimating the crash risk: regression-based and 

Empirical Bayesian (EB) based methods. One of the reasons for their popularity is that they help reduce 

the regression-to-mean bias (RTM) problem of a simple crash history-based method. In particular, the 

EB method is known for its robustness as it accounts for site-specific crash history while still 

incorporating the risk estimates from a regression model (i.e., crash model).  

 

Central to both approaches is the crash prediction model that is used to estimate the risk levels of study 

sites. As discussed in the literature review and Chapter 4, the most popular crash modeling technique 

in road safety studies is the parametric approach. This technique, however, needs a prior specification 

of the relation between crashes and the potential explanatory variables. Therefore, it has a potential risk 

of misspecification due to the complex, unknown relation of crashes and crash-related factors. 

Consequently, any misspecification of the crash model may result in an inaccurate list of crash hotspots 

in network screening, thereby leading to improper allocation of resources for safety improvements. In 

this chapter, we introduce kernel regression (KR) as an alternative to the parametric model applied 

under both crash estimation frameworks (i.e., regression-based and EB-based) to network screening. 

We compare its performance with the parametric counterpart- negative binomial (NB) model (both in 

regression and EB frameworks) with a case study.  

5.1 Framework for Network Screening 

Networking screening is a systematic process of ranking sites that suffer from unacceptably high levels 

of crash risk. This process consists of five main components: 1) preparation of the dataset; 2) selection 

of ranking measure; 3) selection of a method for estimating crash risk; 4) ranking of sites, and 5) 

selection of high-risk sites (or crash hotspots) (see Figure 5-1). We describe each of these components 

by considering a case study of Highway 401 in Ontario, Canada.  
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Figure 5-1: A framework for network screening 

Preparation of dataset: The Highway 401 case study used in Chapter 4, which provides a detailed 

description of data sources and processing steps, is also used in this analysis. Note that the data 

processed was yearly-based, a time-span large enough for analyzing safety problems from a planning 

perspective, as is required in network screening. We split the original dataset, which contains nine years 

of crash data (2000-2008), into a model set (2000-2006) and an evaluation set (2007-2008).  

 

Selection of ranking measure: A variety of risk measures can be used as the ranking measure for 

network screening, such as average crash frequency (crash per km-year), average crash rate (crash per 

vehicle-kilometers) or weighted crash frequency based on crash severities. Oher measures that can be 

used are listed in the HSM manual. In our case study, we considered the first two measures: crash 

frequency/km and crash rate (crash frequency/exposure) as determined by normalizing the estimated 

crash frequency by length and exposure, respectively. Note that the frequency-based measure 

emphasizes maximizing the system-wide benefits of safety intervention targeted to the selected set of 

treatment sites, while the rate-based measure underscores the importance of individual road users’ 

safety perspective (Tarko & Kanodia, 2003). While the choice depends on the interest and priority set 
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identified by the stakeholders or road agencies, we consider both measures in order to explore their 

implications in identifying the crash hotspots. 

 

Selection of methods to estimate crash risks: Two approaches are considered: Regression-based (KR 

and NB) and Empirical Baye’s-based (both KR and NB) methods.  The following paragraphs explain 

the steps involved in estimating crash risk using each approach. 

 For the regressions-based approach, the model dataset was first used to estimate model 

coefficients for the NB model and calculate the variable bandwidths for the KR method. To 

relax the constant over-dispersion parameter of the NB model, we considered using its extended 

form ‒ a generalized negative binomial (GNB) model, where the dispersion parameter is 

modeled as a function of a set of covariates (Hauer, 2001; Miaou and Lord 2003; Miranda-

Moreno et al., 2005; Usman et al., 2010). This may be significant in the EB approach as it uses 

dispersion parameter of the NB model to determine the weights. Then, the evaluation set was 

used for estimating the crash risk of highway sections using their respective crash model. Note 

that, in this particular case study, there are a total of 418 highway sections.  

 

 For the EB-based approach, the steps are slightly different. We refer 2005-2006 as the base-

year and 2007-2008 as the ranking-year. First, the EB estimates (both KR and NB) were 

obtained for the base-year. Then the base-year estimates were extrapolated to the ranking-year 

by multiplying them by a factor 𝑟 = 𝜇(. )𝑟𝑎𝑛𝑘𝑖𝑛𝑔−𝑦𝑒𝑎𝑟/𝜇(. )𝑏𝑎𝑠𝑒−𝑦𝑒𝑎𝑟, where 𝜇(. ) represents 

crash frequency estimated by respective regression techniques. This two-step process presented 

here is same as the EB estimates used in before-after countermeasure studies where crashes 

estimated for the before treatment period (here base period) are projected to the after treatment 

period (here ranking period) with adjustment made through the crash models to account for 

changes in the variables (HSM, 2010; Choi et al., 2015). This approach was taken to match the 

prediction framework and is similar to that of a regression model where a separate evaluation 

set is considered.   

 

Ranking of sites: Two ranking measures, crash frequency (crashes/km) and rate (crashes/MVK), are 

determined as follows. First, the number of crashes occurring in each of 418 HS sections was estimated 

using two models (i.e., KR, NB) including their respective EB methods (i.e., KR-based EB and NB-

based EB). The estimates are then normalized using section length and exposure to obtain normalized 
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crash frequencies and rates, respectively. All sections are then sorted in descending order based on the 

risk estimates obtained from each approach.   

 

To compare the ranking of sites between any pairs of estimation techniques, we calculated the 

Spearman’s rank correlation coefficients (SC) for each ranking measure.  SC is a measure obtained by 

a nonparametric method to quantify the linear association between any two independent ranking 

variables, as given by Eq.  5-1. SCs can vary from -1 to +1 with values close to 1 indicating that the 

results from the two estimation techniques are highly similar. 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2𝑚
𝑖=1

𝑚(𝑚2 − 1)
 (5-1) 

 

where, 

 𝜌 = Spearman’s rank correlation coefficient, 

m = total number of sites (here 418), 

𝑑𝑖 = difference between the two ranks of site i. 

 

Selection of hotspots: The final step involved in network screening is to select hotspot sites, i.e., a 

subset of sites with relatively high crash risk that warrant safety interventions. The threshold risk levels 

used to determine hotspots depend on the amount of resources available for the safety improvement 

program. In the case of this case study, resource availability was not a concern; therefore, the top x 

percent of sites (e.g., x could be 10%, 20%, etc.) were selected as the crash hotspots.   

5.2 Crash Models 

Eq. 5-2 shows the NB model calibrated using model dataset (2000-2006) applying the maximum 

likelihood estimation technique. The summary of the model results is presented in Appendix C.1   

 

𝜇 = 𝑒−1.16+0.84  ln(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒)+5E−05𝐴𝐴𝐷𝑇𝐶−0.01𝑀𝑊−0.01𝑆𝑊𝑙+0.16𝑆𝑊𝑅−0.09𝐶𝐷    (5-2) 

𝛼 = 𝑒−51−0.83𝐿  where, 𝛼 is over-dispersion parameter    (5-3) 

where,  

𝜇 = crash frequency (per year), 

exposure= million-vehicle-kilometer travelled, 

𝐴𝐴𝐷𝑇𝐶= commercial AADT (veh/day),  

MW= median Width (m),  
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𝑆𝑊𝑙= shoulder width- left (m),  

𝑆𝑊𝑅= shoulder width - right(m),  

CD= curve deflection (1/km), 

L= length of road segment (km). 

For the KR method, the bandwidths identified are 21.08, 2621, 2.39, 0.46, 0.11, 0.135 for exposure, 

AADTc, MW, SWl, SWR, and CD variables, respectively. 

 

As discussed in Chapter 3, the EB-based approach combines crashes occurred at the specific site and 

expected crash frequency from the reference sites (using crash model) through a weighting scheme. 

Determination of the weight factors (w) depends on the types of regression model used in the EB 

framework. For the NB-based EB method, we first calculate the value of dispersion parameter (𝛼) 

using Eq. 5-3 which is then used to obtain the weight factor as 𝑤 = 1/(1 + 𝜇 × 𝛼). This is based on 

the use of parametric modeling approach for defining the relation of variance-mean (details in Chapter 

3). Note that larger the value of “w” more weight is given to model estimates and lesser to the observed 

crashes.    

 

In contrast, for the EB-based approach using the KR method (hereafter KR-based EB approach), we do 

not specify such relation for mean-variance to calculate the weight; rather, a data-driven approach (KR 

method) is used to establish the underlying relation (detailed steps explained in Section 3.4.3 of Chapter 

3). Figure 5-2 illustrates a nonlinear relation of mean-variance using the model dataset. The result 

indicates that, in general, the variance has a positive correlation with the mean crash estimate. This 

implies that the weight decreases with increasing variance as the relation between these two measures 

is inversely proportional. This is similar to the NB-based EB method where the larger model estimates 

(i.e., larger variance) result in the lower magnitude of weights.   
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Figure 5-2: Mean-variance relation for EB-based KR method (bandwidth of E(k) is 10.13) 

5.3 Comparing Ranking 6 

Figures 5-3 and 5-4 present scatter plots of one to one ranking of highway sections (total 418 sections) 

based on a pair of crash models (KR and NB) applied under the two frameworks: regression-based and 

EB-based, respectively. These figures also include ranking comparisons for the two measures- crash 

frequency and crash rate. We can visually observe some deviations in ranking as some of the sites are 

found significantly off the diagonal line, and this varies based on estimation approach and ranking 

criteria. Between the crash estimation techniques, i.e., regression-based and EB-based, the ranking 

correlation of the KR and NB methods in the latter approach is comparatively high under both ranking 

criteria. One of the reasons could be due to the involvement of site-specific crash history in the EB-

based framework, thereby resulting in similar magnitude of risk measures. While the effects of ranking 

criteria appears less visible in the EB-based approach as seen in Figure 5-4 (a and b), this is quite 

different in the regression-based approach.  Comparatively, the frequency criterion (Figure 5-3 (a)) 

shows a high correlation in ranking than by the rate criterion (Figure 5-3 (b)).    

 

As mentioned earlier, Spearman’s correlation (SC) coefficients are used to determine the correlation 

between the two methods, where large SC values represent high correlation and vice versa for the low 

                                                      
6 Thakali et al. (2016). Comparing crash estimation techniques for ranking of sites in a network screening process, 

CSCE conference, June 1-4, 2016. 
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values. As summarized in Table 5-1, the KR and NB models in a regression-based approach showed 

relatively lower correlation (SC ranging from 0.526 to 0.826) compared to the EB-based approach (SC 

ranging from 0.965 to 0.973).  Meanwhile, as previously discussed, ranking correlations are higher with 

the frequency measure (SC ranging from 0.826 to 0.973) compared to the rate measure (SC ranging 

from 0.526 to 0.965). The results from this example suggest that the choice of risk measures for ranking 

may have a significant impact on the relative performance of the parametric and nonparametric 

methods, especially when adopting the regression-based approach. 

 

 

Figure 5-3: Ranking comparison based on regression modeling approach- (a) crash frequency/km 

and (b) crash frequency/million vehicle km 

 

 

Figure 5-4: Ranking comparison based on EB approach- (a) crash frequency/km and (b) crash 

frequency/veh-km 
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Table 5-1: Spearman’s correlation (SC) coefficients 

Methods 
Ranking measure 

Crash frequency Crash rate 

Regression-based approach  0.826 0.526 

EB-based approach 0.973 0.965 

5.4 Comparing Hotspots  

Crash hotspot sites are selected by considering the top 10% of the total sites with highest risk levels. 

However, it is noted that in the real field, this number depends on the amount of resources available for 

a safety program.  Figure 5-5 and 5-6 illustrate crash hotspots based on ranking according to crash 

frequency and crash rate, respectively. The main implication of selecting a specific ranking measure 

for identifying hotspots is visible on the maps. As expected, hotspots with frequency indicator are 

located in the vicinity of the urbanized section of the City of Toronto where the traffic levels are high, 

causing higher risks. In contrast, when crash rate is used, the hotspots are little scattered as we normalize 

the crash risk by their respective traffic levels.  

 

As seen Figure 5-5, there is a slight variation in the hotspot sections of frequency risk measure 

depending on the approach– regression-based or EB-based – and the type of crash model (parametric-

NB or nonparametric-KR) involved in each approach. Comparatively, the EB-based approach shows 

more similarity in the location of hotspots. Similarly, Figure 5-6 shows different locations of hotspots 

for the rate risk measure and draws a similar conclusion. Furthermore, to quantify their differences in 

hotspots locations, we calculated the percentage-matching rate. In addition, we also explored how this 

matching rate varies as more hotspot sites are considered (e.g., 10%, 20%, etc.) and the results are 

shown in Figure 5-7. Matching rate is relatively constant in the EB-based approach between the KR 

and NB methods as it is already in the higher end. However, for the regression-based approach, the 

matching rate between the crash models increases as more sites are considered, and this rate is 

comparatively high for the frequency measure.  

 

Overall, regarding the identification of hotspots using different techniques, we summarize the findings 

as follows. First, the choice of crash models (KR or NB) had less influence when applying the EB-

based approach. Second, this choice of modeling approach made quite a difference in the regression-
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based approach, however, their differences were reduced as the number of sites selected as hotspots 

increased.    

 

 

Figure 5-5:  Locations of 42 hotspot sections (10% of total sites) based on crash frequency  

 

(a): KR (b): NB

(c): EB (KR) (d): EB (NB)
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Figure 5-6:  Locations of 42 hotspot sections (10% of total sites) based on crash rate 

 

Figure 5-7: Comparisons of hotspots in terms of percentage matching (total sites= 418) 

(a): KR (b): NB

(c): EB (KR) (d): EB (NB)
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5.5 Summary Conclusions  

In this chapter, we presented a case study of network screening using regression-based and EB-based 

approaches with the main objective of evaluating the practical implications of adopting a nonparametric 

cash model within these two crash estimation frameworks. For this, we considered the kernel regression 

(KR), a data-driven nonparametric approach, for estimating the crash risk. We benchmarked its 

performance for network screening against the parametric counterpart, the negative binomial (NB) 

model. 

 

The comparative results from network screening in terms of ranking of sites and identification of 

hotspots showed that the nonparametric and parametric approaches have more similarities when applied 

in the EB-based framework than in the regression-based framework. In the EB-based framework, the 

ranking results based on the KR and NB models were highly similar regardless of the choice of ranking 

measures– crash frequency or crash rate. In contrast, their differences were more visible when used in 

the regression-based approach, with the rate measure showing a relatively high variation compared to 

the frequency measure. The findings also showed that differences in locating hotspot sections based on 

different approaches reduced as the number of selected sites increased, thereby providing greater 

flexibility to select either nonparametric or parametric methods. We also make a note that in our 

previous comparative study, the KR method performed better than the parametric NB model, the 

ranking of sites and the selection of hotspots based on the nonparametric method (regression-based or 

EB-based) is expected to be more reliable.  
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Chapter 6 

Countermeasure Study: Nonparametric and Parametric 

Approaches 

The study of countermeasures is another important component of a road safety analysis aiming at 

quantifying the effect of safety treatment measures through crash modification factors (CMFs). As 

discussed in Literature Review, there are two popular approaches to a countermeasure study, namely, 

before-after study and cross-sectional study. Both methods are popular as they reduces regression-to-

mean (RTM) problem of a naïve crash count-based approach. When enough crash data related to 

before-after treatments are available, the use of before-after Empirical Baye’s (EB) method is 

recommended. However, when before-after data are limited, an alternative viable method is using the 

cross-sectional study approach. In this approach, CMFs are obtained by comparing with and without 

crash risk conditions using the cross-sectional data from similar sites. These studies are common mainly 

in the context of determining CMF of roadway characteristics, such as altering shoulder, lane and 

median width, and treating road shoulders with rumble strips.  

Parametric models have been commonly used in both types of studies. In this chapter, we employ kernel 

regression (KR) as an alternative to the traditionally used parametric count models. We also compare 

its performance with the parametric counterpart- negative binomial (NB) model.   

6.1 Framework for Countermeasure Study 

Figure 6-1 provides an overview of a framework for countermeasure study. The main components 

include preparation of dataset for model development, selection of treatment sites, collection of detailed 

information about before and after treatment conditions, selection of crash-modeling techniques, 

calculation of the CMFs for the selected treatments, and finally comparison of the CMFs obtained from 

different techniques. The CMFs are computed by comparing the crashes before and after the period of 

treatments as given by Eq. 6-1. Depending on the study approach selected (i.e., before-after study or 

cross-sectional study), there may be a slight variation in final CMF calculations. Detailed explanations 

are given in the following sections (6.2 and 6.3). 

𝐶𝑀𝐹 =
𝐶𝑎

𝐶𝑏
 (6-1) 
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where,  

Ca= expected crashes for condition “a” i.e. after7 or with8 treatment,  

Cb = expected crashes for condition “b” i.e. before or without treatment. 

 

 

Figure 6-1: Framework for a countermeasure study 

6.2 Approach 1: Before-After EB Study 

The EB method combines safety from two measures: the observed numbers of crashes obtained from 

individual sites and the expected number of crashes estimated from the reference population. The latter 

is achieved using a regression model developed from crash data of the reference sites. The EB method 

is given its name depending on the type of model applied. For example, the KR-based EB method 

involves KR method, and similarly, the NB-based EB method involves NB model. Detailed 

descriptions have been given previously in Chapter 3. 

 

                                                      
7 Applicable for before-after study  
8 Applicable for cross-sectional study 

Model calibration

(NB Model)

Processed crash 

related dataset

Crash estimation

(Kernel regression)

Treatment selection

Condition “a” Condition “b”

Effectiveness evaluation

Results comparison

Crash estimation
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Determining the CMF of a treatment in a before-after study requires selection of a number of sites that 

have implemented the specific treatment and is based on the combined safety effects before and after 

the treatment periods as given by Eq. 6-2. 

𝐶𝑀𝐹′ =
∑ 𝐶𝑎𝑖

𝑛
𝑖

∑ 𝐶′
𝑏𝑖

𝑛
𝑖

 (6-2) 

where,  

C𝑎𝑖
 = observed number of crashes after the treatment at the site i, 

C′
𝑏𝑖

=expected number of crashes before the treatment at the site i (obtained from EB estimate for before 

the treatment period),  

n = total numbers of sites, and  

𝐶𝑀𝐹′ = unadjusted CMF. 

 

We normalize the before treatment crashes in Eq. 6-2 as follows:  

𝐶𝑏𝑖
= 𝐶′

𝑏𝑖
𝑟𝑖 

𝑟𝑖 =
𝜇𝑎𝑖

𝜇𝑏𝑖

 
(6-3) 

where, 

𝑟𝑖 = adjustment factor for a change in site conditions, 

μ𝑎𝑖
= predicted crashes (by a model) at the site i after the treatment period, and  

μ𝑏𝑖
= predicted crashes (by a model) at site i before the treatment period. 

 

The factor “𝑟𝑖” is used to adjust for changes in actual safety in the treatment sites due to the change of 

traffic volumes and other engineering interventions. This step makes sure that the crashes of before and 

after the treatment conditions are compared in the same time horizon, i.e., after treatment period.   

 

After replacing normalized before -treatment crashes C𝑏𝑖
in Eq. 6-2, we obtain the final expression of 

CMF given in Eq. 6-4 (or Eq. 6-5 for an unbiased estimate). 

𝐶𝑀𝐹 =
∑ C𝑎𝑖

𝑛
𝑖

∑ C𝑏𝑖
𝑛
𝑖

 (6-4) 
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To adjust for an unbiased estimate (Hauer, 1997) :  

𝐶𝑀𝐹 =

∑ 𝐶𝑎𝑖
𝑛
𝑖

∑ 𝐶𝑏𝑖
𝑛
𝑖

1+
𝑣𝑎𝑟(∑ 𝐶𝑏𝑖

)𝑛
𝑖

∑ 𝐶𝑏𝑖
𝑛
𝑖

2

   

 

(6-5) 

The variance of CMF is estimated by: 

𝑉𝑎𝑟(𝐶𝑀𝐹) =

𝐶𝑀𝐹2(
𝑉𝑎𝑟(∑ C𝑎𝑖

)𝑛
𝑖

(∑ C𝑎𝑖
𝑛
𝑖 )

2 +
𝑉𝑎𝑟(∑ C𝑏𝑖

)𝑛
𝑖

(∑ C𝑏𝑖
𝑛
𝑖 )

2

[1 +
𝑉𝑎𝑟 (∑ C𝑏𝑖

)𝑛
𝑖

∑ C𝑏𝑖
𝑛
𝑖

2 ]

2  (6-6) 

where,  

𝑉𝑎𝑟(∑ C𝑎𝑖
)𝑛

𝑖 =  ∑ C𝑎𝑖
=  ∑ K𝑖

𝑛
𝑖

𝑛
𝑖  (Assuming crashes follow Poisson distribution and K𝑖 is observed 

crashes at site i; Persaud et al., 2001; Hauer, 1997), 

𝑉𝑎𝑟(∑ C𝑏𝑖
)𝑛

𝑖  =  ∑ 𝑉𝑎𝑟 (C𝑏𝑖
)𝑛

𝑖  (Assuming individual variances are mutually independent, and for 

individual variance, we use  𝑉𝑎𝑟 (C𝑏𝑖
) = (1 − 𝑤)𝐸(𝑘/𝐾) (Hauer, 1997).  

6.3 Approach 2: Cross-sectional Study 

The CMF in a cross-sectional study is determined by comparing the crash risk of with and without the 

treatment. Depending on the type of crash model involved, (e.g., nonparametric or parametric) Eq. 6-1 

for CMF varies slightly. We provide a brief explanation of each type in the following sections.   

6.3.1 Nonparametric: KR method 

The KR method, being nonparametric in nature, does not contain any model parameters to relate 

predicting variables to crash risk (i.e., model coefficients). Instead, it adopts a data-driven approach to 

crash estimation by weighing all the observed crash data points. The weights are determined jointly by 

a kernel function and the bandwidth of the covariates. The weights vary depending on the distance 

between the covariates of observed crash data points and the evaluation point. Therefore, the KR 

method requires an explicitly defined condition of each covariate, both with and without treatment 

conditions, for predicting the crash risk. We represent CMF of a covariate “𝑥𝑑 " as: 

𝐶𝑀𝐹𝑑 =
C𝑎

C𝑏
=

𝑚𝑎(𝑥1
𝑏 , 𝑥2

𝑏 , … 𝑥𝑑
𝑎  … 𝑥𝐷

𝑏  )

𝑚𝑏(𝑥1
𝑏 , 𝑥2

𝑏 , … 𝑥𝑑
𝑏  … 𝑥𝐷

𝑏  )
 (6-7) 
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where, 

 C𝑎 and C𝑏 (have same definitions as in Eq. 6-1) are functions of covariates,  

𝑚𝑎(. ) is expected crash frequency for after (with) treatment case, 

𝑚𝑏(. ) is expected crash frequency for before (without) treatment case, 

𝑥𝑑 = the covariate whose CMF is to be calculated, 

𝑥𝑑
𝑎 = after (with) condition of 𝑥𝑑 , 

𝑥𝑑
𝑏= before (without) or base condition of 𝑥𝑑 , 

𝑥1
𝑏 , 𝑥2

𝑏 … 𝑥𝐷
𝑏= are remaining covariates at their base conditions (excluding 𝑥𝑑 ), and  

D = number of covariates.  

 

As shown in Eq. 6-7, the CMF of a covariate involves a comparison of crash risk with (C𝑎) and without 

(C𝑏) the treatment conditions. In summary, there are three main inputs required for CMF calculation:  

 A base case (or before case) for the covariate whose CMF is to be determined. This represents 

the “without the treatment condition”. 

 A treatment case (or after case) for the same covariate. This represents the “with the treatment 

condition” 

 Base cases for remaining covariates. These represent controlling variables. 

Standard error9 of CMF is given by (Kendall, 1998): 

𝑆𝐸𝐶𝑀𝐹 = [(
 C𝑎

 C𝑏
 )2(

𝑉𝑎𝑟(C𝑎)

C𝑎
2 +

𝑉𝑎𝑟(C𝑏)

C𝑏
2  )]

0.5
   (6-8) 

where, 𝑉𝑎𝑟(C𝑎) and 𝑉𝑎𝑟(C𝑏) are determined by a bootstrap approach adopted from Hyfield & Rachin 

(2008).   

6.3.2 Parametric: NB model 

As the NB model is represented by an equation, the CMF calculation becomes relatively easy. For the 

exponential form of a NB model, the CMF of a covariate "𝑥𝑑 " is represented as:  

 

𝐶𝑀𝐹𝑑 =
C𝑎

C𝑏
= 𝒆𝜷𝒅(𝒙𝒅

𝒂−𝒙𝒅
𝒃)  (6-9) 

where, 

𝛽𝑑= estimate regression coefficient associated to covariate d, and  

                                                      
9 Standard error is the standard deviation of a sample mean (Gross et al., 2010).  



 

 113 

Others notations same as in Eq. (6-7) 

 

The exponential form of the NB model is the most popular specification used in the past studies 

(Council & Steward, 1999; Lord & Bonneson, 2007; Fitzpatrick et al., 2008; Stamatiadis et al., 2009; 

Carter et al., 2012; Zeng & Schrock, 2013; Park et al., 2014; Choi et al., 2015; Park & Abdel-Aty, 2015; 

Wu et al., 2015). However, we should note that depending on the choice of a functional form for the 

NB model, the expression for the CMF in Eq. 6-9 changes.   

 

As seen, there is a fundamental difference between the CMF of nonparametric approach (Eq. 6-7) and 

parametric approach (Eq. 6-9). In the latter approach, there is no need for defining base cases for the 

controlling variables, i.e., variables other than "𝑥𝑑 " whose CMF is to be determined. This is because 

the effects of remaining variables get canceled out as they appear in divisional forms.  

 

The standard error of the CMF can be calculated by using two equations: 1) Eq. 6-10.a as adopted by 

Park & Abdel-Aty (2015) and Eq. 6-10.b as recommended by Bahar (2010) and HSM (2010, part D). 

𝑆𝐸𝐶𝑀𝐹 =
exp(𝛽𝑘+𝑆𝐸𝛽𝑑

)−exp (𝛽𝑘−𝑆𝐸𝛽𝑑
)

2
    (6-10.a) 

𝑆𝐸𝐶𝑀𝐹 =
𝑆𝐸𝛽𝑑

𝑡𝛽𝑑

 𝐶𝐹     (6-10.b) 

where,  

𝑆𝐸𝐶𝑀𝐹= standard error of CMF, 

𝑆𝐸𝛽𝑑
= standard error of coefficient 𝛽𝑑,  

𝑡𝛽𝑑
 = t-statistic of coefficient 𝛽𝑑, and 

𝐶𝐹= correction factor (2) obtained from Bahar (2010). 

 

Note that the standard error provides the precision of an estimate, and does not say anything about the 

accuracy of the estimate. Therefore, which CMF estimates appear closer to the true value may not be 

concluded simply from a direct comparison of the CMFs based on their standard errors.   

6.4 Case Study: Before-After Study 

Safety at railway-highway grade crossings is a serious concern to transportation agencies, and various 

traffic control devices, either passive controls such as stop sign and yield sign or active controls such 

as flashing light and bell (FLB), FLB with Gates (FLBG) and others are often deployed to reduce the 

potential risk of crashes. These control types are expected to have different levels of safety effects (or 
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CMFs) depending on their degree of protection. In this section, we present a case study to determine 

the CMFs of three sets of controls in relation to their specific base conditions using crash data from 

grade crossings in Canada. These include adding FLB to passively controlled crossings, adding gates 

to FLB crossings and adding a constant warning time device to crossings with FLB.  

6.4.1 Data Description 

The before-after EB study requires two different sets of crash data. The first one is a model dataset 

which is collected from a reference population for calibrating a crash model, and the second is a before-

after observed dataset which is obtained from a set of sites that have implemented a specific treatment. 

Below provides a brief description of these two datasets used in this study.  

 

Model dataset: The data for the model set are obtained from two different sources: 1) inventory data 

from Integrated Railway Information System (IRSI) database and 2) observed crash data from Railway 

Occurrence Database System (RODS) database. The IRIS database contains information related to 

characteristics of crossings, such as control type (e.g., passive, FLB, FLBG and others), location, traffic 

volume (both vehicle and train). Similarly, the RODS database records information related to individual 

crashes, such as date of occurrence, type of trains and vehicles involved, crash severities, average traffic 

volume. For each crossing (only the public crossing), crashes occurring from 2008- 2013 were 

aggregated. This was then integrated with the inventory data based on their unique crossing IDs. Those 

crossings with missing inventory information such as road speed, traffic volumes and train volume 

were excluded from the processed dataset. Meanwhile, only the crossings with the following three 

control types- passive crossing, flashing light and bell (FLB) and flashing light and bell with gates 

(FLBG) were considered. Finally, the dataset was split for these control types. Appendix D.1 provides 

a summary of each dataset.  

 

Before-after dataset: The data for the before-after set are obtained from three different sources: the 

Grade Crossing Improvement Program (GCIP), IRIS and RODS. The GCIP database contains 

information related to safety projects implemented across Canada under Transport Canada’s funding 

program – GCIP. It includes information such as date of project completion, types of intervention, 

crossing conditions at the time of implementation and crossing ID. For this case study, we selected 

projects related to the following treatment types: converting passive controls to FLB, adding gates to 

FLB crossings and adding constant warning time device to FLBG crossings. For each project site, crash 
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data for the five years before and after the project completion were extracted from RODS. The GCIP 

database lacks information about the traffic conditions before and after the treatment implementations; 

therefore, this missing information was filled in using the following procedure. For the before treatment 

condition, crossing related information (e.g., traffic volume) was extracted from the RODS database by 

referring to the crashes of that period. Similarly, for the after treatment condition, the IRIS database 

was used as it contained the most current information on crossings.  

6.4.2 Crash Models  

The crash model used in a before-after EB study has two main roles. First, as discussed in Chapter 3, 

the EB method used to predict crash frequency requires a crash model to incorporate the risk levels of 

similar sites. Second, as mentioned in Section 6.3 (Eq. 6-3), we use a crash model to obtain an 

adjustment factor to account for the change in risk levels that could have resulted from the changes in 

traffic volume including other interventions.  

 

NB models were calibrated for each control type: passive, FLB and FLBG. Initially, their full models 

were calibrated by considering a set of significant variables that included vehicle volume, train volume, 

train maximum speed, road speed and number of tracks (see Appendix D.2). However, as the RODS 

database used for extracting the before treatment conditions contained only details on traffic volume, 

we calibrated traffic-only models as presented in Eq. 6-11 to 6-13 (see Appendix D.3 for more 

information). When comparing the performance of full and traffic-only models for all control types, 

only marginal differences were observed. For example, for the passive control, the full model has 

Akaike information criterion (AIC) (NB): 2431.7, MAE (NB): 0.074 and MAE (KR): 0.045, whereas 

the traffic-only model has AIC (NB): 2448, MAE (NB): 0.075 and MAE (KR): 0.048. Similarly, for 

FLB and FLGB types, these differences were minimal. Meanwhile, for all the datasets, the KR method 

outperformed the NB model as indicated by its lower MAE values. Note that AIC is one of the 

commonly used goodness-of-fit measures in a parametric model calibrated using the MLE technique. 

Lower the value of AIC, better is the model performance.    

 

As discussed in Chapter 3, the EB method using KR method requires a mean-variance relation for 

determining a weight factor. We present this relation specific to each control type in Appendix D.4. 

 

Crash model for Passive control  
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𝜇𝑝 = 𝑇𝑉0.68𝑉𝑉0.45𝑒−6.03         (6-11) 

MAENB= 0.075; MAEKR= 0.048 

Bandwidths for KR method: TV=1.74 and VV=243. 44  

where,  

VV= vehicle volume (per day), and 

TV= train volume (per day). 

 

Crash model for FLB control 

𝜇𝐹𝐿𝐵 = 𝑇𝑉0.64𝑉𝑉0.52𝑒−7.34         (6-12) 

MAENB= 0.13; MAEKR= 0.082 

Bandwidths for KR method: TV=1.61 and VV=1240. 96  

 

Crash model for FLBG control 

𝜇𝐹𝐿𝐵 = 𝑇𝑉0.56𝑉𝑉0.32𝑒−6.04         (6-13) 

MAENB= 0.217; MAEKR= 0.139 

Bandwidths for KR method: TV=4.21 and VV= 1706. 19  

6.4.3 CMF Results  

This section presents the results of CMFs determined by before-after EB study as described in Section 

6.3. Two different approaches, the nonparametric (KR method) and the parametric (NB model), are 

employed under the EB framework. It is noted that a few sites were excluded prior to the calculation 

of CMFs due to the issue of sparse data points in the KR method resulting in very low crash estimates. 

This low values of estimates, if included, would greatly influence the calculation of an adjustment factor 

“r”, i.e., ratio of expected crashes of without treatment conditions for after and before the treatment 

period. For example, when not enough neighborhood data points are available to estimate before 

crashes (Cb), very low estimates are expected (close to zero), thereby causing “r” to be very large (Eq. 

6-1). This problem could have been due to not having enough representative data points in the model 

dataset (i.e., training set) to reflect before and/or after without treatment conditions of the selected sites. 

Therefore, the sites with such issues were excluded prior to the calculation of CMFs. 

 

Table 6-1 summarizes the results of CMFs for all three countermeasures: converting passive controls 

to FLB, converting FLB to FLBG and adding a constant warning time device to FLBG. As seen, the 
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differences in the results obtained from the two approaches (i.e., KR and NB) vary across the 

countermeasures. For example, adding gates to FLB crossing reveals a comparatively small deviation 

in their safety effects, and both methods show a reduction of crash risk. This countermeasure is expected 

to result in approximately 80% reduction in crash frequency (approximate CMF is 0.2) with a marginal 

difference between the estimates of the KR and the NB methods. Meanwhile, this difference is much 

higher in the case of converting a passive control to FLB crossing. The KR method shows an 

approximately 80% reduction in crashes, whereas the NB method indicates a 65% reduction. In contrast 

to the previous two countermeasures where both approaches agreed showing a reduction of crash risk, 

they showed opposite effects from adding a constant warning time device to FLBG crossing. As seen, 

the result from the KR method shows a reduction in crash frequency whereas the NB method shows a 

slight increase in crash risk. Intuitively, the result from the KR method is more meaningful as providing 

a constant warning is expected to increase safety level of a crossing.  

 

In Table 6-2, we also present the CMFs of two countermeasures- passive to FLB and passive to FLBG, 

which were obtained from past studies. As seen, there is a wide range of values within the same 

treatment measure. This variation, including the differences in results we presented in Table 6-1, could 

be due to a number of factors, such as local conditions of the treatment sites, numbers of treatment sites, 

and the methods applied in determining the CMFs.  

 

Table 6-1: CMFs obtained from the before-after EB study 

Countermeasures  

(or treatments) 

KR-based EB 

method 

NB-based EB 

method 

Number of 

sites 

Passive to FLB 0.184 (0.09) 0.35 (0.18) 52 

Adding gates to FLB  0.178  (0.1) 0.225 (0.12) 67 

FLBG to FLBG + CWD 0.597 (0.26) 1.1 (0.51) 21 

Values in parenthesis indicate standard error; CWD stands constant warning time device 

 

Table 6-2: CMFs of similar treatments from past studies 

 Study references Passive to FLB Passive to FLBG 

Park (2007) - 0.35 
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Saccomanno and Lai (2005)  0.42 0.37 

U.S. DOT (1980)* 0.30 0.17 

California (1974)* 0.36 0.12 

Hedley (1952)* 0.37 0.04 

*FHWA (2015) 

6.5 Case Study: Cross-sectional Study 

Highway safety improvement programs often focus on changing the geometric design elements of 

highway sections, such as shoulder width, the degree of curvatures and others, for improving their 

safety. In this section, we present a case study of Highway 401 in Ontario, Canada with the objective 

of determining the safety effectiveness (or CMFs) of some of these design features by employing a 

cross-sectional study.  

 

6.5.1 Data Description  

For the data sources and processing, we refer to Section 4.2 of Chapter 4. This dataset, hereafter referred 

to as a model set, consists of nine years of crash data (2000-2008) from Highway 401, Ontario. It was 

previously used for comparing the performance of parametric and nonparametric crash modeling 

techniques. 

 

6.5.2 Selecting Typical Treatment Cases  

To compute CMFs, we first identify the typical highway condition combinations in terms of geometric 

features and traffic from the dataset. This is particularly necessary for the KR method as it requires an 

explicitly defined base and treatment conditions for the covariate whose CMF is to be determined, 

including the base cases for the remaining variables that act as controlling factors (Eq. 6-7). Because 

the KR method is a local estimator, selecting typical features (i.e., most common) from the dataset will 

ensure that enough near data points are available to obtain relatively accurate crash estimates. However, 

in determining CMFs using the NB model, this selection is not a requirement as the model coefficients 

of respective variables are directly used to determine their CMFs (see Eq. 6-9). Table 6-3 presents a list 

of typical values for traffic volume, shoulder width, median width and horizontal curve deflection (see 

Appendix B.6 and D.6 for histograms). Note that, for the traffic-related variables, we first aggregated 

the records into bins of uniform width and then retained their mid values.   
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Table 6-3: Typical road geometric sections and traffic levels for developing CMFs 

AADT 

(all 

vehicles) 

(veh/day) 

AADT 

(Commercial) 

(veh/day) 

Median width 

(m) 

Shoulder 

width- left 

(m) 

Shoulder 

width- right 

(m) 

Curve 

deflection 

(per km) 

12000 5250 5 1 3 0 

17000 8750 10 2 3.5 0.4 

22000 12250 15 3 4 0.5 

27000 15750 20 4 Total= 3 0.6 

32000 19250 25 5   0.7 

37000 22750 30 Total= 5   0.8 

42000 26250 Total= 6    0.9 

47000 29750      1 

52000 Total= 8       1.25 

57000         1.5 

62000         Total= 10 

67000           

Total= 12           

6.5.3 Preliminary Setups for the KR method 

For computing the CMF of a treatment, as discussed in Section 6.3 (Eq. 6-7), we first need to estimate 

expected number of crashes for with (C𝑎) and without (C𝑏) the treatment conditions. Prior to this, we 

normalize the crash frequency by section length, that is, the dependent variable is crash rate (crash per 

year per unit length) rather than the crash frequency (crash per year). Note that the CMF is a unitless 

factor; therefore, this normalizing step has no effect on its estimate.  The list of predicting variables 

includes AADT, commercial AADT, median width, shoulder width (left), shoulder width (right) and 

horizontal curve deflection. Bandwidths of these variables determined from the model dataset are given 

in Appendix D.7 

 

A new dataset (also known as the evaluation set) consisting of all the combinations of typical values of 

the predicting variables was created (This consisted of total 86400 records). Then, using the model set 
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(2000-2008 data), crash rates were estimated for the evaluation set. A visualization tool was used to 

interactively select expected crashes for two conditions- with (C𝑎) and without (C𝑏) the treatment 

conditions- thereby allowing automatic generation of CMF for the selected countermeasure (see Figure 

6-2).  

 

To compare the CMFs from the KR and NB method, we fix the following common base cases: median 

width of 5 m, shoulder width (right) of 3 m, shoulder width left of 1 m, and curve deflection of zero. 

Note that, in calculating the CMF of a given variable, we set all the remaining predicting variables to 

their base values. To account for the effects of changing traffic levels, we consider three different 

scenarios:  

 Scenario 1: Low traffic level- AADT 12000, commercial AADT 5250  

 Scenario 2: Medium traffic level- AADT 37000, commercial AADT 15750 

 Scenario 3: High traffic level- AADT 67000, commercial AADT 22750 

 

 

Figure 6-2: Visualization tool used for CMF calculation, an example of median width in a low traffic 

level scenario 

Controlling variables

Variable 

whose CMF 

is calculated 

Use filters to select values
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6.5.4 Results of CMFs for Single Treatments: KR Method vs NB Model  

Figure 6-3 to 6-6 illustrate the results of CMFs obtained from the KR and NB models for four different 

road geometric features. As discussed previously in Section 6.3, the CMFs in a parametric model are 

determined directly from its estimated model coefficients, unlike in a nonparametric method which 

does not contain such easy-to-use parameters due to its data-driven estimating approach. All the CMFs 

for the NB model are derived from the previously calibrated model (see Section 4.2) as shown in Eq. 

6-14:  

  (6-14) 

where,  

𝜇𝑁𝐵 = expected crash frequency (per year), 

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒= million vehicle kilometer travelled,  

𝐴𝐴𝐷𝑇𝐶   = AADT of commercial vehicle (veh/day), 

𝑀𝑊 = median width (m), 

𝑆𝑊𝐿= shoulder width on left (m), 

𝑆𝑊𝑅 = shoulder width on right (m), 

𝐶𝐷 = curve deflection or reciprocal of radius (per km). 

 

We briefly discuss each CMF from both the KR method and the NB model in the following paragraphs. 

As the CMFs from the KR method vary by traffic level, we present the results in three different 

scenarios: low, medium and high traffic. Detailed results, including their standard errors, are given in 

Appendix D.8 and D.9.  

 

CMFs for changing median width: Figure 6-3 illustrates CMFs for changing median widths. The KR 

method shows that, in a scenario of high and medium traffic volumes, widening the median width 

(except 10 m width) results in a decrease in CMF magnitude, suggesting  a lowering of crash risk level 

compared to the base case of 5 m median width. However, this decreasing trend gradually reverses in 

a low traffic scenario, particularly for the widths larger than 25 m. This indicates that in a relatively 

low traffic volume section, widening of shoulder widths does not improve highway safety. In other 

words, this result from the KR method suggests that increasing the design standard in regard to median 

width may require caution. Similarly, CMF results from the NB model with the same base case (i.e., 5 

m) are illustrated in the same figure (Figure 6-3) generated from the CMF function, i.e., Eq. 6-15. As 

𝜇𝑁𝐵 = 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒0.82𝑒−1.04+0.001𝐴𝐴𝐷𝑇𝐶−0.02𝑀𝑊−0.09𝑆𝑊𝐿+0.16𝑆𝑊𝑅−0.17 𝐶𝐷 
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shown, there is a smooth decreasing trend in CMFs with an indication that the wide median widths 

have lower crash risk compared to the median of narrow widths. This overall trend from the NB model 

is similar to the case of high and lower traffic volumes in the KR method with latter having a relatively 

high reduction in crash risk.      
 

 𝐶𝑀𝐹𝑀𝑊 = 𝑒−0.02(𝑀𝑊−5)         (6-15) 

 

Figure 6-3: CMFs of single factors- median width 

 

CMFs for changing right shoulder width:  Figure 6-4 illustrates CMFs for changing shoulder widths 

(SWR), i.e., shoulder on the right side of traffic flow. Note that there is less variation in the dimension 

of SWR. As shown, the effect of widening shoulder widths on CMFs in medium traffic volume using 

the KR method reveals a similar decreasing trend as in the NB model (also see Eq 6-16) with the former 

having relatively higher effects. Meanwhile, the KR method at high traffic volume shows an opposite 

trend, where widening the shoulder width increases the risk level significantly. The conventional notion 

that the widening of shoulder width increases safety may not always be true in a highway section with 

a relatively high traffic volume. The width of 3.5 m in low traffic volumes from the KR method shows 

a relatively high-risk level compared to the base case of 3 m.    

 

𝐶𝑀𝐹𝑆𝑊𝑅
= 𝑒0.16(𝑆𝑊𝑅−3)        (6-16) 
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Figure 6-4: CMFs of single factors- shoulder width on right 

CMFs for changing left shoulder width: Figure 6-5 presents the CMFs for changing shoulder widths 

(SWL), i.e., shoulder on the left side of traffic flow, with the base case of 1 m width. Overall, the trend 

of CMFs across the SWL widths in the NB model shows an opposite result compared to the KR method. 

The NB model shows a reduction in relative crash risk with increasing SWL (Eq. 6-17), whereas this 

relation in the KR method for low and high traffic levels is the opposite. Meanwhile, CMFs from the 

KR method in the medium traffic scenario show slightly different results. Initially, CMF increases with 

widening shoulder widths, which, after reaching 4 m, starts to decrease.  

 

𝐶𝑀𝐹𝑆𝑊𝐿
= 𝑒−0.09(𝑆𝑊𝐿−1)        (6-17) 

 

Figure 6-5: CMFs of single factors- shoulder width on left 
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CMFs for changing curve deflection: Figure 6-6 presents the safety effects of changing the horizontal 

curve deflection (CD) of a highway section with the base case of zero CD, i.e., straight section. Note 

that the larger the CD values, the sharper the curve turnings. The results from the KR method show a 

highly nonlinear trend of CMFs across all the traffic levels with a relatively high magnitude in the 

medium traffic level, followed by high and low traffic volume scenarios. The results can also be 

interpreted stating that the risk of crash occurrence in a relatively straight road section is higher than in 

a curved section. Comparing the two methods, overall, the results from the NB and KR method have 

similar results at the lower range of CD. One of the main differences between the two methods is that 

the result from the NB model shows a smooth decreasing trend of CMFs for the increasing values of 

CDs whereas this trend appears highly nonlinear in the KR method.  

 

𝐶𝑀𝐹𝐶𝐷 = 𝑒−0.17𝐶𝐷         (6-18) 

 

Figure 6-6: CMFs of single factors- curve defection 

6.5.5 Results of CMFs for Multiple Treatments: KR Method vs NB Model 

Multiple CMFs, hereafter called M-CMFs, are important for evaluating the safety benefits when more 

than one treatment is considered.  In a parametric approach, this is obtained by: 1) including an 

interaction term in the regression model and using its coefficient directly to determine the M-CMF 

(Bauer & Harwood, 2013), or 2) multiplying the CMFs of individual treatment measures assuming their 

effects are independent ( i.e., CMF = CMF1× CMF2 for two treatments). The latter approach is the 

most popular and is also suggested by the Highway Safety Manual. We follow this second approach 

for the M-CMFs from the NB model. However, for the KR method, as it follows a nonparametric 
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approach, such assumptions are not necessary. The data-driven process of KR method automatically 

considers the joint effects of multiple treatments.  

 

We present an example of M-CMF for the changing shoulder width (left) and horizontal curve 

deflection (CD). Figures 6-7 (a), (b) and (c) show the results from the KR method and the NB model 

for three dimensions of CD, i.e., 0, 0.5 and 1.5, respectively, arranged in the order of increasing curve 

sharpness. A section with 5 m shoulder width and zero CD represents the base case in determining M-

CMFs. The results presented from the KR method represent the scenario of low traffic volume. As 

shown, the KR method indicates that the combined crash risk of shoulder width and curve deflection 

increases with the widening of shoulder width, except for a dimension greater than 4 m for the CD 

above 0.5. Meanwhile, the M-CMF appears larger in the curved sections (i.e., CD = 1.5).   In contrast, 

the results from the NB model show a reversed trend with a relatively lower effect.  

 

 

Figure 6-7: Multiple CMFs: curve deflection (CD) and shoulder width 
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6.6 Summary Conclusions 

This chapter presented countermeasure studies under the two commonly used frameworks, namely, 

before-after EB and cross-sectional approaches. A summary of findings specific to each study 

framework is given below. 

 

Before-after EB study: CMFs were developed for three countermeasures: converting passive control 

to FLB, converting FLB to FLBG and adding a constant warning time device to FLBG, using before-

after crash data of railway-highway grade crossings in Canada. While the parametric models, especially 

the NB model, have been extensively used under the before-after EB framework, no study has 

attempted to propose nonparametric models under this framework. We therefore introduced the KR 

method as an alternative to the NB model with the main motive to take advantage of its data-driven 

approach to crash estimation. As expected, the two different crash modeling techniques showed some 

discrepancies in the results of effectiveness measures.  

 

Cross-sectional study: CMFs of four highway geometric features were developed using crash data of 

Highway 401, Ontario, Canada. We applied both nonparametric (KR method) and parametric (NB 

model) crash-modeling techniques. The fundamental difference between the results from these two 

approaches were such that the CMFs from the KR method showed sensitivity to traffic levels unlike 

those from the NB model. For example, in the case of  widening of median width, the results from KR 

and NB model had a similar trend that showed decreasing crash risk with increasing median width. 

However, the KR method in high traffic volume indicated a reverse trend. This could be the result of 

complex nonlinear relation of median width and traffic interaction with crashes. In contrast, in the NB 

model, only the model coefficient of shoulder width and its associated value play a role. We also 

explored the applications of the KR and NB models to determine the joint effect of multiple 

countermeasures. An example of changing shoulder width (left) and horizontal curve deflection was 

presented and the results from these two approaches were quite different. 

 

Our analysis on the performance of KR and NB methods in both countermeasures studies has revealed 

the significant differences in the resulting CMFs, but it did not point out which method is relatively 

better since the true values are unknown. In such cases, it is reasonable to consider the method that has 

the highest prediction performance as the favourable one.  Following this logic, we can conclude that 

the results from the KR method are more reliable as our previous study in Chapter 4 have shown strong 
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evidence that it performs better than the NB model in terms of model fitting and prediction accuracy. 

However, the NB model has been widely used in research and practice with a large body of knowledge 

being accumulated. A meta-heuristic approach could be taken to combine the estimates from the 

parametric and nonparametric methods.  
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Chapter 7 

Conclusions and Future Research 

In road safety studies, such as in identification of crash hotspots and analysis of safety countermeasures, 

the most popular approach to crash modeling is of parametric nature, in which, crash frequency is 

assumed to follow a certain distribution. One of the reasons for its popularity is the adoption of 

relatively simple forms of model structures, making it easy to comprehend and convenient to apply for 

analyzing road safety problems. However, there is a risk of modeling bias as the model form that relates 

crashes and risk factors requires prior specification. In addition, a simple parametric form for crash 

modeling provides limited flexibility in capturing the underlying complex relations. An alternative to 

this could be a nonparametric approach, which relaxes restriction of parametric model pre-specification 

and allows the data to speak for themselves. However, the nonparametric approach has not been 

explored extensively in past road safety studies and its potential and limitations have not been fully 

understood. The primary objectives of this thesis are therefore to introduce alternative data-driven 

nonparametric methods to crash modeling, investigate their potential applications for various road 

safety studies, and compare their performances with their parametric counterparts. This chapter 

highlights the main contributions of this thesis followed by direction for future research. 

7.1 Contributions 

The main contributions of this thesis are as follows:  

 Conducted an in-depth investigation of different approaches to crash modeling 

techniques 

This research conducted a detailed literature review of various crash modeling techniques, 

broadly categorized as parametric and nonparametric approaches. The review suggested that 

parametric models are the most popular form adopted by both frontline researchers and the 

practitioners. Examples of these models include the standard Poisson, negative binomial (NB), 

Poisson-lognormal, zero-inflated Poisson, zero-inflated Negative Binomial models. While each 

of these models provides an easy-to-apply tool due to an involvement of simple mathematical 

construct relating crash risk and a set of risk factors, they come at a cost of need for pre-

selection of the model form, which could easily lead to biased outcomes. Studied also indicated 

that these parametric crash models are determined by two popular calibration techniques: the 

maximum likelihood estimation (MLE) and the Bayesian methods. The latter calibration 
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technique is known to have a significant role in improving the accuracy of models based on a 

relatively smaller crash dataset. Meanwhile, the nonparametric approach, a specification free 

crash modeling method, has been relatively less explored in past road safety studies because it 

is often perceived as a “Black Box” technique. Among the few nonparametric methods that 

were previously employed are Classification and Regression Tree (CART), Artificial Neural 

Network (ANN), kernel regression and Multivariate Adaptive Regression Splines (MARS) 

methods. 

 

 Introduced a nonparametric method to crash modeling including its extension to an EB-

based framework  

In this thesis, we introduced a nonparametric method called kernel regression (KR) for road 

safety studies. The KR method is a fully data-driven method without any hidden model 

structure. It is relatively simple to understand as the parameters involved (i.e., bandwidths) are 

easily interpretable; therefore, this method is often characterized as a “Grey-Box” technique. 

In contrast, some other nonparametric methods (e.g., ANN, MARS), involving complex hidden 

structures with difficulty in their interpretation, are characterized as “Black Box” techniques. 

Another added benefit of the KR method is that it is highly adaptive to changes in system 

conditions. This is because the KR method can use all the new data directly in making a 

prediction, unlike other nonparametric methods that require calibration of their hidden model 

structures prior to their applications. Whenever a new dataset is available, the data can be easily 

pooled into the original dataset, and the results can be updated using the KR method with a 

minimal effort. In contrast, in other nonparametric methods, unless their hidden structures are 

re-trained using an updated training set, they cannot make use of the newly collected 

information. 

 

Similarly, another modeling contribution made in this thesis involves extending the KR method 

in an Empirical Baye’s (EB) framework. As it is commonly recognized, the attractiveness of 

EB-based framework is that it combines both the site-specific crash history and expected 

crashes from a crash model to estimate the risk of a study site. We developed a similar EB 

approach where the role of a parametric model (e.g., NB, PLN) was substituted by the 

nonparametric KR method. Note that this approach can be adopted in any nonparametric 

method.  
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 Developed a variable selection algorithm for a nonparametric approach 

While the KR method proposed in this thesis provides an alternative data-driven nonparametric 

technique to crash modeling, this method lacks a systematic process of selecting a list of 

relevant explanatory variables. To address this issue, we developed a bootstrap-based algorithm 

designed to measure the relative safety effects of each potential risk factor. We performed a 

simulation study to validate the algorithm, and also conducted a few case studies to explore its 

practical implications. Meanwhile, the performance of the algorithm was benchmarked to its 

parametric counterpart of the variables selection process.   

 

Overall, the comparison results indicated a strong correlation between the variable importance 

measure from the algorithm and its corresponding indicator from the parametric models. 

Furthermore, the key findings are as follows. First, the proposed algorithm was shown quite 

robust in capturing the impact of variables at their individual levels. Whenever a selected 

variable appears less significant in terms of its magnitude of the effect, it is recommended to 

exclude it. However, the final decision is made based on the optimum performance of the 

model. Second, we may also employ a parametric model for selecting important variables in a 

nonparametric method. However, the result of this short-cut approach is expected to be less 

biased when the model specification of a selected parametric model is relatively accurate. 

Finally, this developed algorithm can also be applied to other nonparametric methods that lack 

a variable selection process.  

 

 Conducted a comprehensive performance comparison of crash models using parametric 

and nonparametric approaches  

This thesis conducted a systematic comparison of crash models using parametric and 

nonparametric approaches to identify differences in their performance.  For this, we focused 

on comparing two popular techniques from the two approaches: the KR method for the 

nonparametric approach and the NB model, the most extensively used parametric method in 

road safety studies, for the parametric counterpart. A validation approach was adopted in which 

the original dataset was split into training and testing sets, the training set being used for model 

calibration or bandwidth calculation and the testing set for computing goodness-of-fit 

measures. Three case studies consisting of large crash datasets showed that the KR method has 
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relatively better performance than its parametric counterpart. This could be due to the KR 

method potentially reducing the modeling bias of the NB model by imposing no specific model 

structure on the expected crash frequency other than considering of a smoothing parameter, 

i.e., bandwidth.  

 

Next, we compared the performance of these two methods (KR and NB) in extracting the 

underlying relationship between crashes and various risk factors. As the KR method does not 

contain any variable specific interpretable parameters to quantify their effects, we generated 

partial regression plot for each factor. The nonparametric method was shown to be successful 

in capturing some sensible nonlinear effects of various factors on crashes. This could be the 

main reason that in the comparison of goodness-of-fit measures, the KR method showed better 

results. 

 

 Examined the relative performance of crash models using parametric and nonparametric 

techniques for varying data size 
The nonparametric approach is often characterized as a data-hungry technique as it requires a 

relatively large dataset to exhibit performance advantage.  However, no study was found in 

road safety literature that involved comparing the performance of this approach with the 

parametric counterpart in relation to changing data size. Despite the data-hungry nature of the 

nonparametric method, studying its relative performance could provide insights into the 

selection of an appropriate crash modeling technique. Therefore, this motivated us to develop 

a bootstrap-based validation algorithm to investigate their relative performance. The algorithm 

was designed such that the original dataset was repetitively resampled to obtain its subsets with 

varying sample sizes, which were subsequently used for performance comparison of the KR 

and the NB methods. Through a rigorous bootstrapping validation process, we found that the 

two approaches exhibit strikingly different patterns in terms of sensitivity to data size. The 

performance of the KR method improved significantly as the data size grew, which was not the 

case for the NB model. This finding is a good indication for the future application of the data-

hungry nonparametric approaches as an alternative to the traditional parametric models since 

high-quality crash data are growing steadily in size due to latest advancement in information 

technologies.   
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 Developed a framework for network screening using nonparametric approach and 

compared it to its parametric counterpart 

In this thesis, we demonstrated the practical application of the KR method as an alternative 

data-driven nonparametric method for network screening, including ranking of highway 

sections based on their relative risk and selection of crash hotspots. The nonparametric method 

was employed under the two popular network screening frameworks, i.e., regression-based and 

EB-based. For comparison purposes, we also considered the traditional NB model for the same 

analysis. A case study was conducted using crash data from the busiest highway in Canada - 

Highway 401.  

The comparative results in terms of ranking of sites and identification of hotspots showed that 

the nonparametric and parametric approaches have more similarities when applied in the EB-

based framework, irrespective of the ranking measures, than in the regression-based 

framework. Meanwhile, their differences under the regression-based framework were 

relatively high for the crash rate ranking measure. Similar results were obtained while 

comparing their crash hotspots. One of the reasons for obtaining similar results using 

nonparametric and parametric methods under the EB-based framework could be the inclusion 

of site-specific crash counts while estimating the crash risk. It was also noted that the difference 

in the list of crash hotspots from the two methods decreased as the percentile of site selection 

increased, thereby suggesting that the choice of crash modeling approach could be of less 

importance while considering a relatively large number of sites. While the true ranking results 

and crash hotspots were not known in the comparisons, those from the nonparametric method 

(regression-based or EB-based) are expected to be relatively unbiased due to their higher 

performance as concluded in our previous findings.  

 

 Developed a framework for countermeasure study using nonparametric approach and 

compared it to its parametric counterpart 

This thesis demonstrated the application of the KR method as an alternative to the traditionally 

used parametric models to countermeasure study, which involves determining the safety 

effectiveness of treatment measures. The two popular approaches, the before-after EB study 

and the cross-sectional study, were considered using the parametric (i.e., NB model) and 

nonparametric (i.e., KR method) methods.  
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A case study using crash data of railway-highway grade crossing in Canada under the before-

after study framework was presented to determine the CMFs of a set of selected 

countermeasures. While the parametric models, especially the NB model, has been extensively 

used under this framework, no study has attempted applying nonparametric models for similar 

study. As expected, the two different crash modeling techniques showed a slight variation in 

their results. Similarly, we also performed a case study of cross-sectional study using crash 

data of a highway in Ontario, Canada. The fundamental difference between the results from 

these two approaches were such that the CMFs from the KR method were able to capture 

sensitivity to traffic levels whereas the NB model showed no such effect. Furthermore, for 

determining the CMF of multiple countermeasures, unlike the NB model, the KR method did 

not require any assumptions to combine the effect of multiple countermeasures. In all these 

studies, it is expected that the performance of the selected crash model, nonparametric or 

parametric, has a direct influence on the values of CMFs. 

7.2 Future Works  

The following are some of the recommendations for future studies on extending this research.  

 Develop a data-driven system to road safety analyses 

In this thesis, we demonstrated the potential applications of kernel regression including its 

extended form in an EB approach to road safety analyses, particularly for network screening 

and countermeasure study. Future works could involve developing a data-driven automated 

system that performs all the steps involved in these analyses on a single platform. For this, we 

could divide the system into two main modules: the first related to data handling, such as 

connecting the system to a continuous flow of data from different sources followed by data 

processing and data integration; and the second related to the modeling and application part by 

following the frameworks presented in this thesis. By connecting these two modules, we could 

automate the entire process and most importantly, take a unique advantage of its high adaptive 

property to newly collected information. For example, in network screening, the crash hotspots 

list is expected to change as site-specific crash history and/or site characteristics change. 

Through this proposed data-driven system, soon after we have new crash data, which could be 

collected in a yearly basis, the new crash hotspots list can be easily updated.  However, one of 

the challenges while developing this system, especially for a large data size as desired for better 

performance, is the need for a relatively powerful computation environment. This is because 
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the application of the KR method, being fully data-driven, involves the use of all the data points 

when making a prediction.  

 

 Explore alternative methods to improve the performance of kernel regression 

The “Nadaraya-Watson” kernel regression proposed in this thesis could be improved or 

extended in several aspects. First, we can investigate the use of the cross-validation approach 

to determine bandwidths as it is known to provide relatively less biased results. However, this 

approach of bandwidth calculation involves a large number of computations given its direct 

correlation to the variable dimension and the data size. Therefore, this approach may demand 

a high computation environment. Second, we could apply the locally weighted local 

polynomial regression (LWLPR) introduced by Fan (1993), which is an extended version of 

the “Nadaraya-Watson” KR method. Comparatively, the LWLPR method is known to have 

better performance at the boundary of the regression space; however, it could be interesting to 

explore if their difference in overall performance is significant, especially in the case of big 

data size.  

 

 Compare performance of methods related to kernel approach (spatial and non-spatial)  

in road safety studies 

As in any parametric count models, the KR method also has a limitation in accounting the 

spatial correlations of crashes in the road network while estimating their crash risk. By contrast, 

the kernel density estimate (KDE) method when applied in a spatial framework does take into 

account of their spatial correlations. This KDE method is simple, and therefore, quite popular 

in network screening for determining the crash hotspots. However, as it is a univariate 

technique, this method does not consider the effects of external factors in its risk calculations 

(Thakali et al., 2015)10. With these three alternative nonparametric methods of kernel type, i.e., 

KDE, KR and KR-based EB methods, it would be interesting to compare their performances 

and explore how the results vary across the methods.  

                                                      

10 Thakali, L., Kwon, T. J., & Fu, L. (2015). Identification of crash hotspots using kernel density estimation and 

kriging methods: a comparison. Journal of Modern Transportation, 23, 93–106.  
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Appendix A 

 

A.1  EB Estimate based on Bayesian approach  

Applying Bayes’ rule with crash count (K) Poisson distributed and mean crash frequency (k) gamma 

distributed with parameter a and b, we obtain the following expressions: 

 

Property of a gamma distributed random variable (here k) with parameters a and b 

𝐸(𝑘) = 𝑏/𝑎 

𝑉𝑎𝑟(𝑘) = 𝑏/𝑎2 
 

Then,  

𝑎 =  
𝐸(𝑘)

𝑉𝑎𝑟(𝑘)
 ; 𝑏 =  

𝐸(𝑘)2

𝑉𝑎𝑟(𝑘)
 

 

Applying Baye’s rule 

𝑬(𝒌/𝑲) =  
𝑲+𝒃

𝟏+𝒂
  (EB estimate) 

 

    

Re-arranging above expression for E(k/K), the results are same as in the derivation in A.2   

𝐸(𝑘/𝐾) =  
𝐾 +

𝐸(𝑘)2

𝑉𝑎𝑟(𝑘)

1 +
𝐸(𝑘)

𝑉𝑎𝑟(𝑘)

 

 

𝐸(𝑘/𝐾) =  
𝐾 × 𝑉𝑎𝑟(𝑘) + 𝐸(𝑘)2

𝑉𝑎𝑟(𝑘) + 𝐸(𝑘)
 

 

𝐸(𝑘/𝐾) =  
𝐾 × 𝑉𝑎𝑟(𝑘)

𝑉𝑎𝑟(𝑘) + 𝐸(𝑘)
+  

𝐸(𝑘)2

𝑉𝑎𝑟(𝑘) + 𝐸(𝑘)
 

 

𝐸(𝑘/𝐾) =  
𝐾 × 𝑉𝑎𝑟(𝑘)

𝑉𝑎𝑟(𝑘) + 𝐸(𝑘)
+  

𝐸(𝑘) × 𝐸(𝑘)

𝑉𝑎𝑟(𝑘) + 𝐸(𝑘)
 

 

𝐸(𝑘/𝐾) =  
𝐾 × 𝑉𝑎𝑟(𝑘)

𝑉𝑎𝑟(𝑘) + 𝐸(𝑘)
+  

𝐸(𝑘)

𝑉𝑎𝑟(𝑘)/𝐸(𝑘) + 1
 

 

𝑬(𝒌/𝑲) =  𝑲(𝟏 − 𝒘) +  𝑬(𝒌)𝒘 
  

where,  

𝒘 =  
1

1+
𝑉𝑎𝑟(𝑘)

𝐸(𝑘)

 ; 𝟏 − 𝒘 = 1 −
1

𝑉𝑎𝑟(𝑘)

𝐸(𝑘)
+1

=  
𝑉𝑎𝑟(𝑘)

𝑉𝑎𝑟(𝑘)+𝐸(𝑘)
 

Note: Inputs to the expression of “w” is the E(k) and Var(k).        
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A.2 EB estimate based on approach of combining two random variables  

Adding two random variables of different precision 

Let X and Y be two independent random variables with variances VAR(X) and VAR (Y) and 𝑤 a 

constant. Let us define a new variable Z as: 

𝑍 =  𝑤𝑋 + (1 − 𝑤)𝑌; then 

𝑉𝑎𝑟(𝑍) =  𝑤2𝑉𝑎𝑟(𝑋) + (1 − 𝑤)2𝑉𝑎𝑟(𝑌) 
 

Determining weight 

The value of 𝑤 is determined by minimizing sum of square deviance (i.e., Var(Z)) as follows   

𝑑𝑉𝑎𝑟(𝑍)

𝑑𝑤
= 2 × 𝑤 × 𝑉𝑎𝑟(𝑋) − 2 × (1 − 𝑤) × 𝑉𝑎𝑟(𝑌) = 0; Therefore 

𝑤 =  
𝑉𝑎𝑟(𝑌)

𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌)
,   or 

𝑤 =  

1
𝑉𝑎𝑟(𝑋)

1
𝑉𝑎𝑟(𝑋)

+
1

𝑉𝑎𝑟(𝑌)

 

1 − 𝑤 =  

1
𝑉𝑎𝑟(𝑌)

1
𝑉𝑎𝑟(𝑋)

+
1

𝑉𝑎𝑟(𝑌)

 

This suggests that the weights 𝑤 and 1 − 𝑤 are inversely proportional to the variance of the two 

random variables. 

Now replacing the above notation with two independent estimates i.e., estimate from a crash model 

and observed crash counts: 

X:  corresponds to E(k) (model estimate) and Var(X) to Var (k) (in the reference population of  k, mean 

is E(k) and variance is Var(k) as all k’s may not be same. 

Y: corresponds to K (crash count) 

𝑤 =  

1
𝑉𝑎𝑟(𝑘)

1
𝑉𝑎𝑟(𝑘)

+
1

𝑉𝑎𝑟(𝐾)

 

 

Assuming crash count, “K”, follows a Poisson distribution with a mean “k”, from its equal mean 

variance relation, the Var(K)= k. Therefore,  
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𝑤 =  
1

1 +
𝑉𝑎𝑟(𝑘)

𝐸(𝑘)

 

Hauer (1997) mentioned that “The merit of derivation is in that it does not require any assumptions 

about the distribution of the k’s in the reference population and agrees with the result of the derivation 

in which one assumes that the k’s are gamma distributed”.  

 

A.3 Variance-mean relation  

We refer to Hauer’s (2015) and Hauer’s (1997) derivation to estimate a relation between variance “Var 

(k)” and mean “E(k)” of an estimate mentioned in previous relation to determine the  weight (w).  

 

Let’s say we have two random variables- X and Y. From the law of total variance, we get following 

relation: 

𝑉𝑎𝑟(𝑌) = 𝐸[𝑉𝑎𝑟(𝑌|𝑋)] + 𝑉𝑎𝑟[𝐸(𝑌|𝑋)]         (A.3.1) 

This fundamental concept is applied in following derivation by replacing k- mean crash frequency from 

a model for X and K- observed crashes for Y.  

 

The logic here is “k” and “K” are considered random variables for the following reasons: k obtained 

as mean crash frequency from a crash model provides an estimate by relating to some safety related 

factors. However, the mean crashes (i.e., “k”), across units (road sections or intersections) belonging to 

same populations could vary as there may be many other excluded unit specific factors.  Therefore, k 

of units from the same population are expected to vary. Meanwhile, we also know that crash counts 

(i.e., “K”) are random and we normally use Poisson distribution to describe the process. Now, by 

replacing k for the value of X and K of Y in above expression we get: 

𝑉𝑎𝑟(𝐾) = 𝐸[𝑉𝑎𝑟(𝐾|𝑘)] + 𝑉𝑎𝑟[𝐸(𝐾|𝑘)]      (A.3.2) 

 

Using the property of Poisson distribution, we have following relation for a unit case “i”: 

𝑉𝑎𝑟(𝐾𝑖|𝑘𝑖) = 𝑘𝑖 and therefore first summand equals to  𝐸(𝑘)  

𝐸(𝐾𝑖|𝑘𝑖) = 𝑘𝑖  and therefore, second summand equals to 𝑉𝑎𝑟(𝑘) 
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For each unit, it follows that 

 

𝑉𝑎𝑟(𝐾) = 𝐸(𝑘) + 𝑉𝑎𝑟(𝑘) ; Or   𝑉𝑎𝑟(𝑘) = 𝑉𝑎𝑟(𝐾) − 𝐸(𝑘)    (A.3.3) 

where,  

𝑉𝑎𝑟(𝐾) is variance of crash counts and  

𝐸(𝑘) is mean of crash frequency obtained from the crash model 

 

Imagining population where each road segment (row in dataset) is a sample of one, we can estimate the 

variance of crash counts, i.e., Var (K), by the square difference (SD) between the observed crash counts 

(K) and fitted values (k) (References: Hauer (2015) p. 207 and Hauer (1997) p. 202).   

𝑉𝑎𝑟(𝐾) = 𝑆𝐷         (A.3.4) 

where, SD =  (𝐾 − 𝑘)2          

From Eq. A.3.3 and Eq. A.3.4, we obtain final expression for 𝑉𝑎𝑟(𝑘)as: 

𝑉𝑎𝑟(𝑘) = 𝑆𝐷 − 𝐸(𝑘)        (A.3.5) 
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Appendix B 

 
B.1: Geographical locations of case studies. 

 

Case 1: Highway 401, Ontario 

 

Case 2: 31 highway patrol routes, Ontario 

 

B.2: Total annual crash counts in Highway 401 based on crash severities  

 

B.3: Crashes after geocoding-Highway 401   
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B.4: Distribution of annual crash counts  

 

B.5: Distribution of distance between HS sections and the nearest traffic count locations  
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B. 6: Histogram of factors included in case 1 dataset: Highway 401 
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B. 7: Histogram of factors included in Case 2 dataset: 31 patrol routes, Ontario 
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B. 8: Histogram of factors included in Case 3 dataset: Two-lane rural roads, Colorado 

 

 

B.9: Summary of crash models 

Variables 

NB KR 

Coefficient 

estimate 

Std. 

error 
t-value* p-value Bandwidth 

(a)  Case study 1: Highway 401, Ontario (2000-2008) 

Intercept -1.04 0.16 -6.52 <0.001   

ln(Exposure) (MVK) 0.82 0.02 49.91 <0.001 21.08 

AADT (Commercial) (veh/day) 0.0001 0.00 20.57 <0.001 2621 

Median Width (m) -0.02 0.003 -6.16 <0.001 2.397 

Shoulder width- left (m) -0.09 0.01 -8.44 <0.001 0.465 

Shoulder width - right(m) 0.16 0.05 3.32 <0.001 0.111 

Curve deflection (1/km)  -0.17 0.04 -3.78 <0.001 0.135 

theta 1.94 0.06       

AIC 25461    

MAE 11.86 7.34 

RMSE 26.64 14.81 

(b)  Case study 2: 31 patrol routes, Ontario (2000-2006) 

(Intercept) -2.58 0.08 -30.83 <0.00   

log(exposure) in '0000 veh km 0.72 0.02 43.58 <0.00 2.227 

RSI -2.83 0.09 -33.06 <0.00 0.054 
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Variables 

NB KR 

Coefficient 

estimate 

Std. 

error 
t-value* p-value Bandwidth 

Precipitation (cm/hr) 0.01 0.06 0.27 0.789 1.532 

Visibility (km) -0.04 0.00 -12.03 <0.00 2.649 

Wind speed (km/hr) 0.01 0.00 4.00 <0.00 2.170 

Temperature © -0.0001 0.00 -0.02 0.983 1.530 

theta 0.27 0.02       

AIC 24372   

MAE 0.046 0.031 

RMSE 0.137 0.178 

(c)    Case study 3:  Two-lane rural roads, Colorado State (1991-1998) 

Intercept -8.03 0.07 -121 <0.001   

ln(AADT) (veh/day) 0.95 0.01 115.6 <0.001 423.48 

ln(Length) (km) 1.07 0.01 119.7 <0.001 0.4 

theta 2.1597 0.0631       

AIC 74377   

MAE 0.781 0.752 

RMSE 1.529 1.333 

Note: log function is not applicable for the KR bandwidths; MVK is million-vehicle-kilometer 

travelled, theta is 1/𝛼, t-value* is equivalent to z-value when sample size is large. 

 

 

B.10: Dataset summary- nonlinear model 

 y x1 x2 x3 x4 error 

Min. 1.00 4.94 2.88 3.73 2.94 1.98 

Mean 4.77 20.22 20.11 19.88 20.06 0.01 

Max. 13.87 35.86 37.08 35.86 36.67 1.62 
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B.11: Dataset summary- nonlinear model 

 y x1 x2 x3 x4 error 

Min. 1.00 4.94 2.88 3.73 2.94 1.98 

Mean 4.77 20.22 20.11 19.88 20.06 0.01 

Max. 13.87 35.86 37.08 35.86 36.67 1.62 

 

B.12: Variable Importance (VIs) of simulated datasets 
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B.13: Framework for bootstrap-based validation 
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B.14 Boxplots- (a), (b) and (c) represent RMSE of KR method for case study 1, 2 and 3, respectively; 

(d), (e) and (f) represent RMSE of NB model for case study 1, 2 and 3, respectively. 
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B.15 Relation of relative crash risk and skid-resistance (i.e., friction) (Wallman & Astrom, 2001) 
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Appendix C 

 

C. 1: Summary results of model 

Variables 

NB model   KR 

Coefficients 

estimate 
Std. error t-value p-value Bandwidth 

Intercept -1.16 0.15 -7.528 <0.001  

ln(exposure) (MVK) 0.84 0.02 50.75 <0.001 21.08 

AADT (Commercial) 

(veh/day) 5E-05 0.00 18.69 <0.001 
2621 

Median width (m) -0.01 0.00 -5.23 <0.001 2.397 

Shoulder width- left (m) -0.10 0.01 -9.14 <0.001 0.465 

Shoulder width- right (m) 0.16 0.04 3.51 <0.001 0.111 

Curve deflection (1/km)  -0.09 0.05 -1.69 0.052 0.135 

Dispersion parameter (𝛼)       

Intercept -0.51 0.03 -15.10 <0.001  

Length (km) -0.83 0.04 -20.11 <0.001  

AIC        19303  
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Appendix D 

 
 

Before-after study 

D.1: Summary of datasets based on control types (2009-2013) 

  

Train 

Volume  

(train/day) 

Traffic 

Volume 

(veh/day) 

Total 

Exposure 
Tracks Lanes 

Road 

Speed 

(km/hr) 

Train 

Max Speed  

(km/hr) 

Crashes 

Passive crossings  

Mean 6.14 259.53 698.03 1.12 1.81 65.51 54.64 0.04 

Std.dev 8.27 1130.37 4551.51 0.41 0.44 21.66 27.82 0.22 

Min 0.01 1 0.01 1 1 5 1.609 0 

Max 55 24990 313200 9 6 100 160.9 4 

Sample Size: 8018 

FLB 

Mean 5.89 2634.50 9830.47 1.12 2.14 62.74 51.67 0.07 

Std.dev 6.68 5139.69 22538.01 0.43 0.62 18.37 26.73 0.31 

Min 0.01 5 0.25 1 1 5 8.045 0 

Max 46 71500 432900 6 6 110 128.72 4 

Sample Size: 4038 

FLBG 

Mean 20.45 4088.81 67053.90 1.58 2.22 60.43 87.93 0.13 

Std.dev 15.90 6444.92 149445.21 0.76 0.75 16.64 39.54 0.39 

Min 0.01 5 25 1 1 5 8.045 0 

Max 162 51000 3000000 7 7 100 160.9 4 

Sample Size: 2324 
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D.2: Summary results of full crash models 

Variables 

NB model KR method 

Coefficient 

estimate 

Std. 

error 
t-value p-value Bandwidth 

Passive crossing 

(Intercept) -7.24 0.37 -19.71 <0.001 2.43 

log(Train volume) 0.52 0.07 7.04 <0.001 332.04 

log(Vehicle volume) 0.52 0.04 13.39 <0.001 8.17 

Train speed 0.01 0.00 2.49 0.01 6.36 

Road speed 0.01 0.00 3.02 0.00   

theta 0.54 0.147       

AIC 2431.7  

MAE 0.074 0.045  

Sample size 8018 

FLB crossing 

(Intercept) -7.84 0.47 -16.56 <0.001   

log(Train volume) 0.60 0.08 7.95 <0.001 2.14 

log(Vehicle volume) 0.49 0.05 9.01 <0.001 1644.92 

Train speed 0.00 0.00 1.64 0.100 8.56 

Lanes 0.23 0.08 2.91 0.004 0.20 

theta 0.85 0.26       

AIC 1975   

MAE 0.129 0.073 

Sample size 4038 

FLBG crossing 

(Intercept) -5.78 0.45 -12.73 <0.001   

log(Train volume) 0.63 0.09 7.02 <0.001 4.85 

log(Vehicle volume) 0.30 0.04 7.02 <0.001 1966.11 

Train speed 0.00 0.00 -1.67 0.0948 12.06 

theta 1.22 0.44       
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Variables 

NB model KR method 

Coefficient 

estimate 

Std. 

error 
t-value p-value Bandwidth 

AIC 1763   

MAE 0.217 0.13 

Sample size 2324 

Note: for KR bandwidth, ignore the log function.  

 

D.3: Summary results of Traffic-only crash models 

Variables 

NB model KR method 

Coefficient 

estimate 

Std. 

 error 
t-value p-value Bandwidth 

Passive crossing 

(Intercept) -6.03 0.22 -27.45 <0.001   

log(Train volume) 0.68 0.05 12.48 <0.001 1.74 

log(Vehicle volume) 0.45 0.03 13.46 <0.001 243.44 

theta 0.48 0.123       

AIC 2448   

MAE 0.075 0.048 

Sample size 8018 

FLB crossing 

(Intercept) -7.34 0.40 -18.32 <0.001   

log(Train volume) 0.64 0.07 9.53 <0.001 1.61 

log(Vehicle volume) 0.52 0.05 11.60 <0.000 1240.96 

theta 0.81 0.24       

AIC 1982   

MAE 0.13 0.082 

Sample size 4038 

FLBG crossing 

(Intercept) -6.04 0.43 -14.10 <0.000   
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Variables 

NB model KR method 

Coefficient 

estimate 

Std. 

 error 
t-value p-value Bandwidth 

log(Train volume) 0.56 0.08 7.08 <0.000 4.21 

log(Vehicle volume) 0.32 0.04 7.97 <0.000 1706.19 

theta 1.206 0.436       

AIC 1763   

MAE 0.217 0.139 

Sample size 2324 

Note: for KR bandwidth, ignore the log function. 

 

D. 4:  mean- variance relation for all crossing types (use in EB estimate) 

 

 Mean-variance relation- with passive control (bandwidth= 0.006) 
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Mean-variance relation- FLB (bandwidth= 0.018) 

 

Mean-variance relation- FLBG (bandwidth= 0.019)  

D.5: Crash modification (CMF) and crash reduction factors (CRF) based on different studies 

 Study reference Passive to FLB Passive to FLBG 

Park (2007) - 0.35 (65) 

Saccomanno and Lai (2005)  0.42(58) 0.37 (63) 

U.S. DOT (1980)* 0.30(70) 0.17 (83) 

California (1974)* 0.36(64) 0.12 (88) 

Hedley (1952)* 0.37(63) 0.04 (96) 

*FHWA (2015); values in parenthesis indicates percentage of crash reduction 
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Cross-sectional study  

D.6: Histogram of traffic volume (AADT) in Highway 401 dataset, for other factors refer to B.6. 

 

 

D.7: Bandwidths for KR method 

Variable Bandwidth 

AADT (veh/day) 35700 

AADT (Commercial) (veh/day) 2620 

Median width (m) 2.4 

Shoulder width- left (m) 0.466 

Shoulder width- right (m) 0.11 

Curve deflection (per km) 0.126 

 

D.8: CMFs from KR method  

Variable  

Low Traffic 

(AADT- 12000; 

Commercial AADT- 

5250 

Medium Traffic 

(AADT- 37000; 

Commercial AADT- 

15750 

High Traffic 

(AADT- 67000; 

Commercial AADT- 

22750 

Average 

CMF 

CMF 
Std. 

error 
CMF 

Std. 

error 
CMF 

Std. 

error 

Median width 

5 1.00 0.087 1.00 0.13 1.00 0.334 1.00 
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Variable  

Low Traffic 

(AADT- 12000; 

Commercial AADT- 

5250 

Medium Traffic 

(AADT- 37000; 

Commercial AADT- 

15750 

High Traffic 

(AADT- 67000; 

Commercial AADT- 

22750 

Average 

CMF 

CMF 
Std. 

error 
CMF 

Std. 

error 
CMF 

Std. 

error 

10 0.97 0.067 0.88 0.09 1.22 0.408 1.02 

15 0.67 0.045 0.68 0.06 0.66 0.586* 0.67 

20 0.75 0.050 0.59 0.07 0.45 0.385 0.60 

25 0.96 0.075 0.49 0.05 0.27 0.358 0.57 

30 1.56 0.130 0.69 0.18 0.31 3.14* 0.85 

Shoulder width- left 

1 1.00 0.080 1.00 0.12 1.00 0.334 1.00 

2 1.27 0.189 1.17 0.12 0.73 0.189 1.06 

3 1.81 0.261 1.49 0.14 0.86 0.209 1.39 

4 1.60 0.550 1.66 0.2 1.17 0.329 1.48 

5 1.92 0.860 0.98 0.49 1.55 2.244* 1.48 

Shoulder width- right 

3 1 0.087 1 0.12 1 0.33 1.00 

3.5 1.98 0.880* 0.83 0.14 2.94 0.96* 1.92 

4 1.21 0.139 0.87 0.39 5.90 29.44* 2.66 

Curve deflection 

0 1.00 0.087 1.00 0.13 1 0.33 1.00 

0.4 0.71 0.100 0.60 0.15 0.64 0.88* 0.65 

0.5 0.69 0.080 0.67 0.25 1.13 1.71* 0.83 

0.6 0.71 0.080 1.15 0.51* 2.7 2.34* 1.52 

0.7 0.81 0.115 2.44 0.95* 3.18 1.79* 2.14 

0.8 1.14 0.214 3.88 1.13* 2.69 1.28* 2.57 

0.9 1.85 0.370 4.14 1.5* 2.09 1* 2.69 

1 2.03 0.448 3.49 1.67* 1.61 0.88* 2.38 

1.25 0.51 0.220 1.87 3.16* 1.00 1.36* 1.13 
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Variable  

Low Traffic 

(AADT- 12000; 

Commercial AADT- 

5250 

Medium Traffic 

(AADT- 37000; 

Commercial AADT- 

15750 

High Traffic 

(AADT- 67000; 

Commercial AADT- 

22750 

Average 

CMF 

CMF 
Std. 

error 
CMF 

Std. 

error 
CMF 

Std. 

error 

1.5 0.70 0.80* 0.62 10.51* 0.88 14.07* 0.73 

Note: * represents CMF with standard error >0.5  

 

D.9: CMFs from NB model 

Variable CMF 

Std. error 

Park & Abdel-Aty 2015 Bahar (2010) 

Median width 

5 1.00 

0.003 0.005 

10 0.90 

15 0.82 

20 0.74 

25 0.67 

30 0.61 

Shoulder width- left 

1 1.00 

0.01 0.022 

2 0.91 

3 0.84 

4 0.76 

5 0.70 

Shoulder width- right 

3 1 

0.055 0.095 3.5 1.08 

4 1.17 

Curve deflection 
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Variable CMF 

Std. error 

Park & Abdel-Aty 2015 Bahar (2010) 

0 1.00 

0.037 0.088 

0.4 0.93 

0.5 0.92 

0.6 0.90 

0.7 0.89 

0.8 0.87 

0.9 0.86 

1 0.84 

1.25 0.81 

1.5 0.77 
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Appendix E 

Codes in R 

E.1. Bootstrap-based variable selection approach 

1. Generate a simulated dataset  

# providing the location of a folder to save outputs. 

setwd("C:\\Users\\Lalita\\Dropbox\\4. WorkingFolder\\6. Simulation\\VariableSelection")  

library("np") 

n= 1000 

X1<- rnorm(n, mean= 20, sd= 5) 

X2<- rnorm(n, mean= 20, sd= 5) 

X3<- rnorm(n, mean= 20, sd= 5) 

X4<- rnorm(n, mean= 20, sd= 5) 

error<- rnorm(n, mean= 0, sd= 0.5) 

# assume a nonlinear model form 

Y<- exp(0.05* X1+0.03*X2-0.025*X3+0.00*X4)+error  

dataB<- data.frame(Y1, X1, X2, X3, X4)  

summary(dataB)    

2. Estimate performance indicators following the variable selection algorithm described in Chapter 

3 

# Select m independent variables randomly  

m<- 4 # vary this value depending on the numbers of potential variables in a given dataset 

#randomize columns of predicting variables  

dataC<-dataB[,sample(2:ncol(dataB), m, replace=FALSE)]. 

dataD <- cbind(dataB[, 1],dataC) # combine fields 

# rename field "Y” as “accident” to be consistent with other crash related datasets 

names(dataD)[1]<- "accident"  

    SAD.B <- as.data.frame(matrix(0, ncol = m+1, nrow = ))  

# create an empty dataframe for storing the results; +1 is for test statistics 

SSD.B <- as.data.frame(matrix(0, ncol = m+1, nrow = )) 

nn<- length(dataD$accident) 

for (boot in 1:100) { 

      train_id<- sample(1:nrow(dataD), round(0.8*nn ,0),replace=FALSE) 
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      dataTrainBoot<- dataD[train_id, ] # 80% of training sets   

      dataTestBoot<- dataD[-train_id, ] 

      X<- dataTrainBoot[,-1]  

      Y<- dataTrainBoot[, 1] 

dataTestX<- dataTestBoot[, -1] # select only the predicting variables to permute 

     dataTestY<- dataTestBoot[, 1] 

      # bandwidths  

      di= m 

      n<- length(dataTrainBoot$accident) 

      c2= (4/((2*di+1)*n))^(1/(di+4)) 

      bww<- c() 

       for (i in 1:m){ 

         bww[i]<- sd(X[, i])} 

      bw<- bww*c2 

      Model<- npreg(txdat= X, tydat= Y, bws= bw, bandwidth.compute= FALSE)        

# Estimate percentage of error using test dataset 

PredictTest<- predict(Model, exdat= dataTestX)        

      function.SAD<- function(predict, actual) { # sum of absolute deviation 

      SAD<- sum(abs(predict-actual)) 

      return(SAD) } 

SAD.Test<- function.SAD(PredictTest, dataTestY)   

         function.SSD<- function(predict, actual) {# sum of square deviation 

         SSD<- sum((predict-actual)^2) 

        return(SSD) }       

SSD.Test<- function.SSD(PredictTest, dataTestY) 

SAD.Perm<- c() # created to sort the results after permuting each variable in the steps 

described below 

SSD.Perm<- c() 

# Permute each variable, one at a time. 

for (VarPer in 1:m) { 

Z1<- as.vector(dataTestX[[VarPer]]) #create a vector  

Z2<- data.frame(sample(Z1, replace = FALSE)) #permute a selected variable  
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       names(Z2)[1]<-names(dataTestX)[VarPer] #making variable name consistent 

        # Arrange the dataset such that the position of Z2 goes to its original position 

         if (VarPer==1){ 

           Z3<- data.frame(c(Z2, dataTestX[(VarPer+1):m]))} # VarPer=1 

         else if (VarPer< m){ 

            Z3<- data.frame(c(dataTestX[1:(VarPer-1)],Z2, dataTestX[(VarPer+1):m]))}  

         else {  

           Z3<- data.frame(c(dataTestX[1:(VarPer-1)],Z2))} # VapPer= m 

        PredictPermu<- predict(Model, xdat= X, ydat= Y, exdat= Z3)  

        SAD.Perm[VarPer]<- function.SAD(PredictPermu, dataTestY)  

        SSD.Perm[VarPer]<- function.SSD(PredictPermu, dataTestY) 

} 

 SAD.B[boot, ]   <- c(SAD.Perm, SAD.Test)  

# combine outputs—permutation and test statistics— for each bootstrap sample  

 for (name in 1:m){ 

 names(SAD.B)[name]<-names(Z3)[name] } 

 SSD.B[boot, ]   <- c(SSD.Perm, SSD.Test) 

 for (name in 1:m){ 

 names(SSD.B)[name]<-names(Z3)[name]} 

 print(paste("bootstrap", boot)) 

    } 

  # Extract output files   

 write.csv(SAD.B, file= "TestResultSAD.csv")  

 write.csv(SSD.B, file= "TestResultSSD.csv") 

3. Calculate variable importance (VI) 

# Use excel spreadsheet to calculate VIs using output files from step 2. Note that results are 

presented based on SAD measure. Similar trends were observed using the SSD.   
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E.2. Bootstrap-based validation algorithm 

setwd("C:\\Users\\Lalita\\Dropbox\\4.WorkingFolder\\2.RegressionYearly\\1.Regression\\Bootstrapin

g-MAE") 

datanb= read.csv("401C_Y_Model_00-06.csv", header= TRUE) 

testing<- read.csv("401C_Y_07-08.csv", header= TRUE) 

MAE.np.v<- c() 

RMSE.np.v<- c() 

MAE.p.v<- c() 

RMSE.p.v<- c() 

# create four dataframes for storing the values of goodness-of-fit measures (MAE and RMSE) for the 

KR (np) and NB (p) models.  

# MAE dataframe for KR method 

Data.MAE.np.v <- data.frame(Split5= numeric(0), Split10= numeric(0), Split15= numeric(0), Split20= 

numeric(0), Split25= numeric(0), Split30= numeric(0), Split35= numeric(0), Split40= numeric(0), 

Split45= numeric(0), Split50= numeric(0), Split55= numeric(0),Split60= numeric(0), Split65= 

numeric(0), Split70= numeric(0), Split75= numeric(0), Split80= numeric(0), Split85= numeric(0), 

Split90= numeric(0), Split95= numeric(0)) 

  

# RMSE dataframe for KR method 

Data.RMSE.np.v <- data.frame(Split5= numeric(0), Split10= numeric(0), Split15= numeric(0), 

Split20= numeric(0), Split25= numeric(0), Split30= numeric(0), Split35= numeric(0), Split40= 

numeric(0), Split45= numeric(0), Split50= numeric(0), Split55= numeric(0),Split60= numeric(0), 

Split65= numeric(0), Split70= numeric(0), Split75= numeric(0), Split80= numeric(0), Split85= 

numeric(0), Split90= numeric(0), Split95= numeric(0)) 

 

# MAE dataframe for NB model 

Data.MAE.p.v <-data.frame(Split5= numeric(0), Split10= numeric(0), Split15= numeric(0), Split20= 

numeric(0), Split25= numeric(0), Split30= numeric(0), Split35= numeric(0), Split40= numeric(0), 

Split45= numeric(0), Split50= numeric(0), Split55= numeric(0),Split60= numeric(0), Split65= 

numeric(0), Split70= numeric(0), Split75= numeric(0), Split80= numeric(0), Split85= numeric(0), 

Split90= numeric(0), Split95= numeric(0)) 
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# RMSE dataframe for NB model 

Data.RMSE.p.v <- data.frame(Split5= numeric(0), Split10= numeric(0), Split15= numeric(0), Split20= 

numeric(0), Split25= numeric(0), Split30= numeric(0), Split35= numeric(0), Split40= numeric(0), 

Split45= numeric(0), Split50= numeric(0), Split55= numeric(0),Split60= numeric(0), Split65= 

numeric(0), Split70= numeric(0), Split75= numeric(0), Split80= numeric(0), Split85= numeric(0), 

Split90= numeric(0), Split95= numeric(0)) 

 

for (boot in 1: 100){ 

s<- 0.05 # initialize percentage split as 5% 

for (i in 1:19) {    # a total of 19 splits between 5% to 95%     

training <- datanb[sample(1:nrow(datanb),size= trunc(2927*s), replace= FALSE),]  

# total sample size of model dataset (2000-2006) is 2927                  

#Read data 

 attach (training) 

n= length (A_count) # of training set 

     b<- Exposure 

     ci<- AADT_Comm 

     d<- MEDIAN_WID 

      e<- MED_SHLDWI 

      f<- SHLD_WIDTH 

       g<- Deflection        

 # Bandwidths 

di= 6 

c2= (4/((2*di+1)*n))^(1/(di+4)) 

bw<- c(c2*sd(b), c2*sd(ci), c2*sd(d), c2*sd(e), c2*sd(f),c2*sd(g))    

detach (training) 

# KR method 

library(np) 

model.np<-

npreg(A_count~Exposure+AADT_Comm+MEDIAN_WID+MED_SHLDWI+SHLD_

WIDTH+Deflection,bws= bw, data= training, bandwidth.compute= FALSE)  

MAE.np.m[i]<- model.np$MAE 
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RMSE.np.m[i]<- sqrt(model.np$MSE) 

 # Validation-  KR method 

predict.np<- predict(model.np, data= training, newdata=testing) 

error.np<- testing$A_count-predict.np 

nt<- length(testing$A_count) 

MAE.np.v[i]<- sum(abs(error.np))/nt 

RMSE.np.v[i]<- sqrt(sum(error.np^2)/nt) 

# NB model 

 library(MASS) 

 model.p<-

glm.nb(A_count~log(Exposure)+AADT_Comm+MEDIAN_WID+MED_SHLDWI+SH

LD_WIDTH+Deflection, link=log, data=training) 

summary(model.p) 

n<- length(training$A_count) 

model.fit<- fitted(model.p) 

#Goodness-of-fit- model set 

E1<- (model.fit-training$A_count) 

MAE.p.m[i]<- sum(abs(E1))/n 

RMSE.p.m[i]<-sqrt(sum(E1^2)/n) 

         

 # validation- NB model 

predict.p<- predict(model.p, type="response", newdata=testing) 

error.p<- testing$A_count-predict.p 

nt<- length(testing$A_count) 

MAE.p.v[i]<- sum(abs(error.p))/nt 

RMSE.p.v[i]<- sqrt(sum(error.p^2)/nt) 

s<- s+0.05 # increase the split (s) by 5% 

} 

 # Appending calculated values from each bootstrap step to corresponding dataframes  

Data.MAE.np.v[boot, ]   <- MAE.np.v 

Data.RMSE.np.v[boot, ]  <- RMSE.np.v 

Data.MAE.p.v[boot, ]  <- MAE.p.v 
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Data.RMSE.p.v[boot, ] <- RMSE.p.v 

print(paste("bootstrap", boot)) 

} 

write.csv(Data.MAE.np.v, file= "Data.MAE.np.v.csv") 

write.csv(Data.RMSE.np.v, file= "Data.RMSE.np.v.csv") 

write.csv(Data.MAE.p.v, file= "Data.MAE.p.v.csv") 

write.csv(Data.RMSE.p.v, file= "Data.RMSE.p.v.csv") 

     

E.3. Network screening: regression-based and EB-based methods  

library(np) 

library(gamlss) 

setwd("C:\\Users\\Lalita\\Dropbox\\4.WorkingFolder\\2.RegressionYearly\\2.NetworkScreening\\NS-

4Methods") 

dataAll= read.csv("1. 401C_Y_M_All.csv", header= TRUE) 

# Splitting the  dataset 

dataT<- subset(dataAll, Year<2007) # model set 

data_07= subset(dataAll, Year==2007) 

data_08= subset(dataAll, Year==2008) 

# KR estimates  

bw<- c(21.08, 2621.70, 2.397, 0.465, 0.111, 0.135) # same as in E.2. 

model.KR<-

npreg(A_count~Exposure+AADT_Comm+MEDIAN_WID+MED_SHLDWI+SHLD_WIDTH

+Deflection,bws= bw, data= dataT,bandwidth.compute= FALSE) 

summary(model.KR) 

MAE.KR<- model.KR$MAE 

RMSE.KR<- sqrt(model.KR$MSE) 

# data from year 2000-2006 is used for modeling 

# Predict using KR method 

predict.KR_07<- predict(model.KR, data= dataT, newdata=data_07) 

predict.KR_08<-predict(model.KR, data= dataT, newdata=data_08) 

predict.KR_T<- model.KR$mean 

predict.KR<- (predict.KR_07+predict.KR_08) # add for two years (output) 
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# EB estimate based on KR method 

 #Step 1: Get estimates of variance for the training set; Reference Hauer (2015) 

variance<-function(observed, estimated){  

var<- (observed-estimated)^2 

return(var) 

} 

var.k.T<- variance(dataT$A_count, predict.KR_T) 

var.KR.T<- var.k.T-predict.KR_T # page 25 Hauer(2015) 

plot(predict.KR_T, var.KR.T)  

# var(mu) vs fitted values, some of the values of var.mu are negative which is replaced by zero 

(Hauer, 2015) 

var.KR.T<- replace(var.KR.T, var.KR.T<0, 0) #  to replace negative values by zeros 

#Step 2: Establish a relationship between mean and variance and estimate the variance  

#Use KR method to estimate var.mu  

n<- length(var.KR.T) 

di= 1 

c2= (4/((2*di+1)*n))^(1/(di+4)) 

bwv<- c(c2*sd(predict.KR_T))    

# var.mu vs E.mu; note: there is change in name of variables to make same as in prediction 

dataset 

dataV<- data.frame(var.KR.T, predict.KR_T) # dataframe created though the values could be 

taken from the environment; use same name to match later in calculating var.mu.B      

model.var.KR<- npreg(var.KR.T~ predict.KR_T, bws= bwv, data= dataV, bandwidth.compute= 

FALSE) # fixed bandwidths, use updated dataV 

summary(model.var.KR) 

MAE.var.KR<- model.var.KR$MSE 

var.KR.T<- model.var.KR$mean # no need     

dataV_07<- data.frame(predict.KR_07) # estimated value for year 07 

names(dataV_07)[1]<-"predict.KR_T" # to make variable name same as in training dataset 

"dataV" 

var.KR_07<-  predict(model.var.KR, data=dataV, newdata=dataV_07) 

dataV_08<- data.frame(predict.KR_08) 
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 names(dataV_08)[1]<-"predict.KR_T" # to make variable name same as in training dataset 

"dataV" 

  var.KR_08<-  predict(model.var.KR, data=dataV, newdata=dataV_08) 

#Step 3: Compute weights 

          weight<-function(var, mu){ 

          w<- 1/(1+var/mu) 

          return(w) 

          }   

        w_07<- weight(var.KR_07, predict.KR_07)  

        w_08<- weight(var.KR_08, predict.KR_08)      

 #Step 4: Use EB approach     

        EB.KR.estimate<- function (observed, mu, w){ 

          EB<- w*mu+(1-w)*observed 

          return(EB)  

        } 

        predict.EB.KR_07<- EB.KR.estimate(data_07$A_count, predict.KR_07, w_07)   

        predict.EB.KR_08<- EB.KR.estimate(data_08$A_count, predict.KR_08, w_08) 

        predict.EB.KR<- (predict.EB.KR_07+predict.EB.KR_08) # add for two years  

# NB model estimates 

Model.NB<-

gamlss(A_count~log(Exposure)+AADT_Comm+MEDIAN_WID+MED_SHLDWI+SHLD_W

IDTH+Deflection,sigma.fo= ~log(Length), family=NBI, data=dataT)  

 summary(Model.NB) 

 model.fit<- predict(object= Model.NB, what= "mu",newdata= dataT, type= "response" ) 

# predict for NB 

predict.NB_07<- predict(object= Model.NB, what= "mu",newdata=data_07, type="response") 

predict.NB_08<- predict(object= Model.NB, what= "mu",newdata=data_08, type="response") 

predict.NB<- (predict.NB_07+predict.NB_08) # add for two years  

 

# EB estimates based on NB model 

EB.KR.estimate<- function(fitted, alpha, crash) { 

        w<- 1/(1+fitted*alpha) # alpha is 1/ theta  
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        estimate.EB<-w*fitted+(1-w)*crash 

        return(estimate.EB) 

      } 

fitted.sigma_07<- predict(object= Model.NB, what= "sigma",newdata= data_07, type= 

"response" ) # sigma (or alpha) reciprocal of theta in MASS package 

fitted.sigma_08<- predict(object= Model.NB, what= "sigma",newdata= data_08, type= 

"response" )  

predict.EB.NB_07<- EB.KR.estimate(predict.NB_07, fitted.sigma_07, data_07$A_count)  

predict.EB.NB_08<- EB.KR.estimate(predict.NB_08, fitted.sigma_08, data_08$A_count)  

predict.EB.NB<- (predict.EB.NB_07+predict.EB.NB_08) # add for two years (output) 

observed<- data_07$A_count+data_08$A_count 

 

#Combine all outputs in a single dataframe 

Output<-data.frame(data_08$HS_Section,data_08$Length,data_08$Exposure,predict.NB, 

predict.EB.NB, predict.KR, predict.EB.KR, observed, data_07$A_count, data_08$A_count,     

predict.KR_07,predict.KR_08,predict.EB.KR_07,predict.EB.KR_08,predict.NB_07,predict.N

B_08, predict.EB.NB_07, predict.EB.NB_08  ) 

write.csv(Output, file= "Outputs.csv") 

# Use Excel spreadsheet for ranking and calculating spearman’s correlation coefficients.    
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E.4. Countermeasure study: regression-based approach using KR method 

library(np) 

setwd("C:\\Users\\Lalita\\Dropbox\\4. WorkingFolder\\2.RegressionYearly\\3. CMStudies") 

dataA<- read.csv("1. CMF-data.csv", header= TRUE) # Case study of Highway 401, Ontario, Canada 

X<- dataA[,-1] # includes year as well 

Y<- dataA[, 1] 

# KR method  

#Bandwidths 

      di= 6 

      n<- length(dataA$CrashPerKm) 

      c2= (4/((2*di+1)*n))^(1/(di+4)) 

      bww<- c() 

      for (i in 1:di){ 

        bww[i]<- sd(X[, i]) 

      } 

      bw<- bww*c2 

model.np<-

npreg(CrashPerKm~AADT+AADT_Comm+MEDIAN_WID+MED_SHLDWI+SHLD_WIDTH+De

flection,bws= bw, data= dataA,bandwidth.compute= FALSE) # fixed bandwidths 

 summary(model.np) 

# Create a new dataframe for determining the CMFs  

aadt<- c(12000, 17000, 22000, 27000, 32000, 37000, 42000, 47000, 52000, 57000, 62000, 67000) 

 aadt_comm<- c(5250, 8750, 12250, 15750, 19250, 22750, 26250, 29750) 

median<- c(0, 5, 10, 15, 20, 25, 30) 

shld_left<- c(0, 1, 2, 3, 4, 5) 

shld_right<- c(3, 3.5, 4) 

deflection<- c(0, 0.4, 0.5,0.6, 0.7, 0.8, 0.9, 1, 1.25, 1.5) 

     

 # Create a dataframe from all possible combinations of values 

    data.a<- expand.grid(aadt, aadt_comm, median, shld_left, shld_right, deflection) 

colnames(data.a)<-c("AADT","AADT_Comm","MEDIAN_WID","MED_SHLDWI", 

SHLD_WIDTH", "Deflection") 
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Predict<- predict(model.np, newdata=data.a, se.fit=TRUE) 

result<-data.frame(data.a$AADT,\data.a$AADT_Comm,data.a$MEDIAN_WID, 

data.a$MED_SHLDW, data.a$SHLD_WIDTH, data.a$Deflection, Predict$fit, Predict$se.fit) 

colnames(result)<-c("AADT","AADT_Comm","MEDIAN_WID","MED_SHLDWI", 

"SHLD_WIDTH", "Deflection", "CrashPerKm", "error") 

write.csv(result, file= "Predict_for_CMF.csv") 

# Finally, import the output file in the “Tableau software” and determine CMFs interactively. 

 

E.5. Countermeasure study: EB-based KR approach  

# Case study of rail-highway grade crossing, Canada; converting passive controls to FLB   

setwd("C:\\Users\\Lalita\\Dropbox\\4.WorkingFolder\\7.GradeCrossing\\Before-After\\Passive-FLB") 

dataT= read.csv("3.4.Passive.csv", header= TRUE) #training set (reference group) 

dataB= read.csv("Passive-FLB_B.csv", header=TRUE) # before case 

dataA= read.csv("Passive-FLB_A.csv", header=TRUE) # after case 

#Step 1: Obtain estimates of mean crashes for before and after cases 

#Bandwidths 

            n<- length(dataT$accident)  

            di= 2 

            c2= (4/((2*di+1)*n))^(1/(di+4)) 

            bw<- c(c2*sd(dataT$trainflow), c2*sd(dataT$vehflow))    

library(np) 

model.np<- npreg(accident~ trainflow+vehflow,bws= bw, data= dataT,bandwidth.compute= 

FALSE)  

summary(model.np) 

MAE<- model.np$MSE 

E.mu.T<- model.np$mean 

E.mu.B<- predict(model.np,data=dataT, newdata= dataB) # for before period 

E.mu.A<- predict(model.np,data=dataT, newdata= dataA) # for after period  

             

#Step 2: Obtain estimates of variance for training set (Hauer, 2015) 

variance<-function(observed, estimated){  

var<- (observed-estimated)^2 
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return(var) 

} 

var.k.T<- variance(dataT$accident, E.mu.T) 

var.mu.T<- var.k.T-E.mu.T # page 25 Hauer (2015) 

plot(var.mu.T, var.k.T)  

 plot(E.mu.T, var.mu.T)  

var.mu.T<- replace(var.mu.T, var.mu.T<0, 0) #  to replace negative values by zeros 

     

#Step 3: Establish a relation of mean and variance and estimate variance for before case 

#Use KR method  

n<- length(var.mu.T) 

di= 1 

c2= (4/((2*di+1)*n))^(1/(di+4)) 

bwv<- c(c2*sd(E.mu.T))    

       

      # var.mu vs E.mu; note: there is change in name of variables to make it consistent as in prediction 

dataset 

dataV<- data.frame(var.mu.T, E.mu.T) # dataframe created eventhough the values could be 

taken from the environment; make same name to match later in calculating var.mu.B 

names(dataV)[2]<-"E.mu.B" 

 model.var.mu<- npreg(var.mu.T~ E.mu.B, bws= bwv, data= dataV, bandwidth.compute= 

FALSE) # fixed bandwidths, use updated dataV 

 summary(model.var.mu) 

 MAE.var.mu<- model.var.mu$MSE 

 var.mu.T<- model.var.mu$mean # no need (updated in march 14, because of this estimated 

value, we need to recalculate to find the mean-variance relation) 

 dataV.new<- data.frame(E.mu.B) # estimated value for befor period in step 1 

 var.mu.B<-  predict(model.var.mu, data=dataV, newdata=dataV.new) 

   

#Step 4: Calculate weights 

      weight<-function(var, mu){ 

        w<- 1/(1+var/mu) 
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        return(w) 

      } # Hauer (1997) optimizing variance of weighted two random variables  

      w.T<- weight(var.mu.T, E.mu.T) # for training dataset, not needed 

      w.B<- weight(var.mu.B, E.mu.B) # no need of w for after       

         

#Step 5: EB estimates 

EB.estimate<- function (observed, mu, w){ 

EB<- w*mu*5/6+(1-w)*observed 

return(EB)  

} #5/6 to adjust for unit of model estimates (six-year) and observed value (five- year) 

EB.mu.T<- EB.estimate(dataT$accident, E.mu.T, w.T)   

plot(E.mu.T, EB.mu.T)   

               

      # for before dataset 

EB.mu.B<- EB.estimate(dataB$accident, E.mu.B, w.B)      

# Ratio (R), is used for adjustment to change in traffic levels; similar to Persaud et al. (2009)  

R<- E.mu.A/E.mu.B  

EB.mu.BB<- R*EB.mu.B  

# Unit conversion is no need as the number of years for before observation and after is same i.e., 

5 years 

var.EB.mu<- (1-w.B)*EB.mu.B   

 

# Step 6: Outputs  

 write.csv(data.frame(dataB$xng.no.,dataB$accident,dataB$trainflow,dataB$vehflow, 

dataA$accident, dataA$trainflow, dataA$vehflow, E.mu.B, w.B, EB.mu.B,E.mu.A, R, 

EB.mu.BB, var.EB.mu), file= "outputBA.csv")  

# Use Excel spreadsheet to summarize the results and determine the CMFs  
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E.6. Countermeasure study: EB-based NB approach 

 # Same case study as in E.5.  

 #Step 1: Obtain estimates of mean for before and after cases 

library(MASS) 

model.NB <- glm.nb(accident~ log(trainflow)+ log(vehflow), link=log, data=dataT) 

summary(model.NB) 

MAE<- model.NB$MSE 

E.mu.T<- fitted(model.NB) 

E.mu.B<- predict(model.NB,type="response", newdata= dataB) # for before period 

E.mu.A<- predict(model.NB,type="response", newdata= dataA) # for after period  

#Step 2: Compute weights and determine EB estimates 

      weight<-function(mu, theta){ 

        w<- 1/(1+mu/theta) 

        return(w) 

      }  

     w.B<- weight( E.mu.B, model.NB$theta) # no need of w for after       

      EB.estimate<- function (observed, mu, w){ 

        EB<- w*mu*5/6+(1-w)*observed 

       return(EB)  

      } 

      # for before dataset 

      EB.mu.B<- EB.estimate(dataB$accident, E.mu.B, w.B)      

      R<- E.mu.A/E.mu.B   

      EB.mu.BB<- R*EB.mu.B  

      var.EB.mu<- (1-w.B)*EB.mu.B   

# Step 3: Outputs  

write.csv(data.frame(dataB$xng.no.,dataB$accident,dataB$trainflow,dataB$vehflow, 

dataA$accident, dataA$trainflow, dataA$vehflow, E.mu.B, w.B, EB.mu.B,E.mu.A, R, EB.mu.BB, 

var.EB.mu), file= "outputBA_NB.csv") 

# Use Excel spreadsheet to summarize the results and determine the CMFs. 

 

 


