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CHAPTER 1

Introduction

In this thesis we will discuss some of the tools used in the study of the number of

primes in short intervals. In particular, we will discuss a large sieve density estimate

due to Gallagher and two classical differential delay equations arising in number theory,

namely the Buchstab function and the Dickman function. We will also show how these

tools have been used by Maier and Stewart to prove a new result in this area.

In chapter 2, after giving a brief introduction to Dirichlet characters and L-functions,

we will discuss developments of Linnik’s large sieve method and of density theorems for

L-functions. Finally, we will give Gallagher’s result and show how it can be applied to

study the number of primes in arithmetic progressions.

In chapter 3 and 4 we give some of the known results on the Buchstab function and

the Dickman function respectively. In chapter 5 we show how values for these functions

may be computed and we use these values to compute values for and graph a function

introduced by Maier and Stewart in the paper mentioned above.

First, we start by giving a brief summary of some of the results on the distribution

of prime numbers.

1.1. The prime number theorem

Over the last century and a half, there has been significant progress in the study of

the distribution of the primes. The most important result to date is the prime number

theorem which tells us that the number of primes less than or equal to x, denoted by

π(x), is asymptotic to x/ log x as x → ∞. This was first conjectured in 1792 by Gauss.

More precisely, he conjectured that π(x) ∼ Li(x) where Li(x) is the logarithmic integral

1



2 1. INTRODUCTION

of x defined by

Li(x) =

∫ x

2

dt

log t
.

Around 1850, Tschebycheff was able to prove with elementary methods that there exists

constants c and c1 with 0 < c < 1 < c1 such that

c
x

log x
< π(x) < c1

x

log x
,

for all x ≥ 2. Moreover, he computed values for c and c1 which are close to 1. The prime

number theorem was finally proven in 1896 independently by de la Vallee Poussin and

Hadamard. Both proofs relied heavily on the determination of a large zero-free region

for the Riemann zeta function ζ(s) =
∑∞

n=1(1/n
s) which is defined on the half plane

Re s > 1, but can be analytically continued to the whole complex plane (see Apostol

[1] chapter 12).

As usual we let pn denote the n-th prime number and dn = pn+1 − pn. The prime

number theorem tells us that the average size of dn is log pn and the density of the

primes in the interval (x, x + cx) is asymptotic to 1/ log x for any positive constant

c. This leads us to ask two questions: how much can the size of dn deviate from the

average, and for which functions Φ(x) do we have

(1.1.1) π(x + Φ(x)) − π(x) ∼ Φ(x)

log x
?

1.2. Small gaps and the twin prime conjecture

A natural question to ask in the study of smaller than average gaps between prime

numbers is what is the value of

E = lim inf
n→∞

dn

log pn

.

Trivially by the prime number theorem we have that E ≤ 1. In 1940, Erdös [28] obtained

the first non-trivial unconditional result (previous results by Hardy and Littlewood and
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later by Rankin [72,74] were conditional to the Extended Riemann Hypothesis) by

showing that E < 1. Subtle improvements on the upper bound for E were made by

Rankin [73] in 1947 who proved E < 57/59, by Ricci [79] who showed E < 15/16 in

1954, and by Wang Yaun, Xie Sheng-gang, Yu Kun-rui [87] in 1965 who gave E < 29/32.

A major breakthrough was made by Bombieri and Davenport [7] in 1966. They used

the large sieve to get E ≤ (2 +
√

3)/8. Many slight improvements on their result were

made by Pilt’jai [69], Huxley [45] and by Fouvry and Grupp [31]. Fouvry and Grupp in

fact showed that dn ≤ 0.4342 log pn holds for a positive proportion of the primes. The

best value of E obtained to date is by Maier [58] in 1988 who showed that E ≤ 0.248.

We actually expect that E = 0 and one method of showing this would be to prove

the twin prime conjecture. That is to prove that dn = 2 for infinitely many n. When

dn = 2 we say that the pair pn and pn−1 are twin primes. These pairs were characterized

in 1949 by Clement [20]. He showed that the positive integers n and n + 2, n ≥ 2, are

twin primes if and only if

4((n − 1)! + 1) + n ≡ 0 (mod n(n + 2)).

Let π2(x) denote the number of primes p such that p ≤ x and p+2 is also prime. In

1919, Brun [10] proved there is an effectively computable integer x0 such that if x ≥ x0

then

π2(x) <
100x

log2 x
.

Brun [11] also proved in 1919 the convergence of the sum

∑(
1

p
+

1

p + 2

)
,

where the sum is taken over all primes p such that p + 2 is also prime. This shows

that if there are infinitely many twin primes then they are extremely sparse among the

primes since we know that the
∑

1/p taken over all primes p is divergent.
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In 1966, Bombieri and Davenport [7] used sieve methods to prove that

π2(x) ≤ 4C
x

log2 x

(
1 + O

(
log log x

log x

))
,

where C is the twin prime constant given by

C = 2
∏
p>2

(
1 − 1

(p − 1)2

)
.

The value C = 1.32032 . . . was computed by Wrench [90] in 1961.

Improvements to Bombieri and Davenport’s result were made by Fouvry and Iwaniec

[32] in 1983. They proved that 4 could be replaced by 34/9 + ε. In 1986, Bombieri,

Friedlander and Iwaniec [9] show that this could be further improved to 3.5 + ε for any

ε > 0. The best result to date is by Jie Wu [89], in 1990, who proved that

π2(x) ≤ 3.418C
x

log2 x
.

However, this is far off Hardy and Littlewood’s conjecture that

π2(x) ∼ Cx

log2 x
.

Renyi [76], expanding on work of Brun, was able to attack the twin prime problem

in a new way. He showed, in 1947, that there are infinitely many primes p such that

p+2 has at most k factors. Buchstab [14] proved in 1967 that one could take k = 3, and

Chen [18,19] announced in 1966 (published in 1973; 1978) that one could take k = 2.

For the number π
(2)
2 (x) of primes p ≤ x where p + 2 has at most 2 prime factors,

Chen proved that for large values of x we have

π
(2)
2 (x) ≥ aC

x

log2 x
,

where a = 0.67. In 1978, Chen [19] improved the constant a to a = 0.81 and the best

result to date is from 1990 by Wu [89] who showed the result for a = 1.05.
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1.3. Large Gaps

We will now look at results on when the size of dn is greater than the average. The

first main result in this area was by Backlund [2] in 1929. He proved for any ε > 0 there

are infinitely many n such that

pn+1 − pn > (2 − ε) log pn.

In 1930, Brauer and Zeitz [4] were able to prove that (2−ε) could be replaced by (4−ε).

Then in 1931 Westzynthius [88], was able to prove that, for infinitely many n,

pn+1 − pn >
2eγ log pn log3 pn

log4 pn

,

where γ = 0.5772 · · · denotes Euler’s constant and where we have adopted the notation

that logk x indicates k iterations of the logarithm (for example log2 x = log log x). This

is a remarkable result as it shows that the size of dn exceeds the average by a factor

which tends to infinity.

Improvements on Westzynthius’ result were made in 1934 by Ricci [79] who showed,

for a positive number c1 there are infinitely many n such that

pn+1 − pn > c1 log pn log3 pn.

Erdös [27] made further improvements in 1935 by proving the following theorem.

Theorem 1. For a positive number c2 there are infinitely many n such that

pn+1 − pn >
c2 log pn log2 pn

(log3 pn)2
.

We will now give Erdös’ proof of this result. We start with the following lemmas.

Lemma 2. If N0 is the number of integers m ≤ pn log pn whose greatest prime factor

is less than p
1/(20 log2 pn)
n then N0 = o(pn/ log2 pn).
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Lemma 3. We can find a constant c so that the number of primes p less than

cpn log pn/(log2 pn)2 and such that p+1 is not divisible by any prime between log pn and

p
1/(20 log2 pn)
n is less than pn/4 log pn.

He proved Lemma 2 on considering the number of different prime factors of the

integers m, and Lemma 3 is a direct application of Brun’s method. The following

lemma follows directly from Lemma 2 and 3.

Lemma 4. Let T be the set of primes t satisfying pn/2 < t ≤ pn and let R denote

the set of primes r such that log pn < r ≤ p
1/(20 log2 pn)
n . Denote by A = {a1, a2, . . . , ak}

the union of the set of integers less than or equal to pn log pn whose prime factors are

all in R and the set of primes p with pn/2 < p < cpn log pn/(log2 pn)2 and not congruent

to −1 to any modulus r ∈ R, where c is the constant found in Lemma 3.

Then for pn sufficiently large, |T | > |A|.

Proof of Theorem 1: (Erdös [27])

Let S be the set of primes s satisfying

p1/(20 log2 pn)
n < s ≤ pn/2,

and let R, T and A be defined as in Lemma 4. We then find an integer z which satisfies

0 <z < p1p2 · · · pn,

z ≡ 0 (mod q), z ≡ 1 (mod r), z ≡ 0 (mod s),

z + ai ≡ 0 (mod t) (1 ≤ i ≤ k),

for all primes q with 1 < q ≤ log pn, t ∈ T , r ∈ R and s ∈ S. We see that the last

congruence is possible since by Lemma 4 there are more t’s than a’s.

Consider the integers

z, z + 1, . . . , z + l,
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where l is a positive integer which satisfies l < c3pn log pn/(log2 pn)2. We will prove the

result by showing that z + b is not relatively prime to p1p2 · · · pn for all positive integers

b < l. To do this we will show that each b falls into one of the following classes:

(i) b ≡ 0 (mod q), for some q

(ii) b ≡ −1 (mod r), for some r

(iii) b ≡ 0 (mod s), for some s

(iv) b is an ai, for some i.

To see this, first observe that b can not be divisible by an r ∈ R and by a prime

greater than 1
2
pn since then for sufficiently large n we would have

b >
1

2
pnr >

1

2
pn log pn > l.

Thus, if b does not satisfy (i) or (iii), it is either a product of primes from R or b is not

divisible by any r ∈ R, s ∈ S or primes q with q ≤ log pn. In the former case, we see

that b satisfies (iv), while in the latter case, b must be a prime, since otherwise

b >

(
1

2
pn

)2

> l,

for sufficiently large n. But then, we have

1

2
pn < b <

c3pn log pn

(log2 pn)2
,

and hence b either satisfies (ii) or (iv).

Thus, z + b is not relatively prime to p1p2 · · · pn.

Additionally, if p1, p2, . . . , pm are the primes less than or equal to x then it follows

from the above argument and Bertrand’s postulate, pm ≥ x/2, that z+b is not relatively

prime to p1p2 · · · pm if b < c4x log x/(log2 x)2, where c4 is a constant independent of x.

Let x = 1
2
log pn. By the prime number theorem we see that, for sufficiently large

n, the product of primes not exceeding x is less than 1
2
pn. Thus, since b < 1

2
pn, we can
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find

k =
c4 log pn log2 pn

(log3 pn)2
,

consecutive integers less than pn which are each divisible by a prime less than 1
2
log pn.

Hence there are at least k− 1
2
log pn > 1

2
k consecutive composite integers and the result

follows. �

In 1938, Chang [16] obtained a simpler proof for Erdös’ result by eliminating the

need to use Brun’s method. Shortly after, Rankin [71] was able to slightly improve

Erdös’ result by sharpening Lemma 2 to be the following.

Lemma 2′. If N(eu) is the number of positive integers not exceeding eu which contain

no prime factors greater than

exp

(
u log2 u

a log u

)
,

then

N(eu) <
eu

ua−1−e1

for any fixed e1 > 0 and for u > u0(e1).

Taking eu = pn log pn and a = 5 in Lemma 2′ and replacing

p1/(20 log2 pn)
n by plog3 pn/(5 log2 pn)

n

and

pn log pn

(log2 pn)2
by

pn log pn log3 pn

(log2 pn)2
,

in Erdös’ or Chang’s proof, Rankin proved that

(1.3.1) pn+1 − pn >
c3 log pn log2 pn

(log3 pn)2
log4 pn.

With some further slight modifications of Chang’s proof he also obtained that for any

ε > 0, we may take c3 = (1/3 − ε).

Since 1938, the only new results on the lower bound of the size of dn have concerned

improvements of the coefficient c3 in Rankin’s result. In 1963, Rankin [75] proved
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that we can take c3 = (eγ − ε) for each ε > 0. Using advanced techniques and a

combinatorial argument Maier and Pomerance [59] improved Rankin’s constant c3 by a

factor of 1.31256 · · · . In 1996, Pintz [68] refined Maier and Pomerance’s combinatorial

argument and showed that we may take c3 = 2(eγ − ε).

1.4. Consecutive large gaps between primes

In 1949, Erdös [29] decided to look for chains of large gaps between primes. He

proved that

lim sup
n→∞

(min(dn, dn+1)/ log n) = ∞

and asked if for a fixed k does

lim sup
n→∞

(min(dn+1, . . . , dn+k)/ log n) = ∞?

Maier [56] proved in 1981 that we in fact have

(1.4.1) lim sup
n→∞

min(dn+1, . . . , dn+k)

log n log2 n log4 n/ log2
3 n

> 0.

In particular, this extends Rankin’s result (1.3.1) from single gaps to k consecutive

gaps.

He proved this result using the Erdös-Rankin method with the modification that he

needs to find such an interval with k gaps instead of one. To obtain this result he first

calls an integer q > 1 a ”good” modulus if the Dirichlet L-function L(s, χ) 
= 0 for all

characters χ mod q and all s = σ + it with

σ > 1 − c1/ log(q(|t| + 1)),

and he notes that if c1 is sufficiently small then for all q > 1 either q is good or, by

Page’s theorem, there is a unique exceptional real zero of some quadratic character mod

q. From this definition Maier proved the following two lemmas, where P (x) denotes
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the product of all primes p < x, and π(x; q, a), as usual, denotes the number of primes

p ≤ x such that p ≡ a (mod q).

Lemma 5. There exists a constant c > 0 such that there exist arbitrarily large values

of x for which the modulus P (x) is good in terms of c.

Lemma 6. If q is a good modulus and x ≥ qD, where the constant D depends only

on the value of c in Lemma 5 then

π(x; q, a) � x/(φ(q) log x),

uniformly for (a, q) = 1 where φ(x) denotes the Euler φ function.

Lemma 6 is deduced from work of Gallagher, see chapter 2, and gives us that we

have exceptionally regular distribution of primes in arithmetic progressions mod P (x).

Maier then proved some sieve arguments and an upper bound for prime pairs p, p + i

for ”small” i to prove the result.

1.5. Density of primes in small intervals

In 1943, Selberg [83] considered the density of primes in ”small” intervals of the form

(x, x + Φ(x)) for functions Φ(x) which are positive, increasing and have the following

properties:

Φ(x)

x
is decreasing for x > 0,

Φ(x)

x
→ 0 as x → ∞(1.5.1)

Φ(x) → ∞.

Previous to this, functions of the form Φ(x) = xθ had already been considered. In

particular, Hoheisel [42] showed in 1930 that if we take θ = 1 − 1/33000 + ε, for any
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ε > 0, then for sufficiently large x

π(x + xθ) − π(x) = (1 + O(1))
xθ

log x
.

In 1937, Ingham [47] sharpened the result to θ = 5/8 + ε. Further improvements were

made by Montgomery [62] in 1969, who showed we may take θ = 3/5 + ε and Huxley

[44] in 1972 proved we could take θ = 7/12 + ε. Using developments on the linear

sieve and analytic information on the Riemann zeta function, Iwaniec and Jutila [48]

gave in 1979 the value θ = 13/25 + ε which was quickly improved to θ = 11/20 + ε by

Heath-Brown and Iwaniec [38]. The best result to date is by Baker, Harman and Pintz

[3] in 2001 who showed the result for θ = 0.525.

On the other hand, we see that Rankin’s result (1.3.1), shows that (1.1.1) is false

for Φ(x) = log x log2 x
(log3 x)2

log4 x, and so Selberg asked what restrictions need to be imposed

on Φ(x) so that (1.1.1) holds. He observed that under the assumption of the Riemann

hypothesis that one could prove that (1.1.1) holds if

Φ(x)√
x log x

→ ∞ as x → ∞.

and he proved, assuming the Riemann hypothesis, that for functions Φ(x) satisfying

(1.5.1) equation (1.1.1) holds for all x, except possibly if x belongs to an exceptional

set S where the Lebesgue measure of Sy = S ∩ (0, y) is

m(Sy) < Ay

(
log2 y

Φ(y)

)1/4

= o(y)

for an absolute positive constant A.

In 1985, Maier [57] was able to show that these exceptions in Selberg’s result do

occur for functions Φ(x) growing faster than log2 x. In particular, he proved that for

Φ(x) = logλ x, λ > 1 that

lim sup
x→∞

π(x + Φ(x)) − π(x)

Φ(x)/ log x
> 1
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and

(1.5.2) lim inf
x→∞

π(x + Φ(x)) − π(x)

Φ(x)/ log x
< 1.

For the proof, which is quite similar to the proof of (1.4.1), he used Lemma 6 and that

π(x) = Li(x)(1 + O(e−
√

log x))

(see Narkiewicz [66] chapter 5) to prove:

Lemma 7. Let q be a good modulus, x/2 ≤ h ≤ x and x ≥ qD where log q ≥ D ≥ D0

for a positive constant D0 which depends only on the constant c in Lemma 5. Then

π(x + h; q, a) − π(x; q, a) =
1

φ(q)
(Li(x + h) − Li(x))(1 + O(e−cD + e−

√
log x)),

for (a, q) = 1, and where the constant implied by O( ) also depends only on c.

He also used results on the Buchstab function ω(u), see chapter 3. In particular,

that the function F (u) = ω(u) − e−γ changes sign in every interval of length 1, and

Buchstab’s result that, for λ > 1,

lim
u→∞

u−λφ(uλ, u) = eγω(u)
∏
p<u

(1 − 1

p
),

where

φ(x, y) = |{n ≤ x : (n, P (y)) = 1}|.

1.6. Recent Results

Maier and Stewart [60] recently expanded on Maier’s result, studying equation

(1.1.1) where

Φ(x) = (log x)1+s(x)

for non-increasing functions s(x) defined on the positive real numbers which satisfy

s(x)−1 = O(log2 x/ log4 x),
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s(x) − s(2x) = o(1/ log2 x),

and

s(x) − s(x3/2) = o((s(x))3/2).

To state their result we must first define the following functions. Let ω(u) denote

the Buchstab function defined as the unique, positive, continuous function satisfying

ω(u) =
1

u
, 1 ≤ u ≤ 2,

(uω(u))′ = ω(u − 1), u ≥ 2,

and let ρ(u) denote the Dickman function defined as the unique, continuous solution of

ρ(u) = 1, if 0 ≤ u ≤ 1

uρ′(u) = −ρ(u − 1), if u > 1

(see chapter 3 and chapter 4 respectively). For u, v non-negative real numbers, let

f(u, v) = v(log(1 + u) + ρ(v(1 + u)).

As proved in chapter 5, there exists a unique positive real number θ for which

min
v≥1

f(θ, v) = eγ/2,

and it can be computed that θ = 0.500462161 . . .. We then define a function g(y) on

the non-negative real numbers by

g(y) =




infv≥1 f(y, v) for λ < θ

infu≥y eγω(1 + u) for y ≥ θ

Using these definitions they proved the following theorem.

Theorem 8. For any ε > 0 there are arbitrarily large integers x such that

π(x + (log x)1+s(x)) − π(x) < (1 + ε)g(s(x))(log x)s(x).
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They observed that if we take s(x) = λ, λ ∈ R
+, we obtain Maier’s result (1.5.2).

From properties of g(y), see chapter 5, they also deduced that, for ε > 0 and functions

s(x) as above which also satisfy lim
x→∞

s(x) = 0, there are arbitrarily large integers x with

π(x + (log x)1+s(x)) − π(x) < (1 + ε)
s(x) log(1/s(x))

log log(1/s(x))
(log x)s(x).

Hence that if we take s(x) = log3 x/ log2 x we get Rankin’s result (1.3.1). In particular,

we see that this result interpolates between Rankin’s result and the result of Maier.

We now sketch Maier and Stewart’s proof starting with the following lemmas.

Lemma 9. Let ε be a positive real number and let x and y be real numbers. If

u = log x/ log y ≤ (log x)
3
8
−ε then

ψ(x, y) = xρ(u)(1 + o(1))

as x → ∞, where ψ(x, y) denotes the number of positive integers at most x with all

prime factors less than or equal to y, and ρ(u) is the Dickman function.

This result is due to de Bruijn [24], see also Lemma 3.20 in Norton [67]. In Chapter 4

we will discuss further properties of the Dickman function and prove a slightly stronger

result than Lemma 9 due to Hildebrand.

Lemma 10. Let φ(x, y) denote the number of positive integers ≤ x with no prime

factors less than y and let ω(u) be the Buchstab function. Further let x and y be real

numbers and put u = log x/ log y. If u is fixed and u > 1 then, as x → ∞, we have

φ(x, y) = xeγω(u)
∏
p≤y

(
1 − 1

p

)
(1 + o(1)).

This is a result of Buchstab [12] which we will prove in Chapter 3 along with other

properties of the Buchstab function.
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Proof of Theorem 7: (Maier and Stewart [60])

Let ε be a real number with 0 < ε < 1 and let δ = δ(ε) be a real number which is

dependent on ε and satisfies 0 < δ < 1. Further, let D = D(δ) be a positive integer

which depends on δ. As above, θ is the real number for which g(θ) = eγ/2 and we let

β = limx→∞ s(x). Pick v0 ≥ 1.7 such that f(s((2
∏

p≤x p)D), v) is minimized at v0. For

each sufficiently large positive integer z put

P (z) =



∏

z1/v0≤p≤z p if β < θ

∏
p≤z p if β ≥ θ,

and ∆(z) = P (z)D.

We now choose our interval length, denoted by U , depending of the value of β and

a real number λ which is dependent on β. In particular, we choose for a suitable δ

U =




(((1 + δ)zD)1+λ), if β ≥ θ and λ > β

(((1 + δ)zD)1+s(∆(z))), otherwise.

Let R denote the set of positive integers ≤ U which are coprime with P (z), and let

S denote the number of primes of the form P (z)k + l with P (z)D−1 < k ≤ 2P (z)D−1

and 1 ≤ l ≤ U . For each integer l we use Lemma 7 to estimate S.

We find that for z and D sufficiently large, there is some k such that the number of

primes in the interval [P (z)k + 1, P (z)k + U ] is at most

(1.6.1) (1 + δ)
|R|

log(P (z)D)

∏
p | P (z)

(
1 − 1

p

)−1

.

To estimate the size of |R| we put

R1 = {1 ≤ n ≤ U : the greatest prime factor of n is less than z1/v0}, and

R2 = {1 ≤ n ≤ U : n is divisible by a prime p with p > z},

so that R ⊆ R1 ∪ R2.
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We now use Lemma 9 and the fact that the Dickman function ρ(u) is non-decreasing

to prove that for sufficiently large z we have

|R1| ≤ Uρ(v0(1 + s(∆(z))))(1 + o(1)).

We may estimate the size of R2 from above by

|R2| ≤ U
∑

z<p≤U

1

p
.

Using the fact that there exists a positive constant B such that

∑
p≤z

1

p
= log log z + B + O

(
1

log z

)
,

and that for z sufficiently large we have ∆(z) < exp(2zD) we get

|R2| ≤ U(log(1 + s(∆(z)))(1 + o(1)).

This gives us

|R| ≤ Uρ(v0(1 + s(∆(z))))(1 + o(1)) + U(log(1 + s(∆(z)))(1 + o(1)),

and the result in this case follows from the way we defined U and s(x) and by selecting

δ sufficiently small and z sufficiently large.

For β ≥ θ we use Lemma 10 to get

|R| ≤ (1 + δ)U
∏

p | P (z)

(
1 − 1

p

)
eγω(1 + λ).

Thus, by (1.6.1), the number of primes in the interval [P (z)k +1, P (z)k +U ] is at most

(1 + δ)2 U

log(P (z)D)
eγω(1 + λ).

Again, the result follows for sufficiently large z from the way we defined U , s(x) and

by selecting an appropriate δ. �



CHAPTER 2

Density Estimates

2.1. Dirichlet Characters and L-functions

We start by giving some basic definitions and properties of Dirichlet characters and

L-functions.

Definition. A complex-valued function χ defined on Z is a Dirichlet character modulo

q if it satisfies the following three properties.

(i) χ(n) = 0 if and only if (n, q) > 1,

(ii) χ(n + q) = χ(n),

(iii) χ(n1n2) = χ(n1)χ(n2).

The character which takes a value of 1 for all n with (n, q) = 1 is called the principal

character and is denoted by χ0.

Definition. Let d be a divisor of q and χ a character modulo d. We say the character

χ1 mod q, defined by

χ1(n) =




χ(n) if (n, q) = 1

0 otherwise,

is induced by χ mod d and that χ1 mod q is imprimitive if d is a proper divisor of q.

A character which is not induced by any character modulo d for any divisor d > 1 of q

is called a primitive character. The smallest d for which χ mod d induces χ1 mod q is

called the conductor of χ.

17
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An important property of Dirichlet characters is their orthogonality relation which

is given by

∑
χ

χ(n) =




φ(q) if n ≡ 1 mod q

0 otherwise,

where the summation runs over all φ(q) characters modulo q.

We now define, for each character χ to the modulus q, the Gaussian sum τ(χ) by

τ(χ) =

q∑
m=1

χ(m)e(m/q)

where e(x) denotes e2πix. In the following two lemmas we prove a few properties of τ(χ)

which we will require below.

Lemma 11. We have

(2.1.1) χ(n)τ(χ) =

q∑
a=1

χ(a)e(na/q), for (n, q) = 1,

and

(2.1.2) |τ(χ)|2 = q.

Proof: (Davenport [21])

If (n, q) = 1 then

χ(n)τ(χ) =

q∑
a=1

χ(a)χ(n)e(a/q).

Putting mn ≡ 1 (mod q) we get

χ(n)τ(χ) =

q∑
a=1

χ(am)e(a/q),

and (2.1.1) follows.

Now observe that from (2.1.1) we have

|χ(n)|2|τ(χ)|2 =

q∑
a1=1

q∑
a2=1

χ(a1)χ(a2)e(n(a1 − a2)/q).



2.1. DIRICHLET CHARACTERS AND L-FUNCTIONS 19

If we now sum over a complete set of residues modulo q then the sum of |χ(n)|2 is φ(q)

by the orthogonality relation and unless a1 ≡ a2 (mod q) the sum of the exponentials

is 0 . Hence

φ(q)|τ(χ)|2 = q
∑

a

|χ(a)|2 = qφ(q),

as required. �

Lemma 12. Let (an)∞n=1 be a sequence of complex numbers where an = 0 if n has

any prime factor ≤ Q. Then

(2.1.3)
∑

χ

|τ(χ)|2
∣∣∣∣∣
y+z∑

y

anχ(n)

∣∣∣∣∣
2

= φ(q)

q∑
a=1

(a,q)=1

∣∣∣∣∣
y+z∑

y

ane(a/q)

∣∣∣∣∣
2

.

Proof:

From (2.1.1) we have

τ(χ)

y+z∑
y

anχ(n) =

q∑
a=1

(
χ(a)

y+z∑
y

ane(na/q)

)
.

The result follows on taking the square of the modulus of both sides and summing over

χ. �

Dirichlet, in his study of the distribution of primes in arithmetic progressions, de-

fined an L-function as follows.

Definition. An L-function is a series of the form

L = L(s, χ) =
∞∑

n=1

χ(n)

ns
,

for complex s with Re s > 1.

Since |χ(n)| ≤ 1 it is easy to see that L(s, χ) is analytic in the half-plane Re s > 1.

We in fact can prove (see Apostol [1] Theorem 12.5) for the principal character χ1

modulo q, L(s, χ) is analytic everywhere except for a simple pole as s = 1 with residue

φ(q)/q. For χ 
= χ1, L(s, χ) is an entire function.



20 2. DENSITY ESTIMATES

It also can be proved (see Karatsuba [52] Chapter 8) that L-functions satisfy the

Euler product

L(s, χ) =
∏

p

(
1 − χ(p)

ps

)−1

.

Furthermore, logarithmic differentiation on the Euler product gives us

L′(s, χ)

L(s, χ)
= −

∞∑
n=1

Λ(n)χ(n)

ns
,

where

Λ(n) =




log p if n = pα for some prime p and positive integer α

0 otherwise

.

2.2. The Large Sieve

In 1941, Linnik introduced the large sieve. He considered how many of the residue

classes modulo a prime p are represented among an arbitrary, finite set of integers. Let

N be a natural number and let N be a non-empty subset of the set of positive integers

≤ N . Let Z denote the cardinality of N and let Z(a, p) denote the number of elements

of N falling into the congruence class a modulo p, so that

Z(a, p) =
∑
n∈N

n≡a mod p

1.

For each prime p, we measure the regularity of the distribution of the elements of N
among the residue classes modulo p by the variance

D(p) =

p−1∑
a=0

(
Z(a, p) − Z

p

)2

.

Improving on Linnik’s method, Renyi [77] proved in 1950, for X ≥ 2,

∑
p≤X

pD(p) � Z2/3N4/3X1/3,
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provided X ≤ N3/5. In addition to this, using a new method, he was able to prove that

∑
p≤X

pD(p) � Z(N + X3).

Roth [82] further improved on these results by proving that if N ≥ 2 and X ≥
N1/2(log N)−1/2 then ∑

p≤X

pD(p) � ZX2 log X.

Bombieri [6], in 1965, not only extended Roth’s result but also gave the following

generalization of the large sieve. Let an be an arbitrary sequence of complex numbers

and define the exponential sum S(α) as

S(α) =

y+z∑
y

ane(nα).

Theorem 13. We have

∑
q≤Q

q∑
a=1

(a,q)=1

|S(a/q)|2 � (Q2 + z)

y+z∑
y

|an|2.

Proof: (Gallagher [33])

Let F be any complex-valued function with continuous derivative and period 1. We

average the inequality

|F (a/q)| ≤ |F (α)| +
∫ α

a/q

|dF (β)|

over the interval I(a/q) of length 1/Q2 centered at a/q to get

|F (a/q)| ≤ Q2

∫
I(a/q)

|F (α)| dα +
1

2

∫
I(a/q)

|F ′(β)|dβ.

The intervals I(a/q) with 1 ≤ a ≤ q, (a, q) = 1 and q ≤ Q do not overlap, modulo 1.

Hence ∑
q≤Q

q∑
a=1

(a,q)=1

|F (a/q)| ≤ Q2

∫ 1

0

|F (α)|dα +
1

2

∫ 1

0

|F ′(β)|dβ.
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If we put F = S2 then the first integral on the right is
∑y+z

y |an|2 and the second

integral is ∫ 1

0

|S(β)S ′(β)|dβ ≤
(∫ 1

0

|S(β)|2dβ ·
∫ 1

0

|S ′(β)|2dβ

)1/2

.

Observe that the first integral is again
∑y+z

y |an|2. Before estimating the second integral,

we may first multiply S(β) by e(−mβ) for a suitable m so that the range for n becomes

|n| ≤ 1
2
z, since this leaves |S(β)| unchanged. The exponential function satisfies

∫ 1

0

e(nx)dx =




1 if n = 0

0 otherwise,

and hence the second integral is

∑
|n|≤z/2

|2πin · an|2 ≤ (πz)2

y+z∑
y

|an|2.

Thus we get ∑
q≤Q

q∑
a=1

(a,q)=1

|S(a/q)|2 ≤ (Q2 + πz)

y+z∑
y

|an|2,

as desired. �

2.3. Density Theorems

Let L(s, χ) be any Dirichlet L-function with a character χ to modulus q > 2 and

let Nχ(α, T ) denote the number of zeros of L(s, χ) in the rectangle

α ≤ σ ≤ 1, |t| ≤ T,

where 1/2 ≤ α ≤ 1. Linnik [54] proved, using a complicated method, that for λ ∈
[0, log q] and T = min(λ100, log3 q))

(2.3.1)
∑

χ

Nχ(1 − λ/ log q, T ) < ec1λ,
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for a positive constant c1. Linnik used this theorem to prove that the least prime p(l, k)

in the arithmetic progression

l, l + k, l + 2k, . . .

for 0 < l < k, (l, k) = 1, k ≥ 3, satisfies p(l, k) < kc2 for an absolute constant c2.

Rodosskii [81] gave a simpler proof for (2.3.1) but only for T = eλ/ log q. The

method was further refined by Knapowski [51] in 1962 and Jutila [50] in 1970.

Expanding on this, Fogels [30] used ideas from Linnik’s paper and Turan’s power

sum method (see Turan [85]) to prove

(2.3.2)
∑

χ

Nχ(α, T ) � T c3(1−α),

for c3 is a positive constant and T ≥ q. Fogels applied this theorem to produce an

improved result on the number of primes in an arithmetic progression.

The following ”large sieve” density theorem was proved by Bombieri [6] in 1965 and

was the first of its type.

Theorem 14. Let N be a finite set of positive integers and let

M = max
q∈N

q, and

D = max
q∈N

d(q),

where d(q) denotes the number of divisors of q. Then

∑
q∈N

1

φ(q)

∑
χ

|τ(χ)|2Nχ(α, T ) � DT (M2 + MT )4(1−α)/(3−2α) log10(M + T )

uniformly with respect to N , for 1/2 ≤ α ≤ 1, T ≥ 2.

Jutila [49] and Montgomery [63] simultaneously generalized the classical density

theorems and the large sieve density theorem of Bombieri. They proved ”hybrid”
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density theorems by sieving over χ and q instead of just one or the other. They obtained

results of the form

(2.3.3)
∑
q≤Q

∑∗

χ

Nχ(α, T ) � (Q2T )c4(1−α) logb(QT ),

for a positive constant c4 and where
∑∗

χ

indicates that the sum is taken over the

primitive characters modulo q.

Moreover, Montgomery has shown that

Nχ(α, T ) � T c5(1−α) log13 T,

where c5 can be taken to be 5
2
. This is a remarkable result, as if we could take c5 = 2

in (2.3.3) we would largely have the same result as can be deduced from the Riemann

Hypothesis, and so this case has become known as the ”density hypothesis”.

2.4. A Large Sieve Density Estimate

We will now proceed to prove a large sieve density estimate and application due

to Gallagher [34]. In particular, we will prove that for any b > 0 there exists positive

numbers a and c6 such that

∑
q≤T

∑∗

χ

Nχ(α, T ) � T c6(1−α) (T ≥ 1),

and ∑
q≤Q

∑∗

χ

∣∣∣∣∣
∑

x≤p≤x+h

χ(p) log p

∣∣∣∣∣ � h exp

(
−a

log x

log Q

)
,

for x/Q ≤ h ≤ x and exp(log1/2 x) ≤ Q ≤ xb.

Following Gallagher’s proof, we will prove a general mean value estimate for expo-

nential sums, a large sieve estimate for character sums with prime argument due to

Bombieri and Davenport, and we will give an application of Turan’s power sum lemma.
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Let

(2.4.1) S(t) =
∑

c(v) · e(vt)

be an absolutely convergent exponential sum with complex coefficients and where the

frequencies v run over an arbitrary sequence of real numbers.

Lemma 15. Let δ = Θ/T , with 0 < Θ < 1. Then

(2.4.2)

∫ T

−T

|S(t)|2dt �Θ

∫ ∞

−∞

∣∣∣∣∣∣δ−1
∑

|v−x|≤ 1
2
δ

c(v)

∣∣∣∣∣∣
2

dx.

Proof: (Gallagher [34]) Let

Cδ(x) = δ−1
∑

|v−x|≤ 1
2
δ

c(v)

so that we may write the integral on the right of (2.4.2) as

∫ ∞

−∞
|Cδ(x)|2dx.

We now put Fδ = δ−1 if |x| ≤ 1
2
δ, otherwise we put Fδ = 0 so that we have

Cδ(x) =
∑

c(v)Fδ(x − v).

Taking Fourier transforms of Cδ,

Ĉδ(x) =

∫ ∞

−∞
Cδ(x)e(xt)dx

=
∑

v

c(v)

∫ ∞

−∞
Fδ(x − v)e(xt)dx

=
∑

v

c(v)e(vt)

∫ ∞

−∞
Fδ(x − v)e((x − v)t)dx

= S(t)F̂δ(t).
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Since the series (2.4.1) converges absolutely, Cδ is a bounded integrable function, and

hence is square integrable. By Plancherel’s theorem,

∫ ∞

−∞
|Cδ(x)|2dx =

∫ ∞

−∞
|S(t)F̂δ(t)|2dt.

The result now follows since

F̂δ(t) =
sin πδt

πδt
� 1

for |t| ≤ T . �

We now define

(2.4.3) S(t) =
∑

ann
it

to be an absolutely convergent Dirichlet series, and we apply Lemma 15 to obtain:

Theorem 16. We have

(2.4.4)

∫ T

−T

|S(t)|2dt � T 2

∫ ∞

0

∣∣∣∣∣
yt∑
y

an

∣∣∣∣∣
2

dy

y
, with t = e1/T

Proof: (Gallagher [34])

Taking Θ = 1/(2π) in (2.4.2) we have

∫ T

−T

|S(t)|2 �
∫ ∞

−∞

∣∣∣∣∣2πT
x+δ∑

x

an

∣∣∣∣∣
2

dx.

Making the substitution log y = 2πx, we get

∫ T

−T

|S(t)|2 � T 2

∫ ∞

0

∣∣∣∣∣
yt∑
y

an

∣∣∣∣∣
2

dy

y
,

where t = e1/T . �

We now apply Theorem 16 to sums of the form

(2.4.5) S(χ, t) =
∑

anχ(n)nit.
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Let

S(χ) =

y+z∑
y

anχ(n), and S(α) =

y+z∑
y

ane(nα).

We now prove a large sieve estimate due to Bombieri and Davenport [8].

Lemma 17. Assume an = 0 if n has any prime factors ≤ Q. For T ≥ 1 we have

(2.4.6)
∑
q≤Q

log(Q/q)
∑∗

χ

∣∣∣∣∣
y+z∑

y

anχ(n)

∣∣∣∣∣
2

� (Q2 + z)

y+z∑
y

|an|2.

Proof: (Gallagher [34])

From Lemma 11 we have, for (n, q) = 1,

χ(n)τ(χ) =

q∑
a=1

χ(a)e(na/q).

Since an = 0 if n has a prime factor ≤ Q, we get for q ≤ Q

τ(χ)S(χ) =

q∑
a=1

χ(a)S(a/q).

Squaring the absolute value of both sides and using the othogonality relation of χ we

get ∑
χ

|τ(χ)S(χ)|2 = φ(q)

q∑
a=1

(a,q)=1

|S(a/q)|2.

Hence, by Theorem 13, we get

(2.4.7)
∑
q≤Q

1

φ(q)

∑
χ

|τ(χ)S(χ)|2 � (Q2 + z)

y+z∑
y

|an|2.

If f is the conductor of χ, then q = fr, and |τ(χ)|2 = f or 0 depending on whether r

is square-free and prime to f or not (see Davenport [21] page 148). Also, S(χ) = S(ψ)

where ψ is the primitive character to modulus f which induces χ since an = 0 if n has

any prime factors ≤ Q. Hence the left side of (2.4.7) is

(2.4.8)
∑
f≤Q

f

φ(f)


 ∑

r≤Q/f
(r,f)=1

µ2(r)

φ(r)



( ∑∗

ψ mod f

|S(ψ)|2
)

≥
∑
q≤Q

log(Q/q)
∑∗

χ

∣∣∣∣∣
y+z∑

y

anχ(n)

∣∣∣∣∣
2

,
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since we have (see van Lint and Richert [55] Chapter 1)

∑
r≤x

(r,f)=1

µ2(r)

φ(r)
≥ φ(f)

f
log x.

�

Theorem 18. Using the same assumptions as in Lemma 17 we have

(2.4.9)
∑
q≤Q

log(Q/q)
∑∗

χ

∫ T

−T

|S(χ, t)|2dt �
∑

(Q2T + n)|an|2.

Proof: (Gallagher [34])

By Theorem 16, we have that

∑
q≤Q

log(Q/q)
∑∗

χ

∫ T

−T

|S(χ, t)|2dt � T 2
∑
q≤Q

log(Q/q)
∑∗

χ

∫ ∞

0

∣∣∣∣∣
yt∑
y

anχ(n)

∣∣∣∣∣
2

dy

y
.

Now applying Lemma 17 we find this is

� T 2

∫ ∞

0

(Q2 + y(t − 1))

yt∑
y

|an|2dy

y
.

Observe that the coefficient of |an|2 is

T 2Q2

∫ n

n/t

dy

y
+ T 2(t − 1)

∫ n

n/t

dy = TQ2 + T 2(t − 1)(1 − t−1)n � Q2T + n,

provided T ≥ 1. �

Let L(s, χ) be an L-function to modulus ≤ T and let w = 1 + iv with |v| ≤ T . If

χ = χ0 we also assume that |v| ≥ 2. Put L = log T and let

Sx,y(χ, v) =

y∑
x

χ(p) log p

pw
.

We now show by Turan’s method that if L has a zero near w then Sx,y is large for

suitable x, y.
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Theorem 19. Let r0, A, and B be positive numbers. If L(s, χ) has a zero in the

disc |s − w| ≤ r, with L = log T satisfying L−1 ≤ r ≤ r0, then there exists a positive

number C such that for each x ≥ TA, we have

(2.4.10)

∫ xB

x

|Sx,y(χ, v)|dy

y
� x−Cr log2 x.

Proof: (Gallagher [34]) We have

L′

L
(s, χ) =

∑ 1

s − ρ
+ O(L), |s − w| ≤ 1

2
,

where ρ runs over the zeroes in the disc |s − w| ≤ 1. By Cauchy’s inequality it follows

that

Dk

k!

L′

L
(s, χ) = (−1)k

∑ 1

(s − ρ)k+1
+ O(4kL), |s − w| ≤ 1

4
.

We choose s = w+r and estimate the contribution of the terms with |ρ−w| > λ, where

r ≤ λ ≤ 1. These are � 2jλL terms with 2jλ < |ρ − w| ≤ 2j+1λ, and each of these

terms is � (2jλ)−(k+1). Hence for k ≥ 1, the contribution is � ∑
j≥0(2

jλ)−kL � λ−kL.

Thus for L−1 ≤ r ≤ λ ≤ 1/4, we have

(2.4.11)
Dk

k!

L′

L
(s, χ) = (−1)k

∑′ 1

(s − ρ)k+1
+ O(λ−kL),

where ′ indicates that ρ now runs over the zeros with |ρ − w| ≤ λ. By Linnik’s density

lemma (Prachar [70] pg 331) there are ≤ A1λL such zeros, and by the assumption,

min |s− ρ| ≤ 2r. It follows by Turan’s second power-sum theorem (Turan [85]
∮

9) that∣∣∣∣∑′ 1

(s − ρ)k+1

∣∣∣∣ ≥ (Dr)−(k+1)

for some integer k ∈ [K, 2K], provided K ≥ A1λL. Choosing λ = A2Dr, with A2

sufficiently large and D a positive constant, the sum in (2.4.11) then dominates the

remainder since for any constant C0, we have (Dr)−(k+1) ≥ C0(A2Dr)−kL provided

A2
k ≥ C0DrL; and this holds for k ≥ A1A2DrL for large A2, since rL ≥ 1. Thus we get

Dk

k!

L′

L
(s, χ) � (Dr)−(k+1)
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for some integer k ∈ [K, 2K], provided K ≥ ErL for a positive constant E. Here we

must assume r ≤ r0, since we had λ ≤ 1/4. Rewriting this gives

(2.4.12)
∑ Λ(n)χ(n)

nw
pk(r log n) � D−k/r,

where pk(u) = e−uuk/k!. There are constants B1, B2 such that pk(u) ≤ (2D)−k, for

u ≤ B1k, and pk(u) ≤ (2D)−ke−u/2, for u ≥ B2k. In fact, putting u = vk and using

k! ≥ (k/e)k, we get pk(u) ≤ (ve1−v)k, from which these inequalities follow easily.

Given x ≥ TA, with A = B1E, put K = B−1
1 r log x, so that K ≥ ErL. Let

k ∈ [K, 2K] satisfy (2.4.12). We have, with B = 2B2/B1,

∑
n≤x

Λ(n)χ(n)

nw
pk(r log n) � (2D)−k

∑
n≤x

Λ(n)

n
� (2D)−kk/r,

∑
n>xB

Λ(n)χ(n)

nw
pk(r log n) � (2D)−k

∑
n≤x

Λ(n)

n1+r/2
� (2D)−k/r.

It follows that

(2.4.13)
xB∑
x

Λ(n)χ(n)

nw
pk(r log n) � D−k/r

for suitable large k. We note that we can ensure a large enough k by picking a suitably

large A. Since pk ≤ 1, the contribution to (2.4.13) of the prime powers n = pv with v ≥ 2

is � x−1/2, and therefore may be ignored. Putting S(y) = Sx,y(χ, v), the remaining

sum is ∫ xB

x

pk(r log y)dS(y) = pk(r log xB)S(xB) −
∫ xB

x

S(y)p′k(r log y)r
dy

y
.

Now observe that

pk(r log xB)S(xB) � (2D)−k
∑

n≤xB

Λ(n)

n
� (2D)−kk/r,

and, since p′k = pk−1 − pk � 1,∫ xB

x

|S(y)|dy

y
� D−k/r2 � x−Cr log2 x.
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The result now follows. �

We now have the tools to prove the following large sieve density estimate of Gallagher

[34] which is a generalization of equation (2.3.2).

Theorem 20. We have

(2.4.14)
∑
q≤T

∑∗

χ

Nχ(α, T ) � T c(1−α).

Proof: (Gallagher [34])

We first note that since Nχ(α, T ) � T log T for q ≤ T , it suffices to prove our result

for 1 − α sufficiently small. Furthermore, since the left side is a decreasing function of

α and the right side is essentially constant for 1 − α � L−1, if suffices to prove our

result for 1 − α � L−1. We also note that since the right side is ≥ 1, we may ignore

the boundedly many zeros of ζ(σ + it) (q = 1) in 0 < σ < 1, |t| ≤ 2.

Let 1 + iv with |v| ≤ T with the additional constraint that |v| ≥ 2 if χ = χ0. Put

r = 2(1−α). We may assume that L−1 ≤ r ≤ r0. By Theorem 19, if L(s, χ) has a zero

in the disc |s − w| ≤ r, then for x ≥ TA, (2.4.10) holds. We choose x = Tmax(A,5). By

the Schwarz inequality, we get, with c = 4C · max(A, 5).

T c(1−α)L−3

∫ xB

x

|Sx,y(χ, v)|2dy

y
� 1.

Since, there are � rL zeroes in the disc |s − w| ≤ r, and each zero β = β + iγ with

β ≥ α and |γ| ≤ T is detected in this way over a v-interval of length � r in |v| ≤ T ,

we get

Nχ(α, T ) � T c(1−α)L−2

∫ xB

x

∫ T

−T

|Sx,y(χ, v)|2dv
dy

y
,

and hence, for some y ∈ [x, xB],

(2.4.15)
∑
q≤T

∑∗

χ

Nχ(α, T ) � T c(1−α)L−1
∑
q≤T

∑∗

χ

∫ T

−T

|Sx,y(χ, v)|2dv.
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Using Theorem 18 we get,

∑
q≤T 2

log(T 2/q)
∑∗

χ

∫ T

−T

|Sx,y(χ, v)|2dv �
y∑
x

(T 5 + p)
log2 p

p2
� L−2,

since x ≥ T 5. Hence the double sum on the right of (2.4.15) is � L, and the left side

is � T c(1−α) as required. �

We will now present Gallagher’s proof of a useful application of Theorem 20.

There is a constant c1 > 0 such that at most one primitive L-function to modulus

≤ T has a zero in the region

(2.4.16) σ > 1 − c1

log T
, |t| ≤ T.

If there is an exceptional zero, it is real, simple and unique.

Denoting the exceptional zero by 1 − δ, Knapowski [51] shows that, for c2 > 0, as

δ log T → 0, the zero-free region in (2.4.16) may be widened to

(2.4.17) σ > 1 − c2

log T
log

(
ec1

δ log T

)
,

with 1 − δ still the only exception.

Theorem 21. For x/Q ≤ h ≤ x and exp(log1/2 x) ≤ Q ≤ xb, we have

(2.4.18)
∑
q≤Q

∑∗

χ

∣∣∣∣∣
∑

x≤p≤x+h

χ(p) log p

∣∣∣∣∣ � h · exp

(
−a

log x

log Q

)
.

The term q = 1 must be read as

∑
x≤p≤x+h

log p − h,

and if there is an exceptional zero 1 − δ of L(s, χ′), with δ log Q ≤ d, then the corre-

sponding term must be read as

∑
x≤p≤x+h

χ′(p) log p + hζ−δ,
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for some ζ ∈ [x, x + h]. In the latter case, the bound on the right of (2.4.18) may be

reduced.

Proof: (Gallagher [34])

For q ≤ T ≤ x1/2, we have (Davenport [21] Chapters 17,19)

∑
n≤x

χ(n)Λ(n) = δχx −
∑ xρ

ρ
+ O

(
x log2 x

T

)

where δχ = 1 or 0 according as χ = χ0 or not, and the sum on the right is over the

zeros of L(s, χ) in 0 ≤ σ ≤ 1, |t| ≤ T . The terms with n = pv, v ≥ 2 contribute � x1/2

to the sum, and therefore may be absorbed into the remainder. Since

(x + h)ρ

ρ
− xρ

ρ
=

∫ x+h

x

yρ−1dy � hxβ−1,

for Q ≤ T and β = Re(ρ) we get, using x/h ≤ Q and log x ≤ log2 Q,

∑
x≤p≤x+h

χ(p) log p � h
(∑

xβ−1 + Q2/T
)

,

where, if q = 1 or χ = χ′, the left side must be read as indicated in the statement of

the theorem, and the sum on the right is over non-exceptional zeros. Hence

(2.4.19)
∑
q≤Q

∑∗

χ

∣∣∣∣∣
∑

x≤p≤x+h

χ(p) log p

∣∣∣∣∣ � h

(∑
q≤Q

∑∗

χ

∑
xβ−1 + Q4/T

)
.

Using Theorem 20, and assuming T c ≤ x1/2, we find that the triple sum on the right is

−
∫ 1

0

xα−1dα

(∑
q≤Q

∑∗

χ

Nχ(α, T )

)
=

∫ 1

0

xα−1 log x
∑
q≤Q

∑∗

χ

dα + x−1
∑
q≤Q

∑∗

χ

Nχ(0, T )

�
∫ 1−η(T )

0

x(α−1)/2 log xdα + x−1/2

� x−η(T )/2,

where 1−η(T ) is either the bound (2.4.17) or the bound (2.4.16) according to as whether

there is an exceptional zero or not.
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Choose T = Q5. If there is no exceptional zero, then the parenthesis on the right of

(2.4.19) is

� exp

(
−c3

log x

log Q

)
+ Q−1 � exp

(
−a

log x

log Q

)
.

If there is an exceptional zero, the parenthesis is, using Siegel’s estimate, δ � T−ε for

each ε > 0,

� exp

(
−c4

log x

log Q
log

(
c5

δ log Q

))
+ Q−1,

� (δ log Q)c6 log x/ log Q + (δ log Q)2Q−1/2,

� (δ log Q)2 exp

(
−a

log x

log Q

)
.

�

Finally, we will prove the following result of Maier [56], mentioned in Chapter 1,

which he deduced from Theorem 21. We first recall from Chapter 1 that an integer q > 1

is called a ”good” modulus if the Dirichlet L-function L(s, χ) 
= 0 for all characters χ

mod q and all s with

σ > 1 − c1/ log(q(|t| + 1)),

for c1 > 0.

Lemma 22. Let q be a good modulus then

π(x; q, a) � x

φ(q) log x
,

uniformly for (a, q) = 1 and x ≥ qD. The constant D depends only on the value c1

defining q.

Proof: (Maier [56])

Consider

ψ(x; q, a) =
∑
n≤x

n≡a mod q

Λ(n).
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We now put

ψ(x, χ) =
∑
n≤x

χ(n)Λ(n),

so that we have, see Davenport [21] Chapter 20,

ψ(x; q, a) =
1

φ(q)

∑
χ

χ(a)ψ(x, χ).

We now estimate this sum using Theorem 21, but we must handle the case n = 1,

corresponding to principal character, separately. In this case, we get ψ(x, χ0) � x/φ(q),

Davenport [21] Chapter 20. For n ≥ 2 we take Q = x1/D and h = x in Theorem 21 to

estimate the sum as (x/φ(q))·exp(−a log x/ log Q). Since D = log x/ log Q, we can make

the last term arbitrarily small by taking D large. Hence we have that ψ(x; q, a) � x
φ(q)

and it immediately follows that

π(x; q, a) � x

φ(q) log x
.

�





CHAPTER 3

The Buchstab Function

3.1. Introduction

Buchstab [12], in 1937, considered the number of terms in arithmetic progression

≤ x and coprime with all numbers less than x1/α for α ≥ 2. He was able to prove the

following theorem.

Theorem 23. Let Φy(x; k, l) denote the number of terms ≤ x with no prime factors

< y in the arithmetical progression

l, l + k, l + 2k, · · ·

with l < k, (l, k) = 1. Then for all given α > 2,

Φx1/α(x; k, l) =
1

φ(k)
· x

log x
· Φ(α) + o

(
x

log x

)
,

where,

Φ(α) = 1 +

α−1∫
1

dz1

z1

+

α−1∫
2

z1−1∫
1

dz1dz2

z1z2

+ · · · +
α−1∫

[α]−1

z1−1∫
[α]−2

· · ·
z[α]−2−1∫

1

dz1dz2 · · · dz[α]−1

z1z2 · · · z[α]−1

,

and φ(x) is Euler’s φ function.

Restated, Theorem 23 gives us a formula for counting the number of uncancelled

terms in the sieve of Eratosthenes after the numbers 2 ≤ m ≤ x1/α have been removed.

37
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In 1950, de Bruijn [23] introduced the Buchstab function ω(u), which is defined as

the unique, positive, continuous function satisfying the differential delay equation

ω(u) =
1

u
, 1 ≤ u ≤ 2,(3.1.1)

(uω(u))′ = ω(u − 1), u ≥ 2,(3.1.2)

and reformulated Buchstab’s result as

(3.1.3) lim
y→∞

Φ(yu, y)y−u log y = ω(u),

where Φ(x, y) denotes the number of positive integers ≤ x which have no prime factors

< y. Using Merten’s formula, we may rewrite (3.1.3) as

lim
y→∞

Φ(yu, y) = eγω(u)x
∏
p<y

(1 − 1/p).

Hence we see that Buchstab’s result shows that Φ(x, y) oscillates by a factor of eγω(u)

from its expected value of x
∏
p<y

(1− 1/p). Therefore, we should expect that ω(u) tends

to e−γ as u → ∞. In fact, de Bruijn proved that ω(u) converges to e−γ faster than

exponentially. This result was quickly improved by Hua [43] who showed that

|ω(u) − e−γ| ≤ e−u(log u+log2 u+(log2 u/ log u)−1)+O(u log u).

As mentioned in Chapter 1, Maier [56] used the Buchstab function to prove a re-

markable result on the number of primes in short intervals. In particular, Maier showed

that the function ω(u) − e−γ changes sign in any interval of length 1. Expanding on

Maier’s work, Cheer and Goldston [17] proved some interesting properties of ω which

we prove along with Maier’s result below. Additionally, Cheer and Goldston computed

values for ω(u) with 1 ≤ u ≤ 11 to provide numerical constants for Maier’s result. Val-

ues for ω(u) with u ≤ 500 were extremely accurately computed by Marsaglia, Zaman

and Marsaglia [61], and we will discuss their method in Chapter 5.
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3.2. Properties of ω

We will start by proving Theorem 23 and showing how ω may be derived from this

result. Let

π(x; k, l) =
∑
p≤x

p≡l mod k

1

and

r(n) =
∑
p≤n

1

p
,

for primes p and observe that

Φx1/2(x; k, l) = π(x; k, l) + O(
√

x).

To prove Theorem 23 we require the following lemma.

Lemma 24. Let u and v be values depending on x which satisfy 2 < u < v < A for

some constant A. Then

∑
x1/v≤p<x1/u

1

p log x
p

=
1

log x
log

v − 1

u − 1
+ O

(
1

log2 x

)

Proof: (Buchstab [12]) We know there is a constant B such that r(n) = log log n +

B + O(1/ log n). Using this, we see that

∑
x1/v≤p<x1/u

1

p log x
p

=

[x1/u]∑
n=[x1/v ]+1

r(n) − r(n − 1)

log x
n

=

[x1/u]∑
n=[x1/v ]+1

r(n)

(
1

log x
n

− 1

log x
n+1

)
+

r([x1/u])

log x
x1/u+1

− r([x1/v])

log x
x1/v+1

= −
[x1/u]∑

n=[x1/v ]+1

log log n
log(1 + 1/n)

log x
n
· log x

n+1

+
log log[x1/u]

log x
log[x1/u]+1

−

− log log[x1/v]

log x
log[x1/v ]+1

+ O


 [x1/u]∑

n=[x1/v ]+1

1

log n

log(1 + 1
n
)

log x
n
· log x

n+1


 + O

(
1

log2 x

)
.



40 3. THE BUCHSTAB FUNCTION

But

[x1/u]∑
n=[x1/v ]+1

log log n
log(1 + 1/n)

log x
n
· log x

n+1

=

[x1/u]∑
n=[x1/v ]+1

log log n

n log x
n
· log x

n+1

+ O

(
1

log2 x

)

=

[x1/u]∑
n=[x1/v ]+1

log log n

n
(
log x

n

)2 + O

(
1

log2 x

)

=

∫ x1/u

x1/v

log log z

z
(
log x

z

)2dz + O

(
1

log2 x

)

=
1

log x

(
v log v

v − 1
− u log u

u − 1
− log

v − 1

u − 1

)
+

+
(v − u) log log x

(v − 1)(u − 1) log x
+ O

(
1

log2 x

)
,

log log[x1/u]

log x
x1/u+1

− log log[x1/v]

log x
x1/v+1

=
log log x1/u

log x1−1/u
− log log x1/v

log x1−1/v
+ O

(
1

log2 x

)

=
(v − u) log log x

(v − 1)(u − 1) log x
+

+
1

log x

(
v log u

v − 1
− u log u

u − 1

)
+ O

(
1

log2 x

)
,

and

O


 [x

1
u ]∑

n=[x
1
v ]+1

1

log n
· log(1 + 1

n
)

log x
n
· log x

n+1


 = O


 1

log3 x

[x
1
u ]∑

n=[x
1
v ]+1

log(1 +
1

n
)


 = O

(
1

log2 x

)
.

Finally we get,

∑
x

1
v <p≤x

1
u

1

p log x
p

=
1

log x
log

v − 1

u − 1
+ O

(
1

log2 x

)
,

and the lemma follows. �

Proof of Theorem 23 : (Buchstab [12])

Let, 2 ≤ β < α and pr, pr+1, . . . , pr+m be the primes between x1/α and x1/β, so that

we have

x1/α ≤ pr < pr+1 < · · · < pr+m < x1/β.
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If pi 
 | k then we have

(3.2.1) Φpi
(x; k, l) = Φpi+1

(x; k, l) + Φpi
(x; kpi, l

′
pi

),

where l′pi
< kpi and l′pi

≡ 0 (mod pi). If pi | k then

(3.2.2) Φpi
(x; k, l) = Φpi+1

(x; k, l).

Consecutive applications of (3.2.1) and (3.2.2) gives

Φx1/a(x; k, l) = Φx1/β(x; k, l) +
∑

x1/α≤pi≤x1/β

pi 
 |k

Φpi
(x; kpi, l

′
pi

),

hence

(3.2.3) Φx1/α(x; k, l) = Φx1/β(x; k, l) +
∑

x1/α≤pi≤x1/β

pi 
 |k

Φpi
(x/pi; k, lpi

),

since Φpi
(x; kpi, l

′
pi

) = Φpi
(x/pi; k, lpi

), where lpi
= l′pi

/pi < k, because every term of the

form l′pi
+ kpi · r = pi(lpi

+ k · r).
We will first prove the result for the interval 2 ≤ α < 3. We will give x arbitrary

values greater than k3 except if α = 3 then we do not let x be the cube of a prime.

However, this restriction is not essential for our goal. Then for every α (2 ≤ α ≤ 3),

Φx1/α(x; k, l) and Φx1/2(x; k, l) distinguish from each other only on the number of terms

in arithmetic progression (3.1.1) of form pq where p, q are primes such that,

x1/α ≤ p < x1/2, p ≤ q,

and for every given p all numbers q make progression with difference k since from

pq ≡ l(mod k) follows that q ≡ λp(mod k) where λp < k.
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Φx1/α(x; k, l) = Φx1/2(x; k, l) +
∑

x1/α≤p<x1/2

∑
p≤q≤x/p

q≡λp mod k

1

= Φx1/2(x; k, l) +
∑

x1/α≤p<x1/2

∑
√

x/p<q≤x/p

q≡λp mod k

1 −
∑

x1/α≤p<x1/2

∑
√

x/p<q<p

q≡λp mod k

1,

but

∑
x1/α≤p<x1/2

∑
√

x/p<q≤x/p

q≡λp mod k

1 =
∑

x1/α≤p<x1/2

{π(x/p; k, λp) − π(
√

x/p; k, λp)}

=
∑

x1/α≤p<x1/2

π(x/p; k, λp) + O(x/ log2 x),

since

∑
x1/α≤p<x1/2

π(
√

x/p; k, λp) <
∑

x1/α≤p<x1/2

√
x/p <

√
x

√
x∑

n=1

1/
√

n = O(x3/4).

We also have

∑
x1/α≤p<x1/2

∑
√

x/p<q<p

1 = O


 ∑

x1/α≤p<x1/2

p

log p




= O


 √

x

log x
·

∑
x1/α≤p<x1/2

1




= O

(
x

log2 x

)
,



3.2. PROPERTIES OF ω 43

so that

Φx1/α(x; k, l)

= π(x; k, l) +
∑

x1/α≤p<x1/2

π(x/p; k, λp) + O(x/ log2 x)

=
1

φ(k)


 ∑

x1/α≤p<x1/2

x

p log x
p

+
x

log x


 + O


 ∑

x1/α≤p<x1/2

x

p log2 x
p


 + O

(
x

log2 x

)

=
1

φ(k)

x

log x
{1 + log(α − 1)} + O

(
x

log2 x

)
,

using known estimates for π(x; k, l) and Lemma 24 with v = α and u = 2. We have for

2 ≤ α < 3

Φx1/α(x; k, l) =
1

φ(k)

x

log x
Φ(α) + O

(
x

log2 x

)
,

where

(3.2.4) Φ(α) = 1 +

a−1∫
1

dz

z
.

We will use induction to build the function Φ(α) for all α ≥ 2. Let N be any integer

greater than 2 and suppose that for all coprime k and l and for all α, where α depends

on x such that N − 1 ≤ α < N , we have

(3.2.5) Φx1/α(x; k, l) =
1

φ(k)

x

log x
Φ(α) + O

(
x

log1+τN

)

where τN = 1
2N−3 , and Φ(α) a continuous increasing function of α. We will prove that

in this case (3.2.5) holds and for all values N ≤ α < N + 1, and if in (5) we change τN

to τN+1, then in this new interval

Φ(α) = Φ(N) +

α−1∫
N−1

Φ(z)

z
dz.

For proof we consider values

us = N +
α − N

n
· s − 1, s = 0, 1, 2, . . . , n,
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where

N ≤ α < N + 1

and

c1(log x)
1
2
τN ≤ n ≤ c2(log x)

1
2
τN .

For primes p such that x
1

us+1+1 ≤ p < x
1

us+1 , with s = 0, 1, 2, . . . n − 1, we have,

N − 1 ≤ us <
log(x/p)

log p
≤ us+1 ≤ N.

Φs =
∑

x
1

us+1+1 ≤p<x
1

us+1

Φp(x/p; k, lp) =
∑

x
1

us+1+1 ≤p<x
1

us+1

Φ
(x/p)

log p
log(x/p)

(x/p; k, lp)

=
1

φ(k)
·

∑
x

1
us+1+1 ≤p<x

1
us+1

φ

(
log(x/p)

log p

)
· x

p log(x/p)
+

+ O


 ∑

x
1

us+1+1 ≤p<x
1

us+1

x

p(log(x/p))1+τN




=
φ(ηs)

φ(k)

∑
x

1
us+1+1 ≤p<x

1
us+1

x

p log(x/p)
+ O


 x

(log x)τN

∑
x

1
us+1+1 ≤p<x

1
us+1

1

p log(x/p)


 ,

where us < ηs ≤ us+1, or , using Lemma 24,

(3.2.6) Φs =
1

φ(k)
· x

log x
φ(ηs) · log

us+1

us

+ O

(
x

(log x)1+τN

)
.
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But we have,

n−1∑
s=0

{φ(us+1) − φ(us)} log
us+1

us

<
n−1∑
s=0

{φ(us+1) − φ(us)} · us+1 − us

us

<
1

n(N − 1)

n−1∑
s=0

{φ(us+1 − φ(us)}

=
φ(α − 1) − φ(N − 1)

n(N − 1)

= O

(
1

(log x)
1
2
τN

)
,

and consequently,

∣∣∣∣∣∣
n−1∑
s=0

φ(ηs) log
us+1

us

−
α−1∫

N−1

φ(z)d(log z)

∣∣∣∣∣∣ = O

(
1

(log x)
1
2
τN

)
.

Now we get, summing (3.2.6) over s,

∑
x1/α≤p<x1/N

Φp(x/p; k, lp) =
n−1∑
s=0

Φs

=
1

φ(k)

x

log x

n−1∑
s=0

φ(ηs) log
us+1

us

+ O

(
n · x

(log x)1+τN

)

=
1

φ(k)

x

log x

α−1∫
N−1

φ(z)

z
dz + O

(
x

(log x)1+τN+1

)
,

since

x

log x
O

(
1

(log x)
1
2
τN

)
= O

(
nx

(log x)1+τN

)
= O

(
nx

(log x)1+τN+1

)

because

1

2
τN = τN+1.
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Using (3.2.3) with β = N and x > kα and using (3.2.5) with α = N , by our inductive

hypothesis, we get

Φx1/α(x; k, l) = Φx1/N (x; k, l) +
∑

x1/α≤p<x1/N

Φp(x/p; k, lp)

=
1

φ(k)

x

log x


Φ(N) +

α−1∫
N−1

Φ(z)

z
dz


 + O

(
x

(log x)1+τN+1

)
,

hence that

Φx1/α(x; k, l) =
1

φ(k)

x

log x
Φ(α) + O

(
x

(log x)1+τN+1

)

(N ≤ α ≤ N + 1)

where

(3.2.7) Φ(α) = Φ(N) +

α−1∫
N−1

Φ(z)

z
dz.

But it is easy to see that (3.2.7) guarantees that function Φ in the new interval is

continuous and has positive derivative and the theorem follows.

�

It is now easy to show that Φ(x)/x satisfies (3.1.1) and (3.1.2) and hence that

ω(x) = Φ(x)/x. First, we see from (3.2.7) that for N ≥ α < N + 1, N ≥ 2,

αω(α) = Nω(N) +

α−1∫
N−1

zω(z)

z
dz,

and differentiating both sides gives us

d

dα
(α(ω(α)) = ω(α − 1),

as required. From Theorem 23 we see that

αω(α) = 1 +

∫ α−1

1

Φ(z)

z
dz = 1 + log(α − 1),

for 2 ≤ α ≤ 3. Hence, using (3.1.2), we see that ω(α) = 1/α for 1 ≤ α ≤ 2.
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Following the argument of de Bruijn [23], we will show that ω(u) ∼ e−γ, where

γ denotes Euler’s constant, by first showing that there exists a constant A such that

ω(u) = A + O(Γ−1(u + 1)) and then that A = e−γ.

Rewrite (3.1.2) as uω′(u) = −ω(u) + ω(u − 1), and observe that for u ≥ 2,

ω′(u) ≤ u−1 max
u−1≤t≤u

|ω′(t)|.

Hence ω′(u) is bounded for u ≥ 2. Let M(u) denote the upper bound of |ω′(t)| for

u ≤ t < ∞ and notice that for u ≥ 3 we have

M(u) ≤ u−1M(u − 1).

Hence

M(u) ≤ u−1(u − 1)−1M(u − 2)

≤ (u!)−1M(1).

Using Γ(u + 1) = u! we find that M(u) ≤ c(Γ−1(u + 1)) for some constant c > 0 and

our result follows.

Thus we have lim
u→∞

ω(u) = A and it just remains to show that A = e−γ. To do this

de Bruijn defined the following adjoint equation h(u) of ω(u). Let

h(u) =

∫ ∞

0

exp

(
−ux − x +

∫ x

0

e−t − 1

t
dt

)
dx,

which is analytic for u > −1. Now observe that h(u) ∼ 1
u

as u → ∞ and h(u) satisfies

(3.2.8) uh′(u − 1) + h(u) = 0.

Consider

(3.2.9) f(a) =

∫ a

a−1

ω(u)h(u)du + aω(a)h(a − 1),
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Differentiating and using (3.1.2) and (3.2.8) we see that

f ′(a) = 0 for a ≥ 2,

and hence the value of f(a) does not depend on a. So evaluating (3.2.9) as a → ∞ and

at a = 2 gives us

lim
a→∞

∫ a

a−1

ω(u)h(u)du + aω(a)h(a − 1) =

∫ 2

1

ω(u)h(u)du + 2ω(2)h(1).

Since as a → ∞ we have ω(a) → A and h(a) ∼ a−1 we get, by 3.2.8, that

A = h(1) −
∫ 2

1

h′(u − 1)du

= lim
u→0+

uh′(u − 1)

= − lim
u→0+

u

∞∫
0

exp

(
−ux − x +

∫ x

0

e−t − 1

t
dt + log x

)
dx

= e−γ,

since

lim
x→∞

(∫ x

0

e−t − 1

t
dt + log x

)
= −γ.

Hence A = e−γ and therefore limu→∞ ω(u) = e−γ.

To study the behaviour of ω(u) around e−γ we define

W (u) = ω(u) − e−γ.

Hence we can restate Hua’s result mentioned in 3.1 as

|W (u)| ≤ e−u(log u+log2 u+(log2 u/ log u)−1)+O(u log u).

In addition to rapidly converging to e−γ, we see from results by Maier and by Cheer

and Goldston that ω(u) has extraordinarily regular behaviour around e−γ. We will first

prove the following lemma due to Maier.
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Lemma 25. W (u) changes sign in every interval of length 1.

Proof: (Maier [56])

Using h(u) and f(a) defined as above, we also define

g(a) =

∫ a

a−1

h(u)du + ah(a − 1).

Differentiating g(a), as we did f(a), gives us

g′(a) = 0 for a > 0.

Since h(u) ∼ 1
u

as u → ∞ we have g(a) → 1 as a → ∞. Hence, since f(a) = e−γ, we

find that ∫ a

a−1

W (u)h(u)du + aW (a)h(a − 1) = 0.

Thus in the interval [a − 1, a] we must have either ω(u) = e−γ or W (u) changes sign.

But ω(u) = e−γ on [a − 1, a] contradicts the values of ω(u) on 1 ≤ u ≤ 2. Hence we

have our result.

�

We now define

M+(v) = max
u≥v

W (u), M−(v) = min
u≥v

W (u).

In light of (3.1.2), W (u) clearly satisfies

(3.2.10) uW ′(u) = −W (u) + W (u − 1).

We can also infer from Maier’s result that W (u) contains a critical point in every interval

of length 1 since W (u) is continuous for u > 2. Now, let us denote the zeros of W (u)

in increasing size by λ1, λ2, . . .. Let c1 = 2 and denote the critical points of W (u) in

increasing size by c2, c3, . . .. Cheer and Goldston, expanding on Maier’s results, proved

the following two theorems.
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Theorem 26. For v ≥ 2, we have

M+(v) = max
v≤u≤v+2

W (u), M−(v) = min
v≤u≤v+2

W (u).

Proof: (Cheer and Goldston [17])

W (u) satisfies, (Hua [43]),

(3.2.11) uh(u − 1)W (u) = −
∫ u

u−1

W (t)h(t)dt,

where h(u) is defined as above. We will prove the result for M+(v) and note that the

proof for M−(v) is similar.

To do this we first show that if c ≥ 3 is a positive relative maximum, then there will

be a value d′ with c − 2 ≤ d′ ≤ c such that W (d′) > W (c).

By (3.2.11) and the mean value theorem for integrals there exists a value d with

c − 1 ≤ d ≤ c such that

W (d)h(d) = −ch(c − 1)W (c).

Applying (3.2.11) to W (d) we get a number d′ with d − 1 ≤ d′ ≤ d such that

W (d′)h(d′) = −dh(d − 1)W (d),

and hence

W (d′) =
cdh(c − 1)h(d − 1)W (c)

h(d)h(d′)
≥ cdW (c),

since h(u) is positive and decreasing.

Thus the result holds for all v ≥ c − 2 and hence for all v ≥ 2 since we can verify

by computation, see [17], that the first and second positive relative maximums are at

c2 = 2.76322 . . . and c4 = 4.21753 . . . and ω(c2) > ω(c4). �

Thus we see that the maxima and minima of W (u) get smaller in intervals of length

greater than 2.
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Theorem 27. In each interval [u, u + 1], u ≥ 2, W (u) has at most two zeros and

at most two critical points. Furthermore, we have λ1 < c1 < λ2 < · · · , where the

c2k are relative maxima with ω(c2k) − e−γ > 0, and the c2k−1 are relative minima with

ω(c2k−1) − e−γ < 0.

Proof: (Cheer and Goldston [17])

We first observe that the theorem is true for 2 ≤ u ≤ 3 since ω(u) = (log(u−1)+1)/u

in this range. We will now proceed to prove the theorem by induction.

To do this, we suppose the theorem is true up to ck, k ≥ 2 which is a positive

maximum of W (u). We further assume that the only other critical point of W (u) in

the interval [ck − 1, ck] is the negative minimum ck−1. Hence W (U) has precisely two

zeros λk−1, λk in this interval. We will now prove that W (u) duplicates this behaviour

in the next interval [ck, ck+2].

Differentiating (3.2.10) find that uW ′′(u) + W ′(u) = −W ′(u) − W ′(u − 1). So,

if c is a critical point which is not a relative maximum or relative minimum, then

W ′(c) = W ′′(c) = 0 and hence W ′(c − 1) = 0. Thus, a critical points which is also an

inflection point can only occur at u = c if u = c − 1 is also a critical point. Therefore,

since we assumed that the only critical points in [ck − 1, ck] are at ck−1 and ck, we see

that the only possible critical points which are not extrema in [ck, ck +1] are at ck−1 +1

or ck + 1. We will deal with these cases later.

Writing (3.2.10) as

(3.2.12) (uW (u))′ = W (u − 1),

we see the sign of W (u) in the interval [ck−1, ck] determines whether uW (u) is increasing

or decreasing in the interval [ck, ck + 1]. We further observe that since u > 0, uW (u)

and W (u) have the same sign and the same zeros.
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Thus we see that

uW (u) has a zero at u = λk,

uW (u) > 0 for λk < u ≤ ck,

uW (u) increases for ck < u < λk−1 + 1, and

uW (u) decreases for λk−1 + 1 < u < λk + 1.

Since W (u) has a zero in every interval of length 1, W (u) must have a zero, λk+1 in

(λk, λk + 1), and hence W (u) and uW (u) have a unique zero at λk+1. We also see that

λk+1 > λk−1 + 1, so that λk+1 − λk−1 > 1 and W (λk + 1) < 0.

Next, uW (u) will increase for λk + 1 < u < λk+1 + 1 and there must be a zero λk+2

in this interval since the interval has length 1. Further, λk+2 > λk +1, so λk+2−λk > 1,

and W (λk+1 + 1) > 0.

We now observe that if uW (u) decreases and W (u) > 0 in an interval, then W (u)

also decreases in that interval. Similarly, if uW (u) increases and W (u) < 0 in an

interval, then W (u) increases in that interval. Therefore W (u) decreases in (λk−1 +

1, λk+1) and increases in (λk + 1, λk+2).

We now want to show that W (u) decreases for ck < u ≤ λk−1 + 1. Let α and β be

any two numbers in this interval with α < β. On integrating (3.2.12), we have

βW (β) − αW (α) =

∫ β−1

α−1

W (t)dt

< (β − α)W (α − 1),

since, by our hypothesis, W (t) is positive and decreasing in the interval (α−1, β−1) ⊂
(ck − 1, λk−1). Hence we have

β(W (β) − W (α)) = βW (β) − αW (α) − (β − α)W (α)

< (β − α)(W (α − 1) − W (α))

= (β − α)αW ′(α),
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which gives

(3.2.13) αW ′(α) >
β

β − α
(W (β) − W (α)).

From this we W (u) decreases in (ck, λk−1 + 1), since W (u) initially decreases and if

there were a value α where W ′(α) = 0, then (3.2.13) would imply W (β) < W (α) for

all β > α. Hence α would not be a relative minimum, and there are no critical points

which are inflections in this interval. Furthermore, W (u) > 0 in (ck, λk−1 + 1), because

uW (u) > 0 in this interval.

Thus, if we define ck+1 as the next relative minimum of W (u) for u ≥ λk+1, we have

that W (u) decrease in (λk+1, ck+1).

Next consider the interval (ck+1, λk + 1). We note that ck+1 
= λk+1, since equality

would imply λk+1 − 1 = λk or λk−1. But, this is impossible because in the first case we

have the interval (λk, λk+1) of length one has no zeros, and the second case contradicts

λk−1 > λ + k − 1 + 1.

We now prove ck−1 + 1 < ck+1. For if not, then either ck+1 < ck−1 + 1, or ck+1 =

ck−1 + 1. In the first case let ck+1 < β < ck−1 + 1. Then, since W (t) is negative and

decreasing in (ck+1 − 1, ck−1),

βW (β) − ck+1W (ck+1) =

∫ β−1

ck+1−1

W (t)dt

< (β − ck+1)W (ck+1 − 1)

= (β − ck+1)W (ck+1),

where we used the fact that, for ck > 2, we have

W (ck − 1) = W (ck),

due to (3.2.10). Hence, W (β) < W (ck+1) for any β > ck+1, contradicting the fact that

ck+1 is a relative minimum. In the case ck+1 = ck−1 + 1, we have W (ck+1) = W (ck−1),
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and for λk+1 < β < ck+1 = ck−1 + 1,

−βW (β) + ck+1w(Ck+1) =

∫ ck+1−1

β−1

W (t)dt

> (ck+1 − β)W (ck+1 − 1)

= (ck+1 − β)W (ck+1),

implying W (β) < W (ck+1), which is impossible if ck+1 is a relative minimum. This

argument also shows that ck−1 + 1 is not an inflection point as mentioned earlier.

Next, we prove that W (u) increases in (ck+1, λk + 1). Let α and β be any numbers

satisfying ck+1 < α < β < λk + 1. Using the same method we used to prove (3.2.13),

we have

αW ′(α) <
β

β − α
(W (β) − W (α)).

If W (u) did not increase through this interval, then there is a point u = a in the interval

where W ′(a) = 0. Letting α = a implies W (β)−W (α) > 0 for any β > α, which shows

that W (u) increases. Let ck+2 be the next relative maximum of W (u) for u > λk+2.

Then W (u) increases in (λk+2, ck+2). The proof that ck+2 > ck + 1 is the same as the

previous argument that ck+1 > ck−1+1, which also shows that ck +1 is not an inflection.

The result now follows by induction.

�



CHAPTER 4

The Dickman Function

4.1. Introduction

Let ϕ(a, x) denote the number of positive integers t ≤ x with a prime factor p > ta

and let

f(a) = lim
x→∞

ϕ(a, x)

x

denote the probability that the greatest prime factor of an integer t will be greater than

ta. In 1930, Dickman proved:

Theorem 28. For each n ≥ 1 and for each a with 1
n+1

≤ a < 1
n
, put fn(a) = f(a).

Then we have

f1(a) =

∫ 1

a

dy

y
= log

1

a
(4.1.1)

fn(a) = fn−1

(
1

n

)
+

∫ 1
n

a

1

y

(
1 − fn−1

(
y

y − 1

))
dy for n = 2, 3, . . .(4.1.2)

Letting ψ(x, y) denote the number of positive integers ≤ x with no prime factors

> y, we can reformulate Dickman’s result as

lim
x→∞

ψ(x, x1/a) = ρ(a)x,

where ρ(u), called the Dickman function, is defined on the non-negative real numbers

as the unique continuous solution of the differential-difference equation,

(4.1.3) ρ(u) = 1, if 0 ≤ u ≤ 1

(4.1.4) uρ′(u) = −ρ(u − 1), if u > 1.

55
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In 1949, Buchstab [13] was the first to use the differential-difference equation form

of the Dickman function as he studied the function Bl(n, x, y) defined as the number of

positive integers m ≤ x such that m ≡ l (mod n) has no prime factors greater than y.

He proved that

Bl(n, x, x1/u) = n−1ρ(u)x + On,u(x(log x)−1/2),

for (l, n) = 1, u > 1 and x > 1. Furthermore, he proved that, for u ≥ 6,

ρ(u) > exp(−u(log u + log log u + 6 log log u/ log u)).

In 1951, de Bruijn [25] improved this estimate to

ρ(u) = exp

(
−u

(
log u + log log u − 1 +

log log u

log u
− 1

log u
+ O

(
log2 log u

log2 u

)))
,

for u ≥ 3. A similar result was proved by Hildenbrand and Tenenbaum [41] in 1993.

They proved for u ≥ 1,

ρ(u) = exp

(
−u

(
log u + log log(u + 2) − 1 + O

(
log log(u + 2)

log(u + 2)

)))
.

de Bruijn [25], also in 1951, introduced the function Λ(x, y) defined by

Λ(x, y) = x

∫ ∞

0

ρ

(
log x − log t

log y

)
d
[t]

t
,

and he improved Dickman’s result by proving that, for x > 0 and y ≥ 2,

|ψ(x, y) − Λ(x, y)| < cxu2R(y)

where R(y) is approximately the order of |π(y) − Li(y)|/y and c is a positive constant.

In proving this result, de Bruijn also obtains an asymptotic estimate for ψ(x, x1/u)

where u is allowed to vary with x. In particular, he showed that for 0 ≤ u ≤ (log x)3/8−ε

ψ(x, x1/u) ∼ xρ(u).
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Maier extended the range to 0 ≤ u ≤ (log x)1−ε, and this result was further improved to

1 ≤ u ≤ log x/(log log x)5/3+ε by Hildebrand [39] in 1986. We shall prove Hildebrand’s

result below.

In 1988, Goldston and McCurley [35], generalized the function ψ(x, y) to the function

ψ(x, y,Q) defined as the number of positive integers ≤ x that have no prime factors

from a set of primes Q that exceed y. To study this function they introduce the modified

Dickman function ρδ(u) defined by

ρδ(u) = 1, 0 ≤ u ≤ 1,

ρδ(u) = 1 − δ

∫ u−1

0

ρδ(t)

t + 1
dt, u ≥ 1,

where 0 ≤ δ ≤ 1. Observe that ρ1(u) = ρ(u). Using this function they proved that for

any δ, 0 < δ < 1 and u = log x/ log y,

ψ(x, y,Q) = xρδ(u)

(
1 + O

(
1

log y

))
,

uniformly for u ≥ 1 and y ≥ 1.5.

4.2. Properties of ρ

We will start by giving Dickman’s proof of Theorem 28.

Proof: (Dickman [26])

Let p denote the greatest prime factor of t and let q = t/p. If p > ta then q < t1−a,

hence

p
1
a > t > q

1
1−a ,

and therefore

(4.2.1) p > q
a

1−a .

We will first consider the case when 1/2 ≤ a < 1. Observe from (4.2.1) that each

integer of the form t = pq, for positive integers q < x1−a and where p is a prime
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satisfying q
a

1−a < p ≤ x
q
, is an integer less than or equal to x with a prime factor greater

than ta. Since a ≥ 1/2 the integers t created this way are unique. Hence

(4.2.2) φ(a, x) =
∑

q<x1−a

π

(
x

q

)
−

∑
2≤q<x1−a

π
(
q

a
1−a

)

since π
(

x
q

)
− π

(
q

a
1−a

)
is the number of primes satisfying the given condition.

So, using the prime number theorem, we get

∑
q<x1−a

π

(
x

q

)
∼

∑
q<x1−a

x/q

log(x/q)

= x
∑

q<x1−a

1

q(log x − log q)

∼ x

∫ x1−a

1

dq

q log x
(
1 − log q

log x

) .

Let y = 1 − log q
log x

so that dy = − dq
q log x

, the lower bound of our integral is

y = 1 − log 1

log x
= 1

and the upper bound is

y = 1 − log(x1−a)

log x
= a.

Thus we get

∑
q<x1−a

π

(
x

q

)
∼ x

∫ a

1

−dy

y

= x

∫ 1

a

dy

y

= x log
1

a
.

If a < b < 1, then for each integer q with x1−b ≤ q < x1−a we have

π
(
q

a
1−a

)
∼ q

a
1−a

log q
a

1−a

.
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Since the number of integers q < x1−b is of a lower order of magnitude than the number

of integers q < x1−a we have that

∑
2≤q<x1−a

π
(
q

a
1−a

)
∼

∑
2≤q<x1−a

q
a

1−a

log q
a

1−a

=
1 − a

a

∑
2≤q<x1−a

q
a

1−a

log q

∼ 1 − a

a

∫ x1−a

2

q
a

1−a

log q
dq.

Taking z = q
1

1−a we get

∑
2≤q<x1−a

π
(
q

a
1−a

)
∼ 1 − a

a

∫ x

2
1

1−a

dz

log z

∼ 1 − a

a

x

log x
.

Thus from (4.2.2) we have

φ(a, x) ∼ x log
1

a
− 1 − a

a

x

log x
∼ x log

1

a
.

Therefore

f1(a) = lim
x→∞

φ(a, x)

x
= log

1

a
.

To prove (4.1.2) we proceed by induction. Assume the result holds for n − 1. We

again consider the integers of the form t = pq, for positive integers q < x1−a and where

p is a prime satisfying q
a

1−a < p ≤ x
q
, is an integer less than or equal to x with a

prime factor greater than ta. If all the integers t generated in this way were unique the

argument for the case n = 1 would hold and we would have

(4.2.3) fn(a) = log
1

a
= log n +

∫ 1/n

a

dy

y
.
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However, it is possible that an integer q contains a prime factor p′ > p. Assuming p = ty

for some y with a ≤ y < 1
n
, we get q = t1−y. Thus p = qz where z = y

1−y
. Observe that

z <
1
n

1 − 1
n

=
1

n − 1

and

z ≥
1

n+1

1 − 1
n+1

=
1

n

so by our inductive hypothesis the probability that q has a prime factor greater than p

is

log
1

z
= fn−1

(
y

1 − y

)
.

Thus we need to multiply the integrand of (4.2.3) by 1 − fn−1

(
y

1−y

)
. Therefore

fn(a) = log
1

n
+

∫ 1
n

a

1

y

(
1 − fn−1

(
y

1 − y

))
dy

as required.

�

Clearly for a > 1 the probability that an integer t has a prime factor greater than

ta is 0 and hence we put f0 = 0. Observe that with f0 = 0 that (4.1.3) coincides with

(4.1.4).

It is easy to deduce that ρ(u) = 1 − f(1/u). Since f0 = 0 for 0 < u ≤ 1, we have

that f(u) = 0 and hence that ρ(u) = 1 in this range. Further from (4.1.4) for a < 1,

we put u = 1
a

so that

fn

(
1

u

)
= fn−1

(
1

n

)
+

∫ 1
n

1
u

1

y

(
1 − fn−1

(
1 − y

y − 1

))
dy.
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Taking x = 1
y

so that dx = −dy
y2 , we get

fn

(
1

u

)
= fn−1

(
1

n

)
+

∫ n

u

−1

x

(
1 − fn−1

( 1
x

1 − 1
x

))
dx

= fn−1

(
1

n

)
+

∫ u

n

1

x

(
1 − fn−1

(
1

x − 1

))
dx

Hence

1 − ρ(u) = 1 − ρ(n) +

∫ u

n

ρ(x − 1)

x
dx.

Differentiating and simplifying gives us

ρ′(u) = −ρ(u − 1)

u
,

for u > 1.

Using this derivation it is easy to prove some basic properties of ρ. First we observe

that by definition 0 < f(u) ≤ 1 for all u > 0 and hence 0 < ρ(u) ≤ 1. Using this fact

and (4.1.4) we see that ρ(u) is strictly decreasing for u > 1. Differentiating (4.1.4) gives

us

ρ′′(u) = −uρ′(u − 1) − ρ(u − 1)

u2
=

ρ(u − 2) + ρ(u − 1)

u2
> 0

for u > 2. Therefore ρ(u) is concave up for u > 2.

For u ≤ 4, ρ can be written in terms of simple functions. Since ρ(u) = 1 − f(1/u)

we see from (4.1.1) that for 1 ≤ u ≤ 2, we have

(4.2.4) ρ(u) = 1 − log u.

Let

Lik(x) =
∞∑

n=1

xn

nk
.

We then have, due to Chamayou [15],

ρ(u) = 1 − log u + 1/2 log2 u + Li2(1/u) − Li2(1/2) − 1/2 log2 2, for 2 ≤ u ≤ 3,
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and for 3 ≤ u ≤ 4

ρ(u) =1 − log u +

(
1

2
log2 u + Li2(1/u) + Li2(−1)

)
−
{

1

4

[
Li3

(
1

4

)
− Li3

(
1

(u − 1)2

)]

− 1

3
(log3(u − 1) − log3 2) +

1

2
(log2(u − 1) log u − log2 2 log 3)

+ Li2

(
1

u − 1

)
log

u

u − 1
− Li2

(
1

2

)
log

(
3

2

)
− Li2

(
− 1

u − 1

)
log(u − 2)

+ Li2(−1) log(u/3) + V1 − 1

22
V2 + · · · + (−1)p

p2
Vp + · · ·

}

where

V1 = log
1

2
− log

u − 2

u − 1
+

1

2
− 1

u − 1

and

Vp+1 = Vp +
1

p + 1

(
1

2p+1
− 1

(u − 1)p+1

)
.

Our next aim is to prove a uniform asymptotic relation for ψ(x, x1/u) due to Hilde-

brand [39]. To do this, we first need to prove several lemmas containing further prop-

erties of the function ρ.

Lemma 29. The function ρ satisfies

(i) uρ(u) =
∫ u

u−1
ρ(t)dt, u ≥ 1,

(ii) ρ′(u)/ρ(u) ≤ log(u log2 u), u ≥ e4

(iii) ρ(u − t)/ρ(u) � (u log2(u + 1))t uniformly for u ≥ 1 and 0 ≤ t ≤ u.

Proof: (Hildebrand [39])

(i) We see that the result holds for u = 1 since ρ(1) = 1 for 0 ≤ u ≤ 1. Taking

derivatives on both sides of (i) for u > 1, we find that

(uρ(u))′ = ρ(u) + uρ′(u) = ρ(u) − ρ(u − 1) =

(∫ u

u−1

ρ(t)dt

)′
.

Hence both sides have the same derivative for u > 1, so (i) holds for all u ≥ 1.
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(ii) Let g(u) be the logarithmic derivative of 1/ρ(u), hence for u > 1

g(u) = −ρ′(u)

ρ(u)
=

ρ(u − 1)

uρ(u)
.

Since ρ(u) = 1 for 0 ≤ u ≤ 1 we see from (i) that 0 < ρ(u) ≤ 1 for u ≥ 0 hence

g(u) > 0. Also by (i) we have for u > 2,

u =

∫ u

u−1

ρ(t)

ρ(u)
dt

=

∫ u

u−1

exp(log ρ(t) − log ρ(u))dt

=

∫ u

u−1

exp(

∫ u

t

g(s)ds)dt(4.2.5)

We now claim that g is increasing for u > 1. To see this we observe that, by equation

(4.2.4), for 1 < u ≤ 2 we have

g(u) =
ρ(u − 1)

uρ(u)
,

which is a strictly increasing function on 1 < u ≤ 2. For u > 2 we have by (4.2.5) that

1

g(u)
=

uρ(u)

ρ(u − 1)
= u exp

(
−
∫ u

u−1

g(t)dt

)

=

∫ u

u−1

exp

(
−
∫ t

u−1

g(s)ds

)
dt

=

∫ 1

0

exp

(
−
∫ u−1+t

u−1

g(s)ds

)
dt.

Taking derivatives on both sides, we get

g′(u)

g2(u)
=

∫ 1

0

exp

(
−
∫ u−1+t

u−1

g(s)ds

)
(g(u − 1 + t) − g(u − 1))dt.

Since g(u) is continuous for u > 1 and strictly increasing on (1, 2], it follows that

g′(u) > 0 for u ∈ (2, 2 + δ] with some δ > 0. Therefore g(u) is strictly increasing in the

interval (1, 2 + δ]. Further, we can inductively repeat the argument and hence g(u) is

increasing for u > 1.
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From (4.2.5) and the fact that f is non-decreasing, we find that for u > 2,

u ≥
∫ u

u−1

exp((u − t)g(u − 1))dt =
eg(u−1) − 1

g(u − 1)
.

Thus

g(u − 1) ≤ log((u − 1) log2(u − 1)),

for u ≥ e4 + 1. The result follows since the function h(x) = (ex − 1)/x is increasing for

x > 0 and for u ≥ e4 + 1 we have

h(log(u − 1) log2(u − 1))) =
(u − 1) log2(u − 1) − 1

log((u − 1) log2(u − 1))

≥ (u − 1) log2(u − 1) − 1

3 log(u − 1)

≥ 4(u − 1) log(u − 1) − 1

3 log(u − 1)
> u.

(iii) We first observe that for 0 ≤ u < e4, ρ(u) is bounded from above and below by

absolute positive constants. For u ≥ e4 the result follows from (ii). �

Lemma 30. Uniformly for y ≥ 1.5 and 1 ≤ u ≤ √
y we have

∫ u

0

ρ(u − t)y−1dt � ρ(u)/ log y.

Proof: (Hildebrand [39])

By part (iii) of Lemma 29 and that 1 ≤ u ≤ √
y we have

ρ(u)−1

∫ u

0

ρ(u − t)y−1dt �
∫ u

0

(
u log2(u + 1)

y

)t

dt

≤
∫ √

y

0

(
log2(

√
y + 1)√
y

)t

dt

� (log y)−1,

as required. �
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Lemma 31. Uniformly for y ≥ 1.5 and 1 ≤ u ≤ y1/4 we have

∑
y<pm≤yu

p≤y

log p

pm
ρ

(
u − log pm

log y

)
� ρ(u).

Proof: (Hildebrand [39])

We may suppose y ≥ y0 for some fixed constant y0 ≥ 1.5 since for 1.5 ≤ y ≤ y0 and

1 ≤ u ≤ y1/4 the assertions holds.

By part (iii) of Lemma 29 we have

1

ρ(u) log y

∑
y<pm≤yu

p≤y

log p

pm
ρ

(
u − log pm

log y

)
�

∑
pm>y
p≤y

1

pm(1−α)
,

where

α =
log(u log2(u + 1))

log y
.

If y0 is sufficiently large, then the hypotheses y ≥ y0 and u ≤ y1/4 imply α ≤ 1/3 and

then we have

∑
pm>y
p≤y

1

pm(1−α)
≤

∑
pm>y
p≤y

1

p2m/3

�
∑
p≤√

y

1

y2/3
+

∑
√

y<p≤y

∑
m≥2

1

p2m/3

�
√

y

y2/3
+

∑
√

y<p

1

p4/3

� y−1/6 � 1

log y
,

as required. �
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Lemma 32. For every ε > 0 and uniformly for y ≥ 1.5, u ≥ 1 and 0 ≤ θ ≤ 1 we

have

∑
pm≤yθ

log p

pm
ρ

(
u − log pm

log y

)

= log y

∫ u

u−θ

ρ(t)dt + Oε(ρ(u){1 + u log2(u + 1) exp(−(log y)3/5−ε)}).

Proof: (Hildebrand [39])

Let S denote the left-hand side of the above equation. Then by partial summation

we have

S = m(θ)ρ(u − θ) −
∫ θ

0

m(t)yt d

dt
(y−tρ(u − t)dt,

where

m(t) =
1

yt

∑
pm≤yt

log p = 1 + Oε(exp(−t(log y)3/5−ε))

by the prime number theorem. Put V = log y and insert the last estimate into the

formula for S Separate the main term and error term, we get

S = M + R

where

M = ρ(u − θ) −
∫ θ

0

yt d

dt
(y−tρ(u − t))dt

= ρ(u − θ) +

∫ θ

0

{ρ′(u − t) + V ρ(y − t)}dt

= V

∫ u

u−θ

ρ(t)dt + ρ(u)

and

R �e ρ(u − θ) exp(−(θV )3/5−ε) +

∫ θ

0

{|ρ′(u − t)| + V ρ(y − t)} exp(−(tV )3/5−ε)dt.

Let

U = log(log2(u + 1))
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then by (ii) and (iii) of Lemma 29 we get

R �e ρ(u) exp(θU − (θV )3/5−ε) + ρ(u)(U + V )

∫ 1

0

exp(tU − (tV )3/5−ε)dt.

Clearly the first term on the right-hand side is of the desired order. Further, for

U ≤ 1

2
V 3/5−ε

we have that

ρ(u)(U + V )

∫ 1

0

exp(tU − (tV )3/5−ε)dt ≤ ρ(u)(U + V )

∫ 1

0

exp

(
−1

2
(tV )3/5−ε

)
dt

≤ ρ(u)
U + V

V

∫ ∞

0

exp

(
−1

2
t3/5−ε

)
dt

� ρ(u),

where the last estimate holds if, 0 < ε < 1/2, as we may suppose. Finally, in the case

U >
1

2
V 3/5−ε,

we have

∫ 1

0

exp(tU − (tV )3/5−ε)dt ≤
∫ 1

1/2

exp

(
tU −

(
1

2
V

)3/5−ε
)

dt +

∫ 1/2

0

etUdt

� 1

U
exp

(
U −

(
1

2
V

)3/5−ε
)

+
1

U
eU/2

≤ 1

U
exp(

(
U −

(
1

2
V

)3/5−ε
)

+
1

U
exp

(
U − 1

4
V 3/5−ε

)

�e
1

U + V
exp(U − V 3/5−2e),

as required. �

We now prove the following theorem due to Hildebrand.
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Theorem 33. For any ε > 0,

ψ(x, x1/u) = xρ(u)

(
1 + Oe

(
u

log(u + 1)
log x

))

holds uniformly in the range x ≥ 3, and 1 ≤ u ≤ log x/(log log x)5/3+ε.

Proof: (Hildebrand [39])

Let, for y ≥ 1 and u ≥ 0, ∆(y, u) be defined by

ψ(yu, y) = yuρ(u)(1 + ∆(y, u)).

For u ≥ 1/2 put

∆∗(y, u) = sup
1/2≤u′≤u

|∆(y, u′)|,

and

∆∗∗(y, u) = sup
0≤u′≤u

|∆(y, u′)|.

We will now show that the estimate

(4.2.6) ∆∗(y, u) �ε log(u + 1)/ log y

holds uniformly in the range

(4.2.7) y ≥ 1.5,
1

2
≤ u ≤ exp(log y)3/5−ε

for any fixed ε > 0.

First, we remark that in the range 0 ≤ u ≤ 1 we have ψ(yu) = [yu] and ρ(u) = 1

and hence

|∆(y, u)| ≤ y−u.

This implies

(4.2.8) ∆∗∗(y, u) ≤ 1 + ∆∗(y, u)

for every u ≥ 1/2 and shows that (4.2.6) holds for 1/2 ≤ u ≤ 1.
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Moreover, if 1 < u ≤ 2, the ρ(u) = 1 − log u and

ψ(yu, y) = [yu] −
∑

y<p≤yu

[
yu

p

]

= yu

(
1 − log u + O

(
1

log y

))

= yuρ(u)

(
1 + O

(
1

log y

))
.

Thus (4.2.6) holds in the range y ≥ 1.5, 1/2 ≤ u ≤ 2. We will now use this inital

condition and the identity

(4.2.9) ψ(x, y) log x =

∫ x

1

ψ(t, y)

t
dt +

∑
pm≤x
p≤y

ψ(x/pm, y) log p, (x, y ≥ 1)

to prove the result for the entire range. Let D(n) denote the largest prime factor of n.

To prove (4.2.9) we evaluate the sum

∑
n≤x

D(n)≤y

log n,

in two different ways. First we have

∑
n≤x

D(n)≤y

log n =
∑
n≤x

D(n)≤y

∑
pm≤x

log p

=
∑

pm≤x

log p
∑
n≤x

D(n)≤y
pm | n

1

=
∑

pm≤x
p≤y

ψ

(
x

pm
, y

)
log p.

On the other hand, partial summation yields

∑
n≤x

D(n)≤y

log n = ψ(x, y) log x −
∫ x

1

ψ(t, y)

t
dt,

and (4.2.9) follows easily.
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We now fix y ≥ 1.5 and u ≥ 1.5 and rewrite (4.2.9) with x = yu in terms of ρ(u)

and ∆(y, u). After dividing both sides by ρ(u)yu log yu, we get

1 + ∆(y, u) =
1

ρ(u)yu log yu

∫ yu

1

ρ

(
log t

log y

)(
1 + ∆

(
y,

log t

log y

))
dt

+
1

ρ(u) log yu

∑
pm≤yu

p≤y

log p

pm
ρ

(
u − log pm

log y

)(
1 + ∆

(
y, u − log pm

log y

))
.

Noting that, by part (i) of Lemma 29,

1 =
1

uρ(u)

∫ u

u−1/2

ρ(t)dt +
1

uρ(u)

∫ u−1/2

u−1

ρ(t)dt

= α(u) + (1 − α(u)),

say, we infer

|∆(y, u)| ≤(1 + ∆∗∗(y, u))(R1(y, u) + R2(y, u)) + R3(y, u) + R4(y, u)+

+ ∆∗(y, u)
1

ρ(u) log yu
+

∑
pm≤√

y

log p

pm
ρ

(
u − log pm

log y

)
+

+ ∆∗(y, u − 1/2)
1

ρ(u) log yu

∑
√

y<pm≤y

log p

pm
ρ

(
u − log pm

log y

)

≤ ∆∗(y, u)α(u) + ∆∗(y, u − 1/2)(1 − α(u)) + (1 + ∆∗∗(y, u))
4∑

i=1

Ri(y, u),
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where

R1(y, u) =
1

ρ(u)yu log yu

∫ yu

1

ρ(log t/ log y)dt,

R2(y, u) =
1

ρ(u) log yu

∑
y<pm≤yu

p≤y

log p

pm
ρ

(
u − log pm

log y

)
,

R3(y, u) =

∣∣∣∣∣∣
1

ρ(u) log yu

∑
pm≤√

y

log p

pm
ρ

(
u − log pm

log y

)
− α(u)

∣∣∣∣∣∣ ,

R4(y, u) =

∣∣∣∣∣∣
1

ρ(u) log yu

∑
√

y<pm≤y

log p

pm
ρ

(
u − log pm

log y

)
− (1 − α(u))

∣∣∣∣∣∣ .
By Lemma 30 and Lemma 31, the error terms R1(y, u) and R2(y, u) are of order

O(1/u log y) in the range 1 ≤ u ≤ y1/4 and hence also in range (4.2.7), since for y ≥ y0,

y0 being a sufficiently large constant, (4.2.7) implies 1 ≤ u ≤ y1/4, and for y ≤ y0

and u satisfying (4.2.7) the estimate holds trivially. We also can see that R3(y, u) and

R4(y, u) are of order Oε(1/u log y) for y and u satisfying (4.2.7) by applying Lemma 32

with θ = 1/2, θ = 1 and ε replaced by ε/2.

Therefore, by (4.2.8), for y and u satisfying (4.2.7), we have

(1 + ∆∗∗(y, u))
4∑

i=1

Ri(y, u) = Oε

(
1 + ∆∗(y, u)

u log y

)
.

Observe that

α(u) =
1

uρ(u)

∫ u

u−1/2

ρ(t)dt ≤ 1

2uρ(u)

∫ u

u−1

ρ(t)dt =
1

2
,

since ρ(u) is non-increasing for u ≥ 0 and by part (i) of Lemma 29. From this we see

that the quantity

1

2

(
∆∗(y, u) + ∆∗

(
y, u − 1

2

))
−
(

α(u)∆∗(y, u) + (1 − α(u))∆∗
(

y, u − 1

2

))

=

(
1

2
− α(u)

)(
∆∗(y, u) − ∆∗

(
y, u − 1

2

))
,
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is nonnegative since ∆∗ is a non-decreasing function of u.

We therefore obtain the estimate

|∆(y, u)| ≤ 1

2

(
∆∗(y, u) + ∆∗

(
y, u − 1

2

))
+ Oε

(
1 + ∆∗(y, u)

u log y

)

uniformly for every fixed ε > 0 and u, y satisfying (4.2.7), u ≥ 1.5.

If we now suppose, in addition to (4.2.7), u ≥ 2 and let u − 1
2
≤ u′ ≤ u, then we

can apply the above estimate with u′ in place of u and get, using the monotonicity in

u of the function ∆∗(y, u),

|∆(y, u′)| ≤ 1

2

(
∆∗(y, u′) + ∆∗

(
y, u′ − 1

2

))
+ Oε

(
1 + ∆∗(y, u′)

u′ log y

)

≤ 1

2

(
∆∗(y, u) + ∆∗

(
y, u − 1

2

))
+ Oε

(
1 + ∆∗(y, u)

u log y

)
.

The last estimate holds trivially for 1
2
≤ u′ ≤ u − 1

2
, since then

|∆∗(y, u) = sup
1/2≤u′≤u

|∆(y, u′)| ≤ 1

2

(
∆∗(y, u) + ∆∗

(
y, u − 1

2

))
+ Oε

(
1 + ∆∗(y, u)

u log y

)

and hence

∆∗(y, u) ≤ ∆∗
(

y, u − 1

2

)
+ Oε

(
1 + ∆∗(y, u)

u log y

)
uniformly for every fixed ε > 0 and u, y satisfying (4.2.7), u ≥ 2.

Iterating this inequality, we get

∆∗(y, u) ≤ ∆∗(y, u0) + Oε

(
log u

log y
(1 + ∆∗(y, u))

)

for some u0 satisfying 1.5 ≤ u0 ≤ 2. Since, we have already established that (4.2.6)

holds in the range 1
2
≤ u ≤ 2, we deduce

∆∗(y, u) �ε
log u + 1

log y
(1 + ∆∗(y, u))

and hence (4.2.6) holds for the whole range (4.2.7).

�



CHAPTER 5

Computations

5.1. Computation with the Buchstab function

To compute values of the Buchstab function ω(u) we use the following power series

method of Marsaglia, Zaman and Marsaglia [61]. A.Y Cheer and D.A. Goldson [17]

independently derived this method with the exception that they choose to take their

power series about an end point of the interval. As we show below, taking the power

series about the midpoint gives more rapid convergence. We also note that there seems

to be some errors in Marsaglia, Zaman and Marsaglia’s formula for the coefficients of

the next interval. These have been corrected below.

From Theorem 23 we have that

(n + 1 + z)ω(n + 1 + z) = (n + 1)ω(n + 1) +

∫ z

0

ω(n + y)dy

and hence

(n +
3

2
+ z)ω(n +

3

2
+ z) = (n + 1)ω(n + 1) +

∫ z

− 1
2

ω(n +
1

2
+ y)dy

for n ∈ Z
+, −1

2
≤ z ≤ 1

2
. Thus if we have a power series expansion a0 +a1z +a2z

2 + · · ·
around the midpoint of the interval n − 1 ≤ z ≤ n we can find a recursive formula for

the coefficients of the power series expansion in the next interval. Let b0 + b1z + · · · be

the power series expansion around the midpoint of the interval n ≤ z ≤ n + 1 then we

73
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see that(
n +

3

2
+

z

2

)
(b0 + b1z + · · · ) = (n + 1)(a0 +

a1

2
+

a2

22
+ · · · ) +

∫ z

− 1
2

(a0 + a1y + · · · )dy

= (n + 1)(a0 +
a1

2
+ · · · ) + a0z +

a0

2
+

a1

2
z2 − a1

23
+ · · ·

Hence we see that

b0 =

(
(n + 1 +

1

2
)a0 + (n + 1 − 1

4
)
a1

2
+ · · · + (n + 1 +

(−1)j

2j + 2
)
aj

2j
+ · · ·

)
/

(
n +

3

2

)

and for all i ≥ 1 we have

(5.1.1) bi =
(ai−1

i
− bi−1

)
/

(
n +

3

2

)
.

Let ai(n) denote the i-th coefficient of the power series expansion for ω around the

midpoint of the interval [n, n + 1]. Thus we have that ai(1) = (−1)i(2/3)i+1, i ≥ 0,

since ω(u) = 1/u for 1 ≤ u ≤ 2. We will now show by induction that |ai(n)| ≤ (2/3)i+1

for i ≥ 0 and n ≥ 1.

Observe that a0(n) = ω(n + 3/2) hence a0(n) ≥ 0 and thus

|a0(n)| ≤ 2

3
,

since ω(1.5) = 3/2, ω(2.5) = 0.56218 and by Theorem 28.

For i > 1 we find, using our inductive hypothesis,

ai(n) ≤
(2/3)i

i
+ (2/3)i

n + 1/2

≤ 3

2

(
2

3

)i

/(5/2)

≤
(

2

3

)i+1

as required.

Thus, since |z| ≤ 1/2 the i-th term of our of power series is less than (1/3)i, and

hence our power series converges very rapidly.
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The values of ω(u) for 2 ≤ u ≤ 10 were computed by programming this method

in C++ using my own multi-precision floating point number class. We initialized the

coefficient array with the first fifty coefficients for the power series expansion of ω(u) =

1/u about 1.5. In each iteration, we computed the first fifty coefficients for the next

interval [n, n+1], ensuring an accuracy of greater than twenty decimal places, and used

this power series to compute values n + i/10000 for 1 ≤ i ≤ 10000, i ∈ Z. Figure 1

shows some of these values.

Figure 5.1: values of ω(u)

u ω(u) u ω(u) u ω(u)

2 0.5 3.0 0.56091 . . . 4.0 0.56145. . .

2.1 0.52157 . . . 3.1 0.56267 . . . 4.1 0.56150 . . .

2.2 0.53741 . . . 3.2 0.56164 . . . 4.2 0.56152 . . .

2.3 0.54885 . . . 3.3 0.56109 . . . 4.3 0.56151 . . .

2.4 0.55686 . . . 3.4 0.56086 . . . 4.4 0.56150 . . .

2.5 0.56218 . . . 3.5 0.56082 . . . 4.5 0.56148 . . .

2.6 0.56538 . . . 3.6 0.56091 . . . 4.6 0.56147 . . .

2.7 0.56689 . . . 3.7 0.56106 . . . 4.7 0.56146 . . .

2.8 0.56706 . . . 3.8 0.56121 . . . 4.8 0.56145 . . .

2.9 0.56615 . . . 3.9 0.56135 . . . 4.9 0.56145 . . .
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5.2. Computation with the Dickman function

In 1962, Bellman and Kotkin [5] computed values of the Dickman function ρ(u)

for 1 ≤ u ≤ 20. In 1969, van de Lune and Wattel computed ρ(u) for values up

to u = 1000, discovering that Bellman and Kotkin’s calculations were inaccurate for

u > 9. Chamayou [15] demonstrated the probabilistic aspect of ρ(u) by computing

values for 1 ≤ u ≤ 6 using the Monte-Carlo method. The best result are due to

Marsaglia, Zaman, and Marsaglia [61] who used the same power series method as they

did with the Buchstab function to compute values of ρ(u) for 2 ≤ u ≤ 2000.

For our computations of ρ(u) we again use Marsaglia, Zaman, and Marsaglia’s power

series method.

Observe that

ρ(v + 1 + z) = ρ(v + 1) −
∫ z

0

ρ(n + y)

n + 1 + y
dy

satisfies equation (4.1.4). Hence

(5.2.1) ρ(v +
3

2
+ z) = ρ(v + 1) −

∫ z

− 1
2

ρ(n + 1
2

+ y)

n + 3
2

+ y
dy.

Thus if we have the power series expansion a0 + a1z + · · · for ρ(z) around n + 1
2

then we wish to iteratively obtain a power series b0 + b1z + · · · for ρ(z) around n + 3
2
.

Substituting our power series into (5.2.1) and differentiating we get

b1 + 2b2z + · · · =
a0 + a1z + a2z

2 + · · ·
n + 3/2 + z

.

Hence

(5.2.2) b1 = − a0

n + 3
2

and, for i ≥ 2,

(5.2.3) bi = −ai−1 + (i − 1)bi−1

i(n + 3
2
)

.
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To get a formula for b0 we first put

c0 =
a0

n + 3
2

and

ci =
ai − ci−1

n + 3
2

,

for i ≥ 1. Then we have

ρ(n + 1
2

+ y)

n + 3
2

+ y
=

a0 + a1z + · · ·
n + 3

2
+ y

= c0 + c1y + c2y
2 + · · · .

Substituting this into (5.2.1) we find that

(5.2.4) b0 = (a0 +
a1

2
+

a2

4
+ · · · ) − (

c0

2
− c1

23
+

c2

3 · 23
− · · · ).

We have ρ(u) = 1−log u for 1 ≤ u ≤ 2 and hence if we let ai(n) denote i-th coefficient

of the power series expansion in the midpoint of [n, n + 1) then a0(1) = 1 − log(3/2)

and ai(1) = (−1)i
(

2
3

)i
for i = 1, 2, 3, . . . . We will now show that |ai(n + 1)| <

(
2
3

)i
.

Since a0(n) = ρ(n + 1/2) < 1 for n ≥ 1, we see from (5.2.2) that

|a1(n + 1)| <
1

n + 1/2
<

2

3
,

for n > 1. Using (5.2.3), for i > 1, we have

|ai(n + 1)| =
|ai−1(n)| + i|ai−1(n + 1)|

(i + 1)(n + 1/2)

<

(
2
3

)i−1
+ i

(
2
3

)i−1

(i + 1)(n + 1/2)

=

(
2
3

)i−1

n + 1/2
<

(
2

3

)i

and the result follows by induction.

Thus, we once again have rapid convergence of our power series since |z| ≤ 1/2 and

hence the i-th term of our of power series is less than (1/3)i.
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To compute values of ρ(u) for 2 ≤ u ≤ 10 this method was programmed in C++

using my own multi-precision floating point number class. We initialized the coefficient

array with the first fifty coefficients for the power series expansion of ρ(u) = 1 − log u

about 1.5. In each iteration, we computed the first fifty coefficients for the next interval

[n, n + 1], ensuring an accuracy of greater than twenty decimal places, and used this

power series to compute values n + i/10000 for 1 ≤ i ≤ 10000, i ∈ Z. Figure 2 shows

some of these values.

Figure 5.2: values of ρ(u) = c(u) · 10−d(u)

u c(u) d(u) u c(u) d(u)

2 0.30685 . . . 0 3.6 0.12875 . . . 1

2.1 0.26045 . . . 0 3.7 0.10172 . . . 1

2.2 0.22035 . . . 0 3.8 0.80068 . . . 2

2.3 0.18579 . . . 0 3.9 0.62803 . . . 2

2.4 0.15599 . . . 0 4.0 0.49109 . . . 2

2.5 0.13031 . . . 0 4.1 0.38285 . . . 2

2.6 0.10827 . . . 0 4.2 0.29754 . . . 2

2.7 0.89418 . . . 1 4.3 0.23050 . . . 2

2.8 0.73391 . . . 1 4.4 0.17799 . . . 2

2.9 0.59878 . . . 1 4.5 0.13701 . . . 2

3.0 0.48608 . . . 1 4.6 0.10514 . . . 2

3.1 0.39322 . . . 1 4.7 0.80455 . . . 3

3.2 0.31703 . . . 1 4.8 0.61395 . . . 3

3.3 0.25464 . . . 1 4.9 0.46727 . . . 3

3.4 0.20371 . . . 1 5.0 0.35472 . . . 3

3.5 0.16229 . . . 1 5.1 0.26857 . . . 3
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5.3. Computing g(y)

Recall that g(y) is defined by

g(y) =




infv≥1 f(y, v) for y < θ

infu≥y eγω(1 + u) for y ≥ θ

where

f(u, v) = v(log(1 + u) + ρ(v(1 + u))

for non-negative real numbers u, v and θ is the unique positive real number for which

minv≥1 f(θ, v) = eγ/2. Observe that for v(1 + u) > 1 we have

∂f(u, v)

∂v
= log(1 + u) + ρ(v(1 + u)) − v(1 + u)ρ′(v(1 + u))

= log(1 + u) + ρ(v(1 + u)) + ρ(v(1 + u) − 1).

Hence for 1 < v(1 + u) ≤ 2,

∂f(u, v)

∂v
= log(1 + u) + 1 − log(v(1 + u)) − 1 = − log v.

Further, for v(1 + u) > 2,

∂2f(u, v)

∂v2
= (1 + u)ρ′(v(1 + u)) − (1 + u)ρ′(v(1 + u) − 1)

=

(
1

v − 1
1+u

)
ρ(v(1 + u) − 2) − 1

v
ρ(v(1 + u) − 1) > 0,

since ρ(u) > ρ(u + 1) for all u > 0. Hence for each u > 0 there is a unique real number

v′ = v′(u) ≥ 1 for which

(5.3.1) log(1 + u) + ρ(v′(1 + u)) − ρ(v′(1 + u) − 1) = 0,

and

(5.3.2) inf
v≥1

f(u, v) = min
v≥1

f(u, v) = f(u, v′).
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Observe that for u > 0, v ≥ 1

∂f(u, v)

∂u
=

v

1 + u
+ v2ρ′(v(1 + u)),

=
v

1 + u
(1 − ρ(v(1 + u) − 1))

> 0

since ρ(u) ≤ 1 for all u > 0. Thus f(u, v′(u)) is an increasing continuous function of u

and hence there is a unique real number θ such that

f(θ, v′(θ)) = eγ/2.

We now put, for t ≥ 1,

(5.3.3) h(t) = ρ(t − 1) − ρ(t).

Observe that h(t) is strictly decreasing for t ≥ 2 since ρ(u) is concave for u ≥ 2. Hence

h(2) = log 2 and for each t > 2 there is a unique real number u, with 0 < u < 1, such

that

(5.3.4) h(t) = log(1 + u).

Thus by (5.3.1)

v′(u) =
t

1 + u
.

Further

f(u, v′(u)) = v′(log(1 + u) + ρ(v′(1 + u))

=
t

1 + u
(h(t) + ρ(t))

=
t

1 + u
ρ(t − 1).(5.3.5)

Hence u and v′ are determined by t, so we wish to find a real number t′ such that

t′ = (1 + θ)v′ and h(t′) = log(1 + θ). Taking t = 2.6 we find, using (5.3.3),(5.3.4) and
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(5.3.5), that f(u, v′) = 0.90384... < eγ/2 and taking t = 2.7 we find that f(u, v′) =

0.86670... > eγ/2. Thus we see that 2.6 < t′ < 2.7 and hence we have

(5.3.6) h(t′) = log

(
t′

t′ − 1

)
−
(

1

2
log2 t′ + Li2

(
1

t′

)
− π2

12

)
.

From (5.3.5) we obtain

t′

1 + θ
(1 − log(t′ − 1)) = eγ/2.

On taking logarithms and simplifying using (5.3.4) and (5.3.6) we obtain

log(t′ − 1) + log(1 − log(t′ − 1)) +
1

2
log2 t′ + Li2

(
1

t′

)
= log

(
eγ

2

)
+

π2

12
.

Using MAPLE, Maier and Stewart calculated that t′ = 2.637994987 . . ., which gives us

θ = 0.500462161 . . . and v′(θ) = 1.758121634 . . ..

By equation (5.3.2), we see that f(y, v′) = g(y) for y < θ. Hence we only need to

compute values for the Dickman function ρ and then we can use equations (5.3.3),(5.3.4)

and (5.3.5) to calculate values for g(y). In the other case, we first observe that since

ω(u) is continuous, the limu→∞ ω(u) = e−γ and ω(u)−e−γ changes sign in every interval

of length 1, we have

inf
u≥y

eγω(1 + u) = min
u≥y

eγω(1 + u).

Further since M−(v) = minv≤u≤v+2 W (u) we see that for y ≥ θ

g(y) = min
u≥y

eγω(1 + u) = eγM−(y + 1) + 1

= 1 + eγ min
y+1≤u≤y+3

W (u).

Hence we only need to find the minimum value of ω(u) with y + 1 ≤ u ≤ y + 3. We

observe that the minimum must occur at either u = y + 1 or at a critical point ck of

ω in the interval. Also observe that if ck is a local minimum then from (2.2) we have

ω(ck) = ω(ck − 1). Moreover, since there are at most two critical points in each interval

of length 1, a local minimum and a local maximum, ω(ck −1+ ε) > ω(ck) for 0 < ε < 1.
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Thus, we find that if y + 1 ≤ ck ≤ y + 2 then the minimum is at ck. Otherwise, the

minimum occurs at u = y + 1.

Thus, to compute g(y) for y ≥ θ, we just need to compute all the local minima of

ω. To do this assume we know the local minimum ck−2 and we wish to compute the

local minimum ck. We will apply Newton’s method to ω′(u) to find ω′(u) = 0. Since

uω′(u) = ω(u − 1) − ω(u), we have

ω′′(u) =
ω′(u − 1) − 2ω′(u)

u
,

and hence we just need to pick a starting point u0. We know by Hildebrand’s result, see

Chapter 3, that as k → ∞ ck−ck−1 → 1. Hence for large k we could take u0 = ck−2 +2,

however for smaller k this puts u0 near an inflection point, and hence we get more rapid

convergence with Newton’s method by taking u0 = ck−2 + 1.7.

In this manner we find that, for y ≥ θ,

g(y) =




eγω(2) = 0.89053 . . . θ ≤ y ≤ 1

eγ log(y)+1
y+1

1 < y ≤ 1.46974 . . .

eγω(3.46974 . . .) = 0.998866 . . . 1.46974 . . . < y ≤ 2.46974 . . .

eγω(y + 1) 2.46974 . . . < y ≤ 2.99493 . . .

eγω(4.99493 . . .) = 0.999991 . . . 2.99493 . . . < y ≤ 3.99493 . . .

In Figure 3 we give some of our values for g ≥ θ and in Figure 4 we give a graph of

g(y) for 0 ≤ y ≤ 4 plotted in MAPLE.
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Figure 5.3: g(y) for y < θ

t y g(y) t y g(y)
2.65 0.49295 . . . 0.88612 . . . 3.65 0.09091 . . . 0.32946 . . .
2.7 0.46221 . . . 0.86670 . . . 3.7 0.08247 . . . 0.30564 . . .
2.75 0.43234 . . . 0.84550 . . . 3.75 0.07471 . . . 0.28288 . . .
2.8 0.40329 . . . 0.82279 . . . 3.8 0.06756 . . . 0.26123 . . .
2.85 0.37503 . . . 0.79759 . . . 3.85 0.06103 . . . 0.24071 . . .
2.9 0.34752 . . . 0.77076 . . . 3.9 0.05506 . . . 0.22133 . . .
2.95 0.32074 . . . 0.74193 . . . 3.95 0.04961 . . . 0.20313 . . .
3.0 0.29465 . . . 0.71104 . . . 4.0 0.04466 . . . 0.18612 . . .
3.05 0.27001 . . . 0.67907 . . . 4.05 0.04018 . . . 0.17029 . . .
3.1 0.24742 . . . 0.64713 . . . 4.1 0.03613 . . . 0.15560 . . .
3.15 0.22668 . . . 0.61537 . . . 4.15 0.03246 . . . 0.14198 . . .
3.2 0.20762 . . . 0.58390 . . . 4.2 0.02914 . . . 0.12938 . . .
3.25 0.19007 . . . 0.55285 . . . 4.25 0.02614 . . . 0.11886 . . .
3.3 0.17390 . . . 0.52230 . . . 4.3 0.02342 . . . 0.10699 . . .
3.35 0.15899 . . . 0.49236 . . . 4.35 0.02097 . . . 0.09709 . . .
3.4 0.14524 . . . 0.46310 . . . 4.4 0.01876 . . . 0.08798 . . .
3.45 0.13255 . . . 0.43460 . . . 4.45 0.01676 . . . 0.07962 . . .
3.5 0.12085 . . . 0.40693 . . . 4.5 0.01497 . . . 0.07195 . . .
3.55 0.11005 . . . 0.38015 . . . 4.55 0.01335 . . . 0.06494 . . .
3.6 0.10009 . . . 0.35431 . . . 4.6 0.01189 . . . 0.05853 . . .

Figure 5.4: Graph of g(y)
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