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Abstract

This thesis studies algorithmic aspects of deadlock analysis for parameterized networks
of discrete-event systems. A parameterized network consists of a finite, but arbitrarily
large, number of interacting finite-state subsystems, each within one of a fixed, finite
number of isomorphism classes. While deadlock analysis of such systems is generally
undecidable, decidable subproblems have recently been identified. The decision procedure
rests on the construction of a finite dependency graph for the network, and the computation
of its full, consistent subgraphs . We present a software tool for such computations, and
apply it to a train network example that extends beyond the current theoretical framework.
The results suggest ways in which the framework could usefully be extended.
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Chapter 1

Introduction

1.1 Parameterized Networks

A fundamental impediment to analysis and design of complex control systems is combinato-
rial explosion: the state size of a collection of N interacting subsystems grows exponentially
with N . One potential means of coping with state explosion is to devise methods that are
independent of N . Vector discrete-event systems [25] and Petri nets support such methods
to some extent for certain classes of systems.

In this thesis, we employ the model of parameterized networks .

A parameterized system is generally a family of finite-state models, indexed by some
parameter or parameters. In a relatively simple case, a parameterized network might
be a model of N isomorphic, interacting, finite-state subsystems, where the value of the
parameter N is finite but arbitrarily large; this indeed yields an infinite set of finite-state
network models, indexed by the values of the integer parameter N .

Parameterized systems have received considerable attention in the model-checking lit-
erature [1, 24, 6]. Indeed, if the underlying logic of a hardware or software system is in
essence independent of specific parameter values, one might expect to be able to establish
correctness without focusing on the individual finite-state models that arise when param-
eters are instantiated. Similarly, in control, it is to be expected that many instances of
control problems give rise to control logic that is in essence independent of the values of
specific parameters. Ideally, one might be able to adapt prototypical synthesis methods for
finite-automaton models in such a way as to extract from the controller design the essential
parameter-independent underlying logic.
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The problems of analyzing blocking and deadlock-freedom in parameterized networks
have been studied by [22] and by [31]. In general, such problems are undecidable [22],
but nontrivial decidable subproblems exist: Zibaeenejad and Thistle identified a class of
parameterized networks of ring topology for which deadlock-freedom is decidable, and more
recently extended the result to a more general topology - that of “parameterized-chain
networks” [30].

Specifically, the more recent results concern networks comprised of a fixed set of finite-
state distinguished subprocesses, linked by parameterized networks of linear topology,
which we call parameterized chains. Such networks can model, for example, transportation
networks and manufacturing systems. The notion of weak invariant simulation is used
to impose a direction of control flow on the network. A consequence of this directional-
ity is that portions of the network can be deadlocked only if there exists a “generalized
circular wait” - a strongly connected subgraph of a network instance in which each subpro-
cess is waiting for another to execute an action. Moreover, the structural assumptions of
Zibaeenejad and Thistle ensure that the existence of generalized circular waits is decidable.

The present thesis discusses algorithmic aspects of the approach. In summary, a finite
dependency graph is constructed, which shows how the possibility of execution of an event
within a given subprocess of an instance of the network may depend on the occurrence
of events within another subprocess. A suitably generalized notion of a “circular wait” is
captured by a subgraph of the dependency graph that has the properties of consistency
and fullness . Indeed, such a subgraph represents in general an infinite set of generalized
circular waits that can arise in network instances of various sizes; in effect, it represents a
regular language, each element of which encodes a generalized circular wait in a particular
size instance of the network.

Here we discuss the construction of the dependency graph and the computation of
consistent, full subgraphs of the dependency graph using a supergraph. For technical
reasons related primarily to analysis of the reachability of generalized circular-wait states,
the theoretical analysis of [30, 32] is restricted to a special case in which the network has a
unique, distinguished “input subprocess”, a single node which has in-degree greater than
one. This restriction is ignored in the present thesis, and our software tool is used to
perform experimental research that extends beyond the current theoretical framework and
will support extension of the theoretical work. In particular, we analyze a more complex
version of the train example of [30] and discuss some of its eight full, consistent dependency
subgraphs. These experimental results suggest that the present theoretical results can be
usefully extended.
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1.2 Literature Review

When a system reaches a state from which there are no possible transitions, it is said to
be in a total deadlock. If a subsystem reaches a state from which no further transitions
are possible, regardless of any events that may occur within the larger system, the overall
system is said to be in a partial deadlock. One method of detecting deadlocks is an
exhaustive search over the global system state set [4]. But this method is not suitable
when the parameter values in a parameterized network are arbitrary.

Other approaches exploit symmetry of the system to detect deadlocks. For example in
[17], all of the states with similar paths to possible deadlock are merged to form a ‘virtual’
state. This method will reduce the complexity of the deadlock detection, but it is not
effective to detect deadlocks in the parameterized networks when the number of processes
is arbitrary. There are other abstraction techniques [14, 15], for networks verification with
large number of processes; however, it is not obvious how to achieve a suitable abstracted
model. To find the abstracted model an iterative procedure is used and it is not guaranteed
that a suitable abstraction will be formed.

Model checking cut-offs sometimes apply in deadlock analysis of the parameterized
networks with finite number of classes of isomorphic subprocesses [7, 9, 8]. Relatively small
bounds, cut-offs, can, under some conditions, be established, such that if the property of
interest is verified successfully in all instances limited by the cut-offs, the satisfaction of the
property in a parameterized network is guaranteed. Unfortunately, results of this nature
are based on restrictive models of subsystem interaction, such as the unidirectional passing
of tokens that carry no data, around a ring network [7, 9, 8, 20, 19, 10].

In contrast, the approach of Zibaeenejad and Thistle uses the notion of weak invariant
simulation to impose directionality of control flow. This allows the modelling of systems
such as traffic networks and manufacturing systems that cannot be modelled under the
assumptions on which cut-offs are based [30].

1.3 Organization of the Thesis

In the second chapter, we will introduce the preliminary notations of automata, formal
languages and graph theory.

In the third chapter, we described the Zibaeenejad-Thistle approach to extending
deadlock-analysis methods for parameterized-chain discrete event systems. We introduce
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weak invariant simulation and describe the deadlock analysis scheme. In particular we dis-
cuss the forward dependency property, and the dependency graph and its full, consistent
subgraphs.

The algorithm and software are discussed in the fourth chapter; and a complex traffic
network is given as a case study of deadlock analysis in the fifth chapter.

The last chapter offers concluding remarks and suggestions for future work.
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Chapter 2

Preliminaries

2.1 Graphs

In this thesis, we are dealing with both directed and undirected graphs. A directed graph
(or digraph) D is a set of nodes connected by directed edges. Formally,

G = (V,A) (2.1)

where V is a set, representing vertices or nodes, and A is a set of ordered pairs of ver-
tices, called edges. The difference with an undirected graph is that its edges are made of
unordered pairs of nodes. We can define an edge by a pair of nodes (u1, u2), in which u1

is a direct predecessor of u2, and u2 is a direct successor of u1. A walk for two nodes u0

and uk ∈ V , is defined by u0 − uk, which is an alternating sequence u0, a1, u1, a2, ..., ak, uk
of nodes and edges in which ai = (ui−1, ui), 1 ≤ i ≤ k. Direct successors of a node are
reachable by a walk containing just one edge. The smallest walk is defined by a single edge.
A closed walk is a special case, in which the first and last nodes are the same. In-degree is
defined as the number of incoming arcs to a node, and the number of outgoing arcs from a
node is called out-degree of that node. A directed graph is strongly connected if it contains
a walk from a to b and a walk from b to a for all pair of nodes. The maximal strongly
connected subgraphs of a graph are called strong components of that graph.

To compute all of the strong components of a dependency graph, we find all of the
simple cycles in the dependency graph, and assign a node number to each cycle; we call
such a simple cycle a supernode. There is an edge between a pair of supernodes if their cor-
responding cycles have common nodes. The edges are undirected, and with the supernodes
they form an undirected graph called a supergraph.
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For more information on graph theory see [5].

2.2 Automata and Formal Languages

Consider an alphabet Σ as a finite nonempty set of distinct symbols (events or letters)
σ, τ, . . . . A word or string is a sequence of events. Consider Σ+ as a set of all (nonempty)
finite strings of the form σ1σ2 . . . σk, where k ≥ 1 and the σi ∈ Σ. The empty string (string
with no symbols), is represented by ε, where ε /∈ Σ. We then write

Σ∗ := {ε} ∪ Σ+ (2.2)

All of the strings over the alphabet Σ are elements of Σ∗. For a special case of an empty
alphabet set (Σ = ∅), we have an empty set of finite strings (Σ+ = ∅) and Σ∗ = {ε},
which means the empty string is its only member. The catenation, cat, is defined as a
product operation on the strings:

cat := Σ∗ × Σ∗ → Σ∗ (2.3)

The unit element of the catenation operation is ε, and catenation is associative:

cat(ε, a) = cat(a, ε) = a a ∈ Σ∗ (2.4)

cat(cat(a, b), c) = cat(a, cat(b, c)) a, b, c ∈ Σ+ (2.5)

Any subset of Σ∗ (an element of the power set Pwr(Σ∗)) is defined as a language over
the alphabet Σ. According to the definition, a language can contain both Σ∗ and the empty
language ∅. We denote the set of all languages over the alphabet Σ by L(Σ).

We can represent discrete event systems as state machines, or generators. The following
5-tuple, with Σ as a finite nonempty set of alphabet, X a nonempty set of states, x0 ∈ X
as its initial state and Xm as a marked state set is an automaton (or generator) over the
alphabet Σ:

A = (X,Σ, η, x0, Xm) (2.6)

η is the state transition function over Σ, and can be extended to Σ∗:

η : X × Σ∗ → X (2.7)
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In this case η is a deterministic function. The nondeterministic version of this transition
function can be defined as:

η : X × Σ∗ → 2X (2.8)

where 2X is the power set of X. If η(x, σ) = ∅, it means the transition η(x, σ) is not
defined. Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2, where these alphabets could have some common
symbols (Σ1 ∩Σ2 6= ∅). Let Σ = Σ1 ∪Σ2. We define the natural projection operation from
Σ∗ to Σ∗i as the following map:

Pi : Σ∗ → Σ∗i (i = 1, 2) (2.9)

This operation has the following properties:

Pi(ε) = ε (2.10)

Pi(σ) =

{
ε if σ /∈ Σi

σ if σ ∈ Σi
(2.11)

Pi(sσ) = Pi(s)Pi(σ) s ∈ Σ∗, σ ∈ Σ (2.12)

The action of Pi is to erase all of the occurrences of σ /∈ Σi from a string s. As shown by
2.12 the natural projection is catenative. We define the inverse of the natural projection
as following:

P−1
i : Pwr(Σ∗i )→ Pwr(Σ∗) (2.13)

The inverse of the natural projection has the following action on a language L ⊆ Σ∗i ,

P−1
i (L) := {s ∈ Σ∗|Pi(s) ∈ L} (2.14)

We define the synchronous product of L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 as L1||L2 ⊆ Σ∗ according to:

L1||L2 := P−1
1 (L1) ∩ P−1

2 (L2) (2.15)

The synchronous product of L1 and L2 represents the evolution of L1 and L2 at the same
time, with respect to the common events [27].

A relation between two sets, A and B, is any subset of their product (R ⊆ A × B).
The relation R is a binary relation on A, in the case of A = B. The converse of a binary
relation R is denoted by Rc := {(b, a) ∈ B × A : (a, b) ∈ R} [29].
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Chapter 3

Parameterized-Chain
Discrete-Event-System Networks

Parameterized Discrete Event Systems (PDES) are useful for modeling systems comprising
arbitrarily large numbers of isomorphic subprocesses, but key properties such as deadlock-
freedom and nonblocking are undecidable even for simple topologies such as that of a ring
(each subprocess only interacts with its previous and next ‘neighbours’ in this topology)
[21]. We can study more general network topologies, networks with several parameterized
segments, by introducing Parameterized-Chain Discrete-Event-System Networks (PCDN).
A PCDN is made of fixed number of ‘distinguished’ subprocesses and ‘linear parameterized’
sections. Although distinguished subprocesses may be different from each other in terms
of their structures, each parameterized section contains an arbitrary number of isomorphic
subprocesses which are obtained by relabeling of a template. Interactions among these
subsystems are represented by the execution of the shared events. (By assumption, within
a parameterized segment, each shared event is shared only between two neighbour sub-
processes.) By restricting the interactions between the subprocesses, using ‘weak invariant
simulation’, we can achieve decidability in deadlock analysis.

An instance of a PCDN (obtained by assigning lengths to each of the linear parameter-
ized sections) is a directed graph which may contain several cycles. We isolate each cycle
by disabling the events that are shared with subprocesses outside of the cycle. The result
is a ring network, and we calculate the state pairs with the forward dependency property.
After doing this calculation for all of the rings in the PCDN, we create the dependency
graph. We can characterize the partial and total reachable deadlocks of the PCDN by
finding full, consistent subgraphs of the dependency graph. As an example we use this
method to analyse the deadlocks of a complex traffic network [30].
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3.1 Parameterized Chain Networks

A parameterized discrete event system, PDES P , can be represented by a set of any
synchronous products of M isomorphic finite-state subprocesses, where M is a natural
number and greater than two. Formally,

P = {
∥∥M
i=1
Pi : M ∈ N, M > 2}, (3.1)

where

Pi = (Xi,Σi, ξi, x
0
i , Xmi), (3.2)

with X1 = X2 = ... = XM , and M is the unknown parameter representing the number
of subprocesses in the instance of a PDES. Subprocesses Pi, 1 ≤ i ≤ M , are formed by
appropriate relabelling of a template subprocess P1, and are therefore isomorphic to each
other. The subalphabet Σi is made of two parts, shared event symbols (ΣSi

) and local or
unshared event symbols (ΣLi

). To instantiate the PDES P , we can define a fixed value for

M . As an instantiation of the PDES P , consider PM =
∥∥M
i=1
Pi = (X,Σ, ξ, x0, Xm). The

global alphabet of P is Σ = ∪Mi=1Σi, in which the shared event subset is ΣS = ∪Mi=1ΣSi
and

the local event subset is represented by ΣL = Σ \ ΣS. We suppose that a shared event is
only shared between the two consecutive subprocesses, so it can only occur in both of them
at the same time. x0

i and xi in 3.2 represent the initial state of the ith subprocess and the
state of the ith subprocess Pi, respectively. We can represent the states of the instance of
the PDES, PM by x = (x1, x2, ..., xM), which is an M -tuple. X is representing the set of
all global states, which are the M -tuples.

If an event is shared between the two subprocesses Pi−1 and Pi, 1 ≤ i ≤ M , and Pi
is in a state from which it can execute that event, which is not executable by Pi−1, then
subprocess Pi is prevented from executing the event.

Definition. Companion states, χj(σi), of a shared event σi (for the ith subprocess) in
the jth subprocess are states xj in Pj, with ξj(xj, σi) 6= ∅.

As we have stated before, the nonblocking and deadlock-freedom properties for a gen-
eral network with undefined number of interacting isomorphic finite-state subprocesses are
undecidable; and we would like to formulate a decidable subproblem to check the deadlock-
freedom property [21].

We define the PDES P , with linear topology, if for any member
∥∥M
i=1
Pi ∈ P , subprocess

Pi, 1 < i < M , has events shared only with both Pi−1 and Pi+1, and P1 and PM respectively
have events shared only with P2 and PM−1. We assume all subprocesses have the same
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state set and that each event is shared between at most two subprocesses. We suppose
that the local events, ΣL do not have any indices, and symbols in ΣSi

either have index
i− 1 or index i: symbols in Σi−1 ∩Σi (shared events between generators Pi−1 and Pi) have
the lower index, i− 1, while the symbols in Σi ∩Σi+1 (shared events between Pi and Pi+1)
have index i.

To instantiate the linear PDES, we define the bijection κ and set the first subprocess,
P1, as the template subprocess. κ is a bijection relation of order N , such that, κ : Σ→ Σ
and ∀α ∈ Σi, κ(α) ∈ Σi+1, and it has the following properties:

(∀σ ∈ ΣLi
)(κ(σ) = σ) (3.3)

(∀σi ∈ Σi ∩ Σi+1)(κ(σi) = σi+1) (3.4)

(∀α ∈ Σi)(∀x ∈ X)(ξi(x, α) = ξi+1(x, κ(α))) (3.5)

where the common state set of all subprocesses in the automaton is represented by the
variable X. Relation 3.3 shows how κ acts on the local events, while relation 3.4 specifies
how κ acts on the shared events. Relation 3.5 is the representation of the isomorphism,
which shows parameterized subprocesses are identical up to the bijection of the indices of
the shared events [29].

As an example of a linear PDES, the reader may refer to the traffic network example
of figure 5.1 of chapter 5. In that example each route has an arbitrary length and can be
modeled by the linear PDES. By using the bijection κ we can obtain the RAi+1 model
from the RAi model as depicted in figure 5.3.

We define the structure of a PCDN with a PCDN graph. This graph consists of both
distinguished nodes (typically denoted by squares) and parameterized nodes (denoted by
circles). While distinguished nodes represent the corresponding distinguished subprocesses,
parameterized nodes represent linear PDES. Parameterized nodes have in- and out-degrees
of one. An instance of a PCDN can be obtained by choosing parameter values – namely, the
lengths of instances of each of the linear PDES – and expanding the parameterized nodes
into linear subgraphs of the appropriate lengths. In an instance of a PCDN, subprocess
interact through shared events only with their neighbours. The directed arcs indicate the
directions of weak invariant simulation of one neighbour by another, as explained below.

A PCDN graph is strongly connected, and contains at most one input subprocess – a
distinguished node with in-degree greater than one. It may contain many output nodes –
distinguished nodes with out-degree greater than one. As an example of a PCDN graph,
reader may refer to the traffic network example of figure 5.1 of chapter 5.

In order to ensure decidability properties, Zibaeenejad and Thistle impose some as-
sumptions on PCDNs in terms of the property of “weak invariant simulation” [30].
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3.2 Weak Invariant Simulation

Simulation relations are used to define the semantics of process algebra in the form of
the Calculus of Communicating Systems (CCS) to describe similarities between different
processes [18]. In this section we will introduce the notion of weak invariant simulation for
analysis of the synchronous products. Before that, we introduce simulation and invariant
simulation relations [18].

Suppose Gi = (Xi,Σi, ξi, x0i, Xmi), i = 1, 2, represent two generators whose alphabets
Σ1 and Σ2 do not intersect.

Definition. Consider the binary relation S ⊆ X1 × X2, in which Xi are the states
of the two generators represented by Gi, i = 1, 2. The relation S is a simulation relation
if, for every (x1, x2) ∈ S and every α ∈ Σ2 and x̂2 ∈ ξ2(x2, α), α ∈ Σ1 and there exists
x̂1 ∈ ξ1(x1, α) such that (x̂1, x̂2) ∈ S. Such a relation guarantees that any sequence of
events that is executed by G2 from x2 can also be executed by G1 from x1.

Now, we define invariant simulation as follows:

Definition. Consider a simulation relation IS ⊆ X1×X2 states of two generators G1

and G2. The relation IS is invariant if, for any (x1, x2) ∈ IS, and any α ∈ Σ1 ∩ Σ2, the
following holds:

(∀x̂1 ∈ ξ1(x1, α))(∀x̂2 ∈ ξ2(x2, α))[(x̂1, x̂2) ∈ IS]. (3.6)

The ‘invariance’ property guarantees that the simulation relation will be preserved, as
long as the two generators execute the same sequence of events. The difference between
the definitions of invariance and simulation is in the the second universal quantifier of 3.6,
which is an existential quantifier in the definition of simulation.

Consider S as a simulation relation. Then G1SG2 represents simulation of the generator
G2 by G1: if there exists a simulation S, such that (x01 , x02) ∈ S, then generator G1

simulates generator G2.

Let PΣ̂ : Σ∗ → Σ̂∗ be a natural projection with Σ = Σ1∪Σ2 and Σ̂ ⊆ Σ. Now we define
the weak version of the simulation relation as follows:

Definition. The binary relationWS ⊆ X1×X2 is a weak simulation of G2 by G1 with
respect to Σ̂, if for every (x1, x2) ∈ WS and every l2 ∈ Σ∗2, if x̂2 ∈ ξ2(x2, l2) 6= ∅, there
exists l1 ∈ Σ∗1 and x̂1 ∈ ξ1(x1, l1) such that the following hold:

1. PΣ̂(l2) = PΣ̂(l1); and
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2. (x̂1, x̂2) ∈ WS.

Definition. Let I be a weak simulation of G2 by G1 with respect to Σ̂. I is a weak
invariant simulation w.r.t Σ̂ if any pair (x1, x2) ∈ I and for all l1 ∈ Σ∗1, l2 ∈ Σ∗2 and all
x̂1 ∈ ξ1(x1, l1) and x̂2 ∈ ξ2(x2, l2),

PΣ̂(l1) = PΣ̂(l2)⇒ (x̂1, x̂2) ∈ I (3.7)

When we have Σ1 ∩ Σ2 ⊆ Σ̂, weak invariant simulation with respect to Σ̂ indicates
that G1 will not prevent the execution of shared events between G1 and G2. On the other
hand, when Σ1 ∩ Σ2 * Σ̂, which means not all of the shared events are included in Σ̂,
the simulation relation does not give us enough information about possible prevention of
shared events by G1.

Suppose that we have (xi, xj) ∈ Ii, in which Ii is a weak invariant simulation by Gi

of another subprocess Gj with respect to all of their shared events. The existence of such
a relation means that for any event σi ∈ Σi ∩ Σj, if ξj(xj, σi) 6= ∅, then Gi can reach
companion states of the shared event, χi(σi) by execution of a string s of events that are
not shared with Gj; the string sσ2 is executable from xi. By definition of weak invariant
simulation we can say that, when Gi and Gj start in the respective states xi and xj,
whatever shared event Gj may be able to execute, Gi is also in a position to execute that
event. It the initial state of Gi is in a weak invariant simulation relation with initial state
of Gi+1 with respect to some alphabet Σ̂, Gi weakly invariantly simulates Gi+1 via that
relation.

Zibaeenejad-Thistle state assumptions in terms of weak invariance simulations to ensure
decidability of existence of ‘generalized circular waits’ for the special case of a single input
subprocess. In this thesis, we implement their algorithms, ignoring the restriction to a
single input subprocess. The algorithm is based on the notion of a ‘forward dependency
property’, which is used to define a ‘dependency graph’. The reachable generalized circular
waits are then represented by the ‘full, consistent subgraphs’ of the dependency graph.

There are three assumptions on all subprocesses of the PCDN:

1. Each subprocess in the PCDN must have strongly connected transition graph, so
there would not be any terminal state as the subprocess evolves.

2. Each shared event can have at most one companion state. In other words, interac-
tions between two subsequent subprocesses via a shared event can occur, if the first
subprocess is in a specific state.
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3. If Gi weakly invariantly simulates the direct successor Gi+1 with respect to Σi∩Σi+1,
and their interaction with other parts of the network is ignored, Gi can eventually
execute events shared with Gi+1.

There are other assumptions on the structure of the input and output subprocesses, as
indicated below:

1. For any state of an input subprocess which has an event shared with its successor
subprocess, there can not be any event shared with the direct predecessor of the
input subprocess from that state.

2. Any input subprocess can always provide resources requested by its successor.

3. Any output subprocess Gi, can reach companion states of shared events between
the output subprocess and its successor subprocess, Gi+1, by a string that does not
contain event shared with its other successor subprocesses (other than Gi+1) [30].

The third of these assumptions means that if interactions with other part of the network
are ignored, Gi can eventually execute any shared event that Gi+1 is in a position to
execute.

3.3 Deadlock Analysis Scheme

To find the circular waits in an instance of a PCDN graph, first we find all of the individual
cycles in the PCDN graph. Then we will create the corresponding isolated cycles (with
ring topology) by disabling any transitions of distinguished subprocesses that are shared
with subprocesses outside of the cycle.

3.3.1 Forward Dependency Property

The forward dependency property is defined using the synchronous products of subpro-
cesses and their neighbours in an isolated cycle of the network graph. We can analyse
the occurrence of a circular wait using this property. After restricting the subprocesses by
weak invariant simulation, all of the events of a subprocess which are shared with their
neighbours with ‘lower’ index in an isolated cycle will eventually get executed, while those
which are shared with neighbours with ‘larger’ index may be blocked [29]. We define a state
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pair in a synchronous production of two consecutive subprocesses as forward dependent if
it has only events shared with neighbour with larger index.

Definition. Consider cycleGN =
∥∥N
i=1
Gi = (X,Σ, ξ, x0, Xm) and let ĜN = (X̂,Σ, ξ̂, x0, Xm)

be its isolated version. We define the state set of the synchronous product R̂i by Ĝi−1

∥∥Ĝi =

(R̂i,Σi−1 ∪Σi, δi, x
0
i−1× x0

i , Xmi−1
×Xmi

), 1 ≤ i ≤ N . We define the following property for
a state pair (xdi−1

, xdi):

(∀σi ∈ Σi−1 ∪ Σi)[(δi((xdi−1
, xdi), σi) 6= ∅)⇒ (χi+1(σi) 6= ∅)]. (3.8)

If (xdi−1
, xdi) ∈ R̂i satisfies 3.8, for all i, the state xd ∈ X1 ×X2 × . . .×XN is forward

dependent, which means in the synchronous product Ĝi−1

∥∥Ĝi, the only events executable

in this pair are just shared with the larger-index neighbour in the isolated cycle Ĝi+1. For
a reachable state x in ĜN the satisfaction of the property 3.8 for all i means all of the
subprocesses in the isolated cycle ĜN will be executed after the execution of the event
shared with their very next larger-index neighbours. The state x could have other shared
events with subprocesses outside of the cycle ĜN , whose execution may break the existing
circular wait. That is why the existence of a circular wait in a network does not guarantee
a deadlock in the network. We can find the generalized circular waits by constructing the
dependency graph.

3.3.2 The Dependency Graph

The dependency graph is constructed by finding dependencies in every isolated cycle of
instances of the PCDN graph. Because the definition of forward dependency involves only
three subprocesses, for the construction of the dependency graph it suffices to consider
instances of size three of every linear, parameterized PDES in the PCDN. To create an
isolated cycle of each cycle, we have to disable the shared events with subprocesses that
do not belong to that cycle. For each isolated cycle, we have to find the state pairs using
the forward dependency property 3.8. We calculate the synchronous product of each pair
of the nodes in that isolated cycle and find all of its shared edges with the next node in
that cycle. The node pair in the product that have just shared edges as its outgoing edges
is the node pair that is participating in the creation of the dependency graph. The states
nA1 and nA2 in the node pair (nA1 , nA2) are vertices of the dependency graph and all pairs
(nA1 , nA2) are the arcs of the dependency graph. As an example of a dependency graph of
a traffic network graph 5.1, the reader may refer to the figure 5.6.
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3.3.3 Full and Consistent Subgraphs of the Dependency Graph

When there is a path from any node of a graph to any other, it is called a ‘strongly
connected’ graph. A strongly connected subgraph of the dependency graph is consistent if
1) the subgraph contains at least one state of the input node, and 2) it contains no more
than one state of any distinguished subprocess [29]. The former condition eliminates those
subgraphs that only include nodes associated with parameterized sections of the network.
The latter condition ensures that a consistent subgraph represents a set of states of a part
of the network. Each member of this set represents a state of a subsystem of an instance
in the PCDN graph: each node in the subgraph could represent a state of a distinguished
or parameterized subprocess. The strongly connected property is needed to analyse the
circular waits, but we have to generalize the notion of the circular waits to account for
branching in our graph topologies. For this purpose, we have to introduce the fullness
property.

Definition. Consider D̄ as a subgraph of the dependency graph D . In D̄ , a state of
an output subprocess Gj in the network is represented by xj. For every event σ defined
from xj in Gj that is shared with a direct successory of Gj in some instance of the PCDN,
let Y σ be the state set of that direct successor. Subgraph D̄ is full if for every such xj and
σ, and some yσ ∈ Y σ, D̄ contains an arc (xj, y

σ) [29].

A full consistent subgraph is a graph in which, for every state of an output subprocess
and any direct successor, if there is a shared event between them that can be executed when
the output subprocess is in its given state, then the subgraph must contain an edge from
the state of the output subprocess to some state of the direct successor subprocess. Thus
each output subprocess is “dependent” on the set of its direct successors that could possibly
execute a shared event with it [30]. As an example of the full, consistent subgraphs of the
dependency graph, see the graphs in figure 5.7. The strongly connected, full, consistent
subgraphs of the the dependency graph represent all of the reachable generalized circular
waits in the PCDN graph [30].
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Chapter 4

The Algorithm and the Software

4.1 The Algorithm

Algorithm 1 shows the needed steps for instantiation of the PCDN graph. Given the paths
to the PCDN xml file and the directory containing the automaton models, it finds the pa-
rameterized and distinguished nodes of the PCDN graph, on the basis of their indegree and
outdegree. The user should provide the names of the parameterized nodes with indegree
and outdegree of one, because those are otherwise not recognizable as parameterized nodes
by the software. For each parameterized node, the software will generate two additional
nodes in the PCDN graph using the κ mapping.
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Algorithm 1 An algorithm to instantiate a PCDN Graph

1: Take the paths of the PCDN XML file and the directory containing automaton models.
2: Take the name of the distinguished nodes with indegree and outdegree of one.

3: for all (nodes in the PCDN graph) do
4: if (indegree + outdegree) > 2 then
5: The node is a distinguished node.
6: else
7: The node is a parameterized node.
8: end if
9: end for
10: for each (parameterized node (Pi)) do
11: Generate two additional nodes, Pi+1 and Pi+2 using cyclic bijection κ
12: end for

After instantiation of the PCDN graph the software finds all of the simple cycles in
the PCDN graph instance, using a depth-first search algorithm. Algorithm 2 shows the
procedure of finding all of the distinct cycles in the PCDN graph instance. In depth-first
search the idea is to traverse as deeply as possible from node to successor node before
backtracking. Specifically, the search proceeds from node to successor node until it reaches
a successor that has already been visited. It then backtracks [23].
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Algorithm 2 An algorithm to find all of the distinct cycles of a graph using depth first
search

1: path := new List <Node>; . The path contains nodes that form one simple cycle
2: cycles := new Set <cycle>; . The cycles contains all of the cycles from the node n

3: function DFS(Node n)
4: Mark n as visited;
5: for all (children of node n) do
6: if (child is unvisited) then
7: path← child; . Add the child node to the path
8: DFS(child);
9: else if (child has been visited AND child == n) then
10: path← child;
11: cycles← path; . Add the path to the set of cycles
12: Remove child node from the path;
13: else if (n has just one child) then
14: Remove node n from the path;
15: else
16: Continue;
17: end if
18: end for
19: Mark n as unvisited;
20: Remove node n from the path;
21: return cycles;
22: end function

23: for all (nodes of the PCDN graph) do
24: cycles← DFS(node); . Add all of the cycles to the current set of the cycles
25: end for

26: distinctCycles← cycles without any duplicate cycle;

To find all of the distinct cycles of the PCDN graph instance, we start by finding all of
the cycles starting from each node, and then we eliminate the duplicate ones. After finding
all of the distinct cycles in the PCDN graph instance, we have to isolate each cycle before
calculating the synchronous product of each node with its next neighbour in the direction
of the arcs in each cycle. To form an isolated cycle we have to disable some transitions
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of the distinguished nodes in that cycle in the PCDN graph instance because the only
subprocesses that could have shared events with subprocesses outside of that cycle are the
input and output subprocesses. Algorithm 3 represents the procedure of isolating each
cycle in the PCDN graph instance.

Algorithm 3 An algorithm to create an isolated cycle

1: function isolate(List<Node> cycle)
2: isolatedCycle := new List<Node>;
3: for each (node in the cycle) do
4: if (node is a distinguished node) then
5: Remove all of the neighbours and their associated edges that do not belong

to the cycle;
6: Update the corresponding automaton, by removing those edges and any node

that does not have any edges in that automaton;
7: Add this node to the isolatedCycle;
8: else
9: Add this node to the isolatedCycle;
10: end if
11: end for

12: return isolatedCycle;
13: end function

We calculate the synchronous product of the consecutive nodes in each isolated cycle
of the PCDN graph instance and then compare the result with the next node in that
cycle. All of the nodes in the synchronous product that have shared events only with the
next node in the isolated cycle of the PCDN graph instance will contribute in creation of
the dependency graph. The synchronous product’s nodes are in the form of pairs of the
PCDN graph’s nodes. Algorithm 4 shows the computation of the synchronous product.
The ‘SYNC’ function will take two isolated automata as its input and will return their
synchronous product. First we find all of the shared edges between the two automata. The
initial node of the synchronous product is made of the initial nodes of the two automata.
To keep track of the synchronous nodes, we define visited and unvisited stack variables.
When we visit these nodes, we will remove them from the unvisited stack variable and add
them to the visited stack variable. We add the initial node to the unvisited stack variable
at first, and until this stack variable is not empty we follow the following procedure.

We remove the last node inserted in the unvisited stack variable and put it in the
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currentPair variable. If we have visited this node before, we will continue to the next node
in the unvisited stack; otherwise we will add this node to the visited variable. (We have to
visit each node just once.) We check all of the outgoing edges of the first node in the node
pair of the currentPair. (We will do the same for the second node in the pair, for edges
that are not shared.) If an outgoing edge is not a shared edge, then we will find just the
neighbour of the first node and calculate the new node pair using the neighbour of the first
node and the second node itself. If that outgoing edge is a shared edge, we will find the
neighbours of both nodes in that node pair, and calculate the new node pair using both
their neighbours. Now we have to check whether we have visited or calculated this node
before. If we have not visited or calculated this node before, we will create it and add it
to the unvisited variable. (We have to update the list of the children, parents and edges
of the current node and the newly created node.) If we have calculated this node before,
we just have to update its properties as before.

We will continue this process, until we have visited all of the nodes of the synchronous
product graph. The result will be the synchronous product of the two automata. We do
the same for each consecutive pair of the automata in each isolated cycle in the PCDN
graph instance.
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Algorithm 4 An algorithm to calculate the synchronous product of the two automata

1: function Sync(Automaton A1, Automaton A2)
2: Automaton result = new Automaton();
3: sharedEdges := new List <String>;
4: for all (edges in A1) do
5: for all (edges in A2) do
6: if (Edges were the same) then
7: add that edge to the sharedEdges;
8: end if
9: end for
10: end for

11: visited := new Stack <NodePair>; . visited contains the list of the result’s nodes
that have been visited.

12: unV isited := new Stack <NodePair>; . unV isited contains the list of the result’s
nodes that are not visited.

13: nodePairinit := new NodePair(N1init, N2init); . Initial node of the synchronous
product is made of the two initial nodes of the automata A1 and A2

14: unV isited.push(nodePairinit);
15: while (unV isited is not empty) do
16: currentPair = unV isited.pop();
17: if (!visited.contains(currentPair)) then
18: visited.push(currentPair);
19: for all (out-edges of the first node in the currentPair) do
20: if (!sharedEdges.contains(outEdge)) then
21: Find the child node of the firs node using this outedge;
22: Visit(result, currentPair, childNodeOfFirstNodeInPair,

secondNodeInPair, visited, unV isited, outEdge);
23: else
24: Find the child nodes of the first and second node using this out-edge;
25: Visit(result, currentPair, childNodeOfFirstNodeInPair,

childNodeOfSecondNodeInPair, visited, unV isited, outEdge);
26: end if
27: end for

21



28: for all (out-edges of the second node in the currentPair) do
29: if (!sharedEdges.contains(outEdge)) then
30: Find the child node of the second node using this out-edge;
31: Visit(result, currentPair, FirstNodeInPair,

childNodeOfSecondNodeInPair, visited, unV isited, outEdge);
32: else
33: Continue;
34: end if
35: end for
36: else
37: continue;
38: end if
39: end while

40: return result;
41: end function

42: procedure Visit(Automaton result, NodePair currentPair, Node
firstNodeInPair, Node secondNodeInPair, Stack visited, Stack unV isited,
String edge)

43: newNodePair = newNodePair(firstNodeInPair, secondNodeInPair);
44: if (!visited.contains(newNodePair) AND !unV isited.contains(newNodePair))

then
45: Create newNodePair and add it to the result graph;
46: unV isited.push(newNodePair);
47: Update(result, currentPair, newNodePair, edge)
48: else if (!visited.contains(newNodePair) AND unV isited.contains(newNodePair))

then
49: Find the previously calculated newNodePair.
50: Update(result, currentPair, newNodePair, edge)
51: else
52: Find the previously visited newNodePair.
53: Update(result, currentPair, newNodePair, edge)
54: end if
55: end procedure
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56: procedure Update(Automaton result, Nodepair np1, NodePair np2, String edge)
57: create the edge between the two node pairs in the synchronous graph.
58: add the first node pair as the parent of the second node pair.
59: add the second node pair as the child of the first node pair.
60: add the created edge as out-edge of the first node pair.
61: add the created edge as in-edge of the second node pair.
62: end procedure

Algorithm 5 This algorithm finds the nodes of the synchronous product that just have
shared events with the next automaton

1: function GetDepTransitions(Automaton A1, Automaton A2, Automaton A3)
2: result := new List <String>; . result contains the transitions of the dependency

graph
3: Automaton product = Sync(A1, A2);
4: sharedEdges = The names of the all of the shared edges between product and A3;
5: for each (node of the product) do
6: outEdgesNames = new List <String>;
7: for each (edge of the node) do
8: Add edge name to the outEdgesNames
9: end for
10: if (sharedEdges contains all of the outEdgesNames) then
11: Add the node name to the result;
12: end if
13: end for
14: return result;
15: end function

To find which node pairs of the synchronous product have a role in the creation of the
dependency graph, we have to compare the synchronous product with the next automaton
in that isolated cycle. Those nodes in the synchronous product that have shared events
only with the next automaton in that isolated cycle make a contribution to the creation
of the dependency graph. Algorithm 5 shows this procedure in detail. GetDepTransitions
will take three consecutive automata in an isolated cycle, and calculate the synchronous
product of the first two. It finds the name of the shared edges between the synchronous
product and the third automaton. For each node of the synchronous product, if all of its
outgoing edges are shared edges with the third automaton, that node will be returned as
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part of the result.

To create the dependency graph, we connect the first node in such a node pair of the
synchronous product to the second node by a directed “no-name” edge. (These synchronous
product nodes are thus the list of the transitions of the dependency graph.) At the end,
we have to eliminate the duplicate edges in the dependency graph. Algorithm 6 represents
this procedure in detail. In this algorithm, to calculate the dependency graph transitions
we have to check the position of the automaton in the isolated cycle. If the first automaton
is the last node in the isolated cycle, the second and the third ones are the first and second
nodes in the isolated cycle, and so on.

Algorithm 6 An algorithm to create the dependency graph

1: Instantiate the PCDN graph using algorithm 1;
2: Find all of the distinct isolatedCycles using algorithms 2 and 3;
3: depTransitions := new List <String>; . depTransitions contains all of the

transitions of the dependency graph.
4: for each (cycle of the isolatedCycles) do
5: for each (node of the cycle) do
6: if (The node is the last but one in the cycle) then
7: Add all of the transitions calculated with GetDepTransitions(node,
lastNode, firstNode) to the depTransitions;

8: else if (The node is the last node in the cycle) then
9: Add all of the transitions calculated with GetDepTransitions(node,
firstNode, secondNode) to the depTransitions;

10: else
11: Add all of the transitions calculated with GetDepTransitions(node,

nextNode, secondNextNode) to the depTransitions;
12: end if
13: end for
14: end for

15: Remove the duplicate transitions from depTransitions;

After creation of the dependency graph, we find all of the full, consistent subgraphs
of the dependency graph. A consistent subgraph is a strongly connected subgraph of the
dependency graph that contains at least one input node and does not contain more than
one state of any distinguished subprocess. The following statement defines the fullness
condition:
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If there is an output node in a maximal connected component of a dependency graph,
we have to find all of the children of that output node in the PCDN graph. Then, we
have to check the state of that output node in that component, and if the automaton of
that output node in that specific state and the automaton of the output node’s children
have any shared event, there should be exactly one edge between that output node and
any state of that child in the maximal connected component of the dependency graph to
satisfy the fullness condition.

Each cycle in the dependency graph is a strongly connected component, so we will
find all of the distinct cycles in the dependency graph using algorithm 2. We assign an
ID to each cycle and call each one of them a ‘supernode’. Each created supernode is
connected with just one edge to another supernode, if they have any common node in their
cycles in the dependency graph. These supernodes and their edges will form an undirected
graph, called the ‘supergraph’. Algorithm 7 shows the procedure of the creation of a valid
supergraph. By valid we mean there is no supernode that has more than one state of a
given distinguished node, which would violate one of the consistency conditions.

Algorithm 7 An algorithm to create a valid supergraph.

1: Create the dependency graph using algorithm 6;
2: Find distinct cycles in the dependency graph using algorithm 2;
3: for each (distinct cycle in the dependency graph) do
4: Assign an Id to form a supernode
5: if (All nodes of each supernode are distinct states of distinguished nodes.) then
6: This supernode is a valid supernode;
7: else
8: Remove this supernode from the list of supernodes;
9: end if
10: end for
11: for (i = 0; i < numberOfSuperNodes− 1; i++) do
12: for (j = i+ 1; j < numberOfSuperNodes; j++) do
13: if (i ! = j AND superNodes have shared nodes) then
14: Create an undirected edge between them
15: end if
16: end for
17: end for

Next, we have to merge the cycles represented by valid subgraphs to form maximal con-
sistent subgraphs of the dependency graph. However, for consistency, we must ensure that
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Distinguished Node States
AA1 3
AA2 3
AB1 3
AB2 3
AC1 3
AC2 3
IA1 2, 3
IA2 2, 3, 4, 6
IB1 2, 3
IB2 2, 4, 6
IC1 2, 3
IC2 2, 3, 4, 6
A1 3

Table 4.1: List of the distinguished nodes and their states

we do not merge supernodes featuring different states of the same distinguished subprocess.

This is a version of forbidden-pair problem [12, 13, 28], which is NP-complete. We solve
it by first choosing an assignment of states to each of the distinguished subprocesses. We
then remove from the supergraph all supernodes that are inconsistent with that assignment,
and then find the connected components of the resulting subgraph. The merger of all of
the supernodes in any such subgraph is a maximal consistent subgraph of the dependency
graph. All such mergers are computed, for every possible assignment of states to the
distinguished processes.

For example, the distinguished nodes of the dependency graph in figure 5.6 are given
in table 4.1. As depicted in figure 4.1, we can either have state 4 of IB2, or state 2 of IB2.

The total number of legal combinations that do not violate the consistency condition
is 384. After finding all of the maximal consistent subgraphs in the supergraph, we will
remove those subgraphs that do not satisfy the fullness condition.

Algorithm 8 finds the allowed combinations of distinguished nodes.
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(a) Subgraph containing state 4 of IB2

(b) Subgraph containing state 2 of IB2

Figure 4.1: Two maximal connected full, consistent subgraphs of the dependency graph of
figure 5.6

Algorithm 8 This algorithm will generate a list of different combinations of states of
distinguished subprocesses.

1: function getDistCombinations( )
2: checkedNames := new HashSet <String>; . checkedNames are the names of the

distinguished nodes that have been entered to the distinguishedNodes map.
3: distinguishedNodes := new HashMap < String, Set < DependencyNode > >; .
distinguishedNodes keys are the names of the distinguished node names, and the
corresponding values are the dependency node names with different states.

4: for all (Nodes in the dependency graph) do
5: if (Node is a distinguished node) then
6: if (checkedNames contains the node name) then
7: distinguishedNodes.get(node name).add((DependencyNode) node);
8: else
9: checkedNames.add(node name);
10: Add the new key and its corresponding value to the distinguishedNodes;
11: end if
12: end if
13: end for
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14: combinations := Sets.cartesianProduct(values of the distinguishedNodes);
15: return combinations;
16: end function

The following algorithm traverses the graph for each combination, from every supernode
that has an input node in its corresponding cycle that does not violate the combination
condition. Those paths that do not satisfy the combination will be omitted. Some of
the supernodes with input node in their corresponding cycles, ‘input-supernodes’, violate
the combination, so we have to check which input-supernode could be the initial node of
traversing. The result of algorithm 9 contains all of the maximal consistent subgraphs
that have the same combination of the distinguished nodes in their path. Algorithm 10
traverses the supergraph for each one of the combinations of the distinguished nodes, and
for each combination, tries every input-supernode that satisfies that combination. As a
result it finds all of the maximal consistent subgraphs of the supergraph.
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Algorithm 9 This function starts traversing the supergraph from each input-supernode
that satisfies the combination of the distinguished nodes.

1: function traverse(List <DependencyNode> combination, Set<SuperNode> input-
SuperNodes)

2: startNodes := new HashSet<SuperNode>;
3: for all (input-supernodes) do
4: if (combination contains all of the distinguished nodes of the input-supernode)

then Add input-supernode to the startNodes;
5: end if
6: end for
7: result = new HashSet<Set<SuperNode> >; . result contains all of the distinct

subgraphs which are maximal connected, consistent subgraphs.
8: for (startNode : startNodes) do
9: visitInfo = new HashMap<SuperNode, Boolean>; . visitInfo have some

information about the visitation of each supernode. values of each supernode could be:
false means ”not visited” or true means”visited”

10: for all (supernodes in the supergraph) do
11: visitInfo.put(supernode, false);
12: end for
13: subGraph = new HashSet<SuperNode>; . subGraph contains all of

the supernodes which are allowed to be connected to form one of the fully connected
components.

14: allDistinguishedNodes = new HashSet<Node>; . allDistinguishedNodes is
the list of all of the distinguished nodes that have been visited so far.

15: unV isited = new Stack<SuperNode>(); . This list contains supernodes that
are going to be visited.

unV isited.push(startNode); . Add the start node to the unVisited list
16: while unV isited is not empty do
17: currentNode = unV isited.pop(); . // Remove the first supernode from

the unvisited list.
18: if (We have not visited currentNode before) then
19: Visit currentNode and update visitInfo
20: Collect all of the distinguished nodes of the currentNode in

allDistinguishedNodes
21: if combination contains all of the allDistinguishedNodes then
22: Add currentNode to the subGraph
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23: for all (Children of the currentNode) do
24: push each child to unV isited
25: end for
26: else
27: Adding currentNode violates the combination condition, So we have

to remove those distinguished nodes added to the allDistinguishedNodes
28: end if
29: else
30: Continue;
31: end if
32: end while
33: result.add(subGraph);
34: end for

return result;
35: end function

Algorithm 10 This function will traverse the supergraph, and generate all of the possible
maximal consistent subgraphs.

1: function Consistent( )
2: result := new HashSet<Set<SuperNode> >;
3: combinations = getDistCombinations( );
4: inputSuperNodes := new HashSet<SuperNode>; . inputSuperNodes contains

those supernodes that have at least one input node in their associated cycles.
5: for all (Supernodes in the supergraph) do
6: if (Supernode has one or more input nodes) then
7: Add the supernode to inputSuperNodes;
8: end if
9: end for
10: for all (Combinations in combinations) do
11: Calculate traverse(combination, inputSuperNodes);
12: Add it to the result;
13: end for
14: return result;
15: end function

Now, to get the maximal connected full, consistent subgraphs, we have to omit those
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subgraphs which violate the fullness condition. Note that the label of a node in the
dependency graph specifies a subprocess - be it a distinguished subprocess or an instance
of the template for a parameterized section - and also a state of that subprocess.

Now, if a node in the subgraph corresponds to a given state of a given output subprocess,
then for any successor subprocess such that the output subprocess can execute a shared
event with that successor subprocess from the given state of the output subprocess, fullness
requires that the subgraph contain exactly one edge linking the given node to a node
corresponding to the successor subprocess. For a given output-subprocess node, algorithm
11 returns the list of all such successor subprocesses.
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Algorithm 11 This function will return list of the neighbors’ names for each dependency-
graph output node.

1: function findOutputNodeNeighbours( )
2: outputSuperNodes := new HashSet<SuperNode>; . List of the supernodes that

have at least one output node
3: for all (supernodes in the supergraph) do
4: if (supernode has an output node) then
5: Add the supernode to outputSuperNodes
6: end if
7: end for
8: outputNeighbours := new HashMap<Node, Set<String> >;
9: for each (output− supernode in outputSuperNodes) do
10: for each (outputNode in output− supernode) do
11: outputNodePCDN = corresponding automaton of the output node;
12: outputNodeEdgesInAutomaton = List of the out-edges of the output node

in a specific state;
13: outputNodeChildren = list of the children of the output node in automaton

in a specific state;
14: for each (child in outputNodeChildren) do
15: childEdges = List of the edges in the child’s automaton;
16: if (outputNodeEdgesInAutomaton and childEdges have shared edges)

then
17: Add it to outputNeighbours;
18: else
19: Continue;
20: end if
21: end for
22: end for
23: end for
24: return outputNeighbours;
25: end function

Algorithm 12 will calculate all of the maximal full, consistent subgraphs. For each
‘output-node, child’ pair that we calculated in algorithm 11 we find a set of supernodes
that have the output-node and its child in their cycles. There might be more than one su-
pernode needed to satisfy the fullness condition. The variable ‘fullnessConditions’ contains
those combinations of supernodes that satisfy the fullness condition for a given created sub-
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graphs. For each output node in the dependency graph, we create another variable that
holds the fullness conditions for that output node, and name it ‘fullnessConditionsOfCur-
rentOutputNode’. ‘fullnessConditionsOfCurrentOutputNode’ is a list of sets, and each set
represents those supernodes that satisfy the fullness condition for just one ‘output-node,
child’ pair. We have to search through all of the supernodes. (There could be more than
one supernode with this combination of ‘output-node, child’, because some supernodes
share parts of their cycles with other supernodes.) The list contains all of the sets of the
supernodes for different children of the current output node. To satisfy the fullness con-
dition for one output node, there should be an edge from that output node to each of the
children in the list computed by algorithm 11. The ‘fullnessConditionsOfCurrentOutputN-
ode’ has the following structure (suppose the output node in a specific state should have
three children connected to it in the subgraph, to satisfy the fullness condition): [all of the
supernodes which have pair of ‘output-node, child1’], [all of the supernodes which have pair
of ‘output-node, child2’], [all of the supernodes which have pair of ‘output-node, child3’].
In this structure, the output node is connected to just one of its children in each bracket.
So we have to calculate all of the combinations that make the output node connected to
all of its children once. If the output node and child1 appear in three different cycles of
the dependency graph, the output node and child2 appear in four different cycles of the
dependency graph and the output node and child3 appear in two different cycles of the
dependency graph, we have 3*4*2 different combinations of those cycles that could satisfy
the fullness condition for this specific output node.
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Algorithm 12 This function will generate maximal connected full, consistent subgraphs.

1: function fullConsistent( )
2: consistentSubGraphs = consistent( ); . generate all of the consistent

subgraphs.
3: outputNeighbours = findOutputNodeNeighbours( ); . List of the all

of the neighbors of each output node that should be connected to that output node in
the subgraph, to satisfy the fullness condition.

4: fullnessConditions := new HashSet<List<SuperNode> >;
5: for each (output node in key set of outputNeighbours) do
6: fullnessConditionsOfCurrentOutputNode = new

ArrayList<Set<SuperNode> >;
7: for each (child of the output node) do
8: fullnessCond = new HashSet<SuperNode>; . fullnessCond is a set of

supernodes that have the pair of ’output-node, child’ in their cycles.
9: for each (supernode in the supergraph) do
10: if (The supernode contains the output node) then
11: if (The output node is the last node in the cycle) then
12: if (The first node in the cycle is in the list of the children of the

output node to satisfy the fullness condition) then
13: Add the supernode to the fullnessCond;
14: end if
15: else
16: if (The next node in the cycle is in the list of the children of the

output node to satisfy the fullness condition) then
17: Add the supernode to the fullnessCond;
18: end if
19: end if
20: end if
21: end for
22: Add the fullnessCond to the fullnessConditionsOfCurrentOutputNode;

. fullnessConditionsOfCurrentOutputNode is for all of the possible combinations
for one output node and all of its children.

23: end for
24: combinations= Sets.cartesianProduct(fullnessConditionsOfCurrentOutputNode);
25: fullnessConditions.addAll(combinations);
26: end for
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27: for each (consistent subgraph in consistentSubGraphs) do
28: for each (combination in fullnessConditions) do
29: if (consistent subgraph has shared supernode with combination) AND (con-

sistent subgraph does not contain all of the supernodes of the combination) then
30: Remove the consistent subgraph;
31: exit the loop;
32: end if
33: end for
34: end for
35: return consistentSubGraphs; . consistentSubGraphs contains all of the

consistent, full subgraphs.
36: end function

4.2 The Implementation

The software is written in Java and it uses two external open source libraries: 1) Simple
XML SERIALIZATION 1 and 2) Guava2 to parse the input XML files and do some part
of the calculations, respectively. To draw the dependency graph and its full, consistent
subgraphs the software utilizes Graphviz 3. To generate the PCDN graph and the automa-
ton of each node in the PCDN, we will use the Integrated Discrete-Event Systems Software
(IDES)4. IDES provides an environment like paper and pen for drawing and exporting
the defined models of the automata to various file formats. We export these models as an
XML file with .xmd extension. The user should create the PCDN graph and the automa-
ton models of the distinguished nodes and template nodes of each parameterized section
using IDES, and save all of the automata models in a separate directory.

Figure 4.2 represents the class diagram of the simple package. The classes in this
package are used to parse the XML file that is given by the user. All of the attributes in
this diagram have sets of getters and setters that are omitted. Each element in the XML file
is represented by a class in this package. At the top we have a ‘Model’ element in the XML
file which have ‘Data’ and ‘Meta’ elements. A ‘Data’ element contains information about
nodes and elements and their relationship, while a ‘Meta’ element contains information
about positioning of nodes and edges in the IDES. Although we do not need the information
in the ‘Meta’ element, in order to parse the XML file correctly we have to define the

1http://simple.sourceforge.net
2https://github.com/google/guava
3http://www.graphviz.org/
4https://qshare.queensu.ca/Users01/rudie/www/software.html
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Figure 4.2: UML Class diagram of the simple package

corresponding classes. At the top of the diagram in figure 4.2, ‘XMLParser’ is the class
that is responsible for reading and writing to the XML file. It takes the path of the XML
file and returns all of the elements of the XML file in a model variable. The model variable
later will be used to get information on the graph. The ‘Data’ element could have one
or many ‘States’ and ‘Transitions’ elements. It could have zero or more ‘Event’ elements.
In a PCDN network, edges does not have any name, so there is no ‘Event’ element in
‘Data’, but in other automaton models, the ‘Data’ element has as many ‘Event’ elements
as there are edges in the automaton graph. ‘State’ and ‘Event’ elements have the same
‘Properties’ element as shown in figure 4.2. The ‘Properties’ element could have an empty
initial element, which after parsing the XML file is converted to null. The absence of an
initial element is also represented by the null value. To overcome this problem we have
created the ‘EmptyElementConverter’ class. This class converts the null value to the empty
string, in case of presence of the empty initial tag.
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Figure 4.3: Sample directed graph with three nodes and three edges

There are some naming conventions to create these graphs:

1. Node names of the PCDN graph and the automaton file names must be the same.

2. Node names of the PCDN graph must start with letters followed by numbers, and
the edges should not have any name.

3. Because the node names of the PCDN graph are the file names of the automaton
graphs, they should not contain any special characters including ’, ”, etc.

4. If the template subprocess has been defined, e.g. as ‘B1’, naming other subprocesses
using similar names like ‘B2’, ‘B3’, etc. is prohibited and the software will generate
two additional subprocesses for each parameterized node in the PCDN graph, by
incrementing parameters of the template node by one and two.

5. In the automaton graph, node names should be just numbers and the edge names
could be any appropriately suggestive names.

Figure 4.3 shows a sample directed graph with three nodes and three edges that has
been created using IDES, and listing 4.1 shows the XML file exported by the IDES.

The node and edge names are given between the ‘name’ element of ‘state’ and ‘event’
elements. The ‘id’ attribute of the ‘model’ element indicates the name of the graph, while
the ‘id’ attribute of ‘state’, ‘event’ and ‘transition’ elements are generated automatically
by the IDES and indicate a unique identifier for the nodes, edges and transitions in the
graph, respectively. The ‘initial’ empty element indicates the first node is an initial node
and the ‘observable’ empty element gives more information about the event, which does
not have any application in our software. In the ‘transition’ element, ‘source’, ‘target’ and
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‘event’ attributes show the edge id and its source and destination nodes’ id. The ‘meta’
element and all of its contents are used to show the positions of the nodes and edges in the
IDES and do not have any application in our software. In the PCDN graph, because the
edges do not have name, its XML file does not have ‘event’ elements or ‘event’ attributes;
and ‘transition’ elements indicate which nodes are connected to each other.

Listing 4.1: Sample Graph

1 <?xml version="1.0" encoding="UTF-8"?>

2 <model version="2.1" type="FSA" id="Graph">

3 <data>

4 <state id="1">

5 <properties>

6 <initial />

7 </properties>

8 <name>N1</name>

9 </state>

10 <state id="2">

11 <properties/>

12 <name>N2</name>

13 </state>

14 <state id="3">

15 <properties/>

16 <name>N3</name>

17 </state>

18 <event id="1">

19 <properties>

20 <observable />

21 </properties>

22 <name>E1</name>

23 </event>

24 <event id="2">

25 <properties>

26 <observable />

27 </properties>

28 <name>E2</name>

29 </event>

30 <event id="4">

31 <properties>
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32 <observable />

33 </properties>

34 <name>E3</name>

35 </event>

36 <transition id="4" source="1" target="2" event="1">

37 </transition>

38 <transition id="5" source="2" target="3" event="2">

39 </transition>

40 <transition id="6" source="3" target="1" event="4">

41 </transition>

42 </data>

43 <meta tag="layout" version="2.1">

44 <font size="12.0"/>

45 <layout uniformnodes="false"/>

46 <state id="1">

47 <circle r="18.0" x="451.0" y="467.0" />

48 <arrow x="36.0" y="0.0" />

49 </state>

50 <state id="2">

51 <circle r="18.0" x="737.0" y="467.0" />

52 <arrow x="1.0" y="0.0" />

53 </state>

54 <state id="3">

55 <circle r="18.0" x="601.0" y="283.0" />

56 <arrow x="1.0" y="0.0" />

57 </state>

58 <transition id="4">

59 <bezier x1="451.0" y1="467.0" x2="737.0" y2="467.0" ctrlx1="

546.3333129882812" ctrly1="467.0" ctrlx2="

641.6666870117188" ctrly2="467.0" />

60 <label x="5.0" y="-14.0" />

61 </transition>

62 <transition id="5">

63 <bezier x1="737.0" y1="467.0" x2="601.0" y2="283.0" ctrlx1="

691.6666870117188" ctrly1="405.6666564941406" ctrlx2="

646.3333129882812" ctrly2="344.3333435058594" />

64 <label x="21.0" y="-3.0" />

65 </transition>
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66 <transition id="6">

67 <bezier x1="601.0" y1="283.0" x2="451.0" y2="467.0" ctrlx1="

551.0" ctrly1="344.3333435058594" ctrlx2="501.0" ctrly2=

"405.6666564941406" />

68 <label x="-20.0" y="-9.0" />

69 </transition>

70 </meta>

71 </model>

To parse the XML files we create a class for each element of the XML file and place
annotations before class declarations or fields to indicate root elements or attributes in the
XML file. As an example, to model the ‘state’ element, we define a class like the following:

1 @Root(name="state")

2 public class State {

3 @Attribute

4 private int id;

5 @Element(required = false)

6 private Properties properties;

7 @Element(name ="name")

8 private String name;

9

10 ... setters and getters ...

11 }

The ‘@Attribute’ indicates that the following variable is an attribute in the XML file
and ‘@Element(required=false)’ indicates that the following element in the XML file is not
mandatory. To represent the ‘data’ element, we have to annotate the class as root and its
children as a list by placing ‘@ElementList(inline=true)’ before each field.

Figure 4.4 represents the rest of the classes in our software. The ‘Graph’ class takes as
its input the path to the graph XML file. It uses the simple package and, by creating a
model object it generates lists of nodes and edges in separate variables. It has two hashmap
variables for the respective assignment of each node and edge to their ids. This class also
has methods ‘createNode’ and ‘createEdge’. The createNode method generates a new id
and assigns it to the newly created node and then adds that node to the list of nodes.
It also updates the hashmap of the nodes and then returns the newly created node as its
output. The same procedure applies for the createEdge method. This class has a method
to compute all of the cycles and all of the distinct cycles of the graph using a depth-first

40



Attributes Explanation
lastId It is needed for creation of new nodes and edges.

filename It is the name of the XML file.
name This is the name of the graph, which is the filename without its extension.

xmlFile It Contains the XML model object.
states This is the list of all of the states from the XML file.
events This is the list of all of the events from the XML file.

transitions This is the list of all of the transitions from the XML file.
nodes It is list of all of the nodes in the Graph.

nodeMap This is a map between a Node object and its ID.
edges This is list of all of the edges in the Graph

edgeMap This is a map between an edge object and its ID.
onStack onStack[v] is true, if v is on the stack.
edgeTo edgeTo[n] gives previous vertex on path to n.
cycle one directed cycle (or null if no such cycle).
cycles all of the directed cycles (or null if no such cycles).

Table 4.2: List of the attributes of the Graph class

search algorithm. The ‘getSharedEdges’ method will return shared edges between two
nodes.

Table 4.2 represents a list of all attributes along with their explanations for the Graph
class. The Graph class is the parent of Automaton, Pcdn and Dependency classes.

The ‘Node’ class is the parent of the ‘AutomatonNode’, ‘PcdnNode’ and ‘Dependen-
cyNode’ classes. This class creates lists of children (nodes that are after this node in the
directed graph), parents, outgoing and ingoing edges of the node object. It has a copy con-
structor which creates duplicates of the node using a deep copy method. It has methods
to add and remove any child, parent, outgoing edge and ingoing edge from their corre-
sponding lists. Method ‘removeNeighbours’ takes node ‘n’ and a cycle as its inputs and
then removes those neighbours of the node ‘n’, that do not belong to the cycle. It removes
all of the associated edges of that neighbour from the node ‘n’ and returns the node as its
output. We have overridden the ‘equals’ and ‘hashCode’ methods in this class. Objects
that are equal must have the same hash code within a running process but unequal objects
might also have the same hash code.

The ‘Edge’ class is the parent of ‘AutomatonEdge’ and assigns a source and destination
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Figure 4.4: UML Class diagram of the project class

node to the edge object. Each edge object has a distinct ‘id’. This class also has a copy
constructor to duplicate the edge object properly. We have overridden the ‘equals’ and
‘hashCode’ methods in this class too.

The ‘Pcdn’ class will take as its input the paths to the PCDN graph file and the
automaton directory, and also asks the user to input the name of the distinguished nodes
with indegree and outdegree of one. This class also has a copy constructor to duplicate
the Pcdn object. The ‘instantiatePcdn’ method generates two extra nodes by increasing
the node number and all of the parameters in the associated graphs of the parameterized
nodes by one and two, in the PCDN graph, respectively. It also creates two XML files
for each parameterized section in the automaton directory model. This class has another
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method named ‘getIsolatedCycles’ which returns an isolated version of each distinct cycle
in the PCDN graph, by removing shared events of each distinguished node with outside of
the cycle. This class also has methods to return lists of parameterized and distinguished
nodes in the PCDN graph.

The ‘PcdnNode’ class extends the ‘Node’ class and adds the ‘kind’ attribute to each
node. The kind attribute could be ‘input node’, ‘output node’ or none, which is calcu-
lated in this class. Nodes which have the number of ingoingedges > outgoingedges are
considered as input nodes. There is another method that assigns an automaton object to
each PcdnNode object. The ‘setDistinguishedNode’ method finds all of the distinguished
and parameterized nodes based on their indegree and outdegree. All of the nodes with
(indegree + outdegree > 2) are considered as distinguished nodes. This class also has a
copy constructor to duplicate pcdnNode objects. Like the ‘Node’ class, this class has a
‘removeNeighbours’ method which takes as its input node ‘n’ and a cycle, and removes
those neighbours of the node ‘n’, that do not belong to the cycle. The difference between
this method and the one in the ‘Node’ class is that this method will also update the
corresponding automaton of the PcdnNode.

The ‘Automaton’ class extends the ‘Graph’ class and initializes the automaton object.
The ‘updateAutomaton’ is a method that takes a list of edges as its input and then updates
the automaton graph after removing all of those edges. This method will update the lists
of nodes, edges, nodeMap and edgeMap as well. After removing edges, if a node does
not have any edge, it should be removed. The ‘getSharedEdges’ method will take two
automaton objects as its input and will return the list of the shared edges between them.
The ‘createAutomatonNode’ and ‘createAutomatonEdge’ methods will respectively create
a new node and edge as their names suggest.

The ‘AutomatonNode’ class extends the ‘Node’ class, so it inherits all of the methods
and attributes in the ‘Node’ class. Each ‘AutomatonNode’ object has the ‘initial’ attribute,
which specifies whether or not the current node is an initial node in the automaton graph.
There is a method in the ‘AutomatonNode’ class that can specify this attribute. We have
a copy constructor to duplicate ‘AutomatonNode’ objects and to compare them with each
other; we have overridden the ‘equals’ and ‘hashCode’ methods.

‘AutomatonEdge’ extends the ‘Edge’ class, and adds one more attribute to ‘Automa-
tonEdge’ objects, which is a ‘name’. We have also defined a copy constructor in this class
for duplication purposes and overridden ‘equals’ and ‘hashCode’ methods as well.

The ‘nodePair’ class is a helper class which has three generic attributes, node1, node2
and syncNode. The attributes node1 and node2 could be the first and second nodes in
the synchronous product and syncNode could contain a node in the synchronous product
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graph. We have overridden the ‘equals’ and ‘hashCode’ methods, so we can compare
‘nodePair’ objects with each other.

The ‘Dependency’ class extends the ‘Graph’ class. This class has a method named
‘initialize’ which generates the dependency graph of a PCDN. It first finds all of the isolated
cycles of the PCDN graph, and then in each cycle calculates the synchronous product
between consecutive nodes in that cycle and compares the result with the next node. All
of the nodes in the synchronous product that have shared events only with the next node in
the isolated PCDN will create the dependency graph. All of the nodes in the synchronous
product are pairs of nodes of the PCDN graph, and to create the dependency graph, we
will connect the first node in a node pair to the second node, by a directed no-name edge.
There is a method named ‘synchronousProduct’ that calculates the synchronous products
of two automata and returns an automaton as its output. This class also has a method
called ‘createDependencyNode’ which takes the name of the PCDN node and its state, and
creates a new DependencyNode object.

‘DependencyNode’ extends the ‘PcdnNode’ class and has the ‘state’ attribute. Each
node in the PCDN graph has a corresponding automaton and the state will specify the
node name of the automaton. We have overridden the ‘equals’ and ‘hashCode’ methods in
this class in order to be able to compare ‘DependencyNode’ objects with each other.

‘SuperGraph’ does not inherit from the ‘Graph’ class because it contains undirected
graphs. Table 4.3 presents a list of attributes along with their explanations for the
SuperGraph class. This class has a method named ‘initialize’ which creates the supergraph
of the dependency graph. It finds all of the distinct cycles of the dependency graph, and
associates a node number to each distinct cycle. Each distinct cycle would be one supern-
ode of the supergraph; supernodes are connected to each other if the corresponding distinct
cycles have common nodes. We have used a depth-first search algorithm to find cycles in
the dependency graph. We first find all of the maximal connected consistent subgraphs
of the dependency graph by computing all possible assignments of states to distinguished
subprocesses (in order to satisfy consistency), and then finding those subgraphs that satisfy
fullness.

The ‘SuperNode’ class assigns a cycle to each supernode and contains lists of input
and ouput nodes of the dependency graph. It also has a list of the neighbours of the
supernode. Another attribute is ‘Edges’ which is a list of the edges that are connected to
this supernode. If a cycle in the dependency graph violates the consistency condition, its
‘forbidden’ attribute will be set to true, and it will be omitted from the calculations.

The ‘SuperEdge’ class assigns an ‘id’ to each edge and contains a list of two supernodes
that are connected to each other via this superedge.
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Attributes Explanation
lastId It is needed for creation of new nodes and edges.
pcdn This is the location of the PCDN ’.xmd’ file.

directoryModels This is the location of the directory of the automata models.
nodes It is a list of all of the nodes in the Graph.

nodeMap This is a map between a Node object and its ID.
edges This is a list of all of the edges in the Graph

edgeMap This is a map between an edge object and its ID.
dp dp is the dependency graph.

subGraphs It contains all of the maximally connected full, consistent subgraphs.

Table 4.3: List of the attributes of the SuperGraph class
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Chapter 5

Case Study

5.1 Simple Traffic Network vs. Complex Traffic Net-

work

Figure 5.1: Parameterized-chain network graph

In this section we consider a more complex version of the train network example of [30].
The model consists of distinguished subprocesses that represent the intersections within
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the network and of linear parameterized segments representing routes of arbitrary length.
It would be seen that the existence of generalized circular waits will depend on the lengths
of these routes.

Figure 5.1 is the PCDN graph and represents a network of six intersections and seven
routes. A train will enter the network from the IA1 “input node” and travel through the
network using any of the specified routes. (Directions of the movements are indicated by
the arrows) Each space in the network will get filled by the arrival of a train and will empty
upon its leaving. IA1, IB1 and IC1 are the input nodes and IA2, IB2 and IC2 are the
output nodes. Rxi, Rprimexi, Rdprimexi (x could be A, B and C, except RprimeBi),
Ri and Rprimei are the parameterized nodes. Distinguished nodes have been represented
using square nodes in the graph. The traffic network represented in figure 5.1 could be
arbitrarily large with many distinguished and parameterized nodes. For the purpose of
this example the network contains seven routes, each represented by a parameterized node,
which means their length could be arbitrarily large. Each intersection is also represented
by a distinguished node. To be consistent with the simpler version of this network we will
assume every train comprises two cars and will occupy two spaces at a time. In order to
satisfy the assumptions underlying the reachability analysis of [30], trains are modelled as
entering input nodes in a single event; they are also modelled as leaving the network in a
single event. Otherwise, they pass through spaces on the routes one wagon at a time. Each
intersection is blocked after the entrance of a train and will accept new trains only upon the
departure of the first train. Suppose that a train enters the network from intersection IA1,
and then continues to the main route. Upon arrival at the next intersection, IA2, it has
three choices: it could go to the upper or lower route to come back to intersection IA1, or
it could continue to reach to the next intersections, IB1 and IB2. Again the train has three
different choices. It could continue to the main route to return to the IA1 intersection, or
it could choose the lower or upper route. By choosing the lower route, it will come back
directly to the IB1 intersection, but by choosing the upper route it will enter the next
intersection, IC1, and again there is a choice to make, upper route or lower route, both
of which will eventually reach the next intersections IC2 and IB1. We will instantiate the
PCDN network using three subprocesses in each parameterized segment, which will allow
us to analyse fully the parameterized network [30].

All of the input nodes including IA1, IB1 and IC1 intersections, have a structure
similar to figure 5.2, with a slight relabelling of event names (replacing ‘a’ in IA1 to ‘b’
or ‘c’, to achieve IB1 and IC1 graphs respectively.) In intersection IA1, the entrance of
the train from outside of the network has been denoted by a local event named ia. The
only difference among these input nodes is that IB1 and IC1 do not have the local events
ib and ic, respectively because trains cannot enter the network from those intersections.
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Figure 5.2: Input node

Their shared events with the previous space are denoted by d′′′5 , d5 and d′′5 in IA1, IB1 and
IC1, respectively. Shared events d′a5, d′′a5 and d′′′5 represent entrance of the train from
top, bottom and previous space of the main route, respectively. This intersection will be
emptied when the first and second wagons of the train leave this intersection by sa1 and
da1 events, respectively. The main route after the first input node has been represented
by a parameterized node RAi.

Figure 5.3: Parameterized node representing the main route

In figure 5.3 the first and second wagon will arrive at the ith space by events sai and
dai and they will leave by events sai+1 and dai+1 respectively. Other routes which have
been modelled by a parameterized node have the same structure to this one and can be
constructed by proper relabelling of the above model.

The intersection IC2 has the same structure with a slight relabelling of the event names.

Figure 5.4a depicts the structure of the output nodes IA2 and IC2. The first and second
wagon will enter this intersection via events sa4 and da4 from the main route. After that
wagons can leave this intersection in three different ways; they could go to the lower route
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(a) IA2 and IC2 (b) IB2

Figure 5.4: Output nodes

using s′′a1 and d′′a1 events or they could continue along the main route using s1 and d1

events or finally they could exit to the upper route using s′a1 and d′a1 events, which is the
only difference between IA2 and IC2, on the oner hand, and IB2 on the other hand, as
depicted in figure 5.4b. Intersection IC2 has the same structure as IA2 because they are
both connected to a parameterized node in their upper route, while IB2 is connected to a
distinguished node in its upper route, and input nodes can accept trains in just one event.

(a) AA1, AA2, AB1, AB2,
AC1, AC2, A1

(b) A2

Figure 5.5: Distinguished nodes

Figure 5.5 depicts the models of the other distinguished nodes in the PCDN network.
All of the distinguished nodes depicted in figure 5.5a are the same except for a slight change
in event names. This space gets filled by entrance of two wagons via s′a4 and d′a4 events
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and become empty by the d′a5 event. The only difference in the A2 node is that it has one
more local event for trains to leave the network, as depicted in 5.5b.

5.2 The Results

Figure 5.6 represents the dependency graph of the traffic network. This dependency graph
contains fourteen different consistent and full subgraphs.

Figure 5.6: Dependency graph

To satisfy the consistency condition, subgraphs must include an input node and also
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must contain just one state of any distinguished node. For example, in figure 5.6, the loop
between nodes 2RPrimeA and 4RPrimeA does not satisfy the first condition of the consistency
condition, so it does not represent a circular wait. The states of the nodes are represented
by state numbers in the dependency graph. For example, in 3IA1 the state of IA1 has
been represented by 3, while in 4R the state of the parameterized node is 4. In figure 5.6,
a consistent subgraph cannot contain both nodes 3IA1 and 2IA1 or nodes 3IC1 and 2IC1 ,
because a subprocess cannot be in two different states at the same time. To satisfy the
fullness condition, for each output node in the subgraph, if it has any shared event with
its neighbours in the PCDN graph in that specific state, there should be an edge to any
state of that neighbour in the subgraph to satisfy the fullness condition.

For the purposes of this example, a dangling loop is a cycle of nodes corresponding to
parameterized processes that shares only a single node with the rest of the subgraph; any
other cycle of such nodes is an embedded loop. Based on the number of ‘embedded’ and
‘dangling loops’ in each subgraph, we can divide fourteen subgraphs of the dependency
graph to five different subgraphs as depicted in figure 5.7.

(a) Subgraph with three embedded loops (b) Subgraph with two embedded loops and one
dangling loop

(c) Subgraph with one embedded and one dan-
gling loop

(d) Subgraph with two dangling loops

(e) Subgraph with two embedded loops

Figure 5.7: Five distinct full, consistent subgraphs of the dependency graph 5.6

All of the subgraphs of figure 5.7 satisfy the consistency conditions by having at least
one input node and at most one state of any distinguished node. For example, the subgraph
in figure 5.7c satisfies the consistency conditions by including an input node 2IA1 and not
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having more than one state of any distinguished node. It also satisfies the fullness condition
by having an edge from the output node 3IA2 to 2RprimeA. As shown in figure 5.7c, the 2RA
and 4RA loop requires an even number of parameterized nodes while the loop containing
the nodes 2RprimeA and 4RprimeA requires an odd number of parameterized nodes to reach
a partial deadlock in the network. In other words, the partial deadlock can occur only if
the number of spaces on the upper return route from IA2 back toward IA1 is odd.

Figure 5.7b represents another full, consistent subgraph of the dependency graph. This
subgraph has just one input node, 3IA1 , and does not have more than one state of any
distinguished node. The output node 4IA2 has shared events with its neighbours RdprimeA
and RprimeA in the PCDN graph when it is in state 4. So in subgraph 5.7b, there are
edges with those neighbours to satisfy the fullness condition. By the same reasoning,
the loops between the nodes 2RprimeA and 4RprimeA and between the nodes 2RdprimeA and
4RdprimeA should be instantiated with an even number of parameterized nodes to reach a
partial deadlock in the network. That is, the number of spaces on both routes from IA2

towards IA1 must be even. On the other hand, the loop between the nodes 2RA and 4RA
requires an odd number of parameterized nodes for instantiation, and it shows the need of
an odd number of spaces in the return path from IA1 to IA2 to reach partial deadlock in
the network.

As depicted in the first four subfigures of 5.7b, the same loop may appear as a dangling
loop in one full, consistent subgraph but an embedded loop in others, depending on the
states of distinguished subprocesses. Hence, the parity of the length of a route that is
required for partial deadlock depends on the states of distinguished subprocesses.

We altered some of the configurations of the automaton models to see how the changes
would affect the results. First, there is no difference in the results when the trains can
enter the network via any of the input nodes rather than just via one input node (IA1).
In the current configuration trains can exit the network from A2, so there is no A2 in the
dependency graph, nor any subgraph. If we let the trains leave the network also via node
AB1, in the dependency graph and subgraphs there would be no state of A2 or AB1, as
expected.

Figure 5.8 shows the dependency graph of this new configuration. This new PCDN
network has sixteen different maximal, full, consistent subgraphs, and we can divide them
into the five distinct categories, shown in figure 5.7.
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Figure 5.8: Dependency graph
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Chapter 6

Concluding Remarks and Future
Work

This thesis describes a tool used to implement a decision procedure for the existence of
reachable generalized circular waits in the class of parameterized networks called Parameter-
ized-Chain DES networks. Such a network consists of a fixed set of distinguished subpro-
cesses linked by parameterized subnetworks of linear topology. By the nature of param-
eterized networks, there may be infinitely many such generalized circular waits. In the
framework of [30, 32], all the generalized circular waits are represented by a finite set of
full, consistent subgraphs of the dependency graph of a network; indeed, each full, con-
sistent subgraph can be interpreted as a regular language, each word of which encodes a
generalized circular wait. This thesis goes beyond the framework of [30, 32] by allowing
networks to include multiple input processes.

In the present thesis, a consistent subgraph of the dependency graph must contain as
one of its nodes a state of an input subprocess. The tool identifies such subgraphs by first
finding all cycles within the dependency graph, and representing such cycles as nodes of
a “supergraph”. Nodes of the supergraph are connected by an edge if the corresponding
cycles intersect. Maximal consistent subgraphs are then computed by starting with cycles
that include states of input processes, and then by repeatedly merging other cycles with
these, as long as the resulting subgraphs do not contain multiple states of any single
distinguished subprocess. The tool then eliminates any maximal consistent subgraphs that
fail to satisfy the fullness property, yielding the set of all maximal full, consistent subgraphs.

Because of the requirement of consistency, our problem is a subproblem of the forbid-
den pairs problem which is NP-complete, and indeed the complexity of the algorithm is
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exponential in the number of distinguished subprocesses. Suppose that we have n distin-
guished subprocesses with m different states for each one of them, in this case the number
of possibilities for the consistency condition is mn; but in reality it is lesser than this and
the dependency graph will determine the exact number of states for each distinguished
subprocess. By the NP-completeness of the forbidden pairs problem it is unlikely that
a subexponential algorithm exists. On the other hand, the complexity of our algorithm
is of course independent of the number of parameterized subprocesses. In this sense the
approach of this thesis avoids the problem of combinatorial explosion.

The full, consistent subgraphs that the algorithm computes represent counterexamples
to deadlock-freedom of the network. As we showed in the thesis, the tool makes it easy
to study the effect of modifications of the network on its set of deadlocks. A potential
topic for research is to automate the search for minimal modifications of the network that
eliminate deadlock.
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