
A Study of Time Representation in a
Class of Short Term Scheduling

Problems

by

Saman Lagzi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2016

© Saman Lagzi 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The problem of scheduling operations has received significant attention from academia
and industrial practitioners in the past few decades. A key decision in various scheduling
operations problems is when to perform an operation and thus the quality of the final
schedule can be seriously affected by the choice of how to model the times at which such
a decision may take place. The two most commonly used approaches for modeling these
times are: Discrete time approaches, which pre-specify a finite set of time points when any
decision may be taken, and continuous time approaches, in which the optimization model
determines, through the use of continuous decision variables, at which point in time the
operation will be performed.

The focus of this thesis will be to study the benefits and limitations of each of these
approaches within the context of an analytical services facility. Such a facility receives a
large number of samples that need to be analyzed/processed through a specific sequence of
limited resources/machines before its analysis is completed. The results of these analyses
form a basis for many of the decisions made in their client industries (e.g. oil and mining),
which in turn indicates the economic importance of the analytical services sector. The
operations of such facilities have several particular conditions that need to be modeled and
a particularly important one is called multitasking. If analyzing each type of samples is
regarded as a task, then the machines in such facilities have the ability to perform multiple
tasks at the same time as they are able to analyze different types of samples together at
the same (as long as their capacity is not overloaded). The above mentioned study will
be performed through an empirical comparison of the discrete and continuous approaches
that take into account all the conditions in such facilities, including multitasking.

While discrete and continuous approaches have often been independently employed,
few studies have considered a comparison between them [37, 28, 39]. In addition, none of
these studies consider the operational conditions that are present in short-term scheduling
of operations in an analytical services facility.

Since the continuous time formulations in the literature are not capable of accounting
for multitasking, this thesis presents a novel continuous time mixed-integer linear program-
ming (MILP) formulation that is capable of accommodating such feature and several other
operational constraints present at analytical services facilities. The performance of the pre-
sented formulation is studied in comparison with a singletasking formulation. The results
show that, while the multitasking formulation is not more costly in terms of solution time,
it is capable of producing significantly better solutions. Furthermore, this thesis extends
the idea of flexible time discretization for discrete time formulations, previously proposed
by Velez and Maravelias [40], to be able to account for the operational constraints of an
analytical services facility.

iii

To proceed with the desired comparison between the state of the art continuous and
discrete time formulations, it is shown, by experimenting on various instances that properly
reflect the operations of the facility, that discrete formulations are typically better than
their continuous counterparts. This is in contrast with previously reported results, which
were performed with different operational conditions and show that such a comparison
must be made within the right context to allow for proper conclusions to be taken.

iv

Acknowledgements

I would like to thank my supervisors Dr. Ricardo Fukasawa and Dr. Luis Ricardez-
Sandoval for their valuable guidance.

v

Dedication

This is dedicated to the one I love.

vi

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Literature Review . 4

1.2 Thesis objectives and contributions . 8

1.3 Problem definition . 9

1.4 Thesis Structure . 11

2 Continuous Time Formulation 12

2.1 Formulation . 13

2.2 Illustrative Instance . 21

2.3 Comparative Study of Multitasking . 24

2.4 Chapter Summary . 29

3 Flexible Discrete Time Formulation 30

3.1 Formulation . 30

3.2 Illustrative Instance . 34

3.3 Chapter Summary . 36

vii

4 Comparison of the Formulations 37

4.1 Computational Results . 39

4.2 Results: Comparison and Discussion . 43

4.3 Chapter Summary . 50

5 Conclusion and Recommendations 51

5.1 Conclusions . 51

5.2 Recommendations . 52

References 55

viii

List of Tables

2.1 Processing Units Information . 21

2.2 Tasks Information . 22

2.3 Instances Information . 26

2.4 Computational Results . 27

2.5 P3-2: Processing Units Information . 28

2.6 P3-2: Tasks Information . 28

4.1 Instances Information . 38

4.2 Computational Results for Non-Uniform Discrete Time Formulation 40

4.3 Computational Results for Discrete Time Formulation 41

4.4 Continuous Time Formulation: Computational Results 43

4.5 LP Relaxation Results . 49

ix

List of Figures

2.1 Illustrative Example, Objective Value =1915.88, N=7 23

2.2 Instance P3-2 with singletasking, Objective Value =1900, N=5 28

2.3 Instance P3-2 with multitasking, Objective Value =2100, N=5 29

3.1 Illustrative Instance with first approach, Objective Value =1889 35

3.2 Illustrative Instance with first approach, Objective Value =1890.31 36

4.1 Objective Function Value Comparison . 45

4.2 Number of binary Variables Comparison 46

4.3 Optimality Gap Comparison . 48

x

Chapter 1

Introduction

Industries that need to perform a set of operations using a set of limited resources, within
a time frame, need suitable scheduling of these operations to increase efficiency, decrease
costs and eventually maximize profit. In general, the problem of scheduling operations
may be defined as deciding for each operation, to be performed at what time and at
which resource. These decisions will be made in such a way to satisfy the operational and
demand constraints of the facility, while bearing in mind the objectives of the facility, e.g.,
maximizing profit, increasing efficiency or minimizing cost.

As with every optimization problem, there are two sides to the problem of scheduling
operations. On the one hand, an optimization model that properly reflects the conditions
of the facility, including its objectives and operational constraints, is required and on the
other hand, it is required to find the optimal solution to the optimization model. The
modeling aspect is of particular importance since it determines the accuracy of the final
solution, meaning that a model that more accurately reflects the reality of the conditions of
the facility will lead to more useful solutions in practice. However, as with most problems
in operations research, there is a trade-off between accuracy and tractability of the model;
typically, more accurate models become harder to solve.

This thesis will focus on deterministic Mixed Integer Linear Programming (MILP)
models, where all the information about the operations of the facility are known a priori
and there is no uncertainty in the operations of the facility. For further readings on MILP
and its solution methods please refer to [7]

Since scheduling inherently involves making decisions about when an event happens,
e.g., the arrival of an operation or turning a machine on or off, some sort of time represen-
tation is needed. To this regards, there are two main types of models. If an event is allowed

1

to happen at any point in time and the model can decide at which point it will happen,
then the model is called a continuous time model. However, if a finite set of choices is
given to the model and events can happen only at those given choices, then the model is
referred to as a discrete time model. An example will help better explaining the difference
between these two approaches. Assume there is an 8 hours scheduling horizon; operation
A, which will take 2 hours, needs to be performed on machine M. If the scheduling model
needs a set of choices for the time that operation A will start being performed on machine
M, e.g., 4 choices: hour 0, 2, 4 and 6, then, the model is a discrete time model. If the
scheduling model does not require a set of choices to be given to it and can decide to per-
form operation A at machine M, at whatever time it considered suitable, then the model
is continuous time model.

Based on the above, it is obvious that the choice of time representation affects both
the accuracy and the computational cost of solving a scheduling model. Therefore, prior
to modeling a scheduling of operations problem, it is essential to wisely decide upon the
approach to represent time. It is a very reasonable question to ask which of the two types
of time representation approaches is better. It would be extremely hard to categorically
answer this question and decide one of the two approaches must always be chosen instead
of the other. It seems to be much more fitting to answer this question in the context of
case studies and analyze what are the properties of the scheduling problems that make
each of these two approaches a better fit for the problem. Furthermore, such case studies
could highlight the pros and cons of these approaches and could shed more light on the
path of improving the current scheduling of operations. This thesis aims at comparing the
performance of discrete time and continuous time MILP models for scheduling operations
in the context of a proper case study.

The case study that is of interest to this thesis is the case of short-term scheduling
of operations in an analytical services facility. The analytical services industry forms
a major sector in which various types of analysis are carried out on a set of samples
in order to determine its properties and chemical composition, which can be used by
end-customers in the decision-making process, .e.g., Mining, Health, Petroleum and Food
industries. Such facilities receive samples in the order of thousands to be processed on a
daily basis. Therefore, devising an efficient scheduling algorithm for such facilities is both
challenging and economically attractive. Furthermore, scheduling of operations for such
facilities has not been widely studied. To the best of the author’s knowledge, Patil et al
[34], is the only work reported that has presented an optimal scheduling framework for this
type of facilities.

The main characteristics of such facilities are as follows:

An analytical services facility receives a set of tasks, where each task is composed of

2

a specific number of samples. Each sample in a task needs to visit a specific sequence
of processing units, called a path. Paths are associated to tasks, meaning that different
tasks may have different paths, but all the samples in a task must go through the same
path. Each processing unit consists of a set of machines that are identical in terms of
capacity and processing time. A sample in a task needs to be processed only at one of the
machines in each processing unit before it can proceed to the next processing unit in the
path of its task. Machines are assumed to run continuously, i.e., without disruptions, and
accordingly, samples processed in the machines cannot be removed from the machines while
in operation.1 This scheduling problem can be represented as a network of interconnected
processing units, where each machine has the ability to multitask, i.e., they can process
samples from multiple tasks simultaneously, provided the samples in the tasks are available
and the machine has enough capacity to process them. Therefore, flow conservation of
samples in each task through the network is necessary, meaning that it is essential, at each
time point, to keep track of the number of samples in each task that are available to be
processed at each processing unit in the task sequence. Furthermore, it is necessary to
make sure that the same number of samples in a task that starts being processed in a
machine, leaves the machine, after completing its processing.

An additional operational constraint is that some machines or samples may only become
available sometime in the near future. This is because, in some cases, processing some
samples at a machine may not be completed within the scheduling horizon and therefore,
their processing must be completed in a later scheduling horizon.

The goal of this thesis is to perform a comprehensive comparison between the per-
formance of discrete and continuous time MILP models for the scheduling of operations
problem discussed above. Analytical services facilities can be categorized in a larger type
of facilities, called multipurpose facilities, where a set of tasks need to be processed within
a pre-determined scheduling horizon using a set of shared resources. Hence, in the next
section, the literature on short-term scheduling of operations in multipurpose facilities will
be thoroughly studied to find the discrete or continuous time MILP formulations in the
literature that could be readily applied to model the scheduling of operations problem
that is of interest to this work. Furthermore, such discrete and continuous time formula-
tions are found, it is interesting to see if there has ever been a proper comparison of their
performances in any context.

1This is sometimes referred to as a non-preemptive schedule.

3

1.1 Literature Review

In this section, we will explore the literature on MILP formulations of the problem of
short-term scheduling of operations in multipurpose plants. The first attempts to model
the operations of a multipurpose plant were done by Bowman [4] and Manne [24], in the
context of the job shop problem. These studies were restricted to the situation where
each task could be performed on a single machine, and therefore the main problem was
to schedule a set of tasks on the machine that could perform them. The machines were
prohibited from performing multiple tasks at the same time and performing a new task
could only start if the machine was not performing any other tasks. As for the time
representation, both studies had used a discrete time approach. They had pre-specified a
finite set of time points at which the event of starting a task at a machine could happen.
In their approach, the time elapsed between two consecutive time points was always the
same, meaning that the time points were uniformly distributed along the axis of time.
Furthermore, the locations of the time points were shared by all the machines.

This situation could be described as having a universal clock where the locations of the
time points were marked, with an even distance between each two consecutive time points,
on the clock. The main advantage of such a uniform time representation was its simplicity.
Since the locations of the time points were known in advance, evenly distributed along the
axis of time, and shared by all the machines, it was very simple to model various situations
using this approach. More recent discrete time formulations [17, 36, 33, 35, 43, 9, 34]
had used the same time representation approach to model various operational conditions
and objectives in different multipurpose plants. One issue to notice is that a very fine
discretization (for example every minute) allows for much more flexibility in the solutions
and thus possibly leads to improved solutions. However, such a fine discretization also leads
to an increased number of decision variables, thus resulting in larger (and more intensive)
optimization problems to solve. Thus, there exists a trade-off between computational time
and solution quality.

Most of the later attempts to reduce the difficulty in solving the large MILP problems
resulting from the discrete-time models, were concentrated on developing better solution
algorithms for these formulations, rather than trying to alleviate the modeling issues that
resulted in such large MILP problems in the first place. Yee and Shah [42] attempted
reformulating the discrete time formulations to reduce the gap between the LP relaxation
and the optimal solution. They also added several cuts to reduce the integer infeasibility
region. Dedopoulos and Shah [8] proposed intervening in the branch and bound procedure
by fixing variables to values implied to the values of other variables fixed during the branch
and bound procedure, which also reduced the dimensionality of the problem. Basset et al.

4

[2] proposed some decomposition techniques based on the time points, to decompose the
large MILP problems into several smaller problems.

A common drawback in the previously cited discrete time formulations is that the
discretization is the same for all the machines, meaning that, for example, the third time
point happens at the same time for all the machines. To address this issue, Velez and
Maravelias [40] proposed a flexible discrete time formulation, that is capable of assigning
different discretizations to different machines. That is, a time point can happen at different
times for different machines, effectively allowing many decisions to be made for some of
the machines without defining unnecessary events for the rest of the machines. Such an
approach has the advantage of obtaining a better balance between solution quality and
computational time, since finer discretizations are only used when needed. However, the
MILP formulation presented by Velez and Maravelias [40] could not be readily applied to
the case study we are interested in since it had not considered the case where the machines
were able to perform multiple tasks at the same time.

Continuous time models were developed much later than discrete time formulations.
The main motivation behind developing these methods was the degree of inaccuracy entan-
gled with the nature of discrete time formulations. Discrete time formulations predetermine
the location of the time points, and therefore, they need a very fine discretization, e.g.,
one time point every minute, to have a very accurate and high quality optimal solution,
which in return results in such very large problems that solving them are challenging in
practice. But, if the locations of the time points could be left to the optimization model
to decide, then, it is possible to reach high quality solutions without the need to introduce
a time point every minute.

To address this issue, continuous time formulations have been proposed to address
several scheduling problems. Furthermore, this type of continuous time formulations are
capable of modeling some operational features, e.g., variable machine processing times or
non identical machines in a processing unit, that are challenging for discrete time formula-
tions, with relative ease. However, this type of formulations have not been used to address
multipurpose plants with multitasking machines. The existing continuous time formula-
tions for multipurpose plants have only considered the case where each machine is capable
of processing one task at a time and therefore, they cannot be readily used for the present
problem. As was mentioned before, an analytical services facility could be represented
as a network of inter-connected processing units and according to Floudas and Lin [10],
the continuous time formulations for network represented multipurpose facilities can be
classified into two sub-classes, namely Unit-specific event based formulations and Global
event based formulations.

Unit-specific event based formulations [14, 5, 23, 31] partition the planning horizon

5

into a sequence of time points. The location of each time point along the time axis is
not specified a priori. Each time point specifies the beginning of a task or utilization
of a unit (alternatively a machine). The time points are defined on a unit basis which
allows tasks assigned to the same time point at different units to occur at different times,
meaning that, for example, the second time point of machine M could happen at hour
2 while the second time point of machine W could happen at hour 3 of the scheduling
horizon. Although Unit-specific event based formulations have a relatively flexible nature,
according to Sundaramoorthy and Karimi [38], flow conservation of samples cannot be
easily addressed using these approaches. This is because the same event points can occur
at different times on two consecutive units, making it challenging to keep track, at what
time, materials processed in the previous processing unit would be available for the next
processing unit.

Global event based formulations [44, 16, 21, 5, 29, 41, 11, 38, 22] partition the planning
horizon into several blocks of time for a predetermined number of blocks. However, each
block has a length that will be determined by the optimization model itself, and blocks are
common among all tasks and units. A task could start being processed at a machine only
at the beginning of a time block, which means the beginning of a time block marks a time
point that decisions can be taken. Although flow conservation of materials is relatively
easier to achieve in these approaches, the extension of these approaches to the case of
multitasking is not trivial. One key challenge is that tasks that start being processed in
a machine simultaneously, need to be released simultaneously, which becomes particularly
challenging since the length of the blocks of time is not known a priori.

A special type of multipurpose plants are called sequential processes plants. For the
purpose of completeness, and since some of the continuous time formulations for this type
of plants are widely used, we provide a short review of the literature on the continuous time
formulations for short-term scheduling of operations in such facilities. In these plants, the
tasks are not allowed to be split along the production line, meaning that the tasks need to
be treated as a single block. Because of this specific assumption, continuous time models for
such facilities, [6, 26, 27, 30, 13, 12, 32, 20] were able to assign tasks to machines without the
use of time points. This is because they could use a prioritizing binary variable indicating
which task will be performed before another task on each machine. In the context of
an analytical services facility, not being able to split a task means that the samples in
a task need to go through every machine together, no matter how many of them are in
the task, as if they are one block. Considering the fact that some of the tasks arriving at
an analytical services facility might have a very large number of samples in them, more
than the capacity of the machines in some of the processing units, using these formulations
means that the larger tasks must be broken into smaller tasks that could fit the machines

6

in all the processing units along their paths, prior to performing any optimization, which is
suboptimal and very time consuming. Furthermore, these formulations have not considered
the case where the machines can perform multiple tasks together.

Although there is a thick body of literature on each side of the debate of discrete versus
continuous time formulations, there are actually very few studies that have compared
the performance of a continuous time formulation versus a discrete time formulation. To
the best of the author’s knowledge, there are only 3 such studies [37, 39, 28], which are
discussed next. Stefansson et al. [37] performed a comparison between the performance
of continuous and discrete time formulations in the context of scheduling the operations
of a pharmaceutical production facility. The continuous time formulation used in their
study was based on the widely used formulation of Méndez et al. [27] which does not
allow for splitting the tasks. Furthermore, their discrete time formulation, based on the
work by Shah et al [36], was not capable of accommodating flexible time discretization.
They had reported that the continuous time formulation had outperformed the discrete
time formulation. The work of Sundaramoorthy and Maravelias [39] performed a thorough
comparison between continuous and discrete time formulations in the literature. Their
continuous time formulation was based on the formulation by Sundaramoorthy and Karimi
[38], which does not consider the multitasking feature in the machines of the facility. The
discrete time formulation that Sundaramoorthy and Maravelias [39] used was also based
on the work by Shah et al [36] which does not allow for flexible time discretization. Their
results showed that discrete time formulations could not be ruled as inferior to continuous
time formulations, specifically when the size of the problems grow. Finally, the work of
Merchan et al [28] performed a comparison between the performance of flexible discrete
time formulations and a continuous time formulation. The continuous time formulation
used in their study was based on the work by Méndez et al [27] which does not allow for
tasks to be split along the production line.

In summary, none of the existing comparison studies in the literature consider com-
paring the performance of the newly developed flexible discrete time formulations versus
continuous time formulations that allow for splitting tasks along the production line, si-
multaneously. Furthermore, none of the formulations used in these comparisons have
considered the multitasking feature of the machines in the facility.

In the next section, we will discuss the existing gaps in the literature of continuous
and discrete MILP formulations for short-term scheduling of operations in multipurpose
plants, and how these gaps manifest themselves in the context of the considered case study,
scheduling operations in an analytical services facility. Furthermore, the next subsection
will highlight the goal of the current thesis and its contributions to filling the gaps in the
literature through fulfilling its goal.

7

1.2 Thesis objectives and contributions

One of the main gaps in the literature of MILP formulations for scheduling operations in
multipurpose plants is the fact that currently there is no continuous time formulation that
can account for multitasking feature of the machines in an analytical services facility. That
is, none of the existing formulations in the literature can be readily applied to model the
operation of an analytical services facility without a major compromise, which consists of
forcing the machines in the facility to process samples from only one task at any time.
One of the goals of this thesis is to develop a continuous time formulation to accurately
model the operations of the analytical services facilities, including the multitasking feature
of the machines. To achieve this goal, Global event based continuous time formulations
for multipurpose plants are extended by adding features that allow multitasking in the
facility and thus enable them to produce better schedules in terms of resource utilization.
We chose to extend Global event based formulations over other existing formulations in
the literature, primarily because in these formulations events are shared between all the
processing units, which makes flow conservation of samples through the network of the
processing units much easier. In addition, the proposed formulation is able to model the
extra operational condition that processing some samples at some machines may not be
completed within the current scheduling horizon and thus they need to be considered in
the next schedule. The proposed formulation can be readily used to model the problem of
scheduling operations in analytical services facilities.

The next goal of this thesis is to extend the discrete time formulation presented by Patil
et al [34] for modeling the operations of an analytical services facility, to be able to account
for flexible time discretization, using the idea of flexible time discretization previously
proposed by Velez and Maravelias [40]. This is very important since the idea of flexible
time discretization is new and it needs to be applied to various situations before judging
its merits and understanding its pros and cons. Furthermore, the problem of scheduling
operations in analytical services facilities is substantially understudied and proper flexible
discrete time formulations will enrich the literature on this problem.

Furthermore, the major goal of this thesis is to perform a thorough computational
study of the choice of time representation in the context of optimal scheduling of the
operations of an analytical services facility. The desired study will be conducted through a
comprehensive comparison between the results obtained through both the flexible discrete
and continuous time formulations that have been developed in this thesis. Such a study
will fill the existing gap in the literature for comparisons between flexible discrete time
formulations and those formulations that are able to split the samples in tasks along the
production line and can account for multitasking feature of the machines in the facility.

8

Thus, the main contributions of this thesis are as follows:

• Developing a multitasking continuous time formulation that can handle the multi-
tasking feature of the machines in an analytical services facility. It was shown through
an extensive computational study that the multitasking continuous time formulation
outperforms its singletasking counterpart, both in term of quality of the objective
function and computational complexity, and therefore, substantiating the need to
account the multitasking feature of machines in the facility.

• Extending the discrete time formulation by Patil et al [34] to be able to account for
flexible time discretization.

• Performing a thorough comparison between the performance of the developed flexible
discrete and continuous time formulations, to shed more light on the specific advan-
tages and disadvantages of each of the two main time representation approaches in
the literature of short-term scheduling of operations.

In the next section, the problem of scheduling of operations in an analytical services facility
is described.

1.3 Problem definition

The problem that will be studied in this work can be described as follows: An analytical
services facility receives a set of tasks, I, and needs to process them within a scheduling
horizon, H, using a set of processing units, P . Each processing unit, p ∈ P , consists of
a set of identical machines, Jp, that perform a specific process. The set of all machines
in the facility is denoted by J , where J is the disjoint union of Jp’s. Task i ∈ I, consists
of ai number of samples that need to visit a specific sequence of processing units, called
a path. The path of task i, denoted by Si, is a sequence of n(i) distinct processing units
(pi1, . . . , p

i
n(i)), where pik ∈ P for all i ∈ I, k = 1, . . . , n(i). The samples in task i must visit

every processing unit in a pre-specified sequence defined by Si, that is, pik in Si can only be
visited if pik−1 has already been visited. A sample is considered to have visited processing
unit p if it has been processed by one of the machines in Jp.

Machines in a processing unit p have a specific capacity, denoted as βp, and an associated
processing time, denoted as τ(p). This means that machine j ∈ Jp can be loaded with
at most βp number of samples from potentially different tasks. Once a machine has been
turned on to process the samples, it will run without interruption for a time τ(p). After this

9

time, the machine is considered to be available; also, the samples are considered to have
visited the corresponding processing unit and they are ready to visit the next processing
unit in their path. Since machines are assumed to be identical, the processing time of the
machines in a processing unit can be referred to as the processing time of the processing
unit. Furthermore, there is no minimum working capacity for any machine, that is, the
machines can be turned on with any number between 0 and βp samples.

Samples in task i ∈ I will be available to start visiting the first processing unit in their
path, pi1, at time TAi; machine j ∈ J will become available to start processing samples at
the facility at time TMj. It is possible for TAi to happen after the beginning of the current
scheduling horizon, if the samples in task i were backlogged from the previous scheduling
horizon, meaning that they were part of another task in the previous scheduling horizon
and did not visit all the processing units in their path. In such cases, Si is the sequence
of the remaining processing units that have not been visited. If machine j is processing
samples when the current scheduling horizon begins, TMj will represent the time that j
will finish such processing. Otherwise, TMj coincides with the beginning of the current
scheduling horizon H.

It is assumed that the information described above is available and known a priori.
There are three objectives for the schedule to meet. The first objective is to maximize
the total number of samples that need to complete their processing in the facility. The
second objective is to maximize the task throughput of the machines in the facility. The
throughput of task i for machine j, is the total number of samples from task i processed at
machines j ∈ Jp for every p ∈ Si, throughout the scheduling horizon. The third objective
is to minimize the turnaround time of the operations in the facility, i.e., minimizing the
latest time that the samples from a task leave the facility. Therefore, the objective function
considered in this work is a weighted summation of these three different objectives. The
total number of finished samples from task i is added to the objective function with weight
fi. The throughput of task i for machine j is added to the objective function with weight cij
and we assume cij = cij′ if j, j′ ∈ Jp for some p ∈ P . Also, to simplify notation, we assume
cij = 0 if j /∈

⋃
p∈Si

Jp so that cij is defined for any i ∈ I, j ∈ J . Minimizing turnaround
time is achieved by minimizing the latest time that a machine from the k-th processing
unit in the path of task i finishes processing a sample from it. Thus, the objective function
includes a weight dik that has a negative value and represents the latest time that samples
from task i are processed at a machine in processing unit pik,∀ k = 1, . . . , n(i). Note that
in fact to minimize turnaround time, the model should only have such penalty for k = n(i).
However, the penalty terms were included for all k = 1, . . . , n(i) so that the optimization
model gives preference to finishing a particular task as early as possible.

10

1.4 Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2 presents the multitasking continuous time formulation that can be readily
applied to model the operations of an analytical services facility. Later in the chapter, an
illustrative instance is presented with the Gantt chart of the schedule obtained through
the proposed model. Furthermore, an extensive comparative study between the continuous
time formulation and its singletasking counterpart, the widely used continuous time for-
mulation previously proposed by [38], will be carried out through solving several instances.

Chapter 3 will present the flexible discrete time formulation as well as an illustrative
instance that will be solved through the flexible discrete time formulation along with its
scheduling Gantt chart.

Chapter 4 will present a comprehensive comparison between the results obtained through
both the continuous time formulation and the flexible discrete time formulation. The qual-
ity of the objective function and the computational complexity of the models will be ex-
plored through solving several instances ranging from small to relatively large instances.
Also, the merits of flexible time discretization, as opposed to the old fashioned uniform
time discretization approach, will be explored. Later in the chapter, some insight will be
given upon the possible reasons behind the behaviors of each of the formulations.

Chapter 5 will present the conclusions that can be taken from the research presented
in this thesis along with some further insight on the possible tracks that can be taken for
future research.

11

Chapter 2

Continuous Time Formulation

In this chapter, a continuous time formulation for the problem that ws defined in the
previous chapter, is presented. Our proposed formulation extends Global event based
continuous time formulations to be able to account for the multitasking feature of the
machines in the facility. There are a few reasons behind why these types of formulations
were chosen over the other formulations in the literature.

Recall that there are two other types of formulations in the literature, which were
explained in the previous chapter: Sequential processes formulations and Unit-specific
event based formulations. The former is only applicable to those facilities where the samples
in a task move as one single block throughout the facility, and is not applicable to analytical
services facilities where splitting the samples in a task along the facility might happen very
often. The Unit-specific event based formulations are built upon the idea that the same
event point can happen at different times from two different machines. That means that,
for example, event 2 for machine 1 can happen at hour 1 and it can happen at hour 2 for
machine 2. This becomes a substantial challenge if we have a task whose samples need to
visit machine 1 and after finishing their processing there, they must visit machine 2. In
such a case, it would be very hard to coordinate the samples that leave machine 1 with
the samples that visit machine 2. Even with these potential drawbacks, attempts were
made in this work to extend Unit-specific event based formulations to the case of interest.
However, the resulting formulation had an extremely large number of binary variables,
making it quickly impractical, so it was chosen not to present such effort here.

Next, the continuous-time formulation developed from the global event point formula-
tions is presented. Later in this chapter, we present a thorough computational comparison
between the presented formulation and one of the most widely used continuous time for-
mulations in the literature.

12

2.1 Formulation

To derive a continuous-time formulation, the time domain has been partitioned into a
pre-determined number of time points, where the location of each time point along the
time axis will be obtained from the optimization model. The time points are universal and
shared by all the tasks and machines, meaning that a time point occurs at the same time
for all machines and tasks. In the present formulation, the locations of two particular time
points have been fixed a priori, i.e., the first time point, denoted as 0, has its location fixed
at the beginning of the scheduling horizon, while the last time point, denoted by N , has its
location fixed at the end of the scheduling horizon, H. The time between two consecutive
time points is denoted as a time slot.
Accordingly, let Tn ∈ [0, H] ∀ n = 0, . . . , N , be the decision variable representing the
location of time point n and SLn ∈ [0, H] be the decision variable representing the length
of time slot n, where time slot n is the time between Tn and Tn−1, for all n ∈ 1, . . . , N .
Constraints (2.1)-(2.3) model the relationship between Tn and SLn consistent with the
above description, and ensure that the time points happen in order (time point i − 1
happens no latter than time point i, since SLn are nonnegative).

N∑
n=1

SLn = H, (2.1)

Tn − Tn−1 = SLn; ∀ n = 1, . . . , N, (2.2)

T0 = 0. (2.3)

A time point specifies an alternative to start or finish processing samples from a set of
tasks at a machine. At each time point, multiple machines from different processing units
could either start or finish processing samples. That is, if a sample in task i is scheduled
to start being processed at machine j at time point n, the machine is available to be used
and the task has been accepted at the facility before time point n. To account for these
conditions, the following binary variable is introduced:

Yijn =

1, If a sample from task i is assigned to machine j to start

being processed at time point n; ∀ j ∈ J, i ∈ I, n =
0, . . . , N.

0, Otherwise.

Accordingly, Constraint (2.4) is introduced to ensure that a sample in a task will be

13

assigned to a machine for processing, only after the task is accepted at the facility, while
Constraint (2.5) ensures that a sample from task i will be processed at machine j only
after the machine has become available to be used in the facility. For every p ∈ P and
j ∈ Jp, we denote by Ij, the subset of the tasks i ∈ I where p ∈ Si.

Tn ≥ TAiYijn; ∀ j ∈ J, i ∈ Ij, n = 0, . . . , N. (2.4)

Tn ≥ TMjYijn; ∀ j ∈ J, i ∈ Ij, n = 0, . . . , N. (2.5)

The number of time points is an input to the model that requires tuning. N might have been
chosen too small, meaning that, increasing N will result in better solutions. Furthermore,
if the choice of N is excessively large, it will result in one or more time points being
unused, which means some machines may idle. To deal with this condition, similar to the
approach proposed by [38], an idle task is introduced. The idle task is a task that does
not have a specific processing sequence, i.e., it does not have a specific path. If a machine
is not processing samples from a real task, then it is processing samples from the idle
task. Furthermore, the idle task does not have a processing time, i.e., a machine can finish
processing samples in the idle task at any time and begin processing samples from a set
of real tasks. In addition, a machine can potentially stay idle throughout the scheduling
horizon. Moreover, the samples in the idle task are ready to be processed at any time
during the scheduling horizon, at every machine in all the processing units. That is, a
machine will become idle at any time during the scheduling horizon if it is not processing
samples from other tasks. Furthermore, samples from the idle task cannot be processed in a
machine together with samples from the real tasks at any time. In the present formulation,
the idle task is denoted as task number 0, whereas I = 1, ..., |I|, is the set of the real tasks.
Accordingly, the following notation is introduced in relation to the concept of an idle task:

Y0jn =

1, If machine j starts processing samples from the idle task

at time point n, ∀ j ∈ J, n = 0, . . . , N.

0, Otherwise.

Since a time point specifies an alternative to start processing samples at a machine, it is
necessary to ensure that the time points are being used consistently with the starting of
the machines. For that purpose, the following binary variable is introduced:

14

Zjn =

1, If machine j starts processing samples from a set of tasks

at time point n. ∀ j ∈ J, n = 0, . . . , N.

0, Otherwise.

Constraint (2.6) ensures that, if samples from a set of tasks will start being processed in
machine j at time point n, then machine j will be turned on at that time point. Constraint
(2.7) ensures that machine j will not start processing at time point n if no samples are
scheduled to start being processed in machine j at that time point.

Zjn ≥ Yijn; ∀ j ∈ J, i ∈ Ij ∪ {0}, n = 0, . . . , N. (2.6)

Zjn ≤
∑

i∈Ij∪{0}

Yijn; ∀ j ∈ J, n = 0, . . . , N. (2.7)

After a machine starts processing samples from a set of tasks, the processing might
continue for several consecutive time slots before it is completed at a later time point.
Therefore, at each time point, it is necessary to keep track of the samples that continue to
be processed at each machine, as well as the samples that complete their processing. To
deal with these conditions the following notation is introduced:

Y Eijn =

1, If a sample from task i completed its processing at machine

j at time point n; ∀ j ∈ J, i ∈ I ∪ {0}, n = 0, . . . , N.

0, Otherwise.

Y Rijn =

1, If a sample from task i continues being processed at ma-

chine j at time point n; ∀ j ∈ J, i ∈ I∪{0}, n = 0, . . . , N.

0, Otherwise.

Constraint (2.8) assures that, if a sample in task i started or continued to be processed
at machine j at time point n − 1, then, at the next time point the samples will either

15

complete their processing or continue being processed in machine j.

Y Rijn = Y Rij(n−1) + Yij(n−1) − Y Eijn; ∀ j ∈ J, i ∈ Ij ∪ {0}, n = 1, . . . , N. (2.8)

Constraint (2.9) considers that, if a sample in task i completes its processing at machine
j at time point n, then machine j will immediately start processing a new set of samples,
either from the same tasks or from a new set of tasks (including the idle task).

Zjn ≥ Y Eijn; ∀ j ∈ J, i ∈ Ij ∪ {0}, n = 0 . . . , N. (2.9)

Constraints (2.10)-(2.11) ensure that machine j starts processing a new set of samples from
a set of tasks at time point n, if and only if it is not continuing processing samples from
any set of tasks at that time point.

Zjn ≤ 1− Y Rijn; ∀ j ∈ J, i ∈ Ij ∪ {0}, n = 0, . . . , N. (2.10)

(1−
∑

i∈Ij∪{0}

Y Rijn) ≤ Zjn; ∀ j ∈ J, n = 0, . . . , N. (2.11)

The samples cannot be inserted or removed from a machine while the machine is running.
Therefore, it is required to ensure that samples from a set of tasks may continue to be
processed at machine j at time point n if and only if the machine is not scheduled to
complete processing any samples at that time point. This is achieved through Constraint
(2.9) along with Constraint (2.10). Also, since a machine cannot both continue processing
a set of samples and start processing a new set of samples at the same time point, Con-
straint (2.6) and Constraint (2.10) ensure that if samples from a set of tasks are scheduled
to continue being processed at machine j at time point n, then machine j cannot start
processing a new set of samples at that time point.

Constraint (2.12) ensures that a machine cannot process samples from a real task while
the machine is processing the idle task.

Yijn ≤ 1− Y0jn; ∀ j ∈ J, i ∈ Ij, n = 0, . . . , N. (2.12)

Capacity constraints are required to determine how many samples from each task will
be processed in each machine at each time point. Accordingly, the following notation is
introduced:
Bijn: A nonnegative integer variable, representing the number of samples from task i that
begin processing at machine j at time point n; ∀ j ∈ J, i ∈ Ij ∪ {0}, n = 0, . . . , N.
BEijn: A nonnegative integer variable, representing the number of samples from task i that
complete their processing at machine j at time point n; ∀ j ∈ J, i ∈ Ij∪{0}, n = 0, . . . , N.

16

BRijn: A nonnegative integer variable, representing the number of samples from task i that
continue their processing at machine j at time point n; ∀ j ∈ J, i ∈ Ij∪{0}, n = 0, . . . , N.

Constraint (2.13) considers that, if machine j is not assigned to process samples from
task i at time point n, then the set of samples in task i assigned to machine j to start
being processed at that time point, is empty. Constraint (2.14) is placed to ensure that
the total number of all the samples from different tasks, scheduled to start being processed
at machine j at time point n, does not exceed the capacity of the machine.

Bijn ≤ βpYijn; ∀ p ∈ P, j ∈ Jp, i ∈ Ij ∪ {0}, n = 0, . . . , N. (2.13)∑
i∈Ij∪{0}

Bijn ≤ βpZjn; ∀ p ∈ P, j ∈ Jp, n = 0, . . . , N. (2.14)

To extend the capacity constraints to the situation where processing samples from task
i is set to be continued or completed at machine j at time point n, Constraints (2.15)-(2.18)
are introduced.

BRijn ≤ βpY Rijn; ∀ p ∈ P, j ∈ Jp, i ∈ Ij ∪ {0}, n = 0, . . . , N. (2.15)∑
i∈Ij∪{0}

BRijn ≤ βp(1− Zjn); ∀ p ∈ P, j ∈ Jp, n = 0, . . . , N. (2.16)

BEijn ≤ βpY Eijn; ∀ p ∈ P, j ∈ Jp, i ∈ Ij ∪ {0}, n = 0, . . . , N. (2.17)∑
i∈Ij∪{0}

BEijn ≤ βpZjn; ∀ p ∈ P, j ∈ Jp, n = 0, . . . , N. (2.18)

Constraint (2.19) is considered to ensure that the total number of samples in task i
that is processed in the facility, throughout the scheduling horizon, does not exceed the
total number of samples in task i, i.e., ai.∑

1≤n≤N

∑
j∈Jp: p=pi1

Bijn ≤ ai; ∀ i ∈ I. (2.19)

Most facilities require conservation of materials for feasible operation of the plant.
Therefore, Constraint (2.20) is considered to ensure that the amount of samples from task
i that start being processed or continue to be processed at machine j at time point n, is

17

equal to the amount of samples from task i that complete or continue their processing at
machine j at the next time point.

BRijn +BEijn = BRij(n−1) +Bij(n−1); ∀ j ∈ J, i ∈ Ij, n = 1, . . . , N. (2.20)

The next constraint is introduced to ensure that a sample from task i can visit pro-
cessing unit pik in Si at time point n, only if it has already visited the previous processing
unit, pik−1, in Si. Note that a sample from task i is considered to have visited processing
unit pik in Si, if it has been processed by one of the machines in Jpik . To account for this
condition, the following notation is introduced:

Wikn: is a nonnegative integer variable representing the number of samples from task
i that have visited pik−1 and are waiting to visit processing unit pik at time point n; ∀ i ∈
I, k = 2, . . . , n(i), n = 0, . . . , N .

Constraint (2.21) ensures that a sample from task i can visit processing unit pik in Si
at time point n, if it has already visited processing unit pik−1 in Si before time point n.∑
j∈Jp: p=pik

Bijn +Wikn = Wik(n−1) +
∑

j∈Jp: p=pik−1

BEijn; ∀ i ∈ I, k = 2, . . . , n(i), n = 1, . . . , N.

(2.21)

Constraints (2.20) and (2.21) are referred to as flow conservation constraints, since they
can be interpreted as corresponding samples to a flow that, at any time point, either are
waiting to be put in a machine, are set to be put in a machine or remain in a machine, i.e.
no samples are lost or created.

The next step in the formulation is to ensure that, if a number of samples start to be
processed at a machine, it takes an amount of time equal to the processing time of the
machine, before the samples complete their processing at that machine. For this purpose
we define the following auxiliary decision variables.
TRijn: is a nonnegative continuous variable, representing the amount of time remaining
to complete processing samples from task i that continue to be processed at machine j at
time point n; ∀ j ∈ J, i ∈ Ij ∪ {0}, n = 0, . . . , N.

Constraint (2.22) ensures that the amount of time remaining to complete processing
samples from task i at machine j at time point n can have a positive value, if and only
if machine j is set to continue processing the samples at time point n. If the machine is
set to start processing a new set of samples or finish processing a set of samples, i.e., Yijn
or Y Eijn variables take a non-zero value, then this remaining time would take a value of

18

zero. To better understand this, assume that either of Yijn or Y Eijn have taken a value of
1. Then due to constraints (2.6) and (2.9), the variable Zjn would take a value of 1 which
in return, due to constraint (2.10), variables Y Rijn will take value of zero. Then, due to
constraint (2.22), TRijn will take a value of zero.

Constraint (2.23) is considered to relate the remaining time to complete processing
samples from task i at machine j at time point n, to the processing time of machine j and
the amount of time spent on processing these samples at machine j prior to time point n.

TRijn ≤ τ(p)Y Rijn; ∀ p ∈ P, j ∈ Jp, i ∈ Ij ∪ {0}, n = 0, . . . , N. (2.22)

TRij(n+1) ≥ TRijn + τ(p)Yijn − SLn+1; ∀ p ∈ P, j ∈ J, i ∈ Ij, n = 0, . . . , N. (2.23)

Constraint (2.23) is not considered for the idle task, since a machine can stop being
idle at any time if samples from a real task are assigned to start being processed at the
machine at that time.

To account for the minimization of the turnaround time of the operations in the objec-
tive function, an extra variable and additional constraint are needed.

Tfik: A nonnegative continuous variable representing the latest time that a sample
from task i finishes visiting processing unit pik; ∀ i ∈ I ∪ {0}, k = 1, . . . , n(i).

Constraint (2.24) sets the value for the latest time that a sample from task i finishes
visiting processing unit pik.

Tfik ≥ Tn − (1− Y Eijn)H; ∀ i ∈ I, k = 1, . . . , n(i), j ∈ Jpik , n = 0, . . . , N. (2.24)

The throughput of task i for each machine j along its path, is defined as follows:

N∑
n=0

Bijn ∀ i ∈ I, j ∈ Jpik , k = 1, . . . , n(i).

Likewise the total number of samples from task i that have finished their processing in the
facility can be expressed as follows:

N∑
n=0

∑
j∈Jp: p=pi

n(i)

BEijn

19

Hence, the objective function for the continuous time formulation is:

N∑
n=0

∑
i∈I

∑
j∈J

cijBijn +
∑
i∈I

N∑
n=0

∑
j∈Jp:p=pi

n(i)

fiBEijn +
∑
i∈I

n(i)∑
k=1

dikTfik. (2.25)

The presented formulation aims at maximizing the objective (2.25), subject to constraints
(2.1)-(2.24).

We end this section by commenting on which parts of the model have been developed in
previous works and which parts needed to be added or modified (and why) to account for
multitasking and other operational conditions. Constraints (2.4)-(2.5) were added to the
original formulation by [38] to account for the arrival of the samples and availability of the
machines after the beginning of the scheduling horizon. The original formulation had no
counterpart for these constraints since it had not considered such a situation. Constraints
(2.6)-(2.7) needed to be added to the original formulation in their current format, to
account for the case where samples from multiple tasks needed to start being processed at
the same time in a machine. These constraints replaced a more simple constraint in the
original formulation that would have triggered turning on machine j at time point n if and
only if a task was assigned to the machine at that time point, with the assumption that at
most one task could be assigned to the machine at any time point, which clearly cannot
account for the situation considered in the current work.

Constraints (2.9)-(2.11) were added to the original formulation to account for the situa-
tion where samples from multiple tasks were scheduled to finish their processing or continue
their processing at a machine. They also replaced two simpler constraints that were built
based on the assumption that at any time at most one task could finish its processing
or continue its processing at any machine. Constraint (2.12) was added to the original
formulation to prevent the idle task to be performed along with a real task in a machine.
It was not present in the original formulation since, by nature, in that formulation multiple
tasks could not be processed together at the same time in one machine.

Capacity constraints, Constraints (2.14), (2.16) and (2.18), needed to be added to the
original formulation to account for the capacity of the machines while processing multiple
tasks at the same time. The rest of the capacity constraints, Constraints (2.13), (2.15)
and (2.17), were enough for the original formulation since the assumption in that work
was that only one task could be performed at a machine at any time, so forcing the
capacity constraint on that task was enough. Constraint (2.19) was added to the original
formulation to bound the number of samples in each task, and was not present in the
original formulation since, by nature, the tasks considered in that work were only limited
to the capacity of the machines processing them.

20

Constraints (2.22)-(2.23) along with TRijn variables needed to be adapted so that the
tasks that start together at a machine will finish their processing together. TRijn had no
i index in the original formulation, since because of the singletasking assumption, it was
only necessary to monitor the single ongoing task on each machine as opposed to the set
of tasks assigned to that machine. Furthermore, since the original formulation had not
considered minimizing the latest finishing time of the tasks, Tfik variables and Constraint
(2.24) were added to the original formulation as well.

The rest of the constraints, Constraints (2.1)-(2.3), (2.8), and (2.20)-(2.21) were already
present in the original formulation.

2.2 Illustrative Instance

To better illustrate the schedules that can be obtained through the presented model, a
small instance is presented and solved using the model; the corresponding schedule is de-
picted through a Gantt chart. The number of time points used is determined through
increasing the number of time points by 1 and solving the instance iteratively until no fur-
ther improvement in the objective function can be achieved through increasing the number
of time points by 1 or 2. This method is heuristic and the objective function that is re-
ported is only optimal for the chosen number of time points and it can not be guaranteed
that a better objective function cannot be achieved with a much larger number of time
points. This heuristic was previously used in [5], which reported that, although increasing
the number of time points by 1 might not result in an improvement in the objective func-
tion, the objective function might improve with an increase of two or more in the number
of time points. Table 2.1 shows the information related to the processing units and their
corresponding machines. Please note that the processing times are provided in terms of
minutes.

Processing Unit Jp βp τ(p) TMj

1 1 140 50 0.0
2 2,3 70 30 0.0,0.0
3 4,5 50 60 0.0,0.0
4 6 120 195 0.0

Table 2.1: Processing Units Information

21

Likewise, Table 2.2, lists the information related to the tasks that need to be performed in
the facility within an 8 hours scheduling horizon.

Task Si ai TAi
0 N/A unlimited 0.0
1 1,3,4 120 0.0
2 1,2,3,4 100 0.0

Table 2.2: Tasks Information

As for the weights in the objective function, ∀ i ∈ I, fi is arbitrarily chosen to be equal
to 10 while for all the machines in every processing unit, p, and every task, i ∈ Ij, the
weight of the throughput of task i for machine j ∈ Jp is chosen to be 1. The weight of the
latest finishing time of a sample from task i ∈ I at processing unit pin(i), din(i), is arbitrarily

chosen to be equal to −.05 while if k 6= n(i), then dik is chosen to be −.025 for all i ∈ I.

The total number of time points is 8 and the objective function value is 1915.87; the
solution time is 10.25 seconds and does not include the time spent on tuning the number
of time points. Figure 2.1, shows the schedule obtained from the model. Note that only
the actual tasks have been depicted. In each box, the first number represents the task
whereas the second number is the number of samples from the task being processed in the
corresponding machine, while the end of the box indicates the end of a time interval, i.e.,
T variables. The horizontal axis of the Gantt chart (time) is marked with hours.

The Gantt chart shows that the model behaves as expected, by scheduling as many
samples as possible on the machines and enforcing multitasking in the machines at points
were it is beneficial to process samples from both of the actual tasks on a machine at the
same time. Furthermore, the schedule tries to minimize the latest time that the samples
from a task visit the processing units along their path.

In addition, this example also can be used to highlight the importance of having the
ability to model the fact that some machines and/or samples will only be available sometime
in the near future. To illustrate this, note that some of the samples in tasks 1 and 2 do
not finish their processing in the facility within the 8 hours scheduling horizon.

Suppose the instance studied is modified a little so that the samples in task 1 need to
visit another processing unit, e.g., processing unit 5, after visiting processing unit 4. The
staff of the facility are allowed to work overtime to finish processing the samples in task 1.
To accommodate processing the samples in task 1, another scheduling horizon is required.
To circumvent this condition, the rolling-horizon technique can be employed where the

22

0 1 2 3 4 5 6 7 8 9

Machine 1

Machine 1

Machine 2

Machine 3

Machine 4

Machine 4

Machine 5

Machine 5

Machine 6

1,40 1,80

1,50

1,40 1,30

1,120

2,100

2,30

2,70

2,30

2,20

2,50

2,100

Figure 2.1: Illustrative Example, Objective Value =1915.88, N=7

remaining tasks will be performed in the later scheduling horizons (e.g. from hours 8-16).
However, most of the conventional continuous time formulations either need to disregard
the unavailable samples in task 1 in the next schedule, or they need to wait until the end of
hour 9.33, which is the time that part of the samples in task 1 will finish their processing
at processing unit 3, before they can start the next scheduling horizon. This is because
they need all the samples in all the tasks to be ready for being processed in the facility
at the beginning of the scheduling horizon. The present model is capable of starting the
next scheduling horizon right at the end of hour 8, as opposed to the end of hour 9.33,
and accommodate the fact that the samples in some of the tasks will be available to be
processed in the facility after the beginning of the scheduling horizon. This capability
will reduce the idleness of the machines in the facility, which may result in reducing the
turnaround time of the facility as well as increasing its overall throughput.

23

2.3 Comparative Study of Multitasking

One of the main differences between the proposed continuous time formulation and the
traditional continuous time formulations available in the literature is the ability of the
current formulation to accommodate the multitasking feature in the machines i.e., machines
in the facility have the ability to process samples from multiple tasks at the same time.
Overlooking this feature may result in worse solutions. To cast more light onto this issue,
6 different instances have been designed and solved using the presented continuous time
formulation and a version of the formulation that prohibits multitasking in the machines,
previously proposed by [38].

In that study, they had only considered maximizing throughput as the objective func-
tion, and therefore, they had no Tfik variables, representing the latest finishing times. To
have a fair comparison between the current approach and their approach, we only consider
maximizing throughput of the facility as the objective function for both of the multitasking
model and their single tasking model. Hence, the objective, for the comparative study can
be expressed as follows:

max
N∑
n=0

∑
i∈I

∑
j∈J

cijBijn.

Furthermore, Tfik variables and Constraint 2.24 that regulates the values for those vari-
ables, will also not be considered in the multitasking formulation. The 6 instances used
for the comparative study were inspired by the operations of an actual analytical services
facility. The goal is to evaluate the performance of the models through instances that share
many features with real instances from an actual facility.

In the considered facility, for the samples in a task, visiting the last processing unit
in the path of the task has priority over visiting the rest of the processing units in the
path. To better illustrate this, assume that the samples of two different tasks, e.g., task
1 and task 2, are competing for the machines of a processing unit, e.g., processing unit
6. Also assume that the samples in task 1 can finish their processing in the facility by
visiting processing unit 6, while the samples in task 2 need to visit other processing units
after visiting processing unit 6. Then, processing the samples in task 1 at the machines of
processing unit 6, j ∈ J6, has priority over processing the samples in task 2. Moreover, all
the tasks in the facility have the same first and last processing units in their paths. This is
because all the tasks need to visit a specific processing unit (e.g., preparation unit) before
they can be admitted into the facility and they need to visit a specific processing unit (e.g.,
quality control) before they can leave the facility.

24

The same objective function is considered for all the instances. To properly reflect the
conditions of the facility, cij is arbitrarily chosen to be 5 for machine j and task i if j ∈ Jp
for p = pin(i) while, cij is chosen to be 1 otherwise. Note that the weights are different
than the ones used in the illustrative instance in the previous section, since here a different
objective function is undertaken. The staff of the facility is assumed to work 8 hours per
day. Since most of the working staff would prefer to know what the schedule throughout
the day would be before the starting of the day, shorter than 8 hours schedules would
be less convenient while longer than 8 hours schedules means that there needs to be an
overtime working for the staff, which is inconvenient. Therefore, a convenient schedule
should have a scheduling horizon of 8 hours, which is the scheduling horizon for all the
studied instances.

All the computational experiments were performed on a machine that has 250 GB RAM
and 4 CPUs, each with 12 cores and a processing speed of 2.4 GHz using CPLEX [15].
Each instance is solved within a time window of 20 minutes and each instance is solved for
multiple numbers of time points. The number of time points has been increased to a point
where increasing the number of time points by one or two does not improve the objective
function within the 20 minutes solution time for any of the two models.

Table 2.3 presents the data related to the size of each instance. The first number in
the name of each instance indicates the number of the processing units, while the second
number indicates the number of actual tasks considered in the instance. Note that instances
P4-3-1 and P-4-3-2 have the same number of processing units and tasks but are completely
different instances (the number of samples in each task, the number of machines in each
processing unit and the machines specifications such as processing times and capacities are
different). Table 2.4 presents the computational results. The columns in Table 2.4 represent
the following: Obj. Val. stands for the largest feasible objective function value found, Bin.
Var. and Gen. Var. stand for the number of binary and general variables, respectively,
while T/Gap stands for either the solution time, if the problem is solved to optimality,
or the optimality gap after 20 minutes of running time. Note that the solution time is
provided in terms of seconds while the optimality gap is reported in terms of percentage;
thus, any number in that column appearing without a “%” sign represents solution time,
whereas numbers appearing with a “%” sign represent optimality gap. The optimality gap
is calculated using the following formula:

UB −Obj.V al.
UB

where UB denotes the smallest upper bound on the objective function value obtained from
the Branch-and-bound tree search.

25

Instance Number of Processing Units Number of Actual Tasks
P3-2 3 2

P4-3-1 4 3
P4-3-2 4 3
P5-3 5 3
P5-4 5 4
P6-10 6 10

Table 2.3: Instances Information

The computational results show that, if solved to optimality, the multitasking model
outperforms the singletasking model in every instance in terms of the objective function
value. This result is in accordance with the expectations since the multitasking model is a
generalization of the singletasking model; therefore, it can produce equal or better optimal
objective function under any circumstances.

To better illustrate the gains of the multitasking versus the singletasking model, the
optimal schedule of the actual tasks obtained for instance P3-2 through both singletasking
and multitasking formulations with N = 5 is depicted through Gantt charts in Figure 2.2
and Figure 2.3. Table 2.5 represents the information related to the processing units and
their corresponding machines (the processing times are provided in terms of minutes),
while Table 2.6 shows the tasks information. As it can be observed from the figures,
the multitasking feature allows machines 1 and 2 to process samples of different tasks
simultaneously, which results in a better optimal solution for the multitasking formulation
compared to the singletasking formulation.

The singletasking model is essentially solving a much smaller problem as opposed to
the multitasking model, and, therefore, it usually requires a smaller number of time points
to reach its global optimal solution. However, that would not be a disadvantage for the
multitasking model since with the same instance and the same number of time points, if
solved to optimality, the multitasking model can achieve an objective value that is always
at least as good as the objective value from the singletasking model.

26

Multitasking Singletasking
Instance N Obj. Val. Bin. Var. Gen. Var. T/Gap Obj.Val. Bin. Var. Gen. Var. T/Gap

P3-2 4 3200 86 62 .08 800 103 30 .11
P3-2 5 3200 126 90 .15 2000 139 54 .13
P3-2 6 3200 166 118 .31 2000 175 82 .27
P3-2 7 3200 206 146 .44 2000 211 110 .35

P4-3-1 7 3900 293 231 .23 3400 318 211 .24
P4-3-1 8 4500 349 275 .91 4100 369 254 .81
P4-3-1 9 4500 405 318 4.7 4110 420 297 2.69
P4-3-1 10 4500 461 363 91.37 4400 471 340 52.69
P4-3-1 11 4500 517 406 178 4400 522 383 90.91
P4-3-1 12 4500 571 476 458 4400 568 426 309.91

P4-3-2 19 4300 1588 1169 3.02% 3360 1506 1123 25.26%
P4-3-2 20 4390 1680 1237 6.59% 3090 1590 1190 40.97%
P4-3-2 21 4340 1772 1304 13.51% 3065 1674 1257 46.19%
P4-3-2 22 4479 1864 1372 15.69% 3215 1578 1324 41.81%
P4-3-2 23 4435 1956 1440 22.29% 2900 1842 1391 60.90%
P4-3-2 24 4539 2046 1511 25.09% 2750 1938 1467 72.32%
P4-3-2 25 4393 2140 1580 34.37% 3120 2022 1534 54.23%
P4-3-2 26 4579 2232 1647 34.29% 2847 2106 1601 70.00%
P4-3-2 27 4264 2324 1715 49.55% 2935 2190 1668 66.77%
P4-3-2 28 4308 2416 1783 53.78% 2750 2274 1735 78.78%

P5-3 6 2450 285 226 48.75 2000 377 203 6.51
P5-3 7 2600 364 288 147.95 2100 449 264 34.76
P5-3 8 2850 443 350 759.72 2150 521 325 489
P5-3 9 3100 522 412 765.40 2150 593 386 7.45%
P5-3 10 3100 601 474 22.56% 2150 665 447 27.71%
P5-3 11 3100 680 536 35.48% 2150 737 508 44.52%

P5-4 9 4990 646 559 493.28 4160 768 525 64.34
P5-4 10 5150 746 644 7.70% 4160 861 610 525
P5-4 11 5144 846 730 7.88% 4160 954 695 1.72%
P5-4 12 5345 946 816 3.84% 4160 1047 780 20.37%
P5-4 13 5050 1046 902 9.90% 4160 1140 865 25.58%
P5-4 14 5345 1146 988 3.84% 3980 1233 950 27.86%

P6-10 10 4063 2002 1998 21.83% 1500 2420 1910 22.95%
P6-10 11 4099 2276 2272 20.76% 1500 2684 2183 39.87%
P6-10 12 3677 2550 2546 34.62% 1300 2948 2456 69.46%
P6-10 13 3364 2824 2820 47.15% 1500 3212 2729 51.11%

Table 2.4: Computational Results

27

Processing Unit Jp βp τ(p) TMj

1 1 400 110 0.0
2 2 540 120 0.0
3 3,4 260 150 0.0,0.0

Table 2.5: P3-2: Processing Units Information

Task Si ai TAi
0 1,2,3 unlimited 0.0
1 1,2,3 200 0.0
2 1,2,3 200 0.0

Table 2.6: P3-2: Tasks Information

0 1 2 3 4 5 6 7 8

Machine 1

Machine 2

Machine 3

Machine 4

2,200

2,200

3,200

3,200

3,200

Figure 2.2: Instance P3-2 with singletasking, Objective Value =1900, N=5

One possible drawback of the multitasking model would be the computational cost. If
the solution time for the multitasking model is considerably larger than its singletasking
counterpart, then, within a fixed amount of solution time, the multitasking model might
not reach optimality and therefore the singletasking model might be able to produce better
quality solutions. Therefore, it is essential to monitor the solution time for both models
as well as the quality of the objective function. The results presented in Table 2.4 suggest
that, for the same instance with the same number of time points, there is not a considerable

28

0 1 2 3 4 5 6 7 8

Machine 1

Machine 1

Machine 2

Machine 2

Machine 3

Machine 4

2,200

2,200

2,200

3,200

3,200

3,200

Figure 2.3: Instance P3-2 with multitasking, Objective Value =2100, N=5

difference in the solution time of the two models. It is worth noticing that some of the
instances studied, e.g., P5-4, P4-3-2 and P6-10, are as large as some of the large instances
solved in the continuous time formulation studies reported in the literature [38, 22].

2.4 Chapter Summary

In this chapter, a continuous time formulation was presented that can be readily used to
model the operations of an analytical services facility. The formulation was capable of
accommodating the multitasking feature of the machines in the facility and it could also
take care of other operational conditions present in such facilities. Later on, a thorough
comparison is performed between the performance of the proposed model and one of the
most widely used formulations in the literature that is not capable of accommodating
the multitasking feature, and it is shown that the multitasking formulation consistently
provides significantly better solutions compared to the singletasking formulation.

In the next chapter, we present a flexible discrete time formulation, that could also be
readily applied to model the operations of an analytical services facility.

29

Chapter 3

Flexible Discrete Time Formulation

This chapter presents a flexible discrete time formulation for the problem that was defined
in section 1.3. Developing such formulations is very important since discrete time formula-
tions that are capable of accommodating flexible time discretization are recently developed
and it is yet to be seen if there is any particular advantage in using such formulations. The
problem introduced in section 1.3 provides a good venue to test the performance of flexible
discrete time formulations against other conventional approaches.

A flexible discrete formulation, while is a discrete time approach, by nature, has the
capability to assign a specific clock to each processing unit. This means that, while the
locations of the time points are determined a priori and given to the optimization model,
these locations need not be the same for different processing units. For instance, the third
time point can happen at hour 1 for the machines in the first processing unit, and can
happen at hour 3 for the machines in the second processing unit. It is worth noticing that
the conventional discrete time formulations in the literature, where the time points happen
at the same time for all the machines in the facility, are a specific case of flexible discrete
time formulations, where all the individual clocks are synchronized.

Furthermore, the chapter will provide the Gantt chart of the schedule obtained through
the flexible discrete time formulation for the illustrative example depicted in section 2.2.

3.1 Formulation

The flexible discrete time formulation presented in this study has been adapted from the
idea of non-uniform time discretization, previously proposed by [40]. To derive such a

30

formulation, extra notation and assumptions are required. The time domain for each
individual processing unit will be discretized into a predetermined series of time points.
Each p ∈ P will have a time step ∆(p), which represents the time elapsed between two
consecutive time points for processing unit p. Let E(p) = (0,∆(p), 2∆(p), . . . , H) represent
the increasing sequence of time points of processing unit p along the axis of time. Note
that, ∀ p ∈ P , E(p) is known a priori ; also the machines in the processing unit can only
be turned on at the beginning of a time point of the processing unit. In this formulation
it is assumed that the time steps are fixed throughout the scheduling horizon for each
processing unit; however, this condition can be relaxed to consider variable time steps. We
choose not to present it here since it overly complicates the notation and it is not used in
any of the tests. Since the machines in a processing unit are assumed to be identical, in the
flexible discrete time formulation it is not needed to consider the machines Jp of processing
unit p on an individual basis, rather they are considered as resources of the processing
units. Accordingly, Rpt,∀ t ∈ E(p), represents the number of machines in processing unit
p, for all p ∈ P , available to the facility at time point t of the processing unit. Rpt is defined
with a time index since some of the machines in processing unit p might not be available
at the beginning of the scheduling horizon because they are busy processing samples from
the previous scheduling horizon, and they will only become available to the facility at
time TMj. Furthermore, the processing time of the machines in a processing unit can be
referred to as the processing time of the processing unit. Similarly for the capacities.

The first set of decision variables for the flexible discrete time formulation are as follows.
Bikt: A nonnegative integer variable representing the number of samples from task i that
are set to start being processed at the k-th processing unit in the path of task i, pik ∈ Si,
at the time point t, ∀ i ∈ I, 1 ≤ k ≤ n(i), t ∈ E(pik).

Xpt: The number of machines from processing unit p that are being used at time point
t, ∀ p ∈ P, t ∈ E(p).

Constraints (3.1)-(3.2) ensure that the machines in the facility are not overloaded with
samples. Constraint (3.1) enforces the capacity of the machines while Constraint (3.2)
ensures that the number of machines in use in each processing unit and at each time point
are not more than the total number of machines available to the processing unit at that
time point, therefore the time subscript, θ, is chosen such that all the machines in each
processing unit that are in use at each time point are accounted for.

31

∑
i,k:p=pik

Bikt ≤ Xptβp; ∀ p ∈ P, t ∈ E(p). (3.1)

∑
θ∈E(p):t−τ(p)<θ≤t

Xpθ ≤ Rpt; ∀ p ∈ P, t ∈ E(p). (3.2)

As mentioned above, a sample from task i can visit processing unit pik in Si only if it has
already visited the previous processing unit, pik−1, in Si. Also, a sample from task i is
considered to have visited processing unit pik in Si, if it has been processed by one of the
machines in Jp. To account for these conditions, the following notation is considered:

Wikt: A nonnegative integer variable representing the number of samples from task i
that have visited pik−1 and are ready to visit processing unit pik at time point t , ∀ i ∈
I ∪ {0}, k = 2, . . . , n(i), t ∈ E(pik).

Constraint (3.3) ensures that a set of samples from task i can visit processing unit pik
in Si at time point t, if it has already visited processing unit pik−1 in Si before time point t.
Furthermore, it assures that the same number of samples from task i that enter a processing
unit, leave the processing unit after completing their processing, i.e., constraint (3.3) is a
flow conservation constraint, preventing samples from being created or lost. Because of its
structure, constraint (3.3) cannot be extended to the first processing unit in the path of a
task and the first time point of the processing unit; hence, constraint (3.4) is introduced to
extend constraint (3.3) to the first process in the path of the tasks while constraints (3.5)-
(3.6) set up the number of samples from task i that are ready to visit pi1, in accordance to
the number of samples in task i and the time these samples will become available to the
facility, TAi. Notice that in constraint (3.5), t′ is defined to be the smallest t ∈ E(pi1) such
that t′ ≥ TAi.

Bikt +Wikt = Wi,k,t−∆(pik−1) +
∑

θ∈E(pik−1):

t−∆(pik−1)<θ+τ(pik−1)≤t

Bi(k−1)θ; (3.3)

∀ i ∈ I, k = 2, . . . , n(i), t ∈ E(pik) : t > 0;

Bi1t +Wi1t = Wi1(t−∆(pi1)); ∀ i ∈ I, t ∈ E(pik) : t > 0; (3.4)

Wi1t′ = ai; ∀ i ∈ I, t′ = ∆(pi1)
⌈ TAi

∆(pi1)

⌉
; (3.5)

Wi1t = 0; ∀ i ∈ I, ∀ t ∈ E(pi1) : t < TAi. (3.6)

Since minimizing the turnaround time of the operations is part of the objective function,

32

it is necessary to monitor the latest time that a sample from a task, i ∈ I, finishes its
processing at a unit, p ∈ Si. To that avail, the following notation is introduced.

Yipt =

1, If samples from task i are assigned to be processed at a ma-
chine in processing unit p at time point t of the processing
unit; ∀ p ∈ P, i ∈ I, t ∈ E(p).

0, Otherwise.

Constraints (3.7)-(3.8) correlate the variables Yipl and Bikl. Constraint (3.7) ensures that
Yipl will take a value of 0 if Xikl = 0, p = pik while constraint (3.8) assures that Yipl will
take a value of 1 if Xikl 6= 0, p = pik.

Yipikt ≤ Bikt; ∀ i ∈ I, k = 1, . . . , n(i), t ∈ E(pik). (3.7)

Bikt ≤ Rpik
βpikYipikt; ∀ i ∈ I, k = 1, . . . , n(i), t ∈ E(pik). (3.8)

Constraint (3.9) specifies the value for the latest time that a sample from task i finishes
visiting a processing unit.

Tfik ≥ t+ τ(pik)−H(1− Yipikt); ∀ i ∈ I, k = 1, . . . , n(i), t ∈ E(pik). (3.9)

For the present discrete formulation, the throughput of task i for all the machines in
processing unit p ∈ Si, j ∈ Jp, can be defined as the follows:

∑
t∈E(pik)

Bikt ∀ k = 1, . . . , n(i).

Similarly, the total number of samples from task i that have finished their processing in
the facility can be calculated as follows:∑

i∈I

∑
t∈E(pi

n(i)
):

t+τ(pi
n(i)

)≤H

Bin(i)t.

Hence, the objective function in the present discrete time formulation can be expressed as

33

follows:

max
∑
i∈I

n(i)∑
k=1

∑
t∈E(pik)

cijBikt +
∑
i∈I

∑
t∈E(pi

n(i)
):

t+τ(pi
n(i)

)≤H

fiBin(i)t +
∑
i∈I

n(i)∑
k=1

dikTfik. (3.10)

The formulation aims at maximizing (3.10) subject to constraints (3.1)-(3.9)

3.2 Illustrative Instance

In this section we will solve the illustrative instance explained in Section 2.2, using the
flexible discrete time formulation. The weights of the objective function are the same as
the ones used in Section 2.2 and the experiment is performed on the same machine. Hence,
a direct comparison could be driven from the schedules obtained through both of the
formulations. For the purpose of illustration, we will use two different time discretization
approaches for solving the instance through the flexible discrete time formulation. In the
first approach, at the beginning of each hour, an event can happen. This essentially means
that all the processing units will have the same time step. Since the scheduling horizon
is 8 hours, there will be 9 time points, where the location of the first time point is hour
0 and the last time point is located at hour 8 while the distance of each two consecutive
time points on a universal clock is 1 hour. Figure 3.1 depicts the Gantt chart of the
schedule obtained for the illustrative instance using this approach. The solution time was
.29 seconds. As for the previous charts, only the actual tasks are depicted, while the first
number in each box is the task number and the second number indicates the total number
of samples from that task that are being performed in the corresponding machine.

The second approach of time discretization is going to assign a specific time step to the
machines of each processing unit, i.e., assign a specific clock to each processing unit. On
the clock of each processing unit, the first time point happens at hour 0 while the time
step of the processing unit is equal to its processing time. This means that, for example,
for the second processing unit, which has a processing time of 30 minutes, there will be
17 time points, where the first time point happens at hour 0, while the last time point
happens at hour 8, and the distance between two consecutive time points is 30 minutes.
Figure 3.2 depicts the Gantt chart of the schedule obtained for the illustrative instance
using this approach. The solution time was .27 seconds.

The results indicate that the continuous time formulation could generate a better result
than the flexible discrete time formulation with either of the discretization approaches. The

34

0 1 2 3 4 5 6 7 8 9

Machine 1

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

Machine 6

Machine 6

2,40

2,80

2,28

2,92

2,24

2,96

2,20 2,100

3,100

3,100

3,100

Figure 3.1: Illustrative Instance with first approach, Objective Value =1889

second discretization approach, where each processing unit had its own specific time step,
was able to generate a slightly better solution, which is mostly due to the fact that it
can put the second processing unit to a better use. Remember that the second processing
unit has a processing time of 30 minutes, while the first approach can make a decision
every hour, which means there would be a delay in the operations of the machines in the
second processing unit. But the second approach assigns a specific time step to the second
processing unit, and every 30 minutes a decision can be made for the machines in that
processing unit, which puts them to a better use.

This illustrative instance provides a great venue to ask the main question of this the-
sis once again. Which one of these formulations is better for the problem we discussed
in Section 1.3? A continuous time formulation or a flexible discrete time formulation?
Furthermore, for the flexible discrete formulation, which one of the two discretization ap-
proaches is better? To have a single time step for all the machines in all the processing
units or have a specific time step for the machines of each processing unit? The next chap-
ter aims at answering this question through studying several instances that are inspired
by the operations of an actual analytical services facility.

35

0 1 2 3 4 5 6 7 8 9

Machine 1

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

Machine 6

Machine 6

2,40 2,80

2,40

2,80

2,40

2,80

2,20

2,100

3,100

3,100

3,100

Figure 3.2: Illustrative Instance with first approach, Objective Value =1890.31

3.3 Chapter Summary

In this chapter a flexible discrete time formulation was presented that could be readily
used to model the problem introduced in Section 1.3. Furthermore, the schedule that
could be obtained through the presented formulation using different time discretization
approaches was depicted. In the next section, the performance of the continuous and
flexible discrete time formulations is fully compared and we will provide meaningful insights
into the advantages and disadvantages of each of these formulations as well as, explaining
to some extent, the reasons behind these advantages and disadvantages.

36

Chapter 4

Comparison of the Formulations

In this chapter, the performance of the flexible discrete and the continuous time formu-
lations will be empirically evaluated. To do so, several instances have been designed and
solved using the formulations described before. For each formulation, the most suitable pa-
rameter settings, among a set of predefined settings, have been specified for each instance.
Thus, the best performance of each instance while using the different formulations will be
obtained and used for comparison purposes.

The instances selected for this study were inspired by the operations of an actual
analytical services facility. In the facility, completing the processing of samples is more
important than merely maximizing the task throughput of the facility. Therefore, for
every task i ∈ I, the weight of finishing task i, fi, needs to overcome the weights of the
throughputs of the tasks for any machine. Hence, ∀ i ∈ I, fi is arbitrarily chosen to be
equal to 10 while for all the machines in every processing unit, p, and every task, i ∈ Ij, the
weight of the throughput of task i for machine j ∈ Jp is chosen to be 1. Since minimizing
the turnaround time of the facility is of the least priority, the weight of the latest finishing
time of a sample from task i ∈ I at processing unit pin(i), din(i), is arbitrarily chosen to be

equal to −.05 while if k 6= n(i), then dik is chosen to be −.025 for all i ∈ I. These weights
have been used for every instance studied in this chapter. Note that these weights are the
same as the weights used in Section 2.2, but they are different from the weights used in the
comparative study for multitasking in Section 2.3, because the objective function that the
formulations aim to optimize in the current chapter is different from the objective function
used in Section 2.3.

The present facility includes processes whose processing times range from minutes to
hours. An example of a process with short processing time is weighing samples, which
is done within a minute, but the capacities of the weighing machines are also limited.

37

Therefore, any task whose samples require to be weighed will have a processing unit along
its path that has a small processing time and a relatively small capacity. On the other
hand, there are processing units with processing times larger than an hour, e.g, a fire assay
process requires the samples to be heated to more than 1200°Celsius, and be kept in that
temperature for around 80 minutes. To reflect this characteristic of the operations and its
implications, half of the instances considered in this chapter included tasks that require
processing units with both large and small processing times, referred from heretofore as
type I instances, while the other half of the instances only have large processing times and
are referred from heretofore as type II instances. Furthermore, the scheduling horizon for
all the studied instances was set to 8 hours.

To fully evaluate the performance of the two formulations, the instances include small,
medium range and large instances in terms of number of binary variables. Specifically, some
of the larger instances are comparable in size with relatively large instances studied in the
literature for continuous time formulations [38, 22]. Table 4.1 includes the information
for the size and characteristics of all the 12 instances considered in this analysis. The
Processing Time Variability entry indicates whether the instance includes tasks that have
in their path processing units with small and large processing times or not. The first
number in the name of the instance entry indicates the number of processing units, the
second number indicates the number of tasks considered in the instance, while the last
number is an indicative of whether the instance belongs to type I or type II instances.

Instance Number of Processing Units Number of Actual Tasks Processing Time Variability

3-2-I 3 2 Yes
3-2-II 3 2 No
4-3-I 4 3 Yes
4-3-II 4 3 No
5-4-I 5 4 Yes
5-4-II 5 4 No
6-6-I 6 6 Yes
6-6-II 6 6 No
7-8-I 7 8 Yes
7-8-II 7 8 No
8-9-I 8 9 Yes
8-9-II 8 9 No

Table 4.1: Instances Information

The conventional approach in the literature for discrete time formulations is to discretize

38

time uniformly, meaning that the distance between two time points, the time step, will
be the same for all the processing units in the facility, i.e., to have a universal clock that
all the machines abide by the time points located on that clock. On the other hand, the
flexible discrete time formulation provides a platform to discretize time in a very flexible
fashion. Therefore, it is possible to use a specific time step for each processing unit, i.e.,
a specific clock for each processing unit, which would essentially be a non-uniform time
discretization. Note that the uniform discretization can be implemented using the flexible
discrete time formulation, by setting ∆(p) to be the same for all p ∈ P .

In order to analyze if there is a benefit in using non-uniform discretization as opposed
to a conventional uniform discretization, in this work the flexible discrete time formula-
tion is used with both methods of discretization. From now on, the flexible discrete time
formulation with a uniform time discretization is referred to as a uniform discrete time for-
mulation and the flexible discrete time formulation with a non-uniform time discretization
is referred to as the non-uniform discrete time formulation.

In the next subsection, the parameters of each formulation, in solving each instance,
have been set and the results for these settings are reported. All the computational ex-
periments were performed on a machine that has 250 GB RAM and 4 CPUs, each with 12
cores and a processing speed of 2.4 GHz using CPLEX [15].

4.1 Computational Results

The main parameter that needs to be set for both non-uniform discrete and uniform discrete
time formulations is the discretization of time. Time discretization for the non-uniform
discrete time formulation can be done in multiple ways [40]. Since it is impractical to test
all the possible discretization schemes, it was decided to discretize time for the non-uniform
discrete time formulation in a way that captures the processing time of each processing
unit, since having processing units with both large and small processing times is one of the
key characteristics of the facility under consideration. Therefore, the time step for each
processing unit is chosen to be equal to the processing time of the processing unit.

A runtime limit of 20 minutes is imposed on solving each instance. This limit is pre-
specified for all the instances and all the formulations considered in this work. Table 4.2
presents the computational results for the non-uniform discrete time formulation. The
Columns in Table 4.2 are as follows: Ins. represents the name of the instance, OBJ
stands for the objective function value of the best feasible solution found within the time
limit, whereas B.V. stands for the number of binary variables. T/G represents either the
solution time, if the problem is solved to optimality, or the optimality gap after 20 minutes

39

of running time. Note that the solution time is reported in terms of seconds while the
optimality gap is reported in terms of percentage.

Ins. OBJ B.V. T/G
3-2-I 2548.8 993 16s
4-3-I 3553.1 1146 241s
5-4-I 5659.8 1899 1.2%
6-6-I 8662.1 2375 2.1%
7-8-I 10273.8 4052 4%
8-9-I 12825 6362 2.5%
3-2-II 2550.3 69 13s
4-3-II 3984.9 104 38s
5-4-II 3872.5 126 37s
6-6-II 6213.8 233 560s
7-8-II 7957.7 539 2.7%
8-9-II 6730.3 409 1.7%

Table 4.2: Computational Results for Non-Uniform Discrete Time Formulation

In the uniform discrete time formulation, the time steps of two different processing
units would be the same, regardless of the processing time of their machines. For that
purpose, time steps of 1, 10, 30 and 60 minutes have been employed to capture a wide
range of small and large processing times in the processing units of the facility. Table 4.3
presents the computational results for the uniform discrete time formulation. Note that if
the optimality gap reported at the end of the 20 minutes runtime was larger than 75%,
the optimality gap has been reported as N/R.

40

Uniform: 1m Uniform: 10m Uniform: 30m Uniform: 60m
Ins. OBJ B.V. T/G OBJ B.V. T/G OBJ B.V T/G OBJ B.V. T/G

3-2-I 2559.4 3219 1.5% 2546.4 315 74s 2258.7 99 5s 1039.2 41 1s
4-3-I -53.5 4642 N/R 3091.9 466 1.5% 1107 151 78s 600.8 71 1s
5-4-I 131.4 8432 N/R 5490.5 829 2.3% 1982.7 264 40s 900.8 111 16s
6-6-I -34.7 12532 N/R 7993.3 1240 11% 3838.8 398 1.2% 2262 174 255s
7-8-I 2.5 19583 N/R 6364.4 1919 6.1% 3821.2 571 .8% 1883.1 243 .1%
8-9-I 2.9 23861 N/R 9797.7 2310 11.7% 2911.8 706 1.1% 998.4 298 21.8s
3-2-II 2551.4 3094 1.82% 2560.2 306 246s 2548 96 46s 2534.5 41 33s
4-3-II 2632.5 5048 55.9% 4002.4 500 1.6% 3975.1 156 218s 3962.4 72 22s
5-4-II -11.3 7578 N/R 4606 756 2.9% 3404.7 239 .3% 3125 110 32s
6-6-II 2 12438 N/R 7042.5 1242 4.7% 6210 386 .3% 5126 173 51s
7-8-II 1.3 18592 N/R 8245.4 1844 6.4% 8252.7 574 2.8% 4443.1 250 1142s
8-9-II 2.1 20834 N/R 8000.7 2048 12.6% 5171.6 603 4% 4178.5 284 1.2%

Table 4.3: Computational Results for Discrete Time Formulation

Because of its nature, and the fact that it does not involve a predetermined time for
the decisions in the scheduling algorithm to be made, the continuous time formulation is
more accurate than its discrete time counterparts. Hence, provided that there are enough
time points considered in the analysis for any instance, the continuous time formulation is
capable of providing a solution that is at least as good as the solutions from the non-uniform
and uniform discrete time formulations. Therefore, the main parameter of the continuous
time formulation that requires to be set for each instance is the number of time points. For
that purpose, a small number of time points was initially chosen; this parameter was then
systematically increased until a break point was reached. The break point is the smallest
number of time points such that, after 20 minutes of runtime, the upper bound on the
optimal objective function value derived from the LP relaxation of the instance, U.B., is at
least as large as the best objective function value obtained through either the non-uniform
discrete or uniform discrete time formulations. After reaching the break point, the number
of time points has been increased to a point where increasing the number of time points by
one or two does not improve the objective function, within the 20 minutes runtime. This
approach of tuning the number of event points for comparing continuous time formulations
performance against a discrete time formulation was previously proposed by [39].

Table 4.4 depicts the results obtained for the continuous time formulation. Num. T.
Points represents the number of time points. Note that for each instance, the first number
of time points presented is the break point and is marked with ‘*’.

41

Ins. Num. T. Points OBJ UB B.V. T/G
3-2-I 20* 2560.15 2586.22 880 1.02%
3-2-I 21 2561.6 2591.3 930 1.16%
3-2-I 22 2561.1 2592.4 980 1.22%
3-2-I 23 2561.4 2600 1030 1.51%
4-3-I 48* 0 4099.2 6477 N/R
4-3-I 49 0 4100 7097 N/R
4-3-I 50 0 3815.3 5857 N/R
5-4-I 44 * 0 5694.2 5497 N/R
5-4-I 45 0 5795.5 5632 N/R
5-4-I 46 0 2 5800 N/R
6-6-I 39* 0 8712.8 8323 N/R
6-6-I 40 0 8866.2 8557 N/R
6-6-I 41 0 8982 8791 N/R
7-8-I 81* 0 10344.6 24538 N/R
7-8-I 82 0 10428.6 24855 N/R
7-8-I 83 0 10512.6 25172 N/R
8-9-I 45* 0 13016.9 18154 N/R
8-9-I 46 0 13332.8 18598 N/R
8-9-I 47 0 13619.9 19042 N/R
3-2-II 8* 2563.1 2563.1 344 14s
3-2-II 9 2564.1 2564.1 404 33s
3-2-II 10 2564.5 2564.5 464 845s
3-2-II 11 2564.5 2572.83 524 .32%
3-2-II 12 2564.5 2577.8 584 .52%
4-3-II 9* 3997.9 4035.7 604 .95%
4-3-II 10 4003.9 4070.3 705 1.66%
4-3-II 11 4003.9 4086.7 806 2.07%
4-3-II 12 4003.8 4089.5 907 2.14%
5-4-II 11* 4027 4697.8 1074 16.66%
5-4-II 12 3957.5 5258.3 1209 32.87%
5-4-II 13 4241 5759.3 1344 35.8%
5-4-II 14 4240 5780.8 1479 36.34%
5-4-II 14 4072 5800 1614 42.44%

42

Ins. Num. T. Points OBJ UB B.V. T/G
6-6-II 11* 6805.5 8036.6 1602 18.09%
6-6-II 12 6756 8958.2 1811 32.6%
6-6-II 13 6594 8998.7 2020 36.47%
7-8-II 13* 7487.2 8887.1 2589 18.7%
7-8-II 14 7018.1 9690.2 2875 38.1%
7-8-II 15 68 10362.2 3161 N/R
8-9-II 11* 6295.4 8080.3 2785 28.35%
8-9-II 12 5733 9430.7 3185 64.5%
8-9-II 13 0 10715 3585 N/R%

Table 4.4: Continuous Time Formulation: Computational Results

The next subsection provides a comparison between the results obtained for the non-
uniform discrete, uniform discrete and continuous time formulations, in terms of the quality
of the objective function, number of binary variables and the optimality gap after the
designated solution time of 20 minutes.

4.2 Results: Comparison and Discussion

Only the best performance of the formulations, in terms of the objective function value, has
been compared against each other. For the uniform discrete formulation, in solving each
instance, among the 4 different discretization steps, the one is chosen that had resulted
in the highest objective function value, within the solution runtime. e.g., the time step
for the uniform discrete formulation for instance 3-2-I is set to be 1 minute while the
time step for instance 4-3-I is set to 10 minutes. For the continuous time formulation,
in solving each instance, the smallest number of event points that resulted in the highest
objective function value is chosen, e.g., for instance 3-2-II the number of event points is
set to be 10. It was noted that, the time spent to tune the continuous time formulation
is significantly more expensive than the time spent to tune the discrete time formulations.
However, the time that was spent on tuning each formulation to yield its best result have
not been included in the comparison, since this highly depends on the method used for the
tuning of each formulation, and currently there is no well studied method in the literature
on tunning either of these formulations. We chose to do so in order to see if it would be
worth while to pursue a faster way to tune the continuous time formulation.

43

Figure 4.1 depicts the best objective function value for each of the 12 instances studied
in this analysis, obtained through each of the three aforementioned formulations. As the
figure suggests, the non-uniform discrete time formulation usually performs better than
the other two formulations when dealing with type I instances. When dealing with type II
instances, the best method depends on the size of the instance. If the instance is small,
such as 3-2-II and 4-3-II, provided that it does not require too many time points to reach
global optimality, then the continuous time formulation is the method that performs the
best. Notice that, although from the figure it seems that the objective functions for the
three approaches are the same, the numbers are actually different and the continuous time
formulation actually results in the best objective function value for both instances 3-2-II
and 4-3-II. The values for the objective function of instance 3-2-II through continuous,
uniform and non-uniform discrete time approaches are, respectively, 2564.5, 2560.2, 2550.3,
while 4003.9, 4002.4, 3984,9 are the objective function values for instance 4-3-II. If the
instance is larger and requires more time points, e.g., instance 8-9-II, then it is the uniform
discrete formulation that provides better solutions.

In the case of the uniform discrete time formulation, in the presence of processing
units with a processing time smaller than the time step, e.g., a processing unit with 1
minute processing time, while the time step is 10 minutes, these processing units cannot
be put to effective use through the scheduling algorithm, e.g., instance 4-3-I. In the case
of the example, the scheduling algorithm can only schedule operations every 10 minutes
while the processing unit has a much smaller processing time, which severely hampers
the effective usage of the machines in that processing unit. If the scheduling algorithm
could make a decision every minute, for the processing unit with 1 minute processing time,
then the machines in the processing unit will be used more effectively, thereby generating
better solutions. Nonetheless, this approach requires a 1 minute time discretization for the
uniform discrete time formulation, which results in a drastic increase in the computational
cost. Since the non-uniform discrete formulation can use different time steps for different
processing units, it can reduce the time step for a processing unit to capture accurately
its processing time without severely increasing the computational costs. Furthermore, if a
similar objective function value is required from the continuous time formulation, it will
require many time points, which in return will increase the computational costs to a point
where even finding a feasible solution will be computationally prohibitive.

On the other hand, when all the processing units have processing times in the same
order of magnitude, e.g., hours, then the non-uniform discrete formulation, with time step
equal to processing time for each processing unit, loses its key advantage gained through
non-uniform time discretization. Therefore, with a relatively small time step, e.g, 10
minutes, when the processing times are in the order of hours, the uniform discrete formu-

44

lation is able to produce better solutions compared to its non-uniform discrete counterpart.
Furthermore, such a situation usually requires less time points for the continuous time for-
mulation and therefore, it is able to generate better solutions. e.g., instances 5-4-II, 7,8,II
where the continuous time formulation produced a better solution than the non-uniform
discrete time formulation.

3-2-I 4-3-I 5-4-I 6-6-I 7-8-I 8-9-I 3-2-II 4-3-II 5-4-II 6-6-II 7-8-II 8-9-II

0

0.2

0.4

0.6

0.8

1

1.2

1.4
·104

Instance

O
b

je
ct

iv
e

F
u

n
ct

io
n

V
al

u
e

Non− Uniform

Uniform

Continuous

Figure 4.1: Objective Function Value Comparison

Figure 4.2 presents the number of binary variables that each formulation needed in
solving each instance, with the settings specified at the beginning of the current subsec-
tion. Figure 4.2 suggests that the continuous time formulation requires the largest number
of binary variables. This is not surprising since the model structure of the continuous

45

time formulation requires more binary variables than the other formulations. However,
it is noticeable that when dealing with type I instances, the continuous time formulation
requires a surprisingly high number of binary variables compared to the non-uniform dis-
crete formulation. This observation may explain, to some extent, the reason as to why the
continuous time formulation struggles with generating reasonably good feasible solutions
for that type of instances.

3-2-I 4-3-I 5-4-I 6-6-I 7-8-I 8-9-I 3-2-II 4-3-II 5-4-II 6-6-II 7-8-II 8-9-II
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

·104

Instance

N
u

m
b

er
of

B
in

ar
y

V
ar

ia
b

le
s

Non− Uniform

Uniform

Continuous

Figure 4.2: Number of binary Variables Comparison

The uniform discrete time formulation shows the least amount of fluctuation in the num-
ber of binary variables when dealing with the two types of instances. This is not surprising
since a uniform time discretization treats different instances in a similar way, regardless of

46

the specific characteristics of each instance. This indifference to the characteristics of the
instances hampers the effectiveness of the formulation in dealing with the instances that
include processing units with small processing times, namely type I instances.

As shown in Figure 4.2, the number of binary variables used in the non-uniform discrete
formulation suggests that in dealing with type II instances, it uses the least number of
binary variables compared to the other two formulations. Moreover, Figure 4.1 shows that
the performance of the non-uniform discrete formulation is inferior to the uniform discrete
time formulation in dealing with type II instances. This further supports the need for more
sophisticated time discretization schemes for the non-uniform discrete time formulation.

The number of binary variables used in a formulation not only affects the accuracy of
the formulation, but it also affects the solution time. Figure 4.3 presents the optimality gap,
reported at the end of the maximum allowed solution time, for specific settings specified
for each formulation at the beginning of the subsection.

47

3-2-I 4-3-I 5-4-I 6-6-I 7-8-I 8-9-I 3-2-II 4-3-II 5-4-II 6-6-II 7-8-II 8-9-II

0

5

10

15

20

25

30

35

N/R

Instance

O
p

ti
m

al
it

y
G

ap
Non− Uniform

Uniform

Continuous

Figure 4.3: Optimality Gap Comparison

A few observations can be made through the results from Figure 4.3. First, when dealing
with instances that require a large number of time points, the continuous time formulation
results in very large number of binary variables and struggles with closing the optimality
gap. This should not be attributed to the inefficiency of the particular continuous time
formulation used in this analysis, since other continuous time formulations, when dealing
with such large instances, have also struggled with closing the optimality gap [38, 22]. This
struggle should not be interpreted as a direct relationship between the number of binary
variables and optimality gap in general. To further support this point, one can look at
the optimality gap for the non-uniform discrete formulation. Figure 4.2 shows that the
non-uniform discrete time formulation has more binary variables than its uniform discrete
counterpart, when dealing with type I instances. However, Figure 4.3 shows that the non-

48

uniform discrete formulation ends up with considerably smaller optimality gap, at the end
of the 20 minutes, in all type I instances.

To further investigate these observations, Table 4.5 provides a closer look into the value
of the LP relaxation at the root node of the branch-and-bound tree for each of the three
formulations as well as the final branch-and-bound upper bound on the objective function
value for each formulation after the time limit has been reached. The columns of the table
are as follows: RLP represents the objective function value of the root LP relaxation,
while IMP represents the improvement in the upper bound between the two terms and is
calculated as follows:

RLP − UB
UB

Continuous Uniform Discrete Non-uniform Discrete
Ins. RLP UB IMP RLP UB IMP RLP UB IMP

3-2-I 2600 2591.3 0.3 % 2600 2597.8 .08% 2600 2548.8 2%
4-3-I 4099.3 4099.2 0.002% 3239.3 3138.3 3.21% 3664.2 3553.1 3.12%
5-4-I 5694.3 5694.2 0.001% 5686.9 5616.8 1.24% 5800 5727.8 1.27%
6-6-I 8712.8 8712.8 0.0% 8975.1 8872.5 1.15% 8984.5 8766 2.49%
7-8-I 10344.6 10344.6 0.0% 6861.8 6752.6 1.62% 10749 10684.8 0.6%
8-9-I 13017 13016.9 0.001% 11120.1 10875.4 2.25% 13346.8 13145.6 1.67%
3-2-II 2600 2564.5 1.38% 2600 2560.2 1.54% 2600 2550.3 1.95%
4-3-II 4100 4070.3 0.73% 4100 4066.4 0.83% 4100 3984.9 2.9%
5-4-II 5764 5759.3 0.08% 5025 4739.6 6.02% 4057.4 3872.5 4.77%
6-6-II 8095.9 8036.6 0.73% 7433.3 7373.5 0.81% 6496.3 6213.8 4.55%
7-8-II 8933 8887.1 0.51% 8672.9 8483.8 2.23% 8351.7 8172.5 2.2%
8-9-II 8107.66 8080.3 .33% 9162.8 9008.8 1.7% 7160.5 6844.7 4.61%

Table 4.5: LP Relaxation Results

The results from the IMP column show that, for both types of instances, the contin-
uous time formulation consistently performs inferior to its discrete time counterparts in
improving the LP relaxation upper bound. This phenomenon to some extent explains the
struggle of the continuous time formulation with closing the optimality gap. Furthermore,
it can be noticed that the ability of the continuous time formulation to reduce the LP
upper bound decreases when the size of the instance, and subsequently the number of time
points needed for solving the instance, increase.

49

4.3 Chapter Summary

This chapter delivered the desired comparison between flexible discrete, with both uniform
and non-uniform time discretizations, and continuous time formulation in the context of
a proper case study. Several instances that closely resembled the operations of an actual
analytical services were solved through both formulations. The best results obtained for
each instance through each formulation were fully studied and compared against each
other in terms of the quality of the objective function, number of binary variables and
computational complexity. At the end, meaningful insights were given on the reasons
behind the behavior of each of the formulations.

50

Chapter 5

Conclusion and Recommendations

This thesis aims at studying the effects of the manner of time representation in scheduling
of operations. Performing such a study can be properly done in the context of a cohesive
case study. Thus, scheduling of operations in an analytical services facility was chosen as
the venue for performing the case study. This thesis focuses on both developing novel and
competitive discrete and continuous time formulations to model the operations of an ana-
lytical services facility as well as comparing the performance of the proposed formulations.
The findings and the merits of this study is discussed in Section 5.1 while the scope of
future work and possible research areas is discussed in section 5.2.

5.1 Conclusions

Since none of the existing continuous time formulations in the literature could be readily
applied to model the operations of an analytical services facility, there was a need to de-
velop one for the study to be carried out. This thesis presents a novel continuous time
formulation for scheduling of operations at an analytical services facility. The formulation
is able to incorporate and use multitasking capability of machines in an analytical services
facility. The result of incorporating this capability is a more efficient use of the machines,
which increases the throughput of the facility. This means that the multitasking capability
of the machines in the facility is an important feature that, if overlooked, would heavily
compromise the quality of the solutions. A potential drawback of incorporating such fea-
tures would be an increase in the complexity and solution time of the formulation. However,
the computational results presented in section 2.3 suggest that the presented formulation
does not have such a drawback since the computational cost of the model in comparison to

51

one of the most widely used singletasking models is negligible. The proposed formulation
is able to solve problems of size comparable to other continuous time formulations, to near
optimality within a solution time budget of 20 minutes, which is promising. In conjunction
with multitasking in the machines, the presented formulation is capable of incorporating
other technical issues that arise from the situation where processing some of the samples
does not finish within the predetermined scheduling horizon.

At the next step, this thesis presents a comparison between a flexible discrete time
formulation, with both uniform and non-uniform time discretization, and a continuous
time formulation in the context of short-term scheduling of operations in an analytical
services facility. Because of the lack of multitasking flexible discrete time formulations,
a flexible discrete time formulation that was capable of modeling the operations of an
analytical services facility was developed.

The flexible discrete time formulation with non-uniform time discretization, generates
the best results for instances where there is high variability in the processing time of the
processing units. However, this approach struggles when encountering situations where
the processing times of the processing units are in the same order of magnitude. The
continuous time formulation results in better solutions for smaller instances, specifically
the smaller instances where the processing times are more or less in the same order of
magnitude (essentially requiring small number of binary variables), while the non-uniform
discrete formulation with a uniform discretization of time results in better solutions for
larger instances of this type. Hence, the computational results suggest that the flexible
discrete time formulation is better equipped to deal with larger instances and when the
size of the instances increase, it can consistently generate better solutions compared to the
continuous time formulation, which is in contrast to some of the previous results reported in
the literature on comparing the performance of discrete (without flexible time discretization
capability) and continuous time formulations [37]. This is further proof of the effectiveness
of flexible discrete time formulations, calling for more investigations to be done on such
formulations. However, one must notice that this is limited to the scope of the study
performed in the current work and different studies on other problems might yield different
conclusions.

5.2 Recommendations

In terms of future research, there are multiple directions to take. One such direction would
be to explore alternatives that would improve the solution time for the continuous time
formulation. Continuous time formulations are by nature more accurate than discrete

52

time formulations. The continuous time formulation’s optimality gap for larger instances,
juxtaposed with the formulation’s better performance for smaller instances, suggests that
if the solution time of the formulations could be improved, the formulation could produce
better solutions compared to discrete formulations in general. Such improvements could be
achieved either by development of formulations with a smaller number of binary variables or
through improvement in the solution algorithms for the current formulation, by tightening
the LP relaxations of the current formulations. The literature of the continuous time
formulations appear to be heavily invested in developing better formulations, in terms
of the number of binary variables, but it appears that exploring the improvement of the
current solution algorithms might also have a large impact on the performance of these
formulations.

To shed more light on this issue, consider the following continuous time formulation’s
constraint, Constraint (2.22), which regulates the length of the time slots and as a result,
determines the location of the time points and is present, in more or less similar formats,
in many other continuous time formulations.

TRij(n+1) ≥ TRijn + τ(p)Yijn − SLn+1; ∀ p ∈ P, j ∈ Jp, i ∈ Ij, n = 0, . . . , N.

This is the main constraint responsible for regulating each individual time slot and it
is heavily dependent on the value of a binary variable, Yijn. When the binary variable has
a fractional value close to zero in the LP relaxation, and has value 1 in the optimal MILP
solution, the location of the time points marking the beginning and the end of the time
slot is widely different in the LP relaxation compared to the optimal MILP solution. This
seems to result in larger solution times and making the formulation struggle in closing the
optimality gap. Furthermore, many of the constraints in continuous time formulations are
Big-M type constraints, which are notoriously bad for solving integer programs efficiently
and should be strengthened as much as possible.

Another research direction is to explore other time discretization schemes for the non-
uniform discrete formulations. In the context of this study, two different time discretization
schemes were explored, i.e uniform and non-uniform time discretization, with the processing
time of each processing unit as the time step of that processing unit for the non-uniform
discretization approach. It was shown that each one of the schemes works better for
particular type of instances. The flexible discrete time formulation provides a platform for
many different time discretization schemes to be used. Thus, it would be worth exploring
sophisticated time discretization schemes that take the specific situation of each instance
more into account and compare their performance against the schemes used in this work.

53

One interesting scheme for discretization of time would be an iterative algorithm that
would start with a relatively inaccurate time discretization that results in a small MILP
problem and then, based on the solutions obtained from solving this small MILP problem,
it could add extra time points wherever it is deemed to result in better solutions. Devising
such a scheme could prove very useful, specifically if one could devise the algorithm in such
a way that refining the discretization would be performed through solving several small
MILP problems as opposed to solving a very large one, similar to the idea of dynamic time
discretization proposed by Boland et al [3]. Furthermore, Merchan et al [28] developed sev-
eral tightening methods for flexible discrete time formulations, and it would be interesting
to combine their methods with dynamic time discretization methods used by Boland et al
[3].

Furthermore, another research avenue to explore is the implementation of the schedules
obtained through flexible discrete and continuous time formulations in an actual analytical
services facility and monitor the challenges that lay ahead in implementing them. This is
specifically important in the case of the flexible discrete formulation where it is possible
to have multiple time discretization schemes that each one would have its own specific
benefits and challenges.

54

References

[1] S. C. Aggarwal. A focussed review of scheduling in services. European Journal of
Operational Research, 9(2):114–121, 1982.

[2] M. H. Bassett, J. F. Pekny, and G. V. Reklaitis. Decomposition techniques for the
solution of large-scale scheduling problems. American Institute of Chemical Engineers
Journal, 42(12):3373–3387, 1996.

[3] N. Boland, M. Hewitt, M. Duc Vu, and M. Savelsbergh. Solving the traveling sales-
man problem with time windows using time-expanded networks, 2016. Talk pre-
sented at TRISTAN. http://tristan-symposium.org/wp-content/uploads/2016/
06/TRISTAN_2016_Program_Book.pdf.

[4] E. H. Bowman. The schedule-sequencing problem. Operations Research, 7(5):621–624,
1959.

[5] P. Castro, A. P. F. D. Barbosa-Povoa, and H. Matos. An improved RTN continuous-
time formulation for the short-term scheduling of multipurpose batch plants. Industrial
& Engineering Chemistry Research, 40(9):2059–2068, 2001.

[6] J. Cerdá, G. P. Henning, and I. E. Grossmann. A mixed-integer linear programming
model for short-term scheduling of single-stage multiproduct batch plants with parallel
lines. Industrial & Engineering Chemistry Research, 36(5):1695–1707, 1997.

[7] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming. Berlin:Springer,
2014.

[8] I. T. Dedopoulos and N. Shah. Optimal short-term scheduling of maintenance and
production for multipurpose plants. Industrial & Engineering Chemistry Research,
34(1):192–201, 1995.

55

http://tristan-symposium.org/wp-content/uploads/2016/06/TRISTAN_2016_Program_Book.pdf
http://tristan-symposium.org/wp-content/uploads/2016/06/TRISTAN_2016_Program_Book.pdf

[9] A. Elkamel, M. Zentner, F. Pekny, and G. V. Reklaitis. A decomposition heuristic
for scheduling the general batch chemical plant. Engineering Optimization Journal,
28(4):299–330, 1997.

[10] C. A. Floudas and X. Lin. Continuous-time versus discrete-time approaches for
scheduling of chemical processes: a review. Computers & Chemical Engineering,
28(11):2109–2129, 2004.

[11] S. Gupta and I. A. Karimi. An improved MILP formulation for scheduling mul-
tiproduct, multistage batch plants. Industrial & Engineering Chemistry Research,
42(11):2365–2380, 2003.

[12] C. Hui and A. Gupta. A bi-index continuous-time mixed-integer linear programming
model for single-stage batch scheduling with parallel units. Industrial & Engineering
Chemistry Research, 40(25):5960–5967, 2001.

[13] C. Hui, A. Gupta, and H. A. J. van der Meulen. A novel MILP formulation for short-
term scheduling of multi-stage multi-product batch plants with sequence-dependent
constraints. Computers & Chemical Engineering, 24(12):2705–2717, 2000.

[14] M. G. Ierapetritou and C. A. Floudas. Effective continuous-time formulation for short-
term scheduling. 1. Multipurpose batch processes. Industrial & Engineering Chemistry
Research, 37(11):4341–4359, 1998.

[15] ILOG, Inc. ILOG CPLEX: High-performance software for mathematical programming
and optimization, 2014. See http://www.ilog.com/products/cplex/.

[16] I. A. Karimi and C. M. McDonald. Planning and scheduling of parallel semicontinuous
processes. 2. Short-term scheduling. Industrial & Engineering Chemistry Research,
36(7):2701–2714, 1997.

[17] E. Kondili, C.C. Pantelides, and R. W. H. Sargent. A general algorithm for short-
term scheduling of batch operations-I. MILP formulation. Computers and Chemical
Engineering, 17:211–227, 1993.

[18] S. Lagzi, R. Fukasawa, and L. A. Ricardez-Sandoval. A computational study of con-
tinuous and discrete time formulations for short-term scheduling of operations in mul-
tipurpose plants. Submitted to European Journal of Operational Research, 2016.

[19] S. Lagzi, R. Fukasawa, and L. A. Ricardez-Sandoval. A novel continuous time formu-
lation for short-term scheduling of operations in multipurpose plants. Submitted to
Computers & Chemical Engineering, 2016.

56

http://www.ilog.com/products/cplex/

[20] K. Lee, S. Heo, H. Lee, and I. Lee. Scheduling of single-stage and continuous processes
on parallel lines with intermediate due dates. Industrial & Engineering Chemistry
Research, 41(1):58–66, 2002.

[21] K. Lee, H. Park, and I. Lee. A novel nonuniform discrete time formulation for short-
term scheduling of batch and continuous processes. Industrial & Engineering Chem-
istry Research, 40(22):4902–4911, 2001.

[22] J. Li, X. Xiao, Q. Tang, and C. A. Floudas. Production scheduling of a large-scale
steelmaking continuous casting process via unit-specific event-based continuous-time
models: Short-term and medium-term scheduling. Industrial & Engineering Chemistry
Research, 51(21):7300–7319, 2012.

[23] X. Lin and C. A. Floudas. Design, synthesis and scheduling of multipurpose batch
plants via an effective continuous-time formulation. Computers & Chemical Engineer-
ing, 25(4):665–674, 2001.

[24] A. S. Manne. On the job-shop scheduling problem. Operations Research, 8(2):219–223,
1960.

[25] C. A. Méndez and J. Cerdá. An MILP-based approach to the short-term scheduling
of make-and-pack continuous production plants. OR Spectrum, 24(4):403–429, 2002.

[26] C. A. Méndez, G. P. Henning, and J. Cerdá. Optimal scheduling of batch plants
satisfying multiple product orders with different due-dates. Computers & Chemical
Engineering, 24(9):2223–2245, 2000.

[27] C. A. Méndez, G. P. Henning, and J. Cerdá. An MILP continuous-time approach
to short-term scheduling of resource-constrained multistage flowshop batch facilities.
Computers & Chemical Engineering, 25(4):701–711, 2001.

[28] A. F. Merchan, H. Lee, and C. T. Maravelias. Discrete-time mixed-
integer programming models and solution methods for production schedul-
ing in multistage facilities. Computers & Chemical Engineering, 2016.
http://dx.doi.org/10.1016/j.compchemeng.2016.04.034.

[29] L. Mockus and G. V. Reklaitis. Mathematical programming formulation for scheduling
of batch operations based on nonuniform time discretization. Computers & Chemical
Engineering, 21(10):1147–1156, 1997.

57

[30] S. Moon, S. Park, and W. K. Lee. New MILP models for scheduling of multiproduct
batch plants under zero-wait policy. Industrial & Engineering Chemistry Research,
35(10):3458–3469, 1996.

[31] S. Mouret, I. E. Grossmann, and P. Pestiaux. A novel priority-slot based continuous-
time formulation for crude-oil scheduling problems. Industrial & Engineering Chem-
istry Research, 48(18):8515–8528, 2009.

[32] S. Orcun, I. K. Altinel, and Ö. Hortaçsu. General continuous time models for pro-
duction planning and scheduling of batch processing plants: mixed integer linear
program formulations and computational issues. Computers & Chemical Engineering,
25(2):371–389, 2001.

[33] C. C. Pantelides. Unified frameworks for optimal process planning and scheduling.
In Proceedings on the second conference on foundations of computer aided operations,
pages 253–274. Cache Publications, New York, 1994.

[34] B. P. Patil, R. Fukasawa, and L. A. Ricardez-Sandoval. Scheduling of operations in a
large-scale scientific services facility via multicommodity flow and an optimization-
based algorithm. Industrial & Engineering Chemistry Research, 54(5):1628–1639,
2015.

[35] J. F. Pekny and M. G. Zentner. Learning to solve process scheduling problems: The
role of rigorous knowledge acquisition frameworks. In Proceedings of the Second Inter-
national Conference on Foundations of Computer-Aided Process Operations, Crested
Butte, Colorado, pages 275–309, 1993.

[36] N. Shah, C. C. Pantelides, and R. W. H. Sargent. A general algorithm for short-
term scheduling of batch operations-II. Computational issues. Computers & Chemical
Engineering, 17(2):229–244, 1993.

[37] H. Stefansson, S. Sigmarsdottir, P. Jensson, and N. Shah. Discrete and continuous time
representations and mathematical models for large production scheduling problems:
A case study from the pharmaceutical industry. European Journal of Operational
Research, 215(2):383–392, 2011.

[38] A. Sundaramoorthy and I. A. Karimi. A simpler better slot-based continuous-time
formulation for short-term scheduling in multipurpose batch plants. Chemical Engi-
neering Science, 60(10):2679–2702, 2005.

58

[39] A. Sundaramoorthy and C. T. Maravelias. Computational study of network-based
mixed-integer programming approaches for chemical production scheduling. Industrial
& Engineering Chemistry Research, 50(9):5023–5040, 2011.

[40] S. Velez and C. T. Maravelias. Multiple and nonuniform time grids in discrete-time
MIP models for chemical production scheduling. Computers & Chemical Engineering,
53:70–85, 2013.

[41] S. Wang and M. Guignard. Redefining event variables for efficient modeling of
continuous-time batch processing. Annals of Operations Research, 116:113–126, 2002.

[42] K. L. Yee and N. Shah. Improving the efficiency of discrete time scheduling formula-
tion. Computers & Chemical Engineering, 22:403–410, 1998.

[43] M. G. Zentner, J. F. Pekny, G. V. Reklaitis, and J. N. D. Gupta. Practical con-
siderations in using model-based optimization for the scheduling and planning of
batch/semicontinuous processes. Journal of Process Control, 4(4):259–280, 1994.

[44] X. Zhang and R. W. H. Sargent. The optimal operation of mixed production facilities.
part a. general formulation and some solution approaches for the solution. Computers
and Chemical Engineering, 20:897–904, 1996.

59

	List of Tables
	List of Figures
	Introduction
	Literature Review
	Thesis objectives and contributions
	Problem definition
	Thesis Structure

	Continuous Time Formulation
	Formulation
	Illustrative Instance
	Comparative Study of Multitasking
	Chapter Summary

	Flexible Discrete Time Formulation
	Formulation
	Illustrative Instance
	Chapter Summary

	Comparison of the Formulations
	Computational Results
	Results: Comparison and Discussion
	Chapter Summary

	Conclusion and Recommendations
	Conclusions
	Recommendations

	References

