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Abstract

Resource Description Framework (RDF) is a graph-like data model designed for the
web. One of its compelling features is a precise, model-theoretic semantics. We address
security in the context of the RDF. We �rst observe that the problem of securing RDF is
related closely to the more traditional problem of securing graphs. Consequently, before
we address security for RDF, we make broader contributions to security in the context of
graphs. Speci�cally, we reconcile four di�erent notions of security that have been proposed
in prior work, and compare them from the standpoint of strength of security � whether
satisfaction of one implies satisfaction of another. We then ask whether strength of security
is correlated to computational complexity. We make the somewhat surprising observation
that the answer to this question is, �no.� We then extend the two strongest notions of
security in a natural way for RDF. We establish results on RDF's semantics that then
gives us a way of meaningfully quantifying the loss of information from security. Thus, for
RDF, we are able to pose the natural trade-o� between information-quality and security
in a precise way. We show that a corresponding decision problem is NP-complete, and
with a reduction to Cnf-Sat that we have designed and implemented, present empirical
results on realistic data. Our empirical results show interesting relationships between the
various parameters, such as the size of the graph versus the information-loss, to achieve a
particular level of security.
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Chapter 1

Introduction

In this work, we relate two heretofore distinct topics of research in information security:
isomorphism-based anonymization of graphs [24, 27, 28], and semantics-preserving security
for the Resource Description Framework (RDF) [9]. In doing so, we make contributions
to both. Our intent is to leverage the former for the latter. We discuss our contributions
below, under `Our contributions.'

Graphs and a need for security Graphs are powerful abstractions for representing
information. They are used in various contexts, at all levels of hardware and software,
from modeling digital Integrated Circuits (ICs), to networks and state machines, and so-
cial relationships. Not only are graphs useful as an abstraction, some data can be more
naturally stored, and e�ciently queried for and retrieved as a graph, rather than, for ex-
ample, relational database tables. Indeed, there exist database implementations such as
Apache Jena [13] that support such graph-based data storage and retrieval.

Notwithstanding how data is modeled and stored, access to it can con�ict with the
security and privacy of individuals and organizations to whom the data pertains. This is
documented extensively in the research literature in security. In the context of graphs, an
example is the work of Narayanan and Shmatikov [17], which observes that social-network
data that is modeled as a graph can be de-anonymized from the `structure' of the graph
only. Their work has led to proposals of security notions that protect graphs against
structural attacks � for example, the work of Zhou and Pei[27] and Wu et al. [24].

Another example, in the rather di�erent context of securing digital ICs, is the work of
Imeson et al. [10]. In that work, the threat model is that of a manufacturer that injects
malicious logic into the IC. Perceiving the IC as a graph is a �rst step in devising a manner
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(a) (b) (c)

Figure 1.1: Three graphs that help illustrate the four Isomorphism-based notions of security
for graphs that we consider. Graphs (a) and (b) are both automorphic. In addition, apart
from the identity mapping, there is a mapping between vertices in both graphs such that
no vertex is mapped to itself. Graph (a) is subgraph-isomorphic to Graph (b).

in which an IC can be obfuscated before being fabricated to mitigate the threat.

Isomorphism-based notions of Graph-security Common to these pieces of work
that propose notions of security in the context of graphs, is that they are based on variants
of graph isomorphism (Iso). Two graphs G = 〈Vg, Eg〉 and H = 〈Vh, Eh〉 are said to be
isomorphic when there exists an invertible mapping m : Vg → Vh such that 〈u, v〉 ∈ Eg
if and only if 〈m(u),m(v)〉 ∈ Eh. (Our notation is customary: Vg and Vh are the sets of
vertices of G and H respectively, and Eg and Eh are their sets of edges.)

A graph H is subgraph isomorphic to another graph G when a subgraph of H is iso-
morphic to G. And a graph is said to be (non-trivially) automorphic if it is isomorphic
to itself via a mapping that is not the identity. In this paper, we focus on the notions of
security based on graph isomorphism that are proposed in the work of Zhou and Pei [27],
Wu et al. [24], Zou et al. [28] and Imeson et al. [10]. The �rst three propose notions that
are based on isomorphism and automorphism, and the last proposes a notion that is based
on subgraph isomorphism. We discuss them in Chapter 3; in Figure 1.1, we illustrate these
notions via examples.

As we discuss under `Graphs and a need for security' above, a motivation for considering
such isomorphism-based notions of security for graphs is the observation that when sensitive
information is represented as a graph, not only any labels on vertices and edges, but also the
structure of the graph can be revealing. This is the case because a reason for representing
information as a graph is exactly that a considerable amount of information can be stored
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in its structure. For example, when vertices correspond to the humans Alice and Bob,
it is natural to represent a relationship between them as a edge between those vertices.
Thus, even if the labels �Alice,� �Bob,� and the nature of their relationship are erased before
publication of the graph, the existence of the edge may provide su�cient information to re-
identify Alice and Bob, as prior work, for example, that of Narayanan and Shmatikov [17],
establishes.

Isomorphism-based security notions provide anonymity through indistinguishability.
Their intent is to obfuscate a graph by exploiting similarity in structure within a graph, or
across graphs. For example, if a graph comprises two or more distinct subgraphs that are
isomorphic, erasing labels and then publishing the graph may be safe. Because, for every
vertex and edge within one of those subgraphs, there is at least one other vertex and edge
from a di�erent subgraph that is identical to it in all respects. This provides anonymity
for both vertices and edges. In other words, the labels of these vertices and edges cannot
be re-discovered from the information available.

A powerful property of isomorphism-based approaches to security is that they can
provide unconditional security, i.e. the graph is secure even if the attacker has unlimited
computing resources. For example, in Figure 1.1, Graph (a) has two vertices each with
degree 1, and they are indistinguishable in every way. Therefore an attacker is unable to
tell the two vertices apart, notwithstanding the computational power she has. Indeed, some
prior work intentionally makes the attacker stronger by providing her more information.
For example, the work of Imeson et al. [10] provides the attacker with two graphs and it
is known that one is a subgraph of the other. As another example, the work of Zhou and
Pei [27] assumes that the attacker has complete knowledge of an entire `neighbourhood'
around some vertices.

Security for RDF Our interest in the security of graphs is motivated by our interest
in securing RDF [6]. RDF is a graph-based data model designed for the web. It is used in
large graph databases such as StarDog [11] and Apache Jena TBD [13]. Examples of use
of RDF to store data are DBPedia [2] and GovTrack [5]. We formally de�ne RDF graphs
below.

De�nition 1. (RDF Graph) An RDF Graph G is a set of triples of the form 〈s, p, o〉,
where s, p are Internationalized Resource Identi�er (IRI) or Blank Symbol, o is a IRI,
Literal or Blank Symbol. The component s is called a subject, p is called a predicate, and
o is called an object.

An IRI is a generalization of Universal Resource Identi�er (URI) that allows more
Unicode characters. It is used in RDF as a globally unique identi�er for an entity. It
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@prefix people: <http ://www.people.com/>.

people:amy people:gender female.

people:amy people:age 22.

_:b people:gender female.

_:b people:age 30.

Figure 1.2: An RDF graph is a set of triples

explicitly speci�es which entity the vertex represents. In other words every appearance of
the same IRI represents the same entity even in di�erent RDF graphs. A blank symbol
serves the same function as an IRI, except that it is anonymous, i.e. does not reveal
what entity it represents. On the other hand, a Literal in RDF is similar to that in
programming languages. They are syntactic representations of boolean, character, string,
or numeric values.

A triple in RDF can be interpreted as a vertex-edge-vertex relationship, and an RDF
graph is naturally represented as a directed graph with labels on both vertices and edges.
Figure 1.2 is an example of an RDF graph. In Figure 1.2, people:amy is a shorthand for
http://www.people.com/amy, which is an IRI. If the same IRI appears, even in another
RDF graph, it denotes the same entity. Similarly people:gender and people:age are IRIs.
_:b on the other hand denotes a blank node, with a random identi�er b. The edge in
an RDF triple is sometimes called a predicate, and in the o�cial RDF Semantics [9], a
predicate in an RDF graph can be only be IRI. However, ter Horst [22] introduced a
notion of Generalized RDF Graph which allows blank symbolsx to be used as the predicate
in a triple. In this work, we will use the generalized notion of RDF graph. Our result
however is applicable to the more restricted notion too.

An appealing feature of representing and storing data as RDF is that RDF has a precise
and meaningful semantics [9, 22]. The RDF semantics provides a formal speci�cation
of when truth is preserved by transformations of RDF or operations which derive RDF
content from other RDF, which is meaningful even in the context of security as we will
show in Chapter 3. Another attraction with RDF is that it comes with a de facto standard
query language: SPARQL[18], a recursive acronym for SPARQL Protocol and RDF Query
Language.

In this work, we generally present the RDF graph as literally a graph, which is a widely
accepted way of perceiving and rendering RDF. The graph that corresponds to the triples
in Figure 1.2 is shown in in 1.3. In Figure 1.4 we show a query in SPARQL, and the result
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Figure 1.3: Visualization of the RDF graph in 1.2

SELECT ?x ?y{

WHERE ?x age ?y .

FILTER (?y < 25)

}

Figure 1.4: Example SPARQL query for the graph shown in Figure 1.3, the query returns
�Amy 22�

of that query when it is issued against the RDF graph in 1.3. The meaning of the query
is straightforward: return all x and y such that �x age y� is a triple, and y is less than 25.
We see that the SPARQL syntax is similar to that of SQL. A variable in a SPARQL query
is denoted by a preceding question mark. x and y are variables in the example.

There is a considerable volume of work on securing RDF (see, for example, [12, 20, 19]).
In our assessment, there are some important gaps in such existing work. One is that prior
work lacks a precise notion of security. For example, works such as [12, 19] considered only
operations and techniques of sanitizing RDF, but not what the result of the sanitization
should be and why the result is secure.

Another gap in existing work, in our assessment, is that none deals adequately with
RDF semantics. Some pieces of work on securing RDF treat its syntactic aspects only.
When a piece of work does address semantics, the approach does not seem to meaningfully
leverage or reconcile it. Rather the approach seems to be somehow retro�t a proposed
approach for securing RDF to semantics. Certainly none of the existing pieces of work, to
our knowledge, addresses the manner in which SPARQL may behave when querying data

5



that is secured as proposed in the work.

Threat model Below is the attack model that we consider. The data holder has a graph
G and a set of vertices A from G that needs to be anonymized. Let G′ be the anonymous
version of G released to public.

We model the adversary's prior knowledge with another graph H. H is supposedly a
subgraph of G, but the exact detail of H is unknown to the owner of G.

Since H represents the information the adversary collected through other channels,
H is independent from G′, the released graph. However the adversary could potentially
combine H and G′ to discover more information about G. For example certain vertices
that are anonymous in G′ might not be so in H. If the adversary could reveal the label of
an anonymous vertex in G′ by mapping some vertices in H to some vertices in G′, he/she
will be able to discover more information about that vertex than is desired. In this model
the attacker is assumed to have unbounded computational power.

Isomorphism-based security provides anonymity by makeing sure that for every vertex
v there are several other ones that are indistinguishable from v, with all the information
available. This lowers the chance that v is correctly re-identi�ed, because the attacker
would have to make a blind guess from the possible options. Let L be the event that any
vertices in A are re-identi�ed. The released graph G′ is k-secure if Pr(L|H) ≤ 1

k
for any

H. This notion requires every vertex in A to be in-di�erentiable from at least k − 1 other
vertices in G′ regardless of the adversary's prior knowledge. Note that the vertices in A
does not even need to be present in G′. For example if we remove the presence of all
vertices from A in G′, G′ would be k-secure as Pr(L|H) = 0.

Besides the notions that provide security through indistinguishability, there exists an-
other mainstream notion of data security, which is called di�erential privacy [7]. However,
di�erential privacy focuses on providing accurate statistics of the data, without revealing
the original data, whereas in our model, the entire graph is released, and the security
notions does not need to guarantee the accuracy of summary statistics.

Our contributions We make two sets of contributions. The �rst comprises broad con-
tributions to isomorphism-based approaches to securing graphs. The second is to securing
RDF in a manner that preserves semantics.

Contribution 1 We �rst assess, in a uni�ed way, four seemingly di�erent notions of
isomorphism-based security in the context of graphs, that have been proposed in two
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di�erent application domains. We �rst pose and answer the following question: is a partic-
ular notion stronger than another? Our characterization of stronger is precise. A notion is
at least as strong as another if satisfaction of the former implies satisfaction of the latter.
It is stronger if the converse is not necessarily true. We show that indeed, it is possible to
�layer� the four notions in this regard (see Figure 2.1 in Chapter 2).

Then, we pose and answer a natural follow-up question: is strength of security correlated
to computational complexity? That is, suppose a notion of security, N , is stronger than
another notion, M . Is determining whether a graph satis�es N at least as computationally
hard as determining whether it satis�esM? One might expect the stronger security notion
to be harder to decide. We discover somewhat surprisingly however, that it is not be the
case.

For example, as we show in Figure 2.3 in Chapter 2, the notion k-Symmetry is
stronger than k-Subgraph-Iso. Yet, determining whether a graph satis�es the former
is ISO-complete, and the latter is NP-complete. ISO is the set of problems that have
polynomial time reductions to the problem of Iso. A problem is ISO-hard if it can be
reduced to from Iso. ISO-complete is the class of problems that are in ISO and ISO-hard.
NP is the class of decision problems for which there exist non-deterministic polynomial-
time algorithms. It is known that ISO ⊆ NP, and believed widely that the inclusion is
strict [16]. That is, a problem that is ISO-complete is believed to be strictly easier, in the
worst-case, than a problem that is NP-complete.

These �ndings are important because they help us choose an appropriate notion of
isomorphism-based security when information is represented as a graph. The two distinct
axes, strength and computational hardness, are important considerations in the choice. In
this work, for RDF, we pick the two strongest notions: k-symmetry and k-automorphism.

Contribution 2 We adapt k-symmetry and k-automorphism to RDF. This adaptation is
a generalization because an RDF graph generalizes a graph. In the context of RDF, we
address the problem of preserving as much information as possible while making an RDF
graph secure. For this purpose we propose that the secured graph should be entailed by the
original graph. The exact de�nition of entailment is discussed in Chapter 3, but informally
the entailment relationship ensure that the secured graph is semantically consistent with
the original graph, e.g. the information of the secured graph does not deviate from the
original graph. Moreover we measure the cost of security quantitatively by the distance
between original graph and secured graph on the lattice induced by entailment. This
measurement allows us to minimize the cost, while ensuring security.

With the information taken into consideration, we then address the problem of securing
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an RDF graph so it possesses a chosen security property. We prove that achieving k-
automorphism with the information constraint in RDF is NP-complete, and provide a
Cnf-Sat encoding for the problem.

Organization The remainder of our paper is organized as follows. In Chapter 2 we con-
duct a comparative study over isomorphism-based security notions. The security notions
of our choice are then adapted for RDF in Chapter 3, where we also address the matter
of preserving information while achieving security in the context of RDF. The discussion
in Chapter 3 results in a Cnf-Sat encoding, which is used to evaluate the e�ectiveness of
our security notions in Chapter 4. Prior works are discussed in Chapter 5.
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Chapter 2

Isomorphism-Based Security

In this chapter, we characterize the four di�erent isomorphism-based notions of security of
which we are aware, and that we consider in this work. These notions have been proposed
in prior work in two di�erent contexts: social networks[24, 27, 28], and the security of
digital ICs [10].

In Chapter 1, we introduce graph isomorphism, automorphism and subgraph isomor-
phism. For example, in Figure 1.1, Graph (a) is (non-trivially) automorphic, and it is
subgraph-isomorphic to Graph (b). Given these basic characterizations, we now de�ne
the properties that underlie the four notions of security we consider. We begin with
k-subgraph-isomorphism.

De�nition 2. ( k-subgraph-isomorphism) Given 〈H,G, k〉, where H,G are graphs with G
a sub-graph of H, and k an integer, H is k-subgraph-isomorphic to G if and only if for
each vi ∈ G there exist k di�erent subgraph isomorphisms fi,1, . . . , fi,k from H to G such
that f−1i,m(vi) 6= f−1i,n (vi) if m 6= n.

Subgraph isomorphisms are partial functions from the set of vertices in H to the set
of vertices in G. That is, a subgraph isomorphism f maps only a subgraph of H to G,
and therefore f may not be de�ned for all vertices in H. However for every vertex v in G,
there must be a vertex v′ that f(v′) = v by de�nition of isomorphism. That is the reason
why we use f−1 in the above de�nition.

As the above de�nition mentions two graphs, H and G, and in our threat model that
we discuss in Chapter 1 we discuss the protection of one graph only, it is important to
point out the manner in which k-subgraph-isomorphism has been employed for security.
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The intent of Imeson et al. [10] is that G is known to be a subgraph of H and the asset
they seek to secure. Although H and G are both available to the attacker, H is perceived
to be �xed and publicly known, therefore it's only possible to enforce a security property
on G. Why they model it this way is speci�c to the application that Imeson et al. [10]
consider and we refer the reader to that work for the details. Our point here is that when
we discuss what we call the strength of security in the next section it is important to
identify the graph that we seek to protect.

If we take k-subgraph-isomorphism out of its original context and look at it under our
threat model discussed in Chapter 1, it provides a strong security guarantee: even if the
adversary's prior knowledgeH is a superset of the released graphG, the anonymous vertices
in G still cannot be uniquely identi�ed.

Next, we de�ne what we call k-symmetry and k-automorphism. In this regard, some
clari�cation of the terms is needed. The k-automorphism notion, to our knowledge, was
�rst proposed by Zou et al. [28]. In that work, after proposing a notion of security that they
call k-automorphism, they attach to it an additional condition that they call the �di�erent
match principle�. Their work deals exclusively with k-automorphism with the di�erent
match principle.

The property of k-symmetry is from the work of Wu et al. [24]. That work simply
drops the quali�cation �with the di�erent match principle� in referring to the work of
Zou et al. [28]. We adopt the approach of Wu et al. [24], and simply call the property
k-automorphism, without quali�cation. We discuss the distinction between k-symmetry
and k-automorphism once we de�ne the two.

De�nition 3. (k-symmetry [24]) Given 〈G, k〉 where G is a graph and k an integer, G is
k-symmetric if and only if for each vertex vi in G there exist k−1 di�erent automorphisms
fi,1, ..., fi,k−1 such that (a) fi,m(vi) 6= fi,n(vi) if m 6= n, and (b) fi,j(vi) 6= vi.

De�nition 4. (k-automorphism [28]): Given 〈G, k〉 where G is a graph and k an integer, a
graph G is k-automorphic if and only if there exist k−1 di�erent automorphisms f1, ..., fk−1
for G such that the following two properties are satis�ed by all v ∈ G: (a) fi(v) 6= fj(v)
for all distinct pairs i, j, and, (b) fi(v) 6= v for all i.

The di�erence between k-symmetry and k-automorphism is somewhat nuanced. In the
former, it su�ces that for each vertex, k di�erent functions exist. Thus, the k functions
may be di�erent for each vertex. In k-automorphism, on the other hand, the same set
of k functions must apply to all vertices. Certainly, if a graph is k-automorphic, it is k-
symmetric. Wu et al. [24] articulate the question as to whether the converse is true, and
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leave it open. Addressing that question is beyond the scope of our work. In Lemma 4 of
Section 2.1 we provide some evidences that a graph that is k-automorphic is not necessarily
k-symmetric. However it should be noted that we are unaware of any graph that is k-
symmetric, but not k-automorphic.

In Figure 1.1, both Graphs (a) and (b) are 2-automorphic and 2-symmetric. Indeed,
Graph (b) is 4-automorphic and 4-symmetric. However, to demonstrate 2-symmetry for
Graph (a), there exist di�erent sets of functions for the di�erent vertices. That is, the set
of functions we use to establish 2-automorphism is not the only set that is available to
establish 2-symmetry.

Speci�cally, in Graph (b) in Figure 1.1, suppose we name the two vertices of degree
1, a and b. And the two vertices of degree two, c and d. Then, the identity mapping,
and the automorphism that maps a to b, b to a, c to d, and d to c establish that Graph
(b) is 2-automorphic. In addition to these functions, the function that maps a and b to
themselves, and c and d to one another, may be used as one of the functions to establish
2-symmetry for c, d.

In summary, there do appear to be some di�erences between k-symmetry and
k-automorphism. However, whether these di�erences are of any consequence in our con-
text is an open question. We point out, in the next section on strength of security, that a
resolution to this question may have implications to the strictness of containment of Iso
in NP.

We now de�ne the property that underlies the fourth isomorphism-based notions we
consider. It is k-subgraph-isomorphism.

De�nition 5. ( k-neighbourhood-isomorphism [27]) Given a graph G = (V,E) and integers
k, we say a vertex u ∈ V is k-neighbourhood-isomorphic in G if there are k − 1 other
vertices v1, ..., vk−1 ∈ G such that neighbour(v1), . . . , neighbour(vk−1) and neighbour(u) are
isomorphic, where neighbour(v) is the subgraph of G induced by the set of vertices within
distance 1 to v. The graph G is k-neighbourhood-isomorphic if every vertex in G is k-
neighbourhood-isomorphic.

The function neighbour : V −→ G used in the above de�nition denotes what is called
the d-neighbourhood of vertex v in [27]. The d-neighbourhood of a vertex v in a graph
is the subgraph of G that contains all vertices within distance d to v, including v itself,
and all edges in G that connect these vertices. The work of Zhou and Pei [27] is focused
on 1-neighbourhood only, therefore we will follow their conventions, and assume d = 1
unless otherwise speci�ed. Moreover, what we call k-neighbourhood-isomorphism is called
k-anonymity in their work. We adopt our nomenclature to more clearly identify the notion,

11



and because the term k-anonymity has been used extensively in the altogether di�erent
context of relational tables.

In Figure 1.1, Graph (c) is 3-neighbourhood-isomorphic. That is, if we look at the
subgraph within distance 1 of each vertex, there exist two other subgraphs to which
it can map. However the graph is not 2-symmetric because the rightmost two ver-
tices cannot be mapped to anything but themselves in an automorphism. Note that
k-neighbourhood-isomorphism imposes a stricter restriction than merely considering the
degree of a vertex. We refer the reader to the work of Zhou and Pei [27] for a more detailed
discussion.

2.1 Relative Strength of Security

We now compare the four notions we introduce in the previous sections from the standpoint
of what we call strength of security. What we mean by strength of security is the following.
Suppose a graph G satis�es one of the four notions, N , does it necessarily satisfy another,
M? That is, logical implication. If so, we say that the property N is at least as strong as
M . We write this as N =⇒ M . If the converse is not necessarily true, We write this as
M 6=⇒ N , and say that N is stronger than M .

The reason such a comparison is meaningful, is that in our context, it helps us choose
a particular notion as the underlying notion of security. Indeed, in our application to RDF
(see Chapter 3), part of our reason for the choice of k-symmetry and k-automorphism is
based on the results we present in this section on strength of security.

To our knowledge, no prior work places all four of these isomorphism-based notions of
security in the same context. Therefore, to our knowledge, the results in this section are
novel. Figure 2.1 summarizes the results we establish in this section.

k-symmetry vs. k-subgraph-isomorphism We �rst show that k-symmetry is at
least as strong k-subgraph-isomorphism, and strictly so. In this context, we recall our
discussion from the last section on the graph that is the asset to be protected in
k-subgraph-isomorphism. Because the notion of k-subgraph-isomorphism mentions two
graphs: H and G. The asset is G. Therefore, in the following theorem, we instantiate
the same graph G for both k-symmetry and k-subgraph-isomorphism, and the same value
k. We then show that if G is k-symmetric, then for every H that is a supergraph of
G, H and G must be k-subgraph-isomorphic. This is a strong guarantee in the context of
k-subgraph-isomorphism as we promise that the graph is secure no matter what super-graph
of G is known to the attacker.
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Figure 2.1: Strength of Security. The picture expresses that k-automorphism is
stronger than k-symmetry. The diamond denotes our conjecture that this relationship
is strict. k-symmetry in turn is strictly stronger than each of k-subgraph-isomorphism and
k-neighbourhood-isomorphism. k-subgraph-isomorphism and k-neighbourhood-isomorphism
are incomparable to one another.

Lemma 1. k-symmetry =⇒ k-subgraph-isomorphism.

Proof. If a graph G is k-symmetric, then for each vertex vi ∈ G there are k−1 isomorphisms
fi,1, ..., fi,k−1 from G to itself such that fi,m(vi) 6= fi,n(vi) when m 6= n, and fi,j(vi) 6= vi for
all i, j. Given any super-graph H of G, we know that there is a subgraph G′ of H that
is isomorphic to G. Let the isomorphism from G to G′ be g, then g(fi,m(vi)) 6= g(fi,n(vi))
when m 6= n because g is a bijection, and fi,m(vi) 6= fi,n(vi).

For each fi,j, de�ne a function hi,j = (g◦fi,j)−1. For each vi, there exist k subgraph iso-
morphism g−1, hi,1, . . . , hi,k−1 that satisfy the de�nition of k-subgraph-isomorphism. There-
fore given any super-graph H of G, H is k-subgraph-isomorphic to G.

In other words, if a graph G is k-symmetric, then it is k-subgraph-isomorphic to itself,
in which case any supergraph H of G is also k-subgraph-isomorphic to G.

Lemma 2. k-subgraph-isomorphism 6=⇒ k-symmetry.
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Figure 2.2: Example showing that k-subgraph-isomorphism does not imply k-symmetry.

Proof. See Figure 2.2 for a counter example. Although (b) is 2-subgraph-isomorphic to
(a), (a) itself is not 2-automorphic because the vertex in the lower left corner cannot be
mapped to another vertex under any automorphisms.

k-symmetry vs. k-automorphism We have already mentioned that k-automorphism
implies k-symmetry when de�ning these notions.

Lemma 3. k-automorphism =⇒ k-symmetry.

Before we continue to discuss the reverse, we introduce the following problems as lan-
guages.

Automorphism With 1 Restriction [16] = {〈G, v〉 where G = (V,E) and v ∈ V :
G has an automorphism f such that f(v) 6= v.}

Fixed-Point-Free Automorphism [16] = {〈G, v〉 where G = (V,E) and v ∈ V : G
has an automorphism such that ∀v ∈ V , f(v) 6= v.

Automorphism With 1 Restriction was proved to be ISO-complete, and
Fixed-Point-Free Automorphism NP-complete by Lubiw [16]. We also use
2-Symmetry (respectively 2-Automorphism) to denote the problem of deciding whether
a graph G is 2-symmetric (respectively 2-automorphic).

If a graph is k-automorphic then it is also k-symmetric. At least when k = 2, there are
evidences suggesting the other direction is not true.

Conjecture 4. k-symmetry 6=⇒ k-automorphism.
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We can show that there exists a Cook reduction from 2-Symmetry to
Automorphism With 1 Restriction: given graph G = (V,E) as input for
2-Symmetry, we simply solve Automorphism With 1 Restriction with the input
〈G, v〉 for each vertex v ∈ V . We have G ∈ 2-Symmetry if and only if 〈G, v〉 ∈
Automorphism With 1 Restriction for each v ∈ V by de�nition.

Because Automorphism With 1 Restriction is known to be ISO-complete, the
above reduction means 2-Symmetry is no harder than the Iso problem. However, when
2-Automorphism is equivalent to Fixed-Point-Free Automorphism, which is known
to be NP-complete.

We already know that k-automorphism =⇒ k-symmetry. If k-symmetry =⇒
k-automorphism, then 2-Symmetry is equivalent to 2-Automorphism. This would mean
that Iso is in the class of NP-complete problems. This is the converse of common be-
lief [16], therefore we conjecture that k-Symmetry and k-Automorphism are not equiv-
alent.

k-symmetry vs. k-neighbourhood-isomorphism

Lemma 5. k-symmetry =⇒ k-neighbourhood-isomorphism.

Proof. If G is k-symmetric, then for each v ∈ G besides the identity mapping there are
at least k − 1 other automorphisms f1, f2, ..., fk−1 from G to itself such that fm(vi) 6=
fn(vi) when m 6= n. In other words, the k − 1 vertices f1(vi), ..., fk−1(vi) would have
the same neighbourhood as vi, so vi is k-neighbourhood-isomorphic. Therefore G is also
k-neighbourhood-ismorphic. This result is valid for d-neighbourhood regardless of the value
of d.

Lemma 6. k-neighbourhood-isomorphism 6=⇒ k-symmetry.

Proof. See Figure 1.1 (c) for a counterexample. The graph is 3-neighbourhood-isomorphic,
however it is not even 2-symmetric as the 2 vertices on the right side of the graph cannot
be mapped to anything else but themselves in an automorphism.

Note that in the above theorem, if we consider d-neighbourhood where d = n − 1,
k-Neighbourhood is the same as k-Automorphism. But this is somewhat meaningless.
In particular, a key point of the work of Zhou and Pei [27] is that if a graph exhibits k-
neighbourhood-ismorphism for small d, e.g., d = 1, then it yields security. As we increase
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d, we naturally intuit that security does not decrease. So the key question is whether for
small d, we gain security. And in this context, we seek to compare this notion of security
with the others that we consider.

In the end we also point out that there is no implication relationship between
k-subgraph-isomorphism and k-neighbourhood-isomorphism. For example, although (b) in
Figure 2.2 is 2-subgraph-isomorphic to (a), (a) is not 2-neighbourhood-isomorphic. The
other direction is also easy to show as (c) in Figure 1.1 is 2-neighbourhood-isomorphic but
not 2-subgraph-isomorphic to itself.

2.2 Computational Complexity

The results from the previous section suggest that some notions of security are stronger
than others. So a natural question we may ask is: is strength of security correlated with
computational complexity? That is, suppose notion N is stronger than M . Is determining
whether a graph G satis�es N at least as hard as determining whether it satis�esM? This
question of whether a graph satis�es a notion is fundamental to any techniques we may
want to devise to secure a graph.

For example, Zhou and Pei [27] and Imeson et al. [10] consider the problem of trans-
forming a graph so that the resultant graph has a certain level of security. But an even
more basic question, and indeed a lower-bound for the hardness of the problem of graph-
transformation, is determining whether a given graph has a certain level of security.

This is the question we consider in this section. We ask, for the four notions of security
that we consider, what the computational hardness is of determining whether a graph has
the corresponding level of security.

Somewhat surprisingly, this rather basic question has not been posed in prior works, to
our knowledge. Consequently, our results in this section are novel as well, to our knowledge.
Our results from this section are summarized in Figure 2.3.

In this section, we abuse notation and use the mnemonics k-Subgraph-Iso,
k-Symmetry, k-Automorphism and k-Neighbourhood to refer to the problem of
determing whether a graph G has each property. For each notion, we also assume that we
are provided the additional input, k. For k-Subgraph-Iso, we assume that we are also
provided H.

We �rst observe that the problem for all the four notions is in NP. This establishes an
upper-bound. Then, the question that remains is whether this upper-bound is tight.
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Lemma 7. k-Symmetry, k-Automorphism, k-Subgraph-Iso and
k-Neighbourhood are all in NP.

Proof. For all four notions, a certi�cate is a set of mappings. As k is at most the number
of vertices in the graph, the number of mappings is at worst quadratic in the size of
the graph. It is quadratic, in the worst-case, for k-Subgraph-Iso, k-Symmetry and
k-Neighbourhood. It is at worst linear for k-Automorphism. A mapping is linear
in the number of vertices. Thus, a certi�cate is e�ciently sized. It can also be veri�ed
e�ciently against each of the properties.

Next we address tighter upper-bounds for two of the notions.

Lemma 8. k-Symmetry is in ISO.

Proof. We present a Cook reduction from k-Symmetry to Iso.

Given a graph G, let G′ be a copy of G. For each v ∈ G, �nd k vertices v′ ∈ G′ such that
when v and v′ are given the same label, we can �nd an isomorphism between G and G′.
By de�nition 〈G, k〉 is in k-Symmetry if and only if we can �nd k such vertices v′ ∈ G′ for
each v ∈ G such that f(v) = v′ under some isomorphism. This process, in the worst-case,
requires O(n2) invocations of an Iso oracle. Therefore it is a Cook reduction.

Lemma 9. k-Neighbourhood is in ISO.

Proof. We provide a reduction from k-Neighbourhood to Iso.

Given 〈G, k〉 where G = (V,E), let U = V . While U is not empty, remove a vertex v
from U , �nd all vertices v′ from U such that 1-neighbourhood of v′ is isomorphic to that
of v, if there does not exist at least k − 1 other vertices with isomorphic neighbourhoods,
then return False; Otherwise remove v and all vertices with neighbourhood isomorphic to
v from U . If U is empty return True.

If the above algorithm returns True, then 〈G, k〉 ∈ k-Neighbourhood, because every
vertex would have k−1 other vertices with isomorphic neighbourhoods. Otherwise 〈G, k〉 /∈
k-Neighbourhood. Computing 1-neighbourhood takes time O(|V | + |E|) and needs to
be done for |V | vertices. Comparison of neighbourhoods requires O(n2) calls to the Iso
oracle.

Thus, under the customary assumption that ISO ⊂ NP, we know that k-Symmetry
and k-Neighbourhood are not NP-complete. We now consider lower-bounds for the
computational hardness of each problem.

17



k-AUTOMORPHISM k-Sugraph-Iso NP-complete

ISO-completek-Symmetry k-Neighbourhood

Figure 2.3: Computational Complexity for the problem of whether a graph satis�es the
four notions of security we consider. If we adopt the customary premise that ISO ⊂ NP,
then k-Symmetry and k-Neighbourhood are strictly easier than k-Automorphism
and k-Subgraph-Iso.

Lemma 10. k-Subgraph-Iso is NP-hard.

Proof. There exists a reduction from the Clique problem: Given a graph G = (V,E) and
a number k, decide if the graph contains a clique of at least size k.

Given 〈G, k〉, we create a clique of size k, and call it C. Let graph H = G ∪ C. Solve
k-Subgraph-Iso for the input 〈H,C, k + 1〉, and return whatever the Oracle returns. We
know that H is at least k-subgraph-isomorphic to C, because it contains a copy of C.
However for H to be (k + 1)-subgraph-isomorphic to C, G must also contain a copy of C,
in which case G contains a clique of size k.

Lemma 11. k-Automorphism is NP-hard.

Proof. As mentioned in Section 2.1, there exists a straightforward reduction from the
Fixed-Point-Free Automorphism problem introduced in Section 2.1. When k = 2,
k-Automorphism is equivalent to Fixed-Point-Free Automorphism. Therefore
k-Automorphism is NP-hard.

Theorem 1. k-Symmetry is ISO-hard.

Proof. We present a Cook reduction from Iso to k-Symmetry.

Given two graphs G,H, if one of G,H is connected and the other is not, immedi-
ately return False. If G (respectively H) is not connected, let G (respectively H) be its
complement graph. This is to ensure that the graphs are connected.
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Uniquely label a vertex v from G. Give each vertex v′ from H the same label in turn,
and solve k-Symmetry for the input 〈G ∪H, 2〉. The oracle will return True at least once
if and only if 〈G,H〉 ∈ Iso. This is because if G and H are isomorphic, then for every v
in G, there must be a vertex v′ in H that corresponds to v through an isomorphism. This
reduction takes O(n) calls to the k-Symmetry oracle.

Lemma 12. k-Neighbourhood is ISO-hard.

Proof. We provide a Cook reduction to k-Neighbourhood from a restricted version of
Iso, introduced below.

Restricted Iso = { 〈G = (V,E), G′ = (V ′, E ′)〉 where G and G′ are both graphs with
diameter 2 and radius 1: G and G′ are isomorphic. }

The diameter of a graph G is the longest shortest path between any two vertices in G.
The eccentricity of a vertex v is the greatest distance between v and any other vertex. The
radius of a graph is the minimum eccentricity of any vertex. Restricted Iso is simply
the graph isomorphism problem restricted to a certain class of graphs, and it is in itself an
ISO-complete problem [25].

To solve Restricted Iso, for each pair of vertices v, v′ such that v ∈ V , v′ ∈ V ′ and
v, v′ both have eccentricity 1, give v, v′ the same unique label and solve k-Neighbourhood
for the input 〈G ∪G′, 2〉. If 〈G ∪G′, 2〉 ∈ k-Neighbourhood when v, v′ are given
the same label, the 1-neighbourhood of v and v′ are isomorphic. Moreover the 1-
neighbourhoods of v and v′ are G and G′ respectively, because the vertices have eccentricity
1. Therefore 〈G ∪G′, 2〉 ∈ k-Neighbourhood when some v, v′ are given the same label
if and only if 〈G,G′〉 ∈ Restricted Iso.

The reduction is a polynomial time reduction because there are at most |V |2 pairs of
vertices to label, and determining the eccentricity of a vertex takes time polynomial to the
size of the graph.
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Chapter 3

Securing RDF

We now address the matter of securing RDF in a way that is consistent with its semantics.

Our threat model is introduced in Chapter 1. That is, we seek to obfuscate an RDF
graph G, and publish the result G′, so that the adversary is unable to re-identify the
anonymous vertices in G′ to gain more private information about these vertices than he
already has. The prior knowledge of the adversary is also modeled by an RDF graph H.
This is why we adopt the notions k-automorphism and k-symmetry, as they provide exactly
this kind of security.

Two issues remain in applying the security notions in Chapter 2 to RDF. One is that
RDF is more general than the kinds of graph for which k-automorphism and k-symmetry
have been considered in the literature. Therefore, we need to generalize those notions to
suit RDF. We do so in Section 3.1

A second issue regards data quality. Our objective is to achieve a desired level of
security with as little loss of information as possible. We achieve this goal in two ways.
First is that in the process of generating G′ from G, we require RDF semantics to be
preserved. In Section 3.2, we �rst introduce the sanitization operations we use to achieve
security in RDF. We then justify this choice of operations with a discussion of why and
how the choice preserves RDF semantics. In addition, we provide a quantitative measure
the cost of achieving this semantically consistent security, and require that this cost is
minimized.
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3.1 Security for RDF Graphs

In this section we de�ne the k-symmetry and k-automorphism for RDF. The original de�-
nition k-symmetry and k-automorphism could not be applied directly to RDF because they
are de�ned on unlabeled, undirected graphs. RDF on the other hand, can be thought of
as having explicit labels on both edges and vertices, except for blank vertices and edges.
These labels can contain sensitive or identifying information. Therefore a notion of secu-
rity for RDF must take these labels into consideration. The de�nition of an RDF graph
has been discussed in Chapter 1. We show below how we rede�ne automorphism in this
context.

We de�ne the following notations to be used in de�nitions. Given a graph G, let t1(G)
be the set of all subjects, t2(G) the set of all predicates, and t3(G) the set of all objects.
We de�ne the terms of G to be T (G) = t1(G) ∪ t2(G) ∪ t3(G). Let B be the set of blank
vertices in G, then B ⊆ T (G).

De�nition 6. (Automorphism for RDF) An automorphism on an RDF graph is de�ned
as a bijection f: T (G) −→ T (G), which has the following properties:

1. Given v ∈ T (G), f(v) = v if v /∈ B; f(v) ∈ B if v ∈ B; and

2. a triple (a, b, c) ∈ G i� (f(a), f(b), f(c)) ∈ G.

De�nition 6 is di�erent from the traditional de�nition of automorphism mentioned in
Chapter 1. It recognizes that a non-blank vertex is globally unique, and explicitly identi�ed
by its label. Such a vertex under an automorphism cannot be mapped to any other vertex
than itself. Blank vertices on the other hand do not have explicit identities. Therefore
they can be mapped to other blank vertices.

Moreover, the automorphism applies to the IRIs and blank symbols no matter they serve
as vertices or edges in a graph. IRI and similarly blank symbols can serve as predicates in
triples, in which case they act like edges in a graph. Di�erent appearances of the same IRI
as predicates are just instances of the same relationship, therefore an IRI edge can only be
mapped to an edge under the same IRI. Di�erent appearances of the same blank symbols
as predicates also denote the same relationship, except in this case the exact identity of the
relationship is unspeci�ed. Automorphism for edges can be seen as from edge type to edge
type. If we map blank edge type a to blank edge type b, we must map every edge under
the type a to an edge under type b. For example, in Figure 3.1 assuming all vertices and
edges are blank, there is an automorphism that maps the vertex a to the vertex b in the
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Figure 3.1: RDF automorphism

left graph, because the blank relationship p can be mapped to q. Such an automorphism
however does not exist in the right graph in Figure 3.1 because the relationship p cannot
be mapped to both q and r at the same time. This notion of automorphism is consistent
with the RDF semantics we discuss in Section 3.2.

With the notion of automorphism settled, we then de�ne k-symmetry and
k-automorphism for RDF.

De�nition 7. (k-symmetry for RDF) Given an RDF graph G, let the anonymization set
A be a set of vertices A ⊆ t1(G) ∪ t3(G), G is k-symmetric with respect to A if:

1. every vertex in A is blank; and

2. for each vertex v ∈ A, there exists k automorphisms f1, . . . , fk such that fm(v) 6=
fn(v) when m 6= n.

De�nition 8. (k-automorphism for RDF) Given an RDF graph G, let the anonymization
set A be a set of vertices A ⊆ t1(G) ∪ t3(G), G is k-automorphic with respect to A if:

1. every vertex in A is blank; and

2. There exists k automorphisms f1, . . . , fk such that fm(v) 6= fn(v) for all v ∈ A when
m 6= n.

In the above de�nitions we introduce the anonymization set A, which is used to specify
the vertices that needs to be secured. The use of set A helps minimize the cost of our
security. We also require A to be a subset of t1(G) ∪ t3(G) because we consider vertices
to be the focus of our security notions: if a vertex remains anonymous to the adversary,
even if its relationships with other vertices is known, the adversary cannot connect these
relationships with their owner and could not utilise this knowledge.
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3.2 RDF semantics and security

Preserving Semantics Given the above adaptations of the notions of security we
consider for RDF, we return to the issue of semantics. Speci�cally, we seek to achieve a
level of security, e.g., 4-automorphism, while preserving the semantics of the original graph.
A consequence of this requirement is that it limits the mechanisms we are allowed to use
to achieve security.

The notion of a blank symbol, to which we refer in the de�nition of RDF graph is an
important one in this context, as it represents an anonymous subject, predicate or object.
From a security perspective, this de�nition suggests a simple anonymization operation:
replacing a non-blank vertex with a blank vertex. In fact this is one of the two operations
we recommend for sanitizing an RDF graph.

We propose using two and only two types of operations to achieve security in an RDF
Graph:

1. Removing RDF triples; and,

2. Replacing an IRI vertex or a Literal vertex with a blank vertex.

These are of course not the only operations available. Some other works we discussion
in Chapter 5 employs other techniques such as adding vertices and edges. The reason we
choose these two operations is not merely an intuition based on the RDF syntax, but rather
to preserve RDF semantics. We introduce RDF semantics next and show that to preserve
the semantics of an RDF graph only these two operations can be allowed.

An appealing feature of RDF is that it has a precise model-theoretical semantics [9].
The semantics of a language de�nes meanings for the constructs in the language. The
RDF semantics is primarily concerned with providing a formal speci�cation of when the
truth-value of an RDF graph is preserved by transformations. The truth-value is a value
indicating the relationship of an expression to truth. Take an example in natural language,
the sentence �It is raining.� might be either true or false depending on the context. Simi-
larly RDF semantics de�nes how we can associate a truth-value with an RDF graph and
how transformation of the graph a�ects the truth-value. This is achieved through RDF
interpretation. An RDF interpretation maps RDF terms such as IRIs to elements of the
universe. It also maps triples and RDF graphs to truth-values, which denote whether the
statements represented by the triples (or the graph that contains the triples) are true in
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the real world. When an RDF graph G is true under the interpretation I, we say that an
I satis�es G. We refer the reader to [9, 22] for more details.

Another important concept that is related to RDF interpretation and important to
our work is that of RDF entailment. While an interpretation decides the truth-value of
an RDF graph, entailment decides whether the truth-value is preserved between di�erent
graphs. An RDF graph G is said to entail another RDF graph H if every interpretation
that satis�es G also satis�es H. In other words, the truth of G under any interpretations
is preserved in H. In this case we write G � H.

Figure 3.2: The left graph entails the right graph

From a security standpoint, this notion of entailment allows us to sanitize the graph
while keeping the meanings of the graph consistent. Think of graph G as the original graph
and H as the secured version to be released, if G entails H, then H will be consistent with
G in semantics and therefore meanings. H might not contain as much information as G, yet
all the information in H will be semantically consistent with what is in G. This is exactly
the central idea of this section: to provide security to RDF graphs without disrupting the
semantic consistency.

The interpolation lemma resulted from RDF research [9] allows us to implement this
idea syntactically. To explain the interpolation lemma we �rst need to de�ne the notion of
instance: A graph G is an instance of another graph H if there exists a partial mapping h
from the set of blank vertices in H to a set of IRIs, literals, and blank vertices such that
G can be obtained from H by replacing every blank vertex b in the domain of h with h(b).
The interpolation lemma then simply states that an RDF graph G entails another RDF
graph H if and only if a subset of G is an instance of H.

The interpolation lemma translates the semantic de�nition of entailment into simple
syntactic requirements. The two operations we proposed at the beginning of this section
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are derived directly from this lemma. It is easy to see that any sanitized graph H produced
from these operations would be entailed by the original graph G, and no other meaningful
operations could be used without destroying this property.

Figure 3.3: Lattice induced by entailment

Here, we provide a simple example of entailment. Consider the left graph in Figure 3.2.
An operation that results in a new graph that is entailed by this original graph is blanking.
We could, for example, blank the vertex labeled �Amy.� Thus, the new graph still has a
vertex that represents a person, and in that manner, preserves semantics. Similarly, we
can delete Amy's age from the graph and still preserve the graph's semantics. Therefore
the left graph entails the right graph in Figure 3.2.

As our example and discussions above suggest, entailment carefully preserves the orig-
inal graph's meaning. This is exactly the intent of RDF semantics.

It should be mentioned that there is a semantic mismatch between RDF and its query
language SPARQL which slightly a�ects entailment. In RDF two blank vertices are not
assumed to be necessarily distinct, whereas in SPARQL queries two blank vertices are
considered to represent distinct entities. For more detail of this matter we refer the readers
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to [1]. In this work we follow the SPARQL semantics as this is the one that is used in
practice. This decision a�ects the de�nition of instance: an RDF graph G is an instance
of another RDF graph H if there is an injective partial mapping h from the set of blank
vertices in H to a set of IRIs, literals, or blank vertices that do not already exist in H,
such that G can be obtained from H by replacing every blank vertex b in the domain of h
with h(b). In other words, this adds to the original de�nition of instance that two blank
can not be replaced with the same vertex when transforming H to G.

Cost of Security Entailment ensures that the information of the RDF graph is correct,
but it does not measure how much information there is in the secured graph. For example,
the empty graph is entailed by every graph, but it is probably not what people would like
to be released. Therefore we provide a measure of information based on entailment.

The notion of entailment induces a lattice on the all possible anonymizations of the
original graph. At the top of the lattice is the original graph, and at the bottom, is the
empty graph. An intermediate entry in the lattice is entailed by its ancestors in the lattice,
and an entry's descendants are entailed by this entry and thus all of its ancestors.

Lemma 13. The entailment relationship � is a partial order over the set of all possible
anonymizations of G.

Proof. Let P be the set of all possible anonymizations of G. Note that P contains G itself
and the empty graph. We prove that the entailment relationship � is re�exive, transitive,
and anti-symmetric.

Re�exivity: An RDF graph always entails itself.

Transitivity: If G � H,H � I, then by interpolation lemma a subset of G is an instance
of H, also a subset of H is an instance of I. That means a subset of G is an instance of I.
Therefore G � I.

Antisymmetry: Given two RDF graphs G and H, If G � H and H � G, then G and H
are instance of each other. For blank vertices, let h be the partial function used to derive
instance relationship. We de�ne f : T (G)→ T (H) where f(v) = h(v) for v ∈ domain(h),
and f(v) = v otherwise. The function f is a bijection because h is an injection and
h(b) ∈ T (G), as discussed in Section 3.2. Therefore the relationship � is antisymmetric by
de�nition [22].

It should be noted that the above result is based on the SPARQL notion of entailment.
It is unclear whether this result applies to the original RDF simple entailment.
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Figure 3.3 shows a lattice induced from a single triple. Note that on the lattice, the
deletion of a triple can only happen after every vertex in the triple is blanked. This is
because we believe deletion of triples remove more information than blanking vertices. A
triple with every vertex blanked still retains its structural information, but once the triple
is deleted, nothing is left.

The lattice provides an intuitive way to measure the cost of achieving security: we
simply count the distance from original graph (the top of lattice) to the secure graph H
on the lattice. The longer distance, the more information we lost, and the higher the cost
of security is.

Securing an RDF graph Now that we have notion(s) of secure and a clear measure
of information loss, we address the problem of devising an algorithm that transforms an
RDF graph G into another graph G′ such that G′ preserves the semantics of G but also
has a desired level of security. We de�ne the decision problem in the form of language as
below.

Minimal-k-Automorphism = {〈G, k, r, A〉 where G is an RDF graph, A ⊆ t1(G) ∪
t3(G), and k, r are integers : there exists an RDF graph G′ such that G′ is k-automorphic
with respect to A and G′ is reachable from G in no more than r steps in the lattice induced
by entailment.}

The above problem is at least as hard as the k-Automorphism problem discussed in
Chapter 2.

Theorem 2. Minimal-k-Automorphism is NP-hard.

Proof. There exists an obvious reduction from the k-Automorphism problem de�ned.

Given 〈G, k〉 as the input for k-Automorphism, we construct an RDF graph G′ from
G. For every vertex in G, we create a blank vertex in G′. We use only one blank edge type
in G′ for all the edges we create and for every edge in G, we create two edges in G′ that
points to opposite directions. Let set A include all the vertices from G′. We then solve
Minimal-k-Automorphism for the input 〈G′, k, 0, A〉. It is easy to see that 〈G′, k, 0, A〉 ∈
Minimal-k-Automorphism if and only if 〈G, k〉 ∈ k-Automorphism.

Similarly we de�ne a problem Minimal-k-Symmetry based on k-Symmetry. It is
easy to see from a similar reduction that Minimal-k-Symmetry is ISO-hard.

Cnf-Sat Encoding Given the above complexity result, there is no known algo-
rithm for solving these problems e�ciently. Therefore we provide reductions from
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Minimal-k-Symmetry and Minimal-k-Automorphism to Cnf-Sat, and use a SAT
solver to solve these problems. We now discuss our reduction fromMinimal-k-Symmetry
to Cnf-Sat.

Input: 〈G, k, r, A〉 where G is an RDF graph, k, r are integers, k < |t1(G) ∪ t2(G)|, A ⊆
t1(G) ∪ t3(G).
Additional notations:

We de�ne the following notations to be used in the encoding.

• V = T (G). Let n = |T (G)|. V = [1, n] .

• V comprises two partitions: B (blank symbols) and B. Assume B = [1, b], B =
[b+ 1, n].

• Let fi,j : V −→ V be an automorphism. We de�ne a mapping gi,j : G′ −→ G′ for
each fi,j such that for t1, t2 ∈ G′ such that t1 = (s1, p1, o1), t2 = (s2, p2, o2),

gi,j(t1) = t2 ⇐⇒ f(s1) = s2 ∧ f(p1) = p2 ∧ f(o1) = o2. (3.1)

Boolean variables:

We create the following boolean variables in our Cnf-Sat encoding.

1. ∀v ∈ V , a variable xv such that xv = 1 i� v is blank(ed).

2. ∀t ∈ G, a variable yt such that yt = 1 i� t is deleted.

3. ∀v ∈ V , a variable zv such that zv = 1 i� all tuples in which v appears are deleted.

4. ∀α, β ∈ V, γ ∈ A, ∀δ ∈ [1, k], a variable fα,β,γ,δ such that fα,β,γ,δ = 1 i� fγ,δ(α) = β.

5. ∀α, β,∈ V, γ ∈ A,∀δ ∈ [1, k], a intermediate variable bα,β,γ,δ ⇐⇒ fα,β,γ,δ ∧ xβ ∧ ¬zβ.

6. ∀t1, t2 ∈ G,∀γ ∈ A,∀δ ∈ [1, k], a variable gt1,t2,γ,δ such that gt1,t2,γ,δ = 1 i� gγ,δ(t1) =
t2.

7. ∀t1, t2 ∈ G,∀γ ∈ A, ∀δ ∈ [1, k], an intermediate variable ht1,t2,γ,δ ⇐⇒ gt1,t2,γ,δ ∧ ¬yt1 .

Clauses, i.e., constraints:

Below we list the Cnf-Sat clauses that we generate from the input. For the sake
of brevity and clarity we write logical implications of the form a =⇒ b where necessary.
Clauses of these types are transformed to ¬a ∧ b in the actual implementation.
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1. ∀v ∈ B, a clause: xv.

This encodes vertices already known to be blank.

2. ∀t = 〈s, p, o〉 ∈ G: yt =⇒ xs ∧ xp ∧ xo.
In the lattice, deletion of a triple occurs only after all vertices in the triple are
blank(ed).

3. ∀v ∈ V , let Tv = {t : t = 〈s, p, o〉 ∈ G ∧ (v = s ∨ v = p ∨ v = o)}. ∀v, a clause:
ytv1 ∧ . . . ∧ ytv|Tv | ⇐⇒ zv.

Vertex considered deleted if and only if every triple in which it appears is deleted.

4. clauses that correspond to: xb+1 + . . . xn + yt1 + . . .+ yt|T | ≤ r.
Number of triples from G that are deleted + Number of vertices that are originally
not blank being blanked ≤ r.

5. ∀i ∈ V, ∀γ, δ: ¬xi ∧ ¬zi =⇒ fi,i,γ,δ.

Vertex not blank and not deleted only if it is mapped to itself.

6. ∀i ∈ V, ∀γ, δ: xi ∧ ¬zi =⇒ (fi,1,γ,δ ∧ x1 ∧ ¬z1) ∨ . . . ∨ (fi,n,γ,δ ∧ xn ∧ ¬zn).
Vertex is blank and not deleted only if it is mapped to at least one blank vertex that
has not been deleted.

• This is transformed to
xi ∧ ¬zi =⇒ bi,1,γ,δ ∨ . . . ∨ bi,n,γ,δ, and
bα,β,γ,δ ⇐⇒ fα,β,γ,δ ∧ xβ ∧ ¬zβ

7. ∀i, j, p ∈ V, i 6= j, γ ∈ A, δ ∈ [1, k],¬fi,p,γ,δ ∨ ¬fj,p,γ,δ.
Two vertices cannot both be mapped to the same vertex.

8. ∀t1 = (s1, p1, o1), t2 = (s2, p2, o2) ∈ G, ∀γ ∈ A, δ ∈ [1, k],

• ¬yt1 ∧ ¬yt2 ∧ gt1,t2,γ,δ =⇒ fs1,s2,γ,δ ∧ fp1,p2,γ,δ ∧ fo1,o2,γ,δ
• ¬yt1 ∧ ¬yt2 ∧ fs1,s2,γ,δ ∧ fp1,p2,γ,δ ∧ fo1,o2,γ,δ =⇒ gt1,t2,γ,δ

We perceive triples as edges in automorphism. This constraint encodes the de�nition
of function gγ,δ.

9. ∀t ∈ G, ∀γ ∈ A, δ ∈ [1, k],
¬yt =⇒ (gt,t1,γ,δ ∧ ¬yt1) ∨ . . . ∨ (gt,t|G|,γ,δ ∧ ¬yt|G|).
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• This is transformed to
¬yt =⇒ ht,t1,γ,δ ∧ . . . ht,t|G|,γ,δ, and
ht,ti,γ,δ ⇐⇒ gt,ti,γ,δ ∧ ¬yti .

10. ∀t, t1, t2 ∈ G such that t1 6= t2, ∀γ ∈ A, δ ∈ [1, k], ¬gt,t1,γ,δ ∨ ¬gt,t2,γ,δ
The three constraints above ensures that natural constraint of the automorphism:
there is a one-to-one mapping between the triples that are not deleted.

11. ∀i ∈ A,∀j ∈ V, ∀ distinct δ, ψ: ¬zi =⇒ ¬di,j,i,δ ∨ ¬di,j,i,ψ.
The �k� di�erent mappings in k-Symmetry, de�ned only for vertices that have not
been deleted.

A similar reduction can be constructed from k-Automorphism to Cnf-Sat. The only
change is that where a variable fα,β,γ,δ is used, we use fα,β,δ to encode only k automorphisms
in total, instead of k automorphisms for each v ∈ A.
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Chapter 4

Empirical Results

We have conducted an empirical assessment of k-symmetry and k-automorphism on RDF
with the encoding provided in Section 3. Our intent with the empirical study is to inves-
tigate the relationship between security and information under realistic graphs of di�erent
structures. More speci�cally we would like to understand, in practice, how the various
parameters such as the input graph G, the level of security k, the anonymization set A and
the minimum cost r interact. For instance, given G and A, it seems reasonable to expect
that the minimum cost r required grows with k, but how fast does it grow? Is it harder to
anonymize a larger graph? These are some of the questions we investigate in this section.
We intentionally keep our RDF graph inputs small so it is easier to intuit relationships
between the parameters.

It should be noted that although we have investigated both k-symmetry and
k-automorphism, these two notions exhibit the same behaviour during our experimen-
tations. In other words, achieving these two security notions for the same k has the same
cost for all the inputs that were tested. Therefore we do not di�erentiate them in the rest

Figure 4.1: Attribute graph. The red edges denote the �full name� predicate. Green edges
denote �birthday� and blue �gender�.
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of this section, and just refer to them as k-security.

We conduct our empirical research over two types of graphs. The �rst type, which
we call network graphs, are based on examples used in social network anonymization such
as [27]. The second, which we call attribute graphs are information of US senators retrieved
from [5]. The attribute graphs are real life examples of RDF data published online. It also
closely resembles other online RDF data sources such as DBpedia in structure. Figure 4.1
is an example of attribute graphs, and Figure 4.2 of network graphs. Note that there are
several types of edges in Figure 4.1, so we use di�erent colours to denote the di�erent
edge types. On the other hand, every edge in Figure 4.2 is meant to denote the knows
relationship, therefore they are all of the same colour.

The reason we have chosen these two types of graphs for experiments is that they high-
light two typical, yet distinct ways of utilizing RDF graphs. The network graphs highlights
the relationship between vertices. All the vertices in a network graph represent the same
type of entities (people in this example) and the graph describes relationship between the
entities. The attribute graphs, on the other hand, describes attributes of entities. Some of
the vertices in the graphs represent people while others represent attributes of these peo-
ple such as name, gender, and birthday. The attribute graph does not contain relationship
between entities of the same type. These two characteristics can be mixed of course in one
graph. However in practical RDF graphs they are often separated, and from a theoretical
standpoint it would be interesting to investigate how their di�erences would a�ect security.

As is shown in Figure 4.1, the attribute graphs have a lot of small components of similar
structures. In fact our empirical result shows that this property of the attribute graphs
makes it easier to achieve higher-level of security. As we can see from Figure 4.3, for the
input attribute graph, achieving 3-security and 5-security has the same cost. In other
words, when 3-security is achieved, 4-security and 5-security is also achieved. This is not
a coincidence, but a result of the structure of the attribute graph.

The network graph, in contrast, does not possess this property. As is shown in Fig-
ure 4.4, the cost r increases steadily with the security parameter k. In this case, the cost
only stops increasing after the entire graph is removed, in which case it can be seen as
in�nitely secure. This suggests that achieving the same level of security in an attribute
graph is easier than in a network graph of similar size. The structural randomness of the
network graph makes it harder to secure.

We also looked at the relationship between the size of the graph and the cost of security.
Figure 4.7 and Figure 4.6 shows that when the network graphs becomes bigger (with more
vertices and proportionally more edges), even if the number of vertices to be secured
remains the same, it becomes more costly to achieve a certain level of security. Figure 4.7
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Figure 4.2: Network graph
Figure 4.3: Relationship be-
tween k and r for attribute
graphs

shows the case where we �x the number of vertices to be anonymized and the security
parameter k, and investigate the size of the graph (characterized by |V |) and the minimum
cost r required to achieve k-security. The result shows that the cost r increases as the input
graph becomes larger. Figure 4.6 supports the above observation from another perspective:
when r and the number of vertices to be secured are �xed, the smaller a graph is, the easier
it is to achieve a high level of security.

Similarly, the set A of vertices to be secured a�ects the cost of security positively.
Figure 4.5 and Figure 4.8 together show the intuitive result that for the same graph,
achieving a higher-level of security becomes more di�cult when more vertices are added
to A. Related to the this observation, Figure 4.9 demonstrates that to achieve the same
level of security with the same cost, as the graph becomes larger, the set A needs to be
smaller. We can see that at �rst the size of A is equal to the size of V because the �xed
cost r is su�cient to reach k-security for all vertices in V . However as the size of graph
grows, k-security can only be reached with cost r for a smaller set A.
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Figure 4.4: Relationship be-
tween k and r for network
graphs

Figure 4.5: Relationship be-
tween k and |A| for network
graphs

Figure 4.6: Relationship be-
tween k and |V | for network
graphs

Figure 4.7: Relationship be-
tween |V | and r for network
graphs

Figure 4.8: Relationship be-
tween |A| and r for network
graphs

Figure 4.9: Relationship be-
tween |V | and |A| for net-
work graphs

34



Chapter 5

Related Work

Many security notions have been proposed for graphs under di�erent attack models in
recent year. Most of these notions were de�ned in the context of social network, as it
is a prominent use case of graphs. Their results however invariably apply to graphs in
other contexts. The notions are often inspired by k-anonymity [21] de�ned for traditional
database table. The actual de�nitions and techniques however di�er in the context of
graphs.

Liu and Terzi [15] for example proposed k-degree-anonymity in order to to prevent
degree attack. They assumed that the attacker has prior knowledge of the degrees of some
vertices in the graph. Addition and deletion of edges are used in this case to achieve
security. Hay et al. [8] considered vertex re�nement attack, which is a generalization of
the degree attack, and proposed an anonymization approach utilizing random sampling,
which retains integrity of summary data of the graph. Thompson and Yao [23] also de�ne
security against degree attack, but in their study the attacker is assumed to know about
the degrees of all neighbours within distance i of some vertices. Zheleva and Getoor [26], on
the other hand, considered security for social graphs whose edges are labelled but nodes are
not. They used edge anonymization to prevent sensitive relationships from being revealed.

As Narayanan and Shmatikov [17] demonstrated, it is possible to conduct re-
identi�cation attack to a graph with only topological information. Therefore more recent
notions consider attacks on structural information.

Zhou and Pei [27] de�ned neighbourhood attack in which the adversary tries to re-
identify vertices in a graph with prior knowledge of their complete neighbourhood structure,
and proposed a notion of k-anonymity by means of isomorphic neighbourhoods. The
technique used to achieve security was inserting edges.
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A more recent study by Wu et al. [24] proposed k-symmetry, which promises security
against all structural attacks. The security notion proposed by [24] is very similar to that
in [28], which was termed k-automorphism. These two notions are both based on the graph
isomorphism problem, and the similarity was acknowledged by the authors. However the
relationship between these two notions is unclear.

Imeson et al. [10] studies graph security in the context of integrated circuits. Their
security notion is based on the problem of subgraph isomorphism, in this work we discuss
a more general problem than they have studied.

Other works such as Blocki et al. [4] study graph security from the perspective of
di�erential privacy. These works however focus on providing summary statistics of the
graph instead of the graph itself. As already mentioned in Chapter 1 the isomorphism-
based security notions we discuss in this work do not guarantee di�erential privacy.

Dedicated studies were conducted on the subject of RDF security. Rachapalli et al. [19]
for example proposed operations for sanitizing vertices, edges and paths in an RDF graph.
Their work was motivated by [3], which discusses RDF sanitization and anonymization
from a practical standpoint. However, no clear notion of security was provided in these
works. There has been other researches [12] on RDF access control, but they invariably
focus on operations instead of security notions and are less relevant to this work.

Another important aspect of this study is the correctness of information. We base this
part of our work on the research of RDF semantics conducted by ter Horst [22] and Arenas
et al. [1], which discuss RDF interpreation and entailment in detail.
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Chapter 6

Conclusion

Although graph anonymization have been studied in the context of mathematical graphs,
the results do not necessarily apply to RDF graphs, which is a data model of directed,
labeled graphs used in practical graph databases.

In this work we make two important contributions to bridge the gap between theory
and practice for RDF graph security. The �rst part of our research compare established
security notions in the traditional context. The four security notions we investigated are:
k-subgraph-isomorphism, k-neighbourhood-isomorphism, k-automorphism, and k-symmetry.
What these security notions have in common is that they are all based on graph isomor-
phism or related problems, and provide security against structural attacks to graphs. We
propose a intuitive approach to compare the strength of these security notions, which is log-
ical implication. We also provide complexity results for the problems of deciding whether
a graph satis�es these security notions, which serve as lower bounds for the hardness of
achieving these security notions. We establish that the strength of a security notion is un-
correlated with the hardness of enforcing the security notion. This part of the study serves
as the basis for de�ning security for RDF graphs, but it also applies to graph security in
contexts other than RDF.

As a result of the comparative study, we choose k-automorphism and k-symmetry to
be adapted for RDF. Our adaptation fully takes into account the nature of RDF and
caters to practical requirements. Our most important contribution in this context is that
we consider not only security, but also the quality of information after sanitization. We
ensure the correctness of information by requiring that the anonymization process follows
the entailment relationship de�ned in RDF semantics. Moreover, we quantify the cost of
security on information by the distance between the original graph and the anonymized
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graph on the lattice induced by entailment. As achieving k-automorphism or k-symmetry is
computationally hard, we provide a Cnf-Sat reduction of these problems and conduct an
empirical research with the reduction. Our empirical study sheds light on the relationship
between information and security. It also shows that the structure of a graph can a�ect
the cost of security.
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