
Agile Architecture Recovery

by

Davor Svetinovic

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2002

c
�

Davor Svetinovic 2002

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Many software development projects start with an existing code base that has to be tightly inte-
grated into a new system. In order to make a robust system that will achieve the desired business
goals, developers must be able to understand the architecture of the old code base and its ratio-
nale.

This thesis presents a lightweight approach for the recovery of software architecture. The
main goal of the approach is to provide an efficient way for architecture recovery that works
on small to mid-sized software systems, and gives a useful starting point on large ones. The
emphasis of the process is on the use of well established development techniques and tools, in
order to minimize adoption costs and maximize the return on investment.

iii

For my mom, dad, and sister

iv

Acknowledgements

I would like to thank my advisor Michael Godfrey for his invaluable advice and support. Mike’s
instructions and guidance were of the great help for the successful completion of my degree.

I would like to thank my thesis readers, Daniel Berry and Anne Pidduck, for their comments
and suggestions. They greatly contributed to the quality of the thesis. I would also like to thank
Dan for an excellent collaboration and supervision of my teaching assistant work.

My studies and research were generously supported by Fonds Québécois de la Recherche sur
la Nature et les Technologies and University of Waterloo. I am thankful to these two organiza-
tions.

Finally, many thanks to my family, girlfriend, and close friends for their support, understand-
ing, and encouragement.

v

Contents

1 Introduction 1
1.1 Motivation and Problem Description: Project Development Issues 1

1.1.1 Conventional Process Issues . 2
1.1.2 Unified Process . 4
1.1.3 Agile Development Processes . 5

1.2 The Proposed Solution and Major Thesis Contributions 8
1.3 Thesis Organization . 10

2 Key Concepts and Related Work 11
2.1 Software Architecture and Design . 11

2.1.1 Architectural Views . 12
2.1.2 Reference Architecture . 13
2.1.3 Architectural Refactorings and Repair 14
2.1.4 Architecture Reengineering and Visualization 14

2.2 Quality Attribute Theory . 14

3 Agile Architecture Recovery Process 17
3.1 Architecture Recovery Issues and Goals . 17
3.2 Architecture Recovery Process . 19

3.2.1 Architecture Meta-model . 21
3.2.2 Architecture Recovery Techniques . 24

3.3 Architecture Recovery Process Steps and Legacy Systems 32
3.4 Summary . 37

vi

4 Case Study: X MultiMedia System 38
4.1 XMMS: Introduction . 39
4.2 XMMS: Architecture Recovery . 39

4.2.1 Project Elaboration . 39
4.2.2 Architecture Recovery: First Iteration 41
4.2.3 Architecture Recovery: Second Iteration 53

4.3 XMMS: Focused Evolution Recovery . 64
4.4 Summary . 69

5 Evaluation 70
5.1 Case Study Validity . 70

5.1.1 System Concerns . 71
5.1.2 Analyst Concerns . 72

5.2 PBS: Reference Process . 73
5.3 Project Management Issues . 75

5.3.1 Process Iterations . 75
5.3.2 Individual and Team Issues . 76

5.4 Process Step Issues . 77
5.4.1 Project Elaboration . 77
5.4.2 Analysis of Existing Artifacts . 78
5.4.3 Domain Architecture . 78
5.4.4 Conceptual Architecture . 79
5.4.5 Concrete Architecture . 80
5.4.6 Architecture Rationale . 81

5.5 Process Technique Issues . 83

6 Conclusions and Future Research 84

vii

List of Tables

4.1 XMMS: Basic System Metrics . 40
4.2 General System Features . 42
4.3 User Interface and Visualization Features . 42
4.4 Plugins Features . 43
4.5 Other Features . 43
4.6 Iteration 1: Actor-Goal List . 44
4.7 Iteration 1: Goal-Process List . 45
4.8 Iteration 1: Process-Resource List . 45
4.9 Iteration 1: Business Rules List . 45
4.10 Iteration 1: Presentation(UI) Layer Subsystem Responsibilities 48
4.11 Iteration 1: Application Logic Layer Subsystem Responsibilities 49
4.12 Iteration 1: Service Layer Subsystem Responsibilities 49
4.13 Iteration 1: Architecture Rationale . 52
4.14 Method-Level Responsibilities (Main Module) 60
4.15 Module-Level Responsibilities . 61
4.16 Iteration 2: Architecture Rationale . 65

viii

List of Figures

1.1 Waterfall Model . 2

3.1 Major Architecture Recovery Activities . 20
3.2 Architecture Meta-model . 25
3.3 PBS: Architecture of Linux Operating System 30
3.4 Architecture Recovery Artifacts and Relationships 33

4.1 Iteration 1: Static Conceptual Architecture . 47
4.2 Iteration 2: Static Conceptual Architecture . 54
4.3 PBS XMMS Top Level View . 56
4.4 Visualization Subsystem . 57
4.5 Input Subsystem . 58
4.6 CDAudio Subsystem . 59

ix

Chapter 1

Introduction

The importance of reverse engineering and software architecture has been recognized in all areas
of software engineering that deal with legacy software. Much effort has been invested to improve
our ability to understand, present, repair, and improve these old mission-critical systems.

Recently, another motivation for the use of reverse engineering techniques and software ar-
chitecture has appeared. This is the emergence of a new set of development methodologies —
agile development processes.

1.1 Motivation and Problem Description: Project Develop-
ment Issues

The first response to the problems introduced by the chaotic “code and fix” style of development,
was the introduction of the development methodologies that have been inspired by the method-
ologies of other engineering disciplines, such as civil and mechanical engineering. Development
in these other fields consists of an engineering phase followed by a construction phase. The en-
gineering phase is characterized by detailed planning of all the aspects of the construction phase,
which includes, among other things, a detailed design of the product to be built. The main activi-
ties performed during the engineering phase are the analysis of the problem and the design of the
solution. The engineering phase usually costs much less than the construction phase. For exam-
ple, in civil engineering, the engineering phase typically costs 10-20% of the whole development

1

Introduction 2

process [Fow]. Also, most of the creative and intellectually challenging activities are performed
during the engineering phase. On the other hand, the high level of automation and high demand
on manual skills characterizes the construction phase.

These conventional development methodologies were applied to software development with
the hope that one will achieve similar characteristics and stability in software development. A
typical model that describes this way of software development is the waterfall development
model [Roy98], Figure 1.1.

Requirements

Analysis

Design

Coding

Testing

Figure 1.1: Waterfall Model

1.1.1 Conventional Process Issues

As depicted in Figure 1.1, the development activities of the waterfall model are performed se-
quentially. The goal is to perform, complete, and document each activity before the next one is
started. Experience has shown that this traditional development suffers from serious problems,
which have caused a high rate of unsuccessful projects. These problems include:

� early freezing of requirements,

Introduction 3

� late integration and deployment,

� late risk resolution,

� lack of validation and feedback,

� lack of support for evolving requirements and systems, and

� documentation overhead.

Not only it is very hard to discover all the requirements for a complex project at once, but for
most software problem domains requirements change very often. This affects the development
in different negative ways that result in the dissatisfaction of all parties. The most negative ef-
fect is that the product built at the end does not conform to the customer’s real needs (i.e., the
requirements specification did not match the customer’s real needs) or does not perform as it
was supposed to (i.e., the requirements were reasonably well captured but were not implemented
correctly). The solution to this problem has to be looked for in a way of organizing the develop-
ment process such that developers get constant feedback from the customers on what they have
to build and how, and accommodate changes due to customers’ needs. We will discuss later how
modern processes address this problem.

Large, complex software systems are built from many separately developed modules, and
often have a very complex deployment process, especially in distributed environments. Practice
has shown that insisting on the development of all modules and then performing the integration
and deployment often leads to serious incompatibility problems, and in many cases to the com-
plete breakage of the system. The solution to this problem is in integrating and deploying parts
of the system as soon as possible.

Most of the decisions considering project aspects such as cost estimation and schedule plan-
ning are performed in the early phases. These estimates and other risk predictions have shown
to be wrong in most cases [Sch98]. In projects that follow the waterfall development model,
these false predictions show very late, during the coding and later phases. This leads to financial
losses, abandoned projects, and so on. The solution to this problem is in a way of assessing risks
based on the actual project progress. Since the progress is shown best during the coding phase,
one should look for a way of distributing project activities in a way that some implementation is
done as soon as possible.

Introduction 4

The various forms of documenting different steps and artifacts during the software devel-
opment process have become so incorporated and overemphasized in the project that the time
and cost overhead in producing them has overcome their value. Also the usefulness of this doc-
umentation is questionable since it becomes outdated very quickly and is not used frequently
by the development teams. The reason for this is in the nature of the software development.
Built software artifacts change so often that it is not economical to keep them documented us-
ing traditional documentation processes. The solution to this problem is in the identification of
the software documentation that is actually used during the development, and in its automatic
production and updating.

1.1.2 Unified Process

As the response to the previously mentioned problems, several modern development processes
have appeared during the 1980s and early 1990s in order to address these problems. In the
mid-nineties, the Rational Unified Process [RUP] was developed with the goal of unifying the
best ideas of this new group of development processes. It is highly customizable to specific
production environment needs. We are interested in the general principles and practices on which
the framework is based.

The main characteristics and principles of RUP can be summarized as [Krub, Roy98]:

� Iterative and incremental

� Architecture-centric

� Object-oriented and component development based

� Managed and controlled

� Highly automated

Iterative and incremental — An iterative life cycle is based on successive refinement of the
system through multiple cycles of analysis, design, coding and testing. In every cycle, we tackle
only a small set of requirements, which results in incremental growth of the system. So after each
cycle, more and more functionality is added to the system. This approach has several advantages:

Introduction 5

� The complexity the system development is not overwhelming since the system is broken
down into more manageable units.

� The shorter iterations allow earlier system integration.

� Earlier feedback from the end users is possible since the parts of the system can be used
while the rest of the system is still in the development.

� Requirements can be adjusted and changed more easily during the development process.

Architecture-centric — Architecture-centric means that the architecture of the system is es-
tablished early in development process, and is used as a driving force throughout project. A well
designed architecture tends to stay stable throughout the initial development and changes little
as the system subsequently evolves over time.

Object-oriented and component development based — The process emphasizes the use of
object-oriented and component technologies, as opposed to procedural paradigm and all-in-house
development.

Managed and controlled — The process specifies and insists on the strict project management
techniques and milestones.

Highly automated — The goal is to have all the documentation automatically produced,
all the build artifacts tightly integrated, and tools for full process support in order to automate
repetitive, error prone, and tedious tasks.

The design techniques used in the process are semi-formal. The most commonly used lan-
guage for expressing design artifacts is Unified Modeling Language (UML) [FS99, Lar01].

1.1.3 Agile Development Processes

As we have seen, project development processes have moved from the chaotic “code and fix”
style, through highly methodological waterfall model based development processes to the iter-
ative, modern processes that deal with certain drawbacks of the waterfall approach. Recently,
several other methodologies have appeared to solve the problems that still exist in the modern
processes. These processes are commonly called agile processes. The best known agile develop-
ment process is Extreme Programming (XP) [Bec99, JAH00].

Introduction 6

The first distinction, which is easily seen in these new processes compared to the older ones,
is in the amount of management work. Followers of the new lightweight processes have com-
monly claimed that highly structured processes are too bureaucratic. Management overhead is
the source of a lot of problems in all previous processes. This is also the reason why they are
called heavyweight and these new ones lightweight.

The reason for this distinction lies in the core values and ideas of lightweight processes [Fow]:

� Lightweight methodologies are adaptive rather than predictive.

� Lightweight methodologies are people oriented rather then process oriented.

If we analyze again all previously presented processes, we remark that planning, analysis
and design dominate the beginning of every one of them. This was much more emphasized in
waterfall-based processes than in iterative ones. Iterative processes have tried to distribute these
activities over the whole development lifecycle because of previously mentioned problems. This
was not enough to the followers of lightweight processes, who argued that in practice this causes
developers to plan activities in advance, to predict behavior and changes of the process and the
product ahead of time, when the basis for these predictions is not strong enough. This way
of reasoning and planning introduces high amounts of complexity and actually slows down the
development. It is difficult to predict what will be needed and what will happen in the future. All
this has resulted that these previous processes are in practice resistant to changes. This has had
further effects on how the development business was led. For example, development companies
have been trying to freeze requirements as soon as possible and have been resistant to change
so that the customer has actually suffered if the requirements change while the product is still in
development.

To deal with this problem, lightweight processes try to minimize prediction. The idea is to
do exactly what the customer needs at this point and to adapt to any new needs as they arise.
This adaptation is not done by trying to predict what the customer might need and to build a
complex framework in order to accommodate changes, but by restructuring the existing system
to accommodate the changes when they are actually identified. Old processes have been based
on the assumption that it is easier to build to support the change in the future than to have to
change the system to accommodate changes at that point in time. Practice has shown that this is
often not the case, and therefore this new opposite philosophy that lightweight processes support.

Introduction 7

It is this need for constant restructuring of a system to accommodate changes that causes a need
for constant use of architecture recovery techniques and principles during development. Also,
a practical non-existence of forward design activities enforces this need for re-engineering even
more.

The other core difference between heavyweight processes and the lightweight ones is in the
treatment of the developers from the management perspective [Fow]. It was remarked, in prac-
tice, that developers are treated as pure resources within the development process. This has its
roots in the conventional engineering disciplines where most of the decision-making is performed
by a small group of architects and engineers, while the majority of other workers are required
to have only manual skills. This skills distribution has worked fine in these disciplines due to
the nature of the development. Proponents of the agile development philosophy have remarked
that this does not work very well in software development. The inter-dependency of the artifacts
produced during development is so high that all developers have to be proficient in all skills.
Reeves argues that coding is the part of the system’s design which leads to the conclusion that
the software construction is almost completely automated, and thus that we only have engineers
working in the software development [Ree]. Lightweight processes take the radical approach
in putting people in the first place in the development. Among these skills that all developers
have to be proficient in is architecture recovery. This also implies that these activities should be
performed constantly and by everyone on development team. Our recovery process is based on
this community effort, as discussed later.

These two principles lead to the much lower need and amount of bureaucracy in the develop-
ment. The majority of people are concentrated on actual development instead of managing.

One of the most controversial aspects of Extreme Programming (XP) and other lightweight
development methodologies [Fow] is an almost complete rejection of formal and semi-formal
upfront design activities. This rejection is backed up by the arguments that these design activities
do not work very well in practice due to a variety of technological, management and human
factors:

� Most developers like to concentrate exclusively on programming.

� Design documents are almost never in synchronization with code.

� During active development, a lot of time is spent updating design documents.

Introduction 8

� The produced documents are not used much by programmers.

� Tool support for roundtrip engineering is not good enough.

Instead of these rejected formal and semi-formal design activities, lightweight processes de-
pend on:

� Use of CRC cards [Coc] for initial, quick design.

� No design documentation. Code and programming conventions are considered to be suffi-
cient for design recovery. CRC cards are not kept.

� Use of a system metaphor for design abstraction purposes.

� Simplicity and adaptive design approach — Simple design and refactoring make systems
easier to change to accommodate new requirements than to try to predict them and build
an infrastructure to support them [Fow].

� Continual refactoring [Fow99].

In summary, the core principles of new agile methodologies have created a need for efficient
architecture recovery as a crucial part of the whole process of development of a new system. This
is in addition to the already existing need for the architecture recovery of legacy systems.

1.2 The Proposed Solution and Major Thesis Contributions

In this thesis, we present a systematic approach for recovery and presentation of a software
architecture and its rationale (i.e., the underlying reasons for that particular architecture) for
small to mid-sized systems.

Our goal is not to invent yet another architecture recovery process, but to build on existing
ones and to improve their applicability for the architecture recovery of systems that are built
using agile development processes, and to conform to agile development philosophy. Two main
properties of such systems are their moderate size and changing requirements in their problem
domain. Also, the particular emphasis is on the recovery of the architecture rationale, as design
decisions made during development and requirements that led to them are not documented and

Introduction 9

preserved. Architecture rationale recovery provides us with answers to why architecture was
designed or has drifted in a particular way.

It is not the goal of the thesis to present the definitive set of activities to be performed and
artifacts to be built. This would be contrary to the inherent difficulties of software develop-
ment, properties of different problem domains, different circumstances under which recovery is
performed, and purposes for which artifacts are produced. The goal is to lay out a theoretical
background for the recovery process and clearly define the constraints to be satisfied. This is
done through the use of different meta-models, such as problem domain and architecture meta-
models, and the analysis of the conformance of different artifacts to the properties imposed by
the agile constraints. Following the theoretical introduction, we propose a set of recommended
activities and artifacts to be produced during architecture recovery. We apply the approach for
architecture recovery of a mid-sized software application to evaluate its effectiveness, usability,
and applicability.

The main contributions of this thesis research are:

� Agile architecture recovery process — The thesis includes a complete description and an
application of one possible instance of a process that can be used directly for the recovery
of software system architectures. The main goal of the process is on being an agile and ef-
ficient solution for the architecture recovery of small and medium-sized software systems.
It can also be used for the recovery of the architecture of small and medium-sized sub-
systems of larger software systems, and the results can be integrated using the techniques
from other processes that are used to deal with large software systems.

� Techniques for the recovery of architecture rationale — The particular emphasis of our ar-
chitecture recovery process is on the recovery of architectural rationale (i.e., decisions and
influences that have shaped the architecture of the system). We propose a set of techniques
and heuristics, as a part of our process, which allow us to recover and estimate rationale
behind the software system’s architecture.

� Architecture recovery of a multimedia system — A detailed architecture recovery of a
multimedia system is presented. The contribution is twofold:

1. it serves to validate the proposed architecture recovery process and

Introduction 10

2. it enlarges the body of knowledge about multimedia software applications and their
architecture.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In chapter 2, we introduce related work in software
architecture, software design, and attribute theory. In chapter 3, we present our architecture ra-
tionale recovery process and all related techniques. In chapter 4, we present a detailed case study
of architecture recovery of a medium-size software system — the XMMS multimedia system,
a 65 KLOC C program. Chapter 5 presents an evaluation of the process including the analysis
of process drawbacks and possible enhancements. Finally, chapter 6 discusses conclusions and
future work.

Chapter 2

Key Concepts and Related Work

In this chapter we present background and related research on software architecture, design, and
attribute theory, emphasizing how it relates to our research that is presented in the rest of this
thesis.

2.1 Software Architecture and Design

One of the main tools that has been used in all areas of software engineering to solve different
problems is abstraction. Software architecture is a recent significant result of its use. It helps
engineers to conquer the complexity of the system by giving them the ability to organize, under-
stand, present, and manage system in a much more natural and easier way, than they can just do
by using programming language features.

Currently, there is no universally accepted definition of what software architecture is. Nev-
ertheless, common to all proposed definitions is that architecture deals with large scale construc-
tional ideas and techniques — high level organization of system, constraints, motivation and
rationale, architectural styles, interconnections, and collaborations [PW92, SD96, BCK98].

Software architecture research can be categorized in following groups, which together form
a body of knowledge and techniques that software architects use during development:

� Architectural styles and design — study of proven architectural designs and practices that
help architects design flexible and extensible software systems.

11

Key Concepts and Related Work 12

� Component-based technologies — different technologies that are used to build systems
using proven architectural practices.

� Architectural recovery, visualization, and analysis — the focus of this research is on in-
creasing system’s understandability, reliability, and reusability.

� Run-time system generation and manipulation — the study of different techniques for run-
time system modularization and modifications.

The focus of our research is on architectural recovery, visualization, and analysis. The fol-
lowing architectural topics and techniques are the main tools used by researchers in this area:

� Architectural views

� Reference architectures

� Architectural refactorings and repair

� Architecture reengineering and visualization

2.1.1 Architectural Views

The biggest problem in trying to determine how best to represent the architecture and design of
a software system is that there exist many distinct concerns. It is very hard to present all of them
using a single diagram, and even if one succeeds, the usefulness of that diagram is doubtful.
Thus it is common to separate these different concerns.

Kruchten’s landmark paper on architectural views considers that there are “4+1” key archi-
tectural views [Krua]:

� Logical View — describes the conceptual decomposition of system into modules, layers,
and other architectural constructs.

� Process View — describes the run time decomposition of system into processes and em-
phasizes concurrency and synchronization aspects.

� Physical View — describes the mapping of software components onto hardware compo-
nents and emphasizes distributed aspects of the system.

Key Concepts and Related Work 13

� Development View — describes the source code and other development modules organi-
zation in a development environment.

� Use-Case View — this view unifies all the previously mentioned views through the use of
use-cases.

For our purposes, we take a slightly different set of views:

� Problem Domain View (Analysis View) — represents the structure of the system that is
supposed to be supported and/or automated using the software system.

� Logical View — represents the structure of the software as represented in the code, and
different layers of abstraction built on top of it.

� Run-Time View — this is the unification of the previously mentioned process and physical
view.

� Test View — represents testing framework.

Each of these views presents two kinds of system properties, static and dynamic. Notation
used to capture these views should provide support for both properties. We will go into more
details on architectural views when we present their use within the context of our research.

2.1.2 Reference Architecture

A reference architecture is the common architecture model for a family of products. It represents
the structure that is commonly found, possibly with slight variations, in products that belong
to that family. There are some well-known reference architectures, for example, for compilers
[ASU85, SD96] and operating systems [SGG01]. The main purpose of creating a reference
architecture is to codify knowledge about a particular product family, and to serve as a starting
point in building a new product. It can also used as a guide to control the development and prevent
anarchy in the system, usually by reengineering the system to fit its reference architecture more
closely.

Key Concepts and Related Work 14

2.1.3 Architectural Refactorings and Repair

Refactorings are changes made to the code that improve its design in some way. Continual
refactoring is an important feature of agile methodologies, as it helps to compensate for the lack
of upfront design activities. A catalog of refactorings can be found at [REF], and a definitive
guide to performing them is [Fow99].

Of particular interest to us are the refactorings that affect the architecture of the system. Some
of them are presented in [TGLH00], together with a few successful applications. For example,
architectural refactoring is a process of separating the user-interface functionality from the ap-
plication logic in software systems where these two separate concerns were merged together.

The current problem with existing refactorings is that they are not automated and are tedious
to perform manually. More robust support for automatic refactoring has to be developed and
tightly integrated with the other development tools — one example of such a tool is refactoring
support integrated in IntelliJ IDEA integrated development environment [IDE].

2.1.4 Architecture Reengineering and Visualization

One of the main uses of the software architecture is to help one understand the system. There
have been many efforts recently to automate architectural reengineering and to present this infor-
mation visually. Most of these tools have been used exclusively for the visualization of the static
structure of the system and interconnections between its components. Examples of these kinds
of systems include PBS [PBS], Rigi [Rig], and SHriMP [Shr].

The usefulness of such systems is in their ability to present us with important architectural
issues, while hiding lower-level design decisions. For example, the PBS system allows us to
analyze a software system at different levels of abstraction, with the lowest level being the source
file level. It also allows us to analyze the dependencies between different subsystems, and the
dependencies propagation through function calls, variable references, etc.

2.2 Quality Attribute Theory

Quality attributes are the descriptions and specifications of the characteristics of a software sys-
tem and its ability to fulfill its intended functionality, while satisfying all the imposed constraints.

Key Concepts and Related Work 15

The study and use of quality attributes has made many contributions to software engineering
practice. Goal-oriented requirement engineering processes have helped capture and model a
wider range of requirements than previously possible, improve requirements traceability, and
facilitate the process in general [MCY99]. Attribute-Based Architecture Styles (ABAS) have
allowed qualitative reasoning about the use of a particular architectural style [KKB � 99]. Archi-
tecture Tradeoff Analysis (ATA) method relies upon the use of quality attributes to analyze and
express the architectural tradeoffs [KKC00]. Quality attributes are the initial artifact for several
architecture design processes, including the Architecture-Based Design Method [BBC � 00]. Be-
sides providing the driving force, quality attributes also serve as the connection among all these
techniques and methods [GY].

All of the previously mentioned techniques are based upon a solid understanding of the
interdependencies among attributes, especially conflicting ones. Several studies have tackled
the problems of complex dependencies between the attributes and how to manage them [BI96,
vLL00].

Why do we need quality attributes? Building software right is hard and it requires much
more then getting the functionality right. There are many constraints and properties that have to
be satisfied. These include performance, security, availability, usability, modifiability, etc. All
these properties are considered to be quality attributes, and are usually categorized according to
when they are observable and measurable:

� runtime qualities — can be observed while the system executes, and

� non-runtime qualities — can not be observed and measured while the system executes.

Many of the system qualities depend on the architectural decisions. In fact, the main purpose
of the software architecture is to satisfy certain system qualities. These include both, runtime
(extensibility, modifiability, portability, etc.) and non-runtime qualities (security, scalability, re-
liability, etc.).

One of the important aspects to emphasize is that quality attributes are usually considered
to be non-functional requirements. This is not necessarily true as many of them are functional
requirements depending on the perspective. For example, security is often considered to be a
non-functional requirement by the developers of the system, but for security specialists and im-
plementors, security is a functional requirement achieved through the development of additional

Key Concepts and Related Work 16

functionality of the system.
The main drawback of all quality attributes is that they are not easily measurable. This makes

them hard to specify in concrete terms. Because of this, there is a high level of ambiguity and
subjectivity when dealing with quality attributes.

In order to optimize the qualities of the system, it is not enough to consider only the quality
attributes and their priorities at one moment in time: The qualities of the system change, and
the stakeholders’ quality priorities change. We need a way to prioritize and estimate changes in
quality attributes. The systematic study of these changes, and how and why they have occurred,
helps us achieve this.

In this chapter, we have presented some of the basic concepts and techniques that we will see
over and over in the rest of the dissertation. In the next chapter, we present the theoretical aspects
of our software architecture recovery process.

Chapter 3

Agile Architecture Recovery Process

In this chapter, we present our architecture recovery process. In the first part of this chapter, we
discuss architecture recovery issues and problems, including techniques used to solve them. In
the second part, we present our architecture recovery process in a development process neutral
way. In the third part, we discuss possible ways of adapting and using our process and techniques
for the direct architecture recovery of a legacy application. Our process and techniques are
applied in a context of direct architecture recovery of an application as presented in Chapter 4.

3.1 Architecture Recovery Issues and Goals

In order to understand and appreciate the value of architecture recovery, and to motivate its incor-
poration in a development process, we must first discuss some concrete benefits that knowledge
about an existing architecture and its use in development bring to a project:

� Understandability — An architecture provides an abstracted high level view of the design
of a system. This is of crucial importance in development of complex systems. Architec-
tural views provide a way to present separate concerns in a manageable way, which leads
to easier and faster understanding of a system and its interconnections.

� Modularity — A good architecture allows us to break down the system in smaller, less
interdependent components, which can be developed separately. This increased control

17

Agile Architecture Recovery Process 18

of complexity makes it easier to manage larger number of components and to replace old
components by newer better ones.

� Flexibility — Easier management and modification of components, run-time system mod-
ification and upgrading are all achieved through a good architecture.

� Cost Reduction — All of the previously mentioned benefits directly contribute to decreased
cost of system development and maintenance.

As mentioned earlier, most software systems are built on top of a pre-existing code base, such
as legacy applications and large libraries. Many of these applications are built without the careful
use of forward design practices, and for most of them, their structure is not documented or the
documents are obsolete. As qualities of our new application will depend largely on qualities
of legacy systems used, we need a way of recovering and modifying the architecture of these
legacy applications. Also, processes that do not emphasize forward design, and requirements
that constantly change make it even harder to achieve major system goals.

The main goals of a successful architecture recovery process are to produce artifacts that
describe:

1. the actual architecture of the system under consideration, and

2. the rationale of that architecture — why architecture is as it is.

The second goal is considerably harder to achieve since it includes recovery of forward design
decisions made, external influences that produced them, and alternatives that were considered
and why they were not implemented. The aim of our approach is to address both of these goals.
In addition, in order to be an efficient and lightweight approach, our process aims to achieve the
following goals and constraints:

� Minimal additional developer’s training.

� Low risk incorporation in the development process.

� Robust roundtrip tool support.

� As much as possible based on “best practice” programming and design techniques.

Agile Architecture Recovery Process 19

� Minimize design activities and maximize programming — to be done by identifying cru-
cial design and recovery activities, that stay stable so that the work invested in building
them is profitable and that work performed on updating them is minimized.

� Minimal and simple set of artifacts directly usable later for forward engineering and study
of evolution.

� Use of the forward engineering principles to recover architecture rationale.

3.2 Architecture Recovery Process

Ideally, the most influential force that drives architectural design should be the system’s func-
tional requirements and quality attributes. While often this is the main force that shapes the ar-
chitecture of a system, there are many others: different technical, business, and people-oriented
influences shape architecture in both positive and negative ways. For example, in a company
that has development teams at different locations, actual work division can essentially dictate the
architecture of a system. Another example is when management imposes the use of a particu-
lar technology, which is not an ideal one for the problem at hand (e.g., use of object-oriented
technologies for development of real-time systems for which the speed of execution is of crucial
importance).

The fact that architecture is primarily derived from and influenced by quality attributes in the
context of functional requirements imposes that an architecture recovery process should trace
from the concrete architecture of the system back to the actual requirements that originally
shaped it. At the same time, the analyst that is performing architecture recovery must isolate
other influences and their effects on software architecture. Therefore, the main groups of activi-
ties performed during architecture recovery are:

� discovery of concrete architecture of the system;

� discovery of functional requirements and quality attributes as a major force behind archi-
tectural decisions;

� recovery of architecture design decisions that have led to actual concrete architecture of

Agile Architecture Recovery Process 20

the system, and identification of other possible architectural solutions and their advantages
and drawbacks; and

� identification of other factors that have influenced the architecture.

The first activity is physical architecture recovery, and last three concern architecture ratio-
nale recovery, which together make the complete set of architectural artifacts.

As the first three activities and artifacts produced are of major importance for successful
further development of the system, the main emphasis of our process is on them. The last activity
is of secondary importance for the short term development of the system that usually follows
recovery process activities, but of a major importance for long term development activities and
improvement of business and development model.

Recovery of concrete architecture Recovery of quality attributes in
context of functional requirements

Recovery of architecture design
decisions and their alternatives

Identification of secondary factors

influence

depends on depends on

influence

performed in parallel

using

Figure 3.1: Major Architecture Recovery Activities

Figure 3.1 shows the main relationships among these activities. These recovery activities are
largely performed in parallel, and depend on each other. This has led to an essentially iterative
nature of our recovery process. We discuss this iterative nature later in this chapter when we
introduce actual process steps.

Agile Architecture Recovery Process 21

We define our process in three steps. In the first one, we introduce major concepts that
participate in the process, including sources of information, different domains of concern, dif-
ferent stakeholders, etc. We relate them using our architecture meta-model, which is used to
keep our process focused and consistent. In the second part, we introduce the techniques used to
manipulate these concepts, and architecture recovery artifacts that are produced as the result of
application of these techniques. In the last part, we introduce the process steps that relate these
different techniques, and provide guidelines on how to perform them.

3.2.1 Architecture Meta-model

In this section, we introduce the essential concepts that occur in an architecture recovery pro-
cess. Architecture recovery spans several domains of concern, and an analyst has to capture all
concepts and relations that occur in these domains. In order for a process to be focused, and ar-
chitecture recovery efficient and useful, we have to choose a manageable subset of these concerns
in a way that will maximize the benefits of capturing and documenting them.

The first major division of these concerns is on:

� business domain architecture, and

� computer system architecture.

Business Domain Architecture

A computer system is often a part of a larger business system, and serves as a resource to accom-
plish certain business goals. During an architecture recovery process, we need to study different
aspects of the business domain in order to understand our software system. A large amount of in-
formation about business architecture is gathered, but often much of that information is lost and
not documented during reverse engineering processes that do not value that type of information.
Our recovery process tries to capture and preserve this information as it is very valuable for long
term development goals, and is a major source of architectural influences.

There are four main sets of concepts that describe business architecture:

1. Business Resources — All entities, both physical and abstract, that exist inside a business
environment. These include people, information, different computer systems, business

Agile Architecture Recovery Process 22

supplies and products, etc. These are entities that participate in business processes. A sub-
set of these resources is a source of modelling concepts for software systems built using
object-oriented or component-based methodologies. The value of tracking and preserving
knowledge about these concepts is in the fact that they serve as a tool to perform analysis
of our software system architecture, and to track changes to business and software sys-
tem since when system was built as a part of evolution study and to evaluate how well
a software system reflects today’s business needs. A computer system for which we are
performing architecture recovery is a resource within one or more business ecosystems.

2. Business Goals — The purpose of performing a business activity is to achieve certain goals.
Goals can be decomposed into subgoals, and at a certain level of decomposition, we reach
business goals that have to be satisfied directly by our software system and its architecture.
The study of business goals allows us to evaluate how well our software system’s goals
conform to them, and how we should improve our system. An important part of this work
is the study of the evolution of these goals so the architecture of our system will be able to
support future goals and to remove obsolete ones.

3. Business Processes — A system for which we are recovering architecture may participate
within several business processes in order to help achieve certain business goals. The
most common forward software analysis technique is discovery of use-cases to capture
requirements. These use-cases describe sub-processes of larger business processes that are
automated by our system. It is important to understand business processes as they relate
all the use-cases of our system, which in turn relate requirements that our system has to
satisfy. This allows us to study the architecture of a system within a context and to analyze
the architecture.

4. Business Rules — Business rules are a major source of constraints on software system.
Many of these constraints directly influence software architecture. As such, it is important
to understand them and keep track of them, for example, to remove architectural limitations
imposed by constraints that do not hold any more.

We will discuss how these concepts relate to each other after we introduce computer system
architecture and its concerns. We discuss how to capture and preserve business architecture when
we introduce techniques used in our process.

Agile Architecture Recovery Process 23

Computer System Architecture

Many software development technologies, such as object-oriented development technology, al-
low us to simulate concepts that exist in a problem domain. For our purposes, we define the
following architecture concepts that we will keep track of:

� system,

� subsystems,

� modules,

� connectors,

� processes,

� logical processes, and

� hardware devices.

System concept defines the outermost boundary of the software system under consideration.
Same as for all other concepts, the amount of information and its scope depends on the archi-
tecture view in which it is used. It serves as a container for all other concepts, and defines the
computer system as a resource in the business model.

Subsystems are abstract concepts that serve as abstraction tools for management and abstrac-
tion of actual physical modules, connectors, and processes. They serve as containers and building
blocks of the whole system. Depending on the architecture view, they capture different concerns
of the system.

Modules are basic architectural building blocks. For example, in the logical view they repre-
sent concepts that occur in business domain, and in the implementation view they represent code
units. Modules are abstractions of basic building blocks of the system, depending on the devel-
opment technology used. For example, if a procedural paradigm is used, they are sets of logically
related procedures and data (usually ones that exist in the same source file), in component-based
paradigm they are components, and in object oriented they are groupings of one or more classes.

Agile Architecture Recovery Process 24

Connectors are abstractions of communication mechanisms and channels that exist in a sys-
tem. Their size and complexity vary from simple procedure calls to connectors built from several
modules and hardware devices.

Processes are physical, run-time processes that perform activities that fulfill goals of logical
processes. They are allocated to possibly many different processing nodes, and are basic building
blocks of run-time view.

Logical processes are white-box use-cases. The difference between them and regular, black-
box, use-cases is that they include descriptions of which activities are performed within the
system. We will discuss them in more detail when we introduce architectural use-cases in archi-
tecture recovery techniques section of this chapter.

Hardware devices are concepts that occur in run-view, and represent actual hardware device
that are parts of a computer system.

Figure 3.2 shows the main concepts, and main relationships at the architectural level. This is
not the only possible decomposition, but is a useful, minimal one that will help us focus on the
main architecture issues without getting lost in many details, which are usually not necessary.
Simplicity of the decomposition is also in the spirit of our agile approach, and allows us to
abstract from the details of used low-level development technology.

Now we will present techniques that are used to recover and present these concepts in order
to provide a useful architectural description.

3.2.2 Architecture Recovery Techniques

Before we embark into the discussion of particular architecture recovery techniques and artifacts,
we summarize the main goals of a successful recovery. These goals will be used to classify and
relate specific techniques. These goals are:

� Discovery of the current structure of the system.

� Discovery of the main influences that have led to that architecture — most important are
quality attributes (in context of functional requirements).

� Discovery of the design decisions that have led to the current architecture of the system
and possible alternatives.

Agile Architecture Recovery Process 25

System

Subsystem System

Component

ConnectorHardware DeviceModule

1

*

*

*
* * 1*

Process Logical Process

*

*
-Resource

* *

Business System

1

-Resource*

Business Rule

Business Goal

Business Process

Business Resource

*

*

*

*

*

*

*

*

*

*

Figure 3.2: Architecture Meta-model

Agile Architecture Recovery Process 26

Discovery of Present Architecture

Recovery of current architecture of a system is a goal into which a lot of research efforts have
been invested. There exist many reverse engineering tools that can help, business reverse en-
gineering processes and techniques, formal methods, etc. Nevertheless it is a very difficult and
demanding task to perform.

Our approach to the recovery is iterative and view-driven. Architectural views provide sepa-
rate conceptual approaches that allow us to focus on recovery of only a portion of architectural
concerns and facts at a time. Iterative means that we do not focus on completion of architecture
recovery from only one perspective (view) at a time, but iterate among recovery from different
perspectives and use feedback from one to improve another.

The main work flow is:

1. Initial recovery from problem domain perspective.

2. Recovery from logical, run-time, and test perspective.

3. Recovery from problem domain perspective, and iteration to step 2.

One of the main goals of a good architecture is to preserve problem domain concepts in
software architecture. Therefore, during recovery we pay special attention to discovery of actual
mappings from problem domain view to other views, and vice-versa. This is done by tracking
which concepts from one view allow discovery of concepts in another. Only architecture-relevant
concept dependencies are recorded.

Problem Domain View
In order to perform architecture recovery from a problem domain perspective, we use forward

requirements and business engineering techniques such as employee interviews. The focus is
on discovery of business resources, goals, processes, and rules that are closely related to our
software system.

Two possible approaches that we are using, depending on the type of system under consid-
eration, are actor-driven and process-driven approaches. The actor-driven approach is useful for
systems where actors, as active resources, control processes that occur inside the system. For
example, in business environments, employees as active resources control most of the business

Agile Architecture Recovery Process 27

processes, so for recovery of information systems from a problem domain view perspective, we
should use an actor-driven approach. The main steps are:

1. Discover an actor.

2. Discover the goals of that actor.

3. Discover the processes performed to achieve these goals and the resources used or affected
by them.

On the other hand, the process-driven approach guides recovery more effectively in business
domains where actors are of secondary importance. For example, for an industrial control system
problem domain, the main focus is on processes that occur within it and actors are of secondary
importance. The main steps are:

1. Discover a process and the resources used.

2. Discover which goals are achieved by that process.

3. Abstract goals at the level of business goals.

4. Identify which resources are actors.

Contrary to business engineering needs, for our purposes we do not require a large amount
of detail. The main artifacts produced are:

� Actor-Goal List

� Goal-Process List

� Process-Resource List

� Business Rules List

The main purpose of these artifacts is to preserve knowledge about identified concepts and
relationships among them. We use a simple list of items although other formats, such as UML
diagrams, are possible. The main reason for using simple lists is to minimize the effort in pro-
ducing and updating these artifacts. We present a sample artifact in Chapter 4 in the context of
our case study.

Agile Architecture Recovery Process 28

Logical, Run-Time, and Test Perspective
The most important perspective for our purposes is the logical view of the system. It serves

as a bridge between the problem domain perspective and the implementation perspective. It also
has a strong influence on the run-time and test aspects of the system.

Logical view is composed of a set of concepts, some of which appear in the pure problem
domain, and some in a pure implementation view. The main value of this view lies in the fact that
it provides a focus and is the main source of information for actual development of the software
system.

This view is further subdivided in two different aspects, which occur naturally during the
recovery process:

1. conceptual architecture, and

2. concrete architecture.

Conceptual architecture is a very high level view of a system’s architecture, which occurs
often as a transition step when one analyzes first architecture from a problem domain perspective
and then moves toward analysis at the implementation level. Concepts that appear in artifacts
presented at the conceptual architecture level are largely a subset of concepts that occur in the
problem domain view.

On the other hand, concrete architecture is a more detailed view of the system and appears
when one is analyzing a system using the bottom-up approach (i.e., starting from source code and
then abstracting concepts and mapping them to the concepts that occur in the problem-domain
view). Concepts that appear in artifacts at this abstraction level are largely a subset of concepts
from pure implementation view.

Our approach is mixed and encourages iteration in the refinement of artifacts at both abstrac-
tion levels. As conceptual architecture is closer to problem domain concerns, it is recovered using
familiar object-oriented, or component-based analysis techniques and general problem domain
knowledge. Concrete architecture is, on the other hand, recovered using reverse engineering
tools like source code browsers. Finally, a mapping between these two abstraction levels are es-
tablished, with special emphasis on mismatches, which are potential candidates for architectural
refactorings.

Concepts that appear in this view are:

Agile Architecture Recovery Process 29

� system,

� subsystems,

� modules,

� connectors, and

� logical processes.

The main techniques used to produce artifacts in this view are:

� reference architecture, and

� responsibility based dynamic architecture representation (architectural use-cases).

The former was discussed in Chapter 2, so we discuss only the latter one here, and relate
them in a section that describes how all recovery steps are performed together.

Use-cases — that is, narrative descriptions of domain processes — appear in different forms
in all the phases of a development cycle. They are typically used as the artifacts around which
development cycles are organized. When used this way, all the other activities and artifacts
depend on them.

Use-cases describe the interactions between actors and the system. A use-case encapsulates
responsibilities that are performed during a process by actors and by the system; that is, they
indirectly describe responsibilities.

Architectural use-cases are use-cases that describe logical processes within the system. In
our approach, these use-cases are not created by developers, but are generated using high-level
responsibilities that are written as the part of the code documentation. The purpose of this gen-
eration is to document dynamic processes within the system. This is a technique used as the part
of the logical view in order to present dynamic interactions in a comprehensible format.

Therefore, to present dynamic aspects of the system we use architectural use-case. For static
aspects, many different notations can be used. The only requirement is that previously mentioned
concepts (system, modules, connectors, and subsystems) can be clearly presented. Our tool is
PBS (Figure 3.3), which provides a simple box-and-arrow notation to capture these concepts and
relations among them; however, any UML CASE tool can be used to present these concepts.

Agile Architecture Recovery Process 30

We will present sample architectural use-cases, static diagrams, and provide guidelines on their
construction in Chapter 4.

Figure 3.3: PBS: Architecture of Linux Operating System

The Run-Time view in our process is limited to only a basic description of computer system
hardware and process distribution. Only main processes are discovered, presented on a diagram,
and mapped to their processing nodes. The only purpose of this diagram is to allow us to map
the main sets of functionality of our system to distributed aspects of business domain. We do
not study it in more detail as the run-time view depends highly on the choice of hardware and
middleware technologies, and the whole purpose of architectural recovery is to abstract above

Agile Architecture Recovery Process 31

these low-level concerns. More detailed study of run-time aspects of a system is appropriate
during low-level design recovery of a system.

Test view is an optional view. It is mainly used when a system has an existing, extensive
set of automated, software-based testing artifacts such as unit tests. Techniques used to recover
testing aspects of a system are the same as the ones used for recovery from logical perspective, so
we will not discuss them again. The main use of test view is in conjunction with logical view to
provide a more complete mapping to problem domain view. The test view is especially important
when studying the evolution of a software system, as it represents current external needs from
business perspective (i.e., requirements that our system as a resource is supposed to fulfill).

Now, when we know the state of the current architecture of the system, we need to find its
rationale. The following two sections elaborate on this issue.

Quality Attributes and Design Decisions Recovery

Similar to recovery of architecture from the logical view perspective, the discovery of quality
attributes is a two way process. In one direction, quality attribute recovery is a requirements
engineering activity where one analyzes a business system to find out which qualities a computer
system as a business resource has to have and fulfill. In the other direction, quality attribute
recovery is a technique performed in conjunction with design decision recovery, and basically
represents an answer to a question of why a particular design decision has been made.

Quality attribute discovery from requirements perspective is a well studied activity, described
in many requirements engineering texts [RR00]. Compared to the actual requirements engineer-
ing process, ours is simplified since we concentrate only on discovery of architecture-relevant
quality attributes. As a main guideline, we have an initial set of commonly occurring quality
attributes for a particular problem domain (there are many classifications of quality attributes)
such as reliability, performance, etc. For each one of these high-level quality attributes we are
discovering, analyzing, and documenting quality facts — simple statements that quantify these
quality attributes in the context of functional requirements. For example, “in a case of main
system failure, the monitoring system must restart the main system within 10 seconds”. These
quality facts are documented in quality attributes table, and are related directly to high-level
quality attributes, and functional requirements within which they are analyzed.

Quality attribute recovery from the other perspective is guided by the analyst’s expertise in

Agile Architecture Recovery Process 32

forward architecture design techniques. Many architecture styles today are directly connected to
a set of attributes for which they are particularly well suited [KKB � 99]. The analyst’s role is
to discover architectural styles in the system under consideration and to deduce which attributes
have led to it. Also, for a given set of attributes, analysts must consider which other architectural
styles might be appropriate, and to evaluate their advantages and disadvantages compared to the
set of styles already used for the system under consideration.

Attributes that are discovered as a result of the design decisions recovery process, and that
do not map to the actual needs of the business system, are isolated and emphasized. This is done
since architectural styles that traced back to these attributes exist because:

� there is some other architectural influence, such as division of work among developers, or

� these quality attributes have existed before at some point in time, but do not exist any more,
and that architecture style is probably a candidate for architectural refactorings.

To record this architectural rationale, we use two documents:

1. a document that relates quality facts through design decisions to the actual solution, which
is ideally expressed as a set of architectural styles, and

2. a document that contains alternatives to the existing particular solution.

The first document also includes other discovered, non-attribute, architecture influences and
their results in the architecture. Even though this information can be presented in several different
formats, we use tables, as they are simplest to build and maintain. Another obvious possibility is
to use diagrams, but we do not use them due to the very large amount of information that would
add too much noise to the diagram. Also, diagrams are harder to update and maintain. We will
present examples of these tables in Chapter 4.

Now when we have defined our set of activities and artifacts, we will discuss how they fit
together for a direct recovery of a legacy application.

3.3 Architecture Recovery Process Steps and Legacy Systems

Although we have limited our recovery process to only a small subset of activities and artifacts
produced in order to achieve our goals, Figure 3.4 shows that there exists still a relatively high

Agile Architecture Recovery Process 33

complexity due to the many relationships among these activities and processes. Rectangles rep-
resent artifacts that are of major concern to recovery, and ellipses represent artifacts that are either
transitional or optional artifacts. Arrows represent flow of activities and information. From the
first look at this diagram, we can see that there is a lot of iteration within the process. A major
challenge is thus to order these steps in a such way that they can integrate seamlessly with our
current process and produce optimal results.

Source Code and System Run-
Time Observations

System Documentation;
Problem Domain Expertise;

Reference Architecture

Stakeholder Interviews;
Business Analysis; etc.

Start

Concrete Architecture Abstract Architecture

Unified Logical View:
Architectural Use-Cases and

Static Diagram

Domain View Lists:
Actor-Goal, Goal-Process,

Process-Resource, and
Business Rules

Test and Run-Time View
Artifacts Quality Attributes

Reverse Design Decisions
Recovery

Alternative Influences and
Possible Design Decisions

Figure 3.4: Architecture Recovery Artifacts and Relationships

Agile Architecture Recovery Process 34

A very common task is a one-shot architecture recovery of a legacy system. It is usually
performed in isolation from the actual development process. Its advantage is that several analysts
can focus only on the architecture recovery of the system, without having to worry about changes
to the system during recovery, other development activities, and so on. This makes it simpler to
organize and perform all the steps of the recovery process.

This ability to focus only on recovery allows us to perform major steps in a waterfall-like
fashion. These are the highest level steps that are performed sequentially:

1. project elaboration,

2. architecture recovery, and

3. architecture presentation.

Project Elaboration
Software architecture recovery, as any other software engineering project, requires time, re-

sources, and involves a certain amount of risk. Software architecture project elaboration phase is
usually a subcomponent of a development process elaboration phase, during which stakeholders
are supposed to evaluate the feasibility and usefulness of architecture recovery of a legacy system
in order to incorporate it into further development of a new system. Questions such as if it is less
expensive to recover architecture of this system and improve it or to build a new system should
be answered during this elaboration phase.

To be able to estimate the feasibility of the architecture recovery process, we must consider
several key issues:

� Amount and quality of pre-existing documentation — especially important are relatively
up-to-date functional requirements lists, initial goals of the system, user manuals, and
deployment descriptions.

� Low-level quality of code — is the code self documented, what methodology was used to
develop it, etc.

� Size of the system.

� Availability of initial developers and designers of the system, and level of current knowl-
edge about the design of the system.

Agile Architecture Recovery Process 35

� Estimation of business changes and how they were reflected in the system — it is possible
that a system is out of date and even if architecture is recovered, there will be a need for a
complete refactoring of the system, which is often more tedious to do than to build a new
system.

� Analysts’ business and problem domain knowledge.

Other aspects that should be evaluated are the availability of general reverse engineering and
source browsing tools, requirement gathering tools, and appropriate drawing tools.

If all these previously mentioned aspects are positive, one can relatively safely embark into
a recovery process. Before the actual recovery is started, one should prepare existing documents
and tools for recovery. This depends on the amount of information and tools available, but at
minimum, one should have:

� Known functional requirements listed and grouped in related-functionality groups.

� A source code browsing and editing tool.

� A drawing tool.

� A text processing tool.

Now when a decision to continue the process is made, and initial set of artifacts and tools are
ready, analysts can start the actual recovery process.

Architecture Recovery
In order to allow work distribution and separation of concerns, our recovery process is divided

into the following steps:

Abstract architecture recovery, business domain analysis, and run-time aspects analysis —
Using requirements engineering techniques, existing documentation, and problem domain
expertise, analysts try to produce separately an initial abstract architecture of the system
and domain-view lists. One of the main techniques that helps recovery of domain and con-
ceptual architecture is actual use of the system, which aid in creating a high-level run-time
architecture. It is important to note that much of the effort invested in early iterations is
not on getting these artifacts perfectly right but on providing artifacts that will allow us

Agile Architecture Recovery Process 36

to perform following steps. After every iteration, set of artifacts produced is refined and
improved.

Concrete and test architecture — Analysts try to map abstract architecture concepts onto source
code and to discover mismatches. Responsibilities and invariants source code instrumenta-
tion is performed at the same time. These are used to make a summary of dynamic aspects
of concrete architecture, and initial diagram of static building blocks is produced. Again,
this is done with assumption that these will be refined in following iterations. At the same
time, optional test view artifacts are constructed using the same techniques. Iteration is
finished with unification of concrete and abstract architecture artifacts to reflect current
full understanding of logical architecture of system, and to serve as input artifacts for the
following iteration.

Quality attributes and design decisions recovery — While previous steps were mostly rou-
tine observation and analysis, this step depends highly on the analysts’ software design
and development expertise. Also, it depends on availability of codified architectural pat-
terns and attribute quality knowledge for that particular domain. As a guideline, we will
present a minimal set of these as a part of our case study. These two activities are very
tightly coupled and the iteration between them is so high that they can be effectively con-
sidered as one, unified activity. Artifacts produced are quality facts list related to a set
of design decisions, and a list of mismatches that indicate possible external architectural
influences.

Alternative influences and possible design decisions Using artifacts produced in the previous
step and domain-view lists, analysts try to discover possible external architectural influ-
ences, and possible design alternatives. The amount of effort invested in this step has to be
critically estimated and justified. For example, if no changes to the system are supposed
to be made, only very obvious alternatives should be documented. On the other hand, if a
need for extensive refactoring is already observed, or if large drifts in the business domain
are expected, analysts should try to identify as many external factors and alternative design
decisions as possible. Activities from this step are strongly emphasized in software evolu-
tion recovery process, so if architecture is recovered as a part of evolution study, emphasis
should be put on this step.

Agile Architecture Recovery Process 37

These steps form a recovery iteration, and a whole process consists of several iterations.
Each subsequent iteration is more specific and detailed than the previous. A common way is to
organize iterations following top-down architectural decomposition of the system. For example,
first one is concerned with architecture at the system level, and next one at the level of one of
subsystems.

Architecture Presentation
Depending on needs, during this step previously produced artifacts can be presented using

different formats for different purposes. For example, if artifacts are supposed to be used for
general understanding of the system by new developers, additional diagrams can be created that
present information from tables in clearer way. Again, effort invested in creation of additional
documentation has to be critically evaluated against cost criteria.

3.4 Summary

In this chapter, we have presented the overall organization of our process and high-level arti-
facts. We have intentionally omitted presenting the low-level steps and providing the definitive
guidelines on how each step has to be performed. This was done in order to keep the process
adaptable, and to stress the importance of agility and use of the different techniques to achieve
the same goals. For example, we did not enforce the use of any particular tool and its specific
recovery steps for the recovery of the concrete architecture. Nevertheless, in the next chapter we
tackle these low-level process steps and issues (including recommended guidelines, minimal sets
of crucial design techniques, etc). The next chapter describes a case study, which was used to
validate the applicability and effectiveness of our process.

Chapter 4

Case Study: X MultiMedia System

In this chapter we present an architecture and evolution recovery case study of the X MultiMedia
System (XMMS) [XMMa]. The main purpose of this case study is to evaluate our process by
applying it to the recovery of a real world system. The main factors that have led to the choice
of XMMS as a guinea pig are:

� It is a real, industrial strength, multimedia application in very wide use.

� It is of non-trivial size, 65,000 lines of code, but it is also small enough to be tractable for
our purposes.

� It is in active development, and multiple versions of its source code can be obtained.

� It is developed using an open source licence, which means that we can examine it and
publish our results freely.

We note that while 65,000 lines of code is not usually considered “large” by industrial stan-
dards, it is often the case that architecture recovery of large systems often concentrates on major
subsystems of similar size to XMMS system as a whole.

In the first part of this chapter we introduce XMMS, including its description, development
team, and history. In the second part, we present architecture recovery. In the third part, we
present a focused evolution recovery of the system.

38

Case Study: X MultiMedia System 39

4.1 XMMS: Introduction

The development of the player started in late 1997, and since then it has become a very popular
and widely used multimedia application, particularly in the Linux community. It runs on many
Unix based operating systems and a goal of the XMMS is to have all functionality that WinAmp
[Win] player has, plus some additional features available only on Unix.

XMMS has a rich set of features. Beside the basic features, such as audio files playing and
management, XMMS provides many additional features that provide rich user experience, such
as support for different visualization skins, sound enhancing plugins, etc. Many of the additional
features are available as the plugin components that are developed by third parties, and whose
development is possible due to an open plugin architecture of the system.

The development team consists of three main developers. The core system programming
is done by Peter Alm (peter@xmms.org), the graphical interface is done by Thomas Nilsson
(thomas@xmms.org), and everything else is done by Olle Hallnas (olle@xmms.org).

4.2 XMMS: Architecture Recovery

This section describes architecture recovery as it was actually performed. Architecture recovery
consisted of two iterations, second one building on the first one, refining and improving recov-
ery artifacts. This section is organized accordingly, starting with project elaboration and then
describing both iterations.

4.2.1 Project Elaboration

As this is a moderate size recovery project, an extensive project elaboration is not of crucial
importance. Nevertheless we present some major issues.

Following are sample artifacts that allow us to estimate feasibility of the project:

� Amount and quality of already available documentation — Documents that are available
are a summary of high level features of the system [XMMb], and user manual [XMMc].

� Quality of code — System is developed using C language. A quick overview of code
showed a good coding style, and relatively low amount of comments.

Case Study: X MultiMedia System 40

� Size of the system — Table 4.1 summarizes some basic system metrics. They are produced
using a source code analysis tool Understand for C++ [UND]. Interesting to note is the
increase in the size of the system from the first to the last considered release was 36% in
the number of functions and 38% in the number of lines of code. The greatest increase
in the size was in the release 0.9.5, which was approximately 15.3% in the number of
functions and 12.4% in the number of LOC. Also, we observed a stable percentage of the
comments, 12-15%, but most of them were different copyright rules and disclaimers, and
not the actual program comments.

� Availability of initial developers and designers — None of developers is available for con-
sultation. Also, no architecture documentation was available.

� Analyst’s business and problem domain knowledge — No previous knowledge about ar-
chitecture of multimedia applications. Familiarity with systems Windows platform coun-
terpart WinAmp [Win] from user perspective.

Files Functions Lines Lines Code % Comment

XMMS 0.9.0 154 948 38101 29844 12
XMMS 0.9.1 154 950 39103 31061 11
XMMS 0.9.5 173 1122 45503 35466 13
XMMS 0.9.5.1 175 1129 45829 35710 13
XMMS 1.0.0 192 1230 50379 38900 14
XMMS 1.0.1 192 1233 50631 39107 14
XMMS 1.2.0 212 1287 56217 43126 14
XMMS 1.2.1 212 1286 56228 43124 14
XMMS 1.2.2 214 1290 56337 43185 15
XMMS 1.2.3 216 1322 57020 43599 15
XMMS 1.2.4 217 1345 58115 44446 15
XMMS 1.2.5 232 1482 63124 48125 15

Table 4.1: XMMS: Basic System Metrics

Case Study: X MultiMedia System 41

Detailed risk analysis of these and similar factors is out of scope of this thesis, and more
appropriate for larger systems. Other aspects that should be evaluated are the availability of
general reverse engineering and source browsing tools, requirement gathering tools, and drawing
tools. If all these previously mentioned aspects are positive, one can relatively safely embark
into a recovery process.

For our project, the following documentation and tools are available:

� High-level feature list and user manual [XMMb, XMMc].

� A source code browsing and editing tool: Understand for C++ [UND].

� A drawing tool.

� A text processing tool.

� Concrete architecture visualisation system: PBS [PBS].

When the decision to proceed with the project is made, and an initial set of tools and artifacts
prepared, one can start the actual architecture recovery.

4.2.2 Architecture Recovery: First Iteration

Although almost all aspects of architecture recovery are tackled during each iteration, the em-
phasis is put more on some of these aspects than on others. During the first iteration, most of the
emphasis is put on recovery of conceptual and domain aspects of architecture. Run-time archi-
tecture has a lower emphasis, and concrete and rationale are tackled the least. The reason for this
is in the natural work-flow and availability of input for each aspect recovery. Also, information
from one aspect is used to improve others.

During the first iteration, emphasis is on recovery of high-level details. These details are
subsequently refined in following iterations, which continues as long as we achieve desired level
of architectural detail for our purposes.

The main reason for this iterative, top-down recovery is a need to efficiently conquer this large
amount of information. Also, it is more efficient to recover details from a particular perspective
if there exists feedback from others.

Case Study: X MultiMedia System 42

The first step is to distill available documentation for potentially architecturally relevant fea-
tures and concepts (this is possibly done at the end of the project elaboration phase). We extracted
this information from high-level feature list and user manual [XMMb, XMMc]. These features
and concepts are sorted into related categories. Table 4.2 presents core features of the system;
Table 4.3 shows user interface and visualisation features; Table 4.4 contains features in form of
plugins; and Table 4.5 represents other features.

Files search
Volume control
Balance control
Shuffle play
Repeat play
Equalizer
Playlist editor

Table 4.2: General System Features

Spectrum analyzer
Oscilloscope
One line mode
Timer elapsed
Timer remaining
Double size option
Winamp 2.0 user interface skin support
Gnome/Afterstep/WindowMaker window docking
GTK Interface for requesters (with theme support)
Auto remove borders if the windows manager has support for it

Table 4.3: User Interface and Visualization Features

Case Study: X MultiMedia System 43

Visualization — control different visual effect
Effects — control and alter sound in differen ways
Input — processing different streams and formats
Output — controls output stream and formats

Table 4.4: Plugins Features

Streaming/Shoutcast(1.0/1.1)/Icecast support
Fast jump in playlist
Scroll wheel support
Saving to wav file format option
Saving http streams to hard disk
HTTP authentication
Playing mpeg layer 1/2/3
Playing wav and formats supported by mikmod
Proxy authentication support
Support for other systems (FreeBSD, Solaris, LinuxPPC, AIX, Irix)

Table 4.5: Other Features

Case Study: X MultiMedia System 44

Domain, Conceptual, and Run-Time Architecture

As we have mentioned earlier, the run-time architecture presentation in our approach is a simple,
high-level description of the system’s deployment and distribution properties. As our system is
just a stand-alone, desktop application, we will not spend much more time describing it. Never-
theless, experience in using of the system provides us with an opportunity for concept and feature
discovery. This is especially important since our application is event-driven. For such systems,
an actor is a main driver and controlling force, and the user interface provides an excellent source
of information about the features of the system. This leads us into use of actor-driven recovery
approach for domain architecture (Section 3.2.2).

Domain View. As with all artifacts in early iterations, our goal is not to discover all actors,
goals, and processes at once. The aim should be to discover as many as possible, but not spending
a large amount of time searching for hidden processes, and perfect relationships among all these
concepts. Many of these hidden actors, goals, and processes will become evident during recovery
of architecture from other perspectives. These concepts that are discovered later will be analyzed
in more detail as a part of domain view recovery in following iterations.

The main stakeholders that are discovered during the first iteration are end-users, developers,
multimedia providers, and the open-source community. As end-users are the only ones that con-
form to the definition of actors [FS99], they are shown in Table 4.6 together with their main goals.
If architecture recovery is used to recover and improve the business model, other stakeholders
can also be included in the table and subsequent analysis. Since our goal in this case-study is
recovery of the architecture for software system understanding and improvement, we will not
further consider these additional stakeholders.

End-user Play multimedia content
Record multimedia content
Store multimedia content

Table 4.6: Iteration 1: Actor-Goal List

Goals are achieved through processes, and processes use certain resources. Processes have
to conform to certain business rules. Tables 4.7, 4.8, and 4.9 summarize relationships among
these concepts.

Case Study: X MultiMedia System 45

Play multimedia content Obtain multimedia content
Setup multimedia system
Adjust listening/watching preferences

Record multimedia content Obtain recording hardware
Setup multimedia system
Adjust recording preferences

Store multimedia content Obtain storage facilities
Produce required multimedia file format

Table 4.7: Iteration 1: Goal-Process List

Obtain multimedia content Multimedia CD/DVD
Internet access

Setup multimedia system Multimedia software
Computer system including monitor and speakers

Obtain storage facilities Re/Writable CD/DVD
Hard disks

Table 4.8: Iteration 1: Process-Resource List

Obey copyright rules

Table 4.9: Iteration 1: Business Rules List

Case Study: X MultiMedia System 46

Although these are simple and high-level lists, they summarize the main concepts that occur
in the problem domain, and together with initial feature and concepts lists obtained from existing
documentation, they provide guidance and a focus for the initial steps of conceptual architecture
recovery.

Conceptual architecture. In order to recover logical view artifacts and to perform rationale
recovery and analysis, one must be familiar with basic forward design techniques and patterns.
For the following discussion, we assume the reader is familiar with GRASP patterns [Lar01] and
patterns from [GHJV96, BMR � 95].

The first step in conceptual architecture recovery is to build a static conceptual architecture
presentation. The ideal way for recovering conceptual architecture is to interview the system’s
architects and developers. This way architecture recovery is a straightforward analysis and doc-
umentation of obtained results. As we did not have access either to developers or to any archi-
tectural documentation, we had to rely upon other techniques.

Techniques that we used to derive the initial conceptual architecture were:

� General reference architecture for stand-alone, GUI, desktop application — layered archi-
tectural pattern [BMR � 95].

� GRASP patterns [Lar01] — they represent basic knowledge about the responsibility as-
signment rules and heuristics. These include low coupling principle, high cohesion princi-
ple, indirection to achieve separation of concerns, controller pattern, etc.

� Model-View-Controller pattern [GHJV96].

� Identification of separate architectural entities from initial feature and concept list.

� Domain view artifacts analysis for unification of feature, processes, and resources.

Figure 4.1 presents the static conceptual architecture that we derived. Arrows represent con-
nectors which are in this case ordinary procedure calls and direct data access. The goal of this
initial architecture was to allow us to document initial dynamic conceptual architecture.

Activities performed for initial dynamic conceptual architecture recovery are responsibility
assignment of early discovered features to entities in recovered static conceptual architecture,
and identification of major architectural use-cases using domain processes and feature list. Ar-
chitectural use-cases are not fully developed and written down in this early stage since they

Case Study: X MultiMedia System 47

Basic User Interface

Presentation Layer

Application Logic

Service Layer

User Interface
Plugins

Core Functionality Plugins

High Level Services

Libraries Storage

Operating System

Operating System Support

Figure 4.1: Iteration 1: Static Conceptual Architecture

Case Study: X MultiMedia System 48

would drastically change after concrete architecture recovery, and unification of the logical view.
The main purpose of dynamic conceptual architecture at this stage is to serve as input and driver
for concrete dynamic architecture recovery. Full use-cases are developed and documented in the
next iteration. Tables 4.10, 4.11, and 4.12 summarize the subsystems’ responsibilities.

Subsystem Responsibility

Basic User Interface Provide support for visualization plugins
Manage spectrum analyzer
Manage oscilloscope
WinAmp skin support
Support different sizes and full screen mode
Display controllers
Playlist editor
Auto remove borders if the WM has support for it
One line mode

User-Interface Plugins Control different visual effects

Table 4.10: Iteration 1: Presentation(UI) Layer Subsystem Responsibilities

Now when we have an initial conceptual architecture, using it we will try to discover concrete
architecture at the same level of abstraction.

Concrete Architecture and Rationale Recovery

While conceptual architecture tends more towards encapsulation of pure logical view aspects,
concrete architecture tends towards capture of pure development view aspects. The main ap-
proach to concrete architecture recovery is study of source code organization. This step involves
study of source code directory organization, namespaces (packages), code browsing, configu-
ration files, and other source code artifacts. Code browsing is performed with the intention of
discovering high-level features, and not performing detailed analysis of control flow, reference
detections, etc.

Techniques that we used for this iteration were the study of source code directory structure
and source code documentation. The major subsystems and their main responsibilities are:

Case Study: X MultiMedia System 49

Subsystem Responsibility

Core Functionality Seeking in files
Volume control
Balance control
Shuffle play
Repeat play
Equalizer
Track playing time
Fast jump in playlist

Plugins Streaming/Shoutcast(1.0/1.1)/Icecast support
Control and alter sound in different ways
Processing different streams and formats
Controls output stream and formats
Playing mpeg layer 1/2/3
Playing wav and formats supported by mikmod

Table 4.11: Iteration 1: Application Logic Layer Subsystem Responsibilities

Subsystem Responsibility

High Level Services Scroll wheel support
Saving http streams to hard disk
HTTP authentication
Proxy authentication support
Abstract library, storage, and operating system functionality

Libraries GUI support
I/O support
Abstract low-level OS services

Storage Abstract low-level OS support for various storage devices
Provides facilities for storing information like user preferences, playing lists, etc.

Table 4.12: Iteration 1: Service Layer Subsystem Responsibilities

Case Study: X MultiMedia System 50

XMMS Subsystem — XMMS subsystem implements basic functionality of the application,
and contains basic user interface functionality and management. It has one subsystem
called defskin which contains basic user interface skins. The following functionality is
supported:

� Displaying user interface widgets in platform independent manner.
� User interface management in platform independent manner.
� System initialization.
� Access to and management of the files at remote locations.
� Interface to different plugins.
� Plugin management.
� General way of handling input and output (specifics are handled by plugins). This is

the basic functionality since song playing, stopping, pausing, etc. are the manipula-
tions of the input and output streams.

� Play-list management.
� File system handling.

WMXMMS Subsystem — This subsystem contains platform and window manager specific
user interface functionality. It is responsible for all window managers except GNOME.

GNOMEXMMS Subsystem — This subsystem is responsible for GNOME window manager
specific user interface functionality.

LIBXMMS Subsystem — This subsystem contains low level functionality for application and
user interface management. It is used by all other subsystems, except intl and po, to support
their functionality.

INTL Subsystem — This subsystem contains GNU gettext library, which is used for interna-
tionalization of the application.

PO Subsystem — This subsystem contains PO files generated using GNU gettext that provide
customization of the user interface with different languages (international support).

Case Study: X MultiMedia System 51

General Subsystem — General subsystem contains plugins that can be used to control the ap-
plication in some new way not provided by core functionality. It has three subsystem, and
each of them contains functionality of a specific plugin:

� IR Subsystem — This plugin provides functionality needed to control XMMS with
TV / VCR / Stereo remote. It has some user interface functionality in order to display
“about window”.

� Joystick Subsystem — This plugin provides functionality needed to control XMMS
with one or two joysticks. It also has some user interface functionality in order to
display “about window”.

� Song change Subsystem — This plugin provides functionality needed to control
XMMS change songs. It also provides user interface for getting info needed to sup-
port its functionality.

Effects Subsystem — Effects subsystem contains plugins that are used to alter the sound. It has
three subsystem, and each of them contains functionality of a specific plugin:

� Echo plugin Subsystem — provides echo effect. Contains functionality to display
“about window” and to inform user that echo effect is on.

� Stereo plugin Subsystem — provides stereo effect. Contains functionality to display
“about window” and to inform user that stereo effect is on.

� Voice Subsystem — provides way for voice removal from the song. Contains func-
tionality to display “about window”.

Visualization Subsystem — This subsystem contains three subsystems blur scope, opengl spectrum
and sanalyzer, which contain plugins for special visual effects. All of them are concerned
with user interface.

Input Subsystem — This subsystem contains seven subsystems, which contain plugins respon-
sible for processing different types of input streams. Subsystems are cdaudio, idcin, vorbis,
mikmod, Mpg123, tonegen, and wav. They contain user interface functionality.

Output Subsystem — This subsystem contains four subsystems, which in turn contain plu-
gins responsible for producing different types of output streams. The subsystems are

Case Study: X MultiMedia System 52

disk writer, esd (eSound Output Plugin 1.0), Solaris, and OSS (OSS Driver 1.0). They
contain user interface functionality.

This high-level concrete architecture allows us to make initial estimates of the rationale be-
hind the architecture. It is still too early to make a detailed analysis of the rationale as many
aspects of the architecture are still unexplored. The purpose of this initial rationale recovery is
to facilitate and improve recovery of conceptual and concrete architecture in the next iteration.
As such, during this iteration, we do not spend time on analysis of alternatives, but only on
discovery and presentation of major quality attributes and design decisions. We represent this ar-
chitectural rationale using a table that captures major quality attributes, quality facts (quantified
quality attributes), design decisions and their impacts (Table 4.13).

Quality Fact: Support different window managers
Quality Attribute: Usability, Portability
Design Decision: Create different subsystems
Impact: WMXMMS and GNOMEXMMS Subsystems

Quality Fact: Isolate low-level common functionality
Quality Attribute: Modifiability, Portability, Understandability
Design Decision: Create new library subsystem
Impact: LIBXMMS Subsystem

Quality Fact: Separate highly related functionality groups
Quality Attribute: Modifiability, Extensibility, Work distribution
Design Decision: Group functionality into different subsystems
Impact: General, Effects, Visualization, I/O subsystems (high cohesion, low coupling)

Quality Fact: Accommodate new functionality of existing type
Quality Attribute: Extensibility, Work distribution
Design Decision: Plugin architectural style
Impact: Plugin design of General, Effects, Visualization, I/O subsystems

Table 4.13: Iteration 1: Architecture Rationale

Now that we have an initial understanding of all major aspects of the architecture, we can

Case Study: X MultiMedia System 53

perform a more detailed recovery of each one of them using acquired knowledge about others.
This is done in the second iteration.

4.2.3 Architecture Recovery: Second Iteration

While the emphasis of the first iteration was more on conceptual architecture and general intuitive
understanding of other aspects of the system, the emphasis of the second iteration is on a detailed
study of concrete architecture and its rationale.

Conceptual Architecture

The focus of the second iteration of conceptual architecture recovery is on incorporation of feed-
back obtained through the initial study of concrete architecture. Although only a high-level
concrete architecture recovery was performed, there are already significant differences and vio-
lations of basic design principles observed:

� User interface and application functionality, in both core parts and plugins, are not com-
pletely separated at the concrete subsystem level.

� We did not expect that the application logic layer plugins will have a user interface and
therefore we do not have an connector from the Presentation Layer to the Plugins subsys-
tem in the Application Logic.

� Different types of plugin subsystems are not contained in general plugin subsystem, as
indicated in the conceptual architecture diagram.

Although some of these decisions conflict with recommended design principle, we do not
analyze them at this point, but update our conceptual architecture to reflect concrete as much as
possible, while still preserving many of the initial forward design ideas. This will allow at later
stages to analyze mistakes in design of concrete architecture and repair them. Current conceptual
architecture is summarized in Figure 4.2

Case Study: X MultiMedia System 54

Basic User Interface - xmms,
wmxmms, gnomexmms

Presentation Layer

Application Logic

Service Layer

User Interface
Plugins -

Visualization

Core Functionality - xmms

Plugins -
Effects,

Input, Out.,
General

High Level Services - libxmms, intl, po

Libraries Storage - files used
for prefs., etc.

Operating System

Operating System Support

Figure 4.2: Iteration 2: Static Conceptual Architecture

Case Study: X MultiMedia System 55

Concrete Architecture

While concrete architecture recovery during the first iteration tended to follow a top-down ap-
proach, during the second iteration it followed a bottom-up approach. During the second iter-
ation, analysis focus was on the module level. As XMMS was built using the C language and
procedural paradigm, we have chosen to consider a module to be a source code file.

The following activities were performed during architecture recovery at the module level:

1. Architecture presentation and navigation using PBS [PBS].

2. Module analysis using a source code navigation tool Understand for C++ [UND].

3. Responsibility recovery.

4. Use of navigation facilities of PBS and Understand for C++ in conjunction with recovered
responsibilities in order to analyze architectural use-cases.

PBS allows us to visualize and analyze the concrete architecture of a system. Figure 4.3
presents the highest level of decomposition of XMMS. Figure 4.4 presents the architecture of the
Visualization subsystem and interconnection using two types of connectors. Figure 4.5 presents
the Input subsystem with even more connectors. The system can be navigated like this using
PBS facilities from one subsystem to another. The lowest level of decomposition presented is at
the module level. Figure 4.6 presents the CDAudio subsystem and interconnections among its
modules.

Responsibility assignment is performed with the help of a source navigation tool. The goal
is to elevate functionality provided by a set of methods, and to present it in a simple and under-
standable way. The value of this responsibility documentation is in the fact that knowledge about
low level facts is preserved when it is of crucial importance for understanding of architecture. It
is not needed to document all responsibilities, but the ones that were recovered with architectural
goals in mind. For example, if a system is using some functionality from another system, and by
original specification it shouldn’t, an analyst should perform a low-level analysis of used func-
tionality. Knowledge about that set of functionality may be documented using responsibilities
and contracts. Interactions are then presented using architectural use-cases.

Many of the analyzed methods contain functionality that is not architecturally relevant. Nev-
ertheless, in combination with other methods they can provide significant architectural impact,

Case Study: X MultiMedia System 56

Figure 4.3: PBS XMMS Top Level View

Case Study: X MultiMedia System 57

Figure 4.4: Visualization Subsystem

Case Study: X MultiMedia System 58

Figure 4.5: Input Subsystem

Case Study: X MultiMedia System 59

Figure 4.6: CDAudio Subsystem

Case Study: X MultiMedia System 60

and if this is the case, then responsibility assignment is performed for a whole group of methods.
Table 4.14 presents both types of responsibility assignments.

Responsibility Methods

Delegate “play” event to all subscribers void mainwin play pushed(void)
Delegate “stop” event to all subscribers void mainwin stop pushed(void)
Delegate “eject” event to all subscribers void mainwin eject pushed(void)
Adjust sound effects void mainwin adjust volume motion(gint v)

void mainwin adjust volume release(void)
void mainwin adjust balance motion(gint b)
void mainwin adjust balance release(void)
void mainwin set volume slider(gint percent)
void mainwin set balance slider(gint percent)

Get configuration info void read config(void)
Set configuration info void save config(void)
Initiate GUI setup void setup main window(void)

void draw main window(gboolean force)
void draw mainwin titlebar(int focus)

Table 4.14: Method-Level Responsibilities (Main Module)

It is also useful to elevate responsibilities to the module level (i.e., to clarify responsibilities
of a module as an architectural entity). These module-level responsibilities are sometimes equiv-
alent to a set of method level responsibilities, and sometimes are an abstraction of them. The
choice depends on the level of analyst’s desire to hide internal details. Table 4.15 presents a set
of module level responsibilities.

Similarly, responsibilities can be abstracted to the subsystem level. While module-level re-
sponsibilities provide a compact way to encapsulate and represent architecturally significant fea-
tures, method-level responsibilities are used to understand and present module and subsystem
interactions using architectural use-cases. The advantage of architectural use-cases over other
presentations like sequence diagrams is that they present dynamic aspects in a comprehensible
way while hiding low-level details.

Case Study: X MultiMedia System 61

Responsibility Module

Manage user and system configuration libxmms/ConfigFile.[c,h]
Manage system directory access libxmms/DirBrowser.[c, h]
Abstract low-level OS functionality libxmms/util.[c, h]
Provides basic XMMS functionality libxmms/xmmsctrl.[c, h]
Setup control session xmms/controlsocket.[c, h]
Setup dock windows xmms/dock.[c, h]
Equalizer user interface xmms/eq graph.[c, h]

xmms/eq slider.[c, h]
xmms/equalizer.[c, h]

“Hint” user interface xmms/hints.[c, h]
Play-list popup window xmms/playlist.[c, h]

xmms/playlist slider.[c,h]
xmms/playlist popup.[c, h]
xmms/plsylistwin.[c, h]

Decode a file at url into a proper format xmms/urldecode.[c, h]
Abstract low-level OS functionality xmms/util.[c, h]
Integrate skins into XMMS user interface xmms/skin.[c, h]

xmms/skinwin.[c, h]

Table 4.15: Module-Level Responsibilities

Case Study: X MultiMedia System 62

Architectural use-cases are built using navigational capabilities of tools like PBS or Under-
stand for C++ [PBS, UND] in conjunction with documented responsibilities. The main value of
this approach is not in a documentation of all possible use-cases, but in an ability to recover them
as needed. Although responsibilities do not have to be documented within source code, the ad-
vantage of having them documented there is that a transition from architectural level analysis to
low-level design analysis is seamless. Bellow is an example of a fully developed documentation
architectural use-case:

� Name: Play Song

� Actors: End-user

� Stakeholders:

1. End-user

2. Music provider

� Event: User pushes play button

� System: xmms, libxmms, input, output, visualization

� Purpose: Describe collaboration among subsystems to accomplish “play” functionality

� Priority: 10/10-core business process, crucial for business operation

� Overview: Input stream is processed to produce wanted output (song playing or streaming
to a file on hard disk)

� References: None

� Related Use-Cases: Setup

� Responsibility: Play media stream or write it to a file

� Preconditions: Play-list was configured, Setup use-case successfully performed

� Postconditions: System stops playing, after input stream end, if Repeat option is turned
off.

Case Study: X MultiMedia System 63

� Invariants: None

� Main Scenario:

1. xmms: User interface component signals “play” event is raised.

2. xmms: Signal to input subsystem to start processing data

3. xmms: Connector between input and output is established

4. input, output, visualization: Start processing data streams

5. input: If end of the stream signal xmms and stop

6. xmms: If “Repeat” option turned on signal input to start processing again, else “stop”
signal to output and visualization

� Alternatives:

– step 4: data stream disconnected before end of it (file deleted, network connection
went down, etc.) — raise exception and inform user

– step 4: special effects events raised — activate appropriate plugin, which alters output

� Quality Attributes:

1. Responsiveness — events are handled without delays

2. Reliability — user is informed within 1 second if system stops due to data stream
problems

� Technology: Network access support for network streams

� Special Requirements: For low-end systems, output processes have higher priority over
visualization and affect subsystem’s processes

� Open Issues: None

We used single column format for our use-case. One could also use multiple column format
to emphasize subsystems and modules. The second option has a drawback that it is harder to
format text properly thus increasing production and maintenance time.

Case Study: X MultiMedia System 64

Architecture Rationale

Detailed concrete architecture analysis during the second iteration gave us additional insights
into architecture rationale. Additional quality facts that were discovered are of a negative nature
(i.e., ones that contradict generally accepted design practices). Table 4.16 presents rationale
for architectural design of our system. The first two items are new ones, discovered during the
second iteration of concrete architecture recovery.

The first two potentially negative design decisions contain a “Note” section indicating that
architecture repair is recommended. Also, they contain an “Alternatives” section that indicates
possible alternative decisions and repair approaches. These repairs can be performed during
special refactoring sessions, or as a part of major new feature introduction.

This concludes our second iteration, and main architecture recovery efforts. Additional itera-
tion could be used in order to refine different recovery artifacts, or to achieve some other purpose,
such as preparation of produced artifacts for a particular audience.

Our recovery process had two main iterations, but for a larger system there can be more it-
erations depending on the number of people working on system recovery, quality of tools used,
etc. While activities presented in the first iteration can be performed by a small dedicated team
of analysts, activities from the second iteration are best done by actual developers of the sys-
tem. Responsibility instrumentation can be performed during actual development with very
small overhead. This not only serves for architecture recovery, but also improves general code
understandability and quality. These results can then be used by analysts to efficiently recover
interesting architecture facts.

4.3 XMMS: Focused Evolution Recovery

In order to even further practice and validate our process, we applied it to the recovery of several
releases of the XMMS system in order to understand and analyze the changes in the architecture
over time. Following presents the obtained results, and emphasizes the evolution of the static
structure of the system and its correlation with the other architecture evolution aspects.

Product Name and Characteristics XMMS Player — Unix application influenced by its Win-
dows counterpart WinAmp.

Case Study: X MultiMedia System 65

Quality Fact: No clear separation of basic GUI functionality from application logic
Quality Attribute: Efficiency (at the expense of Modifiability and Understandability)
Design Decision: GUI and application logic bound tightly together
Impact: xmms subsystem contains both GUI and application logic
Note: Architectural repair recommended
Alternatives: Isolate GUI functionality into a separate subsystem

Quality Fact: Plugins contain GUI functionality
Quality Attribute: Work distribution (Limits portability and modifiability)
Design Decision: GUI functionality embedded within plugins
Impact: Plugin subsystems contain both GUI and logic
Note: Architectural repair recommended
Alternatives: Delegate GUI functionality to main GUI subsystem (xmms)

Quality Fact: Support different window managers
Quality Attribute: Usability, Portability
Design Decision: Create different subsystems
Impact: WMXMMS and GNOMEXMMS Subsystems

Quality Fact: Isolate low-level common functionality
Quality Attribute: Modifiability, Portability, Understandability
Design Decision: Create new library subsystem
Impact: LIBXMMS Subsystem

Quality Fact: Separate highly related functionality groups
Quality Attribute: Modifiability, Extensibility, Work distribution
Design Decision: Group functionality into different subsystems
Impact: General, Effects, Visualization, I/O subsystems (high cohesion, low coupling)

Quality Fact: Accommodate new functionality of existing type
Quality Attribute: Extensibility, Work distribution
Design Decision: Plugin architectural style
Impact: Plugin design of General, Effects, Visualization, I/O subsystems

Table 4.16: Iteration 2: Architecture Rationale

Case Study: X MultiMedia System 66

Product Family and Characteristics Multimedia players family. Main characteristics are:

� Stand-alone desktop applications.
� Layered architecture.
� Extensive GUI and graphical support and capabilities.
� Image and audio stream processing.

Development Process Main characteristics of XMMS development process are:

� Small group of developers.
� Open-source development model — Extensive testing community.
� Development driven by requirements of other systems (WinAmp in particular).

Target Market Main market characteristics are:

� Software provided for free.
� Community provides extensive feedback for system development.
� Strategic goal is to strengthen position of Unix based systems in desktop market.

Stakeholders and Attributes See Section 4.2.2.

Architecture See previous sections of this chapter.

Measurement Method We have analyzed 12 releases of XMMS, which covers a period of four
years of development.

Business Attributes Business attributes have stayed stable over time. For discussion of business
attributes, see Section 4.2.2.

Project Management Attributes Project management attributes have stayed stable over time.
For discussion of project management attributes see Section 4.2.2.

Architecture Attributes We analyzed incorporation, removal, and repair of modules and sub-
systems over 12 releases of the system. For every architecture modification, we describe
the change and the rationale behind it:

Case Study: X MultiMedia System 67

Release 0.9.0 to 0.9.1 No architectural changes.

Release 0.9.1 to 0.9.5 Architectural changes:
� New Visualization module — Provides interface and uniform way for manage-

ment of all visualization plugins. This improves customizability and modifia-
bility of the core of the system, and ease of plugin development. Visualization
module has a role of connector in the system.

� New fft module — Provides uniform way for frequency analysis and is used by
Visualization module to support oscilloscope functionality.

� New high level Visualization subsystem — Isolation of different visualization
plugins from the rest of the system. This improves modularity, understandability,
and modifiability of the system.

� Three new visualization plugin subsystems and modules (blur scope, sanalyzer,
sanalyzer)

� New idcin input subsystem and plugin — Provides a major new functionality as
it incorporates video playback into what was only audio player up to that point.
This had impact on business attributes and was a source of possible architecture
drifts in future.

� New mpg123 subsystem and plugin — Provides support for mpg files.

Release 0.9.5 to 0.9.5.1 Minor architectural change — addition of a module to blur scope
plugin.

Release 0.9.5.1 to 1.0.0 Architectural changes:
� New fullscreen module — Provides full-screen support for visualization plugins

(libxmms subsystem).
� New dga module — Provides DGA support for full-screen mode (libxmms sub-

system).
� New cdaudio plugin — Provides CD audio streams support.
� New dock module — Provides “docking” ability to GUI windows.

Release 1.0.0 to 1.0.1 No architectural changes.

Release 1.0.1 to 1.2.0 Architectural changes:

Case Study: X MultiMedia System 68

� Architectural repair — Move of fullscreen and dga modules from libxmms to
xmms subsystem. Rationale is that both these modules contain high-level func-
tionality, which is more appropriate for xmms subsystem than for low-level li-
brary subsystem, where it was assigned at first.

� Architectural repair — surround echo subsystem merged with Echo plugin. Ra-
tionale is that there exist high-coupling between features from these two mod-
ules.

� New urldecode module.
� New internationalization support subsystem intl and i18n module.

Release 1.2.0 to 1.2.1 No architectural changes.

Release 1.2.1 to 1.2.2 Minor architectural change — addition of formatter module to libxmms
subsystem.

Release 1.2.2 to 1.2.3 No architectural changes.

Release 1.2.3 to 1.2.4 Minor architectural change — addition of vorbis plugin to input
subsystem.

Release 1.2.4 to 1.2.5 Architectural changes:
� New solaris output plugin — Increases portability of the system to Solaris plat-

form.
� Input vorbis plugin is greatly enhanced — several new modules added.
� DGA and i18n modules are removed — removal of obsolete features.

Conflicts None.

Selection Factors the WinAmp system has established a standard in the area of audio-multimedia
applications. Most users expect to see the same or superior set of features in similar mul-
timedia systems. XMMS has successfully provided this set of features, compared to other
Unix-based multimedia systems, which made it the leading multimedia player for Unix
platforms.

The main conclusion of our architecture evolution analysis is that XMMS vision and architec-
ture have successfully accommodated many new features over time even though these were large,

Case Study: X MultiMedia System 69

architecturally significant changes. This is due to its highly modularized plugin architecture, and
business vision whose goals have been already proven on another system (WinAmp). The main
drawback of the initial architecture — thick GUI layer did not impose evolutionary problems due
to the fact that most changeable application logic and GUI functionality were isolated into their
respective plugins.

4.4 Summary

In this chapter, we have presented one possible instance of the application of our process. We
conducted a successful architecture recovery for a system of a nontrivial size. This recovery has
improved our confidence in the effectiveness and the applicability of our process. Building on the
knowledge presented in the previous chapter, we elaborated on the particular steps by providing
sample low-level recovery activities that can be used for the recovery of architectures of other
systems.

In the next chapter, we present the evaluation of our approach in the context of our case study.

Chapter 5

Evaluation

In this chapter, we present an evaluation of our process and the results obtained through its ap-
plication to the recovery of the XMMS multimedia system’s architecture. Because the observa-
tions about the characteristics of the process depend directly on the type of the chosen candidate
system and the conditions under which the process is applied, we first discuss the case study
issues and validity. Also, since our process is based on an already existing architecture recov-
ery approach, we discuss the properties of this recovery approach. We then evaluate the project
management issues that control the overall execution of our process, allowing an evaluation of
the particular process activities. We also evaluate the particularities of the main techniques used
during the recovery process. The main emphasis is on the observed problems and the possible
solutions to them.

5.1 Case Study Validity

In order to improve the validity of the results derived from the conducted case study, we have
taken several concerns and issues into consideration when choosing our candidate system. These
concerns can be divided into two categories. The first one is concerned with inherent properties
of the chosen system as they relate to our process (e.g., the size of the system and the number
of development years). We will refer to these as system concerns. The other group is concerned
with issues that relate to the analysts’ relation to the system under consideration. This group
includes issues such as analysts’ familiarity with the system’s problem domain, experience with

70

Evaluation 71

programming languages used in system’s development, and so on. We will refer to these as
analyst concerns.

5.1.1 System Concerns

The main issues from the system’s perspective, when choosing our case study example, were:
� The size of the system was approximately 65,000 lines of code, which places it into a

mid-sized systems category. This was of importance to the validation of our process as the
process’s main use is for recovery of small to mid-sized applications. Also, many large
systems usually have well defined subsystems of size similar to that of our system. These
subsystems can be studied relatively independently, thus permitting the use of our process
in such cases too.

� The XMMS system was under development and effective use for approximately 5 years.
This was important for validation of our process since we were dealing with a relatively
stable architecture, which has evolved over time. This implied that we had a possibility to
detect features such as obsolete functionality, changes in business goals, and so on.

� The core development team consisted of 3 developers, with contribution from many third
parties, and a large feedback from the user community, which is typical among widely used
open-source systems. The size of the team was important to insure that the architectural
influences did not come only from one source. This conforms to the reality of larger scale
development and affects the quality and stability of the architecture.

� There was no architectural documentation. In order to increase the difficulty of the case
to which our process was applied to, we chose a system for which there was no architec-
tural documentation. This was done with the assumption that it is harder to perform the
architecture recovery of a system for which no architectural information is provided.

� There were many contributions from third parties. We wanted a system that was not devel-
oped in isolation, as many of the architectural issues arise when it comes to interoperability,
distributed development, and similar. There were many add-ons and pluggins, developed
by third parties, which provided many sources of architectural influences and made a more
realistic case for the architecture recovery.

Evaluation 72

5.1.2 Analyst Concerns

Since many of the aspects of the process directly depend on the analysts’ capabilities and famil-
iarity with system, we had to take these into consideration when choosing the system. In order
to expose as many process’s drawbacks as possible, we had to find a candidate system which is
challenging enough from the analyst’s perspective. The main concerns and issues that we took
into account were:

� Problem domain — The analyst that performed architecture recovery, the author of this
thesis, was familiar with the problem domain only from the user perspective. This fa-
miliarity was only from the perspective of using WinAmp, the system which XMMS was
modelled after, for solely playing music streams. He was not familiar with any other fea-
tures, such as writing streams into files, nor with many external issues like different types
of multimedia files, different compression algorithms, and so on. This unfamiliarity with
the problem domain increased the difficulty of architecture recovery, and put the process
on the test under the very difficult conditions, which can still occur in reality (e.g., when a
new member joins the development team, and has to quickly get up to speed without the
input from other team members).

� Programming languages — As many of the aspects of the recovery depend on the analyst’s
ability to understand the underlying code organization and code itself, it was important to
choose the system which was developed using the languages that the analyst was relatively
unfamiliar with. XMMS was developed using C language. The analyst had a theoretical
background in C through the study and use of C++ language, but has never developed any
larger system using C language. This again falls into a relatively difficult case, from the
process perspective, because in most situations a better familiarity with the programming
languages is needed in order to join a development team.

� Architecture design and analysis — The analyst had a solid theoretical background in ar-
chitectural analysis and design, and was familiar with and had access to many techniques
and patterns used for analysis and design of software architectures. Nevertheless, the an-
alyst did not have a practical experience in the design of a system of size and type similar
to the one of the size of XMMS system. This was again a less than ideal situation for the
application of the process, which allowed us to test it under such conditions.

Evaluation 73

� Previous experience in architecture recovery — Prior to the architecture recovery of the
XMMS system, the analyst had experience with recovery of architecture of a SCSI driver
subsystem of the Linux operating system kernel. This was legacy code of the size of
approximately 300,000 lines of code, and was recovered using a different approach than
the one presented in this thesis. This allowed us to test our process from a perspective of
an analyst relatively familiar with architecture recovery issues and problems, from both
theoretical and practical viewpoints, and to compare our approach to another.

As we have seen, we have chosen the case study such that we were able to validate our ap-
proach under difficult conditions, which are still accountable in production environments. This
was done under the assumption that if the process works under these worse than typical condi-
tions, it will be even more usable under typical production environment conditions, and allow us
to spot as many problems and drawbacks as possible.

5.2 PBS: Reference Process

The first recovery of the XMMS architecture was performed using the PBS approach [PBS]. The
PBS approach is the set of activities performed in order to arrive to the set of artifacts imposed
by the PBS tool. This process is similar to the processes used with similar tools such as Rigi and
Shrimp [Rig, Shr]. The PBS process can be summarized in three main steps:

1. Derive and present the conceptual architecture.

2. Derive and present the concrete architecture of the system.

3. Explore the differences between the conceptual and the concrete architecture.

Our process is inspired by and builds on the PBS approach. In this section we present basic,
high-level issues that we wanted to improve on, in relation to the original PBS approach, and
difficulties that we had during the first system recovery and artifact analysis.

The main problems that we observed during the application of PBS approach were:

1. The PBS approach did not specify a repeatable set of steps that have to be performed
in order to arrive at conceptual and concrete architecture, so that they can be routinely
performed in a production environment.

Evaluation 74

2. The PBS approach did not specify what constitutes a set of artifacts that form the concep-
tual architecture.

3. The PBS approach did not make a clear distinction between different architectural aspects
(i.e., the conceptual architecture relates to the logical view, while the concrete architecture
focuses on the development view of the system).

4. The PBS approach did not include any artifacts that presented architecture rationale.

5. The PBS approach did not recommend the preservation of the problem domain knowledge,
which is unavoidably generated during the architecture recovery.

Since the PBS approach does not specify either the steps to be performed nor the exact set of
artifacts to be produced (for conceptual architecture), there is a wide variation in the quality of
the analysis, depending on who performs it. This is not to say that the clear definition of these
steps would completely eliminate these difference, but it would definitely reduce them. Also, it
would be less difficult for other interested developers to analyze and relate different produced
artifacts.

The clear distinction between the views represented by the conceptual and concrete architec-
ture is needed in order to reduce ambiguity, improve understandability, and describe the actual
separation of concerns. As the conceptual architecture is derived from high level sources such as
documentation, feature lists, stakeholder interviews, etc., it tends towards encapsulating logical
aspects. On the other hand, the concrete architecture, is derived mostly from the source code,
and it tends towards the presentation of the development view aspects, such as source code orga-
nization, source code dependencies, etc. Finally, both conceptual and concrete architecture can
be viewed as the ways of representing a unified logical and development view at different levels
of abstraction.

The recovery of rationale and problem domain aspects are unavoidable activities during an
architecture recovery. Since the PBS approach specifies neither techniques nor artifacts that
would preserve the facts about rationale and problem domain, the information about them is
obtained and lost during the actual process. The artifacts about the problem domain and rationale
would improve the understanding and usefulness of generated architecture recovery artifacts.
The problem domain represents the context from which architecture is derived, and rationale
presents why the architecture is as it is (i.e., it is the source of the architectural design decisions).

Evaluation 75

5.3 Project Management Issues

In this section, we evaluate our process from the project management perspective. The project
management issues affect the overall organization of the process and the execution of the partic-
ular process steps. As such, it is important to evaluate them, especially with the reference to the
original PBS approach, since the issues such as the number of recovery iterations contribute to
the quality and completeness of produced artifacts.

5.3.1 Process Iterations

The first problem that we had during the initial recovery of the system was the large amount of
information to be processed. We tried to recover the conceptual architecture completely before
embarking into the recovery of the concrete architecture. Also, we tried to recover the architec-
ture at different levels of abstraction without making a clear distinction among these levels. This
led us to the following problems:

� We had hard time organizing and presenting this large amount of information.

� We were not able to clearly separate different aspects of the system, and to know what
information to reject and what to retain.

� We were unable to track the reasons for certain architectural decisions, as the aspects at
different abstraction levels collided thus producing the conflicting underlying reasons.

In order to deal with this problem, we tried to perform the iterative recovery of the concep-
tual and the concrete architecture separately. This posed a problem since the interconnections
between the conceptual and the concrete architecture are high. Therefore, we finally took the
approach of iterative recovery, as presented in the case study, which was based on the iterative
recovery of both conceptual and concrete architectures in parallel, at the different levels of ab-
straction. In addition, we used the aspect separation in order to improve the clarity of presented
results and to improve the potential for the rationale recovery.

The issue that is still unresolved is the existence of a clear set of heuristics that would help
us evaluate when we should perform a transition from one iteration to another and how many
iterations should be performed all together in order to improve efficiency and minimize costs. In

Evaluation 76

order to establish such a set of heuristics there have to be more case studies performed, and all
the recovery techniques stabilized and automated as much as possible. Also, these would depend
on the type of underlying development technology and the type of application problem domain.

5.3.2 Individual and Team Issues

Another unresolved issue that is common to both, our process and the original PBS approach, is
the team collaboration. None of these approaches specifies the protocols, additional steps, and
transitional artifacts required in order to efficiently and routinely integrate the recovery artifacts.
This is of lesser importance in the case of our process as it is intended for the recovery of the
architecture of small to medium-sized systems, while the PBS approach also targets large sys-
tems. According to our experience and estimates, the architecture of systems of the size similar
to the system from our case study can be recovered by small teams, up to three people, in four to
twelve weeks. For such small teams to communicate, the introduction of formal communication
protocols and artifacts is not necessary, and direct informal communication can be considered as
the best choice. On the other hand, if our process is to be adapted and used for the team recovery
of large systems, there must be a more systematic way to manage the work of the team members
and unify the produced artifacts.

The important issue, at the individual level and thus indirectly at the team level, comes from
the fact that the process depends on each member’s different architectural skills and abilities.
The required background for the architectural recovery is the knowledge about architectural and
design patterns, the ability to perform forward architectural design, knowledge of system’s un-
derlying technologies, and so on. Due to this dependency of the process on the individual skills,
the quality and the focus of the recovery artifacts varies.

The author’s background, as related to XMMS related technologies and architecture in gen-
eral, at the time the case study was performed was:

� Beginner level of familiarity with C language and Unix programming.

� Good knowledge of architectural and design processes and techniques, with lack of the
practical experience in the design of the mid-sized and large software systems.

� Experience in the architecture recovery of one large system, and familiarity with experi-

Evaluation 77

ences of other people who used PBS approach for the large systems’ architecture recover-
ies.

This gives us confidence that our process can be used by developer’s with intermediate skills,
as well as with advanced. Also, the wide familiarity with techniques used for recovery within
software engineering community and the relative ease of learning makes it possible for beginners
to become productive within a short period of time.

5.4 Process Step Issues

The focus of this section is on describing our experience and problems during the execution of
each process’ activity. We do not discuss in this section the issues of particular techniques used
to achieve particular process goals and the issues related to the produced artifacts. These are
discussed in the following two sections.

5.4.1 Project Elaboration

As we have discussed at the beginning of our case study, we did not perform a detailed analysis
of the feasibility of our project and the effort that will be required. Like with all software project
management estimations, the precise estimation of the cost of the reverse engineering project
is difficult to achieve. Since our process was primarily designed to be used for the recovery of
small to mid-sized systems, this estimation is not of the crucial importance — our estimate was
that the upper time limit for the recovery of the architecture, for a system of the size similar to
the size of XMMS, is one month for a team of three analysts. On the other hand, if our process is
to be adapted and used for the recovery of architecture of large systems, one should incorporate
cost estimation techniques. The original PBS approach had the same problem because it lacked
any project elaboration phase.

We presented some of the influences on the cost of the recovery at the beginning of our case
study. Out of the ones that we mentioned (documentation, quality of code, size of the system,
developer’s information, and analyst’s problem domain knowledge), we found that the analyst’s
previous knowledge about problem domain and related applications plays a dominant role over
the others. Even in the case that all the other influences are positive, it is very hard to recover

Evaluation 78

the architecture if one cannot put the gathered information in the context of the problem domain;
and it is very time consuming to learn details about the problem domain.

5.4.2 Analysis of Existing Artifacts

In order to simplify the analysis of the existing documentation, we performed an extraction and
classification of the potentially relevant architectural concepts and features. In order to perform
this extraction, we needed background knowledge about the properties of functional and non-
functional requirements as they relate to the software architecture. Our main focus was on the
analysis of different requirements documents.

Although we had access to and analyzed only a list that only summarized the high-level
features of the system and user manual, for larger systems one usually has access to other kinds
of requirements documents. These include software requirements specification, requirements
rationale, data dictionary, etc.

5.4.3 Domain Architecture

When we attempted to extract the architecture of XMMS using the original PBS approach, we
did not have any intention to recover the architecture of the problem domain. The problem that
we had was that it was not possible to extract the conceptual and concrete architecture without
having to search for clues in the problem domain. This resulted in an unorganized exploration of
the problem domain concepts, and this exploration was not as efficient as it could be as we were
not sure what to look for. Also, we did not make any attempt to preserve this gained problem
domain knowledge, which could be reused in many different ways in the future development of
the system. Therefore, one of the goals of our new approach was to deal with domain architecture
issues.

The first approach to solve this problem focused on only documenting the facts about the
problem domain. This did not prove to be an effective approach, as the collected facts were
simply listed, without a particular organization, and as such they were not very useful for the
recovery of conceptual and concrete architectures. It was difficult to relate one fact to another,
and to further relate them to the architectural artifacts. Also, we were not able to distinguish
different types of concepts that occur in the problem domain.

Evaluation 79

In order to solve these problems, we had to introduce a meta-model for our domain architec-
ture, to find a format which will present these fact so that they are directly usable for the recovery
of the conceptual and concrete architectures, and to find a systematic way to analyze the domain
in the early stages of our process. We solved this problem as described in Chapter 3, and us-
ing the proposed steps, successfully recovered and presented the domain architecture of XMMS.
We used these recovered domain concepts also to guide the recovery of the other architectural
aspects.

One of the drawbacks is that we did not make additional attempts to produce alternative meta-
models and formats. This is not to say that our approach is the only one or the ideal one, but
it was successful in recovering and organizing these artifacts compared to our initial attempts.
There are other possible ways to approach this problem. For example, if we are working on the
recovery of the architecture of a system for which there are already existing business domain
analysis documents, possibly the most efficient way is to follow the already existing meta-model
and artifacts.

5.4.4 Conceptual Architecture

The first attempt for the recovery of the conceptual architecture using the original PBS approach
was successful only as far as the static conceptual architecture was concerned. Although not
clearly required, we attempted the recovery from the logical perspective even at the early stages
of our recovery. This resulted in a static conceptual architecture that did not change drastically
during the first iteration of our new approach.

The first disadvantage of the PBS approach is that it did not require any form of the dynamic
conceptual architecture recovery. This led to the discovery and presentation of structural com-
ponents without any emphasis on how they cooperate in order to achieve the overall goals. This
lack of analysis of the dynamic aspects of the architecture resulted in a reduced understanding of
the underlying reasons of the particular static system decomposition. Our approach tackled this
problem of the dynamic architecture using the architectural use cases.

The advantage in using the architectural use cases for the presentation of dynamic properties
is in the fact that the basic building blocks of these use cases, subsystem responsibilities, are
directly derived and produced during the work on the domain architecture artifacts and during
the static conceptual architecture recovery. Therefore, the early iterations of our process focused

Evaluation 80

on the subsystem responsibility assignments. On the other hand, later stages focused on the
integration of these responsibilities into fully developed architectural use cases.

We found that the particular strengths of the architectural use cases are as an abstract model
of the communications that occur within the system and a technique that drives the recovery of
the architecture and integrates different architectural aspects. Nevertheless, we found that it is
too tedious to document all the use cases manually. Also, we found appealing the use of use case
formats other than the one presented in the case study.

Problems that we had during the initial architecture recovery were the integration of con-
ceptual and concrete architectures and the refinement of conceptual architecture based on the
results obtained during the recovery of the concrete architecture. Since the original PBS ap-
proach was not iterative, the analyst was aiming to recover as good conceptual architecture as
possible, followed by the recovery of the concrete architecture. This often resulted in the archi-
tectural presentations that are not as focused as they could be and with a large distance between
the concrete architecture and the conceptual architecture. In order to deal with these problems,
our process encourages the iterative refinement of both kinds of architectures, thus allowing the
input of the facts discovered during the concrete architecture recovery into the conceptual archi-
tecture. This is in conflict with the PBS approach in which the conceptual architecture is derived
only from sources other than source code.

We have found that this iterative approach simplifies the recovery process, improves the un-
derstanding of particular architectural aspects of the system through the indirect analysis of the
dependencies among them, and improves the quality of the presentation. Also, the attempt for
bridging the distance among different aspects and unification of views simplifies the understand-
ing of the system, and allow us to present its architecture from different perspectives, e.g., pure
conceptual logical perspective, pure concrete development perspective, unified logical and de-
velopment perspectives, etc.

5.4.5 Concrete Architecture

One of the main strengths of the PBS approach is the recovery of the static concrete architecture.
As this step of the overall approach is almost completely automated by the PBS tool, our new
approach adopted the PBS approach static concrete architecture recovery techniques without
significant changes. The main enhancements were introduced because of the need to incorporate

Evaluation 81

and improve systematic dynamic concrete architecture recovery.
As with dynamic conceptual architecture recovery, the PBS approach does not emphasize

dynamic concrete architecture recovery. In order to overcome this problem, we introduced the
activity of the responsibility assignment to the modules during the recovery process.

The first attempt that we made in order to recover the concrete architecture was focused on
the immediate recovery of the facts in a bottom-up fashion. We approached the analysis of the
concrete architecture starting directly from the analysis of the source code. This quickly proved
to be an inefficient approach because we had difficulty in relating the discovered concepts due
to the large amount of recovered information. In order to deal with this problem, we decided to
try to approach the problem first in a top-down fashion and then in a bottom-up fashion. This
led to the analysis of the source code structure down to the level of modules, and an attempt to
relate them to the previously recovered conceptual architecture artifacts. Following that, we used
this high-level concrete architecture in order to organize and focus on the recovery of the low-
level concrete architecture. This recovery included the analysis of the structure at the function
level and the recovery of concrete responsibilities, which were related to the actual functions and
modules.

This approach resulted in a static concrete architecture enhanced over the concrete architec-
ture recovered using the PBS approach. This enhancement was in the detailed specification of
responsibilities of each module and their relation to the functions contained within each module.
Also, during the process, we elevated the abstraction level of the module responsibilities from
function level to the module level. This resulted in an improved analysis of the concrete dynamic
architecture of the system.

After the extraction of the architectural facts using the PBS and Understand for C++ systems,
we used them to navigate the source code, and together with previously documented responsibil-
ity information, generate the architectural use cases. We discuss the details of use-case recovery
and PBS issues in section 5.5.

5.4.6 Architecture Rationale

As the primary goal of our process, successful architecture rationale recovery depends directly
on the successful recovery of other artifacts. As such, we attempted to recover and present all
other architectural artifacts in a form that simplifies and facilitates rationale recovery as much as

Evaluation 82

possible.
Architecture rationale recovery is the most subjective recovery activity performed as a part

of our process. While other techniques are mostly of an observational nature, rationale recov-
ery relies upon a large amount of background architectural knowledge. Also, it is one of the
components of the process that is very hard to automate in any way. This leads to the situation
that successful recovery of rationale depends largely on the capabilities and performance of the
individual analysts.

This subjectivity of architecture rationale recovery makes it hard to evaluate. This includes
the choice of artifacts, comparison of the quality of produced artifacts obtained using different
techniques, performance of different recoveries by different analysts, and so on. Nevertheless,
we describe the issues that arose during our recovery of the architecture rationale of XMMS
system.

Our rationale recovery approach relies on the iterative analysis of the design decisions that
are extracted from the recovered architectural artifacts and the motivations that usually lead to
these design decisions. As a major group of these motivations, we have the quality attributes and
related theory. We focused on these quality attributes as they are recognized as the major source
of architectural decisions.

During the early stages of the rationale recovery, we had a problem with detecting these
architectural attributes. This was due to the fact that we were trying to discover the quality at-
tributes directly from the observed design decisions. As the gap between them is large, i.e., a set
of quality attributes can be represented using many architecture design decisions, the mapping is
often not clear. In order to deal with this problem, we introduced the quality facts, as an inter-
mediate instantiation and a representation of the quality attributes. Although these quality facts
simplified the process and improved the efficiency of mapping from architectural decisions to
quality attributes, they did not completely remove the ambiguity in some cases. Despite this re-
maining ambiguity, we were successful in recovery of architecture rationale using this technique,
and therefore we did not invest further efforts to find other solutions which would simplify the
recovery even more.

Evaluation 83

5.5 Process Technique Issues

While our process does not prescribe a definite set of techniques to be used for the recovery of
the different aspects of the software architecture, we would like to emphasize the issues related to
the concrete architectural use-case recovery and the concrete static architecture extraction using
the PBS system. These issues especially concern the automation of these tasks.

Common to both techniques, the concrete use case and the concrete static architecture recov-
eries, is the aim to make them as automated as possible. This automation is very hard to achieve.
While our use-case recovery was performed without the tool support, the static architecture re-
covery was performed using the PBS system. As the crucial for the success of both of these
recoveries is the ability to extract interdependencies among the modules, we will focus on the
problems specific to the PBS approach and relate them to the use-case recovery.

The two activities that are performed in order to extract the static architecture of the system
using PBS are:

1. specification of the modules and subsystems, and

2. extraction of the dependencies among these modules.

These two activities are also needed for the automated recovery of the architectural use cases.
The main problem is in the specification of the modules and subsystems. Currently, it is

not possible to extract this information automatically. We need to specify the modules and sub-
systems manually, and to feed this information into the tool. All other processing, such as the
module interdependency recovery, depends on this specification of the modules. As this manual
specification of the modules largely depends on the conceptual view of the architecture, it fol-
lows that the concrete architecture in reality depends on the recovered conceptual architecture,
and as such contradicts the essential notion of concrete.

Although this dependency of the concrete aspects of the architecture on the conceptual ones
is evident, the effort invested in the recovery and the refinement of the concrete architecture pays
off in the long term. This payoff is the detection of the actual dependencies among the modules
and the presentational aspects of the concrete architecture.

In the next chapter, we summarize the benefits of our process, with a reference to the original
reference approach, and discuss the problems and obstacles that we encountered.

Chapter 6

Conclusions and Future Research

In order to understand and integrate legacy systems into new environments, and to successfully
develop applications for rapidly changing business domains using agile development processes,
we developed and presented a lightweight architecture and evolution recovery process. Our
approach was based on attribute theory, as that theory permitted us to systematically tackle and
recover the rationale behind architecture and evolution.

In Chapter 3 we presented a step by step process for the architecture recovery. We introduced
all the techniques that our process relied upon, and a minimal tool support needed. In Chapter 4,
we successfully applied our process to recovery of the architecture and evolution of a non-trivial,
industrial strength application.

Experience with the recovery of the architecture and evolution of XMMS has provided posi-
tive feedback and increased our confidence in the applicability and usefulness of the techniques
that the process depends on. We found that a particular strength of the process is in the ability
to perform recovery iteratively and incrementally. Also, the independence of particular tech-
niques permits work distribution, which allows the whole development team to participate in the
recovery process.

As our process is an enhancement of the original PBS approach, its main new strengths are
the recovery of the business problem domain architecture and the emphasis on the recovery of
the architectural rationale. In addition to these two, additional process advantages are:

� Minimal additional developer’s training involved — all presented techniques are com-
monly used during forward engineering process, and are all commonly accepted and rec-

84

Conclusions and Future Research 85

ommended practices in development community. This minimizes the additional training
needed for the architecture recovery. Also, the simplicity of the presented techniques al-
lows developers to quickly get up to speed in performing the recovery activities.

� Low risk incorporation into the development process — the risk of the incorporation of
our recovery process into a development process is low as the cost of the tool support and
developer training are low.

� Robust roundtrip tool support — as all minimal tool support (source code browsing and
editing tool, drawing tool, text editor) already exists, and is of high quality, this goal is
achieved.

� Reflects industrial best practices as much as possible — all mentioned activities are widely
accepted in the software engineering community.

� Minimizes design activities and maximize programming — as all artifacts are minimal,
and in a simple format they can be easily produced and maintained. Therefore, they do
not present a large overhead while bringing benefits of systematic application of software
architecture principles.

� Minimal and simple set of artifacts directly usable later for forward engineering and study
of evolution — the simplicity of the produced artifacts and their interdependency allows
them to be used for the further development of the system.

� Use of well established forward engineering principles to recover architecture rationale —
our approach relies on use of quality attributes and forward design techniques to recover
architecture rationale. Both are well studied and successfully applied in several other areas
of software engineering.

The major obstacle during recovery was a lack of automated tool support for architectural
use-case recovery. Even though we successfully used this particular technique in order to form
a mental model of the dynamic interactions within the system, it required manual navigation
through module interdependency references, which was very time consuming. As this technique

Conclusions and Future Research 86

is very commonly used during actual development, and provides an efficient way for the docu-
mentation of high-level interactions within the system, a tool that supports automated use-case
recovery should be developed.

Our future work will go in two different directions. The first one is further validation and
refinement of our process through its application in development environments, and its adaptation
for other development methodologies. The second direction is the development of new tools and
improvement of existing tool support. Special emphasis will be given to development of a tool
for automatic architectural use-case recovery and documentation. Also, a development of an
integrated development environment for agile development processes will be considered, with
particular emphasis on architecture recovery and refactoring components.

Bibliography

[ASU85] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers : Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, Massachusetts, first edition, 1985.

[BBC � 00] F. Bachmann, L. Bass, G. Chastek, P. Donohoe, and F. Peruzzi. The architecture
based design method. CMU/SEI, 2000.

[BCK98] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley, Reading, Massachusetts, first edition, 1998.

[Bec99] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
Reading, Massachusetts, first edition, 1999.

[BI96] B. Boehm and H. In. Identifying quality-requirement conflicts. IEEE Software, Vol.
13, No. 2, 1996.

[BMR � 95] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture: A System of Patterns. Addison-
Wesley, Reading, Massachusetts, first edition, 1995.

[Coc] Alistair Cockburn. Responsibility-based modeling.
members.aol.com/humansandt/techniques/responsibility.htm;
accessed December 1, 2001.

[Fow] Martin Fowler. The new methodology. www.martinfowler.com/; accessed
December 1, 2001.

87

members.aol.com/humansandt/techniques/responsibility.htm
www.martinfowler.com/

Conclusions and Future Research 88

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Reading, Massachusetts, first edition, 1999.

[FS99] Martin Fowler and Kendall Scott. UML Distilled: A Brief Guide to the Standard
Object Modeling Language. Addison-Wesley, Reading, Massachusetts, first edition,
1999.

[GHJV96] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
John Wiley & Son Ltd, first edition, 1996.

[GY] D. Gross and E. Yu. From non-functional requirements to design through patterns.
www.hkkk.fi/˜mrossi/refsq/f113.pdf; accessed December 1, 2001.

[IDE] Intellij idea. http://www.intellij.com/; accessed December 1, 2001.

[JAH00] Ron Jeffries, Ann Anderson, and Chet Hendrickson. Extreme Programming In-
stalled. Addison-Wesley, Reading, Massachusetts, first edition, 2000.

[KKB � 99] M. H. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, and H. Lipson. Attribute-
based architecture styles. Proceedings of the First Working IFIP Conference on
Software Architecture (WICSA1), San Antonio, TX, 225-243, 1999.

[KKC00] R. Kazman, M. Klein, and P. Clements. Atam: Method for architecture evaluation.
CMU/SEI, 2000.

[Krua] Philippe Kruchten. The 4+1 view model of architecture.
www.rational.com/products/whitepapers/350.jsp; accessed
December 1, 2001.

[Krub] Philippe Kruchten. A rational development process.
www.rational.com/products/whitepapers/334.jsp; accessed
December 1, 2001.

[Lar01] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process. Prentice Hall PTR, second edition,
2001.

www.hkkk.fi/~mrossi/refsq/f113.pdf
http://www.intellij.com/
www.rational.com/products/whitepapers/350.jsp
www.rational.com/products/whitepapers/334.jsp

Conclusions and Future Research 89

[MCY99] J. Mylopoulos, L. Cheung, and E. Yu. From object-oriented to goal-oriented re-
quirements analysis. Communications of ACM, Vol. 42, No. 1, 1999.

[PBS] Pbs. swag.uwaterloo.ca/pbs/; accessed December 1, 2001.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–52, 1992.

[Ree] Jack W. Reeves. What is software design?
www.bleading-edge.com/Publications/C++Journal/Cpjour2.htm;
accessed December 1, 2001.

[REF] Refactoring catalog. www.refactoring.com/catalog/index.html; ac-
cessed December 1, 2001.

[Rig] Rigi. http://www.rigi.csc.uvic.ca/; accessed December 1, 2001.

[Roy98] Walker Royce. Software Project Management - A Unified Framework. Addison-
Wesley, Reading, Massachusetts, first edition, 1998.

[RR00] Suzanne Robertson and James Robertson. Mastering the Requirements Process.
Addison-Wesley, Reading, Massachusetts, first edition, 2000.

[RUP] Rational unified process (rup). www.rational.com/products/rup/index.jsp;
accessed December 1, 2001.

[Sch98] Stephen R. Schach. Classical and Object-Oriented Software Engineering With Uml
and Java. McGraw-Hill, fourth edition, 1998.

[SD96] Mary Shaw and Garlan David. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, first edition, 1996.

[SGG01] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Con-
cepts. John Wiley & Sons, sixth edition, 2001.

[Shr] Shrimp. http://www.csr.uvic.ca/shrimpviews/; accessed December
1, 2001.

swag.uwaterloo.ca/pbs/
www.bleading-edge.com/Publications/C++Journal/Cpjour2.htm
www.refactoring.com/catalog/index.html
http://www.rigi.csc.uvic.ca/
www.rational.com/products/rup/index.jsp
http://www.csr.uvic.ca/shrimpviews/

Conclusions and Future Research 90

[TGLH00] John B. Tran, Michael W. Godfrey, Eric H. S. Lee, and Richard C. Holt. Architecture
repair of open source software. IWPC, 2000.

[UND] Understand for c++. www.scitools.com/ucpp.html; accessed December 1,
2001.

[vLL00] A. van Lamsweerde and E. Letier. Handling obstacles in goal-oriented requirements
engineering. IEEE Transactions on Software Engineering, Vol. 26, No. 10, 2000.

[Win] Winamp multimedia player. www.winamp.com/; accessed December 1, 2001.

[XMMa] X multimedia system (xmms). www.xmms.org; accessed December 1, 2001.

[XMMb] Xmms feature list. www.xmms.org/features.html; accessed December 1,
2001.

[XMMc] Xmms user manual. www.xmms.org/documentation.html; accessed De-
cember 1, 2001.

www.scitools.com/ucpp.html
www.winamp.com/
www.xmms.org
www.xmms.org/features.html
www.xmms.org/documentation.html

	Introduction
	Motivation and Problem Description: Project Development Issues
	Conventional Process Issues
	Unified Process
	Agile Development Processes

	The Proposed Solution and Major Thesis Contributions
	Thesis Organization

	Key Concepts and Related Work
	Software Architecture and Design
	Architectural Views
	Reference Architecture
	Architectural Refactorings and Repair
	Architecture Reengineering and Visualization

	Quality Attribute Theory

	Agile Architecture Recovery Process
	Architecture Recovery Issues and Goals
	Architecture Recovery Process
	Architecture Meta-model
	Architecture Recovery Techniques

	Architecture Recovery Process Steps and Legacy Systems
	Summary

	Case Study: X MultiMedia System
	XMMS: Introduction
	XMMS: Architecture Recovery
	Project Elaboration
	Architecture Recovery: First Iteration
	Architecture Recovery: Second Iteration

	XMMS: Focused Evolution Recovery
	Summary

	Evaluation
	Case Study Validity
	System Concerns
	Analyst Concerns

	PBS: Reference Process
	Project Management Issues
	Process Iterations
	Individual and Team Issues

	Process Step Issues
	Project Elaboration
	Analysis of Existing Artifacts
	Domain Architecture
	Conceptual Architecture
	Concrete Architecture
	Architecture Rationale

	Process Technique Issues

	Conclusions and Future Research

