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Abstract

Given a set of geometric objects (points or line segments) each associated with a time
value, we wish to determine whether a given property is true for a subset of those ob-
jects whose time values fall within a query time window. We call such problems time-
windowed decision problems. We present algorithms to preprocess for the time-windowed
closest pair decision problem in O(n) expected time, for the time-windowed 2D diame-
ter decision problem in O(n log n) time, the time-windowed 2D convex hull area decision
problem in O(nα(n) log n) time (where α is the inverse Ackermann function), and the time-
windowed 3D diameter decision and orthogonal segment intersection detection problems
in O(n polylog n) time.

Our first approach is to reduce the closest pair decision problem to 2D dominance range
emptiness using grids to compute candidate satisfying pairs. We extend this approach to
find the closest pair of points by reducing the problem to 2D dominance range minimum,
which we further reduce to 2D point location.

Our second approach is to reduce time-windowed decision problems to a generalized
range successor problem, which we solve using a novel way to search range trees.

Our third approach is to use dynamic data structures directly, taking advantage of a
new observation that the total number of combinatorial changes to a planar convex hull is
near linear for any FIFO update sequence, in which deletions occur in the same order as
insertions.
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Chapter 1

Introduction

Geographic Information System (GIS) data gathered in the field by handheld Global Posi-
tioning System (GPS) units often consists not only of latitude, longitude, and altitude but
also of time. A curious GIS professional might naturally ask questions about the geometry
of this data based on windows of time.

In a time-windowed geometric problem, we wish to process a set of objects (points
or segments), where each object is associated with a time value, such that given a query
interval of time called a time window, we can quickly answer a geometric problem on the
subset of objects whose time values fall within that window. For brevity, we say objects
whose time values are within a query time window are themselves within the time window.

Essentially, we would like to perform a range reporting query in the time dimension, and
then on the points returned by this range query we would like to answer some geometric
query such as finding the closest pair. If the geometric query were simply another range
reporting query in Rd, then we could simply treat the time dimension as another spatial
dimension and answer one range reporting query in d+ 1 dimensions (including time).

For example, consider the time-windowed closest pair problem: preprocess a set S of n
points in Rd such that, given a query time window [t1, t2], we can quickly find the pair of
points p, q ∈ S such that t1 ≤ t(p) ≤ t(q) ≤ t2 and the distance between p and q is minimal
among all points within the query time window (see Figure 1.1 for an example in R1).

Time-windowed geometric problems have been the subject of many recent papers and
are motivated both by the aforementioned GIS data as well as timestamped social network
data. A 2014 paper by Bannister et al. [BDG+14] examined time-windowed versions of
convex hull, approximate spherical range searching, and approximate nearest neighbor
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Figure 1.1: Left : a set of points in R1, whose spatial coordinates have been plotted in the
horizontal x dimension, and whose temporal coordinates have been plotted in the vertical
t dimension. Right : the same set of points and a time window [t1, t2], whose bounds are
indicated by dotted horizontal lines which excludes a pair of points which is lowlighted.
The closest pair within the query window is highlighted, and the distance between the
closest pair is indicated by vertical dashed lines.

queries. At SoCG 2015, Bokal et al. [BCE15] presented more results on a variety of other
time-windowed problems.

1.1 Problem Statements

We consider the following time-windowed problems:

1. Closest Pair Decision: Given a set of n time-labeled points in Rd, we want to deter-
mine if there exist two points closer than unit distance apart among all points within
a query time window.

2. Closest Pair : Given a set of n time-labeled points in Rd, we want to determine the
closest pair of points within a query time window.

2



3. 2D and 3D Diameter Decision: Given a set of n time-labeled points in R2 or R3,
determine if there exist two points greater than unit distance apart, whose time
values are within a query time window.

4. 2D Orthogonal Segment Intersection Detection: Given a set of n orthogonal (hori-
zontal or vertical) time-labeled line segments in R2, we want to determine if there
are any intersections between segments whose time values are within a query time
window.

5. 2D Convex Hull Area Decision: Given a set of n time-labeled points in R2, determine
whether the convex hull of points within a query time window has greater than unit
area.

6. 2D Width Decision: Given a set of n time-labeled points in R2, we want to determine
whether the points within a query time window have greater than unit width.

In the following section, we will formally define the convex hull and width of a set of
points as part of our discussion of related work.

1.2 Related Work

It is worthwhile to begin by considering the same problems in the standard (non-time-
windowed) setting in order to gain some perspective. Since a time-window can include
all points, the sum of preprocessing and query time for a problem in the time-windowed
setting cannot be less than the time of solving the problem in the standard setting.

Given a set P of n points in R2, the convex hull of that set of points is the min-
imal convex area that encloses P . The convex hull can be computed using the Jarvis
march technique in O(nh) time [Jar73], where h is the size of the convex hull; or in O(n)
time (after sorting) using Graham’s scan [Gra72]; or in O(n log h) time using either the
Kirkpatrick-Seidel algorithm [KS86] or Chan’s algorithm [Cha96]. Yao proved that com-
puting the convex hull requires Ω(n log n) time in the quadratic decision tree model, under
the assumption that a fixed fraction of the points are on the convex hull [Yao81].

Given a set P of n points, the closest pair in that set is a pair of points p, q ∈ P such
that the distance between p and q is minimal among all pairs of points in the input. In any
constant dimension, closest pair can be solved in O(n log n) time deterministically [SH75,
BS76] or O(n) expected time using randomization [Rab76].
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Similarly, the diameter of a set of n points is the pair of points whose distance is
maximal. Preparata and Shamos give an Ω(n log n) lower bound along with an optimal
Θ(n log n) algorithm [PS85]. Observe that the diameter of a point set is equal to the
diameter of that set’s convex hull. This means that if the set of points is in R2, then
we can compute the convex hull of the set of points in O(n log h) time, and then simulate
rotating calipers around the convex hull to find the diameter in O(h) time [Sha78]. We can
use the same approach to find the width of a set of points, which is the minimal distance
between two parallel lines that are on either side of all points. One or the other of such
parallel lines would necessarily be tangent to the convex hull, otherwise we could rotate
the lines until one side is tangent, and this would reduce the distance between them while
still being on either side of the points.

The problem of finding the diameter of a set P of n points in R3 is related to finding
the intersection of unit balls centered at the points of P . Clarkson and Shor gave optimal
randomized algorithms for both problems which run in O(n log n) [CS89]. Amato et al.
matched the same time bound with a deterministic algorithm [AGR94].

Bannister et al. [BDG+14] examined time-windowed convex hull and approximate prox-
imity queries. Their approach for answering convex hull queries is to build a balanced
binary search tree with the time-labeled points stored at the leaves in time order. Each
internal node x is associated with a canonical subset of the time-labeled points at the leaves
of the subtree rooted at x. At each such internal node, they store the convex hull of all
points in its canonical subset. This approach achieves the following results, where ω is the
number of points whose time values are within the query time window:

1. 2D gift wrapping : Given a set of n time-labeled points in R2 and a query point q
on the convex hull of a query time window, locate the clockwise or counterclockwise
adjacent point to q on the convex hull of the query time window. Their approach
obtains O

(
log2 ω

)
time.

2. 2D convex hull : Given a set of n time-labeled points in R2, compute the convex hull
of points within a query time window. Their approach follows immediately from
their gift wrapping result, and obtains O

(
h log2 ω

)
time, where h is the number of

points on the convex hull.

3. 2D tangent : Given a set of n time-labeled points in R2, find the two tangents of the
convex hull of points within a query time window passing through a query point q
outside of the convex hull. Their approach obtains O

(
log2 ω

)
time.
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4. 2D linear programming : Given a set of n time-labeled points in R2, find the furthest
point in a query direction on the convex hull of all points within a query time window.
Their approach obtains O(logω) time.

5. 2D line stabbing : Given a set of n time-labeled points in R2, find all edges of the
convex hull of all points within a query time window, such that all returned edges
are stabbed by a query line. Their approach obtains O

(
log2 ω

)
time.

Their approach to answering approximate proximity queries is to build a similar bal-
anced binary search tree with the time-labeled points stored at the leaves in time-order,
and store the Z-order (also known as Morton or shuffle order) [BET99] of the canonical
subset of each internal node. This approach achieves the following results:

1. Approximate spherical range searching : Given a set of n time-labeled points in Rd,
and a query point q and radius r, return all points within a query time window whose
distance to q is at most r, and such that no returned point has greater than (1 + ε)r
distance from q. Their approach obtains O(logω + k) time, where k is the number
of points reported in the output, for fixed d ≥ 2.

2. Approximate nearest neighbor : Given a set S of n time-labeled points in Rd, and a
query point q, return a point p ∈ S whose distance to q is at most (1 + ε)r where r
is the distance from q to its nearest neighbor in S. Their approach obtains O(logω)
time, for fixed d ≥ 2.

3. Proximity graph construction: They can construct the Delaunay triangulation, min-
imum spanning tree, nearest neighbor graph, and Gabriel graph each in O(ω) time.

Recently, Bokal et al. [BCE15] presented an approach to time-windowed decision prob-
lems on hereditary properties. If a property P is hereditary and set S has P then any
superset S ′ ⊇ S also has it.1 Examples of hereditary properties include: the set of points
has greater than unit diameter, or the convex hull of a set of points has greater than unit
area.

Bokal et al. observe that it suffices to find for each start time t the minimal end-time t′

such that all objects within the window [t, t′] have P . We can store the maximal end-time
for the input time for each point of the input, then answer a query by table lookup after

1 The definition in [BCE15] considers subsets instead of supersets, but is equivalent after complemen-
tation.
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finding the predecessor time for our query. In fact, in Chapter 2 we reduce such queries
to rank/select queries in O(1) time and O(n) bits of space. Thus, since answering a query
after preprocessing is trivial, Bokal et al. focus only on bounding the preprocessing time.

They achieve the following geometric results:

1. 2D diameter decision: Given a set of n time-labeled points in R2, determine if there
exist two points greater than unit distance apart, whose time values are within a
query time window. Their approach obtains O

(
n log2 n

)
preprocessing time.

2. 2D convex hull area decision: Given a set of n time-labeled points in R2, determine
whether the convex hull of points within a query time window has greater than unit
area. Their approach obtains O(n log n log log n) preprocessing time.

3. 2D monotone paths : Given a set of n points in R2, determine if the points within a
query time window form a monotone path in some (subpath-dependent) direction.
Their approach obtains O(n) preprocessing time.

They also show that their approach works for graph planarity. Given a graph whose
edge set contains n time-labeled edges, determine if the graph formed by the edges within
a query time window is planar, meaning that graph can be drawn with no crossing edges.
Their approach obtains O(n log n) preprocessing time.

Bokal et al.’s main approach computes the values of a binary n × n upper triangular
matrix where entry i, j has value 1 if and only if the set of objects within the window [i, j]
has P . The first step is to greedily decompose the matrix into disjoint rectangles along
the diagonal. The second step is to compute the values within each rectangle. First they
compute the maximal end-time for the row which divides height of the rectangle in half.
This splits the rectangle into 4 sub-rectangles, above and below the median row and left
and right of its maximal end-time. The entries in the top-right have value 0, the entries
in the bottom-left have value 1, and they recurse on top-left and bottom-right. Efficiency
comes from using a bounded-size sketch of uncomputed regions during recursion. A sketch
is similar to a coreset in that it approximates a subset of objects, and its exact nature
depends on the problem. Their results for both the 2D diameter and the 2D convex area
decision problems are obtained via this approach.

Chan gave a fully dynamic data structure for planar width with O(
√
n polylog(n))

update time [Cha01b]. Using a naive approach, we can solve the 2D time-windowed width
decision problem using this structure in O

(
n3/2 polylog(n)

)
preprocessing time.

6



1.3 Assumptions

We assume that time values are given as integers from 1 to n, for otherwise we can pre-
process the input and replace time values with their rank during preprocessing. The query
time only increases by O(1) predecessor searches on the query time values.

1.4 Summary of Contributions

We achieve the following results:

1. Closest pair decision: We give the first nontrivial result for this problem, obtaining
O(n) expected preprocessing time in the word-RAM model.

2. Closest pair : We give the first nontrivial result for this problem, answering queries
in O(log log n) time with O(n log n) words of space and O(n log n log log n) prepro-
cessing time in the word-RAM model.

3. 2D and 3D diameter decision: We improve Bokal et al.’s preprocessing time bound
in 2D from O

(
n log2 n

)
to O(n log n). Thus, we obtain the first optimal algorithm

for the problem in the algebraic decision-tree model [PS85]. Furthermore, we obtain
the first nontrivial result in 3D with O

(
n log2 n

)
preprocessing time.

4. 2D orthogonal segment intersection detection: We give the first nontrivial result for
this problem, obtaining O(n log n log log n) preprocessing time.

5. 2D convex hull area decision: We improve Bokal et al.’s preprocessing time bound
from O(n log n log log n) to O(nα(n) log n) (where α is the inverse Ackermann func-
tion). This is quite close to optimal, except for a very tiny α(n) factor.

6. 2D width decision: We give the first nontrivial result for this problem, obtaining
O
(
n log7 n

)
preprocessing time.

1.5 Thesis Organization

In Chapter 2, we discuss a further refinement of the closest pair decision problem, and
extended the result to solve the closest pair problem.

7



In Chapter 3, we discuss time-windowed problems we call “pairwise interaction prob-
lems,” which are problems for properties that deal with pairs. These include: diameter
decision, orthgonal segment intersection detection.

In Chapter 4, we discuss time-windowed convex hull decision problems. These are
time-windowed decision problems which are related to computing the convex hull. These
include: convex hull area decision, and width decision.

In Appendix A, we discuss the techniques and results by others which are not central
to our results but upon which our results depend, typically used as black boxes.
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Chapter 2

Time-Windowed Closest Pair

In this chapter, we consider the following time-windowed problems:

Closest Pair Decision Given a set of n time-labeled points in Rd, we want to
determine if there exist two points closer than unit distance apart.

Closest Pair Given a set of n time-labeled points in Rd, we want to determine the
closest pair of points within a query time window.

The results presented in this chapter are joint work with Timothy M. Chan and ap-
peared in the Proceedings of the 27th Canadian Conference on Computational Geometry
(CCCG 2015) [CP15].

2.1 Preliminaries

In this chapter, we work in the w-bit word-RAM model, which models the computer as a
sequence of w-bit memory locations indexed by a w-bit integer. In this model, we assume
that w ≥ log n and standard operations on words take constant time.

2.1.1 Grids and Quadtrees

In the following chapter, we will use the idea of a grid which groups the points into cells.
Our intuitive notion of a grid evokes the image of grid paper on which has been drawn

9



Figure 2.1: A quadtree divides the bounding box of a set of points into 4 cells, then
recursively builds a quadtree on the points in each cell until each cell contains only a single
point.

evenly spaced parallel lines both vertically and horizontally. This divides the paper into
cells which are square areas of white space bounded on all four sides by blue lines.

We can formally define a grid and its cells by borrowing some terminology from modular
arithmetic. Given x ∈ R and r > 0, let x div r = bx/rc. Similarly, given a point p ∈ Rd

with coordinates (p1, p2, . . . , pd), p div r = (bp1/rc, bp2/rc, . . . , bpd/rc). We say that two
points p, q are in the same grid cell of side length r if p div r = q div r.

The use of grids in computational geometry has been well-studied [GBT84, HP11], and
we will use it to solve the time-windowed closest pair decision problem. We will then
extend this solution to the exact problem by using a related structure called a quadtree.

Let P be a set of n points in Rd, and B be a hypercube (which we call a quadtree cell)
containing those points. To build the quadtree for P , we divide B into 2d congruent child
hypercubes. For each of these child hypercubes which contain more than a single point, we
recursively build a quadtree for that box (see Figure 2.1). For more details on quadtrees,
see [FB74, HP11].

The following lemma, similar to Lemma 4 from Arya et al. [AMN+98], bounds the
number of points in a hypercube by a constant with respect to the hypercube’s side length
and the distance between the closest pair within that hypercube.

Lemma 1 (Packing). If a point set has closest-pair distance at least r and lies in a d-
dimensional hypercube with side length at most b · r, then there are fewer than c0(b+ 1)d

points in that point set, where c0 is some constant that depends only on d. We call c0 the
packing constant.

10



Proof. Since there are no two points closer than r from each other, we know there exists
an empty ball of radius r/2 around each point. The maximum number of points that we
can pack into a hypercube with side length br is equal to the number of such balls that
we can pack into a hypercube with side length (b + 1)r, whose volume is (b+ 1)drd. The
volume of a d-dimensional ball with radius r/2 is given by the formula:

πd/2rd

2d · Γ
(
d
2

+ 1
)

where Γ is Euler’s gamma function. Thus we can pack the following number of such balls
into such a hypercube:

(b+ 1)drd

πd/2rd

2d·Γ( d
2

+1)

=
2d · Γ

(
d
2

+ 1
)
· (b+ 1)drd

πd/2rd

=
2d · Γ

(
d
2

+ 1
)

πd/2
· (b+ 1)d.

If the dimension d is fixed, then define the constant c0 = 2d ·Γ
(
d
2

+ 1
)
/πd/2. Therefore,

the number of balls we can pack into such a hypercube is at most c0 · (b+ 1)d.

The following lemma and its proof are adapted from Arya et al. [AMN+98] (Section 2.3:
Midpoint Algorithm), though the concept itself is much older.

Lemma 2 (Centroid). Given a point set P containing n points, there exists a quadtree
cell B, which we call a centroid cell, such that |P ∩ B| ≤ αn and |P \ B| ≤ αn for some
constant α < 1 that depends only on d.

Proof. We will prove this in R2 with α = 3/4, but it generalizes to Rd with α = 2d−1
2d

.
Divide the bounding box of the n input points into 4 disjoint, congruent cells of equal
area. Consider the cell containing the most points. This cell can contain no fewer than
n/4 points. If it has fewer than 3n/4 points, then this is the centroid and we are done.
Otherwise, it must contain more than 3n/4 points and we recurse on it. At some level, the
cell with the most points must contain between n/4 and 3n/4 points.

Recursive application of this lemma gives a data structure on a set of points P , called a
balanced quadtree [Ber93], defined as a binary tree where the root stores B, the left subtree
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is the balanced quadtree for P ∩B, and the right subtree is the balanced quadtree for P \B
where B is a centroid cell of P .

We have the following lemma due to Chan [Cha98] (Observation 3.2 and Lemma 3.3),
which says that if we draw a constant number of grids over our points, each shifted by
some amount, then we can guarantee that any pair of points must be in the same cell in at
least one such grid. Since quadtree cells are related to grid cells, this also implies that the
closest pair will be in the same quadtree cell if we build a constant number of quadtrees.

Lemma 3 (Shifting). Suppose d is even. Let v(j) = (bj2w/(d+ 1)c , . . . , bj2w/(d+ 1)c) ∈
Rd, where w is the number of bits in a word. For any points p and q and r′ = 2` such that
||p − q||∞ ≤ r′, there exists j ∈ {0, 1, . . . , d} such that p + v(j) and q + v(j) belong to the
same grid cell with side length c1r

′, where c1 is the smallest power of 2 bigger than or equal
to 2d+ 2. We call c1 the shifting constant.

For completeness sake, the proof is included in Section A.1 of Appendix A. While the
preceding lemma requires d to be even, for odd values of d we can use d+ 1.

2.2 Closest Pair Decision Problem

Before we solve the time-windowed closest pair problem, it helps to consider the decision
problem version, in which we are additionally given a fixed distance r and we want to
preprocess P into a data structure which can efficiently determine, for any query time
window, if there exists a pair of active points pq such that the distance between p and q is
at most r. We call such a pair a satisfying pair.

The main idea of our approach is to use a constant number of shifted grids, which
by Lemma 3 ensures that any two points will appear in the same cell together in at
least one such shifted grid. For each point, we consider a constant number of its time-
order predecessors and successors within the same cell, which by Lemma 1 we know must
include a satisfying pair if one exists. From there, we reduce the problem to a standard
2-dimensional dominance range searching problem.

2.2.1 Computing Candidate Satisfying Pairs

We begin by bucketing the points of P into grid cells with side length c1r
′, where c1 is the

shifting constant from Lemma 3 and r′ is the smallest power of 2 bigger than or equal to
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r. The number of grid cells is generally unbounded with respect to n, but at most n such
cells can contain points. We would like to assign to each cell a unique label 1 ≤ ` ≤ n,
and we can do so by building a hash table whose keys are the values of p div c1r

′, which
allows us to determine which cells are non-empty, after which we simply need to choose
some label for each such cell. This takes O(n) expected time. For each point p we create
a tuple (`, t(p), p), where t(p) is the time value of point p.

For each cell, we build a time-ordered array of the points within that cell. This is done
by running radix sort on the tuples created in the previous step, sorting first by grid cell
label, and then by time. Since the grid cell labels and time values are both at most n, the
radix sort takes O(n) time.

For each such point p, we consider its c0(c1 + 1)d predecessors and the same number of
successors in the time-ordered array, where c0 is the packing constant from Lemma 1. Let
q be such a predecessor or successor. If the distance between p and q is at most r, then p
and q form a candidate satisfying pair.

We do the preceding steps d+ 1 times, where each time the cells are shifted by v(j) for
j ∈ {0, 1, . . . , d} as defined in Lemma 3. We union together the results to build the full set
of candidate satisfying pairs.

Lemma 4. There are O(n) candidate satisfying pairs.

Proof. Over the d+1 shifts, the total is upper-bounded by (d+1)·c0(c1 + 1)dn = O(n).

Lemma 5. If a time window contains a satisfying pair, then the time window must contain
a candidate satisfying pair.

Proof. Let pq be a satisfying pair for the window which is closest in terms of time order.
From Lemma 3, there exists j ∈ {0, 1, . . . , d} such that p+ v(j) (which we will call p′) and
q + v(j) (which we will call q′) are in the same grid cell of side length c1r

′. Since p′ and
q′ are active, all points between them in time order must also be active. No two points
strictly between p′ and q′ can have distance smaller than r, for otherwise we would have
a satisfying pair that is closer than pq in terms of time order. By Lemma 1 there are
less than c0(c1 + 1)d points strictly between p′ and q′. Therefore p′q′ must be among the
candidate satisfying pairs.

2.2.2 Reduction to 2D Dominance Range Emptiness

Now that the number of pairs we need to consider is reduced to O(n), we would like to
store these pairs in a data structure to support efficient querying. Specifically, given a

13



max{t(p), t(q)}

−min{t(p), t(q)}

max{t(p), t(q)}

−min{t(p), t(q)}

0

1

1

10000

100

1

10

t1 = 2, t2 = 5

select0(t1 = 2) = 7

1

1

1

1

1

1

rank1(select0(t1 = 2)) = 6 >5

5

?

0

0

Figure 2.2: Left : the staircase of all candidate satisfying pairs. Right : the staircase can
be stored in a succinct rank/select data structure which can be used to answer dominance
range emptiness queries.

query window [t1, t2] we wish to determine if there exists a candidate satisfying pair pq
such that t1 ≤ min{t(p), t(q)} and t2 ≥ max{t(p), t(q)}.

Consider each candidate satisfying pair as a point in 2 dimensions with coordinates
(−min{t(p), t(q)},max{t(p), t(q)}). Our query problem is equivalent to determining wheth-
er the quadrant (−∞,−t1] × (−∞, t2] contains any of these points. This is exactly the
2D dominance range emptiness problem (the interested reader may refer to Section A.8 of
Appendix A for more details). This problem can be solved by computing the minima of the
2D point set and testing whether the query point is above or below the staircase formed
by the minima. Computing the minima of O(n) points takes O(n) time by a standard
sweep-line algorithm, assuming that the x-coordinates (which are time values) have been
pre-sorted. Since the x-coordinates are in {0, . . . , n− 1}, pre-sorting takes O(n) time.

We can use an array to store the y-value of the staircase at every x-value; this requires
O(n) words of space. With this, a query can then be answered in O(1) time.

2.2.3 Reduction to Rank/Select

Given a sequence of n bits, we can build a data structure using n + o(n) bits of space,
which supports reporting the number of 1s in the first i bits of the sequence (which we
call rank1(i)), and finding the jth 0 in the sequence (which we call select0(j)) in O(1)
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time [Cla98]. The interested reader may refer to Section A.2 of Appendix A for more
details.

We can use this data structure to reduce the space while keeping the same time bounds.
Consider the staircase as a monotone chain (after negating the x-coordinates) through the
n× n grid from the origin to (n− 1, n− 1). This grid is effectively a plot with start time
on the x-axis, and end time on the y-axis. We can encode a monotone chain as a sequence
of 2n bits. Starting at the origin, whenever the chain moves vertically from end time i to
i+ 1, we store a 1 bit. Similarly, whenever the chain moves horizontally, we store a 0 bit.
The answer to the query is yes if and only if t2 ≥ rank1(select0(t1)) (see Figure 2.2).

We have thus proven the following result:

Theorem 6. The decision problem version of the time-windowed closest pair problem in
any fixed dimension can be solved in O(1) time using 2n + o(n) bits of space and O(n)
expected preprocessing time in the word-RAM model.

2.3 Closest Pair

To solve the original time-windowed closest pair problem, the main new idea is to replace
shifted grids with shifted balanced quadtrees. For each point outside of the centroid cell,
we consider a constant number of its time-order predecessors and successors within the
centroid cell. We then recurse separately on the points inside and outside of the centroid
cell. This divide-and-conquer approach gives us O(n log n) candidate pairs. From there,
we reduce the problem to a 2-dimensional dominance range minimum problem.

2.3.1 Computing Candidate Pairs

We describe our algorithm to generate candidate pairs recursively. We first compute the
centroid cell B of the given point set P . Define the set of neighbors N(p) of a point p as
its c0(2c1 + 1)d time-order predecessors and successors within the centroid cell B, where c0

is the packing constant from Lemma 1 and c1 is the shifting constant from Lemma 3. For
each point p outside of the centroid, we consider each pair pq for q ∈ N(p) as a candidate
pair. We then recurse on P ∩B and P \B.

We run the preceding algorithm d+ 1 times, where each time the quadtrees are shifted
by v(j) for j ∈ {0, 1, . . . , d} as defined in Lemma 3. We union together the results to build
the full set of candidate pairs.
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Lemma 7. There are O(n log n) candidate pairs.

Proof. For each fixed shift, the number of candidate pairs is given by the recurrence P (n) ≤
P (n1)+P (n2)+c0(2c1 + 1)dn, where n1 and n2 are the number of points inside and outside
of the centroid respectively.

Since n1 + n2 = n and n1, n2 ≤ αn, the recurrence solves to P (n) = O(n log n).

Lemma 8. The closest pair for any time window must be among the candidate pairs.

Proof. Let pq be the closest pair in the window, with distance r. From Lemma 3, there
exists j ∈ {0, 1, . . . , d} such that p+ v(j) (which we will call p′) and q+ v(j) (which we will
call q′) are in the same quadtree cell of side length c1r

′ where r′ is the smallest power of 2
greater than r.

There are 3 cases. Either p′, q′ are both inside or outside of the centroid cell B, or one
is inside and the other is outside of B. The first 2 cases can be handled by induction.
Now we are in case 3, so suppose q′ is inside the centroid. (The case where p′ is inside the
centroid is symmetric.)

From Lemma 1, there are no more than c0(2c1 + 1)d active points in the centroid cell B,
since B has side length at most 2c1r. Since p and q are active during the time window,
all points between them in time order must also be active. Therefore, there are fewer than
c0(2c1 + 1)d points between p and q in time order, so q ∈ N(p).

2.3.2 Reduction to 2D Dominance Range Minimum

Now that the number of pairs we need to consider is reduced to O(n log n), we would like
to store these pairs in a data structure to support efficient querying. Specifically, given a
query window [t1, t2] we wish to find a candidate pair pq such that t1 ≤ min{t(p), t(q)} and
t2 ≥ max{t(p), t(q)} while minimizing the distance d(p, q).

Consider each candidate pair as a weighted point in 2 dimensions with coordinates
(−min{t(p), t(q)},max{t(p), t(q)}) and weight d(p, q). Our query problem is equivalent to
finding a point in the quadrant (−∞,−t1] × (−∞, t2] with the minimum weight. This is
exactly the 2D dominance range minimum problem, which we can solve by using standard
techniques (the interested reader may refer to Section A.9 of Appendix A for more details).
Namely, we first lift the 2D weighted points to 3D where the weights become z-coordinates.
We compute the staircase polyhedron of the 3D point set, defined as the region of all points
that are not dominated by any input point. Then a query can be answered by finding
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Figure 2.3: The problem of finding the closest pair reduces to dominance range minimum.
Left : The candidate pairs with coordinates (−min{t(p), t(q)},max{t(p), t(q)}) and weights
d(p, q) subdivide the plane into regions in which every point is dominated by a minimum
candidate point which forms the closest pair p, q. Right : A time interval t1, t2 forms a
query point with coordinates (t1, t2), which becomes a point location query. The regions
are labeled with their closest pair p, q, here shown only as the distance between them
d(p, q).

the highest point on the staircase polyhedron at a given x- and y-coordinate. Computing
the staircase polyhedron is related to the standard problem of computing the minima of
the 3D point set and can be done by a standard plane sweep algorithm (the interested
reader may refer to Section A.4 of Appendix A for more details). For a set of N points
in 3D, the plane sweep algorithm takes O(N log logN) time using van Emde Boas trees,
assuming that the x- and y-coordinates have been pre-sorted (the z-coordinates need not
be pre-sorted). Since the x-coordinates are in {0, . . . , n − 1}, pre-sorting can be done in
O(N + n) time using radix sort.

Finding the highest point of the staircase polyhedron (a monotone polyhedron in 3D)
at a query x- and y-coordinate reduces to point location in a 2D subdivision of O(N) size,
after projecting the faces onto the xy-plane (see Figure 2.3). We can use Chan’s planar
orthogonal point location structure [Cha13] as a black box to answer queries in O(log logN)
time using O(N) space and O(N) preprocessing time (the interested reader may refer to
Section A.7 of Appendix A for more details).

Setting N = O(n log n) gives our main result:
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Theorem 9. Time-windowed closest pair queries in any fixed dimension can be answered
in O(log log n) time using O(n log n) words of space and O(n log n log log n) preprocessing
time in the word-RAM model.

2.3.3 A Lower Bound on the Number of Candidate Pairs

As a final remark, we point out that any approach which stores all candidate pairs must
use Ω(n log n) space by proving the following observation.

Observation 10. There exists a set of n points, where each point is associated with a time
value, such that there are Ω(n log n) distinct closest pairs over all possible time windows.

Proof. Our construction works in one dimension. Suppose n is a power of 2. The base case
n = 2 is trivial. To construct a set S of n points on a line, we first recursively construct
a set S1 of n/2 points, and duplicate S1 to create S2. We increase the labels of points
in S2 by n/2 and we shift the points along the line by δ for a sufficiently small δ > 0
(less than half of the closest pair distance in S1). Since the time labels of S1 and S2 are
disjoint, any closest pair between points in S remains a closest pair for some time window.
Symmetrically, we have the same closest pairs between points in S2. In addition, for each
time value i ∈ {1, . . . , n/2}, the pair of points with time values i and i + n/2 is a closest
pair for the time window [i, i+ n/2], because the pair has the smallest possible distance δ,
and any other pair with distance δ has time values of the form j and j + n/2, which can’t
both lie inside [i, i + n/2]. This gives n/2 additional closest pairs. Therefore, the number
of distinct closest pairs is given by the recurrence C(n) ≥ 2C(n/2) + n/2, which solves to
C(n) = Ω(n log n).

(Note that this construction can alternatively be described without recursion using bit-
reversal permutations, which for a fixed number of bits b are the numbers 0 to 2b− 1, with
the order of their bits reversed. For example, for 2 bits, the numbers are 0, 1, 2, 3, whose
binary representations are 00, 01, 10, 11. When we reverse the bits in this representation,
we get 00, 10, 01, 11, which corresponds to the sequence 0, 2, 1, 3.)
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Chapter 3

Time-Windowed Pairwise Interaction
Problems

In this chapter, we consider the following time-windowed problems:

2D and 3D Diameter Decision Given a set of n time-labeled points in R2 or R3,
determine if there exist two points greater than unit distance apart, whose time values are
within a query time window.

2D Orthogonal Segment Intersection Detection Given a set of n orthogonal
(horizontal or vertical) time-labeled line segments in R2, determine if there are any inter-
sections between segments whose time values are within a query time window.

The results presented in this chapter are joint work with Timothy M. Chan and appear
in the Proceedings of the 32nd International Symposium on Computational Geometry
(SoCG 2016) [CP16].

Recall from the introduction that the decision problems we consider in this chapter
are on hereditary properties. Since for each time i, we can store the minimal j such
that the time interval [i, j] has the property P . Therefore we focus only on bounding the
preprocessing time.
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v` vr

Figure 3.1: A range tree showing the path followed by a query for an interval [`, r] which
splits at vs, and the subtrees which fall within the query range between leaves v` and vr.

3.1 Preliminaries

3.1.1 Range Trees

A balanced binary search tree T is a range tree [Ben79, PS85] if each inner node v is labeled
with the greatest element in the tree rooted at its left child. See Figure 3.1. This naturally
decomposes any range [l, r] of values into O(log n) canonical subtrees by performing a
binary search for both l and r until we reach their lowest common ancestor node vs at
which the search splits. The search continues leftwards to leaves vl and vr with values l
and r respectively. Every right subtree on the path from vs to vl, and every left subtree on
the path from vs to vl are within the range [l, r]. Further, a range tree can easily generalize
to higher dimensions by storing at each node another range tree on another dimension of
the data. Each extra dimension adds an O(log n) factor to the query time. The space
required to store a range tree on a set of points in Rd is O

(
n logd−1 n

)
.

3.1.2 Fractional Cascading

Fractional cascading is a data structure technique which allows us to perform iterated
binary search on several sorted lists in O(log n) total time [CG86a, CG86b].

In general, if we are searching through sorted list A[k] followed by A[k+1], we can speed
up the process by fractional cascading. We do so by creating a list B[k] which includes all

20



the elements of A[k] plus some fraction of the elements in A[k + 1], along with pointers
into B[k + 1] created similarly. We call this process fractionally cascading from A[k] to
A[k+ 1]. Instead of searching A[k], we search B[k] and use the extra pointers to begin our
next search in B[k + 1]. In order to maintain the O(log n) time bound and O(n) space
bound, then each list can only be fractionally cascaded into a constant number of other
lists, and only a constant number of other lists can be fractionally cascaded into each list.
If we think of each list as a vertex in a graph, and fractionally cascading from list k to
list k+ 1 creates a directed edge from the vertex representing k to the vertex representing
k + 1, then each vertex must have constant in and out-degree.

3.1.3 Range Successor

Given a set S of n values, the successor to a query value q is the smallest value p ∈ S such
that q ≤ p. The range successor problem is to preprocess a set S of n values in order to
efficiently find the successor of a query value within a given query range. This problem
can be solved with O(n log log n) words of space and O(log log n) query time [Zho16].

3.2 Time-Windowed Range Successor

In this chapter, we focus on time-windowed decision problems for properties that deal with
pairs. More precisely, given a symmetric relation R = S × S, we consider the property P
that there exist p, q ∈ S such that (p, q) ∈ R. We call such properties pairwise interaction
properties. If (p, q) ∈ R, we say that p interacts with q; we also say that p is in q’s range.

Examples of such problems include: diameter decision, for which two points interact
if they are farther apart than unit distance; segment intersection detection, in which two
segments interact with each other if they intersect; and closest pair decision, in which
two points interact if they are nearer than unit distance. Note that such properties are
hereditary.

Our approach is to reduce the time-windowed problem to the following data structure
problem:

Definition 11. Let each object s ∈ S have weight w(s). In the generalized range successor
problem, we want to preprocess S to find the successor of a query object q among the objects
in q’s range, that is, the object p ∈ S that interacts with q with the smallest w(p) > w(q).
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The above is a generalization of the original 1D range successor problem where the
objects are points in 1D and the objects’ ranges are intervals.

To see how the above data structure problem can be used to solve the time-windowed
pairwise interaction problem, we simply find the successor pq of every q ∈ S in the gener-
alized range successor problem with weights equal to time values.

Observation 12. A query window [t1, t2] contains an interacting pair if and only if [t1, t2]
contains [t(q), t(pq)] for some q ∈ S.

Proof. The “if” direction is trivial. For the “only if” direction, let p, q be an interacting pair
in [t1, t2] and assume that t(q) ≤ t(p) without loss of generality. Then t(q) ≤ t(pq) ≤ t(p)
by definition of the successor pq, and the claim follows.

Thus, the answer to a query window [t1, t2] is yes if and only if the point (t1,−t2) is
dominated by some point (t(p),−t(pq)). The time-windowed problem can then be solved
by precomputing the maxima of the 2D point set {(t(p),−t(pq)) | q ∈ S}, which takes
linear time by a standard plane sweep after pre-sorting (recall that time values have been
initially reduced to integers in {1, . . . , n} and can be trivially sorted in linear time). The
running time is then dominated by the cost of computing the successors pq for all q ∈ S. If
we can solve the generalized range successor problem in P (n) preprocessing time and Q(n)
query time, we can solve the corresponding time-windowed problem in O(P (n) + nQ(n))
preprocessing time.

In the rest of this section, we can thus focus on solving the generalized range successor
problem.

One approach is to first consider the decision version of the problem: deciding whether
there exists an object p that lies in q’s range and has weight w(p) in the interval [`, r]
for ` = w(q) and a given value r. This problem can be solved using standard multi-level
data structuring techniques: The primary structure is a 1D range tree on the weights (i.e.,
time values). See Figure 3.1. This naturally decomposes any interval [`, r] of weights into
O(log n) canonical subtrees by performing a binary search for both ` and r until we reach
their lowest common ancestor node vs at which the search splits. The search continues
leftward and rightward to leaves v` and vr with values ` and r respectively. Every right
subtree on the path from vs to v`, and every left subtree on the path from vs to vr are
within the interval [`, r]. At each node v, we store the subset Sv of all objects within
its interval in a secondary structure for the original range searching problem—deciding
whether there exists an object in Sv that lies in a query object q’s range. A query for
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the decision problem can then be answered by making O(log n) queries to the secondary
structures. This increases the query time by a logarithmic factor.

Finally, we can reduce the generalized range successor problem to its decision problem
by a binary search over all time values r. This increases the query time by a second
logarithmic factor.

3.3 Avoiding Binary Search

In this section, we describe a still better algorithm that solves the generalized range suc-
cessor problem without going through the decision problem, thereby removing one of the
extra logarithmic factors caused by the binary search.

We first find the leaf node v storing q in O(log n) time. To answer a successor query
for q, we proceed in two phases. (See Figure 3.2.)

• In the first (i.e., “up”) phase, we walk upward from v towards the root. Each time
our search follows a parent pointer from a left child, we query the secondary structure
at the right child to see if there exists an object stored at the right child that is in
q’s range. If no, we continue upward. If yes, the answer is in the subtree at the right
child and we proceed to the second phase starting at this node.

• In the second (i.e., “down”) phase, we walk downward from the current node to a
leaf. Each time our search descends from a node, we query the secondary structure
at the left child to see if there exists an object stored at the left child that is in q’s
range. If no, the answer is in the right subtree and we descend right. Otherwise, we
descend left.

This algorithm makes O(log n) queries in the secondary structures. We next apply this
algorithm to specific time-windowed pairwise interaction problems.

3.4 2D Diameter Decision

For the application to 2D diameter decision, our set of objects S is composed of points in
R2, and p, q interact if and only if d(p, q) > 1. In other words, q’s range is the complement
of a unit disk.
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Figure 3.2: A search path finding the successor p of a point q is shown in bold. The search
is divided into an “up” phase followed by a “down” phase.

The secondary structure at a node v needs to handle the following type of query:
decide whether a query point q has greater than unit distance from some point in Sv, that
is, decide whether q lies outside the intersection Dv of all unit disks centered at the points
of Sv (see Figure 3.3). We store the disks whose boundaries form the boundary of the
unit-disk intersection Dv, along with the sorted list Xv of the x-coordinates of the vertices
of Dv.

Since we can merge two unit-disk intersections in linear time, we can build the sec-
ondary structures at all nodes of the range tree bottom-up in P (n) = O(n log n) time (the
interested reader may refer to Section A.11 of Appendix A for more details).

We can determine if a query point q is inside or outside of a unit-disk intersection by first
performing binary search for the x-coordinate of q in Xv, which identifies a disk D whose
boundary bounds the intersection, then checking whether q ∈ D. This takes O(log n) time.
Since the algorithm in Section 3.3 requires O(log n) queries in the secondary structures,
the overall query time is Q(n) = O

(
log2 n

)
.

We can use fractional cascading (see Section 3.1.2 for more details) to speed up the
algorithm further. Recall that the algorithm in Section 3.3 is divided into two phases.

• For the “up” phase, we first move the list Xv of each right child v to its parent. We
pass a fraction of the elements of the list at each node to the lists at both children
during preprocessing. This way, we can determine where the x-coordinate of q is in
the list of the parent from where it is in the list of the child in O(1) time. We can
then answer all O(log n) queries in the secondary structures during the “up” phase
in O(log n) overall time, after an initial binary search at the leaf in O(log n) time.
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Figure 3.3: The boundaries of unit disks centered at four points in R2. The boundary of
the unit-disk intersection is shown in bold.

• For the “down” phase, we pass a fraction of the elements of the list at each node to
the list at its parent during preprocessing. This way, we can determine where the
x-coordinate of q is in the list of a child from where it is in the list of its parent
in O(1) time. We can then answer all O(log n) queries in the secondary structures
during the “down” phase in O(log n) overall time, after an initial binary search in
O(log n) time.

We conclude that a generalized range successor query in this setting can be answered
in Q(n) = O(log n) time. This gives us the following result.

Theorem 13. We can preprocess for the time-windowed 2D diameter decision problem in
O(n log n) time.

3.5 3D Diameter Decision

In 3D, a query in the secondary structure at node v becomes deciding whether the query
point q lies outside the intersection Dv of unit balls centered at the points of Sv. We can
compute the intersection of unit-balls in O(n log n) time [AGR94] (the interested reader
may refer to Section A.12 of Appendix A for more details).

We begin by dividing Dv into two parts, by finding its extreme points in both x and y
dimensions, which are contained in a unique plane. The boundary above this plane, with
respect to z is the upper boundary of Dv, and the boundary below is the lower boundary.
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u

v

Figure 3.4: A set of horizontal segments is shown in solid lines, with their vertical de-
composition shown in dotted lines. A query vertical segment is shown in bold, whose
endpoints are in different cells.

We store the xy-projection of the upper and lower (with respect to z-coordinate) bound-
ary of Dv in a planar point location structure. We can build the secondary structures at
all nodes of the range tree in O(n log n) time per level, and thus P (n) = O

(
n log2 n

)
total

time. (Unlike in 2D, it is not clear if we could speed up the building time by linear-time
merging.)

Given point q, a query in a secondary structure reduces to planar point location for the
xy-projection of q and takes O(log n) time (the interested reader may refer to Section A.6
of Appendix A for more details). Since the algorithm in Section 3.3 requires O(log n)
queries in the secondary structures, the overall query time is Q(n) = O

(
log2 n

)
. (Unlike

in 2D, we cannot apply fractional cascading to speed up the algorithm.) This gives us the
following result.

Theorem 14. We can preprocess for the time-windowed 3D diameter decision problem in
O
(
n log2 n

)
time.

3.6 Orthogonal Segment Intersection Detection

For the application to 2D orthogonal segment intersection detection, our set of objects S
is composed of vertical and horizontal line segments in R2, and p, q interact if and only if
they intersect (see Figure 3.4).
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Without loss of generality, we assume that all x- and y-coordinates are given as integers
from 1 to O(n), for otherwise we can replace coordinate values with their rank during pre-
processing. The query time only increases by O(1) predecessor searches on the coordinate
values, costing no more than O(log n) time.

The secondary structure at a node v now needs to handle the following type of query:
decide whether a query segment q intersects some segment in Sv. Without loss of generality,
assume that q is vertical and the segments in Sv are horizontal. We store the vertical
decomposition VDv (also called the trapezoidal decomposition) in a planar point location
structure (the interested reader may refer to Section A.5 of Appendix A for more details).

Since we can compute the vertical decomposition VDv in O(|Sv| log log |Sv|) time by
a standard plane sweep with van Emde Boas trees [Cha13], we can build the secondary
structures at all nodes of the range tree in P (n) = O(n log n log log n) time.

Given vertical segment q, a query in the secondary structure at node v requires testing
whether both endpoints of q lie in the same cell in VDv, which reduces to two planar
point location queries. Since the subdivision is orthogonal, we can apply Chan’s orthogo-
nal point location structure, which achieves O(log logU) query time when coordinates are
integers from {1, . . . , U}—recall that coordinate values have been initially reduced to in-
tegers bounded by U = O(n). Since the algorithm in Section 3.3 requires O(log n) queries
in the secondary structures, the overall query time is Q(n) = O(log n log log n). This gives
us the following result.

Theorem 15. We can preprocess for the time-windowed 2D orthogonal intersection detec-
tion problem in O(n log n log log n) time.

Remark. An open problem is to remove the extra log log n factor. Perhaps the techniques
from [CLP11] for the 4D offline dominance searching problem may be relevant.
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Chapter 4

Time-Windowed Convex Hull
Decision Problems

In this chapter, we consider the following time-windowed problems:

2D Convex Hull Area Decision Given a set of n time-labeled points in R2, deter-
mine whether the convex hull of points within a query time window has greater than unit
area.

2D Width Decision Given a set of n time-labeled points in R2, we want to determine
whether the points within a query time window have greater than unit width.

The results presented in this chapter are joint work with Timothy M. Chan and appear
in the Proceedings of the 32nd International Symposium on Computational Geometry
(SoCG 2016) [CP16].

As in Chapter 3, the decision problems we consider in this chapter are on hereditary
properties and therefore we focus only on bounding the preprocessing time.
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p`

r

`′

r′

Figure 4.1: Newly added point p to the right of the dotted median line causes a new bridge
to vertex `. Vertex r is the point of tangency of the line through p tangent to the right side
of the right upper hull. The previous bridge between `′ and r′ is shown as a dash dotted
line. Computing the new bold bridge requires walking from r′ to r. If point p were instead
being deleted, computing the new bridge would require walking from ` to `′ and r to r′.

4.1 Preliminaries

4.1.1 Hull-Trees

A hull-tree [OvL81, Cha85, HS92] is a binary tree whose root node stores the (upper or
lower) hull edge (which we call the bridge) which crosses the median vertical line. A
node’s left and right children are the hull trees on all points left and right of the median,
respectively (see Figure 4.1). The original paper by Overmars and van Leeuwen details
how to insert, delete, and query in O

(
log2 n

)
time per operation [OvL81].

Hershberger and Suri show how to build a modified hull-tree in O(n log n) time which
supports deletion in amortized O(log n) time [HS92]. They do so by building the tree on all
points S, but keeping track of the points P that have not yet been deleted. They maintain
a subtree T (P ) by storing at each node v of the hull-tree a list chain(v) that stores all
points on the convex hull of all p ∈ P in the subtree rooted at v, but aren’t on the convex
hull of subtrees of ancestors of v. In other words, this stores the convex hull of the entire
(not yet deleted) point set at the root, and each child stores the chain of its convex hull
which is under the bridge edge which is stored at the root. Additionally, they store tan(v),
a pair of pointers into chain(v) that point to the end points of the bridge edge at v. These
modifications take O(n) extra pointers, therefore they do not increase the space usage of
the tree asymptotically.

The following observation is due to Arie Tamir [Tam88, page 394, final paragraph]:

Observation 16 (Tamir). There are O(n log n) distinct edges created or destroyed in the
upper hull of a set of points in R2 over an arbitrary sequence of n insertions or deletions.
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Proof. Consider the vertical line at the median x-coordinate. At any time, there is just one
hull edge that crosses the vertical line (called the bridge), and thus the number of possible
bridges over time is O(n). Thus, the number of distinct edges that appear on the upper
hull over time satisfies the recurrence

E(n) = 2E(n/2) +O(n) ,

implying that E(n) = O(n log n).

4.2 FIFO Update Sequence Approach

In the previous section, we have presented an approach to building data structures to solve
time-windowed pairwise interaction problems, but the 2D width and the 2D convex hull
area decision problems, for instance, cannot be expressed in terms of a pairwise interaction
property.

As mentioned in the introduction, both problems are on hereditary properties. The
most obvious approach to solve a problem on a hereditary property is to use a dynamic
data structure directly, inserting each object in order until P is satisfied, then deleting
each object in the same order until P is no longer satisfied, and repeating. By storing for
each i ∈ {1, . . . n} the smallest j for which {si, . . . , sj} satisfies P , we can answer queries
for the time-windowed problem. However, this approach does not seem to yield efficient
solutions in some settings. For example, for the 2D width decision problem, we would need
a fully dynamic data structure for 2D width decision, but the best result to date has near√
n update time [Cha01b]. Agarwal and Sharir [AS91] gave a dynamic data structure for

2D width decision with polylogarithmic update time but only for offline update sequences;
their data structure does not seem to work in our application when we do not know a priori
in what order the deletions are intermixed with the insertions.

Both the 2D width and 2D convex hull area problem are about the convex hull. There
exist sequences of n updates to the convex hull in the plane which cause O(n2) many
structural changes. For example, consider the case of inserting a point which causes O(n)
points to be no longer on the convex hull, then deleting and re-inserting the same point
n times. However, in our application points are deleted in the same order as they are
inserted, so this particular example cannot occur.

Restricted update sequences on the dynamic convex hull have been studied before. The
insertion-only case was studied by Preparata [Pre79]. The deletion-only case was studied
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by Chazelle [Cha85], and Hershberger and Suri [HS91]. Random update sequences were
studied by Mulmuley [Mul91] and Schwarzkopf [Sch91].

We call an update sequence in which objects are inserted and deleted in the same order
a first-in-first-out (FIFO) update sequence, which to the best of our knowledge has not
been studied before. We prove a combinatorial lemma, stating that for such sequences the
number of structural changes to the convex hull is always near linear.

Lemma 17. The number of structural changes to the upper hull of a set of points in R2

over n FIFO updates is at most O(n log n).1

Lemma 17 follows immediately by combining Observation 16 with another observation
about FIFO update sequences:

Observation 18. For a FIFO update sequence, once an edge uv has been removed from
the upper hull by the insertion of a point w, uv can never again be an edge of the upper
hull.

Proof. Since w is above the line through uv, we know that uv cannot be an edge of the
upper hull while w is alive. But since w was inserted after u and v, by the FIFO property w
must be deleted after u and v, and therefore uv can never again be an upper hull edge.

4.2.1 2D Width Decision

We can immediately apply Lemma 17 to solve the time-windowed 2D width decision prob-
lem, by using Eppstein’s dynamic 2D width data structure [Epp00] as a black box. Epp-
stein’s algorithm maintains the width in time O(k · f(n) · log n) where k is the number of
structural changes to the convex hull, and f(n) is the time to solve the dynamic 3D convex
hull problem (more precisely, answer gift-wrapping queries and perform updates for a 3D
point set), which takes O

(
log5 n

)
amortized time [Cha10, KMR+16] (the interested reader

may refer to Section A.13 of Appendix A for more information).

This proves the following result.

Theorem 19. We can preprocess for the time-windowed 2D width decision problem in
O
(
n log7 n

)
time.2

1John Hershberger [Her16] has subsequently discovered a simple proof that the number of changes to
the convex hull over n FIFO updates is bounded by O(n) which this footnote is too small to contain.

2[Her16] reduces this to O
(
n log6 n

)
time.
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4.2.2 2D Convex Hull Area Decision

For the time-windowed 2D convex hull area decision problem, we can now directly apply
known fully dynamic convex hull data structures [OvL81, Cha01a, BJ02], most of which
can be modified to maintain the area. For example, Brodal and Jacob’s (extremely com-
plicated) data structure [BJ02] can maintain the convex hull and its area in O(k · log n)
amortized time, where k is the number of structural changes to the convex hull. This would
imply an O

(
n log2 n

)
-time algorithm, which is worse than Bokal et al.’s result [BCE15].

We show how to reduce this to O(nα(n) log n) by directly adapting a simpler known
dynamic convex hull data structure, namely Overmars and van Leeuwen’s hull tree [OvL81],
and carefully analyzing it for FIFO sequences.

Lemma 20. We can maintain the convex hull and its area for a 2D set of n points under
FIFO updates in O(nα(n) log n) total time.

Proof. It suffices to maintain the upper hull and the area above it inside a sufficiently large
bounding box, since we can similarly maintain the lower hull and the area below it, and
subtract the areas from the bounding box.

Here, we assume that the x-coordinates of all n points are known in advance, which is
true in our application (the assumption can be removed by extra steps to balance the hull
tree, for example, via tree rotations [OvL81]). At each node, we store the area above the
upper hull. Pointer structures can be set up to let us traverse the upper hull at any node
of the tree [OvL81, HS92].

The following definitions will be helpful: Consider the upper hull at a tree node. When
we insert a point u which causes a polygonal chain v1v2 · · · vk to disappear from the upper
hull, we say that u kills vi, and that (u, vi) forms a killing pair, for each i = 1, 2, . . . , k.
(For technical reasons, we allow i = 1 and i = k in the definition, counterintuitively.)
Symmetrically, if we delete a point u which causes a polygonal chain v1v2 · · · vk to appear
in the upper hull, we say that u revives vi, and that (u, vi) forms a revival pair, for each
i = 1, 2, . . . , k.

Deletion. Consider the deletion of a point p at a node of the hull tree. Without loss
of generality, suppose that p is to the right of the median. We first recursively delete p
in the right subtree. If p is not an endpoint of the bridge of the node, then we are done.
Suppose that p was an endpoint of the bridge of the node. We need to compute a new
bridge. Overmars and van Leeuwen [OvL81] originally proposed a binary search, but we
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p

Figure 4.2: Deletion of p causes the old bridge (`0, p) to change to the new bridge (`∗, r∗),
both shown in bold. Computing the new bridge requires walking from `0 to `∗ and r0 to
r∗. If point p is instead being inserted, computing the new bridge requires walking from
`∗ to `0. Any pair (p, `) with ` ∈ γL or pair (p, r) with r ∈ γR is a revival or killing pair at
some node of the hull tree.

will use a linear search instead (inspired by the variants of hull trees by Chazelle [Cha85]
and Hershberger and Suri [HS92] for deletion-only sequences). Specifically, let `0 be the
left endpoint of the old bridge, and let r0 and r1 be the predecessor and successor of p in
the old right upper hull respectively. (See Figure 4.2.) A simple rightward linear search
from `0 and r0 can find the new bridge (`∗, r∗) in O(|γL|+ |γR|) time, where γL denotes
the subchain from `0 to `∗ in the left upper hull, and γR denotes the subchain from r0 to r∗

in the right upper hull. (Note that `∗ must be right of `0, and r∗ must be right of r0.) The
change in area at the current node can be computed in O(|γL|+ |γR|) time (it is the area
of the polygon with vertices `0γL`

∗r∗p, plus the change in area at the right child, minus
the area of the polygon with vertices r0γRr

∗p).

To account for the O(|γL|) cost, observe that for each ` ∈ γL, (p, `) is a revival pair for
the upper hull at the current node. We charge one unit to each such pair (p, `). Note that
each pair is charged at most once during the entire algorithm.

To account for the O(|γR|) cost, observe that for each r ∈ γR, (p, r) is a revival pair
for the upper hull at the right child. We charge one unit to each such pair (p, r). If (p, r)
is charged, then r lies strictly below the upper hull at the current node and cannot be
charged again at an ancestor. Thus, each pair is charged at most once this way.

Insertion. Consider the insertion of a point p at a node of the hull tree. Without loss
of generality, suppose that p is to the right of the median. We first recursively insert p in
the right subtree. We need to compute the new bridge (if it changes). We can just mimick
the deletion algorithm in reverse. In fact, the details are a little simpler: a linear search
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from `∗ can find `0, the left endpoint of the new bridge (see Figure 4.2) in O(|γL|) time.
The change in the area can again be computed in O(|γL|+ |γR|) time. We can account for
the cost again by charging, this time, to killing instead of revival pairs.

Total time. The total cost over all updates is proportional to the number of charges,
which is bounded by K(n), the worst-case number of distinct pairs (u, v) such that (u, v)
is a killing/revival pair for the upper hull of at least one node of the hull tree, over all sets
of n points. In the next subsection, we prove that K(n) = O(nα(n) log n) (Lemma 23),
which would then imply an O(nα(n) log n) time bound.

Theorem 21. We can preprocess for the time-windowed 2D convex hull area decision
problem in O(nα(n) log n) time.3

4.2.3 Bounding the Number of Killing/Revival Pairs

One ingredient is still missing: a proof that K(n) = O(nα(n) log n). Naively we could
bound the number of killing/revival pairs by the number of structural changes to the
upper hull at each node, and applying Lemma 17 would give us the recurrence K(n) =
2K(n/2) +O(n log n), implying a weaker bound K(n) = O

(
n log2 n

)
.

We propose a different combinatorial argument to bound K(n). Our approach contains
a nice application of Davenport-Schinzel (DS) sequences [SA95]. Recall that a DS sequence
of order 3 is a sequence Σ of characters s1, s2, . . . from an alphabet A such that no two
consecutive characters are the same and for any two characters a, b ∈ A, the alternating
sequence a, b, a, b, a of length 5 does not appear as a subsequence anywhere in Σ, whether
contiguous or not. Hart and Sharir [HS86, SA95] proved that an order-3 DS sequence over
an alphabet of size n has length at most O(nα(n)) (the interested reader may refer to
Section A.10 of Appendix A for more details).

DS sequences occur often in computational geometry, such as in bounding the combi-
natorial complexity of the lower envelope of line segments. Surprisingly in our case, we do
not relate our problem to lower envelopes or other substructures in arrangements. Rather,
we relate directly to DS sequences.

It suffices to bound the number of killing pairs, since revival pairs are symmetric, by
reversing time. To this end, we first concentrate on a special kind of killing pairs: for the
upper hull at a fixed node of the hull tree, a bridge killing pair is a killing pair (u, v) where
u and v lie on opposite sides of the median vertical line.

3[Her16] reduces this to O(n log n) time.
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Lemma 22. For the upper hull at a fixed node, the number of bridge killing pairs is at
most O(nα(n)) for any FIFO update sequence.

Proof. By symmetry, it suffices to count killing pairs (u, v) where u is to the right and
v is to the left of the median vertical line. Take the sequence of all such killing pairs
(u1, v1), . . . , (un, vm) ordered by time of ui, where in case of ties, simultaneous killings are
ordered in decreasing x-order of vi. Define the sequence Σ to be v1, . . . , vm. We claim that
Σ cannot have any alternating subsequence of length 5.

Assume that Σ contains a length-5 alternating subsequence of killed points, either
. . . , a, . . . , b, . . . , a, . . . , b, . . . , a, . . . or . . . , b, . . . , a, . . . , b, . . . , a, . . . , b, . . .. Without loss of
generality, assume that a is to the left of b. In either of the above cases, the subsequence
. . . , b, . . . , a, . . . , b, . . . , a, . . . of length 4 occurs in Σ.

Consider the time in this length-4 subsequence when a is killed (baba) and let the vertex
which kills it be u (see Figure 4.3). At this time, b must exist, because it will be killed
later; furthermore, b is on or below the current upper hull and t othe right of a, and so
lies below the line segment au. Now, fast forward to the time in the subsequence when b
is next killed (baba). Note that this must be at a different time, because if u kills a and b
at the same time, b would be placed before a in Σ by our tie-breaking rule. At this new
time, a and u must both exist, because a will be killed later again, and u was inserted
after b and will be deleted after b by definition of FIFO sequences. But b is below au and
cannot appear on the upper hull and cannot be killed at this time: a contradiction. This
completes the proof of the claim.

The sequence Σ may still have identical consecutive characters, but a repeated pair
can occur only “between” two different insertion events and there are at most n insertion
events. After removal of O(n) repeated characters, Σ thus becomes a DS sequence of
order 3 and by the known upper bound has length at most O(nα(n)) [SA95]. The lemma
follows.

Lemma 23. The number of distinct killing/revival pairs over all nodes in the hull tree
satisfies K(n) = O(nα(n) log n) for any FIFO update sequence.

Proof. By Lemma 22, there are O(nα(n)) bridge killing pairs for the upper hull at the root
node. The remaining killing pairs are killing pairs at nodes of the left subtree and nodes
of the right subtree. We thus obtain the recurrence

K(n) = 2K(n/2) +O(nα(n)) ,

implying that K(n) = O(nα(n) log n).
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b

Figure 4.3: u kills a. The dotted line is the median vertical line and the dashed line was
part of the convex hull before u was inserted. The point b must be below the bold line
segment au.
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Chapter 5

Conclusion

We have presented three approaches to building data structures which answer queries
related to time-windowed geometric problems. The first uses grids and quadtrees to reduce
the problem space before reduction to point location. The second approach is to solve the
related problem of time-windowed range successor. Finally, the third approach is to reduce
to operations on a dynamic data structure. These approaches yield a few optimal solutions
to the problems considered herein, but largely only lay the foundations of the topic of
time-windowed geometry.

5.1 Future Work

The following time-windowed problems considered in this thesis are open for improvement:

1. Closest pair : Can we maintain the O(log log n) query time while improving the
preprocessing time from O(n log n log log n) to O(n log n) and/or improving the space
from O(n log n) to O(n)?

2. 3D diameter decision: Can we improve the preprocessing time from O
(
n log2 n

)
to

O(n log n)?

3. 2D orthogonal segment intersection detection: Can we improve the preprocessing
time from O(n log n log log n) to O(n log n)?

4. 2D width decision: Can we further reduce the preprocessing time from O
(
n log6 n

)
to O

(
n log5 n

)
?
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In addition to the possible improvements listed above, there are also the exact versions
of many of the decision problems considered herein. These include:

1. 2D and 3D diameter : Preprocess a set of n time-labeled points in R2 or R3 in order
to quickly determine the pair of points p, q within a query time window such that the
distance between p and q is maximal among all points within the query time window.

2. 2D orthogonal intersection reporting : Preprocess a set of n orthogonal (horizontal or
vertical) time-labeled line segments in R2, in order to quickly report the intersecting
line segments within a query time window.

3. 2D convex hull area: Preprocess a set of n time-labeled points in R2 in order to quickly
compute the area of the convex hull of all points within a query time window.

4. 2D width: Preprocess a set of n time-labeled points in R2 in order to quickly compute
the width of the all points within a query time window.

Many of these problems are related to range search, which has interesting variations
such as counting. Related counting problems include:

1. close/far pair counting : Preprocess a set of n time-labeled points in Rd in order to
quickly determine the number of pairs of points closer than or farther than a query
distance r apart.

2. 2D orthogonal intersection counting : Preprocess a set of n orthogonal (horizontal or
vertical) time-labeled line segments in R2, in order to quickly report the number of
intersecting line segments within a query time window.

3. 2D convex hull counting : Preprocess a set of n time-labeled points in R2 in order to
quickly compute the number of points on the convex hull of all points within a query
time window.

We have considered closest pair and diameter, but we could instead report the k-closest
pairs or k-farthest pairs.

Many of the problems considered herein are limited to 2D and 3D, and the techniques
used to solve those problems don’t extend trivially to higher dimensions, leaving another
avenue of extension.
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We have only considered discrete points in time, but a natural extension would be to
consider continuous time which seems intuitively very similar to the kinetic setting, in
which objects are continually moving.

Finally, we have only considered static time-windowed problems. In other words, we
have only considered problems in which all of the input is available to us before any queries
are given. If we consider dynamic versions of these problems, we need to build a structure
which supports efficient updates. It is natural to consider the points being added in time
order, in other words the ith geometric object inserted has time i. If we support insertions
at arbitrary times, this is somewhat similar to retroactive data structures [DIL07].
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Appendix A

Background

In this appendix, we discuss at a high level the results upon which our own results depend
but whose details are not centrally important. Typically, these results are used as black
boxes.

A.1 Grid/Quadtree Shifting

We reproduce Observation 3.2 as well as Lemma 3.3 and its proof from [Cha98], adapted
for the word-RAM model as in [Cha02].

First some terminology, given x ∈ R and r > 0, let xmod r = x− bx/rcr. We say that
a point q = (q1, q2, . . . , qd) is α-central in its r-grid cell if and only if, for each i = 1, . . . , d,
we have αr ≤ qi mod r < (1− α)r or equivalently, (qi + αr) mod r ≥ 2αr.

We decompose Lemma 3 into a simpler lemma and the following observation:

Observation 24. Let p, q ∈ Rd. If q is α-central in its r-grid cell and ||p − q||∞ ≤ αr,
then p and q belong to the same r-grid cell.

Then it suffices to prove the following:

Lemma 25. Suppose d is even. Let v(j) = (bj2w/(d+ 1)c , . . . , bj2w/(d+ 1)c) ∈ Rd. For
any point p ∈ Rd and r = 2` (` ∈ N), there exists j ∈ {0, 1, . . . , d} such that p + v(j) is
(1/(2d+ 2))-central in its r-grid cell.
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Proof. Suppose, on the contrary, that p + v(j) is not (1/(2d + 2))-central for any j =
0, 1, . . . , d. Then, for each j, there is an index i(j) ∈ {1, . . . , d} with(

pi(j) +

⌊
j2w

d+ 1

⌋
+

r

2d+ 2

)
mod r <

r

d+ 1

or equivalently, by multiplying both sides by (d+ 1)2−`,

((d+ 1)2−`pi(j) + b2−`jc+ 1/2) mod (d+ 1) < 1.

By the pigeonhole principle, there exist two distinct indices j, j′ ∈ {0, 1, . . . , d} with
i(j) = i(j′). Letting z = (d+ 1)2−`pi(j) + 1

2
, we have (z + 2−`j) mod (d+ 1) < 1 as well as

(z + 2−`j′) mod (d + 1) < 1. This is possible only if 2−`j ≡ 2−`j′(mod(d + 1)). Since 2−`

and d+ 1 are relatively prime, then we must have j = j′: a contradiction!

A.2 Succinct Rank/Select

The rank/select problem is to preprocess a sequence of n bits in order to quickly answer
the following queries:

1. rank1(j) returns the number of 1s in the first j positions of the sequence, and

2. select0(i) returns the position of the ith 0 in the sequence.

The obvious approaches give a time-space trade-off. You could simply store the O(n)
bits and answer queries in O(n) time, or you could preprocess for these queries, storing
two arrays: one which stores rank1(j) for each j from 1 to n, and the other array storing
select0(i) for each i from 1 to n. These arrays could be queried in O(1) time, but occupy
O(n log n) bits of space.

In fact, Clark and Munro [CM96, Cla98] gave a solution to the rank/select problem in
n+o(n) bits of space which supports the above queries in O(1) time. For a good discussion
of the details, see [EZ14].
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0100 1100 0111 0000 1111 0000 0111 1100 0000 1111 1100 0000 0111 1111 0001 0011

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure A.1: A bit vector of length 64 grouped into 16 sub-blocks each composed of
d1

2
log 64e = 4 bits, a block of size dlog2 64e = 36, and an incomplete block of size

28.

15 31
A B

1 3 6 6 1010131515 4 6 6 9 131416

Figure A.2: Arrays A and B for the bit vector in Figure A.1.

A.2.1 Rank

1 2 3 4

0000 0 0 0 0
0001 0 0 0 1
0010 0 0 1 1
0011 0 0 1 2
0100 0 1 1 1
0101 0 1 1 2
0110 0 1 2 2
0111 0 1 2 3
1000 1 1 1 1
1001 1 1 1 2
1010 1 1 2 2
1011 1 1 2 3
1100 1 2 2 2
1101 1 2 2 3
1110 1 2 3 3
1111 1 2 3 4

Table A.1: Rank
lookup table for 4 bits.

At a high-level, the idea is to combine the obvious approaches.
Let the input bits be b1, b2, . . . , bn. Group these bits into blocks
of size dlog2 ne. For each block i store the number of 1s in blocks
1 to i in our first array, A.

Next, group the bits into sub-blocks of size d1
2

log ne. For each
sub-block i, let j be the block containing sub-block i. In array B,
store the number of bits from the beginning of block j to the last
bit of sub-block i.

Finally, we will create a lookup table to answer rank queries
for every possible position on every possible value of a sub-block.

For example, given the sequence of bits in Figure A.1, for
which we build the structures A and B in Figure A.2 and the
rank lookup table in Table A.1. Say we wish to find the rank for
position 43. First, we query A and find the number of bits in
all preceding blocks, in this case 15. Next we query B and find
the number of bits in all preceding sub-blocks within the same
block as our query, in this case 4. Finally, we get all the bits in
the sub-block containing our query, in this case 1100, and use the
rank lookup table to find the rank at the 3rd position, in this
case: 2. We add the result of these three queries together to get
15 + 4 + 2 = 21.
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Analysis

Array or table lookups take O(1) time. If we assume w ≥ log n then retrieving d1
2

log ne
bits from the input also takes O(1) time. Since these are the only operations we use in
this algorithm, the total query time is O(1).

In addition to the n bits of the input, we store A, B, and our lookup table. A is an
array with n/dlog2 ne elements, each of size log n, which takes O(n/ log n) total space. B
is an array with n/d1

2
log ne elements. Each element of B can be from 0 to dlog2 ne, and

therefore we can store it in log log n bits, so all of B takes O(n log log n/ log n) bits. Finally,

our rank lookup table has d1
2

log ne columns and 2d
1
2

logne = O(
√
n) rows, and each value

can be from 0 to d1
2

log ne and therefore takes O(log log n) bits. Therefore, the entire table
takes a total space of O(

√
n log n log log n). Thus, the total space to store the input bits,

arrays A and B, and the lookup table is:

n+O(n/ log n) +O(n log log n/ log n) +O
(√

n log n log log n
)

= n+ o(n) .

A.2.2 Select

To support select requires the careful application of the same technique of grouping the
bits into blocks and sub-blocks to build arrays and lookup tables.

Lemma 26. We can build a data structure in n+ o(n) bits of space that can answer rank1

and select0 queries on a sequence of n bits in O(1) time.

A.3 Predecessor Search and van Emde Boas Trees

The predecessor search problem is to preprocess a set S of integers from a bounded universe
{1, . . . , U} in order to quickly determine the largest s ∈ S smaller than a query integer q.
We say s is q’s predecessor.

A van Emde Boas (vEB) tree solves the predecessor search problem by recursively
storing

√
U vEB trees, each of which keeps track of

√
U of the integers in the universe,

simply storing whether or not each integer is in the set. An auxiliary structure is also
maintained which stores whether or not each of the

√
U children trees are empty. This

auxiliary structure is therefore also a vEB tree over
√
U values. Each tree stores the

minimum and maximum values among its range. These
√
U + 1 vEB trees can be stored

in O(U) space and support update and query in O(log logU) time [CLRS09, Chapter 20].
In fact, we can even reduce the space of this structure to O(n) [Wil83, Ruž09].
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`

Figure A.3: Left : A sweep line sweeping downwards to compute line segment intersections.
Middle: The vertical or trapezoidal decomposition of a set of points. Right : The slabs of
the same set of points.

A.4 Plane Sweep

Given a set of n line segments in the plane, find all intersections. To compute this, we
can imagine a line sweeping across our line segments (see Figure A.3). We call such a
line a sweep line and such an algorithm is called a plane sweep algorithm [dBCvKO00,
Chapter 2: Line Segment Intersection]. Rather than continuously moving this sweep line
across the segments, it suffices to consider the line at each endpoint. If the relative order
of the intersections of the segments with the sweep line changes from one endpoint to the
next, then an intersection must have occurred. After sorting the input by the order in
which the sweep line is to proceed (say, from top to bottom), a plane sweep algorithm
takes O(n+ k) time to perform, where k is the number of elements in the output.

A.5 Vertical/Trapezoidal Decomposition and Slabs

Given a connected planar straight-line graph (PSLG), the vertical or trapezoidal decompo-
sition of that graph is obtained by shooting a ray up and down from every vertex, each ray
ends wherever it hits an edge (see Figure A.3). This decomposes every face into triangles
and trapezoids, and every face is bounded above by at most one edge, and similarly below.
We can compute this decomposition in O(n log n) time with O(n) space [PS85]. This de-
composition can be used to solve problems such as planar point location (see Section A.6).

A similar idea is to decompose such a PSLG into a set of vertical slabs, simply by ex-
tending the rays from each vertex to infinity (see Figure A.3). The slabs can be constructed
in O(n) time by a simple plane sweep algorithm as in Section A.4.
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A.6 Planar Point Location

The planar point location problem is to preprocess a subdivision of the plane such that
given a query point q, we can quickly find the region of the subdivision that contains q. We
can solve this problem inO(n log n) preprocessing time withO(n) space andO(log n) query
time using any of the following techniques: triangulation refinement, separating chains and
fraction cascading, persistent search trees, or randomized incremental construction [Sno97].
Note that in the case of the randomized incremental construction, the query time is in
expectation.

One simple way of solving this problem is to use persistence. Usually, data structures
are ephemeral in that when they are updated, the version of the data structure before the
update is in some sense lost. A data structure which allows its previous versions to be
queried (but not updated) is said to be partially persistent. Pointer-based data structures
(such as a list or a binary search tree) can be made partially persistent in O(1) amortized
extra space per update and an amortized extra constant factor overhead to update/query
time [DSST86].

To use persistence to solve planar point location we combine it with the slab decomposi-
tion from Section A.5. First compute the slab decomposition, and then sweep left-to-right
across the slabs, for each slab building a version of a persistent binary search tree. Given
a query point q = (x(q), y(q)), simply perform binary search on the x coordinates of the
input vertices to find the version of the tree containing x(q), then query that version of
the binary tree to find the edge above y(q) [ST86]. This gives us the following lemma:

Lemma 27. We can preprocess for the planar point location problem in O(n log n) time,
building a data structure with O(n) words of space, and use this structure to answer queries
in O(log n) time.

A.7 Orthogonal Planar Point Location

A special case of planar point location occurs when the subdivisions are orthogonal, in other
words if the edges bounding every region are either horizontal or vertical. If, additionally,
the coordinates are integers in a bounded universe {1, . . . , U}, we can use a kind of van-
Emde-Boas-style recursion to solve orthogonal planar point location in the word-RAM
model in O(log logU) query time with O(n) space [Cha13].
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Figure A.4: Left : A set of points in 2D. The dashed line (or dotted line) segments bound
the region dominated by (or dominating) a point, showing which points are dominated
by or dominate this point. Right : The staircase defined by the 2D minima of the same
set of points.

A.8 2D Minima/Maxima and

Dominance Range Emptiness

Given points p, q ∈ R2, p dominates q if x(p) > x(q), y(p) > y(q). The 2D minima of a
set of points P is the subset P ′ ⊆ P such that each point p ∈ P ′ dominates no points.
Similarly, the 2D maxima of P is P ′ ⊆ P such that each p ∈ P ′ is dominated by no points.

The set of all points dominated by a point p is the quadrant of the plane whose upper-
right corner is p and that extends downwards and leftwards to infinity. The union of the
quadrants of the 2D maxima of a set of points forms a region bounded by a monotone
chain called a staircase. These maxima, and the staircase they form, can be computed by
a standard plane sweep of the points [PS85]. Symmetrically, the set of all points which
dominate a point p is the quadrant of the plane whose lower-left corner is p, and that
extends upwards and rightwards to infinity. The union of the quadrants of the 2D minima
of a set of points also forms a region bounded by a staircase, and can be computed by a
plane sweep.

The 2D dominance range emptiness problem is to preprocess a set P of n points in R2

in order to quickly determine whether a query range (−∞, x]× (−∞, y] is empty. Notice
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that this is equivalent to determining if the point q = (x, y) dominates any point p ∈ P ,
hence the name of the problem.

This problem can be solved by computing the staircase of P , then determining if q is
above or below. If q is above the staircase, then there must be at least one point p ∈ P
that q dominates, and therefore the range is not empty.

A.9 3D Minima/Maxima and

2D Dominance Range Minimum

In 3D, the set of points dominating a point p is an octant (or in general, an orthant) with
p at its lower-left-near corner. Symmetrically, the set of points which are dominated by a
point p is an octant with p at its upper-right-far corner. As in 2D, the minima (maxima)
of a set of points in 3D are the points which dominate no points (are not dominated by
any points) [PS85, Afs14]. Computing the minima of the 3D point set can be done by a
standard plane sweep algorithm.

The 2D dominance range minimum problem is to preprocess a set P of n points in R2

such that each point p is associated with a weight w(p), in order to quickly determine the
point with minimum weight in a query range (−∞, x]× (−∞, y].

We can solve this problem by considering all p ∈ P as points in 3D with z(p) = w(p).
Then we can compute the 3D minima of P , then project these onto the plane to build an
orthogonal subdivision of the plane in which each region is associated with a point in P .
We can answer a query q = (x, y) by finding q in this subdivision using orthogonal planar
point location (see Section A.7).

A.10 Davenport-Schinzel Sequences

Davenport-Schinzel (DS) sequences [DS65] are defined as follows:

Definition 28. A DS sequence of order k is a sequence Σ of characters s1, s2, . . . from
an alphabet A such that no two consecutive characters are the same and for any two
characters a, b ∈ A, the alternating sequence a, b, a, b, . . . of length k + 2 does not appear
as a subsequence anywhere in Σ, whether contiguous or not.
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In particular, a DS sequence of order 3 is a sequence Σ of characters s1, s2, . . . from
an alphabet A such that no two consecutive characters are the same and for any two
characters a, b ∈ A, the alternating sequence a, b, a, b, a (whose length is 5) does not appear
as a subsequence anywhere in Σ, whether contiguous or not.

Hart and Sharir [HS86, SA95] proved that an order-3 DS sequence over an alphabet of
size n has length at most O(nα(n)). In fact, there is a matching lower bound.

A.11 Unit-Disk Intersections

A disk with center c ∈ R2 and radius r is the set of all points in R2 whose distance to c
is at most r. We say that a disk with unit radius is a unit disk. The intersection of two
overlapping unit disks d1, d2 is bounded by two arcs, one from the boundary of d1 entirely
within d2, and the other from the boundary of d2 entirely within d1. In general, a unit-disk
intersection is the intersection of a set D of n disks,

⋂
d∈D

d. We wish to prove the following:

Lemma 29. The intersection of n unit disks in R2 has linear combinatorial complexity
and can be constructed in O(n log n) time.

First, let I be the intersection of disks with arbitrary radii. The sequence of disks
around the boundary of I is a DS sequence of order 2 since having a sequence of disks
a, b, a, b would imply that either a or b is not convex. When the disks all have the same
radius, then each disk appears at most once. Thus, the intersection of n unit disks has
linear combinatorial complexity.

It remains to show that we can construct this intersection in O(n log n) time. We will do
so by proving that unit-disk intersections can be merged in linear time proportional to the
total number of disks. Therefore, to compute the intersection of n unit disks is analogous
to merge sort, with the same recurrence giving its time bound: T (n) = 2T (n/2) + O(n).
The basic idea of this merge algorithm is the same as the algorithm in [PS85, Chapter 7,
Section 7.2.1], which is to use the slab decomposition (see Section A.5), and compute the
intersection within each slab.

Lemma 30. Merging two unit-disk intersections with a total of n disks in R2 can be
performed in O(n) time.
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A.12 Unit-Ball Intersections

The 3D equivalent of a disk is a ball, defined as all points in R3 at most some radius r from
a center point c. If a ball has unit radius, then it is called a unit ball. The intersection of
n unit balls still has linear combinatorial complexity and can be constructed in O(n log n)
time by Clarkson and Shor’s randomized algorithm [CS89] or Amato et al.’s deterministic
algorithm [AGR94]. This gives us the following lemma:

Lemma 31. The intersection of n unit balls in R3 has linear combinatorial complexity and
can be constructed in O(n log n) time.

A.13 Dynamic 2D Width

The width of a set of points is the narrowest section of its convex hull. More precisely, the
width is bounded by an edge e and a vertex v on the convex hull, such that the distance
from v to the line containing e is minimal. The dynamic 2D width problem is to maintain
a data structure that supports insertion of a point in R2, deletion of a point already in
the structure, and querying for the width of all inserted points that have not been deleted.
Chan gives a structure to solve this problem with O(

√
n polylog(n)) update time [Cha01b].

For our purposes it would be most useful to bound the update time in terms of k, the
number of structural changes to the convex hull caused by an update. Eppstein gives a
structure that solves this problem with O(k · f(n) · log n) update time, where f(n) is the
time to solve the dynamic 3D convex hull problem (more precisely, answer gift-wrapping
queries and perform updates for a 3D point set) [Epp00].

Eppstein originally used Agarwal and Matoušek as a black box to solve the dynamic
3D convex hull problem in f(n) = O(nε) time [AM95], but this has since been improved
by Chan to f(n) = O

(
log6 n

)
expected time [Cha10], and derandomized by Chan and

Tsakalidis [CT15]. Finally, Kaplan et al. improved this to f(n) = O
(
log5 n

)
amortized

time [KMR+16].
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