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Abstract 
 
 

At the forefront of revolutionizing medicine, gene therapy provides a promise to treat 

a wide range of diseases by regulating defective genes. RNA interference (RNAi) holds 

great potential as a therapeutic route due to its high efficiency and specific 

posttranscriptional gene silencing process, which can be triggered by small interfering 

RNAs. siRNAs are a class of 21 to 23 nucleotide-long double-stranded RNA molecules 

that inhibit the expression of a specific gene by the degradation of its complementary 

messenger RNA (mRNA). Despite its potential value, a number of problems remain as 

major obstacles to clinical applications of therapeutic siRNAs, related to its large 

molecule weight, negative charge, hydrophilicity, sensitivity to nuclease degradation and 

short plasma half-life of less than ten minutes. These unfavorable properties lead to 

instability of naked siRNA under physiological conditions, rapid clearance from the 

blood stream, and inability to cross target cell membranes. Therefore, siRNAs as a 

potential therapeutic agent require an efficient and safe delivery carrier that will facilitate 

their biological functions. A variety of carriers have been developed to deliver siRNA 

and maximize its therapeutic effects including viruses, lipids, polymers, dendrimers, 

peptides, and nanoparticles. Cell penetrating peptides (CPPs) have emerged as a 

promising candidate due to their rapid and high efficient internalization and low toxicity. 

CPPs mediate siRNA delivery through endocytic pathways or by directly crossing the 

targeted cell membrane. 

As most of preclinical models were carried out in monolayer cell culture, for in vitro 

testing, it is not physiologically relevant to in vivo models, where three-dimensional 

tissues are the object. On the other hand, development of more biologically relevant 
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models for early drug screening will result in reduction of animal models required, which 

tend to be expensive and time consuming. Therefore, various 3D cell culture techniques 

have been developed to produce multicellular spheroids, mainly for cancer drug 

discovery. Multicellular spheroids are in vitro micro-scale tissue analogs, where cell 

clusters form by self-assembly. Spheroids with radii of 200 µm and larger will develop 

three different zones of proliferating cells on the outside, quiescent cells on the inside and 

a necrotic core due to nutrient and oxygen transport limitations. Spheroids harbor several 

features that make a more physiological platform for early drug discovery due to the 

following reason: spheroids of multicellular 3D architecture mimic the in vivo 

microenvironment of tumor and extracellular matrix deposition that are found in vivo but 

absent in monolayer culture; spheroids of in vivo solid tumor models develop a necrotic 

core beside the hypoxia present in many cancers; the tight cell-cell interactions are 

comparable to those in in vivo tissues. Taken together, spheroids provide an improved 

model for testing in vitro siRNA delivery of the current interest, compared to regular 

monolayer cell culture.  

The aim of this study is to develop 3D spheroids of HCT 116 colon cancer cell line 

using the hanging drop method and evaluated NP1, a novel CPP (STR-H16R8) 

developed by Dr. Chen’s group, to assist siRNA delivery, to silence specific targeted 

genes for therapeutic purposes. Morphological characterization of 3D spheroids 

generated in hanging drop plates clearly indicates that HCT 116 cells were able to form 

compact spheroids within 3 days and start to form three distinct layers of proliferating, 

dormant and necrotic cells, which closely mimic the features of tumors in vivo. 

Furthermore, H&E stained spheroids showed large cohesive cells with apparent epithelial 
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phenotype, and large atypical nuclei with occasional prominent nucleoli, which closely 

mimic the features of tumors in vivo but not present in 2D cell monolayer. NP1 

demonstrated a high gene knockdown efficiency, both in 2D and 3D cell culture, with 

higher uptake in 2D compared to 3D. NP1-Bcl-2-siRNA showed a 85% knockdown 

efficiency in 2D and 53% in 3D cell culture. NP1-VEGF-siRNA induced a 72% and 51% 

reduction in mRNA level in 2D and 3D cell culture, respectively. At the protein level, 

NP1-Bcl-2-siRNA complexes exhibited significant inhibition of the Bcl-2 protein 

compared to non-treated cells in western blot results. 3D spheroids showed apoptosis 

resistance compared to 2D cells. These results demonstrated that compact MCTS closely 

mimic the features of tumors in vivo in term of simulating important tumor characteristics 

including hypoxia, formation of ECM and necrotic core, anti-apoptotic features and their 

resulting therapy resistance. The higher silencing efficiency and apoptosis rate observed 

in 2D compared to 3D clearly indicate that 2D monolayer cells on plastic plates are not 

physiologically relevant to tumor microenvironment and overestimate the efficacies of 

tested drugs. NP1 as a siRNA carrier in both cell culture models, efficiently protect, 

deliver siRNAs and maintain high silencing efficiency. 
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Chapter 1 
Overview 

 

1.1 Research Background 

By many biologists, the discovery of RNA interference (RNAi) is considered to be 

one of the most important and valuable breakthrough of the past decade. RNA 

interference (RNAi) holds great promise as therapeutic agents due to the high efficiency 

and specific posttranscriptional gene silencing process. RNAi provides an effective 

potential to treat wide range of diseases by silencing or inhibition of defective genes, 

which can be triggered by small interfering RNA1. In 2006 the values of this discovery 

gained its inventors, Andrew Z. Fire and Craig C. Mello, the award of Nobel Prize in 

Physiology or Medicine. 

Small interference RNAs (siRNAs), are class of 21 to 23 nucleotide-long double-

stranded RNA molecules that inhibits the expression of a specific gene by the 

degradation of its complementary messenger RNA (mRNA)2. The mechanism of RNAi 

inhibition of defective genes by interfering the translation of mRNA into protein is 

briefly reviewed here. In general, long dsRNA is the precursor of siRNA, the long 

dsRNA cleaved into smaller siRNA molecules 21-23 nt by RNase III like enzyme, Dicer, 

once introduce to the cells3. The newly formed ds-siRNA molecules then bind to a 

protein complex called RNA-induced silencing complex (RISC). Due to the helicase 

activity of the protein complex siRNA is unwounded into a sense (passenger) strand and 

an antisense (guide) strand. Guide strand with RISC will be activated and bind to the 

complementary target mRNA which will be then cleaved and degraded by enzymatic 
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activity within RISC (argonaute 2)4–7. By that the expression of the specific targeted 

genes into proteins will be prevented or terminated. 

Since the discovery of RNAi, there has been an explosion of interest in using this 

technology for basic and applied research mainly in gene therapy and development of 

gene-specific drugs as RNAi has been one of the most promising new approaches for 

disease therapy. Despite its potential value, in vivo siRNA silencing target gene 

expression by systemic delivery has been a very challenging task due to its large 

moleculer weight, negative charge, hydrophilicity, sensitivity to nuclease degradation and 

short plasma half-life8. These unfavorable properties lead to instability of naked siRNA 

under physiological conditions, rapid excretion, inability to cross target cell membranes 

and inefficient intracellular release 9. Therefore, siRNA as a potential therapeutic agent 

requires efficient and safe delivery that will retain their biological functions. 

A wide range of carriers have been developed to deliver siRNA and maximize its 

therapeutic effects including viruses10, lipids11, polymers12, dendrimers13, peptides14, and 

nanoparticles15. Cell penetrating peptides (CPP), are short cationic or amphipathic 

sequences of about 5-30 amino acids, have emerged as a promising candidate due to 

rapid and high efficient internalization and low toxicity. CPP mediates siRNA delivery 

through endocytic pathways or by directly crossing the targeted cell membrane16.  

As most of preclinical models were carried in monolayer cell culture for in vitro 

testing, it is not physiologically relevant to in vivo models. Therefore, developing in vitro 

models more relevant to in vivo is required for drug discovery. Moreover, development of 

more biologically relevant models for early drug screening will result in reduction of 

animal models required and improves the success rate. Various 3D cell culture techniques 
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have been developed to produce multicellular spheroids mainly for cancer drug 

discovery17. Multicellular spheroids are in vitro micro-scale tissue analogs where cell 

clusters formed by self-assembly. Spheroids harbor several features that make it more 

physiological platform for early drug discovery due to the following reason: 1) Spheroids 

multicellular 3D architecture mimic the in vivo microenvironment of tumor and 

extracellular matrix deposition that are found in vivo but absent in monolayer culture; 2) 

Spheroids of in vivo solid tumors models develop three different zones of proliferating, 

quiescent and necrotic cells beside the hypoxia present in many cancers, which have been 

identified as one of main causes for drug resistance; 3) the tight cell-cell interactions is 

comparable to those in in vivo tissues18. Taken together, 3D spheroids provide an 

improved model for testing in vitro siRNA delivery compare to regular monolayer cell 

culture model.  
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1.2 Research Objectives 

The aim of this study is to develop 3D spheroids of HCT116 colon cancer cell line 

using the hanging drop method and evaluated NP1, a novel CPP (STR-H16R8) 

developed by Dr. Chen’s group to assist siRNA delivery to silence specific targeted genes 

for therapeutic purposes. 

 
The overall objectives of this thesis include: 
 
1) Generating 3D tumor micro-tissues using hanging drop method. 

2) Demonstrate external morphological and internal histological characterization of 

generated 3D tumor spheroids. 

3) Evaluate the therapeutic potential of CPP (NP1) in assisting siRNA delivery in 2D cell 

monolayer and 3D spheroids. 
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1.3 Outline of Thesis 

This thesis consists of five chapters. The scope of each chapter is listed as follows: 
 
 

Chapter1 gives brief introduction of the thesis including, introduction to RNA 

interference process, potential siRNA therapeutics and limitations, the potential of CPP 

as siRNA delivery systems, importance of 3D tumor micro-tissues as in vitro model for 

early drug screening. The research objectives and the outline of the thesis are also given. 

 

Chapter 2 presents a review of RNAi working mechanism, current and potential 

therapeutic applications of siRNAs, current non-viral delivery systems of siRNA 

including polymeric, lipid based and CPPs. 

 

Chapter 3 lists all materials and methods relevant to this study. 

 

Chapter 4 the results and discussion of this study are stated including, (1) 

morphological characterization of HCT 116 spheroids; (2) cellular uptake and penetration 

of NP1-siRNA complexes in tumor spheroids; (3) in vitro transfection efficiency; (4) 

cytotoxicity; (5) induced apoptosis; (6) histological evaluation. 

 

Chapter 5 states the conclusions of this study and a proposal for future studies. 
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Chapter 2 
Literature Review 

 

2.1 RNA Interference 

At the forefront of revolutionizing medicine, gene therapy provides an effective 

potential to treat wide range of diseases by regulating defective genes. RNA interference 

(RNAi) holds great promise as therapeutic agents due to the high efficiency and specific 

posttranscriptional gene silencing process, which can be triggered by small interfering 

RNA (siRNA). SiRNAs are a class of 21 to 23 nucleotide-long double-stranded RNA 

molecules that inhibits the expression of a specific gene by the degradation of its 

complementary messenger RNA (mRNA)2. The efficiency and specificity of this process 

makes siRNA a potential tool for gene therapy.  

 

2.1.1 Working Mechanism of RNAi 

RNA interference (RNAi) is double-stranded RNA molecules, which can interfere 

with any complementary mRNA sequence and consequently silence the expression of 

sequence specific gene product in a range of organisms. In general, long dsRNA is the 

precursor of siRNA, the long dsRNA cleaved into smaller siRNA molecules 21-23 nt by 

RNase III like enzyme, Dicer, once introduce to the cells3. The newly formed ds-siRNA 

molecules then bind to a protein complex called RNA-induced silencing complex (RISC). 

Due to the helicase activity of the protein complex siRNA is unwounded into a sense 

(passenger) strand and an antisense (guide) strand. Guide strand with RISC will be 

activated and bind to the complementary target mRNA which will be then cleaved and 
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degraded by enzymatic activity within RISC (argonaute 2)4–7. By that the expression of 

specific gene into protein will be prevented or terminated as represented in Figure 2.119. 

 

  

 

 

 

 

 

 

 

 

 

 

 

             

  Figure 2.1. A schematic representation of RNAi working mechanism19. Reprinted with 
permission from Nature. 
 

2.2 Therapeutic Potential of RNAi Technology 

Since the discovery of RNAi, there has been an explosion of interest in using this 

technology for basic and applied research mainly in gene therapy and development of 

gene-specific drugs as RNAi has been one of the most promising new approaches for 

disease therapy. Recent advances in RNAi therapy have broadened the list of diseases 

that may be treated by RNAi, including cancers, type 2 diabetes20, Parkinson’s disease21, 
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HIV infection22, HBV chronic infection23 and hypercholesterolemia24. RNAi have been 

tested in different organs of the body for varies types of diseases either by direct or 

systematic delivery as shown in Figure 2.225. Interestingly, direct RNAi delivery of 

siRNA molecules has been carried out successfully to specific tissues and organs such as, 

eye, skin, lung, nose, the nervous system and the digestive system. On the other hand, 

systemic RNAi delivery is done through intravenous delivery of siRNA molecules into 

liver, tumors and lung.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2. Organs and diseases for which the effect of RNAi has been tested by direct 

and systemic delivery25. Reprinted with permission from Nature. 

	
  



	
   9	
  

2.2.1 Cancer 

Cancer is a leading cause of death worldwide and expected to increase to reach over 

13.1 million in 203026. Cancer is a genetic disease, involves different mutations and 

epigenetic alterations that lead to uncontrollable cell proliferation, division and 

differentiation27,28. siRNA is a powerful tool to silence cancer-related gene targets. 

Extensive preclinical studies have been conducted on this regard and shown that specific 

cancer related gene silencing can inhibit tumor cell growth, angiogenesis, metastasis and 

chemo-resistance29–31.  

Bcl-2 is anti-apoptotic marker over expressed in many human tumors and considered 

as an important oncogene. Suppression or silencing of Bcl-2 proves to induce apoptosis 

and reduce the tumor growth32. Additionally, angiogenesis is a key factor for neoplasia 

and metastasis of tumor, vascular endothelial growth factor (VEGF) is involved in the 

growth of new blood vessels from tumor surrounding tissues providing more nutrients for 

tumor growth and proliferation. Based on that VEGF pathway is the hottest target of 

tumor angiogenesis inhibition33,34.	
  	
  	
  	
  	
  	
  	
  	
  	
   

	
  Moreover, understanding the characteristics of the tumor microenvironment is a key 

factor for cancer therapy. Hypoxia-inducible factor-1α  (HIF-1α) is an attractive 

therapeutic target that is a key transcription factor during hypoxia and activates the 

transcription of genes involved in angiogenesis, invasion, cell survival and glucose35,36. 

HIF-1α under hypoxic condition activate the expression of different hypoxia-response 

genes such as, vascular endothelial growth factor (VEGF)37. 
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2.2.2 Infectious Diseases 

 Many diseases caused by viruses and bacteria such as, HIV Influenza, Hepatitis, 

pneumonia and sepsis continue to be one major cause of death around the world. RNAi 

ability to suppress the replication of viruses and other infectious agents has been clearly 

demonstrated in in vitro studies38.  

HIV is a retrovirus that causes acquired immunodeficiency syndrome (AIDS), a 

chronic and debilitating disease that cannot be cured with current antiretroviral drugs39.  

The pattern, reproduction, and lifecycle of gene expression of HIV are well known and 

was the first infectious agent targeted by RNAi technology. HIV genome composed of 

nine viral genes (gag, pol,vif, vpr, tat, rev, vpu, env, and nef) that are essential in all 

processes of the viral replicative cycle, assembly, entry and receptor binding, membrane 

fusion, reverse transcription, integration, and proteolytic protein processing. Therefore, 

studies have been conducted using siRNAs and shRNAs to target and silence these 

essential genes, table 2.1 represent some potential RNAi targets for HIV therapy39. 

Hepatitis B virus (HBV) is a DNA virus, causing a global health problem with over 

350 million carriers worldwide40. In fact, HBV is an excellent candidate for therapeutic 

RNAi, due to the compact genome with no redundancy. Therefore prevents the virus 

from evading RNAi therapy by mutations and inhibit viral gene expression and 

replication with higher rate of success41. McCaffrey et al. reported that plasmids 

expressing HBV specific short hairpin RNAs (shRNAs) significantly reduced viral 

mRNAs, HBV surface antigen (HBsAg) and HBV core antigen (HBcAg), thus inhibiting 

HBV replication in infected mice42. 
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Table 2.1. Potential RNAi gene targets for HIV therapy39. Reprinted with free access 

from BioMed Central. 

  
Gene targets Function of target gene Type of study 

     Gag 
Proteolytic processing of the HIV-1 
genome 

Mouse 

    Pol Transcription Mouse 

    env Receptor binding and fusion Phase I/II 

    tat Transcription or RNAi modulation Phase 0 

    rev Reverse transcription, integration Mouse 

    nef Immune modulation Mouse 

    pol (integrase) Integration In vitro 

    pol (reverse 
transcriptase) 

Reverse transcription In vitro 

   Promoter Transcription Mouse 

   Long terminal repeats Genome expression In vitro 

     CCR5 Receptor binding and fusion 
Phase 0/phase 
I/II 

   CXCR4 Receptor binding and fusion In vitro 

   CD4 Receptor binding and fusion In vitro 

   LEDGF/p75 Integration In vitro 

   Importin-7 Integration In vitro 

   Chaperonin Integration In vitro 

   P-TEFb Transcription In vitro 

   Tat-SF1 Transcription In vitro 

   SPT5 Transcription In vitro 

   Cyclin T1 Transcription In vitro 

   DDX3 Export In vitro 
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   SOCS1 Trafficking or immune modulation In vitro 

   TRBP 
Immune modulation or RNAi 
pathway 

In vitro 

   TNPO3 
Nuclear entry of viral pre-
integration complex 

Mouse 

 
 

2.2.3 Neurodegenerative Diseases 

Neurodegenerative diseases are a heterogeneous group of disorders that occurs as a 

result of degeneration or defect of the central or peripheral nervous system. Typical 

examples of neurodegenerative diseases are Alzheimer's (AD), Parkinson's (PD), 

Huntington's (HD) and amyotrophic lateral sclerosis (ALS)43. Among all the expensive 

treatment available for neurodegenerative diseases, RNAi-based therapies have emerged 

as a promising candidate for treatment and inhibition of related disease genes. Down 

regulation of p75 neurotrophin receptor44, pro-apoptotic members of the Bcl-2 family45 

and caspases46 by RNAi effectively prevent neuronal death. 

 

2.3 RNAi Therapeutics in Clinical Trials 

In 2006 RNAi was awarded the Nobel Prize for medicine. Since then, RNAi rapidly 

advanced from research discovery to clinical trials and billions of dollars have been 

invested in this field. The number of RNAi based drugs in clinical trials is increasing 

each year and reach 22 RNAi based drugs by 2013 as listed in table 2.2. Majority of 

siRNAs based drugs in clinical trails were administered by local delivery, which is not 

suitable for all types of diseases as still there are limitations of using this technology in 

clinic to be addressed47. 
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Table 2.2. RNAi based drugs in clinical trials47. Reprinted with free access from 

Elsevier. 

Drug Target Delivery system Disease Phase 

TD101 
 

K6a (N171K 
mutation) 

Naked siRNA Pachyonychia 
Congenita 

I 

AGN211745 
 

VEGFR1 Naked siRNA Age-Related Macular 
Degeneration, 
Choroidal 
Neovascularization 

II 

QPI-1007 CASP2 Naked siRNA Optic Atrophy Non-
arteritic Anterior 
Ischemic Optic 
Neuropathy 

I 

Bevasiranib VEGF Naked siRNA Diabetic Macular 
Edema 

II 

SYL1001 TRPV1 Naked siRNA Ocular Pain, Dry Eye 
Syndrome 

I, II 

I5NP p53 Naked siRNA Injury of Kidney, 
Acute Renal Failure 

I 

SYL040012 ADRB2 Naked siRNA Glaucoma, Ocular 
Hypertension 

I, II 

ALN-RSV01 RSV 
nucleocapsid 

Naked siRNA Respiratory syncytial 
virus infections 

II 

PF-655 RTP801 Naked siRNA Choroidal 
neovascularization 
diabetic retinopathy 
diabetic macular 
edema 

II 

siRNA-
EphA2-
DOPC 

EphA2 LNP Advanced Cancers I 
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Atu027 PKN3 LNP Advanced Solid 
Tumors 

I 

PRO-040201 ApoB LNP Hypercholesterolemia I 

TKM-080301 PLK1 LNP Multiple Cancers I 

ALN-VSP02 KSP and 
VEGF 

LNP Solid tumors I 

TKM-100201 VP24, VP35, 
Zaire Ebola l-
polymerase 

LNP Ebola-virus infection I 

ALN-PCS02 PCSK9 LNP Hypercholesterolemia I 

ALN-TTR02 TTR LNP Transthyretin-
mediated amyloidosis 

II 

CALAA-01 RRM2 Cyclodextrin NP Cancer Solid Tumor I 

siG12D 
LODER 

KRAS LODER 
polymer 

Pancreatic Ductal 
Adenocarcinoma 
Pancreatic Cancer 

I 

RXi-109 CTGF Self-delivering 
RNAi compound 

Cicatrix scar 
prevention 

I 

ALN–TTRsc 
 

TTR siRNA–GalNAc 
conjugate 
 

Transthyretin-
mediated amyloidosis 

I 

ARC-520 Conserved 
regions of 
HBV 

DPC HBV I 
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2.4 Challenges and Limitations of RNAi Therapeutics 

Despite the potential value of RNAi technology, number of problems remains as major 

obstacle to clinical applications of therapeutic siRNAs. Non-specific off-target gene 

silencing of siRNA is one of the concerns however, it is highly specific to the gene with a 

complementary sequence compare to the traditional therapeutics48. SiRNA duplexes can 

stimulate the innate immune system and production of cytokines, depending on the 

siRNA structure and sequence, method of delivery, and cell type49. Normally innate 

immune system gets activated via a Toll-like receptor (TLR) pathway, if TLRs family 

including TLR-3, TLR-7 and TLR-8 recognize siRNA molecules50,51. 

Additionally, in vivo siRNA silencing target gene expression has been a very 

challenging task due to its large molecule weight, negative charge, hydrophilicity, 

sensitivity to nuclease degradation and short plasma half-life of less than ten minutes8. 

These unfavorable properties lead to instability of naked siRNA under physiological 

conditions, rapid excretion, inability to cross target cell membranes and inefficient 

intracellular release as Figure 2.3 represent some of the barriers that might encounter 

siRNA in systemic delivery9. Therefore, siRNA as a potential therapeutic agent requires 

efficient and safe delivery that will retain their biological functions. A variety of carriers 

have been developed to deliver siRNA and maximize its therapeutic effects including 

viruses10, lipids11, polymers12, dendrimers13, peptides14, and nanoparticles15.	
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Figure 2.3. Extracellular and intracellular barriers encounter systemically delivered 

siRNA in vivo. After the injection, siRNA may be degraded in the blood stream, rapidly 

excreted by renal excretion or removed by macrophages. siRNAs may not reach their 

target cells because of electrostatic repulsion due to the negative surface charge of siRNA 

and the cell membrane, causing very poor cellular uptake. Once internalized, siRNAs 

entrapped in endosome-lysosome pathway and may be degraded if fail to escape, leading 

to poor silencing efficiency as low concentrations of siRNA might reach the cytoplasm to 

interact with targeted mRNA47. Reprinted with free access from Elsevier. 
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2.5 Current Non-Viral Delivery Systems 

2.5.1 Polymeric Carriers: 
	
  

Wu et al. 1987, was the first to introduce the cationic polymers52, linear or branched 

cationic polymers made up of repeated units of monomers is one of the widely studied 

non-viral siRNA delivery systems53. The positive charge in polymers drive the interaction 

with negative charge phosphates of siRNA or DNA through electrostatic force causing 

siRNA condensation and formation of polyplexes54.  

Generally, the net positive charge increases, as the molecular weight of the 

synthesized polymers is higher, therefore more stable complexes achieved with tighter 

binding to the nuclear material55. Several polymers, either synthetic or natural, have been 

designed and used in siRNA delivery: poly-L-lysine (PLL), poly-D, L-lactide-co-

glycolide (PLGA), poly-ethyleneimine (PEI), poly-propylenimine (PPI), poly-

caprolactone (PCL), poly-d,l-lactide (PLA), and many others. These polymers and their 

modifications have been investigated both in vitro and in vivo for siRNAs based 

therapy47,54.  

For protection of complexes under physiologiacal conditions polymer–siRNA were 

conjugated with Polyethyleneglycol (PEG), due to its steric stabilization effects, 

biocompatibility, and anti-fouling properties. One of the examples of this application is 

production of stable polyelectrolyte complex (PEC) micelles from, siRNA-PEG 

conjugate complexed with branched polyethylenimine (bPEI, 25 kDa) and KALA 

peptides. Figure 2.4, illustrate the delivery strategies of different siRNA-polymer 

complexes depending on the conjugates of siRNAs to the polymers56. 
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Figure 2.4. Illustration of different delivery strategies of siRNA-polymer complexes56. 

Reprinted with free access from Theranostics 

 

2.5.2 Lipid-Based Carriers 
 

Several classes of lipid-based nanocarriers have been synthesized and studied for 

siRNA delivery including liposomes, microemulsions, solid lipid nanoparticles, micelles 

and lipid-based nanocarriers including other materials such as polymers or peptides57.	
  

Liposomes are globular vesicles, consisting of phospholipid bilayer with an aqueous 

core58,59.	
  	
  

Liposomes protect and deliver siRNA by forming Lipoplexes complexes with 

diameter less than 100 nm, via hydrophobic and electrostatic interactions. The 

hydrophobic nature is driven from the tails of lipids align inside the lipoplexes, while the 
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hydrophilic heads align outside in aqueous solutions. Electrostatic interactions formed 

due to the interaction between the positive charges in cationic lipids and the negatively 

charge in phosphate backbone of siRNAs60. Therefore, cationic lipid based liposomes are 

most commonly used over neutral lipid liposomes for nucleic acids delivery, including 

siRNA, plasmid DNAs and oligonucleotides. Strongly constructed complexes with 

siRNAs are achieved by cationic charge liposomes compare to neutral lipids through 

electrostatic interactions, and further can facilitate cellular uptake by interacting with 

negatively charged cell membranes.	
  A number of different cationic liposomes have been 

developed, including	
   1-oleoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl]-

3-trimethylammonium propane (DOTAP)61, N-[1-(2,3-dioleoyloxy)propyl]-

N,N,Ntrimethylammonium chloride (DOTMA)62, cetyl trimethylammonium bromide, 

dimethyldioctadecylammonium bromide (DDAB), 1,2-dimyristyloxypropyl-3-dimethyl-

hydroxy ethyl ammonium bromide-cholesterol (DMRIE-C), 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC), L-α-dioleoyl phosphatidylethanolamine (DOPE), 3β-[N-(N′,N′-

dimethylaminoethane)-carbamoyl]cholesterol(DC-Chol)63.	
   Different lipid formulations 

have been commercialized for in vitro transfection including Lipofectamine 2000 (Life 

Technologies), Oligofectamine (Life Technologies) and TransIT-2020 (Mirus Bio). 

However, their uses in vivo are limited due to high toxicity and poor stability64. 

 

2.5.3 Cell-Penetrating Peptide Based Carriers  
	
  

Short peptides typically with 5–30 amino acids, are known as cell penetrating peptides 

(CPPs), membrane translocation sequences, “Trojan peptides” or protein transduction 

domains65. There are three basic types of CPPs, cationic, hydrophobic and amphipathic 
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peptides (table 2.3)66. HIV-1 protein TAT, was the first discovered cationic CPP67. 

Cationic peptides often consists of arginine, lysine and histidine amino acid sequences 

which mediate the interaction with anionic/acidic motifs causing a receptor-independent 

interaction with the cell membrane. Guanidine head group in arginine amino acid 

facilitate the internalization to the cells by forming hydrogen bonds with the negatively 

charged phosphates and sulfates on the cell membrane. Lysine is a positively charged 

amino acid but with out guanidine head group, which lead to less uptake compare to 

arginine66. Futaki et al., demonstrated that eight positive charges at least are needed for 

efficient cellular uptake of cationic CPPs68.Hydrophobic peptides, consists of 

hydrophobic amino acid residues with low net charge. Amphipathic CPPs, constructed 

from lipophilic and hydrophilic building blocks, which mediate the translocation across 

the cell membrane69.The main advantages of CPP over other nano-carriers are, low 

toxicity and immunogenicity, rapid and efficient intracellular delivery65. Cationic CPPs, 

condense siRNA by the electrostatic interactions between negatively charged phosphate 

backbone of siRNA and positively charged amino acids. The positive net charge on the 

complex enhances the translocation through the cell membrane70. 

 
Table 2.3. Sequences and types of some synthetic or chimeric CPPs66. Reprinted with 

permission from Elsevier. 

Type Name Amino acid sequence 

 
Amphipathic 
 

 
Transportan 
 

 
GWTLNSAGYLLGKINLKALAALAKKIL 

 Pep-1 
 

KETWWETWWTEWSQPKKKRKV 

MPG 
 

GLAFLGFLGAAGSTMGAWSQPKKKRKV 

pVEC LLIILRRRIRKQAHAHSK 
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MAP 
 

KLALKLALKALKAALKLA 

CADY 
 

GLWRALWRLLRSLWRLLWRA 

Cationic Polyarginine 
 

R8, R9, R10, R12 

 TAT 49 
 

RKKRRQRRR 

Penetratin  
(pAntp) 

RQIKIWFQNRRMKWKK 

P22N 
 

NAKTRRHERRRKLAIER 

 DPV3 
 

RKKRRRESRKKRRRES 

DPV6 
 

GRPRESGKKRKRKRLKP 

Hydrophobic K-FGF 
 

AAVLLPVLLAAP 

 C105Y CSIPPEVKFNKPFVYLI 
 

2.5.3.1 NP1 (STR-H16R8) Cell Penetrating Peptide  
	
  

Taking the knowledge that oligoarginine is one of the most widely utilized CPPs for 

intracellular delivery, is employed as a model carrier due to the positive surface charge 

and high binding to the surface of cell membrane. Additionally, it has been reported that 

oligoarginine uptake increases with increasing charges. In order to overcome the lack of 

silencing activity induced by oligoarginine71, stearic acid modification and various 

oligohistidine modifications were introduced to enhance cellular uptake and endosomal 

escape of siRNA. Moreover, DLS results showed that hydrophobic stearyl groups 

conjugated to a peptide sequence improve the co-assembly of peptide with siRNA and 

forming nanoparticles (<200 nm). The residue number ratio of histidine/arginine in a 

stearylated peptide sequence is critical for inducing pronounced gene silencing, based on 

that different designs of stearylated and oligohistidylated oligoarginine based siRNA 
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carriers that have significantly improved efficiency compared to the most commonly used 

benchmark delivery systems, Lipofactamine 2000 (Lipo). NP1 (STR-H16R8) showed 

efficient uptake and silencing efficiency. Figure 2.5, demonstrates the whole process of 

peptide mediated siRNA delivery, from peptide-siRNA binding, internalization, 

intracellular trafficking, to endosomal release and finally RNA interference16. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5. Schematic diagram of stearylated oligohistidylated oligoarginine based 

peptide as siRNA carriers, positively charge NP1 complex negatively charge siRNA in to 

nanoparticles ranging from 60-100 nm. After the internalization to the cells through 

endosomal pathway, siRNA can be released from endosome by proton sponge effect 

where the influx of protons and water increased causing endosome swelling and rupture 

then siRNA released to the cytoplasm where it can bind to RISC and silence the targeted 

mRNA16. Reprinted with permission from Elsevier. 
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Chapter 3 
Materials and Methods 

	
  
	
  
3.1 Cell Culture 

HCT 116 colon cancer cells were purchased from American Type Culture Collection 

(ATCC CCL-247) and maintained in Dulbecco's Modified Eagle Medium 

(DMEM) (Thermo Scientific, Ontario, CA) supplemented with 10% fetal bovine serum 

(FBS) (Sigma-Aldrich, Ontario, CA). The cells were incubated at 37°C in 5% CO2.  

 

3.2 Preparation of NP1 and NP1-siRNA Complexes 

NP1 peptide synthesized by CanPeptide Inc (Quebec, Canada), was prepared by 

dissolving in RNase free water (Thermo scientific, Ottawa, Canada) at a concentration of 

500 µM and stored at -20°C. All siRNAs used in this work were dissolved in RNase free 

water at a concentration of 50 µM, and were store at -80°C. 

NP1-siRNA complexes were prepared in Opti-MEM (Invitrogen, Carlsbad, CA, USA) 

for transfection experiments at 60/1 molar ratio and final concentration of 100 nM siRNA 

by slowly mixing the peptide solution into siRNA solution with pipette. Then were 

incubated at room temperature for 20 min to form the complexes before adding to the 

cells. 

Lipofectamine 2000 (Life Technologies, Carlsbad, USA), a commercial transfection 

reagent, was used as positive control in experiments. The lipo 2000-siRNA complexes 

were prepared in Opti-MEM according to the manufacturer protocol instructions and 

incubated at room temperature for 20 min before adding it to the cells. 
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3.3 Sequences of siRNAs 

Vascular endothelial growth factor A (VEGF A) and hypoxia inducible factor 1, alpha  

(HIF-1A) were purchased from Life Technologies. The siRNA targeting B-cell 

lymphoma 2 (Bcl-2) oncogene was synthesized by Sigma, with a sense sequence of 5’-

GGT GGG GTC ATG TGT GTG G-dTdT, and antisense sequence of 5’-CGG TTC 

AGGTAC TCA GTC ATC C-dTdT. The SilencerTM Cy3-labeled GAPDH siRNA was 

purchased from Ambion, used in fluorescence microscopy and Fluorescence Activated 

Cell Sorting (FACS). The scrambled siRNA was purchased from Life Technologies 

(Carlsbad, USA) was used as negative control in the experiments. 

 

3.4 Particle Size Measurement (DLS) 

Particle size of NP1-siRNA and Lipo-siRNA complexes were determined by dynamic 

light scattering on a Zetasizer Nano ZS (Malvern Instruments, Worcestershire,UK) at 

25°C in transparent ZEN0040-disposable microcuvette cells (40 µl). Samples were 

prepared in RNase-free water as described before for complexes formation and allowed 

to stabilize for 20 min at RT. Three measurements were performed to generate the 

intensity-based size. 

 

3.5 Generation of Tumor Spheroids from HCT 116 cells 

When HCT116 cells reach 85% confluency or greater, the cells were detached with 

trypsin/EDTA and counted using a haemocytometer to seed around 2500 cell/well. Dead 

cells were excluded from counting using 75% (v/v) trypan blue stain exclusion. HCT 116 

3D spheroids were generated in 3D hanging drop plate (3D Biomatrix) where around 40 

µl of cell suspension was loaded in each well with initial seeding density of 2500 



	
   25	
  

cell/well. Cells were cultured in DMEM supplemented with 10% (v/v) fetal bovine serum 

and incubated at 37°C in a humidified atmosphere containing 5% CO2. HCT 116 cells 

require at least 3 days to form compact spheroids. 

 

3.6 Light Microscopy 

Morphology of HCT 116 3D spheroids was observed by light microscopy (EVOS fl 

digital inverted microscope). The diameter of the spheroids was measured using image J 

software.  

 

3.7 Scanning Electron Microscopy (SEM) 

HCT 116 cells were seeded at 2500 cells/well in a 96-well hanging drop plate (3D 

Biomatrix) and incubated at 37ºC in a humidified atmosphere with 5% CO2 as described 

before. Then 3D spheroids were let to form and collected at different incubation times at 

day 5, 7 and 10. The spheroids were then washed with PBS twice, then cells were fixed 

by adding100 µl of 5% Glutaraldehyde (v/v, dissolving in PBS) and incubated at 4ºC 

overnight. After that, the fixative was discarded and the cells were washed twice with 

PBS. Spheroids then were loaded on a silicon wafer and dehydrated with gradient 

concentrations of Ethanol series (10% to 100%). Finally, the spheroids were allowed to 

air dry at room temperature, then imaged using ESEM at 10 kV without gold coating. 
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3.8 Fluorescence-Activated Cell Sorting (FACS) 

3.8.1 Cy-3 GAPDH Uptake Efficiency 
 
3.8.1.1 Uptake Efficiency in Monolayer Cell Culture 
 

The cellular uptake of NP1-Cy3-labeled GAPDH siRNA complex was studied using 

flow cytometry (type BD Biosciences, BD FACS Vantage SE Cell Sorter, USA). HCT 

116 cells were seeded in 24-well plates with initial seeding density around 80000 

cell/well and incubated at 37°C in a humidified atmosphere containing 5% CO2 for 24 

hours. Cells then transfected with NP1-Cy3-labeled siRNA complexes at molar ratio 60/1 

with final concentration of 100 nM siRNA/well and incubated for 3 hours at 37°C, cells 

were then rinsed twice with PBS. Followed by detachment of the cells from the plate with 

0.25% trypsin/EDTA, and then collected in the suspension of 4% Paraformaldehyde 

(PFA) in PBS. Samples were analyzed by fluorescence activated cell sorting (FACS), and 

the data were analyzed by Flowjo software. 

3.8.1.2 Uptake Efficiency in 3D Spheroids  
 

3D spheroids of HCT 116 cells were formed by seeding 2500 cells/well in a 96-well 

hanging drop plate (3D Biomatrix) and incubated at 37ºC in a humidified atmosphere 

with 5% CO2 for 5 days. At day 5, 10 µl of Opti-MEM that contain NP1-Cy3-labeled 

siRNA complexes at molar ratio 60/1 with final concentration of 100 nM siRNA/well 

was added and incubated for 3,6,24 and 48 hours. Then, spheroids were collected and 

washed twice with PBS. Afterwards, spheroids were dissociated into single cell 

suspension by adding 500 µl Accumax (Sigma) then incubated for 30 minutes at 37°C. 

After 15 minutes spheroids were dissociated mechanically by pipetting up and down. The 

digestion was stopped by adding a complete cell culture medium, then the cells were 
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centrifuged and washed twice with PBS. Cells then were collected in 500 µl 4% PFA and 

analyzed as described before. 

 

3.8.2 Induced Apoptosis 
	
  

Spheroids were harvested 96 hours post transfection with siRNA-NP1 complexes and 

transferred to ependrof tubes followed by washing with PBS twice. Afterwards, spheroids 

were dissociated into single cell suspension by adding 500 µl Accumax (Sigma) then 

incubated for 30 minutes at 37°C. After 15 minutes spheroids were dissociated 

mechanically by pipetting up and down. The digestion was stopped by adding a complete 

cell culture medium, then the cells were centrifuged and washed twice with PBS. 2D 

monolayer cell were seeded in 24-well plates with initial seeding density around 35000 

cell/well and collected 48 hours post transfection. For evaluation of induced apoptosis by 

Apoptosis Kit with Annexin V FITC and PI, flow cytometry, cells were stained with 4 µl 

Propidium Iodide (PI) and 5 µl Annexin V. Staining performed in 100 µl Annexin 

Binding for 15 min at RT then cells analyzed by FACS immediately. Each data 

measurement was made up from 16 spheroids, repeating the whole procedure 

independently three times. 

 

3.9 Confocal Laser Scanning Microscopy (CLSM) 

3D spheroids of HCT 116 cells were formed by seeding 2500 cells/well in a 96-well 

hanging drop plate (3D Biomatrix) and incubated at 37ºC in a humidified atmosphere 

with 5% CO2 for 5 days. At day 5, 10 µl of Opti-MEM that contain NP1-Cy3-labeled 

siRNA complexes at molar ratio 60/1 with final concentration of 100 nM siRNA/well 
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was added and incubated for 24 hours. Thereafter the spheroids were collected and 

washed twice with PBS, then fixed with 4% Paraformaldehyde (PFA) for 30 min at RT. 

Fixed spheroids were washed with PBS twice then transferred to a chamber slide. At the 

end DAPI (Sigma-Aldrich, Oakville, Canada) was added to stain the nuclei of cells and 

then spheroids were covered by fluoromount aqueous medium. Images were taken with 

Zeiss LSM 700 confocal microscope. 

For further morphological characterization of 3D spheroids, LIVE/DEAD 

Viability/Cytotoxicity Kit (calcein AM and ethidium homodimer (EthD-1), Invitrogen) 

was used. Calcein AM is a cell permeant dye used to stain live proliferating cells mainly 

the outer layer of the spheroid. In proliferating cells, the non-fluorescent calcein AM is 

converted to a green-fluorescent due to presence of intracellular esterases that will 

hydrolysis acetoxymethyl ester. Dead cells with disrupted cell membrane were stained by 

EthD-1which will bind to the DNA and emit red fluorescence. HCT 116 cells were 

seeded at 2500 cells/well in a 96-well hanging drop plate (3D Biomatrix) and incubated 

at 37ºC in a humidified atmosphere with 5% CO2 for 5 days. Then spheroids were 

collected and washed twice with PBS and LIVE/DEAD Viability/Cytotoxicity Kit was 

applied per manufacturer’s instruction. Thereafter, spheroids were incubated for 1 hour at 

37ºC in a humidified atmosphere with 5% CO2 and washed twice with PBS and fixed 

with 4% Paraformaldehyde (PFA) for 30 min at RT followed by PBS washing. Fixed 

spheroids were transferred to a chamber slide and covered by fluoromount aqueous 

medium. Finally, images were taken with Zeiss LSM 700 confocal microscope. 
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3.10 Cytotoxicity 

3.10.1 Cytotoxicity in 3D Spheroids  
 

3D spheroids of HCT 116 cells were formed by seeding 2500 cells/well in a 96-well 

hanging drop plate (3D Biomatrix) and incubated at 37ºC in a humidified atmosphere 

with 5% CO2 for 72 hours. 10 µl of Opti- MEM that contained samples was added to the 

cells and incubated for 48 hours. Then spheroids were transferred to a clear, round 

bottom standard 96-well plate by dropping down the hanging drops, the cytotoxicity of 

each treatment was determined by the WST-1 assay according to manufacturer 

protocoled. Cell viability assessed by measuring the absorbance at 450 nm with a plate 

reader (FLUOstar OPTIMA, BMG, Germany); each treatment included 6 spheroids and 

results normalized to the non-treated group. 

3.10.2 Cytotoxicity in 3D Spheroids  
 

HCT 116 cells were plated in to 96-well plates with initial seeding density around 

8,000 cells/well in DMEM medium supplemented with 10% FBS and incubated at 37ºC 

in a humidified atmosphere with 5% CO2. 24 hours later, the medium was removed and 

washed with PBS, and then 50 µl Opti-MEM medium that contained samples was added 

to the cells. 3 hours later, 50 µl DMEM medium with 30% FBS was added. After 

incubation for 24 hours at 37°C in a 5% CO2 atmosphere, the cells were washed with 

PBS and then 100 µl of Opti-MEM medium containing CCK-8 reagent was added. Cell 

viability assessed by measuring the absorbance at 570 nm with a plate reader (FLUOstar 

OPTIMA, BMG, Germany); results were averaged and normalized to the non-treated 

group. 
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3.11 In Vitro Gene Silencing Efficiency 

HCT 116 cells were seeded in a 24-well cell culture plate (40,000/well) for 2D culture 

and 2500 cell/well in 96 hanging drop plate for 3D culture, in DMEM medium 

supplemented with 10% FBS. 2D cell monolayer culture incubated for 24 hours, then the 

medium was removed and washed with PBS and 200 µl Opti-MEM was added to each 

well. Next, cells were transfected with different complexes of NP1-siRNAs prepared in 

Opti-MEM with final siRNA concentration of 100 nM. 3 hours later, 300 µl of DMEM 

with 20% FBS was added, then cells were incubated for 48 hours at 37 °C in a 5% CO2 

atmosphere. For 3D culture, spheroids formed in 3 days were transfected with different 

complexes of NP1-siRNAs prepared in Opti-MEM with final siRNA concentration of 

100 nM and incubated for 96 hours at 37 °C in a 5% CO2 atmosphere. 

For qRT-PCR analysis, the total RNA was extracted from monolayer cells and 

spheroids with TRIzol extraction method; first TRIzol reagent was added (Life 

Technologies, Carlsbad, USA), then treated with chloroform (Sigma, Oakville, Canada) 

and 2-propanol (Sigma-Aldrich, Oakville, Canada) as recommended by the manufacturer. 

Nanodrop spectrophotometer ND-1000 (Thermo scientific, Ottawa, Canada) was used to 

measure RNA concentrations. All RNAs were reverse transcribed with Bio-Rad iScript 

cDNA synthesis kit (Bio-Rad, Mississauga, Canada) according to the manufacturer’s 

protocol. Then, PCR was performed with Brilliant II fast SYBR Green QPCR Master 

Mix (Agilent Technologies, Wilmington, DE, USA) using an Mx3005PTM real time 

PCR System (Agilent Technologies, Wilmington, USA). Bcl-2 primers used in this 

experiment are: 5’-GGT GGG GTC ATG TGT GTG G-3’ (F), and 5’-CGG TTC AGG 

TAC TCA GTC ATC C-3’ (R) (Sigma, Oakville, Canada). VEGF primers used in this 
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experiment are: 5'- CCATGAACTTTCTGCTGTCTT-3' (F), and 5'-

ATCGCATCAGGGGCACACAG-3' (R) (Sigma, Oakville, Canada). Cyclophilin, a 

house-keeping gene, was used as an internal control to normalize the Bcl-2 and VEGF-A 

gene expressions, with primer sequences as: 5’-GGTGATCTTTGGTCTCTTCGG-3’ (F), 

and 5’-TAGATGCTCTTTCCTCCTGTG-3’ (R) (Sigma, Oakville, Canada). 

 

3.12 Western Blot Assay 

3.12.1 Protein Extraction and Quantification 
 

Treated spheroids were harvested and washed with cold PBS twice then lysed using 

1X cell lysis buffer (100µL) containing proteinase inhibitor (Sigma, USA). Cells were 

vortexed until lysed and the total protein lysates were collected and stored at -80°C until 

further analysis.  

For protein quantification, protein standard curve was generated using bovine serum 

albumin (BSA) (Sigma). BCA working solution was prepared by mixing BCA solution I 

(BCA, Sigma) with solution II (copper sulfate, blue, 4%) at a ratio of 50:1. Then, 10 µl of 

samples and standard curve were added to a 96 wells plate, and 200 µl BCA solution to 

each well and incubated at 37oC for 30 min in dark. The estimated protein concentrations 

were measured using a plate reader (FLUOstar OPTIMA, BMG, Germany) at 560 nm. 

3.12.2 SDS- PAGE Gel Preparation 
	
  

Polyacrylamide gels (12%) were prepared as indicated in table 3.1. 
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Table 3.1. (12%) Polyacrylamide gel ingredients and corresponding volumes. 

2 x 1.5 mm thickness gels   Stacking  Resolving (12%) 

30% acrylamide 975 µl 6.0 ml 

0.5 M Tris-HCl pH 6.8  1.875 ml  - 

1.5 M Tris-HCl pH 8.8  -  3.75 ml 

10% SDS  75 µl  150 µl 

H2O  4.69 ml  5.25 ml 

TEMED  15 µl  7.5 µl 

10% (APS)  37.5 µl  75 µl 

 

3.12.3 Western Blotting 
	
  

For electrophoresis, four volumes of sample (20 ug of protein) were mixed with one 

volume of solubilizing buffer containing 50% glycerol, 7.5 % of SDS, 50 mM Tris, (pH 

6.8), 2 mM EDTA, 200 mM dithiothreitol  (DTT), and 0.2% of brilliant blue. Proteins 

were denatured at 950C for 5 min and then subjected to SDS-PAGE on a 12% resolving 

gel using the system of Laemmli. Following electrophoresis, proteins were electrically 

transferred on a PVDV membrane (Bio-Rad Laboratories, USA) in a semidry transfer 

system (Turbo System) in a buffer containing 20% ethanol. After transfer, membrane was 

cut into two parts and blocked with 5% BSA blocker in 1xTBST for 1 hour at room 

temperature (RT). The higher part was used to detect B-Actin and the lower part is for 

determining Bcl-2. Subsequently, rabbit anti human Bcl-2 primary antibody and anti-B-

Actin primary antibody (Pierce Biotechnology, Rockford, IL, USA) solutions made in 

5% blocking reagent was incubated with corresponding membranes at 40C for overnight 
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(table3.2). Before detecting protein bands with chemiluminescent method, the 

membranes were washed for 5 times with 1xTBST at RT.  

 

Table 3.2 Dilution factors of primary and secondary antibodies.  

Primary Antibodies Dilution Secondary Antibodies Dilution 

Bcl-2 1:3000 Anti-rabbit 1:10000 

B-Actin 1:10000 Anti-rabbit 1:10000 

 

3.13 Histological Evaluation 

For histological evaluation spheroids were generated and transfected as described 

before. Spheroids then were collected and rinsed twice with PBS and processed for 

staining. 

3.13.1 Routine H&E Staining 
	
  

The spheroid samples were fixed in 10% neutral buffered formalin, centrifuged then 

embedded in Histo-Gel and routinely processed.  The samples were then embedded in 

paraffin wax. Thereafter, paraffin blocks were serially sectioned in 5 µm thick sections 

and stained with hematoxylin and eosin (H&E). The histological slides were evaluated 

using bright field microscopy (Leica DM1000, ICC50 HD, Leica Microsystems Inc, 

Canada). 

 3.13.2 Immunohistochemichal Analysis for Proliferation Marker Ki-67 
	
  

Consecutive 5-µm-thick sections from the paraffin embedded samples, were placed on 

positively charged slides and immunohistochemically stained with polyclonal rabbit 
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antibody to detect the proliferation marker Ki-67 (dilution 1:100, Abcam, USA), using 

the standard avidin-biotin complex method. Tissue slides were deparaffinized with 

xylene and graded alcohols, then rehydrated with distilled water. Endogenous peroxidase 

activity was blocked, by placing the slides in 0.5% hydrogen peroxidase/methanol for 10 

min followed by a tap water rinse. Background staining was reduced, by incubating slides 

in 0.3% bovine serum albumin/Tris-buffered saline. Antigen retrieval entailed by placing 

the slides in a pressure cooker with an antigen unmasking solution (0.01M citrate buffer, 

pH 6.0) for 1 min. Slides were subsequently incubated with the primary (4°C overnight), 

then biotinylated secondary antibodies and streptavidin-biotin peroxidase. Additionally, 

0.05% 3'3' diaminobenzidine (DAB) was used as chromogen, followed by 

counterstaining with hematoxylin. The histological slides were evaluated using bright 

field microscopy (Leica DM1000, Leica Microsystems Inc, Concord, ON). 
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Chapter 4 
Results and Discussion 

 
 
4.1 Morphological Characterization of HCT 116 Spheroids 

The HCT 116 colon cancer cells spheroids were formed using the hanging-drop 

method. After seeding the cells in the hanging drop plate, the cells in medium suspension 

tend to aggregate in the bottom center of the hanging droplet and self assemble into 

spherical micro-tissues (3D spheroids) with time. Optimization of the seeding density and 

optimal culturing condition was the main step to form consistent spheroids in all the 96 

well plate and most important, generating spheroids that have the requirement to mimic 

the micro-environment of tumors in vivo.  

Based on previous reports, spheroids with radii of 200 µm and larger will develop 

three different zones of proliferating cells on the outside, quiescent cells on the inside and 

necrotic core due to nutrient and oxygen transport limitations18. Therefore, seeding 

density was optimized to generate spheroids with diameter ranging from 200-300 µm. 

Initial seeding density of 2500 cell/well was the optimal density for HCT 116 cells with 

an average diameter of ~ 275 µm, at day 4.  

Figure 4.1 shows the formation of spheroids, from single cell suspension to compact 

spheroids. The time required to form compact spheroids depends on the cell line used, 

some cell lines fail to form compact spheroid by self assembly, addition of hydrogels or 

collagen to enhance the cell-cell interaction and formation of extra cellular matrix (ECM) 

is required. HCT 116 cells used in this study, formed compact spheroids by self assembly 

only as fast as day 3 after seeding with good spherical morphology and consistency 

among the 96 wells. 
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Figure 4.1. Formation of 3D spheroids in the hanging drop plate. (A) Day one post 

seeding. Cells in the hanging drop tend to aggregate due to the gravitational force. (B) 

Day six post seeding. HCT 116 cells form compact spherical micro-tissues within three 

days by self-assembly of cells driven by the gravitational force and cellular interaction 

that enhance the formation of ECM. 

 

Spheroids in the hanging drop could be maintained for up to 20 days by changing the 

culturing medium each three days to maintain healthy cells, where 10 µl was sucked out 

and new 10µl fresh medium added. Under the optical microscopy, the size of spheroids 

was increasing with the culturing time. Furthermore, to investigate the effect of the 

culturing time in the morphology, integrity, and volume growth kinetics of the spheroids; 

MCTS of HCT 116 cells were observed under scanning electron microscope as shown in 

Figure 4.2. 

B A 

400 µm 1000 µm 
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Figure 4.2. Morphological characterization of HCT 116 spheroids under SEM 

microscope. (A) The overall spherical morphology of compact spheroids, cells 
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interconnect with one another forming a 3D MCTS. Spheroids cultured for 5 days (B), 

for 7 days (C), for 10 days (D). The cell-cell interconnection is responsible for the 

densely packed organization of the spheroids and presence of ECM produced by the cells. 

With longer culturing time, the compactness, production of ECM and cell interconnection 

were more pronounced. (E&F) closer look at the cell surface of spheroids collected at day 

7 and 10 respectively. 

 
However, the spheroids were generated in scaffold free medium, the cells were able to 

produce ECM, the hairy like structure between the cells as shown in Figure 4.2 and more 

appearing at day 5 spheroids. Cancer cells are known to create their own tumour 

microenvironment, tumour cells interaction with ECM is bidirectional toward progression 

or inhibition of tumourigenesis. Therefore, development of novel therapies that take in 

consideration the importance of tumour microenvironment and ECM is highly rational. 

Generally, ECM is a 3D network of macromolecules that provide scaffolding to support 

tissue architecture and integrity, including: collagens, elastin, proteoglycans (PGs), 

hyaluronan (HA), and other non-collagenous matrix glycoproteins72,73. Concluding that 

with longer culturing time, the cells produced more ECM that held cells together through 

the spheroid and enhance the compactness and integrity.  

Furthermore, LIVE/DEAD Viability/Cytotoxicity kit was used to investigate the 

internal status of the spheroids. As shown in Figure 4.3, cells within the spheroids are 

divided into three distinct layers. First, cells emitting green fluorescence in the outer live 

proliferative rim of the spheroid. The outer layers of the cells in the spheroid are in direct 

contact with the culturing medium and receive all the essential nutrient and oxygen 

required for normal cell growth and proliferation. Second, the middle layer in the 
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spheroid, cells not emitting any florescence as the staining used in the kit specific for 

proliferative and dead cells. These cells are not taking any staining are known as 

quiescent cells that mean the cells are dormant, live but not dividing as normal cells, 

where the cell cycle is arrested at G0 or G1. Last, the inner necrotic core of the spheroid, 

cells are emitting red florescence. Most cells in the spheroid core are dead, due to the 

limit of nutrient and oxygen supplies compare to the outer layer. Gradient diffusion of 

oxygen, nutrient and waste and formation of different layers of cells is one of the features 

of solid tumor microenvironment in vivo74–76. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Under confocal laser microscope, spheroid was stained with Live/dead assay. 

Live proliferative cells emitted green fluorescence and dead cells emitted red 

fluorescence. Non-stained cells are quiescent, live but not dividing cells. 

 

50 µm 
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4.2 Cellular Uptake and Penetration of NP1-siRNA Complexes in Tumor Spheroids 

Uptake efficiency into the targeted cells is an essential factor for any drug or gene 

carrier. The effectiveness of NP1 as a carrier for siRNA delivery was determined by 

measuring the mean fluorescence intensity of cells after delivery of Cy-3 labeled GAPDH 

siRNA by fluorescence activated cell sorting (FACS). Figure 4.4.A, the mean 

fluorescence intensity of HCT 116 cells after 3 hours transfection with Cy-3 labeled 

siRNA complexed with NP1 peptide at molar ratio (60/1) and (100 nM) siRNA, shows a 

large amount of uptake. Clear evident of significantly higher siRNA delivery efficiency 

than a market leader Lipofectamine 2000. The rapid and efficient uptake of NP1-siRNA 

complexes is possibly due to the ability of the cationic peptide NP1 (STR-H16R8) to 

electrostatically complexes with the anionic siRNA to produce a positively charged 

complex that has a sufficient stability to allow efficient intracellular delivery of siRNA. 

The sequence of the peptide effect the cellular internalization of the complexes where 

polyarginine, optimal length from 5 to 11 residues, is one of the most widely utilized 

CPPs for intracellular delivery, is employed as a model carrier due to the positive surface 

charge and high binding to the surface of cell membrane77. 

Furthermore, the penetration of siRNA within tumor spheroids was investigated after 

3,6,24 and 48 hours post transfecting the spheroids with NP1-Cy3-labeled GAPDH 

siRNA. Fluorescence activated cell sorting (FACS) analysis of HCT 116 spheroid cells, 

gated for live cells (Figure 4.4.B) showed the uptake was time dependent where the 

uptake is very low in 3 hours and increase with longer times. The uptake in 3 hours in 3D 

spheroids is significantly lower than that in 2 D cell monolayer. The different cell 

physiology and culture models possibly affect the uptake efficiency and caused this 
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difference. Cellular internalization of peptide-siRNA in spheroids was affected by 

presence of the ECM and the high interaction of the cells in 3D dimension as shown in 

(Figure 4.2). Therefore, the limited intercellular spaces slowed down the uptake. Surface 

area is another factor, in 2D monolayer the complexes are in direct contact having higher 

surface area, where in 3D only the outer layer of the cells are exposed directly. 

Additionally, due to mass diffusion limitation within the spheroid the internalization was 

reduced and slower than in 2D monolayer cells. This reduced internalization mimic the 

multicellular drug resistance observed in solid tumors in vivo78. Moreover, the 

physicochemical characteristics of the carrier, including the surface charge, size and 

shape interfere with penetration in the spheroids. Ma H. et al, reported that anionic 

nanoparticles had	
   greater penetration into HeLa spheroids than	
   cationic, and that is 

opposite in monolayer cells. Possibly, positively charged nanoparticles were 

preferentially	
  retained by negative surface charges on ECM and taken up by proliferating 

cells in the outer layer of the spheroids, whereas without any interference the negatively 

charged nanoparticles diffused into the spheroids79. Beside that, smaller nanoparticles 

penetrated more deeply than larger nanoparticles with the same charge80.Taken together, 

NP1 as a cationic peptide with relatively small particle size when complexed with 

siRNA, ranging from 60-100 nm, these factors could facilitate sufficient siRNA uptake in 

monolayer and within spheroids (Figure 4.4.C) but with slower pattern. 
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Figure 4.4.	
   Uptake efficiency of NP1-Cy3-labeled GAPDH siRNA. (A) Mean 

fluorescence intensity of Cy3 siRNA in HCT 116 cells treated with NP1-Cy3-labeled 

GAPDH siRNA for 3 h. The cells were then analyzed by fluorescence activated cell 

sorting (FACS) in the Cy3 channel. (B) Cellular uptake of NP1-Cy3-labeled GAPDH 

siRNA in 3D spheroids collected after 3,6,24 and 48 hours post transfection. (C) 

Penetration of NP1-Cy3-labeled GAPDH siRNA complexes into HCT 116 spheroids 24 

hours post treatment. Cell nuclei were stained with DAPI, a nuclear stain emitting blue 

fluorescence after excitation, and Cy3 (Cy3-labeled GAPDH siRNA) emitting red 

fluorescence after excitation. Results are expressed as mean ± standard deviation (n=3). 
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4.3 Cytotoxicity  

As shown in Figure 4.5.A, NP1-siRNA complexes at 6 uM NP1concentration and 100 

nM siRNA achieved 85% and NP1 alone had a slight drop to 73% due to to relatively 

higher positive surface charge. Complexing Np1 with siRNA reduced the surface positive 

charge by neutralizing with negatively charged siRNA.  

WST-1 assay was used to determine the viability of the HCT 116 spheroids 48 hours 

post treatment. As shown in Figure 4.5.B, NP1 complexed with Bcl-2 and VEGF siRNAs 

did not cause cytotoxicity, achieved >95% viability at all treatments. This phenomenon of 

gene and chemotherapy therapy resistance in tumor in vivo has been reported81,82. 

Suggesting that 3D spheroids generated in hanging drop plate reassemble the tumor 

microenvironment in vivo.  
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Figure	
   4.5.	
  Cell viability results of HCT 116 cells treated with different complexes of 

NP1 and Lipo siRNAs. (A) 2D cell monolayer viability 24 hours post transfection with 

NP1 peptide alone or in complex with siRNA at 60/1 molar ratio. (B) 3D spheroid 

viability 48 hours post transfection with NP1 complexed with three siRNAs (VEGF, Bcl-

2 and scrambled siRNA used as a control). (NC=negative control, Lipo=Lipofectamine 

2000). Results are expressed as mean ± standard deviation (n=3).	
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4.4 In Vitro Transfection Efficiency 

To confirm the delivered siRNA performed its function, RT-PCR measurement of 

Bcl-2 and VEGFR mRNA level in the HCT 116 cells in both 2D and 3D cell culture 

methods, was performed.	
   Cyclophilin is a housekeeping gene was used as a control, 

where its mRNA level remained relatively stable during the transfection experiments. As 

shown in Figure 4.6.B, the	
   gene silencing efficiency induced by NP1-Bcl-2-siRNA 

complex at 60/1 with siRNA concentration of 100 nM 85%. The NP1-VEGF-siRNA 

complex at the similar transfection condition induced 72% gene knockdown efficiency. 

The silencing efficiency of NP1 was similar to that of a benchmark, Lipofactamine 2000 

(Lipo), which is the most commonly utilized and efficient transfection reagent to 

introduce siRNA into cells, inducing 82% and 71% gene silencing for Bcl-2 and VEGF 

siRNAs, respectively. This result indicated that NP1 could efficiently protect and deliver 

siRNA to cells and induced the specific gene silencing. The high efficiency, possibly due 

to the rapid and efficient internalization of NP1 complexes to the cells and successful 

release of siRNA from endosome, to react with RISC in the cytoplasm and subsequently 

induce the knockdown to the targeted genes. 

In 3D spheroids, cells were collected 96 hours post transfection with NP1-siRNA 

complexes for RT-PCR analysis. Longer time was performed due to the slower 

penetration in spheroids compare to 2D cell monolayer. However, the uptake of NP1 was 

reduced compared to 2D cell monolayer, NP1 achieved higher silencing efficiency than 

Lipo2000. Figure 4.6.C, the	
  gene silencing efficiency induced by NP1-Bcl-2-siRNA and 

NP1-VEGF-siRNA complexes 53% and 51% respectively.  The NP1-VEGF-siRNA 

complex at the similar transfection condition induced 72% gene knockdown efficiency. 
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Lipo2000 induced 39% and 35% gene silencing for Bcl-2 and VEGF siRNAs, 

respectively. The relatively large particle size of Lipofectamine 2000-siRNA complexes 

around (340 nm) compare to NP1 (<100 nm), possibly limited the cellular uptake of 

siRNA within the internal layers of the multicellular tumor spheroids, thus leading to a 

relatively lower gene silencing efficiency. Additionally, as discussed before, positively 

charged nanoparticles could preferentially retained by negative surface charges on ECM 

and taken up by proliferating cells in the outer layer of the spheroids which mean that 

NP1 is highly targeting the proliferating cells that produce more proteins compare to the 

dormant cells in internal layers of the spheroids.	
    The results were further confirmed at 

protein level by Western blot to measure the expression of Bcl-2 protein 3D tumor 

spheroids post transfection. The results shown in Figure 4.6.A, demonstrates that the 

expression of Bcl-2 protein was significantly inhibited in spheroids treated with NP1-Bcl-

2-siRNA compare to non-treated cells.	
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Figure 4.6.	
  Gene silencing efficiency in vitro. (A) Silencing efficiency at protein level. 

Total proteins were extracted from HCT 116 3D spheroids. Bcl-2 protein expression was 

detected by western blot. House keeping protein B-actin was used as control. 
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(B) Silencing of VEGF and Bcl-2 genes in 2D HCT 116 cells was evaluated by 

quantitative real time polymerase chain reaction (qRT-PCR). NP1concentration was 6 

uM and siRNA100 nM. Total RNA was extracted 48 hours post transfection and gene 

knockdown efficiency was determined. (C) Silencing efficiency of VEGF and Bcl-2 

genes in 3D HCT 116 spheroids 96 hours post transfection. All the data were normalized 

to house keeping gene cyclophilin. Lipofectamine 2000 was the positive control. Results 

are expressed as mean ± standard deviation (n=3). 

 

4.5 Induced Apoptosis 

Spheroids and 2D monolayer cells treated by NP1-siRNA complexes where tested for 

induced apoptosis by Apoptosis Kit with Annexin V FITC and PI (flow cytometry). All 

siRNA complexes induce higher apoptosis compare to the non-treated cells (Figure 4.7). 

The highest apoptosis was induced in cells treated by Bcl-2 in both cell culture methods 

and was significantly higher than induced apoptosis in cells treated by VEGF siRNA. 

Bcl-2 is anti-apoptotic marker over expressed in many human tumors and considered as 

an important oncogene. Suppression or silencing of Bcl-2 proves to induce apoptosis and 

reduce the tumor growth32. Furthermore, the cells undergoing apoptosis in 2D cell 

monolayer are higher than 3D spheroids post transfection with Bcl-2 and VEGF siRNA. 

3D MCSs exhibit decreased sensitivity to chemotherapeutic drugs or gene therapies, the 

resistance may be caused by hypoxia in MCSs. Hypoxia associated with an increased cell 

population in G0 and early G1 phase and/or down regulation of pro-apoptotic molecules 

such as caspase-3, therefore more resistant to apoptosis compare to 2D cell 

monolayer83. Concluding that 3D culture systems are better in simulating the in 
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vivo tumor microenvironment compare to 2D cells grown on plastic surfaces that are 

unable to precisely simulate tumor conditions in vivo84–87.  

 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure 4.7. Induced apoptosis by FACS analysis, using Apoptosis Kit with Annexin V 

FITC and PI. Cells positive for Annexin V are in early apoptosis and cells positive for 

both PI and Annexin V are in late apoptosis (n=3).	
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4.6 Histological Evaluation 

4.6.1 Routine H&E Staining 
	
  

In histopathology, the term “routine staining” refers to the hematoxylin and eosin stain 

(H&E) which used with all tissue specimens, H&E staining play a critical role in tissue-

based diagnosis, allow to visualize the tissue morphology (structure) and cell types. 

Hematoxylin is a basic dye with a purplish blue color and generally stains acidic, or 

basophilic, structure including the cell nucleous and organelles that contain RNA.  

Whereas, eosin is an acidic dye with reddish or pink color and stains basic, or acidophilic, 

structures including the cytoplasm and extracellular fibers. General observations from 

routine H&E staining, stained sections of spheroids show large cohesive cells with 

apparent epithelial phenotype, pronounced cell contours, abundant eosinophilic 

cytoplasm and large atypical nuclei with occasional prominent nucleoli (Figure 4). These 

observations are clear evident that 3D spheroids generated in hanging drop resample the 

tumour microenvironment in vivo. Nucleolus size represents series of metabolic changes 

that characterize cancer cells. The enlargement of nucleolar size is an indicator of entry 

into the cell cycle, which normally associated with up-regulation of the nucleolar 

function. A major feature of cancer cells is high uncontrollable cell growth rate and 

disruption of the tumour suppressor retinoblastoma Rb and p53 pathways, leading for 

greater aggressiveness. Therefore, prominent nucleolus is a clear predictive and 

prognostic parameter of malignant tumour. Furthermore, cells demonstrate high degree of 

pleiomorphism, hyperchromasia and atypical mitotic figures such as metaphase and 

anaphase as shown in (Figure 4.8.E). In Figure 4.8.C, clear presence of apoptotic bodies 

predominantly located in the central regions of the spheroids, supporting previous results 
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of presence of necrotic core. Minimal areas with amorphous material possibly necrotic or 

disorganized matrix material are also present (Figure 4.8.D). 

4.6.2 Immunohistochemichal Analysis for Proliferation Marker Ki-67 
	
  

Ki-67 proliferation marker was used to investigate the internal structure of the 

spheroids immunohistochemicaly. Ki-67 is an immunohistochemical proliferation marker 

expressed in all proliferating cells88,89. For spheroids cultured for 7 days and stained with 

Ki-67 marker, proliferation (immunopositivity) is more pronounced in the periphery of 

the spheroids, indicating that the cells are viable and actively dividing. Central zones 

show markedly reduced proliferation, indicative of slowed down cellular turnover or 

increased number of degenerating and dying cells as shown in (Figure 4.9.C). The reason 

more proliferating cells at the periphery or the outer layers is du to direct contact of the 

cells with the culturing medium providing essential nutrient and oxygen for normal cell 

growth, wile the cells in the internal layers receive less as a result of gradient diffusion of 

oxygen and nutrient. Similar pattern observed as in Figure 4.3, and therefore mimic the in 

vivo microenvironment of tumor. Figure 4.9.D, spheroid collected at day 7, 3 days post 

treatment with NP1 peptide without siRNA. Normal distribution of Ki-67 was observed; 

more pronounced in the periphery and less in the center indicating that NP1 is relatively 

safe carrier and did not affect the cell growth kinetics through the spheroid. Interestingly, 

spheroids treated with NP1-HIF-siRNA, the proliferation (immunopositivity) is more 

uniform, periphery is not significantly more mitotically active than the central and 

paracentral regions, possibly indicating similar number of viable and regenerating cells in 

the periphery and the central regions of the spheroids (Figure 4.9.E-F). This indicated that 

NP1 deliver HIF-siRNA successfully to the spheroids, where HIF is hypoxia inducible 
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factor. Higher expression of ki-67 through the spheroid and uniform distribution even in 

the central region is a clear indicator of reduction of hypoxia. Ki67 is a non-histone 

nuclear protein, tightly linked to the cell cycle and present during all active phases of the 

cell cycle: during mid G1, increasing through S and G2 and peaking in the M phase, but 

absent in resting dormant cells in G0 and early G1
90,91. Furthermore, hypoxia has been 

reported to cause cancer cell dormancy and arresting cell cycle in the G0 or early G1 

phase 83,92.Therfore, HIF-siRNA reduce the hypoxia which cause the cancer cells more 

resistant for chemo or gene therapy and the cells were entering different stages of cell 

cycle which cause cell death later as the cells need more nutrient and oxygen for normal 

cell growth due to gradient diffusion as discussed before. 
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Figure 4.8. Routine H&E staining of HCT 116 spheroids. (A&B) Represent the overall 	
  

morphology of spherical micro-tissues, darker purplish blue staining is the nucleus and 

brighter are the cytoplasm and ECM. (C) Cellular degeneration, fragmentation and 

apoptotic bodies (arrow). (D) Amorphous material possibly disorganized matrix or 

degenerating cellular debris (arrow). (E) Atypical mitotic figures and irregular chromatin 

pattern (arrow). 
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Figure 4.9.  Immunohistochemichal analysis for proliferation marker Ki-67 in 3D HCT 

116 spheroids. (A) Positive control – immunopositive cells (staining in brown) in a 
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germinal center of a lymph node. (B) Negative control- no staining (no primary antibody 

added). (C) Spheroids cultured for 7 days and stained with Ki-67 marker, proliferation 

(immunopositivity cells stained brown) is more pronounced in the periphery of the 

spheroids. (D) Spheroids transfected with NP1 free peptide and collected 72 hours post 

transfection. (E-F) spheroids transfected with NP1-HIF-siRNA and collected 72 hours 

post transfection.  
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Chapter 5 
Conclusions and Recommendations 

 
 

Cell penetrating peptides delivery systems have recently emerged as a promising 

candidate to transport the therapeutic genes into targeted cells. Most nanoparticles used 

for drug or gene therapy have been extensively evaluated in 2D cell monolayer, which 

overestimates the efficacies of chemotherapeutic drugs. Our studies suggest that 3D 

cultured cells forming compact MCTS closely mimic the features of tumors in vivo in 

term of simulating important tumor characteristics including hypoxia, formation of 

proliferating rim and necrotic core, formation of ECM, anti-apoptotic features and their 

resulting therapy resistance. Morphological characterization of 3D spheroids generated in 

hanging drop plats, clearly indicate that HCT 116 cells were able to form compact 

spheroids within 3 days and start to form three distinct layers of proliferating, dormant 

and necrotic cells as utilized by confocal laser scanning microscopy. Further more, SEM 

images proved the ability of 3D spheroids to form ECM with time and enhance the 

cellular interaction. General observations from routine H&E staining, such as large 

cohesive cells with apparent epithelial phenotype, and large atypical nuclei with 

occasional prominent nucleoli also support that 3D spheroids resample in vivo tumors. 

NP1 demonstrated high gene knockdown efficiency, both in 2D and 3D cell culture in 

colon caner cell line HCT 116. The uptake of NP1 complexes in 2D monolayer cells was 

significantly higher compared to the commercial transfection reagent, Lipofectamine 

2000, but was slowed down in 3D spheroids. Confocal images and FACS results showed 

the ability of NP1 complexes to penetrate through the spheroids over the time. Slight 



	
   58	
  

cytotoxicity was observed in 2D cell monolayer but very minimal in multicellular tumor 

spheroids (<5%). NP1-Bcl-2-siRNA complexes exhibited significant inhibition of Bcl-2 

protein compare to non-treated cells in western blot results. Induced apoptosis in 2D and 

3D cell culture demonstrate the efficiency of NP1 in delivering siRNA to targeted cells 

and cause higher apoptosis compare to non-treated cells. In 3D spheroids apoptosis 

resistance was observed compared to 2D cells. NP1 is a highly promising siRNA delivery 

vector in 2D cell monolayer and 3D tumor spheroids. 

 

Based on the findings in this research, the following recommendations for future 

studies are proposed: 

1) Developing more complex 3D tumor by implying some features of in vivo tumor 

microenvironment including: 

• Rigidity of ECM by impeding the spheroids in hydrogels. 

• Co-culturing the cancer cells with normal fibroblast cells that normally present in 

vivo and play critical role in tumor growth and survival. 

2) Developing in vitro tumor tissues by bio-printing that will reduce the limitations of 

regular 3D culture methods and provide more platform model for early drug screening. 

3) Further modification of NP1 to enhance the internalization in 3D spheroids and 

enhance the compatibility possibly by PEGylation. 
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