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Abstract

Cloud computing can help Software as a Service (SaaS) providers to take advantage of
the sheer number of cloud benefits such as, agility, continuity, cost reduction, autonomy,
and easy management of resources. To reap the benefits, SaaS providers should create their
applications to utilize the cloud platform capabilities. However, this is a daunting task.
First, it requires a full understanding of the service offerings from different providers, and
the meta-data artifacts required by each provider to configure the platform to efficiently
deploy, run and manage the application. Second, it involves complex decisions that are
specified by different stakeholders. Examples include, financial decisions (e.g., selecting a
platform to reduces costs), architectural decisions (e.g., partition the application to maxi-
mize scalability), and operational decisions (e.g., distributing modules to insure availability
and porting the application to other platforms). Finally, while each stakeholder may con-
duct a certain type of change to address a specific concern, the impact of a change may
span multiple models and influence the decisions of several stakeholders.

These factors motivate the need for: (i) a new architectural view model that focuses on
service operation and reflects the cloud stakeholder perspectives, and (ii) a novel framework
that facilitates providing holistic as well as partial architectural views, and generating the
required platform artifacts by fragmenting the model into artifacts that can be easily
modified separately.

This PhD research devises a novel architecture framework, “The 5+1 Architectural
View Model”, for cloud applications, in which each view corresponds to a different per-
spective on cloud application deployment. The architectural framework is realized as a
cloud modeling framework, called “StratusML”, which consists of a modeling language
that uses layers to specify the cloud configuration space, and a transformation engine to
generate the configuration space artifacts. The usefulness and practical applicability of
StratusML to model multi-cloud and multi-tenant applications have been demonstrated
though a representative domain example. Moreover, to automate the framework evolution
as new concerns and cloud platforms emerge, this research work introduces also a novel
schema matching technique, called “Liberate”. Liberate supports the process of domain
model creation, evolution, and transformations. Liberate helps solve the vendor lock-in
problem by reducing the manual efforts required to map complex correspondences between
cloud schemas whose domain concepts do not share linguistic similarities. The evalua-
tion of Liberate shows its superiority in the cloud domain over existing schema matching
approaches.
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Chapter 1

Introduction

“Works of imagination should be written in very plain language; the more
purely imaginative they are the more necessary it is to be plain.”
— Samuel Taylor Coleridge, 1834

It is no wonder Gartner’s expects cloud adoption to hit $250 billion by 2017 [56]. Cloud
computing has changed the traditional computing model, in which organizations should
invest in building sophisticated infrastructures to support their need for applications that
are always available and reachable, and can scale rapidly to meet changes in business
demand. Cloud providers offer distributed infrastructures that support fault tolerance and
capacity on-demand as a service in an affordable “pay-per-use” basis. Moreover, they offer
software-defined platforms that abstract the complexity of application delivery to enable
their rapid deployment and easy management through configuration.

This new delivery model changes the way development teams need to think about and
deal with the underlying resources while building and managing their applications. Today,
organizations do not question whether to adopt cloud computing. Instead, they question
what type of cloud deployment they should consider to address their performance and
security requirements, and how to leverage the cloud capabilities to satisfy their specific
business goals. Moreover, the diversity of cloud providers’ offers and services creates an
obstacle with respect to the application interoperability and portability. This diversity
increases the complexity of developing and managing cloud applications to operate on
multi-cloud platforms.

This thesis investigates the process of building, deploying and managing cloud applica-
tions (a.k.a., Cloud DevOps process). The thesis describes a new methodology supported
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by a modeling framework to enable organizations that build cloud applications, such as
SaaS providers, to unbiasedly exploit the cloud platform building blocks to leverage the
flexibility, reliability, and scalability that these platforms provide to the application layer
in a cost effective manner.

1.1 Motivations

Cloud computing shifts the control to provider’s side. While this shift helps organizations to
focus on their business functionalities, it is still the responsibility of the platform consumers
and SaaS providers to plan for their service operation. For example, consumers should
architect their applications to utilize the platform components to build services that are
widely reachable, scalable and available. This section provides examples that emphasize
this responsibility in order to guarantee the desired service operation and highlights the
challenges of the cloud development and operation process.

1.1.1 Responsibility of the Cloud Consumers

The following is evidence that consumers should not rely solely on providers support.

e On April 21% 2011, a failure in the Amazon Elastic Block Store (EBS) on the US
East Region availability zone took down a large number of businesses including many
cloud platform providers such as Heroku, Reddit, Quora, and many others. Lydia
Leongas; the research vice president at Gartner noted “Customers who rely upon
Amazon to run their businesses will, and should, think hard about the resiliency of
their architectures”!. Since that incident, several outages of cloud services have been
reported that cover all cloud providers at all service levels (see Tablel.1). The main
lessons to learn from such failures are: first, it is the consumers’ responsibility to
plan for failure and to read their (SLA) contracts, second it is not enough to handle
availability and fault recovery at the infrastructure layer; planning for fault recovery
should also be addressed and automated at the upper layers.

e Even though elasticity is an essential cloud computing capability, current cloud plat-
forms do not fully support dynamic elasticity. This limited support is due to some
technical challenges and to liability concerns. For example the limitation on rapid

http://blogs.gartner.com/lydia_leong/2011/04/21
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scale-down capabilities of the cloud applications as well as the way these applications
are structured, which does not allow full components controllability pose technical
difficulties on providers to support efficient dynamic elasticity. On the other hand,
the lack of transparency between the cloud providers and their consumers, which
can be represented in the lack of a formal way to convey the consumer intention to
scale up and down on-demand make it risky for the providers to support dynamic
elasticity to avoid any service level agreement violation. Moreover, cloud consumers
cannot fully trust the cloud providers to perform auto-scale on their behalf without
their consent. This is because these decisions are reflected on the consumers’ bill
(i.e., in the case of scale-up) and may disrupt their business stability (i.e., in the
case of scale-down). As a result, even with current cloud development platforms,
it is still the responsibility of the cloud developers to divide their application into
scalable units, keep track of these components at run-time, and define the set rules
that specify how each scalable unit will respond to the different environment changes
and user demand requests.

Accordingly, while cloud platforms provide services to facilitate deploying and managing
applications in the cloud, it is the platform consumer’s task to select the provider that offers
the cheapest and best offer, then leverage the platform capabilities to ensure agility and
continuity and assure the application portability.

1.1.2 Challenges of Architecting Cloud Applications

Architecting cloud applications to leverage the underlying platform and at the same time
ensure portability is challenging. It requires a full understanding of the service offerings
from different providers and the meta-data artifacts required by each provider to deploy,
run and manage an application. Moreover, it involves complex decisions that are specified
by various stakeholders; such as, financial decisions (e.g., selecting a platform to reduce
costs), architectural decisions (e.g., partitioning the application to maximize availability),
and operational decisions (e.g., distributing modules to ensure availability). The following
is a list a list of the main challenges that motivates the research in this thesis:

(a) The Vendor Lock-in Problem: The cloud “pay per use” model promotes business
agility and promises cost savings. However, for this model to make sense, customers
should have the ability to port their applications between providers to maximize busi-
ness opportunities. Without portability, migrating applications will require partially



Service Date Duration Reason of outage Results

Outage

Twitter Ser- | 2/25/2011 1 to 4 hours | over-capacity significant delays in de-

vice 3/27/2011 per outage livering messages to SMS

and Facebook

Gmail and | 2/27/2011 2 days a bug in one of Google’s | login errors and empty

Google Apps updates mailboxes

Services

Netflix 3/22/2011 4 to 8 hours | rare technical issue prevented customers from

Streaming accessing their queues and

Service streaming content

Amazon 4/21/2011 4 Days stuck volumes caused read | many customers including

Web Ser- and write problems so the | cloud platform providers

vices AWS operators had to dis- | were taken offline

able all control APIs for
the degraded EBS cluster.
There were two services
involved in this outage,
Amazon EC2 and Amazon
RDS Service.

Salesforce 7/10/2012 2 days a power outage caused | many customers were un-
by faulty equipment up- | able to access the compa-
grades in the company’s | nys services
West Coast data centers

Microsoft 10/30/2013 > 20 hours a subcomponent of the | every single Azure re-

Windows system failed worldwide. gion was affected (in-

Azure cluding West US, West

Europe, Southeast Asia,
South Central US, North
FEurope, North Central
US, East Asia, and East
Us)

Dropbox 1/10/2014 2 days a scripting glitch caused | 5 percent of users were
OS upgrades to be ap- | having trouble syncing
plied on actively running | files from the desktop

machines during routine
maintenance.

client, and about 20 per-
cent were having issues
with Dropbox’s mobile
applications

Table 1.1: A Sample of Cloud Service Outages 2011-2014




modifying or even rewriting the application, which is difficult and costly. Therefore,
customers will be locked into a particular vendor. This problem is usually referred to as
the “vendor lock-in” problem [125]. This problem is further escalated if an organization
decided to adopt a hybrid cloud model for security reasons, as an example.

Deployment Architecture Mismatch: Cloud computing promotes reuse at all levels
(i.e., Infrastructure, Platform, and Software). This has been made applicable, within
each provider, through providing standard service-based interfaces, interaction proto-
cols, and architectural styles (e.g., RESTful). Unfortunately, as noted by Garlan, “as
the level of reuse and the complexity of assumption increase, architectural mismatch
become more of an issue” [55] that requires advanced software engineering solutions. A
mismatch occurs due to hidden assumptions about (i) the application domain, (ii) com-
ponents at the same level of abstraction, and (iii) the infrastructure. Cloud providers
use customizable virtual machines that arguably can deal with a mismatch at the code
level by allowing the software components to run on a variety of low-level infrastruc-
tures. However, cloud dynamics represented by the multiple providers and continuous
updates in the platform, infrastructure and applications create a mismatch at the
architectural deployment level. Therefore, an architecture description language that
makes these assumptions explicit is needed.

Lack of Domain Concepts and Methodologies: Although they share many concepts
with existing development paradigms (e.g., real time, service-oriented and distributed
computing); cloud applications have their characteristics, domain requirements, and
development process. There is a need for a modeling language that supports the cloud
application development process and provides the concepts required to (i) address
the cloud specific characteristics, such as malleability (i.e., ability to be re-used, re-
configured, re-combined, and re-composed), availability and self-adaptivity, (ii) specify
the deployment model for a multi-tenant and web-farm friendly application so that the
application can be distributed, parallelized, and hosted in multiple locations [67], and
(iii) support patterns that enable loosely coupled asynchronous interactions and late
binding of services.

Quality Assurance: Current software architectures lack the elements to address the
cloud quality attributes. Moreover, consumers usually overlook these characteristics
as they rely on the providers support. However, as explained earlier, providers poorly
manage and partially support these characteristics. These factors urge for a language
that integrates quality of service and performance models and techniques with the
cloud models; to facilitate design time and runtime analysis to deal with the different
cloud trade-offs.



(e) The Gap Between Cloud Stakeholders: Existing cloud modeling frameworks address
the requirements of each stakeholder individually. An efficient modeling framework
should provide a holistic view that facilitates collaboration between the different stake-
holders at the various cloud service levels.

Several academic and industrial projects aim at addressing the aforementioned chal-
lenges (see [0], [17], [57] to mention few). The results from these projects are necessary to
promote interoperability and contribute to prevent vendor lock-in, but they are not suffi-
cient to adequately manage the complexity of development and administration of multi-
cloud systems [0].

1.2 Problem Description and Research Focus

The challenges explained in the last section uncovered two research gaps:

1. The first research gap is related to the need for an architectural framework to ad-
dress the complexity of the cloud operational requirements and facilitate collaboration
between the different cloud application stakeholders.

2. The second research gap is related to the need for a configuration generator that
is able to (i) generate the configuration space artifacts based on the target vendor
specifications in order to address the vendor lock-in problem, and (ii) bridge the
gap between the architectural models and operational perspectives through model
transformation.

This research is investigating the process of building, deploying and managing cloud
applications. The goal is to build a multi-cloud framework that provides the cloud platforms
users (SaaS providers) with the tools required to exploit cloud platforms capabilities in order
to architect malleable cloud applications that can guarantee the desired service level and
minimize operational costs.

1.3 Approach and Research Questions

To tackle this problem, a Model Driven Engineering (MDE) approach has been adopted.
An overview of the research approach is depicted in Figure 1.1. The approach aims to
provide answers to four research questions. For each of these questions, we explain its
objective and the methodology followed to address it.
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RQ1. How is architecting cloud applications is different from architecting other applications?

RQ2. How can applications be architected for deployment into multiple clouds and how to bridge the cloud
modeling and the configuration spaces?

RQ3. How to extend the framework to support generating analytical performance models for cloud applications?

RQ4. How can the framework be kept up-to-date?

Figure 1.1: Research Approach

1.3.1 RQ1. How is architecting cloud applications different from
architecting other applications?

Objective: The objective of the first question is to devise a software architecture frame-
work for cloud applications. The framework will capture the common practices of the
different stakeholders of the cloud application in order to enable them to create, interpret,
analyze and use architecture descriptions to specify cloud applications deployment and
management aspects.

Methodology: To understand the domain and the architectural requirements of cloud
applications, we started by a study for two cloud computing reference architectures [67];
namely, the NIST Cloud Computing Reference Architecture [115] and the IBM Cloud Com-
puting Reference Architecture [12]. Consequently, a list of cloud services and stakeholder’s



roles have been identified. We considered roles that are directly related to the cloud ap-
plication development and operation process and studied the different financial, design
and operational decisions required to build a cloud application, deploy it, and manage
its operations while running in the cloud. The initial observations were that: (i) a cloud
application needs to evolve dynamically at runtime to meet performance, availability, and
scalability targets, and (ii) the quality of a cloud application depends on its configuration
and the architecture of its service model. These are fundamental differences from what
existing software architecture frameworks address, where the focus is on the application
implementation. In cloud computing, architecture evolves during deployment; therefore,
runtime operation needs as much architectural modeling as functional design does. This
shift in emphasis from architecting for implementation to architecting for service operation
motivated the need for a view model that is constructed around the application service
and deployment model. Chapter 3 provides the details of this model.

1.3.2 RQ2. How should an application be architected to be de-
ployed into multiple clouds and how should cloud modeling
and configuration spaces be bridged?

Objectives: Deploying an application on a cloud platform requires specifying how the
application service model will use the platform resources of that particular provider. Our
objectives are the following:

e facilitate the migration of cloud applications between different cloud providers, first,
by providing an abstraction layer (reference model) for cloud applications to enable
modeling the service structure and configuration independently from the target cloud
platform specifications, second, by mapping the platform independent models into
the target platform specifications as needed.

e maintain the architectural models in synchrony with the configuration space as appli-
cations evolve, through developing a modeling framework that supports transforming
the high-level architectural models into platform specific artifacts.

Methodology: To create a reference model for cloud applications, we started by
domain analysis for the different artifacts required to successfully deploy and manage an
application on three cloud platform providers (i.e., Amazon AWS, Windows Azure and
Google App Engine). Particularly, we analyzed the schemas provided by these platforms.
These schemas specify the syntax and structure of the information that is required by the



platform. Our methodology includes both a manual and semi-automated (cf. Chapter 6)
schema matching process to identify the similar domain concepts and then creates meta-
concepts that describe them independently from the target platform.

To build the modeling framework, we created a meta-model for each of the (5+1) view
models. Then integrated the meta-models into one meta-model, by extending the top ele-
ment of each meta-model from a common meta-meta component, and defining associations
between the elements of the different meta-models. The outcome meta-model is then re-
alized as a layered Domain Specific Modeling Language (DSML), where we utilized the
hierarchical structure of the meta-model to divide the model into layers to facilitate incre-
mental and collaborative modeling. To facilitate model transformation, a model generator
has been implemented. We used template-based transformation as it provides the required
flexibility and portability, since the only thing that needs to be changed to support a new
platform is the template. The details of the meta-models and framework are provided in
Chapter 4.

1.3.3 RQ3. How should the framework be extended to support
generating analytical performance models for cloud appli-
cations?

Objective: The objective here is to allow the developers, system architects and perfor-
mance engineers to analyze the performance of a cloud system under several configuration
and platforms by reusing the existing cloud configuration space artifacts. This should help
them make better decisions regarding the system architecture, design, configuration and
the target platform.

Methodology:

To extend the cloud application framework to support generating analytical perfor-
mance models for cloud applications, we started by analyzing the requirements of perfor-
mance modeling to assess how much information can be reused from the cloud service and
deployment modeling artifacts. The initial observation is that there is a significant overlap
between the information that is required to analytically analyze the system performance
and the information that is required to deploy and run an application on a particular
platform. Accordingly, we extend the framework to capture the application runtime pa-
rameters. Then we defined a set of transformation rules to automatically transform the
StratusML models into Layered Queuing Network (LQN) models. Chapter 5 provides the
details of how to generate LQN models from the StrausML models.



1.3.4 RQ4. How should the framework be kept up-to-date?

Objective: The objective of this question is to support the framework evolution as new
cloud platforms evolve. In MDE, the process of domain model creation, evolution, and
transformation depends on the ability to find correspondences (mappings) between the
concepts of the source and the target models. Consequently, this phase will focus on
devising a semi-automated approach to facilitate matching domain concepts of different
providers’ schemas to facilitate creating new concept abstractions and transformation rules.

Methodology: To automate the generation of alignments between providers’ schemas,
we used schema matching to identify the possible matches between different cloud providers’
schemas. We noticed that the shortcomings of traditional schema matching techniques are
that they rely on linguistic and structural similarities to identify the possible matches. In
the cloud, schema terms diverge so much that such matching is impossible. To address
this challenge we incorporated domain knowledge in the schema matching process. The
details of the proposed schema matching techniques and the results of applying them on
cloud schemas are provided in Chapter 6.

1.4 Research Contributions

This research aims at providing a comprehensive framework that covers the entire Cloud
Applications’ life-cycle. The contributions of this research:

e an architectural view model for cloud applications that focuses on service operation
rather than implementation,

e a modeling framework for cloud applications that

— fragments models into artifacts that are easy to modify,
— allows weaving fragments into model views,
— uses layers and multiple views to facilitate collaboration,

— provides an intuitive way to specify the dynamic behavior of cloud applications,
and

— uses template-based transformation to enable a model-once deploy-everywhere
approach,
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e a pivot performance model for cloud applications and an analytical performance
model generator that

— addresses the dynamic nature of cloud applications, where both the platform
and the application are fluid and continuously changing after deployment,

— captures the cloud application runtime performance parameters, and

— defines transformation rules to automatically transform the cloud models into
Layered Queuing Network models, and

e a schema matching approach for the cloud domain that

— addresses the vendor lock-in problem, and

— reduces the manual efforts needed to create a meta-model and keep it up-to-date
as schemas evolve, and generate transformation templates.

1.5 Document Organization

The rest of this thesis is organized as follows. Chapter 2 briefly reviews the background
concepts and some related work. Chapter 3 characterizes cloud native applications and
proposes an architectural framework for cloud applications. Chapter 4 shows how the ar-
chitectural framework has been realized as a cloud modeling framework (StratusML) that
consists of a modeling language that uses layers to specify the cloud configuration space,
and a transformation engine to generate the configuration space artifacts. Chapter 5 ex-
tends the framework to support capturing the cloud application performance. Chapter 6
shows how to automate the framework evolution as new concerns and cloud platforms
emerge. In which, a new approach has been devised for schema matching and then evalu-
ated using public schemas of two major cloud providers (i.e., Windows Azure and Google
App Engine) and private schemas of two reference cloud models (StratusML and TOSCA).
Chapter 7 summarizes the thesis, draws several conclusions, and suggests ideas for potential
future work.
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Chapter 2

Supporting Concepts and Related
Work

“Learn from yesterday, live for today, hope for tomorrow. The itmportant
thing s not to stop questioning.”
— Albert Einstein, 1955

Cloud computing is a big disruption to how information technology (IT) is consumed
and managed. The concepts and technologies behind cloud computing are not new. It is
believed that the concept of cloud computing is the same as what John McCarthy, in the
1960’s, referred to as the ability to provide and organize computation as a “utility”. The
main characteristics of cloud computing were also discussed by Douglas Parkhill in “The
Challenge of the Computer Utility” in 1966 [124]. On the other hand, the term cloud and
its graphical symbol have been used for decades in computer network literature; first to
refer to the large Asynchronous Transfer Mode (ATM) networks in the 1990s, and then to
describe the internet (i.e., a large number of distributed computers).

Even though the concept is not new, the past few years have witnessed several at-
tempts to define “Cloud Computing”. Vaquero et al. compared 22 different definitions
in an attempt to provide a unified definition [156]. Some of these definitions are gen-
eral: “applications delivered as services over the internet and the hardware and systems
software in the datacenters that provide those services” [50]. Others are more specific de-
scribing the cloud as “a type of parallel and distributed system consisting of a collection of
inter-connected and virtualized computers that are dynamically provisioned and presented
as one or more unified computing resources based on service-level agreements established
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through negotiation between the service provider and consumers”. The fact that cloud
computing is not a purely technical term, as well as the large number of interdisciplinary
technologies that participate in characterizing cloud computing, are the reasons behind all
the different definitions.

The information technology industry has sought to standardize the definition of cloud
computing. One of the first standardized definitions is the one by Forrester Research. In
which, they defined cloud computing as “a standardized IT capability (services, software, or
infrastructure) delivered via internet technologies in a pay-per-use, self-service way” [115].
Forrester’s definition focuses on the service and business models of the cloud; however,
it ignores the deployment models. The most recent and accepted standardized definition
of cloud computing is the one by the National Institute of Standards and Technology
(NIST) [102]:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers, stor-
age, applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction. This cloud model promotes availability
and is composed of five essential characteristics, three service models, and four deployment
models.”

The NIST definition is relatively technical and covers all of the cloud service (IaaS,
PaaS, SaaS) and deployment (Public, Private, Hybrid, Community) models. The NIST
definition is concise and accurate. It distinguishes between the main and derived charac-
teristics (rapid elasticity vs. massive scalability) of cloud computing. Also, it differentiates
between the cloud characteristics and its enabling technologies (i.e. virtualization and au-
tonomic computing). Nevertheless, the definition ignores the “pay-per-use” business model
of cloud computing. However, the “pay-per-use” model was not omitted from the defini-
tion out of ignorance, but because NIST tried to cover all of the cloud deployment models,
including the “private cloud” deployment model, which does not necessarily involve the
“pay-per-use” practice. Instead of explaining the business model, NIST identified the main
technological characteristics that can result in cost reduction and add constraints (e.g., all
services must be measurable) that provide all the requirements for cloud deployment mod-
els to adopt any billing or utility model (i.e. “pay-per-use”).

The rest of this chapter will be organized as follows: Section 2.1 explains the cloud
computing principles and requirements and clarifies the relationship between cloud com-
puting and the service-oriented architecture, grid computing, parallel computing, utility
computing, autonomic computing, and virtualization. In Section 2.2 we present the most
related research projects to the one presented in this thesis.
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2.1 Cloud Computing Principles and Requirements

As shown in Figure 2.1, the NIST definition of cloud computing reveals the main charac-
teristics, delivery models, and service models of cloud computing.

Broad Network ) .- Measured On-Demand
Access }l Rapid Elasticity IL Service II Self-Service

Essential
Characteristics

Resource Pooling

Service Models SaaS PaaS lIaas
Public Private Hybrid Community
Deployment Cloud Cloud Cloud Cloud
Models

Figure 2.1: NIST Visual Model of Cloud Computing Definition.

This section describes the foundation of cloud computing by listing and explaining these
characteristics and models in more detail.

2.1.1 Cloud Computing Characteristics

The following are the five main characteristics of cloud computing that most people agree
upon:

(a) On-demand self-service. Cloud services are on-demand; that is, service consumers
can automatically request the service based on their needs, without human interaction
with the service provider.

(b) Easy to access standardized mechanisms. NIST refers to this characteristic as
broad network access; however, the term “global reach capability” is also used. The
idea is that it should be possible to access cloud services through the network using
standardized interfaces and access mechanisms. Having global reach capability does
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not mean that these services must always be accessible from the internet, because this
depends on the deployment model used. However, it should be possible to reach the
service globally, when policies allow this.

Resource pooling and multi-tenancy. In cloud computing, resources (i.e. stor-
ages, processors, memory, network bandwidth, and virtual machines) are shared be-
tween multiple tenants, and assigned exclusively at run-time to one consumer at a time.
Assigning resources is done dynamically based on the consumers’ needs. Sharing re-
sources can help increase utilization, and hence significantly reduce the operation cost.
Scheduling algorithms can be used to dynamically assign resources to different tenants
based on the type of workload, fairness, locality, and many other factors. [155, ].

Rapid elasticity. Elasticity is the ability to scale in and out by provisioning resources
and releasing them, respectively. Cloud computing should provide mechanisms to allow
quick and automatic elasticity. The large pool of resources in cloud datacenters gives
the illusion of infinite resources to the consumers, and elasticity provides the flexibility
to provision these recourses on-demand.

Measured service. Providing cloud metrology or mechanisms for measuring ser-
vice usage as well as to monitor the health of services is crucial in cloud computing.
Measuring services enables optimizing resources and provides transparency for both
consumers and providers, allowing them to better utilize the service. Measured services
can help in building closed-loop cloud systems that are fully automated.

Auditability and certifiability. Regulatory compliance requires enforcing rules
and regulations. Services should provide logs and trails that allow the traceability of
policies, so as to ensure that regulations are correctly enforced.

The list above (except point (f)) is based on the NIST definition. These characteris-

tics are the most adopted in the cloud industry. Some other definitions may have slight
variations. For example, we added “auditability and certifiability” to the list above based
on the regulatory compliance requirements. Some more specific lists of characteristics can
be made for each layer and each type of service provided in the cloud environment. For
example, at the application level, a possible cloud service characteristic is that a service
must be portable, pre-configured, or adaptable. Chapter 3 provides an example of a list of
more specific characteristics and requirements for cloud applications.
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2.1.2 Cloud Computing Deployment Models

A cloud computing deployment model is a model that describes the environment where
cloud applications and services can be installed, in order to be available to consumers. By
the deployment environment, we mean the physical location, the infrastructure facilities,
the platform constraints, as well as anything that can affect the access mechanisms of the
deployed applications. There are four main cloud computing deployment models: public,
private, hybrid, and community cloud.

(a)

Public cloud: A public cloud or external cloud is an open model, in which the
resources and services (e.g., applications, storages) are provided by a third party (the
cloud providers). The infrastructure or platform services are provided to the public
based on the service-level agreement between the service provider and the consumer.
This type of resource sharing between multiple organizations or consumers is referred
to as the multi-tenancy model. Public cloud is the least expensive choice for application
hosting. However, the lack of a trust model between the cloud providers and consumers
is the main obstacle for this model.

Private cloud: A private cloud or internal cloud is a model, in which the infrastruc-
ture and platform services are hosted and operated entirely by the application provider
on premises. This eliminates the need for a trust model and provides more flexibility.
Organizations can implement their own policies with regards to privacy, security, and
access mechanisms. However, this option is expensive in terms of resources, and the
manpower needed to manage the resources.

Hybrid cloud: A hybrid cloud model is a combination of the public and private
cloud models. It provides a similar trust model for in-house services as in private
clouds, yet it is less expensive than a private cloud as it uses public cloud platforms
and infrastructure for part of its services. However, having both public and private
clouds working together requires interoperability and portability of both applications
and data to allow communication between the models.

Community (cooperative) cloud: A community cloud is similar to extranets, but
with virtualization and on-demand capabilities. In a community cloud, a number of
organizations, which usually share some common goals or belong to a specific commu-
nity, build a shared cloud datacenter that can be used by all of the members. The
goals are to alleviate deficiencies in the individual IT infrastructures, reduce the cost
of administration, and lower the cost per unit [72]. The community can be created
between a professional community (i.e. organizations with business relationship), a
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Attribute

Public Cloud

Private Cloud

Hybrid Cloud

Community Cloud

Cost of building the
datacenter on
service consumer
Operation and
maintenance cost
on the provider

Size of the
datacenter

Infrastructure
Controllability and
Flexibility

Level of trust
Infrastructure
Location
Owner of the
infrastructure

No initial cost

Lowest cost
with respect
to the
datacenter
size
~50,000
Server

Limited
configuration
controllability

Lowest trust,
Off-Premise

The laaS
Vendor

High initial
cost

Highest cost
with respect
to the
datacenter
size

~5,000 Server

Full
controllability
(HW + SW)

Highest
On-Premise

The
Customer

Medium initial cost

Weighted average,
depending on the
percentage of
public and private
parts.

Less than private
Cloud

Full controllability
over the private
part and limited for
the public part
Medium trust

Both On- and Off-
Premise

The laaS vendor
owns the public
part, and the
consumer owns the
in-house part

Varies , depends on
the number of
cooperatives
Similar to private
clouds, but the cost
divided on the
participants

~15000 More than
private cloud but
much less than
public cloud

High controllability
but limited by the
community policies

High trust

Within the
Cooperative Facility
Shared between
the Cooperatives

Table 2.1: A Comparison Between the Different Cloud Deployment Models

geographic community, or some other well-defined community group. A community
cloud relies on the trust relation between all the members, which is driven by their
mutual benefits [24, 98]. As a result, this model is more trusted than the public cloud,
and less expensive on participating members than having a private cloud. This model
also provides more controllability over the shared infrastructure resources. However, a
community cloud still needs to enforce strong security and privacy policies. Further-
more, regulatory compliance is a main obstacle facing community cloud adoption.

Table 2.1 shows a comparison between the different cloud deployment models, based
on the initial cost of building the cloud datacenter or the capital expenses (CapEx) on
the consumer, the operating expenses (OpEx) and maintenance cost of the datacenter, the
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size of the datacenter, controllability and flexibility, the level of trust, the location of the
infrastructure, and who owns the infrastructure.

As shown in Table 2.1 there is no initial cost associated with adopting public cloud
by consumers [139]. Consumers need not worry about creating the cloud infrastructure.
Instead, they can request the services and resources on-demand and pay just for what they
use. Conversely, a private cloud requires a big initial capital investment in order to build
the private datacenter[139]. Unlike the private model, the hybrid model builds a relatively
small private datacenter for sensitive and important tasks and information, and uses the
public cloud for other jobs. For this reason, the cost of adopting the hybrid cloud model is
between that of public and private clouds. Finally, the community cloud model shares the
cost of building the required datacenter with the cooperatives. For this reason, the initial
cost can vary; the larger the community the smaller the share and the lower the cost.

Table 2.1 also shows that the operating cost (i.e. power consumption, manpower ex-
penses, rent, maintenance, upgrades, etc.) of public cloud is lower than the other models.
This is due to the economies of scale, as well as the high level of automation and optimiza-
tion the public cloud. Production costs drop significantly as the number of units produced
increase ! [32]. This allows public cloud providers to enjoy favorable prices for IT equip-
ment and needed resources, since they purchase them in bulk. According to Jon Moore’s
blog, a private datacenter should have on average 10,000 servers to get an economically
feasible marginal cost that is comparable to what current public cloud providers charge
[111]. On the other hand, public providers tend to invest more in automation and opti-
mization, which results in fewer administrative staff. For example, while the ratio between
IT staff to servers is (1:100) [60] in traditional datacenters, this ratio goes to (1:1000) [60]
and even (1:5000) in public cloud datacenters.

It is clear from Table 2.1 that consumers can have full control over a private cloud infras-
tructure, whereas in a public cloud, controllability is limited to tuning some configuration
parameters. On the other hand, while community cloud consumers can have access and
control over the infrastructure, this controllability is bounded by the community policies
and agreements.

The level of controllability and flexibility can also affect the level of trust. This explains
why consumers trust the private cloud model more than the other models. However, it is
important to note that the level of trust is not related to the actual security level. Public
cloud providers tend to implement best practices and try to ensure security at every level
of the security stack. However, the cloud computing paradigm introduces new security

IThis phenomenon is referred to as the experience curve effect and was first noticed by Bruce Henderson
in 1960 at BCG (Boston Consulting group).
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threats that did not exist in traditional datacenters, such as threats related to sharing
resources through virtualization [32]. Most of these threats are equally applicable to both
public and private models. Some of the cloud security myths assume that all clouds are
created equally [14], while others assume that public and private cloud providers have the
same experience and capabilities to implement security measures [107] for data protection,
identity management, compliance, access control rules, and other security capabilities. If
these assumptions are true, then a public cloud is the least secure, while a private cloud is
the most secure.

Cloud deployment models differ based on the infrastructure’s owner, location, or oper-
ators and their policies. One model does not fit all business types. The selection of a cloud
deployment model depends on the consumers’ need and budget, and on whether they favor
price reduction and control delegation over flexibility, control, and customization.

2.1.3 Cloud Computing Service Models

This subsection presents and compares the cloud computing service models. Cloud service
models are sometimes referred to as the cloud service hierarchical view [151], cloud service
offerings, cloud service delivery models [93], or the cloud service layered architecture, in
analogy to the network layered architecture. Cloud service models try to classify “any-
thing” providers offer as a service (XaaS), where X means is an arbitrary service (e.g.,
infrastructure, software, storage). A cloud service model represents a layered high-level
abstraction of the main classes of services provided by the cloud computing model, and
how these layers are connected to each other. This separation between layers allows each
cloud provider to focus on the core services they provide, while at the same time being
able to reuse the services from the lower layers by following the set of standard communi-
cation mechanisms and protocols between the different layers. Layers differ based on the
management scope covered by the provider [12], which means that a user in the upper
layers cannot bypass the interfaces provided by the layer beneath, so as to directly access
the resources. This separation does not only help in service integration but also allows
having a fully distributed, scalable, and fault-tolerant architecture. By having different
layers with different abstraction levels, cloud providers can have better manageability over
the resources, as well as higher controllability and security.

As in the network layered architectures (i.e. OSI, TCP/IP), there are different cloud
service models. These models vary based on the time they were proposed, relative to the
maturity of the cloud computing paradigm at that time; and on the level of detail in these
models, as represented in the number of model layers. However, the differences between
service models do not contradict each other. Instead, these models are complementary [2].
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Infrastructure-as-a-Service Infrastructure-as-a-Service
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Figure 2.2: Cloud Service Models (a) SPI vs. (b) IBM.

This subsection will briefly discuss the main two service models: The NIST SPI model
[102] (aka, the three service-layers model), and the IBM service model [12] (aka, the four
service layers model). Figure. 2.2 shows a comparison between these two models.

The NIST SPI model:

The SPI model classifies the services provided by the cloud providers into three main
categories (layers): Software services, Platform services, and Infrastructure services. The
SPI model is named after these categories, which are described below:

e Software as a Service (SaaS): A service is classified as a software service if it allows
the consumer (end user) to access and use a provider software application that is
owned (hosted), deployed, and managed by the provider. Consumers normally have
limited control over the application, and are restricted in how they can use and in-
teract with the application. The application is usually accessed via a thin client
(i.e. web browser), through which consumers can input data and get output [102].
Because most SaaS services are specific applications rather than being generic soft-
ware services, SaaS is sometimes referred to as Application-as-a-Service. Examples
of SaaS are content services such as video-on-demand (i.e Netflix), email services
(i.e. gmail), and business applications such as customer relationship management
applications (i.e. Salesforce).
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e Platform as a Service (PaaS): A service is classified as a platform service if it allows
the service consumer (usually a SaaS provider, cloud developer, or administrator) to
define, develop, configure, deploy, manage, and monitor cloud applications. While
PaaS allows consumers to deploy and control applications and their hosting environ-
ment configurations, consumers do not have direct control over the underlying cloud
infrastructure [102]. PaaS services abstract the communications with the lower-level
infrastructure by providing easy to access and easy to use interfaces. Operating
systems and application frameworks are part of the PaaS layer.

e Infrastructure as a Service (IaaS): A service is classified as an infrastructure service
if it allows the service consumer (usually PaaS providers) to lease infrastructure
capabilities based on demand. The infrastructure capabilities include processing,
storage, network or any other basic computing resources that can be used to deploy
and run platforms (i.e. operating systems, management tools, development tools, and
monitoring tools) and the applications developed on top of the platforms. Again,
consumers are not given direct access to resources but have the ability to select
and configure resources as required based on their needs [102]. IaaS is sometimes
referred to as the virtualization layer, since it utilizes virtualization technologies to
partition physical resources, so as to provide the consumers with a pool of storage
and computing resources.

IBM service model:

According to the IBM Cloud Computing Reference Architecture [12], a cloud service model
consists of four service layers; from top to bottom, these are the Business-Process-as-a-
Service, Software-as-a-Service, Platform-as-a-Service, and Infrastructure-as-a-Service lay-
ers.

The last three layers are exactly the same as in the SPI model. In fact, IBM used
the same definition of SaaS, PaaS and [aaS as defined according to the NIST SPI model.
The only difference between the IBM service model and the NIST SPI is in the Business-
Process-as-a-Service (BPaaS) layer. Since this is the only difference, we will only explain
BPaaS and why it was introduced.

e Business-Process-as-a-Service: A service is classified as a business process service if
it allows the consumer (end user, business process manager, or designer) to design,
manage and integrate a set of transactional and collaborative activities based on the
SaaS provided in the layer beneath, so as to accomplish a specific business organi-
zational goal. Accordingly, IBM classifies any business process service - whether it
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focuses on technology and reuse (horizontal), or it is domain specific (vertical) - as
BPaaS if and only if the service (i) represents a business process that is delivered
through the cloud computing model based on its main characteristics, as defined
in the NIST definition (i.e. multi-tenant service, self-service, elastic, metered, and
priced); (ii) accessed through a web-centric interface; (iii) and utilizes a web-oriented
cloud architecture. Similar to IaaS and PaaS services, the service provider of a BPaaS
provides the tools to access and utilize the resources in the BPaaS layer. Consumers
do not need to access services in the underlying layers. “a BPaaS provider is re-
sponsible for the related business function(s)[12]”. Some examples of BPaaS include
a process for employee benefits management; and IT-centric processes, such as a
process for software testing where the whole process, including the testing staff, is
provided as a cloud service.

As mentioned earlier in this subsection, currently there are many cloud service models in
the market. This is because different cloud providers use different service models to reflect
the types of services they provide. However, the differences between cloud service models
are minute. In addition, these models complement each other. The most dominant service
models currently in use are the ones discussed in this subsection. The next subsection
discusses the relationship between cloud computing and other computing paradigms.

2.1.4 The Relationship Between Cloud Computing and Other
Computing Paradigms

Cloud computing is the result of evolution and adoption of existing technologies and
paradigms. The goal of cloud computing is to allow users to take benefit from all of
these technologies, without the need for deep knowledge about or expertise with each one
of them. The cloud aims to cut costs, and help the users focus on their core business
instead of being impeded by IT obstacles. Figure. 2.3 summarizes how cloud computing is
related to the other technologies that it has emerged from.

The figure shows that the main enabling technologies for cloud computing are virtu-
alization and autonomic computing. Virtualization abstracts the physical infrastructure,
which is the most rigged component, and makes it available as a soft component that is
easy to use and manage. By doing so, virtualization provides the agility required to speed
up IT operations, and reduces cost by increasing infrastructure utilization. On the other
hand, Autonomic Computing automates the process through which the user can provision
resources on-demand. By minimizing user involvement, automation speeds up the process
and reduces the possibility of human errors.
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Figure 2.3: Cloud Computing Relationship with Other Computing Paradigms.

Users face difficult business problems every day. Cloud computing adopts concepts
from SOA that can help the user break these problems into services that can be integrated
to provide a solution. Cloud computing provides all of its resources as services, and makes
use of the well established standards and best practices gained in the domain of SOA to
allow global and easy access to cloud services in a standardized way. Cloud computing also
utilizes concepts from utility computing in order to provide metrics for the used services,
based on the benefits gained. These metrics are at the core of the pay-per-use model in
public clouds. Having measured services is also an essential part of completing the feedback
loop in autonomic computing, which is required for fully automating services so that they
can scale on-demand and automatically recover from failures.

Cloud computing is a kind of Grid Computing; it has evolved from Grid by addressing
the QoS and reliability problems. Cloud computing provides the tools and technologies to
build data/compute intensive parallel applications with much affordable prices compared
to traditional parallel computing techniques.

More details of the relationships between cloud computing and other computing paradigms
can be found in our survey paper [67].
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2.2 Related Research Projects

Our work has taken shape in the context of a rich literature focused on viewpoint architec-
ture frameworks, model-driven engineering and quality prediction, cloud domain specific
modeling languages, and lastly schema matching for cloud vendor schemas. Here we relate
our work to the most related projects in each of these fields.

2.2.1 Viewpoint Architectural Frameworks

A viewpoint is a set of representations (views and models) of an architecture that covers
a stakeholder’s issues. In Chapter 3, the (5+1) view model, which is an architectural
view model for cloud applications is presented. The model uses different views to describe
different perspectives of the cloud application deployment. Using multiple views to explore
systems from different angles is a common practice in software engineering. For example,
Krutchen [91] famously proposed four views: logical, development, process and physical;
plus “use cases” as the fifth view, to completely describe the lifecycle of a software system.
Zou and Pavlovski [165] extended the (44-1) view model by adding a control case view to
address non-functional system requirements.

The (4+1) view model [91] is an example of many other frameworks used in software
development. Some of these examples include: the Department of Defense Architecture
Framework (DoDAF) [120], the Three-Schema Approach, [¢1], Zachman Framework [162],
the Reference Model of Open Distributed Processing (RM-ODP) [94], and the Open Group
Architecture Framework (TOGAF) [157]). These frameworks are not cloud specific; they
do not target the cloud applications’ development process, or capture the domain specific
constraints related to the cloud platforms and providers. The aforementioned frameworks
are generic enough to describe large class of software systems. However, they only con-
sider the dynamism and variability of the design model and assume a static deployment
infrastructure. Even when deployment models are considered, they are considered as part
of the lifecycle and not a driver of architectural evolution.

The (5+1) model was inspired by the (4+1) model process view [91]. In fact, if tasks
are considered processes, the (5+1) model can be seen as an extension of the process view,
distinguished by its focus on the cloud application ecosystem (represented by variable
deployment models, dynamic infrastructure, and standardized service offerings). The (5+1)
model augments its core with elements that enable quality prediction. Its views are limited
but expressive enough to cover operational requirements and the application lifecycles in
the cloud.
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2.2.2 Modeling Frameworks for Cloud Applications

An architecture framework is an encapsulation of a minimum set of practices and require-
ments for artifacts that describe a system’s architecture. Models are representations of
how components in a system fit structurally in and behave as part of the system, where
views are a partial expression of the system from a particular perspective. This section
focuses on the state of the art modeling frameworks for cloud applications. We focus on the
frameworks that utilize model driven engineering to reduce the complexity of managing the
configurations of the cloud applications and their deployment into multi-cloud platforms.

Recently, there have been several projects and proposals that exploit model driven
engineering to address the cloud applications’ modeling and management concerns. A sheer
volume of these projects addresses a single concern at a time; such as portability [62, ,

], or security [1]. This thesis devises a multi-cloud and multi-concern framework that
addresses the provisioning, deployment, adaptation, orchestration and performance of the
cloud services into multiple cloud platforms. The following is a list of the cloud modeling
frameworks that are the most relevant to our project (i.e., the StratusML framework). For
each of these projects, we provide a brief description.

SINTEF-REMICS [22] REMICS stands for Reuse and Migration of legacy applications
to Interoperable Cloud Services. The project was initiated in September 2010 by the
Foundation for Scientific and Industrial Research in Norway (SINTEF). The objec-
tive of the project is to develop tools based on model-driven engineering to support
the migration of legacy applications to the cloud service model. To support the
migration process, REMICS offers a set of modelling concepts at the cloud infras-
tructure as a service (laaS) level and a domain specific language called PIM4Cloud.
PIM4Cloud enables designers to model applications that can be deployed on the
cloud. PIM4Cloud is cloud provider independent. It is implemented using Scala as a
hosting language. Different from the StratusML language, PIM4Cloud focuses only
on modeling the cloud infrastructure concepts.

SINTEF-CloudML [22, 57] CloudML is another project by the Foundation for Sci-
entific and Industrial Research in Norway (SINTEF). The project started in 2012.
CloudML aims to model service profiles and developers requirements and to repre-
sent the physical and virtual resources in D-Clouds as well as their state. SINTEF
defined D-Clouds as small scale distributed datacentres where resources are shared
across geographic boundaries. CloudML is an XML-based language, and it is based
on three requirements: (i) representation of physical and virtual resources as well as
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their state; (ii) representation of services provided; and (iii) representation of devel-
opers requirements. While both StartusML and CloudML are multi-cloud, CloudML
does not support visual modeling (i.e., CloudML is an XML-based language) and
multi-layers. Moreover, CloudML is limited to represent the concerns related com-
putational and network resources, provider services, and developers requirements.
CloudML has been extended and adopted by several other European projects includ-
ing MODAC]louds [6], ARTIST[153], and PaaSage [35].

mOSAIC [113, , ] The mOSAIC project is another multi-national European project

that started in 2010. mOSAIC aims to address the challenges of application portabil-
ity and interoperability across multiple clouds. It provides an agnostic API at laaS
level and an open source platform, with adapters to most notable cloud providers
APIs, in order to enable developing cloud applications with abstraction of TaaS ser-
vices and provisioning and deploying the applications on multiple clouds. Different
from StratusML, which uses model driven technologies, mOSAIC uses semantic tech-
nologies. mOSAIC creates a cloud ontology and semantic engine for service brokerage
to help users select the API components and functionalities needed for building new
Cloud applications as well as in identifying the proper cloud resources to be con-
sumed.

ARTIST [153] ARTIST stands for Advanced software-based seRvice provisioning and
migraTlon of legacy SofTware. It is a European integrated project that started
in 2012. ARTIST aims at migrating existing software applications to the cloud as
software as a services. It covers both business and technical aspects of the software
and uses a model-based modernization approach based on UML profiles to provide
a vendor- and platform-independent methodology to enable automating the reverse
engineering and forward engineering phases to support the migration, maintenance
and evolution of cloud-based applications. ARTIST focuses on the on one concern
that is migrating already existing (legacy) applications to the cloud. The objectives of
ARTIST are different from those of StratusML. StratusML focuses on enabling the
cloud stakeholders to build cloud applications, and addresses multi-concerns (e.g.,
Portability, Performance, Availability, Adaptation and Cost).

MODACIlouds [6] MODAC]louds is a European project that started in September 2012.
It focuses on challenges that face the application developers and operators, when
adopting a cloud solution. The objectives of the MODACLouds are to avoid the
vendor lock-in by enabling system developers to design clouds agnostic software
applications, and facilitate the management and deployment of these applications
across multiple clouds. MODACIlouds offers: (i) a Decision Support System (DSS)
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to guide the selection of Clouds based on cost and requirements, (ii) an Integrated
Development Environment (IDE) to support high-level design, early prototyping, and
semi-automatic code generation, (iii) a run-time environment to support monitoring
and self-adaptation. To model multicloud application, MODACIouds uses three dif-
ferent levels of abstraction: a Computation Independent Model (CIM) in which non-
functional requirements are modeled, a Cloud-Provider Independent Model (CPIM)
where cloud concepts are introduced into the model but kept away from any spe-
cific platform, and a Cloud-Provider Specific Model (CPSM) in which the artifacts
required by each specific platform are introduced into the models.

ModaClouds is the most related project to StratusML. The objectives of both projects
are the same. However, ModaClouds and StratusML are different in terms of im-
plementation technologies and the set of features they provide. StratusML uses
template-based transformation and layered view model. On the other hand, MODA-
Clouds provides monitoring capabilities. Both StratusML and MODAClouds support
performance modeling and analysis. StratusML transforms the StratusML models in
Layered Queueing Network (LQN) models, while MODAClIlouds allows users to de-
scribe the architecture of their application by means of Palladio Component Models
(PCMs).

PaaSage CloudMF and CAMEL PaaSage is nation-wide European project that started
in October 2012. PaaSage aims at leveraging model-driven engineering techniques
and methods to facilitate the specification and execution of cloud-based applica-
tions. PaaSage adopts the Cloud Application Modelling and Execution Language
(CAMEL) that integrates and extends five domain specific languages [11]; namely,
CloudML [57], Saloon [135], CERIF [80] and Scalability Rule Language (SRL) [90].
PaaSage realizes CAMEL as a modeling framework called the Cloud Modelling
Framework (CloudMF) [18]. CloudMF has been implemented as an extension to the
Eclipse Modelling Framework (EMF). CloudMF enables engineers to specify multi-
ple aspects of multi-cloud applications. CloudMF consists of two components: (i)
CAMEL, the modelling environment (DSL); and (ii) Models@run-time, which pro-
vides an abstract representation of the running system. CloudMF and the PaaSage
project are still in the development phase. The project is expected to be completed
by September 2016.

Caglar DSML In 2013 [27], Caglar et al. proposed a model driven engineering frame-
work that consist of a domain specific modeling language and generative technologies
to address three cloud challenges; namely, (i) programming and deployment hetero-
geneity, (ii) resource management, and (iii) performance and cost estimation. Caglars
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framework targets the cloud customers to enable various cloud service providers ag-
nostic “what-if analyses while automating the deployment and resource management.
The main feature that distinguishes StratusML from Caglars framework it its ability
to model the self-adaptation behavior.

TOSCA and Winery The Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) [17] is a standard for cloud computing developed by the Organization
for the Advancement of Structured Information Standards (OASIS). The first draft
of the standard has been approved in January 2014. TOSCA provides an XML based
language for specifying the cloud applications components and structure described
by a topology (i.e., service templates) along with the processes that describe the
applications management plans (e. g., provisioning or migration). Kopp et al. [37]
developed the a graph-based modeling language called Winery that supports model-
ing of TOSCA-based applications. Winery is HTML5-based environment that offers
support for the complete TOSCA standard: Most importantly, types can be defined
in the Element Manager and composed in the Topology Modeler. Similar to Stra-
tusMLs core service model, TOSCA aims at enabling specifying the cloud application
deployment and management independently from the target platform. However, the
TOSCA currently lacks the components required to specify other concerns such as
adaptation and performance as in StratusML.

Blueprint The Blueprint Specification Language (BSL) [117] is a uniform specification
language, for specifying cloud services across several cloud vendors. Nguyen et al.
developed BSL in 2012 at Tilburg University. The BSL is divided into modular
modules to cover all aspects of a cloud service specification. Depending on the
cloud layer (i.e., SaaS PaaS, TaaS), a BSL user can select modules to specify his
cloud service. Different from StratusML, BSL focuses only on portability aspects. It
uses XML-based syntax that is supported by OWL schema model to formalize the
semantics.

MULTICLAPP The MULTICLoud migratable and interoperable APPlications (MUL-
TICLAPP) [63] is a framework that aims to enable the cloud developers to model
cloud applications and support their adaptation and migration without the need for
the developers to be familiar with the specification of any cloud platform. Different
from the StratusML approach, where we built a domain specific modeling language
from scratch, the MULTICLoud approach is based on creating a UML profile for
modeling multicloud applications. The UML profile provides a set of components
and stereotypes to model and annotate cloud application with the deployments and
run-time parameters.
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CloudMIG CloudMIG [53] is a framework to facilitate the migration of legacy software
systems to the Cloud. CloudMIG offers a Cloud Environment Model (CEM) and
a dedicated tool support (CloudMIG Xpress). The CEM model is realized as an
ecore metamodel. The metamodel provides the components required to specify both
the cloud application and cloud environment. Particularly, the CEM model provides
components to specify the environment; mostly at the infrastructure level, and par-
tially at the platform level. Moreover, CloudMIG enables specifying the application
constraints, pricing, and deployments parameters. CloudMIG Xpress is a prototype
implementation of the CloudMIG approach. CloudMIG Xpress enables the auto-
matic computation of optimal cloud-based deployments and conformance checking
of legacy software with respect to potential cloud providers. Both StratusML and
CloudMIG are based on model driven engineering. While our approach starts from
current Cloud platforms to extract common vocabulary and elements to create a
Cloud meta-model, CloudMIG starts from existing legacy systems, extracts the ac-
tual architecture, and then uses the selected target cloud platform meta-model along
with a utilization model to generate a target model toward system migration.

SOCCA In 2010, Tsai et al. [154] proposed the “Service-Oriented Cloud Computing Ar-
chitecture” to enable Cloud Applications to work with each other. The proposed
architecture is a three layered architecture that consists of a Cloud ontology mapping
layer, a Cloud broker layer, and a SOA layer. The work we are presenting in this
research falls under the ontology mapping layer where we define a reference model,
providing the main vocabulary of Cloud Applications and the relations between them.
The reference model takes into consideration the multi-tenancy pattern (the Single
Application Instance and Multiple Service Instances) presented by the authors.

Charlton Model In 2009, a model-driven approach for building cloud solutions is also
presented by Charlton et al. [30]. Three design goals, which are similar to our goals,
are presented. These goals are the following: the separation of applications from
infrastructure, the enablement of computer-assisted modeling and control automa-
tion, and the explicit collaboration to enact changes. In the same publication, the
authors denoted eight characteristics that a Cloud Application should incorporate,
in order to achieve the above-mentioned goals. Furthermore, this industrial paper
introduced and briefly described three Elastic Modeling Languages (EML) for com-
puting, deployment and management of elastic applications. The reference model we
are presenting in this research acts as a meta-model for such languages and conforms
with the goals presented in this paper.

Reservoir Manifest Language The Resources and Services Virtualization without Bar-
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riers (Reservoir) [110] is a European cloud computing project supported by IBM. The
project started in 2009, with the aim is to provide a modular, extensible cloud ar-
chitecture to support service management and the federation of clouds. Reservoir
utilizes virtualization to enables efficient migration of resources, maximizes resource
exploitation, and minimizing their utilization costs. In 2012, Reservoir introduced its
Manifest Language [29]. The Reservoir Manifest Language is an XML-based language
that extends the Open Virtualization Format (OVF) [21] to enable developers to de-
scribe the cloud service requirements, deployment constraints and elasticity rules.
A service manifest is a contract between the service and the infrastructure. The
abstract syntax of this language is defined using the Essential Meta-Object Facility,
while the behavior constraints of the underlying infrastructure are expressed in OCL.

Variation Analysis Variation analysis is the technique proposed in [164] as a way of de-
signing cloud applications. The authors defined a set of Architectural Building Blocks
and ways to assemble a Cloud-SOA solution from them, using variation analysis.
This approach is specifically designed and checked for service oriented architecture
software systems built using the service-oriented solution stack, a template layered
architecture from IBM.

Maximilien Middleware The need to detach the cloud application development process
from specific cloud platforms is addressed in [100]. A platform-agnostic middleware
is proposed. This middleware lies on top of the Platform-as-a-Service layer. It
provides API and services to be used by cloud users, and transparently deploys the
application to a specific (but initially unknown) cloud platform. Interestingly, this
approach relieves developers from the cloud vendor lock-in problem, but ties the
development of cloud applications to the proposed middleware.

Overcat A bottom-up approach for assembling cloud applications from simpler compo-
nents, the MacroComponents is presented in [99]. The proposed approach leverages
a number of open source technologies, in order to provide a component model for
building cloud applications. Open source technologies involved, include the OSGi
component model, the P2 provisioning infrastructure for OSGi component model,
and the CloudClipse, which is an eclipse plugin for managing the deployment and
installation of specific virtualization images used in cloud platforms, such as Amazon
EC2 or Eucalyptus.

C3A Framework CA Labs [20] proposed a cloud architecture to facilitate compatibility
between ITIL and cloud computing, as well as portability of cloud applications be-
tween different cloud vendors. The goal is to maximize the return of I'T investment
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(ROI) in cloud computing. The approach’s foundation is the C3A paradigm. The
reference architecture consists of specific components, which enable provisioning of
application’s agreement on SLAs, and the migration of the application to different
Cloud vendors. The proposed architecture is essential for migrating I'TIL compatible
applications to the Cloud, and managing existing Cloud Applications. Nevertheless,
our research presents a reference model rather than a reference architecture. The
proposed reference model facilitates the cloud application development, from the
design to the implementation, in a transparent way, without depending on specific
Platform-as-a-Service or Infrastructure-as-a-Service components.

In addition to the aforementioned projects, there are also distinct technologies and in-
dustrial projects that bear similarities to StratusML. These tools are usually described as
DevOps tools such as Cloudify, Chef [31], Puppet [133], AWS CloudFormation [3]. These
tools facilitate the deployment of applications and services, as well as the configuration
management of cloud capabilities. Some of these tools are provider specific (e.g., Cloud-
Formation), thus, they do not address the vendor lock-in problem. Moreover, all these
works are at the code-based level; hence, they do not leverage the power of models, such
as the ability to verify the correctness and completeness of the models.

2.2.3 Model-Driven Quality Prediction

Using model driven engineering for managing and configuring software systems at runtime
to satisfy desired quality attributes is not new [18]. Examples of approaches that address
this problem are surveyed in [38, 77, 89], and more recently in [77]. The shortcomings
of these approaches are: (i) most of them are limited to performance, (ii) they focus on
domains other than cloud computing, and (iii) they normally capture the dynamics of the
software components only without considering the dynamics of the underlying resource
model. The framework proposed in this thesis addresses these issues. In addition to per-
formance, the framework addresses cloud specific issues such as availability and adaptation
(elasticity) for malleable applications and fluid infrastructure.

Model-driven quality prediction approaches can be differentiated based on: (i) the
analytical prediction model it uses, (ii) the architecture-level performance models that
describes the system under test functionality, (iii) the model transformation process, and
(iv) the level of automation involved.

e Analytical prediction models are used to analyze the non-functional properties
of the system (e.g., system performance). Common analytical models include Petri
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nets [3, 10, 110], Queueing Networks (QNs) [104, 117], Stochastic Process Algebra [35,
|, or Layered Queueing Networks (LQNs). There is a significant number of research
studies that have been dedicated to evaluate the different performance models [15,
]. Based on the recommendations of these studies, the StratusPM adopts the
Layered Queuing Network Models (LQNM) as a target performance model. In a
nutshell, queuing network approaches are more appropriate for performance analysis
for systems with non-linear service centers such as in software systems, because of its
ability to capture contention in resources and services [101], and because it does not
suffer from state space problems as in petri-nets, markov models and other approaches
that depends on state representations. Another important factor to select LQN is
the availability of solvers that take as input a well formed model.

Architecture-level performance models depict the system architecture and the
key performance factors, resources, and usage profile of the system. According to
Koziolek [389] classification, architecture-level performance models can be based on:

(i) UML extensions (e.g., ComponentBased-Software Performance Engineering (CB-
SPE) [10]), the UML Profile for Schedulability, Performance and Time (UML-
SPT) [113], the UML Profile for Modeling and Analysis of Real-Time and Em-
bedded Systems (MARTE) [123]), or

(ii) proprietary meta-models (e.g., KLAPER [33], the Component Based Mod-
elling Language (CBML) [161], ROBOCOP [19], Palladio Component Model
(PCM) [11]), Descartes Modeling Language (DML) [38]. The approach pre-
sented in this thesis is cloud specific and is based on proprietary meta-model
(i.e., the StratusML meta-model).

Model transformation in model-driven performance prediction approaches in-
cludes converting the source model architecture-level performance model into an-
alytical model. Several transformation approaches are available [105]. Selecting the
best approach depends on many factors. Mens and Gorp provided a taxonomy of
model transformation approaches and tools [105] that can assist in selecting the best
tool and approach that fits each case. Following their taxonomy and based on the
source (architecture model) and target model (analytical model) we selected a trans-
formation approach that support vertical, exogenous and refinement transformation
to be able to bridge the architectural abstract modeling space with the XML technical
space. Particularly, we selected a template-based transformation approach.

Level of automation. Performance models can be created automatically using the
information in the runtime model application or using the design specifications [25].
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Regarding the latter approach, performance models can be derived from a variety
of different design specifications such as the Unified Modeling Language (UML) in-
cluding sequence, activity, and collaboration diagrams [131], execution graphs and
use case maps [127], Specification and Description Language (SDL) [33], or object-
oriented specifications of systems like class, interaction, or state transition diagrams
based on object-modeling techniques [39]. Automation can also depends on how
the mapping rules (transformations) are generated. This thesis provides a unique
approach with this regard as shown in Chapter 6.

While several approaches have been proposed in the literature to deal with capturing
the performance aspects, and automating the analytical performance model generation
from component and service models [38, 13, , ], according to our best knowledge,
only few frameworks address the automatic generation of analytical performance models
from cloud application artifacts and models. The most related to our project is the work
by Franceschelli et al. framework “Space4Cloud” [51, G1]. The System PerformAnce and
Cost Evaluation on Cloud (Space4Cloud) is an integrated environment for model-driven
design-time QoS assessment and optimization of cloud applications. Space4Cloud has
been developed as part of the MODACloud project. Both Space4Cloud and StratusPM
frameworks share the same goal; derive analytical performance models from cloud appli-
cations. However, there is a number of differences between both frameworks. First, while
Space4Cloud is based on PCM, our approach is based on extending LQNM. Second, the
focus of Franceschelli is to anticipate performance analysis at early stages in the software
development. However, our focus is to integrate the architecture of the application in
the decision making process at run-time to enable dynamic adaptation for systems with
variable architecture.

2.2.4 Schema Matching for the Cloud Vendors’ Schemas

As explained earlier, the most common way to address portability is through abstraction
approaches (e.g., meta-modeling, feature modeling, ontologies) [137, |. Abstraction ap-
proaches highlight the commonalities and differences between the different provider models.
Several standardization bodies [92] have created cloud domain reference models and ontolo-
gies in an attempt to tackle the portability problem. Unfortunately, it is almost impossible
to impose a single standard that covers all providers. In fact, several contributions in
the literature have also concluded that having a single standard is not advisable in prac-
tice [73, , |. This makes schema matching a mandatory requirement for portability
in order to bridge the gap between the different providers and standards.
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Schema matching is the process of discovering correspondences between the elements
of two schemas. Figure 2.4 shows a typical schema matching process that is composed of
two steps; namely, similarity analysis and elements mapping.

Element-Based
Similarity Computation
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Structure-Based
Similarity Computation
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<|: Elements Mapping

Figure 2.4: The Schema Matching Process [65]

Given two schemas (s1,s2), similarity analysis uses element-based, or a combination of
element-based and structure-based techniques to measure the similarity between the two
schemas. Element-based techniques usually depend on measuring the syntactic or semantic
similarity between entities. On the other hand, structure-based techniques use the results
obtained from the element-based techniques to measure the similarity between the inter-
related elements. Normally, structure-based techniques use graph-matching algorithms to
analyze the structural similarity between the schemas [103].

The element mapping process compares the similarities and filters the results to estab-
lish the final matching. Mapping can be done manually based on the proposed matches or
automatically based on threshold filtering.

Matching schemas enables the knowledge and data of the source schema to be ex-
pressed with respect to the matched target schema, which facilitate portability [115]. Sev-
eral solutions for schema matching have been devised in the last decades [9, 103]. Many
surveys [136, 144], and books [I13] have thoroughly covered the topic. Morover, several
schema-matching tools have been developed by the database community in the past two
decades; Cupid , COMA++ [7], AgreementMaker [11] and Openll Harmony [!12], are
possibly the most noticeable.
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Table 2.2 shows a comparative overview of these tools. These tools integrate useful
matchers based on linguistic, and structural based matching techniques, they provide com-
prehensive GUIs, module importers, and facilitate domain knowledge matching based on
external dictionaries. Unfortunately, none of these tools currently support semantic match-
ing based on web search results, or incorporate domain knowledge in the way that Liberate
does. For this reason the work presented in Chapter 6 not only paves the way for solving
the cloud vendor lock-in problem, it also contributes to the schema matching community
by making search-based semantic similarity matching, gloss based matching, and the gen-
eralized similarity flooding (SF++) available as part of one of the most comprehensive
schema matching tools (OpenlI).

Table 2.2: Comparison of Selected Match Tools

Agreement | OpenlI
Maker Liberate
2002/2005 | 2007 2008

Comparison Criteria Cupid | COMA++

First time introduced
Comprehensive GUI
Matchers | Linguistic
Structural
Web

Use of External Dictionary
Extensibility Support

><<><§§><§

X X~
X X~
ENNAS A

The role that schema matching can play to address the vendor lock-in problem is
unquestionable. To date, the only research initiative we are aware of that plans to adopt
schema-matching is mOSAIC [113]. As part of mOSAICs work toward this goal, Cretella
and Di Martino [10] described a schema matching prototype system that aims to support
mapping of providers functionalities and resources between the different providers APIs.
Different from our approach, Cretella and Di Martino approach uses a traditional linguistic
schema matching approach based on syntactic analysis and WordNet thesaurus. The study
presented in this thesis uncovers the problems in such approaches and provides a solution
through incorporating domain knowledge using web-search based semantic matching (Web
Similarity Measure).

The relationship between cloud computing and schema matching is mutual. Schema
matching contributes to solving the vendor lock-in problem, while cloud computing can be
used to develop efficient schema matching systems to address some limitations of existing
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mapping processes (i.e., scalability). For example in [1 18] the authors use cloud computing
to support the collaborative reconciliation of schemas.

Using web metrics for semantic disambiguation is not new. Cilibrasi and Vitanyi paper
“The Google similarity distance” [31] has been cited over a thousand times since 2007. The
Liberate approach proposed in Chapter 6 distinguishes itself by virtue of our application
domain and implementation. Chapter 6 provides a case study from the cloud domain, and
evaluates the applicability of web-metrics in addressing the vendor lock-in problem.

2.3 Summary

This chapter reviewed briefly the principles and terminologies in the domain of cloud
computing and highlighted some of the most related research projects to this thesis. The
projects selected are those that are classified as multi-cloud frameworks that address multi-
concerns and target the portability and interoperability issues.

Our initial investigation shows that there is no unique solution that takes into account
all the aspects required to manage the deployement and operation of cloud applications into
multi-clouds. Moreover, there is a need to automate the process of mapping the different
providers’ artifacts and generating transformation rules from the standardized languages
to the platform specific artifacts. In the next chapter we will present our approach to
address the muti-cloud concerns that need to be taken into consideration while building
cloud native applications.
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Chapter 3

An Architecture Framework for
Cloud Native Applications

“Being cloud-native is more about the application architecture and design than
how you code the thing... cloud native applications are 70% more efficient
than traditional applications migrated to a cloud”

—David Linthicum

This chapter presents an architecture framework for cloud applications, here after called
the (54+1) view model. The ISO/IEC/IEEE 42010 Conceptual Model of Architecture
Description [70] defines the term architecture framework as: “A framework that establishes
a common practice for creating, interpreting, analyzing and using architecture descriptions
within a particular domain of application or stakeholder community”.

Definition
Building Blocks + Characteristics

Life Cycle and Stakeholders

Architectural Concerns

Architectural
Framework

Cloud
Application

Figure 3.1: Creating an Architectural Framework for Cloud Applications
To devise an architecture framework for cloud applications, we follow the approach
depicted in Figure 3.1. We start by characterizing cloud applications in Section 3.1. Then
we study the cloud applications life cycle and stakeholders in Section 3.2. Followed by
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the set of architecture-related concerns that can affect the application malleability and
manageability in Section 3.3. Accourdingly, we introduce the (5+1) view model for cloud
applications: an architectural framework that uses views to cover the identified cloud
concerns and define the set of model correspondence rules between the different views.

3.1 Characterizing Cloud Applications

To build a modeling framework for cloud applications, it is important to have a clear
understanding of what is a “cloud application”. Unfortunately, so far there is no consensus
on such a definition. This section explores the concept from different perspectives, and
identifies the cloud applications’ building blocks and essential qualities and characteristics.

3.1.1 The Definition of Cloud Applications

Different cloud providers have diverse views of what is a cloud application. [aaS providers
call any software application that can be deployed on their infrastructure a cloud applica-
tion. Software as a Service (SaaS) providers use the term to refer to softwares developed
by composing web services. Lastly, PaaS providers refer to the applications developed and
managed using the set of tools these platforms provide as cloud applications.

IsA Cloud
! Application
Saas 4
Use
Paas <
laas 4

Figure 3.2: The Relationships between Cloud Applications and the Different Cloud
Computing Service Deployment Models.
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In fact, all of the aforementioned views are correct. In software architecture, one way to
define applications is based on the basic units of composition used to create the application
(e.g., Object Oriented, Service Oriented, Component Based). Accordingly, depending on
where the provider lays on the cloud service deployment model (i.e., TaaS, PaaS, SaaS),
and the granularity level of the components used to build the application (i.e., Virtual
Machines, Containers (which we refer to as Tasks in this thesis), Components or Services),
each service provider will have a different perspective.

Figure 3.2 presents an unbiased view of the cloud application definition, by relating
it to all of the cloud computing service deployment models. Based on figure 3.2, a cloud
application is a software that is provided to consumers as a service. A cloud applicaton
utilizes the cloud services provided at the SaaS, PaaS and IaaS service levels to perform
its operations. Accourdingly, in order to model cloud applications, the proposed modeling
framework shoud support modeling the providers’ specification at the (IaaS) level, how
they are provided as service models at (PaaS) level, and how the service models templates
and services provided by the platforms providers can be composed into higher level services
and workflows at (SaaS) level.

In this thesis we argue that to call an application a cloud application, it should be
designed to be cloud ready. In other words, a cloud native application should be designed
from the ground up using modular components communicating through lightweight and
standardized mechanisms (e.g., REST). These components should have the ability to be
reused, reconfigured, recombined, and recomposed independently and at runtime. By de-
signing the application in such modular fashion, the application can be distributed and
parallelized when needed. Morover, it can be independently deployed on demand over a
pool of virtual machines (VMs) with theoretically unlimited resources via automated de-
ployment machinery.

As the reader proceeds through this chapter, the definition of cloud applications should
be more clear. Section 3.1.2 covers the selection of a cloud application building blocks,
hereafter we call them Tusks, and the rationale behind it, while Section 3.1.3 higlightes
some of the characteristics of cloud applications that distinguish them from other types of
applications.

3.1.2 The Cloud Architecture Building Blocks

A software system can be decomposed into components of different granularity levels. A
component is “a unit of composition with contractually specified interfaces and explicit
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context dependencies” [119]. It can be an object, a service, a microservice [151], a program
instance, or a virtual machine image.

Components are usually designated based on the type of input they consume and out-
put they provide. Modern service oriented programming models (e.g., OSGi, SCA, Jini)
describe components as functional units of composition that take services as input (i. e.,
by referencing them) and provide services as output (i.e., by exposing service contracts).
Cloud systems follow the same trend. However, in cloud computing, services are classified
into layers (i.e. Software as a Service (SaaS), Platform as a Service (PaaS), and Infras-
tructure as a Service (IaaS)), where components in upper layers consume services from the
same layer or the layer below and provide services to be used in composing other services
or applications at the upper layers. The higher the service layer that hosts the component,
the courser the granularity of the component.

Selecting the right granularity level of components can have a significant impact on
the software architecture. It can affect the complexity of the design, the ability to reuse
the architectural elements, and the quality of the architecture. This section, analyzes the
cloud applications’ components to determine which level is the best in order to describe a
cloud application in a way that maximizes controllability and ensures the cloud application
scalability, availability and portability.

Figure 3.3 shows the different units of composition of a cloud application as perceived
by developers at different service deployment layers. As shown in the figure, it is possible
to distinguish three different units of composition.

(i) Services at the SaaS layer : A SaaS service is an application provided as a service
that consists of at least one Task. Services can be orchestrated into business processes
using any SOA business process modeling language.

(ii) Tasks at the PaaS layer: Each service at the SaaS layer is composed of a set of
collaborative Tasks at the platform level (PaaS), in addition to the definitions and
relationships between these Tasks, and their logical configurations.

(iii) Processes at IaaS layer: A Task with its platform configuration is packaged as a
virtual machine image to be deployed as a running process on a cloud infrastructure.
Several tasks can be packaged in the same virtual machine image.

As shown in Figure 3.3, at each of the service layers (i.e., SaaS, PaaS, TaaS) the appli-
cation consists of components that consume the layer beneath services to provide higher
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Figure 3.3: Cloud Application Components Granularity.

level services. When the services consumed are middleware services, the developer’s fo-
cus will be on the component itself (Task) and How to exploit the middleware services
to build a task that can address both the functional and non-functional requirements of
the application (i.e., service). In contrast, when the consumer services represent business
functionalities, the developers’ attention will be on What are the services needed in order
to achieve the business goal.

Coarse-grained components have higher contributions towards the solution; hence, they
have high reuse efficiency. However, because coarse grained components are tailored to
provide solutions for specific problems, they have a lower level of reusability. Moreover,
course-grained components abstracts the technical details of the platform; hence they are
more useful for modeling business processes. In contrast, fine grained components are more
suitable for technical-level design that is why they are more favorable by developers.

Accordingly, the layer of abstraction selected is on the top of the PaaS layer. The
selection of PaaS as the layer of abstraction has been made based on the following criteria:

(i) Level of Detail: To maximize reuse and bridge the gap between business require-
ments and the technical implementations, If a component does not have the ability to
fully express the requirements through configuration, its granularity level should be
decreased. Accordingly, the right granularity of the main unit of composition should
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Figure 3.4: The Tradeoffs between Applications’ Portability and the Level of Automation.

(i)

enable translating the requirements into functionalities that utilize the middleware
capabilities of the cloud platforms.

Application Manageability: Granularity has a negative correlation with manage-
rial goals, such as cost effectiveness, customization and maintainability[158], and a
positive correlation with component assembly. Selecting the granularity at the PaaS
level enables taking advantage of both.

Reduce Coupling and Design Complexity: Raising the granularity of the com-
ponents can create a level of abstraction that simplifies the communication with the
upper layers. This is important for distributed applications (e.g., cloud applications)
where remote service invocations may lead to network performance problems. On
the other hand, decreasing the level of granularity can decrease design complexity. A
balance between fine- and coarse-grain components can help address both issues.

Automation vs. Portability: Portability and automation vary between SaaS,
PaaS, and IaaS. In general, the number of constraints increase as we move up to
the SaaS layer. The more the constraints the less the portability and the higher the
risk of vendor lock-in. On the other hand, while cloud infrastructures enable quality
attributes, such as dynamic elasticity, and high availability; these attributes cannot
be fully addressed at the infrastructure level. The higher the level of abstraction
the easier to automate these characteristics. This makes the PaaS layer the best
candidate to support portability and enable automation.

There is a trade-off between selecting a courser or a finer component granularity. Se-
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lecting the right granularity level can assist in alleviating many architectural issues. Based
on our analysis the best level of abstraction to achieve the highest flexibility to control the
cloud application quality is right above the PaaS layer and below the SaaS layer. Hence, a
cloud task is the basic unit of granularity and the main composition unit for cloud appli-
cations. Tasks can be composed into services and can migrate between platforms without
the need to perform any changes to their code. Changes can only be applied to the defi-
nition and configuration artifacts. More about cloud Tasks types and relationships will be
addressed later in the next chapter.

3.1.3 Cloud Applications Requirements

Characterization should not be limited to building blocks of the application. It should
also consider the applications’ requirements and feature that can affect the application’s
behavior (e.g., Distributed, Real-Time, Embedded), and its lifecycle. The following are
some of the requirements that should be satisfied in order for an application to be considered
a cloud application:

e Reql: Self-aware: A cloud application should be aware of the following:

(i) Its architecture (i.e., Tasks and relationships diagram).

(i) Its resource requirement (i.e., the required resources to successfully deploy the
application on any platform).

(iii) Its status (the runtime model and the configuration under which it is currently
running).

(iv) Its service level operational requirements e.g., (desired required availability, scal-
ability and performance).

(v) Its cost model constraints and status.

(vi) Its location: In order for the cloud application to support high-availability and
automatic failure recovery, the cloud application architect should have the abil-
ity to decide how the different component instances should be distributed on
different fault domains. For example, depending on the availability level re-
quired the architect should be able to decide whether the different instances of
a certain component should be located in the same datacenter, or distributed
across different geographical locations (regions).
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e Req2: Malleable: A cloud application should have the ability to be composed from
components that can be reused, re-combined, and re-configured. These units of
composition should:

(i) Follow microservices architecture style [151]. This means that it should be
possible to partition the application into fine-grained services. Each service
perform one task.

(ii) Components should use smart endpoints that embed the logic of communica-
tion (i.e., naming, discovery, and connectivity) within the endpoint to remove
dependency on the infrastructure connections (pipes) (e.g., Enterprise Service

Bus (ESB)).

(iii) Building asynchronous communication wherever possible in the application ar-
chitecture would allow for loose coupling amongst components. Asynchronous
behavior is at the heart of cloud native applications.

(iv) Components should use standardized interface to facilitate automating the pro-
cess of establishing communication between the components. This makes it easy
to build configurable workflow applications. Today, the most common APIs in
the cloud are the REST based or RESTful APIs. This is because REST APIs
use the standard HTTP methods (i.e. GET, PUT, POST, DELETE, etc.) to
standardize the way services and resources are exposed to the user.

e Req3: Self-adaptive: A cloud application should have the ability to utilize the re-
siliency and autonomic capabilities of its underlying platform. Accordingly, it should
have the ability to specify policies, constraints, rules and actions to maintain its
behavior under various condition, scenarios and environments.

e Req4: Multi-Cloud: A cloud application should be architected from platform inde-
pendent components that can run in the same way on different platforms. It should
also have the ability to run and migrate at runtime from one platform to another,
and between on-premises and off-premises environments.

e Req5: Multi-Tenant: A cloud application should support a hybrid (single/multi)
tenancy model at the component level granularity. Multi-tenancy is the ability of
a component to be shared with multiple users by having a single logical instance of
that component. On the other hand, single tenancy allows creating several logical
instances of the same component, one for each user. Supporting a hybrid tenancy
architecture at the component level provides flexibility of choice for the developers
and architects, as they can select the tenancy model that fits their application. This
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process can be done for each individual component and at any of the software archi-
tecture tiers (i.e., presentation, business logic, and data storage). For example, for
components that have high-demand and require high-performance each user can have
a separate instance of the component; in contrast, the same instance can be shared
between multiple users to allow full utilization of the resources when demand is low.
Enabling a hybrid tenancy model is a prerequisite feature to support both dynamic
elasticity and high availability.

Req6: Manageable: Cloud applications should provide management interfaces that
allow monitoring the applications and changing their properties at runtime. This is
an important prerequisite to automate the applications lifecycle management, and
support the applications self-adaptivity.

Req7: Measurable: Cloud applications should provide mechanisms to quantify the
resources they use. This is important for the cloud application to support the dy-
namic price models, as well as testing and monitoring.

Req8: Distributed at the enterprise levels: A cloud application is a distributed ap-
plication. It supports distribution at the presentation level, the business logic level,
and the data level. At the presentation tier, a load balancer handles the distribution
of requests into a number of distributed web tasks, which process the requests, then
assign jobs to the appropriate background (business logic) task. Usually a cloud ap-
plication performs jobs that can be divided into a number of atomic tasks (workloads)
that can be processed in different machines and then accumulated. Finally, at the
data tier, a cloud application can make use of distributed cloud storage (i.e., blobs,
tables, queues) to support fault tolerance and availability, while maintaining eventual
consistency. These distribution capabilities are what make a cloud application highly
available and elastic.

Req9: Accessible through web-enabled interface: Fach application should have at
least one web-enabled endpoint . Having a web-enabled interface does not mean that
the application should be publicly accessible from the internet, but instead it should
be enabled to be widely accessible whether this is through intranets, extranets, or
the internet.

Reql0: Has the capability to be upgraded modified and updated with minimal service
interruption: Cloud applications should provide mechanisms that allow tracking the
location of each component, and group related components within the same update-
domain, as to be updated or modified at the same time.
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By satisfying the previous requirements the cloud application will comply with the cloud
computing’s main characteristics previously defined by NIST. The cloud application will
be available, support fault tolerance, scalable on-demand, and elastic. A cloud application
is an application that supports reuse of software services and components with affordable
prices based on a pay-per-use model. On the other hand, if an application does not utilize
the cloud computing infrastructure or platform,then this application cannot be called a
cloud application.

Note that many of the cloud application characteristics are shared with existing paradigms,
such as real-time, service oriented, and distributed computing. What is unique about cloud
computing is its ability to combine all these paradigms and provide simple and efficient
reuse mechanisms. These mechanisms allow users to get the intended benefits from the
existing technologies with minimal efforts and basic knowledge of technicalities.

In a nutshell, a cloud application is a special Service Oriented Architecture (SOA) appli-
cation that runs under a specific environment (the cloud environment). This environment
is characterized by horizontal scalability, rapid provisioning, ease of access, global reach,
high-availability, and so on. Cloud applications share lots of concepts with SOA such as:
focusing on reusability at the large scale, creating applications by composing pre-existing
autonomous components, and focusing on evolution. However, being a specific case of
SOA applications mandates addressing the Cloud domain specific issues and variations.
The relationship between cloud applications and SOA is similar to the relationship be-
tween Web-Services and SOA; both can be considered as SOA implementations. However,
cloud applications are more generic than Web-Services. In fact, Web Services are a type
of cloud application services. The detail of the relationships between cloud computing and
the paradigms it has evolved from is explained in detail in the background chapter.

3.1.4 Term Disambiguation

The term task used in this thesis has been coined in 2010. The term has been defined in
our paper that was published in the 1%¢ International Conference on Cloud Computing and
Services Science as follows: “A Cloud Task is a composable unit, which consists of a set of
actions that utilize services to provide a specific functionality to solve a problem. It is a
mutated unit that can be copied to other virtual machines in order to allow horizontal and
vertical scalability. When composed, tasks should satisfy the following principals: state-
lessness, low coupling, modularity, and semantic interoperability. Tasks are semantically
connected to other tasks in the cloud through the roles they play in order to satisfy a spe-
cific business requirement, which is bounded by obligations or responsibilities. Cloud tasks
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are uniquely identified by a global Dynamic Name Service (DDNS) that can be assigned
to a dynamic virtual IP address at run time. This makes the task highly available and
fault tolerant, and allows the cloud application to be dynamically upgradable without any
interrupts” [06].

Cloud Application Service
VMI VMI
Task Task
Container Container
Task Task
‘ Container ‘ ‘ Container ‘ ‘ Container ‘ ‘ Container ‘

Figure 3.5: Cloud Application Composition

Since that time the cloud domain has evolved rapidly. Different terms and technologies
have been emerged to explain similar concepts. In march 2014, Martin Fowler and James
Lewis wrote a joint article that describes a new architectural style that explains the com-
position of small, independent processes communicating with each other using language-
agnostic APIs. Those units are called microservices. They are small, highly decoupled
services that focus on doing a small task. The term “task” conforms with what Fowler and
Lewis refer to as a “microservice”. The term “task” also aligns well to another trend in the
cloud domain. This is the container-based development. Figure 3.5 shows the relationship
between the “task” and the “container” concepts. Container technologies, such as Docker,
allow multiple containers to share the same kernel while running in complete isolation from
one another. This makes deploying the code of a task or a microservice that is developed
using different languages and frameworks very easy. Containers are a better choice to re-
alize microservices or tasks than virtual machines as they offer (i) ability to start-up and
shut-down more quickly, (ii) better resource utilization (i.e., computing, memory and other
resources can scale independently ) and (iii) easier life cycle management.

The following is a clarification of the relationships between the compositional units used
to describe the architecture of a cloud application service model.

e Microservice: A conceptual modeling concept that refers to the source code of a
fine-grain service that does one job, but does it well.
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e Container: A build image of a micro service with all OS and binary dependencies
that allow the microservice to run the same way on different environments.

e Task: A container along with its platform independent specifications (resource re-
quirements), end-point interfaces and interaction mechanisms with other containers
and the environment.

e Cloud Service: A model composed of cloud tasks and follow a microservice archi-
tecture.

The next subsection focuses on the development and operation process of a cloud ap-
plication.

3.2 The Cloud Application Development and Opera-
tion Process

According to the Information Technology Infrastructure Library (v3), there are three keys
to the success of any application development project: people, process and technology [25].

Prior to the cloud, the bottleneck in I'T delivery projects where mainly due to technol-
ogy; the lack of resources when needed and the long waiting times for resource provisioning.
Cloud platforms are Software Defined Environments (SDE) that uses technologies for cap-
turing the whole infrastructure and platform as a code. Offering the infrastructure and
platforms as code facilitates managing the scale and the speed with which environments
need to be provisioned and configured to enable continuous delivery. This reduces the
operational complexity of building, deploying and operating applications. It also pushes
the bottleneck to the process and people side, calling for tools to automate the process of
software delivery pipeline and to improve collaboration between people.

3.2.1 The Cloud Application Life Cycle Management (CALM)

Figure 3.6 shows a typical software delivery pipeline for cloud applications from develop-
ment through production and evolution after production.

The steps in this pipeline may vary based on the organizations needs, the maturity of
the software delivery process, and the level of automation involved. The delivery pipeline
has the following steps:
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Figure 3.6: The Cloud Application Life Cycle Management Process

Develop: This stage focuses on creating (coding) loosely coupled fine-grained ser-
vices (microservices). Each provides a specific well defined functionality. Several
integrated development environments (IDE) can be used in this stage depending on
the developers preference and the IDEs support for languages, tools libraries and
collaboration. Each microservice can be developed with different IDE using the best
and most appropriate tool for the job. However, the rule of thump in this stage is to
break the application down into small but high cohesive services.

Build: In this step the code created in the previous step is pulled from the code
repository and compiled to create binaries, or if you follow the current trends into
fully encapsulated containers that encapsulate the entire state around an application.
Encapsulating the binary with all its dependencies as an image facilitates continu-
ous integration and delivery and ensures that the code will run exactly the same
in production as in development, testing and staging environments. Again several
build tools and image building and management solution may be used in this step,
depending on platform technology (e.g., Docker-based build!).

Integrate: So far, we have fine-grained services. Each of which preforms one job
and encapsulated with all its dependencies as an image. In the integration step,
these isolated fine-grained services will be weaved into an application, by defining
their endpoints and interaction mechanisms. Establishing connections requires also
set of security, authentication, and failure recovery rules. For example patterns such
as circuit breaker [119] could be considered to avoid overloading other services.

Configure: In this step each of the tasks (containers and their definitions) will be

thttps://www.docker.com
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configured to be deployed on a target cloud datacenter. Configuration is a challenging
task in distributed systems, and even more challenging in the cloud, where both the
platform and infrastructure parameters can be tuned using configuration code. The
price of this flexibility is a large number of configuration options and scenarios that
need to tune for optimal performance and operation.

(v) Package: Packaging refers to bundling the application binaries with the artifacts
that are required to successfully deploy, instantiate, distribute and manage the ap-
plication on a particular cloud platform. Examples of these artifacts include: config-
uration files, infrastructure-as-code files, deployment scripts, policies, scalability or
adaptation rules and so on.

(vi) Deploy: After packaging the application according to the target platform templates,
the rest is to upload the package to the cloud. In the cloud side, deployment au-
tomation tools (i.e., environment management and provisioning tools) will use the
different artifacts in the package to provision the resources required and distribute
the application with the ratios specified.

(vil) Monitor and Manage: After deployment, monitoring tools allow organizations to
monitor the deployed applications in production, and management tools allow them
to manage the application while running in the cloud.

This research does not focus on how to build these individual loosely coupled services
and components, but on how these components are connected to each other (which depends
on the platform used (e.g., Azure, GAE)), and whether the configuration matches the target
server template of the cloud datacenter (which depends on the underlying infrastructure).
This is because, the way the components are connected (application definition) can change
the static behavior of the program, while the configuration can affect its dynamic behavior.
Moreover together definitions and configurations can determine if the application can be
deployed to a particular cloud datacenter and hence affect its portability.

3.2.2 Envisioned Users

Common practice shows that framework developers often have in mind a set of established
stakeholders within the domain of the framework [16]. The stakeholders motivate the set
of concerns which the architecture framework will focus upon

The following list describes four different cloud stakeholders that we envisioned to have
maximum benefit from the proposed framework:
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(i) Platform Providers can specify the resources and services they provide.
(ii) Service Developers can define their application services.

(iii) System Administrators can configure the services for deployment, specify the
application runtime behavior through a set of adaptation rules.

(iv) Performance Engineers can evaluate the application performance under different
configurations and platforms.

(v) Financial Managers can estimate the cost of deployment onto different platforms.

One of the main goals of the cloud architecture framework is to facilitate collaboration
between different cloud stakeholders. The next subsection provides more elaboration on
the cloud architecture main concerns and how the proposed framework enables collaborate
between the aforementioned stakeholders to address the various concerns.

3.3 Architecting for the Cloud

Grady Booch has been quoted as saying that “building a dog house is different from build-
ing a high-rise” [21]. This is because the different scale entails different requirements,
complexity, and management. Today cloud applications development typically resemble
high-rise buildings. In a high-rise architecture, you design the first-floor sketch then repli-
cate it as needed. Similarly, in cloud applications you design a schema that represents
your service model (e.g., containers graph) then replicate it as needed on-demand through
service configuration. The main difference between a cloud and a typical high-rises ar-
chitecture is that a cloud application continuously evolves at runtime. In the cloud, the
behavior of the cloud application depends on how the service model is designed by con-
necting several container-unites; however, the specific functionality depends on the loosely
coupled fine-grained services that inhabit these units. This is analogical to organizations
where departments’ relationships are clearly pre-defined, however; the performance of each
department depends on the performance of its employees.

Architectural frameworks and view modeling is a well-established practice for describing
and analyzing complex software systems. Existing view models and frameworks include the
(44-1) view model [91], the Three Schema approach [31], the Zachman framework [162] and
the Department of Defense framework [120]. These frameworks all clarify software design,
because that is when architectural decisions were traditionally finalized. Static deployment
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Figure 3.7: Architecting for Application Implementation v.s. Service Operation

infrastructures were the norm. In cloud computing the applicatoin architecture evolves
during deployment. Runtime operation needs as much architectural modeling as design
does [150]. Cloud applications must morph at runtime to meet performance, availability,
and scalability targets under changing conditions.

This shift in emphasis from architecting for implementation to architecting for operation
is illustrated in Figure 3.7. Models of implementation architecture capture the design
requirements to create design models that reflect the source code of the application. Models
of service operation architecture capture the operational requirements to create runtime
models that describe the configuration space of the application. The practices complement
each other. However, the latter is more malleable and so better illuminates the dynamic
evolution of cloud applications.

3.3.1 The Malleable Application Architectural Style

Cloud computing improves service availability, minimizes downtime, and scales applications
on demand. This means cloud applications must morph during runtime without requiring
redeployment or restart [67]. They must scale out by adding new instances to meet demand,
and scale up to larger virtual hosting machines as needed. They routinely switch tasks
on/off to alter their behavior, and they may need to change the wiring between tasks
that communicate through common storage (queue, blob, etc.). To support performance
debugging, they must be able to switch between logging fine or coarse grained system
dynamics. Figure 3.8 shows that this level of flexibility can be achieved by:

(i) Separating the configuration space concerns: Separate the executable components,
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Figure 3.8: The Malleable Application Architectural Style

from the application structure, configuration, the target resource specifications, and
execution scenarios and control.

(ii) Supporting automation: Use performance and adaptation models and enable contin-
uous monitoring of the environment.

Each concern will be represented in a separate model. The service model specifies the
tasks provided by the cloud service, their types, and their relationships. The configura-
tion model specifies the replication of the tasks, and their concurrency and distribution.
The provider’s specifications specify the resource configuration of the target hosting envi-
ronment. Lastly, the workflow model represents different usage scenarios for the service
model tasks. Each of these models can change separately to meet desired operational
requirements.

In order for the changes to be applied automatically at run time, an adaptation model
should be defined to access all the elements and parameters of the models that need to
be changed. The adaptation model uses key performance indicators to initiate change
requests. These indicators can be gathered from the runtime model and represented in a
performance model to enable performance analysis.

We call the afformentioned pattern the Malleable Application Architectural Style (MAAS).
MAAS is a common architectural pattern in cloud systems. It relies on separating the con-
figuration space concerns (structure, configuration and control) from the ezecutable com-
ponents. In Figure 3.8, the control model corresponds to the performance and adaptation
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models, which are defined to influence the actions of the Cloud Fabric Manager. The fabric
manager is a platform specific autonomic manager [75] that uses a set of adaptation rules
and performance indicators to enact change actions on the target model using APIs.

3.3.2 The (5+1) Architectural View Model

Fragmenting models into artifacts based on machine prespectives faciliates automation and
increases flexibility. Unfortunately, this fragmentation makes it difficult for humans (cloud
stakeholders) to create and comprehend these models. The information in these frag-
mented models are usually specified by different stockholders. Moreover, this information
is often overlaps on variety of ways. Accourdingly, there is a need to weave the fragmented
models into views that enable stakeholders to better understand the runtime dynamics
and evolution of complex cloud applications. This section analyzes the artifacts in MAAS
from architecutral prespective based on dependency and containment relationships, and
the stakeholders involved in specifying the different parts of these artifacts. Accordingly,
we propose the (541) architectural view model, where each view corresponds to a different
perspective on cloud application deployment.

Figure 3.9 shows a high level architectural perspective of the relationship between the
different artifacts required to deploy an application on a target platform. As show in the
figure, the service model plays a centralized role in this architecture. To deploy an ap-
plication onto a cloud platform; architects need to partition the application into software
processes and package them into loosely coupled software modules (i.e., Tasks) with the re-
quired software stack and app or web servers, and determine the virtual resources required
to run the modules. Accordingly, a service template with the required specification can be
selected and the application can be packaged into a set of Virtual Machine Images (VMI).
Administrators then can instantiate and replicate these VMIs into the target cloud data-
centers and specify the rules that govern any configuration changes based on monitoring
the environment conditions (e.g., load), or by analyzing the system using the performance
models that is created by the performance engineers.

Figure 3.10 shows the (5+1) architectural view model. The (5+1) view model consists
of five model views that specify the core/service model view to address five different, but
interleaved cloud concerns related to service deployment and evolution. Each model view
conforms to its corresponding meta-model. Moreover, the top element in all the model
view meta-models extends the (54+1) component (i.e., a meta-meta model element). The
aforementioned modeling hierarchy makes it possible to integrate all the (541) meta-models
and facilitates organizing the different modeling elements into categories (layers) based on
the cloud concern they address.
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Figure 3.9: The Architectural Perspectives of Cloud Stakeholders

The details of each of the (541) meta-models and the methodology of defining them
will be explained as part of defining the StratusML modeling language in chapters 4 and 5
respectively. These meta-models capture all essential information for architecting mal-
leable and platform independent cloud applications. The (5+1) approach is based on the
assumption that containers can deal with code level mismatches by letting software com-
ponents run on low level infrastructure. We argue that this assumption is reasonable given
cloud dynamics. The constant updating and multiple service providers that characterizes
cloud computing drives mismatches between infrastructure and applications that impact
deployment architecture. The (5+1) view meta-models make this assumptions explicit.

In a nutshell, the core meta-model is a fairly comprehensive pivot model that describes
the application’s deployment architecture in terms of tasks and interactions. It clarifies the
cloud service model and its requirements in terms most vendors would understand. Each
of the other five meta-models further enrich the expressiveness of the core model. The
performance meta-model enables annotating the core model with performance parameters.
The adaptation meta-model specifies adaptation rules and actions for each task or group of
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tasks in the core model. The availability meta-model defines the model configurations (i.e.,
configuration models in MAAS). Its components instantiate the core model and distribute
its instances to different geographic locations. The service workflow meta-model facilitates
creating different service scenarios, by composing and executing core tasks in series to
achieve a certain goal. Finally, the provider meta-model creates a provider profile, which
consists of the provider’s service templates and pricing profile.

3.4 Summary

This chapter introduced the (5+1) view model for cloud applications. The (5+1) view
model is an architectural framework that captures the essence and the detail of the cloud
applications’ characteristics that affect their dynamic evolution at runtime. It enables cloud
stakeholders (e.g., providers, developers, administrators, performance engineers and finan-
cial managers) to leverage cloud platform capabilities to maximize availability, maintain
performance levels, minimize costs, and leverage portability and scalability.

At the core of the (5+1) is the cloud application service model. This model describes
a reconfigurable executable units of composition that we call Tasks. The service model is
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further specified using a set of four operational model views that address the application
performance, adaptation, availability, and execution scenarios, and one model that ad-
dress the portability and operational cost of the application though capturing the platform
providers specifications.
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Chapter 4

StratusML: A Domain Specific
Modeling Language for Cloud
Applications

“I believe in a visual language that should be as strong as the written word.”
— David LaChapelle, 1963

It is widely acknowledged within the software engineering community that architec-
tural languages are defined by stakeholder concerns [95, |, and that a single “universal”
notation (e.g., UML) is impractical to address all the concerns of a particular domain [95].
A domain language is usually needed. As explained in chapter 3, in the cloud domain,
an application evolves at runtime to meet performance, availability, and scalability targets
under changing conditions; a routine task that involves continuous changes to the appli-
cation service models and deployment artifacts. While each stakeholder may conduct a
certain type of change to address a specific concern, the impact of a change may span
across multiple models and influence the decisions of several stakeholders. This chapter
presents StratusML, a multi-cloud (i.e., platform independent) modeling framework and
domain specific modeling language for cloud applications. StratusML is a realization of
the (5+1) view model. It aims to satisfy the cloud stakeholders need to model and evolve
applications that leverage cloud computing for maximum value with minimum conflicts
between the stakeholders.

The rest of this chapter is organized as follows. Section 4.1, presents an example of the
cloud configuration space artifacts (i.e., what we are modeling). Section 4.2 provides an
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overview of the StratusML modeling framework, its features, architecture, the methodol-
ogy followed to build the framework, and its implementation. Section 4.3 dives deeper into
the StratusML language: abstract syntax, well-formdness rules and semantics. Section 4.4
shows how the StratusML model concepts is mapped to the cloud specific platform con-
structs. Section 4.5 demonstrates the framework capabilities using an example. Finally,
Section 4.6 summarizes the chapter.

4.1 An Example of the Cloud Configuration Space
Artifacts

Deploying an application on a cloud platform requires specifying how the application service
model will use the platform resources of that particular provider. This involves specifying
(i) the service model, which defines the structure of the service itself in terms of the
software modules that compose the service and how those modules are communicating, (ii)
the runtime deployment configurations that specify how the modules of the service model
are instantiated and replicated, and (iii) the behavior of the application at runtime under
diverse conditions. This behavior is usually specified using an adaptation model, which is
a set of rules and actions.

<ServiceDefinition>
<WorkerRole name="ShoppingCartProcessing" vmsize="Small"=>
<ConfigurationSettings>
<Setting name.."DataConnection" />
</ConfigurationSettings>
</WorkerRole>
</ServiceDefinition>

Listing 4.1: Example of Service Definition File

<ServiceConfiguration>
<Role name="ShoppingCartProcessing">
<Instances count="2" />
<ConfigurationSettings>
<Setting name="DataConnection"
value="UseDevelopmentStorage=true" />
</ConfigurationSettings>
</Role>
</ServiceConfiguration>

Listing 4.2: Example of Service Configuration File
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<rules>
<reactiveRules>
<rule name="ScaleUp" description="Increases instance count" enabled="true" rank="3
">
<when>
<greaterOrEqual operand="Avg_CPU" than="75" />
</when>
<actions>
<scale target="ShoppingCartProcessing" by="1" />
</actions>
</rule>
</reactiveRules>
<operands>
<performanceCounter alias="Avg_CPU"
performanceCounterName="\Processor(_Total)\’ Processor Time" aggregate="Average
" source="RoleB" timespan="00:10:00" />
</operands>
</rules>

Listing 4.3: Example of Windows Azure Adaptation Model

Listings 4.1, 4.2 and 4.3 show respectively a service definition (service model), a con-
figuration file (runtime deployment configuration), and an adaptation model that are used
to deploy an application on Windows Azure platform. The syntax of these files conforms
to the azure platform schemas. The service definition file in Listing 4.1 describes a cloud
application that uses one role. A role in Windows Azure refers to a virtual appliance that
is prepared with the required software stack to run a certain family of applications (i.e.,
web, or back-end). The service configuration file further specifies the service definition
by assigning values to the configuration settings defined in the service definition file. For
example, the service configuration in Listing 4.2 specifies the number of instances of the
worker role. Finally the adaptation model in Listing 4.3 shows a reactive rule “ScaleUp”;
which is used to scale the role “ShoppingCartProcessing” when the average CPU utilization
exceeds 75%.

While this example is based on Windows Azure application packaging specifications;
the information required to specify a cloud application deployment is essentially the same
(e.g., the previously described role is equivalent to Amazon AWS beanstalk and GAE
Module [68]). It is apparent from this example that managing these related artifacts and
maintaining consistency between them requires a holistic view that integrates the artifacts.
Moreover, in order to deploy the same application on multiple providers and facilitate its
migration, there is a need to provide a layer of abstraction that captures the domain
concepts then identifies the mapping between the domain independent concepts and the
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deployment-description artifacts concepts of the different providers.

4.2 The Stratus Modeling Language Framework

This section presents the StratusML features, architecture and implementation.

4.2.1 The StratusML Features

StratusML is a modeling framework for cloud applications. It enables the design of high-
quality distributed applications that are tailored to be deployed on the cloud. Through
layers StratusML empowers the cloud stakeholders to view the models, each from its own
perspective. This ability to separate between concerns makes working with complicated
models more efficient. A layer can be turned on or off at anytime. This provides a holistic
or partial view. StratusML supports visual modeling of adaptation rules and constraints,
it also automates the generation of the corresponding artifacts for the target adaptation
manager. StratusML supports the generation of complete platform specific artifacts based
on template-based transformation.

Using templates and layered modeling, generating complete platform specific artifacts,
and the ability to visually model adaptation rules and actions are the main distinctive ad-
vantages of StratusML over existing frameworks. However, StratusML provides several
other features that make developing and managing cloud applications a seamless expe-
rience. StratusML allows users to (i) define a cloud application deployment model, and
partition components into groups based on geolocation, scaling factors, and functional-
ity, (ii) specify a cloud application configurations and adaptation rules (e.g., auto-scaling
rules). (iii) select a cloud provider or create a custom one (iv) estimate the applications’
running cost, and (v) use templates to transform the model into platform specific artifacts
(e.g., Azure definition files).

4.2.2 The StratusML Framework

As shown in Figure 4.1, the StratusML framework covers model creation, validation trans-
formation, and adaptation. Its architecture adheres to the Model-View-Controller (MVC)
style. This aims at maintaining the consistency of the models, by performing the required
model transformations, validation, and analysis whenever the models are updated. Both
model validator and editor use the StratusML meta-model.
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Figure 4.1: The StratusML Framework Architecture

The StratusML meta-model integrates five different meta-models with one core meta-
model to address five different, but interleaved concerns of the cloud applications (i.e., core
(service composition), availability (distibution and replication), adaptation (elasticity and
dynamic behavior), provider, performance and workflow). The usage scenario explained in
this chapter focuses on the integration of the core model with three of its perspectives (i.e.,
availability, adaptation, and provider), leaving the performance and workflow meta-models
for the next chapter. The StratusML meta-models are explained in detail in Section 4.3
and made available online for reference in [(4].

As shown in Figure 4.2, each of the StratusML meta-models has its own layer to be
viewed on the modeling IDE. This integration of all the meta-models is what gives the
cloud models their unique characteristics.

The StratusML framework supports two types of transformations, a model transforma-
tion that is used to specialize the Platform Independent Models (PIM) into Provider Spe-
cific Models (PrSM), and a template-based transformation [36], which is used to generate
the Platform Specific Models (PSM) for the target platforms. Unlike other approaches that
incorporate model-driven engineering to solve the vendor lock-in problem, StratusML em-
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ploys template-based transformation that is supported with an automatic schema matching
technique [08] to generate the different cloud model artifacts. The template-based transfor-
mation is a key feature in the StratusML framework. The transformation engine uses the
validated StratusML model, and applies template transformation to it in order to generate
a target model. The model encapsulates the essential data about the entities that need
to be generated, while the template dictates the syntax of the target model. The tem-
plate transformation engine produces the target model by replacing the template internal
references with real data coming from the model according to the transformation rules
specified in a procedural way in the template. Template-based transformation provides
flexibility; as you can generate all types of models without changing the transformation
engine, and portability; as the data model and engine are not touched. Moreover, the
transformation syntax is simple, which facilitates reusability and productivity. A sample
template that generates Windows Azure configuration from StratusML models is provided
in Section 4.5.3.

4.2.3 The StratusML Methodology and Implementation

To build StratusML, we started from the domain artifacts of some popular cloud providers
(i.e., Amazon AWS, Windows Azure and GAE), from which we created variability models
to highlight their commonalities and differences. We built one core meta-model [66] that
defines the abstract syntax, well-formedness rules, and semantics of the language.

We built several views around the core meta-model by extending it with the required
components to address various concerns. The result was a huge meta-model, where each
of the model elements inherits one of six meta-elements. Each one of the meta-elements
represents one of the six different meta-models explained in Chapter 3. Each element in
the meta-model is then mapped to one visual component to define the language concrete-
syntax.

The StratusML framework has been realized as an extension of Microsoft Visual Studio
2012. In particular, we used the Microsoft DSL toolkit[37] to design the StratusML visual
designers and Microsoft Text Template Transformation Toolkit (T4) to produce the dif-
ferent artifacts generators. Microsoft DSL model designer was used to define the different
meta-models and then map each concept in these meta-models to its corresponding visual
component shapes and decorators. A custom code has been used for creating the layering
feature and to provide advanced validation. By combining T4 and StratusML meta-models,
the user of the StratusML framework can easily generate artifacts for any target platform.
Creating a new transformation template is no different than writing a simple procedural
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program. This alleviates the need to learn complex transformation syntax (e.g., XSLT).
StratusML enables stakeholders to add new files of (.stratus) extension to build their model
and create or utilize the provided transformation templates to transform the models into
the desired output files.

Figure 4.2 shows a snapshot of the design window of the StratusML modeling frame-
work. The tool box on the left side can be used to explore categories, and expose the
different components. Users can drag and drop components as needed in the model design
window, connect them and view and change their properties using the property window on
the far right hand side. StratusML offers more than 60 domain concepts and more than
150 domain constraints. These constraints can be used to ensure model completeness and
to steer the stakeholders’ decisions to the right design. In the middle right-hand side of
the figure, you can find the model information tab. The upper part is used to calculate
the components availability (e.g., low, medium, high) based on the number of instantiated
instances of each module and how they are distributed into different geographic locations.
The lower part of the model information tab is used to estimate the price of the current
configuration based on a selected provider. Finally, on the bottom of the figure is the
views bar that allows the users to toggle between partial and holistic views that represent
different aspects of the model. StratusML installation instructions and a detailed step-
by-step usage scenario is provided in the StratusML Webpage [6], which also presents
and explains the different meta-models and validation rules that represent the StratusML
syntax and semantics.

4.3 The Stratus Modeling Language Specifications

This section focuses on the StratusML language specifications that enable capturing the
cloud application configuration space. We used the process of cleaning and elimination to
divide the Stratus meta-model into smaller meta-models to facilitate explaining them. The
section starts by describing the StratusML syntax and semantics by means of class diagrams
and natural language. Then, it gives examples of how the well-formedness rules have been
created and documented through utilizing the Microsoft DSL constraint language.

4.3.1 The StratusML Abstract Syntax

Normally, a meta-model consists of abstract syntax, well-formedness rules and semantics.
In this subsection, class diagrams are used to capture the syntax of the language and some
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of the semantics that can be expressed through cardinality. Moreover, natural language is
used to specify the semantics beyond cardinality.

4.3.1.1 The Service (Core) Meta-Model
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Figure 4.3: The Core View Meta-Model

The service meta-model allows developers to describe cloud services using platform
independent components, providing a high level description of resource requirements inde-
pendently from any target platform, and specifying operational requirements to be enforced
and validated. More particularly, the core meta-model enables service developers to: (i)
describe the structure of a cloud service composed of one or more Tuasks, the types of tasks,
and their relationships, (ii) cluster tasks into groups for easy management, (iii) assign each
task a predefined or custom service template type, and (iv) assign availability level to
every task (e.g., low, medium, high), which constrains how it should be instantiated and
replicated in the availability model. A service template specifies the computation power,
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memory and storage of the virtual machines available to host a task. Service template
types (e.g., small, medium, large, extra-large) vary based on the provider. The templates
are specified using the provider meta-model.

Figure 4.3 depicts the components of the core meta-model. The core meta-model is an
abstraction layer on top of the PaaS layer. It is defined after manually inspecting three
cloud platform application packaging requirements; namely, Amazon Web Services (AWS),
Windows Azure, and Google Application Engine (GAE). For example, an Elastic Beanstalk
App in AWS, a Role in Azure, and a Module in GAE all refer to a virtual appliance that
is prepared with the required software stack to run a certain family of applications (i.e.,
web, back-end). Each of these concepts is abstracted with the concept of a Task in our
meta-model.

The core meta-model captures all the concepts that are needed to specify a cloud config-
uration space, and facilitates dealing with inconsistencies between the different providers’
file structures. The following is a brief description of the core meta-model components.

A service inherits the CoreComponent. It contains at least one GroupableCoreCom-
ponent. A service is one level higher than a task in granularity. The core meta-model
facilitates creating several services within the same application. Each of them consists of
several virtual appliances (a.k.a. Tasks), Groups, and/or StorageMediums.

A Cloud Task is a composable unit, which consists of a set of actions that utilize services
to provide specific functionality to solve a problem. It is a mutated unit that can be copied
to other virtual machines to allow horizontal and vertical scalability. When composed
with other tasks, tasks should satisfy the following principals: statelessness, low coupling,
modularity, and semantic interoperability. A task is semantically connected to other tasks
in the cloud through the roles it plays in order to satisfy a specific business requirement,
which is bound by obligations or responsibilities. A cloud task is uniquely identified by a
global Dynamic Domain Name Service (DDNS) that can be assigned to a dynamic virtual
IP address at run time. This makes the task highly available and fault-tolerant. Moreover,
it allows the cloud application to be dynamically upgradable without any interruptions.

A CloudTask can be classified into:

(a) CloudFrontTask: An entry point to the cloud application that handles user requests,
which are distributed by a load balancer. A CloudFrontTask must support the inter-
active request-response pattern. It is usually a web application (WebTask) hosted on
the cloud datacenter where a web-server is always enabled. However, it can also be a
web-service (ServiceTask), which is provided by a third party. A ServiceTask uses the
Enterprise Service Bus (ESB) to discover and access remote or enterprise services.
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(b)

CloudRotorTask / CloudWorkerTask: This task runs in the background of the Cloud-
FrontTask on the cloud datacenter. It is not directly accessible from outside the
cloud datacenter. Mainly, it helps other tasks by performing a particular functionality.
CloudRotorTask must support event-driven communication patterns. Grid computing
tasks are common examples of CloudRotorTasks.

CloudPersistenceTask / CloudStorage Task: The main role of CloudPersistenceTasks
is to manage storage accounts. CloudPersistenceTasks manage the access control and
login to cloud storages. A cloud storage (e.g., blob, table, queue) does not have any
access control mechanism; it is the responsibility of the persistence task to provide the
authorization and authentication services. CloudPersistenceTasks create containers,
which are analogous to folders but with no nesting. Containers are accessible through
a unique Uniform Resource Identifier (URI). CloudPersistence Tasks assign persistency
to containers and give them a unique URI that is either privately or publicly accessi-
ble. The CloudPersistenceTask supports three main types of cloud storages that are
reliable, can scale out, simple, and inexpensive. These types are: unstructured data
(blobs), structured data (tables) and asynchronous messaging (queues).

i Blob : A blob is an unstructured large data file along with its meta-data. It can be
stored as a sequence of blocks or pages. The blob is the simplest and the largest
cloud storage unit. A cloud drive storage is a blob.

ii Table: A cloud table is a structured data file that is more complex than a blob. A
cloud table is much simpler than a relational database (RDB) table. It is more like
a datasheet. This simplicity makes it more suitable for massive scalability. A cloud
table consists of a set of entities and its associated properties. It uses two types of
keys: partition keys and row keys. A cloud table does not support SQL queries. It
has no schema, and it uses optimistic concurrency for updates and deletions.

iii Queue : A queue is scalable message storage that supports the polling-based model
used in message passing between tasks. A message can be stored for long periods
(i.e. days) before it is read and then removed from the queue. A cloud queue is
different from a conventional queueing system. A cloud queue must support fault-
tolerance. Unlike conventional queues, a read message does not delete the message
from the queue. Instead, the message is set into the hidden mode until it is success-
fully processed. It is the responsibility of the processing task to delete the message.
The queue is the main communication mechanism between CloudFrontTasks and
CloudRotorTasks, which makes it one of the most frequently used design patterns
in the cloud. This design pattern not only reliefs the end-user from waiting for a
long time until a task processes the message, but also makes scalability easier.
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An activity is a sub-process of a task. Each task has at least one activity. Activities are
essential for performance analysis. GroupableCoreComponents can be nested so that certain
properties apply to all of them. A Group is a container that applies the composite pattern;
it inherits the GroupableCoreComponent and can contain many GroupableCoreComponent
elements at once.

The core meta-model distinguishes three types of groups: ScalabilityGroup, Storage-
Group, and AvailabilityGroup. A ScalabilityGroup can overlap with or nest in other groups
that are regulated by adaptation rules. Components in the same ScalabilityGroup can be
scaled via different ScalingFactors. A StorageGroup can only nest StorageTasks; although
it inherits Group, it may not nest any other GroupableCoreComponent. This is enforced
by a validation constraint. Finally, an AvailabilityGroup nests components, which need to
be hosted for the same location. It is a superclass for the three geolocation groups (i.e.,
Zone, Region, and DataCenter). Availability groups will be discussed in Section 4.3.1.

Service 1.* Storage |1 Storage Storage
1..* Account 1. Group -~ | Medium
StorageName Table
°oo0 Access Key Blob
— Queue

Subscription
Subseription ID
Access Key

Figure 4.4: Storage Management in StratusML

Figure 4.4 shows how storage management is addressed in StratusML. StratusML ab-
stracts the way cloud storage management is handled by different cloud platform providers.
In a nutshell, a StorageGroup is a container of storage mediums; it contains at least one
storage medium. Each StorageGroup has a storage account that specifies the access mecha-
nism and credentials (i.e., storage account ID and account key) to access the StorageGroup.
A service can have multiple storage accounts. This flexibility can be leveraged to address
locality considerations, and reduce traffic overhead by keeping the data and processes close
to each other.

By organizing the storage management service in a hierarchical fashion, cloud platform
providers can support a wide verity of data multi-tenant architectures. Examples of these
architectures include: one subscription per tenant, one subscription for a group multiple
tenants, one storage account per tenant, one storage account for group multiple tenants,
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one table per tenant, one table with one partition key per tenant, and one container per
tenant.

Finally, relationships between Tasks can be determined by EndPoints. EndPoints are
ports through which a CloudTask can connect to other tasks or to the environment. Each
Task has one or more EndPoints. An EndPoint can be classified based on several criteria.
Whether it is publicly visible (external) or only accessible within the Cloud Application (in-
ternal), load balanced at the network level or not, or whether it allows inbound or outbound
communication. An inbound EndPoint is bound to one or more activities that represent
the interaction points with the task. Each EndPoint uses an access mechanism, which uses
a semantic interaction pattern for the coordination of message exchange. These patterns
are based on specific protocols that determine the syntax and semantics of the messages
that are exchanged between the two communication parties. Message Exchange Patterns
(MEP) can be classified into two main categories, one-way or two-way. The one-way MEP
is usually referred to as the event driven MEP, or publish subscribe (pub/sub), in which
the participating parties are not fully aware of each other. A temporary storage in the
form of a queue is usually used to accomplish this. One party will push a message, and
the second will pull it from the queue. This is one of the common communication patterns
between CloudFrontTasks and CloudRotorTasks. On the other hand, the two way MEP
is usually referred to as request/response MEP. It can either be a synchronous (blocking)
or asynchronous (non-blocking). The two way MEP is an interactive communication that
is usually needed when you have direct interaction with the user. CloudFrontTasks must
support this type of interaction with the application user.

4.3.1.2 The Adaptation Meta-Model

The adaptation meta-model provides the components required to specify the adaptation
rules and actions for each task or group of tasks in the core model. This enables many
dynamic features of the system, such as elasticity and security. It also helps administra-
tors ensure that the system continuously satisfies operational requirements (e.g., minimum
operational cost, high performance, and high availability). A rule can control the number
of virtual appliance instances, or enable a security guard or policy. A rule uses a set of key
performance indicators as operands. These are usually collected though instrumentation
and trace summarization.

Figure 4.5 shows the adaptation meta-model. Each component or group of components
is associated with a set of actions. The meta-model enables two types of actions, predefined
and custom actions. While predefined actions are known ahead of time (e.g., scaler actions),
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Figure 4.5: The Adaptation View Meta-Model

custom actions allow assigning external processes. An action is triggered based on a
constraint or reactive adaptation rule. A ConstraintRule is a predefined (static) constraint,
such as the minimum or maximum number of instances allowed at a certain time. A
ReactiveRule is dynamic rule. It is based on evaluating runtime environment parameters
against a set of key performance indicators (e.g., CPU utilization, queue length, response
time).

4.3.1.3 The Availability Meta-Model

The availability meta-model provides the components required to specify the configuration
parameters of the tasks that can be specified and modified at runtime without need to
stop the running application or redeploy it. Example of these parameters include: the
size of the virtual machine (VMSize), number of instances (numberOfinstances), storage
size (DBSize), bandwidth, the location (locationProzimity) where the task instances will be
instantiated and whether they belong to the same affinity group or not. This information
account for the dynamic aspects of cloud application such elasticity (i.e., the ability to
scale in and out).

Figure 4.6 shows the availability meta-model. An availability zone refers to the distinct
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Figure 4.6: The Availability View Meta-Model

Table 4.1: Availability and Fault Recovery Levels

Specified Requirements
(Core) Validation Constraint to be Checked

Availability Fault Recovery

Very Low N/A A task has one instance

Low Fast A task has two instances in the same region

Medium Average A task has two instances distributed into two different regions

High Slow A task has two instances distributed into two availability-zones

High Fast A task has three instances, two in the same region, and one in a
different availability-zone

Very High Fast A task has four instances, two in the same region, one in different
region but same zone, and one in different availability zone

physical location of the available hosting data-centers of a provider. An AwailabilityZone-
Group nests components that need to be hosted in the same availability zone. It contains
several RegionGroups that vary based on the provider. A RegionGroup nests components
that need to be hosted in the same region and contains many DataCenterGroups. Lastly,
a DataCenterGroup nests components that need to be hosted in the same datacenter.
Selecting a specific datacenter for an application is still not supported by most providers.
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For each task in the core model, the availability meta-model allows administrators to
specify the number of instances ( TaskInstance) to instantiate (replication), and their dis-
tribution to different geolocations (AwailabilityGroups). Recall that in the core model a
service developer specifies a provider for each task, and the required availability and fault
recovery levels. The availability model assigns one of that provider’s available geoloca-
tions for each task. This enables hybrid cloud deployments, where an application can
span multiple providers. Once the administrator creates the availability model, and before
the actual artifacts required for packaging and deploying the application on a target plat-
form are generated, a set of constraint rules are validated to ensure that the availability
model conforms with requirements. Table 4.1 shows a list of availability and fault recovery
objectives, and their corresponding validity constraints.

4.3.1.4 The Provider Meta-Model

. provides S
Provider 1 L AvailabilityZone
Name : String “—Location : String
1 provides
v T 1.* has -
ResourceSpecifications 1 has |ServiceTemplate 1 Price
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, PricingModel
initialize |1 = 0.." |specify
HostingEnvironment Task

Figure 4.7: The Provider View Meta-Model

The Provider meta-model aims to model different providers’ templates, offers and costs.
Figure 4.7 depicts the Provider meta-model. Each provider provides a list of availability
zones, and service templates. Availability zones represent the physical locations of provider
data-centers, while service templates capture different resource specification bundles (i.e.,
CPU speed, number of cores, memory size, disk space) that serve as templates for service
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tasks. The ability to specify resources using predefined templates is a turning point in
automating performance analysis. This meta-model enables reusability at the resource
model level, providing ready to use templates that represent actual cloud provider tem-
plates. Each template has a price that captures the cost of the resource configurations per
bundle. These prices usually depend on a provider’s pricing models, contract period and
terms (e.g., free, weekly, pay-as-you-go).

4.3.2 The StratusML Model Validation

There is always a need to check the correctness and completeness of the models created or
generated using a DSML. Validating a model includes checking:

(a) The model structural constraints and well-formedness rules: Structural and
well-formedness rules can be specified by superclasses along with the multiplicity and
type information expressed in the language meta-model. These are hard constraints
that are normally verified automatically by the modeling framework. An example of
a structural constraint is setting the lower cardinality of a component to one in the
meta-model. This constraint enforces that a model must be created with at least one
component of this type (i.e., an empty model is invalid).

(b) The model semantic constraints: Semantic constraints can be checked by defining
imwvariants to ensure model correctness and domain conformance. These invariants
can be implemented as soft or hard constraints (e.g., each task must have a unique
name). Moreover, depending on the validation context there may also be a need to
define pre-conditions and post-conditions as in the case of method validation to ensure
context state validity before and after the execution of the method.

(c) The transformation constraints: These constraints are used to verify the correct-
ness and completeness of the information needed to generate the target model before
a transformation.

StratusML utilizes Microsoft DSL framework to define the validation rules required
to ensure that the specified model satisfies the basic domain requirements and provides
the information required to generate the target platform specific artifacts. Microsoft DSL
automatically generates the validation methods for the structural constraints (e.g., check-
ing minimum multiplicity based on the defined meta-model). However, for semantic and
transformation constraints, the validation constraints must be explicitly defined by adding
validation methods to the domain classes or relationships of the DSL.
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In Microsoft DSL, validation constraints can be classified into hard and soft constraints.
Hard constraints cannot be violated by the user (i.e., it prevents the user from making
modeling mistakes). In contrast, soft constraints can be violated, but still create warnings
and errors to guide the user to the correct decisions. For example, a constraint that
enforces that no two tasks in a model should have the same name could be implemented
either as a hard constraint or as a soft constraint. If it is implemented as a hard constraint,
then a user will not be allowed “at any point in time” to create a task that has the same
name as another task. However, if it is implemented as a soft constraint, then a user
is allowed to create a task with the same name as another task, but an error will be
generated to instruct the user of the problem. Hard and soft constraints provide different
usability experiance. While hard constraints make the design environment rigid, lots of soft
constraint may result in deferring errors discovery to the time of saving the model. This
could lead to error accumulation and hence user frustration. StratusML mixes between
soft and hard constraints. A StratusML model cannot be saved if errors still exist. For
example, in the case of CoupoNet each of the web tasks external endpoints must be secure.
The model validator ensures this by checking if each of these endpoints is using SSL for
communication and that an SSL certificate is assigned for each external port. If an external
endpoint is not using SSL or does not have a certificate, an error message will be displayed
and the model will not be saved unless the error is resolved. In addition to hard and soft
constraints, StratusML also differentiates between validation rules based on generality into
domain specific or generic rules. Both domain specific and generic rules are used to specify
semantics of the cloud concepts beyond the meta-model, such as the rules of group nesting.
Domain specific constraints are classified in StratusML based on the layer of the concepts
it validates (e.g., availability, adaptation). On the other hand, generic rules are the rules
used to enhance the modeling experience in general, such as those that check for name
duplication.

Each validation rule is applied to a scope (i.e., class, relationship). The rule scope
specifies the context (i.e., name of the class or relationship) that the rule is validating and
its attributes or methods. Running a validation, either by a user or under program control,
executes some or all of the validation methods. Each method is applied to each instance
of its class. Moreover, there can be several validation methods in each class. Validation is
executed as a response to an event trigger. The types of triggers supported in Microsoft DSL
and used in StratusML are: File Open, Load, Save, and Custom triggers. A Custom trigger
is normally implemented as an event handler. Each rule validation method is implemented
using a list of invariants, which are the conditions the rule validates. Whether the rule
invariant is valid or inwvalid a set of actions can be activated. The actions can be error or
warning messages, or custom actions.
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The following are two examples of the validation rules used in StratusML (i.e., a soft
and a hard rule). The complete list of the validation constraints and the validation code
can be found in the StratusML webpage [(4].

Example 1 - A Hard Validation Rule: Figure 4.8 is an example of a validation code
for a hard rule. The first line represents the context where the rule is applied (i.e., Group
class). As shown in lines three and four, the rule is triggered in response to a custom
event, which is a model element creation of the type GroupableComponent. Line five is
the invariant, which validates that if the created element has a Group, and the element
is of type Storage then the Group must be of the type StorageGroup. As a result, if the
invariant is invalid then an error will appear and the component created will automatically
be deleted. This is an example of hard constraint, as it prevents the user from creating
the component by deleting the created component, in order to preserve the initial state of
the context .

1. [RuleOn (typeof (GroupableComponent)) ]
2. public sealed class OnlyStorageInStorageGroupRule : AddRule({
3. public override void ElementAdded (ElementAddedEventArgs e) {
4. GroupableComponent component = e.ModelElement as
GroupableComponent;
5. if (component.Group != null && ! (component is Storage) &&
component.Group is StorageGroup) {
6. Helpers.ShowErrorMessage
("Only a storage can be nested in a storage group.");
7. component.Delete();}}} //reverse action

Figure 4.8: Example of Validation Code for a Hard Rule

Figure 4.9 is the documentation of the rule in Listing 4.8. In which, we specify the
rule name, description, context, trigger event, invariants, and pre- and post- conditions.
StratusML rules have been documented by utilizing the same template in Figure 4.9. No-
tice that the rule pre-conditions, invariants and post-conditions are declarative (i.e., do
not change the rule context state). StratusML does not support validation rules with im-
perative actions with the exception of hard rules that validate the creation of components.
These rules support delete actions to reverse the creation action effect in order to maintain
the initial state of the context .

Example 2 - A Soft Validation Rule: Figure 4.10 is an example of a soft validation
rule that is applied to the adaptation action concept. The rule is triggered by the model’s
save event. The rule validates that an action is associated with a Task or ScalabilityGroup
as a target. If this invariant is invalid, an error message will be generated. Moreover, for
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Rule: OnlyStorageInStorageGroupRule

Decryption: checks that a StratusDiagram class contains at least one Task class.
Context: <class> GroupableComponent

Trigger Event:  <custom> adding GroupableComponent.
Pre-conditions: GroupableComponent exists, GroupableComponent.Group exists
Invariants: = ((GroupableComponent .Group is StorageGroup)
V (GroupableComponent.Group is StorageGroup)
A (Component is Storage)) = valid.
Post-conditions: On invalid
display <error> “Only a storage can be nested in a storage group”.
delete GroupableComponent.

Figure 4.9: Example of Hard Validation Rule

Rule: ActionMustHaveAtLeastOneTargetRule

Decryption: checks if an action class references at least one
ScalabilityGroup Or Task

Context: <class>Action

Trigger Event: < Save>
Pre-conditions: Action exists

Invariants: ReactiveRuleScaleAction.TaskTargets.Count >0 ||
ReactiveRuleScaleAction.ScalabilityGroupTargets.Count >0
= valid

Post-conditions: On invalid

display <error> “Actions must have at least one target (task or scalability group)”.
Set Focus <Action> A

Figure 4.10: Example of Soft Validation Rule

better user experience a set focus action will be used to direct the user to the component
(i.e., the action) that generated the error.

4.4 Mapping the Stratus Meta-Models to Cloud Spe-
cific Platforms

The Stratus meta-model presented in Section 4.3.1 is platform independent. It provides a
set of generic concepts, vocabulary, and rules for specifying the configuration space of an
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application apart from the target cloud platform vendor constraints. In this section, we
provide a mapping between the StratuML elements and their corresponding elements in
Windows Azure, Google App Engine and Amazon AWS. The later platforms were chosen
based on their popularity (i.e., they are major players in the cloud space with hundreds of
thousands of customers), their good documentation and the fact that they provide a set
of development tools at the PaaS level. They provide a diverse range of services including
but not limited to: compute, storage, security, networking and content delivery, databases
(relational, NoSQL, columnar, and caching), application services (queuing, orchestration,
etc.), and deployment and management services.

Table 4.2 shows a high level mapping between the StratusML meta-models and their
corresponding artifacts in Windows Azure, Google App Engine and Amazon Web Ser-
vices. For example, most model constructs of the StratusML core meta-model can have
correspondences in both Azure service definition (*.csdef) and configuration files, in GAE
deployment descriptor and configuration files and in AWS Elastic Beanstalk and EC2 tem-
plates.

Table 4.2: Mapping Meta-Data Artifacts

‘ StratusML Artifact H Azure Artifact ‘ GAE Artifact ‘ AWS Artifact ‘
Core Model Service Definition File & | Deployment Descriptor & | Elastic Beanstalk Template &
ore Atode Service Configuration File | Configuration File EC2 Template
. WASABI . . . .
Adaptation Model Adaptation rules Configuration File AWS AutoScaling Template
Provider Model Azure Provider Offering GAE Provider Offering AWS Provider Offering

As shown in Table 4.2, there is no one-to-one mapping between StratusML models and
providers’ artifacts. This is because different providers use configuration artifacts that have
different file structures. More about this problem and an example of these file structures
is provided in Chapter 6.

In this section, we focus on how the different concepts within these files are manually
mapped to the StratusML meta-model. Chapter 6 shows how such mapping can be simi-
automated. This section starts by a sample mapping of the StratusML core model elements,
followed by a sample of the provider meta-model concepts, then a sample of adaptation
model concepts. Note that the availability model is an instance model of the core service
model. Hence, no mapping is needed.
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Table 4.3: Mapping of Platform Specifications

StratusML::Core

H Azure Artifact

‘ Google GAE Artifact ‘

Amazon AWS Artifact

Compute

Core:Service

Azure Service

GAE Application

AWS Application

Core:Task

Role

Module

Elastic Beanstalk Task

Task:CloudFront Task

Web Role

Frontend Module

Elastic Beanstalk
WebApp

Task:CloudRotorTask

Worker Role

Backend Module

Elastic Beanstalk
Background Task

Stora,

ge

StorageTask:StorageAccount

Azure Storage

Google Cloud

AWS Storage

Account Storage Account Gateway Service

StorageMedium: .
NonRelationalStorage: Table Azure Table Datastore Amazon SimpleDB
StorageMedium: ) Simple Queue Service
NonRelationalStorage:Queue Azure Queue Task Queue Simple Notification Service
StorageMedium: Azure Blob Blobstor Amazon S3
NonRelationalStorage:Blob || AzureDrives SO Elastic Block Store (EBS)
StorageMedium: _ Google Cloud
RelationalStorage SQL Azure SQL Amazon RDS

Configuration and Communication
Service:ServiceAccount Azure Account GAE Account AWS Account
Task:DNS Azure DNS Cloud DNS Routeb3

Task:LoadBalancer

Azure Traffic Manager
& Load Balancer

Compute Engine
Load Balancer

Amazon Elastic
Load Balancer

Task:Endpoint

Role:Endpoint

Module:Endpoint

BeansTalk:Endpoint

4.4.1 Mapping the Core Model Components

Table 4.3 shows a sample of a mapping between the StratusML core meta-model elements
and it corresponding platform specific elements from Windows Azure, Google App Engine,
and Amazon Web Services. Generally speaking, the core cloud platform components can be
divided into compute elements, storage elements, configuration elements and connectors.
We start by mapping the main building blocks: the cloud compute elements and persistence
elements, followed by the elements that create the connections between the building blocks.

Compute Elements

As explained in Chapter 3, a StratusML Service is composed of Tasks. A Task is the main
compute element, it refers to a composable unit that represents a virtual machine image,
microservice or container. A StratusML Task is best alligned to Windows Azure Role,
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GAE Module, and AWS BeansTalk. A Role is a specialized instance of a virtual machine
that is customized for specific tasks and it is the main composition unit of an Azure
Service [108]. A Module refers to a component of an application that provides a single
service or configuration. An App Engine Application is made up of one or more modules.
Each module consists of source code and configuration files to handle a specific task[558]. On
the other hand, a Beanstalk is the main composition unit of AWS Application. A Beanstalk
is a fully managed application container service that provides built-in deployment features
for a variety of application frameworks [5].

StratusML offers two types of Tasks: FrontTask and RotorTask (i.e., also referred to
as Worker Task in the StratusML modeling framework). A FrontTask is best mapped to a
Web Role in Azure , a Frontend Module in GAE, or a FElastic Beanstalk WebApp in AWS.
These concepts describe an task that is customized for web application programming. On
the other hand, a RotorTask is best mapped to Azure Worker Role, GAE Backend Module,
or AWS Flastic Beanstalk Background Task, which all refer to long running background
tasks that dont require user interaction.

Persistence Elements

In addition to compute services, the StratusML core meta-model provides persistence build-
ing blocks that enable specifying the application database and storage options. Table 4.3
shows a mapping of these components to the different platform providers.

StratusML storage components include the StorageAccount in addition to building
blocks that represent the configuration constructs of both the non-relational storages and
relational database. In StratusML, each StorageTask manages the StorageAccount and of-
fers options for recovery and backup. A StorageAccount maintains the information required
to access the storage medium. A StorageAccount is mapped to Azure Storage Account, GAE
Cloud Storage Account and AWS Storage Gateway Service.

The StratusML non-relational storages (i.e., Table, Queue, Blob) are mapped to Azure
(Table, Queue and Blob), GAE (Datastore, Task Queue, and Blobstore) , or to AWS
(SimpleDB, Simple Queue, and Simple Storage (S3)) respectively. Finally, The StratusML
RelationalStorage is mapped to SQL Azure, Google Cloud SQL and Amazon RDS respec-
tively.
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Configuration and Communication

In addition to the compute and storage components, StratusML provides a set of miscel-
laneous components that cover aspects such as security, access control, networking and
content delivery. This section covers some of these components.

The ServiceAccount component specifies the subscription information of the user on
the deployment portal. The information specified using this component is mapped to its
equivalent account information in Azure, GAE and AWS.

A Task DNS specifies the settings for a domain name server (e.g., the name and IP
address of the DNS server). A StratusML DNS is mapped to Azure DNS, Cloud DNS
and Route53 components in Azure, GAE and AWS respectively. Similarly a Task Load
Balancer specifies the configuration setting used to divide traffic (workloads) between Taks.
StratusML Load Balancer is mapped to Azure, GAE and AWS Load Balancer.

Endpoint Protocols refer to the communication protocols used in cloud applications.
Cloud Tasks can communicate with internal tasks (within the same cloud), with external
services and cloud applications, or with end users depending on the type of the task and the
role it plays. In Windows Azure, WebRoles use HTTP/HTTPS in order to communicate
with end users. WorkerRoles can be accessed using HTTP/HTTPS protocols as well as
the TCP protocol. WebRoles and WorkerRoles communicate with each other via message
passing using azure storage services in a Restful way. The same concepts are applied
to Google App Engine and AWS. Both uses HTTP/HTTPS protocols for incoming and
outgoing communication, REST over HT'TP for communicating with web-services, as well

as queues to schedule tasks for execution, based on the requests received from the FrontEnd
Modules and WebApp Beanstalks

4.4.2 Mapping Dynamic Behavior (Adaptation Meta-Model)

Adaptation capabilities allow you to automatically change the application structure or
configuration at runtime. Today, most cloud platforms offer variations of autoscaling ser-
vices that enable adding or removing instances to handle sudden changes in traffic and
reduce cost. In this section we map the StratusML adaptation meta-model elements to the
autoscaling templates provided by Azure, Google and Amazon platforms.

Table 4.4 provides a summary of this mapping. For example, a StratusML Adaptive Rule
is mapped to a ScalingRule in Windows Azure Autoscaling Application Block (WASABI),
to Autoscaling Policy in GAE Managed Instances Configuration, or Scaling Policy in AWS
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Table 4.4: Mapping of Adaptation Rules

StratusML Azure GAE Managed AWS Autoscaling

Adaptation WASABI Instances Configuration Template

AdaptiveRule ScalingRule Autoscaling Policy Scaling Policy
Autoscaling policy

ReactiveRule ReactiveRule based on target Dynamic AutoScaling
monitoring metrics

ConstraintRule ConstraintRule | Scheduling Policy Scheduled AutoScaling

Action ScaleAction Instance Grpup Updater ScaleEvent
(startup script)

Scalability Group || ScaleGroup Managed Instance Groups AutoScaling:: AutoScalingGroup
(Target Pool)

Autoscaling template. All the aforementioned frameworks support both reactive and con-
straint rules. Also, they allow creating custom actions and setting a scalability group as
a target. However, as in previous mappings, these platforms use different terminologies as
shown in the table, and may have different constraints. For example, in GAE there is a
cap limitation of 100 instances per module. In contrast, the limit in Azure is 50 instances.

4.4.3 Mapping Providers’ Specifications (Provider Meta-Model)

Recall that each Task in the StratusML core model is assigned a service template that
specifies the computation power, memory and storage of the virtual machines available to
host a task. This section maps the StratusML service templates to its equivalent provider
templates.

Table 4.5: Mapping of StratusML Privider Service Templates to Existing Cloud
Providers” Offerings

Strat}lsML:Prowder Window Azure Google Cloud Amazon EC2
:ServiceTemplates Engine

Small Medium (A2) nl-highcpu-2 | t2.medium
Medium Large (A3) nl-highcpu-4 | c3.xlarge
Large Extra Large (A4) | nl-highcpu-8 | ¢3.2xlarge

Table 4.5 shows a sample mapping of comparable small, medium and large instances.
While Table 4.6 shows the hourly price (the cost of using a VM with a specific service
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Table 4.6: Comparing The Service Templates’s Pricing and Resource Specifications

] | Hourly Price \ CPU \ Memory \ Storage ‘

Small
Window Azure $0.12 2 Cores | 3.5 GB | Off Instance Only
Google Cloud Engine || $0.088 2 Cores | 1.8 GB | Off Instance Only
Amazon EC2 $0.068 2 vCPU | 4 GB Off Instance Only
Medium
Window Azure $0.24 4 Cores | 7 GB Off Instance Only
Google Cloud Engine || $0.176 4 Cores | 3.6 GB | Off Instance Only
Amazon EC2 $0.21 4 vCPU | 7.5 GB | 2 x40 GB SSD
Large
Window Azure $0.48 8 Cores | 14 GB | Off Instance Only
Google Cloud Engine || $0.352 8 Cores | 7.2 GB | Off Instance Only
Amazon EC2 $0.42 8 vCPU | 15 GB | 2x 80 GB SSD

template under the designated provider) and hardware specifications (i.e., number of cores,
memory size, disk space) for each of the service templates. For example a small service
template in StratusML is matched with a medium (A2) instance in Azure, a nl-highcpu-2
instance in Google and a c3.large and t2.medium instances in Amazon. FEach of these
instances has two core CPUs, a main memory between 1.8 and 3.5 GB. Moreover, they use
off-instance storage.

Comparing the performance for running a service on different providers, given only the
providers information is impossible [36]. While the aforementioned service templates are
equivalent in terms of hardware specifications, it is difficult to infer that they can guarantee
the same performance. This makes finding the right resource specification match a daunting
task. In our work we adopt the results obtained by Cloud Harmony Inc. benchmark [30]
for service template mappings.

4.5 Case Study: Demonstrating the Stratus Frame-
work Capabilities

A platform provider (e.g., Windows Azure) should empower the developers to build high
quality applications. A modeling language (e.g., StratusML) assists stakeholders to make
the right decisions to fully utilize the platform. This section shows, by example, how
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StratusML contributes to solve the typical challenges that face any organization adopting
cloud computing.

4.5.1 The CoupoNet Scenario

Let us consider CoupoNet; a fictitious startup company that offers coupon services on the
cloud. The software is a multi-tier and multi-tenant application that works as follows:
CoupoNet tenants obtain a free trial or paid subscription that allows them to design
and post coupons and publish them based on the target customers’ geolocation. The
application stores the buying and selling data and performs sophisticated analytics to
rank and position the offers, provides statistical data to the subscribers, and analyzes the
users interactions to dynamically update the CoupoNet business model. The CoupoNet
team decided to host their application on the cloud to harness its benefits; cut initial
costs, provide reliable services, and minimize administrative and configuration tasks. As
a start-up, there are many challenges to be met. The CoupoNet team is unsure how
many resources they need. The coupons market is vibrant; coupons can be seasonal,
time limited and susceptible to the slash dot effect; no one can predict when a coupon
will become popular. The CoupoNet site should be able to respond quickly to increasing
demand. CoupoNet is also unsure of how to distribute the services geographically to
insure the highest availability and minimize the traffic overhead, or how to assure security
and compliance. Cost wise, CoupoNet is unsure which provider to select; while currently
provider X provides the cheapest services, CoupoNet developers are familiar with provider
Y'’s technologies. Moreover, CoupoNet expects a more competitive offer next year from
CloudKick, a third provider. From a technical point of view, CoupoNet’s architect designed
the application to ensure components have lowest coupling and highest cohesion. However,
at the time of the deployment, the system administrator, who is unaware of the architect
design decisions, may redistribute the components to minimize cost and initialize them with
arbitrary ratios based on his best estimation. As the demand fluctuates the administrator
needs to update the deployment model and reconfigure the different services.

4.5.2 Using the StratusML Framework Modeling Features

This section uses the CoupoNet example to demonstrate the capabilities of StratusML.
Table 4.7 summarizes how StratusML can be used to address the CoupoNet team chal-
lenges. The first column shows the challenges that the CoupoNet team faces. The second
column shows the StratusML layer that is used to address each challenge, while column
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Table 4.7: Addressing CoupoNet Challenges

CoupoNet Modeling StratusML
Challenges Layer Solutions

Model multi-tenant  Core Provide different groups (i.e., storage, availability, and

applications scalability groups) that address multi-tenancy by
applying different service and data partitioning
strategies.

Model multi-tier Core The core meta-model provides platform independent

applications task-templates for frontend, backend and cloud-
storages. It also provides connections to describe the
different interactions between Tasks.

Communicate Core StratusML groups can overlap with each other. Using

architectural these groups, architects can ensure that their original

decisions to decisions, which aim to reduce coupling and increase

administrators cohesiveness, are maintained. Grouped components
will always stay, migrate and scale together.

Distribute services Availability Provide availability groups that facilitate managing the

into multiple service instances locations and counts.

geographic locations

Uncertainty of Adaptation Facilitate modeling for adaptation rules and actions with

required resources the focus on scalability actions. A user can specify
constraint and reactive rules, and associate them to task
or scaling groups. The framework generates the required
rule-based configurations to automate resource
provisioning.

Evaluate different Provider A user can select one of the available providers or create

provider offerings a custom provider. The system will estimate the cost of
deploying the application on the selected provider.

Migrate between Provider Provide a set of templates that can be customized to any

different providers platform in order to automatically generate all the target
platform artifacts.

Minimize Provider Provide a set of templates that can be customized to any

administration and
configuration tasks
and model co-
evolution

platform in order to automatically generate all the target
platform artifacts.
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three provides the specific features that address the challenge. The table demonstrates the
benefits of using the layering feature, and how the different views can foster collaboration
between the different cloud stakeholders.

This chapter focuses on how to use StratusML to capture the application deployment
configuration and to generate the required artifacts to deploy a cloud application on a
target platfrom (e.g. Windows Azure), by transforming the StratusML provider indepen-
dent models into provider specific configurations. Capturing the application deployment
configuration includes: (i) the application static structure (a.k.a, service model) (ii) the
application runtime model (i.e., how the different components are instantiated, distributed
and replicated), and (iii) the application dynamic behavior at runtime (a.k.a., adaptation
model). Here is how StratusML is used to specify such information:

Define a Cloud Application Service Model (Structure): The core layer provides
a set of visual components that corresponds to the StratusML core meta-model elements.
Using the core meta-model service, developers can describe the structure of a cloud service
composed of one or more Tasks, the types of tasks, and their relationships. For example, the
model in the design window of Figure 4.2 shows a provider independent deployment model
that corresponds to the CoupoNet example. The model is composed of one service (not
shown in the model as it is part of the hidden configuration view) with three web tasks (i.e.,
frontend modules) and two worker tasks (i.e., backend modules). Each web task has at least
one external endpoint that must be secure and is a frontend web MVC-style application
to be accessed by specific user groups (i.e., Coupon Providers, Coupon Buyers, Admins
and Marketing Researchers). The first worker task corresponds to the application backend
that handles all operations (logic tier). The second is the analytics/data-crunching engine,
which processes buy/sell data. There is also a storage tier, which consist of blobs for storing
data collected from buy/sell dumps, and queues for asynchronous communication between
worker and web tasks. The core layer furnishes various groups (i.e., storage, availability, and
scalability) that assist in modeling multi-tenancy using different service/data partitioning
strategies.

Specifying the Replication and Distribution of the Modules: The availability of
the system depends on how the different components and modules are replicated and dis-
tributed into different regions. StratusML provides a modeling view that makes it easier to
manage the locations and the number of instances of each cloud task. This helps adminis-
trators model cloud service distribution to multi-geographic locations. Figure 4.11 shows
how the CoupoNet tasks are replicated and distributed. For example, three instances have
been instaniated for the task “CoupoNet.Web.Admin” in two different regions both in
North America, one instance in the North Central “Chicago” datacenter and two instances
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Figure 4.11: StratusML Availability View Excerpt

in the South Central “San Antonio” datacenter as shown from the link cardinality. An
administrator can easily instruct the cloud fabric to relocate the instance into a different
location within the same provider or to a different provider by changing the properties of
the instance.
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Specifiying the Application Behaviour (Adaptation Model): Using the adaptation
layer, StratusML facilitates modeling adaptation rules and actions, with a focus on scala-
bility actions. A user can specify constraints and reactive rules, and associate them with a
task or scaling group. The framework generates the rule-based configurations required to
automate resource provisioning. This solves the problem when required resources cannot
be estimated at the beginning of the project.
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Figure 4.12: StratusML Adaptation Rule and Action Excerpt

Figure 4.12 shows a screenshot of a task (CoupoNet. Workers.Logic) that is associated
with an adaptation action (ScaleHeavyDemandAction) that is activated based on a reac-
tive rule (HeavyDemandReactive). The reactive rule has the rank 2. It can be enabled
or disabled when needed. The activation of the reactive rule depends on the value of the
operand (HeavyDemandOperand) and activated when the demand is greater than 75%.
The value of the operand is collected at runtime. The MainStorageAccount component is
used to set the configuration parameters of the diagnostic API.

Creating and Selecting a Cloud Provider: StratusML users can use one of the sup-
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Figure 4.13: StratusML Provider Snapshot

ported providers or create a new one. The provider layer provides a set of components to
describe providers’ specifications. This includes; specifying (i) the service templates, which
describe the resources provided in bundles (i.e., CPU speed, number of cores, memory
size, disk space), (ii) the availability zones that represent the physical locations of provider
data-centers, and (iii) the pricing profiles which specify the cost of using a VM with a
specific service template under the designated provider. The information specified can
be used to estimate the system performance and calculate the cost of deployment under
various providers. Using and generating analytical performance models from the specified
information in the deployment and service models will be discussed in detail in the next
chapter.

Figure 4.13 corresponds to Windows Azure provider model. The figure shows the list
of service templates offered (e.g., small, medium) by Azure, the pricing model of Azure
and how each of the service templates can be assigned a pricing profile.
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4.5.3 Artifacts Generation

The purpose for designing a visual DSML is to generate artifacts (e.g., code, configuration)
from the models written in that language to reduce the efforts of manually creating them.
By generating the cloud configuration space artifacts, StratusML reduces the administra-
tion and configuration efforts. StratusML facilitates application migration between dif-
ferent cloud providers, by modeling the service structure and configuration independently
from the platform specifications, then generating the configuration artifacts (i.e., text XML
files) required to run the application on the target platfrom. There are multiple approaches
with DSL tools to transform models into code and text files [12]. StratusML uses transfor-
mation templates. Particularly, StratusML utilizes the Text Templating Transformation
Toolkit (T4), which is a text transformation technology developed by Microsoft for artifacts
generation.

Models created using visual editors, such as StratusML are already loaded in memory.
This eliminates the need to parse and serialize the model. A template-based transformation
uses text files, called transformation templates. A transformation template contains the
code to import the model loaded in memory, navigates through the model, and generates
textual artifacts based on the transformation rules (i.e., code) specified in the template. A
transformation template consists of three parts: a static part that represents the structure
of the output file, a dynamic part that corresponds to the code logic used for model
navigation, patterns identification and transformation rules, and template directives which
specify how the template should be processed. T4 organizes these parts into blocks. These
blocks are distinguished by their opening control markers. The following are the main
blocks provided in T4:

(a) Standard control blocks ‘< # statements # >’: Contain statements written in C# or
Visual Basic to control the flow of processing in the text template.

(b) Expression control blocks ‘< # = expressions # >’: Contain expressions that are
evaulated and automatically converted to strings to be inserted into the output file.

(c) Class feature control blocks ‘< # + methods # >': Contain methods, fields and
properties. It is used to add reusable pieces of template, such as transformation helper
functions.
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(d) Directive blocks ‘< @ directives # >": Provide instructions to the T4 template engine.
For example directive blocks can be used to specify that the output file should have a
‘.cscfg’ extension, or it should be splitted into multiple files.

Anything written outside the boundaries of these blocks are considered part of the
static content, which will be emitted to the output file without processing.

Selecting a platform provider calls a hard imperative rule that transforms the model into
provider specific, but platform independent model. If the model passes validation with no
errors, then the save action will trigger the template based transformation to generate the
actual platform specific artifacts. StrartusML provides a set of transformation templates
out of the box and allows creating custom ones for a new providers.

Listing 4.4 is an example for part of a template that is used to generate Windows
Azure service definition file from the StratusML model. The complete Azure defenition
template as well as the other templates required to fully generate all the configurations
and artifacts to deploy any StratusML model into Windows Azure are available in the
StratusML web page [61]. The code in Listing 4.4 starts with a set of directives that
specifies the output file name extension ‘.csdef’, defines the name of a class that makes the
link between our model and the T4 engine ‘StratusML DirectiveProcessor’ and loads the
source instance model ‘ApplicationModelCoupoNet.stratus’ of the application as modeled
using the StratusML language.

The code from line 7 to 20 of the standard control block represents the primitive trans-
formation function of the template. It utilizes three supportive transformation helper
functions that are implemented within class feature control blocks to be reusable. Those
are: GenerateBasicRoleNodes, GenerateWebRoleNodes, and Generate WorkerRoleNodes.
The GenerateBasicRoleNodes helper method generates the essential elements that are pre-
sented in all three types of tasks.

<#@ template inherits="Microsoft. VisualStudio.Text Templating. VSHost.ModelingText Transformation” # >
<#Q@output extension="".csdef” #>
<#@QStratusML processor="StratusMLDirectiveProcessor” requires="fileName=’ApplicationModelCoupoNet.stratus
#>
<#@Q import namespace="System.Collections.Generic” #>
<# Write(” <ServiceDefinition name=\"{0}\” ”, StratusDiagram.Name);
... //omitted for paper presentation
List<Component> tasks = GetAllTasks();
foreach (Task task in tasks) {
if (task is WebTask) {
WriteLine(” <WebRole name=\"{0}\” enableNativeCodeExecution=\"{1}\” vmsize=\"{2}\”>", task.Name, (task
as WebTask).EnableNativeCodeExecution, task.VirtualMachineSize);
GenerateWebRoleNodes(task as WebTask);
WriteLine(” < /WebRole>");
} else if (task is WorkerTask) {

)
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WriteLine(” <WorkerRole name=\"{0}\” enableNativeCodeExecution=\"{1}\” vmsize=\"{2}\” >”, task.Name, (
task as WorkerTask).EnableNativeCodeExecution, task.VirtualMachineSize);
GenerateWorkerRoleNodes(task as WorkerTask);
WriteLine(” < /WorkerRole>");
} else if (task is VirtualMachineTask) {
... //omitted for paper presentation
} else
{ throw new Exception(”Invalid task type for task: 7 + task);}
}
GenerateNetwork TrafficRulesNode(tasks);
PopIndent();
Write(” </ServiceDefinition>");
#>
<#+ void GenerateWorkerRoleNodes(WorkerTask role) {
GenerateBasicRoleNodes(role);
PushIndent(” 7);
if (role.Runtime != null) {
WriteLine(” <Runtime executionContext=\"{0}\”>”, role. Runtime.ExecutionContext);
PushIndent(” ”);
GenerateEnvironmentNode(role. Runtime. Environment);
if (role.Runtime.NetFxEntryPoint != null && role. Runtime.NetFxEntryPoint.Count == 1) {
WriteLine(” <EntryPoint>");
PushIndent(” 7”);
foreach (NetFxEntryPoint netFxEntryPoint in role.Runtime.NetFxEntryPoint) {
WriteLine(” <NetFxEntryPoint assemblyName=\"{0}\" targetFrameworkVersion=\"{1}\” />”,
netFxEntryPoint. AssemblyName, netFxEntryPoint. Target FrameworkVersion);
break; // Only output one

PopIndent();
WriteLine(” </EntryPoint>");
} else if (role.Runtime.ProgramEntryPoint != null && role.Runtime.ProgramEntryPoint.Count == 1) {
... // //omitted for paper presentation

PopIndent();
WriteLine(” < /EntryPoint>");

PopIndent();
WriteLine(” </Runtime>");

if (role.Startup != null && role.Startup.Count > 0) {
... //omitted for paper presentation

PopIndent();

WriteLine(” </Startup>”); }
if (role.Contents != null && role.Contents.Count > 0) {
... // omitted for paper presentation

}
#>
<#+ List<Component> GetAllTasks() {

List<Component> tasks = StratusDiagram.Components.FindAll(x => x is Task);
foreach (ScalabilityGroup scalabilityGroup in StratusDiagram.Components.FindAll(x => x is ScalabilityGroup)) {
tasks.AddRange(GetAllTasks(scalabilityGroup)); }
return tasks;
}
#>

Listing 4.4: T4 Transformation (StratusML To Azure Definition).
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The GenerateWebRoleNodes and Generate WorkerRoleNodes helper methods generate nodes
that are specific to web tasks and worker tasks, respectively. Both of these methods call
GenerateBasicRoleNodes, before they start running. The template then checks that all
the values were added correctly in the template. We used this template along with the
templates provided in the StratusML webpage to generate the complete configurations
required to deploy the CoupoNet example on Windows Azure platfrom.

4.6 Summary

This chapter presents StratusML, a modeling framework and a layered modeling language
for cloud applications. The distinctive advantages of StratusML over existing cloud mod-
eling frameworks are the following: it uses layers to provide partial and holistic views for
the different cloud application concerns, it facilitates visual modeling of adaptation rules
and actions, and it uses template-based transformation to deal with the cloud platforms
heterogeneity.

StratusML provides the components needed to model platform independent and quality
cloud applications. Moreover, it simplifies the applications’ management through employ-
ing “model once deploy everywhere” model driven approach and minimizing the assump-
tions about the target cloud platform through offering out of the box provider’s templates.

StratusML supports the cloud applications DevOps process, by covering the main ar-
chitectural views that represent the application’s structure, behavior and configuration. It
promotes flexibility, portability, reusability and productivity.

To demonstrate the capabilities of the StratusML framework to satisfy the cloud stake-
holder needs, a scenario-based example (CoupoNet ) has been presented. In which we
showed how the StratusML is used to model the CoupoNet example and to generate the
artifactes required to deploy it in the cloud.

The next chapter investigates the relationship between the cloud application config-
uration space artifacts and the artifacts required to automatically generate performance
models for the corresponding cloud systems.
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Chapter 5

StratusPM: Generating Layered
Cloud Performance Models

“Transparency 1s valuable, but while many things can be made transparent in
distributed objects, performance isn’t usually one of them.”
— Martin Fowler, 2003

Chapter 4 presents StratusML: an architectural framework and a modeling language
for the cloud configuration space. This chapter aims at extending StratusML to support
generating analytical performance models for cloud applications by reusing the information
used to configure the platform for the application deployment and operation.

Constructing an analytical performance model includes two steps: (i) modeling the
application structure and the underlying infrastructure resources, (ii) modeling the user
interactions and workload characterization. Traditional approaches usually consider the
structural part to be variable, as it depends on the target infrastructure specifications, but
static as it rarely changes after deployment. Accordingly, the automatic generation of the
structural resource models is given less attention in comparison to the workload character-
ization and the behavioral part of the performance model. In cloud both the platform and
the application are fluid and continuously changing after deployment. Additionally, cloud
providers offer instances and service templates with known specifications (e.g., Table 4.5
and 4.6) that provides opportunity to automate the process of generating performance
models for cloud applications. However, even with such opportunity, the problem of con-
structing accurate performance models is complex, because it requires knowledge of sparse
information that changes continuously according to the decisions of different stakeholders.
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This includes: the application service architecture, the platform specification, the system
runtime parameters (i.e., service time, number of calls and their probabilities, response
time, throughput, etc.), and the target analytical model formalism and notations.

The goal of this chapter is to empower collaborations and reduce the efforts needed
to specify the performance models by reusing other stakeholders artifacts. We extend
the StratusML framework to support annotating the cloud models with runtime perfor-

mance parameter, and enable transforming the annotated StratusML models into Layered
Queuing Network (LQN) models.

The rest of this chapter is organized as follows. Section 5.1 evaluates the performance
modeling requirements in context of cloud artifacts. Section 5.2 extends the StratusML to
capture the application performance. Section 5.3 explains the reasoning behind selecting
the Layered Queuing Network as a target analytical performance model to analyze the
cloud application performance. Section 5.4 explains the rules needed to transform the
StratusML models that are annotated with StratusPM components into Layered Queuing
Network (LQN) models. Section 5.5 provides a case study that demonstrates how to
use StartusPM to model the cloud application performance and how to generate LQN
models by applying the proposed transformation rules. Finally, Section 5.6 summarizes
the chapter.

5.1 Evaluating the Requirements of Performance Mod-
eling

A performance model is a quantitative measure of how the system operations use its
resources (which resources, for how long, and in what order) [128]. It is used to predict
resource utilization and estimate the required resources. There is an overlap between
the information that is required to analytically analyze the system performance and the
information that is required to deploy and run an application on a particular platform.
Deploying an application on a cloud platform requires specifying how the application service
model uses the platform resources of that particular provider. Specifying an application
performance model requires specifying the characteristics of the software application and
its underlying platforms [129]. Therefore, both deployment artifacts and the performance
model use the same resource model, which depends on the providers’ templates and service
architecture.

The following are the two different sets of information that are required before the
model is ready to be solved analytically.
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(a) The structural model, which is represented by:

A1l. The application components.

A2. The resources (e.g., cpu, disks) under which the application components operate.

A3. Multiplicity of resources and components (i.e., how many of each).

A4. Scheduling policies for all components, tasks and their priorities.

The behavioral model, which is represented by:

B1. The service time of each component.

B2. The interaction between components (i.e., call paths).

B3. The number of calls to a service (i.e., probability a call path is taken).

Table 5.1 shows where the aforementioned information that are required to build a

performance model for a cloud system could potentially be found within the artifacts that
describe a cloud application deployment. The table uses examples from three different cloud
providers (i.e., Azure, GAE, and AWS), in addition to the StratusML models explained in
Chapter 4.

Table 5.1: Mapping Performance Modeling Requirements to Cloud Artifacts

Performance Modeling Components

Cloud Artifacts
(The Field Within Each Artifact)

(VMSize) +

(InstanceClass) +

Azure GAE AWS StratusML Model
L. . . AWSTemplate . ,
.. Definition File Deployment Descriptor . Service Model
Al. Application components ElasticBeanstalk

(Role) (Module) (Task)
(Beanstalk)

Definition Files Configuration File AW STem‘plate Service Model
AutoScaling

(Service Template)

A2. Resources Provider Specs Provider Specs gil;ti;l:re S“ Ei) + Provider Model
(e.g., Table I) (e.g., Table I) (e Tlmblepll)“ (Resource Specification)
7 P
T Configuration File | Configuration File AW STemApldte Availability Model
A3. Multiplicity of resources and components ) . AutoScaling )
(Instances count) | (instances) ServerCapacity (NumberOfInstances)
. . . Adaptation rules | Configuration File AV\’STompla‘tcﬂ -
A4. Scheduling policies WASABI (autoscaling) AutoScaling Adaptation Model
B1. Service time of each component N/A N/A N/A N/A*
Partial Info in . .
. ) Partial Info in Partial Info in .
B2. Interaction between components ?icltisdnd Config Dispatch file Route 53 file N/A
B3. Number of calls to a service N/A N/A N/A N/A*

*Addressed in this chapter

In Table 5.1, an application component refers to a virtual appliance |
chine image (e.g., a Role in Windows Azure, a Module in GAE, or Task in StratusML
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terminologies). Recall that such components can be found in the deployment package
definition files. The description of the underlying resources that is required to run these
virtual appliances is determined based on the virtual machine template, as specified in the
configuration or definition files, while the actual hardware specification of this template is
provided in the PaaS specifications as defined in the service level agreement. The multi-
plicity and replication of each component is another important factor that can affect the
performance of the application. Such information can be extracted from the configuration
files of the deployment package. Moreover, using the adaptation rules and scaling policies,
the minimum and maximum number of instances allowed can be determined. This can
be used to tune the simulation parameters to study the application performance under
different configurations.

Table 5.1 shows that it could be possible to generate the structural part of the perfor-
mance model, in addition to some of the interactions between the components from the
cloud application package artifacts. Since StratusML models are able to generate these
artifacts, it would also be possible to generate the structural part directly from StratusML
models. Using StratusML models to generate a performance model can have a significant
advantage over generating transformation through mapping each of the provider specific
artifacts to its corresponding performance components. Using StratusML models as pivot
models can reduce the number of transformations required from N x M to N + M, where
N is the number of providers and M is the number of target performance models.

Table 5.1 also shows that in order to have a fully functional analytical performance
model, there is a need to extend the StratusML models to capture the information related
to the behavioral-model. This includes; (i) the usage model, which describes the interaction
between the users, and (ii) the system and the resource utilization parameters, which show
the load on the different resources as a result of user requests. This information can be
presented as annotations in a separate view, because it is usually specified by different
stakeholders (i.e., Performance Engineers), and it is based on a separate process (i.e., the
application instrumentation and measurement). Section 5.2 shows how the StratusML can
be extended to capture the missing performance parameters.

5.2 StratusPM: A Pivot Model for Cloud Performance

This section describes an extenstion to the StratusML meta-model. This extension is
based on the evaluation provided in Section 5.1. The objectives of this extension is to
provide a set of modeling components to capture the cloud application resource utilization
parameters and usage model. We refer to the pivot model that carries the informaition
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that is required to generate analytical perfromance models (e.g., LQNS, Opera, JMT)
for cloud applications as the StratusPM. The StratusPM meta-model consits of two sub
meta-models that extend the StratusML core meta-model components. Those are the
perfromance meta-model and the workflow meta-model.

5.2.1 The Performance Meta-Model

Figure 5.1 depicts the performance meta-model. Its elements were inspired by the UML
performance analysis modeling profile (PAM), which is part of MARTE profile [123]. As
shown in Figure 5.1, there are five association relationships that connect three core com-
ponents to corresponding performance aspects. These links represent integration points
between the cloud resource model and its performance specifications.

Each Activity is linked to ActivityPerformance, Workload, and to itself through the Call
reflexive relationship. The ActivityPerformance specifies the activity server performance
parameters; such as, the activity resource demand, think time that is optionally used to
specify pure delay, and the desired response time of that activity. The Workload specifies
the intensity of demand on that activity. The Call component specifies the number of calls
that each activity makes to others, the types of these calls, the communication mechanism
(InteractionType) used, as well as the size of the input and output messages associated
with the calls. While an activity can be the source of several calls, each call is associated
with exactly two activities; a source and a target activity. An InteractionType can be
synchronous, asynchronous, or forward, with the same semantics as in LQN [52]. The
Endpoint is connected to aConnection component. The Connection links endpoints. All
calls that cross activities between Tasks must go through the Connection, which acts as
pipe between two endpoints. The Network performance component specifies the connection
parameters for a Connection. Finally, each Task is connected to a HostingFEnvironment.
The HostingEnvironment parameters can be inferred based on the task type and the target
PaaS provided as specified in the provider meta-model.

In a nutshell, each task can perform several activities. Each activity has a phase and
a type. The phase specifies the order of execution within the task, while the type specifies
whether it is a normal activity or a join, fork, or loop activity. An activity can be linked to
other activities within the same task or with external tasks. Requests directed to activities
in other tasks are sent to one of the external endpoints of the target task. A phase zero
activity is always connected to one of the external endpoints of the task. A phase zero
activity receives the external requests that are directed to that external endpoint.

Each activity belongs to one or more workloads. A workload logically groups all activi-

98



plEAIO
JUASY
JUAS

uopaeIU|
<<UONBIBLUINUS>=

a)sodulon
[ETN
uonauuonAeaug || uonsauuofepiom dooT afleemg
[ ] SHO4I0 afle]
T A0 JpUy wnipaiy
[TsIlle) =01y
BUINS | sWEn uorpuy |eLSET
uopostition | b PUIMANAROY PUIMOZISAUILIBWIENHIA
suomeulon /Tt 0 <<UONBIBLUNG> <<UONBIBLUNLGS>

<0 | sweuodwos

b PO

fumns ; awep

Tinshiels

<RIALDY=1S1T 1S ITALALD Y wiodpug L
Bumns : Bus snbiuyoa | e b PEOPHOAL | SSEID
SUiodpug
uonnosd AMO[JHIOAN
AL L
40
Guuis : sliep
jurodptig Gums : BupsuopoauuoJunoa2yabelols
aqnoq  aedeauly || seBeiu  ucnendog Rl BuLS | slleNLNoDDYabRIOIS
PUIASZISBUILDRINBNLILA - SZISINA
peopiopuadg PEOPOANPISO|D l_l N Jebey - seoupieL)
7|\_ meI_n
P
170 L
186l |
L0 L0 =0 £l L L0 Sl
8|gnod sl ssuadsay L
a[gnod : pueLlsg Sl
8anod : ssoerdEd algnod s uyL || Jebaw - ezighsp Sl
a|qnog © felsq JsBsu IndyBnody L AIAnoy 1ssananDy alqnog | sl 83Mes Jaba) - ssIA _H
puilianzy - edil
a|qnog © aledlg 1abeq| : sley fums © aulep Bus © awen U poedaqy)  ach)
N Jabau|  aseyd
HIoMI3N juswuolaugBunsoH peOIIOM IdURLLIOUA JAJAIDY ea
I T i T oo+ 0 L Aanoy sadladeg || weuodiopaloneiqednoiD
Bums : aulen
RUodwe DeIUBULIOEd pauodwe pauodwo 0]

The Performance View Meta-Model

Figure 5.1
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ties that are affected by the same traffic class and hence should be executed together, while
a task groups all activities that share and utilize the same underlying resources. There
are two types of workloads: open workloads, where requests arrive at a given rate; and
closed workloads, where requests are generated by a fixed number of users (population).
Since there is many-to-many relationship between activities and workloads, another entity
is needed to specify the activity execution path for each workload. The workflow entity is
part of the workflow view. Each performance solution (PSolution) has a list of workflows.
Each workflow has a designated workload and an ordered list of the Activities performed
by that workflow. A performance solution (PSolution) also specifies the solution technique
used in solving the performance model (i.e., analytical, or simulation).

5.2.2 The Workflow Meta-Model

WorkloadIncident| a5 | |Workflow
cal O.."’haSZ Activity] L associated with' 1 has
0. 0.% 1y .«
0.* D..* source Activitylncident
1 Lcomposed ofT Ttarget
containe [

Composite ||[Normal | Control [ T ‘
Alncident| Cincideny

Join Fork Sequence

! = )
AND || OR ||AND|| OR

Figure 5.2: The Workflow View Meta-Model

To represent system behavior and enable operational analysis, the (5+1) model adopts
a simple workflow meta-model. It specifies activity control structures that need to be
executed in sequence to perform a certain work. As shown in Figure 5.2, the two main
components in the workflow meta-model are activities and activity incidents. A workflow
model represents the actual occurrence of the activities that are defined in the core model
along with the workload generator (from the performance model) that is responsible for
the activity enactment. Each actiwvity incident belongs to one activity. This allows us
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to compose different workflows (execution scenarios) for the activities according to their
runtime execution.

An activity can be classified as a normal, composite or control activity. A control activity
links source and target activities and describes their execution sequence and concurrency.
Depending on the control activity type, it can link one source to one target (sequence), one
source to many targets (fork), or many sources (join). Activities that succeed a fork control
can all be executed concurrently (and fork), or one at a time based on evaluating a boolean
(or fork). Similarly, in an (and join) all predecessor activities must be executed before
the join, while in an (or join) the execution of any of the predecessor activities is enough
to start execution of the join activity. The normal activity is an elementary activity that
cannot be further decomposed, while a composite activity contains (n) normal or complex
activities and their control joint activities.

Even though the workflow model is essential for performance analysis, it is better to
model activity definitions, performance specifications and actual usage scenarios seperately.
This separation of concerns maximizes modeling flexibility, fosters reuse, and facilitates
modeling of the application’s behavior at runtime.

5.3 The Target Analytical Performance Model

While it is possible to transform StratusPM models into any analytical performance model,
this thesis adopts the layered queuing network as a target model. This section starts by a
brief introduction of the basic concepts of LQN, followed by the reasons of adopting LQN
as a target analytical performance model.

A Layered Queuing Network (LQN) is a set of extensions and notations for extended
queuing networks to model systems with nested resources [52]. Figure 5.3 describes the
LQN metamodel. Here, we briefly describe the main concepts of the LQN model. An
LQN model contains software resources called tasks which are allocated to hosts called
processors. A task provides a set of services called entries. A task also owns a queue where
requests for entries are waiting for the service based on scheduling type. The process of an
entry is described using a set of activities connected by different precedence relationship.
An activity represents the smallest operation unit in LQN model.

Activities can also be described in the model in the form of phases, where they are
constrained to be executed in a sequence of one to three. A request from an activity
(or phase) to entry can be synchronous, asynchronous, or forwarding. In a synchronous
request, a client is blocked waiting for a reply. In an asynchronous request, there is no
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Figure 5.3: LQN Meta Model [159]

reply. Finally, in a forwarding request, the client request is processed by a chain of servers:
the first server in the chain will forward the request to the second. The request will keep
forwarded until it reaches the last server in the chain, which will reply to the client.

LQN is appropriate for modeling complex systems that exhibits complex characteris-
tics such as multi-tiers of service, fork/join interactions, and asynchronous communication.
This makes LQN a good fit to model the performance of cloud applications. More particu-
larly, the reasons to select the layered queuing network as a target model are the following:

(a) LQN is a form of Extended Queuing Networks for systems with nested multiple resource
possession. This ability to model the performance of systems with multiple layers is
a perfect match for cloud application modelling. This is because the cloud computing
service models also follow a strictly layered architecture (i.e., laaS, PaaS, and SaaS).
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(b) LQN provides a multi-sever multi-class solvers that can easily model replication. Repli-
cation is a key characteristic in the cloud that is used to ensure the availability scala-
bility, and performance requirements of a cloud application.

(¢) LQN supports multi-threaded and multi-processor sever modeling. This makes it pos-
sible to write transformation rules that provide direct mapping between the cloud
application constructs and the LQN model constructs.

(d) LQN supports analyzing models that have Synchronous, Asynchronous and Forward
communication patterns. This covers the main communication patterns supported in
the cloud.

(e) LQN has an up-to-date meta-model and XML model definition language, which makes
it possible to have a model to model and model to text transformation.

(f) LQN provides both analytical and simulation solvers (LQNS) that allow us to easily
compare the results once the application model and workload information have been
provided.

(g) The LQN model can be used for different types of performance analysis. It can be
used in sensitivity analysis, capacity planning, and to estimates the response times
and throughputs of the users and services.

In the next section, we describe the process of generating LQN models from StratusPM
models.

5.4 Generating LQN Performance Models from Stra-
tusPM Models

The ability to capture the providers’ predefined templates (Resource Specifications) repre-
sent a turning point in automating the performance analysis process. In the previous sec-
tions, we showed how StratusPM can capture the cloud application performance, through
(i) reusing the StratusML components and the cloud providers’ specific templates, and (ii)
annotating these models with resource usage and utilization models. In this section, we
present the transformation process and rules to generate LQN models from the StratusPM
models.
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As shown in Figure 5.4, the transformation process is composed of two levels: In the
first level, the LQN structural model is generated using the StratusML models and the
providers’ templates. In the second level, the LQN performance parameters are determined
using the StratusPM workflow and performance models.

Availability Model ” Service Model H Adaptation Model Provider
: StratusML : Specs

Structural PM

Platform Configuration Transation Provider Templates

Requirements

Structural LQN

L1 Model

Workflow Analytical PM

Analytical LON

L2 Model

Runtime Model
Metrics

Figure 5.4: Transformation Process from StratusPM to LQN

5.4.1 Level 1: Generating the LQN Structural Models

Deriving the LQN structural model can be achieved through two refinement steps. In the
first step, the structural skeleton is generated from the StratusML service model (i.e., cloud
tasks and their interaction mechanisms). In the second step, the structural model dynamic
parameter (i.e., the components replication and multiplicity) are specified. The following
describes the two steps to derivate the structural model:

Step 1: From StratusML Service Model to LQN Structural Model

In this step, the service model is used to generate the skeleton of the performance model.
The outcome of this step is an LQN structural model that specifies the main tasks and
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hosts without specifying any deployment configuration parameters (e.g., tasks replications)
or target provider specifications (e.g., resource multiplicity). The following is the set of
transformation rules that are used to transform a cloud service model into an LQN struc-
tural performance model.

e L1-S1-R1: Each cloud task (i.e, web , worker ) is translated into:

— An LQN task.
— A processor that is annotated with the size of the VM hosting the task.

e L1-S1-R2: Each inbound endpoint in a cloud task is translated into an LQN entry
place holder. This place holder will be replaced with the actual set of entries based
on the activities that are bound to the endpoint as we will see later.

e L1-S1-R3: Each web task will be connected to one or more LQN reference tasks.
Each represents the external requests of one class of users. The number of reference
tasks is equal to the number of external endpoints(e.g., input endpoint in Azure) of
the web task mutiplied by the number of distinct types of user request per endpoint.
Moreover, for each of the reference tasks, an entry will be created on the web task.
In this step we only create a place holder for an LQN reference tasks. The number
of distinct types of user request, in addition to the number of users and request rate
for each of the reference tasks will be determined in later steps.

e L1-S1-R4: Each connection (pipe) between two task endpoints is transformed by:

— Creating a pseudo LQN task that represents the communication overhead. An
LQN synchronous call is created between the source task entry and the pseudo
LQN task entry. Moreover, an LQN call is created between the source LN
task entry and the target task entry. The second LQN call can be synchronous,
asynchronous or forwarding depending on the communication mechanism.

— Creating a processor that represents a pure delay center.

e L1-S1-R5: Each cloud storage task is translated into an LQN task and pure delay
Processor.

The aforementioned rules focus on generating the static structural model. The next
step focuses on the dynamic structural model (i.e., the model multiplicity and replication).
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Step 2: Specifying the Multiplicity and Replication of the Structural Model

Multiplicity and replication give the cloud resource model its fluid nature. LQN has been
selected as a target model due to its ability to model the performance and solve systems
with replication and multiplicity. LQN supports multiplicity and replication for both tasks
and processors.

The multiplicity of an LQN task refers to the number of threads or sessions that can
run concurrently. In the cloud service model, this number can vary based on the cloud
task type (i.e., web, worker), instance size and the target cloud provider. On the other
hand, the LN recourse multiplicity refers to the number of cores of an LQN processor.
This can be used to model the number of CPUs in a Virtual Machine Instance (VMI). The
recourse multiplicity of an LQN processor can be inferred from the size of a cloud task
(e.g., small, medium) and the target provider specifications. Recourse multiplicity can be
used to model wvertical scaling in the cloud.

LQN uses replication to reduce the number of nodes in the LQN model by (i) combining
tasks and processors with identical behavior into a single object, and then (ii) specifying
the number of replicas of that object (node). Replication can be used to immitate the
cloud horizontal scaling (i.e., scaling out behavior). The replication number of a cloud
task (i.e., web, worker) represents the number of server or container instances.

Figure 5.5 shows some of the different scenarios that LQN supports by varying the
multiplicity and replication parameters. Note that in multiplicity a single queue is served
by multiple servers (i.e., tasks or processors). On the other hand, queues of the servers
are also copied in replication. Hence, requests must be routed to the various queues.
Requests may be scheduled using different queueing disciplines. By default first come first
serve is used as queuing discipline for both LQN tasks and processors unless specified
otherwise. Case (A) shows an example of a task that runs on a multiprocessor host. Case
(B) represents a multithreading scenario, where several copies of a task are running on
one host with two core processor. Case (C) uses replication and corresponds to horizontal
scaling in the cloud. Finally, case (D) represents horizontal scaling at the infrastructure
level.

The artifacts that contribute to the input data of the second step are the following: (i)
the structural model as derived in the first step, (ii) the platform as a service (PaaS) specific
configuration, and (iii) the cloud application packaging and deployment configuration. As
explained earlier, all this information is captured by the StratusML models

The transformation rules to specify multiplicity and replication are as follows:
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e L1-S2-R1: Multiplicity: For each cloud task, the corresponding template that
represents the platform specific configuration will be applied to further specify the
task. For instance if the VMSize = small and the target platform is Windows Azure.
Then, the multiplicity of the processors annotated with small will be replaced by 2
according to Table 4.6. The rules below show the mapping relationship, the PS on
the arrow indicates that this mapping rule depends on platform specific data.

Task::ServiceTemplate::ResourceSpecifications:NoOfCores N LQN::Processor:multiplicity

Task::ServiceTemplate::ResourceSpecifications:vCPU ﬂLQN::Processor::speedfactor

e L1-S2-R2: Replication: Modeling for replication is given special attention in our
framework. This is because elasticity in the cloud is based on replication (i.e., the
ability to scale out). The following steps show the replication mapping rules. The PI
on the arrow indicates that the mapping process depends on platform independent
data.

— L1-S2-R2-1: Set the replication of the processor to equal the number of copies
of the Task
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Task:Instances 2 LQN::Processor:replication

— L1-S2-R2-2: Set the replication of the Task

Task:Instances 2 LQN::Task:replication

The advantage of providing mapping rules for replication and multiplicity is to insure
correctness, by reducing the human errors in manual modeling. Replication of tasks may
occur at any and all layers. Moreover, the replicated model may consist of a mixture of
replicated and non-replicated components.

By completing this step the structural LQN model is complete. In the next section we
will discuss how to map StratusPM parameters to the LQN runtime parameters.

5.4.2 Level 2: Mapping StratusPM Workflow and Performance
Parameters to LQIN Parameters

In the previous section, we showed how to construct an LQN structural model by reusing
the cloud artifacts as modeled in StratusML. In this section, we focus on the behavioral
aspects of the LQN performance model.

As explained earlier the performance behavioral model includes: the service time of each
component, call paths, number of calls to a service in addition to the workload information.
These parameters are captured in the StratusPM performance and workflow models. In
this section, we describe the set of transformation rules needed to map the StartusPM
parameters to its corresponding LQN parameters. To do so, we follow a similar approach
to the one proposed by Petriu et al. [130] to transform PUMA models into LQN models.

The following is the set of transformation rules to generate the LQN behavioral model
elements (i.e., reference tasks, entries, phases activities, and calls) from StratusPM models.

L2-R1: Generating LQN reference tasks:

In StratusPM, each workflow is annotated with its workload that represents the load
generator for a specific classe of users. The workload can be open or closed. An open
workload is specified using user population and think time, while a closed workload is
specified using arrival rates. In LQN, load generators and system users are modeled as
reference tasks. To map the StarusPM workload parameters to its corresponding LQN
reference task parameters, the following rule is applied:
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For each workflow in StratusPM, we create a reference task, then we map the workload
parameters associated with that workflow to its corresponding entry paramters of the
created reference task as follows:

Workflow::Closed WorkloadIncident:Population — LQN:ReferenceTask:Entry:multiplicity

Workflow::Closed WorkloadIncident: ThinkTime —— LQN:ReferenceTask:Entry:thinktime

Workflow::OpenWorkloadIncident:ArivalRate — LQN:ReferenceTask:Entry:openarrivalrate
L2-R2: Generating LQN entries and phases:

In the previous subsection, an entry placeholder was created for each task endpoint.
Here, we replace the placeholders with the actual entries. Moreover, we specify the bound-
aries of the phases of each entry and calculate the service time for each phase based on the
activities involved in the execution of that phase.

Recall that a service model describes the high level interaction between tasks that
represent software servers, while the workflow model represents the interactions between
activate that are running on these servers. When a task received a request, a set of
activities will be executed. The exaction of these activities may trigger the execution of
other internal activities within the task or external actions in other tasks. We assume that
all these activities are atomic.

For each external call (request for a service) that passes through a connection (pipe)
we create an entry in the task that recieves the request through an inbound endpoint.
For example, in Figure 5.7, the task CoupoNet. Worker. Logic recieves two external calls
one from CoupoNet. Web and the second from CoupoNet. Provider. Hence, two entries will
be created on the CoupoNet. Worker.Logic task. The number of calls on any request is
extracted automatically from the annotated StratusPM model as follows:

Workflow:: ActivityIncident::Call:Visits — Task::Entry:Request:calls-mean

For each of the entries created, the number of phases (or the activity graph) and their
boundaries need to be determined. Several cases need to be addressed:

L2-R2-Casel: The task that receives the request executes a series of activities and
returns a response to the task that requested the service at the end; after completing
the execution of all the activities. In this case, we have a single-phase execution. The
service demand of the phase calculated by adding of the execution demands of all the
activities, between receiving external request until sending the response. Note that any of
the executed activities may perform external calls to other tasks; however, the response
for these calls should be received before the phase is completed.

L2-R2-Case2: The task that receives the service request continues to perform other
activities after sending a response message to the task that requested the service. In this
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case, we have a two-phase entry, where the first phase is completed and the second phase is
started after sending the response message. If the execution of the second phase continues
to completion, then the execution demand of each of the two phases is calculated by adding
all the activities within each phase.

L2-R2-Case3: The activity graph of the task that receives the request contains
branches that make it impossible to divide the entry into one or two phases. Several
solutions can be adopted in this case. For example, an LQN activity graph can be created
that corresponds to the activities within the task. This is the simplest approach as there
is one-to-one mapping between the StratusPM workflow activities and the LQN activities
graph. Unfortunately, although the LQN model generated from this mapping may be solv-
able using simulation, it may not have analytical solution. To generate LQN model that
has analytical solution, we adopted a transformation approach that is inspired by Islam et
al. [78] simplified LQN technique. The technique is based on generating a simplified LQN
model by combining the activities, tasks and processors in such away that the model is
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always analytically solvable. Here, we only simplify activity graphs with complex branches
as follows:

e Substitute the activities of an entry by the total entry demand (S.). The total
entry demand is calculated by aggregating the demands caused by executing each
of the activities (S;) in the activity graph, each multiplied by the number of times
each activity is executed (c¢;) per request to the entry (e) according to the following
equation:

Se = ZCi x S; (5-1)

e Substitute the calls (y;4) from the aggrigated activities to any other destination entry
(d) by calls from the entry (e) of the aggrigated activities. For each destination entry
(d) the number of calls (y.q) from the source entry (e) equals the sum of the calls
from the activities as in the following equation:

Yed = Z Ci X Yid (5.2)

)

L2-R3: For each communication link between two tasks, we set the host demand of the
entry of the pseudo task that has been created to represent the network delay to the value
of the network delay associated with that connection.

Connection::Network:Delay —— Task::Entry:host-demand-mean

In addition to these transformation rules, delay centers will be generated, when appro-
priate, to model the platform delays as a result of load balancing services and network
communication delays.

5.5 Case Study: CoupolNet

In this section, a scenario-based example will be used, first to demonstrate how the Stra-
tusPM components can be used to annotate a StratusML model with performance and
workflow parameters, and second to show how the transformation approach proposed in
this chapter can be applied to generate LQN models from the annotated StratusML models.
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5.5.1 Annotating CoupoNet with Performance and Workflow Pa-
rameters

Chapter 4 uses the CoupoNet example to demonstrate the capabilities of StratusML to
specify a cloud application service model, deployment configuration, provider specifications
and adaptation rules and actions. In this section, the same CoupoNet example is used to
demonstrate how the StratusPM components introduced in this chapter can be used to
specify the CoupoNet service model further with performance parameters and workflow
details.

Recall, that the CoupoNet example presented in Section 4.5 has three types of users
(i.e., Coupon Providers, Coupon Customers and CoupoNet Administrators). Figure 5.7
shows two workflows (i.e., W1: fetch coupon and W2: create coupon) that represent two of
the interaction scenarios for two of the CoupoNet users. Those are the coupon customers
and coupon providers. The figure shows the workload generators << Workload > , which
specify the classes of interactions. It also shows the tasks involved in each of these interac-
tions, the interconnections between the tasks (i.e., endpoints and connections (pipes)), the
specification of the provider specific virtual instances that host these tasks (e.g., medium
azure A2 instance) - which consist of the memory, number of cores and the virtual CPUs
clock speed - and the activities that run within each task.

Both workflows (i.e., W1 and W2) start with a request sent to the request handler,
which accordingly distributes the request to the appropriate activity. For simplification, in
this scenario there is only one type of request directed to each of the tasks. W1 (i.e, fetch
coupon workflow) consists of a sequence of seven activity incidents that are distributed into
three different tasks. The workflow represents an example of a synchronous blocking client
server communication. On the other hand, W2 (i.e., create coupon workflow) consists of
a sequence of eight activity incidents that are also distributed between three tasks. The
workflow is an example of a non-blocking asynchronous communication. The activity that
submits the coupon does not need to wait for the coupon to be stored and can continue to
accept new requests from users. The pull coupon activity will determine the appropriate
location that is close to the target customer and save it when the storage is available.

As shown in the figure, the two workflows (W1 and W2) share the resources of two tasks.
Using the performance components, each of the connections between two task endpoints
can be annotated with the network data-flow performance parameters < Network >>.
On the other hand, the calls between two activities can be annotated with the number of
visits and message size < C'all >. Note that when data-flow parameters are not available,
delays can be estimated as part of the system performance calibration and can be modeled
as delay centers. This is common in the cloud, as network traffic depends on where the
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cloud provider places the tasks within each region and the datacenter infrastructure (i.e.,
routers and switches) used by each particular provider. This information is hidden from
the SaaS users. To keep the model clean, only two connections (pipes) and one call have
been annotated as an example.

Finally, each activity is annotated with its service demand using the activity perfor-
mance component < AP >. Moreover, each workflow is annotated with the workload
(i.e., close, open) parameters applied to it. In this figure a closed workload is applied on
each of the workflows. The workload is specified by the number of users and the think
time (i.e., average time between two requests).

5.5.2 Applying the Transformation Rules to the CoupoNet Ex-
ample

In this subsection, we show how to generate an LQN model for the annotated CoupoNet
example presented in section 5.5.1. For the purpose of presentation, the transformation
process is explained through representative examples and in steps.

Level 1: Generating LQN Structural Model

Figure 5.8 shows the results of applying the rules in step 1 of the first level of transfor-
mations, which aims to generate the LQN structural model from a StratusML core model.
The StratusML core model in Figure 5.8(a) corresponds to part of the CoupoNet example
presented earlier (Figure 5.7). Figure 5.8(b) shows the corresponding Azure service defini-
tion file, while Figure 5.8(c) shows the LQN model generated, as a result of applying the
rules in step 1.

In Figure 5.8(c), the LQN tasks are presented with bold rectangles with entries that
represent atomic microservices attached to them (i.e., the non-bold rectangles). The service
entries use lower layer services through request and reply interactions indicated by call arcs
between the entries. The LQN host processors are represented as ellipses following the LQN
notations.

The LQN tasks (CoupoNet.Web) and (CoupoNet.Worker.Login) in addition to their
LQN processors have been generated from applying the rule L1-S1-R1. Each processor is
annotated with the “vmsize” value (e.g., small). An entry placeholder (e.g., FetchCoupon,
RetrieveCoupon) is created for each of the generated LQN tasks (e.g. CoupoNet.Web,
CoupoNet.Worker.Login) by applying the rule 1.L1-S1-R2. The created entry placeholders
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<<WebTask>>
CoupoNet
Web

<<WorkerTasks>
CoupoNet
Worker.Logic

VMSize = "small”

VMSize = “small”

iy

<#uml version="1.0" encoding="UTF-8"?>
<ServiceDefinition xmins=".../ServiceDefinition™
name="CoupoNet">

<WebRole name="CoupoNet.Web" vmsize="small">
<Site name="Web">
<Bindings>
<Binding name="FetchCoupon"
endpointName="FetchCoupon" f=
</Bindings>
<fSite»
<Endpoints>
<InputEndpoint name="FetchCoupon”
protocol="http" port="80" f>
<InternalEndpoint name="Pipe-E1" protocol="tcp" f>
<f/Endpoints>
</WebRole»

<WorkerRole name="CoupoNet.Worker.Logic”
vmsize="small">
<Endpoints>
<InternalEndpoint name=" RetrieveCoupon™
protocol="tcp” />
<f/Endpoints>
</WorkerRole>

<NetworkTrafficRules>
<0nlyAllowTrafficTo>
<Destinations>
<RoleEndpoint endpointName="RetrieveCoupon”
roleName="CoupoNet. Worker.Logic® f>
</Destinations>
<AllowAllTraffic />
<WhenSource matches="AnyRule" >
<FromRole roleName="CoupoNet.Web" f>
</WhenSource>
<fOnlyAllowTrafficTo>
</ NetworkTrafficRules>

<fServiceDefinition>

(b) Azure Service Model

(a) StratusML Core Model

Users-E1 RefTask
GroupoNet.Weh
FetchCoupon | CoupoNet.Web
, Pipe
Pipe-Ell boeudo
h 4

Retrieve CoupoNet
Coupon Worker.Logic

03

{c) LON Structural Model

Figure 5.8: Applying the Structural Transformation Rules
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are dummy entries; they do not specify any performance parameters (e.g., service time).
The name of each dummy entry is determined from the inbound endpoint name. The name
appears in the endpoint specification in StratusML (not shown in the figure). The same
name appears in the specification of the inbound endpoint as shown in the Azure service
definition (Figure 5.8(b)). Following the rule L1-S1-R3, a reference task placeholder with
its pure delay processor is created for the web task (CoupoNet.Web). Only one placeholder
is created as the web task has only one external endpoint. Based on rule L1-S1-R4 the
connection between the two tasks (i.e., CoupoNet.Web and CoupoNet.Worker.Login) is
transformed into a pseudo task with a pure delay processor. A synchronous call from the
entry of the task with the outbound endpoint to the entry of the created pseudo task is
created. The communication overhead will be determined in a later step.

To specify the multiplicity of the processors in addition to the replication of the tasks
the rules in step 2 are applied as shown in Figure 5.9. First the multiplicity of each of the
processor (i.e., number of cores) is specified by applying the rule L1-S2-R1. Since the size of
each of the tasks hosting server is small and the target provider is Azure, the multiplicity,
which corresponds to the number of cores, will be set to two and the processor speed
factor will be set to 1.6 GHz, which corresponds to the specifications of Azure medium
(A2) instance. Second, the replication of each task is specified based on the number of
instances of the task according to L1-S2-R2.

The multiplicity of the reference task (#n) refers to the number of active users (popu-
lation) circulating in the system. This number is specified in the workflow model as shown
in the next step. Similarly, the multiplicity of the task refers to the number of concurrent
threads. This is a run-time parameter that is specified in the workflow model.

Level 2: Generating LQN Analytical Model

Figure 5.10 shows the complete analytical LQN model that corresponds to the first workflow
(W1) in the CoupoNet example. The analytical LQN model has been generated from
applying the second level of transformation rules to the fetch coupon workflow.

Using rule L2-R1 the reference task placeholder (RefTask CoupoNet.Web) will be re-
placed with a concrete reference task. The entry parameters of the reference task will be
specified based on the W1 workload parameters. Here, we have a closed workload with 100
users and 3 seconds think time. Accordingly, the multiplicity of the LQN reference task
will be set to 100 and the think time parameter (Z) will be set to 3 seconds.

Using the rule L2-R2 the set of entries (e.g., Fetch Coupon, Retrieve Coupon and Get
Info) and the number of calls to and from these entries are determined. Then, depending
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: Users-E1 GroupoNet.Web
<<WebTask>> <<WaorkerTask>> . : {m=iin} :
CoupoNet CoupoNet . ' :
Web Worker_Logic : . .
VMSize = “small” VMSize = “small” . : :
Hofinstances = 1 #oflnstances =2 : : :
. CoupoNet.Web | -
( . : FetchCoupon <r=1>
Q... 0 : : {m}

— . :
) Pipe .
Pipe-EL| o o @ :

y

Azure Retrieve CuupaNet.
Small=Medium (A2) : Coupen Worker.Logic
#ofCores =2 : . <R=2>
VCPU = 1.6 : .

Memory = 3.5 GB . '
(a) StratusML Core Maodel (b) LQN Structural Model

Figure 5.9: Applying the Rules of Multiplicity and Replication

on the different cases explained as part of L2-R2, the entry demand is calculated. The
entry demand of the FetchCoupon entry is specified by applying the L2-R2-Casel rule.
This is because, the WebTask receives external requests from the (reference task) through
the external endpoint FetchCoupon. Then, it executes a series of activities and returns a
response (i.e., casel). The entry demand of the FetuchCoupon entry is equal to the sum
of the demand of the WebTask activities (i.e., (Request Handler, 2 ms), (Fetch Coupon, 4
ms) and (Send Response, 2 ms)). The same rule (i.e., L2-R2-Casel) is used to calculate
the entry demand of both the Retrieve Coupon and Get Info entries.

Rule L2-R3 is used to assign the demand for the entries of both Pipe Pseudol and Pipe
Pseudo? tasks.

5.5.3 Results

Figure 5.11 shows the complete target LQN model as a result of applying the rules explained
in this chapter to the CoupoNet example. Notice that the load-balancing task has been
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Figure 5.10: Generating Analytical LQN Model for the Fetch Coupon Workflow Scenario
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Figure 5.11: The CoupoNet LQN Model
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added to compensate for the delay introduced by the target platform load balancing and
networking overhead.

To validate the model generated as valid LQN model. We used the W3C XML Schema
(XSD) Validator'. W3C XML Schema (XSD) Validator can be used to validate an XML
file against a schema to check if it conforms to the schema semantics. The tool also checks
the well-formedness of the XML file. Using the W3C XML Schema (XSD) Validator we
were able to validate the syntactical correctness and the well-formedness of the generated
LQN model.

The LQN Solver (LQNS) is used to solve the generated LQN models. Appendix B
shows the LQNS output results of the CoupoNet example. Using the results, a system
administrator can analyze the response time and throughput of the system. By varying the
usage profiles (e.g., number of users) and the deployment configuration, the administrator
can also analyze the system performance under different deployment configuration or target
providers. They can also study the system bottleneck and adjust the configuration, or
define adaptation rules to enact auto-scaling actions.

80
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10 /
/
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Response Time in Seconds

0 20 40 60 80 100 120

Number of Users

Figure 5.12: The Change in Fetch Coupon Response Time with User Population

Figure 5.12 shows the results of analyzing the system response time for the fetch coupons
scenario as the population of the coupon users increases. Such analyses are used to evaluate

Thttp: //www.utilities-online.info /xsdvalidation
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the system scalability (maximum users supported with a specified response time). Several
other analysis techniques and algorithms can also be applied on the generated LQN models.
The LQN community created algorithms to identify the location of the system bottlenecks
and to tune the multiplicity and replication parameters of software threads and processors
to improve the system performance [122]. However, the evaluation of these techniques is
out of the scope of this work.

5.6 Summary

This chapter extends the StratusML language to facilitate annotating the cloud models
with the runtime performance parameters and generating performance models from the
cloud applications on the fly. The chapter argued that LQN models are one of the suitable
candidates as a target performance analysis formalism to represent the performance of
cloud applications.

The chapter makes the following contributions:

(a) Evaluating performance modeling requirements based on the existing cloud deployed
artifacts.

(b) Extending our StratusML framework to capture the application runtime parameters
to enable generating analytical performance models from the StratusML models.

(c) Defining a set of transformation rules to automatically transform the StratusML models
into LQN formalism.

A case study has been presented to show, in a step by step manner how an annotated
StratusML models with performance parameters and how to apply the proposed transfor-
mation rules to generate LQN models by utilizing the cloud application service deployment
and configuration artifacts.

The meta-models presented in this chapter sum the description of the concepts of the
(54+1) view models presented in Chapter 3. Moreover, this chapter completes the realization
of the StarusML framework presented in Chapter 4. The next chapter focuses on the
framework evolution support. A set of semi-automated techniques for mapping domain
concepts will be presented to support the process of meta-model creation, evolution, and
transformation.
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Chapter 6

Liberate: A Schema Matching
Approach to Support Service
Migration in the Cloud

“These vendors will never agree on standardized schema, but they have agreed
on how they describe their schema.”
— Jamie Lewis, president of the Burton Group.

Cloud providers impose using specific schemas to specify the application services for
deployment and operation. However, mismatches between providers’ schemas hinder appli-
cation portability and lead to vendor lock-in. To address this problem, this thesis follows a
model driven approach that facilitates specifying the cloud service using provider-agnostic
constructs, and uses transformation techniques to generate provider specific configuration.
As shown in the previous chapters, such model driven approach, depends on the ability to
find mappings between the concepts of providers schemas. This is a daunting, error prone
and time consuming task that is usually performed by the domain experts manually. To
alleviate the efforts needed in this manual process, this chapter adopts a semi-automated
schema matching approach. Schema matching can be used to identify the correspondences
between the different providers’ schemas. This is important for (i) creating domain refer-
ence models (i) keeping the reference models up-to-date as new domain concepts evolve,
and (iii) creating mappings between the different reference models, or between the reference
models and the platform specific models.

Schema matching exploits structural and linguistic similarities between schemas to
identify matchings. This is a well known practice for ontology alignment and database
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migration [1415] in many domains, e.g: linked-data, e-commerce, and bioinformatics [17].
However, it has been less frequently exploited in the cloud domain. This is because, not
all cloud providers’ schemas follow the same structural conventions. Moreover, the terms
in these schemas use industrial jargons that may not share linguistic similarities. In this
chapter, Liberate: a novel semi-automated schema matching approach has been devised
to deal with these challenges. Liberate applies a generic structural similarity based on
a modified similarity-flooding algorithm [103], and utilizes web search results, and gloss-
based semantic similarity to incorporate domain knowledge in element-based similarity
evaluation.

The rest of this chapter is organized as follows: Section 6.1 illustrates why schema
matching is required and how generic schema matching solutions may fail to address the
mismatch problem in the cloud. Section 6.2 presents our proposed solution, and how it has
been realized. Section 6.3 evaluates the different matchers proposed against public schemas
of two major cloud providers (i.e., Windows Azure and Google App Engine) and private
schemas of two reference cloud models (StratusML and TOSCA). Finally, an executive
summary and suggestions for future work is presented in Section 6.4.

6.1 Preliminaries

Several approaches could be used to address the vender lock-in problem in the cloud [68].
Most of these approaches are based on model driven engineering. Regardless of the ap-
proach selected, finding alignments between the different providers’ schemas, standards and
models is unavoidable for mismatch resolution. This section shows some examples of the
mismatches between cloud providers’ schemas and highlights the challenges of automatic
schema matching in the cloud domain.

6.1.1 Mismatches Between Platform Providers

Migrating an application from one cloud platform to another requires transforming the
configuration space artifacts that are used to deploy the application from the the first
provider format to the target format. This process requires identifying the related elements
between the source and target providers’ models.

Figure 6.1 shows a sample of two configuration files for public cloud providers: The
first (6.1a) describes the deployment configuration of an application on Windows Azure.
The second (6.1b) specifies the deployment configuration of the same application under
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<ServiceConfiguration> <appengine-web-app>

<Role name="ShoppingCartProcessing"> <application>My App</application>
<Instances count="2"/> <module>ShoppingCartProcessing</module>
<ConfigurationSettings> <version>uno</version>
<Setting name="DataConnection" <instance-class>F4</instance-class>
value="UseDevelopmentStorage=true"/> <manual-scaling>
</ConfigurationSettings> <instances>2</instances>
</Role> </manual-scaling>
</ServiceConfiguration> </appengine-web-app>
(a) Example of Azure Service Configuration (b) Example of GAE Configuration

Figure 6.1: A Sample of Public Providers’ Configuration Artifacts

Google Application Engine (GAE). Likewise, Figure 6.2 shows a sample of two configu-
ration artifacts that are conforming to the specifications of two different cloud languages:
The first (6.2a) shows a service template file that is specified according to TOSCA stan-
dard language [17], while the second (6.2b ) shows a service description file that is specified
according to the CloudML language [57].

<ServiceTemplate name="MyFirstMachine"> <serviceDescription:ServicesType version="AmazonM1">
<NodeTemplate type="csp:Machine"> -
<nodes ID="M1 Medium Instance 1">
<MachineConfiguration>

<cpu>4</cpu> <ram size="3.75" unit="GB"/>

<memory>64000</memory> <cpu Architecture="64Bit" Cores="2"/>

<disk> <functionality functionality="Server"/>
<capacity>512000</capacity> <operatingSystem operatingSystem="Ubuntu"/>
<format>NTFS</format>
<initialLocation>C:</initialLocation> </nodes>

</disk> <locations country="US"/>

</MachineConfiguration> <locations country="Europe"/>
</NodeTemplate> e
</ServiceTemplate> </serviceDescription:ServicesType>

(a) Example of TOSCA Service Template File (b) Example of CloudML Service Description

Figure 6.2: A Sample of Standard Languages’ Configuration Artifacts

By analyzing the artifacts in Figures 6.1a and 6.1b, we notice that both Azure and GAE
files are essentially describing the same information, but using different provider specific
concepts and file structure. For example, by referring to Appendix C, the concepts of a
module and a role are very similar. Both describe a basic modular component (i.e., VMI)
in the cloud configuration space from which a cloud application is composed. For each
role and module, the configuration files specify the resource requirements and number of
instances required. Similarly, Figures 6.2a and 6.2b show that there is great similarity
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between TOSCA service template and CloudML service description. Again, both describe
the same information, but each adheres to the format of the that standard format.

Mismatching between cloud schemas is inescapable. It occurs due to: (i) the poor
coordination between providers, as they develop their platforms; (ii) the continuous up-
dates to the schemas, as a result of adding new features; in addition to (iii) branding and
positioning practices as part of the providers’ marketing campaigns. In order to migrate
the application from one provider to another or from one format to another, the mismatch
between the different schemas needs to be resolved.

6.1.2 Schema Matching in the Cloud

Even though schema matching has obvious utility to uncover mismatch between schemas,
schema matching has been poorly exploited within the cloud domain. This section explains
why traditional schema matching approaches may fail in the cloud.

As explained in Section 2.2.4, most schema matching approaches use linguistic tech-
niques to evaluate the similarity between schema elements. Unfortunately, techniques that
are solely linguistic may fail to uncover matches across cloud schemas.

Table 6.1: Path Length Pairwise Similarity

Terms Role | Module | BeansTalk | Task | Node
Role 1 0.12 0.07 0.33 0.14
Module 0.12 1 0.10 0.11 0.14
BeansTalk | 0.07 0.10 1 0.06 0.10
Task 0.33 0.11 0.06 1 0.36
Node 0.14 0.14 0.10 0.09 1

For example, Table 6.1 shows a similarity matrix' obtained by applying path length

patrwise similarity [31] to a set of similar cloud domain concepts extracted from five cloud
schemas (i.e., Azure, GAE, AWS, StratusML, TOSCA). The domain definition of each of
these concepts is provided in Appendix C. Path length is a linguistic similarity measure
between zero and one that depends on node-counting. The path length score is inversely
proportional to the number of nodes along the shortest path between the synsets. If two
synsets are the same, then the length of the shortest path between them is 1, which means
100% similarity.

IThe similarity values in the matrix have been computed using the WordNet similarity
web interface implementation by Ted Pedersen and Jason Michelizzi http://maraca.d.umn.edu/cgi-
bin/similarity /similarity.cgi
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As explained earlier, the concept of “Role” in Azure is similar to a “Module” in GAE.
The same concepts can also be mapped to “Beanstalk” in AWS, “Task” in StratusML and
“Node” in TOSCA. However, the similarity matrix shows very weak linguistic semantic
correlation between the concepts, even though these concepts refer to the same thing
within the cloud domain. Other linguistic semantic techniques may produce worse results.
For example, using Jiang & Conrath [31] measure, the similarity between a “Role” and
“Beanstalk” is zero.

In a nutshell, there is a need for techniques that are able to capture correlation between
concepts beyond linguistic syntactic or semantic similarity. These techniques should be able
to capture the similarity by utilizing domain knowledge.

6.2 The Liberate Approach

To address the schema matching problem in the cloud, we introduce Liberate. An overview
of the Liberate approach is illustrated in Figure 6.3.

Source Schema
(2.8, TOSCA MM, [ mm o s s s s s o i e e e o o e o o e e o o o o o o o o o Source Model
GAE Sch
chema) SF++ Schema Matcher ;

‘ 3.1. Element-Based Similarity 3.2. Structural-Based Similarity

Creating Pairwise ‘ ‘

3 Connectivity Graph T
Schema ’ - Matching Model
Parser Filter Creating Similarity Recommendations ‘ Transformation
Propagation Graph
t Aggregation ‘

Target Schema
e.8., (SratuSML MM, | o e e e o s s s s s s o o o o o o o o o o o o o o o o Target Model

Azure Schema) 7

G Schema D Process - Subprocess % Domain D Model Data/Control = Conforms To
. Knowledge Flow

Figure 6.3: Liberate - A Schema Matching Approach for Model-Driven Migration

Fixpoint Computation

Given two providers’ schemas, the schemas are first parsed, then passed to a semi-
automated schema matching process (i.e., the SF4++ schema matcher). More about the
SEF++ will follow. For now, the semi-automated schema matching process generates a set
of matching recommendations. A domain expert (DE) then reviews the matching results
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to identify the valid matches. The valid matches are used to create a set of transformation
rules to enable transforming any source model that conforms to the first provider schema
into a target model that conforms to the second provider schema. The valid matches can
also be used to create a domain reference model, or update an existing one. This chapter
concentrates on the schema matching process (SF++ Schema Matcher). The following two
requirements need to be considered in the design of the schema matching process so that
it can be applied in the cloud domain:

(i) The process should be generic enough to be applied to a wide range of providers’
schemas.

(ii) The process should incorporate domain and provider specific knowledge.

To meet the aforementioned requirements, we adopt a schema matching process that
is inspired by the Similarity-Flooding (SF) algorithm proposed by Melnik et al. [103]. We
call the new process the SF++ schema matching process.

The original SF algorithm is a generic graph-based schema matching technique based on
the intuition that similar elements have similar neighbors. It combines element and struc-
tural based similarity. Given two directed, labeled graphs, the SF algorithm matches each
pair in the graph using string-based similarity. Then, it applies fixpoint [103] computations
to propagate similarities between adjacent elements.

Figure 6.3 shows that similar to the SF algorithm, the SF++ consists of two phases (i.e.,
Element-Based and Structural-Based Similarity). Moreover, it creates pairwise connectiv-
ity graph and similarity computation graph, and uses fix-point computation to propagate
similarities between the neighbor elements. However, the SF++ extends the similarity-
flooding algorithm by:

(i) Replacing the similarity computation step that is based on string-matching with a
more advanced similarity metric that takes domain knowledge into consideration. We
call this new metric the Domain-Knowledge-Matcher (DKM). The DKM aggregates
the results of calculating two metrics that incorporate domain knowledge from two
different sources in the matching process: the Web-Similarity-Matcher (WSM)[08]
and the Gloss-Based-Matcher (GBM).

(ii) Generalizing the (SF) algorithm to accept non-labeled directed acyclic graphs instead
of directed labeled graphs to create a pairwise connectivity graph (PCG).

The details of the SF++ are explained next.
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6.2.1 The SF++ Element-Based Similarity

The SF++ uses two different matching metrics (i.e., WSM and GBM) to incorporate
domain knowledge. Both calculate the similarity between each pair of elements of the
source and target schemas. Accordingly, each produce a similarity matrix. The WSM is
a statistical similarity matching technique based on web-search results. Hence, it depends
on the availability of online content. On the other hand, the GBM compares the similarity
between concepts based on the domain definition (gloss) attached to each concept, as
provided by schema providers. This section explains each of these metrics and how they
are filtered and aggregated into a DKM.

The Web Similarity Matcher

The WSM is a similarity metric that uses search engine results to infer the similarity
between concepts. It is based on the Normalized Web Distance (NWDgg) [09] that is a
more generic form of the Normalized Google Distance (NGD) [31]. The difference is that
the NWDgg uses the results obtained from any search engine (SE), such as Bing, Yahoo or
other engines, not only Google. The NWDg is a metric that measures the distance between
two terms based on their co-occurrence in search engine results. Given two terms, 7
and 79, and the total number of pages in the search engine index N, the NWDgg calculates
the relatedness between the two terms by finding the number of hits (i.e., page counts)
returned by the search engine that contains each of the terms separately f(7), f(m1), and
both terms together f(7i||72) (i.e., the concatenation || between 71 and 7). Accordingly,
it applies Equation (1) to calculate the distance between the two terms. A zero distance
indicates 100% correlation, while oo means no correlation.

max{log f(71),log f(m2)} —log f(71]|72)
log N — min{log f(m),log f(m2)}

It is worth mentioning that Equation (1) measures distance between the terms rather
than similarity. Moreover, the output of Equation (1) is not bounded (i.e., the distance
ranges from 0 to 0o). To transform distance into similarity and normalize the results to
be bounded between 0 and 1, we use the exponential function g(x) = e~* in composition
with the NWDgg. The exponential function is a decreasing transformation function, where
(g o NWDgg) : [0,00) + [1,0). We refer to this composition as the Web-Similarity-Matcher
(WSM), shown in Equation (6.2). The value of the WSM is bounded between zero and
one, where zero indicates no similarity and one is 100% similarity.

NWDgg (71, T2) =

(6.1)
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WSMSE(Tl, 7'2) = €7NWDSE(T1’TZ) (62)

To calculate the WSM value, three queries to the search engine API are needed. In
each case, the page counts is retrieved, and then substituted in the equation. For example,
searching for the keyword “Azure” on Google returns 22,000,000 pages that contain this
term. Similarly, searching for the keyword “AWS” returns 34,600,000 pages. Searching for
both terms together returns 2,390,000 pages that represent their co-occurrence. All these
numbers are based on a search preformed at the time of writing this thesis. Searching the
same terms today may return different results. By referring to Equation (6.2), there is
still one missing value, which is the the total number of pages (N) in the search engine
index. In this example, the value used for Google is 30 trillion. Based on these values
NWD( “Azure”, “AWS” ) ~ 0.2 and WSM( “Azure”, “AWS” ) ~ 0.82. However, since the
value of N changes continuously and is different from one search engine to another, and in
order to avoid using a hardcoded value, in our implementation we use the following simple
trick that enables us to infer the number of pages indexed at run time. First, we query
the search engine for the exact match of a common term that appears in almost every web
page (e.g., “the”). Assuming that the average frequency for this term is constant per page,
then we can find the total page count (N).

Table 6.2: WSM Pairwise Similarity

T Azure GAE AWS StratusML | TOSCA
erms Role | Module | BeansTalk Task Node

Azure 1 0.75 0.78 0.37 0.58
Role
GAE -
Module 0.75 1 0.89 0.36 0.67
AWS .
BeansTalk 0.78 0.89 1 0.64 0.65
StratusML |, 5 0.36 0.64 1 0.36
Task
TOSCA g .
Node 0.58 0.67 0.65 0.36 1

Table 6.2 shows the results of applying the WSM to the same cloud domain concepts
in Table 6.1. Each cell in the table is obtained by calculating the WSM between the two
concepts that intersect in that cell. To limit the search within a specific domain context:
(i) we specify the domain name before the term to be searched (e.g., “Azure Role” instead
of “Role”). Moreover, (ii) we set a number of tuning parameters, in the API calls, to limit
the search within a specific time period and remove duplicates.
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Table 6.2 demonstrates the ability of the WSM to identify correlation between the
domain concepts even when these concepts do not share linguistic similarity. However,
while the WSM is able to uncover the correlation between an “Azure Role” and “AWS
BeansTalk”, it is unable to discover the strong correlation between “TOSCA Node” and
“StratusML Task”, or between “Azure Role” and “StratusML Task”. One possible reason
is that the WSM relies on the availability of a rich online content pertaining to the given
schemas. The availability of such content is not always guaranteed. For example in this
case the availability of online content that combines StratusML and TOSCA or Azure is
limited. Moreover, this content is sometimes misleading specially in the case of private
and new providers’ schemas. The next section discusses another matcher that is able to
incorporate domain knowledge regardless of the availability of online content.

The Gloss-Based Matcher

In ontology engineering, a gloss refers to a description for the meaning of a concept that
renders important knowledge for understanding [79]. A gloss is represented in short sen-
tences in natural language. It is part of schema documentation and a reliable source of
domain knowledge in provider-driven schemas and standard reference models that target
the public use.

Different approaches have been devised to measure similarity between text segments
and short sentences [1, 106, 1341]. Achananuparp et al. [1] categorized these approaches into
three categories: (i) word overlap measures, which compute the similarity of two sentences
based on the number of words shared between them, (ii) TF-IDF measures, which refer
to a family of statistical techniques (e.g., vector similarity) that use Term Frequency (i.e.,
the number of times a word appears in a document) and Inverse Document Frequency (the
frequency of a word in a corpus) to infer the importance of a word in a document, and (iii)
linguistic measures, which use the words’ semantic relations and syntactic composition to
find the similarity between sentences.

Based on the findings of [I], generally speaking linguistic measures outperform word
overlap and TF-IDF measures for identifying similarities between arbitrary short sentences.
In Liberate, we adopt a variation of the Mihalcea metric [109]. Mihalcea metric is a
linguistic measure that combines metrics of word-to-word similarity and word specificity?.

In our approach, we use a simplified version of Mihalcea metric that uses the sentence
length to normalize the results, instead of word specificity [96]. The later metric is simpler

2Word specificity is determined using the inverse document frequency (idf), defined as the total number
of documents in the corpus divided by the total number of documents including that word [109]
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and has been proved to be a good indicator of the semantic similarity of sentences [1].

Following the same approach, given two input sentences (i.e., domain definitions in our
case). First, each sentence is partitioned into a bag of words b; and by, where function
words (e.g., articles, pronouns, conjunctions, auxiliary verbs) are removed. Then, each
word w is assigned a corresponding part of speech tag (e.g., noun, verb, preposition) using
a Brill tagger [23]. After that, Porter stemming algorithm [132] is applied to remove the
common morphological and inflexional endings of words. Then, the word to word similarity
is calculated to measure the similarity of each word in b; and all words in b,, and vise versa.
Different corpus-based and knowledge-based techniques for word semantic similarity can
be used (e.g. WordNet similarities or Latent Semantic Analysis). Particularly, in this
study WordNet similarities is adopted in the same way it is implemented in the SEMILAR
toolkit [I11]. Finally the similarity score between the two bags of words (b; and by) is
calculated as shown in the following equation:

> mazSim(w,by) + > maxSim(w,by)

weby weba

|b1] + |b2]

GBM (by, by) = (6.3)

where, mazSim(w, bg) is the highest semantic similarity obtained between the word
(w € by) and all the words in b, that belong to the same class (e.g., verb, noun). |b;| and
|ba| are the number of words in the first and second word bags respectively (i.e., the length
of the sentences after removing function words).

Table 6.3: Gloss-Based Pairwise Similarity

T Azure | GAE AWS | StratusML | TOSCA
erms Role | Module | BeansTalk Task Node
Azure 1 0.57 0.48 0.59 0.44
Role
GAE
Module 0.57 1 0.56 0.60 0.49
AWS _
BeanoTallc | 048 0.56 1 0.56 0.42
StratusML | .o 0.60 0.56 1 0.46
Task
TOSCA
Node 0.44 0.49 0.42 0.46 1

Table 6.3 shows the results obtained by applying the GBM to the same concepts that
we compared earlier. However, in this comparison the GBM uses the domain glosses
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corresponding to each of these concepts as defined by the cloud providers. The list of
concepts and their glosses is provided in Appendix C.

The GBM score gives values between zero and one. The results in Table 6.3 show that
despite the absence of syntactic or linguistic semantic between the terms compared, the
domain gloss can provide a good sense of similarity between the concepts. In most cases,
the domain glosses of the equivalent domain concepts are at least 50% similar. Moreover,
the GBM does not rely on web search results, hence it can be applied equally for new
schemas and private ones. Unfortunately, the GBM requires the concepts domain glosses
that are not always available.

In Liberate, we compare the concept glosses of the source and the target schemas. The
similarity matrix produced is then filtered and aggregated with the WSM into a Domain-
Knowledge-Matcher as shown next.

Filtering and Aggregation

The output of each of the element-based similarity matching techniques is a similarity
matrix that shows the similarity between each element in the first schema and the elements
of the second schema. As explained earlier, each metric provides a different perspective
and has its pros and cons. The goal of this section is to aggregate the results obtained
through the WSM and GBM into a single metric: the domain knowledge matcher (DKM).
As there is no golden rule of how to combine these metrics, we are aiming at providing
a configurable similarity score that combines these metrics based on the current available
knowledge and the degree of contribution of each metric.

Before aggregating the results, the first step is to filter insignificant matches. This
process is usually referred to as alignment extraction. Alignment extraction techniques can
broadly be divided into two categories: (i) threshold-based extraction, and (ii) mapping-
based extraction. Threshold-based techniques select matches with a similarity greater than
a predefined value. Whereas, mapping-based techniques use mapping algorithms to select
matches. Examples of mapping algorithms include, the Maximum Weight Bipartite Graph
(MWBG) [1141], the Perfect Monogamy (PM) and the Stable Marriage (SM) [97, 103], and
Hierarchical Mapping (HM) [142].

In this work, we apply a configurable threshold-based filtration technique. In which, we
use the percentile to filter the results below a given percentage in the range of similarity
results obtained for each pair of concepts (¢ and ¢) in the similarity matrix between the
source and target schema.
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After filtering the results that are obtained from the different similarity matrices, the
similarity matches are aggregated into a Domain Knowledge Matcher (DKM) using the
weighted geometric mean, as in the following equation:

Z?zl Mg

DKM (c,t) = V WSM (¢, t)*1 x GBM (c,t)#2 x ... (6.4)

The geometric mean is defined as the n'* root of the product of n numbers. The
geometric mean produces consistent rankings independent of the reference data based on
which measurements are normalized; it is generally considered as the most reliable way to
calculate the mean for normalized measurements [19]. Furthermore, by using a weighted
geometric mean different preferences regarding the aggregated metrics can also be taken
into account. For example, if the domain glosses are available and trustworthy, the user
may give the GBM more weight, so that it can contribute more to the DKM. The user can
give the WSM a weight of 1 and GBM a weight of 2 and hence the DKM will be the third
root of the product of the WSM and GBM, each raised to its corresponding weight . By
default equal weights (u) are given for all metrics. However, both the threshold and the
weights have been implemented as configurable parameters that can be tuned at runtime.
Selecting the optimal values for those parameters is out of the scope of this work.

6.2.2 The SF++ Structural-Based Similarity

As explained earlier, the work in this chapter extends the Similarity Flooding (SF) algo-
rithm in two ways: (i) it incorporates the domain knowledge in the matching process to
facilitate generating the initial alignments between the schema elements, and (ii) it gener-
alizes the (SF) algorithm to accept non-labeled directed graphs instead of directed labeled
graphs to create a pairwise connectivity graph (PCG). This section focuses on how the node
similarity results can be used to create a PCG, how to convert a PCG into a propagation
graph, and how to apply fizpoint computation to propagation graphs.

Stepl: Creating Pairwise Connectivity Graph

In order to apply the SF algorithm, each of the schemas that need to be structurally
compared must first be consolidated into a Pairwise Connectivity Graph (PCG). The PCGs
are then converted into propagation graphs. A PCG between two graphs G; and Gy is
defined as follows: ((z1,y1),7, (2,92)) € PCG <= (x1,7,22) € G1 and (y1,7,y2) € Gs.
Therefore, a PCG is a set of triples (n,r,ny) such as: n; = (x1,y1) and ny = (22,v2),
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where x; and x5 are labeled nodes of GGy, y; and y, are labeled nodes of G5, and r is a
labeled arc.

While using labels on arcs simplifies the process of creating a PCG; labels are not
always available, and may limit the ability of the algorithm to detect structural similarities
in schemas that use different naming standards for specifying the types of relationships
between schema entities. For this reason, this section generalizes the (SF) algorithm to
accept graphs with no labels on the arcs. This has been accomplished through extending
the PCG algorithm to enable it to infer PCG graphs from the available information: the
similarity matrix generated from element-based similarity matching, and the two schema
graphs.

input : Graphs: G;, G, and Similarity Matrix §
output: PCG Graph
foreach Node n € G| do
Cn: the set of children of node »;
foreach Node x € C;, do
| Sx: the set of nodes € G, similar to x;
end
Sn: the set of nodes € G, similar to n;
foreach Node m € Sy, do
Cm: the set of children of node m;
foreach Node y € Ci, do
| Sy: the set of nodes € Gy similar to y;
end
end
U,y :=Cn NSy, Where Cn # ¢ & Sy # ¢;
Vin,x 1= Cm NS x where Cpm # ¢ & Sx # ¢;
PCGr : Uymes ,, PCGnms
| PCGhm = (n,m) = un,y X vm,x, ¥y&x ;

end
PCG — UyneG, PCGn;

Figure 6.4: A Generic PCG Algorithm

Figure 6.4 shows our PCG algorithm. To explain the algorithm, let’s consider the
example in Figure 6.5, which consists of (i) two directed graphs GG; and G, each represent
a different schema. (ii) an arbitrary similarity matrix that corresponds to the output of
the element-based similarity analysis after filtration (i.e., only values with similarity > 6
are considered), and (iii) the outcome PCG graph. The algorithm starts from the top
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Figure 6.5: A PCG Example

(root node). For each node in the graph it retrieves the directly connected children of that
node, and the set of similar elements to that node from the filtered similarity matrix. For
example, in Figure 6.5 the children of the node ‘a’ are C, = {b, ¢}, and the nodes similar
to ‘a’ form Gy are S, = {1,4,5}. For each child node returned, the algorithm finds the
nodes that are similar to it in the other graph S, = {2,4}, S. = {2,3}. Similarly, for
each similar node returned, the algorithm returns the set of directly connected children
Cy, = {2}, Cy = ¢ and C5 = ¢, where ¢ refers to empty set. Lastly, for each of the children
returned from the second schema, the algorithm uses the similarity matrix to return the
similar nodes from the first schema Sy = {b, ¢, d}.

To find the pairwise connectivity graph for node ‘a’ (PCG,), first the algorithm finds
the intersection between the children set of ‘a’ (C,) and each of the similarity sets of the
corresponding children sets in the second graph (e.g., in this example its only one set
S9), Vg2 = Cy N Sy = {b,c}. Then it finds the intersection between the children sets of
‘a’ similar nodes in Go (e.g., C7) and the similarity sets of ‘a’ children (e.g., S, and S.).
uy = Ci NSy, = {2} and vy, = C; NS, = {2}. Based on these results, PCG, will be
given by the union of all PCG triples that has the node n from G and one of its similar m
correspondences in G5 as a vertex, and the map of this vertex to the cartesian product of the
sets (Un,y X U,z ). In our example PCG, has only one source (i.e., (a,1)) and two destinations
(i.e., (b,2) and (c,2)) vertices. PCG, = {PCG,1} = {{(a,1) — (b,2)},{(a,1) — (¢, 2)}}.

The final PCG is the union of all PCG, for all the nodes in GG;. After creating the PCG the
rest of the SF algorithm will be applied in the same way as proposed by Melnik, Garcia-
Molina and Rahm[103]. However, to keep the chapter self-contained, step2 and 3 of the
SE algorithm are briefly explained.
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Step2: Creating Similarity Propagation Graph

A similarity propagation graph (SPG) is a two way directed weighted graph. It can be
generated from a PCG, by replacing the one way directed arcs between the PCG nodes with
two way weighted arcs using the following steps: (i) For each arc (ny,r,ny) € PCG, a reverse
arc (ny,7,ng) is created. (ii) For each node n € PCG the number of fan-outs (Fi.:) (i.e.,
number of arcs out of that node) are computed. The weight on each arc that flows out of
that node (a.k.a., propagation coefficient) is given by (ﬁ) For instance, for the PCG in
Figure 6.5 , the node (a,1) has two fan-outs, each will have a propagation coefficient of 0.5.
On the other hand, the node (b,2) has one fan-out, hence its propagation coefficient is 1.

Step3: Fixpoint Computation

Recall that each node n in a PCG represents a pair of label nodes n = (x,y) , where
the first element belongs to the first schema z € G; and the second element belongs to
the second schema y € Go. Let ¢!, be the similarity measure between the two elements
and y of n at iteration i. The initial similarity between any two elements is given by o°.
The fixpoint computation starts by assigning initial similarity values to each node in the
propagation graph. Then, it propagates the initial values through the graph.

The initial similarity values are assigned according to the values obtained from element
based similarity (Section 6.2.1). To propagate the similarity values, the SF algorithm per-
forms iterative computations. In each iteration, new similarity values (¢*™!) are computed.
The process is repeated until a stable similarity value is reached. Malnek et. al. [103] de-
fined four different ways (i.e., formulas) to perform fixpoint computations. These ways are
differentiated based on the weights given to the similarity propagation (i.e., the propaga-
tion of neighbors similarity in the propagation graph) in comparison to the node initial and
current similarity values. The SF++ adopts Equation (6.5) as it gives the initial similarity
0, and the current similarity o’ values equivalent importance. According to [103] this
formula usually has the best results and the best convergence properties.

ot = normalize(o) + o' + Z w(n,c) x (o7 +0v)) (6.5)
CECn

Given a propagation graph with N nodes. Equation (6.5) finds the similarity value of
node n € N at iteration (i + 1). This formula uses node n initial similarity ¢% and its
current similarity value ¢!, in addition to the similarity propagation from the neighbors
of node n. The similarity propagation to node n is the summation of the similarity of all
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directly connected neighbors (¢ € C),) to the node n each multiplied by the propagation
coefficient w(e,n) from the child node ¢ to n. At the end of each iteration, the similarity
values are normalized, by dividing them by the maximum similarity value computed in
that iteration.

Using Equation (6.5), the similarity value after the first iteration for the node (a,1) in
the propagation graph in Figure 6.5 is given by: o(,,) = 0.5+ 0.5+ 1% (0.8 +0.8) + 1 *
(0.440.4) = 3.4. Similarly, {0, = 1.3, 0,4 = 3.3, 0,4 = 2.8}. After the first iteration,
all values will be normalized by dividing the results by the maximum similarity value of

the first iteration, which is 3.4. Hence, the new values after normalization are: {a(la )= 1,

0(1b72) - 0382’ 0(10,2) = 0977 U(1d74) = 0823}

The fix-point computation is performed iteratively until no gain above a particular e
value is provided by the last iteration. If the computation does not converge, the process
terminates after a maximal number of steps. For more information on the complexity and
the convergence the reader can refer to Melnik et. al. [103].

6.2.3 Implementations

To implement the matchers proposed in this work, Liberate extends the Open Informa-
tion Integration (Openll) Harmony framework [I12]. Openll Harmony is an open source
schema-matching framework that was implemented in collaboration between the MITRE
Corporation and several industrial (e.g., Google, Microsoft, IBM, Yahoo) and academic
collaborators (e.g., University of Wisconsin, University of Pennsylvania, University of Cal-
ifornia, Berkeley).

Openll Harmony is a mature and extensible project. It supports multiple schema for-
mats (e.g. XSD) and multiple output formats (e.g., spreadsheets, and cvs) for matching
results. In addition, it provides high-end GUI that allows users to refine the suggested map-
pings, confirm or reject matches, add annotations, and specify transformation functions.
All these features make it suitable to deal with the complex cloud schemas that come with
different formats, spread into multiple files, and may require non-trivial transformations.

Our implementation uses the Openll loaders, mappers and code-generator. It also
extends the matcher module by adding four extra matchers: three element-based match-
ers (i.e., web-semantic-matcher, gloss-based-matcher, and domain-knowledge-matcher) and
one structural matcher (i.e., the modified similarity flooding matcher). All the implemented
element-based matchers extend the matcher class. They have been implemented to work as
composite matchers that can work togather and with other matchers implemented within

137



the Openll framework. This facilitates combining and comparing the results of different
matchers.

Run Schema Matcher:

Please select which matchers to use:
[ ] Name Similarity Matcher
[] Documentation Matcher
[] Mapping Matcher

[] Thesaurus Matcher
Gloss-Based Matcher

Web Semantic Similarity
Knowledge Matcher

[] Exact Matcher

Similarity Flooding Matcher
[] Quick Matcher

[C] wordNet Matcher

| »

4]

[] Select advanced matcher options

| Next | | Cancel |

Figure 6.6: Configuring a Composite Matcher

Figure 6.6 shows how the implemented matchers can be used as composite matchers
together and with other matchers within OpenlI.

The WSM has been implemented to use several search engines. One of the main issues
that we had to deal with is to reduce the number of calls to the search engines’ APIs. This is
because, calling a search engine API and waiting for a response is the most time consuming
operation in the WSM process. Moreover, most search engines limit the number of calls
per second and the maximum number of calls per month or day for each user. Assuming
that the two schemas S; and Sy have the same number of elements (n), the number of
search requests required by the WSM process, is given by:

TotalSearchRequests =3 x n?

withoutcache

To reduce this number, we implemented a caching strategy. Using caching, we were able
to reduced the number of calls by order of three as shown in the following equation:

TotalSearchRequests =nx(n+2)

withcache
While from a theoretical point of view, the number of calls will still have a polynomial
(quadratic) growth with respect to the number of elements in the schemas, the gain
achieved in practice is worth the effort.
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On the other hand, the Gloss-Based Matcher has been implemented by extending the
sentence-to-sentence similarity from the SEMantic simILARity (SEMILAR) toolkit. Then,
the GBM has been integrated with the OpenllI framework. The SEMILAR toolkit includes
libraries that facilitate textual preprocessing (e.g., collocation identification, part-of-speech
tagging, phrase or dependency parsing, etc.) and semantic similarity computation at both
word-level and sentence-level [I11]. In our implementation of the GBM, we used these
libraries to implement a modified version of the Mihalcea, Corley, and Strappavara (MCS)
method for sentence-to-sentence similarity.

Finally, the modified similarity flooding matcher has been implemented in a separate
module, and combined as a pipeline architecture.

Project Edit Search Matchers View Help
1= Schemas Schemas = | [Evidence
¢ @) Liberate-AzureServiceDefinitionSchet o @) Liverate-StratusL (XML <u =10
¢ @ ServiceDefinition ——— ————- ——¢ @ Core ( l)
o 4 WebRole —— —— —————- ————¢ @ Sewice
¢ @ WorkerRole —— —————— | e o be—e e 4 @ Group
o @ LocalStorage ——————| T e Tl fm————— ¢ OPA_\f.a_Jra_bﬂJ?zG_ro_ug _(i_)
o @ LocalResources ————- T T M——————+ —¢ | @ Task |
o @ ConfigurationSeftings —— ——————————:-0- @ FrontTask : 0.8
o~ @ Endpoints ——————-| e e — 4|+ @ WorkerTask :
o @ Ccedificates ———————| 7 T————— —-o= @ VMTask |
®ae————o—-—--( - —————— —o @ ScalabiltyGroup
@ enablenstiveCodefxecuti]l . |——————— —o- @ StorageGroup
® vmsize———————| - e————— @ AvaiabiinZone
@ name——————————— T — (bt Bt @ name 0.6
@ upgradeDomainCount ———- | pate: 314052015 | f————7—T7-— @ i1
Author: [ Gloss-Based Matcher [ o @ ScalabiiiyGroup
Notes: fm————= o @ StorageGroup =y
7777777 @ narme
~~~~~~~ @ ot
————— @ name 0.4
————— @ upgradeDomainCount
Confidence
Mo Evidence Much Evid%
Evidenc: {0.52) 0.2
[] Accept []Reject
WebRole Mapping Function FrontTask
Description: The WebRole element - Built-in Function: <Hone> - Descxipﬁnn: A cloud task a1.1d . -
describes a a virtual machine that is Parameter §1: entty point to the cloud application
customized for web application that I?am.iles user requests, which
programrming, A service may T | are distributed by a load balancer. & S 0.0
contain zero or more web roles. £ rmm’TE_'Sk must support the Filters
= interactive request-response pattern. [
g Sler
4 i [ [» [ [*] System
Depth 1 Q:b:u:J Depth 2 ii) Depth 1 Q:n:n:n:x:D:n:u:n:n:l Depth 6 Hierarchy
Search: Finished: 0/44 Search: Finished: 0/64 [IBest

Figure 6.7: Applying the GBM on AZURE Service Definition and StratusML Core
Schemas
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Figure 6.7 is a snapshot that shows the results of applying the gloss-based matcher on
two cloud schemas: a public schema that belongs to Microsoft Azure Service Definition
and a private schema that corresponds to the StratusML core meta-model. The figure
shows three of the filtration methods that have been used to reduce the noise of the false
positive matches:

(i) Set focus: This filter refines the results by showing only the relationships between
the concept selected from the first schema, including its sub-tree elements and all the
corresponding matches from the other schema. For example, Figure 6.7 shows how
the set focus filter has been used to refine the matching results of the GBM matcher to
show only the “Task” component and its corresponding matching elements on Azure
Service Definition.

(ii) Depth: This filter is used to show only schema elements that appear at a particular
nested depth. The filter appears at the bottom of Figure 6.7, where we used it to
show the matching results at depth one in the Azure Service Definition and depth
five in StratusML schema. Filtering based on the depth can help alleviate some of
the structural differences between the schemas.

(iii) Ewvidence threshold: Shown on the right side of Figure 6.7, this filter refines the
matching results below a certain threshold. In the figure, this filter has been set to
show the matching results with evidence greater than or equal to 0.45.

Figure 6.7 shows that using the GBM and the selected filters, it was possible to re-
veal the similarity between the Azure “WorkerRole” and the StratusML “WorkerTask”
concepts. The figure shows a mapping with confidence (evidence = 0.48).

The next section discusses the tests performed to evaluate the proposed system. To
make this research reproducible, our modified OpenlI framework implementation, in ad-
dition to the datasets used in this chapter and the outcome matching results have been
made publicly available online at the Liberate webpage?®.

6.3 Experimental Setup and Evaluation

The objective of this section is to evaluate the performance of the different matchers
implemented within the Liberate approach. We answer the following questions:

3http://www.stargroup.uwaterloo.ca/ “mhamdaqa/liberate/
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Q1. How will the proposed Web Similarity Matcher perform when applied to public and
private schemas?

Q2. How will the proposed Domain Knowledge Matcher perform in comparison to the
WSM approach?

Q3. How will the structural based matching affect the results?

First, we explain the experimental setup, then the evaluation results, followed by a
discussion and finally the threats to validity.

6.3.1 Experiment Setup

Three experiments with a total of 12 matching tasks have been conducted to provide
answers for the aforementioned three questions. Table 6.4 provides a summary of the
experiments. For each experiment, the table specifies the set of matchers that have been
compared and the schemas that the matchers have been applied to.

Table 6.4: Experiment Set

Name Description Matchers Target Schemas Schema 1 Schema 2
Experiment 1 | Web vs. Linguistic WSM vs. (NS and WN) E?ﬁg; SAtZIL:tiSS\C[IEl“ Definition ”(f;ég(j "
Experiment 2 | Domain Knowledge WSM vs. GBM vs. DKM g?ﬁg& sAtzrjltisS\CfLVM Definition %égc "
Experiment 3 | Domain Knowledge vs. Structural | DKM vs. SF++ g?ﬂi& SAtZIL:tiSS\CIIEICL Definition ”(f;égC X

In each experiment, the different matchers were evaluated as they were applied to public
and private cloud schemas. From public cloud schemas, we experimented with Microsoft
Azure “service definition” schema and Google App Engine “appengine-web” schema. From
private cloud schemas, we experimented with StratusML “core meta-model” schema, and
TOSCA “service template” schema. Two variations of each schema have been used. In
the first variation, schema elements were not annotated with domain glosses, while in the
second variation elements were annotated with their domain glossaries.

The first experiment evaluates the performance of the WSM against the Openll Name
Similarity (NS), and WordNet (WN) matchers. The NS matcher is a linguistic syntactic
matcher that is based on edit distance [I16]. The WN matcher, by contrast, is a bag
matcher that uses the WordNet dictionary as a thesaurus [!12]. For this experiment, the
weight for the WSM was set to 100%, and GBM to 0%. The WSM was set to use Microsoft
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Bing as a search engine, and the search was bound to a context by appending the provider’s
name before the schema concepts. Moreover, the time between requests was set to 0.25
seconds to avoid being classified as a denial of service (DoS) attack.

The second experiment compares the results obtained from WSM against the ones
obtained from applying the GBM and DKM. The matchers have been applied to the same
public and private cloud schemas as before. To focus on the results of the GBM, we set
the weight of the GBM to 100% and WSM to 0%. Then, to compare the results of both
the WSM and GBM to the hybrid DKM approach, we set the weight of GBM to 75%
and the weight of WSM to 25%. This percentage was selected based on the intuition that
glossaries, when available, may contain more accurate domain knowledge in comparison
to the public web. This is because glossaries explain concepts as defined by the providers’
themselves.

The third experiment compares the results obtained from DKM with the results of
the SF++ approach in order to investigate the impact of structural matching on the final
results. The comparison was conducted against the same schemas and with the same
settings for the DKM as before.

We ran the experiments using the different matchers that have been selected. This
creates a total of 12 tasks; each task runs one matcher against two schemas. The results
were then filtered based on different threshold evidence values. Then, the mappings were
exported and evaluated. To make the comparisons fair, no manual selection of mappings
has been considered in this evaluation.

6.3.2 Evaluation of Results

In order to evaluate the proposed matchers, we use the matching results obtained from
running the matchers. The results are then compared to a set of reference alignments. In
this study, we use a set of predefined alignments that have been manually prepared by
domain experts. For each alignment, we determine the true positive, false positive and
false negative matches. Accordingly, the values of precision, recall, and f-measure were
computed according to Equations 6.6, 6.7, and 6.8 respectively. The outcome of these
equations is between zero and one, the higher the value the better the result.

|{ReferenceAlignments} N {MatchResults}|
[{MatchResults}|

Precision =

(6.6)

Precision and recall are widely accepted measures for evaluating the results in infor-
mation retrieval. Precision measures correctness; how many of the matches discovered by
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the matcher are correct in comparison to the total number of matches retrieved. A higher
precision means less wrong matches.

|{ReferenceAlignments} N {MatchResults}|
|{ReferenceAlignments}|

Recall = (6.7)

On the other hand, recall measures completeness; how many correct matches are re-
trieved in comparison to the total number of correct matches in the reference alignment.
A higher recall means more matches have been found.

precision - recall

f—measure = 2 -

6.8
precision + recall (68)

In practice, maximizing precision could lead to a fewer retrieved matches (lower recall),
while maximizing recall may result in a poor precision. To have a better perception of the
quality of the different matchers, the values of both precision and recall should be combined.
One way to combine both of them is through the f-measure, which is the harmonic mean
of precision and recall. The f-measure provides a global measure of the matching quality.
However, the f-measure gives equivalent weights to both precision and recall. Weighing
precision and recall of a tool the same is not correct. As described by Berry [15], the
human effort to find a true positive manually measured by recall is different from that to
reject a false positive measure by precision. If the human effort to find a missing match
is 8 times the efforts to vet a matching result, then recall should be weighted [ times
the precision in calculating the f-measure. The weighted f-measure (fg) can be caculated
using Equation 6.9.

precision - recall

fo= (145

(/32 - precision) + recall (6.9)

In Liberate, the effort of finding a missing match is approximately 10 times the effort

to vet a match. Accordingly, in the evaluation, we use the weighted f-measure equation
fﬁ with ﬁ = 10.

Experimentl: Web vs. Linguistic Matchers

Figure 6.8 shows the results of applying the WSM, WN and NS matchers to public and
private cloud schemas respectively.
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Figure 6.8: Experiment 1 - Results

Figure 6.8 A shows that the WSM approach tends to provide higher precision and recall.
The value of fig-measure is also higher in comparison to NS and WN matchers for public
clouds. In particular, as the evidence threshold increases the precision increases. The
precision of the NS matcher starts higher than the WSM. It increases until the evidence
threshold reaches 20% then it hits zero at 30% evidence threshold. This sudden change
can be reasoned by reviewing the recall figure, which shows very poor recall at 20% that
drops to zero at 30% evidence. The relationship between the number of matches found
and the evidence threshold is inversely proportional. This is expected, because when the
evidence is low the matcher retrieves more results; both correct and incorrect. The reason
WSM has the highest recall is due to the fact that it is a statistical measure. Given the
large number of pages on the Internet, in most cases, the value of the WSM is greater
than zero, which indicates some statistical relatedness. However, this is not the case for
linguistic based similarities, where the similarity can easily hit zero.
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Based on the fig-measure results, the NS matcher is the worse performer when applied
to public cloud schemas, while the WSM is the best performer. The fig-measure results
in Figure 6.8A shows a proportional relationship between the WSM results and evidence
threshold up to 0.8 evidence. At this point, the fijg-measure value drops due to the sharp
drop in the recall (i.e., very few values retrieved, some of them are correct mappings).

Figure 6.8B shows the results of repeating the same experiment for private cloud
schemas. This time, the WSM scored the worse in comparison to both linguistic matchers
(i.e., NS and WN). The reason might be due to the limited content online that refers to
the concepts in these schemas. The WSM produced very poor matching precision and high
recall that sharply fall down to zero at 30% evidence threshold. On the other hand, the
behavior for both the NS and WN seems to be consistent for both public and private cloud
schemas, in both cases, they had poor performance. This is expected, as both matchers
do not incorporate domain knowledge in the matching process, and the concepts in both
public and private cloud schemas do not share a linguistic similarity. The f;o-measure con-
firms that none of the matchers are suitable for private clouds with linguistic approaches
being more favorable.

Experiment2: Domain Knowledge Matchers

Figure 6.9 shows the results of evaluating the performance of the WSM, GBM and DKM
matchers as they are applied to public and private cloud schemas respectively.

Figure 6.9A shows that the WSM is still the dominant matcher for public cloud schemas.
WSM performs better than both GBM and DKM. In particular, the GBM shows poor
precision, moderate recall, and relatively lower fjp-measure when the evidence threshold is
below 0.6. Nevertheless, the matching outcome of the GBM still outperforms the results
obtained by the pure linguistic matchers used in the first experiment.

As expected the results obtained by the DKM is between those obtained by the GBM
and WSM. This is because the DKM combines the results of both matchers. However,
since more weight was given to the GBM, the DKM results are closer to the GBM results.

Figure 6.9B shows the results of applying the same matchers on private cloud schemas.
As in the first experiment, the WSM fails as a matcher for private cloud schemas. On the
other hand, the GBM shows promising results when applied to private cloud schemas. The
precision of the GBM increases as the evidence threshold increases. The precision value
reaches its peak at 0.6 threshold. The value then dropped to zero as the total number of
retrieved matches (recall) dropped to zero at 0.7 evidence threshold. The fjo-measure score
shows that the GBM outperforms both the DKM and WSM. On average the GBM results
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Figure 6.9: Experiment 2 - Results

were 8% higher than DKM and 70% higher than the WSM when applied to TOSCA and
StatusML schemas.
Experiment3: Structural Matcher

The third experiment aims at examining the effect of structural similarity. Figure 6.10

shows the results of applying SF++ to public and private cloud schemas. The results are
compared with the DKM results obtained from the second experiment.

The observations from Figure 6.10A, and 6.10B are that:

(i) The public cloud schemas used in this experiment are structurally dissimilar. This is
clear from the zero values of precision, recall and fio-measure.
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Figure 6.10: Experiment 3 - Results

(ii) The private cloud schemas used in this experiment expose some kind of structural
similarity, but over all they still have significant structural differences. As shown in

the precision results in Figure 6.10B, the SF++ improved the precision of the DKM,
particularly at a higher evidence threshold (e.g., 0.6).

(iii) The SF++ seems to have a negative effect on recall. While this was not that obvious

for private clouds, it was the main factor that brought the precision and fjp-measure
values to zero in public clouds.

The SF++ can have negative impact on the initial matching results when the schemas
do not expose structural similarity. This is due to the effect of the fix point computation,
which affects the similarity magnitude of the initial matches. Degrading the initial simi-

larity magnitude affects the number of true positive values, which is the reason behind the
poor recall values.
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Discussion
In this subsection we revisit our questions based on the experimental results.

Q1. How will the proposed Web Similarity Matcher perform when applied to public and
private schemas?

The first experiment shows that the WSM has higher precision recall and fig-measure
values than the pure linguistic approaches, when applied to public cloud schemas.
Unfortunately, all the matchers used in the first experiment, including the WSM,
preformed badly when applied to private cloud schemas.

Q2. How will the proposed Domain Knowledge Matcher perform in comparison to the
WSM approach?

The results of the second experiment show that the WSM workes better to detect and
retrieve matches of the public cloud schemas, while GBM works better for private
clouds. To combine the benefits of both matchers, the DKM measure can be used
in both cases and produces decent results. The DKM is more favorable in scenar-
ios where there is limited knowledge about the schemas. For example in scenarios
where we are not sure how much online content is available, or if we have incomplete
glossaries.

Q3. How will the structural based matching affect the results?

As shown in the results of the third experiment , for the selected schemas the SF++
did not add value to the matching process. However, using the SF++ can reveal
important knowledge about how much two schemas are structurally deviated, which
can serve as an indicator on the manual efforts required for schema alignment, and
transformation template generation. Moreover, the SF++ can be used in cases of
schema evolution (i.e., to discover mismatches between different versions of the same
schema).

It is worth to be noted that, although the conclusions were the same; the results

reported in this thesis, which were obtained using the weighted f;o-measure, were stronger
than those obtained using fi-measure. This confirms Berry’s [15] observation.

6.3.3 Threats to Validity

In this section four validity threats are discussed. Two of these threats are external threats
that affect the generalization of the approach; those are the veracity of search results and
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the size of the experiment. The other two are internal threats that make some of the
obtained results questionable; those are, the matching confidence and the ground truth
alignments used.

e Veracity of search results: Data veracity refers to uncertain, imprecise or inac-
curate data [51]. The WSM metric uses the number of hits retrieved from search
results. Therefore, the accuracy of the WSM depends on the search results’ pre-
cision. Unfortunately, it has been noted that search engine results are not always
precise (i.e., based on estimates). Search engines, such as Google or Yahoo, rely on
cached results to answer search queries; unless, the cached results are below a certain
threshold. For instance, using Google to search the term “car”, the number of pages
returned is 965 million, while if you search a more precise term such as “car games”
the number of pages returned is over a billion. Obviously, this is misleading as the
search results of “car” should involve “car games”. In order to address this issue,
the WSM implementation enforces the use of deep search through parameter tuning,
which is a more sophisticated search option that provides more accurate results, by
avoiding the use of precached results.

e Size of the experiment: Currently, our experiments use a sample of four schemas
and apply the proposed matchers to them. Two of the sample schemas are public
and two are private. However, to generalize the results of this study, a wider range
of schemas that cover other cloud vendors and providers should be examined.

e Matching confidence: The current approach uses naive threshold-based extraction
technique for extracting significant mappings. This is because some matchers are
generous by nature, while others are greedy. For example the WSM is a generous
matcher; it always returns some similarity results. However, if the similarity between
one concept from the source schema and all other concepts from the target schema
is always the same (i.e., high or low). This means, the matcher has failed to clearly
identify matches for that concept. In case of the WSM, this could be because the
concept is a common concept that appears in all search results.

e Ground truth alignments: The matchers that have been introduced in this chap-
ter have been evaluated using a set of ground truth alignments. These alignments
have been manually created by a domain expert; hence, they are susceptible to hu-
man errors. This challenges the evaluation results. In this study, the credibility of
the manually created reference alignments stems from the fact that these alignments
have previously been used to create a domain independent modeling language for
the cloud [09, 70]. The alignments were realized as transformation rules to automate
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mapping the provider-independent models created using our modeling language into
cloud provider-specific deployment artifacts, and deploy actual applications on the
cloud.

Even with these validity threats and concerns, the advantages of the approach and
matchers introduced in this chapter are evident and presents a forward step toward auto-
matic migration and transformation for cloud models and applications.

6.4 Summary

This chapter argues that there is a need to investigate new techniques for schema matching
that are able to deal with the mismatches between the cloud providers’ schemas. Cloud
schemas are unconventional vendor driven schemas, where similar domain concepts may
not be identifiable via linguistic similarities. Hence, there is a need for advanced techniques
that incorporate domain knowledge in the matching process.

This chapter presents a semi-automated schema matching process that solves the prob-
lem of obtaining domain knowledge and making the complex alignments required to fa-
cilitate model driven migration of the cloud service models between different providers.
Particularly, this chapter makes the following contributions:

(i) It uses schema matching to attack the problem of cloud vendor lock-in: we cover two
different matching scenarios between public schemas and private schemas.

(ii) It devises a new element-based matcher: the new matcher combines gloss-based and
web-based similarity to incorporate domain and provider specific knowledge in the
matching process, to find correspondences between similar concepts that may not
share linguistic or semantic features.

(iii) It generalizes the similarity flooding algorithm to work with any directed acyclic
graph, instead of only a labeled directed graph.

We call the new approach “Liberate” because it frees users from vendor lock-in. Liberate
has been realized as an extension to the Openll framework. The approaches implemented
within liberate have been examined against public and private cloud schemas. The results
show that the WSM performs better when applied to public cloud schemas. On the other
hand the GBM works better on private cloud schemas. Generally speaking the combination
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of both matches (i.e., the DKM) performs better than traditional purely linguistic schema
matching approaches when applied to providers specific cloud schemas. Finally while
providers schemas are usually structural dissimilar, structural similarity (SF-++) can reveal
important knowledge about the amount of manual efforts required for schema alignment.

Although the approach presented in this work and the results are promising, there
are some issues that need to be addressed: (i) the generalized similarity flooding (SF++)
contribution to the matching results was not significant. However, we argued its benefit as
indication of the efforts needed for manual alignment and transformation template creation,
or to uncover mismatches between different revisions of the same schema. This is another
interesting problem that we are planning to address in the future. (ii) As in all schema-
matching approaches scalability is still a major issue that affects matching performance
in terms of execution time. However, due to its dependency on online search results, the
WSM takes even more time than other processes to discover the alignments. The current
implementation addresses the scalability problem by caching. The performance of the
current approach can be further improved in the future by implementing the similarity-
matching task as a parallel process and using partitioning to allow several machines to
perform similarity matching at the same time. (iii) In some cases the relationships between
elements is difficult to be revealed using both the domain glossaries and web-similarity
matching. However, a domain expert is able to infer this relationship from the available
schema examples; another venue to be explored in the future. Finally, (iv) there is a need
for a repository for thesauri, acronyms, dictionaries, and mismatch lists for schemas across
cloud vendors.
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Chapter 7

Conclusions and Future Directions

“Research is to see what everybody else has seen, and to think what nobody
else has thought.”
— Albert Szent-Gyorgyi, 1937

This thesis investigates the process of building, deploying and managing multi-cloud
applications, by harnessing the underlying cloud platform and infrastructure capabilities
in a cost-effective manner. This chapter summarizes the findings of this thesis and presents
future directions. Section 7.1 presents the contributions of the thesis, Section 7.2 sums up
the answers to the research questions , Section 7.3 discusses future work that would extend
this research, finally, Section 7.4, makes concluding remarks.

7.1 Contributions

The contributions of this thesis stated in Chapter 1. This section discusses these contri-
butions in the light of the material that is covered in chapters 2-6. These contributions
include:

e devising a new architectural-view-model that is tailored to address the cloud DevOps
process: The (5+1) View Model. The (5+1) view model is an architectural framework
that consists of five model views, namely: the availability, adaptation, performance,
workflow, and provider models. What distinguishes the (5+1) view model from
other software architecture frameworks is that it bridges the gap between service
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design and operation. The (5+1) view model provides a set of modeling concepts
and views to address the dynamic nature of cloud applications (e.g., the adaptation
view), and to model its performance under diverse configurations. Moreover, the
(54+1) view model captures the common practices of the different cloud application
stakeholders for creating, interpreting, analyzing, and using architecture descriptions
to specify cloud applications deployment and management aspects. The description
of the core model was first introduced in the first International Conference on Cloud
Computing and Services Science [66]. At CASCON [69], I presented the different
views of the (54+1) view model and their corresponding meta-models. Moreover,
at IC2E [70], T used scenario-based examples to show how the introduced views
can facilitate architecting malleable applications that can change their structure and
behavior at runtime through configuration.

developing a modeling framework for multi-clouds applications: The StratusML
framework. StrarusML is a realization of the (5+1) view model. The StratusML
framework provides model editor and generator for cloud application services that
have been implemented to facilitate model once deploy everywhere approach and
keep the architectural models in synchrony with the configuration space artifacts as
applications evolve. Moreover, StratusML offers a model validator to ensure the cor-
rectness and completeness of the created models, and a model analyzer to analyze
the anticipated performance, availability and cost of the created models under dif-
ferent configurations and providers. Some of the distinctive features of StratusML
are layers, template-based-transformations and the ability to model adaptation rules
and actions. Layers and template-based-transformations facilitate fragmenting the
models into artifacts that are easy to modify and enable weaving the fragments
into model views to empower collaboration between the cloud stakeholders. The
StratusML framework features and implementation were covered in parts in several
publications [66, 69, 70, 65].

extending the StratusML language to capture the cloud application runtime perfor-
mance parameters and to generate corresponding layered queuing network models;
we refer to this new extension as StratusPM. The distinctive advantage of StratusPM
over other performance model generators is its ability to address the fluid nature of
the cloud service and deployment models, by reusing these models in addition to
the provider specification to automatically generate corresponding analytical perfor-
mance models for cloud applications. Using StratusPM, cloud performance engineers
can generate analytical performance models on the fly from the information speci-
fied by the architects and system administrators. This not only reduces the efforts
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needed to specify analytical performance models, but it also maintains consistency
between models as models evolve. Performance engineers will only be responsible
for specifying the runtime measurements and execution scenarios. This will alleviate
them from the need to know the target platform specifications and deployment mod-
els and configurations. Chapter 5 shows an example of how to transform StratusML
models that are annotated with StratusPM components into layered queuing network
models.

automating vendor-specific schema matching and meta-models creation and evolu-
tion. I devised a number of schema matching approaches (i.e., PrisonBreak and
Liberate) to facilitate discovering correspondences between the concepts of the dif-
ferent cloud schemas in order to create model abstractions (meta-models) for the
cloud providers’ schemas, keeping them up to date, and generating mappings be-
tween the providers’ independent abstractions and the providers’ specific schemas.
What distinguishes these approaches is their ability to incorporate domain knowl-
edge in the schema matching process by considering statistical web-based similarities,
and domain glossaries to uncover similarities between similar domain concepts even
if they are linguistically dissimilar. The approaches proposed in this thesis showed
significant improvement over existing schema matching approaches when applied to
vendor specific schemas, as demonstrated in several publications [658, 71].

7.2 A Summary of Research Questions

This section revisits the research questions presented in this thesis and provides short an-
swers based on the findings presented in the different chapters.

RQ1. How is architecting cloud applications different from architecting other
applications?

Chapter 3 of this thesis provides an elaborate answer to this question, by eliciting

the requirements for architecting cloud-native applications. The following are the main
distinctive architectural characteristics that distinguish the process of architecting a cloud
application:

(i) a cloud application is a malleable (elastic and dynamic) application. It changes

its structure and behavior at runtime through utilizing the cloud infrastructure as a
code capability to meet performance, availability, and scalability targets. Accordingly,
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architecting for the cloud should focus on addressing the concerns of service operation
rather than the service implementation.

(ii) architecting an application for the cloud includes complex architectural, operational
and financial decisions. These decisions are made by different stakeholders and span
to after the application’s delivery.

The (5+1) view model presented in Chapter 3 is constructed around the application
service and deployment model. It captures all the essential information for architecting
malleable applications that can change their structure and behavior at runtime through
configuration.

RQ2. How should an application be architected to be deployed into multiple
clouds and how should cloud modeling and configuration spaces be bridged?

To architect an application to be deployed into multiple clouds, there is a need to
first, separate the application domain and architectural concerns from the provider’s oper-
ational, technical and financial concerns, second, provide an abstraction layer for each of
the concerns. In this thesis, the separation between concerns has been achieved through in-
troducing a new architectural style for developing malleable cloud applications. Moreover,
the abstraction layer has been implemented through using meta-models. On the other
hand, to bridge the cloud modeling and configuration spaces there is a needed for a mod-
eling framework that provides (i) abstract and providers independent modeling constructs
to incrementally build cloud models that address the different cloud concerns and (ii) tools
for model weaving, fragmentation, and transformation to enable generating the configura-
tion space artifacts for the target provider. As shown in Chapter 4, this has been achieved
through utilizing model-driven engineering to build a multi-layer modeling language that
uses template-based transformations to enable generating the target providers’ artifacts.

RQ3. How to extend the framework to support generating analytical perfor-
mance models for cloud applications?

As explained in Chapter 5, constructing an analytical performance model includes two
steps: (i) modeling the application structure and infrastructure resources, (ii) modeling
the user interactions and workload characterization. On the other hand, deploying an
application on a cloud platform requires specifying the structure and infrastructure infor-
mation of the application. Accordingly, to generate analytical performance model from the
cloud service and deployment artifacts, the modeling framework that has been created to
model and generate these artifacts (StratusML) needs to be extended to first, capture the
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resource usage model, which describes the interaction between the users and the system,
second, capture the resource utilization parameters, which show the load on the different
resources as a result of user requests.

RQ4. How should the framework be kept up-to-date?

Maintaining a framework that uses model-driven-engineering up-to-date requires first,
keeping the abstraction layer (meta-models) that the framework uses to describe the syntax
and semantic of the underlying modeling language in that framework up-to-date, second,
generating new transformation rules to map the concepts in the abstraction layer to its
corresponding concepts on the target provider schema. Such mapping requires checking
continuously for mismatches and similarities between the different vendors’ schemas and
the modeling framework meta-models. Uncovering such similarities and mismatches be-
tween the different schemas can be a daunting task as it requires in-depth knowledge of
the semantics of the various concepts in that domain. Chapter 6 shows that one possi-
ble solution to this problem is to first, automate the process of discovering mismatches
and similarities, by exploiting some of the machine learning techniques used in similarity
matching, and second incorporate domain knowledge in the matching process to address
cases where concepts do not share linguistic similarities, which is a common case in indus-
trial schemas.

7.3 Future Work

The development of the StratusML framework and Liberate approach laid the groundwork
for several future directions. The following is a list of possible future work:

e extending the framework to support micro-services architecture and containers tech-
nologies: As microservices and container-based applications are getting more mo-
mentum, there is more demand on frameworks that facilitates (i) designing applica-
tions by composing micro-services independently from any container technology (e.g.
Docker), and (ii) enabling the linkage between the build systems and infrastructure
deployment artifacts. StratusML alleviates some of the challenges regarding service
integration and operation, by facilitating generating the platform artifacts that are
required to schedule and manage the deployment of containers. One of the direct
extensions of the StratusML framework would be to enable generating the configu-
ration artifacts of the container images. This will require an additional abstraction
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layer that is closer to the containers technology to allow creating the containers build
files. There will also be a need for another layer of abstraction, at a higher level,
that facilitates utilizing microservice architectural patterns and templates to generate
their corresponding artifacts.

supporting a wider range of cloud providers: StratusML currently provides out of
the box templates for generating the platform configuration for windows azure and
google application engine. In the future, I will work on creating more templates to
support more platform providers. Moreover, I will work on providing transformations
to some of the standard cloud description languages (e.g., TOSCA [17])

extending the StratusML to support 10T services: IoT-based services require manage-
ment frameworks that support managing both the devices at the edge and the sup-
porting services at the cloud platform. StratusML supports managing only the cloud
platform side of the network, more work will be required to support the modeling
and configuration of the edge devices. Moreover, bandwidth and latency limitations
at the edge impose challenges on transferring data from the smart edge devices to
the cloud. To deal with these limitations there is a need for a technological layer that
sets between the edge devices and the cloud and addresses scalability and latency and
provides intelligent control for the data that is generated at the edge devices. CISCO
refers to this layer as Fog Computing [20]. Similar to cloud computing, the fog con-
sists of compute and storage devices. However, different from the cloud dedicated
datacenter model, the fog uses an ad-hoc model that depends on mobile devices that
are close to the edge devices. The analytical applications that run on the fog have
specific requirements. For example, these applications need to adhere to the different
set of standards and protocols that are used by the different devices. In the future, I
will work on developing an abstraction layer, similar to the one that I developed for
the cloud, in order to facilitate deploying IoT services on the fog and automatically
configuring them to the target edge devices.

automating partitioning of applications into microservices: The current framework
assumes the developers can make the right decisions in terms of partitioning the ap-
plication into modules (microservices), and then distributing them into geographic
locations to achieve the desired availability level. However, partitioning applications
into cohesive modules is difficult and requires knowledge about the dependency rela-
tionships between the different modules. In the future, I am planning to use graph
theory and clustering techniques to extend the framework to support the automatic
partitioning of applications into micro-services that can be hosted into containers
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and to group micro-services into container pods. This fine-grain decomposition will
have a huge impact on applications’ malleability, self-adaptation and its availability.

implementing feedback loops between the runtime model and the performance model.
Currently, StratusPM requires manually specifying the performance model parame-
ter. Future work will investigate combining the application performance monitoring
(APM) and round trip model driven techniques to fully automate the application
adaptation process. I will be utilizing the platform centralized logging capabilities
to facilitate the management of distributed services to remediate issues or to alert
operators as needed.

supporting other target performance models. Currently, the proposed framework
supports generating LQN models from the StratusPM models. In the future, I am
planning to support transformations to other performance modeling languages that
address modeling software components and thier underlying platforms such as Palla-
dio Component Model (PCM) [!1]. Supporting other performance modeling frame-
works will give the users of the StratusML framework more flexibility and options to
compare the performance results.

expanding the application of domain schema matching to automate model-driven
migration: In this thesis, the liberate approach has been proposed to deal with the
vendor lock-in problem, by uncovering the alignments between the concepts of the
provider specific schemas. Liberate is a generic approach that can be equally ap-
plied to other domains. In the future, I will examine the approach in the model
driven-engineering domain to semi-automate the process of creating transformation
rules between the source and the target models on the fly. Particularly, I will inves-
tigate how to automatically formulate mappings (transformation rules) based on the
generated matches.

further evaluation for the framework: In this thesis, I used scenario-based examples
to demonstrate the usefulness and capabilities of the proposed framework. In the
future, I am planning to conduct a comprehensive empirical study to evaluate the
impact of the proposed framework on the roles of the cloud stakeholders and the
cloud DevOps process. Particularly, I will evaluate the usability, domain coverage,
correctness, maintainability, and domain specificity. That is the DSML small enough,
leaving out language features that do not contribute to the purpose of the language.
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7.4 Conclusion

Cloud platforms advances have changed the application development landscape. Cloud
platforms abstract the complexity of application delivery to enable the applications’ rapid
development and easy management. This changes the way development teams need to
think about and deal with the underlying resources while building and managing their
applications. In cloud computing, architecture evolves during deployment; therefore, run-
time operation needs as much architectural modeling as functional design does. This thesis
describes a new method supported by a modeling framework to enable organizations that
build cloud applications, SaaS providers, to exploit the cloud platform building blocks to
leverage the flexibility, reliability, and scalability that these platforms provide to the ap-
plication layer. I have successfully realized the architectural view model as a cloud DSML
that uses layers to toggle between partial and holistic views, model dynamic behaviors
using adaptation rules and actions, and “weave” stakeholder concerns together to gener-
ate useful artifacts for the supported target platforms. While the framework currently
supports generating artifacts for three cloud platforms, support for framework evolvability
has been considered, using template-based transformation and advanced schema matching
techniques.
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Appendix A

LQN Transformation Template

<lgn—model xmlns:xsi="http://www.w3.org/2001/XMLSchema—instance” name=""TailSpin” >
<solver—params conv_val="1" it_limit="50" print_int="0" underrelax_coeff="0.5" />
<processor name="RefTask_TailSpin.Services.Surveys.Host.AzureProcessor” replication="1"
multiplicity="1" speed—factor="0.5">
<task name="RefTask_TailSpin.Services.Surveys.Host.Azure” multiplicity="1" replication="1">
<entry name="RefEndpointToEndpoint1” type="PH1PH2” >
< /entry>
<entry name="RefEndpointToHostInternal” type="PH1PH2" >
<entry—phase—activities>
<activity name="HostActivityl” phase="1" host—demand—mean="0">
<synch—call dest="WeblInternal” calls—mean="0" />
< /activity>
< /entry—phase—activities>
< /entry>
<task—activities>
<activity name="HostActivityl” host—demand—mean="0" />
<activity name="HostActivity2” host—demand—mean="0" />
< /task—activities>
< /task>
< /processor>
<processor name=""TailSpin.Services.Surveys.Host. AzureProcessor” replication="1" multiplicity="1"
speed—factor="0.5">
<task name=""TailSpin.Services.Surveys.Host. Azure” multiplicity="1" replication="1">
<entry name="Endpointl” type="PHI1PH2” >
< /entry>
<entry name="HostInternal” type="PH1PH2” >
<entry—phase—activities>
<activity name="HostActivityl” phase="1" host—demand—mean="0">
<synch—call dest="WeblInternal” calls—mean="0" />
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< Jactivity>
< /entry—phase—activities>
< /entry>
<task—activities>
<activity name="HostActivityl” host—demand—mean="0" />
<activity name="HostActivity2” host—demand—mean="0" />
< /task—activities>
< /task>
< /processor>
<processor name="RefTask_TailSpin. WebProcessor” replication="1" multiplicity="1" speed—factor=
770-577>
<task name="RefTask_TailSpin.Web” multiplicity="1" replication="1">
<entry name="RefEndpointToHttpsIn” type="NONE” >
< /entry>
<entry name="RefEndpointToWebInternal” type="NONE” >
</entry>
< /task>
< /processor>
<processor name=""TailSpin. WebProcessor” replication="1" multiplicity="1" speed—factor="0.5">
<task name=""TailSpin.Web” multiplicity="1" replication="1" >
<entry name="HttpsIn” type="NONE” >
< /entry>
<entry name="Weblnternal” type="NONE” >
< /entry>
< /task>
< /processor>
<processor name="RefTask_TailSpin. Web.Survey.PublicProcessor” replication="1" multiplicity="1"
speed—factor="0.5" >
<task name="RefTask_TailSpin.Web.Survey.Public” multiplicity="1" replication="1">
<entry name="RefEndpointToHttpIn” type="NONE” >
</entry>
<entry name="RefEndpointToPublicInternal” type="NONE” >
< /entry>
< /task>
< /processor>
<processor name=""TailSpin. Web.Survey.PublicProcessor” replication="1" multiplicity="1" speed—
factor="0.5" >
<task name=""TailSpin.Web.Survey.Public” multiplicity="1" replication="1">
<entry name="Httpln” type="NONE” >
< /entry>
<entry name="PublicInternal” type="NONE” >
</entry>
< /task>
< /processor>
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<processor name=""TailSpin. Workers.NotificationsProcessor” replication="1" multiplicity="1" speed—
factor="0.5">
<task name=""TailSpin. Workers.Notifications” multiplicity="1" replication="1">
<entry name="NotificationsInternal” type="NONE” >
</entry>
< /task>
< /processor>
<processor name=""TailSpin. Workers.SurveysProcessor” replication="2" multiplicity="2" speed—
factor="1">
<task name=""TailSpin. Workers.Surveys” multiplicity="1" replication="2">
<entry name="Surveyslnternal” type="NONE” >
<entry—phase—activities>
<activity name="SurveysActivityl” phase="1" host—demand—mean="0">
<synch—call dest="SurveysInternal” calls—mean="0" />
< Jactivity>
< /entry—phase—activities>
< /entry>
<task—activities>
<activity name="SurveysActivityl” host—demand—mean="0" />
< /task—activities>
< /task>
< /processor>
</lgn—model>

Listing A.1: The Generated LQNX Model.
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Appendix B

CoupoNet LQNS Results

Generated by: lgns, version 5.7
Copyright the Real-Time and Distributed Systems Group,
Department of Systems and Computer Engineering
Carleton University, Ottawa, Ontario, Canada. K1S 5B6
Invoked as: lgqns C:\Users\Hamdaga\Desktop\CoupoNet.lqgn
Input: C:\Users\Hamdaga\Desktop\CoupoNet.lqn
Comment: LQN for the Hamdaqa CoupoNet Example
Convergence test value: 6.63235e-006
Number of iterations: 9
Solver:

User: 0:00:00.00

System: 0:00:00.00

Elapsed: 0:00:00.00

Submodels: 4
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MVA Core(): 36
MVA Step(): 394
MVA Wait(): 133836
Processor identifiers and scheduling algorithms:
Processor Name Type Copies Scheduling
pDelayl Inf 1 DELAY
pDelay2 Inf 1 DELAY
pDelay3 Inf 1 DELAY
pLC_Delay Inf 1 DELAY
pProvider Mult(2) 1 FCFS
pProviderRef Inf 1 DELAY
pStorage Mult(2) 1 FCFS
pUserRef Inf 1 DELAY
pWeb Mult(2) 1 FCFS

pWorker Mult(2) 2 FCFS

Task information:

Task Name Type Copies Processor Name Pri Entry List
CoupoNet_Provider Uni 1 pProvider O SubmitCoupon

CoupoNet_Web Uni 1 pWeb O FetchCoupon

CoupoNet_Worker_Logic Uni 2 pWorker O RetrieveCoupon, UpdateStore
LoadBalancing Uni 1 pLC_Delay O LC_E1

Pipe_Pseudol Uni 1 pDelayl O Pipel_E1l
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Pipe_Pseudo2 Uni 1 pDelay2 O Pipe2_E1l

Pipe_Pseudo3 Uni 1 pDelay3 O Pipe3_E1l

RefTaskCoupNet_Web Ref(100) 1 pUserRef O Users_E1
RefTaskCoupoNet_Provider Ref(20) 1 pProviderRef O CreateCoupon

StorageService Uni 1 pStorage O Post_info, Get_Info

Entry execution demands:

Task Name Entry Name Phase 1
CoupoNet_Provider SubmitCoupon 7.5
CoupoNet_Web FetchCoupon 8
CoupoNet_Worker_Logic RetrieveCoupon 175
UpdateStore 85
LoadBalancing LC_E1 50
Pipe_Pseudol Pipel_E1 30
Pipe_Pseudo2 Pipe2_E1 30
Pipe_Pseudo3 Pipe3_E1 90
RefTaskCoupNet_Web Users_E1 3000
RefTaskCoupoNet_Provider CreateCoupon 5000
StorageService Post_info 52
Get_Info 17

Mean number of rendezvous from entry to entry:
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Task Name Source Entry Target Entry Phase 1
CoupoNet_Provider SubmitCoupon Pipe3_E1 1
CoupoNet_Web FetchCoupon RetrieveCoupon 1
FetchCoupon Pipel_E1 1
CoupoNet_Worker_Logic RetrieveCoupon Pipe2_E1 2
RetrieveCoupon Get_Info 2
UpdateStore Pipe2_E1 1
UpdateStore Post_info 1
RefTaskCoupNet_Web Users_E1 FetchCoupon 1
Users_E1 LC_E1 1
RefTaskCoupoNet_Provider CreateCoupon SubmitCoupon 1

CreateCoupon LC_E1 1

Mean number of non-blocking sends from entry to entry:

Task Name Source Entry Target Entry Phase 1

CoupoNet_Provider SubmitCoupon UpdateStore 1

Phase type flags:

A1l phases are stochastic.

Squared coefficient of variation of execution segments:

A1l executable segments are exponential.

Open arrival rates per entry:
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A1l open arrival rates are O.

Type 1 throughput bounds:

Task Name Entry Name Throughput

CoupoNet_Provider SubmitCoupon 0.0102564

CoupoNet_Web FetchCoupon 0.00325733

CoupoNet_Worker_Logic RetrieveCoupon 0.00371747
UpdateStore 0.00598802

LoadBalancing LC_E1 0.02

Pipe_Pseudol Pipel_E1 0.0333333

Pipe_Pseudo2 Pipe2_E1 0.0333333

Pipe_Pseudo3 Pipe3_E1 0.0111111

RefTaskCoupNet_Web Users_E1 0.0297885

RefTaskCoupoNet_Provider CreateCoupon 0.00388538

StorageService Post_info 0.0192308

Get_Info 0.0588235

Mean delay for a rendezvous:

Task Name Source Entry Target Entry Phase 1

CoupoNet_Provider SubmitCoupon Pipe3_E1 0O

CoupoNet_Web FetchCoupon RetrieveCoupon 468.931
FetchCoupon Pipel_E1 0O

CoupoNet_Worker_Logic RetrieveCoupon Pipe2_E1 0

RetrieveCoupon Get_Info O
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UpdateStore Pipe2_E1 0O

UpdateStore Post_info O
RefTaskCoupNet_Web Users_E1 FetchCoupon 74257

Users_E1 LC_E1 16.8454
RefTaskCoupoNet_Provider CreateCoupon SubmitCoupon 92.4308

CreateCoupon LC_E1 16.0421

Mean delay for a send-no-reply request:

Task Name Source Entry Target Entry Phase 1

CoupoNet_Provider SubmitCoupon UpdateStore 446.825

Service times:

Task Name Entry Name Phase 1

CoupoNet_Provider SubmitCoupon 97.5

CoupoNet_Web FetchCoupon 775.931

CoupoNet_Worker_Logic RetrieveCoupon 269
UpdateStore 167

LoadBalancing LC_E1 50

Pipe_Pseudol Pipel_E1 30

Pipe_Pseudo2 Pipe2_E1 30

Pipe_Pseudo3 Pipe3_E1 90

RefTaskCoupNet_Web Users_E1 78099.8
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RefTaskCoupoNet_Provider CreateCoupon 5255.97
StorageService Post_info 52

Get_Info 17

Service time variance (per phase)

and squared coefficient of variation (over all phases):

Task Name Entry Name Phase 1 coeff of var **2

CoupoNet_Provider SubmitCoupon 25706.2 2.70414

CoupoNet_Web FetchCoupon 1.37e+006 2.27549

CoupoNet_Worker_Logic RetrieveCoupon 50077 0.692044
UpdateStore 25724.8 0.922399

LoadBalancing LC_E1 2500 1

Pipe_Pseudol Pipel_E1 900 1

Pipe_Pseudo2 Pipe2_E1 900 1

Pipe_Pseudo3 Pipe3_E1 8100 1

RefTaskCoupNet_Web Users_E1 1.70828e+010 2.80065

RefTaskCoupoNet_Provider CreateCoupon 2.12688e+007 0.769905

StorageService Post_info 2704 1

Get_Info 289 1

Throughputs and utilizations per phase:

Task Name Entry Name Throughput Phase 1 Total

CoupoNet_Provider SubmitCoupon 0.00380519 0.371006 0.371006
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CoupoNet_Web FetchCoupon 0.00128041 0.993513 0.993513
CoupoNet_Worker_Logic RetrieveCoupon 0.00128041 0.344431 0.344431
UpdateStore 0.00380519 0.635468 0.635468
Total: 0.00508561 0.979899 0.979899
LoadBalancing LC_E1 0.00508561 0.25428 0.25428
Pipe_Pseudol Pipel_E1 0.00128041 0.0384124 0.0384124
Pipe_Pseudo2 Pipe2_E1 0.00636602 0.190981 0.190981
Pipe_Pseudo3 Pipe3_E1 0.00380519 0.342468 0.342468
RefTaskCoupNet_Web Users_E1 0.00128041 100 100
RefTaskCoupoNet_Provider CreateCoupon 0.00380519 20 20
StorageService Post_info 0.00380519 0.19787 0.19787
Get_Info 0.00256083 0.0435341 0.0435341

Total: 0.00636602 0.241404 0.241404

Utilization and waiting per phase for processor: pDelayl

Task Name Pri n Entry Name Utilization Phase 1

Pipe_Pseudol 0 1 Pipel_E1 0.0384124 0O

Utilization and waiting per phase for processor: pDelay2

Task Name Pri n Entry Name Utilization Phase 1

Pipe_Pseudo2 0 1 Pipe2_E1 0.190981 0
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Utilization and waiting per phase for processor: pDelay3

Task Name Pri n Entry Name Utilization Phase 1

Pipe_Pseudo3 0 1 Pipe3_E1 0.342468 0O

Utilization and waiting per phase for processor: pLC_Delay

Task Name Pri n Entry Name Utilization Phase 1

LoadBalancing O 1 LC_E1 0.25428 0O

Utilization and waiting per phase for processor: pProvider

Task Name Pri n Entry Name Utilization Phase 1

CoupoNet_Provider 0 1 SubmitCoupon 0.028539 0

Utilization and waiting per phase for processor: pProviderRef

Task Name Pri n Entry Name Utilization Phase 1

RefTaskCoupoNet_Provider O 20 CreateCoupon 19.026 0

Utilization and waiting per phase for processor: pStorage

Task Name Pri n Entry Name Utilization Phase 1
StorageService 0 1 Post_info 0.19787 0O

Get_Info 0.0435341 0
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Task Total: 0.241404

Utilization and waiting per phase for processor: pUserRef

Task Name Pri n Entry Name Utilization Phase 1

RefTaskCoupNet_Web O 100 Users_E1 3.84124 0O

Utilization and waiting per phase for processor: pWeb

Task Name Pri n Entry Name Utilization Phase 1

CoupoNet_Web 0 1 FetchCoupon 0.0102433 0

Utilization and waiting per phase for processor: pWorker

Task Name Pri n Entry Name Utilization Phase 1
CoupoNet_Worker_Logic 0 1 RetrieveCoupon 0.224072 0O
UpdateStore 0.323442 0

Task Total: 0.547514
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Appendix C

Cloud Concepts

App Engine Module is a component of an application that provides a single service or
configuration. Modules let developers factor large applications into logical compo-
nents that can share stateful services and communicate in a secure fashion. A module
has a collection of versions that define a specific set of code used to implement the
functionality of that module. At the highest level, an App Engine application is made
up of one or more modules. Each module consists of source code and configuration
files to handle a specific task. You can deploy multiple versions of the same module,
to account for alternative implementations or progressive upgrades as time goes on.
Source:
https://cloud.google.com /appengine/docs/java /modules/

AWS Beanstalk is a PaaS service from Amazon Web Services that allows users to create
applications and push them to a definable set of AWS services. A Beanstalk allows
you to configure an entire virtual machine based on one of several available baseline
configurations and then customize it through a powerful configuration system. AWS
Beanstalk is a fully managed application container service. It’s based on a PaaS
(Platform as a Service) model where your application is provisioned by infrastruc-
tures that are automatically managed by AWS there is no need for you to manually
build and maintain them. As a container service, it also provides built-in deployment
features for a variety of web app frameworks.

Sources:
http://aws.amazon.com/elasticbeanstalk /faqs/
http://www.eclipse.org/jetty /documentation /9.2.6.v 20141205 /elastic-beanstalk.html

Azure Role is a specialized instance of a virtual machine. Azure Roles are modeled
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around the application layers. Each role instance is actually a dedicated Azure VM
that is customized for a specific task. A Web Role describes a role that is customized
for web application programming, while a Worker Role is typically used for long
running background tasks that don’t require user interaction. It’s a dedicated Azure
VM running the Azure runtime environment and your Worker Role application.
Sources:

https://msdn.microsoft.com/en-us/library/azure/

StratusML Task is a composable unit represents Virtual Machine Image, Microservice
or Container. It consists of a set of activities that utilize services to provide a specific
functionality to solve a problem. It is a mutated unit that can be copied to other
virtual machines in order to allow horizontal and vertical scalability. Each task has
a service template that specifies the computation power, memory and storage of the
virtual machines available to host a task. When composed, tasks should satisfy the
following principals: statelessness, low coupling, modularity, and semantic interop-
erability. Tasks are semantically connected to other tasks in the cloud through the
roles they play in order to satisfy a specific business requirement, which is bounded
by obligations or responsibilities.

Source:
Hamdaqa, Mohammad, Tassos Livogiannis, and Ladan Tahvildari. “A Reference
Model for Developing Cloud Applications”. CLOSER 2011.

TOSCA Nodes are the base components (e.g. a VM) and the edges are the relationships
between the components. Both nodes and relationships are first defined outside of a
concrete service, as they usually represent reusable building blocks. They are called
Node Types and Relationship Types. A Node Type is a node of the type VM when
used outside of a topology, but once added to a template (potentially with some
properties attached), it becomes a node template. TOSCA Node Type is a reusable
entity that defines the type of one or more Node Templates. As such, a Node Type
defines the structure of observable properties via a Properties Definition, i.e. the
names, data types and allowed values the properties defined in Node Templates
using a Node Type or instances of such Node Templates can have. In nutshell Node
Types represent processes. Node Type allows definition of properties, attributes and
lifecycle management of a given process group.

Sources:

http://docs.oasis-open.org/tosca/ TOSCA /v1.0/csd03 /TOSCA-v1.0-csd03.html
Stephan Ulbricht, Wolfram Amme, Thomas S. Heinze, Simon Moser, Hans-Dieter
Wehle. “Portable Green Cloud Services”. CLOSER 2014.
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