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Abstract

A strongly connected component of a directed graph G is a maximal subgraph H of G
such that for each pair of vertices u and v in H, there is a directed path from u to v and a
directed path from v to u in H. A strongly connected component is said to be giant if it
has linear size.

We determine the threshold at which a random directed graph with a well-behaved
degree sequence asymptotically almost surely contains a giant strongly connected compo-
nent. This is a new proof of a result by Cooper and Frieze in [12]. In addition, we predict
the site percolation threshold for the presence of a giant strongly connected component in
a graph with a well-behaved degree sequence.
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Chapter 1

Introduction

One of the most studied phenomena in the theory of random graphs is the behavior of the
size of the largest component of a random graph. The first such result, due to Erdős and
Rényi in 1960 [14], showed that the size of the largest component in G(n, p) undergoes a
drastic change with respect to p. In particular, when p is below a certain threshold, the
size of the largest component is O(log(n)). When p is above that threshold, the size of the
largest component is θ(n).

Since then, the presence of a component of size θ(n), called a giant component, has
been investigated in other random graphs (see [23, 35]). For example, Molloy and Reed
studied the presence of a giant component in the space of graphs with a given degree
sequence. They found a threshold for when a giant component asymptotically almost
surely exists and when such a component asymptotically almost surely does not exist in
such graphs. This led to further work by Kang and Seierstad [27], Pittel [38], Janson and
Luczak [23], Riordan [39], and Hatami and Molloy [21]. Recently, Bollobás and Riordan
improved Molloy and Reed’s result to allow for exponential bounds on the probabilities of
large deviations [8].

However, few results about the presence of giant strongly connected components in
random directed graphs are known. This is an area of great interest because many large,
real-world networks are better modeled by directed graphs. The internet, cellular networks,
the food web, and various metabolic and social networks have all been shown to follow
directed graphs [11]. For example, in 1999 researchers from IBM found that the in- and
out-degrees of a data set of 40 million webpages followed a power law distribution [26].
In a power law distribution, the number of vertices of degree k is proportional to k−c for
some fixed c > 1. Hence the researchers showed that within this data set, there were many
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websites with large in- and out-degrees.

As a result, analyzing the behavior of properties of random directed graphs, particularly
those with power law distributions, will provide more insight into the behavior of real-
world systems. For example, if vertices or edges were removed from the graph at random,
would a giant strongly connected component still remain in the graph? One process that
removes vertices and edges in such a manner is known as percolation. Percolation has been
well studied in undirected graphs (see [18, 7]) but not in directed graphs. This includes
percolation on hypercubes [1], d-regular graphs with girth tending to infinity [2], and graphs
with a given degree sequence [15, 22].

In this thesis, we discuss the size of the largest strongly connected component in random
directed graphs with degree sequences that satisfy certain properties, which we call well-
behaved degree sequences. We present a new proof of a result of Cooper and Frieze from
[12], including a slight relaxation to the properties required for a degree sequence to be
well-behaved. In addition, we present how this result can be applied to percolation on
random directed graphs with these degree sequences. We provide some arguments that
predict a threshold for the presence of a giant strongly connected component after site
percolation on such graphs.

The main result of this thesis concerns the presence of a giant strongly connected
component in random directed graphs with well-behaved degree sequences. This is proved
in Chapter 4 and Chapters 2 and 3 provide the background and methods required by the
proof. The application to percolation theory is discussed in Chapter 6, with Chapter 5
providing some results and techniques from the theory. We conclude with a discussion of
the implications of our results and some further areas of study.

Specifically, Chapter 2 reviews some known results about the size of the largest com-
ponent or strongly connected component in a random graph or directed graph. A greater
emphasis is placed on results for random graphs since we adapt some of the techniques
used for these results to directed graphs. We also formally define a degree sequence and
the properties that make it well-behaved.

In Chapter 3, we describe the model used for the results in this thesis. This model,
often attributed to Bollobás [5], is known as the configuration model and is a method of
representing directed graphs to study their properties. The chapter also includes some
results of branching processes and martingales necessary for the proof of Theorem 4.1.

Chapter 4 consists of the proof of Theorem 4.1, which states the threshold for the
presence of a giant strongly connected component in a random directed graph. This result
is a new proof of the result of [12] with a slight improvement to the restrictions on the
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degree sequences. The proof is divided into two cases, subcritical and supercritical, which
are discussed in Sections 4.1 and 4.2 respectively.

In Chapter 5, we define the two types of discrete percolation models that are studied
in Chapter 6. Some techniques used to study these models, including a method developed
by Janson in [22], are discussed in Section 5.2.

Chapter 6 presents a heuristic approach that predicts a certain site percolation thresh-
old for directed graphs with well-behaved degree sequences. Specifically, we discuss how
Theorem 4.1 and a technique of Janson in [22] can be applied to predict the site percola-
tion threshold for the presence of a giant strongly connected component in random directed
graphs with well-behaved degree sequences.

The final chapter will discuss some implications of the results in Chapters 4 and 6 as
well as areas of further study.
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Chapter 2

Properties of Random Graphs

In 1959, Erdős and Rényi introduced one of the first models for generating random graphs
[13]. Today, this model is known as a probability space called G(n,N). This space consists
of the set of all labelled graphs on n vertices with N edges chosen randomly and indepen-
dently from the set of

(
n
2

)
possible edges. Every such graph has an equal probability of

being chosen from this space, and so the space has uniform distribution.

A similar probability space, known as G(n, p), was introduced by Edgar Gilbert in 1959
[16]. G(n, p) is defined to be a probability space over the set of all graphs on vertex set
{1, . . . , n} which include each of the possible

(
n
2

)
edges with probability p independent of

all other edges. Since G(n,N) generally has similar properties to G(n, p) when p ∼ N/
(
n
2

)
,

G(n, p) is the space more commonly studied.

In [14], Erdős and Rényi were the first to study the probable structure of random graphs
in terms of more than just their connectivity [14]. They investigated when G(n,N) almost
always satisfied a graph-theoretic property P . Erdős and Rényi observed that many natural
graph-theoretic properties change their behavior in G(n,N) only over a small range of N .
Specifically, G(n,N) changes from almost always satisfying property P to almost always
not satisfying P near a specific choice of N . This led to the following definition shown here
in terms of G(n, p). Note that f(n)� g(n) if f(n)

g(n)
→ 0 as n→∞.

Definition 2.1. t(n) is called a threshold function for a graph theoretic property P if

1. When p� t(n), the probability G(n, p) satisfies property P as n→∞ is 0,

2. When p� t(n), the probability G(n, p) satisfies property P as n→∞ is 1,
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or vice versa.

Erdős and Rényi showed that the presence of certain subgraphs, such as trees and
cycles of a given order, as well as containing a given number of components in G(n,N)
have threshold functions. However, the size of the largest component of a graph is one of the
most studied properties originally investigated by Erdős and Rényi that has a threshold
function. In the next section, we provide a brief history of some of these results and
techniques relating to these threshold functions in different random graphs.

For the remaining sections and chapters, we will use the following notation and abbre-
viations.

Definition 2.2. Let n be an integer variable which tends to infinity and let g be a positive
function. For any function f(n),

1. f(n) = O(g(n)) if there exists a c > 0 such that |f(n)| ≤ cg(n) for all n,

2. f(n) = o(g(n)) if f(n)/g(n)→ 0,

3. f(n) = Ω(g(n)) if there exists a c > 0 such that f(n) ≥ cg(n) for all sufficiently large
n, and

4. f(n) = Θ(n) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Definition 2.3. A property holds asymptotically almost surely, denoted a.a.s., if the prop-
erty holds with probability tending to 1 as n→∞.

2.1 The Size of the Largest Component

We begin with a formal definition of a component of a multigraph.

Definition 2.4. A component K of a multigraph G is a maximal connected subgraph of
G, i.e. K is a maximal subgraph such that every pair of vertices in K are joined by a path
in K.

The behavior of the size of the largest component in a random graph has been studied
by many authors over the past 50 years (see [14, 36, 6, 23, 21, 39, 8]). In many different
random graphs, it is known that below the threshold function, the size of the largest
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component is O(log(n)). Similarly, above the threshold, the size of the largest component
is known to be Ω(n). However, these functions differ for different random graphs.

The first result on the behavior of the size of the largest component in G(n,N) is due
to Erdős and Rényi in [14]. Here, we restate their result.

Proposition 2.5 ([14]). Let N = cn+o(n) and C denote the largest component in G(n,N).

(i) If c < 1
2
, then a.a.s. |V (C)| = O(log n).

(ii) If c > 1
2
, then a.a.s. |V (C)| = Ω(n).

The values of c near 1
2

are far more difficult to study, which is true of most threshold
functions. As a consequence, the behavior of random graphs is usually studied when the
parameters in the threshold functions differ sufficiently in the graphs from the threshold
(such as p� t(n) or p� t(n)).

However, values of c near the threshold have been well studied in G(n,N) and G(n, p).
Erdős and Rényi were able to show a lower bound on the size of the largest component
when c = 1

2
. The first upper bound was not shown until 1984 by Bollobás [5]. The proof

that the largest component of G(n, p) has size Θ(n2/3) when N = 1
2
n+o(n) was completed

six years later [28]. Since then, more precise results have been presented for G(n, p) in [31]
and [37].

In addition to G(n,N) and G(n, p), several authors have studied the emergence of a
giant component in a random graph with a given degree sequence.

Definition 2.6. A degree sequence Dn is a sequence of n non-negative integers whose sum
is even.

We say that a graph G has degree sequence Dn = (d1, d2, . . . , dn) if G is isomorphic
to a graph with vertices {1, 2, . . . , n} such that deg(i) = di. Define G(Dn) to be the set
of all labelled graphs with degree sequence Dn. Then a graph with degree sequence Dn is
a uniformly random member of G(Dn). Figure 2.1 provides an example of a graph with
degree sequence (4, 4, 3, 3, 4).

Many results for random graphs with a given degree sequence study asymptotic behavior
as n tends to infinity. As the value of n remains constant in a degree sequence, this led to
a generalization of a degree sequence, called a degree array.

Definition 2.7. A degree array is an array of integer-valued functions D = d0(n), d1(n), . . .
such that
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Figure 2.1: A graph with degree sequence (4, 4, 3, 3, 4).

1. di(n) = 0 for all i ≥ n and

2.
∑
i≥0

di(n) = n.

Unlike a degree sequence, di(n) represents the number of vertices of degree i in a
graph as a function of n. A degree sequence Dn can be obtained from D by defining
Dn = (d1, d2, . . . , dn) such that |{j | dj = i}| = di(n) for all i ≥ 0. Degree arrays can
therefore be used to study behaviors in graphs as the number of vertices increases.

Molloy and Reed were the first to study the presence of a giant component in random
graphs with given degree sequences. They used degree arrays satisfying certain constraints
to find the appropriate threshold function [35]. Instead of representing a probability or
number of edges, this threshold function approximated the increase in the expected number
of “unknown” neighbors when a vertex is exposed in the branching process. (The branching
process is described in more detail in Section 3.1.) Molloy and Reed were later able to
approximate the size of the giant component under these constraints [36].

The work of Molloy and Reed led to a series of papers studying the largest component
of random graphs with specified degree sequences. Some of these focused on improving the
error term in the result of [36] (see [27, 38, 23, 39, 21]). Others sought to relax some of the
constraints on the degree sequences, such as the maximum degree (see [23, 8]).

Far less focus has been placed on random directed graphs and the size of their strongly
connected components.

Definition 2.8. A strongly connected component (or SCC) K of a directed multigraph
G is a maximal subgraph such that every pair of vertices (u, v) in K are joined by both a
directed uv-path and directed vu-path in K.
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Before discussing known results for the size of the largest SCC in a directed graph, note
that the following properties hold for strongly connected components.

Lemma 2.9. Let G be a directed multigraph and u, v ∈ V (G).

(i) If there is a directed uv-walk in a directed multigraph G, then there is a directed
uv-path in G.

(ii) If there exists both a directed uv-path and directed vu-path in G, then u and v are in
the same strongly connected component.

(iii) The strongly connected components of G partition V (G).

Proof: (i) Let W = w0w1w2 . . . w` be the directed uv-walk in G, i.e. u = w0 and v = w`.
The proof is by induction on `. If ` = 0, then u = v and the path of length 0 is a directed
uv-path in G. For ` = 1, two cases must be considered. If u = v, then the path of length 0
is a directed uv-path in G. If u 6= v, then W consists of the edge uv and so W is a directed
uv-path of length 1.

Let k ≥ 1 and assume that for all integers 0 ≤ ` ≤ k, if there exists a directed uv-
walk of length ` in G, there exists a directed uv-path in G. Let W = w0w1 . . . wk+1 be a
directed uv-walk in G of length k + 1. If W is a directed path, then clearly there exists
a directed uv-path in G. Thus, suppose W is not a directed uv-path. Then there exists
some 0 ≤ i < j ≤ k + 1 such that wi = wj. Then W ∗ = w0w1 . . . wiwj+1wj+2 . . . wk+1 is a
uv-walk in G of length k∗ ≤ k. Hence by the inductive hypothesis, there exists a directed
uv-path in G.

(ii) Let P = u0u1u2 . . . u` be a uv-path and Q = v0v1v2 . . . vm be a vu-path in G (note
u = u0 = vm and v = v0 = u`). By (i), it suffices to show that for all a, b ∈ V (P ∪Q), there
exists a directed ab-walk and directed ba-walk in P ∪Q. For a = b, the path of length 0 is
a directed ab-walk and directed ba-walk in P ∪Q. Thus, assume a 6= b.

Suppose a = ui and b = vj for some 1 ≤ i ≤ ` and 1 ≤ j ≤ m. Then
Pi,j = uiui+1 . . . u`v1v2 . . . vj is a directed uivj-walk and Qi,j = vjvj+1 . . . vmu1u2 . . . ui is a
directed vjui-walk in P ∪ Q. Now suppose a = ui and b = uj for some 0 ≤ i < j ≤ `.
Clearly uiui+1 . . . uj is a directed uiuj-path in P ∪Q and Pj,mQi,m is a directed ujui-walk
in P ∪Q. Similarly, for a = vi and b = vj, vivi+1 . . . vj is a directed vivj-path and Q`,jQ`,i

is a directed ujui-walk in P ∪Q.

Thus for every pair of vertices (a, b) in P ∪Q, there is a directed ab-path and directed
ba-path in P ∪ Q. By the maximality of an SCC, this implies P ∪ Q is a subgraph of a
SCC of G. Hence u and v are in the same SCC.
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(iii) Let K1 and K2 be two strongly connected components of G. For all u, v ∈ V (K1),
let Puv be a directed uv-path in K1 and for all u, v ∈ V (K2), let Quv be a directed uv-path
in K2.

Suppose V (K1)∩V (K2) 6= ∅ and let v ∈ V (K1)∩V (K2). Let u ∈ V (K1) and w ∈ V (K2)
and consider the paths Puv = u0u1u2 . . . u` and Qwv = v0v1 . . . vm. As
v = u` = vm ∈ V (K1) ∩ V (K2), PuvQvw is a directed uw-walk and QwvPvu is a directed
wu-walk in K1 ∪K2. Hence by (i), there exists a directed uw-path and directed wu-path
in K1 ∪K2.

By (ii), this implies u and w are in the same SCC K∗. The maximality of K1 and K2

then implies K∗ = K1 and K∗ = K2, which is a contradiction. Hence V (K1) ∩ V (K2) = ∅
and so the strongly connected components of G partition V (G).

The earliest results by Karp [25] and  Luczak [29] determined the threshold function for
a giant SCC in D(n, p). Here D(n, p) is a probability space over the set of all graphs on
vertex set {1, . . . , n} which includes each of the possible n(n−1) arcs in the directed graph
with probability p independent of all other arcs. They independently proved the following
proposition.

Proposition 2.10 ([25, 29]). Let ω(n)→∞ be a function and C denote the largest strongly
connected component in D(n, p).

(i) If np→ c < 1, then a.a.s. |V (C)| ≤ ω(n).

(ii) If np → c > 1, then a.a.s. |V (C)| ≥ α(c)n, where α(c) is an explicitly defined
constant.

Some improvements to the estimates of the size of the largest SCC were made in 2009 by
 Luczak and Seierstad [32]. However, the few remaining results for the size of the strongly
connected components in a random directed graph involve other probability spaces. For
example,  Luczak and Cohen studied the threshold function for a giant SCC in a three-
parameter random directed graph model [30]. The presence of a giant SCC in random
directed graphs whose arcs are included with different probabilities was studied in 2012 by
Bloznelis et al. [4].

One of the results that motivates this work was presented by Cooper and Frieze in [12].
In this paper, Cooper and Frieze studied the size of the largest SCC in random directed
graphs with a given degree sequence. This requires a notion of degree sequences for directed
graphs, which we define as follows.
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Definition 2.11. A degree sequence Dn of a directed graph is an ordered pair (D−n , D
+
n )

of sequences D−n and D+
n such that D−n contains n non-negative integers, D+

n contains n
non-negative integers, and the sum of the terms of D−n is also the sum of the terms of D+

n .

As before, a directed graphG has degree sequenceDn = ((d−1 , d
−
2 , . . . , d

−
n ), (d+

1 , d
+
2 , . . . , d

+
n ))

ifG is isomorphic to a graph with vertices {1, 2, . . . , n} such that the in-degree deg−(i) = d−i
and the out-degree deg+(i) = d+

i . As G(Dn) is the set of all labelled directed graphs with
degree sequence Dn, a directed graph with degree sequence Dn is a uniformly random mem-
ber of G(Dn). Given a degree sequence Dn, we use ni,j to denote the number of vertices of
in-degree i and out-degree j in a graph with degree sequence Dn.

Figure 2.2: A directed graph with degree sequence ((2, 2, 2, 1, 2), (2, 2, 1, 2, 2)).

Similar to the work of Molloy and Reed in [35], the threshold function for the presence
of a giant SCC determined by Cooper and Frieze is related to the expected in- and out-
degree of a vertex in the graph. This led Cooper and Frieze to study random directed
graphs with proper degree sequences.

Definition 2.12. A degree sequence Dn is proper if:

1. There is an absolute constant A1 such that θ = 1
n

∑
i≥0

∑
j≥0

ini,j = (1 + o(1))A1,

2. Every term of the sequence is at most ∆ and ∆ ≤ n1/12/ log(n),

3. max

(∑
i≥0

∑
j≥0

i2
ni,j

n
,
∑
i≥0

∑
j≥0

j2 ni,j

n

)
≤ A3 for some absolute constant A3,

4.
∑
i≥0

∑
j≥0

ij
ni,j

θn
= (1 + o(1))A2 where A2 ≤ 1− ε or A2 ≥ 1 + ε for absolute constants A2

and ε, and
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5. For ρ = max

(∑
i≥0

∑
j≥0

i2j
ni,j

θn
,
∑
i≥0

∑
j≥0

ij2 ni,j

θn

)
, if ρ→∞ with n then ρ = o(∆).

The main result of [12] is restated below.

Theorem 2.13 ([12]). Let Dn be a proper degree sequence and define λ =
∑
i≥0

∑
j≥0

ij
ni,j

θn
.

(i) If λ < 1, then a.a.s. every strongly connected component of G ∈ G(Dn) has size
O(∆2 log(n)).

(ii) If λ > 1, then a.a.s. there exists in G ∈ G(Dn) a unique giant strongly connected
component.

In Chapter 4, we provide a new proof of Theorem 2.13 using well-behaved degree
sequences, which we formally define in the next section. Well-behaved degree sequences
are similar to proper degree sequences, but with slightly different constraints, such as the
permitted maximum degree in the sequence. Thus, we prove a threshold function for the
presence of a giant SCC in a random directed graph with a well-behaved degree sequence.

2.2 Well-behaved Degree Sequences

As discussed in Section 2.1, we require the degree sequence of a random directed graph
to satisfy a few key properties in order to determine if the random graph asymptotically
almost surely has a giant SCC. These properties are different from those of a proper degree
sequence and some limitations still remain. We will discuss some of these limitations at
the end of this section.

First, we define a degree array for directed graphs.

Definition 2.14. A degree array is an array of integer-valued functions
D = {ni,j(n) | i, j ≥ 0} such that

1. ni,j(n) = 0 for all i ≥ n and j ≥ n, and

2.
∑
i≥0

∑
j≥0

ni,j(n) = n.
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As with the definition for undirected graphs, ni,j(n) represents the number of vertices
of in-degree i and out-degree j in a directed graph as a function of n. A degree sequence
Dn can be obtained from D by defining Dn = ((d−1 , d

−
2 , . . . , d

−
n ), (d+

1 , d
+
2 , . . . , d

+
n )) such that

|{m | d−m = i, d+
m = j}| = ni,j(n) for all i, j ≥ 0. We will use degree arrays to study the

presence of a giant SCC as the number of vertices increases.

We now define two important properties of degree arrays we require for a degree array
to be well-behaved. Recall G(Dn) is the set of all labelled directed graphs with degree
sequence Dn.

Definition 2.15. A degree array D is feasible if for all n ≥ 1, G(Dn) 6= ∅.

Definition 2.16. A degree array is smooth if for all i, j ≥ 0, there exist constants κi,j
such that lim

n→∞
ni,j(n)

n
= κi,j.

We now define a well-behaved degree array. Note that we consider all degree sequences
obtained from a well-behaved degree array to be well-behaved.

Definition 2.17. A feasible degree array D is well-behaved if it is smooth and:

1. There is an absolute constant A1 such that θ = 1
n

∑
i≥0

∑
j≥0

ini,j(n) = (1 + o(1))A1,

2. Every term of the degree sequence Dn is at most ∆ and ∆ = o(n1/4),

3. max

(∑
i≥0

∑
j≥0

i2
ni,j

n
,
∑
i≥0

∑
j≥0

j2 ni,j

n

)
≤ A2 for some absolute constant A2, and

4. λ = lim
n→∞

∑
i≥0

∑
j≥0

ij
ni,j(n)

θn
exists, is finite, and the sum approaches this limit uniformly,

i.e. for all ε > 0, there exists k and N such that for all n > N ,∣∣∣∣∣
k∑
i=0

k∑
j=0

ij
ni,j(n)

θn
− λ

∣∣∣∣∣ < ε.

A simple example of a well-behaved degree array is D = {nd,d(n)} for some constant
d > 0. This D is the degree array of a d-regular directed graph where each vertex has both
in-degree d and out-degree d. It is feasible and smooth (κd,d = 1 and κi,j = 0 for all i, j 6= d).
Furthermore, θ = d = A1, d = o(n1/4) for sufficiently large n, and

∑
i≥0

∑
j≥0

i2
ni,j

n
= d2 = A2.
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Finally, lim
n→∞

∑
i≥0

∑
j≥0

ij
ni,j(n)

θn
= d2

d
= d is a finite limit such that for all ε > 0 and all n > N

where N is an integer such that d = o(N1/4),

∣∣∣∣∣ d∑i=0

d∑
j=0

ij
ni,j(n)

θn
− d

∣∣∣∣∣ = |d2
d
− d| < ε.

Note that the first and third conditions of Definition 2.17 are equivalent to the first
and third conditions of Definition 2.12. Also, the second condition of Definition 2.17 is less
restrictive than the second condition of Definition 2.12. However, some stronger conditions
than that of Definition 2.12 are assumed in a well-behaved degree array (see the fourth
condition). Hence the class of proper degree sequences is not necessarily contained in the
class of well-behaved degree sequences.

Furthermore, well-behaved degree sequences with ∆ > n1/12

log(n)
are trivially not proper

degree sequences. However, the following lemma shows that some well-behaved degree
sequences are also proper degree sequences.

Lemma 2.18. Let Dn be a well-behaved degree sequence such that every term in Dn is at
most ∆ ≤ n1/12/ log(n) and λ 6= 1. Then Dn is also a proper degree sequence.

Proof: Since Dn is well-behaved, Dn satisfies the first and third conditions of Definition
2.12. Furthermore, by assumption Dn satisfies the second condition of Definition 2.12. It
therefore remains to verify the fourth and fifth conditions of Definition 2.12.

It is clear that for A2 = λ, the fourth condition of Definition 2.12 holds by uniform
convergence and the assumption on λ. Furthermore, the uniform convergence implies that
for all ε > 0, there exists a k and N such that for all n > N ,∑

i>k

∑
j≥0

ij
ni,j(n)

θn
+

k∑
i=0

∑
j>k

ij
ni,j(n)

θn
< ε.

Hence for ρ =
∑
i≥0

∑
j≥0

i2j
ni,j(n)

θn
,

ρ =
k∑
i=0

k∑
j=0

i2j
ni,j(n)

θn
+
∑
i>k

∑
j≥0

ij
ni,j(n)

θn
+

k∑
i=0

∑
j>k

i2j
ni,j(n)

θn

≤

(
k∑
i=0

k∑
j=0

i2j
ni,j(n)

θn

)
+ ∆

(∑
i>k

∑
j≥0

ij
ni,j(n)

θn
+

k∑
i=0

∑
j>k

ij
ni,j(n)

θn

)

<

(
k3

θ

)
+ ε∆.

13



Note that assuming ρ =
∑
i≥0

∑
j≥0

ij2 ni,j(n)

θn
leads to the same upper bound.

For arbitrarily small ε, ρ → ∞ as n → ∞ implies ∆ → ∞ as n → ∞. Thus ρ = o(∆)
if ρ→∞.

In the next chapter, we introduce the models we use to study random directed graphs
with well-behaved degree sequences as well as some important properties of those models.

14



Chapter 3

Modeling Directed Graphs with
Given Degree Sequences

This chapter introduces the probabilistic tools and models used to prove the results in
Chapter 4. We begin with a discussion of the probabilistic tools used in Sections 4.1 and
4.2, such as Galton-Watson branching processes and the Azuma-Hoeffding inequality. We
then explain the configuration model and how it can be used to study directed graphs.
All of the results presented in this chapter are known in the literature and we will provide
references for these results as they appear.

3.1 The Branching Process

The Galton-Watson branching process was developed by Henry Watson in response to
a question posed by Francis Galton about the extinction of family surnames [41]. The
premise of this process is as follows.

Suppose that we wish to model a population of individuals which changes at discrete
time intervals in the following manner. First, the process begins with a single individual
in time 0. Then, at every integral time t > 0, a chosen individual created before time
t produces a random non-negative number of individuals, called offspring. The number
of offspring produced is independent of the number of offspring produced by any other
individual, including those created at earlier times. Also, after producing its offspring, the
chosen individual dies and so cannot produce more offspring. The process terminates when
every individual is dead.
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Definition 3.1. The probability that this process terminates is the extinction probability.

The process described above is a version of a Galton-Watson branching process. It
creates a probability space in which each element of the space is an infinite process deter-
mined by the number of offspring each individual creates. A more formal definition of a
Galton-Watson branching process is as follows.

Definition 3.2. Let Z be a probability distribution over the non-negative integers. The
Galton-Watson branching process begins with a single individual at time t = 0. This
individual dies after creating Z offspring at time t = 1 and these offspring are ordered in
some way. In order, each of these offspring die after independently creating Z offspring
and these offspring are also ordered in some way. This procedure continues by having each
individual in order produce an independent number Z of offspring.

This branching process has a simple recursive structure that makes it easy to determine
the number of individuals capable of producing offspring at some time t. To do so, let Zt,
t = 1, 2, . . ., be a countable sequence of independent identically distributed variables with
distribution Z. Label the first individual of the process 1 and its offspring 2, . . . , Z1 + 1
in some way. Then, label individual 2’s offspring Z1 + 2, . . . , Z1 + Z2 + 2 and individual
3’s offspring Z1 + Z2 + 3, . . . , Z1 + Z2 + Z3 + 3 and so on. This procedure assigns each
individual a distinct positive integer such that Zt is the number of offspring of the tth indi-
vidual. Furthermore, since the Zt are independent and have distribution Z, this procedure
corresponds to a Galton-Watson branching process.

Suppose that at time t, individual t dies after creating its Zt offspring. Let Yt be the
number of living (i.e. created but not dead) individuals at time t after individual t’s death.
Hence we have Y0 = 1 and

Yt = Yt−1 + Zt − 1.

This leads to two possibilities. First, Yt > 0 for all t ≥ 0, in which case the process is
infinite. Otherwise, Yt = 0 for some t ≥ 0 and so the total number of individuals in the
process is T where T = min({t | Yt = 0}). As this event is a termination of the branching
process, we refer to it as extinction and can calculate the extinction probability using E(Z).
The following is a well-known result for the extinction probability that can be found in
[20].

Proposition 3.3. Let ρ be the probability of extinction in a Galton-Watson branching
process defined by the distribution of a random variable Z.

(i) If E(Z) < 1 then ρ = 1.
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(ii) If E(Z) > 1 then 0 < ρ < 1.

We will present a proof of Proposition 3.3.i. and 3.3.ii. separately. First, consider the
expectation of Yt throughout the process.

Lemma 3.4. E(Yt) = (E(Z))t for all t ≥ 1.

Proof: The proof is by induction. For the base case, consider E(Y1).

Y1 = Y0 + Z1 − 1 = 1 + Z1 − 1 = Z1

and so E(Y1) = E(Z).

Suppose E(Yt) = (E(Z))t for some t ≥ 1. We wish to show that E(Yt+1) = (E(Z))t+1.
Recall that Z1, Z2, . . . are independent copies of Z. Hence,

E(Yt+1) =
∑
i

Pr(Yt = i)E(Z1 + Z2 + . . .+ Zi)

=
∑
i

Pr(Yt = i)iE(Z)

= E(Z)
∑
i

iPr(Yt = i)

= E(Z)E(Yt)

= E(Z)(E(Z))t.

Thus E(Yt) = (E(Z))t for all t ≥ 1.

We will also need Markov’s inequality from probability theory. A different proof of this
inequality can be found in [3].

Lemma 3.5 (Markov’s Inequality). For any positive random variable X and α > 0,

Pr(X ≥ α) ≤ E(X)
α

.

Proof: Let Y = α1X≥α where 1X≥α is an indicator variable for the event X ≥ α. It is
clear that Y ≤ X and so E(Y ) ≤ E(X).

E(X) ≥ E(Y )

≥ αPr(X ≥ α).

Hence Pr(X ≥ α) ≤ E(X)
α

.
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We may now present a proof of Proposition 3.3.i.

Proof of 3.3.i.: By Markov’s inequality, Pr(Yt ≥ 1) ≤ E(Yt) for any t ≥ 1. As Yt takes on
only non-negative integer values, Pr(Yt > 0) ≤ (E(Z))t for all t ≥ 1 by Lemma 3.4. Thus,
E(Z) < 1 implies Pr(Yt > 0) tends to 0 as t→∞. Hence Pr(Yt = 0) tends to 1 as t→∞
and the statement holds.

The proof of Proposition 3.3.ii. requires a different approach. Consider a single indi-
vidual and suppose the subprocess that consists of the individual’s descendants undergoes
extinction, i.e. the individual has a finite number of descendants. We say such an indi-
vidual “fails.” Note that an individual fails if and only if all of its offspring fail and these
latter events are independent.

Due to the independence of the creation of individuals, the probability an individual
fails is ρ. Thus, by the law of total probability,

ρ =
∑
i≥0

Pr(Z = i)ρi.

With this fact, we present the following proof of Proposition 3.3.ii.

Proof of 3.3.ii.: Suppose Pr(Z = 0) = 0. Then every individual has a positive number of
offspring and so the branching process never terminates. Hence we may assume
Pr(Z = 0) > 0 and so ρ > 0.

Let f be the probability generating function for Z, so f(x) =
∑
i≥0

Pr(Z = i)xi. Clearly

f(1) = 1 and f(0) > 0. Also,

f ′(x) =
∑
i≥1

iPr(Z = i)xi−1

and
f ′′(x) =

∑
i≥2

i(i− 1)Pr(Z = i)xi−2.

Thus f is increasing and convex on [0, 1] as well as lim
x→1−

f ′(x) = E(Z).

As E(Z) > 1, f ′(1) > 1 and so for small ε > 0, f(1− ε) < 1− ε. As f(0)− 0 > 0 and
f(1− ε)− (1− ε) < 0, by the Intermediate Value Theorem there exists s ∈ (0, 1− ε) such
that f(s)− s = 0.
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Note that E(Z) > 1 and Pr(Z = 0) > 0 imply Pr(Z = i) > 0 for some i > 1. Thus
f ′′(x) > 0 for x > 0 and so f is strictly convex. Hence for the smallest fixed point s of
f , f(x) < x for all x ∈ (s, 1). Therefore s is the unique fixed point in [0, 1) of f . As
ρ =

∑
i≥0

Pr(Z = i)ρi, ρ is a fixed point of f . Thus s = ρ and so the statement holds.

Proposition 3.3.ii. will be used in Section 4.2.3 to prove an important lemma. This
concludes our discussion of the Galton-Watson branching process.

3.2 Martingales and the Azuma-Hoeffding Inequality

A key theorem used to prove several lemmas in Sections 4.1 and 4.2 is the Azuma-Hoeffding
inequality. This theorem is an important concentration result for a certain type of sequence
of random variables known as a martingale and is well-known in the literature.

Definition 3.6. A martingale is a sequence X0, . . . , Xn of random variables so that for
0 ≤ i < n, E(Xi+1 | X0, X1, . . . , Xi) = Xi.

Note that for martingales, the conditional expected value of the next value in the se-
quence given all past values is equal to the present value in the sequence. Hence martingales
can be used to model fair games where knowledge of past events does not help predict the
expected value of the future winnings. Such games include a gambler’s fortune in betting
games that are fair as well as unbiased random walks in any number of dimensions.

However, it is also possible to model betting games that are biased in some manner.
This can be accomplished using the following two generalizations of a martingale.

Definition 3.7. Let X0, . . . , Xn be a sequence of random variables.

1. The sequence is a sub-martingale if for every 0 ≤ i < n,
E(Xi+1 | X0, X1, . . . , Xi) ≥ Xi.

2. The sequence is a super-martingale if for every 0 ≤ i < n,
E(Xi+1 | X0, X1, . . . , Xi) ≤ Xi.

Thus, if a sub-martingale and a martingale have equivalent expectations for a given
time, the history of the sub-martingale tends to be bounded above by the history of the
martingale. Similarly, a super-martingale tends to have its history be bounded below
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by the history of a martingale whose expectations are equivalent (for a given time) to
the expectations of the super-martingale. Hence sub-martingales model betting games
with positive expected winnings and super-martingales model betting games with negative
expected winnings.

We may now discuss the Azuma-Hoeffding inequality. A different proof of this result
can be found in [3]. First, note the following lemma.

Lemma 3.8. Let Y be a random variable such that Y ∈ [−1, 1] and E(Y ) = 0. Then for
any t ≥ 0, E

(
etY
)
≤ et

2/2.

Proof: For any x ∈ [−1, 1], etx ≤ 1
2
(1 + x)et + 1

2
(1 − x)e−t by convexity. Taking the

expectations,

E
(
etY
)
≤ 1

2
et +

1

2
e−t

=
1

2

[(
1 + t+

t2

2
+
t3

6
+ . . .

)
+

(
1− t+

t2

2
− t3

6
+ . . .

)]
= 1 +

t2

2
+
t4

4!
+ . . .

=
∑
n≥0

t2n

(2n)!

≤
∑
n≥0

(t2/2)n

n!

= et
2/2.

Theorem 3.9 (Azuma-Hoeffding Inequality). Let X0, X1, . . . , Xn be a martingale. If there
exist ci > 0 such that |Xi −Xi−1| ≤ ci for all 1 ≤ i ≤ n, then for all positive reals λ,

Pr(Xn −X0 ≥ λ) ≤ exp

 −λ2

2
n∑
i=1

c2
i

 .

Proof: Let Yi = Xi −Xi−1 for all i ≥ 1. Note that for any t > 0,
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Pr(Xn −X0 ≥ λ) = Pr
(
et(Xn−X0) ≥ etλ

)
. By Markov’s inequality,

Pr
(
et(Xn−X0) ≥ etλ

)
≤ e−tλE

(
et(Xn−X0)

)
= e−tλE

(
et(Yn+Xn−1−X0)

)
= e−tλE

(
E
(
et(Yn+Xn−1−X0) | X0, X1, . . . , Xn−1

))
.

Given X0, X1, . . . , Xn−1, et(Xn−1−X0) is constant. Furthermore, Yn
cn

is a random variable with
mean 0 and takes only values in [−1, 1]. Hence by Lemma 3.8,

E
(
et(Yn+Xn−1−X0) | X0, X1, . . . , Xn−1

)
= et(Xn−1−X0)E

(
etYn | X0, X1, . . . , Xn−1

)
≤ et(Xn−1−X0)et

2c2n/2.

Thus,
Pr(Xn −X0 ≥ λ) ≤ e−tλet

2c2n/2E
(
et(Xn−1−X0)

)
.

By handling E
(
et(Xn−1−X0)

)
inductively in the same fashion as above,

Pr(Xn −X0 ≥ λ) ≤ e
(t2

n∑
i=1

c2i /2)−λt
.

As this holds for any t > 0, for t = λ
n∑

i=1
c2i

,

Pr(Xn −X0 ≥ λ) ≤ exp

 −λ2

2
n∑
i=1

c2
i

 .

Two important corollaries of the Azuma-Hoeffding inequality are the following.

Corollary 3.10. If X0, X1, . . . , Xn is a martingale and there exist ci > 0 such that
|Xi −Xi−1| ≤ ci for all 1 ≤ i ≤ n, then for all positive reals λ,

Pr(Xn −X0 ≤ −λ) ≤ exp

 −λ2

2
n∑
i=1

c2
i

 .

21



Corollary 3.11. Let X be a random variable determined by n trials Z1, Z2, . . . , Zn and
satisfying for each i

max |E(X | Z1, . . . , Zi+1)− E(X | Z1, . . . Zi)| ≤ ci,

where this maximum is taken over all possible outcomes of Z1, . . . , Zi+1. Then

Pr(|X − E(X)| > λ) ≤ 2exp

 −λ2

2
n∑
i=1

c2
i

 .

Note that Theorem 3.9 can also be applied to super-martingales satisfying the condition
that there exist ci > 0 such that |Xi − Xi−1| ≤ ci for all 1 ≤ i ≤ n. Similarly, Corollary
3.10 can also be applied to sub-martingales that satisfy this condition.

In the remaining chapters, when using the result of Corollary 3.11, we will say “by the
Azuma-Hoeffding inequality.” Note that to apply Corollary 3.11, it suffices to show that a
sequence of random variables is a martingale and that changing the present value of the
sequence affects the next value by at most some constant c > 0.

The next section begins the discussion of the models used for our results.

3.3 The Configuration Model

Generating random graphs with a given degree sequence is rather difficult. Thus, to study
properties of random graphs with given degree sequences, we do not directly analyze such
graphs. Instead, we study random configurations with these degree sequences.

Definition 3.12. Consider 2cn points partitioned into n bins where n ∈ N and c > 0. A
configuration is a perfect matching of the points into cn pairs.

Configurations correspond to multigraphs in which the bins are regarded as vertices
and the pairs as edges. We refer to such a multigraph as the “underlying” multigraph of
the configuration.

For the underlying multigraph to be directed, the points of the configuration must be
divided into cn blue points and cn red points which represent the heads and tails of the
arcs of the graph respectively. Figure 3.1 is an example of such a configuration.

This leads to a slightly revised definition of a configuration when modeling directed
multigraphs.
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Figure 3.1: A configuration. Blue squares are heads of arcs and red circles are the tails.

Definition 3.13. Consider a set of cn red points and cn blue points for some n ∈ N and
c > 0. All 2cn points are partitioned into n bins. A configuration is a bipartite perfect
matching of the points, i.e. no pair in the matching is monochromatic.

When discussing configurations, we refer to Definition 3.12 when the underlying multi-
graph is undirected and Definition 3.13 when the underlying multigraph is directed. This
allows us to use the appropriate type of configuration to model random multigraphs based
on the provided degree sequence.

Consider a random graph with degree sequence ((d−1 , d
−
2 , . . . , d

−
n ), (d+

1 , d
+
2 , . . . , d

+
n )). As

this degree sequence is for a directed graph, a configuration with this degree sequence is
created as follows:

1. Create n bins and order them 1 through n.

2. For each m, place d−m blue points and d+
m red points in bin m.

3. Choose a bipartite perfect matching of the red and blue points.
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Figure 3.1 is an example of a configuration for a random directed multigraph with degree
sequence ((1, 1, 2, 2, 1, 3, 3, 2, 3, 2, 5, 4), (1, 2, 2, 2, 3, 2, 2, 3, 3, 4, 2, 3)).

Although the underlying graph of Figure 3.1 is simple, this is not true for all configura-
tions produced by the above method. However, it is possible to calculate the probability the
configuration model generates a simple directed graph for a well-behaved degree sequence.
To do so, we apply a result by McKay in [33] for bipartite graphs.

Results for bipartite multigraphs can apply to directed multigraphs because there exists
an isomorphism Φ between directed multigraphs and bipartite multigraphs. Specifically,
let G be a directed multigraph on n vertices. For each vertex vi ∈ V (G), Φ(vi) is a
pair of vertices (v+

i , v
−
i ) in a graph B such that d+(v+

i ) = d+(v), d−(v−i ) = d−(v), and
d−(v+

i ) = d+(v−i ) = 0. Hence V (B) = {v−i , v+
i | 1 ≤ i ≤ n} and

E(B) = {v+
i v
−
j | vivj ∈ E(G), 1 ≤ i ≤ n, 1 ≤ j ≤ n}. By letting ({v−1 , . . . , v−n }, {v+

1 , . . . , v
+
n })

be the bipartition of the vertices, it is clear B is bipartite.

It is important to note that for this Φ, Φ−1(B) could contain a loop when B is sim-
ple. Thus, a slight modification is typically needed to transfer results for simple bipartite
graphs to results for simple directed graph. However, the result of McKay, stated below as
Theorem 3.14, needs no modification due to a particular choice of X.

Before stating the theorem, we introduce some notation. For any integers x and k > 0,
let [x]k = x(x− 1) . . . (x− k+ 1). For a degree sequence Dn = ((d−1 , . . . , d

−
n ), (d+

1 , . . . , d
+
n )),

let ∆(Dn) = max{max{d+
i | 1 ≤ i ≤ n},max{d−i | 1 ≤ i ≤ n}}. We define C(Dn) to be a

random configuration with degree sequence Dn and G(C(Dn)) to be the underlying bipar-
tite multigraph of C(Dn). Finally, we define Pr(Dn, X) to be the probability G(C(Dn)) is
simple and has no edges in common with X, where X is a simple bipartite graph with the
same bipartition of vertices as G(C(Dn)).

Theorem 3.14 ([33]). Let Dn = ((d−1 , . . . , d
−
n ), (d+

1 , . . . , d
+
n )) be a degree sequence of a

bipartite graph and S =
n∑
i=1

d−i . Let X be a simple bipartite graph with the same ver-

tex bipartition as G(C(Dn)) and ∆(X) the maximum degree of a vertex in X. Suppose

∆(Dn) ≥ 1 and ∆̂ = 3 + 2∆(Dn)[2∆(Dn) + ∆(X) + 2] ≤ δS for some constant δ < 2
3
.

Then

Pr(Dn, X) = exp

−
(

n∑
i=1

[d−i ]2

)(
n∑
j=1

[d+
j ]2

)
2S2

−

n∑
i=1

d−i d
+
i

S
+O

(
∆̂2

S

) .
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Suppose X is the bipartite graph with bipartition ({v−1 , . . . , v−n }, {v+
1 , . . . , v

+
n }) and

edge set E(X) = {v+
i v
−
i | 1 ≤ i ≤ n}. Then Pr(Dn, X) is the probability G(C(Dn))

is simple and Φ−1(G(C(Dn))) contains no loops. Hence Pr(Dn, X) is the probability the
configuration model generates a simple directed graph with degree sequence Dn. This leads
to the following result for well-behaved degree sequences.

Proposition 3.15. Let Dn be a well-behaved degree sequence, ({v−1 , . . . , v−n }, {v+
1 , . . . , v

+
n })

the vertex partition of Φ(G(C(Dn))), and Φ(C(Dn)) the configuration of Φ(G(C(Dn))). Let
X be a graph with vertex bipartition ({v−1 , . . . , v−n }, {v+

1 , . . . , v
+
n }) and

E(X) = {v+
i v
−
i | 1 ≤ i ≤ n}. Then,

Pr(Dn, X) > e−A
2
2/2−λ.

Proof: Let Dn = ((d−1 , . . . , d
−
n ), (d+

1 , . . . , d
+
n )). Since Dn is well-behaved, ∆(Dn) ≥ 1 and

∆̂ = O(∆(Dn)2) < 1
2
θn, where ∆̂ is defined as in Theorem 3.14. Hence we may apply

Theorem 3.14. Note that ∆(Dn) = o(n1/4) implies O
(

∆̂2

θn

)
= o(1).

Pr(Dn, X) = exp

−
(

n∑
i=1

[d−i ]2

)(
n∑
j=1

[d+
j ]2

)
2(θn)2

−

n∑
i=1

d−i d
+
i

θn
+O

(
∆̂2

θn

)

= exp

−
(∑
i≥0

∑
j≥0

i(i− 1)ni,j

)(∑
i≥0

∑
j≥0

j(j − 1)ni,j

)
2(θn)2

−

∑
i≥0

∑
j≥0

ijni,j

θn
+ o(1)


> exp

[
−1

2

(∑
i≥0

∑
j≥0

i2
ni,j
θn

)(∑
i≥0

∑
j≥0

j2ni,j
θn

)
−
∑
i≥0

∑
j≥0

ij
ni,j
θn

+ o(1)

]
≥ e[−

1
2
A2

2−λ+o(1)]

> e−A
2
2/2−λ.

Since A2 and λ are both finite, Proposition 3.15 bounds Pr(Dn, X) away from 0 for all
well-behaved degree sequences Dn. We will use this fact to prove an important relationship
between properties in configurations and properties in their underlying graphs. Specifically,
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for a well-behaved degree sequence Dn, if C(Dn) a.a.s. has a property P , then a random
directed graph with degree sequence Dn a.a.s. has property P . The proof of this statement
also requires the following lemma concerning the number of configurations that have simple
underlying directed graphs. This lemma is used by Cooper and Frieze in [12].

Lemma 3.16. Let G be a directed graph with degree sequence

Dn = ((d−1 , d
−
2 , . . . , d

−
n ), (d+

1 , . . . , d
+
n )). Then there are exactly

(
n∏

m=1

d−m!

)(
n∏

m=1

d+
m!

)
con-

figurations whose underlying graph is G.

Proof: First, note that G is provided and so the arcs of G are known. Let vi, vj, and vk

be distinct vertices in G and define S =
n∑

m=1

d−m. Label the red and blue points of the

configuration with integers 1 to 2S.

Suppose vjvi and vjvk are arcs of G. There are d+
j d
−
i choices for the pair of red and

blue points in the configuration that could represent vjvi in the underlying multigraph.
However, once this pair is chosen, the arc vjvk has only (d+

j − 1)d−k possible pairs to
represent it in the configuration. Thus, as the pairs of points are chosen, the remaining
arcs have fewer possible pairs that could represent them.

By choosing pairs one at a time, it is clear there are

(
n∏

m=1

d−m!

)(
n∏

m=1

d+
m!

)
config-

urations whose underlying graph is G. Furthermore, since G is simple, this number is
unaffected by the actual choice of arcs of G. Hence every simple directed graph with

degree sequence Dn has

(
n∏

m=1

d−m!

)(
n∏

m=1

d+
m!

)
configurations representing it.

From Lemma 3.16, it is clear that all simple graphs appear uniformly from the con-
figuration model. We now state and prove Proposition 3.17, which is an application of a
well-known result stated in [42]. It is an important proposition because it allows us to use
the configuration model to prove our results. Note that we say a configuration has a graph
property P if its underlying multigraph has property P .

Proposition 3.17. If a random configuration with a well-behaved degree sequence a.a.s.
has property P, then a random graph with the same degree sequence a.a.s. has property P.

Proof: Let Dn be a well-behaved degree sequence. Define G(Dn) to be the uniform proba-
bility space of directed graphs with degree sequence Dn. Similarly, define C(Dn) to be the
probability space of configurations with degree sequence Dn. Let Pr(Simple) denote the
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probability in C(Dn) that the underlying multigraph has no loops or multiple edges. We
have the following result found in [42].

Claim 1. Let S be a set of graphs in G(Dn) and S ′ the set of configurations in C(Dn) that

correspond to graphs in S. Then, PrG(Dn)(S) =
PrC(Dn)(S

′)

Pr(Simple)
.

Proof: The equation follows immediately from Lemma 3.16 and the uniformity of G(Dn)
and C(Dn).

Let P be a graph property that a.a.s. a random configuration in C(Dn) has. We choose
S to be the set of graphs in G(Dn) that do not have property P and S ′ to be the set of
configurations in C(Dn) whose underlying graph is in S. As a configuration a.a.s. has
property P , PrC(Dn)(S

′) → 0. Hence PrG(Dn)(S) → 0 since Pr(Simple) is bounded away
from 0 by Proposition 3.15. Thus PrG(Dn)(S)→ 1 and so a.a.s. a random graph in G(Dn)
has property P .

By Proposition 3.17, we can determine the presence of a giant strongly connected
component in a random directed graph by studying random configurations with the same
degree sequence. We will use this to prove our main result in Chapter 4.
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Chapter 4

The Presence of a Giant Strongly
Connected Component

As stated in Theorem 2.13, Cooper and Frieze determined a threshold function for the
presence of a giant strongly connected component in random graphs with proper degree
sequences. This chapter presents a new proof of this function for a slightly larger class
of degree sequences, called well-behaved degree sequences. These sequences are defined in
Section 2.2, Definition 2.17.

Before stating our result, we define some notation. For a degree sequence
Dn = ((d−1 , . . . , d

−
n ), (d+

1 , . . . , d
+
n )), let G(Dn) be the set of all directed graphs with degree

sequence Dn. Define ∆−(Dn) = max{d−i | 1 ≤ i ≤ n}, ∆+(Dn) = max{d+
j | 1 ≤ j ≤ n},

and ∆(Dn) = min{∆+(Dn),∆−(Dn)}. Also, let ni,j = |{1 ≤ ` ≤ n | d−` = i, d+
` = j}| and

λ(Dn) =
∑
i≥0

∑
j≥0

ij
ni,j

θn
, where θ is as defined in Definition 2.17 (i.e. θ = 1

n

∑
i≥0

∑
j≥0

ini,j). Our

main result is the following.

Theorem 4.1. Let Dn be a well-behaved degree sequence.

(i) If λ(Dn) < 1, then a.a.s. every SCC of G ∈ G(Dn) has size O([∆(Dn)]2 log(n)).

(ii) If λ(Dn) > 1, then a.a.s. there exists a SCC in G ∈ G(Dn) of size Θ(n).

To prove Theorem 4.1, we analyze the components of configurations with degree se-
quence Dn and apply Proposition 3.17. Thus, let Dn be well-behaved and define C(Dn)
to be the set of configurations generated by the configuration model with degree sequence
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Dn. For each C ∈ C(Dn), let K(C) be the set of all strongly connected components in C.
We analyze the size of the elements of K(C) using different exploration processes defined
in Sections 4.1.1 and 4.2.2.

We will discuss the proof of Theorem 4.1 in two sections. Section 4.1 contains the proof
of Theorem 4.1.(i). This proof uses a different method than the proof presented by Cooper
and Frieze in [12] for Theorem 2.13.(i). However, it uses the same approach as Molloy
and Reed in [35]. We will then use a coupling technique in Section 4.2 to prove Theorem
4.1.(ii).

4.1 The Subcritical Case: λ(Dn) < 1

We begin this section with a description of an exploration process that exposes pairs of
points in C ∈ C(Dn). In Section 4.1.2, we will use this process to prove that all elements
of K(C) have size O([∆(Dn)]2 log(n)).

4.1.1 The Exploration Process

Let V (C) be the set of bins in C and v ∈ V (C). Define K(v) to be the SCC in K(C) that
contains v. To study |V (K(v))|, we will analyze the fan-in and the fan-out of v.

Definition 4.2. Define the fan-in of v to be

F−(v) = {u ∈ V (C) | there is a directed uv-path in C}.

Similarly, define the fan-out of v to be

F+(v) = {u ∈ V (C) | there is a directed vu-path in C}.

Let F−(v) = |F−(v)| and F+(v) = |F+(v)|. Note that |V (K(v))| ≤ min{F−(v), F+(v)}.
Without loss of generality, assume ∆+(Dn) ≤ ∆−(Dn). We now define an exploration pro-
cess that will start at v and expose the entire fan-out of v. We will then see that, with
high probability, the size of this fan will be small and so the SCC containing v will also be
small.

Let R be the set of all red points and B be the set of all blue points in C. Each point
in C is assigned one of three states: active, used, or asleep. Define A+

t to be the set of
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active red points at the end of iteration t and U−t to be the set of used blue points at the
end of iteration t. Let A+

t = |A+
t | and U−t = |U−t |.

The exploration process Γ0 begins with all red points in v being active and all other
points in C being asleep. Thus A+

0 is the set of red points in v and U−0 = ∅.

For each integer t > 0, the following procedure is performed.

1. If A+
t−1 6= ∅, proceed to Step 2. Otherwise, terminate the procedure.

2. Choose a red point rt uniformly at random fromA+
t−1. Select a blue point bt uniformly

at random from B\U−t−1. Let (rt, bt) be a pair in C and change the states of rt and bt
to used.

3. All sleeping red points in the same bin as bt change their state to active.

Figure 4.1 outlines one iteration of this procedure.

(a) The start of the exploration process.
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(b) Exposing the pair of one active red point (Step 2).

(c) Changing the states of the appropriate points (Step 3).

Figure 4.2: One iteration of the subcritical exploration procedure.

Note that at the start of Γ0, every pair is present in C with uniform probability. The
process then exposes a pair in C during each iteration of its procedure. The remaining
pairs in C are distributed as a uniformly random matching from the remaining red points
to the remaining blue points. We will use the stopping time of Γ0 to bound |V (K(v))|.

Define τ to be the iteration in which Γ0 terminates. Then, by definition A+
τ−1 = ∅ and

A+
t 6= ∅ for all 0 ≤ t ≤ τ − 2. Furthermore, recall that exactly one active red point of A+

t
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is not in A+
t+1 for all 0 ≤ t ≤ τ − 2. Hence

∣∣∣∣τ−1⋃
t=0

A+
t

∣∣∣∣ = τ . Thus F+(v) ≤ τ and so

|V (K(v))| ≤ τ. (4.1)

It therefore suffices to bound τ for the proof of Theorem 4.1(i).

4.1.2 Proof of Theorem 4.1(i)

In this section we prove the subcritical portion of Theorem 4.1.

Recall that we assumed Dn is well-behaved, ∆(Dn) = ∆+(Dn), λ(Dn) = 1− ε for some
ε > 0, and v ∈ V (C). For convenience, let ∆ = ∆(Dn) and λ = λ(Dn). Define R(v) and
B(v) to be the sets of red and blue points respectively in v and let R(v) = |R(v)| and
B(v) = |B(v)|. Furthermore, define

Ni,j = {v ∈ V (C) | B(v) = i, R(v) = j}

and note |Ni,j| = ni,j.

Consider the exploration process Γ0 defined in Section 4.1.1. Let Ht =
t⋃
i=1

(ri, bi), which

is the set of pairs exposed by Γ0 by the end of iteration t. Also, let U+
t be the set of all

used red points at the end of iteration t. We define

Ni,j(t) = {v ∈ Ni,j | B(v) ∩ U−t = ∅,R(v) ∩ U+
t = ∅}

and let |Ni,j(t)| = ni,j(t).

Let τ be as in (4.1), i.e. τ = min{t ≥ 1 | A+
t−1 = ∅}. We then have the following result.

Lemma 4.3. For any iteration t < min{τ − 1, εθ
2+ε

n}, E(A+
t+1 − A+

t | Ht) < − ε
2
.
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Proof: Note that ni,j(t) ≤ ni,j for all i and j and t < εθ
2+ε

n implies ε
2
> t

θn−t . Thus,

E(A+
t+1 − A+

t | Ht) =

(
A+
t − 1 +

∑
j≥0

∑
i≥0

j
ini,j(t)

θn− t

)
− A+

t

= −1 +
∑
j≥0

∑
i≥0

j
ini,j(t)

θn− t

≤ −1 +
∑
j≥0

∑
i≥0

j
ini,j
θn− t

= −1 +
θn

θn− t
∑
j≥0

∑
i≥0

ij
ni,j
θn

= −1 +

(
1 +

t

θn− t

)
λ

< −1 + (1− ε) +
t

θn− t
< − ε

2
.

This allows us to study the number of iterations that Γ0 performs by using super-
martingale inequalities.

Lemma 4.4. For any t′ < min{τ − 1, εθ
2+ε

n}, {A+
t + ε

2
t}0≤t≤t′ is a super-martingale.

Proof: For any iteration t ≤ t′, 0 ≤ A+
t ≤ θn and so E

(∣∣A+
t + ε

2
t
∣∣) < ∞. Furthermore,

A+
t∗ > 0 for all 0 ≤ t∗ ≤ t. Hence,

E
[[
A+
t+1 +

ε

2
(t+ 1)

]
−
(
A+
t +

ε

2
t
)
| Ht

]
= E

(
A+
t+1 − A+

t +
ε

2
| Ht

)
= E(A+

t+1 − A+
t | Ht) +

ε

2

< − ε
2

+
ε

2
= 0.

Thus by Definition 3.7, {A+
t + ε

2
t}0≤t≤t′ is a super-martingale.

Let τ ∗ = min{τ − 1, εθ
2+ε

n}. Lemma 4.4 then implies that {A+
t + ε

2
t}0≤t≤τ∗ is a super-

martingale. To bound τ , we define another super-martingale {Xi}i≥0 by Xt = At for all
0 ≤ t ≤ τ ∗ and Xt = Xt−1 − ε

2
for all t > τ ∗.
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Proposition 4.5. Let s =
⌈

6∆2

ε2
log(n)

⌉
. Then Pr(Xs ≥ 0) = O

(
1√
n

)
.

Proof: We have∣∣∣[Xt+1 +
ε

2
(t+ 1)

]
−
(
Xt +

ε

2
t
)∣∣∣ ≤ ∣∣∣(∆− 1 +Xt) +

ε

2
−X+

t

∣∣∣ < ∆

for t ≤ τ ∗ and

|Xt+1 −Xt| =
ε

2
< ∆

for t > τ ∗. Thus by Theorem 3.9 with ct = ∆ for all t,

Pr(Xt ≥ 0) =
[(
Xt +

ε

2
t
)
−
(
X0 +

ε

2
(0)
)
≥ ε

2
t−X0

]
≤ exp

[
−
[ ε

2
t−X0

]2

/2∆2t

]
≤ e−(εt−2X0)2/8∆2t.

Recall that s =
⌈

6∆2

ε2
log(n)

⌉
, and so

Pr(Xs ≥ 0) ≤ e−[εs−2X0]2/8∆2s

= exp

[
−
(

3∆2

ε
log(n)−X0

)2

/

(
12∆4

ε2
log(n)

)]
≤ e−(3∆2 log(n)−∆ε)2/(12∆4 log(n))

= e−(3/4) log(n)+(ε/2∆)−(ε2/12∆2 log(n))

< e−(3/4) log(n)+(1/4) log(n)

= n−1/2.

Proposition 4.5 immediately implies that a.a.s. τ ≤
⌈

6∆2

ε2
log(n)

⌉
, which completes the

proof of Theorem 4.1(i) by equation (4.1) and Proposition 3.17. In the remaining sections
of this chapter, we complete the proof of Theorem 4.1(ii).

4.2 The Supercritical Case: λ(Dn) > 1

In this section, we will prove Theorem 4.1.(ii). This will require a new exploration process

Γ that consists of a sequence of subroutines Γ̂i. Each Γ̂i begins by choosing a bin v in

34



some manner and then searches both the fan-in and fan-out of v at the same time. A
subroutine stops when some bad event (described in Section 4.2.2) occurs or it successfully
finds a “good” bin v (defined in Section 4.2.2). In Section 4.2.4 we will show that a.a.s. v
is contained in a giant SCC.

To analyze this Γ, we will couple each Γ̂i with two independent random walks {Y −t }t≥0

and {Y +
t }t≥0 defined in Section 4.2.1. In Section 4.2.3, we use these walks to define the

stopping times of the subroutines as well as show that a.a.s. Γ finds a good bin v.

4.2.1 The Random Walks {Y +
t }t≥0 and {Y −t }t≥0

Recall that Dn is a well-behaved degree sequence, λ(Dn) = 1 + ε for some ε > 0, and
C ∈ C(Dn). Let x be a point in C and define bin(x) to be the bin containing x. As before,
for each v ∈ V (C) let B(v) = {x ∈ B | v = bin(x)}, R(v) = {x ∈ R | v = bin(x)},
B(v) = |B(v)|, and R(v) = |R(v)|. Also, recall Ni,j = {v ∈ V (C) | B(v) = i, R(v) = j}
and ni,j = |Ni,j|.

Unlike the exploration process in Section 4.1.1, the exploration process Γ we informally
describe below will expose both the fan-in and fan-out of a bin at the same time. This
process continues to explore the fan-ins and fan-outs of various bins until a bin is found
with certain properties. These particular properties (discussed in Section 4.2.2) make it
likely to be in a giant SCC and so we call such a bin “good.” However, some events
can occur in the exploration process that interfere with checking these properties. These
events (discussed in Section 4.2.2) will force the exploration process to terminate and so
are considered “bad.”

We now informally describe the procedure of the subroutine Γ̂i in the exploration pro-
cess Γ. Its formal definition can be found in Section 4.2.2. As in the previous exploration
process, the points in C are assigned one of three states: active, used, or asleep. Let A+

t

and A−t be the sets of active red and active blue points respectively at the end of iteration
t. Also, let U+

t and U−t be the sets of used red and used blue points respectively at the end
of iteration t. Define A+

t = |A+
t |, A−t = |A−t |, U+

t = |U+
t |, and U−t = |U−t |.

In each iteration of its procedure, Γ̂i will choose some rt ∈ A+
t−1 and bt ∈ A−t . It then

uniformly at random chooses bt ∈ B\U−t−1 and pairs rt with bt. The states of all sleeping
red points in bin(bt) change to active and rt and bt change their state to used. If bt 6= bt,

Γ̂i uniformly at random chooses some rt ∈ R\(U+
t−1∪{rt}) and pairs bt with rt. The states

of all sleeping blue points in bin(rt) changes to active and bt and rt change their states to
used. The subroutine will then terminate if some bad event occurred, such as bt = bt.
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By the nature of this process, it is clear that it is difficult to analyze {A+
t }t≥0 and

{A−t }t≥0 directly. Therefore, we will define two random walks {Y +
t }t≥0 and {Y −t }t≥0 such

that:

1. Pr(Y +
t − Y +

t−1 = j) and Pr(Y −t − Y −t−1 = i) are independent of {Y +
i }0≤i<t−1 and

{Y −i }0≤i<t−1,

2. {Y +
t }t≥0 and {Y −t }t≥0 are independent, and

3. {A+
t }t≥0 almost always stochastically dominates {Y +

t }t≥0 and {A−t }t≥0 almost always
stochastically dominates {Y −t }t≥0.

We then couple these walks with {A+
t }t≥0 and {A−t }t≥0 in the definition of Γ̂i in order to

analyze {A+
t }t≥0 and {A−t }t≥0.

Definition 4.6. Let I be an index set and Xi be a random discrete variable defined on a
probability space (Ωi, Pi) for each i ∈ I. A coupling of the Xi is a collection of random vari-

ables X̂i defined on a common probability space (Ω, P ) such that the marginal distribution

of X̂i is the same as the distribution of Xi for each i ∈ I.

Definition 4.7. A random walk {Xi}i≥0 dominates a random walk {Yi}i≥0 if there exists

a coupling of the Xi and Yi such that X̂i ≥ Ŷi for all i ≥ 0.

Let p+
j (t) be the conditional probability that bin(bt) contains exactly j sleeping red

points at the start of iteration t given the states of all points at the end of iteration t− 1.
Similarly, let p−i (t) be the conditional probability in iteration t that bin(rt) contains exactly
i sleeping blue points after bt changes its state to used given the states of all points after
the pair (rt, bt) is exposed by Γ̂i. Roughly speaking, p+

j (t) is the conditional probability
A+
t − A+

t−1 = j − 1 and p−i (t) is the conditional probability A−t − A−t−1 = i− 1.

To satisfy the desired properties for {Y +
t }t≥0 and {Y −t }t≥0, we require the following

lemma to hold.

Lemma 4.8. There exist two distribution functions φ+ and φ− such that:

1. There exists a constant k such that the domain of φ+ and φ− is {0, 1, . . . , k}.

2. There exists σ > 0 such that for all 0 ≤ t ≤ σn + 1 and i, j ≥ 1, a.a.s. p+
j (t) ≥ φ+

j

and p−i (t) ≥ φ−i , and
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3.
k∑
j=0

jφ+
j ≥ 1 + ε

4
and

k∑
i=0

iφ−i ≥ 1 + ε
4
.

We prove Lemma 4.8 later in this section. For now, assume the statement holds.

Let η+ be a random variable that takes on the value j − 1 with probability φ+
j for all

j ≥ 0. Also, let η− be a random variable that takes on the value i− 1 with probability φ−i
for all i ≥ 0. For all t ≥ 0, let η+

t be an independent copy of η+ and η−t be an independent
copy of η−. We define Y +

t and Y −t such that:

1. Y +
0 = Y −0 = 1 and

2. Y +
t+1 = Y +

t + η+
t and Y −t+1 = Y −t + η−t for all t ≥ 1.

Since η+ and η− are independent random variables, {Y +
t }t≥0 and {Y −t }t≥0 are indepen-

dent walks. Furthermore, Pr(Y +
t+1 − Y +

t = j − 1) = φ+
j and Pr(Y −t+1 − Y −t = i− 1) = φ−i

for all t ≥ 0. Hence {Y +
t }t≥0 and {Y −t }t≥0 satisfy the first two desired properties. We

will prove that {A+
t }t≥0 and {A−t }t≥0 almost always stochastically dominate {Y +

t }t≥0 and
{Y −t }t≥0 for some number of iterations of Γ after formally defining Γ in Section 4.2.2.

In the remainder of this section, we provide the proof of Lemma 4.8.

Proof of Lemma 4.8

Recall that Dn is well-behaved and λ(Dn) = 1 + ε for some ε > 0. Thus there exists
constants k and N such that for all n > N ,∣∣∣∣∣

k∑
i=0

k∑
j=0

ij
ni,j
θn
− λ

∣∣∣∣∣ < ε

2
. (4.2)

Hence
k∑
i=0

k∑
j=0

ij
ni,j

θn
> 1 + ε

2
. We will define φ+ and φ− on {0, . . . , k} for k satisfying (4.2).

Before defining φ+ and φ−, we need some lower bounds for p+
j (t) and p−i (t) for all

t ≥ 1. At the start of iteration t = 1, the probability of choosing a blue point b0 such that
R(bin(b0)) = j is

p+
j = p+

j (1) =
∑
i≥0

i
ni,j
θn

.
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Furthermore, the probability of then choosing a red point r0 such that B(bin(r0)) = i and
b0 /∈ B(bin(r0)) is

p−i = p−i (1) =
∑
j≥0

j

θn
(ni,j − 1bin(b0)∈Ni,j

).

We then have the following property.

Lemma 4.9. For all t ≥ 1, p+
j (t+ 1) >

k∑
i=0

i
ni,j

θn
− 4kt

θn−2t
and p−i (t+ 1) >

k∑
j=0

j
ni,j

θn
− 4kt

θn−2t
.

Proof: Let Ni,j(t) be the set of bins contain exactly i sleeping blue and j sleeping red

points at the beginning of iteration t and let ni,j(t) = |Ni,j(t)|. By the procedure of Γ̂i, it
is clear that bin(rt), bin(bt), bin(bt) and bin(rt) are the only bins that could be present in
Ni,j(t) but not in Ni,j(t+ 1). Thus for all i and j, ni,j(t− 1)− 4 ≤ ni,j(t) ≤ ni,j(t− 1) + 4.
Hence for all t ≥ 1,

p+
j (t+ 1) =

∑
i≥0

i
ni,j(t+ 1)

θn− 2t

≥
k∑
i=0

i
ni,j(t+ 1)

θn− 2t

≥

(
k∑
i=0

i
ni,j

θn− 2t

)
− 4kt

θn− 2t

=
θn

θn− 2t

(
k∑
i=0

i
ni,j
θn

)
− 4kt

θn− 2t

>

k∑
i=0

i
ni,j
θn
− 4kt

θn− 2t
.

A similar calculation shows that p−i (t+ 1) >
k∑
i=0

j
ni,j

θn
− 4kt

θn−2t
for all t ≥ 1.

We will use these bounds for certain choices of j and i to define φ+ and φ−. First, let

q+
j =

k∑
i=0

i
ni,j

θn
and q−i =

k∑
j=0

j
ni,j

θn
. We then have the following lemma.
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Lemma 4.10. Let k be as in (4.2). Then for all 1 ≤ j ≤ k such that lim
n→∞

q+
j > 0, there

exists a real number a+
j such that 0 < a+

j <
ε

4+2ε
lim
n→∞

q+
j . Similarly, for all 1 ≤ i ≤ k such

that lim
n→∞

q−i > 0, there exists a real number a−i such that 0 < a−i <
ε

4+2ε
lim
n→∞

q−i .

Proof: Let 1 ≤ j ≤ k be an integer such that lim
n→∞

p+
j > 0. By the choice of j, it is clear

ε
4+2ε

lim
n→∞

q+
j > 0. Thus the density of the reals implies there exists a real number a+

j such

that 0 < a+
j <

ε
4+2ε

lim
n→∞

q+
j .

The proof for the existence of a−i for 1 ≤ i ≤ k such that lim
n→∞

q−i > 0 is the same as for

the existence of a+
j since 0 < ε

4+2ε
lim
n→∞

q−i for all such i.

Let k be as in (4.2) and a+
j and a−i be as in Lemma 4.10 for all 1 ≤ j ≤ k and 1 ≤ i ≤ k

such that lim
n→∞

q+
j > 0 and lim

n→∞
q−i > 0. We define φ+ and φ− on 0 ≤ j ≤ k and 0 ≤ i ≤ k

respectively, as follows.

φ+
j =


lim
n→∞

q+
j − a+

j if lim
n→∞

q+
j > 0 and 1 ≤ j ≤ k

0 if lim
n→∞

q+
j = 0 and 1 ≤ j ≤ k

1−
k∑̀
=1

φ+
` if j = 0

(4.3)

φ−i =


lim
n→∞

q−i − a−i if lim
n→∞

q−i > 0 and 1 ≤ i ≤ k

0 if lim
n→∞

q−i = 0 and 1 ≤ i ≤ k

1−
k∑̀
=1

φ−` if i = 0

(4.4)

Clearly (4.3) and (4.4) satisfy the first condition of Lemma 4.8. We now prove they
satisfy the remaining two conditions in Lemmas 4.11 and 4.12. First, note that φ+

j ≤ lim
n→∞

q+
j

for all 1 ≤ j ≤ k. Furthermore, equality holds only if lim
n→∞

q+
j = 0. Similarly, φ−i ≤ lim

n→∞
q−i

for all 1 ≤ i ≤ k with equality holding only if lim
n→∞

q−i = 0. This leads to the following

result.

Lemma 4.11. Let φ+ and φ− be as in (4.3) and (4.4). Then there exists σ > 0 such that
for all integers 0 ≤ t ≤ σn+ 1 and i, j ≥ 1, p+

j (t) ≥ φ+
j and p−i (t) ≥ φ−i .
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Proof. Suppose lim
n→∞

q+
j = 0. Then φ+

j = 0 and p+
j (t) ≥ 0 for all t, so there is nothing to

show. Furthermore, for all j > k, φ+
j = 0 and p+

j (t) ≥ 0 for all t. Hence for all j > k,
p+
j (t) ≥ φ+

j for all t. Similarly, φ−i = 0 ≤ p−i (t) for all t if lim
n→∞

q−i = 0 and for all i > k,

p−i (t) ≥ φ−i = 0 for all t. Thus, assume 1 ≤ i ≤ k, 1 ≤ j ≤ k, lim
n→∞

q+
j > 0, and lim

n→∞
q−i > 0.

Let δ+ = min{a+
j | 1 ≤ j ≤ k}, δ− = min{a−i | 1 ≤ i ≤ k}, and δ = min{δ+, δ−}. By

Lemma 4.9, we have p+
j (t + 1) >

k∑
i=0

i
ni,j

θn
− 4kt

θn−2t
and p−i (t + 1) >

k∑
j=0

j
ni,j

θn
− 4kt

θn−2t
for all

t ≥ 1. Thus for sufficiently large n,

p+
j (t+ 1) > lim

n→∞
q+
j −

6kt

θn− 2t
(4.5)

and

p−i (t+ 1) > lim
n→∞

q−i −
6kt

θn− 2t
. (4.6)

For t = δθ
6k+2δ

n, (4.5) and (4.6) imply p+
j (t+ 1) > lim

n→∞
q−i − δ ≥ φ−i and

p−i (t+ 1) > lim
n→∞

q−i − δ ≥ φ−i . Thus the statement holds for σ = δθ
6k+2δ

.

In addition, we have the following lemma.

Lemma 4.12. Let φ+ and φ− be as in (4.2) and (4.3). Then
k∑
j=0

jφ+
j > 1 + ε

4
and

k∑
i=0

iφ−i > 1 + ε
4
.

Proof: Recall a+
j <

ε
4+2ε

lim
n→∞

q+
j . Thus,

k∑
j=0

jφ+
j >

k∑
j=0

j

(
lim
n→∞

q+
j −

ε

4 + 2ε
lim
n→∞

q+
j

)

=

(
1− ε

4 + 2ε

) k∑
j=0

j lim
n→∞

q+
j

≥
(

1− ε

4 + 2ε

)(
1 +

ε

2

)
= 1 +

ε

4
.
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A similar calculation shows
k∑
i=0

iφ−i > 1 + ε
4
.

Lemma 4.8 then follows from Lemmas 4.11 and 4.12. In the next section, we complete
the definition of the exploration process used in the proof of Theorem 4.1(ii). This process
will couple Y +

t and Y −t with A+
t and A−t so that A+

t ≥ Y +
t and A−t ≥ Y −t for all iterations

of Γ.

4.2.2 The Exploration Process

Recall that Γ is a sequence of subroutines Γ̂i. Each subroutine Γ̂i performs iterations of
a procedure defined in this section until some bad event forces Γ̂i to stop or a good bin
is found. This bad event as well as some bad events that will force Γ to terminate are
discussed later in this section.

We first define a good bin. As mentioned in the previous section, the properties of a
good bin make it likely to have a large fan-in and fan-out as well as only need a small
number of iterations to determine these fans are large. These properties in turn make it
likely that the bin is in a giant SCC.

Definition 4.13. Assume a subroutine Γ̂ starts in iteration t0. We say Γ̂ finds a good bin
v if it starts at v and there exists some s ≤ log3(n) and constant c > 0 such that:

1. t0 ≤ s ≤ t0 + c log(n),

2. A+
t , A

−
t > 0 for all t0 ≤ t ≤ s, and

3. A+
s , A

−
s ≥ cε

4
log(n).

From this definition, it is clear a subroutine Γ̂ will not find a good bin after iteration
log3(n). We will later define a stopping time for Γ which ensures that each subroutine
never takes more than log3(n) iterations (see event (B1) in the definition of the procedure

of Γ̂). Before defining the procedure of Γ̂, we discuss some notation.

For all i ≥ 0, let Bi be the set of all blue points in bins that contain exactly i blue
points and at least one red point, i.e.

Bi = {b ∈ B | B(bin(b)) = i, R(bin(b)) > 0}.
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Similarly, for all j ≥ 0, let

Rj = {r ∈ R | R(bin(r)) = j, B(bin(r)) > 0}.

We define
B>i = {b ∈ B | B(bin(b)) > i,R(bin(b)) > 0}

and
R>j = {r ∈ R | R(bin(r)) > j,B(bin(r)) > 0}.

Let Bi = |Bi|, Rj = |Rj|, B>i = |B>i|, and R>j = |R>j|.

In addition, define Bi(t) to be the set of blue points in bins containing exactly i sleeping
blue and at least one unused red point at the start of iteration t, i.e.

Bi(t) = {b ∈ B | |B(bin(b))\(A−t−1 ∪ U−t−1)| = i, |R(bin(b))\U+
t−1| > 0}.

Hence Bi = Bi(0). Similarly, let

Rj(t) = {r ∈ R | |R(bin(r))\(A+
t−1 ∪ U+

t−1)| = j, |B(bin(r))\U−t−1| > 0}.

We then define B(Rj(t)) to be the set of blue points in bins that contain red points in
Rj(t) and R(Bi(t)) to be the set of red points in bins that contain blue points in Bi(t). Let
B(R>j(t)) and R(B>i(t)) be the sets of blue and red points respectively in bins containing
more than j red or i blue sleeping points respectively at the start of iteration t.

We formally define Γ as follows. The process starts by assigning all points in C the
sleeping state. It then begins the subroutine Γ̂1 in iteration t0 = 0 and sets U+

−1 = U−−1 = ∅.

For each i ≥ 1, Γ̂i begins iteration t0 by returning all unused points to the sleeping
state. A bin v such that R(v), B(v) > 0 is then chosen arbitrarily and all red and blue

points in v change their state to active. It then defines Ŷ +
t0 = Ŷ −t0 = 1. This ends iteration

t0 and so A+
t0 = R(v), A−t0 = B(v), U+

t0 = U+
t0−1, and U−t0 = U−t0−1.

In each iteration t > t0 of Γ̂i, the following procedure is performed.

1. A red point rt ∈ A+
t−1 and a blue point bt ∈ A−t−1 are chosen.

2. One of the following is performed with the corresponding probability:

(a) With probability φ+
j for each 1 ≤ j ≤ k, let Ŷ +

t = Ŷ +
t−1 + (j − 1) and bt be

chosen uniformly at random from B(Rj(t))\U−t−1. Pair rt with bt.
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(b) With probability p+
j (t) − φ+

j for each 1 ≤ j ≤ k, let Ŷ +
t = Ŷ +

t−1 − 1 and bt be
chosen uniformly at random from B(Rj(t))\U−t−1. Pair rt with bt.

(c) With the remaining probability, let Ŷ +
t = Ŷ +

t−1 − 1 and bt be chosen uniformly
at random from [B(R>k(t)) ∪ B(R0(t))]\U−t−1.

Change the states of rt and bt to used and the states of all sleeping red points in
bin(bt) to active.

3. If bt 6= bt, repeat Step 2 using φ−i , p−i (t), Y −t , R(Bi(t)), R(B>k(t)), R(B0(t)),
U+
t−1 ∪ {rt}, bt, and rt. Change the states of rt and bt to used and the state of all

sleeping blue points in bin(rt) to active.

If bt = bt, let Ŷ −t = Ŷ −t−1 − 1 and change the state of all sleeping blue points in rt to
active.

4. Terminate the procedure and repeat it for subroutine Γ̂i+1 in iteration t0 = t+ 1 if

(E) Ŷ +
t = 0 or Ŷ −t = 0

and abort Γ if one of the following occurs:

(B1) t ≥ t0 + dlog2(n)e and for each t0 ≤ s ≤ t, Ŷ +
s < cε

4
log(n) or Ŷ −s < cε

4
log(n).

(B2) rt ∈ A+
t−1 ∪R(bin(bt)) and A+

t − Ŷ +
t < log2(n).

(B3) bt ∈ A−t−1 ∪ B(bin(rt)) and A−t − Ŷ −t < log2(n).

Figure 4.2 outlines one iteration of this procedure. The events (E), (B1), (B2), and (B3)
are considered bad events for different reasons. The event (E) allows for the possibility that
the fan-in or fan-out of the initial bin is too small to satisfy the conditions of Definition 4.13.
Similarly, (B1) allows for the possibility that Γ̂i takes too many iterations to determine
that the fan-in and fan-out of the initial bin is large. Events (B2) and (B3) allow for the

possibility that A+
t < Ŷ +

t and A−t < Ŷ −t respectively. This will prevent us from using Y +
t

and Y −t to describe lower bounds for the size of A+
t and A−t , which is the approach we use

in Section 4.2.3 as part of the proof of Theorem 4.1.ii.
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(a) The start of subroutine Γ̂.

(b) Choosing the pair of one active red point (Step 2).
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(c) Choosing the pair of one active blue point (Step 3).

Figure 4.2: One iteration of the supercritical subroutine procedure.

Let τ ∗ be the minimum t > 0 such that (B1), (B2), or (B3) occurs in iteration t. We
define

τ = min{τ ∗, log3(n)}. (4.7)

We now prove that {A+
t }0≤t<τ and {A−t }0≤t<τ dominate {Y +

t }0≤t<τ and {Y −t }0≤t<τ .

Lemma 4.14. Let τ be as defined in (4.5). Then {A+
t }0≤t<τ dominates {Y +

t }0≤t<τ and
{A−t }0≤t<τ dominates {Y −t }0≤t<τ .

Proof: Since log3(n) < σn where σ is as in Lemma 4.8, p+
j (t) ≥ φ+

t and p−i (t) ≥ φ−i for all
i, j ≥ 1 and 0 ≤ t ≤ τ by Lemma 4.8. Hence Γ is well-defined in this interval. Furthermore,
the marginal distributions of Ŷ + and Ŷ − are the same as the distributions of Y + and Y −

respectively. Hence the procedure of Γi defines a coupling of A+
t , A−t , Y +

t , and Y −t .

From the procedure of Γ, each initial bin v of a subroutine Γ̂i starting in iteration t0
of Γ is chosen so that A+

t0 ≥ Ŷ +
t0 = 1 and A−t0 ≥ Ŷ −t0 = 1. It therefore suffices to show

A+
t ≥ Ŷ +

t and A−t ≥ Ŷ −t for all iterations t in Γ̂i.

Note that for t > t0 in Γ̂i, if bt ∈ B(Rj(t)), then A+
t − A+

t−1 = j − 1 unless rt ∈ A+
t−1

or rt is in bin(bt). Similarly, for rt ∈ R(Bi(t)), A−t − A−t−1 = i − 1 unless bt ∈ A−t−1 or bt
is in bin(rt). However, the choice of τ implies that for all 0 ≤ t < τ , A+

t − Ŷ +
t ≥ log2(n)

and A−t − Ŷ −t ≥ log2(n) if rt ∈ A+
t−1 ∪ R(bin(bt)) and bt ∈ A−t−1 ∪ B(bin(rt)) respectively.

Thus A+
t > Ŷ +

t for all iterations 0 ≤ t < τ such that bt ∈ B(Rj(t)) and A+
t −A+

t−1 6= j− 1.
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Similarly, A−t > Ŷ −t for all iterations 0 ≤ t < τ such that rt ∈ R(Bi(t)) and
A−t − A−t−1 6= i− 1.

For all iterations 0 ≤ t < τ such that bt ∈ B(Rj(t)) and A+
t − A+

t−1 = j − 1, the

procedure of Γ̂i shows Ŷ +
t − Ŷ +

t−1 = j − 1 or Ŷ +
t − Ŷ +

t−1 = −1. As A+
t0 ≥ Ŷ +

t0 = 1, this

implies A+
t ≥ Ŷ +

t for all such iterations. Similarly, Ŷ −t − Ŷ −t−1 = i− 1 or Ŷ −t − Ŷ −t−1 = −1

when rt ∈ R(Bi(t)) and A−t − A−t−1 = i− 1. Hence A−t0 ≥ Ŷ −t0 = 1 implies A−t ≥ Ŷ −t for all
such iterations as well.

Therefore A+
t ≥ Ŷ +

t and A−t ≥ Ŷ −t for all 0 ≤ t < τ .

Thus the choice of {Y +
t }t≥0 and {Y −t }t≥0 from Section 4.2.1 satisfies all three desired

properties until iteration τ . In the next section, we will bound the probability that
τ < log3(n), i.e. that a bad event occurs before log3(n) iterations are performed. Further-

more, we show that the probability some Γ̂i of Γ finds a good bin v before τ is 1− o(1).

4.2.3 Finding a Good Bin

We first prove the following proposition.

Proposition 4.15. There exists a constant c > 0 such that Pr
(
τ ≥

⌈
c log2(n)

⌉)
= 1−o(1).

We use this proposition to prove that a.a.s. some Γ̂i of Γ finds a good bin v.

To prove Proposition 4.15, it suffices to calculate the probability that (B1), (B2), or
(B3) occurs before iteration

⌈
c log2(n)

⌉
for some constant c > 0. We do so using the

following lemmas.

Lemma 4.16. There exists a constant c > 0 such that for s = dc log(n)e,
Pr
(
Y +
s < cε

8
log(n)

)
= o(1) and Pr

(
Y −s < cε

8
log(n)

)
= o(1).

Proof: Recall Y +
t = Y +

t−1 + η+
t for all t > 0 and Y +

0 = 1. Thus E(Y +
t ) = 1 + [E(η+)]t.

E(η+) =
∑
j≥0

(j − 1)φ+
j

=

(
k∑
j=0

jφ+
j

)
−

k∑
j=0

φ+
j

≥ 1 +
ε

4
− 1

=
ε

4
.
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Thus E(Y +
t ) ≥ 1+ ε

4
t and so E(Y +

s ) ≥ 1+ cε
4

log(n) and {Y +
t − ε

4
t}0≤t≤s is a sub-martingale.

Furthermore, ∣∣∣[Y +
t+1 −

ε

4
(t+ 1)

]
−
(
Y +
t −

ε

4
t
)∣∣∣ ≤ k

and so Corollary 3.10 implies

Pr
(
Y +
s <

⌈cε
8

log(n)
⌉)
≤ Pr

[(
Y +
s −

cε

4
log(n)

)
− 1 ≤ −cε

8
log(n)

]
≤ e−c

2ε2 log2(n)/128k2c log(n).

For c = 128k2

ε2
, this probability is O

(
1
n

)
. A similar calculation shows the same result for

Y −s .

Corollary 4.17. The probability (B1) occurs in iteration τ < log3(n) is o(1).

Proof: Let Γ̂ be an iteration of Γ that starts in iteration t0 and stops because (B1) occurs.
Thus (E), (B2), and (B3) do not occur during iterations t0 ≤ t ≤ t0 + blog2(n)c. Hence for
a constant c and corresponding s as in Lemma 4.16, let (A) denote the event (E), (B2),
and (B3) do not occur during iterations t0 ≤ t ≤ t0 + s. Then

Pr((B1) occurs) ≤ Pr
(

(A) and either Ŷ +
s <

cε

8
log(n) or Ŷ −s <

cε

4
log(n)

)
≤ Pr

(
(A) and Ŷ +

s <
cε

8
log(n)

)
+ Pr

(
(A) and Ŷ −s <

cε

8
log(n)

)
≤ Pr

(
Y +
s <

cε

8
log(n)

)
+ Pr

(
Y −s <

cε

8
log(n)

)
= o(1) + o(1).

Hence the probability (B1) occurs is o(1).

Lemma 4.18. For the same constant c > 0 as Lemma 4.16,

(i) Pr((B2) does not occur for all 0 ≤ t ≤ dc log2(n)e) = 1− o(1)

(ii) Pr((B3) does not occur for all 0 ≤ t ≤ dc log2(n)e) = 1− o(1).

Proof: (i) Recall that the probability (B2) occurs in iteration t is the probability of choosing
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rt such that rt ∈ (A+
t−1 ∪R(u(bt)))\{rt} and A+

t − Ŷ +
t < log2(n). Thus,

Pr((B2) occurs in iteration t) ≤
(A+

t−1 − 1) +R(u(bt))

θn− 2(t− 1)− 1

≤ k(t− 1)− 1 + k + log2(n)

θn− 2t+ 1

<
kt+ log2(n)

θn− 2t+ 1
.

For any t < log3(n) this probability is O
(

log3(n)
n

)
. Hence

Pr((B2) does not occur for all 0 ≤ t ≤ dc log2(n)e) = 1−O
(

log6(n)
n

)
.

(ii) Recall that the probability (B3) occurs in iteration t is the probability of choosing

bt such that bt ∈ A−t−1 ∪ B(u(rt)) and A−t − Ŷ −t < log2(n). Thus,

Pr((B3) occurs in iteration t) =
A−t−1 +B(u(rt))

θn− 2(t− 1)

≤ k(t− 1) + k + log2(n)

θn− 2t− 2
.

For any t < log3(n) this probability is O
(

log3(n)
n

)
. Hence

Pr((B3) does not occur for all 0 ≤ t ≤ dc log2(n)e) = 1−O
(

log6(n)
n

)
.

We now prove Proposition 4.15.

Proof of 4.15: Let c = 128k2

ε2
. Then by Corollary 4.17 and Lemma 4.18,

Pr
(
τ ≥

⌈
c log2(n)

⌉)
≥ 1− [o(1) + o(1) + o(1)] = 1− o(1).

Hence the statement holds.

We now use Proposition 4.15 to prove the following key proposition.

Proposition 4.19. Pr(Γ contains a subroutine that finds a good bin) = 1− o(1).

We begin the proof of this proposition with the following lemma.
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Lemma 4.20. Let c > 0 be the same as in Proposition 4.15 and s = dc log(n)e. Then
Pr
(
Y +
t , Y

−
t > 0 for all 0 ≤ t ≤ s and Y +

s , Y
−
s ≥ cε

8
log(n)

)
> α for some α > 0.

Proof: Let ρ+ and ρ− be the probability a Galton-Watson process with distribution η+ +1,
respectively η− + 1, is finite. The proof requires the following two claims.

Claim 1. Pr(Y +
t > 0 for all 0 ≤ t ≤ dc log(n)e) ≥ 1− ρ+.

Proof: Let {Xt}t≥0 be a Galton-Watson process with distribution η+ + 1. Recall that the
distribution of {Y +

t }t≥0 is also η+ + 1. Hence Xt can be coupled with Y +
t so that Xt = Y +

t

for all t in Γ̂ until Y +
t = 0. Thus

Pr(Y +
t > 0 for all 0 ≤ t ≤ dc log(n)e) ≥ Pr({X+}t≥0 is infinite),

which is defined to be 1− ρ+.

Claim 2. Pr(Y −t > 0 for all 0 ≤ t ≤ dc log(n)e) ≥ 1− ρ−.

Proof: The proof is identical to that of Claim 1 with η−, Y −t , and ρ− replacing η+, Y +
t ,

and ρ+ respectively.

Recall from Lemma 4.17, Pr
(
Y +
s < cε

8
log(n)

)
= o(1) and Pr

(
Y −s < cε

8
log(n)

)
= o(1)

for s = dc log(n)e. Hence,

Pr
(
Y +
t , Y

−
t > 0 for all 0 ≤ t ≤ s and Y +

s , Y
−
s ≥

cε

8
log(n)

)
≥ Pr(Y +

t , Y
−
t > 0 for all 0 ≤ t ≤ s)−Pr

(
Y +
s <

cε

8
log(n)

)
−Pr

(
Y −s <

cε

8
log(n)

)
≥
(
Pr(Y +

t > 0 for all 0 ≤ t ≤ s)
) (

Pr(Y −t > 0 for all 0 ≤ t ≤ s)
)
− o(1)

≥ (1− ρ+)(1− ρ−)− o(1).

As E(η+ + 1) = E(η− + 1) ≥ ε
4

+ 1 > 1, by Proposition 3.3.ii, 0 < ρ+ < 1 and 0 < ρ− < 1.
Hence α = 1

2
(1− ρ+)(1− ρ−) > 0 suffices.

We can now prove Proposition 4.19.

Proof of 4.19: Recall that a subroutine Γ̂ stops only when (E) or one of (B1), (B2), and

(B3) occurs. Furthermore, τ ≤ log3(n) and (B1) occurs if Γ̂ performs log2(n) iterations
without finding a good bin. Thus, if Γ does not contain a subroutine that finds a good
bin, at least log(n) subroutines are completed before Γ aborts in iteration τ .

49



Define a subroutine Γ̂ to be a success if Γ̂ finds a good bin. Let S be the number of
successful subroutines in the first log(n) subroutines in Γ.

Pr(S = 0) ≤ Pr((B1), (B2), or (B3) occurs before iteration log3(n))

+ Pr((E) occurs log(n) times)

≤ o(1) +
[
1−Pr

(
Y +
t , Y

−
t > 0 for all 0 ≤ t ≤ s and Y +

s , Y
−
s ≥

cε

8
log(n)

)]log(n)

< o(1) + [1− α]log(n).

Thus a.a.s. Γ contains a subroutine that finds a good bin before τ .

Proposition 4.20 implies that Γ finds a good bin v before O(log3(n)) pairs of C are
exposed. It remains to show that v is in a giant SCC of C.

4.2.4 Proof of Theorem 4.1(ii)

In this section, we prove Theorem 4.1(ii). We do so by proving that with high probability,
a good bin v is in a giant SCC. This is accomplished by showing that a.a.s. there are a
linear number of pairs (r, b) with r ∈ R(F+(v)) and b ∈ B(F−(v)) and these pairs are in
the same SCC. We then apply the following key lemma.

Lemma 4.21. If K ∈ K(C) contains a linear number of pairs, then |V (K)| = Ω(n).

Proof. Let K ∈ K(C) be a SCC with δn pairs for some δ > 0. Since Dn is well-behaved
and C ∈ C(Dn), there exist integers k and N such that for all n > N ,∣∣∣∣∣ k∑i=0

k∑
j=0

ij
nij

θn
−
∑
i≥0

∑
j≥0

ij
nij

θn

∣∣∣∣∣ < δθ
4

by uniform convergence. Thus,

δθ

4
>

∣∣∣∣∣
k∑
i=0

k∑
j=0

ij
nij
θn
−
∑
i≥0

∑
j≥0

ij
nij
θn

∣∣∣∣∣
=

∣∣∣∣∣
k∑
i=0

k∑
j=0

ij
nij
θn
−

(
k∑
i=0

k∑
j=0

ij
nij
θn

+
∑
i≥0

∑
j>k

ij
nij
θn

+
∑
i>k

k∑
j=0

ij
nij
θn

)∣∣∣∣∣
=
∑
i≥0

∑
j>k

ij
nij
θn

+
∑
i>k

k∑
j=0

ij
nij
θn
,
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which implies δ
4
n >

∑
i≥0

∑
j>k

ijnij +
∑
i>k

k∑
j=0

ijnij. Hence

R>k =
∑
i≥1

∑
j>k

jnij ≤
∑
i≥0

∑
j>k

ijnij +
∑
i>k

k∑
j=0

ijnij <
δ

4
n.

By symmetry, B>k =
∑
i>k

∑
j≥1

inij <
δ
4
n.

Since K is strongly connected, each bin in K contains at least one red and at least one
blue point. Thus for all u, v ∈ V (K), if B(u) > k then B(u) ⊆ B>k and if R(v) > k then
R(v) ⊆ R>k. As B>k +R>k <

δ
2
n, there exists at least δ

2
n pairs in K whose red points are

not in R>k and blue points are not in B>k. This implies |V (K)| ≥ δ
2k
n, as desired.

Let v be a good bin and Γ̂ be the subroutine that starts at v in iteration t0. Define
t1 = t0 + dc log(n)e where c is the same constant as in Proposition 4.16. Instead of

continuing Γ̂ in iteration t1 +1, we will explore F+(v) and F−(v) separately using two new

procedures Γ̂+ and Γ̂−. This will make it easier for us to prove there is a linear number of
pairs that contain a red point in R(F+(v)) and blue point in B(F−(v)).

We begin by performing the exploration procedure Γ̂+ described below. This procedure
will show that with high probability, within the first σ

4
n iterations of Γ̂+, there will be an

iteration that contains a linear number of active red points. First, Γ̂+ couples A+
t with

a new random variable X+
t . X+

t is defined such that X+
t1 = A+

t1 and for all t > t1,
X+
t = X+

t−1 + j − 1 with probability p+
j (t) for all 1 ≤ j ≤ k and X+

t = X+
t−1 − 1 with the

remaining probability.

In each iteration t > t1 of Γ̂+, the following procedure is performed.

1. Choose a red point rt ∈ A+
t−1.

2. One of the following is performed with the corresponding probability:

(a) For each 1 ≤ j ≤ k, with probability p+
j (t) let X̂+

t = X̂+
t−1 + j − 1 and choose bt

uniformly at random from B(Rj(t))\U−t−1. Pair rt with bt.

(b) Otherwise, let X̂+
t = X̂+

t−1 − 1 and choose bt uniformly at random from
[B(R>k(t)) ∪ B(R0(t))]\U−t−1. Pair rt with bt.

3. Change the states of rt and bt to used and the states of all sleeping red points in
bin(bt) to active.
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Note that this procedure exposes exactly one pair in C during each iteration and this pair
is in F+(v). Furthermore, A+

t ≥ X̂+
t for all t ≥ t1.

We stop Γ̂+ in iteration τ+ where τ+ = min
{
t > t1 | A+

t = 0 or A+
t =

⌈
εσ
32
n
⌉}

. We then
have the following lemmas about τ+.

Lemma 4.22. Let σ be as in Lemma 4.8. Pr(X+
t > 0 for all t1 < t ≤ σn) = 1− o(1).

Proof: Note that the coupling of A+
t with Y +

t in Γ implies A+
t1 ≥ Ŷ +

t1 ≥
cε
8

log(n) where c is
the constant from Proposition 4.15. Furthermore, X+

t −X+
t−1 ≥ −1 for all t1 < t. Hence

for all t1 < t < t1 +
⌈
cε
8

log(n)
⌉
, Pr(X+

t = 0) = 0.

Let τ ∗ = min{t > t1 | X+
t = 0}. Recall that for all t1 ≤ t ≤ σn,

E(X+
t+1 −X+

t ) =

(
k∑
j=0

jp+
j (t)

)
− 1 ≥

(
k∑
j=0

jφ+
j

)
− 1 >

ε

4
.

Thus, {X+
t − ε

4
(t− t1)}t1≤t≤τ∗ is a sub-martingale. Hence by Corollary 3.10, for

t ≥ t1 +
⌈
cε
8

log(n)
⌉
,

Pr(X+
t = 0) ≤ Pr

([
X+
t −

ε

4
(t− t1)

]
−X+

t1
≤ −

[
X+
t1

+
ε

4
(t− t1)

])
≤ e−[4X+

t1
+ε(t−t1)]2/32k2(t−t1)

= e−(X+
t1

)2/2k2(t−t1) · e−X
+
t1
ε/2k2 · e−ε2(t−t1)/32k2

≤ e−cε
3 log(n)/256k2

= n−cε
3/256k2 .

Thus for t∗ = t1 +
⌈
cε
8

log(n)
⌉
,

Pr(X+
t > 0 for all t1 ≤ t ≤ σn) = 1−

σn∑
t=t1

Pr
(
X+
t = 0

)
= 1−

σn∑
t=t∗

Pr
(
X+
t = 0

)
≥ 1− (θn− t∗)n−cε3/256k2 .

Note that for c = max{128k2

ε2
, 256k2

ε3
}, all the results in Section 4.2.3 hold. Furthermore,

1− (θn− t∗)n−cε3/256k2 = 1− o(1) for this choice of c, and so the statement holds.
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Lemma 4.23. Let t2 = t1 +
⌊
σ
4
n
⌋
. Pr(A+

t ≥
⌈
εσ
32
n
⌉

for some t1 ≤ t ≤ t2) = 1− o(1).

Proof: By Lemma 4.22, with high probability A+
t ≥ X̂+

t > 0 for all t1 < t ≤ t2 and so Γ̂+

stops in iteration t < t2 only if A+
t ≥

⌈
εσ
32
n
⌉
. Also, E(A+

t −A+
t−1) ≥ E(X+

t −X+
t−1) > ε

4
for

all t1 < t ≤ t2. Thus E(X+
t2) > ε

4
(t2 − t1) and so by Corollary 3.10,

Pr
(
X+
t2
<
⌈εσ

32
n
⌉)

= Pr
([
X+
t2
− ε

4
(t2 − t1)

]
−X+

t1
≤ −

[
X+
t1

+
ε

8
(t2 − t1)

])
≤ e−[8X+

t1
+ε(t2−t1)]2/128k2(t2−t1)

= e−(X+
t1

)2/2k2(t2−t1) · e−εX
+
t1
/4k2 · e−ε2(t2−t1)/128k2

≤ e−ε
2σn/512k2 .

Hence Pr
(
X+
t2 ≥

⌈
εσ
32
n
⌉)

= 1− o(1) and so
Pr(A+

t ≥
⌈
εσ
32
n
⌉

for some t1 ≤ t ≤ t2) = 1− o(1).

As A+
t ≥ X̂+

t for all t ≥ t1, Lemmas 4.22 and 4.23 imply that a.a.s. τ+ < t1 + σ
4
n and

Γ̂+ stops because A+
τ+ =

⌈
εσ
32
n
⌉
. We then begin the exploration procedure Γ̂− in iteration

τ+ + 1. This new procedure is essentially the same as Γ̂+, but uses the appropriate sets for
exposing the fan-in rather than the fan-out of a bin (i.e. U+

t−1 instead of U−t−1 and R(Bi(t))
instead of B(Rj(t))). It will also be used to show that with high probability, within the

first σ
4
n iterations of Γ̂−, there will be an iteration that contains a linear number of active

blue points.

First, let X−t be a new random variable such that X−τ+ = A−τ+ and for all t > τ+,
X−t = X−t−1 + i − 1 with probability p−i (t) for all 1 ≤ i ≤ k and X−t = X−t−1 − 1 with the

remaining probability. Γ̂− is defined to be the same procedure as Γ̂+, but using X−t , bt,
A−t−1, p−i (t), rt, R(Bi(t)), U+

t−1, and [B(R>k(t)) ∪ B(R0(t))] instead of X+
t , rt, A+

t−1, p+
j (t),

bt, B(Rj(t)), U−t−1, and [R(B>k(t)) ∪R(B0(t))] respectively.

As before, Γ̂− stops in iteration τ− where τ− = min
{
t > τ+ | A−t = 0 or A−t =

⌈
εσ
32
n
⌉}

.
The following lemmas about τ− are similar to the results of Lemmas 4.22 and 4.23.

Lemma 4.24. Let σ be as in Lemma 4.8. Pr(X−t > 0 for all τ+ < t ≤ σn) = 1− o(1).

Proof: The proof is essentially the same as that of Lemma 4.22 with the assumption that
A−τ+ ≥

cε
8

log(n). We therefore only prove this assumption.

53



Note that the coupling of A−t with Y −t in Γ implies A−t1 ≥ Y −t1 ≥
cε
8

log(n) where c is the

constant as Proposition 4.16. Also, the procedure of Γ̂+ implies
A−τ+ = A−t1\{bt | t1 < t ≤ τ+}. Furthermore, for t1 < t ≤ τ+,

Pr
(
bt ∈ A−t1 and A−t−1 =

⌈cε
8

log(n)
⌉)
≤
⌈
cε
8

log(n)
⌉

θn− τ+

<
cε log(n)

8θn− 4σn

Hence with high probability, Γ̂+ does not pair an active red point with an active blue point
in iteration t when there are only

⌈
cε
8

log(n)
⌉

active blue points. Thus with high probability
A−τ+ ≥

⌈
cε
8

log(n)
⌉
. The remainder of the proof follows the same form as Lemma 4.22.

Lemma 4.25. Let t3 = τ+ +
⌊
σ
4
n
⌋
. Pr(A−t ≥

⌈
εσ
32
n
⌉

for some τ+ ≤ t ≤ t3) = 1− o(1).

Proof: The proof is essentially the same as that of Lemma 4.23, using Lemma 4.24 instead
of Lemma 4.22.

Recall that we aim to find a linear number of pairs (r, b) such that r ∈ R(F+(v)) and
b ∈ B(F−(v)). We do so by showing there exists a linear number of pairs (r, b) such that
r ∈ A+

τ+ and b ∈ A−t for some τ+ < t ≤ τ−. Let P be the set of these pairs, i.e.

P = {(r, b) | r ∈ A+
τ+ , b ∈ A

−
t for some τ+ < t ≤ τ−},

and let P = |P|.

Note that if in a linear number of iterations Γ̂− pairs an active blue point with an active
red point, then P = Ω(n) and we are done. Thus, we may assume Γ̂− does not do so, hence
A+
τ− >

1
4
A+
τ+ ≥

⌈
εσ
128
n
⌉
.

Let A′ be an arbitrary subset of A+
τ− of size

⌈
εσ
128
n
⌉
. We have the following lemma.

Lemma 4.26. Suppose the pairs containing the points of A′ are exposed in some order.
Then the probability a given point r ∈ A′ is paired with a point b ∈ A−τ− is at least εσ

64θ
.

Proof: Let t∗ = τ− +
⌈
εσ
128
n
⌉
. Note that the probability of pairing a point r ∈ A′ with a
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point b ∈ A−τ− is at least the probability bt∗ ∈ A−τ− given bt ∈ A−τ− for all τ− < t < t∗.

Pr(bt∗ ∈ A−τ−) ≥
A−τ− − 2(t∗ − τ− − 1)

θn− 2(t∗ − 1)

≥
εσ
32
n− 2

(
εσ
128
n
)

θn−
(
εσ
64
n
)

>
2εσn− εσn

64θn
.

Thus for each r ∈ A′, r is in a pair with some b ∈ A−τ− with probability at least εσ
64θ

.

This leads to the following result for P .

Lemma 4.27. E(P ) >
⌊
ε2σ2

8192θ
n
⌋

and Pr
(
P ≤ ε2σ2

4096θ
n
)

= o(1).

Proof: Using Lemma 4.26,

E(P ) >
(⌊ εσ

128
n
⌋)( εσ

64θ

)
=

⌊
ε2σ2

8192θ
n

⌋
.

We define a sequence of trials X1, X2, . . . , Xεσn/128 such that Xi = 1 if the pair of the ith

point in A′ is in P and Xi = 0 otherwise. Let X be the random variable X =
εσn/128∑
i=1

Xi.

Clearly for each i, max |E(X | X1, . . . , Xi+1) − E(X | X1, . . . , Xi)| ≤ 1. Thus by the
Azuma-Hoeffding inequality,

Pr

[
|X − E(X)| >

(
ε2σ2

16384θ
n

)]
≤ 2 exp

(
− ε4σ4n2

(16384)2θ2
/2
εσn

128

)
≤ e−ε

3σ3n/(2048θ)2 .

As P ≥ X, this implies P ≥ ε2σ2

16384θ
n a.a.s.

By Lemma 4.27, with high probability P = Ω(n). To apply Lemma 4.22, it remains to
show that all pairs in P are in the same SCC.

Lemma 4.28. All pairs in P are in K(v) ∈ K(C).
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Proof: Let B(P) be the set of blue points that are in pairs in P and let R(P) be the set
of red points in pairs in P . Define V (B(P)) to be the set of bins that contain a point in
B(P), i.e. V (B(P)) = {v ∈ V (C) | v = bin(b), b ∈ B(P)}. Similarly, let
V (R(P)) = {v ∈ V (C) | v = bin(r), r ∈ R(P)}. By Lemma 2.9, it suffices to show that
for all u ∈ V (B(P))∪V (R(P)), there exists a directed uv-path and directed vu-path in C.

By the exploration procedures, it is clear that for all u ∈ V (B(P)) and w ∈ V (R(P)),
there exists a uv-path and vw-path in C. It remains to show for all u ∈ V (B(P))\V (R(P))
and w ∈ V (R(P))\V (B(P)), there exists a vu-path and wv-path in C.

By the definition of V (B(P)), there exists a point bu ∈ B(u) such that (ru, bu) is a pair
in P for some ru ∈ R. Thus ru ∈ R(P) and so there is exists a vbin(ru)-path Q in C.
Hence Qu is a vu-path in C. Similarly, there exists a point rw ∈ R(w) such that (rw, bw)
is a pair in P for some bw ∈ B. Hence bw ∈ B(P) and so there is exists a bin(bw)v-path Q′

in C. Hence wQ′ is a wv-path in C.

Hence by Lemma 2.9, u ∈ V (K(v)) for all u ∈ V (B(P)) ∪ V (R(P)). Thus all pairs in
P are in K(v).

We can now prove that K(v) is a giant SCC.

Proposition 4.29. Let v ∈ V (C) be a good bin. Then a.a.s. K(v) is a giant SCC.

Proof. By Lemma 4.27, with high probability there exists Ω(n) pairs (r, b) such that
r ∈ R(F+(v)) and b ∈ B(F−(v)) and all of these pairs are in K(v) by Lemma 4.28. Hence
by Lemma 4.21, |V (K(v))| = Ω(n) and so K(v) is giant.

Propositions 4.19 and 4.29 immediately imply that C ∈ C(Dn) a.a.s. contains a giant
SCC. Thus applying Proposition 3.17 completes the proof of Theorem 4.1(ii).

In Chapter 6, we will explain how Theorem 4.1 can be applied to predict a new site
percolation threshold result. First, we will discuss some previous results and techniques
from percolation theory in Chapter 5.
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Chapter 5

Percolation on Directed Graphs

The percolation model is a simple stochastic model that was first introduced by Broadbent
and Hammersley in 1957 [10]. It can be described using a plane square lattice and number
p such that 0 < p < 1. Each edge of the lattice is examined in turn and declared open
with probability p and closed with probability 1 − p, independently of all other edges. A
path between two boundaries of some finite subsection of the lattice such that the path
only contains open edges is called an open path.

The theory surrounding the use of percolation models is called percolation theory and
has been used to study random physical processes, such as fluid flow through disordered
media. Percolation has been studied by physicists and mathematicians alike as it is easy
to formulate and its qualitative predictions are fairly realistic. It can also be used to derive
results for more complex systems, such as inhomogeneous models and models where the
states of different edges are not independent (sometimes called dependent percolation).

Percolation models are often used to study behaviors of systems that drastically change
with respect to some natural parameter. This typically can be described as a change in
the component structure of random subgraphs of graphs due to some change in an aspect
of the graph. For example, the existence of an open path through a lattice is more likely
when edges are likely to be open (p ≈ 1) than when they are likely to be closed (p ≈ 0). In
fact, there exists a certain threshold pc for which an open path almost surely exists when
p > pc and almost surely does not exist when p < pc.

Definition 5.1. The percolation threshold with respect to some parameter ρ is the thresh-
old function t(ρ) for a behavior affected by ρ in the percolation model for a system.

One area of research in percolation theory has been to determine the percolation thresh-
olds for various properties. Another area has focused on studying the behavior of systems
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at or around some percolation threshold. As a result, percolation models are categorized
in terms of the percolation threshold.

Definition 5.2. Let p be the value of the parameter measured by the percolation threshold
pc in a percolation model.

(i) If p < pc, then the model is subcritical.

(ii) If p > pc, then the model is supercritical.

(iii) If p = pc, then the model is critical.

Figure 5.1 provides an example of a subcritical, supercritical, and critical percolation
model for the tiling of a grid.

(a) A subcritical model. (b) A supercritical model. (c) A critical model.

Figure 5.1: A percolation model where tiles are open (white) with probability p and closed
(black) with probabiltiy 1− p.

Another example of a percolation model can be used to describe Erdős and Rényi’s
result on the presence of a giant component in G(n,N), which was stated in Proposition
2.4 [14]. For G(n,N), define c such that N = cn+o(1). Then the percolation threshold for
the presence of a giant component is c = 1

2
. Thus, in the subcritical model c < 1

2
and so

asymptotically almost surely G(n,N) has no giant component. In the supercritical model,
c > 1

2
and so asymptotically almost surely G(n,N) has a giant component. The critical

model was shown by  Luczak in [28] to have its largest component be of size θ(n2/3).

As suggested by the 30 years between [14] and [28], it is often difficult to analyze the
behavior of a system when the system is modeled by a critical or nearly critical percolation
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model. Such models are often referred to as being in the critical window and typically
require different techniques.

In this chapter, we will focus on two types of discrete percolation, known as site and
bond percolation. These types of percolation are closely related, which we discuss in Section
5.1.2. In Section 5.1, we will also discuss some known percolation thresholds for both site
and bond percolation. Section 5.2 will present the technique of Janson from [22] that we
use in Chapter 6.

5.1 Discrete Percolation

As mentioned at the start of this chapter, percolation theory studies fluid flow and other
similar processes in random media. Depending on the medium, different models are used
to analyze these behaviors. For example, if the medium being studied is only able to be
modeled by uncountable domains, such as Rd or non-discrete subsets of Rd, then the perco-
lation model must also be described on a continuum. This is often referred to as continuum
percolation theory and several models have been developed to study such percolation.

Graphs are an example of a medium that is a discrete rather than continuous set. Such
media fall under the domain of discrete percolation theory.

Definition 5.3. Discrete percolation is the term used to describe models of percolation
theory whose media are discrete sets.

Many common models for studying discrete percolation use a regular point lattice as
the underlying model of the medium. On such a structure, several types of percolation can
be applied. The two most common types of percolation applied to the point lattice are site
percolation and bond percolation. We discuss these types of percolation and some results
known for each in the following subsections.

5.1.1 Site Percolation

Although site percolation is often applied to a regular point lattice, we will analyze site
percolation on directed and undirected graphs. We therefore define site percolation on a
graph rather than on a lattice.

Definition 5.4. Let G be a graph and 0 < p < 1. For each vertex v in G, remove v and
its incident edges with probability 1 − p independently of all other vertices. This model is
called site percolation.
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(a) G (b) Site percolation on G, p = .5.

Figure 5.2: Site percolation on a directed graph G.

Site percolation gets its name from the standard percolation theory terminology where
vertices are called “sites” and edges are called “bonds.”

Although not as commonly used as bond percolation, site percolation can be used to
study the presence of an infinite component in a random subgraph of the infinite graph. For
finite graphs with a large number of vertices, site percolation instead studies the presence
of a giant component in the graph. This can be further generalized to sequences of random
graphs on n vertices with fixed degree sequences.

One of the first to study site percolation on sequences of random graphs was Foun-
toulakis. In [15] from 2008, he found the percolation threshold psite that determines the
existence of a giant component in a graph G′ resulting from site percolation of a sparse
random graph with fixed degree sequence. In other words, when p < psite, for all ε > 0,
with high probability G′ contains no components with at least εn vertices. However, if
p > psite, then (with high probability) G′ contains a component of size θ(n).

Fountoulakis’ work was extended by Janson in 2009 [22] through an “explosion” tech-
nique. We will discuss this technique in Section 5.2. Janson also applied the technique to
find the threshold for the presence of a k-core after site percolation. Some other known
results for site percolation on various types of undirected graphs can be found in [18] and
[7].

Site percolation on directed graphs is much less studied. Schwartz et al. [40] found
that site percolation in directed graphs is greatly affected by the existence of correlations
between a vertex’s in-degree and its out-degree. However, their results are not proved
rigorously. In Chapter 6, we present new results for site percolation in graphs with well-
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behaved degree sequences.

5.1.2 Bond Percolation

As with site percolation, we define bond percolation on a graph rather than on a lattice.

Definition 5.5. Let G be a graph and 0 < p < 1. For each edge e in G, remove e with
probability 1 − p independently of all other edges. All vertices remain in the graph. This
model is called bond percolation.

(a) G (b) Bond percolation on G, p = .5.

Figure 5.3: Bond percolation on a directed graph G.

Bond percolation also gets its name from standard percolation theory terminology as
edges are called “bonds.”

Note that G(n, p) can be thought of as bond percolation on the complete graph on n
vertices. Because of this relation, bond percolation has been well studied for a wide variety
of properties in undirected graphs. In addition, the self-duality of the square lattice has
made bond percolation on lattices one of the most studied percolation processes. Grim-
mett’s text [18] consists almost entirely of results for bond percolation on d-dimensional
cubic lattices.

In terms of sequences of finite graphs, Fountoulakis also found the percolation threshold
pbond for the existence of a giant component after bond percolation on sparse random graphs
with fixed degree sequences [15]. In fact, he showed that for such degree sequences,
psite = pbond. This relationship between the thresholds of the two models does not hold in
general. However, the following relation always holds.
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Proposition 5.6 ([18]). Let G be a connected, infinite, locally finite multigraph. Then the
percolation thresholds of G satisfy pbond ≤ psite.

Proof: Let v be a vertex of G. We define Gn to be the subgraph of G induced by the
vertices of G within distance n of v. Consider site percolation on Gn and define Ks(v) to
be the open component containing v in Gn. Note that Ks(v) is empty if v is closed by the
percolation, so we may condition on v being open.

We explore Ks(v) conditioned on v being open by testing the state after percolation of
the vertices in Gn. This is done by constructing a random sequence
Γ = {(Ot, Ct,Ut)}1≤t≤` of tripartitions of the vertex set V (Gn) for some ` ≤ |V (Gn)|. In
this sequence, Ot is the set of open vertices, Ct the set of closed vertices, and Ut the set of
untested vertices after the state of the tth vertex in V (Gn) is determined. The sequence
stops in iteration ` when every vertex adjacent to a vertex in O` is in O` ∪C`. In this case,
Ks(v) = O`.

To define Γ, let O1 = {v}, C1 = ∅, and U1 = V (Gn)\{v}. Given (Ot, Ct,Ut), if there is no
edge between a vertex of Ot and Ut, then t = ` and the sequence terminates. Otherwise,
choose an edge otut with ot ∈ Ot and ut ∈ Ut and set Ut+1 = Ut\{ut}. We test ut to
determine if it is open or closed. If ut is open, then Ot+1 = Ot∪{ut} and Ct+1 = Ct. If not,
then Ot+1 = Ot and Ct+1 = Ct ∪ {ut}. Note that at each step, the conditional probability
ut is open is p. Furthermore, this process terminates since Gn is finite.

By the construction, for every t, Ot is a set of open vertices such that the graph induced
by Ot is connected and all of the vertices in Ct are closed. As no vertex in Ot has a neighbor
in U` = V (Gn)\(O` ∪ C`), O` is precisely the open component of v in Gn, or Gs

v.

To compare Gs
v to Gb

v, which is the open component containing v in the bond percolation
of Gn, we explore Gb

v in a similar fashion. Let Γ′ = (O′t, C ′t,U ′t)`
′
t=1 be a random sequence

that is constructed in the same manner as Γ with one addition. Once edge et = otut is
chosen, et is tested to determine if it is open. As this is the first time et is tested, conditional
on the sequence Γ′ up to step t, the probability et is open is p. Hence Γ and Γ′ have the
same distribution and so |Gs

v| = |O`| and |O′`′ | have the same distribution.

As O′`′ is contained in the open component Gb
v of v in Gn in the bond percolation,

Prs(|Gs
v| ≥ n | v is open) ≤ Prb(|Gb

v| ≥ n),

where Prs and Prb denote the probability measures on the set of subgraphs of G in site
and bond percolation respectively. Furthermore, for every vertex x of G, every integer
n ≥ 1, and every probability 0 < p < 1,

Prs(|Gs
x| ≥ n) ≤ pPrb(|Gb

x| ≥ n).
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Let θx denote the probability that the open component containing x is infinite. Then as
n→∞, θx(G

s
x) ≤ pθx(G

b
x). Thus, if θx(G

b
x) = 0, then θx(G

s
x) = 0 and so pbond ≤ psite.

In Chapter 6, we will study site percolation instead of bond percolation. This is because
bond percolation on a graph G is equivalent to site percolation on the line graph of G,
denoted L(G). Hence percolation thresholds for bond percolation can be found using site
percolation on the line graph of the original graph.

The next section describes the technique introduced by Janson in [22]. The version of
this method presented is for directed graphs and will be used in Chapter 6.

5.2 Percolation by Exploding Vertices and Edges

In [22] from 2009, Janson introduced a method of performing site and bond percolation that
completes the required vertex and edge deletions in two steps. First, vertices (respectively
edges) are “exploded.” Then, uniformly at random some vertices of degree 1 and their
incident edges are removed. In this section, we adapt this technique for directed graphs
with well-behaved degree sequences.

We first describe the method for site percolation using the configuration model. Let
C be a configuration with a well-behaved degree sequence and 0 < p < 1 a probability.
Recall that for a bin v ∈ V (C), R(v) and B(v) are the number of red and blue points
respectively contained in v. For each bin v in C, with probability 1 − p replace it with
R(v) bins containing 1 red and no blue points and B(v) bins containing 1 blue and no red
points. This process of replacing a bin is referred to as exploding that bin.

The result of this first step is a new configuration C∗. We let N ∗i,j denote the set of
bins in C∗ that contain exactly i blue and j red points and let n∗i,j = |N ∗i,j|. The next step
is to delete n∗1,0 − n1,0 randomly chosen bins in N ∗1,0 as well as n∗0,1 − n0,1 randomly chosen
bins in N ∗1,0 together with all points in pairs with points in these bins. This results in a
configuration C ′ with the same degree sequence as the configuration obtained by deleting
the selected bins and their pairs in C directly. Figure 5.4 demonstrates this procedure.

The technique for bond percolation is similar. However, instead of exploding bins into
new bins that contain exactly one point, we “explode” pairs. This is accomplished by
replacing the partner (i.e. other point in its pair) of each point in the pair with a new
point such that this point is in a new bin, it is the same color as the partner, and it is the
only point in its bin. Note that this replaces the exploded pair with two new pairs. Again,
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(a) The original configuration C. (b) The exploded configuration C∗.

(c) The resulting configuration C ′.

Figure 5.4: Site percolation using Janson’s method.

the second step involves deleting a certain amount of bins containing only one point and
the points in pairs with points in these bins.

To be more precise, let C be a configuration on n bins with a well-behaved degree
sequence and 0 < p < 1 a probability. For each entry d+

i and d−i in the degree sequence,
replace them by independent random degrees f+

i and f−i which have binomial distributions

Bi(d+
i ,
√
p) and Bi(d−i ,

√
p) respectively. Then add n+ =

n∑
i=1

(d+
i − f+

i ) in-degree 0 and out-

degree 1 as well as n− =
n∑
i=1

(d−i − f−i ) in-degree 1 and out-degree 0 terms to the degree
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sequence. This defines the degree sequence of the configuration obtained by exploding a
pair with probability 1− p.

The next step is to construct a random configuration C∗ with this new degree sequence
and then delete n− randomly chosen bins of N ∗1,0 as well as n+ randomly chosen bins of N ∗0,1
together with all points in pairs with points in these bins. This results in a configuration
with the same degree sequence as the configuration obtained by deleting the selected pairs
of C directly. Figure 5.5 demonstrates this procedure.

(a) The original configuration C. (b) The exploded configuration C∗.
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(c) The resulting configuration C ′.

Figure 5.6: Bond percolation using Janson’s method.

The benefit of using this method is that it reduces percolation problems to a simple
random modification of the degree sequence followed by a random removal of a set of bins
that contain only one point. Since a bin must have at least one red and one blue point to
be included in a SCC, removing this set of bins does not affect the size of the largest SCC.
Thus, the size of the largest SCC in configurations with the modified degree sequence is the
same as the size of the largest SCC in the random configurations resulting from percolation
on the original configuration.

Therefore, assuming the degree sequence of the exploded graph is well-behaved, we
may apply Theorem 4.1 to these modified degree sequences to determine the percolation
threshold for graphs with well-behaved degree sequences. We will see an example of such
a result in Chapter 6.
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Chapter 6

Percolation Thresholds for Giant
Strongly Connected Components - A
Heuristic Investigation

As mentioned in Chapter 5, both site and bond percolation have been studied on undirected
graphs. Percolation thresholds for the presence of a giant connected component are known
for many types of graphs, including lattices Zd for d ≥ 2 [18] and G(n, p) [14]. Other results
are known for sequences of graphs, including sequences of hypercubes [1, 9], graphs with
uniformly bounded maximum degree [2], and sparse random graphs on n vertices [15, 22].

In this chapter, we use a heuristic approach to predict a certain site percolation thresh-
old for the presence of a giant strongly connected component for graphs with well-behaved
degree sequences. This approach will use the adaptation of Janson’s technique shown in
Section 5.2 to reduce the problem to studying the modified degree sequence of the exploded
graph. We then present some arguments that suggest the exploded graph is likely to have
a well-behaved degree sequence. If this is true, then Theorem 4.1 can be applied to the
exploded graph’s degree sequence to obtain the site percolation threshold.

6.1 Site Percolation on G(Dn)

Let Dn be the well-behaved degree sequence. Recall that G(Dn) is the set of all graphs
with degree sequence Dn and λ(Dn) =

∑
i≥0

∑
j≥0

ij
ni,j

θn
. We trivially have the following result.
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Lemma 6.1. Let Dn be a well behaved degree sequence such that λ(Dn) = 1− ε for some
ε > 0. For any 0 ≤ p ≤ 1, let G be a random graph in G(Dn) and G′p be a random graph
obtained by site percolation on G where vertices are retained with probability p. Then a.a.s.
every SCC of G′p has size O([∆(Dn)]2 log(n)).

Proof: Let 0 ≤ p ≤ 1. Note that the largest SCC of any graph resulting from site percola-
tion on G is at most the size of the largest SCC of G. By Theorem 4.1, a.a.s. every SCC
of G has size O([∆(Dn)]2 log(n)). Thus every SCC of G′p has size O([∆(Dn)]2 log(n)).

For the remainder of this section, we will assume λ(Dn) = 1 + ε for some ε > 0. Also,
we assume G is a random graph in G(Dn) and p is a probability such that 0 < p < 1. Let
G∗ be a random graph obtained by exploding the vertices of G with probability 1− p and
D∗n be the degree sequence of G∗.

We believe it should be easy to prove that if Dn is a well-behaved degree sequence,
then a.a.s. D∗n is a well-behaved degree sequence such that λ(D∗n) = pλ(Dn). However, we
will only present some partial and supporting arguments for this result in this section. We
begin with some arguments that suggest a.a.s. D∗n is well-behaved.

Let N ∗i,j to be the set of all vertices in G∗ of in-degree i and out-degree j and let
n∗i,j = |N ∗i,j|. Also, let n∗ denote the number of vertices in G∗. We have the following
result.

Lemma 6.2. Let Dn be a well behaved degree sequence such that λ(Dn) = 1 + ε for some
ε > 0, G be a random graph in G(Dn), and 0 < p < 1 be a probability. Let G∗ be a random
graph obtained by exploding the vertices of G with probability 1−p and let D∗n be the degree
sequence of G∗. Then,

(i) D∗n is feasible;

(ii) ∆(D∗n) = o[(n∗)1/4]; and

(iii) max

(∑
i≥0

∑
j≥0

i2
n∗i,j
n∗
,
∑
i≥0

∑
j≥0

j2 n
∗
i,j

n∗

)
≤ A∗2 for some absolute constant A∗2.

Proof. (i) G∗ ∈ G(D∗n) and so this holds trivially.

(ii) For all such G∗, n∗ ≥ n. Furthermore, ∆+(D∗n) ≤ ∆+(Dn) and ∆−(D∗n) ≤ ∆−(Dn).
Hence ∆(Dn) = o(n1/4) implies ∆(D∗n) = o[(n∗)1/4].
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(iii) Note that when a vertex inNi,j is exploded, the amount it contributes to
∑
i≥0

∑
j≥0

i2
n∗i,j
n∗

is at most the amount it contributes to
∑
i≥0

∑
j≥0

i2
ni,j

n
(since 12 ≤ i2 for all i > 0 and n∗ ≥ n).

Similarly for
∑
i≥0

∑
j≥0

j2 n
∗
i,j

n∗
. Thus,

max

(∑
i≥0

∑
j≥0

i2
n∗i,j
n∗

,
∑
i≥0

∑
j≥0

j2
n∗i,j
n∗

)
≤ max

(∑
i≥0

∑
j≥0

i2
ni,j
n
,
∑
i≥0

∑
j≥0

j2ni,j
n

)
≤ A2

for some absolute constant A2. Hence A∗2 = A2 suffices.

By Lemma 6.2, D∗n is feasible and satisfies the first and third conditions of Definition
2.17. It remains to show that D∗n is smooth and satisfies the second and fourth conditions.
We provide some support for these conditions by performing the necessary calculations
using E(n∗i,j) and E(n∗) instead of n∗i,j and n∗ for all i, j ≥ 0. We expect some concentration
arguments can be used to show the results of the calculations with n∗i,j and n∗ are similar
to those with E(n∗i,j) and E(n∗).

Therefore, we begin by calculating E(n∗i,j) and E(n∗) for all i, j ≥ 0. Note that for all
(i, j) /∈ {(1, 0), (0, 1)}, the number of vertices in Ni,j that are not exploded is equal to n∗i,j
and has binomial distribution Bi(ni,j, p). Thus

E(n∗i,j) = pni,j.

Furthermore, N ∗1,0 consists of the vertices in N1,0 as well as all the new vertices of in-degree
1 and out-degree 0 that were created by vertex explosions. Hence

E(n∗1,0) = n1,0+(1−p)

[(∑
i≥1

∑
j≥0

ini,j

)
− n1,0

]
= n1,0+(1−p)(θn−n1,0) = pn1,0+(1−p)θn.

Similarly,

E(n∗0,1) = n0,1+(1−p)

[(∑
i≥1

∑
j≥0

jni,j

)
− n0,1

]
= n0,1+(1−p)(θn−n0,1) = pn0,1+(1−p)θn.

Thus,

E(n∗) = E

(∑
i≥0

∑
j≥0

n∗i,j

)
= 2(1− p)θn+ p

∑
i≥0

∑
j≥0

ni,j = [2θ(1− p) + p]n.
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Hence for (i, j) /∈ {(1, 0), (0, 1)},

lim
n→∞

E(n∗i,j)

E(n∗)
= lim

n→∞

pni,j
[2θ(1− p) + p]n

= lim
n→∞

p

2θ(1− p) + p

(ni,j
n

)
=

p

2θ(1− p) + p
κi,j.

Also,

lim
n→∞

E(n∗1,0)

E(n∗)
= lim

n→∞

pn1,0 + (1− p)θn
[2θ(1− p) + p]n

= lim
n→∞

p

2θ(1− p) + p

(ni,j
n

)
+

(1− p)θ
2θ(1− p) + p

=
p

2θ(1− p) + p
κ1,0 +

(1− p)θ
2θ(1− p) + p

and

lim
n→∞

E(n∗0,1)

E(n∗)
= lim

n→∞

pn0,1 + (1− p)θn
[2θ(1− p) + p]n

=
p

2θ(1− p) + p
κ0,1 +

(1− p)θ
2θ(1− p) + p

.

Since κi,j is constant for all i ≥ 0 and j ≥ 0 and p < 1, for all i ≥ 0 and j ≥ 0 there

exists constants κ∗i,j such that lim
n→∞

E(n∗i,j)

E(n∗)
= κ∗i,j. Thus, if n∗i,j and n∗ can be shown to be

concentrated around their expectations for all i ≥ 0 and j ≥ 0, then D∗n is smooth.

We continue the discussion with some more calculations that suggest D∗n satisfies the
two remaining conditions of Definition 2.17. First, note that the number of arcs in G and
G∗ is the same. Hence θ∗n∗ = θn and so θ∗ = n

n∗
θ. Thus,

n

E(n∗)
θ =

n

[2θ(1− p) + p]n
θ =

1

2θ(1− p) + p
(1 + o(1))A1.

This suggests that θ∗ = (1 + o(1))A∗1 for an absolute constant A∗1 and so the first condition
holds for D∗n.
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The final condition requires λ∗ = lim
n→∞

∑
i,j≥0

ij
n∗i,j
θ∗n∗

to exist, be finite, and have this sum

approach the limit uniformly. Since Dn is well-behaved, for all δ > 0, there exists k and

N such that for all n > N ,

∣∣∣∣∣ k∑i=0

k∑
j=0

ij
ni,j

θn
− λ

∣∣∣∣∣ < δ. Thus,

∣∣∣∣∣
(

k∑
i=0

k∑
j=0

ij
E(n∗i,j)

E(θ∗n∗)

)
− pλ

∣∣∣∣∣ =

∣∣∣∣∣
(

k∑
i=1

k∑
j=1

ij
E(n∗i,j)

θn

)
− pλ

∣∣∣∣∣
=

∣∣∣∣∣
(

k∑
i=1

k∑
j=1

ij
pni,j
θn

)
− pλ

∣∣∣∣∣
=

∣∣∣∣∣p
(

k∑
i=1

k∑
j=1

ij
ni,j
n
− λ

)∣∣∣∣∣
= p

∣∣∣∣∣
k∑
i=0

k∑
j=0

ij
ni,j
n
− λ

∣∣∣∣∣
< pδ.

Hence

λ∗ = lim
n→∞

∑
i≥0

∑
j≥0

ij
E(n∗i,j(n))

θ∗[n∗(n)]
= pλ

and the sum approaches this limit uniformly. Since λ is finite, λ∗ is also finite. This
suggests D∗n satisfies the fourth condition of Definition 2.17.

Lemma 6.2 and the above calculations support the claim that for a well-behaved degree
sequence Dn, D∗n is well-behaved a.a.s. Furthermore,

λ(D∗n) =
∑
i≥0

∑
j≥0

ij
E(n∗i,j)

θ∗n∗

=
∑
i≥1

∑
j≥1

ij
E(n∗i,j)

θn

=
∑
i≥1

∑
j≥1

ij
pni,j
θn

= p
∑
i≥0

∑
j≥0

ij
ni,j
θn

= pλ(Dn).
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This final calculation supports the claim that λ(D∗n) = pλ(Dn). This leads us to believe
that with some concentration arguments, it can likely be proved that for a well-behaved
degree sequence Dn, a.a.s. D∗n is well-behaved and λ(D∗n) = pλ(Dn). We can use this and
Theorem 4.1 to predict a site percolation threshold for the presence of a giant strongly
connected component in graphs with well-behaved degree sequences where λ(Dn) > 1.

First, consider a configuration with degree sequence Dn. With some additional argu-
ments, it can be shown that the site percolation technique outlined in Section 5.2 will
uniformly produce configurations with a degree sequence D∗n that is well-behaved and has
λ(D∗n) = pλ(Dn). We can then apply Theorem 4.1 to D∗n to see that for δ > 0,

1. If p < 1−δ
λ(Dn)

, then a.a.s. every SCC of G′p has size O([∆(Dn)]2 log(n)).

2. If p > 1+δ
λ(Dn)

, then a.a.s. there exists a SCC in G′p of size Θ(n).

This suggests that the site percolation threshold for the presence of a giant strongly con-
nected component in a graph with well-behaved degree sequence Dn is p = 1

λ(Dn)
. This

threshold is not surprising as it is the directed graph equivalent to the site percolation
threshold for undirected graphs found by Fountoulakis in [15].
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Chapter 7

Concluding Remarks

Although much is known about the size of the largest component of random graphs, little
is known about the size of the largest strongly connected component of a random directed
graph. One of the results in the area was presented by Cooper and Frieze in 2004 [12].
They found a threshold function for the presence of a giant strongly connected component
in random directed graphs with proper degree sequences. However, the constraints on
such degree sequences, such as the maximum term in the sequence being n1/12

logn
, make these

results have limited applications for modeling real-world systems.

In this thesis, we defined a similar type of degree sequence, called a well-behaved degree
sequence. These degree sequences permit terms of higher degree (of size o(n1/4)) in the
sequence, but require a stronger regularity condition than proper degree sequences. Using
the configuration model and some coupling arguments, we found a threshold function for
the presence of a giant strongly connected component in a random directed graph with a
well-behaved degree sequence. This threshold function is identical to the function found
by Cooper and Frieze.

However, like the results of Cooper and Frieze, directed graphs with well-behaved degree
sequences have limited applications to real-world models. This is because most complex
networks, such as the World Wide Web and metabolic networks, have been shown to
exhibit power-law degree distributions with 2 < γ < 3 [40, 15]. Recall that for power-law
degree distributions, the number of vertices of in-degree i is proportional to ci−γ for some
constants c, γ > 0 or the number of vertices of out-degree j is proportional to c′j−γ

′
for

some constants c′, γ′ > 0. These real-world networks could have degree sequences that are
not well-behaved since they may contain many vertices with in-degree or out-degree that
are functions of n (so the final condition of Definition 2.17 isn’t satisfied). However, it
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is likely that the proof techniques presented in Chapter 4 can be extended to study such
power-law degree sequences, whereas the technique used by Cooper and Frieze does not
extend. Thus, more work is needed to study random directed graphs with these power-law
degree distributions.

In addition to studying the presence of strongly connected components in well-behaved
degree sequences, we discussed how our results could be applied to percolation theory.
Specifically, we used a heuristic approach to predict a site percolation threshold for ran-
dom directed graphs with well-behaved degree sequences. We provided some arguments
supporting the claim that the exploded graph from Janson’s technique has a well-behaved
degree sequence. Thus, if this claim is true, our threshold function predicts a site percola-
tion threshold for well-behaved degree sequences. Further work is need to prove this claim,
but we suspect some concentration arguments can be used to prove it.

Another area for further investigation includes determining the bond percolation thresh-
old for the presence of a giant strongly connected component in directed graphs with well-
behaved degree sequences. This could be accomplished by applying the modified version
of Janson’s bond percolation technique. As with site percolation, some arguments for the
resulting exploded directed graph having a well-behaved degree sequence will be necessary.
Once this is shown, our result can be applied to the degree sequence of the exploded graph
to find the exact bond percolation threshold.
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