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Abstract

This thesis shows that, for every positive integer n ≥ 5, there exists a positive integer
N such that every 5−connected graph with at least N vertices has a minor isomorphic to
one of thirty explicitly defined 5−connected graphs H1(n), ..., H30(n), each with at least n
vertices.
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Chapter 1

Introduction

For every positive integer n, there exists, in each of the following cases, a positive integer
N such that

(i) every connected graph with at least N vertices contains either a vertex of degree n or
a path of length n;

(ii) every 2−connected graph with at least N vertices either has a K2,n−minor or contains
a cycle of length n;

(iii) every 3−connected graph with at least N vertices has either a K3,n−minor or a mi-
nor isomorphic to a wheel of length n (proved by Oporowski, Oxley and Thomas
([OOT93]));

(iv) every 4−connected graph with at least N vertices has a minor isomorphic to one of
K4,n and three other 4−connected graphs, each with at least n vertices (Figure 1.2)
(proved indirectly by Geelen and Joeris ([GJ16]), and Oporowski, Oxley and Thomas
([OOT93])).

This thesis establishes a similar extremal result giving thirty explicitly defined 5−con-
nected graphs, each with at least n vertices, as unavoidable minors of every 5−connected
graph with at least N vertices.

For every positive integer θ, a graph G is said to be θ−connected if at least θ vertices
must be deleted from G in order to disconnect it, i.e., for each subset Y ⊆ V (G) with
|Y | ≤ θ − 1, G\Y is connected.
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Figure 1.1: Unavoidable minors of large internally 4−connected graphs and graphs with
large 4−connected sets.

A graph H is said to be a minor of another graph G if H can be obtained from a sub-
graph G′ of G by contracting connected subgraphs in G′−a graph obtained by contracting
a connected subgraph of G′ is one that is obtained by identifying all of the former’s vertices
into a single vertex and deleting all its edges. We say that G has an H−minor if there is
a minor of G that is isomorphic to H.

1.1 Two Proofs for Large 4−Connected Graphs

Unavoidable minors of “sufficiently large” 4−connected graphs are easily derived from the
results obtained in each of [GJ16] and [OOT93], both of which find unavoidable minors of
large graphs with slightly weaker but distinct connectivity properties. Incidentally, both of
them list graphs from the same four infinite families as unavoidable minors. These are K4,n,
the 2n−spoke double wheel W (1, 2, n), the n−wrung circular ladder Ln and the n−rung
Möbius ladder Mn (see Figure 1.1). We state the corollary describing avoidable minors of
sufficiently large 4−connected graphs after discussing these two results.

1.1.1 Large Internally 4−Connected Graphs

A separation in a graph G is a pair (G1, G2) of subgraphs of G such that G1 ∪ G2 = G
and E(G1 ∩G2) = ∅, the order of the separation being |V (G1 ∩G2)|. Note that, for every
positive integer θ, a graph G is θ−connected if there does not exist in G a separation of
order θ − 1 or less.
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A graph is G said to be internally 4−connected if it is 3−connected and, for every
separation (G1, G2) in G of order 3, one of V (G1) − V (G2) and V (G2) − V (G1) contains
at most one vertex. Every 4−connected graph is internally 4−connected.

Oporowski, Oxley and Thomas show in ([OOT93]) that every sufficiently large inter-
nally 4−connected graph has a minor isomorphic to one of K4,n,W (1, 2, n), Ln and Mn:

Theorem 1.1.1. For every integer n ≥ 4, there is an integer N1(n) such that every
internally 4−connected graph G with at least N1(n) vertices has a minor isomorphic to one
of K4,n,W (1, 2, n), Ln and Mn.

In particular, they prove, as an alternative statement of the above theorem, that every
graph with no minor isomorphic to any of K4,n,W (1, 2, n), Ln and Mn admits a tree-
decomposition of width at mostN1(n) and edge-width at most 3. A similar duality observed
by Geelen and Joeris ([GJ16]) in the context of a graph containing a large highly connected
set is what forms the basis of our proof. We discuss tree-decompositions and the results
obtained by Geelen and Joeris in greater detail in Chapter 2.

Remark: The result describing unavoidable minors of sufficiently large 3−connected
graphs is observed as a corollary of the above theorem in [OOT93].

1.1.2 Graphs with Large 4−Connected Sets

A θ−connected set in a graph G is a subset X of vertices such that, for all subsets Y, Z ⊆ X
with |Y | = |Z| ≤ θ, there exist θ vertex-disjoint (Y, Z)−paths in G. If G is θ−connected,
then V (G) forms a θ−connected set in G.

Unavoidable minors of graphs with sufficiently large θ−connected sets is one aspect of
the duality that Geelen and Joeris observe in [GJ16]. We give a general graph construction
for these minors in the next chapter; for graphs with sufficiently large 4−connected sets,
these are K4,n,W (1, 2, n), Ln and Mn, as the following corollary of the theorem by Geelen
and Joeris enumerates.

Corollary 1.1.2. For every integer n ≥ 4, there is an integer N2(n) such that every
graph G with a 4−connected set of size at least N2(n) has a minor isomorphic to one of
K4,n,W (1, 2, n), Ln and Mn.

Observe that each of K4,n,W (1, 2, n), Ln and Mn is internally 4−connected and has
a 4−connected set of at least n vertices. We denote by W (2, 0, n) and TW (2, 0, n) the

3
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Figure 1.2: Unavoidable minors of large 4−connected graphs.

minors of L2n and M2n+2, respectively, shown in Figure 1.2. The following corollary then
follows directly from Thorem 1.1.1 and Corollary 1.1.2.

Corollary 1.1.3. For every integer n ≥ 4, there is an integer N(n) such that every
4−connected graph G with at least N(n) vertices has a minor isomorphic to one of K4,n,
W (1, 2, n),W (2, 0, n) and TW (2, 0, n).

Proof. N(n) = min {N1(2n+ 2), N2(2n+ 2) } suffices.

1.2 Large 5−Connected Graphs: The Two Cases

We find, in this thesis, a set {Hi(n) : i ∈ { 1, ..., 30 } } of unavoidable minors of sufficiently
large graphs that are 5−connected. Other than the complete bipartite graph K5,n, where
n ≥ 5 is a postive integer, the said set includes the graphs depicted in the Figures 1.3, 1.4
and 1.5. That each of these graphs is 5−connected is something that can be easily checked.
We give explicit constructions for these graphs in the appendix. Our main result is the
following.

Theorem 1.2.1. For each n ∈ N with n ≥ 5, there exists N ∈ N such that, if G is
a 5−connected graph with at least N vertices, then G has a minor isomorphic to K5,n,
W (1, 3, n), Wj(2, 1, n), TWj(2, 1, n), CWk(a)(2, 1, n), CWk(b)(2, 1, n), W (2, 2, n), TW (2, 2,
n), W−

1 (3, 0, n), TW−
1 (3, 0, n), W−

2(a)(3, 0, n), W−
2(b)(3, 0, n), TW−

2(a)(3, 0, n), TW−
2(b)(3, 0, n),

W (3, 0, n) or TWi(3, 0, n), where i ∈ { 1, 2, 3 }, j ∈ { 1, 2 } , k ∈ { 1, ..., 6 }.
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Figure 1.3: Unavoidable minors of large 5−connected graphs.
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Figure 1.4: Unavoidable minors of large 5−connected graphs (contd.).
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A similar result was claimed by Kawarabayashi in 2006 (see [KM07]).

Geelen and Joeris prove in [GJ16] (see Chapter 2 of this thesis for more details) that
a graph either contains a sufficiently large θ−connected set (and, hence, one of a set of
unavoidable minors) or admits a tree decomposition of bounded width that has edge-width
at most θ − 1. Our proof uses these results to find a complete set of unavoidable minors
of sufficiently large 5−connected graphs by combining two cases: when the said graph has
a large 6−connected set and when it does not.

The first case is straightforward as all of the unaovidable minors found in [GJ16] for
θ = 6 have, in turn, minors that are 5−connected. We find these minors in Chapter 2. For
the latter case, we use the dual result in [GJ16] which guarantees a tree-decomposition
of bounded width and edge-width at most 5 for graphs that do not contain a large
6−connected set:

(1) we find a set of possible rooted minors of the “smaller” side of a 5−separation in the
graph (Chapter 3) as well as

(2) one of the intersection of the “larger” sides of two non-crossing separations in the
graph (such an intersection is, in turn, separated by each one of a large family of
nested separations in the graph) (Chapter 4), and then

(3) patch members of the two sets together (Chapter 4).

Enumerating all possible triples of rooted minors, each containing one rooted minor of the
intersection of the larger sides and two rooted minors for the disjoint smaller sides of the
of the two non-crossing separations considered, then gives us the remainder of the set of
unavoidable minors mentioned in Theorem 1.2.1.

We conclude with a short proof of Theorem 1.2.1 in Chapter 5 that puts the two cases
together.
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Chapter 2

Large θ−Connected Sets

In this chapter, we review the results concerning large θ−connected sets obtained by Geelen
and Joeris in [GJ16].

2.1 Graphs with Large θ−Connected Sets

The main result obtained in [GJ16] is an unavoidable-minor characterization of graphs
with sufficiently large θ−connected sets, for each positive integer θ ≥ 2.

Let r, `, n ∈ N with r ≥ 1 and n ≥ 3. Now, let T be a tree with r vertices, let Z be
an `−element set, let π : V (T ) → V (T ) be a permutation, and let ψ : Z → V (T ) be a
function. Then the (r, `, n)−wheel defined by (T, Z, π, ψ) is the graph G constructed as
follows:

(1) Let G′ be the disjoint union of n copies of T , named T1, ..., Tn, where, for each v ∈ V (T )
and i ∈ { 1, ..., n }, the copy of v in Ti is labelled vi.

(2) Let G′′ be the graph obtained from G′ by adding an edge between vi and vi+1 for each
v ∈ V (T ) and each i ∈ { 1, ..., n− 1 }.

(3) Let G′′′ be the graph obtained from G′′ by adding an edge between vn and π(v)1 for
each v ∈ V (T ).

(4) Then G is obtained from G′′′ by adding Z as a set of isolated vertices (or hubs of the
wheel) and then, for each z ∈ Z and each i ∈ { 1, ..., n }, adding an edge between z
and ψ(z)i.

9
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Figure 2.2: Unavoidable minors of graphs with large 5−connected sets.

Figure 2.1 depicts a possible (4, 2, 12)−wheel. A (θ;n)−wheel is an (r, `, n)−wheel where
2r + ` = θ. In any (θ;n)−wheel W , every set of n vertices which contains exactly one
vertex from each of the trees T1, ..., Tn forms a θ−connected set in W . Note that, in the
complete bipartite graph Kθ,n, the set of vertices in the θ-partition forms a θ−connected
set whenever n ≥ θ.

Geelen and Joeris showed in [1] that (θ;n)−wheels together with complete bipartite
graphs constitute a set of unavoidable minors of graphs with large θ−connected sets. In
particular, they proved the following theorem.

Theorem 2.1.1. There exists a function f2.2.2 : N × N → N such that, for all θ, n ∈ N
with θ ≥ 2, n ≥ 3, if G is a graph containing a θ−connected set of size at least f2.2.2(θ, n),
then G has a Kθ,n−minor or a (θ;n)−wheel-minor.

For all `, n ∈ N with n ≥ 3, we denote the unique (1, `, n)−wheel by W(1, `, n). For
θ = 5, we denote the two distinct (2, 1, n)−wheels by W(2, 1, n) and T W(2, 1, n), as
depicted in Figure 2.2. For θ = 6, we denote the four distinct (2, 2, n)−wheels by W1(2, 2,
n), T W1(2, 2, n), W2(2, 2, n) and T W2(2, 2, n), and the four distinct (3, 0, n)−wheels by
W(3, 0, n), T W1(3, 0, n), T W2(3, 0, n) and T W3(3, 0, n), as depicted in Figure 2.3. Then,
for θ = 5, 6, Theorem 2.2.2 can be restated individually as follows.

Corollary 2.1.2. There exists a function f2.1.2 : N → N such that, for all n ∈ N with
n ≥ 3, if G is a graph containing a 5−connected set of size at least f2.1.2(n), then G has a
minor isomorphic to K5,n, W(1, 3, n), W(2, 1, n) or T W(2, 1, n).
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Corollary 2.1.3. There exists a function f2.1.3 : N → N such that, for all n ∈ N with
n ≥ 3, if G is a graph containing a 6−connected set of size at least f2.1.3(n), then G has a
minor isomorphic to K6,n,W(1, 4, n),W1(2, 2, n), T W1(2, 2, n),W2(2, 2, n), T W2(2, 2, n),
W(3, 0, n), T W1(3, 0, n), T W2(3, 0, n) or T W3(3, 0, n).

The latter directly accounts for the case when the said sufficiently large 5−connected
graph has a large 6−connected set and, as the following corollary shows, gives us our first
batch of the unavoidable minors of sufficiently large 5−connected graphs listed in Theorem
1.2.1 : { K5,n, W (1, 3, n), W (2, 2, n), TW (2, 2, n), W (3, 0, n), TW1(3, 0, n), TW2(3, 0, n),
TW3(3, 0, n) } (see Figure 1.3). Explicit graph constructions for W (2, 2, n), TW (2, 2, n),
W (3, 0, n) and TWi(3, 0, n), for each i ∈ { 1, 2, 3 }, are given in the appendix (see A.1).

Corollary 2.1.4. For all n ∈ N with n ≥ 5, if G is a 5−connected graph that has a
6−connected set of size at least f2.1.3(4n + 4), then G has a minor isomorphic to K5,n,
W (1, 3, n), W (2, 2, n), TW (2, 2, n), W (3, 0, n) or TWi(3, 0, n), where i ∈ { 1, 2, 3 }.

Proof. Let G be a 5− connected graph that has a 6−connected set of size at least f2.1.3(4n+
4). The proof then follows from Corollary 2.1.3 and the observations that W (1, 3, n) is a
5−connected minor of each of W(1, 3, n), W(1, 4, n), W1(2, 2, n) and T W1(2, 2, n), and
K5,n, W (2, 2, n), TW (2, 2, n), W (3, 0, n), TW1(3, 0, n), TW2(3, 0, n) and TW3(3, 0, n) are,
respectively, 5−connected minors of K6,n,W2(2, 2, 2n+2), T W2(2, 2, 2n+2),W(3, 0, 4n+
4), T W1(3, 0, 4n+ 3), T W2(3, 0, 4n+ 2) and T W3(3, 0, 4n+ 2).

2.2 Large θ−Connected Sets as Obstructions to Tree-

decomposition

In this section, we review another general result obtained by Geelen and Joeris in [GJ16],
which establishes an important property about the structure of graphs without a large
θ−connected set. For the sake of completeness, we will revisit a few definitions in the
present context before we discuss the relevant result.

Earlier, we defined a separation in a graph G as a pair (G1, G2) of subgraphs of G such
that G1 ∪ G2 = G and E(G1 ∩ G2) = ∅. Observe that if G does not contain any isolated
vertices, a separation in G can be also defined as a bipartition (A,B) of E(G). The order
of such a separation (denoted λ(A) or λ(B)) is defined as the number of vertices v in G
that are incident with both an edge in A and an edge in B (the set U of such vertices v

13



is called the separating set of (A,B); we also say that U λ(A)−separates V (A) − U from
V (B)−U and vice-versa). For any subset F of E(G), let V (F ) denote the set of all vertices
v in G such that v is an end of an edge in F . Then λ(A) = λ(B) = |V (A) ∩ V (B)|.

For every positive integer θ, a separation of order at most θ is called a θ−separation, and
a graph G is θ−connected if, for every (θ−1)−separation (A,B) in G, either V (A) = V (G)
or V (B) = V (G).

A tree-decomposition of a graph G is a tree T such that the set of edges of G forms a
subset of the set of leaves of T . For each vertex v ∈ V (G), we define a subtree Tv of T as
the minimum subtree containing the set of leaves in T that correspond to the edges in G
incident with v. Each node t ∈ V (T ), then, corresponds naturally to a set of vertices in
G: the vertices v ∈ V (G) for which t ∈ V (Tv). We call this set of vertices the node-bag of
t and denote it by VG(T, t). Similarly, each edge f in T corresponds to the set of vertices
v ∈ V (G) for which Tv contains f . We call this set of vertices the edge-bag of f . Note that

f also corresponds to the separation in G given by (A
(1)
f , A

(2)
f ), the bipartition of E(G)

induced by the leaves of the components T (1) and T (2) of T\f . The order of this separation
equals the size of the edge-bag of f .

The node-width of a tree-decomposition T is the size of the largest node-bag of a node
in T . The tree-width of a graph G, denoted tw(G), is the minimum node-width of a tree-
decomposition of G minus 1. The edge-width of a tree-decomposition T is the size of the
largest edge-bag of an edge in T . The degree of a tree-decomposition T is the largest degree
of a node in T .

Robertson, Seymour and Thomas first observed in [RST94] that the existence of a large
highly-connected set of vertices in a graph forces a large tree-width. This connection was
later refined by Diestel, Jensen, Gorbonov and Thomassen ([DJGT99]) who proved, for
each graph G and each θ ∈ N, that

(i) if G contains a (θ+ 1)−connected set of size at least 3θ, then G has tree-width at least
θ, and

(ii) conversely, if G has no (θ+ 1)−connected set of size at least 3θ, then G has tree-width
less than 4θ.

In [GJ16], Geelen and Joeris define a refinement of tree-width and relate it similarly to the
existence of a large highly-connected set in the graph.

For each θ ∈ N, a θ−tree-decomposition of a graph G is a tree-decomposition of G
that has edge-width at most θ; the θ−tree-width of G, denoted twθ(G), is the minimum

14



node-width of a θ−tree-decomposition of G minus 1. Geelen and Joeris prove the following
theorem in [GJ16].

Theorem 2.2.1. For each integer θ ≥ 3, if U is a maximum cardinality (θ+1)−connected
set in a graph G, then

twθ(G) < |U | ≤
(
twθ(G)

θ

)
θ.

We combine Theorem 2.2.1 with the following theorem by Joeris ([Joe15]) to bound the
minimum degree of a θ−tree-decomposition of a graph G (also called the θ−branch-degree
of G, denoted bdθ(G)) which does not contain a large (θ + 1)−connected set. Corollary
2.2.3 states this bound explicitly.

Theorem 2.2.2. For each θ ∈ N, if G is a graph with bdθ(G) ≥ 3, then twθ(G) ≤ bdθ(G)θ
and bdθ(G) ≤

(
twθ(G)

θ

)
.

Corollary 2.2.3. There exists a function f2.2.3 : N × N → N such that, if G is a graph
that has no (θ + 1)−connected set of size n, then bdθ(G) < f2.2.3(θ, n).

Proof. By Theorems 2.2.1 and 2.2.2, f2.2.3(θ, n) =
(
n
θ

)
suffices.
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Chapter 3

Smaller Sides of Separations

In this chapter, we find different sets of unavoidable rooted minors of the “smaller” side of
a separation (A,B) in a sufficiently large 5−connected graph, each with each minor rooted
in the separating set of (A,B), that satisfy different prevailing conditions. As explained
earlier, pairs of such minors can be patched together with the unavoidable rooted minors
of the intersection of the “larger” sides of two non-crossing separations in the graph to get
a set of unavoidable minors for the complete graph.

3.1 2−Linkages in Graphs

Let (u1, u2, v1, v2) be an ordered quadruple of distinct vertices in a graph G. A 2−linkage
defined by (u1, u2, v1, v2) (also called a (u1, u2, v1, v2)−linkage) in G is a pair of disjoint
paths P1 and P2 such that Pi connects ui with vi for i = 1, 2.

Seymour ([Sey80]) and Thomassen ([Tho80]) independently gave complete characteriza-
tion of a graph G that does not contain a (u1, u2, v1, v2)−linkage. Thomassen, in particular,
gave an exact structural description of a graph G which contains no (u1, u2, y1, v2)−linkage
and is edge-maximal under this restriction. Under another added assumption about G,
his result can be stated as the following theorem which he observed as a corollary. The
theorem directly follows from a similar result obtained by Jung ([Jun70]).

Theorem 3.1.1. Let u1, u2, v1 and v2 be distinct vertices of a graph G. If G has no
(u1, u2, v1, v2)−linkage and there does not exist in G a 3−separation (A,B) with { u1, u2, y1,
v2 } ⊆ V (A) and |V (B) − V (A)| ≥ 2, then G has a planar embedding with u1, u2, v1 and
v2, in cyclic order, on the boundary of the infinite face.
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An immediate corollary of this theorem that will be useful in our proof is as follows.

Corollary 3.1.2. Let x1, x2, x3, x4 and x5 be distinct vertices of a graph G with |V (G)| ≥ 6.
If G has no (x1, x2, x4, x5)−linkage and there does not exist in G a 4−separation (A,B)
with |{ x1, x2, x3, x4, x5 } − V (A)| + λ(A) ≤ 4, then G has a planar embedding with
x1, x2, x4 and x5, in cyclic order, on the boundary of the infinite face.

Proof. It suffices to observe that there does not exist a 3−separation (A′, B′) with { x1, x2,
x4, x5 } ⊆ V (A′) and |V (B′)− V (A′)| ≥ 2.

3.2 Non-crossing Separations

Two separations (A,B) and (C,D) in a graph G are distinct if A 6= C and A 6= D. They
cross if A∩C 6= ∅, A∩D 6= ∅, B∩C 6= ∅ and B∩D 6= ∅. The separations are non-crossing
if either A ⊆ C and D ⊆ B, or C ⊆ A and B ⊆ D.

Given a pair ((A,B), (C,D)) of distinct non-crossing separations in G such that A ⊆ C
and D ⊆ B, and λ(A) ≥ λ(C), it is possible to slide from (A,B) to (C,D) if

(a) there exists an edge e = uv in C − A, where V (C) = V (A) ∪ { v } and V (B) =
V (D) ∪ { u }, such that C = A ∪ { e } (single-step slide), or

(b) for some r ∈ N, where r ≥ 2, there exists a sequence (X0, Y0), ..., (Xr, Yr) of distinct
non-crossing separations in G, where (X0, Y0) = (A,B) and (Xr, Yr) = (C,D), such
that, for each i ∈ { 1, ..., r }, Xi−1 ⊆ Xi and Yi ⊆ Yi−1, λ(Xi−1) ≥ λ(Xi), and it is
possible to single-step-slide from (Xi−1, Yi−1) to (Xi, Yi) (multi-step slide).

When that is true, it is easy to show (by induction, if needed) that there exist λ(C) pairwise
disjoint paths P1, ..., Pλ(C) in G(V (B), B − D) such that each path meets V (A) ∩ V (B)
in one end and V (C) ∩ V (D) in the other. If, additionally, λ(C) = λ(A), then V (B) =

(
5⋃
i=1

V (Pi)) ∪ (V (D)− V (C)).

Proposition 3.2.1. If (A,B) is a separation in a graph G with |V (B)− V (A)| ≥ 2, then
there exists a separation (C,D) in G, non-crossing with (A,B) and of order at most λ(A),
such that A ⊆ C and D ⊆ B, it is possible to slide from (A,B) to (C,D), and either
V (D) ⊆ V (C) or, for each v ∈ V (C) ∩ V (D), |NG(V (D),D)(v)− V (C)| ≥ 2.
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Proof. Let (A,B) be a separation in a graph G such that |V (B) − V (A)| ≥ 2. If, for
each u ∈ V (A) ∩ V (B), |NG(V (B),B)(u) − V (A)| ≥ 2, then C = A and D = B, and we
are done. So we may assume that there exist u ∈ V (A) ∩ V (B) and v ∈ V (B) − V (A)
such that NG(V (B),B)(u) − V (A) = { v }. It is possible, then, to slide from (A,B) to
(A ∪ { uv } , B − { uv }) which has order at most λ(A). Let (A′, B′) be a separation in G,
non-crossing with (A,B), for which A ⊆ A′, B′ ⊆ B and λ(A) ≥ λ(A′), such that it is
possible to slide from (A,B) to (A′, B′), and such that |V (B′) − V (A′)| is minimal and,
subject to that, |B−B′| is minimal. Then, either |V (B′)−V (A′)| = 0 and V (B′) ⊆ V (A′),
or |V (B′) − V (A′)| ≥ 2 and, for each u′ ∈ V (A′) ∩ V (B′), |NG(V (B′),B′)(u

′) − V (A′)| ≥ 2.
Thus, C = A′ and D = B′.

3.3 Rooted Minors of Small Sides of Separations

The goal of this section is to find different sets of unavoidable rooted minors of one side of
a 5−separation (A,B) in a 5−connected graph G. Each minor thus found is rooted in the
separating set { x1, x2, x3, x4, x5 } of (A,B), and different sets of unavoidable minors satisfy
different additional requirements. We give labeled graph descriptions of these minors below
in order to be able to match the roots in a minor to the roots in the graph directly.

Recall that W(1, 1, 5) (see A.1) is the unique (1, 1, 5)−wheel with V (W(1, 1, 5)) =
{ v1, v2, v3, v4, v5, vh }, vh being the lone hub-vertex and v1, ..., v5 being the vertices of
the 5−cycle W(1, 1, 5)\ { vh } in that order; let WW(1, 1, 5) be the graph obtained from
W(1, 1, 5) by subdividing the edge v3v4 with an additional vertex v6, adding the edge
vhv6, and splitting the vertex vh into adjacent vertices vh1 , vh2 such that NWW(1,1,5)(vh2) =
{ v1, v2, v3, v6, vh1 } and NWW(1,1,5)(vh1) = { v1, v4, v5, v6, vh2 }. For i ∈ { 1, ..., 10 }, we de-
fine the graph Gi as follows (see Figure 3.1):

(a) G1 := (X, { x1x4, x2x4, x2x5 });

(b) G2 := G1 ∪ { x3x4 };

(c) G3 := G1 ∪ { x4x5 };

(d) G4 := (X ∪ { v } , { vx1, vx2, vx3, vx4, vx5, x2x4 });

(e) G5 := G4 ∪ { x3x4 };

(f) G6 := G4 ∪ { x4x5 };
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Figure 3.1: Rooted minors of one side of a 5−separation in a 5−connected graph.
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(g) G7 := (V (W(1, 1, 5)) ∪ X, E(W(1, 1, 5))∪{ vp+1xq+1 : q = p; p, q ∈ Z5 }∪{ vp+1xq+1 :
q = p+ 1; p, q ∈ Z5 });

(h) G8 := G7 ∪ { x3x4 };

(i) G9 := G7 ∪ { x4x5 };

(j) G10 := (V (WW(1, 1, 5)) ∪ X, E(WW(1, 1, 5)) ∪ { vp+1xq+1 : q = p; p, q ∈ Z5 } ∪
{ vp+1xq+1 : q = p+ 1; p, q ∈ Z5 } ∪ { v6x4 });

Additionally, G8+(12) := G8 ∪ { x1x2 }; G8+(15) := G8 ∪ { x1x5 }; G9+(12) := G9 ∪ { x1x2 };
G9+(15) := G9∪{ x1x5 } (see Figure 3.2). For eachG ∈ {G1, ..., G10, G8+(12), G8+(15), G9+(12),
G9+(15) }, we denote by G(j1k1)...(jsks), where js′ , ks′ ∈ { 1, ..., 5 } and js′ 6= ks′ for each
s′ ∈ { 1, ..., s } (s ∈ N), the graph obtained from G by switching, in order, the vertex labels

given by the pairs (xj1 , xk1), ..., (xjs , xks). Using this notation, we define the graphs G
(24)
7 ,

G
(13)(24)(25)
8 , G

(24)(25)
7 , G

(13)(24)
8 , G

(24)
8 , G

(24)
8+(15), G

(24)(25)
8 , G

(24)(25)
8+(15) , G

(24)
9 and G

(24)(25)
9 as shown

in Figure 3.2. Finally, for each graph G described above, we denote by G(z) the graph G
with the vertex label xi replaced by zi for each i ∈ { 1, ..., 5 }; thus, G(x) = G.

In the propositions and lemmas that follow we identify different subsets of the graphs
described above as sets of unavoidable rooted minors of a side of (A,B) under different
prevailing assumptions. One of these assumptions is a choice between the two possible
separations (C,D) identified in Proposition 3.2.1 that one must be able to slide to from
(A,B), while another considers the possibility of the side of (A,B) we’re looking at being
planar. Propositions 3.3.1 and 3.3.2 identify one such set each when it is possible to “slide
off” the graph starting from (A,B) (the case when V (D) ⊆ V (C)); Corollary 3.3.3 explains
why the planarity condition does not play any role in this case. Lemmas 3.3.4, 3.3.5 and
3.3.6 then deal with the specific case when one cannot slide off the graph and the side
of (A,B) we’re looking at is planar, coupled with different degree requirements at one or
more of the root vertices. Finally, Lemmas 3.3.7 and 3.3.8 treat the case when it is not
possible to slide off the graph without the planarity assumption and put the no-slide-off
case together in slightly differing details.

Proposition 3.3.1. If (A,B) is a 5−separation in a 5−connected graph G with V (A) ∩
V (B) = { x1, x2, x3, x4, x5 } , |V (A) − V (B)| ≥ 1 and |V (B) − V (A)| ≥ 4, and there does
not exist a separation (C,D) in G, non-crossing with (A,B) and of order at most λ(A),
such that

(i) A ⊆ C and D ⊆ B,
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Figure 3.2: Rooted minors of one side of a 5−separation in a 5−connected graph (contd.).
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(ii) it is possible to slide from (A,B) to (C,D), and

(iii) for each u ∈ V (C) ∩ V (D), |NG(V (D),D)(u)− V (C)| ≥ 2,

then G(V (B), B) contains two disjoint connected subgraphs H1 and H2 that span, respec-
tively, either { x2, x4 } and { x1, x3, x5 }, or { x4, x5 } and { x1, x2, x3 }.

Proof. Let (A,B) be a 5−separation in a 5−connected graph G with V (A) ∩ V (B) =
{ x1, x2, x3, x4, x5 } , |V (A)−V (B)| ≥ 1 and |V (B)−V (A)| ≥ 2, and let it be the case that
there does not exist a separation (C,D) in G, non-crossing with (A,B) and of order at most
λ(A), that has properties (i) − (iii) described above. Then, by Proposition 3.2.1, there
exist separations (C1, D1), (C2, D2), (C3, D3) and (C4, D4) in G, each non-crossing with the
other three and (A,B) and of order at most λ(A), such that A ⊆ C4 ⊆ C3 ⊆ C2 ⊆ C1 and
D1 ⊆ D2 ⊆ D3 ⊆ D4 ⊆ B, it is possible to slide from (A,B) to (C4, D4) and from (Ci, Di)
to (Ci−1, Di−1) for each i ∈ { 2, 3, 4 }, and |V (Di) − V (Ci)| = i for each i ∈ { 1, 2, 3, 4 }.
For each i ∈ { 1, 2, 3, 4 }, since V (Di)− V (Ci) 6= ∅, we have that λ(Ci) = 5. Further, since
it is possible to slide from (A,B) to (C4, D4) and from (Ci, Di) to (Ci−1, Di−1) for each
i ∈ { 2, 3, 4 }, there exist five pairwise disjoint paths P1, P2, P3, P4, P5 in G(V (B), B −D1)
connecting the vertex-sets V (A) ∩ V (B), V (C4) ∩ V (D4), V (C3) ∩ V (D3), V (C2) ∩ V (D2)
and V (C1) ∩ V (D1).

Let V (D1) − V (C1) = { x } and V (D2) − V (C2) = { x, y } so that y ∈ V (C1) ∩
V (D1). Then x is adjacent to every vertex in V (C1) ∩ V (D1), and y is adjacent to at
least four of the vertices in V (C2) ∩ V (D2). Let V (C2) ∩ V (D2) = { y1, y2, y3, y4, y5 },
and let Y1 := { y1, y2 } , Y2 := { y3, y4, y5 }, so that { y1x, y2y } ⊆ D2, and, for each u ∈
Y2, { ux, uy } ⊆ D2. Further, let X := { x1x2, x3, x4, x5 } , Y ′ := { y′1, y′2, y′3, y′4, y′5 }, where
Y ′ = Y , so that, for each i ∈ { 1, ..., 5 } , Pi connects xi with y′i. Then, unless { y′2, y′4, y′5 } =
Y2, G(V (D2), D2) contains two disjoint connected subgraphs that span, respectively, either
{ y′2, y′4 } and { y′1, y′3, y′5 }, or { y′4, y′5 } and { y′1, y′2, y′3 }, and we are done. So we may assume
that { y′2, y′4, y′5 } = Y2. Now, if D3 ∩ { y1y2, y1y′2, y1y′5, y2y′2, y2y′5, y′2y′4, y′4y′5 } 6= ∅, then
G(V (D3), D3) contains two disjoint connected subgraphs that span, respectively, either
{ y′2, y′4 } and { y′1, y′3, y′5 }, or { y′4, y′5 } and { y′1, y′2, y′3 }, and we are done. So we may assume
that V (C3)∩V (D3) = Y ∪{ y′′4 }−{ y′4 }, where y′′4y

′
4 ∈ D3−D2∩P4, and that { y′4y1, y′4y2 } ⊆

D3. Then D4 ∩ { y1y2, y1y′2, y1y′5, y2y′2, y2y′5, y′2y′4, y′4y′5 } 6= ∅ and G(V (D4), D4) contains
two disjoint connected subgraphs that span, respectively, either { y′2, y′′4 } and { y′1, y′3, y′5 },
or { y′′4 , y′5 } and { y′1, y′2, y′3 }. Consequently, G(V (B), B) contains two disjoint connected
subgraphs H1 and H2 that span, respectively, either { x2, x4 } and { x1, x3, x5 }, or { x4, x5 }
and { x1, x2, x3 }.
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Proposition 3.3.2. If (A,B) is a 5−separation in a 5−connected graph G with V (A) ∩
V (B) = { x1, x2, x3, x4, x5 } , |V (A) − V (B)| ≥ 1 and |V (B) − V (A)| ≥ 2, and there does
not exist a separation (C,D) in G, non-crossing with (A,B) and of order at most λ(A),
such that

(i) A ⊆ C and D ⊆ B,

(ii) it is possible to slide from (A,B) to (C,D), and

(iii) for each u ∈ V (C) ∩ V (D), |NG(V (D),D)(u)− V (C)| ≥ 2,

then G(V (B), B) has a rooted G1− or G4−minor. If, additionally, x4 has degree at least
3 in G(V (B), B), then G(V (B), B) has a rooted G3−, G5− or G6−minor.

Proof. Let (A,B) be a 5−separation in a 5−connected graph G with V (A) ∩ V (B) =
{ x1, x2, x3, x4, x5 } , |V (A) − V (B)| ≥ 1 and |V (B) − V (A)| ≥ 2, and let it be the case
that there does not exist a separation (C,D) in G, non-crossing with (A,B) and of order
at most λ(A), that has properties (i)− (iii) described above. Then, by Proposition 3.2.1,
there exist separations (C1, D1) and (C2, D2) in G, each non-crossing with the other and
(A,B) and of order at most λ(A), such that A ⊆ C2 ⊆ C1 and D1 ⊆ D2 ⊆ B, it is possible
to slide from (A,B) to (C2, D2) and from (C2, D2) to (C1, D1), |V (D2) − V (C2)| = 2 and
|V (D1) − V (C1)| = 1, and, subject to that, |C2 − A| and |C1 − C2| are both minimal.
Clearly, it is possible to slide from (C2, D2) to (C1, D1) in a single step. Since, for each
i ∈ { 1, 2 }, V (Di)−V (Ci) 6= ∅, we have that λ(C2) = λ(C1) = 5, and, since it is possible to
slide from (A,B) to (C2, D2), that there exist five pairwise disjoint paths P1, P2, P3, P4, P5

in G(V (B), B − D2), each meeting V (A) ∩ V (B) in one end and V (C2) ∩ V (D2) in the

other, such that V (B) = (
5⋃
i=1

V (Pi)) ∪ (V (D2)− V (C2)). Let V (D1)− V (C1) = { x } and

V (D2) − V (C2) = { x, y }. Then, y ∈ V (C1) ∩ V (D1), x is adjacent to every vertex in
V (C1) ∩ V (D1), and y is adjacent to at least four of the vertices in V (C2) ∩ V (D2).

Let V (C2) ∩ V (D2) = { y1, y2, y3, y4, y5 }, and let Y1 := { y1, y2 } , Y2 := { y3, y4, y5 },
so that { y1x, y2y } ⊆ D2, and, for each u ∈ Y2, { ux, uy } ⊆ D2. Also, let X :=
{ x1x2, x3, x4, x5 } , Z := { z1, z2, z3, z4, z5 }, where Z = Y , so that, for each i ∈ { 1, ..., 5 } , Pi
connects xi with zi. Contract all edges in

5⋃
i=1

E(Pi) to identify xi with zi, for each

i ∈ { 1, ..., 5 }, and, thus, reduce G(V (B), B) to G(V (D2), D2 ∪ F ), where V (F ) ⊆ Y .
In the case when x4 has degree at least 3 in G(V (B), B), we have that |F | ≥ 1 with
z4 ∈ V (F ).
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Case 1: z4 ∈ Y1. Then, if z2 ∈ Y1, contract the edges y1x, y2y to reduce G(V (D2), D2) to
the graph G1∪{ x1x2, x2x3, x3x4, x4x5 }, a supergraph of both G2, G3; otherwise if z2 ∈ Y2,
contract the only edge e ∈ D2 incident with z4 to reduce G(V (D2), D2) to a supergraph of
one of G5, G6 with v = { x, y } − V ({ e }).

Case 2: z4 ∈ Y2 and z2 ∈ Y1. Then, if z5 ∈ Y1 and F 6= { z2z4 }, contract the only
edge e ∈ D2 incident with z2 to reduce G(V (D2), D2 ∪ F ) to a supergraph G′ of G4 with
v = { x, y } − V ({ e }). In the case when x4 has degree at least 3 in G(V (B), B), either
{ z3z4, z4z5 } ∩ F 6= ∅ so that G′ is also a supergraph of one of G5, G6, or F = { z1z4 } so
that G′ can be made a supergraph of G3 by contracting vz5. If z5 ∈ Y1 and F = { z2z4 },
contract the only edge f ∈ D2 incident with z5 to reduce G(V (D2), D2∪F ) to a supergraph
of G6. If, on the other hand, z5 ∈ Y2, contract the only edge e ∈ D2 incident with z2 and the
edge uz4 ∈ D2, where u = { x, y }−V ({ e }), to reduce G(V (D2), D2) to a supergraph of G3

(contracting e alone reduces G(V (D2), D2) to G4 ∪ { x2x5, e′ }, where e′ ∈ { x2x1, x2x3 }).

Case 3: z4 ∈ Y2 and z2 ∈ Y2. Then, if z5 ∈ Y1, contract the only edge f ∈ D2 incident
with z5 ( and the edge uz4 ∈ D2, where u = { x, y } − V ({ f }), to reduce G(V (D2), D2)
to a supergraph of G3, otherwise if z5 ∈ Y2, contract the edges uz4, u

′z2 ∈ D2, such that
uz1 ∈ D2 is the only edge incident with z1 and u′ = { x, y }−{ u }, to reduce G(V (D2), D2)
to a supergraph of G3.

Corollary 3.3.3. If (A,B) is a 5−separation in a 5−connected graph G with V (A) ∩
V (B) = { x1, x2, x3, x4, x5 } , |V (A) − V (B)| ≥ 1 and |V (B) − V (A)| ≥ 2, such that
G(V (B), B) has a planar embedding with x1, x2, x3, x4, x5, in cyclic order, on the boundary
of the infinite face, then there does not exists a separation (C,D) in G, non-crossing with
(A,B) and of order at most λ(A), such that A ⊆ C,D ⊆ B, it is possible to slide from
(A,B) to (C,D), and such that V (D) ⊆ V (C).

Proof. Suppose there does exist a separation (C,D) in addition to the separation (A,B)
in a 5− connected graph G as described above. Then, by Proposition 3.3.2, G(V (B), B)
has a rooted G1− or G4−minor, a contradiction to the hypothesis that G(V (B), B) has
a planar embedding with x1, x2, x3, x4, x5, in cyclic order, on the boundary of the infinite
face.

Remark: In subsequent proofs, for any subset U of vertices of a graph G, we denote by
E(U) the set of all edges f in G such that f has both ends in U .
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Lemma 3.3.4. If (A,B) is a 5−separation in a 5−connected graph G with V (A)∩V (B) =
{ x1, x2, x3, x4, x5 } , |V (A)−V (B)| ≥ 1 and |V (B)−V (A)| ≥ 2, such that G(V (B), B) has
a planar embedding with x1, x2, x3, x4, x5, in cyclic order, on the boundary of the infinite
face, then G(V (B), B) has a rooted G7−minor.

Proof. Let (A,B) be a 5−separation in a 5−connected graph G with V (A) ∩ V (B) =
{ x1, x2, x3, x4, x5 } , |V (A)−V (B)| ≥ 1 and |V (B)−V (A)| ≥ 2, such that G(V (B), B) has
a planar embedding with x1, x2, x3, x4, x5, in cyclic order, on the boundary of the infinite
face. By Corollary 3.3.3 and Proposition 3.2.1, there exists a 5−separation (C,D) in G,
non-crossing with (A,B) such that A ⊆ C,D ⊆ B, it is possible to slide from (A,B)
to (C,D), and such that, for each u′ ∈ V (C) ∩ V (D), |NG(V (D),D)(u

′) − V (C)| ≥ 2. Let
Y := { y1, y2, y3, y4, y5 } = V (C)∩V (D); notice that G(V (D), D)\Y ′ is connected for every
Y ′ ( Y . There also exist five pairwise disjoint paths P1, P2, P3, P4, P5 in G(V (B), B −D)
such that, for each i ∈ { 1, ..., 5 } , Pi connects yi with xi and meets G(V (D), D) only in yi,

and such that V (B) = (
5⋃
i=1

V (Pi))∪ (V (D)−V (C)). Then, since G(V (B), B) has a planar

embedding with x1, x2, x3, x4, x5, in cyclic order, on the boundary of the infinite face, we
have that

3.3.4.1. G(V (D), D) has a planar embedding with y1, y2, y3, y4, y5, in cyclic order, on the
boundary of the infinite face.

Moreover, |V (D) − V (C)| > 2, for otherwise G(V (D), D) contains a copy of K2,3 as a
subgraph with the larger partition contained in Y and the smaller partition formed by
V (D)−V (C), a contradiction to the fact that K2,3 does not have a planar embedding with
all the vertices in the larger partition on the boundary of the infinite face.

3.3.4.2. G(V (D), D)\Y is 2−connected.

Proof of claim. Suppose that the planar graph G(V (D), D)\Y contains a 1−separation
(C ′, D′) such that V (C ′)− V (D′) 6= ∅, V (D′)− V (C ′) 6= ∅. Then, since G is 5−connected,
|NG(V (D),D)(V (C ′) − V (D′)) ∩ Y | ≥ 4 and |NG(V (D),D)(V (D′) − V (C ′)) ∩ Y | ≥ 4. Let
V1 := NG(V (D),D)(V (C ′) − V (D′)) ∩ Y ∩ NG(V (D),D)(V (D′) − V (C ′)), V2 := { c, d }, where
c ∈ V (G(V (C ′)− V (D′), E(V (C ′)− V (D′)))/E(V (C ′)− V (D′)), d ∈ V (G(V (D′)− V (C ′),
E(V (D′)−V (C ′)))/E(V (D′)−V (C ′)); |V1| ≥ 3. Then G(V (D), D)/(E(V (C ′)−V (D′))∪
E(V (D′)−V (C ′))) contains a copy of K2,3 as a subgraph with the larger partition contained
in V1 and the smaller partition formed by V2, and it has a planar embedding with every
vertex in V1 on the boundary of the infinite face, a contradiction.

25



Thus, G(V (D), D)\Y is a planar graph with the infinite face bounded by a cycle S.

3.3.4.3. |V (S)| ≥ 5.

Proof of claim. Suppose, for some u′ ∈ V (S), |NG(V (D),D)(u
′) ∩ Y | ≥ 3. Then G′ :=

G(V (D), D)/(E(V (D)−Y −{ u′ })) contains a copy of K2,3 as a subgraph with the larger
partition contained in Y and the smaller partition formed by V (G′)−Y , and it has a planar
embedding with y1, y2, y3, y4, y5 on the boundary of the infinite face, a contradiction. Thus,
for each u′ ∈ V (S), |NG(V (D),D)(u

′) ∩ Y | ≤ 2. The claim then follows from the fact that,
for each i ∈ { 1, ..., 5 } , |NG(V (D),D)(yi)− V (C)| ≥ 2 established above.

Since G is 5−connected, we also have from the proof of 3.3.4.3 that NG(V (D),D)(u
′)−Y −

V (S) 6= ∅, for each u′ ∈ V (S). If G(V (D), D)\(Y ∪ V (S)) is connected, then we are done
since we can reduce (G(V (B), B) to a supergraph of G7 by contracting G(V (D), D)\(Y ∪
V (S)) to a single vertex vh, S to a 5−cycle with vertices v1, v2, v3, v4, v5 such that, for each
p ∈ { 1, .., 5 } , q ∈ {p−1 (mod 5), p (mod 5)}, vp is adjacent to yq+1, and each of the paths
P1, P2, P3, P4, P5 to a single vertex. So we may assume that G(V (D), D)\(Y ∪ V (S)) is
not connected and, hence, that there exists a 2−separation (S1, S2) in G(V (D), D)\Y such
that V (S1) − V (S2) 6= ∅, V (S2) − V (S1) 6= ∅, and such that V (S1) ∩ V (S2) = { s1, s2 },
where s1, s2 ∈ V (S). Again, since G is 5−connected, we have that |NG(V (D),D)(V (S1) −
V (S2)) ∩ Y | ≥ 3 and |NG(V (D),D)(V (S2)− V (S1)) ∩ Y | ≥ 3, and that at least one of these
holds with equality, for otherwise G′ := G(V (D), D)/(E(V (S1) − V (S2)) ∪ E(V (S2) −
V (S1))) contains a copy of K2,3 as a subgraph with the larger partition contained in V1 :=
NG(V (D),D)(V (S1) − V (S2)) ∩ Y ∩ NG(V (D),D)(V (S2) − V (S1)) and the smaller partition
contained in V (G′)− Y − { s1, s2 }, and it also has a planar embedding with every vertex
in V1 on the boundary of the infinite face, a contradiction.

Without loss of generality, let |NG(V (D),D)(V (S1)− V (S2)) ∩ Y | = 3 so that (C ′, D′) :=
(E(G) − F, F ) is a 5−separation in G, where F :=

⋃
u′∈V (S1)−V (S2)

δG(V (D),D)(u
′). Let Y ′ :=

{ y′1, y′2, y′3, y′4, y′5 } = V (C ′) ∩ V (D′) so that |Y ′ ∩ Y | = 3 and Y ′ − Y = { s1, s2 }; notice
that G(V (D′), D′)\Y ′′ is connected for every Y ′′ ( Y ′. Further notice that there exist two
disjoint paths between Y ′ − Y and Y − Y ′ in G(V (D)− (V (S1)− V (S2)), D −D′) which
meet G(V (D′), D′) only in Y ′ − Y . That, together with 3.3.4.1, gives us that

3.3.4.4. G(V (D′), D′) has a planar embedding with y′1, y
′
2, y
′
3, y
′
4, y
′
5, in cyclic order, on

the boundary of the infinite face, where, for each i ∈ { 1, ...5 }, there exists a path Qi in
G(V (D), D) (possibly of zero length) connecting y′i with yi which meets G(V (D′), D′) only
in y′i and is disjoint with the path Qj, for each j ∈ { 1, ..., 5 } , j 6= i.

26



Also, since |NG(V (D),D)(V (S1)− V (S2))∩ Y | = 3 and, for each u′ ∈ V (S), |NG(V (D),D)(u
′)∩

Y | ≤ 2, we have that |V (D′) − V (C ′)| ≥ 2. Then, by Corollary 3.3.3 and Proposition
3.2.1, there exists a 5−separation (C ′′, D′′) in G, non-crossing with (C ′D′), such that
C ′ ⊆ C ′′, D′′ ⊆ D′ it is possible to slide from (C ′, D′) to (C ′′, D′′), and such that, for each
u′ ∈ V (C ′′) ∩ V (D′′), |NG(V (D′′),D′′)(u

′) − V (C ′′)| ≥ 2. Let Y ′′ := { y′′1 , y′′2 , y′′3 , y′′4 , y′′5 } =
V (C ′′) ∩ V (D′′); notice that G(V (D′′), D′′)\Y ′′′ is connected for every Y ′′′ ( Y ′′. There
also exist five pairwise disjoint paths Q′1, Q

′
2, Q

′
3, Q

′
4, Q

′
5 in G(V (D′), D′ − D′′) such that,

for each i ∈ { 1, ..., 5 } , Q′i connects y′′i with y′i and meets G(V (D′′), D′′) only in y′′i . Notice
that the path Q′′i := Q′i ∪ Qi connects y′′i with yi, for each i ∈ { 1, ..., 5 }, and is disjoint
with the path Q′′j , for each j ∈ { 1, ..., 5 } , j 6= i. As before, that, together with 3.3.4.4,
gives us that

3.3.4.5. G(V (D′′), D′′) has a planar embedding with y′′1 , y
′′
2 , y
′′
3 , y
′′
4 , y
′′
5 on the boundary of

the infinite face.

Consider such a separation (C ′′, D′′) in G with |D′′| minimal. Then we have, as we
did with (C,D), that |V (D′′)− V (C ′′)| > 2, that G(V (D′′), D′′)\Y ′′ is 2−connected, that
G(V (D′′), D′′)\Y ′′ is a planar graph with the infinite face bounded by a cycle S ′′ such
that |V (S ′′)| ≥ 5, and that, for each u′ ∈ V (S ′′), NG(V (D′′),D′′)(u

′) − Y ′′ − V (S ′′) 6= ∅.
Suppose, now, that G(V (D′′), D′′)\(Y ′′ ∪ V (S ′′)) is not connected so that there exists a
2−separation (S ′′1 , S

′′
2 ) in G(V (D′′), D′′)\Y ′′ such that V (S ′′1 )−V (S ′′2 ) 6= ∅, V (S ′′2 )−V (S ′′1 ) 6=

∅, and such that V (S ′′1 ) ∩ V (S ′′2 ) ⊆ V (S ′′); let X ′1 := { s′′1, s′′2 } = V (S ′′1 ) ∩ V (S ′′2 ), X2 :=
(NG(V (D′′),D′′)(V (S ′′1 ) − V (S ′′2 )) ∩ Y ′′). Then, (assuming, without loss of generality, that
|X ′2| = 3,) (A′, B′) := (E(G) − H,H), where H :=

⋃
u′∈V (S′′1 )−V (S′′2 )

δG(V (D′′),D′′)(u
′), is a

5−separation in G, with V (A′) ∩ V (B′) = X ′1 ∪ X ′2, such that |V (B′) − V (A′)| ≥ 2 and
G(V (B′), B′) has a planar embedding with x′1, x

′
2, x
′
3, x
′
4, x
′
5, in cyclic order, on the boundary

of the infinite face, where { x′1, x′2, x′3, x′4, x′5 } = X ′1∪X ′2; the last property is due to 3.3.4.5,
the two disjoint paths between X ′1 and Y ′′−X ′2 in G(V (D′′)− (V (S ′′1 )− V (S ′′2 )), D′′−B′)
which meet G(V (B′), B′) only in X ′1, and G(V (B′), B′)\X ′′ being connected for every
X ′′ ( X ′1∪X ′2. By Corollary 3.3.3 and Proposition 3.2.1, there exists another 5−separation
(A′′, B′′) in G, non-crossing with (A′, B′), such that A′ ⊆ A′′, B′′ ⊆ B′, it is possible to slide
from (A′, B′) to (A′′, B′′), and, for each u′ ∈ V (A′′)∩V (B′′), |NG(V (B′′,B′′)(u

′)−V (A′′)| ≥ 2;
let X ′′ := { x′′1, x′′2, x′′3, x′′4, x′′5 } = V (A′′) ∩ V (B′′); notice that G(V (B′′), B′′)\X ′′′ is con-
nected for every X ′′′ ( X ′′. There also exist five pairwise disjoint paths between X ′′

and X ′ in G(V (B′), B′ − B′′) connecting x′′i with x′i and, hence, with y′′i (and, ulti-
mately, with yi), for each i ∈ { 1, ..., 5 }. That, together with 3.3.4.5, gives us that
G(V (B′′), B′′) has a planar embedding with x′′1, x

′′
2, x

′′
3, x

′′
4, x

′′
5, in cyclic order, on the bound-

ary of the infinite face. But |B′′| < |D′′|, a contradiction to the minimality of |D′′|. Thus,
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G(V (D′′), D′′)\(Y ′′∪V (S ′′)) is connected and, for some vh ∈ V (D′′)−Y ′′−V (S ′′), { v1, v2,
v3, v4, v5 } ⊆ V (S ′′), G(V (D′′), D′′) has a rooted G7(y

′′)−minor; let U ′′ ⊆ V (D′′), F ′′ ⊆ D′′

be such that G(V (D′′), D′′)\U ′′/F ′′ ⊇ G′7. Then G(V (B), B)\(U ′ ∪ U ′′)/(F ′ ∪ F ′′) ⊇ G7,
where U ′ := V (D)− V (D′′)−

⋃
i∈{ 1,...,5 }

V (Q′′i ), F
′ :=

⋃
i∈{ 1,...,5 }

E(Q′′i ∪ Pi).

Lemma 3.3.5. If (A,B) is a 5−separation in a 5−connected graph G with V (A)∩V (B) =
{ x1, x2, x3, x4, x5 } , |V (A)−V (B)| ≥ 1, |V (B)−V (A)| ≥ 2 and |NG(V (B),B)(x4)| ≥ 3, such
that G(V (B), B) has a planar embedding with x1, x2, x3, x4, x5, in cyclic order, on the
boundary of the infinite face, then G(V (B), B) has a rooted G8− or G9−minor.

Proof. Let (A,B) be a 5−separation in a 5−connected graph G with V (A) ∩ V (B) =
{ x1, x2, x3, x4, x5 } , |V (A) − V (B)| ≥ 1, |V (B) − V (A)| ≥ 2 and |NG(V (B),B)(x4)| ≥ 3,
such that G(V (B), B) has a planar embedding with x1, x2, x3, x4, x5, in cyclic order, on
the boundary of the infinite face. By Corollary 3.3.3 and Proposition 3.2.1, there exists a
5−separation (C,D) in G, non-crossing with (A,B) such that A ⊆ C,D ⊆ B, it is possible
to slide from (A,B) to (C,D), and such that, for each u′ ∈ V (C)∩V (D), |NG(V (D),D)(u

′)−
V (C)| ≥ 2. Let Y := { y1, y2, y3, y4, y5 } = V (C) ∩ V (D); notice that G(V (D), D)\Y ′ is
connected for every Y ′ ( Y . There also exist five pairwise disjoint paths P1, P2, P3, P4, P5

in G(V (B), B − D) such that, for each i ∈ { 1, ..., 5 } , Pi connects yi with xi and meets

G(V (D), D) only in yi, and such that V (B) = (
5⋃
i=1

V (Pi)) ∪ (V (D) − V (C)). Then, since

G(V (B), B) has a planar embedding with x1, x2, x3, x4, x5, in cyclic order, on the boundary
of the infinite face, we have that

3.3.5.1. G(V (D), D) has a planar embedding with y1, y2, y3, y4, y5, in cyclic order, on the
boundary of the infinite face.

Contract all edges in
5⋃
i=1

E(Pi) to identify xi with yi, for each i ∈ { 1, ..., 5 }, and, thus,

reduce G(V (B), B) to G(V (D), D ∪ F ), where V (F ) ⊆ Y . Notice that, by Lemma
3.3.4, G(V (D), D) already has a rooted G7(y)−minor. Further, since |NG(V (B),B)(x4)| ≥ 3,
we may assume that |NG(V (D),D)(y4)−V (C)| ≥ 3 for otherwise |NG(V (D),D)(y4)−V (C)| = 2
and, hence, |(D ∪ F )∩ { y3y4, y4y5 } | ≥ 1, and we are done. By the proof of Lemma 3.3.4,
we have that G(V (D), D)\Y is a 2−connected planar graph with the infinite face bounded
by a cycle S such that |NG(V (D),D)(u) ∩ Y | ≤ 2, for each u ∈ V (S); since, for each u ∈
V (C)∩ V (D), |NG(V (D),D)(u)− V (C)| ≥ 2, and, additionally, |NG(V (D),D)(y4)− V (C)| ≥ 3,
we have that |V (S)| ≥ 6. Consider such a separation (C,D) with |D| minimal.
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3.3.5.2. If (A′, B′) is a 5−separation in G, non-crossing with (C,D) and with V (A′) ∩
V (B′) = { x′1, x′2, x′3, x′4, x′5 }, such that

(i) C ⊆ A′, B′ ⊆ D, (A′, B′) 6= (C,D),

(ii) |V (B′)− V (A′)| ≥ 2,

(iii) there exist five pairwise disjoint paths P ′1, P
′
2, P

′
3, P

′
4, P

′
5 in G(V (D), D − B′) such

that, for each i ∈ { 1, ..., 5 } , P ′i connects x′i with yi and meets G(V (B′), B′) only in
x′i, and

(iv) |NG(V (B′),B′)(x
′
4)| ≥ 3,

then G(V (B), B) has a rooted G8− or G9− minor.

Proof of claim. Let (A′, B′) be a 5−separation in G, non-crossing with (C,D) and with
V (A′) ∩ V (B′) = { x′1, x′2, x′3, x′4, x′5 }, such that it has the properties (i) − (iv) described
above; let X ′ := { x′1, x′2, x′3, x′4, x′5 }. Since G(V (B′), B′)\X ′′ is connected for every X ′′ (
X ′, we have, by (iii) and 3.3.5.1, that G(V (B′), B′) has a planar embedding with x′1, x

′
2, x
′
3,

x′4, x
′
5 on the boundary of the infinite face. By Corollary 3.3.3 and Proposition 3.2.1, there

exists another 5−separation (A′′, B′′) in G, non-crossing with (A′, B′) and with V (A′′) ∩
V (B′′) = { x′′1, x′′2, x′′3, x′′4, x′′5 }, such that A′ ⊆ A′′, B′′ ⊆ B′, it is possible to slide from
(A′, B′) to (A′′, B′′), and, for each u ∈ V (A′′) ∩ V (B′′), |NG(V (B′′),B′′)(u) − V (A′′)| ≥ 2; let
X ′′ := { x′′1, x′′2, x′′3, x′′4, x′′5 }; notice that G(V (B′′), B′′)\X ′′′ is connected for every X ′′′ ( X ′′.
There also exist five pairwise disjoint paths P ′′1 , P

′′
2 , P

′′
3 , P

′′
4 , P

′′
5 in G(V (B′), B′ − B′′)

such that, for each i ∈ { 1, ..., 5 } , P ′′i connects x′′i with x′i and meets G(V (B′′), B′′) only
in x′′i ; notice that the path P ′i ∪ P ′′i connects x′′i with yi, for each i ∈ { 1, ..., 5 }. As
before, that, together with 3.3.5.1, gives us that G(V (B′′), B′′) has a planar embedding
with x′′1, x

′′
2, x

′′
3, x

′′
4, x

′′
5 on the boundary of the infinite face. Clearly, |B′′| < |D| and, hence,

|NG(V (B′′),B′′)(x
′′
4) − V (A′′)| = 2, for otherwise (A′′, B′′) contradicts the minimality of |D|.

Delete all vertices in V (D) −
5⋃
i=1

V (P ′i ∪ P ′′i ) and contract all edges in
5⋃
i=1

E(P ′i ∪ P ′′i )

to identify xi with x′′i , for each i ∈ { 1, ..., 5 }, and, thus, reduce G(V (D), D ∪ F ) to
G(V (B′′), B′′ ∪ F ′ ∪ F ), where V (F ) ∪ V (F ′) ⊆ X ′′. Then we are done, since, by Lemma
3.3.4, G(V (B′′), B′′ ∪ F ′ ∪ F ) already has a rooted G7(x

′′)−minor, and |(B′′ ∪ F ′ ∪ F ) ∩
{ x′′3x′′4, x′′4x′′5 } | ≥ 1.

Without loss of generality, let GD be a plane graph embedding G(V (D), D) in the
plane with y1, y2, y3, y4, y5, in clockwise order, on the boundary of the infinite face. For
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any two vertices u, u′ ∈ V (S), we denote by S [u, u′] the set of all vertices v ∈ V (S) such
that v is seen while traversing S from u to u′ (both inclusive) in clockwise direction in GD

without repeating any vertices; correspondingly, S [u, u′) := S [u, u′]− { u′ } , S(u, u′] :=
S [u, u′]−{ u } , S(u, u′) := S [u, u′]−{ u, u′ }. We use identical notation for analogous sets of
vertices in a path P in GD, only, unlike a cycle, for any two vertices u, u′ ∈ V (P ), P (u, u′) =
P (u′, u). For each i ∈ { 1, ..., 5 }, let y−i , y

+
i denote the vertices in V (S)∩NGD(yi) such that

no vertex in S(y−i , y
+
i ) has a neighbor y ∈ Y, y 6= yi. Since |NG(V (D),D)(y4) − V (C)| ≥ 3,

we have that S(y−4 , y
+
4 ) 6= ∅.

Suppose there does not exist a path between S(y−4 , y
+
4 ) and S(y−1 , y

+
2 ) in GD\Y that

is internally disjoint with S. Let w be a vertex in S(y−4 , y
+
4 ). There exists a vertex

a ∈ S[y+2 , y
+
3 ) which is connected to w by a path in GD\Y that is internally disjoint with

S. Consider such a vertex a for which |S[y+2 , a)| is minimal. Similarly, consider a vertex
b ∈ S(y−5 , y

−
1 ] which is connected to w by a path in GD\Y that is internally disjoint with S,

and for which |S(b, y−1 ]| is minimal. Notice that { a, b } 2−separates GD\Y as (S1, S2) with
V (S1) − V (S2) 6= ∅, V (S2) − V (S1) 6= ∅ and V (S1) ∩ V (S2) = { a, b }; let w ∈ V (S1). In
turn, (C ′, D′) := (E(G)−H,H), where H :=

⋃
u∈V (S1)−V (S2)

δG(V (D),D)(u), is a 5−separation

in G, non-crossing with (C,D) and with V (C ′) ∩ V (D′) = {a, y3, y4, y5, b}, such that
C ( C ′, D′ ( D, |NG(V (D′),D′)(y4)−V (C ′)| ≥ 3 (and, hence, |V (D′)−V (C ′)| ≥ 3), and such
that there exist two disjoint paths in G(V (D), D−D′) connecting a with y2 and b with y1
that meet G(V (D′), D′) only in a and b, respectively, and we are done by 3.3.5.2. So we may
assume that there exists at least one such path Q with ends w ∈ S(y−4 , y

+
4 ), q ∈ S(y−1 , y

+
2 ),

and one for which both |S(y−4 , w]| and |S[q, y+2 )| are minimum. Moreover, we may assume
for any such path Q that { w, q } does not 2−separate GD\Y (proof follows) and, hence,
that |V (Q)| ≥ 3.

3.3.5.3. { w, q } does not 2−separate GD\Y .

Proof of claim. Suppose that { w, q } 2−separatesGD\Y as (S1, S2) so that V (S1)∩V (S2) =
{ w, q }. Without loss of generality, let y−4 ∈ V (S1), y

+
4 ∈ V (S2). Then, assuming that q ∈

S[y+1 , y
+
2 ) (the case when q ∈ S(y−1 , y

+
1 ) is symmetrically analogous), (C ′, D′) := (E(G) −

H,H), where H :=
⋃

u∈V (S1)−V (S2)

δG(V (D),D)(u), is a 5−separation in G, non-crossing with

(C,D) and with V (C ′) ∩ V (D′) = { q, y2, y3, y4, w }, such that C ⊆ C ′, D′ ⊆ D, |V (D′) −
V (C ′)| ≥ 2, and such that G(V (D′), D′) has a planar embedding with q, y2, y3, y4, w, in
cyclic order, on the boundary of the infinite face; the last property is due to 3.3.5.1 com-
bined with the facts that G(V (D′), D′)\Y ′ is connected for every Y ′ ( { q, y2, y3, y4, w },
and there exist disjoint paths Pw and Pq in G(V (D), D −D′) connecting w with y5 and q
with y1, and meeting G(V (D′), D′) only in w and q, respectively, such that v+4 ∈ V (Pw).
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By Lemma 3.3.4, G(V (D), D∪F )\(V (D)−V (D′)−V (Pw)−V (Pq))/(E(Pw)∪E(Pq)) has
a rooted G7(y)−minor which, together with the edge y4y5, gives us a rooted G9−minor in
G(V (B), B).

Now suppose that there exists another path Q′ between S(y−4 , y
+
4 ) and S(y−1 , y

+
2 ) in

GD\Y , with ends w′ ∈ S(y−4 , y
+
4 ), q′ ∈ S(y−1 , y

+
2 ), which is internally disjoint with S,Q, and

which lies in the face of GD bounded by the cycle formed by the vertices V (Q) ∪ S(w, q)
(the case when it lies in the face of GD bounded by the cycle formed by the vertices
V (Q) ∪ S(q, w) is symmetrically analogous). Consider such a path Q′ for which both
|S[w′, y+4 )| and |S(y−1 , q

′]| are minimum. By 3.3.5.3, there exists a path Q1 between
Q′(w′, q′) and S[y+4 , y

−
1 ], with ends q′1 ∈ Q′(w′, q′) and q1 ∈ S[y+4 , y

−
1 ], that is internally

disjoint with S,Q′. We may assume that q1 ∈ S(y−5 , y
−
1 ], for otherwise q1 ∈ S[y+4 , y

−
5 ] and,

unless S(y−5 , y
−
1 ] is 4−separated from the rest of the graph by

{
y−5 , y5, y1, q

′ } S(y−5 , y
−
1 ],

q′ ∈ S(y−2 , y
+
2 ); in this case,

{
y1, y2, q

′, y−5 , y5
}

forms the separating set of a 5−separation
(A′, B′) in G with V (A′) ∩ V (B′) = { x′1, ..., x′5 } (where x′1 = y1, x

′
2 = y2, x

′
3 = q′, x′4 =

y−5 , x
′
5 = y5) and S[y+5 , y

−
2 ] ⊆ V (B′) − V (A′), such that G(V (B′), B′) has a planar em-

bedding with y1, y2, q
′, y−5 , y

′
5, in cyclic order, on the boundary of the infinite face, so

that, by Lemma 3.3.4, G(V (B′), B′) has a rooted G7(x
′)−minor which, together with

the path between q′ and y3 along S using the edge y−3 y3, the path between y−5 and y4
along S using the edge y+4 y4 and the path between y3 and y4 along S using the edges
y3y

+
3 and y−4 y4, ensures that G(V (D), D) has a rooted G8(y)−minor and we are done.

In turn, there exists another path Q5 between S[y+4 , q1) and Q′(w′, q′1] ∪ Q1[q
′
1, q1), with

ends q′5 ∈ Q′(w′, q′1] ∪ Q1[q
′
1, q1) and q5 ∈ S[y+4 , q1), that is internally disjoint with S,Q′

and Q1, for otherwise { w′, y4, y5, q1 } 4−separates S(w′, q1) from the rest of the graph G.
Similarly, there exists a path Q2 between Q(w, q) and S[y+2 , y

+
3 ), with ends q′2 ∈ Q(w, q)

and q2 ∈ S[y+2 , y
+
3 ), that is internally disjoint with S,Q, and a path Q3 between S(q2, y

−
4 ]

and Q(w, q′2] ∪ Q2[q
′
2, q2), with ends q′3 ∈ Q(w, q′2] ∪ Q2[q

′
2, q2) and q3 ∈ S(q2, y

−
4 ], that

is internally disjoint with S,Q and Q2. By 3.3.5.3, there also exists a path Q′′ between
Q(w, q) and Q′(w′, q′) that is internally disjoint with S,Q,Q′. Contract the edges in S to
identify S[q1, y

−
1 ] into v5, S(y−1 , y

+
2 ) into v1, S[y+2 , q2] into v2, S(q2, y

−
4 ] into v3, S(y−4 , y

+
4 ) into

v6, S[y+4 , q1) into v4, the edges in Q,Q2, Q3 to identify Q(w, q) ∪Q2(q2, q
′
2] ∪Q3(q3, q

′
3] into

vh2 , and the edges in Q′, Q1, Q5 to identify Q′(w′, q′)∪Q1(q1, q
′
1]∪Q5(q5, q

′
5] into vh1 . Finally,

contract all but one edges in Q′′ to get a graph that contains G10 as a subgraph, and we
are done because the latter has a rooted G8− as well as a rooted G9−minor (e.g. contract
v4x5 and v5x1 to identify the respective vertex-pairs and relabel vh2 , v6, vh1 as vh, v4, v5,
respectively, to get G9 from G10). So we may assume that there do not exist two internally
disjoint paths between S(y−4 , y

+
4 ) and S(y−1 , y

+
2 ) in GD\Y that are both internally disjoint

with S.
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Since S bounds the infinite face of GD\Y , there do not exist four pairwise inter-
nally disjoint paths between S(y−4 , y

+
4 ) and S(y−1 , y

+
2 ) in GD\Y , and, hence, there ex-

ists a 3−separation (S1, S2) in GD\Y such that V (S1) ∩ V (S2) = { z, a, b }, where z ∈
Q(w, q), a ∈ S[y+2 , y

−
4 ], b ∈ S[y+4 , y

−
1 ], S(y−4 , y

+
4 ) ⊆ V (S1), and S(y−1 , y

+
2 ) ⊆ V (S2). It

cannot be that a ∈ S[y+3 , y
−
4 ] and b ∈ S[y+4 , y

−
5 ], for otherwise { a, y4, b, z } 4−separates

S(y−4 , y
+
4 ) from the rest of the graph G. Suppose a ∈ S[y+3 , y

−
4 ] and b ∈ S(y−5 , y

−
1 ]. Then

(C ′, D′) := (E(G) − H,H), where H :=
⋃

u∈V (S1)−V (S2)

δG(V (D),D)(u), is a 5−separation

in G, non-crossing with (C,D) and with V (C ′) ∩ V (D′) = {a, y4, y5, b, z}, such that
C ( C ′, D′ ( D, |V (D′)−V (C ′)| ≥ 2, and such that G(V (D′), D′) has a planar embedding
with a, y4, y5, b, z, in cyclic order, on the boundary of the infinite face; the last property
is due to 3.3.5.1 combined with the facts that G(V (D′), D′)\Y ′ is connected for every
Y ′ ( { q, y2, y3, y4, w }, and that there exist disjoint paths Pa, Pb, Pz in G(V (D), D −D′),
connecting a with y3, b with y1, z with y2, that meet G(V (D′), D′) only in a, b, z, respec-
tively. If a = y−4 , then, by Lemma 3.3.4, G(V (D), D ∪ F )\(V (D) − V (D′) − V (Pa) −
V (Pb) − V (Pz))/(E(PA) ∪ E(Pb) ∪ E(Pz)) has a rooted G7(y)−minor which, together
with the edge y3y4, gives us a rooted G8−minor in G(V (B), B). If, on the other hand,
a ∈ S[y+3 , y

−
4 ), then |NG(V (D′),D′)(y4)−V (C ′)| ≥ 3 and we are done by 3.3.5.2. So we may as-

sume that a ∈ S[y+2 , y
+
3 ). Similarly, we may assume that b ∈ S(y−5 , y

−
1 ]. Then, (C ′, D′) is a

6−separation in G, non-crossing with (C,D) and with V (C ′)∩V (D′) = { a, y3, y4, y5, b, z },
such that C ⊆ C ′, D′ ⊆ D, |NG(V (D′),D′)(y4) − V (C ′)| ≥ 3, G(V (D′), D′) has a planar em-
bedding with a, y3, y4, y5, b, z, in cyclic order, on the boundary of the infinite face, and such
that there exist disjoint paths Pa, Pb, Pz in G(V (D), D −D′) connecting a with y2, b with
y1, z with S(y−1 , y

+
2 ) that meet G(V (D′), D′) only in a, b, z, respectively.

Consider such a separation (C ′, D′) with |D′| minimal. Notice that |NGD(w)− V (S)−
{ y4 } | ≥ 2 so that there exists a vertex z′′ ∈ NGD(w) − V (S) − { y4, z }. Analogous to
3.3.5.3, we may assume that

3.3.5.4. { w, z } does not 2−separate GD(V (S1), S1), where w ∈ S(y−4 , y
+
4 ) such that there

exists a path between w and z in G(V (D′), D′) disjoint with S.

For otherwise, if (S ′1, S
′
2) is a 2−separation in GD(V (S1), S1), with V (S ′1)∩V (S ′2) = { w, z },

such that y−4 ∈ V (S ′2) and
{
y+4 , z

′′ } ⊆ V (S ′1), then (C ′′, D′′) := (E(G) − H ′, H ′),
where H ′ :=

⋃
u∈V (S′1)−V (S′2)−{ b }

δG(V (D′),D′)(u), is a 5−separation in G that is similar to

the 5−separation (C ′, D′) observed when a = y−4 and b ∈ S(y−5 , y
−
1 ] and, thus, yields a

rooted G8−minor in G(V (B), B), and we are done (likewise, when
{
y−4 , z

′′ } ⊆ V (S ′1) and
y+4 ∈ V (S ′2), we get a 5−separation (C ′′, D′′) that is similar to the 5−separation (C ′, D′) ob-
served when b = y+4 and a ∈ S[y+2 , y

+
3 ) and, thus, yields a rooted G9−minor in G(V (B), B),
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and we are done again). Continuing with the analogy, suppose, now, that there exists an-
other path Q′ between S(y−4 , y

+
4 ) and z in GD(V (S1), S1), with w′ ∈ S(y−4 , y

+
4 ) as its other

end, which is internally disjoint with S,Q (the subpath of Q between S(y−4 , y
+
4 ) and z,

including w, may be chosen differently for this purpose, if required), and which lies in the
face of GD bounded by the cycle formed by the vertices V (Q) ∪ S(w, q) (the case when
it lies in the face of GD bounded by the cycle formed by the vertices V (Q) ∪ S(q, w)
is symmetrically analogous). Consider such a path Q′ for which |S[w′, y+4 )| is mini-
mum. Then, by 3.3.5.4, there exists a path Q1 between Q′(w′, z) and S[y+4 , b] with
ends q′1 ∈ Q′(w′, z) and q1 ∈ S[y+4 , b]. We may assume that q1 ∈ S(y−5 , b], for oth-
erwise

{
z, b, y3, y4, y

−
5

}
forms the separating set of a 5−separation (A′, B′) in G with

{ w } ∪ S[y+3 , y
−
4 ] ⊆ V (B′) − V (A′) which satisfies the hypotheses of 3.3.5.2 and we are

done. In turn, there exists another path Q5 between S[y+4 , q1) and Q′(w′, q′1] ∪ Q1[q
′
1, q1)

with ends q′5 ∈ Q′(w′, q′1] ∪ Q1[q
′
1, q1) and q5 ∈ S[y+4 , q1), that is internally disjoint with

S,Q′ and Q1, for otherwise { w′, y4, y5, q1 } 4−separates S(w′, q1) from the rest of the graph
G. Similarly, there exists a path Q2 between Q(w, z) and S[a, y+3 ) with ends q′2 ∈ Q(w, z)
and q2 ∈ S[a, y+3 ), and a path Q3 between S(q2, y

−
4 ] and Q(w, q′2] ∪ Q2[q

′
2, q2) with ends

q′3 ∈ Q(w, q′2] ∪ Q2[q
′
2, q2) and q3 ∈ S(q2, y

−
4 ]. Finally, by 3.3.5.4, there also exists a

path Q′′ between Q(w, z) and Q′(w′, z) which, together with the paths Q1, Q5, Q2, Q3

and the paths Pa, Pb, Pz, yields a rooted G10−minor in G(V (B), B) and we are done
again. So we may assume that there does not exist such a path Q′ and, hence, that,
for some z′ ∈ Q(w, z), a′ ∈ S[a, y+3 ), b′ ∈ S(y−5 , b], { z′, a′, b′ } 3−separates GD(V (S1), S1)
as (S ′1, S

′
2) such that V (S ′1) ∩ V (S ′2) = { z′, a′, b′ } , S(y−4 , y

+
4 ) ⊆ V (S ′1), z ∈ V (S ′2). Then,

(C ′′, D′′) := (E(G) − H ′, H ′), where H ′ :=
⋃

u∈V (S′′1 )−V (S′′2 )

δG(V (D),D)(u), is a 6− separation

in G, non-crossing with (C,D) and with V (C ′′)∩V (D′′) = { a′, y3, y4, y5, b′, z′ }, such that
C ⊆ C ′′, D′′ ⊆ D, |NG(V (D′′), D′′)(y4)−V (C ′′)| ≥ 3, G(V (D′′), D′) has a planar embedding
with a′, y3, y4, y5, b

′, z′, in cyclic order, on the boundary of the infinite face, and such that
there exist disjoint paths Pa′ , Pb′ , Pz′ in G(V (D), D−D′′) connecting a′ with y2, b

′ with y1, z
′

with S(y−1 , y
+
2 ) (using paths Pa, Pb, Pz as subpaths, respectively) that meet G(V (D′′), D′′)

only in a′, b′, z′, respectively. But |D′′| < |D′|, a contradiction.

Corollary 3.3.6. Let (A,B) be a 5−separation in a 5−connected graph G, with V (A) ∩
V (B) = { x1, x2, x3, x4, x5 } , |V (A)− V (B)| ≥ 1, |V (B)− V (A)| ≥ 2, |NG(V (B),B)(x4)| ≥ 3,
such that G(V (B), B) has a planar embedding with x1, x2, x3, x4, x5, in cyclic order, on the
boundary of the infinite face. If, additionally, |NG(V (B),B)(x

′)| ≥ 3, for some x′ ∈ { x1, x5 },
then G(V (B), B) has a rooted G8+(12)−, G8+(15)−, G9+(12)− or G9+(15)−minor when x′ =
x1, and a rooted G8+(15)− or G9−minor when x′ = x5.
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Proof. Let (A,B) be a 5−separation in a 5−connected graph G, with V (A) ∩ V (B) =
{ x1, x2, x3, x4, x5 }, such that |V (A)−V (B)| ≥ 1, |V (B)−V (A)| ≥ 2, |NG(V (B),B)(x4)| ≥ 3,
and such that G(V (B), B) has a planar embedding with x1, x2, x3, x4, x5, in cyclic order, on
the boundary of the infinite face. By Corollary 3.3.3 and Proposition 3.2.1, there exists a
5−separation (C,D) in G, non-crossing with (A,B) such that A ⊆ C,D ⊆ B, it is possible
to slide from (A,B) to (C,D), and such that, for each u′ ∈ V (C)∩V (D), |NG(V (D),D)(u

′)−
V (C)| ≥ 2. Let Y := { y1, y2, y3, y4, y5 } = V (C) ∩ V (D); notice that G(V (D), D)\Y ′ is
connected for every Y ′ ( Y . There also exist five pairwise disjoint paths P1, P2, P3, P4, P5

in G(V (B), B − D) such that, for each i ∈ { 1, ..., 5 } , Pi connects yi with xi and meets

G(V (D), D) only in yi, and such that V (B) = (
5⋃
i=1

V (Pi))∪(V (D)−V (C)); let y′ ∈ { y1, y5 }

be the other end of the path P ′ ∈ { P1, ..., P5 } that has x′ as one of its ends. Then, since
G(V (B), B) has a planar embedding with x1, x2, x3, x4, x5, in cyclic order, on the boundary
of the infinite face, we have that

3.3.6.1. G(V (D), D) has a planar embedding with y1, y2, y3, y4, y5, in cyclic order, on the
boundary of the infinite face.

Contract all edges in
5⋃
i=1

E(Pi) to identify xi with yi, for each i ∈ { 1, ..., 5 }, and, thus,

reduce G(V (B), B) to G(V (D), D ∪ F ), where V (F ) ⊆ Y . Notice that by Lemma
3.3.4, G(V (D), D) already has a rooted G7(y)−minor. Further, since |NG(V (B),B)(x

′)| ≥ 3,
we may assume that |NG(V (D),D)(y

′) − V (C)| ≥ 3: if |NG(V (D),D)(y
′) − V (C)| = 2, then

either |(D ∪ F ) ∩ { y1y2, y1y5 } | ≥ 1(y′ = y1) or |(D ∪ F ) ∩ { y1y5, y4y5 } | ≥ 1(y′ = y5);
if, additionally, |NG(V (D),D)(y4) − V (C)| = 2, then, since |NG(V (B),B)(x4)| ≥ 3, |(D ∪ F ) ∩
{ y3y4, y4y5 } | ≥ 1 and we are done; on the other hand, if |NG(V (D),D)(y4) − V (C)| ≥ 3,
then, by Lemma 3.3.5, G(V (D), D) has a rooted G8(y)− or G9(y)−minor, and we are
done again. Similarly, we may assume that |NG(V (D),D)(y4) − V (C)| ≥ 3. By the proof
of Lemma 3.3.4, we have that G(V (D), D)\Y is a 2−connected planar graph with the
infinite face bounded by a cycle S such that, for each u ∈ V (S), |NG(V (D),D)(u) ∩ Y | ≤ 2;
since |NG(V (D),D)(y

′) − V (C)| ≥ 3 and |NG(V (D),D)(y4) − V (C)| ≥ 3, and, additionally,
|NG(V (D),D)(u)−V (C)| ≥ 2 for each u ∈ V (C)∩V (D), we have that |V (S)| ≥ 6. Consider
such a separation (C,D) with |D| minimal.

3.3.6.2. If (A′, B′) is a 5−separation in G, non-crossing with (C,D) and with V (A′) ∩
V (B′) = { x′1, x′2, x′3, x′4, x′5 }, such that

(i) C ⊆ A′, B′ ⊆ D, (A′, B′) 6= (C,D),
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(ii) |V (B′)− V (A′)| ≥ 2,

(iii) there exist five pairwise disjoint paths P ′1, P
′
2, P

′
3, P

′
4, P

′
5 in G(V (D), D − B′) such

that, for each i ∈ { 1, ..., 5 } , P ′i connects x′i with yi and meets G(V (B′), B′) only in
x′i,

(iv) |NG(V (B′),B′)(x
′
4)| ≥ 3, and,

(v) |NG(V (B),B)(x
′′)| ≥ 3, where x′′ ∈ { x′1, x′5 } is the other end of the path P ′′ ∈ { P ′1, ..., P ′5 }

that has y′ as one of its ends,

then G(V (B), B) has a rooted G8+(12)−, G8+(15)−, G9+(12)− or G9+(15)−minor when x′ =
x1, and a rooted G8+(15)− or G9−minor when x′ = x5.

Proof of claim. Let (A′, B′) be a 5−separation in G, non-crossing with (C,D) and with
V (A′) ∩ V (B′) = { x′1, x′2, x′3, x′4, x′5 }, such that it has the properties (i) − (v) described
above; let X ′ := { x′1, x′2, x′3, x′4, x′5 }. Since G(V (B′), B′)\X ′′ is connected for every X ′′ (
X ′, we have, by (iii) and 3.3.6.1, that G(V (B′), B′) has a planar embedding with x′1, x

′
2, x
′
3,

x′4, x
′
5 on the boundary of the infinite face. By Corollary 3.3.3 and Proposition 3.2.1, there

exists another 5−separation (A′′, B′′) in G, non-crossing with (A′, B′) and with V (A′′) ∩
V (B′′) = { x′′1, x′′2, x′′3, x′′4, x′′5 }, such that A′ ⊆ A′′, B′′ ⊆ B′, it is possible to slide from
(A′, B′) to (A′′, B′′), and, for each u ∈ V (A′′) ∩ V (B′′), |NG(V (B′′),B′′)(u) − V (A′′)| ≥ 2; let
X ′′ := { x′′1, x′′2, x′′3, x′′4, x′′5 }; notice that G(V (B′′), B′′)\X ′′′ is connected for every X ′′′ ( X ′′.
There also exist five pairwise disjoint paths P ′′1 , P

′′
2 , P

′′
3 , P

′′
4 , P

′′
5 in G(V (B′), B′ − B′′)

such that, for each i ∈ { 1, ..., 5 } , P ′′i connects x′′i with x′i and meets G(V (B′′), B′′) only
in x′′i ; let x′′′ be the other end of the path P ′′′ ∈ { P ′′1 , ..., P ′′5 } that has x′′ as one of
its ends. Notice that the path P ′i ∪ P ′′i connects x′′i with yi, for each i ∈ { 1, ..., 5 }.
That, together with 3.3.6.1, gives us that G(V (B′′), B′′) has a planar embedding with
x′′1, x

′′
2, x

′′
3, x

′′
4, x

′′
5 on the boundary of the infinite face. As before, we may assume that

|NG(V (B′′),B′′)(x
′′′) − V (A′′)| ≥ 3 and |NG(V (B′′),B′′)(x

′′
4) − V (A′′)| ≥ 3, for otherwise we are

done. But now |B′′| < |D|, a contradiction to the minimality of |D|.

Without loss of generality, let GD be a plane graph embedding G(V (D), D) in the
plane with y1, y2, y3, y4, y5, in clockwise order, on the boundary of the infinite face. For
each i ∈ { 1, ..., 5 }, let y−i , y

+
i denote the vertices in V (S) ∩ NGD(yi) such that no vertex

in S(y−i , y
+
i ) has a neighbor y ∈ Y, y 6= yi, where S(y−i , y

+
i ) is defined as before. Since

|NG(V (D),D)(y4) − V (C)| ≥ 3, we have that S(y−4 , y
+
4 ) 6= ∅. Similarly, either S(y−1 , y

+
1 ) 6=

∅(x′ = x1) or S(y−5 , y
+
5 ) 6= ∅(x′ = x5).
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Suppose there does not exist a path between S(y−4 , y
+
4 ) and S(y−1 , y

+
2 ) in GD\Y that

is internally disjoint with S. Let w be a vertex in S(y−4 , y
+
4 ). There exists a vertex

a ∈ S[y+2 , y
+
3 ) which is connected to w by a path in GD\Y that is internally disjoint with

S. Consider such a vertex a for which |S[y+2 , a)| is minimal. Similarly, consider a vertex
b ∈ S(y−5 , y

−
1 ] which is connected to w by a path in GD\Y that is internally disjoint with S,

and for which |S(b, y−1 ]| is minimal. Notice that { a, b } 2−separates GD\Y as (S1, S2) with
V (S1) − V (S2) 6= ∅, V (S2) − V (S1) 6= ∅ and V (S1) ∩ V (S2) = { a, b }; let w ∈ V (S1). In
turn, (C ′, D′) := (E(G)−H,H), where H :=

⋃
u∈V (S1)−V (S2)

δG(V (D),D)(u), is a 5−separation

in G, non-crossing with (C,D) and with V (C ′) ∩ V (D′) = { b, a, y3, y4, y5 }, such that
C ( C ′, D′ ( D, |NG(V (D′),D′)(y4) − V (C ′)| ≥ 3 (and, hence, |V (D′) − V (C ′)| ≥ 3), and
such that there exist two disjoint paths in G(V (D), D − D′) connecting a with y2 (using
the edge y2y

+
2 ) and b with y1 (using the edge y1y

−
1 ) that meet G(V (D′), D′) only in a

and b, respectively; let y′1 = b, y′2 = a, y′3 = y3, y
′
4 = y4 and y′5 = y5. Further, there

exists a path connecting y1 with y2 (using the edges y1y
+
1 and y2y

−
2 ) in G(V (D), D −D′)

that meets the first two paths only in y2 and y1, respectively. Now, if b 6∈ S(y−5 , y
+
5 ]

and x′ = x5, then (C ′, D′) satisfies the hypotheses of 3.3.6.2 and we are done; if, on the
other hand, b ∈ S(y−5 , y

+
5 ], then, by Lemma 3.3.5, G(V (D′), D′) has a rooted G8(y

′)− or
G9(y

′)−minor which, together with the three paths and the edge y5y
+
5 yields in G(V (B), B)

a rooted G8+(12)− or G9+(12)−minor when x′ = x1, and a rooted G8+(15)− or G9−minor
when x′ = x5. So we may assume that there exists at least one such path Q with ends
w ∈ S(y−4 , y

+
4 ) and q ∈ S(y−1 , y

+
2 ), and one for which both |S(y−4 , w]| and |S[q, y+2 )| are

minimum. Moreover, we may assume for any such path Q that { w, q } does not 2−separate
GD\Y (proof follows) and, hence, that |V (Q)| ≥ 3.

3.3.6.3. { w, q } does not 2−separate GD\Y .

Proof of claim. Suppose that { w, q } 2−separatesGD\Y as (S1, S2) so that V (S1)∩V (S2) =
{ w, q }. Without loss of generality, let y−4 ∈ V (S1), y

+
4 ∈ V (S2). If q ∈ S[y+1 , y

+
2 ), then

(C ′, D′) := (E(G) − H,H), where H :=
⋃

u∈V (S1)−V (S2)

δG(V (D),D)(u), is a 5−separation in

G, non-crossing with (C,D) and with V (C ′) ∩ V (D′) = { q, y2, y3, y4, w }, such that
C ⊆ C ′, D′ ⊆ D, |V (D′)−V (C ′)| ≥ 2, and such that G(V (D′), D′) has a planar embedding
with q, y2, y3, y4, w, in cyclic order, on the boundary of the infinite face; the last property
is due to 3.3.6.1 combined with the facts that G(V (D′), D′)\Y ′ is connected for every
Y ′ ( { q, y2, y3, y4, w }, and there exist two disjoint paths in G(V (D), D −D′) connecting
w with y5 (using the edge y5y

−
5 and the vertex y+4 ) and q with y1 (using the edge y1y

+
1 ), and

meeting G(V (D′), D′) only in w and q, respectively; let y′1 = q, y′2 = y2, y
′
3 = y3, y

′
4 = y4

and y′5 = w. Further, there exists a path connecting y1 with y5 (using the edges y1y
−
1 and
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y5y
+
5 ) in G(V (D), D − D′) that meets the first two paths only in y5 and y1, respectively.

By Lemma 3.3.4, G(V (D′), D′) has a rooted G7(y
′)−minor which, together with the three

paths and the edge y5y
+
5 yields a rooted G9+(15)−minor in G(V (B), B).

Similarly, if q 6∈ S[y+1 , y
+
2 ) then, with H :=

⋃
u∈V (S2)−V (S1)

δG(V (D),D)(u), (C ′, D′) :=

(E(G)−H,H) is a 5−separation in G, non-crossing with (C,D) and with V (C ′)∩V (D′) =
{ y1, q, w, y4, y5 }, such that C ⊆ C ′, D′ ⊆ D, |V (D′)−V (C ′)| ≥ 2, and such that G(V (D′),
D′) has a planar embedding with q, w, y4, y5, y1, in cyclic order, on the boundary of the infi-
nite face; the last property is due to 3.3.6.1 combined with the facts that G(V (D′), D′)\Y ′
is connected for every Y ′ ( { y1, q, w, y4, y5 }, and there exist two disjoint paths in G(V (D),
D − D′) connecting w with y3 (using the edge y3y

+
3 and the vertex y−4 ) and q with

y2 (using the edge y2y
−
2 ), and meeting G(V (D′), D′) only in w and q, respectively; let

y′1 = y1, y
′
2 = q, y′3 = w, y′4 = y4 and y′5 = y5. Further, there exists a path connecting y2

with y3 (using the edges y2y
+
2 and y3y

−
3 ) in G(V (D), D−D′) that meets the first two paths

only in y3 and y2, respectively. By Lemma 3.3.4, G(V (D′), D′) has a rooted G7(y
′)−minor

(or, by Lemma 3.3.5, a rooted (G7(y
′)∪{ y′1y′5 })− or G9(y

′)−minor, when x′ = x5) which,
together with the three paths and the edges y1y

+
1 and y4y

−
4 , yields in G(V (B), B) a rooted

(G8 ∪ { x1x5, x1x2 })−minor when x′ = x1, and a rooted (G9 ∪ { x1x2, x2x3, x3x4 })− or
(G8 ∪ { x1x5, x1x2, x2x3 })−minor when x′ = x5.

Now suppose that there exists another path Q′ between S(y−4 , y
+
4 ) and S(y−1 , y

+
2 ) in

GD\Y , with ends w′ ∈ S(y−4 , y
+
4 ), q′ ∈ S(y−1 , y

+
2 ), which is internally disjoint with S and Q,

which lies in the face of GD bounded by the cycle formed by the vertices V (Q) ∪ S(w, q)
(the case when it lies in the face of GD bounded by the cycle formed by the vertices
V (Q) ∪ S(q, w) is symmetrically analogous), and for which both |S[w′, y+4 )| and |S(y−1 , q

′]|
are minimum. Then, by the proof of Lemma 3.3.5, G(V (B), B) has a rooted G10−minor
which, in turn, has a rooted (G8 ∪ { x2x3 })−minor as well as a rooted G9+(15)−minor,
and we are done. So we may assume that there do not exist two internally disjoint paths
between S(y−4 , y

+
4 ) and S(y−1 , y

+
2 ) in GD\Y that are both internally disjoint with S.

Since S bounds the infinite face of GD\Y , there do not exist four pairwise inter-
nally disjoint paths between S(y−4 , y

+
4 ) and S(y−1 , y

+
2 ) in GD\Y , and, hence, there exists a

3−separation (S1, S2) in GD\Y such that V (S1)∩V (S2) = { z, a, b }, where z ∈ Q(w, q), a ∈
S[y+2 , y

−
4 ], b ∈ S[y+4 , y

−
1 ], S(y−4 , y

+
4 ) ⊆ V (S1), and S(y−1 , y

+
2 ) ⊆ V (S2). It cannot be that

a ∈ S[y+3 , y
−
4 ] and b ∈ S[y+4 , y

−
5 ], for otherwise { a, y4, b, z } 4−separates S(y−4 , y

+
4 ) from the

rest of the graph G. Suppose a ∈ S[y+3 , y
−
4 ], b ∈ S(y−5 , y

−
1 ]. Then (C ′, D′) := (E(G)−H,H),

where H :=
⋃

u∈V (S1)−V (S2)

δG(V (D),D)(u), is a 5−separation in G, non-crossing with (C,D)

and with V (C ′) ∩ V (D′) = {a, y4, y5, b, z}, such that C ( C ′, D′ ( D, |V (D′)−V (C ′)| ≥ 2,
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and such that G(V (D′), D′) has a planar embedding with a, y4, y5, b, z, in cyclic order, on
the boundary of the infinite face; the last property is due to 3.3.6.1 combined with the
facts that G(V (D′), D′)\Y ′ is connected for every Y ′ ( { b, z, a, y4, y5 }, and there exist
pairwise disjoint paths Pa, Pb and Pz in G(V (D), D −D′) connecting a with y3 (using the
edge y3y

+
3 ), b with y1 (using the edge y1y

−
1 ) and z with y2 (using the edge y2y

−
2 ), that

meet G(V (D′), D′) only in a, b and z, respectively; let y′1 = b, y′2 = z, y′3 = a, y′4 = y4 and
y′5 = y5. Further, there exists a path connecting y2 with y3 (using the edges y2y

+
2 and y3y

−
3 )

in G(V (D), D − D′) that meets the paths Pa and Pz only in y3 and y2, respectively. If
a = y−4 , then we are done since, by Lemma 3.3.4, G(V (D′), D′) has a rooted G7(y

′)−minor
(or, by Lemma 3.3.5, a rooted (G7(y

′) ∪ { y′1y′5 })− or G9(y
′)−minor, when x′ = x5 and

b 6∈ S(y−5 , y
+
5 ]) which, together with the four paths and the edges y4y

−
4 and y1y

+
1 (and y5y

+
5

when x′ = x5 and b ∈ S(y−5 , y
+
5 ]), yields in G(V (B), B) a rooted (G8∪{ x1x2, x2x3 })−minor

when x′ = x1, and a rooted (G9∪{ x1x2, x2x3, x3x4 })− or (G8∪{ x1x5, x1x2, x2x3 })−minor
when x′ = x5. If, on the other hand, a ∈ S[y+3 , y

−
4 ), then |NG(V (D′),D′)(y4)− V (C ′)| ≥ 3; if,

now, x′ = x5 and b 6∈ S(y−5 , y
+
5 ], then we are done by 3.3.6.2; otherwise, by Lemma 3.3.5,

G(V (D′), D′) has a rooted G8(y
′)− or G9(y

′)−minor which, together with the four paths
and the edge(s) y1y

+
1 (and y5y

+
5 when x′ = x5 and b ∈ S(y−5 , y

+
5 ]), yields in G(V (B), B) a

rooted (G8 ∪ { x1x2, x2x3 })− or (G9 ∪ { x1x2, x2x3 })−minor when x′ = x1, and a rooted
(G8 ∪ { x1x2, x2x3, x1x5 })− or (G9 ∪ { x1x2, x2x3, x1x5 })−minor when x′ = x5 and b ∈
S(y−5 , y

+
5 ], and we are done again. So we may assume that a ∈ S[y+2 , y

+
3 ). Similarly, we may

assume that b ∈ S(y−5 , y
−
1 ], for otherwise G(V (B), B) has a rooted (G8 ∪ { x1x2, x1x5 })−

or (G9 ∪ { x1x2, x1x5 })−minor and we are done again. Then, (C ′, D′) is a 6−separation
in G, non-crossing with (C,D) and with V (C ′) ∩ V (D′) = { a, y3, y4, y5, b, z }, such that
C ⊆ C ′, D′ ⊆ D, |NG(V (D′),D′)(y4) − V (C ′)| ≥ 3, G(V (D′), D′) has a planar embedding
with a, y3, y4, y5, b, z, in cyclic order, on the boundary of the infinite face, and such that
there exist pairwise disjoint paths Pa, Pb and Pz in G(V (D), D − D′) connecting a with
y2 (using the edge y2y

+
2 ), b with y1 (using the edge y1y

−
1 ) and z with S(y−1 , y

+
2 ) that meet

G(V (D′), D′) only in a, b and z, respectively.

Consider such a separation (C ′, D′) with |D′| minimal. Notice that |NGD(w)− V (S)−
{ y4 } | ≥ 2 so that there exists a vertex z′′ ∈ NGD(w) − V (S) − { y4, z }. Analogous to
3.3.6.3, we may assume that

3.3.6.4. { w, z } does not 2−separate GD(V (S1), S1), where w ∈ S(y−4 , y
+
4 ) such that there

exists a path between w and z in G(V (D′), D′) disjoint with S.

For otherwise, if (S ′1, S
′
2) is a 2−separation in GD(V (S1), S1), with V (S ′1)∩V (S ′2) = { w, z },

such that y−4 ∈ V (S ′2) and
{
y+4 , z

′′ } ⊆ V (S ′1), then (C ′′, D′′) := (E(G) − H ′, H ′),
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where H ′ :=
⋃

u∈V (S′1)−V (S′2)−{ b }
δG(V (D′),D′)(u), is a 5−separation in G that is similar to

the 5−separation (C ′, D′) observed when a = y−4 and b ∈ S(y−5 , y
−
1 ] and, thus, yields

in G(V (B), B) a rooted (G8 ∪ { x1x2, x2x3 })−minor when x′ = x1, and a rooted (G9 ∪
{ x1x2, x2x3, x3x4 })− or (G8 ∪ { x1x5, x1x2, x2x3 })−minor when x′ = x5, and we are done
(likewise, when

{
y−4 , z

′′ } ⊆ V (S ′1) and y+4 ∈ V (S ′2), we get a 5−separation (C ′′, D′′) that
is similar to the 5−separation (C ′, D′) observed when b = y+4 and a ∈ S[y+2 , y

+
3 ) and,

thus, yields a rooted (G8∪{ x1x2, x1x5 })− or (G9∪{ x1x2, x1x5 })−minor in G(V (B), B),
and we are done again). Continuing with the analogy, suppose, now, that there exists
another path Q′ between S(y−4 , y

+
4 ) and z in GD(V (S1), S1), with w′ ∈ S(y−4 , y

+
4 ) as its

other end, which is internally disjoint with S,Q (the subpath of Q between S(y−4 , y
+
4 ) and

z, including w, may be chosen differently for this purpose, if required), and which lies
in the face of GD bounded by the cycle formed by the vertices V (Q) ∪ S(w, q) (the case
when it lies in the face of GD bounded by the cycle formed by the vertices V (Q)∪ S(q, w)
is symmetrically analogous). Consider such a path Q′ for which |S[w′, y+4 )| is minimum.
Then, as in the proof of Lemma 3.3.5, G(V (B), B) has a rooted G10−minor which, in
turn, has a rooted (G8 ∪ { x2x3 })−minor as well as a rooted G9+(15)−minor, and we are
done. So we may assume that there does not exist such a path Q′ and, hence, that, for
some z′ ∈ Q(w, z), a′ ∈ S[a, y+3 ), b′ ∈ S(y−5 , b], { z′, a′, b′ } 3−separates GD(V (S1), S1) as
(S ′1, S

′
2) such that V (S ′1) ∩ V (S ′2) = { z′, a′, b′ } , S(y−4 , y

+
4 ) ⊆ V (S ′1) and z ∈ V (S ′2). Then,

(C ′′, D′′) := (E(G) − H ′, H ′), where H ′ :=
⋃

u∈V (S′′1 )−V (S′′2 )

δG(V (D),D)(u), is a 6−separation

in G, non-crossing with (C,D) and with V (C ′′)∩ V (D′′) = { a′, y3, y4, y5, b′, z′ }, such that
C ⊆ C ′′, D′′ ⊆ D, |NG(V (D′′), D′′)(y4) − V (C ′′)| ≥ 3, G(V (D′′), D′) has a planar em-
bedding with a′, y3, y4, y5, b

′, z′, in cyclic order, on the boundary of the infinite face, and
such that there exist disjoint paths Pa′ , Pb′ , Pz′ in G(V (D), D − D′′) connecting a′ with
y2, b

′ with y1, z
′ with S(y−1 , y

+
2 ) (using paths Pa, Pb, Pz as subpaths, respectively) that meet

G(V (D′′), D′′) only in a′, b′, z′, respectively. But |D′′| < |D′|, a contradiction.

Lemma 3.3.7. If (A,B) is a 5−separation in a 5−connected graph G, with V (A) ∩
V (B) = { x1, x2, x3, x4, x5 }, such that |V (A) − V (B)| ≥ 1 and, for each u ∈ V (A) ∩
V (B), |NG(V (B),B)(u)−V (A)| ≥ 2, then G(V (B), B) has a rooted G1−, G4− or G7−minor.
If, additionally, x4 has degree at least 3 in G(V (B), B), then G(V (B), B) has a rooted
G2−, G3−, G5−, G6−, G8− or G9−minor.

Proof. Let (A,B) be a 5−separation in a 5−connected graph G, with V (A) ∩ V (B) =
{ x1, x2, x3, x4, x5 }, such that |V (A)− V (B)| ≥ 1 and |NG(V (B),B)(u)− V (A)| ≥ 2 for each
u ∈ V (A) ∩ V (B). Since G is 5−connected, there does not exist a separation (C,D) in
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G(V (B), B) such that | { x1, x2, x3, x4, x5 }−V (C)|+λ(C) ≤ 4, and, hence, G(V (B), B)\x3
is 2−connected.

If G(V (B), B)\x3 does not have an (x1, x2, x4, x5)−linkage, then, by Corollary 3.1.2,
G(V (B), B)\x3 has a planar embedding with x1, x2, x4, x5, in cyclic order, on the boundary
of the infinite face. Without loss of generality, let G−x3B be a plane graph embedding
G(V (B), B)\x3 in the plane with x1, x2, x4, x5, in clockwise order, on the boundary of the
infinite face. Since G(V (B), B)\x3 is 2−connected, the infinite face in G−x3B is bounded by
a cycle S−x3 . Suppose, now, that NG(V (B),B)(x3) ⊆ V (S−x3).

If there exists a vertex b ∈ NG(V (B),B)(x3) ∩ S−x3(x5, x1), then there exist in G−x3B

two internally disjoint paths between { b } and { x2, x4 } such that the path between b
and x2 is disjoint with S−x3 [x4, b) ∪ { x3 } ∪ S−x3(b, x1] and the path between b and x4
is disjoint with S−x3(b, x2] ∪ { x3 } ∪ S−x3 [x5, b); as a result, G(V (B), B) has a rooted
G6−minor and we are done. Similarly, G(V (B), B) has a rooted G6−minor if there exists
a vertex b ∈ NG(V (B),B)(x3) ∩ S−x3(x1, x2). If NG(V (B),B)(x3) − V (A) ⊆ S−x3(x2, x4),
then G(V (B), B)\ { x1x3, x3x5 } has a planar embedding with x1, x2, x3, x4, x5, in clock-
wise order, on the boundary of the infinite face and, by Lemma 3.3.4, has a rooted
G7−minor; if, additionally, x4 has degree at least 3 in G(V (B), B), then, by Lemma
3.3.5, G(V (B), B) has a rooted G8− or G9−minor and we are done again. Similarly, if
NG(V (B),B)(x3) − V (A) ⊆ S−x3(x4, x5), then G(V (B), B)\ { x1x3, x2x3 } has a planar em-
bedding with x1, x2, x4, x3, x5, in clockwise order, on the boundary of the infinite face and,
by Lemma 3.3.4, has a rooted G

(34)
7 −minor which, in turn, has a rooted G5−minor.

So we may assume that there exist a, b ∈ NG(V (B),B)(x3) such that a ∈ S−x3(x2, x4) and
b ∈ S−x3(x4, x5). Then there exist in G−x3B two internally disjoint paths between { b } and
{ x1, x2 } such that the path between b and x1 (say P−x3bx1

) is disjoint with S−x3 [x2, b)∪{ x3 }∪
S−x3(b, x5] and the path between b and x2 is disjoint with S−x3 [x4, b)∪{ x3 }∪S−x3(b, x1].
We may assume that P−x3bx1

is disjoint with S(x1, x2), for otherwise G(V (B), B) contains

a rooted G5−minor and we are done. There also exists a path P−x3bx2
in G−x3B between

b and x2 disjoint with { a, x1 }, for otherwise { a, x1 } separates x2 from b in G−x3B and
NG(V (B),B)(x2) ⊆ { a, x1, x3 }, a contradiction. If there exists such a path P−x3bx2

that is also
disjoint with S−x3(a, x4], then G(V (B), B) contains a rooted G5−minor and we are done;
so we may assume that that is not the case. Let c be the first vertex in S−x3(a, x4] that
P−x3bx2

meets going from x2 to b. Then P−x3bx2
[x2, c] is disjoint with S−x3 [x4, x1] ∪ P−x3bx1

[b, x1].

Now, there exist in G−x3B two internally disjoint paths between { a } and { x1, x5 } such
that the path between a and x1 is disjoint with S−x3 [x2, a) ∪ { x3 } ∪ S−x3(a, x5] and the
path between a and x5 (say P−x3ax5

) is disjoint with S−x3 [x1, a) ∪ { x3 } ∪ S−x3(a, x4]. Since
V (P−x3ax5

) ∩ (P−x3bx2
[x2, c)− S−x3 [x1, a)) 6= ∅, there exists a path between b and x2 contained
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in P−x3bx2
∪ P−x3ax5

∪ P−x3bx1
that is disjoint with { a, x1 } ∪ S−x3(a, x4], a contradiction.

So we may assume that NG(V (B),B)(x3) 6⊆ V (S−x3). If there exists a vertex v ∈
NG(V (B),B)(x3) − V (S−x3), then there exist in G−x3B four pairwise internally disjoint paths
between { v } and { x1, x2, x4, x5 } such that the paths between { v } and { x1, x2 } are both
disjoint with S−x3 [x4, x5] ∪ { x3 } and, hence, G(V (B), B) has a rooted G6−minor and we
are done.

So we may assume that there exists an (x1, x2, x4, x5)−linkage in G(V (B), B)\x3. Re-
peating the argument with an (x1, x2, x5, x4)− linkage, we may assume that G(V (B), B)\x3
has an (x1, x2, x5, x4)− linkage as well, for otherwiseG(V (B), B) has a rootedG

(45)
5 −, G

(45)
6 −

or G
(45)
7 −minor, each of which, in turn, has a rooted G3−minor and we are done. Since the

two linkages together ensure a rooted G1−minor, we will also assume for the remainder of
the proof that x4 has degree at least 3 in G(V (B), B).

Let P24, P15 be the disjoint paths connecting x2 with x4 and x1 with x5, respectively,
in a (x1, x2, x5, x4)−linkage in G(V (B), B)\x3. Then, for some x′2 ∈ P24[x2, x4), x

′
4 ∈

P24(x
′
2, x4], x

′
1 ∈ P15[x1, x5), x

′
5 ∈ P15(x

′
1, x5], there exist disjoint paths P14, P25 in G(V (B),

B)\x3, connecting x′1 with x′4 and x′2 with x′5, respectively, each of which meets the paths
P24, P15 in exactly two of the four vertices x′1, x

′
2, x
′
4, x
′
5. The paths P14, P15, P24, P25 together

ensure a rooted G1−minor in G(V (B), B). Now consider such a set of four paths for
which |P15[x1, x

′
1)| is minimal. If there exists a path in G(V (B), B) between { x3 } and

P24(x
′
2, x4] ∪ P14(x

′
1, x
′
4] that is disjoint with P24[x2, x

′
2] ∪ P25(x

′
2, x
′
5) ∪ P15[x1, x5] , then

G(V (B), B) has a rooted G2−minor and we are done. So we may assume that no such
path exists. Similarly, we may assume that there does not exist a path in G(V (B), B)
between P24(x

′
2, x4] ∪ P14(x

′
1, x
′
4] and P24[x2, x

′
2) ∪ P25(x

′
2, x
′
5] ∪ P15(x

′
1, x5] that is disjoint

with P15[x1, x
′
1] ∪ { x′2, x3 }, for otherwise G(V (B), B) has a rooted G3−minor and we are

done again. There cannot exist a path in G(V (B), B) between P24(x
′
2, x4]∪P14(x

′
1, x
′
4] and

P15[x1, x
′
1) (when P15[x1, x

′
1) 6= ∅) that is disjoint with P24[x2, x

′
2]∪P25[x

′
2, x
′
5]∪P15[x

′
1, x5]∪

{ x3 }, for otherwise we can identify a path P ′14 in G(V (B), B)\x3 connecting x′′4 with
x′′1, where x′′1 ∈ P15[x1, x

′
1), x

′′
4 ∈ P24(x

′
2, x4], disjoint with the path P25, and meeting paths

P15, P24 in only x′′1, x
′′
4, respectively, such that |P ′15[x1, x′′1)| < |P15[x1, x

′
1)|, a contradiction to

the minimality of |P15[x1, x
′
1)|. So we may assume that { x′1, x′2 } 2−separates G(V (B), B)

as (S1, S2), with S1 ∩ S2 = { x′1, x′2 }, such that { x1, x2, x3, x5 } ⊆ V (S1) and x4 ∈ V (S2);
but then { x′1, x′2 }∩{ x1, ..., x5 } = ∅, V (S2) = { x′1, x′2, x4 } and NG(V (B),B)(x4) = { x′1, x′2 },
a contradiction if x4 has degree at least 3 in G(V (B), B).

Lemma 3.3.8. If (A,B) is a 5−separation in a 5−connected graph G, with V (A)∩V (B) =
{ x1, x2, x3, x4, x5 }, such that, for each u ∈ V (A) ∩ V (B), |NG(V (B),B)(u) − V (A)| ≥ 2,
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then, either there exist two disjoint connected subgraphs H1, H2 ( G(V (B), B) such that,
for some x ∈ { x2, x5 } , { x4, x } ⊆ V (H1) and { x1, x2, x3, x5 } − { x } ⊆ V (H2), or

G(V (B), B) has a rooted G
(24)
7 − or G

(24)(25)
7 −minor. If there do not exist such subgraphs

H1 and H2 and, for some Y ⊆ { x2, x5 } , Y 6= ∅, |NG(V (B),B)(y)| ≥ 3 for each y ∈ Y , then

G(V (B), B) has a rooted G
(24)
8 −, G

(24)
9 −, G

(24)(25)
9 − or G

(13)(24)
8 −minor when Y = { x2 }, a

rooted G
(24)
9 −, G

(13)(24)(25)
8 −, G

(24)(25)
8 − or G

(24)(25)
9 −minor when Y = { x5 }, and a rooted

G
(24)
8+(15)−, G

(24)
9 −, G

(24)(25)
8+(15) − or G

(24)(25)
9 −minor when Y = { x2, x5 }.

Proof. Let (A,B) be a 5−separation in a 5−connected graph G, with V (A) ∩ V (B) =
{ x1, x2, x3, x4, x5 }, such that, for each u ∈ V (A) ∩ V (B), |NG(V (B),B)(u) − V (A)| ≥ 2. It
suffices to prove the theorem for such a separation (A,B) with |B| minimal in the sense
that there does not exist another 5−separation (A′, B′) in G, non-crossing with (A,B)
and with V (A′) ∩ V (B′) = { y1, y2, y3, y4, y5 }, such that A ( A′, B′ ( B and, for each
u ∈ V (A′) ∩ V (B′), |NG(V (B′),B′)(u) − V (A′)| ≥ 2. If there exists a 5−separation (A′, B′)
in G, non-crossing with (A,B), as described, then there exist in G(V (B), B − B′) five
pairwise disjoint paths connecting V (A) ∩ V (B) with V (A′) ∩ V (B′) (say one connecting
xi with yi, for each i ∈ { 1, ..., 5 }); in such a case, if there exist two disjoint connected
subgraphs H ′1, H

′
2 ( G(V (B′), B′) such that, for some x′ ∈ { y2, y5 } , { y4, x′ } ⊆ V (H ′1)

and { y1, y2, y3, y5 } − { x′ } ⊆ V (H ′2), they can be extended to form the subgraphs H1

and H2, respectively; similarly, each of the planar graphs G
(24)
7 (y), G

(24)(25)
7 (y), G

(24)
8 (y),

G
(24)
9 (y), G

(24)(25)
9 (y), G

(13)(24)
8 (y), G

(13)(24)(25)
8 (y), G

(24)(25)
8 (y), G

(24)
8+(15)(y) and G

(24)(25)
8+(15) (y),

if found to be a rooted minor of G(V (B′), B′), ensures a corresponding rooted minor of
G(V (B), B). As before, since G is 5−connected, there does not exist a separation (C,D) in
G(V (B), B) such that |{x1, x2, x3, x4, x5}−V (C)|+λ(C) ≤ 4, and, hence, G(V (B), B)\x3
is 2−connected.

If G(V (B), B)\x3 does not have an (x1, x2, x5, x4)−linkage, then, by Corollary 3.1.2,
G(V (B), B)\x3 has a planar embedding with x1, x2, x5, x4, in cyclic order, on the boundary
of the infinite face. Without loss of generality, let G−x3B be a plane graph embedding
G(V (B), B)\x3 in the plane with x1, x2, x5, x4, in clockwise order, on the boundary of the
infinite face. Since G(V (B), B)\x3 is 2−connected, the infinite face in G−x3B is bounded by
a cycle S−x3 . Suppose, now, that NG(V (B),B)(x3) ⊆ V (S−x3).

If there exists a vertex b ∈ NG(V (B),B)(x3) ∩ S−x3(x4, x5), then let H1 := G[S[x5, x4]]
and H2 := G[V (B) − V (H1)], and we are done. If NG(V (B),B)(x3) − V (A) ⊆ S−x3(x5, x4),
then G(V (B), B)\{ x1x3, x2x3 } has a planar embedding with x1, x2, x5, x3, x4, in clock-
wise order, on the boundary of the infinite face and, by Lemma 3.3.4, has a rooted
G

(24)(25)
7 −minor; if, additionally, |NG(V (B),B)(x2)| ≥ 3, then, by Lemma 3.3.5, G(V (B), B)
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has a rooted G
(24)(25)
9 − or G

(13)(24)
8 −minor. Similarly, if |NG(V (B),B)(x5)| ≥ 3, then, by

Lemma 3.3.5, G(V (B), B) has a rooted G
(24)(25)
8 − or G

(24)(25)
9 −minor; if |NG(V (B),B)(x2)| ≥ 3

and |NG(V (B),B)(x5)| ≥ 3, then, by Corollary 3.3.6, G(V (B), B) has a rooted G
(24)(25)
8+(15) − or

G
(24)(25)
9 −minor, and we are done again, in each case.

So we may assume that NG(V (B),B)(x3) 6⊆ V (S−x3). If there exists a vertex v ∈
NG(V (B),B)(x3) − V (S−x3), then there exist in G−x3B four pairwise internally disjoint paths
between { v } and { x1, x2, x4, x5 } such that the paths between { v } and { x1, x2 } are both
disjoint with S−x3 [x5, x4]∪{ x3 }; again, let H1 := G[S[x5, x4]] and H2 := G[V (B)−V (H1)],
and we are done.

So we may assume that there exists an (x1, x2, x5, x4)−linkage in G(V (B), B)\x3. Re-
peating the argument with an (x5, x2, x4, x1)− linkage, we may assume that G(V (B), B)\x3
has an (x5, x2, x4, x1)− linkage as well, for otherwise, either there exist two disjoint con-
nected subgraphs H1, H2 ( G(V (B), B) such that { x2, x4 } ⊆ V (H1) and { x1, x3, x5 } ⊆
V (H2), or G(V (B), B) has a rooted G

(24)
7 −minor; in the case when there do not exist such

subgraphs H1 and H2 and, for some Y ⊆ { x2, x5 } , Y 6= ∅, |NG(V (B),B)(y)| ≥ 3 for each

y ∈ Y , G(V (B), B) has a rooted G
(24)
8 − or G

(24)
9 −minor when Y = { x2 }, a rooted

G
(24)
9 − or G

(13)(24)(25)
8 −minor when Y = { x5 }, and a rooted G

(24)
8+(15)− or G

(24)
9 −minor

when Y = { x2, x5 }, and we are done.

Let P24, P15 be the disjoint paths connecting x2 with x4 and x1 with x5, respectively,
in a (x1, x2, x5, x4)−linkage in G(V (B), B)\x3. Then, for some x′2 ∈ P24[x2, x4), x

′
4 ∈

P24(x
′
2, x4], x

′
1 ∈ P15[x1, x5), x

′
5 ∈ P15(x

′
1, x5], there exist disjoint paths P12, P45 in G(V (B),

B)\x3, connecting x′1 with x′2 and x′4 with x′5, respectively, each of which meets the paths
P24, P15 in exactly two of the four vertices x′1, x

′
2, x
′
4, x
′
5. Consider such a set of four paths for

which |P24(x
′
4, x4]|+ |P15[x1, x

′
1)| is minimal. If there exists a path in G(V (B), B) between

{ x3 } and P12[x
′
1, x
′
2) ∪ P45(x

′
4, x
′
5] ∪ P15[x1, x5] that is disjoint with P24[x2, x4], then let

H1 := P24 and H2 := G[V (B)− V (H1)], and we are done. Similarly, if there exists a path
in G(V (B), B) between { x3 } and P12[x

′
1, x
′
2]∪P24[x2, x

′
4)∪P15[x1, x

′
5) that is disjoint with

P24[x
′
4, x4]∪P45[x

′
4, x
′
5]∪P15[x

′
5, x5], then let H1 := G[P24[x

′
4, x4]∪P45[x

′
4, x
′
5]∪P15[x

′
5, x5]] and

H2 := G[V (B)−V (H1)], and we are done again. So we may assume that there does not exist
a path in G(V (B), B) between { x3 } and P12[x

′
1, x
′
2]∪P24[x2, x

′
4)∪P45(x

′
4, x
′
5]∪P15[x1, x5]

that is disjoint with P24[x
′
4, x4]. Since |NG(V (B),B)(x3) − V (A)| ≥ 2, we may also assume

that there exists a path in G(V (B), B) between { x3 } and P24(x
′
4, x4) that is disjoint with

P12[x
′
1, x
′
2] ∪ P24[x2, x

′
4] ∪ P45[x

′
4, x
′
5] ∪ P15[x1, x5] ∪ {x4 } and, hence, that P24(x

′
4, x4) 6= ∅.

If there exists a path in G(V (B), B) between P24(x
′
4, x4] and P15(x

′
1, x5]∪P45(x

′
4, x
′
5] that

is disjoint with { x3 }∪P24[x2, x
′
4)∪P12(x

′
1, x
′
2]∪P15[x1, x

′
1), then we can choose a new path
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P ′45 connecting x′′4 ∈ P24(x
′
4, x4] and x′′5 ∈ P15(x

′
1, x5] such that |P24(x

′′
4, x4]| + |P15[x1, x

′
1)|

< |P24(x
′
4, x4]|+ |P15[x1, x

′
1)|, a contradiction. So we may assume that such a path does not

exist. Similarly, we may assume that there does not exist a path in G(V (B), B) between
P24(x

′
4, x4] and P24[x2, x

′
4)∪P12(x

′
1, x
′
2] that is disjoint with { x3 }∪P15[x1, x5]∪P45(x

′
4, x
′
5].

If P15[x1, x
′
1) 6= ∅, we may assume by a similar logic that there does not exist a path in

G(V (B), B) between P15[x1, x
′
1) and P24[x2, x

′
4)∪P12(x

′
1, x
′
2]∪P45(x

′
4, x
′
5]∪P15(x

′
1, x5] that

is disjoint with { x3 }∪P24(x
′
4, x4]. Thus, { x′1, x′4 } 2−separates G(V (B), B) as (B−D,D),

with V (B −D) ∩ V (D) = { x′1, x′4 }, such that { x2, x5 } ⊆ V (B −D) and { x1, x3, x4 } ⊆
V (D), and, as a result, { x′1, x′4 } ∩ { x1, ..., x5 } = ∅, V (B − D) = { x′1, x2, x′4, x5 } ,
NG(V (B),B)(x2) ∪ { x5 } = { x′1, x′4, x5 } and NG(V (B),B)(x5) ∪ { x2 } = { x′1, x2, x′4 }.

Now, if |V (B) − V (A)| ≥ 6, then (C,D) is a 5−separation in G, where C := A ∪
(B − D), and, by Proposition 3.2.1, either there exists a 5−separation (A′, B′) in G,
non-crossing with (C,D) (and, hence, (A,B)), such that C ( A′, B′ ( D and, for
each u ∈ V (A′) ∩ V (B′), |NG(V (B′),B′)(u) − V (A′)| ≥ 2, contradicting the minimality of
|B|, or we are done by Proposition 3.3.1. So we may assume that |V (B) − V (A) −
{ x′1, x′4 } | ≤ 3. Since, either there exists a vertex v ∈ V (B) − V (A) − { x′1, x′4 } which
is connected to { x1, x′1, x3, x4, x′4 } via five paths contained in G(V (D), D) and pairwise
sharing only the vertex v, or { x′1x1, x′1x3, x′4x1, x′4x3 } ⊆ D, we may also assume that
NG(V (D),D)(x4) ∩ { x′1, x′4 } = ∅ and, hence, that |V (B) − V (A) − { x′1, x′4 } | ≥ 2, for
otherwise there exist two disjoint connected subgraphs H ′1, H

′
2 ( G(V (D), D) such that,

for some x′ ∈ { x′1, x′4 } , { x4, x′ } ⊆ V (H ′1) and { x1, x′1, x3, x′4 } − { x′ } ⊆ V (H ′2), and
they can be extended to form the subgraphs H1 and H2, respectively. Let { a, b } ⊆
NG(V (D),D)(x4) − { x1, x3 }. Then there exist in G(V (D), D) two disjoint paths Pa and
Pb disjoint with { x1, x3, x4 } and connecting, respectively, a and b with { x′1, x′4 }, for
otherwise { a, b } is 4−separated from the rest of the graph G. If there exists a vertex
c ∈ V (B) − V (A) − { x′1, x′4, a, b } such that c 6∈ V (Pa) ∪ V (Pb), we may assume that c
is adjacent to at least one of a and b (say a, without loss of generality) for otherwise c
is adjacent to every vertex in { x1, x′1, x3, x4, x′4 } and we can find two disjoint connected
subgraphs H ′1 and H ′2 in G(V (D), D) that can be extended to form the subgraphs H1

and H2, respectively, as described earlier. Let P ′a := Pa ∪ { ac } if there exists such
a vertex c and P ′a := Pa otherwise (assuming, without loss of generality, that if there
exists a vertex c ∈ V (B) − V (A) − { x′1, x′4, a, b } such that c ∈ V (Pa) ∪ V (Pb), then
c ∈ V (Pa)). If each of x1 and x3 has a neighbor in either P ′a or Pb then we are done
since we can find two disjoint connected subgraphs H ′1 and H ′2 in G(V (D), D) that can
be extended to form the subgraphs H1 and H2, respectively, as described earlier. So we
may assume, without loss of generality, that x1 does not have a neighbor in Pb and x3
does not have a neighbor in P ′a. Then each of x′1 and x′4 is adjacent to b and has a
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neighbor in { a, c }, for otherwise either b or { a, c } is 4−separated from the rest of the
graph G. As a result, if x′1 ∈ V (P ′a) then there exist two disjoint connected subgraphs
H ′1, H

′
2 ( G(V (D), D) such that { x1, a, c, x3, x′4 } ⊆ V (H ′1) and { x4, b, x′1 } ⊆ V (H ′2), and

if x′1 ∈ V (Pb) then there exist two disjoint connected subgraphs H ′1, H
′
2 ( G(V (D), D)

such that { x1, a, c, x3, x′1 } ⊆ V (H ′1) and { x4, b, x′4 } ⊆ V (H ′2). In either case, H ′1 and H ′2
can be extended to form the subgraphs H1 and H2, respectively.
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Chapter 4

Nested Separations in the Larger
Sides of Separations

In this chapter, we find a set of unavoidable rooted minors of the intersection of the
“larger” sides of two non-crossing separations in a 5−connected graph which itself, in turn,
is separated by each one of a large family of nested separations. As before, each minor
that we find is rooted in the separating sets of the two non-crossing separations considered.
These minors are then patched together with the unavoidable rooted minors of the smaller
sides of the two separations to construct a set of unavoidable minors of the complete graph
- the remaining unavoidable minors of large 5−connected graphs mentioned in Theorem
1.2.1. We start by defining nested separations and proving an observation that relates a
family of these to a bounded-degree tree-decomposition.

4.1 Nested Separations

Recall that two separations (A,B) and (C,D) in a graph G cross if A ∩ C 6= ∅, A ∩D 6=
∅, B∩C 6= ∅ and B∩D 6= ∅. For each tree-decomposition T of G, the separations (Af , Bf )
corresponding to the edges f of T form a family of (pairwise) non-crossing separations:
for every e, f ∈ E(T ), either Ae ⊆ Af and Bf ⊆ Be, or Af ⊆ Ae and Be ⊆ Bf . In
particular, if f1, f2, ..., f` ∈ E(T ) form a path P of length ` in that order in T , then
either Af1 ⊆ Af2 ⊆ ... ⊆ Af` and Bf` ⊆ ... ⊆ Bf2 ⊆ Bf` , or Bf1 ⊆ Bf2 ⊆ ... ⊆ Bf`

and Af` ⊆ ... ⊆ Af2 ⊆ Af` , and the family { (Af , Bf ) : f ∈ E(P ) } is said to be one of
nested separations. As before, the separations in a family are distinct if, for every pair of
separations ((Ae, Be), (Af , Bf )) in the family, Ae 6= Af and Ae 6= Bf .
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Proposition 4.1.1. There exists a function f4.1.1 : N × N × N → N such that, for all
θ, δ, n ∈ N with θ > 0, δ > 0, δ 6= 2, n > 0, if T is a θ−tree-decomposition with degree
δ of a graph G with |V (G)| ≥ f4.1.1(θ, δ, n), then G contains a family of distinct nested
θ−separations of size at least n.

Proof. Let f4.1.1(θ, δ, n) = 5 δn+1 θ. Let T be a θ−tree-decomposition with degree δ of a
graph G with |V (G)| ≥ f4.1.1(θ, δ, n). We may assume that |V (T )| and |E(T )| are both
minimal so that, for each internal node x ∈ V (T ), T\x contains at least three components
each containing a distinct edge of G. By Theorem 2.2.2, twθ(G) ≤ θ δ. If T does not have
a path of length at least n, then |V (T )| ≤ 2 δn and |V (G)| ≤ 2 δn (twθ(G)+1) ≤ 4 δn+1 θ,
a contradiction. The result then follows from the observation that each edge in any path
of length at least n in T corresponds to a distinct separation in G.

4.2 Unavoidable Minors in the Absence of Large

6−Connected Sets

The goal of this section is to find a set of unavoidable minors of every sufficiently large
5−connected graph that does not contain a large 6−connected set by finding a set of
unavoidable rooted minors of the intersection of the “larger” sides of two non-crossing
separations in the graph. Labelled graph descriptions and figures (Figures A.1 and A.2)
of these rooted minors (G1, G1(a), G1(b), G1(e), G2, G2(c), etc.) and other intermediate struc-
tures can be found in the appendix (see A.2) where we give explicit graph constructions
for the unavoidable minors we find in this section − the remaining unavoidable minors of
large 5−connected graphs mentioned in Theorem 1.2.1 (which were not accounted for in
Corollary 2.1.4).

Lemma 4.2.1. There exists a function f4.2.1 : N→ N such that, for all n ∈ N with n ≥ 5,
if G is a 5−connected graph that contains a family of distinct nested 5−separations of size
at least f4.2.1(n) but does not have a minor isomorphic to the graph W (1, 3, n), then, G has
a minor isomorphic to Wj(2, 1, n), TWj(2, 1, n), W−

1 (3, 0, n), TW−
1 (3, 0, n), W−

2(a)(3, 0, n),

W−
2(b)(3, 0, n), TW−

2(a)(3, 0, n), TW−
2(b)(3, 0, n), CWk(a)(2, 1, n) or CWk(b)(2, 1, n), where j ∈

{ 1, 2 } and k ∈ { 1, ..., 6 }.

Proof. Let f4.2.1 = 11(8+5∗48n∗2(3n+10)∗12∗2(20n+14)(12n+13)(32n+71)) < 234n5.
Let G be a 5−connected graph that contains a family F of distinct nested 5−separations
of size at least f4.2.1(n) but does not have a minor isomorphic to the graph W (1, 3, n). In
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particular, let F := { (Aj, Bj) : j ∈ { 1, ..., N } }, where N ≥ f4.2.1(n), such that Aj1 ⊆ Aj2
and Bj2 ⊆ Bj1 whenever j1 < j2. Thus, we may also treat F as a sequence of separations
ordered by the containment relation on the set of first partitions of the separations in F .
We will abuse the notation slightly in this way by treating a family of distinct nested
5−separations in G both as a set and as a sequence.

Since any set of 12 distinct nested 5−separations contains at least two 5−separations
such that the separating set of either is not contained in that of the other, there exists a
subsequence F1 ⊆ F with |F1| ≥ b|F|/11c − 8 such that the separating sets of any two
5−separations in F1 differ in at least one vertex. Upto relabeling of separations, we may
assume that F1 = { (Aj, Bj) : j ∈ { 1, ..., N1 } }, where N1 ≥ bN/11c − 8. Additionally,
we may assume that |V (A1) − V (B1)| ≥ 4, |V (BN1) − V (AN1)| ≥ 4| and, since G is
5−connected, that |V (Aj)∩ V (Bj)| = 5, for each j ∈ { 1, ..., N1 }. We may further assume
that, for each j ∈ { 1, ..., N1 − 1 } , V (Aj)∩ V (Bj) is connected to V (Aj+1)∩ V (Bj+1) by a
set of 5 disjoint paths each of which is contained in G(V (Bj ∩Aj+1), Bj ∩Aj+1); the union
of all such sets of paths gives us 5 disjoint paths P1, ..., P5 that connect V (A1) ∩ V (B1)
with V (AN1) ∩ V (BN1). Then there exists a subsequence F ′1 ⊆ F1 with |F ′1| ≥ bF1/5c
such that, for some P ′ ∈ { P1, ..., P5 }, the separating sets of any two 5−separations in
F ′1 meet V (P ′) in distinct vertices. Without loss of generality, let P ′ = P1. Again, upto
relabeling of separations, we may assume that F ′1 = { (Aj, Bj) : j ∈ { 1, ..., N ′1 } }, where

N ′1 ≥ bN1/5c. For each j ∈ { 1, ..., N ′1 }, let V (Aj) ∩ V (Bj) ∩ P1 =
{
u
(1)
j

}
.

Consider now, for some j′ ∈ { 1, ..., N ′1 − 12n+ 1 }, a subsequence { (Aj′+j, Bj′+j) :
j ∈ { 0, 1, ..., 12n− 1 } } ⊆ F ′1 of 12n distinct nested 5−separations in G. For each
j ∈ { 0, 1, ..., 12n− 1 }, suppose that the separating set of (Aj′+j, Bj′+j) meets V (Pi)
in the same vertex ui, for each i ∈ { 2, ..., 5 }. Then, for each j ∈ { 0, 3, ..., 12n− 3 },
there exist 3 (internally) disjoint paths connecting P1(u

(1)
j′+j, u

(1)
j′+j+2) with some 3−subset{

a(j), b(j), c(j)
}

of { u2, u3, u4, u5 }, each contained in G(V (Bj′+j∩Aj′+j+2), Bj′+j∩Aj′+j+2)

and each disjoint with { u2, u3, u4, u5 } −
{
a(j), b(j), c(j)

}
, for otherwise P1(u

(1)
j′+j, u

(1)
j′+j+2)

is 4−separated in G. For some { j1, ..., jn } ⊆ { 0, 3, ..., 12n− 3 } , a(j1) = ... = a(jn), b(j1) =
... = b(jn) and c(j1) = ... = c(jn); without loss of generality, let

{
a(j1), b(j1), c(j1)

}
= { u2, u3,

u4 }. Since u5 is connected with u
(1)
j′+j1

by a path (say Q′) in G(V (Aj′+j1), Aj′+j1) and

with u
(1)
j′+jn+2 by a path (say Q′′) contained in G(V (Bj′+jn+2), Bj′+jn+2), G can be reduced

to a W (1, 3, n)-minor where u2, u3 and u4 form the three hubs and P1 ∪ Q′ ∪ Q′′ forms
the rim, a contradiction. Thus, we may assume that in every subsequence of 12n distinct
nested 5−separations contained in F ′1, there exist at least two whose separating sets meet
at least one of the sets V (P2), V (P3), V (P4) and V (P5) in distinct vertices. Then, as be-
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fore, there exists a subsequence F2 ⊆ F ′1 with |F2| ≥ bF ′1/(12n ∗ 4)c such that, for some
P ′ ∈ { P2, ..., P5 }, the separating sets of any two 5−separations in F2 meet both V (P1) and
V (P ′) in distinct vertices. Without loss of generality, let P ′ = P2. Upto relabeling of sepa-
rations, we may assume that F2 = { (Aj, Bj) : j ∈ { 1, ..., N2 } }, where N2 ≥ bN ′1/(48n)c.
For each i ∈ { 1, ..., 5 } , j ∈ { 1, ..., N2 }, let V (Aj) ∩ V (Bj) ∩ Pi =

{
u
(i)
j

}
.

Suppose, for some j′ ∈ { 1, ..., N2 − 3n+ 1 }, there exists a subsequence { (Aj′+j, Bj′+j) :
j ∈ { 0, 1, ..., 3n− 1 } } ⊆ F2 of 3n distinct nested 5−separations in G such that, for each
j ∈ { 0, 3, ..., 3n− 3 }, there does not exist a path in G(V (Bj′+j ∩Aj′+j+2), Bj′+j ∩Aj′+j+2)

between Pa[u
(a)
j′+j, u

(a)
j′+j+2] and Pb[u

(b)
j′+j, u

(b)
j′+j+2] that is disjoint with Pc whenever u

(a)
j′+j 6=

u
(a)
j′+j+2 and u

(b)
j′+j 6= u

(b)
j′+j+2, for any a, b ∈ { 1, ..., 5 } , a 6= b, c ∈ { 1, ..., 5 } − { a, b }.

Then, for each i ∈ { 3, 4, 5 } , u(i)j′ = ... = u
(i)
j′+3n−1, and, for each j ∈ { 0, 3, ..., 3n− 3 },

there exist in G(V (Bj′+j ∩ Aj′+j+2), Bj′+j ∩ Aj′+j+2) two sets of three (internally) disjoint

paths − one connecting
{
u
(3)
j′ , u

(4)
j′ , u

(5)
j′

}
with P1(u

(1)
j′+j, u

(1)
j′+j+2) and the other connect-

ing
{
u
(3)
j′ , u

(4)
j′ , u

(5)
j′

}
with P2(u

(2)
j′+j, u

(2)
j′+j+2), for otherwise one of P1(u

(1)
j′+j, u

(1)
j′+j+2) and

P2(u
(2)
j′+j, u

(2)
j′+j+2) is 4−separated from the rest of the graph G, for some j ∈ {0, 3, ..., 3n−

3}. Since two disjoint paths (say Q′ and Q′′, respectively) connect u
(1)
j′ with u

(2)
j′ in

G(V (Aj′), Aj′) and u
(1)
j′+3n−1 with u

(2)
j′+3n−1 in G(V (Bj′+3n−1), Bj′+3n−1), G can be reduced,

in this case, to a W (1, 3, n)-minor with u
(3)
j′ , u

(4)
j′ and u

(5)
j′ forming the three hubs and

P1[u
(1)
j′ , u

(1)
j′+3n−1]∪P2[u

(2)
j′ , u

(2)
j′+3n−1]∪Q′ ∪Q′′ forming the rim, a contradiction. So we may

assume that, for some j ∈ { 0, 3, ..., 3n− 3 }, there exist aj′ , bj′ ∈ { 1, ..., 5 } , aj′ 6= bj′ ,

such that u
(aj′ )

j′+j 6= u
(aj′ )

j′+j+2, u
(bj′ )

j′+j 6= u
(bj′ )

j′+j+2, and Paj′ [u
(aj′ )

j′+j , u
(aj′ )

j′+j+2] and Pbj′ [u
(bj′ )

j′+j, u
(bj′ )

j′+j+2]
are connected by a path that is contained in G(V (Bj′+j ∩Aj′+j+2), Bj′+j ∩Aj′+j+2) and is
disjoint with Pc, for each c ∈ { 1, ..., 5 } − { aj′ , bj′ }. Then, as before, there exists (upto
relabeling of separations) a subsequence F3 := { (Aj, Bj) : j ∈ { 1, ..., 2N3 } } ⊆ F2

with N3 ≥ bN2/(3n ∗ 10)c such that, for some a, b ∈ { 1, ..., 5 }, where a 6= b, and

for each j′ ∈ { 1, 2, ..., N3 }, we have that |Pa[u(a)2j′−1, u
(a)
2j′ ]| ≥ 3, |Pb[u(b)2j′−1, u

(b)
2j′ ]| ≥ 3,

and Pa[u
(a)
2j′−1, u

(a)
2j′ ] and Pb[u

(b)
2j′−1, u

(b)
2j′ ] are connected by a path Q

(ab)
j′ that is contained in

G(V (B2j′−1 ∩A2j′), B2j′−1 ∩A2j′) and is disjoint with Pc, for each c ∈ { 1, ..., 5 } − { a, b }.
Without loss of generality, let a = 1 and b = 2.

For each j′ ∈ { 1, 2, ..., N3 }, at least one of P1[u
(1)
2j′−1, u

(1)
2j′ ] and P2[u

(2)
2j′−1, u

(2)
2j′ ] is also

connected to Pc[u
(c)
2j′−1, u

(c)
2j′ ], for some c ∈ { 3, 4, 5 }, via a path that is disjoint with the

other and with Pc′ , for each c′ ∈ { 3, 4, 5 } − { c }, and is contained in G(V (B2j′−1 ∩
A2j′), B2j′−1 ∩A2j′) for otherwise P1(u

(1)
2j′−1, u

(1)
2j′) ∪ P2(u

(2)
2j′−1, u

(2)
2j′) is 4−separated from the
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rest of the graph G. Note that such a path is also disjoint with Q
(12)
j′′ , for each j′′ ∈

{ 1, 2, ..., N3 } − { j′ }. Thus, there exists (upto relabeling of separations) a subsequence
F4 := { (Aj, Bj) : j ∈ { 1, ..., 2N4 } } ⊆ F3 with N4 ≥ bN3/(6 ∗ 2)c such that, for some

b′ ∈ { 1, 2 } , c ∈ { 3, 4, 5 } and for each j′ ∈ { 1, 2, ..., N4 }, we have that |P1[u
(1)
2j′−1, u

(1)
2j′ ]| ≥

3, |P2[u
(2)
2j′−1, u

(2)
2j′ ]| ≥ 3, and Pb′ [u

(b′)
2j′−1, u

(b′)
2j′ ] is connected with both Pa′ [u

(a′)
2j′−1, u

(a′)
2j′ ] and

Pc[u
(c)
2j′−1, u

(c)
2j′ ], where a′ ∈ { 1, 2 } − { b′ }, via (internally) disjoint paths Q

(a′b′)
j′ and Q

(b′c)
j′ ,

respectively, both contained in G(V (B2j′−1 ∩ A2j′), B2j′−1 ∩ A2j′), where Q
(a′b′)
j′ is disjoint

with P ′c for each c′ ∈ { 3, 4, 5 } and Q
(b′c)
j′ is disjoint with P ′c for each c′ ∈ { 1, ..., 5 }−{ b, c }.

Without loss of generality, let a′ = 1, b′ = 2 and c = 3.

Case 1: Suppose, for some c′ ∈ { 4, 5 } , J ′ ⊆ { 1, 2, ..., N4 }, where J ′ := { j′1, j′2, ..., j′2n } ,
j′1 < j′2 < ... < j′2n, and for each j′ ∈ J ′, there exists a path Q

(2c′)
j′ connecting P2[u

(2)
2j′−1, u

(2)
2j′ ]

with Pc′ [u
(c′)
2j′−1, u

(c′)
2j′ ] that is disjoint with Pd, for each d ∈ { 1, 3, 4, 5 } − { c′ }, and is

contained in G(V (B2j′−1 ∩ A2j′), B2j′−1 ∩ A2j′). Then, as before, G can be reduced to a
W (1, 3, n)-minor with the three hubs formed by contracting segments of the paths P1, P3

and Pc′ contained in G[V (B2j′1−1 ∩A2j′2n
), B2j′1−1 ∩A2j′2n

], and the rim formed (in part) by
the segment of the path P2 contained in G[V (B2j′1−1∩A2j′2n

), B2j′1−1∩A2j′2n
], a contradiction.

Case 2: Suppose, for some c′ ∈ { 4, 5 } , J ′ ⊆ { 1, 2, ..., N4 }, where J ′ :=
{
j′1, j

′
2, ..., j

′
8n+8

}
,

j′1 < j′2 < ... < j′8n+8, and for each j′ ∈ J ′, there exists a path Q
(1c′)
j′ connecting

P1[u
(1)
2j′−1, u

(1)
2j′ ] with Pc′ [u

(c′)
2j′−1, u

(c′)
2j′ ] that is disjoint with Pd, for each d ∈ { 2, 3, 4, 5 }−{ c′ },

and is contained in G(V (B2j′−1 ∩ A2j′), B2j′−1 ∩ A2j′). Say c′ = 5. Observe that if

|P4[u
(4)

2j′1−1
, u

(4)

2j′8n+8
]| > 1 then, either u

(4)
r has degree at least 3 in G[V (Ar), Ar], for some

r ≤ 2j′4n+5−1, or u
(4)
r has degree at least 3 in G[V (Br), Br], for some r ≥ 2j′4n+4. By Propo-

sitions 3.2.1 and 3.3.2 and Lemma 3.3.7, G[V (Ar), Ar] (or G[V (Br), Br], whichever u
(4)
r has

degree at least 3 in) can be reduced to one of the graphs G2, G3, G5, G6, G8 and G9; sim-
ilarly, each of G[V (A2j′1−1), A2j′1−1], G[V (B2j′4n+4

), B2j′4n+4
], G[V (A2j′4n+5−1), A2j′4n+5−1] and

G[V (B2j′8n+8
), B2j′8n+8

] can be reduced to one of the graphs G1, G4 and G7. Since each
of G[V (B2j′1−1∩A2j′4n+4

), B2j′1−1∩A2j′4n+4
] and G[V (B2j′4n+5−1∩A2j′8n+8

), B2j′4n+5−1∩A2j′8n+8
]

can be reduced to the graph G1(e), G contains a minor isomorphic to either CWk(a)(2, 1, n)
or CWk(b)(2, 1, n), for some k ∈ { 1, ..., 6 }. The case when c′ = 4 is identical upto relabeling
the paths P4 and P5.

Case 3: Suppose, for some j′ ∈ { 1, ..., N4 − 12n− 12 }, P3[u
(3)
2j′−1, u

(3)
2(j′+12n+12)] =

{
u
(3)
j′

}
.

Additionally, suppose, for each j ∈ { 0, 1, ..., 12n + 12 }, { a′′, b′′ } = { 1, 2 } , { c′′, d′′ } =

50



{ 4, 5 }, there does not exist a path connecting Pa′′ [u
(a′′)
2(j′+j)−1, u

(a′′)
2(j′+j)] with Pc′′ [u

(c′′)
2(j′+j)−1,

u
(c′′)
2(j′+j)] that is disjoint with Pb′′ , P3 and Pd′′ and is contained in G[V (B2(j′+j)−1 ∩A2(j′+j)),

B2(j′+j)−1 ∩ A2(j′+j)], so that { u(1)2(j′+j)−1, u
(2)
2(j′+j)−1, u

(3)
j′ , u

(2)
2(j′+j), u

(1)
2(j′+j) } 5−separates

G as (Cj, Dj) with P1[u
(1)
2(j′+j)−1, u

(1)
2(j′+j)]∪P2[u

(2)
2(j′+j)−1, u

(2)
2(j′+j)] ⊆ V (Cj). Then, by Propo-

sitions 3.2.1 and 3.3.2 and Lemma 3.3.7, for each j ∈ { 1, 3, ..., 12n + 11 }, G[V (Cj), Cj]

can be reduced to one of G1, G4 and G7, with u
(1)
2(j′+j)−1, u

(2)
2(j′+j)−1, u

(3)
j′ , u

(2)
2(j′+j) and u

(1)
2(j′+j)

forming the vertices x1, x2, x3, x4 and x5, respectively, and for some { j1, j2, ..., j2n+2 } ⊆
{ 1, 3, ..., 12n+ 11 } , G[V (Cjr), Cjr ] can be reduced to the same graph GC for each jr ∈
{ j1, j2, ..., j2n+2 }, where GC ∈ {G1, G4, G7 }. When GC = G7, G[V (B2j′−1∩A2(j′+12n+12)),
B2j′−1 ∩A2(j′+12n+12)] can be reduced to the graph G1(b); similarly, when GC ∈ {G4, G7 } ,
G[V (B2j′−1 ∩ A2(j′+12n+12)), B2j′−1 ∩ A2(j′+12n+12)] can be reduced to the graph G1(a) (the

case when GC = G1 requires swapping the labels u
(1)
2(j′+j2r−1)+i

and u
(2)
2(j′+j2r−1)+i

for each

r ∈ 1, 2, ..., n+ 1, i ∈ { 0, 1, ..., 2(j2r − j2r−1) }). As a result, since, by Propositions 3.2.1

and 3.3.2 and Lemma 3.3.7,
{
u
(1)
1 , u

(2)
1

}
is connected with

{
u
(4)
1 , u

(5)
1

}
via two disjoint

paths, each disjoint with P3 and contained in G(V (A1), A1), and
{
u
(1)
2N4

, u
(2)
2N4

}
is con-

nected with
{
u
(4)
2N4

, u
(5)
2N4

}
via two disjoint paths, each disjoint with P3 and contained in

G(V (B2N4), B2N4), G contains a minor isomorphic to either Wj(2, 1, n) or TWj(2, 1, n), for
some j ∈ { 1, 2 }.

Case 4: Suppose, for some j′ ∈ { 1, ..., N4− 2(12n+ 13)(32n+ 71) + 1 } and for each j ∈
{ 0, 1, ..., 2(12n+ 13)(32n+ 71)− 1 } , { a′′, b′′ } = { 1, 2 } , { c′′, d′′ } = { 4, 5 }, there does

not exist a path connecting Pa′′ [u
(a′′)
2(j′+j)−1, u

(a′′)
2(j′+j)] with Pc′′ [u

(c′′)
2(j′+j)−1, u

(c′′)
2(j′+j)] that is dis-

joint with Pb′′ , P3 and Pd′′ and is contained in G[V (B2(j′+j)−1∩A2(j′+j)), B2(j′+j)−1∩A2(j′+j)].

Additionally, suppose, for each j ∈ {0, 1, ..., (12n + 13)(2(32n + 71) − 1)}, |P3[u
(3)
2(j′+j)−1,

u
(3)
2(j′+j+12n+12)]| > 1, so that, for some J ′ ⊆ { j′, j′ + 1, ..., j′ + 2(12n+ 13)(32n+ 71)− 1 },

where J ′ :=
{
j′1, j

′
2, ..., j

′
32n+71

}
, j′1 < j′2 < ... < j′32n+71, u

(3)
2j′r−1 6= u

(3)
2j′r

, for each j′r ∈ J ′,

and u
(3)
2j′r
6= u

(3)

2j′r+1−1
, for each j′r ∈ J ′ −

{
j′32n+71

}
. Then, either for some J ′′ ⊆ J ′, where

|J ′′| ≥ 16n+16, and for each j′r ∈ J ′′, P3[u
(3)
2j′r−1, u

(3)
2j′r

] is connected with one of P4[u
(4)
2j′r−1, u

(4)
2j′r

]

and P5[u
(5)
2j′r−1, u

(5)
2j′r

] via a path that is disjoint with the other and with P1 and P2, and that is
contained in G[V (B2j′r−1∩A2j′r), B2j′r−1∩A2j′r ], or for some J ′′ ⊆ J ′, where |J ′′| ≥ 16n+56,

and for each j′r ∈ J ′′, there does not exist such a path between P3[u
(3)
2j′r−1, u

(3)
2j′r

] and ei-

ther of P4[u
(4)
2j′r−1, u

(4)
2j′r

] and P5[u
(5)
2j′r−1, u

(5)
2j′r

]. In the former case, for some J ′′′ ⊆ J ′′, where
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|J ′′′| ≥ 8n+8, P3[u
(3)
2j′r−1, u

(3)
2j′r

] is connected with the same Pc′ [u
(c′)
2j′r−1, u

(c′)
2j′r

], where c′ ∈ { 4, 5 },
for each j′r ∈ J ′′′, and, hence, G contains a minor isomorphic to either CWk(a)(2, 1, n) or
CWk(b)(2, 1, n), for some k ∈ { 1, ..., 6 } (similar to Case 2, upto relabeling the paths). In
the latter case, for some J ′′′ ⊆ J ′′, where |J ′′′| ≥ 4n + 14, not only does there not exist

a path between P3[u
(3)
2j′r−1, u

(3)
2j′r

] and either of P4[u
(4)
2j′r−1, u

(4)
2j′r

] and P5[u
(5)
2j′r−1, u

(5)
2j′r

], for each
j′r ∈ J ′′′, but there also exist j′s, j

′
t ∈ J ′′, with j′s ≤ j′r ≤ j′t for each j′r ∈ J ′′′, such that,

for some j′′s ∈ { 2j′s − 1, 2j′s − 2 } , j′′t ∈ { 2j′t, 2j
′
t + 1 }, either u

(4)
j′′s

has degree at least 3 in

G[V (Aj′′s ), Aj′′s ] or u
(4)

j′′t
has degree at least 3 in G[V (Bj′′t

), Bj′′t
], and, either u

(5)
j′′s

has degree

at least 3 in G[V (Aj′′s ), Aj′′s ] or u
(5)

j′′t
has degree at least 3 in G[V (Bj′′t

), Bj′′t
] (proof follows).

4.2.1.1. There exists a triple (J ′′′, j′s, j
′
t) as described above.

Proof of claim. Let J ′′ :=
{
j′′1 , ..., j

′′
16n+56

}
, where j′′<... < j′′16n+56, and let j′′s = j′′1 , j

′′
t =

j′′16n+56. If each of u
(4)
2j′′s−1 and u

(5)
2j′′s−1 has degree at least 3 in G[V (A2j′′s−1), A2j′′s−1], or each

of u
(4)

2j′′t
and u

(5)

2j′′t
has degree at least 3 in G[V (B2j′′t

), B2j′′t
], then we’re done. Suppose each of

u
(4)
2j′′s−1 and u

(5)
2j′′s−1 has degree at most 2 in G[V (A2j′′s−1), A2j′′s−1], and each of u

(4)

2j′′t
and u

(5)

2j′′t

has degree at most 2 in G[V (B2j′′t
), B2j′′t

] (∗). Then, if each of u
(4)

2j′′s+4n+14−1
and u

(5)

2j′′s+4n+14−1
has degree at most 2 in G[V (A2j′′s+4n+14−1), A2j′′s+4n+14−1], we’re done with j′s = j′′s and
j′t = j′′s+4n+13. So we may assume that for some j′′s , j

′′
t ∈ J ′′, j′′t ≥ j′′s+12n+41, exactly one of

u
(4)
2j′′s−1 and u

(5)
2j′′s−1 has degree at least 3 in G[V (A2j′′s−1), A2j′′s−1] (a similar argument holds for

the case when exactly one of u
(4)

2j′′t
and u

(5)

2j′′t
has degree at least 3 in G[V (B2j′′t

), B2j′′t
]). This is

also true when (∗) does not hold. Without loss of generality, let u
(5)
2j′′s−1 have degree at least

3 in G[V (A2j′′s−1), A2j′′s−1]. Then, for each j′′i ∈ J ′′, where i ≥ s+ 4n+ 14, u
(4)

2j′′i −2
has degree

at most 2 in G[V (B2j′′i −2), B2j′′i −2] and u
(4)

2j′′i −1
has degree at most 2 in G[V (B2j′′i −1), B2j′′i −1]

for otherwise we’re done. In turn, for each j′′k ∈ J ′′, where k ≥ s+8n+28, u
(5)

2j′′k−2
has degree

at most 2 in G[V (B2j′′k−2), B2j′′k−2] and u
(5)

2j′′k−1
has degree at most 2 in G[V (B2j′′k−1), B2j′′k−1]

for otherwise we’re done again. But then each of u
(4)
2j′′r−1 and u

(5)
2j′′r−1 has degree at least 3

in G[V (A2j′′r−1), A2j′′r−1], where r = s+ 8n+ 28, and we’re done with j′s = j′′r , j
′
t = j′′t .

By Propositions 3.2.1 and 3.3.1 and Lemma 3.3.8, either G[V (A2j′s−1), A2j′s−1] can be re-

duced to G′, where G′ ∈
{
G

(24)
7 , G

(24)(25)
7

}
if each of u

(4)
2j′s−1 and u

(5)
2j′s−1 has degree at most

2 in G[V (A2j′s−1), A2j′s−1] and G′ ∈ { G(13)(24)(25)
8 , G

(13)(24)
8 , G

(24)
8 , G

(24)
8+(15), G

(24)(25)
8 , G

(24)(25)
8+(15) ,
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G
(24)
9 , G

(24)(25)
9 } otherwise, with the vertices u(1)2j′s−1, u(2)2j′s−1, u(3)2j′s−1, u(4)2j′s−1 and

u(5)2j′s−1 identified with x1, x4, x3, x2 and x5, respectively, or G[V (A2j′s−1), A2j′s−1] contains
two disjoint connected subgraphsH1 andH2 such that, for some u ∈ { u(4)2j′s−1, u(5)2j′s−1 },
{ u(1)2j′s−1, u(3)2j′s−1, u(4)2j′s−1, u(5)2j′s−1 } − { u } ⊆ V (H1) and { u(2)2j′s−1, u } ⊆ V (H2);
in the latter case, G[V (A2(j′s+2)), A2(j′s+2)] can be reduced to one of the graphs G3 ∪
{ x5x1, x1x2, x2x3, x3x5 } and G

(45)
3 ∪{ x4x1, x1x2, x2x3, x3x4 }, with the vertices u(1)2(j′s+2),

u(2)2(j′s+2), u(3)2(j′s+2), u(4)2(j′s+2) and u(5)2(j′s+2) identified with x1, x2, x3, x4 and x5, respec-
tively. Likewise with the graphs G[V (B2j′t

), B2j′t
] and G[V (B2(j′t−2)−1), B2(j′t−2)−1]. Then,

since G[V (B2(j′s+3)−1 ∩A2(j′t−3)), B2(j′s+3)−1 ∩A2(j′t−3)] can be reduced to the graph G2(c), G
contains a minor isomorphic to one ofW−

1 (3, 0, n), TW−
1 (3, 0, n), W−

2(a)(3, 0, n), W−
2(b)(3, 0, n),

TW−
2(a)(3, 0, n) and TW−

2(b)(3, 0, n).

Finally, since N4 ≥ 2(20n+ 14)(12n+ 13)(32n+ 71), either, for some j′ ∈ { 1, ..., N4 −
2(12n+13)(32n+71)+1 } and for each j ∈ { 0, 1, ..., 2(12n+ 13)(32n+ 71)− 1 } , { a′′, b′′ }
= { 1, 2 } , { c′′, d′′ } = { 4, 5 }, there does not exist a path connecting Pa′′ [u

(a′′)
2(j′+j)−1, u

(a′′)
2(j′+j)]

with Pc′′ [u
(c′′)
2(j′+j)−1, u

(c′′)
2(j′+j)] that is disjoint with Pb′′ , P3 and Pd′′ and is contained in the

graph G[V (B2(j′+j)−1∩A2(j′+j)), B2(j′+j)−1∩A2(j′+j)], or, for some J ′ ⊆ { 1, 2, ..., N4 }, where
J ′ :=

{
j′1, j

′
2, ..., j

′
20n+14

}
, j′1 < j′2 < ... < j′20n+14, and for each j′ ∈ J ′, there exists a path

connecting Pa′′
j′

[u
(a′′
j′ )

2j′−1, u
(a′′
j′ )

2j′ ] with Pc′′
j′

[u
(c′′
j′ )

2j′−1, u
(c′′
j′ )

2j′ ] that is disjoint with Pb′′
j′
, P3 and Pd′′

j′
,

and is contained in G(V (B2j′−1∩A2j′), B2j′−1∩A2j′), where
{
a′′j′ , b

′′
j′

}
= { 1, 2 } ,

{
c′′j′ , d

′′
j′

}
= { 4, 5 }. In the latter case, for some J ′′ ⊆ J ′, where |J ′′| ≥ 16n + 16, and for
each j′ ∈ J ′′, a′′j′ = 1 and we’re done by Case 2, for otherwise we are in Case 1, a
contradiction. In the former case, if, for each j ∈ {0, 1, ..., (12n + 13)(2(32n + 71) −
1)}, |P3[u

(3)
2(j′+j)−1, u

(3)
2(j′+j+12n+12)]| > 1 then we’re done by Case 4, otherwise we’re done by

Case 3.
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Chapter 5

Unavoidable Minors

We conclude by giving a short proof of Theorem 1.2.1 that puts the two cases together and
mentioning a deterrent to this approach being extended to higher connectivities.

5.1 Proof of Theorem 1.2.1

Proof of Theorem 1.2.1. Let

N = max
{

25(f2.2.3(6, f2.1.3(4n+ 4)))f4.2.1(n)+1, f2.1.3(4n+ 4), f2.1.2(n)
}

and let G be a 5−connected graph with at least N vertices. We may assume that G does
not contain a 6−connected set of size at least f2.1.3(4n + 4), for otherwise we’re done by
Corollary 2.1.4. Similarly, by Corollary 2.1.2, we may assume that G does not have a minor
isomorphic to W (1, 3, n). Then, by Corollary 2.2.3, bd5(G) ≤ f2.2.3(6, f2.1.3(4n + 4)) − 1,
and, since |V (G)| ≥ 25(f2.2.3(6, f2.1.3(4n+4))−1)f4.2.1(n)+1, by Proposition 4.1.1, it contains
a family of distinct nested 5−separations of size at least f4.2.1(n). The rest of the proof
follows from Lemma 4.2.1.

5.2 A Deterrent

It is easy to see that the two cases underlying this approach do not both trivially extend
to large θ−connected graphs for θ ≥ 6.
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In particular, the first case, when the large θ−connected graph under consideration
also has a large (θ+ 1)−connected set, does not trivially produce a θ−connected minor for
each of the unavoidable minors of graphs with large (θ + 1)−connected sets proposed by
Geelen and Joeris in [GJ16], as was true for θ = 5. This is clear from the fact that the set
of unavoidable minors proposed by Geelen and Joeris invariably contains a planar graph
which cannot have a θ−connected minor for any θ ≥ 6.

It is also understandable that the second case, which covers large θ−connected graphs
that do not contain a large (θ + 1)−connected set, will possibly entail, for θ ≥ 6, the
discovery of a larger number of unavoidable rooted minors both for the intersection of the
larger sides of two non-crossing separations in the graph and the smaller sides of these
separations, as well as the identification of the different conditions in which the two can be
patched together. The sheer number and complexity of these unavoidable rooted minors
could make finding an explicit set of unaoidable minors in this case a much taller order
than it was for θ = 5.
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Appendix A

Graph Constructions

A.1 Unavoidable Minors from the First Case

This is the case when the said sufficiently large 5−connected graph contains a large
6−connected set. We give here graph constructions for W (1, 3, n), W (2, 2, n), TW (2, 2, n),
W (3, 0, n) and TWi(3, 0, n), for each i ∈ { 1, 2, 3 } (see Figure 1.3).

W (1, `, n) and the (1, `, n)− wheel W(1, `, n) are both one and the same graph. Each
of the graphs W (2, 2, n) and TW (2, 2, n) can be constructed using n− 1 disjoint copies of
the homogenous (1, 1, 5)−wheel W(1, 1, 5) as follows.

(a) For each j ∈ { 1, ..., n− 1 }, let v
(j)
1 , v

(j)
2 , v

(j)
3 , v

(j)
4 , v

(j)
5 , v

(j)
h denote the vertices of the

j−th copyW(1, 1, 5)(j), with v
(j)
h as the lone hub, such that v

(j)
1 , ..., v

(j)
5 form the vertices

of the 5−cycleW(1, 1, 5)(j)\
{
v
(j)
h

}
in that order; let u be an additional disjoint vertex.

Let G′ be the graph obtained by identifying the vertex-pairs (v
(j)
5 , v

(j+1)
1 ), (v

(j)
4 , v

(j+1)
h ),

(v
(j)
3 , v

(j+1)
3 ) and (v

(j)
h , v

(j+1)
2 ), and adding the edges (u, v

(j)
1 ) and (u, v

(j+1)
5 ), for each

j ∈ { 1, ..., n− 2 }.

(b) Then W (2, 2, n+1) is obtained from G′ by adding another vertex v along with the edges

(v, u), (v, v
(1)
1 ), (v, v

(1)
2 ), (v, v

(n−1)
4 ), (v, v

(n−1)
5 ) and (v

(1)
2 , v

(n−1)
4 ), whereas TW (2, 2, n)

is obtained from G′ by adding only the edges (v
(1)
1 , v

(n−1)
4 ), (v

(1)
2 , v

(n−1)
5 ) and (v

(1)
2 ,

v
(n−1)
4 ).
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Each of the graphs W (3, 0, n) and TWi(3, 0, n), where i ∈ { 1, 2, 3 }, on the other hand,
can be constructed using n disjoint copies of W(1, 1, 5) as follows.

(a) For each j ∈ { 1, ..., n }, let v
(j)
1 , v

(j)
2 , v

(j)
3 , v

(j)
4 , v

(j)
5 , v

(j)
h denote the vertices of the j−th

copy W(1, 1, 5)(j), with v
(j)
h as the lone hub, such that v

(j)
1 , ..., v

(j)
5 form the vertices of

the 5−cycleW(1, 1, 5)(j)\
{
v
(j)
h

}
in that order. Let G′ be the graph obtained by iden-

tifying the vertex-pairs (v
(j)
4 , v

(j+1)
2 ) and (v

(j)
5 , v

(j+1)
1 ), and adding the edge (v

(j)
3 , v

(j+1)
3 ),

for each j ∈ { 1, ..., n− 1 }.

(b) Then W (3, 0, n) is obtained from G′ by taking another copy W(1, 1, 5)(n+1) (with ver-

tices labeled v
(n+1)
1 , ..., v

(n+1)
5 , v

(n+1)
h , as described in (a)) of W(1, 1, 5), identifying the

vertex-pairs (v
(1)
1 , v

(n+1)
5 ), (v

(1)
2 , v

(n+1)
4 ), (v

(n)
4 , v

(n+1)
2 ) and (v

(n)
5 , v

(n+1)
1 ), and adding the

edges (v
(1)
3 , v

(n+1)
3 ) and (v

(n)
3 , v

(n+1)
3 ); TW1(3, 0, n) is obtained fromG′ by adding another

vertex v along with the edges (v, v
(1)
2 ), (v, v

(1)
3 ), (v, v

(n)
3 ), (v, v

(n)
4 ), (v, v

(n)
5 ), (v

(1)
1 , v

(n)
4 ),

(v
(1)
1 , v

(n)
5 ) and (v

(1)
2 , v

(n)
5 ); TW2(3, 0, n) is obtained from G′ by adding only the edges

(v
(1)
1 , v

(n)
3 ), (v

(1)
1 , v

(n)
4 ), (v

(1)
2 , v

(n)
4 ), (v

(1)
2 , v

(n)
5 ) and (v

(1)
3 , v

(n)
5 ); and TW3(3, 0, n) is ob-

tained from G′ by adding only the edges (v
(1)
1 , v

(n)
3 ), (v

(1)
1 , v

(n)
5 ), (v

(1)
2 , v

(n)
4 ), (v

(1)
2 , v

(n)
5 )

and (v
(1)
3 , v

(n)
4 ).

A.2 Unavoidable Minors from the Second Case

This is the case when the said sufficiently large 5−connected graph does not contain a large
6−connected set. We give here graph constructions for Wj(2, 1, n), TWj(2, 1, n), W−

1 (3, 0,
n), TW−

1 (3, 0, n), W−
2(a)(3, 0, n), W−

2(b)(3, 0, n), TW−
2(a)(3, 0, n) and TW−

2(b)(3, 0, n), for each

j ∈ { 1, 2 } (see Figure 1.4), as well as for CWk(a)(2, 1, n) and CWk(b)(2, 1, n), for each
k ∈ { 1, ..., 6 } (see Figure 1.5).

For each i ∈ { 1, ...5 }, let Pi(n) be a path containing the vertices v
(i)
1 , ..., v

(i)
n in order;

to the union P1(n) ∪ ... ∪ P5(n) add the edges v
(1)
j v

(2)
j and v

(2)
j v

(3)
j , for each j ∈ { 1, ..., n },

to form the graph G(n). Let G1 be the graph formed from G(2n + 2) by identifying the

vertices v
(i)
1 , ..., v

(i)
2n+2 into v(i), for each i ∈ { 3, 4, 5 }, G2 be the graph formed from G(4n+8)

by identifying the vertices v
(i)
1 , ..., v

(i)
4n+8 into v(i), for each i ∈ { 4, 5 }.

(a) Let G1(a) be the graph formed from G1 by identifying the vertex-pair (v
(1)
2j−1, v

(1)
2j ) into

v
′(1)
j and adding the edge v

′(1)
j v(3), for each j ∈ { 1, ..., n+ 1 }, and identifying the
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v
(5)
1

v
(4)
1

v
(3)
1

v
(2)
1

v
(1)
1

v
(5)
n

v
(4)
n

v
(3)
n

v
(2)
n

v
(1)
n

v
(1)
2 v

(1)
3

v
(1)
n−2 v

(1)
n−1G(n) :

v(5)

v(4)

v(3)
v
(2)
1

v
(1)
1

v
(2)
2n+2

v
(1)
2n+2

v
(1)
2 v

(1)
3 v

(1)
2n

v
(1)
2n+1G1 :

v(5)

v(4)

v
(3)
1

v
(2)
1

v
(1)
1

v
(3)
4n+8

v
(2)
4n+8

v
(1)
4n+8

v
(1)
2 v

(1)
3

v
(1)
4n+6 v

(1)
4n+7G2 :

Figure A.1: G(n), G1 and G2.
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v(5)
v(4)
v(3)

v
′(2)
1 v

′(2)
n+2

v
′(1)
1 v

′(1)
2 v

′(1)
n v

′(1)
n+1

G1(a) :

v(5)
v(4)
v(3)

v
′(2)
1

v
′(1)
1

v
′(2)
n+2

v
′(1)
n+2

v
′(1)
2 v

′(1)
3 v

′(1)
n

v
′(1)
n+1G1(b) :

v(5)
v(4)

v
′(3)
1

v
′(2)
1

v
′(3)
n+3

v
′(2)
2n+5

v
′(1)
1 v

′(1)
2

v
′(1)
n+1 v

′(1)
n+2G2(c) :

v(5)
v(4)
v(3)

v
′(2)
1 v

′(2)
n+2

v
′(1)
1 v

′(1)
2 v

′(1)
n v

′(1)
n+1

G1(e) :

Figure A.2: Rooted minors of the intersection of the sides of two non-crossing
5−separations in a 5−connected graph.
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vertex-pair (v
(2)
2j−2, v

(2)
2j−1) into v

′(2)
j , for each j ∈ { 2, ..., n+ 1 } ; v

′(2)
1 := v

(2)
1 , v

′(2)
n+2 :=

v
(2)
2n+2. Then W1(2, 1, n) is obtained from G1(a) by adding the edges v

′(1)
1 v(5), v

′(2)
1 v(4),

v
′(1)
n+1v

(5), v
′(2)
n+2v

(4) and then contracting each of them except v
′(1)
1 v(5), while TW1(2, 1, n)

is obtained from G1(a) by adding the edges v
′(1)
1 v(5), v

′(2)
1 v(4), v

′(1)
n+1v

(4), v
′(2)
n+2v

(5) and then

contracting each of them except v
′(1)
n+1v

(4) along with v
′(2)
1 v

′(2)
2 .

(b) Let G7(j) be the j−th of n+ 1 disjoint copies of G7, having vertices v1(j), ..., v5(j), vh(j),

x1(j), ..., x5(j). Let G1(b) be the graph formed from G1 by deleting the edges v
(1)
2j−1v

(1)
2j ,

v
(2)
2j−1v

(2)
2j , and identifying the vertex-pairs (x1(j), v

(1)
2j−1), (x2(j), v

(2)
2j−1), (x3(j), v

(3)),

(x4(j), v
(2)
2j ), (x5(j), v

(1)
2j ), for each j ∈ { 1, ..., n+ 1 }, and identifying the vertex-pairs

(v
(1)
2j−2, v

(1)
2j−1) and (v

(2)
2j−2, v

(2)
2j−1) into v

′(1)
j and v

′(2)
j , respectively, for each j ∈ { 2, ...,

n + 1 }; v′(1)1 := v
(1)
1 , v

′(2)
1 := v

(2)
1 , v

′(1)
n+2 := v

(1)
2n+2, v

′(2)
n+2 := v

(2)
2n+2. Then W2(2, 1, n +

1) is obtained from G1(b) by adding the edges v
′(1)
1 v(5), v

′(2)
1 v(4), v

′(1)
n+2v

(5), v
′(2)
n+2v

(4) and
contracting each of them, while TW2(2, 1, n+ 1) is obtained from G1(b) by adding the

edges v
′(1)
1 v(5), v

′(2)
1 v(4), v

′(1)
n+2v

(4), v
′(2)
n+2v

(5) and contracting each of them.

(c) Let G2(c) be the graph formed from G2 by identifying the vertices v
(1)
4j−3, v

(1)
4j−2, v

(1)
4j−1 and

v
(1)
4j to form the vertex v

′(1)
j , for each j ∈ { 1, ..., n+ 2 }, the vertex-pair (v

(2)
2j−2, v

(2)
2j−1)

to form the vertex v
′(2)
j , for each j ∈ { 2, ..., 2n+ 4 }, the vertices v

(3)
4j−5, v

(3)
4j−4, v

(3)
4j−3

and v
(3)
4j−2 to form the vertex v

′(3)
j , for each j ∈ { 2, ..., n+ 2 }, and the vertex-pairs

(v
(3)
1 , v

(3)
2 ) and (v

(3)
4n−7, v

(3)
4n−8) to form the vertices v

′(3)
1 and v

′(3)
n+3, respectively, and then

contracting the edges v
′(2)
1 v

′(2)
2 , v

′(3)
1 v

′(3)
2 , v

′(2)
2n+4v

′(2)
2n+5 and v

′(3)
n+2v

′(3)
n+3 (note that v

′(2)
1 :=

v
(2)
1 , v

′(2)
2n+5 := v

(2)
4n+8). Let G′ be a graph formed from G2(c) and two disjoint copies of

K4 by identifying the first copy with the vertices v
′(1)
1 , v

′(2)
1 , v(4) and v(5), and the second

copy with the vertices v
′(1)
1 , v

′(2)
1 , v(4) and v(5). Then W−

1 (3, 0, n + 1) is obtained from

G′ by adding the edges v
′(3)
1 v(4) and v

′(3)
n+3v

(4), while TW−
1 (3, 0, n+ 1) is obtained from

G′ by adding the edges v
′(3)
1 v(5) and v

′(3)
n+3v

(4).

(d) Let G′′ be a graph formed from G2(c) and two disjoint copies G
(1)
7 and G

(2)
7 (contain-

ing vertices x
(1)
1 , ..., x

(1)
5 and x

(2)
1 , ..., x

(2)
5 , respectively) of G7 by identifying the vertex-

pairs (x
(1)
1 , v

′(1)
1 ), (x

(1)
2 , v

′(2)
1 ), (x

(1)
3 , v

′(3)
1 ), (x

(1)
4 , v(4)), (x

(1)
5 , v(5)), (x

(2)
1 , v

′(1)
n+2), (x

(2)
2 , v

′(2)
2n+5),

(x
(2)
3 , v

′(3)
n+3), (x

(2)
4 , v(4)) and (x

(2)
5 , v(5)). Then W−

2(a)(3, 0, n + 1) is obtained from G′′ by

adding the edge v(4)v(5), while W−
2(b)(3, 0, n+1) is obtained from G′′ by adding the edges

v
′(1)
1 v(5) and v

′(3)
1 v(4). Let G′′′ be a graph formed from G2(c) and two disjoint copies G

(1)
7

61



and G
(2)
7 (containing vertices x

(1)
1 , ..., x

(1)
5 and x

(2)
1 , ..., x

(2)
5 , respectively) of G7 by iden-

tifying the vertex-pairs (x
(1)
1 , v

′(1)
1 ), (x

(1)
2 , v

′(2)
1 ), (x

(1)
3 , v

′(3)
1 ), (x

(1)
4 , v(4)), (x

(1)
5 , v(5)), (x

(2)
1 ,

v
′(1)
n+2), (x

(2)
2 , v

′(2)
2n+5), (x

(2)
3 , v

′(3)
n+3), (x

(2)
4 , v(5)) and (x

(2)
5 , v(4)). Then TW−

2(a)(3, 0, n + 1) is

obtained from G′′′ by adding the edge v(4)v(5), while TW−
2(b)(3, 0, n + 1) is obtained

from G′′ by adding the edges v
′(1)
1 v(5) and v

′(3)
1 v(4).

(e) Let G1(e) be the graph formed from G1(a) by replacing the edge v
′(1)
j v(3) with the

edge v
(1)
j v(5), for each j ∈ { 1, ..., n+ 1 }. Let, for each k ∈ { 1, ..., 6 }, with Hk

1 ∈
{G1, G4, G7 } containing vertices x

k(1)
1 , ..., x

k(1)
5 and Hk

2 ∈ {G1, G4, G7 } containing

vertices x
k(2)
1 , ..., x

k(2
5 ), CWk be the graph obtained from G1(e), Hk

1 and Hk
2 by identifying

the vertex-pairs (x
k(1)
1 , v

′(1)
1 ), (x

k(1)
2 , v

′(2)
1 ), (x

k(1)
3 , v(3)), (x

k(1)
4 , v(4)), (x

k(1)
5 , v(5)), (x

k(2)
1 ,

v
′(1)
n+1), (x

k(2)
2 , v

′(2)
n+2), (x

k(2)
3 , v(3)), (x

k(2)
4 , v(4)) and (x

k(2)
5 , v(5)), where (H1

1 , H
1
2 ) := (G1,

G1), (H
2
1 , H

2
2 ) := (G4, G4), (H

3
1 , H

3
2 ) := (G7, G7), (H

4
1 , H

4
2 ) := (G1, G4), (H

5
1 , H

5
2 ) :=

(G1, G7) and (H6
1 , H

6
2 ) := (G4, G7). Then, for each k ∈ { 1, ..., 6 } , CWk(a)(2, 1, n + 1)

is obtained from CWk by adding the edge v(3)v(4) and CWk(b)(2, 1, n + 1) is obtained
from CWk by adding the edge v(4)v(5).
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