
 

 

Investigation of multi-criteria decision analysis 

approaches for agricultural decision-making in 

southern Ontario 

 

by 

 

Li Zhang 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the  

thesis requirement for the degree of 

Master of Science 

in 

Geography 

 

 

 

 

 

 

Waterloo, Ontario, Canada, 2016 

 

 © Li Zhang 2016  



ii 

Author’s Declaration 
 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including 

any required final revisions, as accepted by my examiners.  

 

I understand that my thesis may be made electronically available to the public. 

 

  



iii 

Abstract 
Land-use and land-cover change has significant impact on the Earth’s ecosystems and global 

carbon cycle, which calls for well-planned land management strategies. This study presented a 

multi-criteria decision analysis (MCDA) for agricultural land-use allocation integrating 

environmental, social, and economic factors with human preferences. The agent-based modelling 

of agricultural land-use allocation shows that integrating a multi-objective decision analysis 

(MODA) of land amount allocation in land-use allocation will result in different land use 

allocation results from directly allocate land-use on fields. In addition to general land-use types 

of cropland, pasture, and woodland studied in MODA, a specific crop of corn was selected for 

site analysis with a multi-attribute suitability analysis based on soil, topography, and climate 

characteristics on potential sites and farmers’ opinions about relative importance of these criteria. 

This study reveals that land management on land with heterogeneity is important and human 

preferences and decision-making strategies have significant impact on LUCC.  
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Chapter 1  

Introduction 

 

1.1 Background 

Land-use and land-cover change (LUCC) involves a change in the use and management of land 

by humans and a corresponding change in terrestrial surface and subsurface (e.g., biota, soil, 

topography, surface and groundwater, and human structures characteristics) of the Earth (Lambin 

et al., 2000; Robinson et al., 2013). Most land-use activities necessary for human development 

involve the appropriation of natural resources and ecosystem services, which have negative 

impacts on the Earth’s ecosystem both locally and globally (Vitousek, 1997; Foley et al., 2005). 

For example, due to the global increase in cropland and fertilizer use from 1960s to 1990s, 

environment damages were caused including water quality degradation, arable land loss, and soil 

erosion (Foley et al., 2005). According to an FAO study in 2004, land-use activities associated 

with agriculture and timber harvesting resulted in a net loss of about 7 to 11 million km2 of forest 

over the previous 300 years. Consequently, approximately 40% of the global terrestrial surface is 

occupied by croplands and pastures (Foley et al., 2005). In addition to the impacts on the Earth’s 

ecosystems, LUCC also has significant impacts on global carbon cycle. Agriculture, Forestry, 

and Other Land Use (AFOLU) sector accounted for about 25% of anthropogenic greenhouse gas 

(GHG) emissions. Agricultural practices contributed the most to the global anthropogenic non-

CO2 GHGs, the annual value of which accounted for about 10-12% of global anthropogenic 

emissions (Smith et al., 2014) 

Given the impacts of LUCC on the Earth’s ecosystem and global carbon cycle, there is an 

increasing demand for well-planned land management strategies, which require a trade-off 

among factors altering land management, for example, balancing economic development among 

multiple sectors, social benefits of different groups of people, and environment impacts on 

different regions (Beinat and Nijkamp, 1998). Multi-criteria decision analysis (MCDA) is a 

platform that can integrate multiple variables and importance of these variables into a decision 

process. It offers a structured framework to support decision-making problems through exploring 

objectives and concerns of multiple stakeholders. Its’ capabilities of dealing with quantitative 

and qualitative data, multiple stakeholders’ conflicts, and sensitivity and robustness of various 

choices make it a widely used application for decision analysis (Beinat and Nijkamp, 1998; 

Mendoza and Martins, 2006; Giove et al., 2009). 

MCDA has been categorized in various ways. For example, Belton and Stewart (2002) divided 

MCDA into three categories of value measurement models, goal, aspiration or reference level 

models, and outranking models. Giove et al. (2009) provided four classification ways: multi-

attribute decision analysis (MADA) versus multi-objective decision analysis (MODA), group 

decision maker versus individual decision maker, single step versus multiple steps, and under 
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certainty versus under uncertainty. In this thesis, the commonly used classification of MADA 

and MODA was discussed with case studies (Figure 1-1). MADA defines a set of land-use 

decision alternatives and evaluates these alternatives to select the most suitable one or several 

based on multiple attributes (Phua and Minowa, 2005). The attributes are associated with scores 

representing their attractiveness to the decision. Multi-attribute value theory (MAVT)/multi-

attribute utility theory (MAUT), outranking, and interactive methods are widely used in MADA. 

In MAVT/MAUT, a value/utility function is constructed firstly for each criterion and normalized 

to a common numerical scale. Then the preference towards each criterion is determined based on 

stakeholders’ willingness. Lastly, the value/utility for each criterion and its corresponding 

preference weight are aggregated to generate a final value for each decision alternative (Giove et 

al., 2009). Martin et al. (2000) adopted this method to analyze stakeholders’ opinion on the 

development of leasable minerals on the San Juan National Forest in south-west Colorado. They 

interviewed three groups of stakeholders and asked them to value four attributes and six decision 

alternatives related to forest management. Using ordinal ranking and cardinal ranking method, 

the six decision alternatives were compared. This method is straightforward and decision 

alternatives can be quantified clearly with selected aggregation methods. 

Outranking method uses pairwise comparison of each criterion for each decision alternative. It 

gives the explanation of which criterion is more preferred than the other, but does not provide 

information about cardinal measurement of preference relationships (Ananda and Herath, 2009). 

Kangas et al. (2000) applied outranking method in a study about landscape ecological forest 

planning analysis where they evaluated ten forest plan alternatives with five criteria. This method 

has some drawbacks that limit its application. For example, it is difficult to assign “the necessary 

parameters for understanding the meaning of the model as soon as the number of variables 

reaches real values” (Giove et al., 2009, p68). 

Interactive method allows decision-makers to provide their opinions and make adjustments 

continuously during the decision-making process. Pykäläinen et al. (1999) applied an interactive 

decision analysis in the participatory strategic planning of natural resources management in 

Kainuu. In this study, four related parties were involved in this decision process about four forest 

strategies.  

In contrast, A MODA approach is preferred when the land-use decision alternatives are not 

defined before a decision made. Instead, a set of objectives are defined and decision alternatives 

are generated that satisfy the objectives (Phua and Minowa, 2005). In this case, programming 

approaches are usually used to generate the best alternatives while respecting decision-makers’ 

objectives and required constraints. Compromise Programming (CP) and Goal Programming 

(GP) are two approaches to solving MODA problems. CP method uses a distance measurement 

between an alternative and the ideal point to determine the best alternative. The shorter the 

distance is, the better the alternative is (Phua and Minowa, 2005). GP, adjusted from linear 

programming, constructs an objective function with deviational variables from goal constraints. 
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Then it solves the problem of minimizing the sum of weighted deviations from each goal while 

respecting all the other constraints (Ananda and Herath, 2009). Stewart et al. (2004) applied GP 

in a land use allocation problem in the Jisperveld region in the Netherlands, which has various 

constraints and conflicting objectives.  

Although obvious differences exist between MODA and MADA, some of the aforementioned 

methods can be used cooperatively to make better decisions.    

 

Figure 1-1 A classification of MCDA problems and methods. (Modified from Giove et al., 2009, 

p.60) 

 

1.2 Objective and Sub-objectives 

The overarching goal of the presented thesis is to gain insight into the application of MCDA for 

agricultural land-use decision-making. To fulfill this objective, this thesis presented two studies 

with emphasis on MODA and MADA, respectively. The research questions answered in the two 

studies are as follows: 

1) how does the allocation of land-use on a farm differ when land suitability (environmental, 

social, and economic factors) and farmers’ preferences towards these factors are applied at 

the farm versus the field level of spatial aggregation?  

2) what is the spatial distribution and pattern of suitability scores of corn growth in Southern 

Ontario? 

 

To answer the first research question, Chapter 2 presented: 
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 an algorithm to represent land suitability that integrates environmental, social, and 

economic factors; 

 two agent-based models to simulate: land-use allocation originating at the farm level to 

individual fields on a farm (Farm-To-Field), and to directly allocate land uses to 

individual fields (Field); 

 a quantitative comparison of the differences in land-use allocation when applied at the 

farm versus the field level. 

 

To answer the second research question, Chapter 3 has the following objectives: 

 to determine criteria and their corresponding weights for suitability score calculation;  

 to perform a MADA to score and map suitability across Southern Ontario;  

 to analyze the suitability scores to quantify the spatial distribution and patterns of 

suitable corn growing locations. 

 

1.3 Thesis Structure 

The next two chapters, Chapter 2 and Chapter 3, present two applications of MCDA for 

agricultural land-use decision-making with emphasis on MODA and MADA, respectively. 

Chapter 2 presents an agent-based modeling of decision making about land allocation for three 

general land-use types of cropland, pasture, and woodland in a subset of farms in the County of 

Middlesex. The decision-making process uses non-linear optimization to solve a multi-objective 

function integrating environmental, social, economic factors, and farmers’ preferences toward 

these factors. Beyond decision making about general types of agricultural land uses in Chapter 2, 

Chapter 3 focuses on one specific crop (corn) site analysis. It applied a multi-attribute suitability 

analysis for corn growth in Southern Ontario based on soil, topography, and climate 

characteristics on potential sites and farmers’ opinions about relative importance of these criteria. 

The final Chapter 4 provides recommendations, suggestions, and conclusions for this study.
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Chapter 2  

Comparison of farm- and field-level decision-making strategies 

on agricultural land-use allocation and farm utility 

 

2.1 Introduction 

It has been conceptualized that the allocation of land by humans for different activities (i.e., land-

use) consists of three processes: a land suitability assessment, land demand estimation, and land 

location allocation (Karimi et al., 2012). First, land needs to be evaluated to determine if it is 

suitable for a specific land-use type, which is typically a composite index of the environmental, 

social, and economic conditions at a location. Second, the quantity of area required or demanded 

for each land-use type is determined by a governing body (e.g., as in China), a planning authority 

(e.g., as in Canada), or the market. Third, based on the assessment result of land suitability and 

demand, a land-use type is allocated for each land unit (Karimi et al., 2012; Pilehforooshha et al. 

2014). Many land-use models are constructed to represent one or more of these processes of land 

allocation and apply them at regional or larger spatial extents (e.g. Verburg et al., 1999; Carsjens 

and Van Der Knaap, 2002; Sante-Riveira et al, 2008; Nguyen et al., 2015). However, how 

heterogeneous land-uses can be allocated at a small spatial extent (e.g. an individual farm) with 

similar characteristics has rarely been studied. 

Existing models simulating on-farm land-use allocation (e.g. LUDAS, Le, 2005; Aporia, 

Murray-Rust et al., 2014), usually include only two of the three aforementioned land-use 

allocation processes: land suitability assessment and land location allocation. In these types of 

models, a decision-making agent evaluates the suitability of each field on a farm for a variety of 

land uses and then allocates land uses to fields based on those that maximize the agent’s 

objectives, which is usually represented as a fitness or utility score. As a consequence, land-use 

allocation is optimized at the field level and ignores the overarching structural entity of the farm. 

Similarly, in most existing models, the demand driving the allocation of different land-uses has 

no relationship to overarching governance structures and is often ignored or is a function of the 

farmer’s response to global crop prices and on-farm constraints (e.g., knowledge and biophysical 

conditions; Verburg et al., 1999; Wang et al., 2004). 

Land-use and land-cover change (LUCC) is a process that involves interactions among actors 

and between actors and the natural system (Rindfuss et al., 2004; Robinson et al., 2013). Due to 

heterogeneity among actors, it is essential to improve our understanding about the drivers that 

affect the variation in land-use decisions under similar biophysical site conditions (Kelley and 

Evans, 2011). Drivers of variation in land-use decisions include land suitability (Wang et al., 

2004), decision makers’ preferences (Wu et al., 2004; Le, 2005), and spatial externalities 

(Marshall, 2004). Under the same biophysical conditions, land suitability can vary based on 

social and economic factors, but variation in all three factors is typically cited (e.g., FAO, 1976). 
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Decision maker’s preference describes the degree of his/her concerns or happiness about a 

possible action or factor. Spatial externalities typically includes neighbourhood or adjacency 

effects on decision making, for example, adjacent land-use types tend to impact farmers’ 

decisions (Kelly and Evans, 2011).  

Various models have been developed to model LUCC. Parker et al. (2003) discussed the pros 

and cons of seven types of models: equation-based, system dynamics, statistical, expert, 

evolutionary, cellular, and hybrid models. These models overlap each other to some extent. They 

either have high dependence on mathematics and statistics (e.g. equation-based, system 

dynamics, statistical), or focus on landscape and transitions (e.g. cellular). Therefore, these 

models have limited ability to represent complex land management processes. Agent-based 

models (ABMs), which focus on human actions, have the ability “to represent real-world actors 

and their interactions amongst each other and with their environment” (Rounsevell et al., 2012, 

p.260) locally using virtual agents. An agent can be a person, an organization, an animal, or any 

entity that is programmed with a goal and methods to achieve that goal. (Railsback and Grimm, 

2012).The agents are autonomous and can behave rationally to achieve their objectives. They can 

also communicate and interact with each other to share environment and “make decisions that tie 

behavior to the environment” (Parker et al., 2003) 

As LUCC is a dynamic spatial process that usually involves individual human decisions and 

interactions, ABM is widely used to model LUCC. A typical LUCC ABM consists two key 

components, a landscape on which agents make decisions and decision-making strategies for 

agents within the system. Through the interaction among agents and between agents and the 

landscape, the two components are integrated to represent a coupled human-natural system 

(Parker et al., 2001).  

Agent-based Models have been widely used in land use management with emphasis on various 

aspects. Robinson et al. (2013) used an ABM entitled Aporia to simulate on-farm decision 

making and to explore the impact of different socio-economic scenarios on ecosystem services in 

rural landscapes. The Aporia model included farm agents, farming regimes for farm agents to 

evaluate and select, and land cover and management practices associated with the farming 

regimes. Farm agents needed to evaluate available farming regimes based on total expected 

utilities they would obtain from each regime considering economic, environmental, and social 

factors. An ecosystem process model (LPJ-GUESS) was also integrated in this study to represent 

the ecosystem. Kelley and Evans (2011) presented an ABM to explore how “landowners’ land-

use decisions are influenced by heterogeneous land-use preferences, spatial externalities, and 

unique suitability features” (Kelley and Evans, 2011, p1). In this model, landowner agents 

needed to obtain a portfolio of labor and land allocation for farm, tree, esthetics, and off farm 

activities on cell and parcel level with the objectives of maximizing total utility. Unlike Aporia 

model, this model calculated total expected utility based on economic returns only from the four 

activities taking risk aversion into account. 
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Based on Aporia model and Kelly and Evan’s work, the presented research uses an agent-based 

modelling approach to represent on-farm land-use allocation. The overarching question this 

chapter seeks to answer is how does the allocation of land-use on a farm differ when land 

suitability (environmental, social, and economic factors) and farmers’ preferences towards these 

factors are applied at the farm (land amount allocation for each land use activities) versus the 

field level (land location allocation for each land use activities) of spatial aggregation? To 

answer this question this chapter presents an algorithm to represent land suitability that integrates 

environmental, social, and economic factors; two agent-based models to simulate: land-use 

allocation originating at the farm level to individual fields on a farm (Farm-To-Field), and to 

directly allocate land uses to individual fields (Field); and lastly a quantitative comparison of the 

differences in land-use allocation when applied at the farm versus the field level. 

A variety of different platforms can be used to build agent-based models. The five most widely 

used platforms are NetLogo, Repast, Objective-C version of Swarm, Java Swarm, and MASON. 

Among the five platforms, NeloLogo is the most widely used due to its flexibility and modeling 

power. Repast, Swarm, and MASON provide a framework for model design that requires higher 

level of programming skills. MASON is the least mature while has the fastest running time 

among the five platforms (Railsback & Jackson, 2006). Each of the platforms has its own 

advantages and disadvantages in different aspects. It is the researchers' justification of which one 

to use with the consideration of model objectives and requirements. The model in this study is 

designed using the platform of NetLogo. It is an open source platform with simple dialect 

program language. It allows users to design agent-based models for natural and social 

phenomena. It makes it possible for researcher to investigate individual agent behaviors, as well 

as the interaction amongst them, which can ultimately emerge temporal or spatial patterns 

(NetLogo, 2013). 

The remainder of this chapter first presents the study area used to situate the model experiments. 

Then a detailed explanation of the designed model is provided, which describes the landscape, 

agents, and land-use allocation strategies. Following the model description, experiments of the 

two land-use allocation strategies are discussed and results are presented. Lastly, issues 

associated with the model design, broader implications of the presented research, and potential 

directions for future research are discussed. 

2.2 Study Area 

The presented research is situated in the Census Subdivision (CSD) of North Middlesex, in the 

County of Middlesex, Ontario, Canada (Figure 2-1). North Middlesex, with a total area of 

approximately 603 km2 and a total population of 6658 (Statistics Canada, 2012), is located in the 

center of Southern Ontario between Lake Huron and Lake Erie. The climate in this region 

produces adequate heat and precipitation for agriculture (Hannam et al., 2015) such that more 

than 60% of the total land area in Middlesex has been classified with an agricultural suitability 

that has no significant or moderate limitations for the growth of agricultural crops (Hagerty and 

Kingston, 1992). Land in crops, pasture, and woodland accounted for 78%, 3.4%, and 7.8% of 

the total area in North Middlesex, respectively. Among the farms, wheat, corn, and soybeans are 

the dominate crops cultivated.  
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The Agri-food industry affiliated with agricultural production in Middlesex generated an 

economic impact of 1.2 billion Canadian dollars and accounted for about 15.2% of employment 

in the County, making it the largest employer in 2015 (Hannam et al., 2015). Total farm capital 

in the County was substantially higher, yielding approximately 5.05 billion Canadian dollars, 

which account for about 16% of the farm capital in Southern Ontario (Statistics Canada, 2011.). 

These statistics demonstrate that agriculture plays a substantial role in the livelihoods of 

individuals and the economy in the County of Middlesex.  

 

Figure 2-1 Map of Northern Middlesex location and land use (Data source: Southern Ontario 

Land Use and Agricultural Resource Inventory, See Appendix 1 for land use specification). 
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2.3 Conceptual Model (ODD Description) 

This model is described following the ODD (Overview, Design concepts, Details) protocol, which is 

a de facto standard for describing individual- and agent-based models (Grimm et al. 2006; Grimm 

et al. 2010). The model Pseudo Code is provided in Appendix 2. 

 

2.3.1 Overview 

 

Figure 2-2 Flow Chart of main model process. 

 

2.3.1.1 Purpose 

The model was designed to investigate how farmers’ decisions (taking environmental, social, and 

economic into account) affect land-use allocation. Farmer agents make on-farm decisions about 

1) the proportion of their farm to allocate to among three land-use activities (cropland, pasture, 

or woodland (step 2-1 in Figure 2-2); and 2) which of the three land-use activities to allocate to 

each field (step 2-2 in Figure 2-2). 
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2.3.1.2 Entities, state variables, and scales 

This model consisted of entities representing the landscape of farms and fields, farmer agents 

who own the farms, and the environmental variable of market prices for different land-use 

activities. The model was run at an annual time step for 31 years from 1982 to 2012 based on 

data availability. 

2.3.1.2.1 Landscape 

The landscape is composed of patches, fields, and farms (Table 2-1), covering a total area of 

approximately 603 km2. The first layer consists of patches with site-specific variables 

representing spatial heterogeneity. The second layer consists of 2987 fields, which were a group 

of patches. Lastly, the third layer consists of 458 farms, which were a group of fields owned by 

the farm owner. Fields are the smallest unit where decisions are made in the model. The three 

layers have the variables of slope, Soil Quality Index (SQI), woodland age, and their associated 

identity number indicating field and farm they belong to. Patch and field also own the variable of 

land-use type. 

2.3.1.2.2 Agents 

Farmer agents were considered to be the only type of land manager, with each farmer agent 

owning a single farm; therefore, there were 458 farmers in total in this model. Farmer agents 

have a number of state variables that include a farmer agent identity number which is matched 

with farm identity number, preference weights of environmental, social, and economic factors, 

and knowledge about the extent to which slope affects productivity (Table 2-1).  

2.3.1.2.3 Global Environment 

The model includes global environment variables describing the average annual selling prices 

and expenses for general crops, pasture, and woodland. Detailed description is provided in Input 

Data section. 

Table 2-1 State variables of landscape and agents 

Entity  State Variable Description 

Landscape Patch pslope Slope (no unit) 

  psqi Soil Quality Index (SQI) (no unit) 

  planduse Land use  

  pfarmid Identity number indicating farm the patch 

located on 

  pfieldid Identity number indicating field the patch 

located on 

 Field fieldid Field identity 

  farmid Farm identity 

  fieldslope Mean slope of a field (no unit) 

  fieldsqi Mean SQI of a field (no unit) 

  fieldtreeage Age of woodland on a field (years) 

  landuse Land-use on a field 

 Farm farmno Farm identity 
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  farmtreeage Mean age of woodland on a farm (years) 

Agent Farmer farmerno  Farmer agent identity 

  alpha-env 

beta-soc 

gama-eco 

Preference weights towards environmental, 

social, and economic variables (no unit) 

  gama-slope Farmer agents’ belief about the extent to which 

slope affects productivity (no unit) 

 

2.3.1.3 Process overview and scheduling 

As illustrated in Figure 2-2, the model runs with an annual time step. Within each annual cycle, 

submodels of land-use allocation run in sequence. For Farm-To-Field strategy, the first submodel 

of Land Amount Allocation calculates an expected percentage for each land-use activity to 

maximize total farm utility. Then the submodel of Land Location Allocation chooses the land-

use activity with the highest utility for each field on the farm. Lastly, the submodel of Total 

Utility calculates total utility on each farm based on land-use allocation results. For Field 

strategy, the submodels of Land Location Allocation and Total Utility were run in sequence. 

Detailed description of the submodels can be found in Submodels section. Following the 

submodels, the state variables of landscape and agents were updated and exported. In addition, 

the coverage of the three land-use activities of cropland, pasture, and woodland, average farm 

utility, and Gini Index were plotted at each time step and exported at the end of entire model run. 

2.3.2 Design concepts 

2.3.2.1 Basic principles 

Farmer agents were considered to be rational and autonomous when making decisions. A utility 

function is adopted to quantify land suitability for a land-use activity at the farm or field level. 

The benefit of a utility-based approach comes from its ability to represent agents’ preference 

towards an alternative action while maintaining the agents’ goals with numeric values (Dillon, 

1971). Farmer agents evaluate the utility of a potential decision using the following (Equation 

2-1): 

𝑈𝑖 = 𝑈𝑖(𝐿𝑈𝑖|𝐹𝑎𝑟𝑚𝑒𝑟𝑗 , 𝐹𝑎𝑟𝑚𝑘) 

                                    = 𝛼𝐸𝑛𝑣𝑖𝐸𝑛𝑣𝑖 + 𝛼𝑆𝑜𝑐𝑖𝑆𝑜𝑐𝑖 + 𝛼𝐸𝑐𝑜𝑖𝐸𝑐𝑜𝑖 

Equation 2-1 

 

where Ui is the utility value when a 𝐹𝑎𝑟𝑚𝑒𝑟 agent j on 𝐹𝑎𝑟𝑚 k applies land-use activity 𝑖, 

𝛼𝐸𝑛𝑣𝑖, 𝛼𝑆𝑜𝑐𝑖, and 𝛼𝐸𝑐𝑜𝑖 are the agent’s preference weights of  𝐹𝑎𝑟𝑚𝑒𝑟 agent j for environmental, 

social, and economic factors , respectively, that contribute to the decision making process. All 

these variables range from 0 to 1 without a unit. 

2.3.2.1.1 Environmental and Social Factor 

Ecosystem Service Indicators (ESSi) have been used to estimate the performance of a land-use 

activity from the perspective of environmental and social feedback (Brown and Robinson, 2006; 

Murray-Rust et al., 2014). In this study, ESSi of landscape aesthetics and soil loss were used to 
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provide examples of indicators driving environmental and social factors affecting land-use utility 

scores. 

Landscape aesthetics can be assessed with an objectivist (attributes of landscape) or subjectivist 

(perception of landscape viewers) paradigm (Lothian, 1999; Frank et al., 2013). In this study, an 

objective assessment approach was adopted. Landscape metrics have been used to describe the 

composition and configuration of land cover and various metrics have been combined to 

represent naturalness and landscape diversity (e.g., Frank et al. 2013). Using this work as a 

guide, Shannon’s Diversity Index (SHDI) was used as a proxy for landscape esthetic quality 

recognizing that this is a highly simplified representation of a complex concept, but it is one of 

few metrics used to describe landscape aesthetics that can be incorporated into the optimization 

algorithm to compute expected utility.  

The aesthetic quality was therefore calculated based solely on the SHDI (McGarigal and Marks 

1995), which is expressed in Equation 2-2: 

𝐴 = 𝑤𝑆𝐻𝐷𝐼𝐿𝑆𝐻𝐷𝐼 = −𝑤𝑆𝐻𝐷𝐼 ∑ 𝑃𝑖𝑙𝑛⁡(𝑃𝑖)
𝑛
𝑖=1   Equation 2-2 

 

where A is the aesthetics quality index; 𝑤𝑆𝐻𝐷𝐼 is the weight for the landscape matrix, which 

equals 1 to because only one landscape matrix was included; 𝐿𝑆𝐻𝐷𝐼 is the SHDI of a farm; 𝑃𝑖 is 

the proportion of land-use activity 𝑖; 𝑛 is the number of land-use activity alternatives, which is 3 

in this study (cropland, pasture, woodland). The calculated values of A were rescaled to a 

standard range [0, 1] with no unit that is consistent with other environmental and economic 

indicators. 

The environmental indicator used in the presented model represents soil loss. Soil loss is 

frequently estimated using the Universal Soil Loss Equation (USLE) or the revised USLE 

(RUSLE). Comprising six factors, soil loss in RUSLE is a function of rainfall-runoff erosivity, 

soil erodibility, slope length, slop steepness, cover management, and supporting practices 

(Renard et al., 1991). Among the six factors, cover management is considered to be the most 

important factor because it can be managed the most easily to reduce soil erosion. Cover 

management is a function of prior land-use, canopy, surface cover, and surface roughness. Being 

the most important factor altering soil erosion, a simplified approach is taken that uses only 

surface cover (SC) to represent the impact of vegetation ground cover on reducing the impact of 

rainfall-runoff on soil loss (Robinson et al., 2014, unpublished manuscript). Surface cover is 

calculated using Equation Equation 2-3 and Equation 2-4: 

𝑆𝐶 = 𝑒𝑥𝑝 [−𝑏 ∙ 𝑆𝑝 ⁡(
0.24

𝑅𝐿𝑈
)
0.08

]                                                                                       
Equation 2-3 

𝑆𝑝 = [1 − 𝑒𝑥𝑝(−𝛼 ∙ 𝛽)] ∙ 100                                                                                       Equation 2-4 
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where 𝑏 is a coefficient representing the effectiveness of reducing soil loss (Table 2-2); 𝑅𝐿𝑈 is 

the surface roughness for a given land-use type (Table 2-2); 𝑆𝑝 is the percent of land area 

covered by vegetation (assumed to be 30% in the presented research, Table 2-3); 𝛼 is the ratio of 

area covered by a piece of residue to the mass of the residue (acre∙lb-1); and 𝛽  is the dry weight 

of the residue on the surface (lb∙acre-1). The results of SC values fall within our standard 

indicator range [0, 1] and were inverted such that a value of 0 indicates exposed and unprotected 

soil and a value of 1 represents well-protected soil. It was assumed that woodland has a SC value 

of 1 due to little to no soil loss from woodland (Robinson et al., 2014, unpublished manuscript). 

Table 2-2 Parameter value for b and RLU 

Parameter 𝒃 Source 𝑹𝑳𝑼 Source 

Bare soil 0.025 Kuenstler, 1998 0.7  

Crops 0.035  0.85  

Rangelands & Permanent 

pasture 

0.039 Yoder et al., 1997 1.0 Kuenstler, 1998 

long-term no-till cropping 0.05 Jones et al., 1996 0.9  

 

Table 2-3 Parameter value for 𝛼 and 𝛽 (Source: Yoder et al., 1997) 

Parameter 𝜶 (acre∙lb-1) 𝜷(lb∙acre-1) 

Crops Wheat 0.00059 600 

Corn 0.00038 950 

Soybeans 0.00059 600 

Pasture  0.00055 650 

 

2.3.2.1.2 Economic Factor 

The economic factor (Eco) for cropland and pasture is estimated by subtracting the total costs 

from the total revenue. The functional approach was based on work by Kelly and Evans (2011), 

who evaluated land-use decision-making among land managers in Indiana, as described in 

Equation 2-5 to Equation 2-7. For woodland, the economic factor (Ecowoodland) is estimated based 

on the estimated carbon storage in the woodland, as shown in Equation 2-8: 

𝐸𝑐𝑜 = ∑ (𝑃𝑖 − 𝑐𝑖)𝑌𝑖
𝑛
𝑖=1                                                                                                  Equation 2-5 

𝑌𝑖 = 𝐴𝑖𝑃𝑒𝑟𝑖                                                                                                                     Equation 2-6 

𝐴𝑘 = 𝑠𝑜𝑖𝑙𝑘/(1 + 𝛾𝑠𝑙𝑜𝑝𝑒 ∙ 𝑠𝑙𝑜𝑝𝑒𝑘)                                                                           Equation 2-7 

𝐸𝑐𝑜𝑤𝑜𝑜𝑑𝑙𝑎𝑛𝑑 = 𝑃𝑐𝑜2 ⁡ ∙ ⁡𝐵𝐷⁡ ∙ ⁡𝑃𝑒𝑟𝑤𝑜𝑜𝑑𝑙𝑎𝑛𝑑 ⁡ ∙ ⁡0.5                                                         Equation 2-8 

𝑓(𝑡𝑖) =
2

1+𝑒𝑥𝑝⁡(−𝑡𝑖)
− 1                                                                                                   Equation 2-9       

 

where 𝑃𝑖 is the selling price for land-use activity 𝑖 per unit area; 𝑐𝑖 is the operating cost of land-

use activity 𝑖 per unit area; 𝑌𝑖 is the productivity for land-use activity 𝑖; 𝐴𝑘 is aggregated 
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representations of productivity enhancement input at location 𝑘; 𝑃𝑒𝑟𝑖 is the area percentage of 

land-use activity 𝑖; 𝑠𝑜𝑖𝑙𝑘 is soil quality index which is between 0 (lowest quality) and 1 (highest 

quality) for location 𝑘; 𝛾𝑠𝑙𝑜𝑝𝑒 is an agent's belief about the extent to which slope affects 

productivity; 𝑠𝑙𝑜𝑝𝑒𝑘 is the slope of land surface which is between 0 (flat) and 1 (landscape 

maximum); 𝑃𝑐𝑜2 is the price for CO2 (CAD$/kg); 𝐵𝐷 is the biomass density, which is total 

biomass per unit area; 𝑃𝑒𝑟𝑤𝑜𝑜𝑑𝑙𝑎𝑛𝑑 is the area percentage of woodland; 0.5 is standard carbon 

fraction ratio (Whittaker 1975); 𝑡𝑖 is the coefficient for land-use activity 𝑖. The calculated 

coefficient for each land-use activity was then rescaled to [0, 1] using sigmoid function (Han and 

Moraga, 1995), as shown in Equation 2-9, to ensure consistency with other environmental and 

social indicators.         

2.3.2.2 Emergence 

Coverage of the three land-use types of cropland, pasture, and woodland in each time step, 

average farm utility across study area, and Gini Index emerged based on land-use allocation by 

farmer agents. 

2.3.2.3 Adaptation 

The agents’ preferences towards environmental, social, and economic factors were constant 

through the period of model run. In addition, although there is fluctuation in prices, agents do not 

adapt their decision-making strategies over time. Therefore, no adaptation was included in this 

model. 

2.3.2.4 Objectives 

There are two objectives for each agent at each time step. First, the agents need to maximize total 

expected utility on farms through determining proportion for each land-use activity. Then the 

agents need to maximize expected utility on each field by allocating one of the land-use activity 

on the field. 

2.3.2.5 Learning and Prediction 

Learning was not modeled as agents do not change their decision-making strategies in adaptation 

to environment change; therefore, prediction of environment changes was not necessary for this 

model. 

2.3.2.6 Sensing  

The agents were assumed to sense their own preference weights, identity number, farm and fields 

they own, site characteristics on their farms and fields, and historical prices for cropland, pasture, 

and woodland. The information from these variables was used in their decision-making 

processes. 

2.3.2.7 Interaction 

The agents make decisions independently without interacting with the others. 
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2.3.2.8 Stochasticity 

In the absence of data on preference weights and the impact of slope, these variables were 

randomly generated1 ensuring that the preference weights summed to 1. In addition, initial 

woodland ages on the fields were also randomly generated as integers due to the absence of real 

data.  

2.3.2.9 Collectives 

No collectives of agents were represented in this model. 

2.3.2.10 Observation  

The model was designed to observe how farmer agents’ decision affect land-use allocation. 

Therefore, first, the view of the model (i.e. landscape) was exported at each time step for the 

visualization of land-use allocation. Second, the percentage of each of the three land-use 

activities was plotted and exported to analyze temporal changes in land-use. 

2.3.3 Details 

2.3.3.1 Initialization 

The initialization includes setting up farm and field boundaries, initial state variable values for 

landscape (identity number, land-use, farm and field boundaries, soil quality index, and slope) 

and agents (identity number, preference weights and knowledge about slope impact), and initial 

year (1981). 

Land-use data were acquired from the Southern Ontario Land Use and Agricultural Resource 

Inventory (ARI), which was developed in 1983 and used as the initial land-use composition and 

configuration in which agents are situated. The ARI land-use classes were aggregated into 

cropland, pasture, woodland, and other land-use types based on the detailed land-use categories 

in the dataset.  

Field boundaries were obtained from the Ministry of Natural Resources for 2012 from their 

Agriculture Operation Inventory data. Then using the road network and orthographic imagery, 

farm boundaries (containing fields) were interpreted and digitized. Soil data were retrieved from 

the soil survey complex provided by the Ontario Ministry of Agriculture, Food, and Rural 

Affairs (OMAFRA) created in 1929 and revised in 2003. A soil capacity classification indicating 

the degree of soil limitation for agriculture provided under the Canada Land Inventory (CLI) was 

rescaled to a standard range [0, 1] to provide a soil quality index (SQI). In addition to these 

spatial data, the Canadian Digital Elevation Model (CDEM) was obtained from Natural 

Resources Canada (20 m resolution) to generate slope estimates across the study area. Slope was 

also rescaled to a standard range [0, 1]. 

                                                 
1 All variables were standardized to a range of 0 to 1 to ensure compatibility and to facilitate 

understanding the relative contributions of each variable or preference weight on individual 

decision outcomes. 
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In the absence of data on preference weights and the impact of slope, these variables were 

randomly generated with range between 0 and 1. The preference weights summed to 1 for 

normalization of utility function (Elster and Roemer 1991 in Brown and Robinson, 2006). In 

addition, initial woodland ages on the fields were also randomly generated as integers due to the 

absence of real data. 

2.3.3.2 Input data 

External input data in this model includes average annual selling prices and expenses for general 

cropland, pasture, and woodland from 1981-2011. First, annual crop prices for the three 

dominant crops in Middlesex County (winter wheat, grain corn, and soybeans) were acquired 

from OMAFRA and aggregated to a mean annual crop price. Price data for hay and yield per 

square meter were also acquired from OMAFRA and were used as a proxy for the revenue 

generated per area of pasture. Due to the lack of data and difficulty in consolidating data on the 

range of costs associated with cultivating crops and managing pasture (e.g., seed, fertilizer, 

herbicide, machinery maintenance and acquisition, insurance, land rent, labour, and others), it is 

assumed that production costs are linearly related to production activities and account for about 

80% of the per unit price (implemented in a similar manner to Kelly and Evans, 2011).  

The incorporation of woodland as an agricultural land-use required unique handling. The 

economic benefits from woodland were estimated based on the value of the carbon stored in 

forest cover. While different approaches to carbon valuation exist, one approach suggests that the 

optimal carbon price should depend on the marginal damage that carbon would cause to society 

at a certain time as a function of the stock of greenhouse gases in the atmosphere (Nordhaus, 

1991; Mendelsohn, 2013). Using this approach, historical annual carbon prices were calculated 

using estimates of total carbon dioxide damage (in US$) in Canada divided by total carbon 

emissions in Canada (World Development Indicators, 2015), which was converted to Canada 

dollars using historical currency exchange rates. The carbon stored in woodland was estimated 

based on above-ground biomass on forest land by tree age classes based on Canada’s National 

Forest Inventory datasets in 2013. 

2.3.3.3 Submodels 

2.3.3.3.1 Land Amount Allocation 

When the farm-level model is run, it is assumed that farmer agents make decisions about the 

distribution of land-use activities to allocate on their land by selection the distribution that 

maximizes their total expected utility on the farm. To identify the optimum distribution a non-

linear programming approach is used (Henseler et al., 2009) under the following two constraints: 

the total percent of land-use activity must add up to 100%; the percent of woodland in the current 

model year cannot be less than that of the previous year unless the trees were older than allowed 

cutting age. It means timber harvesting was only allowed at or beyond certain age (i.e. 40) in this 

model. The objectives are expressed mathematically as follows: 

Maximize: 𝑈 = ∑ 𝑈𝑖(𝐿𝑈𝑖|𝐹𝑎𝑟𝑚𝑒𝑟, 𝐹𝑎𝑟𝑚)𝑖  + λ⁡ ∙ (1 − ∑ 𝐿𝑈𝑖𝑖 ) 
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Objectives: 1) ∑ 𝐿𝑈𝑖𝑖 = 100%  

                    2) if tree age < cut age, 𝑃𝑊𝑜𝑜𝑑𝑙𝑎𝑛𝑑(𝑗) ≥ 𝑃𝑊𝑜𝑜𝑑𝑙𝑎𝑛𝑑(𝑗−1) 

A Lagrange multiplier of λ (no unit) was add to constraint that total available land-use sum up to 

100%. For each farm, the land-use activity allocation needs to satisfy the first order and Kuhn-

Tucker conditions (see Guignard, 1969 for details): 

 
∂U

∂LU𝑖
= 0,  

∂U

∂λ
= 0, λ ≥ 0 

The calculated value of λ could provide solutions to a combination of percentage of each land-

use activity that could maximize total on farm utility for each agent in each year run. 

2.3.3.3.2 Land Location Allocation 

When the field-level model is run, farmer agents calculate the total expected utility for each land-

use activity for a given field and allocate the land-use with the highest utility. As social utility 

remains 0 at field level, only environmental and economic variables were considered at field 

level. When the farm-level model is run, the same approach is used; however, if the amount of 

one land-use activity allocated reaches that determined by the farm-level optimization then that 

land-use activity would no longer be considered for allocation in subsequent field evaluations. 

2.3.3.3.3 Total Utility 

The total utility on a farm was calculated by summing field utility on the farm plus the farm 

social utility, as represented in Equation 2-10:  

𝑇𝑈 = ∑ 𝑈𝐹𝑖𝑒𝑙𝑑𝐹𝑖𝑒𝑙𝑑 − 𝛼𝑆𝑜𝑐𝑖 ∙ 𝑤𝑆𝐻𝐷𝐼/𝑙𝑛3 ∙ ∑ 𝑃𝑖𝑙𝑛⁡(𝑃𝑖)
𝑛
𝑖=1                                                                                                  Equation 2-10 

 

2.4 Computational Experiments 

Five computational experiments were conducted to explore how variance in farmer agents’ 

preference weights impact land-use allocation using decision strategies of Farm-To-Field and 

Field. For each experiment, the model was run 20 times to account for stochasticity within the 

model and the mean percent of each land-use activity was computed. Each individual model run 

included 31 annual time steps, which represented modelling land-use decisions from 1982 to 

2012. The experiments were designed to gain a better understanding of the behaviour of the 

model under both decision strategies and verify their behaviour rather than validate the 

performance of the model and predict future land-use outcomes. 

First, it was assumed that all farmer agents have the same set of preference weights (i.e., the 

population is homogeneous). Experiment 1 was set to explore the land allocation with 

consideration of economic factor only, which is what farmers would usually consider. All farmer 

agents set their preference weight towards economic variable as 1 (𝛼𝐸𝑛𝑣 = 0, 𝛼𝑆𝑜𝑐 = 0, 𝛼𝐸𝑐𝑜 =

1). Then we explored land allocation results under the circumstance that farmer agents consider 

environmental or social factors only. In Experiment 2 all farmer agents value the environment 
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factor only and the preference weight towards the environment was set as 1 (𝛼𝐸𝑛𝑣 = 1, 𝛼𝑆𝑜𝑐 = 0, 

𝛼𝐸𝑐𝑜 = 0). In Experiment 3 all farmer agents value the social factor only and the preference 

weight towards social variable was set as 1 (𝛼𝐸𝑛𝑣 = 0 𝛼𝑆𝑜𝑐 = 1, 𝛼𝐸𝑐𝑜 = 0). Then Experiment 4 

assumes that all farmer agents have equal preferences towards the three variables (𝛼𝐸𝑛𝑣 = 0.33, 

𝛼𝑆𝑜𝑐 = 0.33, 𝛼𝐸𝑐𝑜 = 0.33). Second, Experiment 5 assumes that the farmer agents are 

heterogeneous and the preference weights of each farmer agent were randomly generated.  

The  result from the five experiments were described and compared based on land use 

conversion, utility, and Gini Index. Gini index is a coefficient used to measure the inequality of 

family income or wealth within a region. It is usually calculated based on the Lorenz Curve2 

(blue line in Figure 2-3). The red line in Figure 2-3 at 45 degrees illustrates perfect equality of 

incomes. The Gini coefficient is represented as the ratio of the area between perfect equality and 

the Lorenz curve (A in Figure 2-3) to the total area under the perfect equality (A + B in Figure 

2-3). It can be expressed mathematically as A/(A+B). Therefore, Gini Index does not have a unit 

and ranges from 0 to 1, where 0 means absolute equality and 1 means complete inequality 

(Measuring Inequality, 2016). In this chapter, we use Gini Index to quantify the distribution of 

total utility on each farm over the study area. 

 

Figure 2-3 Lorenz Curve illustration (created from hypothetical data) 

 

                                                 
2 Lorenz Curve plots cumulative income earned by percent of the population against the percent 

of the total income of the population. 
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2.5 Results 

2.5.1 Experiment 1 (Economic Preference Only) 

Table 2-4 Computational experiment outputs of average and standard deviation for 

cropland, pasture, and woodland coverage for Farm-To-Field and Field strategy 

Experiment Year Farm-To-Field Field 

Cropland Pasture Woodland Cropland Pasture Woodland 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

E1 
Economic 

Preference 

Only 

1981 61.9% 0.00 6.6% 0.00 2.4% 0.00 61.9% 0.00 6.6% 0.00 2.4% 0.00 

1982 99.4% 0.00 0.0% 0.00 0.6% 0.00 98.9% 0.00 0.0% 0.00 1.1% 0.00 

1992 99.5% 0.00 0.0% 0.00 0.5% 0.00 98.9% 0.00 0.0% 0.00 1.1% 0.00 

2002 99.6% 0.00 0.0% 0.00 0.4% 0.00 98.7% 0.00 0.0% 0.00 1.3% 0.00 

2012 99.7% 0.00 0.0% 0.00 0.3% 0.00 98.9% 0.00 0.0% 0.00 1.1% 0.00 

              

E2 
Environmental 

Preference 

Only 

 

1981 61.9% 0.00 6.6% 0.00 2.4% 0.00 61.9% 0.00 6.6% 0.00 2.4% 0.00 

1982 0.0% 0.00 0.0% 0.00 100% 0.00 0.0% 0.00 0.0% 0.00 100% 0.00 

1992 0.0% 0.00 0.0% 0.00 100% 0.00 0.0% 0.00 0.0% 0.00 100% 0.00 

2002 0.0% 0.00 0.0% 0.00 100% 0.00 0.0% 0.00 0.0% 0.00 100% 0.00 

2012 0.0% 0.00 0.0% 0.00 100% 0.00 0.0% 0.00 0.0% 0.00 100% 0.00 

              

E3 

Social 

Preference 

Only 

1981 61.9% 0.00 6.6% 0.00 2.4% 0.00 61.9% 0.00 6.6% 0.00 2.4% 0.00 

1982 32.0% 0.00 3.1% 0.00 49.9% 0.00 0.0% 0.00 0.0% 0.00 100% 0.00 

1992 5.3% 0.00 30.9% 0.00 61.3% 0.00 0.0% 0.00 0.0% 0.00 100% 0.00 

2002 5.3% 0.00 30.9% 0.00 61.3% 0.00 0.0% 0.00 0.0% 0.00 100% 0.00 

2012 5.3% 0.00 30.9% 0.00 61.3% 0.00 0.0% 0.00 0.0% 0.00 100% 0.00 

              

E4 

Equal 

Preferences 

1981 61.9% 0.00 6.6% 0.00 2.4% 0.00 61.9% 0.00 6.6% 0.00 2.4% 0.00 

1982 46.6% 0.00 6.9% 0.00 46.5% 0.00 51.8% 0.00 0.0% 0.00 48.2% 0.00 

1992 8.8% 0.00 2.1% 0.00 89.2% 0.00 0.6% 0.00 0.0% 0.00 99.4% 0.00 

2002 8.5% 0.00 1.6% 0.00 89.9% 0.00 0.6% 0.00 0.0% 0.00 99.4% 0.00 

2012 9.1% 0.00 0.9% 0.00 90.0% 0.00 0.7% 0.00 0.0% 0.00 99.3% 0.00 

              

E5 

Heterogeneous 

Preferences 

1981 61.9% 0.00 6.6% 0.00 2.4% 0.00 61.9% 0.00 6.6% 0.00 2.4% 0.00 

1982 43.3% 0.01 15.5% 0.01 41.2% 0.01 47.4% 0.02 0.0% 0.00 52.6% 0.02 

1992 26.0% 0.01 14.4% 0.01 59.7% 0.02 37.9% 0.02 0.0% 0.00 62.1% 0.02 

2002 27.4% 0.01 7.4% 0.01 65.2% 0.02 37.7% 0.02 0.0% 0.00 62.3% 0.02 

2012 27.7% 0.01 5.3% 0.01 67.0% 0.02 37.8% 0.02 0.0% 0.00 62.2% 0.02 

 

In Experiment 1, farmer agents consider economic variable only. For Farm-To-Field strategy, 

cropland increased to 99.7% and woodland decreased to 0.3% (Table 2-4). Cropland increased 

from 62% to 99.4% after the first model step and then increased by 0.1% every several years for 

the remainder of the model run. No pasture was allocated after the first model run. Woodland 

decreased from 2.4% to 0.6% after the first model run and then decreased by 0.1% every several 
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years (Figure 2-4). Conversions from pasture and woodland to cropland were the dominant 

conversion types. The average farm utility across the study area was positively related to 

cropland price (Figure 2-6). The Gini Index for the study area was approximately between 0.03 

and 0.05 for the 31 years. 

Similarly for Field Strategy, cropland increased to 99.7% and woodland decreased to 0.3% 

(Table 2-4). Cropland increased to 98.9% after the first model step and remained stable for the 

remainder of the model run. No pasture was allocated after the first model run. Woodland 

decreased from 2.4% to 1.1% after the first model run and then remained stable until 2012 

(Figure 2-5). Conversions from pasture and woodland to cropland were the dominant conversion 

types. The average farm utility across the study area and Gini Index were both identical to that of 

Farm-To-Field strategy. The average farm utility across the study area was positively related to 

cropland price (Figure 2-6). The Gini Index for the study area was approximately between 0.03 

and 0.05. 

 

Figure 2-4 Average cropland, pasture, and woodland coverage from Experiment 1 with Farm-To-

Field strategy.  
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Figure 2-5 Average cropland, pasture, and woodland coverage from Experiment 1 with Field 

strategy.  
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Figure 2-6 Annual average utility across study area from Experiment 1 with Farm-To-Field and 

Field strategy (Error bars represented range of experiment results). 

 

2.5.2 Experiment 2 (Environmental Preference Only) 

In Experiment 2, all the farmer agents consider environmental factor only. For both strategies, all 

the cropland and woodland were converted to woodland after the first model step and the model 

reached a steady state afterwards (Table 2-4, Figure 2-7). The average farm utility across the 

study area remained to be 1 and the Gini Index remained to be 0 for the 31 years. Woodland have 

a surface cover value of 1, cropland and pasture have surface cover values of 0.61 and 0.65, 

respectively. Therefore, choosing woodland could result in the highest utility for farms. 
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Figure 2-7 Average cropland, pasture, and woodland coverage from Experiment 2 with Farm-To-

Field and Field strategy.  

 

2.5.3 Experiment 3 (Social Preference Only) 

In Experiment 3, farmer agents consider social variable only. For Farm-To-Field strategy, 

cropland decreased to 5.3%, pasture increased to 30.9%, and woodland increased to 61.3% 

(Table 2-4). Cropland decreased from 62% to 5.3% between 1981 and 1983 and then remained 

steady afterwards. Conversions from cropland to pasture and woodland were the dominant 

conversion types, with pasture increasing from 6.6% to 30.9% and woodland increasing from 

2.4% to 61.3% between 1981 and 1983 (Figure 2-8). The coverage remained steady after 1983. 

In this experiment, farmer agents would like to achieve an equal amount of land for each land-

use activities. However, due to the fact that fields are not allowed to be subdivided and woodland 

can only be harvested at certain age, it was not realistic for farmer agents to allocate the three 

land-use activities equally on farms. As a result, cropland, pasture, and woodland accounted for 

about 5.3%, 30.9%, and 61.3% of the total farm area, respectively. The average farm utility 
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across the study area was 0.88 in 1982 and remained 0.59 afterwards. The Gini Index for the 

study area was 0.1 in 1982 and remained 0.4 for the remaining 30 years. 

Field Strategy had a different outcome from Farm-To-Field strategy as the social variable is 0 on 

the field level regardless of the preference weight. All the land use of cropland and pasture are 

converted to woodland after the first model step and remained steady afterwards (Figure 2-9). 

The average farm utility across the study area remained 0 and the Gini Index remained 1 for the 

31 years. 

Comparing the two strategies, it was evident that Farm-To-Field strategy resulted in a 

significantly higher average utility than that of Field strategy. Farm-To-Field strategy resulted in 

an absolute equality across the study area, while Field strategy resulted in an absolute inequality. 

 

 

Figure 2-8 Average cropland, pasture, and woodland coverage from Experiment 3 with Farm-To-

Field strategy.  
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Figure 2-9 Average cropland, pasture, and woodland coverage from Experiment 3 with Field 

strategy. 

 

2.5.4 Experiment 4 (Equal Preferences) 

In Experiment 4, farmer agents have even preference weights toward environmental, social, and 

economic variables. For Farm-To-Field strategy, cropland decreased to 9% and woodland 

increased to 90% (Table 2-4). Cropland decreased from 62% to 9% between 1981 and 1988 and 

then fluctuated between 8% and 9% afterwards. Pasture decreased from 6.6% to 1.6% between 

1981 and 1988 and then fluctuated between 1% and 2% until 2012. Woodland rapidly increased 

from 2.4% to 89% between 1981 and 1988 and remained relatively stable until 2012 (Figure 

2-10). Conversion from cropland and pasture to woodland were the dominant conversion types. 

The average farm utility across the study area was between 0.4 and 0.5, and the Gini Index for 

was between 0.09 and 0.13 for the 31 years. 

Outcome from Field Strategy was similar to Farm-To-Field strategy. Cropland decreased to 0.7% 

and woodland increased to 99.3%. No pasture was allocated after the first model step. Therefore, 
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the conversions from cropland and pasture to woodland were the dominant conversion type 

(Table 2-4). Cropland area decreased from 62% to 0.6% between 1981 and 1987 and remained 

stable afterwards. Woodland area increased from 2.4% to 99.4% between 1981 and 1987, and 

remained the stable until 2012. The model reached a stable state after 1987 (Figure 2-11). The 

average farm utility across the study area was between 0.35 and 0.42 for the 31 years. The Gini 

Index was ranging between 0.00 and 0.02. 

The average annual on-farm utility obtained from the Farm-To-Field strategy was higher than 

that obtained by the Field strategy (Figure 2-12). The Gini Index indicates that Farm-To-Field 

strategy resulted in more inequality in the study area than that of Field strategy. 

 

 

 

Figure 2-10 Average cropland, pasture, and woodland coverage from Experiment 4 with Farm-

To-Field strategy.  
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Figure 2-11 Average cropland, pasture, and woodland coverage from Experiment 4 with Field 

strategy. 
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Figure 2-12 Annual Gini Index across study area from Experiment 4 with Farm-To-Field and 

Field strategy (Error bars represented range of experiment results). 

2.5.5 Experiment 5 (Heterogeneous Preferences) 

In Experiment 5, farmer agents are heterogeneous in terms of their preference weights towards 

environmental, social, and economic variables across the study area. Initially (in 1981), cropland, 

pasture, and woodland accounted for 61.9%, 6.6% and 2.4% of the total farm area (Table 2-4, 

Figure 2-17-A). After 31 years land use allocation using Farm-To-Field strategy, cropland 

decreased to 27.7% and woodland increased to 67.0% (Figure 2-17-E1). The changes in land use 

occurred relatively quickly as cropland decreased from 62% to 25% between 1981 and 1987 and 

then fluctuated between 25% and 30% for the remainder of the model run (Figure 2-13). 

Cropland to woodland was the dominant conversion type, with woodland rapidly increasing from 

2.4% to 59% between 1981 and 1987 and remaining relatively stable until 2001. Afterward, 

woodland increased to 67% in 2003 and remained stable until 2012. When woodland remained 

stable, conversion between cropland and pasture was the dominant conversion type. Therefore, 

pasture coverage was negatively related to cropland coverage (Figure 2-13). The average farm 

utility across the study area (Figure 2-15) was between 0.5 and 0.6 for the 31 years. The Gini 

Index for the study area was between 0.1 and 0.16 (Figure 2-16). 
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Figure 2-13 Average cropland, pasture, and woodland coverage from Experiment 5 with Farm-

To-Field strategy (Error bars represented range of experiment results). 

For land use allocation using the Field Strategy a similar outcome occurred. Cropland decreased 

to 37.8% and woodland increased to 62.2%. The conversion from cropland to woodland was also 

dominant (Table 2-4, Figure 2-17-E2). Cropland area decreased from 62% to 38% between 1981 

and 1987 and remained stable afterwards. Woodland area increased from 2.4% to 62% between 

1981 and 1987, and remained stable until 2012. Unlike the Farm-to-Field Strategy, no pasture 

was allocated after the first model step and the model reached a steady state after 1987 (Figure 

2-14). The average farm utility across the study area (Figure 2-15) was between 0.4 and 0.5 for 

the 31 years. The Gini Index for the study area was between 0.15 and 0.2 (Figure 2-16). 
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Figure 2-14 Average cropland, pasture, and woodland coverage from Experiment 5 with Field 

strategy (Error bars represented range of experiment results). 

 

Obvious similarities and differences existed in the two decision-making strategies. Both 

strategies resulted in a decrease in cropland and pasture, but an increase in woodland over time 

(Table 2-4, Figure 2-13, Figure 2-14, and Figure 2-17). Differently, for Farm-To-Field strategy, 

the proportion of each land-use activity was fluctuating over time more than that of Field 

strategy. Land-use proportion generated from the Field strategy became stable after 1987. The 

average annual on-farm utility obtained from the Farm-To-Field strategy was higher than that 

obtained by the Field strategy (Figure 2-15). The Gini Index indicates that Farm-To-Field 

strategy resulted in a more stable equality status than that of Field strategy; and it resulted in less 

inequality of utility among the farmer agents in this study area (Figure 2-16). Therefore, the agent 

population is better off with Farm-to-Field strategy because they have a higher utility with less utility 

disparity than with Field strategy. 
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Figure 2-15 Average annual farm utility from Experiment 5 with Farm-To-Field and Field 

strategy (Error bars represented range of experiment results). 
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Figure 2-16 Annual Gini Index across study area from Experiment 5 with Farm-To-Field and 

Field strategy (Error bars represented range of experiment results). 

 

Year Initial Conditions  

1981 A  

 

 
 

Legend 

 

 

   

1982 B1 Farm to Field B2 Field 
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1992 C1 Farm to Field C2 Field 

 

  
   

2002 D1 Farm to Field D2 Field 

 

  
   

2012 E1 Farm to Field E2 Field 

 

  
 

Figure 2-17 Maps of land-use in Year 1981 (initial, A), 1982 (B1, B2), 1992 (C1, C2), 2002 (D1, 

D2), and 2012 (final, E1, E2) from model Experiment 5 (1 stands for Farm-To-Field strategy; 2 

stands for Field strategy). 
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2.5.6 Experiments Comparison 

The five experiments were compared regarding land use conversion type (Table 2-5), average 

farm utility (Figure 2-18 and Figure 2-19) and Gini Index (Figure 2-20 and Figure 2-21). 

Although the land-use conversion amount varies between Farm-to-Field and Field strategy, the 

general land-use conversion types showed some consistence between the two strategies. When 

the farmer agents valued economic factor only, they all chose cropland over the other two land 

use activities. For the other four experiments, woodland was preferred (Table 2-5). 

Table 2-5 Land use conversion type from Farm-To-Field and Field strategy 

Experiment Conversion type 
Farm-To-Field Field 

E1 (Economic Preference Only) Pasture & Woodland -> Cropland 
E2(Environmental Preference Only) Cropland & Pasture -> Woodland 
E3 (Social Preference Only) Cropland -> Pasture &Woodland Cropland & Pasture -> Woodland 
E4 (Equal Preferences) Cropland & Pasture -> Woodland 
E5 (Heterogeneous Preferences) Cropland -> Woodland 

 

2.5.6.1 Average Utility 

For Farm-To-Field strategy, Experiment 1 generated a more variable result with the average farm 

utilities fluctuating over time, which were positively related to cropland price over time. The 

average farm utility from Experiments 2-5 achieved relative stability with Experiment 2 

achieving the highest utility, followed by Experiment 3, Experiment 5, and Experiment 4 (Figure 

2-18).  

For Field strategy, the average farm utility from Experiments 2-5 also achieved relative stability. 

Experiment 2 achieved the highest utility, followed by Experiment 5, Experiment 4, and 

Experiment 3 (Figure 2-19). Experiment 1 had the same utility tendency as that of Farm-To-

Field strategy. 
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Figure 2-18 Average farm utility from Experiment 1- 5 with Farm-To-Field strategy showing 

(Error bars represented range of experiment results) 
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Figure 2-19 Average farm utility from Experiment 1- 5 with Field strategy showing (Error bars 

represented range of experiment results) 

 

2.5.6.2 Gini Index 

For Farm-To-Field strategy, the Gini Index from Experiments 1-5 are relative stable with 

Experiment 3 achieving the highest Gini Index, followed by Experiment 5, Experiment 4, 

Experiment 1, and Experiment 2 (Figure 2-20).  

For Field strategy, the Gini Index from Experiments 1 has more variation than that of Farm-To-

Field strategy. With this strategy, Experiment 3 achieved the highest Gini Index, followed by 

Experiment 5, Experiment 1, Experiment 4, and Experiment 2 (Figure 2-20). Experiment 2 

resulted in an absolute equality for both strategies, because all farmer agents chose woodland 

after the first model run, then the environmental indicator was constant and would not affect the 

utility outcomes. Therefore, Gini Index of 0 was given by both strategies in Experiment 2. 
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Figure 2-20 Gini Index from Experiment 1- 5 with Farm-To-Field strategy (Error bars 

represented range of experiment results) 
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Figure 2-21 Gini Index from Experiment 1- 5 with Field strategy (Error bars represented range of 

experiment results) 

 

2.6 Discussion 

2.6.1 Farm-To-Field versus Field Decision Making Strategy 

Experiment 5 (Heterogeneous Preferences) and Experiment 4 (Equal Preferences) resulted in 

similar land use allocation tendencies for Farm-To-Field and Field strategies. Farm-To-Field 

strategy resulted in less extreme land-use allocation results and higher average utilities than Field 

strategy. Farm level utility maximization is the main reason accounting for it. As Farm-To-Field 

strategy integrated a step of land amount allocation with multi-objective optimization, it allowed 

farmer agents to determine how much land they expected to allocate for each land-use activity 

before deciding where to allocate the land-use activities. Therefore, farmer agents’ final land 

location allocation on the fields must be consistent with the results from the farm level decision-

making.  

When farmer agents employed the Field strategy, farmer agents only need to determine which 

land use activity could bring them the highest environmental and economic utility on each field, 

as social utility remains 0 at field level. Under this circumstance, land use allocation decision 

was stable over time as cropland and woodland could always result in higher environmental and 

economic utilities. Taking the example of Farmer agent 200 (𝛼𝐸𝑛𝑣 = 0.46 𝛼𝑆𝑜𝑐 = 0.36, 𝛼𝐸𝑐𝑜 =

0.18, 𝛾𝑠𝑙𝑜𝑝𝑒 = 0.78) in 2005, based on farm level optimization, the farmer agent expected to 
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allocate 21.2%, 20.4%, and 58.4% of the land for cropland, pasture, and woodland, respectively. 

In his final decision, 58.4% and 41.6% of the land was allocated for cropland and woodland, as 

subdividing fields was not allowed in this model and the allocation takes place on a per field 

basis. However, with the Field strategy, he simply chose to allocate all the land for woodland 

because this could derive the highest per-field utility, but not necessarily the highest aggregate 

farm utility. As a result, his total farm utility in 2005 was approximately 0.60 and 0.46 for Farm-

To-Field and Field strategies, respectively. To summarize, farm level optimization integrating 

environmental, social, and economic variables allow farmer agents to have higher diversity of 

land use types on farms. It can reduce the risk resulted by unitary land use type. 

Land use coverage tendencies for Farm-To-Field and Field strategies are almost identical in 

Experiment 1 (Economic Preference Only) and Experiment 2 (Environmental Preference Only). 

In these two experiments, extreme land-use allocation results were achieved for both strategies. 

When only economic variable is included, farmer agents simply determine which land use 

activity could result in the highest economic utility, which could only be cropland or woodland 

older than 60 years old (Figure 2-22). It was set by the model that only woodland older than 40 

years old is allowed to be harvest, when the growth rate starts to decrease. Therefore, cropland 

became the dominate land use type resulting in the highest utility, with woodland accounting for 

a small portion. When only environmental variable is included, 100% of woodland would be 

allocated on both farm and field level as woodland has a surface cover value of 1, while cropland 

and pasture have surface cover values of 0.61 and 0.65, respectively. It reveals that converting 

cropland and pasture into woodland could bring farmer agents with the highest environmental 

benefits, while converting woodland and pasture into cropland could bring the farmer agents 

with the highest economic benefits. This is consistent with what the land use had be changing 

over the last 300 years, where there is a net loss of about 7 to 11 million km2 of forest due to 

agriculture and timber harvesting activities over the previous 300 years (F.A.O., 2004). 
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Figure 2-22 Unit revenue for cropland, pasture, and woodland from 1981 to 2011 

Experiment 3 (Social Preference Only) resulted in different land use allocation tendencies for 

Farm-To-Field and Field strategies. As discussed above, social factor remains 0 on field level 

regardless of the preference weight as field cannot be subdivided. Therefore, social factor has a 

more significant impact on farm level optimization than field level optimization. It requires 

farmers to ensure land use diversity on farms. 

The results from computational experiments with two decision-making strategies indicate that 

integrating a farm level optimization with consideration of social variable could increase 

diversity of land-use types on farms without taking the risk of unitary land use type. It also 

resulted in relatively high utilities for farmers. 

2.6.2 Limitations 

2.6.2.1 Model Calibration 

Although some real world data (e.g. slope, SQI, and prices) were used in this study, this model 

has limited ability to support real land-use planning practices. Results from the presented 

computational experiments had significantly higher proportions and coverage of woodland than 

occurred historically. The results indicated a movement towards woodland dominance for both 

decision-making strategies, partly because woodland more frequently resulted in a higher 

environment utility than cropland and pasture. In addition, woodland had higher economic utility 

than pasture at all times and tended to have a slightly higher economic utility at older ages than 

cropland, but a lower utility at younger ages. For these reasons, woodland typically yielded 
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higher utility and therefore a greater proportion of adoption by farmer agents. This indicates that 

using only one indicator for one factor (e.g. use soil loss to represent environment factor) is not 

sufficient and could result in under or over estimate to a great degree.  

Given the unrealistic results generated by the model in this study, it is necessary to collect more 

data to calibrate model variables (e.g. Berger 2001; Kelley and Evans, 2011). Sample surveys, 

participant observations, field and laboratory experiments, companion modeling, and GIS and 

remotely sensed spatial data are widely used approaches to collect required data at decision 

making agent level (see Robinson et al., 2007 for details). In this study, in the absence of farmer 

characteristics data, computational experiments were performed to understand how farmers’ 

knowledge impact land-use allocation decisions. For more comprehensive representation of 

farmer agents, sample surveys among farmers can provide detailed data representing human 

heterogeneity regarding farmers’ knowledge. Alternatively, spatial analysis using GIS and 

remotely sensed data has the ability to provide information about quantitative relationship 

between farmers’ decision-making and relevant variables (e.g. Plantinga, 1996; Verburg et al., 

1999). In addition to farmer characteristics data, the social interaction among farmers can also be 

captured with participant observations or companion modeling (Robinson et al., 2007). Detailed 

discussion about advantages and limitations of these data collection approaches is beyond the 

scope of this study. 

Static data of slope and SQI were used in this model. In reality, they tend to change over time 

due to land-use activity applied on the land. For example, the land-use activity performed on a 

farm or field tends to change soil quality differently (forest re-growth increases soil quality while 

farming degrades soil quality in the long term) and soil quality in return affects the decision 

making process (Lal, 2003). Including a feedback loop between agents and the landscape could 

be one approach to solving this problem. By including temporal variance in site conditions, land-

use allocation on farms will be less stable than the results presented in this study. For example, 

with cropland allocated on a field continuously, the soil quality will be degraded and the 

expected economic utility for cropland would decrease (Equation 2-7). Therefore, it will be less 

likely that the farmer will continue to allocate cropland on the same field and more temporal 

variance of land-use allocation will occur. 

Woodland usually involves a relatively long-term commitment to achieve an economic return. 

However, the monetary value of woodland in the future was represented with historical price 

directly. In reality, woodland price in the future needs to be discounted to a present value with a 

reasonable discount rate (Row et al., 1981). For example, if the revenue 50 year in the future is 

$1000, its present value will be $87 (
1000

(1+0.05)50) at a discount rate of 5%. Applying a discount rate 

on woodland price could reduce the revenue on woodland in the short term relative to the way it 

was implemented in the model, which would make it less appealing to farmers. In addition, 

policy requirements for land use composition and subsidies are also factors that need to be 

integrated for land-use allocation. 
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Experiment 4 with Field strategy resulted in Gini Index values close to 0 for the majority of the 

years because all agents have equal preference weights toward environmental, social, and 

economic factors and the preference weights dominated the utility outcome. It indicated that the 

indicators had little effect on the individual environmental, social, and economic factors based on 

site conditions. As local area has only a little amount of spatial heterogeneity (as represented in 

the model), with identical agents the landscape alone has little effects on the outcome. This 

suggests the necessity of the inclusion of more indicators. 

Parameter uncertainty is another important issue for this study. For stochastic data, the model 

was run 20 times to account for stochasticity. However, for the data obtained directly from 

existing datasets, the impact of their uncertainty on model output was not considered. First, the 

model landscape was initialized based on ARI data in 1983. Second, slope, SQI, and price data 

were used based on existing data directly. To explore how uncertainty in these data could alter 

model output, sensitivity analysis on each parameter at one time can be conducted. 

2.6.2.2 Model Design 

Interaction is one of the key capabilities for ABMs. It can be categorized into interaction 

between agents and spatial objects, spatial objects and agents, agents and agents, and spatial 

objects and spatial objects (Ligtenberg et al., 2001). In this model, it was assumed that farmer 

agents make decisions independently without interacting with the others. In addition, interaction 

between farmer agents and landscape was limited to farmer agents sensing site physical 

characteristics; however, how the agents’ decisions alter landscape was not included.  

The interaction between agents and spatial objects can be represented by including feedback 

loops into an ABM. Le et al. (2012) proposed a methodology to integrate two feedback loops and 

adaptations in modelling land-use decision-making. They suggested that in an adaptive situation, 

an ABM should include a primary and secondary feedback loop (Figure 2-23). For the primary 

loop, agents sense the environment and respond to it. An agent can alter the environment, which 

could in turn affect the decision-making process of the agent itself and others in the short term. 

The secondary feedback loop indicates accumulative changes in environmental, social, and 

economic conditions at a larger scale over a longer term, which could result in agents changing 

their behaviour and adapting to use a new decision-making process. Le et al. also mentioned that 

the feedback loops can exist on different scales. For example, in this study, the field level 

decision making was based on the farm level decision-making. However, “not all locations in a 

spatial environment are equally suitable for the various types of spatial functions (i.e. a defined 

activity at a location during an uncertain or certain time). A location may show restrictions, 

opportunities or threats to a specific spatial function” (Ligtenberg et al., 2001, p.1). Therefore, 

the farm level decision-making should interact with field characteristics as well. To sum up, 

feedback loops between human and nature across various scales can be included for a more 

comprehensive simulation.  



43 

 

Figure 2-23 Primary ((𝟏, 𝟐, 𝟑)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) and various types of secondary feedback loops (e.g. (𝟏, 𝟒, 𝟔, 𝟗)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 
in human-environment interaction (Source: Scholz et al., 2011cited in Le et al., 2012)  

2.6.2.3 Optimization Method 

The process of farm level land-amount allocation was represented as a MODA and the first order 

Kuhn-Tucker conditions were satisfied to determine the proportion of the farm to allocate to each 

land-use activity (Kelly and Evans, 2011). However, applying this method within the Netlogo 

platform is challenging. Instead, this study adopted the approach of rescaling optimization 

results. In agricultural modelling, linear (e.g. Chuvieco, 1993; Becu et al., 2003; Sante-Riveira et 

al., 2008) and non-linear programming (e.g. Henseler et al., 2009) are widely used. For linear 

programing, the objective function and constraints are required to be strictly linear (Dykstra, 

1983). For this study, it is possible to represent the utility function with a linear function 

approximating to the real function. However, as the utility function was not a linear function, 

non-linear programming was assumed to be more accurate conceptual representation. 

Ye (1987) proposed a general non-linear programming approach implementing the augmented 

Lagrange Multiplier method. The approach was operationalized by integrating the R package 

“Rsolnp” with Netlogo. A comparison among the method used in this study and linear and non-

linear programming alternatives demonstrated that the results of this study and the non-linear 

programming approach were not significantly different. However, due to the low efficiency of 

interacting between R results and Netlogo entities, the non-linear programming package was not 

used directly. Instead, the optimization problem was solved by hard coding in Netlogo using the 

similar approach if implementing the augmented Lagrange Multiplier.   
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Table 2-6 Comparison of optimization method of this study, linear programming, and non-linear 

programming 

Optimization Method Cropland Pasture Woodland 

This study 29.8% 29.8% 40.4% 

Linear-programming 36.8% 26.4% 36.8% 

Non-linear programming 30.5% 29.5% 40.0% 

 

2.6.3 Broad Implication 

Despite the limitations of data availability and model design, this study could provide some 

useful information for agricultural land use modelling. This model is an initial version that will 

contribute to a larger grant project. A typical ABM process is an iterative cycle (Figure 2-24). A 

conceptual model is constructed initially with basic theories and knowledge. The conceptual 

model could result in new findings through expert communications, which could help adjust and 

revise the conceptual model. With more external findings, theories, literature, and data, the 

model can be improved continuously (Rounsevell et al., 2012). 

The main focus of this model is to provide a comparison between implementing decision-making 

on farm level with heterogeneity versus on field level. The result showed that obvious 

differences did exist between Farm-to-Field and Field strategies. This could suggest further 

exploration about land use decision making on land with heterogeneity. The land use conversions 

under different decision-making strategies could be integrated with other models (e.g. ecosystem 

models, climate models) to explore how different decision-making strategies could impact 

ecosystem services (Robinson et al., 2013), hydrology, and climate (Bithell and Brasington, 

2009).   

 

Figure 2-24 The agent-based modelling process as an approach to scientific enquiry (Rounsevell 

et al., 2012) 
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2.6.4 Future Directions 

Empirical data collection from farmers has been identified to be necessary for model validation. 

Given the variation in farmers’ preference weights towards environmental, social, and economic 

factors, it can be useful to collect more demographic data related to farmers to identify the 

reasons accounting for this variation. Studies have proven that farmers tend to act autonomously 

based on personal knowledge, education attainment, income, policy support, and other sources 

(Lambin et al., 1999; Le 2005). Therefore, study about the relationship between farmers’ 

decision-making and the aforementioned factors can be conducted for more comprehensive 

understanding about farmers’ behaviours.  

In addition to non-spatial data, spatial data is another important factor impacting the ability of 

ABMs to simulate human-nature interaction. This requires updated and detailed data within the 

study area including historical land use, soil quality, and detailed forest inventory information. 

Given limited data resources, it is possible to obtain historical remote sensing imageries and 

produce spatial data such as soil resources (e.g. Seelan et al., 2003), land cover (e.g. Lambin and 

Strahler, 1994), crop types (e.g. Jakubauskas et al., 2002), and crop area and grain yield (e.g. 

Tennakoon et al., 1992).  

With more data availability, more interactions can be integrated in the model. For example, to 

integrate interaction between ecosystem and human decision-making in ABMs, ecological 

processes of water flow, nutrition transit, and vegetation growth can be represented with 

hydrological or vegetation models (e.g. Monticino et al., 2007; Bithell and Brasington, 2009). In 

addition, as aforementioned, this model has limited ability to represent real world land use as 

farmers’ behaviours are autonomous and independent without interacting with the others. 

Agents’ interaction of resource exchange, competition, and technology diffusion can also be 

incorporated in ABMs (e.g. Berger, 2001). More types of agents can be added into the model, 

including individual farmer, farmer household, neighborhoods (e.g. Zvoleff, 2014), land 

developer, and government agents (e.g. Monticino et al., 2007).  

 

2.7 Conclusion 

This study presented an initial version of ABM to simulate land-use allocation with two 

decision-making strategies: from farm level to individual fields on a farm (Farm-To-Field), and 

direct land-use allocation to individual fields (Field). From computational experiments, we 

gained a better understanding of how model behaves with the two strategies. It suggests that 

Farm-To-Field decision-making strategy allowed farmers to evaluate land allocation at a higher 

level and resulted in higher total utilities on farms compared to Field strategy. Farmers with 

various preferences toward different factors would perform differently. Farmers preferring 

environmental factors chose to allocate substantially higher amount of land to woodland than the 

other two land-use activities; farmers preferring social factors tried to ensure a balance among 

the three land-use activities; and farmers preferring economic factors always allocate more land 

to the activity resulting in more economic utility. Although the model was able to provide useful 
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information about farmers’ decision-making and LUCC patterns, it has limited ability to support 

real world decision-making due to lacking empirical data. The model can be substantially 

improved with calibrating variables, integrating interactions and feedback loops, and adding 

agent types. It also provides meaningful information about decision making on land with 

heterogeneity, which could be further integrated with other models. With the aforementioned 

improvements, it could provide more comprehensive understanding about the impact of farmers’ 

decision on LUCC and support land-use planning more effectively.



47 

Chapter 3  

Multi-criteria suitability analysis for corn growth in Southern 

Ontario 

 

3.1 Introduction 

Due to the rapid growth of global populations, especially in developing countries, and 

competition among different land-uses for arable land, there is a demand for higher food 

productivity (Fischer et al., 1996). While food productivity has generally increased, some of the 

technologies driving this increase (e.g., pesticide and fertilizer) are also concerns related to 

human health and environmental degradation (Prakash, 2003). To ameliorate these concerns 

effective land-use planning and resource evaluation is needed and is a research focus (e.g. 

Ceballos-Silva & López-Blanco, 2003; Elsheikh et al., 2013; Akinci et al, 2013).  

Land-use suitability analysis provides one approach for identifying the level of fitness of a 

location for a land-use activity. By integrating land-use requirements, farmer preferences, and 

predictors of a land-use output, suitability analysis synthesizes our understanding of the drivers 

of a particular process into a single suitability score (Hopkins, 1977; Joerin et al., 2001; Collins 

et al., 2001; Malczewski, 2004; Akinci et al., 2013). In the agricultural context, land-use 

suitability is a complex approach that brings together multiple disciplines, such as biophysics, 

climate science, social science, economics, and geography. Drivers of suitability are represented 

as criteria, which are not necessarily equally important to a particular agricultural land-use 

activity (Prakash, 2003).  

Multi-criteria decision analysis (MCDA) provides an overarching framework for the integration 

of different suitability criteria and their relative degree of importance (i.e., weights) (e.g. 

Ceballos-Silva and López-Blanco, 2003; Phua and Minowa, 2005; Mendas and Delali, 2012). 

Conceptually, MCDA can be achieved through either a multi-objective decision analysis 

(MODA) (e.g. Wang et al., 2004) or a multi-attribute decision analysis (MADA) (e.g. Phua and 

Minowa, 2005). In a MODA, the potential evaluation sites are not predefined. Instead, a decision 

rule, constituting what sites should be evaluated, is defined based on multiple objectives and 

constraints (e.g. shape, size, and boundary) using the suitability criteria. Linear programming, 

heuristic algorithms, or another optimization method is applied to the decision rule to determine 

suitable sites. In contrast, a MADA uses potentially suitable sites that are predefined and then 

ranks those sites based on the criteria and weights with the most suitable sites achieving the 

highest suitability scores (Malczewski, 2004).  

Land suitability Analysis (i.e., MCDA) research frequently uses a MADA approach in 

combination with a Geography Information System (GIS), due to its ability to store, manage, and 

visualize spatial and aspatial data (Malczewski, 2004). A number of studies have generated 

agricultural land-use suitability maps (e.g. Mendas & Delali, 2012; Akinci et al., 2013; Elsheikh 
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et al., 2013) with an emphasis on presenting MCDA methods and technologies to improve the 

development of suitability scores. Typically, the presentation and interpretation of suitability 

results are limited to the proportion of different suitability levels (e.g., high, medium, and low) 

and a general description of where those suitability levels are located. However, the 

quantification of the spatial distribution the suitability scores, the explicit description of their 

pattern, and insight into the reasons accounting for the patterns, and the contribution of 

suitability mapping to land-use planning have been rarely presented or discussed. 

The research presented in this chapter describes the generation of a suitability map for corn 

growth in Southern Ontario and a spatial analysis of the distribution and pattern of suitability 

scores. To achieve this goal, the following objectives are achieved: 1) determine criteria and their 

corresponding weights for suitability score calculation; 2) perform a MADA to score and map 

suitability across Southern Ontario; 3) analyze the suitability scores to quantify the spatial 

distribution and patterns of suitable corn growing locations. 

 

3.2 Study Area 

Southern Ontario is located in the southernmost area of Canada consisting of 10 census divisions 

(CDs, Figure 3-1) that comprise a total area of 21,520 km2. Southern Ontario has a climate 

condition (Table 3-1) suitable for crops intolerant to frost (e.g. corn, bean, and squash) with 

warm summer and mild winter (Fecteau, 1985). The region has an adequate number of frost-free 

days and growing-season days for crops, ranging from 138 to 177 days and 193 to 219 days 

respectively. The mean monthly precipitation in Southern Ontario during corn growth season 

ranges from 6.2 cm to 7.6 cm. It can provide adequate water for corn growth, which requires 30 

cm to 60 cm of precipitation during growing season (Fecteau, 1985). In addition to climate 

suitability constraints, soil texture and drainage also play critical roles in agricultural 

performance in Southern Ontario agriculture. Well-drained soils with texture of loamy sand to 

clay and clay loams make it suitable for agriculture.  

Table 3-1 Summary of Climatic Values in Southern Ontario Related to Suitability for Corn 

Growth (Fecteau, 1895) 

Climate elements Range 

Temperature  Mean May-September (℃) 16.5 – 19.4 

Average length of growing season (days) 193 – 219 

Average number of frost-free days 138 – 177 

Heat units for corn (CHU) 2500 – 3500 

Precipitation Mean Monthly May-September (cm) 6.2 – 7.6 

Photoperiod Mean Monthly May-September (hours) 219 – 251 

Mean Daily May-September (hours) 7.2 – 8.2 

 

Southern Ontario is an ideal agricultural area with about 4 million acres of farmland in 2011, 

occupying approximately 74% of the total land area. Farms primarily cultivating corn account 
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for 25.5% of the total farmland area and have the second largest area of all farm types following 

soybean farms (Statistics Canada, 2011). Corn farms are widely distributed across Southern 

Ontario, with more corn farms in the west and center than that in the east of Southern Ontario 

(Figure 3-2A). The census divisions of Middlesex, Chatham-Kent, Oxford, and Elgin have the 

largest area of corn farms among the census divisions that comprise Southern Ontario (Figure 

3-2B).  

 

Figure 3-1 Map of Southern Ontario Land-use (Data source: Ontario Ministry of Agriculture, 

Food, and Rural Affairs (OMAFRA), 2010) 
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Figure 3-2 Map of corn system distribution in Southern Ontario: A) corn system distribution, 

data source: OMAFRA, 2010; B) corn farm area in census division, data source: Statistics 

Canada, 2011. 

 

3.3 Methods 

The typical seven-step methodology to MADA was employed to create a map of suitable 

locations for growing corn across Southern Ontario. Having defined the problem at the outset of 

the paper, the second step involved identifying the criteria for inclusion (Figure 3-3). Data were 

collected for each criterion (step three) and then each criterion was scored and standardized to a 

common numerical scale (step four). The relative importance of each criterion was obtained 

based on farmers’ knowledge through a survey questionnaire, which provided a weighting 

mechanism for the suitability criteria (step five). The overall suitability scores at each location 

were calculated using a weighted linear combination of the criteria and corresponding weights to 

create a suitability map (step six). Lastly, spatial and non-spatial analysis were performed to 

quantify the distribution of suitability scores and their spatial pattern at multiple census 

geographical levels, which could be used in combination with a decision rule to decide where 

corn should be planted (step seven). 
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Figure 3-3 Flowchart of methodology (Texts in the boxes represent methodology steps, and texts 

on the lines represent tools used for data processing) 

 

3.3.1 Criteria Identification and Mapping 

There are no standards for identifying criteria for agricultural land suitability (Akinci et al., 

2013); hence, criteria selected in this study were based on previous research (Ceballos-Silva and 

López-Blanco, 2003; Fecteau, 1985) and available data. Examples of criteria included in 

suitability analysis for agricultural land include soil group, land-use capability class and sub-

class, soil depth, slope, elevation, erosion level, and other soil properties (Akinci et al. 2013). 

Others have included climate (maximum and minimum temperature and 
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precipitation/evaporation index), soil (pH, texture, and depth), and relief (altitude and slope) 

characteristics for suitability analysis of maize (Ceballos-Silva and López-Blanco 2003). Similar 

criteria were used to identify the suitability of land for rice, sugarcane, maize, vegetables, 

horticulture, and pulses (Prakash 2003). These criteria included soil (pH, organic carbon, 

fertility, texture, drainage, and depth), climate (temperature and rainfall), irrigation (canal 

irrigation and ground water), market and infrastructure (roads, and markets and processing 

industries), and socio-economic variables (population, Prakash 2003). In addition to criteria 

related to soil, drainage, fertility, texture, and pH, Fecteau (1985) described criteria related to 

climate conditions required for corn growth as “[f]rost free days, length of growing season, 

temperature of soil and air, photoperiod, and the amount of rainfall” (Fecteau, 1985, p.24). 

Given available data for our study area, criteria describing characteristics of soil, topography, 

and climate were used (Table 3-2). 

3.3.2 Data Description 

The data used to score each criterion were acquired from a number of government sources (Table 

3-2) and represented as raster cells with cell size of 20m×20m. Soil data were obtained from Soil 

Complex Survey conducted by Ontario Ministry of Agriculture, Food, and Rural Affairs 

(OMAFRA), which was published in 1929 and revised in 2003. Canada Land Inventory (CLI) 

soil capacity class, texture, and drainage were extracted from this dataset. Elevation data in the 

form of the Canadian Digital Elevation Model (CDEM) were acquired from Natural Resource 

Canada. The CDEM was used to compute slope and aspect for the study area. Climate data 

(temperature and precipitation) were obtained from the Environment Canada with historical data 

available at 286 climate stations within Southern Ontario from 1840 to 2015. The variables taken 

from the dataset include minimum daily temperature, maximum daily temperature, and total 

precipitation during growing season (i.e. May to September). To prepare spatial maps of the 

three variables, values within growing season were averaged for all the available recorded years. 

Then inverse distance-weighted (IDW) interpolation was applied to generate a surface map based 

on point data. Data of frost-free days were obtained from OMAFRA where climate zones of 

average frost-free period from 1976 to 2005 were identified.  

Table 3-2 Evaluation criteria 

Criteria Data Source Year 

Soil CLI Soil Capacity Class OMAFRA 2003 

Texture 

Drainage 

Topography Slope (%) Natural Resources Canada 2012 

Elevation (m) 

Aspect 

Climate 

(during 

growing 

season) 

Mean Minimum Daily Temperature (℃) Environment Canada 2015 

Mean Maximum Daily Temperature (℃) 

Mean Total Precipitation (mm) 

Total Frost-free days OMAFRA 2013 
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3.3.3 Criteria Standardization  

After the criteria were identified and data were collected, each criterion was reclassified into 

several classes based on its suitability for corn growth. According to previous studies, each class 

was provided with a score within the range of 0-10, with 0 being the least suitable class and 10 

being the most suitable class (Akinci et al., 2013; Table A-2). 

3.3.4 Criteria Evaluation and Scoring 

The weights for criteria were obtained from farmers. A questionnaire-based survey (Appendix 4) 

was designed with one question asking farmers to rank the 10 identified criteria from 1 to 10 (1 

being the most important, and 10 being the least important) based on their relative importance to 

corn growth. The questionnaire along with information letter and a self-addressed stamped 

envelope were dropped at farmers’ mailboxes when the author was driving randomly around 

farms in Southern Ontario. The participants who were willing to participate the survey only need 

to fill in the survey, put it in the envelope, and mail it back. As a result, 150 surveys were sent 

out and 6 responses were returned. The rank for each criterion was then represented by the mean 

rank from all the respondents. Standard deviation of the ranks provided by farmers was also 

provided to show the variation of ranks for each variable. Criterion weights were calculated 

using the rank reciprocal method by dividing the reciprocal individual rank by the sum of all 

reciprocal ranks (Carr and Zwick, 2007): 

𝑤𝑗 =
(1 𝑟𝑗⁄ )

∑(1 𝑟𝑗⁄ )
 

Table 3-3 Ranking and weights of criteria 

Criteria Mean rank Recipocal 

ranking 

Weights Standard 

Deviation 

CLI Soil Capacity Class 5.67 0.18 0.08 4.08 

Texture 4.50 0.22 0.10 2.51 

Slope (%) 7.17 0.14 0.06 2.64 

Elevation 8.50 0.12 0.05 1.05 

Aspect 8.50 0.12 0.05 1.38 

Drainage 3.33 0.30 0.13 1.51 

Minimum Daily Temperature (℃) 4.67 0.21 0.09 1.51 

Maximum Daily Temperature (℃) 4.17 0.24 0.10 1.60 

Precipitation 2.50 0.40 0.17 0.57 

Frost-free days 2.67 0.38 0.16 2.07 

  Sum 1.00  

 

Before suitability scoring took place, areas deemed unsuitable were identified and excluded from 

subsequent analysis. These areas included those with a land-use designation of built up, 

recreation, water, woodland, Indian Reserve, swamp, marsh or bog in the Agricultural Resource 
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Inventory data (2013). Following these exclusions, a suitability score was calculated for each 

remaining location as a weighted sum of the standardized criteria using the following equation: 

S = ∑Score𝑖 ∗ w𝑖 

where S is the suitability score, Score𝑖 is the score for criteria 𝑖, and w𝑖 is the ranking weight of 

criteria 𝑖 as identified in Table 3-3.  

3.3.5 Suitability Score Analysis 

To describe the distribution of suitability scores and their spatial pattern a number of summary 

and spatial statistics were used. First, mean, maximum, minimum, and the standard deviation of 

suitability scores were summarized at four spatial levels, which comprised the entire study area 

of Southern Ontario, Census Divisions (CD), Census Subdivisions (CSD), and Areas (DA). It is 

essential to conduct the analysis on various spatial aggregation levels as analysis results could be 

different even if the input data are the same under different analysis scales or zoning systems, 

which is named Modifiable Area Unit Problem (MAUP) (Parenteau and Sawada, 2011).  MAUP 

considers two effects on spatial analysis, namely scale effect (impact of unit size due to spatial 

aggregation) and zoning effect (impact of unit boundary and shape) (Dark and Bram, 2007). In 

this study, the scale effect is the main concern as the data were aggregated at different census 

levels with different analysis unit area.   

Second, to investigate the spatial pattern of suitability scores, spatial autocorrelation and a local 

indicator of spatial association (Anselin Local Morna’s I), to identify clustering of suitability 

scores, were computed using the aggregated suitability scores at the DA level.  

3.4 Results 

3.4.1 Suitability Score Mapping and Statistics 

When suitability scores were calculated across Southern Ontario (Figure 3-4), 26.89% of the area 

was found to be unsuitable for corn growth, and more than 70% of the total study area has a 

suitability score greater than 7. Among the suitable areas, scores ranged from 5.7 to 9.7, with the 

highest score located in Middlesex County. The CSDs of East Zorra-Tavistock, Lucan Biddulph, 

Zorra, South-West Oxford, and Norwich are the five CSDs that have the highest mean suitability 

score and they all fell in the central area of the study area.  

To explore the impact of MUAP on the spatial pattern of suitability scores, suitability scores 

were averaged at three census levels, with a decreasing level of aggregation (i.e., CD, CSD, and 

DA; Figure 3-5). At CD level, the mean suitability scores range from 4.8 to 6.9. This range is a 

marked reduction from the Southern Ontario region range, which suggests that high suitability 

values are concentrated in one or two CDs and lower suitability scores dominate the majority of 

CDs. Among the 10 CDs comprising the study region, Chatham-Kent and Oxford have the 

highest mean suitability score, and Hamilton and Niagara have the lowest.  
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At the CSD level, the mean suitability score range widens to 0 to 7.6. There were 15 CSDs that 

have very little suitable land and therefore attain a value of about zero. East Zorra-Tavistock, 

Lucan Biddulph, Zorra, South-West Oxford, and Norwich are the five CSDs that have a mean 

suitability score greater than 7. About 50% of the CSDs have a mean suitability score between 5 

and 7. At DA level, the mean suitability score ranges from 0 to 9, and approximately 62% of the 

DAs are not suitable for corn growth. 

 

Figure 3-4 Suitability map for corn growth in Southern Ontario. 
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Figure 3-5 Mean suitability score at census level: A) CD; B) CSD; C) DA. 
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3.4.2 Suitability Score Analysis 

The spatial autocorrelation analysis generated a Global Moran’s I of 0.213 and z-score of 130.57 

with a p-value of 0, indicating that there is a more than 99% likelihood that the mean suitability 

score is spatially clustered instead of randomly distributed. Furthermore, the cluster and outlier 

analysis using Anselin Local Moran’s I at the DA level provided information about how the 

suitability scores are spatially clustered (Figure 3-6). Using a p-value < 5% to determine 

statistical significance, four types of spatial clusters were identified, including high scores 

surrounded by high scores (high/high), high scores surrounded by low scores (high/low), low 

scores surrounded by low scores (low/low), and low scores surrounded by high scores 

(low/high), with 56.1%, 12.8%, 1.4%, and 7.9% of the total area respectively. The remaining 

21.7% of the total area did not appear to have any significant cluster patterns. As illustrated in 

Figure 3-6, significant high/high clusters are mostly located in non-CMAs (Census Metropolitan 

Area). Non-high-high clusters occupied about 1,005,569 hectares, and approximately 77% of 

them are located within CMAs.  

 

Figure 3-6 Cluster and outlier mapping of suitability score at DA level. 

 

3.4.3 Impact of MAUP(Scale Effect) on Suitability Interpretation 

Scales, including resolution (i.e. area represented by data unit or time frequency) and extent 

(total size of study area or total duration of temporal data), tend to have significant impact on 

land-use patterns, as data at finer resolutions are able to capture more landscape heterogeneity 
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than coarse resolution data, which tends to smooth and generalize information but is typically 

able to cover larger spatial extents (Turner et al., 1989). In the interpretation of suitability spatial 

distribution, obvious impact of scales, both resolution and extent was discovered. 

First, in the calculated raster of suitability scores (Figure 3-4), values are higher in the central 

area than the other areas. However, when the scores were aggregated at CD level (Figure 3-5A), 

the central area appeared to have lower mean suitability scores than surrounding area. CD of 

Chatham-Kent and Oxford had higher mean suitability score than Middlesex, which is not 

consistent with the original suitability result. This is primarily due to the spatial extent effect, 

which is the effect of including or excluding aforementioned constrained land-uses. Taking 

Middlesex for example, for suitability raster of Figure 3-4, the description of “values are higher 

in the central area than the other areas” did not take the white area (London) into consideration, 

which was identified as not suitable for corn growth with a suitability score of 0. Therefore, even 

though the suitable areas in Middlesex have high suitability scores, the mean suitability score 

was ultimately dragged down due to the inclusion of unsuitable area. In this case, a second 

suitability map excluding unsuitable areas was generated and mean suitability scores were also 

aggregated at CD level. Comparing the mean suitability scores at CD level generated with 

different spatial extent in Table 3-4, aggregated suitability score at CD level with restricted areas 

excluded has a higher mean and a lower standard deviation. Oxford, Hamilton, and Middlesex 

have the highest mean suitability score. The new spatial distribution of mean suitability scores at 

CD level is more consistent with the original raster data.  

Second, it is notable that obvious variance exists among the suitability spatial distribution at the 

four spatial levels of CD, CSD, DA, and 20m×20m raster with increasing resolutions, which can 

be observed from Figure 3-4 and Figure 3-5. Indexes of diversity, dominance, and contagion, 

although commonly used as landscape measures, can also be used here to quantify the spatial 

differences among results based on the four scales (Turner et al., 1989). Statistically, the value 

range and standard deviation are positively related to the resolution. The relevant statistics are 

plotted and compared in Figure 3-7.  

The comparison between various spatial extent and resolution emphasized the importance of 

selecting an appropriate scale for land-use analysis to ensure sufficient and accurate analysis. In 

addition, quantifying the scale effects can help understand and predict land-use analysis results to 

some extend (Turner et al., 1989). 
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Table 3-4 Comparison of aggregated suitability statistics at CD level between including and 

excluding restricted area 

CD Mean STD   

Include Exclude Include Exclude SUM Not suitable 

Essex 5.96 7.46 3.02 0.47 28039760.59 20.18% 

Middlesex 5.95 8.41 3.85 0.47 49817523.39 29.30% 

Haldimand-Norfolk 5.81 8.01 3.60 0.52 42641862.90 27.45% 

Brant 5.07 8.29 4.07 0.54 14076488.14 38.89% 

Hamilton 4.93 8.43 4.16 0.40 14207265.81 41.48% 

Oxford 6.79 8.54 3.46 0.36 34983673.02 20.51% 

Lambton 5.74 7.70 3.39 0.53 44163087.51 25.44% 

Chatham-Kent 6.92 7.88 2.62 0.54 43321821.88 12.14% 

Elgin 5.91 8.27 3.77 0.60 28050092.46 28.56% 

Niagara 4.83 8.00 3.94 0.56 22828969.81 39.69% 

 

 

Figure 3-7 Boxplot of mean suitability score at different scales. 
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3.5 Discussion 

3.5.1 Result Interpretation 

3.5.1.1 Relationship between yield and suitability 

Previous studies have proved that corn yield is a function of fertilizer input, weather conditions, 

technology adoption (Dumanski et al., 1986); elevation, slope, and curvature (Kaspar et al., 

2003); some of which were selected in this study to be suitability criteria. Under this 

circumstance, corn yield is expected to be positively related to the calculated suitability scores. 

Therefore, an Ordinary Least Squares (OLS) regression of mean corn yield (bushels/acre) on 

mean suitability score. Due to the data availability, CD level corn yield from Statistics Canada in 

2011 was used. The mean suitability scores used excluded unsuitable areas to be consistent with 

census data. However, no significant correlation was discovered and only 1.5% of the total 

variance in corn yield can be explained by suitability scores. Lacking data at a finer resolution 

could be one of the reasons accounting for this result. Potential reasons could be factors that 

were not included in suitability calculation such as fertilizer use and technology adoption. 

3.5.1.2 Suitability Mapping Validation 

To further validate the overall accuracy of suitability mapping, the result was compared to 

census of agriculture data in 2011 regarding total area of corm farms at CSD level. OLS 

Regression of the sum of suitability scores in CSD against total area of corn farm was performed. 

The result indicated a significant positive correlation between total suitability score and corn 

farm area, which means that the area with higher overall suitability level had larger area of corn 

farms in 2011 and the estimated suitability score is consistent with real world situation. 

3.5.2 Method Limitations 

3.5.2.1 Data Availability and Accuracy 

As aforementioned, agricultural land-use suitability assessment does not have a common 

requirement for criteria that need to be included. As summarized in Table 3-5, studies of 

cropland suitability analysis can involve various criteria from aspects of soil, topography, 

climate, irrigation, and social factors depending on data availability and research focus. 

Therefore, this study tried to include as many criteria as possible to ensure adequate 

representation of corn growth requirements. However, due to the spatial extent of the study area, 

detailed soil data of soil nutrition and fertility could not be obtained. Also, for the obtained soil 

data, missing data of CLI soil capacity class, texture, and drainage exist in the dataset. To resolve 

this problem, it is possible to conduct fieldwork to collect detailed soil data for validation (e.g. 

Sicat et al., 2005). Alternatively, soil classification with updated remotely sensed images is also 

possible (e.g. Bugden et al., 2009). 

Second, climate data were generated based on average daily climate data at 286 climate stations 

within Southern Ontario from 1840 to 2015. Therefore, the impact of temporal variance of 

climate and missing data were not considered or quantified. Furthermore, the climate data over 

the entire study area were created based on point data with interpolation approach, of which the 

accuracy is challenging to quantify.  
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Lastly, as discussed before, integration of various scales of data can introduce uncertainty for the 

overall suitability calculation. In this study, soil data came in a vector format with homogeneous 

areas ranging from 0.01 m2 to 830 km2; topography data were in a raster format with a 20 m 

resolution; and climate data were generated using point data. To ensure a consistent spatial 

resolution for calculation and avoid information lost due to aggregation, the finest spatial 

resolution of 20m×20m was chosen for data process. However, it is arguable whether it is the 

most suitable spatial resolution. According to Statistics Canada, the average farm size of Ontario 

in 2011 is about 1 km2 and a spatial resolution of 1km×1km might be more reasonable to 

represent potential corn growth sites. 

Therefore, the calculated suitability scores have a high dependency on the existing data and can 

be improved substantially if more datasets with higher accuracy are available. 
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Table 3-5 Criteria used for cropland suitability analysis in literature 

Criteria category Criteria 

A
k

in
ci

 e
t 

al
.,

 2
0
1

3
 

C
eb

al
lo

s-
S

il
v

a 
&

 

L
o

´p
ez

-B
la

n
co

, 
2

0
0

3
 

E
ls

h
ei

k
h

 e
t 

al
.,

 2
0

1
3

 

K
al

o
g

ir
o

u
, 
2

0
0
2

 

M
en

d
as

 &
 D

el
al

i,
 

2
0

1
2
 

N
is

ar
 A

h
am

ed
 e

t 
al

.,
 

2
0

0
0
 

P
ra

k
as

h
, 

2
0

0
3

 

Soil 

  

Toxicities pH  √ √ √   √ 

H2O    √ √   

Depth to sulphate   √ √    

Organic matter   √ √ √  √ 

Sodicity   √  √   

Salinity   √  √   

Cation exchange capacity   √ √ √ √  

Base saturation   √ √  √  

Active limestone   √  √   

Rooting 

condition 

Depth √ √ √ √ √  √ 

Coarse fragment    √    

Gravel   √   √  

Erosion √  √     

Soil Mechanics   √     

Workability Great soil group √       

Land use capacity class √       

Texture  √  √  √ √ 

Oxygen soil 

drainage 

Oxygen soil    √    

Drainage   √  √ √ √ 

Topography Slope √ √ √ √ √ √  

Elevation √  √     

Aspect √       

Altitude  √      

Climate Minimum temperature  √   √  √ 

Maximum temperature  √   √  √ 

Precipitation  √ √  √  √ 

Length of dry season   √     

Flood hazard    √    

Social Population       √ 

Availability of labour     √   

Markets and Processing industries       √ 

Proximity to roads     √  √ 

Irrigation Canal irrigation       √ 

Ground water       √ 

Water level    √    

 

3.5.2.2 Criteria Weights 

To acknowledge farmers’ knowledge about importance of corn growth criteria, which has proved 

to be important for agricultural suitability analysis (Sicat et al., 2005), the weights used in this 

study were completely based on a mail-out survey questionnaire among farmers. However, 
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uncertainties of weights from farmers’ understanding about the criteria, rating methods, and 

response rate could be introduced. 

First, although definitions of the criteria were provided in the survey, it is still uncertain to what 

extend farmers could understand the criteria correctly. For example, one of the farmers wrote 

that he/she was “not sure what CLI soil capacity class means” in the comments. Therefore, an in-

person interview might provide slightly different results that better capture the ranking of criteria 

affecting crop choices and the decision to cultivate corn.  

Second, the designed survey simply listed 10 criteria and asked farmers to rank them from 1-10 

based on importance, with 1 being the most important and 10 being the least important. Two of 

the farmers expressed that they thought some of the criteria were of equal importance and 

difficult to be ranked differently. This is an understandable issue, as it has been proven that it is 

challenging for humans to compare more than three items at a time (Prakash, 2003). In this case, 

the Analytic Hierarchy Process (AHP) could be an alternative for weights calculation. With 

AHP, the criteria need be organized hierarchically and compared to each other (pairwise 

comparison) at their own level. In this study, criteria can be organized at two hierarchies with the 

first level being soil, topography, and climate, and second level are the criteria under each of the 

three categories. Then at each level, pairwise comparison matrix is created to determine the 

importance of one criterion to the other quantitatively based on the scale developed by Saaty 

(1987). The weights can then be calculated by normalizing the pairwise comparison matrix 

(Akinci et al., 2013). This method enables easier comparison when there are a large number of 

criteria with the ability to quantify comparison consistency (Saaty, 1987). However, it can be 

difficult to implement among farmers due to its complex comparison. Farmers may find it 

difficult to provide a numeric value to determine the relative importance between two criteria. 

Third, to collect survey data, 150 surveys were sent out in Southern Ontario and only 6 responses 

were received, which is a relative low response rate of 4%. Although, as displayed in Table 3-3, 

the ranks for the criteria were consistent to a moderate degree except CLI soil capacity class, the 

survey process could be improved with larger sample size, better sampling method, and 

appropriate follow-up methods. Morse (2000, p.3) summarized that sample size of a study is 

dependent on “the quality of data, the scope of the study, the nature of the topic, the amount of 

useful information obtained from each participant, the number of interviews per participant, the 

use of shadowed data, and the qualitative method and study design used”. Although this study 

did not intend to use the sample data to represent the farmer population within Southern Ontario, 

it wanted to learn farmers’ opinion about criteria importance. Therefore, participants can be 

randomly selected in each CD. To receive more responses, more surveys should be sent out. 

Additionally, this study can be cooperated with some agriculture organizations which have 

farmer members. It could enable more effective follow-up with farmers. Moreover, for a 

quantitative assessment of how the weight of each criterion affects suitability results, sensitivity 

analysis can always be conducted as a supplement. 
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As criteria weights can contribute significantly to the suitability uncertainty, sensitivity analysis 

of criteria weights is always necessary for a land-use suitability analysis. It is able to 

qualitatively or quantitatively estimate to what degree the suitability result can be impacted by 

changes in weights and the robustness of suitability result with changes in weights (Chen et al., 

2010). Daniel (1973) proposed a One-At-a-Time (OAT) method to change one criteria at a time 

incrementally (e.g. 1%) within a range (e.g. ±20%). The other criteria are adjusted proportionally 

to ensure that all the weights sum up to 1. With this approach, sensitivity of suitability to each 

criterion can be quantified and compared.  

3.5.2.3 Criteria Inclusion and Class Scores 

In the determination of what criteria should be included and their individual suitability score for 

corn growth for each class, relevant studies were referred. To provide a rational for including 

certain criteria and class suitability score, regression of corn yield against relevant criteria can be 

performed. It can help determine which criteria are significantly related to suitability and how 

they are correlated. For example, a multi-linear regression performed by Dumanski et al. (1986) 

proved that grain corn yield was significantly related to temperature and precipitation. 

3.5.3 Future Direction 

Studies proved that corn yield is related to weather conditions such as temperature and 

precipitation (Dumanski et al., 1986; Smit et al., 1989). This study had an emphasis on the 

spatial variation of the factors while ignored how the suitability changed temporally due to 

climate change. In this situation, a continuous suitability mapping over time can be obtained to 

investigate the temporal variation of suitability scores, and may be able to help predict land 

suitability in the future, as defined by FAO as potential suitability (FAO, 1976). 

 

3.6 Conclusion 

This study presented a GIS-based multi-criteria suitability mapping and analysis for corn growth 

in Southern Ontario integrating farmers’ knowledge with criteria about soil, topography, and 

climate. Based on the analysis, about 73% of the total area was identified as suitable for corn 

growth with suitability score ranging from 5.6 to 9.7. Highly suitable climate condition with 

adequate frost free days, warm temperature, and adequate rainfall is the main reason accounting 

for the high suitability. Spatially, CD of Chatham-Kent and Oxford have the highest mean 

suitability, but Middlesex and Lambton have the highest total suitability. Although the suitability 

scores indicated a consistent with Census of Agriculture data, uncertainties exist in many aspects 

including data accuracy, criteria rating, and scale effects. It is essential to acknowledge and try to 

eliminate sources of these uncertainties through improved data collection and method design. 

Despite the limitations of this study, it provides an effective method to quantify spatial 

distribution of land suitability for corn growth based on farmers’ knowledge.  In the light of 

future studies, temporal dimension can be integrated to help predict land potential suitability 

besides current suitability.
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Chapter 4  

Conclusion 

 

4.1 MCDA overview 

This thesis intended to gain insight into the application of MCDA for agricultural land-use 

decision-making and presented two studies emphasizing on MODA and MADA, respectively. 

Chapter 2 presented an ABM prototype involving a multi-objective optimization to determine the 

proportion of each land-use activity and location for land-use activities on farms integrating 

environmental, social, and economic factors. Chapter 3 applied a GIS-based multi-attribute 

suitability analysis for corn growth based on soil, topography, and climate characteristics on 

potential sites, and farmers’ opinions about relative importance of these criteria.  

Similarity and differences exist between MODA and MADA. A general MCDA problem 

involves selecting decision process (options formulation and criteria selection), evaluating 

performance, deciding decision parameters, applying the method, and evaluating results 

(Pohekar & Ramachandran, 2004). It provides a clear and transparent representation of decision 

process to various stakeholders, especially for problems that are difficult to be quantified (Giove 

et al., 2009). Mathematical programming, multi-attribute/value utility theory, outranking, or a 

combination of multiple methods are widely used to solve MCDA problems (Figure 1-1). All the 

methods need to deal with criteria conflicts, incomparable units, and selecting alternatives 

(Pohekar & Ramachandran, 2004). 

Detailed comparison between MODA and MADA is displayed in Table 4-1 regarding criteria, 

objective, constraints, alternatives, and decision-making. The major difference between MODA 

and MADA is whether decision alternatives are defined before making decisions. In a MODA 

problem, decision makers need to optimize multiple objective functions under set of constraints 

and obtain the best solution, which is essentially a trade-off among multiple criteria. Therefore, 

improving performance of one objective will be at the sacrifice of the performance of one or 

several other objectives (Pohekar & Ramachandran, 2004). MODA is widely used in portfolio 

optimization. For example, in Chapter 2, the farmer agents did not know the proportion of land 

that they wanted to allocate for each land use activity or where to allocate them, but they were 

aware of their objectives. Under this circumstance, MODA is the method that can help solve this 

problem, while MADA cannot. During the decision making process, farmer agents have control 

over their decisions and can adjust their behaviors over time (although not included in the model 

in Chapter 2).  

While in a MADA problem, decision alternatives are predetermined before making decisions and 

the best alternative that satisfies decision maker’s objective is selected by comparing it with the 

other alternatives. In Chapter 3, potential sites for corn growth were predefined and the decision-

making process only involved evaluating the potential sites and determining what were the best 
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sites based on the evaluation scores. In this case, MADA is the the proper choice to solve this 

problem as it did not require any portfolio optimization.  

The choice of MODA and MADA depends on problem definition. Despite the differences 

between MODA and MADA, there could also be a combination of the two approaches. For 

example, in Chapter 2, a farm level utility maximization was an application of a MODA, while 

on the field level, the farmer agents need to evaluate each land use activity on each field to 

choose the land use activity with the highest utility. This is then a MADA problem.  

Table 4-1 Comparison of MODA and MADA approaches (Malczewski, 1999 in Mendoza and 

Martins, 2006) 

Criteria for comparison MODA MADA 

Criteria defined by Objectives Attributes 

Objectives defined Explicitly Implicitly 

Attributes defined Implicitly Explicitly 

Constraints defined Explicitly Implicitly 

Alternatives defined Implicitly Explicitly 

Number of alternatives Infinite (large) Finite (small) 

Decision maker’s control Significant Limited 

Decision modelling paradigm Process-oriented Outcome-oriented 

Relevant to Design/search Evaluation/choice 

 

4.2 ABM versus Suitability Analysis 

This thesis adopted two different approaches to solving MODA and MADA problems. In 

Chapter 2, an ABM was developed, while in Chapter 3, a suitability analysis was conducted. In 

Chapter 2, it was expected to explore farmers’ decision-making on farms, which involves 

individual human (i.e. farmers), landscape (farms and fields), and their interaction over time. In 

addition, it had a path dependency indicating future decisions need to be based on previous 

decisions (e.g. woodland ages). Therefore, it will be difficult for other types of models (such as 

statistical models) to represent individuals with different behaviours and model the behaviors 

continuously. In addition, this ABM prototype will enable integration of more complexity in the 

future. Although the great opportunity brought by ABM can contribute to land use science in 

many aspects, there are some drawbacks that constraints ABMs’ ability to be more effectively 

applied. Sullivan et al. (2016) believe that the key drawback is that most ABMs were developed 

specifically for a certain study to answer the related research question, making it challenging for 

others to learn from and make progress on top of the existing models. As ABM is usually data 

hungry, data availability is one of the biggest challenges to enable empirical calibration, 

verification, and validation of the models. In addition, land use is usually a complex system with 

a lot of processes and data requirement. It is the researchers’ responsibility to ensure a balance 

between a detailed ABM representing real world situation and a simplified model based on 

ground theories. Furthermore, ABM participatory is another major issue. Many models were 

developed by researchers to address scientific question, but not too many of them were actually 
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used by relevant stakeholders. It is important to make the models easier for the general public to 

understand and use rather than for the scientific community to conduct researches only (Sullivan 

et al., 2016). 

In Chapter 3, the decision-making did not involve any interactions between human and 

landscape, though farmers’ opinions on criteria were used to calculate weights. In addition, no 

temporal dimension was included for analysis. A suitability analysis, which usually deals with 

“location, development plans, and environment elements” (Collins et al., 2001) is sufficient for 

this Chapter. The methods adopted in this Chapter, MADA, is simple, which is a weighted sum 

of 10 criteria and their corresponding weights from farmers. However, there are more advanced 

methods existing, such as artificial intelligence, fuzzy logic, neural networks, evolutionary 

(genetic) algorithms, and cellular automata. These methods could have the possibility of 

improving criteria weights determination, which is one of the main challenges for land suitability 

analysis (Malczewski, 2004). 

It has been discussed that the allocation of land by humans for different activities (i.e., land-use) 

consists of a land suitability assessment, land demand estimation, and land location allocation 

(Karimi et al., 2012). Chapter 3 could then be a significant component for Chapter 2. If the land 

use activities in Chapter 2 were crop selections rather than general land use type determination, 

the result in Chapter 3 could help determine whether a field is suitable for a specific crop. 

Therefore, the selection between a complex ABM and a simple suitability analysis largely 

depends on the research objective.  

To conclude, it is not possible to conclude whether ABM is better than a suitability analysis or 

suitability analysis is better than ABM directly. The choice of method for land use planning is 

subjective to research objectives. Understanding the strength and weakness of both methods is 

essential for method determination. 

 

4.3 Recommendations and Future Directions 

Recommendations regarding steps of MCDA process are provided. The selecting decision 

process consists of options formulation and criteria selection. The criteria selected in this study 

were based on previous literature and data availability as there are no standards for criteria 

determination. Alternatively, expert knowledge can be consulted and integrated. In addition, 

statistical analysis, such as regressions can be conducted to gain knowledge about the 

relationship between decisions and potential criteria with accurate spatial and temporal data. For 

example, in Chapter 3, a regression of corn yield against soil data, climate data, and other 

potential criteria can be performed to learn how corn yield is correlated to these criteria and the 

significance of correlation.  

When evaluating performance, this study adopted a Simple Additive Weighting (SAW) approach 

to integrate multiple criteria. However, in reality, human opinions are too complex to be 

represented as a simple numeric value; instead, it might involve complex interactions with the 

others, self-learning, and continuous adaptations to temporal factors. Therefore, integrating more 

complex interactions among different types of land managers and between ecosystem and human 
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in land use evaluation could be a future direction for more comprehensive simulation of human-

nature systems.  

Data calibration, result verification and validation have always been challenging for land use 

modeling. Commonly, a sensitivity analysis is conducted to explore to what degree changes in 

criteria and preferences toward these criteria can affect modelling results. However, beyond 

using sensitivity analysis to account for impacts from parameter variance, the model structure 

validity is another raised problem, which have not been well addressed. The question of “does 

the model represent appropriate system elements in the most appropriate ways” needs to be 

answered through further studies (Sullivan et al., 2016, p180). 

Furthermore, as LUCC is a complex process involving years of changes, including the impacts of 

temporal variation in a land-use evaluation is essential. For example, acknowledging the 

temporal changes in soil quality and including it in both MADA of corn growth and MODA of 

land allocation could be beneficial to better representation of LUCC.  
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Appendix 1 
 

Table A- 1 Aggregated land use type and corresponding categories in Southern Ontario 

Land Use and Agricultural Resource Inventory (ARI) 

Aggregated land use Land use category ARI 

Cropland CONTINUOUS ROW CROP 

CORN SYSTEM 

EXTENSIVE FIELD VEGETABLES 

GRAIN SYSTEM 

Pasture GRAZING SYSTEM 

HAY SYSTEM 

PASTURE SYSTEM 

Woodland WOODLAND 

Other BUILT UP 

EXTRACTION PITS AND QUARRIES 

EXTRACTION TOPSOIL REMOVAL 

IDLE AGRICULTURAL LAND (5-10 YEARS) 

IDLE AGRICULTURAL LAND (OVER 10 YEARS) 

MARKET GARDENS/TRUCK FARMS 

MIXED SYSTEM 

NURSERY 

ORCHARD 

PASTURED WOODLAND 

RECREATION 

REFORESTATION 

SWAMP, MARSH OR BOG 

TOBACCO SYSTEM 

WATER 
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Appendix 2 
Model Pseudo Code 

INITIALIZATION 

Import farm and field boundaries, land-use, slope, and soil quality index data 

Create farms, fields, and farmer agents and assign values to state variables 

Generate preference weights, impact of slope, and tree ages 

 

EACH TIME STEP 

Ask each farm: 

--------------------------------------------------Farm Optimization-------------------------------------------- 

Solve the functions of   
∂U

∂LU𝑖
= 0,  

∂U

∂λ
= 0, λ ≥ 0 

Obtain expected land-use composition: solve-cropland, solve-pasture, solve-woodland 

If solve-woodland >= last-year-woodland, Then expected-woodland = solve-woodland 

Else rescale woodland < last-year-woodland 

If tree age >= cut age, Then expected-woodland = solve-woodland 

If tree age < cut age, Then expected-woodland = last-year-woodland 

Rescale expected-cropland and expected-pasture to ensure three expected values sum to 1  

 

 

--------------------------------------------------Field location allocation------------------------------------- 

Ask each field in each farm:  

        Calculate field utility for each land-use activity: 

field-utility-cropland, field-utility-pasture, field-utility-woodland  

 

        If (landuse = "WOODLAND" and field-tree-age < tree-cut-age) 

         Then land use = woodland       

        Else 

If all the land use proportion are available 

Then land use = one of the three land use activities with the highest field utility 

If one land-use proportion is used up, two land use proportions area available 

Then and use = one of the two land use activities with the highest field utility  

If two land-use proportion is used up, one land use proportion is available 

Then land use = the remaining land use 

 

--------------------------------------------------Update variables----------------------------------------------

Ask farms to calculate total farm utility: 

 Calculate sum of field utility 
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 Calculate social utility 

 Total-farm-utility = sum of field utility + social utility 

 

Calculate-farm-composition: cropland-percent, pasture-percent, woodland-percent 

Update tree age and biomass density 

Update land use view 

 Apply field land use values to patches 

 Set patch colors 

 

Plot coverage of land use activities 

Plot average farm utility   
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Appendix 3 
Table A- 2 Scores of criteria classes 

Category Criterion Class Score Source 

Soil CLI Soil Capacity 

Class 

1 10 Akinci, Özalp 

& Turgut 

(2013) 
2 9 

3 8 

4 4 

5 2 

6 1 

7, O, W 0 

Texture Loam 10 Ceballos-Silva 

& López-

Blanco (2003) 
Sandy Loam, Silt Loam 8 

Sandy Clay Loam, Silty Clay 

Loam 

6 

Clay loam 4 

Gravelly Loam 2 

Other  1 

Drainage Moderately Well 10 Fecteau (1985) 

Well, Imperfectly 8 

Rapidly, Poorly 2 

Very Rapidly, Very Poorly 1 

Water 0 

Topography Slope (%) 0-3 10 Ceballos-Silva 

& López-

Blanco (2003) 
3-7 8 

7-12 6 

12-15 4 

>15 1 

Elevation (m) 0-300 10 Akinci, Özalp 

& Turgut 

(2013); Kaspar 

et al., (2003) 

300-700 9 

700-1000 8 

1000-1300 7 

1300-1700 6 

1700-2100 4 

>2100 2 

Aspect S, Flat 10 Akinci, Özalp 

& Turgut 

(2013) 
SW, SE 8 

W, E 7 

NW, NE 5 

N 2 

Climate 

(during 

Mean Minimum 

Daily Temperature 

(℃) 

>6.5 10 Ceballos-Silva 

& López-

Blanco (2003) 
5.0-6.5 8 

3.5-5.0 6 



82 

growing 

season) 

2.0-3.5 4 

<2.0 2 

Mean Maximum 

Daily Temperature 

(℃) 

22-27 10 Ceballos-Silva 

& López-

Blanco (2003) 
20-22 8 

18-20 6 

16-18 4 

<16 or >27 2 

Mean Total 

Precipitation (mm) 

500-600 10 Fecteau (1985) 

400-500 8 

300-400 6 

150-300 4 

<150, >600 2 

Total Frost-free 

days 

>120 10 Fecteau (1985) 

100-120 8 

70-100 6 

60-70 1 

<60 0 
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Appendix 4 
 

University of Waterloo  

December 16, 2015  

 

Dear Resident, 

 

I would like to invite you to participate in a University of Waterloo student research project titled 

“Multi-criteria suitability analysis for corn growth in Southern Ontario, Canada”. The project 

involves identifying areas suitable for growing corn in Southern Ontario. The project is being 

led by a Master’s student (Li Zhang) in the Department of Geography and Environmental 

Management at the University of Waterloo under the supervision of Dr. Derek Robinson. 

One of the goals of this work is to learn about what factors are important to farmers who grow or 

have grown corn versus what is reported in scientific articles. Because you are a farm operator in 

Southern Ontario, your opinions are important to this study and I would appreciate the 

opportunity to hear from you about this. 

 

If you decide to volunteer, you will be asked to complete a 10-minute survey. The questions are 

quite straightforward where you only need rank factors affecting corn growth based on your 

knowledge and experience. Your participation in this study is voluntary. You may decline to 

answer any questions that you do not wish to answer and you can withdraw your participation at 

any time by not submitting your responses. There are no known or anticipated risks from 

participating in this study. All information you provide will be considered confidential and 

grouped with responses from other participants. Further, you will not be identified by name in 

my thesis or in any report or publication resulting from this study. Your confidentiality (email, 

address, and phone number, if provided) will be protected. The data collected through this study 

will be kept for a minimum of one year after completion of my thesis in my supervisor's lab at 

the University of Waterloo and then erased or shredded. 

 

If you wish to participate, please fill in the attached survey document and mail it back to us 

with the self-addressed envelope provided. 

  

Should you have any questions about the study, please contact either Li Zhang at 

l262zhan@uwaterloo.ca or Dr. Derek T. Robinson at dtrobinson@uwaterloo.ca (Tel: 519-888-

4566 Ext.31789). Further, if you would like to receive a copy of the results of this study, please 

contact either investigator. 

 

I would like to assure you that this study has been reviewed and received ethics clearance 

through a University of Waterloo Research Ethics Committee. However, the final decision about 

participation is yours. If you have any comments or concerns resulting from your participation in 

this study, please feel free to contact Dr. Maureen Nummelin in the Office of Research Ethics at 

1-519-888-4567, Ext. 36005 or maureen.nummelin@uwaterloo.ca. 

Thank you for considering participation in this study. 

 

 

 

mailto:l262zhan@uwaterloo.ca
mailto:dtrobinson@uwaterloo.ca
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Consent to Participate: 

With full knowledge of all foregoing, I agree, of my own free will, to participate in this study. By 

signing this consent form, you are not waving your legal rights or releasing the investigators or 

involved institution from their legal and professional responsibilities. 

"I agree to participate."  Signature:________________________________________ 

"I do not wish to participate." Signature:_____________________________________ 

 

Survey Questions 

1) Please rank the criteria in their order of importance (1 being most important and 10 being the 

least important) in affecting a location’s suitability for corn growth. Criteria cannot be ranked 

equally. 

Criteria Rank 

Canada Land Inventory (CLI) Soil Capacity Class  

Soil Texture  

Surface Slope (degree)  

Surface Elevation  

Surface Aspect  

Soil Drainage  

Minimum Average Daily Temperature (℃) during growing season  

Maximum Average Daily Temperature (℃) during growing season  

Average Monthly Precipitation during growing season  

Frost-free days  

 

2) If you would like to be informed about the study results, please leave your email (optional): 

——————————————————————————————————————— 

3) Any comments you would like us to be aware of. 

——————————————————————————————————————— 

——————————————————————————————————————— 

——————————————————————————————————————— 

Criteria Definitions 

Please refer to these definitions of the criteria and their relevance to suitability for corn growth. 

Canada Land Inventory (CLI) Soil Capacity Class: The classes indicate the soil potential and 

degree of limitation for field crops based on soil characteristics. 
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Soil Texture: A qualitative classification of soil based on soil physical texture, such as sand, silt, 

clay. Soil with different portion of sand, silt, and clay tends to have different suitability for crops. 

 

Surface slope: The angle of inclination between the surface normal and a horizontal plane. 

 

Surface Elevation: A location’s height above or below the Earth’s sea level. 

 

Surface Aspect: The compass direction that a slope faces. 

 

Soil Drainage: The natural or artificial removal of surface and sub-surface water from an area. 

Many agricultural soils need drainage to improve production or to manage water supplies. 

 

Growing season: May to September for corn. 

 

Frost-free days: The total number of days between the last frost date in the spring and the first 

frost date in the fall. The length determines the most suitable annuals and vegetables to grow 

given their days to maturity. 

 

 

 


