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Abstract

This thesis presents a method for calculating the absorption of diode lasers in one-

photon, two-photon and (Doppler-free) three-photon excitation configurations. The spe-

cific three-photon system studied is atomic Rb, 5s1/2 − 5p3/2 − 5d5/2 − np. In principle

three-photon excitation allows for perfect compensation of the Doppler effect. The ap-

proach of the method is to construct density matrix equations and solve for the steady

state density matrix elements. Solutions are obtained numerically. There is no weak inten-

sity restriction for any laser in the excitation system, and the absorption of all the lasers

in the excitation system can be evaluated.

The design and testing of a low-noise transimpedance amplifier for measuring absorption

is presented.
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Chapter 1

Introduction

1.1 Motivation

The Doppler-free laser spectroscopy means the wavevectors of the lasers performing the

excitation sum to zero. This configuration leads to the Doppler shifts of the frequency of

the lasers seen by the atom sum to zero. All the atoms will contribute to the excitation

spectroscopy whatever velocity they have, and the resolution of the excitation spectroscopy

will be significantly improved. Also, if all the atoms in the cell contribute to the absorption,

that means we do not need to build the MOT and other cooling and trapping system to

realize the precise measurement. This will save the cost of relevant research.

1



Figure 1.1: 3-photon Doppler-free excitation configuration)

The Doppler-free 3-photon spectroscopy in a Magneto-Optical Trap (MOT) has been

studied theoretically applying approximation methods and experimentally [2]. Their result

shows that the Doppler-free configuration can eliminate the broadening coming from recoil

effect in the spectroscopy. Similar theoretical work for that both in the MOT and room

temperature vapor cell has been made [3]. Also, the 3-photon excitation spectroscopy ob-
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tained by a collinear configuration has also been experimentally studied [4]. What is more,

there are relevant theoretical work about two-photon or three-photon electromagnetically

induced transparency [5] [6]. In the EIT paper, the weak probe approximation is applied

which means the model constructed is only valid when the probe laser is of low intensity.

At first, we plan to construct a Doppler-free 3-photon excitation in the MOT in our lab.

Formerly, the excitation of Rubidium atoms to Rydberg states in the MOT is performed by

a 2-photon excitation system in our lab. The energy level relevant with the two excitation

configurations in shown in Figure 1.2. The 780 nm laser excites the Rubidium atoms from

5s1/2 state to 5p3/2 state. Then the 480 nm laser excites the atoms from 5p3/2 to 45d5/2

Rydberg state. There are two main disadvantages of the 2-photon excitation. First, the

energy of a photon with 480 nm wavelength is higher than the work function of many metals

so applying it near the metal surface in the MOT will cause unexpected photoelectrons

which will affect the Rydberg spectroscopy. The second one is the generation of the 480

nm is much more expensive than that of a diode laser [7]. Thus, we planned to construct a

Doppler-free 3-photon excitation system in the MOT. In the planned 3-photon excitation

system, the 5s1/2 to 5p3/2 transition is driven by a 780 nm diode laser and the 5p3/2 to 5d5/2

transition is driven by a 775nm diode laser. The last step excitation will be performed by a

1260 nm diode laser exciting the Rubidium atoms from 5d5/2 to Rydberg states of n = 50.
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Figure 1.2: Energy levels related to the 2-photon and 3 photon excitation configurations

In the MOT, the atoms are of a temperature near 0 K, which means the Doppler-shift

is almost zero. The effect of Doppler-free configuration may not be significant. During the

study on Doppler-free spectroscopy technique, I am more and more interested to see how the

Doppler-shift is suppressed by the Doppler-free configuration if we perform the excitation

in a room temperature cell. Encouraged by my supervisor, I tried to set up a theoretical

model which can estimate the absorptions of all the lasers in the Doppler-free 3-photon

excitation. All the papers building up the analytical model applied some approximations.

Referring to their theory, I used a numerical integration to set up the theoretical model

adding as few approximations as possible so there is no limitation of the intensity of the

lasers. In this model, the absorption of all the lasers can be estimated, whereas in the

analytical model applying the weak probe approximation, only the absorption of a weak

intensity probe laser can be calculated.
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The experimental work for 3-photon excitation has not been finished due to the lim-

itation of time. All the 3 lasers need to be frequency locked. The reason for frequency

locking is as following. The energy differences among hyperfine levels in 5d states are from

several MHz to tens of MHz. However, the linewidth of the free-running diode laser is

around 10MHz. Thus, in order to resolve all the hyperfine levels, we need to have the

frequency locked so that the linewidth will be smaller than the energy difference between

the hyperfine states [7]. Untill now, I have finished the frequency locking of a 780 nm

diode laser using the frequency modulation spectroscopy (FMS) technique. Also, two 775

nm diode lasers have also been frequency locked. One of them is also locked utilizing the

FMS technique. This is called static 775 nm laser by us. The other one is lock by the beat

-note Pound-Drever-Hall locking technique and we call it dynamic 775 nm diode laser.

The linewidth of the three lasers is around 1MHz after being locked. Since there is no

data obtained from the experiment, I will focus on the theoretical work in this thesis and

the mechanism of the locking technique can be found in the thesis of our former group

members such as Ref. [7]. One phenomenon I need to mention is that when the 775 nm

laser’s frequency is locked, the absorption of the frequency-locked 780 nm laser increased

significantly. I thought that is related to the quasi Doppler-free configuration. This is

another trigger that made me decide to explore the effect of Doppler-free configuration on

the lasers’ absorption.

As a part of this project, I designed a transimpedance amplifier which is used to amplify

the photocurrent in the FMS system. This amplifier reduced the noise in the FMS signal

by 25 times compared with the Former amplifier we used (ZFL-500-BNC [8]). This part

work is presented in the Chapter 3.
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Chapter 2

Theoretical Work

2.1 Absorption of One-Photon Excitation

The derivations in this section are based on Foot 2013 [9] and Berman 2011 [10].

2.1.1 Beer’s Law

Consider a beam of photons passing through an atomic gas. The number density of the

atoms in the gas is N0. A slice of atomic gas of thickness ∆z contains N0∆z every unity

area. If we define a quantity σ as the absorption cross-section: fraction of area occupied

by atoms in a unity area surface of an atomic slice, which works as a measurement of

absorption. Then, The fraction of photons absorbed by the slice of medium can be written

as N0σδz. From the statistical point of view N0σ∆z is also the probability that a photon

can be absorbed when it passes through an atomic slice.

The intensity loss of the laser beam after going through the atomic slice compared with
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the original intensity equals to the probability that a photon can be absorbed:

∆I

I
= −N0σ∆z. (2.1)

In the differential form, the absorption can be described as:

dI

dz
= −a(ω)I = −N0σ(ω)I. (2.2)

Integrating both sides of Eq. 2.2 gives the Beer’s Law:

I(ω, z) = I(ω, 0)exp(−a(ω)z). (2.3)

Thus, to calculate the absorption of a laser going through an atomic medium, we need

to focus on calculating the absorption coefficient a(ω).

Notice here we write a(ω) = N0σ(ω), where N0 is the number density of atoms in the

atomic medium that can interact with the laser field. For the case of one-photon excitation

in a 2-level system, the laser field will cause both absorption and stimulated emission. It

is known that the cross-section for absorption and that of the stimulated emission are

the same [9]. Thus, the N here should be modified to N1 − N2, where N1 and N2 here

are the density of atoms in the first and second level of the system. Also we know that

N1 +N2 = N0.

Then to calculate the value of the absorption cross section, let’s consider the steady

state of this system. When the 2-level system is in the steady state, the rate that the

atoms jump from the ground state to the excited state equals to the rate that the atoms go

along the reverse direction. We can also say that the rate of the absorption minus the rate
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of the stimulated emission equals to that of the spontaneous decay. Write this combined

with the fact that one photon has energy ~ω

(N1 −N2)σ(ω)I(ω) = N2Γ~ω, (2.4)

where Γ is the rate of the spontaneous decay.

Then we can find that:

σ(ω) =
N2

N
N1−N2

N

Γ~ω
I(ω)

. (2.5)

Then in the next section, I will utilize density matrix methods to calculate the value of
N2
N

N1−N2
N

.

2.1.2 Density matrix approach calculating the absorption

Before considering the absorption in the complicated Doppler-free 3-photon excitation,

let’s first consider the simplest case—the absorption of the laser in a one-photon excitation

configuration. This calculation will help us understand the interaction of atoms with

radiation.

To illustrate the mechanism, let us start with the time-dependent Schrodinger equation:

i~
∂ψ

∂t
= Hψ, (2.6)

where the Hamiltonian can be written as:

H = H0 +HI . (2.7)
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The H0 is the Hamiltonian in the absence of the oscillating field and HI is due to the

oscillating field.

An oscillating electric field can be represented as:

E = E0 cos(ωt). (2.8)

Then, the interaction Hamiltonian is:

HI(t) = er · E0 cos(ωt). (2.9)

From the theory of quantum mechanics, the spatial wavefunction can be written as:

ψ(r, t) = c1(t)ψ1(r)e−iω1t + c2(t)ψ2(r)e−iω2t, (2.10)

where ~ω1 and ~ω2 are the eigenenergies of the two states. The requirement of normal-

ization:

|c1|2 + |c2|2 = 1. (2.11)

By plugging Eq. 2.10 into the time-dependent Schrodinger equation Eq. 2.6, we get:

iċ1 = Ω cos(ωt)e−iω0tc2 (2.12a)

iċ2 = Ω∗ cos(ωt)eiω0tc1, (2.12b)

where ω0 = ω2 − ω1 and the Ω is the Rabi frequency which is defined as:
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Ω =
< 1|er · E0|2 >

~
=
e

~

∫
ψ∗1(r)r · E0ψ2(r)d3r. (2.13)

For the case where the electric field is almost uniformly distributed in the area of the

atomic wave function and the electric field is linearly polarized, the Rabi frequency can be

expressed as:

Ω =
eZ12|E0|

~
, (2.14)

where:

Z12 =< 1|z|2 >, (2.15)

and |E0| is the amplitude of the electric field.

Note that we also can write equation (3.12) as:

iċ1 =
Ω

2
(ei(ω−ω0)t + e−i(ω+ω0)t)c2 (2.16a)

iċ2 =
Ω∗

2
(ei(ω−ω0)t + e−i(ω+ω0)t)c1. (2.16b)

We can see that the term +e−i(ω+ω0)t is a high-frequency oscillating term. That means

from a long-term point of view, this term will average to 0. Dropping these terms is called

rotating-wave approximation. Then Eq. 2.16 reduces to:

iċ1 = Ωei(ω−ω0)tc2 (2.17a)
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iċ2 = Ω∗e−i(ω−ω0)tc1. (2.17b)

Then, the expectation value of the component of the dipole along the polarization

direction is:

− eDz(t) = −
∫
ψ∗(t)ezψ(t)d3r. (2.18)

Plugging Eq. 2.10 into Eq. 2.18 yields:

Dz = c∗2c1Z21e
iω0t + c∗1c2Z12e

−iω0t. (2.19)

Here the ω0 = ω2 − ω1. If states 1 and 2 have opposite parity , we know that Z11 =

Z22 = 0 [10] and also we know that Z21 = Z∗12.

Now we need to know the quantities c∗1c2 and c∗2c1. These 2 quantities are just 2 of the

matrix elements of the density matrix [9].

|ψ >< ψ| =

 c1

c2

(c∗1 c∗2

)
=

ρ11 ρ12

ρ21 ρ22

 . (2.20)

Here the 2 diagonal terms are the population of the atoms in the corresponding energy

level. The off-diagonal terms are called coherences [9].

Also, in order to obtain a simpler Hamiltonian of this system, we can write the spatial

wave function in a different basis set:

|ψ(t) >= c̃1(t)|1̃(t) > +c̃2(t)|2̃(t) >, (2.21)
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where

|1̃(t) >= eiωt/2|1 > (2.22a)

|2̃(t) >= e−iωt/2|2 > . (2.22b)

This is called the field interaction representation [10]. In this basis set, the coefficient

before the state kets are:

c̃(t) = eiδσzt/2c(t), (2.23)

where δ = ω0 − ω .

Here I set ω1 = −ω0/2 and ω2 = ω0/2. Notice that in this basis, the population in each

energy level is the same as before:

ρnn = cnc
∗
n = c̃nc̃

∗
n = ρ̃nn, (2.24)

and the coherences differ by a phase:

ρ̃12 = e−iωtρ12 (2.25a)

ρ̃21 = eiωtρ21. (2.25b)

Substituting wavefunction in this basis into the time-dependent Schrodinger equation,

we can obtain equations as below:

i~ ˙̃c = H̃c̃, (2.26)
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where the bold c means the vector

 c̃1

c̃2

. The H̃ written in matrix form is:

H̃ =
~
2

 −δ Ω0(t)

Ω0(t) δ

 . (2.27)

In order to calculate the steady state solution of ρ11 and ρ22, we need to set up the

density matrix equations:

i~dρ̃/dt = [H̃, ρ̃] + relaxation terms. (2.28)

Writing the individual elements:

ρ̇11(t) = −iΩ0

2
ρ̃21(t) + i

Ω0

2
ρ̃12(t) + Γ2ρ22(t) (2.29a)

ρ̇22(t) = i
Ω0

2
ρ̃21(t)− iΩ0

2
ρ̃12(t)− Γ2ρ22(t) (2.29b)

˙̃ρ12(t) = −iΩ0

2
ρ22 − ρ11) + (iδ(t)− Γ2/2)ρ̃12(t) (2.29c)

˙̃ρ21(t) = i
Ω0

2
(ρ22 − ρ11) + (−iδ(t)− Γ2/2)ρ̃21(t), (2.29d)

where the Γ2 is the spontaneous decay rate from the excited state to the ground state.

Terms involving Γ2 are called relaxation terms. In the 2-level system we just take the

spontaneous decay into consideration whereas in the future sections when we consider the

multi-level system, we will also consider the effect of the linewidth of the lasers. Also, the

collision between atoms is another important source of the decay; however, the decay rate

caused by the collision between atoms are hard to estimate, and major references in this
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area always ignore it. In this thesis, we focus on establishing the general theory for laser

absorption first, so we ignore the decay rate coming from the collision for now.

In order to get the steady state solutions of the 2-level system, we need to have the

derivatives in Eq. 2.29 equal to 0. Also, we know that ρ11 + ρ22=1.

Then we just need to solve a set of five simultaneous equations.



0 = −iχρ̃21(t) + iΩ0

2
ρ̃12(t) + Γ2ρ22(t)

0 = iχρ̃21(t)− iΩ0

2
ρ̃12(t)− Γ2ρ22(t)

0 = −iΩ0

2
(ρ22 − ρ11) + (iδ(t)− Γ2/2)ρ̃12(t)

0 = iΩ0

2
(ρ22 − ρ11) + (−iδ(t)− Γ2/2)ρ̃21(t)

1 = ρ11 + ρ22.

(2.30)

In this way, the steady state solution of this system can be obtained. What we are

interested in are ρ22 and ρ11 − ρ22:

ρ22 =
Ω2/4

δ2 + Ω2/2 + Γ2/4
(2.31)

ρ11 − ρ22 =
δ2 + Γ2/4

δ2 + Ω2/2 + Γ2/4
. (2.32)

Thus, the absorption coefficient can be calculated (recall Eq. 2.5 in page 5 with ρ22 = N2

N

and ρ11 = N1
N

):

σ(ω) =
ρ22

ρ11 − ρ22

Γ~ω
I(ω)

=
Ω2/4

(ω − ω0)2 + Γ2/4

Γ~ω
I
. (2.33)

Then the absorption coefficient is:

α = (N1 −N2)
Ω2/4

(ω − ω0)2 + Γ2/4

Γ~ω
I
. (2.34)
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Combining Eq. 2.4 with the fact N1 +N2 = N , we can get:

N1 −N2 =
N

1 + 2r
=

N

1 + I/Is(ω)
, (2.35)

where:

r =
~ωΓ

2σω
, (2.36)

and:

Is(ω) =
~ωΓ

2σ(ω)
. (2.37)

From section 7.2 in Foot (2013), we can get that:

Γ =
4αω3X2

12

3c2
(2.38)

Then expression of the cross-section can be written out as:

σ(ω) =
π2c2

ω2
0

1

2π

Γ2

(ω − ω0)2 + Γ2/4
(2.39)

The equations here is under the assumption that the frequency of the laser field ω is

near the resonant frequency ω0 (the ω2
0 is approximated from ω2 in the derivation).

The last step of this estimation is to take the Doppler-effect into consideration. The

Doppler effect will influence the frequency of the photon seen by the atoms. Thus, we can

take the Doppler effect into consideration by changing ω to ω − kv in the expression of

absorption cross-section and absorption coefficient. At last, we need to take the Maxwell
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distribution of the atoms’ velocity into account and integrate the product of the velocity

distribution function and the absorption coefficient over all the possible velocities.

Thus,

σ(ω − kv) =
π2c2

2πω2
0

Γ2

(ω − ω0 − kv)2 + Γ2/4
. (2.40)

and

α(ω − kv) =
Nσ(ω − kv)

1 + I
~ωΓ/(2σ(ω−kv))

, (2.41)

Finally,

α =

∫ +∞

−∞
f(v)α(ω − kv)dv, (2.42)

where f(v) = 1
u
√
π
exp(−v2/u2) and u is the most probable speed (u =

√
2kBT
M

).

Here, an example of the absorption of a 780 nm laser in a 12 cm long Rubidium cell at

room temperature (300 K) is presented.

From Steck (2015) [11], the vapor pressure of Rubidium 87 atoms is 3.92 × 10−7torr

which equals to 5.225 × 10−5Pa. Then utilizing the ideal gas law PV = NkT , we can

calculate the atom density in the room temperature cell:

n =
N

V
=

P

kT
=

5.225× 10−5kgm−1s−2

1.38× 10−23JK−1 × 300K
= 1.26× 1016/m3. (2.43)

From the statistical mechanics, we know that the most probable speed is:

u =

√
2kBT

M
= 239ms−1. (2.44)
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Then, by plugging in all the variables into the equation (3.50), we can calculate the

absorption coefficient as:

α =

∫ +∞

−∞

1

u
√
π
exp(−v2/u2)

N π2c2

2πω2
0

Γ2

(ω−ω0−kv)2+Γ2/4

1 + I

~ωΓ/(2 π
2c2

2πω2
0

Γ2

(ω−ω0−kv)2+Γ2/4
)

dv. (2.45)

Substitute all the physical constants and related parameters of the 5s to 5p transition of

Rb 87 into Eq. ?? and we will get the absorption coefficient. Here the absorption coefficient

equals to 11.681m−1.

Some of the parameters are listed as below[12]:

Γ = 5.89× 106 × 2π

Ω/Γ = (I/7.56mWcm−2)

The ratio of laser intensity after the laser passes through the atomic cell is:

T = e−αx = e−11.681×0.12 = 24.6% (2.46)

This is comparable to what is observed in practice.
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2.2 Absorption in a 2-photon excitation system

2.2.1 Complex Susceptibility

The 2-photon excitation occurs in a 3-level ladder system. Here for the Rb 87 atoms, the

three levels are 5s1/2, 5p3/2 and 5d5/2 individually. The wavelength of the laser driving the

first transition is 780.234 nm and we call this laser pumping laser. The wavelength of the

laser driving the second transition is 775.975 nm and is called probe laser here.

Unlike the 1-photon excitation case, it is hard to find an expression of the absorption

cross-section here. Thus, we need to find out another method to obtain the expression

of the absorption coefficient. Here I introduce the method determining the absorption

coefficient through calculating the complex susceptibility. This section is based on the

doctoral thesis of Dr. Purve (2006) [13].

Let’s first consider a medium with N oscillators per unit volume. Each oscillator has a

dipole moment d. Then the total polarization P of the medium can be written as:

P = N < d >, (2.47)

where the < d > means the expectation value of the dipole moment.

From quantum mechanics, we know that:

< d >= Tr(ρd), (2.48)

where the ρ is the density matrix.

Since the medium is in the electric field, the polarization can also be written as:
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P =
1

2
ε0Epr(χe

iωprt + χ∗e−iωprt), (2.49)

where the χ is the complex susceptibility of the medium.

Here I will take the 3-level system mentioned at the beginning of this section as an

example. The dipole moment in the matrix form is written as:

d =


0 d12 0

d21 0 d23

0 d32 0

 . (2.50)

Then the polarization becomes:

P =
1

2
ε0Epu(χe

iωput + χ∗e−iωput) +
1

2
ε0Epr(χe

iωprt + χ∗e−iωprt). (2.51)

The density matrix is just:

ρ =


ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

 , (2.52)

and,

ρd =


d21ρ12 d12ρ11 + d32ρ13 d32ρ21

d21ρ22 d12ρ21 + d32ρ23 d23ρ22

d21ρ32 d12ρ31 + d32ρ33 d23ρ32

 . (2.53)

Then the expectation value of the dipole moment is:
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< d >= Tr(ρd) = d21(ρ12 + ρ21) + d32(ρ32 + ρ23). (2.54)

Noticing from quantum mechanics, if we define the polarization direction as the direc-

tion of the z-axis, the matrix element dmn will be a real number so we have d21 = d12.

Also we assume that the polarization direction of the 2 lasers here is the same.

As introduced in section 3.1, if we write everything in the field interaction representa-

tion:

< d >= d21(ρ̃12e
iωput + ρ̃21e

−iωput) + d32(ρ̃32e
−iωprt + ρ̃23e

iωprt). (2.55)

Thus, we can write the polarization as:

P = N(d21(ρ̃12e
iωput + ρ̃21e

−iωput) + d32(ρ̃32e
−iωprt + ρ̃23e

iωprt)). (2.56)

Combining Eq. 2.51 and Eq. 2.56 and equating the terms with the frequency e−iωprt,

we can get:

1

2
ε0Eprχ

∗e−iωprt = Nd32ρ̃32e
−iωprt. (2.57)

Thus, the relationship between complex susceptibility and specific density matrix ele-

ment is given by:

χ = − 2Nd2
32

ε0~Ωpr

ρ̃32. (2.58)
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The real and imaginary part of the complex susceptibility corresponds to the dispersion

and absorption characters of the atomic vapor [14]. The relationship between the imaginary

part of the complex susceptibility and the absorption coefficient can be written as:

α = kpIm[χ]. (2.59)

Thus, as long as we can find out the expression of the corresponding density matrix

elements (coherences), we will be able to estimate the absorption of the laser traveling

through the atomic medium.

In the next 2 sections, I will present an analytical method and a numerical method

to solve the density matrix equations for the steady state solution of the density matrix

elements corresponding to coherences.
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2.2.2 Apply a Perturbation Technique to Solve for the Steady

State Solution

Before writing out the density matrix equations, we need to make it clear that the density

matrix elements related to the complex susceptibility in Eq. 2.58 are written in the field

interaction representation. Thus, we need to write the density matrix equations in the field

interaction representation. We can utilize Eq. 2.28 i~dρ̃/dt = [H̃, ρ̃] + relaxation terms

to write out the density matrix equations for the 3-level system.

Let’s first write out the basis for the field interaction representation:

|1̃(t) >= eiωput|1 > (2.60a)

|2̃(t) >= |2 > (2.60b)

|3̃(t) >= e−iωprt|3 > . (2.60c)

Here we set the energy of the second energy level as 0.

Plug |ψ(t) >=
∑
c̃n|n(t) > into the time dependent Schrodinger equation and then we

will get a set of equations that can be written in the vector form.

i~ ˙̃c = H̃c̃. (2.61)

In this way, the form of the Hamiltonian written in the field interaction representation

can be written out as:

H̃ =


−δpu Ωpu

2
0

Ωpu
2

0 Ωpr
2

0 Ωpr
2

δpr

 . (2.62)
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Then, we can apply the equation (3.33) to write out the density matrix equations in

the field interaction representation:

ρ̇00 = iΩpu(ρ̃01 − ρ̃10) + Γ1ρ11 (2.63a)

ρ̇11 = iΩpu(ρ̃10 − ρ̃01) + Ωpr(ρ̃12 − ρ̃21) + Γ2ρ22 − Γ1ρ11 (2.63b)

ρ̇22 = iΩpr(ρ̃21 − ρ̃12)− Γ2ρ22 (2.63c)

˙̃ρ01 = i
Ωpu

2
(ρ00 − ρ11) + i

Ωpr

2
ρ̃02 − (i∆pu + γ01)ρ̃01 (2.63d)

˙̃ρ12 = i
Ωpr

2
(ρ11 − ρ22)− iΩpu

2
ρ̃02 − (i∆pr + γ12)ρ̃12 (2.63e)

˙̃ρ02 = i
Ωpr

2
ρ01 − i

Ωpu

2
ρ̃12 − (i(∆pu + ∆pr) + γ02)ρ̃02, (2.63f)

where γ01 = Γ1/2+γpu, γ12 = (Γ1 +Γ2)/2+γpr and γ01 = Γ2/2+γpu+γpr. The Γ’s here

are the spontaneous decay rates for corresponding states. γpu and γpr are the dephasing

terms caused by the linewidth of the pump and probe laser here [6]. Note that in this set

of density matrix equations, we left out the three equations for ˙̃ρ10, ˙̃ρ21 and ˙̃ρ31 . That is

because they are just the complex conjugate of Eq. (2.63d), Eq. (2.63e), and Eq. (2.63f)

Now, let’s find out the steady state solution for the density matrix equations here. The

same with that in a 2-level system, we just need to set all the derivatives in the density

matrix equations equal to 0 and combine them with the equation ρ11 + ρ22 + ρ33 = 1.

Then we will have to solve this 10 simultaneous equations for the steady state of ρ̃21 here.

If we directly solve the 10 equations analytically, the result will be extremely complicated.

Remembering that to consider the Doppler effect, we need to change the detune of the lasers

from ∆ to ∆ +k ·v and then integrate the expression of the absorption coefficient over the
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whole velocity range. Since the expression of the steady state solution is too complicated

to be analytically integrated, we need to make some approximations to get a analytical

result or get a numerical result with the help of some software such as Mathematica.

In this section, I will apply a perturbation method to get an approximated expression

of the absorption coefficient. The following material is basically following the paper by M.

Tanasittikosol [6].

Let’s first introduce the precondition for the perturbation method: Ωpr/γ12 � 1 .

This is called weak probe condition. The Rabi frequency of this transition much less than

the relaxation terms means the rate the atoms are excited is much less than that of the

spontaneous decay rate. Thus, the probe laser will merely affect the population of the

excited state in the transition it couples.

As long as the Rabi frequency here is a small value here, we can always expand the

density matrix in the power of Ωpr :

ρ̃ij = ρ̃
(0)
ij + ρ̃

(1)
ij Ωpr + ρ̃

(2)
ij Ω2

pr + ρ̃
(3)
ij Ω3

pr + · · ·, (2.64)

where the ρ̃
(n)
ij means the nth order of correction of ρ̃ij in its expansion.

Next step is to substitute the Eq. 2.64 into the density matrix equations (Eq. 2.63) and

equating the terms with the same power of Ωpr. The equations coming from the terms

with zeroth power of Ωpr are:

Γ1ρ
(0)
11 +

1

2
Ωpu(ρ̃01 − ρ̃10) = 0 (2.65a)

Γ2ρ
(0)
22 = 0 (2.65b)

(i∆pu + γ01)ρ̃
(0)
01 +

i

2
Ωpu(ρ

(0)
11 − ρ

(0)
00 ) = 0 (2.65c)
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(i∆pr + γ12))ρ̃
(0)
12 +

i

2
Ωpuρ̃

(0)
02 = 0 (2.65d)

(i∆r + γ02))ρ̃
(0)
02 +

i

2
Ωpuρ̃

(0)
12 = 0 (2.65e)

ρ
(0)
00 + ρ

(0)
11 + ρ

(0)
22 = 1, (2.65f)

where the ∆r = ∆pu + ∆pr.

From Eq. 2.65, we can find that ρ22 = ρ̃12 = 0, the expressions for the nonzero density

matrix elements are:

ρ̃
(0)
01 =

iΩpu

2
[γ01 + iΓpu +

Ω2
puγ01

(γ01 − iΓpu)Γ1

]−1 (2.66)

ρ
(0)
11 =

Ω2
prγ01/2

Γ1∆2
pu + Γ1γ2

01 + γ01Ω2
pu

(2.67)

,

and ρ
(0)
00 = 1− ρ(0)

11 .

Similarly, the equations for higher power (for n > 1)of Ωpr can be written as:

Γ1ρ
(n)
1 1 +

i

2
Ωc(ρ̃

(n)
01 − ρ̃

(n)
10 ) = 0 (2.68a)

Γ2ρ
(n)
2 2 +

i

2
(ρ̃

(n−1)
12 − ρ̃(n−1)

21 ) = 0 (2.68b)

(i∆pu + γ01ρ̃
(n)
01 )− i

2
ρ̃

(n−1)
02 +

i

2
Ωpu(ρ

(n)
11 − ρ

(n)
00 ) = 0 (2.68c)

(i∆pr + γ02ρ̃
(n)
12 ) +

i

2
Ωpuρ̃

(n)
02 +

i

2
(ρ

(n−1)
22 − ρ(n−1)

11 ) = 0 (2.68d)

(i∆r + γ12)ρ̃
(n)
02 −

i

2
ρ̃

(n−1)
01 +

i

2
Ωcρ̃

(n)
12 (2.68e)

ρ
(n)
00 + ρ

(n)
11 + ρ

(n)
22 = 0. (2.68f)
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Combining Eq. 2.66, Eq. 2.67 and Eq. 2.68, we will find that all the ρ̃
(1)
ij ’s equals to 0

except ρ̃
(1)
02 and ρ̃

(1)
12 . The expressions of ρ̃

(1)
02 and ρ̃

(1)
12 are:

ρ̃
(1)
02 =

2Γ1(i∆pr + γ02)(i∆pu − γ01)Ωpu + γ01Ω3
pu

2(Γ1∆2
pu + Γ1γ2

01 + γ01Ωpu)[4(i∆pr + γ02)(i∆r + γ12) + Ω2
pu]

(2.69)

ρ̃
(1)
12 =

iΩ2
puγ01

4(Γ1∆2
pu + Γ1γ2

01 + γ01Ω2
pu)

[1 +
γpu(1 + i∆pu/γ01)

γ02 + iγpr
][γ12 + i∆r +

Ω2
pu

4(γ02 + iγpr)
]−1.

(2.70)

These are the first order correction terms of the density matrix elements. Then, based

on the zeroth order and first order correction terms, we can solve for the second order

correction of the density matrix elements. From calculation we can show that ρ̃
(2)
12 = ρ̃

(2)
02 =

0.

Thus, we have got the coherence up to the second order corrections:

ρ̃02 = Ωprρ̃
(1)
02 =

2Γ1(i∆pr + γ02)(i∆pu − γ01)ΩpuΩpr + γ01Ω3
puΩpr

2(Γ1∆2
pu + Γ1γ2

01 + γ01Ωpu)[4(i∆pr + γ02)(i∆r + γ12) + Ω2
pu]

(2.71)

ρ̃12 = Ωprρ̃
(1)
12 =

iΩ2
puΩprγ01

4(Γ1∆2
pu + Γ1γ2

01 + γ01Ω2
pu)

[1+
γpu(1 + i∆pu/γ01)

γ02 + iγpr
][γ12+i∆r+

Ω2
pu

4(γ02 + iγpr)
]−1.

(2.72)

Then we can write out the absorption coefficient for the 775nm laser:

χ = −2Nd2
21ρ̃21

~ε0Ωpr

= −2Nd2
21ρ̃

(1)
21

~ε0
(2.73a)

α = kprIm[χ]. (2.73b)

In this particular case, we know that the population of the 5P state is resonantly

pumped from 5S state. Thus, ∆pu ≈ 0 and also γpu � γ01. According to these, we can
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approximately consider the second bracket in the expression of ρ̃12 to be unity. Therefore,

we have:

ρ̃12 =
iΩ2

puΩprγ01

4(Γ1∆2
pu + Γ1γ2

01 + γ01Ω2
pu)

[γ12 + i∆r +
Ω2
pu

4(γ02 + iγpr)
]−1. (2.74)

Till now, we have finished the evaluation of the absorption coefficient if all the atoms

are stationary in the cell. Next, we need to take the motion of the atoms in the cell into

consideration. The same as the calculation in the 2-level system, the motion of the atoms

causes the Doppler shift and is presented in the detuning of 2 lasers:

∆pr → ∆pr − kprv (2.75)

∆pu→ ∆pu+ kprv, (2.76)

and the Maxwell distribution is:

N → N

u
√
π
exp(−v

2

u2
). (2.77)

Same as before, the u here is the most probable speed of atoms moving in the cell at a

given temperature T . Notice here the symbol of the Doppler shift in the 2 detuning terms

are different That is because the 2 lasers beam are counter-propagating with each other.

Let’s consider a portion of atoms with almost the same velocity. The frequency of one of

the lasers seen by these atoms will be up shifted and that of the other laser seen by these

atoms will be down shifted.

Then substitute Eq. 2.75, Eq. 2.76, and Eq. 2.77 into the Eq. 2.74 and do some modi-

fication:

27



χ(v)dv = −
Nd2

21Ω2
pu

~ε0
√
πk2

pu(kpu − kkp)u3

γ01

2Γ1

[
e−z

2

(z + β)2 + σ2
][z−z0 +

Ω2
pu/4

(kpu − kpr)kpru2(z − z1)
]−1,

(2.78)

where:

γ =
γ12

(kpu − kpr)u
(2.79a)

σ =
1

(kpu − kpr)u
(2.79b)

ξ =
∆r

(kpu − lpr)u
(2.79c)

β =
∆pu

kpuu
(2.79d)

z0 = −ξ − iγ (2.79e)

z1 =
∆pr + iγ01

kpru
. (2.79f)

The total susceptibility is the integration of equation (3.78) over the whole velocity

range:

χ(∆pr) = −
Nd2

21Ω2
pu

ε̄
√
pik2

pu(kpu − kpr)u3

γ01

2Γ1

∫ +∞

−∞
[

e−z
2

(z + β)2 + σ2
][z−z0+

Ω2
pu/4

(kpu − kpr)kpru2(z − z1)
]dz.

(2.80)

The expression out of the integration is a constant. Thus, the only part we need to

consider is the integrand:

∫ +∞

−∞

e( − z2)

(z + β)2 + σ2
[z − z0 +

Ω2
pu/4

(kpu − kpr)kpru2(z − z1)
]−1. (2.81)
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We can use the partial fractions as:

e−z
2

(z + β)2 + σ2
[z − z0 +

Ω2
pr/4

(kpu − kpr)kpru2(z − z1)
]−1

=− z − z1

[(β + φ+)2 + σ2](φ+ − φ−)

e−z
2

z − φ+

+
z − z1

[(β + φ−)2 + σ2](φ+ − φ−)

e−z
2

z − φ−

− i(z − z1)

2σ(β + φ+ + iσ)(β + φ− + iσ)

e−z
2

z + β + iσ

+
i(z − z1)

2σ(β + φ+ − iσ)(β + φ− − iσ)

e−z
2

z + β − iσ

,

(2.82)

where:

φ± =
1

2
(z0 + z1)± 1

2

√
(z0 − z1)2 − Ω2

c

kpr(kpu − kpr)u2
. (2.83)

Notice the property:

∫ +∞

−∞

e−z
2
(z − a)

z − b
dz = −(a− b)

∫ +∞

−∞

e−z
2

z − b
+
√
π. (2.84)

Then, the equation (3.82) can be written as:
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e−z
2

(z + β)2 + σ2
[z − z0 +

Ω2
pr/4

(kpu − kpr)kpru2(z − z1)
]−1

=− z1 − φ+

[(β + φ+)2 + σ2](φ+ − φ−)

e−z
2

z − φ+

+
z1 − φ−

[(β + φ−)2 + σ2](φ+ − φ−)

e−z
2

z − φ−

− i(z1 + β + iσ)

2σ(β + φ+ + iσ)(β + φ− + iσ)

e−z
2

z + β + iσ

+
i(z1 + β − iσ)

2σ(β + φ+ − iσ)(β + φ− − iσ)

e−z
2

z + β − iσ

(2.85)

Looking at the form of equation (3.85), the form of the integral need to be evaluated

is:

∫ +∞

−∞

e−z
2

z − zp
dz (2.86)

The solution of the integration is given by:

∫ +∞

−∞

e−z
2

z − zp
dz = isπW (szp) (2.87)

where s = sgn[Im(zp)] is the signum function. Its value is +1 when zp is positive, and

-1 when zp is negative. The W(z) is the Faddeeva function [15] which is defined as:

W (z) = e−z
2

erfc(−iz) (2.88)

and the erfc function is the complex error function. Its definition is:

erfc(z) = 1− erf(z) =
2√
π

∫ ∞
z

e−t
2

dt (2.89)
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The erf function is the well-known error function.

Thus, the total complex susceptibility is:

χD =−
iNd2

21Ω2
pu

~ε0k2
pu(kpu − kpr)u3

γ01

2Γ1

× [− z1 − φ+

[(β + φ+)2 + σ2](φ+ − φ−)
s+W (s+φ+)

+
z1 − φ−

[(β + φ−)2 + σ2](φ+ − φ−)
s−W (s−φ−)

+
i(z1 + β + iσ)

2σ(β + φ+ + iσ)(β + φ− + iσ)
W (+β + iσ)

+
i(z1 + β − iσ)

2σ(β + φ+ − iσ)(β + φ− − iσ)
W (−β − iσ)

.

(2.90)

where s+ = sgn[Im(φ+)] and s− = sgn[Im(φ−)].

Here I made two corrections on the Eq. B7 in Ref. [6]. The sign before the third term

should be + instead of −. Also, in the denominator of third term, it should be z + β + iσ

instead of z − β − iσ.

To this point, we just need to substitute all the value of the parameters in Eq. 2.90.

Here I set the 775 nm laser’ intensity as 1 mW/cm2, which fits the weak probe condition.

From Eq. 2.73b we will get the expression of the absorption coefficient. We know that the

transmission coefficient is

T = e−αz, (2.91)

where z is the distance within which the laser interacts with the atoms.
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Then plot the relationship between the transmission coefficient T and ∆pr. The plot is

in figure 3.1.

-10-9-8-7-6-5-4-3-2-10 1 2 3 4 5 6 7 8 9 10
775 laser detuning (10 MHz)
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0.98

0.99

1.00

 transmission of 775 nm laser counter-
propagating

Figure 2.1: In counter-propagating case, the relationship between the transmission rate

and the detune of the 775nm laser when the 780nm laser is on resonance.

The counter propagating is a nearly Doppler-free case since the wave vector of 2 lasers

are almost cancels with each other. In order to prove it is true, we can check the case

where the 2 lasers are propagating in the same direction. We just need to change the sign

of the wavevector of the one of the lasers (here we choose the 775 nm laser.) The plot is

shown in figure 2.2.

From the two figures here we can see that in counter-propagating case, the absorption

rate of the 775 nm laser is 6% when the 2 lasers are both on resonance. However, when

the 2 lasers are propagating in the same direction and on resonance, the absorption rate

of the 775 nm laser reduced to nearly 1.2%. This proves that in the quasi Doppler-free
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Figure 2.2: In the same direction case, the relationship between the transmission rate and

the detune of the 775nm laser when the 780nm laser is on resonance.

case, more atoms are contributing to the absorption. That means it is worthwhile to see

how absorption is influenced by the exact Doppler-free situation that can be obtained in a

3-photon excitation.
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2.2.3 Estimation of the absorption using a numerical integration

As I mentioned before, we can also use a numerical integration to calculate the absorption

of the lasers in this configuration. Here we use the software Mathematica to perform the

calculation. One thing to notice is that when solving the simultaneous linear equations, the

Mathematica does not support using the function ”conjugate” together with the ”solve”

function. Thus, besides writing out the Eq. 2.63 and have the derivatives equal to 0, we also

need to write the density matrix equations for ρ̃10, ρ̃21 and ρ̃21. Combining the equation

ρ00 + ρ11 + ρ22 = 1, we have Mathematica solve the ten simultaneous equations.

We first present the result when the 780 nm laser is on resonance and the 775 nm laser

is scanning and is probed (noting that the p means probe and the d means detuning in

figures in this thesis):

d

Figure 2.3: In the counter-propagating case, the relationship between the transmission of

775 nm laser and the detuning of the 775 nm laser when the 780nm laser is on resonance

by numerical method.

Comparing figure 2.1 with figure 2.3, for the counter-propagating case, we can see that

when the two lasers are both on resonance, the perturbation method and the numerical

method lead to similar absorption, which is around 8%. Besides, the full width at half

maximum of the two peaks are both at 50 MHz.
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detuning 775 nm laser (10 MHz)
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0.992

 transmission of 775nm laser co-
propagating

Figure 2.4: In the co-propagating case, the relationship between the transmission rate of

the 775 nm laser and the detune of the 775 nm laser when the 780nm laser is on resonance

by numerical method.

Also, comparing the figure 2.2 and figure 2.4, for the configuration that the 2 lasers

are in the same direction, we can see that when the 2 lasers are both on resonance, the 2

methods result in a similar absorption rate, which is around 1.2%. Also, the full width at

half maximum for the two peaks are both around 100 MHz.

This means the perturbation method to obtain an analytical solution in valid when

we have 775nm in the weak probe condition. Also, the numerical method is proven to be

valid to calculate the absorption of both of the 2 lasers under general conditions where the

analytical method is not applicable.

Then, the transmission rate of the 780nm laser in both configuration can be calculated

from the numerical method. Figure 3.5 and 3.6 show the result.
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detuning (4×10 
MHz)

0.1625

0.1630

0.1635

0.1640

transmission rate

Figure 2.5: In the counter-propagating case, the relationship between the transmission

rate of the 780nm laser and the detune of the 775 nm laser when the 780nm laser is on

resonance by numerical method.

From the figure we can see that in both configurations, when the 775 nm laser is closer

to resonance, the absorption of the 780 nm laser is suppressed a little. Also, because the

intensity of the 775 nm laser is in the weak probe condition, it will affect the absorption

of the 780nm laser a little no matter in which configuration.
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Figure 2.6: In the co-propagating case, the relationship between the transmission rate of

the 780 nm laser and the detune of the 775 nm laser when the 780nm laser is on resonance

by numerical method.
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2.3 Absorption in a 3-photon excitation

In this section, we will come to the final step: exploring the absorption of one of the 3

lasers in the ladder 3-level system for the Rubidium 87 atoms. The first step excitation is

performed by the 780 nm laser, exciting the atoms from 5s1/2 state to 5p3/2 state. We call

it pumping laser. The second step excitation is performed by a 775 nm laser, exciting the

atoms from 5p3/2 state to 5d5/2 states. We call it probe laser. The last step is performed

by the 1260 nm laser. It will excite the atoms from 5d5/2 state to 50p or 50f Rydberg

states. We call it coupling laser. Since the 1260 nm laser cannot be seen by eyes, it is

harder to adjust the alignment. Here we focus on the absorption of the other 2 lasers in

this 3-photon excitation. We will look at both the Doppler-free case and the collinear case.

The numerical method introduced in last section will be applied here again.

The same as before, we need to construct the density matrix in the field interaction

representation. The first step is still writing out the basis in the field interaction represen-

tation. Here I choose the basis as:

|1̃(t) >= |1 > (2.92a)

|2̃(t) >= e−iωput|2 > (2.92b)

|3̃(t) >= e−i(ωpu+ωpr)|3 > (2.92c)

|4̃(t) >= e−i(ωpu+ωpr+ωc)t|4 > . (2.92d)

In this basis, we can again write out i~ ˙̃c = H̃c̃ in order to get the Hamiltonian:
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H̃ =


0 Ωpu

2
0 0

Ωpu
2

δpu
Ωpr

2
0

0 Ωpr
2

δpu + δpr
Ωc
2

0 0 Ωc
2

δpu + δpr + δc

 . (2.93)

Again, applying the equation (3.28) again, the density matrix equations for this system

can be written out:

ρ̇11 = −iΩpu

2
(ρ̃21 − ρ̃12) + Γ2ρ22 (2.94a)

ρ̇22 = −iΩpu

2
(ρ̃12 − ρ̃21)− iΩpr

2
(ρ̃32 − ρ̃23) + Γ3ρ33 − Γ2ρ22 (2.94b)

ρ̇33 = −iΩpr

2
(ρ̃23 − ρ̃32)− iΩpr

2
(ρ̃43 − ρ̃34) + Γ4ρ33 − Γ3ρ22 (2.94c)

ρ̇44 = −iΩc

2
(ρ̃34 − ρ̃43) + Γ4ρ44 (2.94d)

˙̃ρ12 = −iΩpu

2
(ρ22 − ρ11) +

iΩpr

2
ρ̃13 + (iδpu − γ12)ρ̃12 (2.94e)

˙̃ρ13 = −iΩpu

2
ρ̃23 +

iΩpr

2
ρ̃12 +

iΩc

2
ρ̃14 + (i(δpu + δpr)− γ13)ρ̃13 (2.94f)

˙̃ρ14 = −iΩpu

2
ρ̃24 +

iΩc

2
ρ̃13 + (i(δpu + δpr + δc)− γ14)ρ̃14 (2.94g)

˙̃ρ23 = −iΩpu

2
ρ̃13 −

iΩpr

2
(ρ33 − ρ22) +

iΩc

2
ρ̃24 + (iδpr − γ23)ρ̃23 (2.94h)

˙̃ρ24 = −iΩpu

2
ρ̃14 −

iΩpr

2
ρ̃34 +

iΩc

2
ρ̃23 + (i(δpr + δc)− γ24)ρ̃24 (2.94i)

˙̃ρ34 = −iΩpu

2
ρ̃34 −

iΩpr

2
(ρ44 − ρ33) + (iδc − γ34)ρ̃34. (2.94j)

The same as the last section, to perform the numerical calculation with Mathematica,

we need to write out the another 6 density matrix equations for ρ̃21, ρ̃31, ρ̃41, ρ̃32, ρ̃42, and
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ρ̃43. Then, having all the derivatives equals to 0 and combining the 16 density matrix

equations with ρ11 +ρ22 +ρ33 +ρ44 = 1, we get a set of 17 simultaneous equations to solve.

Before presenting the numerical calculation in Mathematica, there is one thing that

should be clarified. In the 3-photon excitation, especially in the Doppler-free configuration,

the Doppler shift is not the same way shown in the detuning terms as that in the 2-photon

excitation. In figure 3.7, a general spacial distribution is presented:

Figure 2.7: A general spatial distribution of 3 lasers

Here α is the angle between 780nm laser and 1260 laser. β shows the angles between

the 780 nm laser and 775 nm laser.
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In this configuration, the Doppler shift may be accounted for by the replacements:

δpu → δpu + ~kpu · ~v = δpu + kpuvx (2.95a)

δpr → δpr + ~kpr · ~v = δpu − kprcos(β)vx + kprsin(β)vy (2.95b)

δc → δc + ~kc · ~v = δc − kccos(α)vx − kcsin(α)vy. (2.95c)

For the collinear configuration, α = β = 0 (1260 nm laser and 775 nm laser are in the

same direction counter-propagating with 780 nm laser ).

Notice that the lifetime of Rydberg states is calculate according to Ref. [16]. The

lifetime of Rubidium atoms in 50P states is 106µs and that in 50D states is 294.4µs.

The Rabi frequency of the 1260 nm laser is calculated by Professor James D.D. Martin

(here I set the intensity of the 1260 nm laser as 5mW/cm2 ). The transition dipole moment

from 5d5/2 to 50p3/2 is 0.0132ea0 and that between the 5d5/2 to 50d5/2 is 0.0022ea0.

The calculation performed here takes 5d5/2 to 50p3/2 transition as an example.

Then the absorption property can be evaluated by the numerical method.

-10-9-8-7-6-5-4-3-2-1 1 2 3 4 5 6 7 8 910
detuning of 780 nm laser (100 MHz)

0.2

0.4

0.6

0.8

1.0

transmission of 780 nm laser collinear

Figure 2.8: In the collinear configuration, the transmission rate of 780 nm laser when the

780 nm laser is detuned and the other 2 lasers are on resonance.
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1260 laser detuning 
(100 MHz)

0.1720

0.1725

0.1730

transmission of 780 nm laser collinear

Figure 2.10: In the collinear configuration, the transmission rate of 780 nm laser when the

1260 nm laser is detuned and the other 2 lasers are on resonance.
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0.165
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transmission of 780nm laser collinear

Figure 2.9: In the collinear configuration, the transmission rate of 780 nm laser when the

775 nm laser is detuned and the other 2 lasers are on resonance.

Figure 2.8 to 2.10 present the absorption of 780 nm laser in collinear configuration when
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only one of the lasers are detuned while the other two lasers are on resonance.

-10-9-8-7-6-5-4-3-2-10 1 2 3 4 5 6 7 8 910
detuningof 780nm laser (100MHz)
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Figure 2.11: In the collinear configuration, the transmission rate of 775 nm laser when the

780 nm laser is detuned and the other 2 lasers are on resonance.
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0.96

0.97

0.98

0.99

1.00

transmission of 775nm laser collinear

Figure 2.12: In the collinear configuration, the transmission rate of 775 nm laser when the

775 nm laser is detuned and the other 2 lasers are on resonance.
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Figure 2.13: In the collinear configuration, the transmission rate of 775 nm laser when the

1260 nm laser is detuned and the other 2 lasers are on resonance.

Figure 2.11 to 2.13 present the absorption of 775 nm laser in collinear configuration

when only one of the lasers are detuned while the other two lasers are on resonance.

For Doppler-free configuration (see figure 2.7), the wavevectors of 3 lasers cancel with

each other:

kpu − kprcos(β)− kccos(α) = 0 (2.96a)

kprsin(β)− kcsin(α) = 0 (2.96b)

From these 2 equations we get: α = 72.6◦ and β = 35.94◦

Then the absorption in the Doppler-free configuration can be presented.
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Figure 2.14: In the Doppler-free configuration, the transmission rate of 780 nm laser when

the 780 nm laser is detuned and the other 2 lasers are on resonance.
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Figure 2.15: In the Doppler-free configuration, the transmission rate of 780 nm laser when

the 775 nm laser is detuned and the other 2 lasers are on resonance.
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1260 laser detuning (100 MHz)
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Figure 2.16: In the Doppler-free configuration, the transmission rate of 780 nm laser when

the 1260 nm laser is detuned and the other 2 lasers are on resonance.

Figure 2.14 to 2.16 show the absorption of 780 nm laser in the Doppler-free configuration

when only one of the lasers are detuned while the other two lasers are on resonance.
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Figure 2.17: In the Doppler-free configuration, the transmission rate of 775 nm laser when

the 780 nm laser is detuned and the other 2 lasers are on resonance.
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Figure 2.18: In the Doppler-free configuration, the transmission rate of 775 nm laser when

the 775 nm laser is detuned and the other 2 lasers are on resonance.
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Figure 2.19: In the Doppler-free configuration, the transmission rate of 775 nm laser when

the 1260 nm laser is detuned and the other 2 lasers are on resonance.

Figure 2.17 to 2.19 show the absorption of 775 nm laser in the Doppler-free configuration

when only one of the lasers are detuned while the other two lasers are on resonance.

To prove the validity of the integration from Mathematica, I plot the imaginary part

of the complex susceptibility density vs vx and vy when all the 3 lasers are on resonance

in the Doppler-free configuration.
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Figure 2.20: Im[χ](vx, vy) vs vx and vy in the Doppler-free configuration when 3 lasers are

all on resonance(v from -1000 m/s to 1000 m/s)
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Figure 2.21: Im[χ](vx, vy) vs vx and vy in the Doppler-free configuration when 3 lasers are

all on resonance (v from -10 m/s to 10 m/s)

Figure 2.20 shows that the imaginary part of the complex susceptibility is a mountain

within the 2000 m/s by 2000 m/s velocity range. Figure 2.21 shows the top of the mountain.

That means this mountain is with finite height so the integration converges. Also, the form

of the imaginary part of the complex susceptibility density is a polynomial of vx and vy

multiplied by two exponentials e−v
2
x/u

2
and e−v

2
y/u

2
. Since the decreasing speed of the

negative exponential is faster than the increasing speed of any polynomial, the integration

must converges from the math point of view.

From figure 2.8 to figure 2.19, one conclusion is that in our lab, the 780 nm laser and 775

nm laser are on resonant, if we scan the 1260 nm laser, it is easier for us to detect the ab-

sorption of the 780 nm laser since the intensity change of the intensity of 780 nm during the

scanning is larger comparing to that of the 775 nm laser in both configurations (Collinear
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case: ∆I780d = 2
1000

,∆I775d = 1
4000

; Doppler-free case: ∆I780d = 4
100000

,∆I780d = 3
250000

).

One strange phenomenon is that here the Doppler-free configuration does not increase

the absorption in the 3-photon excitation compared to that in the collinear configuration.

That is possible because the collinear configuration here is a near Doppler- free configura-

tion, the absorption here does not have much space to be improved. What is more, in the

three-photon excitation system, when one of the lasers is on resonance, the absorption of

other lasers may be suppressed (For example in figure 2.16, when the 1260 nm laser are

approaching resonance the absorption of the 780nm laser is suppressed). Doppler-free case

is the most ideal configuration for the absorption.It may lead to some more suppression of

the absorption of this whole system. However, it seems that the Doppler-free spectroscopy

contains more information than that in the collinear one. For example, in Figure 2.11 when

scanning the 780 nm laser while the other two lasers are on resonant in the collinear config-

uration, the absorption (spectroscopy) of 775 nm laser presents two sidebands besides the

center peak and this character is even more apparent in Figure 2.17 showing that situation

in Doppler-free configuration. These sidebands may come from Rabi splitting. Some more

similar and interesting features are shown in the absorption of the lasers. They may be

related to the EIT and EIA effects and can be figured out in the future.

2.4 Conclusion

In this chapter, the theory estimating absorption of lasers by atomic vapor in a 1-photon,

2-photon, and 3-photon excitation system(Rb 87, 780 nm, 775 nm and 1260 nm diode

laser) at room temperature is introduced. Absorption of the laser in a 1-photon excitation

is evaluated by calculating the absorption cross-section. The result of the estimation here

is consistent with what we usually observe in the lab for the 780 nm laser going through
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a Rubidium vapor cell. For the 2-photon excitation system, an analytical method and

a numerical integration method are introduced here. The calculation is based on the

relationship between the complex susceptibility and the density matrix elements. The

analytical method developed by Adam’s Group in Durham is utilized to verify the self-

developed numerical method. The results of the two methods here are consistent with

each other, and the result proves a quasi Doppler-free configuration system can increase

the absorption of the 775 nm laser. This result encourages me to calculate the absorption

of lasers in a 3-photon excitation system in an exact Doppler-free configuration. For the 3-

photon excitation system, the idea of calculation is similar to that for a 2-photon excitation

system. The important part is to evaluate the 2D integration over the velocity space. The

result here shows that when the 1260nm laser is detuned, it is better to detect the 780 nm

laser than to detect the 775 nm laser since the absorption of the 780 nm laser is stronger

than that of the 775 nm laser. Also, figure 2.11, 2.12, 2.17, and 2.18 shows that the

exact Doppler-free configuration can present more insights of the 4-level system compared

to a quasi Doppler-free configuration. Also, some phenomena still need more work to be

done to obtain a reasonable explanation. For example, the absorption of 780nm and 775

nm laser in an exact Doppler-free configuration is weaker than that in a quasi Doppler-

free configuration (collinear configuration). This result shows that it may be hard to

experimentally detect the 3-photon excitation system in a Doppler-free configuration since

the length of interaction between the lasers and atoms is also set to be 12 cm for the

Doppler-free configuration. One possible alignment to increase the interaction length in

the lab is shown in the last figure in this Chapter.
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Figure 2.22: A possible alignment of 3 lasers for the Doppler-free configuration in a room

temperature Rb vapor cell.
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Chapter 3

Noise Reduction

3.1 Abstract

We need to reduce the noise of the FM signal so that we can have more bandwidth for

the feedback system. From doing this, we can get a similar level of signal size by using

relatively low laser power.

3.2 Analysis

Figure 3.1 is the configuration of devices for the laser frequency locking system applying

frequency modulation techniques. From Figure 3.1 we can see that there is shot noise

created at the photodetector and thermal noise produced at the input of all stages of am-

plifiers. The shot noise and the thermal noise produced before the first stage amplification

will be amplified together by the first stage amplifier; however, the noises produced after

the amplifier is 1
G

of the amplified noises, where G is the voltage gain of the first stage
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Figure 3.1: Frequency locking system.

Note: Orange parts are optical devices. Blue parts are electronic devices. Red lines are

laser beams
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amplifier. That means the noise created before the first stage amplification is dominant

when we consider the noise in the frequency modulation signal. Formerly in our group,

we used the ZFL-500-BNC coaxial amplifier [8] for the first stage amplification. The input

impedance of the ZFL-500-BNC amplifier is 50 Ω. The photodetectors detecting the fre-

quency modulation signal are connected to bias tees. The bias tees here will block the dc

part of the photocurrent and let the AC part (frequency modulation signal) pass through.

The AC current from the photodetector is of the order of 10−6A from the measurement.

That means a signal of the order of 10−4V will be generated. The current noise generated

from the photodetector will be amplified with the photocurrent at the same gain. Thus, the

value of the input impedance of the amplifier will not affect the current noise size compared

with the signal. Meanwhile, the thermal noise created at a resistor is proportional to the

square root of its resistance (see Eq. 3.3). Therefore, the larger the input impedance is, the

smaller the thermal noise compared with the signal is. For the transimpedance amplifier

in my case, the input impedance is 24000 Ω. (The determination of the transimpedance

gain will be explained in the next section.) That means the logical structure for the tran-

simpedance amplifier here will decrease the thermal noise compared with the signal size

by
24000√
24000
50√
50

= 21.98 times without considering the noise performance of the amplifier itself.

3.3 Description of the transimpedance amplifier

3.3.1 Configuration of a transimpedance amplifier

Figure 3.2 shows a typical design of a transimpedance amplifier that I apply. I choose the

input resistance to be 24000 Ω. From Ref. [17], the 3dB bandwidth can be determined by:
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Figure 3.2: A general transimpedance amplifier
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F−3dB =

√
GBWP

2πRFCS
, (3.1)

where the RF here is the resistance of the feedback resistor and CS is the intrinsic

capacity of the source (here is the photodetector). GBWP means gain bandwidth product.

In my case, the minimum bandwidth I need is 10MHz (frequency modulation fre-

quency). What is more the existent of a compensation capacitor, which will be introduced

later, will decrease the bandwidth of the transimpedance amplifier by some more when we

first determine the bandwidth by Eq. 3.1. Therefore, here I first choose the bandwidth

to be 20MHz to determine the transimpedance gain (24000 Ω) for stability consideration.

The capacitor parallel to the feedback resistor is called compensation capacitor that can

prevent the output signal from oscillation. The value of the compensation capacitor can

be decided by the formula: CF = 1
4πRFGBWP

(1 +
√

1 + 8πRFCSGBWP ) [18]. The role

of the resistor at the non-inverting input is to cancel the bias current from the inverting

and non-inverting inputs. The two capacitors parallel to the + and - power input are the

bypass capacitors that filter out the power supply noise. The 50Ω resistance at the output

is utilized to prevent the reflection from the transmission line if there is an impedance

mismatch between the transimission line and the next stage device.

3.3.2 Requirements for the op-amp for the transimpedance am-

plifier

For the modulation of the FM signal is 10 MHz, we need to choose a fast voltage-feedback

op-amp with enough Gain Bandwidth Product (the bandwidth of the opamp when the gain

is 1 V/V ) for frequency response and stability consideration. What is more, to reduce the

signal-to-noise ratio of the FM signal, we need to choose an op-amp with low noise density.
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Following the guidance of these requirements, 2 op-amps are selected to be the candidates.

They are MAX-4104 [19] and OPA-657 [20].

3.4 Noise estimation and comparison

To choose the most suitable op-amp for the transimpedance amplifier, the noise density

of the op-comps compared with the ZFL-500-BNC should be estimated. The noise in our

system most comes from two main sources: thermal noise and shot noise. The shot noise

arises from the randomness of discrete electrons flow (current). The shot noise is most

significant in the photo-detection stage, where the photoelectric effect happens. The shot

noise density can be calculated by [21]:

in = (2qIdc)
1
2 , (3.2)

where q is the charge of electrons or holes.

The thermal noise is also called Johnson noise. Any resistors no matter if it is connected

in a circuit will generate a noise voltage across itself. This noise voltage is just the thermal

noise. The thermal noise density can be calculated by [21]:

vrms = (4kRT )
1
2 , (3.3)

where k is the Boltzman constant and R is the resistance of the resistor. T is the

temperature if the resistor.

Thermal noise and shot noise are white noise source meaning that the noise is uniformly

distributed among the frequency domain.
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To compare the noise level of the amplifiers, we need to make sure that the noise

density is calculated at the same gain because it only makes sense to directly compare the

noise based on signals of the same signal level. In what follows, the noise of the ZFL-500-

BNC amplifier, as well as the transimpedance amplifier made of the two op-amps will be

calculated, and compared with each other.

3.4.1 Noise density of ZFL-500-BNC amplifier

Content in this part is basically following Ref. [1].

Figure 3.3: A configuration illustrates the relationship between NF and output noise of

an amplifier [1]. RS amd XS are the source resistance and reactance. k is the Boltzman

constant, and T0 is the temperature of the environment. G1 and G2 are the Gains of the

two amplifiers. The F1 and F2 are the noise factors of the two amplifiers.
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From the datasheet of ZFL-500-BNC, we can find the noise figure of the amplifier at

10 MHz is around 5.7 dB. The definition of the noise figure is:

NF = 10 logF. (3.4)

where the F, called Noise Factor [1] is defined as:

F =
SNRin

SNRout

. (3.5)

Also from the datasheet, the gain of the amplifier at 10 MHz is 22.1 dB, and the

definition of the gain is as below:

G = Pout/Pin. (3.6)

From Ref. [1], the equivalent noise power (thermal noise density) created from an

amplifier is:

equivalent power added = (F1 − 1)kT0. (3.7)

The noise created before amplification is the shot noise:

is =
√

2eIp = 4.953× 10−13 A/
√
Hz, (3.8)

where Ip is the photocurrent, and the power of this part of noise is:

ps = (is)
2R = 1.227× 10−23 W/Hz. (3.9)
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From Ref. [1], the power of the noise at the output of the amplifier is:

po = psG+ (F − 1)kT0G = 1.761× 10−18 W/Hz. (3.10)

The T0 here is the temperature at the input termination and we set it as 290 K.

The noise density represented in voltage is:

V0 =
√
P0R = 9.383nV/

√
Hz (3.11)

For the gain of the transimpedance amplifier chosen is 24000 Ω, we need to convert the

noise density in voltage here to that at the same gain:

Veo = Vo ×
24000Ω

50Ω×GV

= 354.08nV/
√
Hz, (3.12)

where GV = Vout/Vin.

3.4.2 Noise density of the transimpedance amplifiers

The information can be utilized to calculate the noise density of the transimpedance am-

plifier from the datasheet is the input current noise density and the input voltage noise

density. Here we take Max-4104 op-amp as an example and present the noise density

calculation result of OPA-657 later on.

The input voltage noise density of Max-4104 is 2.1 nV/
√
Hz and the input current

density is 3.1 pA/
√
Hz .

From Ref. [22] , the noise density from the output of the transimpedance amplifier

after amplification can be calculated as:
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vo =RF [(vn/RF )2 + (in)2 + (is)
2 + 4kT/RF ]1/2

=24000Ω× [(2.1× 10−9(V/
√
Hz)/24000Ω)2 + (3.1× 10−12(A/

√
Hz))2

+ (4.953× 10−13(A/
√
Hz))2 + 4× 1.38× 10−23J/K × 290K/24000Ω]1/2

=77.88nV/
√
Hz.

(3.13)

The noise density here is around one fifth of that of the ZFL-500-BNC amplifier.

For OPA-657 op-amp, the typical input noise density at 10MHz is 4.8nV/
√
Hz, and

the input current density is 1.3fA/
√
Hz. Apply the same method determining the tran-

simpedance gain for Max-4104, and here I set the feedback resistor as 56200 Ω. With this

information, the output noise density of the transimpedance amplifier can be estimated as:

vo =RF [(vn/RF )2 + (in)2 + (is)
2 + 4kT/RF ]1/2

=56200Ω× [1.7× 10−9(V/
√
Hz)/56200Ω)2 + (2.4× 10−12(A/

√
Hz))2

+ (4.953× 10−13(A/
√
Hz))2 + 4× 1.38× 10−23J/K × 290K/56200Ω]1/2

=41.2nV/
√
Hz.

(3.14)

For the transimpedance amplifier made of MAX-4104 op-amp, the noise density at the

same gain is: vo = 77.88nV/
√
Hz × 56200

24000
= 182.37nV/

√
Hz.

From theoretical estimation, it seems that OPA-657 op-amp is a more appropriate

candidate for the transimpedance amplifier.

3.4.3 Experimental measurement the noise of the amplifiers

In figure 3.1, the IF port the of the mixer is connected to a low pass filter whose -3 dB

bandwidth is 3.5 MHz. A mixer mixes an RF input signal with a signal from LO inputs (in
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our case is the 10 MHz modulation signal) to create an output signal from the IF output.

This output signal consists of 2 frequencies, FLO + FRF and |FLO − FRF |. The noise from

any frequency domain summed with FLO will be higher than 3.5 MHz and cannot pass the

low pass filter. However, the frequency difference between the noise coming from 6.5 MHz

to 13.5 MHz and the 10MHz LO input signal will be lower than 3.5 MHz. That means

the noise from 6.5 MHz to 13.5MHz will be carried on to the FM signal by the effect of

the mixer and the low pass filter. Since the noises calculated here are all white noises, the

noise density is the same in any frequency region.

Following is the setup that I use to measure the noise of the ZFL-500-BNC and the two

transimpedance amplifiers:

Figure 3.4: Configuration of devices for noise measurement. Here PD means photodetec-

tor. TIA means transimpedance amplifier. High gain means a high gain amplifier.

The bandpass filter measures the noise in the 8.9 MHz to 12.7 MHz (3 dB loss) frequency

domain. The amplifier after the bandpass filter is a 30 V/V inverting amplifier.
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Before performing the measurement, we need to estimate the output signal (noise) size

of each amplifier in the measurement setup.

For ZFL-500-BNC, the estimation is as following:

Vo =vn ·
√
f(3dB) ·GV

=9.37× 10−9nV/
√
Hz × 30×

√
3.8× 106Hz

=0.580mV.

(3.15)

After convert to the same gain of 24000 Ω, the noise size is:

Vo(24000Ω) = Vo ·
24000

636
= 21.89mV, (3.16)

and for the transimpedance amplifier made of MAX-4104 op-amp, the expected noise

size is:

Vo =vn ·
√
f(3dB) ·GV

=77.88× 10−9nV/
√
Hz × 30×

√
3.8× 106Hz

=4.55mV.

(3.17)

Last for the transimpedance amplifier made of OPA-657 op-amp, the estimated output

noise size is:

Vo =vn ·
√
f(3dB) ·GV

=41.2× 10−9nV/
√
Hz × 30×

√
3.8× 106Hz

=2.41mV.

(3.18)
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From the estimation, I expect that the lowest noise size will come from the tran-

simpedance amplifier made of OPA-657 op-amp. However, the experimental data shown in

Table 3.1 does not fit our expectation. One thing needs to be noticed is that from Ref [21],

the rms noise is from 1
8

to 1
6

of the peak-to-peak value that we measure from the screen of

the oscilloscope. That is where the range of value in row Vrms comes from.

Amplifiers Voltage type Experimental Result Expectation Value

ZFL-500-BNC Vpp 3 mV

Vrms 0.375–0.5 mV 0.580 mV

to the same G 14.15–18.86 mV 21.89 mV

TIA(MAX-4104) VPP 20 mV

Vrms 2.5–3 mV 4.55 mV

TIA(OPA-657) VPP 50 mV

Vrms 6.25–8.33 mV 2.41mV

Table 3.1: Comparison of measured and expected noise levels

From Table 3.1, the results of experimental measurement almost fit the expectation

value for the first two types of amplifiers. Observation error from the oscilloscope is ±20%.

Also, the ratio of the noise between the ZFL-500-BNC amplifier and the transimpedance

amplifier made of the MAX-4104 op-amp (18.86
3

= 6.29) fits our expectation (21.89
4.55

= 4.81),

and the noise performance of Max-4104 op-amp is even better than my estimation. The

noise of the OPA-657 measured in the experiment is 3 times higher than the estimation

value which is also higher than the Max-4104. Thus, we decide to use the Max-4104 op-amp

for the transimpedance amplifier.

Besides this two op-amps, I have also tried an op-amp LT6230 [23] from Linear Tech-

nology. The situation is similar to that of OPA-657. The noise performance is better than
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that of Max-4104 from the datasheet; however, the noise measured from the experiment is

higher than that shown on the datasheet.

3.4.4 packaging the circuit into a box

The last step of making this transimpedance amplifier is to package it into a metal box that

can isolate the transimpedance amplifier from some of the interference coming from the

external environment. To save the -5V power supply, I modify the bipolar transimpedance

amplifier to a unipolar one. The modification does not affect the noise performance, which

has been checked by experimental measurement. According to the size of the PCB board

[24] for the circuit, I choose to use the box HM157-ND from Hammond Manufacturing

[25]. To stably put the board into the box, I change the original SMA connectors to longer

ones so that I can add washers and nuts on it. Figure 3.5 shows the circuit in the box.
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Figure 3.5: A picture indicating how the box is machined and the how the circuit is

packaged

3.5 Conclusion

In this chapter, the transimpedance amplifier designed and soldered by myself decreases

the noise in the frequency modulation signal by 5 times in power (25 times in voltage).

Since part of the laser power is utilized for the frequency locking and this transimpedance

amplifier decreases the laser power needed in this part by 5 times, more laser power can

be utilized to perform the excitation. What is more, the amplifier can be used to amplify
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other AC current signal around 10MHz in the lab.
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