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Abstract

Understanding interactions among words is fundamental for natural language applications. How-

ever, many statistical NLP methods still ignore this important characteristic of language. For

example, information retrieval models still assume word independence.

This work focuses on the creation of lexical affinity models and their applications to natural

language problems. The thesis develops two approaches for computing lexical affinity. In the first,

the co-occurrence frequency is the calculated by point estimation. The second uses parametric

models for co-occurrence distances.

For the point estimation approach, we study several alternative methods for computing the

degree of affinity by making use of point estimates for co-occurrence frequency. We propose two

new point estimators for co-occurrence and evaluate the measures and the estimation procedures

with synonym questions. In our evaluation, synonyms are checked directly by their co-occurrence

and also by comparing them indirectly, using other lexical units as supporting evidence.

For the parametric approach, we address the creation of lexical affinity models by using two

parametric models for distance co-occurrence: an independence model and an affinity model. The

independence model is based on the geometric distribution; the affinity model is based on the

gamma distribution. Both fit the data by maximizing likelihood. Two measures of affinity are

derived from these parametric models and applied to the synonym questions, resulting in the best

absolute performance on these questions by a method not trained to the task.

We also explore the use of lexical affinity in information retrieval tasks. A new method to

score missing terms by using lexical affinities is proposed. In particular, we adapt two probabilistic

scoring functions for information retrieval to allow all query terms to be scored. One is a document

retrieval method and the other is a passage retrieval method. Our new method, using replacement

terms, shows significant improvement over the original methods.
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Chapter 1

Introduction

The increase of computing resources in the last decades, both in terms of data availability and in

processing power, has had a great impact on natural language processing (NLP). It has created

possibilities for empirical research using statistical methods and posed new challenges for existing

methods. From Shannon’s idea of language as a stochastic process [93], the area of statistical

natural language processing has flourished as a promising approach to solving natural language

problems, particularly due to the use of these abundant resources. Many state-of-the-art methods

in NLP are statistical in nature, including the successful language translation models; statistical

parsing and part-of-speech tagging; speech recognition; and many other tasks, including machine

learning applied to language problems.

There are other alternatives to NLP, notably the knowledge-based or rationalist approach,

mostly expressed in linguistic terms through the ideas laid out by Chomsky [17]. According to

Chomsky, the statistical method is not enough to address syntactic problems and facets since, as

he claims, humans have a predisposition to language and possess mental structures suitable for

language acquisition and use, a feature that machines do not have. While Chomsky mainly focuses

on the syntactic level, the lexical-semantic aspect of the language is addressed in the knowledge-

based approach by the use of dictionaries and thesauri. The aim of this thesis is not to discuss

the advantages or disadvantages of either approach, as advocating texts exist for both [1, 17, 68].

1



CHAPTER 1. INTRODUCTION 2

Rather, the ideas in this work are statistical in nature and rely on the presence of large quantities

of linguistic data. Moreover, we do not make statements concerning grammatical correctness of

sentences, the main criticism of Chomsky with regard to the statistical approach.

As language is manifested in different modes, such as sounds, text and images, there exists a

layer of acquisition, perception and synthesis that goes along with its processing. In this work

we do not address these issues. Instead, we approach language by using written text, in digital

format. Further, we do not try to generate text, although models presented in this work could

possibly be adapted to do so, but use existing text to enrich the interaction between human and

computers by improving the processes that run on the machine side.

In natural language texts there are many repetitions of word sequences, particularly when

these sequences are limited to few words. This idea is one of the main observations behind the

work of Shannon [93]. While studying the theoretical limits of communication over channel,

Shannon proposed that the message content could be viewed as a statistical distribution of either

letter or word sequences, i.e. a language model, and that by observing the empirical distribution

of a message one can estimate the bounds for data transfer based on the redundancy within the

message. Thus, statistical models provide approximations to language.

One challenging problem derived from Shannon’s idea is the fact that it relies on analyzing

the data to estimate a model before using it. While in some cases the message is known ahead of

time, and thus available for pre-processing, in many others this is not the case. The fact that the

data may not be available for model creation prior to its use can be viewed as a shortcoming, but

the problem can be minimized by using training data which may or may not reflect the actual

data. However, the larger the training data, the more accurate the model and possibly the more

general as well. Since large corpora are now widely available, we can make better estimations to

create these statistical models more precisely.

Another challenge resulting from the application of Shannon’s statistical approach as a model

of natural language is that the promising models, the so called higher-order models, pose com-

binatorial problems. In a first-order word approximation, the model solely addresses words in-

dividually. The statistical distribution is multinomial and the number of possible alternatives is
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equal to the size of the vocabulary. In gigabyte-sized collections, there may be more than million

unique words. For a second-order word approximation, any of these million unique words can be

sequentially paired with any other, including itself. The upper bound for the model moves from

a million to a trillion alternatives. As noted by Shannon, the higher the order of the model the

closer is the approximation to language; thus it is desirable to pursue these models.

Moving to higher-order approximation models has an immediate side-effect: a huge number

of pairs will not be seen in practice, even in large corpora, simply because certain words do not

occur close to each other in the vocabulary. Thus, it is necessary to find alternatives to maximize

the information provided by the training data and to create mechanisms to handle unseen pairs.

A common solution uses smoothing and discounting techniques to assign a non-zero probability

to unseen pairs [15].

This thesis takes a different approach for higher-order models, in particular for second-order

models. Instead of using only adjacency, we use co-occurrences at farther distances, which also

provide more efficient way to use the training data. As Shannon’s higher-order models are se-

quential, syntactical constraints tend not to be violated, as long as the training data used to

build the model does not contain ungrammatical sentences. This approach does not allow deeper

semantic relationships to be captured, since related words, such as synonyms, are not adjacent in

many cases. One can relax the sequential constraints, allowing pairs of words to be modeled in

positions other than adjacency. This relaxation will allow these other types of semantic relation-

ships to be included in the model but may violate syntax constraints. It is a compromise between

structuralism and semantics.

It has been noted that flexing the model beyond limited sequences of adjacent words, to

incorporate distance, can be beneficial to sequential language models [3, 89]. Furthermore, the

existence of models with semantic relationships would benefit many natural language applications

since in practice these relationships have been used in an ad hoc way in many applications,

including topic and text segmentation [41, 52], query expansion [103], machine translation [96],

language modeling [31, 114], and term weighting [47]. For these applications, researchers are

interested in capturing language patterns in general but those that co-occur in close proximity
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more often than expected by chance are of special interest, for example, “new” and “york”,

“accurate” and “exact”, and “gasoline” and “crude”. These pairs of words represent

distinct lexical-semantic phenomena, and their components have mutual expectancy [42]. We call

lexical affinity the tendency of any group of lexical units (words or phrases) to occur together

frequently.

Lexical units with high affinity tend to co-occur frequently. As consequence, for particular pairs

the repeated co-occurrence gives form to patterns. These patterns vary depending on the type of

affinity. We consider the following lexical affinity types: grammatical constructs, e.g. “due to”;

semantic relations, e.g. “nurse” and “doctor”; compounds, e.g “New York”; and idioms and

metaphors, e.g. “dead serious”. All of these different types of affinities share high co-occurrence

frequency of their constituents. The patterns among these lexical affinity types are not uniform, for

instance, idioms are fixed expressions or templates where few words can be included or replaced,

e.g. “kick the bucket” or “walk a mile in (my/her/someone’s/our/etc..) shoes”. The

pattern of compounds is simpler, variable-sized sequences of adjacent lexical units, e.g. “United

States” and “United States of America”. The patterns of grammatical constructs may take

different forms, such as those in compounds or interspaced sequences, e.g. “The lawyers looked

over the papers” and “They looked them over carefully”. Semantic relation patterns are

much more flexible, they can occur in syntactic constructs, e.g. “Our nation-wide team of car

tyre specialists”, or as an idiom, e.g., “The Bread and Butter Theater Company” or even

have both lexical units co-occurring together with a reasonable number of words between them,

such as “lexical” and “grammatical” in this paragraph.

1.1 Contributions

In this work we address the development of lexical affinity models and their application to NLP. We

aim to build models to capture single words and phrases as units in these lexical affinity relation-

ships. Since longer phrases tend to be relatively infrequent, it is desirable to draw statistics from

large corpora, and thus efficient algorithms that scale well are needed to estimate co-occurrence
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frequencies at variable distances. We show that, by benefiting from the vast amount of text now

available, these models perform well in practice. In particular, the main contributions are:

1. New frequency estimates for lexical units’ co-occurrence (point estimation)

Two new estimators for co-occurrence are presented. In the first, close co-occurrences are

considered to be of greater importance and the frequencies are adjusted to reflect that

hypothesis. In the second one, the frequencies are taken from documents, but to avoid bias

for long documents, the co-occurrences are discarded if the lexical units occur far from each

other. The normalization procedures for these new estimators are also presented.

2. A new framework for computation of lexical affinity models

We present a framework for the fast computation of lexical affinity models. It is composed

of an algorithm to efficiently compute the co-occurrence distribution between pairs of lexical

units, an independence model, and a parametric affinity model. In comparison with previous

models, which either use arbitrary windows to compute similarity between words or use

lexical affinity to create sequential models, these new models are intended to capture the

co-occurrence patterns of any pair of words or phrases at any distance in the corpus. The

framework is flexible, allowing fast adaptation to applications, and it is scalable to terabyte-

sized collections.

3. New methods for answering multiple-choice synonym questions and fill-in-the-blank ques-

tions

We apply lexical affinity models to answer natural language tests. In particular, sets of

synonym questions are answered using existing lexical affinity models and the two new

methods. The first new method uses the skew of the gamma distribution, which is used

to fit empirical data. The gamma distribution is well suited for skewed data and degree of

skew can be used successfully to determine synonymy. The second method compares through

log-likelihood the empirical distance distribution of lexical units against the independence

model. The log-likelihood is used to answer both multiple-choice synonym and fill-in-the-

blank questions. The statistics used come from a terabyte corpus, and our results are
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encouraging.

4. A new method to use lexical affinity in document and passage retrieval

We propose a new method to address the mismatching vocabulary problem, expanding

original query terms only when necessary, by complementing the user query for missing

terms while scoring documents. This method allows related semantic aspects, calculated

through lexical affinity, to be included in a conservative and selective way, thus reducing

the possibility of query drift. Our results using replacements for the missing query terms in

modified document and passage retrieval methods show significant effectiveness improvement

over the original ones.

1.2 Thesis Organization

The remainder of this work is organized as follows. Chapter 2 presents related work and demon-

strates the successful use of large corpora in natural language applications. In Chapter 3, we

investigate alternatives to measure co-occurrence frequencies of lexical units in close proximity;

we refer to the models based on these frequencies as the point estimation models. As co-occurrence

frequency is affected by how common its components are, it is necessary to take individual frequen-

cies into account. We also investigate many different functions to compute affinity in Chapter 3.

A new approach to lexical affinity models is proposed in Chapter 4, where we compute the whole

distance distribution of co-occurrences to build parametric models. We propose a parametric

independence model and a parametric model for lexical affinity. The accuracy of these models

is related to the estimation of their parameters; we use a large corpus for the estimations and,

for efficient computation, we provide a fast algorithm to compute the distribution. We apply the

new affinity models to language tests in a comprehensive evaluation of estimation procedures and

measures which we present in Chapter 5. In Chapter 6 we present our new method to score miss-

ing terms in information retrieval tasks. We modify a passage retrieval method and a document

retrieval method to allow replacement of missing terms using lexical affinities.
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Chapter 2

Background and Related Work

2.1 Lexical Affinities

Lexical affinities are characterized by co-occurrence patterns that can be measured in various

forms. We summarize the existing work into three models according to the type of frequency

estimates used: distance models, functional models and document models.

Distance models measure the co-occurrence of lexical units both at adjacent and interspaced

positions. A particular distance model used to capture patterns in language is the n-gram model.

These models correspond to Shannon’s n-order approximations to language and allow us capture

patterns comprising sequences of adjacent lexical units. This provides a model of lexical affinity

in the form of compounds, such as noun phrases, or specific grammatical constructs, such as “the

bug” (determiner followed by noun) . In n-gram models, the strength of affinity is given by the

conditional P (w|H) (i.e., the probability of seeing w after a sequence of one or more wordsH), and

it is sensitive to the sequential order of the lexical units. Other non-n-gram models also explore

sequential information, such as those proposed by Kita et al. [57] and Frantzi et al. [43], who use

a cost criterion to evaluate affinity of lexical unit compounds, such as proper names and noun

phrases. Dunning [36] selects word bigram pairs with high affinity using log-likelihood instead of

conditional probability. Kiss et al. [56] also use the log-likelihood ratio to identify abbreviations

8
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in word sequences.

These sequential models are rather limited and fail to capture a broader set of relationships,

since many of those are characterized by interspaced lexical units. Even though distance infor-

mation has been incorporated into language models [3, 77, 89], allowing interspaced lexical units

to be taken into account, the end product is a model for sequences of adjacent words, i.e. n-gram

models. The same interspaced lexical units used to create the model cannot be directly inferred

from it.

One alternative to pure sequential models has been extensively used in practice: the co-

occurrence frequency between two words is measured by the number of windows of a given size

that contain both words. The co-occurrence frequency and marginals are used to compute the

degree of affinity. We refer to this model as the window model [20, 12, 100, 98], a special case

of distance model. This approach to estimate the co-occurrence frequency is justified on the

basis that high affinity causes lexical units to occur close together. However, the choice of the

maximum distance is somewhat arbitrary, for instance in the previous paragraph exactly eight

words separate language from lexical units, while in the preceding paragraph the same lexical

units are separated by fifteen words1. Examples of distance models include the work of Church

and Hanks [20], who use windows of five words to count co-occurrence and later apply mutual

information to measure affinity between pairs of words. Turney [100] uses windows of ten words

to count pairs of lexical units to find best synonym alternatives in TOEFL tests.

Another approach to modeling patterns of lexical affinities are the functional models. The

syntactic information of the lexical units is recovered and the lexical-syntactic information is used

to compute co-occurrence frequencies [46, 45, 85, 63, 96, 109]. For this approach the syntactic

categories must be specified in advance and the co-occurrence frequency is the number of times the

lexical units co-occur in those syntactic functions, e.g. drink as verb and water as object. As in

the window model, the co-occurrence frequency is used along with the marginals to compute the

degree of affinity. Unfortunately, there are many lexical units that are syntactically ill-formed,

e.g. “by and large” and “of course” [74]. Also, lexical units composed by phrases are

1and by one word in this paragraph
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hard to specify for a syntactic category. Another shortcoming of this approach is that syntactic

information is recovered by parsing, which affects its scalability, although shallow parsing is used as

a compromise between speed and parsing information delivered. However, even shallow parsing

can be expensive. In a recent work, Pantel et al. [79] estimated that a terabyte corpus would

require a part-of-speech tagger to run for 125 days and a deep syntatic parser to take 388.4

years to complete its task. Some examples of functional methods include Grefenstette [46], who

uses a dictionary-based shallow parsing to identify pairs of nouns and adjectives, subject and

objects, and nouns modified via preposition. Lee [63] uses a part-of-speech tagger to identify

nouns as heads of direct object of verbs, and later applies different affinity measures. Evert [37]

proposes a new significance test to analyze association measures applied to adjective-noun pairs

and prepositional-phrases as verb attachments.

A third approach, the document model, is commonly used in information retrieval. The co-

occurrence is measured by the number of contexts in which the words appear together. The

context is a linguistic unit such as a sentence, a paragraph or, as usual in information retrieval, a

document [64, 82, 110, 98]. It often happens that a document is used to measure co-occurrence, and

when that is the case, there are several factors that need to be addressed. For instance, document

size and nature play an important role [87] and each document is seen as a context unit in which

both lexical items occur. A document with a larger vocabulary will contain more pairs. For the

measure of strength, the individual marginals are not estimated directly from the corpus, but in

the number of documents that contain each individual lexical item in consideration. Examples

are found in the Information Retrieval literature, such as the early work of Lesk [64], where

associated words, i.e., words co-occurring in documents, are used for query expansion. Peat and

Willett [82] investigate the usefulness of intra-document word co-occurrence and its limitations.

Xu and Croft [110] extract terms for pseudo-relevance feedback from passages previously retrieved.

Related terminology, with its origins in linguistics, for lexical affinities is given in [34, 48, 84]. A

two-level model is presented, composed of syntagmatic and paradigmatic levels. The syntagmatic

level is comprised of relationship types between lexical units selected by their syntactic roles (e.g.

“wash” as verb and “hands” as noun). The paradigmatic level includes relationships other than
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syntagmatic, such as synonyms and antonyms. The syntagmatic level is similar to the functional

model defined earlier. The paradigmatic is different from the models defined above, for instance

the distance model allows syntactical relationships to be captured (e.g. at adjacent positions).

However, the main difference is that the two-level model, syntagmatic and paradigmatic, is used

to categorize the relationships, whereas the functional, distance and document models are used

to measure co-occurrence, with no regard to the relationship between its components.

Along with frequency estimates, the strength of the lexical affinities is calculated by some func-

tion of divergence between marginals and expected joint, and the actual observed joint frequency.

There are many such functions or measures of affinity and in general their choice is ad hoc. Ex-

amples include the use of log-likelihood [36, 96], cosine and dice coefficients [82, 64], L1-norm [84],

Z-score [103], pointwise mutual information [20], and χ2 [11] among others. To address this issue,

comparative evaluations have been proposed in the literature for specific phenomena. Evert and

Krenn [39] evaluated log-likelihood, t-test, χ2 and mutual information for syntagmatic relation-

ships between adjective-noun pairs and preposition-noun-verb triples. Thanopoulos et al. [99]

evaluated t-test, χ2, log-likelihood ratio and pointwise mutual information to compare lexically

associated bigrams. Pearce [81] evaluated Z-score, pointwise mutual information, cost criteria,

log odds ratio by applying collocations formed from bigrams. Lee [63] evaluates Kullback-Leibler

divergence, Jensen-Shannon, skew divergence, Euclidean distance, cosine measure, L1-norm, con-

fusion probabilities and τ -coefficient as alternatives to distribute probability mass in a back-off

language model.

2.2 Collocation

Collocation is an alternative term to describe the lexical phenomena that interest us in this work.

Unfortunately, this term is overloaded by many distinct definitions in the literature [42, 18, 5, 57,

74, 68]. These definitions handle the types and characteristics of lexical affinity from a linguistic

point of view.

Firth [42] states that the collocation of a word or a “piece” is not to be regarded as “mere
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juxtaposition, it is an order of mutual expectancy. The words are mutually expectant and mutually

prehended.” He considers colligations as a separate phenomena, driven by syntactic function of

the lexical units. Thus, Firth follows the syntagmatic and paradigmatic approaches to explain

lexical relationships.

Choueka [18] defines collocation as “a sequence of two or more consecutive words, that has

characteristics of a syntactic and semantic unit, and whose exact and unambiguous meaning or

connotation cannot be derived directly from the meaning or connotation of its components”. In

Choueka’s work there is a concern for syntactic structure since he assumes that collocations are

made of consecutive words. In practice, Choueka uses sequences of 2-6 words; the types of lexical

affinities captured by these patterns include compounds, some sequential idiomatic expressions

and foreign-language phrases.

Benson [4, 5] studies the use of collocations in dictionaries from a lexicographer’s point-of-view.

His definition of collocation is somewhat vague: “arbitrary and recurrent word combination”. As

pointed out in his work, there are no clear rules on how collocations are created; it is one of the

results of an arbitrary process of repetitive usage of a set of words. Another problem, he points

out, when dealing with collocations, is that there are “many instances when the dividing line

between collocations and free combinations is not clear”.

Kita [57] defines collocation as “a cohesive word cluster, including idioms, frozen expressions

and compound words”. As with Choueka, Kita is particularly interested in sequential expressions.

Moon [74] thoroughly examines different types of natural language expressions, using the term

collocation to describe “simple co-occurrence of items”, and anomalous collocations to designate

some special types of expressions. As pointed out by Moon, the nature of anomalous collocations

is “syntagmatically and paradigmatically aberrant”. She further classifies collocations into three

kinds, according to the phenomena they describes: 1) semantic fields, e.g. “jam” and other

food-related words; 2) association with a member of certain class or category, e.g. “rancid” and

“butter” and 3) syntactic (colligations), e.g. “to be” and “one of”.

These definitions have one or more of the following characteristics:

• Non-compositionality
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The meaning of the co-occurring lexical units can not be derived by taking the meaning of

its constituents in isolation, e.g. “raining cats and dogs”.

• Non-substitutability

The expression is fixed and the substitution of one of its constituents would generate a

meaningless expression. For instance, it is not possible to replace “United” by “Combined”

in “United States of America”

• Institutionalization

The collocation is consistently used by a group of speakers. The particular meaning of that

collocation arises from repetitive use in some context. Idioms and slang are probably the

best examples, e.g. “my bad”.

• Two or more words

At least two lexical units compose the collocation. Single words may have multiple meanings

but they are not considered collocations, instead they are said to be ambiguous or polysemic.

• The expression forms a syntactic unit on its own

This is the syntactic counterpart of non-compositionality, i.e. just as the meaning is not the

sum of the parts, the syntactic function is not predictable from its components either. For

instance,“by and large” is a sentence adverbial.

• Lexicogrammatical fixedness or non-modifiability

The addition of a term or grammatical transformation creates an invalid expression. For

example, the expression “raining white cats and black dogs” would not be expected

by an English speaker.

• Sequentiality

Sequences of words that have a non-compositional meaning and are institutionalized are

normally considered to be collocations. Examples include “United States of America”

and “rancid butter”.
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• Non-translatability

Collocations are language dependent. Similar expressions may exist in other languages

but they would probably be composed of different words. This is a side-effect of non-

compositionality, since the words do not yield the meaning. As consequence, word transla-

tions would be meaningless. E.g. the translation of “kick the bucket” would not have

the same meaning in French if literally translated.

• Collocational degree

Some collocations are more evident than others. There is a fuzzy limit on where the com-

binations of words are collocations or not.

Note that not all the definitions agree with the list above. Furthermore, some characteristics

or features are not clear or easily observable. For instance, many would agree that “United

States” is a collocation, however it is literally translatable to French (“Etats-Unis”) and to

Spanish (“Estados Unidos”). Another example of collocation that allows translation is “black

sheep”, which can mean outcast and has the same meaning in the German “schwarzes Schaf”.

Because of the disagreement on the definition of collocation, it becomes hard to use the term

without violating some of the definitions above. We prefer the term lexical affinity, which allows

the relationship of lexical items to be captured in any kind of linguistic relationship. Therefore

the term collocation is not used in this work.

2.3 Semantic Similarity and Lexicons

Another related subject is that of semantic similarity, since some lexical units with high affinity

will also be semantically related. However, given that lexical affinities can also be used as basis for

other models, such as a statistical language model, then the overlap between semantic similarity

and lexical affinity is not complete. Nonetheless, some experiments performed in Chapter 5

can be performed using more traditional semantic similarity approaches. One such approach for

semantic similarity is through the use of knowledge bases, such as dictionaries, thesaurus and



CHAPTER 2. BACKGROUND AND RELATED WORK 15

other lexicons. These knowledge bases are normally created manually, or semi-automatically, and

as such are expensive to build and to extend. These knowledge bases tend to have high quality

information contained in them, however they also tend to be incomplete. In particular, Benson [5]

discusses the lack of common agreement on how and what to include in collocation dictionaries.

WordNet is a popular online lexicon manually created with some semantic relationships, such

as synonymy, is-a, and part-of [40]. It is used in many different natural language related appli-

cations, including question answering, information retrieval and word sense disambiguation. It is

structured as an hierarchy of concepts, where the concepts are connected via relationships. These

connections create a network that can be explored in many distinct forms. Some concepts glosses

that illustrate how the concept is used in the sense described by the entry. A word is listed as

many times as the number of senses assigned to it.

Patwardhan et al. [80] summarize some popular approaches used to explore the WordNet

structure2. For two given words b and d, the distinct semantic similarities are calculated as

follows:

• Lesk

Compute the overlap between glosses of the two words. Since glosses are brief, there is a

good chance of a zero overlap. In Patwardhan et al. [80] this measure has been extended to

include the glosses of other words occurring close to b or d.

• Leacock-Chodorow

Compute similarity by path distance between b and d. However, it is only applicable to

nouns.

• Resnik

This measure uses the information content of concepts − logP (concept). The concept used

is the lowest common subsumer of b and d, which explores the hierarchical aspect of wordnet.

2implementation has been made available as a module for Perl WordNet::Similarity, available at
http://www.d.umn.edu/ tpederse/similarity.html
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R(b, d) = ic(lcs(b, d)), where ic stands for information content and lcs for lowest common

subsummer.

• Jiang-Conrath

This measure is related to Resnik’s. It also uses information content of the lowest com-

mon subsumer, but subtracts it from the information content of b and d. JC(b, d) =

1
ic(b)+ic(d)−2·ic(lcs(b,d)) .

• Lin

Related to Jiang-Conrath, but using harmonic mean instead: Lin(b, d) = 2·ic(lcs(b,d))
ic(b)+ic(d) .

• Hirst-St.Onge

Also explores path length but allows for change in the direction. It works as a search in the

network and uses 2 parameters: PW = C − pathlength − (k · changesindirection), where

C and k are parameters.

Note that WordNet contains adjectives, adverbs, nouns, and verbs. Also, many words are cross-

listed in these parts-of-speech, thus the use of WordNet implies also the use of some syntatical

information.

2.4 Large Corpora

In order to model language phenomena statistically, a large body of examples is required. Ideally,

the whole set of sentences composing the language would be used, but that is clearly impossible

given the infinite number of natural language sentences. The statistical method addresses this

problem by creating a inference model from a sample. This sample is called the corpus in statistical

natural language processing. The corpus needs to be representative of the aspects of the language

under study [9], and balanced (i.e. it needs to address all aspects in the same proportion to

the language). Other aspects on the use of corpora for linguistics studies can be found in the

literature [65, 68, 70, 71, 74].
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The inference process is achieved by creating estimators for each parameter in the chosen

model. For instance, the word “the” is normally the most frequent in any English text. It

occurs 26, 830, 535 times in the AQUAINT corpus, composed of newswire articles from 1998-

2000 and distributed by LDC3. This corpus contains 463, 003, 511 token occurrences. A common

estimator, the maximum likelihood estimator (MLE) would assign a occurrence probability of

26, 830, 535/463, 003, 511. Therefore, the MLE would predicts that the word “the” is expected

to occur in 5.79% of an English text.

Estimators have properties, such as efficiency, unbiasedness and consistency. An estimator,

θ̂, is said to be unbiased if the estimation it produces is equal to the real parameter, θ, from

the population, i.e. E(θ̂) = θ. The bias is then the amount of deviation of the estimation:

B(θ̂) = E(θ̂)− θ. However, the error of the estimator is not only given by its bias. If we take the

expected mean square error of the estimator:

MSE (θ̂) = E[(θ̂ − θ)2]

= E[(θ̂ − E[θ̂] + E[θ̂]− θ)2]

= E[(θ̂ − E[θ̂])2 + 2 · E[(θ̂ − E[θ̂]) · (E[θ̂]− θ)] + (E[θ̂]− θ)2

= E[(θ̂ − E[θ̂])2] + (E[θ̂]− θ)2

= Var(θ̂) +B2(θ̂)

we see that the error is also related to the variance of the estimator. Ideally, the variance and

bias are small, in which case the estimator is more efficient.

The benefit from using a larger corpus is best seen in the property of consistency. A consistent

estimator θ̂ converges to the real parameter θ as the size of the corpus increases, i.e.,

lim
N→∞

P [|θ̂ − θ| > ε] = 0,∀ε > 0 (2.1)

3http://www.ldc.upenn.edu/
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which is also known as the weak law of large numbers. This law can be derived from the bounds

in probabilities given by Tchebyshev’s inequality:

P [|x− µ| ≥ c] =
σ2

c2
(2.2)

which follows from Markov’s inequality:

P [u(x) ≥ c] ≤ E[u(x)]

c
(2.3)

then

P [|x− µ| ≥ c] = P [(x− µ)2 ≥ c2]

≤ E

[

(x− µ)2
c2

]

=
σ2x
c2

The weak law of large numbers can be derived as follows: given a set of random variables X1, .., Xn

independent and identically distributed with the same mean µ and variance σ2 then we have

X =
X1 + . . .+Xn

n
=
n · µ
n

= µ

and,

σ2
X

= Var

(

X1 + . . .+Xn

n

)

= Var

(

X1
n

)

+ . . .+Var

(

Xn

n

)

=
σ2

n2
+ . . .+

σ2

n2

=
σ2

n
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thus, using Tchebyshev’s inequality,

P [|x− µ| ≥ c] ≤
σ2
X

c2

≤ σ2

n · c2

Thus, limN→∞ P [|θ̂ − θ| > ε] = 0

Natural language problems are normally complex in nature and the underlying mental pro-

cesses are often not sufficiently understood to be modeled. A common strategy of solving NL

problems is to use heuristics. In particular, when the statistical approach to natural language

problems is used along with these heuristics, it is common to use consistent estimators, such as

the maximum likelihood estimator, as one of the data sources in the problem solution.

2.4.1 Large Corpora in Practice

We illustrate the effect of a large corpus applied to factoid Question Answering (QA), a natural

language problem that has received increasing research attention in the recent years [104, 105,

106, 107, 108]. The problem is defined as follows: given a set of questions in natural language,

find the answers in a target corpus. No other information is supplied; thus the systems have to

handle natural language directly. From a statistical perspective, there is no estimator for this

problem, which is too broad and susceptible to idiosyncrasies of the language.

A recent trend in QA and/or natural language problems is to use the World Wide Web as

a corpus to address many natural language problems [2, 53, 58, 24, 86, 91]. It is immense, free

and instantly available, as Kilgarriff and Grefenstette describe in the Computational Linguistics

journal special issue on the Web as a Corpus [54]. We use a terabyte of HTTP, crawled from

the general Web in mid-2001, as the corpus in this QA experiment. Starting with a seed set

of URLs representing the home pages of 2392 universities and other educational organizations,

pages were gathered in breadth-first order with one exception: if a breadth-first ordering would

place an excessive load on a single host, defined as more than 0.2% of total crawler activity over
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a time period of approximately one hour, URLs associated with that host were removed and

requeued until the anticipated load dropped to an acceptable level. Pages at a given depth from

the seed set were crawled in random order. During the crawl, duplicate pages were detected and

eliminated, and do not form part of the final collection. A breadth-first ordering is known to

produce high-quality pages [75], and we expected the crawl to contain the answer to many simple

factual questions.

A common approach for QA, as taken, e.g., by Clarke et al. [24], Kwok et al. [58] and Brill

et al. [10], is to focus on some part of the corpus with greater chances of being relevant to the

question, and find the most frequently occurring string. As pointed out by Brill et al. “the larger

the data set from which we can draw answers, the greater the chance we can find an answer that

holds a simple, easily discovered relationship to the query string.”

The questions from a standard evaluation, TREC 2001 QA track [106], were executed over a

range of target corpus sizes, representing from 3% to 100% of the available Web collection. During

the experiment a small portion of the full terabyte collection was off-line, and the experiment was

run over an actual Web collection consisting of 960GB of HTTP. We used MultiText’s Question

Answering system to answer these questions. For each question, we retrieved 40 passages as raw

material for the answer selection component, which tries to find 50 byte answers to it. Each

passage is 1000 bytes long [24].

Responses are judged using an automatic evaluation script provided by the National Institute

of Standard and Technologies (NIST), the organization that runs TREC. The script executes

a series of question-specific regular expressions over the responses returned for each question.

Whenever a match occurs, the response is marked as correct. The script contains patterns for

only 433 of the original 500 TREC 2001 questions. Most of the remaining questions either did not

have an answer in the TREC 2001 target corpus or were discarded by NIST due to typographical

errors. The 67 missing questions are not considered. The evaluation is made in two cut points

in the QA system: 1) after the passages are extracted; 2) on the final 50-byte snippets. The

same script was used to judge the passages and 50-byte snippets; thus the passages have a greater

chance of matching the pattern then the snippets.
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Figure 2.1: The Impact of Corpus Size on Passage Retrieval performance

The results for passages are presented in Figure 2.1. It reports the precision at 40 passages

for a variety of fractions of the entire corpus. Experience with traditional IR systems indicates

that system performance is directly related to corpus size [28]. The results presented in Figure 2.1

observed a similar relationship.

The results for the whole QA system at different corpus size, measured by mean reciprocal rank

(MRR) on the top five 50-byte snippets and number of questions with correct answer in one of the

top five snippets, is presented in Figure 2.2. While performance does improve up to 400-500GB, it

then appears to reach an asymptote and actually declines slightly after that. An examination of

the answers returned by the system suggests a possible weakness in the evaluation methodology.

Generally, automatic evaluation by a script is not as accurate as manual evaluation by a human

judge. Automatic scripts err both by marking responses as correct when the surrounding context

does not support the answer and by missing correct answers that do not match the expected

syntactic form. In this case, the script may be “overfitted” to the syntactic forms that appear

in the TREC corpus. Certainly many correct answers are missed. Finally, it is possible that the

heuristics employed when extracting answers from passages may be the cause of the non-increasing
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Figure 2.2: The Impact of Corpus Size on Question Answering Performance

behavior of the QA system.



Chapter 3

Affinity based on Point Estimation

In this Chapter we investigate alternatives for computing affinity between lexical units by exam-

ining their co-occurrences at specific distances or intervals. If the co-occurrence distance between

pairs of lexical units is described by a given random variable, then the methods in this Chapter

explore the co-occurrence frequency at particular points in this random variable’s domain. We

describe an existing method and propose two new methods for co-occurrence frequency point

estimation. There are many proposed affinity measures that make use of co-occurrence frequen-

cies to compute the strength of the affinity. We discuss these measures as background for use in

Chapters 5 and 6.

3.1 Co-occurrence Frequency Estimation

The simplest way to measure co-occurrence frequency is to estimate the number of occurrences

in a fixed structure—a context—such as a sliding window or a document. In some cases, it is not

necessary to compute the whole distance distribution, just specific points of it. The n-gram model

is an example, given that the only frequencies required are those from adjacent lexical units. In

other cases, only a maximum interval is needed, since the co-occurrences in the same excerpt are

relevant for lexical units with high affinity.

23
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Context can be expressed in the form of a window around the lexical units, where the window

size can vary depending on the desired lexical relationship. For instance, Church and Hanks [20]

used windows of size 5 as a “compromise; this setting is large enough to show some of the

constraints between verbs and arguments, but not so large that it would wash out constraints

that make use of strict adjacency.” Martin [69] indicates that five words is enough to retrieve 95%

of significant collocates in a corpus of 70 million words, where significant collocation means “one

in which the two items co-occur more often than couldd be predicted on the basis of their relative

frequencies and the length of the text under consideration.” Dunning [36] used windows of size

two. Smadja et al. [94] also used windows of five words: “most of the lexical relations involving a

word w can be retrieved by examining the neighborhood of w, wherever it occurs, within a span

of five words.” Choueka [18] examines sequential expressions of length two to six.

Using documents or subdocuments as the co-occurrence context for lexical units is a common

approach in information retrieval. The context is a linguistic unit such as a sentence, a paragraph

or, as usual in information retrieval, a document [33, 64, 82, 110, 98]. Many examples are found

in the information retrieval literature, such as the work of Lesk [64], where associated words, i.e.,

words co-occurring in documents, are used for query expansion. Peat and Willett [82] investigate

intra-document word co-occurrence and its limitations. Xu and Croft [110] extract terms for

pseudo-relevance feedback from passages previously retrieved.

We investigate two new point estimators: weighted-window and a modified document esti-

mator. As baseline for our experiments, we also describe the method proposed by Church and

Hanks [20] and also used by Smadja [94], which we call simple estimator.

Simple Estimator

This estimator is the simplest case of the window model. All the co-occurrences of the lexical

units being investigated are computed at distances δ = 1..K. Let fδ be the frequency at distance

δ between two lexical units b and d; K be the maximum distance (window size-1). The joint

frequency is just the sum of these counts:
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Figure 3.1: Sliding windows from the simple es-
timator

Figure 3.2: Sliding weighted-window estimator
(K = 2)

f̂(b, d) =
∑

δ=1..K

fδ (3.1)

Let N be the size of the corpus in words and Njoint the number of possible co-occurrences.

The MLE for the joint probability is:

P̂ (b, d) =
f̂(b, d)

Njoint
(3.2)

In order to compute all possible word pairs, every position in the corpus must start a window.

The maximum number of co-occurrence counts, Njoint, is used to normalize the joint frequency

and is equal to

Njoint = K ·N − K · (K + 1)

2
(3.3)

In the simple estimator, every occurrence of a pair of words accounts for the same weight,

with no regard to their distance; the window size works as a cut-off.

Church and Hanks [20] use the simple estimator with the window size equal to five words

(maximum distance K = 4). They give an example of this normalization for the sentence: “Li-

brary workers were prohibited from saving books from this heap of ruins”. The

frequencies are f̂(prohibited) = 1, f̂(from) = 2 and f̂(prohibited, from) = 2. The number of

co-occurrences in the example is inflated and needs normalization, for which Church and Hanks

propose “divide the f(x, y) by window size - 1”. They proceed to say that “This adjustment has

the additional benefit of assuring that
∑

f̂(x, y) =
∑

f̂(x) =
∑

f̂(y) = N”. The normalization

in equation 3.3 is similar to that of Church and Hanks, but we also consider windows of size

smaller than specified in the extremes of the database, that is a window starting at the second
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Pairs f̂(b, d) (Window Frequency)
b d K = 1 K = 31 K = 63 K = 127

new york 11,515,513 14,758,180 16,140,332 17,578,673
coffee chocolate 3,327 47,067 58,947 72,102

succinctly freely 0 34 77 190

P̂ (b, d) (Estimated Probability)
new york 2.09E-04 8.36E-06 4.57E-06 2.49E-06

coffee chocolate 6.03E-08 2.67E-08 1.67E-08 1.02E-08
succinctly freely 0.00 1.93E-11 2.18E-11 2.69E-11

Table 3.1: Simple estimator smoothing effect (Terabyte Corpus)

Pairs f̂(b, d) (Window Frequency)
b d K = 1 K = 31 K = 63 K = 127

new york 11,515,513 306,198,055 564,234,295 1.014E+09
coffee chocolate 3,327 914,556 2,263,829 5,296,455

succinctly freely 0 408 2,332 11,074

P̂ (b, d) (Estimated Probability)
new york 2.09E-04 1.12E-05 5.07E-06 2.26E-06

coffee chocolate 6.03E-08 3.34E-08 2.04E-08 1.18E-08
succinctly freely 0.00 1.49E-11 2.10E-11 2.47E-11

Table 3.2: Weighted-window estimator smoothing effect (Terabyte Corpus)

last position of database (position N − 2) up to the K − 1 last position (N −K − 1).

Weighted-Window Estimator

The simple estimator makes no assumption about the effects of proximity. In some cases, it may

be desirable to treat nearby co-occurrences differently from farther ones. An alternative is to

weight the co-occurrence based on the distance of the lexical units. As in the simple estimator,

a cut-off of maximum distance K is set but, unlike the simple estimator all pairs in the window

are counted, from distance 1 to K. The window slides one position at time, so the number of

windows in the corpus is N −K. This will inflate the counts of closely occurring pairs since closer

pairs will be counted many times in different windows. Figure 3.2 shows an example where K = 2

and the lexical units “New” and “York” are counted twice. If the same terms had a word in

between them then they would have be counted in only one window. The MLE for this estimator

is, once again,
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P̂ (b, d) =
f̂(b, d)

Njoint
(3.4)

where f̂(b, d) is the number of co-occurrence of lexical units pair b and d, and is computed as

follows:

f̂(b, d) = |Wk| (3.5)

where Wk is the set of all windows containing both lexical units b and d. The normalization

constant is the sum of co-occurrence lexical units pairs, Njoint. This value can be calculated by

investigating each window: every window where the maximum distance is K has exactly one pair

at that distance, two at K − 1, and successively down to distance one for which there are K pairs

in the window. Therefore, every window will have Cw counts:

CW =

K
∑

δ=1

δ =
K · (K + 1)

2

since there are N −K such windows in the corpus, Njoint follows,

Njoint = (N −K) ·
[

K · (K + 1)

2

]

(3.6)

The weight can be explained from a different perspective. We can examine pairs at different

distances and check the number of windows in which they are counted. If the maximum distance

in the window is K, then the number of windows that will slide over a adjacent pair is K, as

shown in the example of Figure 3.2 for the pair “New York”. The number of windows will

decrease linearly with regard to pair distance, thus adjacent pairs will be counted K times, pairs

with distance two will count (K − 1) times, and so on down to pairs at distance K, which will be

counted only once. Thus weight decay is linear in this case, and the window size defines the slope

of the weight decay. In the case of Figure 3.2, where K = 2, adjacent pairs will have weight two

times greater than pairs at distance two.
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The weighted-window estimate has a smoothing factor. Since more pairs can be observed at

higher distances (and all pairs observable if K = N), this estimator has a liner decay smoothing

that does not consider individual probabilities as other smoothing and discounting techniques

do; instead, the smoothing is based on each lexical unit context. The probability mass from

adjacent pairs is distributed among other pairs containing exactly one of the two lexical units in

adjacency and the other lexical unit in the surrounding text. Table 3.2 depicts the smoothing

effect of the weighted-window estimator for three pairs of words. As the window size increases

the number of distinct pairs will increase and the probability mass distributed accordingly. For

example, the probability of “New” and “York” drops from 2.09E − 04 (window size equals 2

words) to 2.49E − 06 (window size equals 128 words), whereas the probability of “succinctly”

and “freely” increases from 0 to 2.69E − 11.

Document estimator

This estimator uses document frequencies rather than corpus frequencies. The frequency of a

lexical unit b is denoted by Db and corresponds to the number of documents in which the word

appears, with no regard to how frequently it occurs in a particular document. The number of

documents in the corpus is denoted by D.

The co-occurrence frequency of two lexical units b and d, denoted by Db,d,

f̂(b, d) = |Db,d| (3.7)

where Db,d is the set of documents where the both lexical units are present. If we require

only that the words co-occur in the same document, no distinction is made between distantly

occurring words and adjacent words. This effect can be reduced by imposing a maximal distance

for co-occurrence, (i.e. a fixed-sized window). In this case, the frequency will be the number of

documents where the lexical units co-occur within that distance. The MLE for the co-occurrence

under this approach is

P̂ (b, d) =
f̂(b, d)

D
(3.8)
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An early use of this estimator for co-occurrence probabilities is due to Lesk [64]. He used three

collections to extract co-occurrence frequencies: the ADI collection, containing 82 short papers;

the IRE collection, with 780 abstracts in computer science; and the Cranfield collection, containing

200 abstracts in aeronautics. Unfortunately, those are rather small in comparison with today’s

collections. Also, in all three collections the documents are small, thus a window for co-occurrence

within the document has little impact. Peat and Willet [82] also used a document estimator for

co-occurrence frequency with no regard to the co-occurrence distance. More recently, Lafferty and

Zhai [59] used documents to extract words to expand a query based on each of its terms, with no

regard to the co-occurrence distance. The approach of Lafferty and Zhai is thus similar to that

of Lesk; however, it uses sampling techniques to accomplish its goals.

3.2 Affinity Measures

The affinity between two lexical units can be calculated by their direct co-occurrence or through

the use of supporting evidence (i.e., by their mutual affinity with other lexical units). For instance,

the lexical units “Doctor” and “Nurse” have high affinity because they co-occur in many texts,

but they are also related because they co-occur with “Hospital”, “Patient”, “Intensive

Care Unit”, and “Surgery”. The first approach—direct comparison—is simple and efficient

since only the lexical units under consideration need to be measured from the corpus. The latter—

using supporting evidence—is expensive, particularly for large corpora, since affinity between the

two lexical units under consideration and the supporting lexical units must be measured.

Alternatively, the measures presented below can be categorized in four groups [38]:

• Statistical tests

These measures are used to in hypothesis testing and the null hypothesis is that the co-

occurrence is due by chance, such as the case of χ2 and Z-Score. On the other hand, the

log-likelihood is a measure of the unexpectedness of co-occurrence based on the assumption

that the occurrences are described by a binomial distribution. This measures are normally

not intended to be used to rank co-occurrence significance but provide a numerical outcome
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that can be used for that purpose.

• Association Strength

These measures are not intended to capture the significance of the co-occurrence with a null

hypothesis in hand. Instead, their aim is to assign a score for the strength of the affinity.

Examples include Dice, Jaccard and Cosine coefficients.

• Information Theoretic measures

These measures have their origin in information theory and their aim is to compute informa-

tion content of events. Examples include Mutual Information, Pointwise Mutual Information

and Jensen-Shannon divergence.

• Heuristic Measures

Derived measures fall in this category since their foundations are not formally derived. Skew

divergence is an example of a heuristic measure.

3.2.1 Direct Comparison

Along with the co-occurrence frequencies, or corresponding probabilities, the strength of the

association needs to address the marginal probabilities, since more frequent lexical units have a

greater chance of co-occurring with other lexical units. We describe some of the most common

formulas used in the literature.

Notation: Let X be a binary random variable for some lexical unit x in the language, with

range Ax = {x, x}, indicating the presence or absence of the respective lexical unit. Let P̂ (x) be

the estimation for the marginal probability of x given its individual frequency f̂(x). Let Y be a

binary random variable for lexical unit y and x 6= y. The estimated joint probability between x

and y is denoted by P̂ (x, y) and the co-occurrence frequency is f̂(x, y).

Mutual Information

The Mutual Information (MI) is a measure of divergence between random variables as defined in

information theory:
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MI (X,Y ) =
∑

x∈X,y∈Y

P̂ (x, y) log
P̂ (x, y)

P̂ (x)P̂ (y)
(3.9)

Pointwise Mutual Information

The Pointwise Mutual Information (PMI) is a measure of divergence between the observed joint

and the expected probabilities under independence. It is related to the Expected Mutual In-

formation. However, while the latter calculates the divergence of the random variables, PMI is

calculated on one point of the random variables.

PMI (x, y) = log
P̂ (x, y)

P̂ (x)P̂ (y)
(3.10)

It is interesting to note that this measure is biased toward infrequent words and is not pro-

portional to the conditional probabilities. For example:

PMI(x, y) = 3.00 for P̂ (x, y) = 0.08, P̂ (x) = 0.1, P̂ (y) = 0.1

PMI(x, y) = 6.32 for P̂ (x, y) = 0.008, P̂ (x) = 0.01, P̂ (y) = 0.01

Dice and Jaccard coefficients

The Dice coefficient was originally proposed under the name of coincidence index [35]. Dice’s

intention was to correct the high variance of the ratio between observed and expected values

(as used in PMI). This correction is obtained by taking the harmonic mean of the individual

probabilities, thus reducing the effect of unbalanced marginals:

D(x, y) =
P̂ (x, y)

1
2 · P̂ (x) + 1

2 · P̂ (y)
=

2 · P̂ (x, y)

P̂ (x) + P̂ (y)
(3.11)

Like Dice’s coefficient, the Jaccard coefficient is a measure that compares the observed joint

frequency with the maximum value it could assume [102]. The difference between them stems

from the fact that the Jaccard coefficient subtracts the joint probability from both the numerator

and denominator:
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J(x, y) =
P̂ (x, y)

P̂ (x) + P̂ (y)− P̂ (x, y)
(3.12)

These coefficients are monotonic to each other [102] and, unlike PMI, these coefficients are

proportional to the conditional probability. For example:

D(x, y) = 0.8 J(x, y) = 0.67 for P̂ (x, y) = 0.08, P̂ (x) = 0.1, P̂ (y) = 0.1

D(x, y) = 0.8 J(x, y) = 0.67 for P̂ (x, y) = 0.008, P̂ (x) = 0.01, P̂ (y) = 0.01

χ2-test

The χ2-test is a test of statistical significance for bivariate tabular analysis. The null hypothesis

in this test is that the two variables are not different and this is calculated by summing the square

of the difference between the observed values and expected values computed from the marginals

probabilities.

χ2 =
∑

x∈X

∑

y∈Y

[P̂ (x, y)− P̂ (x) · P̂ (y)]2

P̂ (x) · P̂ (y)
(3.13)

The use of χ2 as an alternative for measuring association between words is described in Man-

ning and Schütze. Brin et al. [11] also use χ2 as an association measure.

Cosine coefficient

This measure is similar to Dice and Jaccard. The biggest difference is that the normalization is

done against the geometric mean of the marginal probabilities. The affinity value is given by

Cos(x, y) =
f̂(x, y)

√

f̂(x) · f̂(y)
(3.14)

Lesk [64] was one of the first to apply the cosine measure to concept association; he used a

document estimator for the frequencies. Peat and Willet al. also used this measure [82] to analyze

the limits of co-occurrence for information retrieval.
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Z-Score

The Z-Score is a normalized value that describes how far a value is from the expected value of

a random variable representing independence. There are two assumptions here: the first is that

the words follow a binomial distribution; the second is that the expected joint frequency f̂(x, y)

approximates the normal distribution. The general formula for the Z-Score is

Z =
v − µ√
σ2

(3.15)

where v is the observed value to which we calculate the Z-Score. In our case, v is the measured

co-occurrence frequencies, µ is the expected value under independence, and σ is the standard

deviation under independence:

v = f̂(x, y) (3.16)

µ = N · f̂(x) · f̂(y)
N2

=
f̂(x) · f̂(y)

N
(3.17)

σ2 = N · f̂(x)f̂(y)
N2

·
(

1− f̂(x)f̂(y)

N2

)

(3.18)

For practical purposes we assume that

1− f̂(x)f̂(y)

N2
≈ 1

since even the most frequent words have a low absolute frequency. Thus, we can rewrite equa-

tion 3.18 as

σ2 ≈ N · f̂(x)f̂(y)
N2

=
f̂(x) · f̂(y)

N
(3.19)

Finally, we can write equation 3.15 as
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Z(x, y) =
f̂(x, y)− f̂(x)·f̂(y)

N
√

f̂(x)·f̂(y)
N

(3.20)

An early application of the Z-score as an associative measure is due to Berry-Rogghe [8]. The

use of the Z-score with a binomial approximation was used by Vechtomova et al. [103] to analyze

candidate terms for implicit query expansion in information retrieval.

Log-Likelihood

The likelihood ratio test provides an alternative for checking two simple hypotheses. Dunning [36]

used a likelihood ratio to test word similarity under the assumption that the words in text have

a binomial distribution.

The two hypotheses used by Dunning are: H1:P (d|b) = P (d|¬b) (i.e. they occur indepen-

dently); and H2: P (d|b) 6= P (d|¬b) (i.e. not independent). These two conditionals are used

in the likelihood function L(P (d|b), P (d|¬b); θ), where θ for H2 represents the parameter of

the binomial distribution b(n, k; θ). Under hypothesis H1, P (d|b) = P (d|¬b) = p, and for H2,

P (d|b) = p1, P (d|¬b) = p2.

log λ = log
L(P (d|b); p) · L(P (d|¬b); p)
L(P (d|b); p1) · L(P (d|¬b); p2)

(3.21)

Effects of the Marginals

A difference among the presented measures can be seen by plotting the effect of the marginals

on the outcome of the formulas, given a fixed co-occurrence probability (or frequency), as shown

in Figures 3.3 to 3.8. For these, the fixed probability is P (x, y) = 0.00002 and P (x) and P (y)

are in the range [0.0002; 0.001]. The Dice and Jaccard coefficients have the same gradient; the

same occur with Cosine coefficient and Z-score. It is interesting to note that the Dice and Jaccard

coefficients are monotonic.
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3.2.2 Comparison using Supporting Evidence

Similarity between two lexical units can also be derived by the use of supporting evidence

C = {w′
1, w

′
2, ..., w

′
n}. The affinities between two lexical units b and d is calculated indirectly

by the affinity between b and C and d and C. This approach is commonly referred to as a

second-order affinity or statistics.

Cosine of Pointwise Mutual Information

To compare the affinity between b and d using C and this measure, two vectors are created: the

first contains the PMI between b and every element of C; the same is done to d in the second

vector. The cosine value between the two vectors corresponding to b and d represents the similarity

between the two lexical units as depicted in equation 3.22.

CP(b; d) =

∑

w′∈C

PMI (w′, b)PMI (w′, d)

√

∑

w′

PMI (w′, b)2
√

∑

w′

PMI (w′, d)2
(3.22)

The outcome is a value from zero to one where values closer to one indicate greater similarity.

Pantel [78] used the cosine of pointwise mutual information to uncover word sense from text.

L1 norm

In this method, the conditional probability of each word w′
i in C given b (and d) is computed. The

accumulated distance between the conditionals for all words in context represents the similarity

between the two lexical units, as shown in equation 3.23. This method was proposed as an

alternative word similarity measure in language modeling to overcome zero-frequency problems

of bigrams [31]. Rapp [84] uses this measure for word associations.

L1(b; d) =
∑

w′∈C

|P̂ (w′|b)− P̂ (w′|d)| (3.23)
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Contextual Average Mutual Information

In this measure, the conditional probabilities between each lexical unit in the context and the

two lexical units b and d are used to calculate the mutual information of the conditionals (equa-

tion 3.24). This method was also used in Dagan et al. [31].

AMIC (b; d) =
∑

w′

P̂ (w′|b)log P̂ (w
′|b)

P̂ (w′|d)
(3.24)

Contextual Jensen-Shannon Divergence and Skew Divergence

These measures can be seen as alternative to address the zero frequency problem of the Mutual

Information formula (equation 3.24). Instead of using the probabilities directly, they are averaged

between the two distributions. It also provides a symmetric measure (AMIC is not symmetric).

This method was also used in Dagan et al. [31]. Given the Kullback-Leibler divergence between

two distributions R and Q:

KL(R(x)‖Q(x)) = E

[

R(x) log
R(x)

Q(x)

]

and the average between the two probabilities,

AVGP =
P̂ (w′|b) + P̂ (w′|d)

2

the Jensen-Shannon Divergence is defined as

JS (b; d) =
KL(P̂ (w′|b)‖AVGP) +KL(P̂ (w′|d)‖AVGP)

2
(3.25)

The Skew divergence [62] also addresses the zero frequency problem, but instead of using the

average it skews one of the distribution towards the other by a small amount,
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SD(b; d) = KL(P̂ (w′|b) ‖ [α · P̂ (w′|d) + (1− α) · P̂ (w′|b)]) (3.26)

for any α such that 0 < α < 1; α = 0.99 is a typical value for good performance [63].

Pointwise Mutual Information of Multiple words

Turney [100] proposes a different formula for Pointwise Mutual Information when context is

available, as depicted in equation 3.27. The context is represented by C ′, which is any subset

of the context C. In fact, Turney argued that bigger C ′ sets are worse because the resulting

frequencies are smaller and as consequence can be affected by noise. Therefore, Turney used only

one word ci from the context, discarding the remaining words. The chosen word was the one that

has biggest pointwise information with b.

It is interesting to note that the equation P (b|d,C) (or P (d|b, C)) is not equivalent to P (b|H)

or P (d|H) from n-gram model, since no ordering is imposed on the lexical units and also due to

the fact that they can be separated from one another by other words.

PMIC (b, d;C ′) =
P̂ (b, d, C ′)

P̂ (b, C ′)P̂ (d,C ′)
(3.27)

Latent Semantic Analysis - LSA

This technique uses a matrix decomposition based on its singular values in order to capture the

latent information in the matrix. The matrix M contains in one dimension one entry for each

word in the collection and on the other dimension an entry for each document (i.e. t×d); thus the

frequencies are obtained by means of a document estimator. The singular value decomposition

is M = MT ×MS ×MD , where MT and MD have orthonormal columns and MS is a diagonal

matrix in which the diagonal values are in decreasing order. The dimensions of the matrices are

MT = t×k,MS = k×k andMS = k×d, where k is the rank ofM . After the decomposition, a cut-

off can be applied on k, which simulates the process of removing the less informative singular values

of M . From another perspective, this process represents the removal of factors that contribute

less to the “semantics” of the original matrix, i.e. it is a filtering process.
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The association is obtained by computing the cosine of the words in the matrix resulting from

the decomposition plus a singular value cut-off process.

This technique was proposed by Deerwester et al. for information retrieval purposes [33].

Landauer and Dumais [60] used LSA to answer synonym questions.

One of the main challenges for LSA is the initial computation resources it requires since the

matrix M should be first constructed and then the singular values extracted. Particularly, when

the dimensions correspond to vocabulary and documents in the corpus the curse of dimensionality

is a real issue. It happens that, in most cases, the original matrix is sparse. This can be used to

make the process more efficient [7].

3.3 Summary

We presented two new point estimators for co-occurrence frequency. In the first, weighted-window

estimator, co-occurrences in proximity have more weight than those at farther distance. In the

second estimator, document estimator, the co-occurrence frequency is measured in the number

of documents and not in the occurrences in the corpus. For that estimator, a window for co-

occurrence within the document is also used, filtering out co-occurrences at farther distances.

Along with the new estimators we described another estimator, the simple estimator, to be used

as a baseline in our experimental evaluation. We also presented existing methods that use co-

occurrence to compute affinity, making use of context or not.
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Figure 3.3: Effect of marginals on PMI
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Figure 3.4: Effect of marginals on χ2 score
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Figure 3.5: Effect of marginals on Dice
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Figure 3.6: Effect of marginals on Jaccard
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Figure 3.7: Effect of marginals on Cosine
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Figure 3.8: Effect of marginals on Z-score
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Chapter 4

Affinity Models

This Chapter presents a novel and completely different approach to compute affinity. A new

independence assumption is formulated and a model for affinity is presented. The whole distance

distribution is recovered for the creation of these models and can also be used against the in-

dependence model to compute affinity between lexical units. A fast algorithm to compute the

empirical distribution is also presented.

4.1 Empirical Distribution and Models for Lexical Affini-

ties

We now present new models for lexical affinity. They are based on the empirical distribution and

are made more accurate by using consistent estimators applied to large corpora. Two models

are presented: an independence model for pairs of lexical units, and an affinity model. The

independence model estimates the likelihood of co-occurrence at any given distance when no

relationship is expected between the two lexical units. The affinity model is used to fit the

observed data and can estimate expected number of co-occurrences at any given distance between

two lexical units, taking the lexical affinity between the units into account.

Notation: Let G be a random variable with range comprising all words in the vocabulary. Also,

40
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let us assume that G has multinomial probability distribution function Pg. For any pair of terms

b and d, let ∆b,d be a random variable with the distance distribution for the co-occurrence of

terms b and d. Let the probability distribution function of the random variable ∆b,d be P∆(b, d)

and the corresponding cumulative be C∆(b, d).

Independence Model

Let b and d be two terms, with occurrence probabilities Pg(b) and Pg(d). The chances, under inde-

pendence, of the pair b and d co-occurring within a specific distance δ, P∆(b, d|δ) is given by a geo-

metric distribution with parameter p,

∆ ∼ Geometric(δ; p). This is straightforward since if b and d are independent then Pg(b|d) =

Pg(b) and similarly Pg(d|b) = Pg(d). If we fix a position for a certain position for b, then if

independent, the next d will occur with probability Pg(d) · (1 − Pg(d))
δ−1 at distance δ from b.

Therefore, the observed mean is then the expected distance of the geometric distribution with

parameter p.

The estimation of p is obtained using the MLE for the geometric distribution. Let fδ be the

number of co-occurrences with distance δ, and n be the sample size:

p =
1

µ
=

1

1
n

∞
∑

δ=1

fδ

(4.1)

By scanning a large corpus, we can observe µ; thus fitting the independence model is straight-

forward.

We make the assumption that multiple occurrences of b do not increase the chances of seeing

d and vice-versa. This assumption implies a different estimation procedure, since we explicitly

discard what Beeferman et al. [3] and Niesler [77] call self-triggers. In practice, this assumption

leads to the frequency counting of pairs with no intervening b or d.

Figure 4.1 shows that the geometric distribution fits well the observed distance of independent

words, in this case the words “democracy” and “watermelon”. When a dependency exists,

the geometric model does not fit the data well, as can be seen in Figure 4.2. Since the geometric
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Figure 4.1: C∆(watermelon, democracy)

and exponential distributions represent related idea in discrete/continuous spaces it is expected

that both have similar results, especially when p¿ 1.

Affinity Model

The model of affinity follows a exponential-like distribution, as in the independence model. Other

researchers have also used exponential models for affinity [3, 77]. We use the gamma distribution,

the generalized version of the exponential distribution to fit the observed data. Pairs of terms

have a skewed distribution, especially when they have affinity for each other, and the gamma

distribution is a good choice to model this phenomenon.

Gamma(∆ = δ;α, β) =
δα−1e−δ/β

βαΓ(α)
(4.2)

where Γ(α) is the complete gamma function. The exponential distribution is a special case with

α = 1. Given a set of co-occurrence pairs, estimates for α and β are calculated using maximum

likelihood estimation for the gamma distribution: Let x1, x2, ..., xn be the observed values we want

to fit with the gamma distribution. The likelihood of observing these points is L(x1, x2, .., xn):
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Figure 4.2: C∆(watermelon, fruits)

L(x1, x2, .., xn) =
xα−1
1 e−x1/β

βαΓ(α)

xα−1
2 e−x2/β

βαΓ(α)
...
xα−1
n e−xn/β

βαΓ(α)

logL(x1, x2, .., xn) = log
xα−1
1 e−x1/β

βαΓ(α)

xα−1
2 e−x2/β

βαΓ(α)
...
xα−1
n e−xn/β

βαΓ(α)

logL(x1, x2, .., xn) = (α− 1)

(

∑

i=1..n

log xi

)

−
(

∑

i=1..n

xi
β

)

− nα log β − n log Γ(a)

The likelihood is maximized by setting the partial derivatives to zero,

∂

∂β
logL(x1, x2, .., xn) =

(

∑

i=1..n

xi
β2

)

− nα

β
= 0
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Figure 4.3: C∆(watermelon,watermelon)

or

β =
1

α

∑

i=1..n

xi
n

=
µ

α
(4.3)

and by

∂

∂α
logL(x1, x2, .., xn) =

(

∑

i=1..n

log xi

)

− n log β − nΓ
′(α)

Γ(α)
= 0

where we can substitute β from equation 4.3:

∑

i=1..n

log xi − n log β − n
Γ′(α)

Γ(α)
= 0

∑

i=1..n

log xi − n log µ− n logα− n
Γ′(α)

Γ(α)
= 0

Γ′(α)

Γ(α)
− logα =

1

n

(

∑

i=1..n

log xi

)

− log

(

1

n

∑

i=1..n

xi

)

The general case, using the histogram frequencies of all pair distances (instead of sample
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values) is given by

β =
1

α

∞
∑

δ=1

xi
n

=
µ

α
(4.4)

Γ′(α)

Γ(α)
− logα =

1

n

(

∞
∑

δ=1

fδ log δ

)

− log

(

1

n

∞
∑

δ=1

δfδ

)

(4.5)

Figure 4.2 shows the fit of the gamma distribution to the word pair fruits and watermelon.

The affinity model can also be used to fit self-affinity as depicted in Figure 4.3. As shown, the

affinity between same lexical units is far from the independence, a fact also noted by Church [19].

To fit the affinity model we observe µ directly from the corpus, as in the independence model.

The value of the parameter α is computed by numerically solving equation 4.5, which can be

accomplished by observing the right-hand side values from the corpus. The value of β is trivially

calculated from equation 4.4 and from the values of α and µ.

Affinity Models and Smoothing

The existence of a function to estimate the number of occurrences of a pair of lexical unit at

any distance provides a solution to the zero frequency problem. We can now infer the number of

occurrences for pairs at distances that are not seen in the training data. This is a desirable feature

for a language model. For example, in the sequential bigram model, a common smoothing strategy

is to back-off to unigram probabilities or interpolate bigram and unigram probabilities. The

distance model could be used in that case by estimating the probability of the unseen sequential

bigram based on a model for distant bigrams.

Another smoothing effect can be achieved by using the cumulative probability of distance

co-occurrences. Pairs at farther distances are smoothed by the counts of closer co-occurrences.

Using the cumulative is optional, but if used it will favor closer co-occurrences. It is a natural way

to handle the problem that the weighted-window estimator addresses by means of an artificial

parameter (window size).
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4.2 Efficient Retrieval

The independence and affinity models presented in chapter 4 depend on a good approximation to

the mean distance µ of lexical unit pairs. The estimator for µ is a consistent estimator, and as

such will provide a better estimation as the corpus size increases. Therefore, we want to scan the

whole corpus efficiently in order to make this framework usable.

Fast Computation of Distance Models

Given two terms, b and d, we wish to determine the affinity between them by efficiently examining

all the locations in a large corpus where they co-occur. We treat the corpus as a sequence of terms

C = t1, t2, ..., tN where N is the size of the corpus. This sequence is generated by concatenating

together all the documents in the collection. Document boundaries are then ignored.

While we are primarily interested in within-document term affinity, ignoring document bound-

aries simplifies both the algorithm and the model. Document information need not be maintained

and manipulated by the algorithm, and document length normalization need not be considered.

The order of the documents within the sequence is not of major importance. If the order is ran-

dom, then our independence assumption holds when a document boundary is crossed. If the order

is determined by other factors, for example if Web pages from a single site are grouped together

in the sequence, then affinity can be measured across these groups of pages.

We are specifically interested in identifying all of the locations where b and d co-occur. Consider

a particular occurrence of b at position k in the sequence (tk = b). Assume that the next occurrence

of b in the sequence is tw and that the next occurrence of d is tv (ignoring for now the exceptional

case where tk is close to the end of the sequence and is not be followed by another b and d). If

w > v, then no b or d occurs between tk and tv, and the interval can be counted for this pair.

Otherwise, if w < v let tu be the last occurrence of b before tv. No b or d occurs between tu and

tv, and once again the interval containing the terms can be considered.

Our algorithm efficiently computes all locations in a large term sequence where b and d co-

occur with no intervening occurrences of either b or d. Two versions of the algorithm are given,

an asymmetric version that treats terms in a specific order, and a symmetric version that allows
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either term to appear before the other.

The algorithm depends on two access functions r and l that return positions in the term

sequence t1, ..., tN . Both take a term t and a position in the term sequence k as arguments and

return results as follows:

r(t, k) =























v if ∃ tv = t s.t. k ≤ v

and 6 ∃ tv′ = t s.t. k ≤ v′ < v

N + 1 otherwise

and

l(t, k) =























u if ∃ tu = t s.t. k ≥ u

and 6 ∃ tu′ = t s.t. k ≥ u′ > u

0 otherwise

Informally, the access function r(t, k) returns the position of the first occurrence of the term t

located at or after position k in the term sequence. If there is no occurrence of t at or after

position k, then r(t, k) returns N +1. Similarly, the access function l(t, k) returns the position of

the last occurrence of the term t located at or before position k in the term sequence. If there is

no occurrence of t at or before position k, then l(t, k) returns 0.

These access functions may be efficiently implemented using variants of the standard inverted

list data structure. A very simple approach, suitable for a small corpus, stores all index information

in memory. For a term t, a binary search over a sorted list of the positions where t occurs computes

the result of a call to r(t, k) or l(t, k) in O(log ft) ≤ O(logN) time. Our own implementation uses

a two-level index, split between memory and disk, and implements different strategies depending

on the relative frequency of a term in the corpus, minimizing disk traffic and skipping portions

of the index where no co-occurrence will be found. A cache and other data structures maintain

information from call to call.

The asymmetric version of the algorithm is given below. Each iteration of the while loop makes

three calls to access functions to generate a co-occurrence pair (u, v), representing the interval

in the corpus from tu to tv where b and d are the start and end of the interval. The first call
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(w ← r(b, k)) finds the first occurrence of b after k, and the second (v ← r(d,w + 1)) finds the

first occurrence of d after that, skipping any occurrences of d between k and w. The third call

(u← l(b, v−1)) essentially indexes “backwards” in the corpus to locate last occurrence of b before

v, skipping occurrences of b between w and u. Since each iteration generates a co-occurrence pair,

the time complexity of the algorithm depends on M , the number of such pairs, rather than than

number of times b and d appear individually in the corpus. Including the time required by calls

to access functions, the algorithm generates all co-occurrence pairs in O(M logN) time.

k ← 1;

while k ≤ N do

w ← r(b, k);

v ← r(d,w + 1);

u← l(b, v − 1);

if v ≤ N then

Generate: (u, v);

end if;

k ← v + 1;

end while;

The symmetric version of the algorithm is given next. It generates all locations in the term

sequence where b and d co-occur with no intervening occurrences of either b or d, regardless of

order. Its operation is similar to that of the asymmetric version.

k ← 1;

while k ≤ N do

v ← max(r(b, k), r(d, k));

u← min(l(b, v), l(d, v));

if v ≤ N then

Generate: (u, v);

end if;

k ← v + 1;

end while;

These two algorithms are implemented in the MultiText engine [22]. They correspond to

standard operators of its language (GCL) which extend boolean operators by including, among

others, containment and ordering operators. The symmetric algorithm above is similar to the

boolean operator and (M) and the asymmetric algorithm is similar to the ordering operator followed

by (¦).
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Time

Fastest 20ms
Average 310.32 ms
Slowest 744ms

Table 4.1: Scanning performance on 99 word pairs

Pair Time
b d (ms)

bread butter 20
smooth rough 22
soft hard 65
quiet loud 67

thirsty water 169
woman man 218
table chair 370
white black 451
wish want 533
high low 698
house home 744

Table 4.2: Examples of scanning performance

Table 4.1 illustrates the time required to scan all co-occurrences of given pairs of terms.

Table 4.2 shows scanning performance of some pair examples. The collection is distributed over

17 hosts. We report the time for one host to return its results.

4.3 Summary

We present a framework for the fast computation of lexical affinity models. The framework is

composed of an algorithm to efficiently compute the co-occurrence distribution between pairs

of terms, an independence model, and a parametric affinity model. In comparison with point

estimation models, which either use arbitrary windows to compute similarity between words or

use lexical affinity to create sequential models, in this chapter we focus on models intended to

capture the co-occurrence patterns of any pair of words or phrases at any distance in the corpus.



Chapter 5

Human-oriented Language Tests

In this chapter we examine the application of different lexical affinity methods to solve two human-

oriented language tests: a set of synonym questions from TOEFL (section 5.1) and a set of GRE

fill-in-the-blanks practice questions (section 5.2). For the synonym questions, we use both point

estimation and affinity models from Chapters 3 and 4 and propose the use of new measures, the

skew and log-likelihood ratio over intervals, that can be calculated if the affinity models are avail-

able. In the fill-in-the-blanks practice questions we use the parametric affinity and independence

models. Our evaluation on the synonym questions also aims to determine, among all alternatives,

which settings perform well in order to generalize the results to other applications. In particular,

the results obtained in this evaluation drive the choice of affinity measures used in Chapter 6.

5.1 Synonym questions

We evaluate the affinity measures proposed in Chapters 3 and 4 using three test sets. The first test

set is a set of TOEFL questions first used by Landauer and Dumais [60]. This test set contains

80 synonym questions. For each question there is one target word—TW—and a set of synonym

alternatives A with four options. The other two test sets, which we will refer to as TS1 and TS2,

are practice questions for the TOEFL. These two test sets also contain four alternative options,

|A| = 4, and TW is given in context C (i.e., TW appears in the context of a sentence). TS1 has

50



CHAPTER 5. HUMAN-ORIENTED LANGUAGE TESTS 51

TW = “concisely”
A = { ‘succinctly’,‘powerfully’,‘positively’,‘freely’}

C = “The country is plagued by turmoil.”
TW = “turmoil”
A = { ‘constant change’,‘utter confusion’,‘bad weather’,

‘fuel shortages’}

C = “For all their protestations, they heeded the judge’s ruling.”
TW = “For”
A = { ‘In spite of’,‘Because of’,‘On behalf of’,‘without’}

Figure 5.1: Examples of synonym questions

50 questions and was also used by Turney [100]. TS2 has 60 questions extracted from a TOEFL

practice guide [55]. These three test sets have particular compositions. TOEFL contains only

single words and balanced parts-of-speech: verbs, adjectives, nouns and adverbs are in similar

proportions. TS1 contains 20% adverbs and adjectives, 80% verbs and nouns, and 2 compounds.

TS2 has 18 compounds and prepositions, such as the third example in Figure 5.1.

For all test sets the answer to each question is known and unique. For comparison purposes,

we also use TS1 and TS2 without the context (i.e. comparing TW against all elements A and

disregarding the corresponding C). Figure 5.1 shows some examples of questions with and without

context. For all of the experiments, the statistics were extracted from the terabyte corpus as

described in Section 2.4.1.

The TOEFL synonym test set has been used by several other researchers. It was first used in

the context of Latent Semantic Analysis(LSA) [60], where 64.4% of the questions were answered

correctly. Turney [100] used PMI in context and statistical estimates from a web search engine to

answer the questions, achieving 73.8% correct answers. Jarmasz [49] used a thesaurus to compute

the distance between the alternatives and the target word, answering 78.8% correctly. Recently,

Turney [101] trained a system to answer the questions with an approach based on combined

components, including a module for LSA, PMI, thesaurus and some heuristics based on the

patterns of synonyms. This combined approach answered 97.5% of the questions correctly after

being trained over 331 examples. With the exception of recent results of Turney [101], all previous

approaches were not exclusively designed for the task of answering TOEFL synonym questions.
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In fact, one of the goals of this evaluation is to generalize the methods to other applications and

for that it is preferable to use simple and fast approaches to compute affinity. The efficacy of

Turney’s combined components approach is due to the fact that it requires components to answer

the questions. From these components’ answers the weights for combination are trained in a hill-

climbing search procedure repeated many times to avoid getting stuck in local minima. In many

applications, such as the ones presented in Chapter 6, Turney’s recent approach of combination

is not as well suited.

Our evaluation on the synonym questions is divided into two parts. First, we address the point

estimation methods presented in Chapter 3, including the two new co-occurrence estimators. We

also investigate the effect of corpus size and the effect of context in the point estimation evaluation.

In the second part, two new measures derived from the affinity models presented in Chapter 4 are

used to solve the sets of questions. These measures are skew and log-likelihood ratio over intervals.

5.1.1 Point Estimation

For the three test sets—TOEFL, TS1 and TS2 without context—we applied the three point

estimators presented in Chapter 3. We investigated a variety of window sizes, varying the window

size from 2 to 256 by powers of 2.

From all of the measures presented in Chapter 3, the log-likelihood ratio as proposed by

Dunning [36] is not discussed in this section because it is provides the same ordering as MI. The

Jaccard coefficient is monotonic to Dice, and as such will not be discussed either. In some of the

questions, TW or one or more of the Ai’s are multi-word strings. For these questions, we assume

that the strings may be treated as phrases and use them “as is”, adjusting the size of the windows

by the phrase size when applicable.

The results for the TOEFL test set using the three point estimators are presented in Fig-

ures 5.2, 5.3, and 5.4. In terms of absolute performance, the peak—81.3%—is reached under

different conditions: using PMI along with document estimator and windows of 16–32 words;

using Z-score with a window of size 64 in the document estimator and windows of size 128 and

256 in the weighted-window estimator; and using the Cosine and Z-score with 16-word windows

and the simple estimator.
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Figure 5.2: Results for TOEFL test set with Simple Estimator
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Figure 5.3: Results for TOEFL test set with Weighted-window Estimator
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Figure 5.4: Results for TOEFL test set with Document Estimator
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Figure 5.5: Results for TS1 test set with Simple Estimator
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Figure 5.6: Results for TS1 test set with Weighted-window Estimator
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Figure 5.7: Results for TS1 test set with Document Estimator
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Figure 5.8: Results for TS1 using context and Simple Estimator
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Figure 5.9: Results for TS1 using context and Document Estimator
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Figure 5.10: Influence from the context on TS1
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Turney [100] described a run on the same tests set using a similar method: document estimator

and PMI. He was able to answer 72.5% of TOEFL questions correctly, which is 10% under our

best result. The difference between the results presented here and Turney’s results may be due to

differences in the corpora and differences in the queries. Turney used Altavista and we used our

own crawl of web data. We cannot directly compare the collections since we do not know how the

Altavista collection was created1. As for the queries, in his best result, Turney used the operator

near2 available at the time the experiments were performed, which specified a maximum distance

of 10 words apart for its operands. In our case, we have more control in the query since we

can precisely specify the window size; in fact, we can use both window estimators and document

estimators and for each of those the window size can be specified.

The performance of the measures for direct comparison depends on the window size and the

estimator and, in some situations such as the document estimator, exhibit a poor performance.

This is the case for χ2, MI and Z-score for small window sizes (2–16).

The results for test set TS1 using direct comparison measures are presented in Figures 5.5, 5.6,

and 5.7 for the three point estimators. The best performance is 72.0%, in the simple and weighted

window estimator. At this distance these two estimators yield exactly the same frequency (normal-

ization is similar when maximum distance K = 1). Turney [100] also uses this test set using PMI

and estimation based on Altavista (as in TOEFL test set), achieving 66.0% peak performance,

6% under of our best.

Figures 5.11, 5.12, and 5.13 show the performance of the three point estimators and six mea-

sures for test set TS2. The peak performance is 75.0% which occurs in four different situations:

using PMI and document estimator with a window size of 64; Z-score and 8-word window with

both simple and weighted-window estimators; and simple estimator and 16-word windows with

Z-score, χ2 and Cosine measures.

For this evaluation we wish to determine the best point estimator and measure to use. The

peak performance in absolute numbers can be misleading since they may not be statistically

significant. In order to compare the point estimators we summed the results of the three test sets

1Furthermore, it is no longer available.

2This operator is no longer available in Altavista either.
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Figure 5.11: Results for TS2 test set with Simple Estimator
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Figure 5.12: Results for TS2 test set with Weighted-window Estimator
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Figure 5.13: Results for TS2 test set with Document Estimator
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Figure 5.14: Results for TS2 using context and Simple Estimator
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Figure 5.15: Results for TS2 using context and Document Estimator
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Figure 5.16: Influence from the context on TS2
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Size PMI MI χ2 Cosine Z Dice

2 67.9 60.5 63.7 68.4 68.4 66.8
4 68.4 65.3 70.5 68.9 71.6 67.9
8 71.1 65.8 72.6 71.6 73.2 69.5
16 74.2 66.3 74.2 74.2 74.2 69.5
32 73.2 63.7 73.2 71.1 72.6 67.9
64 72.1 64.7 71.6 67.4 71.1 66.3
128 73.2 62.6 69.5 64.7 68.9 64.2
256 72.6 62.1 65.3 62.1 66.3 60.0

Table 5.1: % correct answers on the three test sets with Simple estimator

Size PMI MI χ2 Cosine Z Dice

2 67.9 60.5 63.7 68.4 68.4 66.8
4 69.5 65.8 68.4 70.0 70.5 68.9
8 70.5 66.8 72.6 72.1 73.2 67.9
16 71.1 67.9 71.1 72.6 71.1 68.9
32 74.2 64.2 73.2 73.2 72.6 68.9
64 74.2 64.2 73.7 70.5 73.2 67.9
128 73.2 63.7 72.1 67.4 72.1 65.8
256 74.2 63.2 69.5 65.8 70.0 63.7

Table 5.2: % correct answers on the three test sets with Weighted-window estimator

Size PMI MI χ2 Cosine Z Dice

2 66.3 29.5 30.0 66.8 52.6 64.7
4 68.9 24.7 31.6 68.9 54.2 65.3
8 72.6 24.7 30.0 70.0 57.9 67.4
16 75.3 30.5 36.8 69.5 64.7 70.0
32 75.8 36.8 43.7 68.9 69.5 66.8
64 74.7 52.1 59.5 68.4 72.1 63.2
128 72.1 60.5 67.4 61.6 69.5 61.1
256 70.5 61.6 65.3 59.5 65.3 58.4

Table 5.3: % correct answers on the three test sets with document estimator

respecting the window size and measure; we move to a bigger test set composed of 190 questions.

The final results for the simple estimator are in Table 5.1; in Table 5.2 are the results for the

weighted estimator; the document estimator is shown in Table 5.3. Since no prior preference

exists for window size and measure, we compare the estimators for all combinations of window

size and measure. Each of the 190 questions is paired on the same conditions in order to compute
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Simple and Weighted Simple and Doc. Weighted and Doc.
Estimators Estimators Estimators

Simple Tie Weighted Simple Tie Doc Weighted Tie Doc
better better better better better better

PMI 0 7 0 0 8 0 0 7 1
MI 0 7 0 6 2 0 6 2 0
χ2 0 6 1 6 2 0 7 1 0

Cosine 0 6 1 1 7 0 3 5 0
Z 0 6 1 4 4 0 4 4 0

Dice 0 6 1 0 8 0 0 8 0

Table 5.4: Statistical comparison of the three estimators

Dice Tie PMI

Simple 0 6 2
Weighted 0 6 2
Document 0 3 5

Table 5.5: PMI vs. DICE

the differences and McNemar’s test was used to verify statistical significance.

McNemar’s test is used to compare treatments on paired experiments. The treatments in

our case are the combinations of window size, measure of affinity, and co-occurrence frequency

estimator. The test ignores pairs where the two treatments’ outcome is the same. For the

disagreements, the null hypothesis is that they are equally distributed for the two treatments.

The exact test uses a binomial distribution with probability of success p = 0.5 (and consequently

q = 0.5 as well). Thus, given a number of disagreements, it is only necessary to check the

probability of having this level of disagreement, accepting or rejecting the null hypothesis.

Table 5.4 shows the pair comparison of point estimators. For the simple and weighted estima-

tors, the only significant differences are in larger windows (256 words) on χ2, Cosine, Z-score and

Dice. The comparison between simple and document estimators shows that for all measures but

PMI there are one or more window sizes in which the simple estimator yields better performance.

The document estimator is better than the weighted-window estimator for window size 16 using

PMI; in all other situations the weighted estimator is better or equal to the document estimator.

Thus, if the window size and measure are chosen with no prior preference, then the weighted

estimator is like to perform better or the same in all cases but one. The simple estimator is likely
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Window PMI MI χ2 Cosine Z Dice

2 − + + − 0 −
4 − + + − 0 −
8 − + + − 0 −
16 − + + − − −
32 − 0 0 − − −
64 − − − − − −
128 − − − − − −
256 − − − − − −

Table 5.6: Full document vs. document with window constraints. “+” indicates full doc is
statistically better, “−” indicates that full doc is statistically worse. “0” indicates that the
difference is not significant.

to perform better or the same in all cases but four and the document estimator is likely to perform

better or the same if the measure chosen is PMI.

As for the measures, PMI and the Dice coefficient are more robust in the sense that the

choice of estimator will affect them in only one specific case (as long as the window size is fixed).

However, PMI is never significantly worse than the Dice coefficient for the same window size, as

shown in Table 5.5; thus choosing PMI will result in a better chance that the estimator will not

affect the results, for whichever point estimator is chosen. The window size for PMI is best in

the range 16–32 words, being statistically significant with regard to smaller window sizes [98]. In

fact, a window of 32 words has the best absolute performance in the three sets combined when

the document estimator is used (75.8% over the 190 questions).

The document estimator’s performance is normally worse when no window for co-occurrence

within the document is imposed (i.e. measuring joint frequency simply by counting the document

in which both lexical units occur, regardless of their distance). As this estimation process is used

in information retrieval, in particular pseudo-relevance feedback, our results suggest that these

applications may be suboptimal. See Zhai and Lafferty for a recent example of such use in the

IR domain [59]. This degradation in performance when no bounds on distance are imposed is

common to the three test sets. In fact, as shown in Table 5.6, with the exception of small windows

in MI and χ2, using the full document as a co-occurrence unit is normally worse statistically. The

problem with MI and χ2 is due to the fact that document frequencies are much coarser than

those provided by window estimators and, as such, they are more likely to generate low frequency
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estimates and thus are more susceptible to noise.

Using context

The context available in TS1 and TS2 consists of sentences where the synonyms are to be chosen

for the target terms. Since the two window estimators perform similarly, the results for TS1 are

shown only for the simple window estimator and the document estimator in Figures 5.8 and 5.9.

The performance of all measures but PMIC are worse than the non-contextual measures. However,

PMIC with a window size of eight words performs as better than other measures in TS1. For

TS2, no measure using context was able to perform better than the non-contextual measures.

PMIC performs best overall but has worse performance than CP with a window size of 8. In this

test set, the performance of CP with the document estimator is better than CP with the simple

estimator. L1 performs better than AMIC but both have poor results, JS is never better than

chance and SD is an improvement over JS . The context in TS2 has more words than TS1 but

the questions seem to be harder, as shown in Figure 5.1. In some of the TS2 questions, the target

word or one of its alternatives uses functional words.

These results for TS1 and TS2 were not what one would expect when context is taken into

account. L1, AMIC and JS perform poorly, worse than chance for some window sizes. One

difference in the results is that for PMIC only the best word from the context is used, as proposed

by Turney [100], while the other methods used all words but stopwords (as proposed by different

authors). In fact, the context of a sentence is not helpful in these questios since adding more

words from it degrades the performance in PMIC for all different window sizes, as shown in

figures 5.10 and 5.16. While the differences are not significant in TS1, they are for TS2. Using all

words except stopwords, the result from PMIC is better than any other contextual measure—76%

correct answers in TS1 (with PMIC and a window size of 8). In TS2, CP is better than PMIC

when all the words from context are used.

The results for TS1 and TS2 suggest that the available context is not very useful or that it

is not being used properly. It is possible that using other lexical units from the context and not

occuring in the given sentence could be helpful in decididing which alternative synonym is the

best for the given TW . However, it may be possible to increase the performance of the other
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contextual measures by using less context.

The context provided by a sentence is not the same context used in other methods, in particular

Latent Semantic Analysis (LSA) [60] and Hyperspace Analogue to Language (HAL) [67]. LSA

calculates the latent aspects of documents and computes the similarities between words based on

those aspects. The latent aspects are other words from documents. In the case of the TOEFL test

set questions, the only information is the target word and the set of alternatives. It is not clear

what is the best strategy for using the other words from the sentences in TS1 and TS2 when using

LSA as the model to answer the questions. In HAL, co-occurrences are measure with a weighted-

window estimator3 and the co-occurrence frequency as the cells of a word-word matrix. For the

affinity strength between lexical units a family of functions is proposed. Let b and d two lexical

units and Vb and Vd be vectors with co-occurrences of b and d with the remaining lexical units in

the matrix. Let D = Vb − Vd. The family of functions (or norms) is then ‖D‖p =

(

∑

i

|Di|p
)1/p

,

for which common values for p are 1, 1.5, 2 [67]. For p = 1, this measure is the L1 norm; for p = 2

it is similar to the cosine of pointwise mutual information (CP) and raw frequencies are used. In

HAL, such as in LSA, the standard way of using context is to obtain it from the corpus and not

from the sentence. However, in the case of HAL, as the result is expected to be similar to L1

norm and CP, there is no strong reason to pursue this model in our evaluation.

Impact of corpus size

The terabyte corpus is a valuable resource for estimation. It is possible that the same results

obtained in the point estimation procedures do not require such a large corpus since most words

in the test sets used are common in English texts. We further analyze the test sets with regard

to corpus size.

The corpus is distributed in 38 separate databases and we can use any subset to answer the

synonym questions. In addition, we split one database into five smaller pieces: 1/3, 1/6, 1/12,

1/24 and 1/48 of the 25 gigabytes contained in that database. We chose measures based on their

performance—in at least one condition, the measures used have top absolute performance in the

test set.

3not normalized
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Figure 5.17: Impact of corpus size on TOEFL
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Figure 5.18: Impact of corpus size on TS1
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Figure 5.19: Impact of corpus size on TS2
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Pair Pair
b d b d

afraid fear anger mad
baby boy bath clean

beautiful ugly bed sleep
bible god bitter sweet
black white blossom flower
blue sky boy girl
bread butter butter bread

butterfly moth cabbage head
thief steal thirsty water

tobacco smoke trouble bad
whiskey drink whistle stop

Table 5.7: Association norms examples

The impact of the corpus size is shown in Figures 5.17, 5.18, and 5.19 for TOEFL, TS1 and

TS2, respectively. These graphs show that initial performance is very poor but that, at some

point, the number of co-occurrences become stable and the results tend to saturate. In no single

case was necessary to use more than 500 gigabytes for the best absolute performance. In fact,

for TOEFL and TS2 the performance improvement is very small for corpus sizes greater than 50

gigabytes. The reason these tests reach an asymptote is due to the convergence of the estimators

to their actual value as the corpus size increases. Some lexical units’ estimators will converge

faster than others to their real value as the corpus size increases; this is due to the fact that some

occur more frequently than others [30].

5.1.2 Skew

Our second evaluation uses the parametric affinity model in a new approach to solve synonym

questions. This method is completely new and it is quite different from other methods used for

affinity. The parametric model for affinity, the gamma distribution, is a statistical distribution.

As with other statistical distributions, the gamma distribution has moments about the mean,

from which the third moment is the skew of the distribution. The gamma distribution fits the

data by maximum likelihood and from that we can compute the skew. Our hypothesis is that the

degree of affinity of two terms is related to the skewness of the fitted model.
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Pair Sets γ

Minnesota association norm 3.1425
Random set 2.1630

Table 5.8: Skewness, γ = 2.0 indicates indepen-
dence

Test set Correct Answers

TS1 76.0%
TS2 75.0%

TOEFL 78.8%

Table 5.9: Skew results on synonym questions

In order to validate our hypothesis that a greater positive skew corresponds to more affinity,

we used a list of pairs from word association norms and a list of randomly picked word pairs. Word

association is a common test in psychology [76], and it consists of a person providing an answer

to a stimulus word by giving an associated one in response. The set of words used in the test are

called “norms”. Many word association norms are available in psychology literature; we chose the

Minnesota word association norms for our experiments [50]. Table 5.7 shows some examples. It

is composed of 100 stimulus words and the most frequent answer given by 1000 individuals who

took the test. The list of randomly picked pairs used as baseline also comprises 100 word pairs,

but is generated by randomly choosing words from a small dictionary4. The skew in the gamma

distribution is γ = 2/
√
α and Table 5.8 shows the normalized skew for the association and the

random pair sets. Note that the set of 100 random pairs include some non-independent ones.

The high skew of the norms in the association norms compared to random pairs is an indication

that γ can used directly to identify related words, including synonyms.

In order to estimate α and β we compute the empirical distribution. This distribution provides

us with the right-hand side of equation 4.5 and for which α can be solved numerically. The

calculation of β is then straightforward. Table 5.9 show the results for the three test sets using

the skew as the only information to answer the questions.

Since skew represents the degree of asymmetry of the affinity model, this result suggests that

skew and synonymy are strongly related.

This result is not significantly better or worse than the top point estimation results. However,

using the skew implies that the user will not have to set or tune any parameter, such as window

size, window or document estimator. Thus, it is a good alternative as a measure of affinity.

4Linux’s /usr/dict/words
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Test Set Correct Answers

initial cut-off
0 4 7

TS1 76.0% 75.0% 72.0%
TS2 80.0% 71.7% 73.3%

TOEFL 80.0% 86.3% 83.8%

Table 5.10: Results of log-likelihood ratio over intervals in the synonym questions

5.1.3 Log-likelihood Ratio over Intervals

A new method based on the log-likelihood is also used to solve the TOEFL synonym questions.

Dunning [36] proposed the use of the log-likelihood ratio as a measure of association strength

for sequential bigrams. In the bigram case the estimations are simple since the co-occurrence

frequency is the number of times the two words occur in sequence.

We extend the idea of computing the log-likelihood by making use of the affinity models.

Instead of using point estimation to determine the co-occurrence frequency, we use the parametric

model for independence and the empirical distribution in a log-likelihood ratio. Since the distance

between lexical units is important for affinity, we sum the log-likelihood in a interval as follows: for

each target-alternative pair, the log-likelihood of the number of co-occurrences for every distance

in the range up to a maximum distance of j words apart, giving

logλb,d =
∑

δ=i..j

log
L(Pδ(b, d); pO)

L(Pδ(b, d); pI)
(5.1)

where pO is the empirical or the value from the gamma distribution that fits the data and pI is

the the number of co-occurrences given by the independence model. An initial cut-off i can be

used to discard the affinity caused by phrases containing both target and alternative words.

In our experiments the upper cut-off was set to be 750, the average document size in the

collection. The cumulative log-likelihood was then used as the score for each alternative, and we

considered the best alternative the one with higher accumulated log-likelihood. The results for

log-likelihood are shown for different initial cut-offs in Table 5.10. It is interesting to note that

the log-likelihood method yields best absolute performance among all the methods presented in

this chapter: 86.3% for TOEFL, 78% for TS1 and 80% for TS2.
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Method TOEFL TS1 TS2 Overall

Leacock &
Chodorow 45.0 60.0 46.7 49.5
Jiang &
Conrath 41.3 60.0 43.3 46.8
Lesk 85.0 58.0 68.3 72.6
Lin 44.0 40.0 43.3 42.6

Hirst &
St-Onge 78.0 62.0 58.3 67.3

Table 5.11: % correct answers using similarity based on WordNet

Unlike the method using the skew, the log-likelihood has user parameters that can affect the

outcome. Both initial and upper cut-offs can affect the result but simply using no initial cut-off

and an upper cut-off of the average document length appears to be a reasonable choice.

5.1.4 Knowledge-based approach for Semantic Similarity

The final experiment for the synonym questions are performed using WordNet as the source for

semantic similarity. The methods presented in Section 2.3 are used to find the best alternative

for the question, where best means the alternative that has more similarity, as defined by each

individual method, to the target word TW .

Table 5.11 depicts the results of the semantic similarity based on the three test sets. Two

methods perform closely to the statistical affinity methods but never outperform them. The best

one, Lesk modified method, uses context from the knowledge base but ignores the sentence given

in the case of TS1 and TS2.

These methods also suffer from incomplete lexicon information. Although WordNet5 has many

entries, it still misses some of the words in the synonym tests; in particular, in the cases where

the alternatives or the target word are phrases. The number of look ups in word net is 950 (190

questions times four alternatives plus the target word) for which wordnet has no information for

24.

5version 1.7



CHAPTER 5. HUMAN-ORIENTED LANGUAGE TESTS 69

1. The science of seismology has grown just enough so that the first overly

bold theories have been .

a) magnetic. . . accepted
b) predictive . . . protected
c) fledgling. . . refuted
d) exploratory . . . recalled
e) tentative. . . analyzed

2. The spellings of many Old English words have been in the living

language, although their pronunciations have changed.

a) preserved
b) shortened
c) preempted
d) revised
e) improved

Figure 5.20: Examples of fill-in-the-blanks questions

5.2 GRE fill-in-the-blanks

5.2.1 Log-Likelihood Ratio

The co-occurrence distributions assign probabilities for each pair at every distance. We can

compare point estimations from distributions and how unlikely they are by means of the log-

likelihood ratio test:

logλ = log
L(P∆(b, d); pO)

L(P∆(b, d); pI)
(5.2)

where pO and pI are the parameters for P∆(b, d) under the empirical distribution and independence

models, respectively. It is also possible to use the cumulative C∆ instead of P∆. Figure 5.21

shows log-likelihood ratios using the asymmetric empirical distribution, and Figure 5.22 depicts

log-likelihood ratios using the symmetric distribution.

A set of fill-in-the-blanks questions taken from GRE general tests were answered using the

log-likelihood ratio. For each question a sentence with one or two blanks along with a set of

options A was given, as shown in Figure 5.20.
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Figure 5.21: Log-likelihood – watermelon pairs

The correct alternative maximizes the likelihood of the complete sentence S:

logλ = log

∏

b∈S

∏

d∈S,b6=d

L(Pδb,d
(b, d); pO)

∏

b∈S

∏

d∈S,b6=d

L(Pδb,d
(b, d); pI)

(5.3)

where δb,d is distance of b and d in the sentence (and Pδb,d
is a short for P∆=δb,d

). Since only the

blanks change from one alternative to another, the remaining pairs are treated as constants and

can be ignored for the purpose of ranking:

logλb = log

∏

d∈S,b6=d

L(Pδb,d
(b, d); pO)

∏

d∈S,b6=d

L(Pδb,d
(b, d); pI)

(5.4)

for every b ∈ A.

It is not necessary to compute the likelihood for all pairs in the whole sentence; instead a cut-off

for the maximum distance can be specified. If the cut-off is two, then the resulting behavior will

be similar to a word bigram language model (with different estimates). An increase in the cut-off

has two immediate implications. First, it will incorporate surrounding words as context. Second,

it causes an indirect effect of smoothing, since we use cumulative probabilities to compute the
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Figure 5.22: Log-likelihood – united pairs

likelihood. As with any distance model, this approach has the drawback of allowing constructions

that are not syntactically valid.

Another important issue is the zero-frequency problem. Even using cumulative probabilities

as a smoothing effect, there can be cases where the first co-occurrence is observed at a farther

distance. In this case, the probability of observing the pair is obviously zero in the maximum like-

lihood estimator. Many alternatives for this problem exist; Chen [16] gives a survey of smoothing

techniques for language modeling and these techniques can be applied in our case. However, the

fact that we have a function to compute the expected number, in both independence and affinity

models, works as an alternative method for smoothing.

The tests used are from GRE practice tests extracted from the web sites: gre.org (9 ques-

tions), PrincetonReview.com (11 questions), Syvum.com (15 questions) and from Microedu.com

(28 questions). Table 5.12 shows the results for a cut-off of seven words. Every question has five

options, and thus selecting the answer at random gives an expected score of 20%. Our frame-

work answers 55% of the questions, that even with the limited number of questions, is substantial

improvement over the baseline.
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Source Correct Answers

ETS.org 67%
Princeton Review 54%

Syvum.com 67%
Microedu.com 46%

Overall 55%

Table 5.12: Fill-in-the-blanks results

5.3 Summary

For the synonym questions, the point estimation and the affinity models perform similarly. Some

practical considerations are in order. First, affinity based on point estimation is easier to compute

in the sense that the co-occurrence is measured in only one window size. In contrast, the affinity

models require the whole distribution to be computed and, in the case of the affinity model,

calculating the two parameters of the gamma distribution is more expensive. If computational

burden is a problem then point estimation is more adequate. For point estimation, based on

the synonym questions, PMI and window size of 16–32 is likely to perform consistently in any

estimator. The weighted-estimator has more chance to produce statistically significant results

than simple estimator; the document estimator is also a good alternative for PMI.

On the other hand, the skew as a measure of affinity is the only one that does not require

the user to choose an arbitrary parameter: the window size. The performance of the skew is not

worse than any other method.

Using the log-likelihood ratio of intervals between the affinity and independence models results

in the best absolute performance. The difference for the skew is not statistically significant but

this method provides the best results for the three test sets individually. It is possible that the

differences might become statistically significant if the test set were bigger.

The use of the affinity models has the additional benefit of creating a function for smoothing;

the same cannot be said for point estimation where the smoothing occurs in a heuristic way.

The context sentence as provided in two test sets, TS1 and TS2, did not help improve the

results on those sets. In some cases, the results are similar but for most methods that take

advantage of context this was not the case.

The results on fill-in-the-blanks questions show that the parametric models of affinity can be
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applied to problems where n-gram models are normally used, such as predicting the next word

given a history, with reasonable performance.



Chapter 6

Scoring Missing Terms in IR

In this Chapter we examine the application of lexical affinity using a large corpus to two informa-

tion retrieval problems: document retrieval and passage retrieval. We propose a new method to

replace missing query terms when scoring documents and passages. We assess the improvements

of our method using standard evaluation suites for ad hoc document retrieval and question an-

swering. Our replacement method modifies two well-known scoring functions: the Okapi BM25

formula for document retrieval [51]; and MultiText’s passage retrieval formula [21, 23].

6.1 Missing Term problem

A user query for a retrieval system expresses both the user’s information need and the knowledge

he/she has about the query topic. All of these surrounding factors in an information retrieval

setting make it hard to capture other aspects of a query, such as topic, specificity, and genre,

among others. In particular, a word used in a query can have different meanings or have other

words that may replace it in documents. This causes problems such as query drift and mismatch-

ing vocabulary that deteriorate the accuracy of the retrieval process. One way to address the

mismatching problem is through automatic query expansion (AQE), where new terms are added

to create a new expanded query to be submitted to the retrieval engine [13, 14, 51, 88, 111, 115].

On the other hand, AQE increases the chance of query drift [29, 72].

74
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# Original query Replacement Document

51 airbus subsidies aircraft subsidies SJMN91-06350209
58 rail strikes railroad strikes SJMN91-06339333
59 weather related fatalities weather related casualties SJMN91-06017078
59 weather related fatalities weather related deaths SJMN91-06017055
70 surrogate motherhood surrogate pregnancy SJMN91-06338198
72 demographic shifts u.s. population shifts u.s. SJMN91-06363136

Table 6.1: Replacements examples

An alternative for handling the problem of mismatching vocabularies is the use of translation

language models and methods from cross-language information retrieval (CLIR). The lack of query

terms in a document is addressed by using one or more words in the document as a translation for

the missing term [6, 32, 44, 92]. In a sense, the translation of document words into query terms

is not the same thing as expanding the query with extra terms. Translation focuses on replacing

query terms while the AQE focus is on complementing the query with some other aspects.

We take a different approach to address the mismatching vocabulary problem. Unlike AQE

and translation models, instead of augmenting the query to score documents, we use the original

query and replace missing terms only when necessary. The idea is to use the original query terms

to score documents whenever possible. This can be viewed as a type of translation, however we do

not try to translate query terms that are present in the document. Depending on how we choose

the replacement terms, we can also capture relationship types other than word translation.

Since the vocabulary changes from one document to another, it is likely that our approach

will score different documents using different queries but forming each new query with minimal

changes to the original user query. Table 6.1 shows some examples of the queries and documents

that partially match them; the replacement is chosen from the same document. In the same

situation, traditional AQE will use one query for all documents, regardless of the mismatching

vocabulary problem. In order to prevent the original query terms from being outweighed by

replacement terms, we adjust the weights of replacement terms based on their affinity with the

missing query term. While our approach is a form of query expansion, it does not exclude the

possibility that a traditional AQE could be performed later in the retrieval process.
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6.2 Related Work

Information Retrieval models, with the exception of certain queries of the classic boolean model,

allow documents to be scored when not all of the query terms are present. In general, the score

of a document is given by weights assigned to the query terms present in it. In the vector space

model [90] a missing term will have zero value in the document vector, thus contributing no weight

towards the document’s score. In the tf.idf probabilistic models [51], a missing term will not count

either since its term frequency is zero. In these models a common approach to handle mismatched

vocabulary is to use pseudo-relevance feedback [13, 14, 51, 88, 111].

In CLIR, the query is specified in one language and the documents in another. As a conse-

quence, the query terms will not usually occur in the documents. To address the language barrier,

a common approach is to translate the query into the document language [92]. Darwish and Oard

use the idea of replacement of query terms by document words at query-time in CLIR and in

the retrieval of scanned OCR documents [32]. In their CLIR application a number of translation

resources, such as dictionaries and parallel corpora, are used. A parallel corpus was used in their

OCR application, having on one side the corrected digital version of the document and on the

other the version resulting from OCR (containing errors). These translation resources are then

used in a document retrieval task.

In language models, instead of using maximum likelihood estimators, the term frequencies

are smoothed in order to assign some probability mass for missing terms in all documents [83].

Pseudo-relevance feedback is also used in language modeling [61, 115], normally by expanding the

query term set to form a query language model.

One particular language model [6], the statistical translation model for IR, is related to the

work presented here. It is inspired by statistical translation models for natural language and relies

on the idea of parallel corpora, where there exists an alignment between texts written in different

languages. When these models are adapted to IR, a translation is made from a document to a

query and the retrieval process comprises word translations from document into query terms by

means of translation probabilities. The relevance of a document is assumed to be monotonically

increasing with the likelihood of generating (translating) the query from the document. The

translation probabilities enable the use of all query terms for every document, even when they
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are not present in the document. Berger et al. propose two translation models for Information

Retrieval [6], and both models (1 and 1′) compute the weight for every query term as the sum

of the product of the translations of every document word into the query term and document

frequency. The use of all words as a possible translation of a query term is a way to capture all

possible alignments between the document and the query. This also has the effect of relating all

terms in the query and document, even when they do not have any affinity. It is also interesting

to note that the queries are expanded to form a query model before the actual “translation” (i.e.

scoring) occurs, which can lead to query drift.

In monolingual information retrieval the idea of translation is not natural. It may be arguable

that one synonym may translate to its counterparts; however, that is not the idea behind AQE.

Rather, in AQE, the expansion terms tend to complement the original query terms by including

not only synonyms but also other types of relationships, such as morphological variants of the

term, and also other semantic relations (e.g. hyponyms and hypernyms). Furthermore, the

translation models rely either on the availability of alignments, such as in CLIR, or on brute force

alignments, such as the statistical translation model for IR.

6.3 Modified Retrieval Methods

Two probabilistic models, one for passage retrieval and one for document retrieval, are modified

in order to accommodate non-zero scoring of missing terms. In this method the goal is to make

as few changes as possible in order to prevent query drift.

6.3.1 Passage Retrieval

We use the passage retrieval component of MultiText. It has been successfully applied to question

answering [23, 25, 66] and pseudo-relevance feedback [113]. From a query Q = {t1, t2, .., tk} let

T ⊆ Q. Given an extent of text comprising all words in the interval (u, v) with length l = v−u+1,

the probability S(t, l) that the extent contains one or more occurrences of t is
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S(t, l) = 1− [1− P (t)]l

= 1− [1− lP (t) +O(P (t)2)]

≈ lP (t).

(6.1)

The probability that an extent (u, v) contains all the terms from T is then

S(T, l) =
∏

t∈T S(t, l)

≈∏t∈T lP (t)

= l|T |
∏

t∈T P (t).

(6.2)

The estimation of P (t) is given by the Maximum Likelihood Estimator (MLE) for t in the

collection

P̂ (t) =
f(t)

N
(6.3)

where f(t) is the collection frequency of t and N is the corpus size in words. The score for an

extent of length l containing the terms in Q is the self-information of S(T, l)

∑

t∈T

log

(

N

f(t)

)

− |T | log(l) (6.4)

The score is higher for short passages containing all terms in T and there is a trade-off between

the number of terms and size of the passage.

For the original passage retrieval method presented by Clarke et al. [23], an efficient algorithm

to retrieve all passages comprising 1 to |Q| query terms is presented by Clarke [21]. The running

time to extract all extents of size |T | is O(|Q|Jllog(N)) where |Q| is the total number of query

terms, Jl is the number of extents containing |T | query terms and N is the corpus size. The

algorithm is based on the positions of query terms, checking for close occurrence of other query

terms and skipping repetitions of the same term. This algorithm benefits from the sorted position

entries in the inverted list used to index the underlying collection and quickly locate terms.

To accommodate scoring of missing terms, the modified version only considers the whole query

Q since every extent has a representative for missing query terms. We assume P (t, t) = P (t) if the
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term t is present in the extent. If the query term t is not in the extent, a replacement term r will

be chosen in the extent. The weight of the replacement is the conditional probability P (t|r), which

is calculated by estimating the maximum likelihood for P (r) from the corpus and estimating the

joint probability by

P̂ (t, r) =
f(t, r)

Njoint
(6.5)

where f(t, r) is the joint frequency and Njoint is the total number of pairs considered for the joint

frequency in the corpus. This is the same notation as in Chapter 3.

We take a winner-takes-it-all approach and choose the best r in the extent,

argmax
r∈(u,v)

P̂ (t|r) (6.6)

Finally, the modified version of equation 6.4 using replacements is given by

∑

ti∈Q

log

[

N

f(ti)
· P̂ (ti|r)

]

− |Q| log(l) (6.7)

We should note that since every non-empty extent has a representative for a query term, we

can make arbitrary decisions on the extent size. This creates a trade-off between extent size

and replacement quality. On the other hand, the fact that any extent can have a representative

does not allow us to use the efficient algorithm used in the original method. Instead of selecting

the extent in sub-linear time complexity (log of the corpus size) as in the original method, our

approximation extracts the passages in linear time.

The implementation of the replacement method does not look for passages in the corpus

directly, as the original method does. Instead, a subset of the documents in the collection is used

to find the passages, reducing the search space. Since the algorithm runs in linear time, this

restriction makes the replacement method feasible. For every document, P̂ (t|qi) is calculated for

every pair containing a word t from the document and query term qi (i.e., the algorithm runs in

O(|Q| · N) and we heuristically reduce the size of N by selecting documents that will contain,

potentially, good extents). The resulting data is scanned to find and score extents. A sliding
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window is used to keep track of the query term representatives in it.

6.3.2 Document Retrieval

For document retrieval, we use Okapi BM25 formula [51], a tf.idf model that uses the bag-of-words

approach. In this approach, the order or relationship between the query terms is ignored. The

weights of query terms are calculated from the collection, and relevancy is used if available. A

document’s score is the sum of weights of query terms in that document and taking into account

the in-document frequency of these terms. Specifically, given an query Q = {t1, t2, .., tk}, a

document d is assigned the score

∑

ti∈Q′

w(1)
(k1 + 1)dti
K + dti

(k3 + 1)qti
k3 + qti

+ k2 · |Q| ·
avdl − dl
avdl + dl

, (6.8)

where

w(1) = log
(rti + 0.5)/(R− rti + 0.5)

(dti − rti + 0.5)/(D − dti −R+ rti + 0.5)

Q′ = subset of unique terms in Q

D = number of documents in the collection

dti = # documents containing the term ti

qti = frequency of ti in the query Q

dti = frequency of ti in the document d

dl = document length in words

avdl = average document length in the collection

R = # relevant documents for the query

rti = # relevant documents containing ti

K = k1((1− b) + b · dl/avgdl)

k1, b, k2, k3 = query nature and database parameters

In cases where relevance information is not available, the values of R and rti are set to zero.
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Usual values for query nature and database parameters are k1 = 1.2, b = 0.75, k2 = 0, and

k3 =∞, as result the main tf.idf components are kept in the short version of the formula:

∑

ti∈Q′

log
D − dti
dti

· qti ·
(k1 + 1)dti
K + dti

(6.9)

To allow missing query terms to be scored we modified the short formula (equation 6.9) by

adding the relatedness factor for term r as a replacement for term ti in similar fashion to the

approach taken for passage retrieval. We calculate the conditional P (ti|r) by the maximum

likelihood of P (r) and the joint probability :

P̂ (ti, r) =
f(ti, r)

Njoint
(6.10)

where f(ti, r) is the joint frequency and Njoint is the total number of pairs considered for the

joint frequency in the corpus.

As in the modified passage retrieval method, we use the replacement r that satisfies

argmax
r∈dm

P̂ (ti|r) (6.11)

where dm is a document that does not contain ti.

Our modified version of BM25 uses a modified idf,

∑

ti∈Q′

log

[

D

dti
· P̂ (ti|r)

]

· qti ·
(k1 + 1)dti
K + dti

(6.12)

Equation 6.12 is similar to the modified tf.idf presented by Darwish and Oard [32] and used

in CLIR and OCR retrieval:

tfi =
∑

k∈R(ti)

tfk · wk (6.13)

and
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idfi = 1/
∑

k∈R(ti)

dk · wk (6.14)

where tfi and tfk are frequencies of terms i and k in the document being scored, wk is the

replacement weight of the term k and R(ti) is the set of replacements for ti. There some other

major differences between our modified BM25 and Darwish and Oard’s formula. First, they

recommend the use of the replacement weight twice, once in the tf component and another in

the idf. The way the replacements are computed also differs from our method, which is explained

in section 6.4. A last major difference is the fact that the original terms are not present in the

scored documents in both CLIR and OCR; thus they do not need to handle the case when the

query term is present.

6.4 Finding Term Replacements

To prevent query drift, it is desirable to have a replacement term that represents the original

term’s abstract concept when used in the context specified by the user query. The actual type of

semantic relationship is not easily predicted; it can be just a synonym or a hypernym, or it can

have any other relationship with the original query term. We use the lexical affinity approach to

find replacements.

In particular, we use the point estimation described in Chapter 3. Since the number of pairs

we have to score for both document retrieval and passage retrieval is high. The pointwise mutual

information (PMI) is used as the similarity measure to score relatedness within any pair of terms

b and d:

PMI(b, d) = log
P (b, d)

P (b)P (d)
(6.15)

The reason for choosing PMI is twofold. First, it was demonstrated to be effective for language

phenomena, as described in Chapter 5. Second, it has a relationship with idf. This relationship
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comes from the assumption that P (b, b) = P (b), thus

PMI(b, b) = log
P (b, b)

P (b) · P (b)

= log
P (b)

P (b) · P (b)

= −log P (b)

= idfb

In the case of the pair of words b and d, the maximum value for the pointwise mutual infor-

mation is bounded by PMI(b, d) ≤ idfb and PMI(b, d) ≤ idfb. This can be easily verified since

the PMI formula has maximum value when the joint probability is equal to the smallest marginal

(if marginals are different). Therefore, we can use idf to normalize the PMI for a given word we

want to replace

CondPMI(b, d) =
log P (b, d)/[P (b) · P (d)]

log 1/P (b)
, (6.16)

which produces the same ranking that would be generated by

P (b, d)/[P (b) · P (d)]

1/P (b)
= P (b|d) (6.17)

Thus, if we fix one word, in this case the missing query term, we can rank its affinity with the

remaining words of the vocabulary. Since the goal is to find a replacement for one query term

at a time, the denominator of the equation 6.16 is fixed for every missing term. We should note

that there is a problem with the normalization in the conditional PMI. The problem occurs when

PMI is negative, in which case we just set it to zero. Setting the negative value to zero could be

avoided if we offset both idf and PMI by the minimal PMI value. We ignore pairs of terms with

negative PMI, thus we use a self-regulated cut-off for the minimal value for a conditional PMI.

We assume that any word in the document with a negative PMI with respect to the missing query

term is not a good candidate for replacement.

The estimation for P (b, d) uses the weighted-window estimator (section 3.1) with distances

ranging from four to 40 words apart. The lower cut-off prevents phrasal relationships, as described
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Word Frequencies

New 104,483,262
York 12,205,261

population 4,854,401
demographic 428,641

Table 6.2: Corpus Individual Frequencies

Pair Distance range

b d 1–3 4–40 41–∞
New York 11,784,589 3,365,934 8,215,334

population demographic 10,509 89,772 485,491

Table 6.3: Corpus Frequencies of Pairs at specific distance intervals

in Chapter 5. For example, if the term “New” is a query term but “York” is not, then the latter

is probably not a good replacement for the first. As most of the co-occurrences of “New” and

“York” happen at distance one, this cut-off will avoid this bias for pairs in the same phrase. The

frequencies values for “New” and “York” and for the pair “demographic” and “population” are

shown in the tables 6.2 and 6.3 over a terabyte corpus. The pairs counting in table 6.3 do not

include nesting, thus “new New York” will count only once towards the joint frequency. As seen

in the results of point estimation experiments in Chapter 5, when pointwise mutual information is

used a window size of around 32 words is a good setting for an upper bound on the distance. This

was also pointed out in earlier studies of these frequency estimators by Terra and Clarke [98].

6.5 Empirical Evaluation

6.5.1 Methodology

A standard evaluation in information retrieval has been held by the National Institute of Standards

and Technology (NIST) in the context of the Text Retrieval Conference (TREC) since 1992. In

TREC many different types of retrieval have been evaluated over the years, which started with

an ad hoc document retrieval task and has, since then, evaluated cross-language retrieval, on-line

retrieval (filtering), retrieval in hypertext collections (web), interactive retrieval, and question

answering among others. Every task evaluation in TREC starts by the creation information
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<head> Tipster Topic Description

<num> Number: 051

<dom> Domain: International Economics

<title> Topic: Airbus Subsidies

<desc> Description:

Document will discuss government assistance to Airbus Industrie, or

mention a trade dispute between Airbus and a U.S. aircraft producer

over the issue of subsidies.

Figure 6.1: ad hoc topic

<num> Number: 201

<desc> Description:

What was the name of the first Russian astronaut to do a spacewalk?

<num> Number: 1397

<desc> Description:

What was the largest crowd to ever come see Michael Jordan?

Figure 6.2: Question answering topics

needs. Each information need is called a topic in TREC. Figures 6.1 and 6.2 show TREC topic

examples for ad hoc and question answering tasks, respectively. The topics may contain different

fields depending on the task (and year). For ad hoc, the title field and/or description fields are

normally used. The QA topic is normally composed of the question itself. For each topic, the

systems retrieve objects based on their specific rules and methods, and submit these results for

assessments. The judgments are then performed by a group of human assessors. Among other

things, the results of TREC are evaluation suites for different retrieval tasks. NIST also supplies

the corpora for the tasks.

To evaluate the new passage retrieval method we use the question answering (QA) evaluation

suite from TREC, which started in eighth edition of the conference in 1999 and is still running to

this day.

The new document retrieval method is evaluated using ad hoc retrieval from TREC topics

51–100.

For both the passage and document retrieval experiments, all of the replacements were calcu-

lated using the statistics of the terabyte corpus described in Section 2.4.1.
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Figure 6.3: QA query terms histogram Figure 6.4: Passages correct

6.5.2 Passage Retrieval

We assess the performance of the modified passage retrieval method using QA test sets from TREC

9 through 12. TREC 9 contains some question variants, with some rewording of questions. Those

questions are left out because the important query terms are the same and, as such, they would

not add new information to this evaluation. The remaining 1,732 questions with known answers

in the TREC official collections were used. As we are particularly interested in the evaluation

of the passage retrieval method, we only extract passages from documents in TREC collections

(TREC disks 4–5 and AQUAINT) that contain answers to questions. A similar approach was

used in Tellex et al. [97]. For these 1,732 questions, the total number of relevant documents is

10,561.

The queries used in passage retrieval methods were generated from questions by simple stop-

word exclusion. The query size distribution is given by Figure 6.3. Since many of the queries are

short, a missing query term can harm the effectiveness of the passage retrieval. We perform auto-

matic judgments in this evaluation, using the regular expression patterns available from the NIST

web site for TREC1. We consider a passage correct if it matches the pattern for the question.

For each pair <query number, relevant document> we find the best passages using the original

and the modified methods. For the modified method, we scan the whole document to find the best

scoring passage among all possible candidates using equation 6.7. For every candidate passage

1trec.nist.gov
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Method Coverage % Correct

TREC10 - Original 96.1% 87.97%
TREC10 - Replacem. 96.1% 89.21%

TRECs 9-12 (1+ missing) - Original 89.9% 85.88%
TRECs 9-12 (1+ missing) - Replacem. 94.5% 87.88%

TRECs 9-12 (all) - Original 94.5% 89.59%
TRECs 9-12 (all) - Replacem. 95.3% 89.50%

Table 6.4: Replacement Method results

Method Coverage

IBM 92.9%
SiteQ 92.6%
ISI 91.4%

Alicante 91.0%
MultiText 89.8%

Table 6.5: Top five passage retrieval in Tellex et al.

we want a representative for each query term to be present. The number of candidate passages is

O(|DLi|2) for each document, where DLi is the number of the words in the i-th document. Since

the goal of passage retrieval is to find a fragment of text smaller than the whole document, we limit

our reported passages to 170 words for comparison purposes. Tellex et al. [97] used snippets of

1000 bytes in a similar passage retrieval evaluation (170 words ∼ 1000 bytes using our tokenizer).

Every 170-word passage has a smaller fragment we call a “hotspot”, that contains all the query

term representatives; we seek representatives in hotspots of 20 words using a sliding window.

Limiting the size of the hotspot is necessary to prevent representatives from being located too

far apart, preventing weaker representatives from being used even if they are close to other query

terms. This makes the number of passages O(|DLi|), but we may discard some passages that

would have a better score if we considered a larger window. The best hotspot in the document is

later extended to 170 words. The choice of hotspot size is a trade-off between execution time and

effectiveness.

The baseline is the original passage retrieval method using the scoring function from equa-

tion 6.4. To evaluate the difference between the two methods, we first compute the effectiveness

measures when at least one of the query terms is missing in the passage retrieved using the original

method. Since we retrieve exactly one passage from each document, we can compare the passages
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from the two methods side by side. Figure 6.4 plots the percent of correct passages against the

number of original query terms. It shows only passages where at least one original term is miss-

ing. The y-axis is the percent of correct passages, i.e. containing the answer for the question. For

instance, for the more than 300 questions that have query size of 2, the original method retrieves

79% of passages correctly (in this case the passages contain exactly one query term). The modi-

fied method replaces the missing term with another in the document and improves the percent of

correct passages to 86%.

The improvements are higher for short queries, comprised of one or two query terms. For

queries of size one, a missing term means no information is available to select a passage in the

original method; in this case our new method of replacement can only improve. When more query

terms are available, replacements do not help or harm (i.e. the differences are not significant). The

difference in the percentage of correct passages, when one or more query terms are not present,

is significant at 99% confidence level using the Wilcoxon signed rank test.

We also calculated the coverage, the percentage of the 1,732 questions where at least one

retrieved passage contained the answer [27]. As many QA systems use the output of the passage

retrieval as the input to an answer extraction component, it is important to have at least one

passage containing the answer so that upstream components of the system can have a chance to

find it.

The new method provides better coverage than the original baseline method. Table 6.4 shows

the results of the two methods. In the whole test set, TRECs 9-12, the coverage is a little better

in the replacement method. The difference is greater if we compare only passages where all the

query terms are not present.

We further compare the results of our new method with the evaluation presented by Tellex et

al. [97], where different passage retrieval methods were evaluated using the TREC 10 questions.

Tellex et al. report effectiveness by means of Mean Reciprocal Rank (MRR) and the percent of

incorrect questions (instead of passages). The MRR is calculated by averaging the inverse rank of

the first correct answer to each question. It is not clear that MRR is appropriate for evaluating

the passage retrieval component of a QA system. It is an intuitive measure if considered in terms

of the end-user. Instead, the passages are going to be further processed by an answer extraction
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Figure 6.5: Interpolated Precision-Recall for topics 51-100 on SJMN

component, thus their retrieval rank may not be as important as it would be for the end-user.

For this reason, we do not report MRR. The latter measure, percent of incorrect questions, is the

complement of coverage (i.e. 1-coverage), thus the results are directly comparable. The reported

coverage by Tellex et al. [97] is reproduced in Table 6.5. The coverage is higher in our experiments

and the differences can be explained by two factors: Tellex et al. use idf in equation 6.4, which

is not appropriate since in its derivation the collection frequency is used (rather than document

frequency); the statistics used in both original and modified passage retrieval, and reported in

Table 6.4, are drawn from the terabyte corpus and not from TREC collections.

6.5.3 Document Retrieval

For document retrieval, our evaluation was performed on the ad hoc queries corresponding to

TREC topics 51–100. The target corpus was the San Jose Mercury News sub-collection of TIP-

STER/TREC disk 3, containing 90,257 documents. The queries were extracted from the title

field, stopwords removed and stemming was not used.

As the retrieval models score only documents containing at least one of the query terms

(original+expanded), the number of documents that can be scored is normally smaller a subset



CHAPTER 6. SCORING MISSING TERMS IN IR 90

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 50  55  60  65  70  75  80  85  90  95  100

A
ve

ra
ge

 P
re

ci
si

on

Topic #

Figure 6.6: Difference in average precision per topic

of all documents in the collection, since documents containing no query term will have zero score.

For the case where query terms can be replaced, this limitation is obviously not present; however,

it is unlikely that all query terms will need to be replaced. The relevance judgments available

for the topics used in this evaluation tend to favor documents with original query terms, since

many runs in TREC use original query terms in all runs, and occasionally, expanded terms. Even

when expanded terms are used, their weights are usually reduced relative to the original terms.

An exception can be found in Smeaton et al. [95] in TREC-4: “When the query is expanded we

then delete all the original query terms in order to add to the judged pool documents that our

expansion would find that would not have been found by other retrieval.” For this reason, our

evaluation uses documents that contain at least one query term. As a result, four topics (57, 75,

77 and 78) were discarded from our evaluation since they always have exactly one word in the title

field; thus our method will score documents the same way the original method does. Two other

topics - 65 and 88 - were not considered since they do not have any document judged relevant in

the SJMN sub-collection. The remaining 44 topics were used in our evaluation.

For each document, every original query term is weighted as in the normal BM25 formula. If

the query term is not present, all the words in the document are considered for replacement and
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Figure 6.7: Rank by # missing terms - original
Figure 6.8: Rank by # missing terms - replace-
ment

the corresponding weight is calculated by using equation 6.16. The best replacement is selected

for each missing query term and final document score is given by equation 6.12.

Tables 6.6 to 6.11 show some examples of replacements for topic 51 (“Airbus Subsidies”);

topic 53 (“Leveraged Buyouts”); topic 62 (“Coup d’Etat”); topic 68 (“Health Hazards

from Fine-Diameter Fibers”); topic 71 (“Border Incursions”); and topic 94 (“Computer-

aided Crime”). Some replacements are morphological variants of the original term, but other

semantic relationships are present as well. For topic 94, no relevant document had the query term

computer replaced. The representative terms for query term aided were not as good as the ones

used for the original term crime. Replacement in topic 62 tend to focus on the people involved

in a specific coup d’etat, and as in topic 94 one term is always present in the relevant judgments

- Military. This shows that some query terms are really important in the query and documents

not containing them are unlikely to be relevant.

The precision-recall curves of the original and the modified formula with replacements are

depicted in figure 6.5. There is a consistent improvement over the original BM25 and the difference

in the mean average precision between the original and the modified methods is statistically

significant at 99% level using the Wilcoxon signed rank test. The analysis of the average precision

in the individual topics, depicted in Figure 6.6, shows that for most topics the precision improved

substantially. In fact, 28 out of the 44 topics improved on average 0.0206, four stayed the same

and in 12 topics where the precision dropped the reduction was on average 0.0058.
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Table 6.6: Replacements in TREC topic 51
Query Term Replacement COND-PMI

Airbus aeroflot 0.2060
Airbus mcdonnell 0.1680
Airbus aerospace 0.1234
subsidies subsidized 0.1808
subsidies revamping 0.1135
subsidies taxpayers 0.0444

Table 6.7: Replacements in TREC topic 53
Query Term Replacement COND-PMI

buyouts buyout 0.3224
buyouts divestitures 0.1862
buyouts mergers 0.1756
leveraged buyout 0.1667
leveraged takeovers 0.1587
leveraged mergers 0.1050

It is interesting to note that the recall in the replacement method improved as well, from 1227

to 1315 relevant documents retrieved, which corresponds to retrieving 8.70% of the remaining

relevant documents not retrieved by the original Okapi BM25 (at 1000 documents). A run with

all terms stemmed also improved mean average precision but maintained the recall at exactly the

same level as the original method.

We performed a failure analysis on the four topics responsible for the big drops in average

precision: 51, 52, 68 and 93. In two of them, topics 52 (“South African Sanctions”); and

93 (“What Backing Does the National Rifle Association Have?”), the replacement of

components of a phrase were responsible for the decline in performance. This problem can be

addressed by using the noun phrases from the query; however, as we will see in section 6.6, using

noun phrases does not always lead to improvement. The use of proper noun phrases may be a

more viable alternative. In topic 51 (“Airbus Subsidies”), the replacements for the proper name

Airbus harmed the average precision. In topic 68 (“Health Hazards from Fine-Diameter

Fibers”), the replacements for Fine-Diameter were not helpful, whereas Fibers and Hazards

had good replacements in asbestosis and carcinogenicity.

An alternative way to see the differences between the original and the method with replace-



CHAPTER 6. SCORING MISSING TERMS IN IR 93

Table 6.8: Replacements in TREC topic 62
Query Term Replacement COND-PMI

coups coup 0.1598
coups dessalines 0.1721
coups honasan 0.2376
etat choonhavan 0.0889
etat gqozo 0.1251
etat aristide 0.0273

Table 6.9: Replacements in TREC topic 68
Query Term Replacement COND-PMI

hazards carcinogenicity 0.5195
hazards hazardous 0.0913
diameter vesicle 0.4657
diameter pipe 0.0218

fine allo 0.4109
fibers asbestosis 0.1773

ments is to look at their rankings. Figure 6.7 plots different rank positions in the original Okapi

BM25 method, and Figure 6.8 shows the same cut points in the new method with replacements.

The cumulative bars indicate how many missing query terms the documents ranked at that posi-

tion have. For example, in the original method, 26 topics had documents with no missing query

terms at rank 1. In the replacement method, this number is reduced to 24. The new method

of replacement shuffles the ranking since every document has its own query term representative,

and there is a slight tendency for documents not containing all of the query terms to move up in

the rank. This effect is not stronger because we consider the original query terms to be more im-

portant. Nevertheless, we can see that the number of queries ranking documents with no missing

query term at position one is reduced between the two methods. We also see a document with

all query terms being ranked at position 500 by the new method, whereas in the original Okapi

method the same does not occur.
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Table 6.10: Replacements in TREC topic 71
Query Term Replacement COND-PMI

incursions gissin 0.2554
incursions infiltrations 0.2042
incursions incursion 0.1735
incursions militants 0.1122
incursions militia 0.0662
border Mexicans 0.0032

Table 6.11: Replacements in TREC topic 94
Query Term Replacement COND-PMI

aided conspired 0.0867
aided autocad 0.1150
aided drafting 0.1294
crime hacking 0.0443
crime crimes 0.1256
crime burglaries 0.1530

6.6 Replacement Method and Query Formulation Strate-

gies

The replacement method used in both document and passage retrieval can be seen as a query

expansion, but not as pseudo relevance feedback. In other methods new terms are normally added

from dictionaries or thesauri in a manual or heuristic procedure. In this section we compare the

replacement method for passage retrieval applied to QA against other query formulation strategies

that can be used in QA.

We use some standard query formulation strategies to compare against the replacement method.

For all of them we perform stopword exclusion:

• Bag-of-Words

This is probably the simplest way to specify a query. In particular this method is preferred

when the retrieval is the vector space, probabilistic or language model. The query comprises

the question terms, and the order in which terms are specified is not important.

• Stemming



CHAPTER 6. SCORING MISSING TERMS IN IR 95

A common strategy in information retrieval is to apply a stemmer in the query terms. The

intuition is that by using the stemmed form, and not the lemma, the mismatching vocabulary

problem will be minimized. The collection index normally contains both the stemmed and

lemma forms.

• Boolean conjunction

In some QA systems, the queries are formed by creating a boolean expression of selected

terms [97, 112]. Our boolean queries are formed as a conjunction of the question terms after

stopword exclusion.

• Quotes

For these queries we keep the original question quoted when supplied, e.g., What country

is known as the “Land of the Rising Sun?” For the purpose of retrieval, these

quotations are treated as phrases and their constituent words may or may not be used in

the query other than in the phrasal component. In our experiments, quote components are

not added to the query except with the verb expansion. The remaining of the question

words (not stopwords) are used as in the bag-of-words approach.

• Quotes plus Noun Phrases

To further investigate phrases in our passage retrieval method, we explore noun phrases in

the questions that are not part of quotes. The words in the questions are tagged using a

standard POS tagger and adjacent pairs were concatenated if the sequence matches one of

the following : 1) adjective followed by noun; 2) a non-proper noun followed by any noun; 3)

foreign word followed by any noun; 4) any noun followed by a foreign word; 5) proper-noun

followed by proper noun; and 5) numeral followed by any noun. Quotations were kept from

the question. We must note that the POS tagger sometimes fails: “How/WRB did/VBD

Jerry/NNP Garcia/NNP Die/NNP ?”, where the main verb “Die” is tagged as a

proper noun (NNP) and “did” (VBD) wrongly becomes the only verb in the sentence.

• Verb expansion (VE)
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Query Coverage Questions Passages # Precision Precision
type C@100 Covered Correct Passages P@100 P@20

Okapi BM25
+ AQUAINT 0.903 327 5,368 36,200 0.1483 0.2381
Okapi BM25
+ Terabyte 0.887 319 9,146 34,738 0.2633 0.3229

Table 6.12: Effectiveness of the document retrieval in the initial set

Query Coverage Questions Passages # Precision
type C@20 Covered Correct Passages P@20

Bag-of-word 0.738 267 1269 7240 0.1753
Bag+stem 0.710 257 1251 7240 0.1728

Boolean (and) 0.483 175 669 3787 0.1767
Quote 0.735 266 1261 7240 0.1742

Quote+Phrases 0.669 242 1076 7032 0.1530
VE 0.746 270 1223 7240 0.1689

VE+Quote 0.749 271 1226 7240 0.1693
Replacement 0.749 271 1412 7240 0.1950

Table 6.13: Passage Retrieval from top 150 Okapi documents in the AQUAINT Corpus

In preliminary works, particularly in the context of TREC-QA, we noticed that expanding

verbs tends to improve effectiveness. To identify the verbs we used the parser described by

Clarke et al.in [21], and not the POS tagger. Each regular verb is stemmed and all irregular

verbs are expanded.

• Verb expansion plus Quotes

These queries have both expanded verbs and quotes from the original questions. These

components, along with some heuristics expansions, form queries used in MultiText’s par-

ticipations on the QA task in TREC 10 through 12. The words in the quote are also added

as single words to the query.

Along with these formulations, we used our replacement method described in section 6.3.1.

6.6.1 Evaluation

We evaluate the performance of the different query formulation strategies in passage retrieval using

the TREC 12 QA task question as the test set. We focus on the 413 factoid questions from which
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Bag Bool Quote Quote VE VE Repl.
+stem +Phrase +Quote

Bag-of-word 0.2096 0.1287 0.1003 2.76E-005 0.1632 0.1634 0.0003
Bag+stem - 0.3234 0.3864 0.0148 0.9305 0.9258 1.29E-005

Bool - - 0.1568 0.8451 0.4246 0.4067 0.0014
Quote - - - 8.90E-005 0.3033 0.3109 7.51E-005
Quote

+Phrases - - - - 0.0086 0.0104 2.78E-009
VE - - - - - 1.0000 1.69E-005

VE+Quote - - - - - - 1.91E-005

Table 6.14: Wilcoxon p-values for p@20 in documents from the AQUAINT corpus

Query Coverage Questions Passages # Precision
type C@20 Covered Correct Passages P@20

Bag-of-word 0.751 272 1894 7240 0.2616
Bag+stem 0.735 266 1835 7240 0.2535

Boolean (and) 0.702 254 1474 5640 0.2613
Quote 0.754 273 1891 7240 0.2612

Quote+Phrases 0.718 260 1681 7090 0.2371
VE 0.785 284 1877 7240 0.2593

VE+Quote 0.785 284 1899 7240 0.2623
Replacement 0.757 274 2033 7240 0.2808

Table 6.15: Passage Retrieval from top 150 Okapi documents in the Terabyte Corpus

362 have available patterns for automatic judgments (lenient2). To produce a better understanding

of the differences between the different query formulation and the replacement methods, we use

the same queries in two target corpora: the official TREC corpus for QA task—the AQUAINT

corpus—and the terabyte collection described in Section 2.4.1 and used in [25, 26, 98]. All of the

passages retrieved are of the same size, 170 words (∼1000 bytes).

The effectiveness was measured by means of coverage, the percentage of the 362 questions

where at least one retrieved passage contains the answer, at 20 documents (C@20); and precision,

also at 20 documents (P@20).

The original passage retrieval method described in Section 6.3.1 was used for the different

query formulations; the replacement method used the bag-of-words queries. However, since the

replacement method may need to scan the whole corpus for replacements, we decided to use a

2In lenient judgment a match to the pattern is enough to consider the answer correct
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Bag Bool Quote Quote VE VE Repl.
+stem +Phrase +Quote

Bag-of-word 0.0283 0.6338 0.5062 0.0001 0.8277 0.9937 0.0005
Bag+stem - 0.1358 0.0354 0.1455 0.1474 0.1078 1.43E-006

Bool - - 0.6657 0.0060 0.4872 0.5710 0.0540
Quote - - - 2.96E-005 0.8786 0.9336 0.0010
Quote

+Phrases - - - - 0.0037 0.0007 1.80E-008
VE - - - - - 0.2839 0.0013

VE+Quote - - - - - - 0.0031

Table 6.16: Wilcoxon p-values for p@20 in documents from the Terabyte corpus

strategy commonly adopted by many QA systems to speed up the process of passage selection:

select an initial set of documents, using a standard document retrieval scoring function, from

which the passages are extracted.

We use the Okapi BM25 formula to extract the initial set of 150 documents. The queries

used to extract this initial set is the bag-of-words with stemming. The effectiveness of document

retrieval when creating the initial set is shown in Table 6.12. Since passages are extracted from the

initial set, the effectiveness of the document retrieval is an upper bound for the passage retrieval.

For each query formulation a single passage is extracted from each document using equa-

tion 6.4. The same procedure is executed for the replacement method: one passage per document,

passages scored by equation 6.7 with hotspots of 20 words.

The results of the passage selection in the AQUAINT corpus are shown in Table 6.13. Both

verb expansion strategies and the replacement methods cover the highest number of questions. In

precision at 20 passages the replacement method is better: the difference with any other query

formulation is statistically significant at 99% significance level using Wilcoxon signed rank test,

as shown in Table 6.14.

For the Terabyte corpus the results are shown in Table 6.15. Once again, the verb expan-

sion strategies yield better coverage. The replacement method is worse than verb expansion in

coverage but it is again the best in precision, with the differences between the replacement and

other methods, with exception of the boolean queries, being statistically significant at 99% using

Wilcoxon signed rank test.
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From all the strategies, the use of phrases has the worst outcome. Phrases can be rewritten

in different forms and, as consequence, be absent from some relevant passages. This outcome can

also be explained by the scoring functions being designed to handle individual terms in order to

address the bag-of-word approach and assuming independence among query terms. The same is

not observed when using quotes, since quotes are important as specified and must not be rewritten.

Verb expansion consistently improves coverage but results in precision at 20 are mixed, mostly

not statistically significant.

Boolean queries are more restrictive: fewer passages are retrieved when these queries are used.

This reduction helps final precision since every correct passage will have a greater impact. The

coverage of boolean queries is smaller, a result of the reduced number of passage (i.e. less chance

to cover questions). These findings suggest an explanation for the successful adoption of boolean

queries, used in multiple iterations, in some QA systems [112, 73, 97]. Nonetheless, it is arguable

that a QA system that can take advantage of the redundancy of answer strings [23, 10] to find

answers to questions would benefit from a large number of passages, if the precision is similar.

6.7 Summary

In this Chapter we presented a new method to score objects in information retrieval tasks, with

particular a focus on passages and documents, when one or more query terms are missing. In

this method, we find replacements for the query terms in each object we score, if necessary, and

use the original scoring function afterwards, adjusting the weight of replacement according to its

relation with the original query term.

The results in the document retrieval are better than the original method which ignores missing

terms. The difference is statistically significant.

For passage retrieval the same trend found in document retrieval is repeated. The new method

provides better effectiveness when missing terms are left out by the original method. We also

compare the new method of replacement with some explicit query expansion strategies in the

context of passage retrieval for question answering. The new method outperforms these original

methods using these query expansion strategies.



Chapter 7

Conclusions and Future Work

We have presented new ways to compute and apply lexical affinity in natural language applications.

For the computation of lexical affinity based on co-occurrence frequency we proposed two new

methods for point estimation. These methods improve performance in a set of synonym questions

when compared to existing methods. The first method explores the proximity by adding extra

weight to co-occurrences in close range while the second method use a more coarse estimator, based

on documents, but also with emphasis on proximity. All point estimation methods can be viewed

as smoothing techniques that can be applied to other applications, such as speech recognition or

information retrieval based on language models. However, unlike other smoothing techniques, the

probability mass reserved from co-occurrences will be divided among words occurring in proximity.

This can be viewed as a “semantic” smoothing since the redistribution of probability mass will

be done on words in the same context.

We also presented new parametric models for lexical affinity based on distance distribution

of lexical units. These distributions fit the data in two flavours: a model for independence and

another to describe the strength of lexical affinity at different distances. The independence model

uses the mean distance to calculate the parameter for the geometric distribution that governs

the distance between lexical unit pairs. The lexical affinity model uses a gamma distribution,

for which the parameters are calculated using a maximum likelihood estimator to fit the data.

Along with these distributions, we also presented an algorithm to compute all of the observations

100
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between pairs of lexical units in sub-linear time, by benefiting from the inverted list used to index

the corpus. This allows for on-line computation of these models which can be very helpful given

the sheer number of possible lexical unit pairs. Thus, instead of computing the model for all pairs

(O(|V |2) ), from which many will not be used, we can defer the computation of the model until

necessary to do so.

The parametric models provide a source of estimation from which other models or measures

can be built. As an example, we use two measures from these parametric models: the skew of

the lexical affinity distribution, and the log-likelihood ratio over intervals. These measures are

used in the synonym questions. In particular, the log-likelihood ratio over intervals provides the

best overall absolute performance in the TOEFL synonym questions. The use of skew eliminates

the need to specify window sizes as required in the models based on point estimation. These new

models of parametric lexical affinity can also be used as smoothing techniques. The availability

of a parametric function allows us to compute the number of co-occurrences at any distance,

including those for which no examples have been seen in the training data.

Another application of lexical affinity models is in information retrieval. In general, due to

problems like vocabulary mismatch and query drift, the IR engines allow documents to be retrieved

even when they only it partially match the query. We proposed a new way to score missing terms

in probabilistic models: we search the document for a replacement, using lexical affinity models,

and adapt the term weight based on how strong the relationship between the missing query term

and the replacement is. Experiments in passage retrieval and document retrieval show significant

improvement when missing terms are replaced.

Future Work

There are many applications where the lexical affinity models presented in this thesis can be

applied. These models can be viewed as language models that are not biased to short-range

grammatical constructs but also allow semantic relationships to be included and inferred from

the model. Most of applications of language modeling such as speech recognition, information

retrieval and others benefit from these models.

Our models for lexical affinities are based on pairs of lexical units; however, there is no con-
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straint on using these same ideas for three or more lexical units. As happens in n-gram models,

this also results in an increase the number of parameters in the model, and as such, poses a chal-

lenge for efficient resource management. Since inverted lists used to index corpora are all based

on unigram models, they are not optimized for lexical unit pairs or higher-order approximation

models. An alternative is, as mentioned earlier, to calculate the lexical affinity between pairs only

when needed but, even in a sublinear fashion, it may be very slow to use these models since the

number of pairs is high. Besides, it is not efficient to cache models for lexical unit pairs since

there are many of them will not be used frequently in most applications.

Our evaluation on synonym questions is a step forward in the understanding of affinity and

co-occurrence estimates. It is not exhaustive, however. Further evaluations are necessary, in

particular, given the existing evaluations for affinity measures in different natural language ap-

plications/phenomena, it would be interesting to create a more controlled environment for both

estimation and affinity measures that could be used as a general evaluation framework for any

lexical phenomena. An interesting question that could be raised in our evaluation is the relatively

small number of distractors (4) for each question. In applications such as the scoring of missing

terms in Chapter 6, the number of lexical units tested for replacement is much larger than that.

It was also noted that the context available from the sentence was not helpful to disambiguate

the choices in the synonym questions. An alternative to use of context is to employ the same

strategy used by methods such LSA and HAL, which use the context from the corpus rather

than only a sentence. Although we use second order statistics, where the similarity between

terms, by making indirect comparison, we did not explore the full potential the corpus provides

as supporting evidence. This is an usual approach for word sense disambiguation but could be

adapted to help eliminate candidate synonyms that are not related with the target word.

Another possible alternative for semantic similarity is to combine statistical methods, such

as the affinity models presented in this thesis, along with knowledge-based approaches such as

lexicons and thesaurus. Although this approach was implemented by Turney [101], it is more

expensive and its generalization may not be easily achieved. In particular, this approach could

be attempted on scoring missing terms method.

The application of the log-likelihood measure derived from the affinity models in the fill-in-



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 103

the-blanks is new and more experiments could be attempted. In particular, since the model used

to answer the questions completely ignores the syntatic structure of the questions, it would be

interesting to assess how much impact the syntax would bring to this task.

In the scoring missing terms in information retrieval, the affinity is calculated by making use

of point estimation and PMI. Although a normalized weight can be derived from that measure,

it would be interesting to use the parametric models instead of point estimation. This would

also require a weight normalizing procedure for the replacement. Another alternative is to use

syntactic features in the replacements; it is not clear what would be the impact of applying

syntatic constratins in the replacements.
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