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Abstract 

Membrane proteins are involved in vital cellular functions and have important implications in 

disease processes, drug design and therapy.  However, it is difficult to obtain diffraction quality 

crystals to study transmembrane protein structure.  Transmembrane protein topology prediction tools 

try to fill in the gap between abundant number of transmembrane proteins and scarce number of 

known membrane protein structures (3D structure and biochemically characterized topology).  

However, at present, the prediction accuracy is still far from perfect.  TMHMM is the current state-of- 

the-art method for membrane protein topology prediction.  In order to improve the prediction 

accuracy of TMHMM, based upon the method of GenomeScan, the author implemented AHMM 

(augmented HMM) by incorporating functional domain information externally to TMHMM.  Results 

show that AHMM is better than TMHMM on both helix and sidedness prediction.  This improvement 

is verified by both statistical tests as well as sensitivity and specificity studies.  It is expected that 

when more and more functional domain predictors are available, the prediction accuracy will be 

further improved.   
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Chapter 1 

Introduction 

About 20% to 25% of proteins are membrane proteins [1, 2, 3].  Of particular interest are cell surface 

integral membrane proteins, since they have significant implications in disease processes, drug design 

and therapy.  However, it is very difficult to crystallize membrane proteins to study their structures.  

Thus, reliable prediction of the topology of transmembrane (TM) proteins from amino acid sequence 

is an important tool in protein research.  Topology refers mainly to the location, number and 

orientation of the membrane spanning segments.  TMHMM (TransMembrane Hidden Markov 

Model) is the best prediction program so far for membrane protein topology [1].  Unless it is specified 

otherwise, TMHMM refers to both TMHMM 1.0 and TMHMM 2.0.  However, it has less than 52% 

accuracy on the prediction of TM proteins collected by Moller et al. [1, 4].  The improvement for the 

sidedness (orientation) of TM proteins remains a priority since the prediction accuracy for sidedness 

is even lower than the prediction accuracy for helix location.  Furthermore, accurate sidedness 

prediction enables cell surface epitopes to be predicted for immunotherapies. 

The following chapters approach membrane protein topology prediction from both biological and 

computational standpoints.  Chapter 1 gives a brief introduction to current research on TM protein 

topology prediction and biological background on TM proteins.  Chapter 2 focuses on current 

prediction methods and potential improvement approaches.  Chapter 3 presents experiments and 

results and Chapter 4 brings forth discussions and future work. 

 

This chapter not only serves to provide the framework for biological background, but also helps to 

introduce some other key aspects or problems that membrane protein topology prediction programs 
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must deal with.  For example, program SignalP [13] deals with the distinction between signal peptide 

and signal anchor.  In addition, a good prediction tool has to be able to distinguish between α-helical 

and β-barrel membrane proteins.  Needless to say, transmembrane protein assembly is a very 

complicated biological process.  The full mechanism has not been fully elucidated.  However, 

transmembrane protein assembly is the starting point for membrane protein topology prediction 

because during assembly, the signals embedded within the protein sequences are decoded.  In this 

process, the transmembrane protein is directed to the correct location of the cell and helps it assume 

its proper topology. 

1.1 Cell membrane and transmembrane proteins 

Every cell is bounded by a cell membrane (Figure 1 shows a liver cell [5]).  For brevity, in this thesis, 

the cell refers to a eukaryotic cell unless otherwise stated. 
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Figure 1: A generic representation of a typical eukaryotic cell (liver cell) bounded by a cell membrane 

with organelles inside. 

 

The cell membrane is also called the plasma membrane (PM).  The plasma membrane is composed 

of a lipid bilayer (two layers of lipids) and associated proteins, which include integral membrane 

proteins and peripheral membrane proteins (Figure 2).  Integral membrane proteins are often referred 

to as transmembrane proteins.  We are especially interested in integral membrane proteins, because 

they are involved in vital cellular functions such as cell-cell communication, recognition, adhesion, 

membrane fusion, and transportation.  They include transport proteins, receptors, and enzymes, for 

example. 

     

 

Figure 2: Graphical illustration of integral and peripheral membrane proteins in eukaryotic cell 

membranes (taken from [42]).  
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There are two known classes of integral membrane proteins: those with α-helical structure and 

those with β-barrel structure.  Since at present there are only 12 β-barrel sequences with known 

structure, α-helical structure is our modeling focus.  From the observation of the 3D α-helical 

structures of bacteriorhodopsin (determined by electron diffraction, Figure 3 [6]) and the 

photosynthetic reaction center (determined by X-ray crystallography), researchers conclude that 

transmembrane segments are 17-25 residues long apolar helices.  Prediction programs for integral 

membrane proteins usually assume that the helices completely traverse the membrane and are 

perpendicular to its surface [7].   

β-barrel TM proteins comprise of even numbers of β-strands [8].  Figure 4 shows the 3D β-barrel 

structure of TolC outer membrane protein of E. coli [6].  Although β-barrel membrane spanning 

regions generally are shorter and much less hydrophobic than those in α-helical membrane proteins, 

they could still be a source of false positives, and be predicted as α-helical membrane proteins [2]. 

 

Figure 3: α-helical structure of 

bacteriorhodopsin.   

 

Figure 4: β-barrel structure of TolC outer 

membrane protein of E. Coli. 



 

  5 

1.2 Transmembrane protein topology 

Tagging and gene fusion are the two major approaches used biochemically for exploring TM protein 

topology.  In general, there are four kinds of topologies: Nin-Cin, Nout-Cin, Nin-Cout and Nout-Cout.   

The Nin-Cin topology is where both N- and C-terminus reside on the cytoplasmic side of the TM 

protein.  The Nout-Cin topology is where N-terminus is on the exoplasmic side, whereas C-terminus is 

on the cytoplasmic side of the TM protein.  By the same line of reasoning, topology Nin-Cout and Nout-

Cout can be deduced similarly.     

Figure 5 illustrates a model for the topology of a hypothetical TM protein.  Since both its N- and C-

terminus are on the cytoplasmic side of the membrane, it is an example of Nin-Cin topology.  It has six 

membrane-spanning regions (the helices) connected by three extracellular loops (A, C and E) and two 

intracellular loops (B and D).  On one of the extracellular loops (loop E) there is an external 

functional domain (in pink) and a globular region, whereas on one of the intracellular loops (loop B) 

there is an internal functional domain (in green) and a globular region.  The helix of a TM protein is 

the region that resides between the lipid bilayer, whereas sidedness is referred as either the 

cytoplasmic (inside) or the exoplasmic side (outside) of the TM protein.  Since the lipid bilayer is 

hydrophobic, the helix region is more hydrophobic than the loop region of the TM protein.
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Figure 5: A model to illustrate the typical topology of a hypothetical transmembrane protein 

(modified from [9]).  

 

Membrane topology is determined by how newly synthesized proteins are inserted into the 

membrane.  This requires an understanding of TM protein assembly.  

1.3 Transmembrane protein assembly 

There are two major issues associated with membrane protein assembly: 

First, how is each individual membrane protein targeted to its proper destination?  What 

distinguishes a membrane protein in the plasma membrane from one in the inner mitochondrial 
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membrane or one in the endoplasmic reticulum (ER)?  This is a complex biological sorting problem.  

It requires distinct signals within each polypeptide as well as recognition apparatus.  
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Second, how are membrane proteins inserted into the membrane and how do they attain the proper 

topology?  Do insertion and orientation also require special signals and apparatus?  

1.3.1 Protein targeting  

Through gene fusion, much has been elucidated about signals in the polypeptides, which direct each 

protein to its proper location [10].  Experiments were conducted mainly in the endoplasmic reticulum 

and Gram-Negative bacterium E. coli.  According to Gennis, there are two kinds of sorting signals: 

primary and secondary [11].   

1.3.1.1 Primary signals 

Often at the amino terminus there is a recognition site or signal sequence, which directs the individual 

polypeptide to the target membrane (for example, membrane of nucleus, mitochondrion, chloroplast, 

peroxisome, and ER).  This “signal hypothesis” was first postulated by Blobel et al. (Figure 6) [12, 

41]. 
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Figure 6: A schematic representation of signal sequences in directing polypeptides to the organelles, 

cell membrane and extracellular matrix (protein targeting). 

 

Primary signals are highly divergent and are recognized by the translocation machinery via a 

specific receptor in the organelles.  A signal sequence can be either a signal peptide or a signal 

anchor. 

A signal peptide is an N-terminal peptide typically between 15 and 40 amino acids long and is not a 

transmembrane segment.  It is hydrolyzed by a specific signal peptidase after inserting into the target 

membrane.    
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Neither the length nor the amino acid sequence is conserved for signal peptides, and mutagenesis 

studies have demonstrated that considerable structural variations are tolerated [11].  However, there 

are three structurally distinct regions in signal peptides:  

(i) A positively charged amino-terminal region (n region);  

(ii) A central hydrophobic core of 7 to 15 amino acids (h region);  

(iii) A polar carboxyl-terminal region containing the cleavage site (c region) [11, 13].   

The total hydrophobicity and length of the h-region of known eukaryotic signal peptides are 

intermediate between those of the most hydrophobic segments in eukaryotic cytosolic proteins and 

those of typical transmembrane segments.   

In the illustration below, A1AT_HUMAN (Alpha-1-antitrypsin precursor with 418 amino acids) 

has a signal peptide.  Only the N terminal 54 amino acids are shown here [Figure 7].  According to 

SignalP 2.0 prediction result [13], the cleavage site is between alanine (A) and glutamic acid (E) 

marked by a vertical bar.  In figure 7 viewing from left to right, green is the n-region, cyan is the h-

region and pink is the c-region.    

 

MPSSVSWGILLLAGLCCLVPVSLA|EDPQGDAAQKTDTSHHDQDHPTFNKITPNL 

Figure 7: The signal peptide of protein A1AT_HUMAN. 

 

A signal anchor, on the other hand, is the uncleaved signal sequence that is a transmembrane 

segment of a TM protein.  However, a signal peptide can be mistaken as a transmembrane segment by 

a prediction program [2] (Figure 8) and a secretory protein can be mistaken as a TM protein (Figure 

9).  Detailed information of signal anchors will be covered in the “insertion mechanism” section.   
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Figure 8: Illustration to show how a signal peptide can be erroneously predicted as a TM segment.  

The left hand side TM protein with only one TM segment can be predicted as the right hand side TM 

protein with two TM segments.     
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Figure 9: Illustration to show how a secretory protein can be erroneously predicted as a TM protein.  

The signal peptide of the secretory protein on the left hand side can be predicted as the signal anchor 

of the right hand side TM protein. 

 

The signal sequence determines if the protein is secreted or remains in the membrane and the 

orientation of the amino terminus of the membrane protein [11].   

1.3.1.2 Secondary signals 

Once the proteins have become associated with the appropriate organelle, further sorting (for 

example, along the exocytic pathway, in mitochondrion, and in bacteria) requires additional 

information, which must also be encoded in each polypeptide sequence.  They are the secondary 

signals, which determine the final destination.   

1.3.2 Insertion mechanism 

1.3.2.1 Start and Stop transfer segment  

Signal sequences that are not removed proteolytically usually remain as transmembrane segments, or 

signal anchors (SA), and can initiate the translocation of flanking polypeptide on either amino 

(reverse SA) or carboxyl side (SA).  An SA is a start transfer segment and is a hydrophobic segment, 

which can initiate insertion in Nin-Cout orientation, whereas a reverse SA initiates insertion in Nout-Cin 

orientation.  

A stop transfer segment is defined as a hydrophobic segment, which halts translocation and 

becomes a transmembrane segment.  However, it has been shown that sequences, which halt transfer 
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in one context, can initiate transfer in another.  Hence, not only the nature of the stop or start transfer 

sequences themselves is important, but also the surrounding polypeptide is important [11]. 

1.3.2.2 Insertion models 

There are two biological models proposed for the insertion mechanism.  The linear sequential model 

delineates that the hydrophobic segments insert sequentially into the membrane from N-terminus to 

C- terminus.  Consequently, the N-terminal segment determines the orientation of the TM protein.  

On the other hand, the spontaneous model depicts that contiguous transmembrane segments can insert 

into the membrane together as a hairpin (not by hydrophobicity alone).  Each model has its own 

supporting evidence.  According to the linear sequential model, the first TM segment may decide the 

sidedness of membrane proteins.  However, this is not always true since interactions between TM 

segments do exist and can cause different topologies.   
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Chapter 2 

Computational Modeling 

 

For most membrane proteins, especially eukaryotic, it is extremely difficult to get sufficient amount 

of purified membrane proteins in generating diffraction quality crystals.  Therefore, in silico 

prediction tools are an important way to study TM protein structures.  These tools predict the helix 

positions and sidedness of TM proteins from their amino acid sequences. 

 

2.1 Features of TM proteins for in silico modeling  

2.1.1 Hydrophobicity 

According to the lipid bilayer mosaic model, hydrophobic lipid tails are oriented towards the interior 

of the membrane and the hydrophilic heads towards the exterior of the membrane.  The core of the 

membrane is hydrophobic which prevents water from diffusing freely.  Thus, TM segments of 

membrane proteins, which reside in the core of the membrane, are more hydrophobic than the parts 

exposed in the aqueous environment.  They tend to have more hydrophobic residues such as leucine 

(L), isoleucine (I), and valine (V) [14].  Hydrophobic amino acids are often slightly amphipathic.  

Von Heijne mentioned that the length of the hydrophobic segment also decides its orientational 

preference.  Long hydrophobic segments favor the Nout-Cin orientation, and short segments favor the 

Nin-Cout orientation [15].  
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2.1.2 Positive-inside rule 

Charged residues are not symmetrically distributed.  The positively charged residues arginine (R) and 

lysine (K) are mainly found on the cytoplasmic side of TM proteins and play a major role in 

determining orientation.  This rule also applies to membrane proteins of intracellular organelles [7].  

A strongly hydrophobic segment can be prevented from inserting into the membrane if it is flanked 

by positively charged residues on both ends.  On the other hand, a polar segment can insert into the 

membrane if it is flanked by hydrophobic segments, which have the same orientation preferences 

[15].   

2.1.3 Helix-helix interaction 

It has been shown that insertion of transmembrane segments depends on neighboring segments in 

polytopic (multi-spanning) TM proteins in both ER and bacterial membranes. 

Strong and specific interactions between α–helices of integral membrane proteins are important in 

their folding and oligomerization [16].  Figure 10 shows the so-called “two-stage model”.  It 

illustrates the tertiary fold of a membrane protein from two stable transmembrane helices as a result 

of the helix-helix interaction [17, 51].   

Proline residues occur more often in the α–helices of polytopic membrane proteins than in α–

helices of soluble proteins, and often cause a kink. Transmembrane helices are often amphipathic, 

where the more polar surface tends to interact with other helices and prosthetic groups with the lipids 

[16].   However, the nature of helix-helix interaction has not been completely revealed yet.   
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Figure 10: Two-stage model for the folding of alpha-helical integral membrane protein. The first 

stage is the formation of independently stable transmembrane helices resulting from hydrophobicity 

and the formation of main-chain hydrogen bonds in the non-aqueous environment. The second stage 

is the interaction of the helices to form the tertiary fold of the polypeptide.  
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In short, we need to model topogenic signals embedded in TM proteins.  They are hydrophobicity, 

positive-inside rule and helix-helix interaction.  In addition, cytoplasmic and exoplasmic loops must 

alternate.   

 

2.2 Overview of current TM protein topology prediction programs 

In general, there are two kinds of approaches to predict TM protein topology: one is local and the 

other is global.  

2.2.1  Local approach 

A few methods are based on the local approach.  Some of them are as follows: 

1) TopPred II [19] 

This program calculates the hydrophobicity score of sliding windows to determine the helix 

regions and then uses the positive-inside rule to determine sidedness.  Window size 19 and GES 

hydrophobicity scale [18] are used.  Sidedness is predicted differently for prokaryotic and 

eukaryotic membrane proteins.  For prokaryotic membrane proteins, the number of positively 

charged residues is counted for each side of the membrane (loop) and loops longer than 60 

residues (except the first N-terminal loop) are not considered.  However, for eukaryotic 

membrane proteins, three criteria are applied for topology prediction:  

a. The difference in the number of positively charged residues between cytoplasmic and 

exoplasmic side of the membrane (loops);  

b. The net charge difference (R, K, E, D) between the flanking 15 N-terminal and 15 C-

terminal amino acid residues of the first TM segment;  
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c. The compositional distance [14] for loops longer than 60 residues.   

Hydrophobicity and charge bias are the local predictors for TM segments and sidedness 

prediction [19, 20].  However, the chosen window size limits the actual length of the helix.      

2) TM Finder [21]  

This program is a combination of segment hydrophobicity and non-polar phase helicity scales 

developed from peptide studies.  A candidate TM segment must satisfy both hydrophobicity and 

helicity thresholds.  It treats false split by means of gap-joining operation.  It only predicts 

locations of TM segments.  TM Finder uses a sliding window as well [21].  

3) SPLIT [22] 

This program associates multiple scales of amino acid attributes with secondary structure 

conformations for each amino acid.  One of such scale is the sequence hydrophobic environment.   

The sequence hydrophobic environment of an amino acid is the average hydrophobicity of its five 

left and five right neighbor amino acids in the protein.  The secondary structure conformations are 

α-helix, β-sheet, turn (4 amino acids on each side of the helix) and undefined conformation.  

Prediction is made by comparison of preferences for each residue in the sequence.  Its preference 

function was based on the Kyte-Doolittle hydrophobicity scale [50], but as a nonlinear function of 

the sequence hydrophobic environment.  It uses sliding window implicitly and sets up filter 

parameters to prevent false merge and to distinguish normal length TM helices, short TM helices 

(13-16 residues long and α-helix preference above certain threshold), and membrane-buried 

helices. Membrane-buried helices are not counted as TM segments.  In addition, SPLIT predicts 

helix positions only [22]. 
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2.2.2 Combined method 

The combined method is a combination of both local and global methods.  One example is the 

Consensus Predictions.  It uses 5 methods, including TMHMM, HMMTOP, MEMSAT, TOPPRED 

and PHD by a simple majority-vote approach [23].  However, some of the proteins used in the test set 

have been used for training by those 5 methods. 

2.2.3 PHDhtm [27] 

PHDhtm is a Neural Network (NN) based method for TM protein topology prediction.  Originally, 

PHDhtm was only used for helix location prediction.  Later on, it incorporated the positive inside rule 

to predict sidedness as well.  The input is from a multiple sequence alignment profile.  However, this 

method uses a certain size window (local approach) to train the net that has a feed-forward topology.  

However, sometimes helices predicted by PHDhtm alone were too long.  PHDhtm could hardly 

distinguish the loop between two helices if the loop is fairly hydrophobic.  In order to overcome the 

weakness inherent to the method (i.e. false merge), a dynamic programming method, global approach, 

was later introduced into PHDhtm to further verify the prediction result, which is termed PHDhtm_ref 

[24, 25, 26, 27].   

However, the NN implementation has the following weaknesses: its topology is not biologically 

intuitive compared to a hidden Markov model, and the model may only represent the training result 

from a local optimum.  In addition, it is a black box approach.  In other words, even if the prediction 

accuracy is fairly high, we would not be able to know the underlying mechanism. 

To summarize, the main weakness of the local approach is the lack of specificity.  On the other 

hand, global approach examines sequences as a whole and does not set any empirical cutoffs and 

rules.  Moller et al. did an experiment on a set of 87 membrane proteins and the prediction accuracy 

for TopPredII, PHD, Memsat 1.5, HMMTOP and TMHMM 1.0 and TMHMM 2.0 (for details please 
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see the next subsection) were 7%, 20%, 38%, 22%, 38% and 41% respectively [1].  TM Finder and 

SPLIT predict helix positions only.  Below we will take a close look at hidden Markov model, a 

global approach used in TM protein topology prediction. 

2.2.4 HMM [28] 

A hidden Markov model (HMM) is a statistical, probabilistic, and generative model.  It is a doubly 

embedded stochastic process.  One is hidden and the other is observable.  At any time, only the 

sequence of output symbols is observed, but the states that emit the output remain hidden.  There are 

exponentially many state paths π  corresponding to a given sequence x .  The probability of 

observing a sequence x  is therefore ∑=
i

ixPxP ),()( π , where i  is the index of state paths.  

However, through either the Forward or Backward algorithm [28], )(xP can be calculated in a 

quadratic order of the number of states.  That is ),...( 1 kSxxP ii =  or ),...( 1 kSxxP iLi =+ , where iS  

is the state at position i , which is k ; and i  is the index of the sequence x  from 1 to L.  The 

probability for each state at position i depends on the probabilities of previous incoming states, the 

transition probabilities from previous state to current state and the emission probability of current 

state to emit ix .   

We use Viterbi algorithm [28] to find the most probable state path iπ  to be the optimal state path 

for a given sequence, i.e. the state path that maximizes ),( πxP .  Given any finite sequences as 

training data, there is no optimal way to estimate the model parameters [46].  However, with state 

path unknown, we use Baum-Welch algorithm to locally maximize )|( θxP  over all the training 

sequences.  That is, 
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reestimate of transition probability from state k  to state l over j  training sequences; )(bek is the 

reestimate of emission probability for state k  to emit symbol b over j  training sequences; and θ  is 

the current set of model parameters.  For modeling labeled sequences, only valid paths are counted.  

They are paths whose state labels are the same as the sequence labels [28].  HMM is biologically 

intuitive and can model both symbol (i.e. amino acid) distribution and length distribution (i.e. loop 

and helix). 

However, the weakness of HMM is that the model parameters (transition and emission 

probabilities) obtained from training might only be local maxima.  Besides, HMMs do not model 

distant dependency well.  The first order HMMs (above) at position i  only depends on previous 

states at position 1−i .  Even for higher order HMMs, they could only model a limited and fixed 

number of dependencies but with much higher complexity.  An nth order Markov chain over an 

alphabet Σ is equivalent to a first order Markov chain over the alphabet Σ of n-tuples [28].  The other 

limitation is the assumption that successive symbols are independent.  Therefore, the probability of a 

given sequence can be written as a product of probabilities of each individual symbol.  This is 

apparently not true in TM protein prediction.  For example, if an amino acid is inside of the 

membrane, then the next amino acid has certain probability of being inside or in helix, but cannot be 

outside of the membrane.  Training for HMM hinges on the hope to obtain all signals 

(hydrophobicity, positive inside rule, etc.) that could be used for prediction.  However, not all signals 

could be obtained especially with less abundant known topology sequences for training.  A summary 

of HMM approaches in addressing TM protein topology prediction is provided below. 
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2.2.4.1 Membrane protein structure and topology (Memsat) [7]  

The model contains five structural states: inside loop, outside loop, inside helix end, helix middle and 

outside helix end.  It uses a dynamic programming algorithm to determine the optimal location and 

orientation of a given number of TM helices.  The highest scoring number of TM helices is selected 

as the best prediction.  It uses separate propensity scales (equivalent to emission probabilities of a 

HMM) for residues in the cap (helix end) and helix core region of the membrane.  They are set to be 4 

and 17-25 residues respectively [7] (Figure 11). 

 

 

Figure 11: Structural states defined by Memsat for a typical helical TM protein (reproduced from [7]).  

2.2.4.2 HMM for topology prediction (HMMTOP) [29] 

This model also contains five states: inside loop, inside tail, membrane helix, outside tail and outside 

loop.  Tails are thought to interact with the heads of lipid bilayer, while loops do not.  Two tails 

between helices form a short loop, but tail-loop-tail between helices form a long loop.  This model 

topology is similar to Memsat.  The differences are in the localization and interpretation of helix tails, 

which were called helix ends in Memsat.  Helix tails are not in the membrane, whereas helix ends (the 

very ends of helices) are in the membrane. 
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Short loops with lengths between 5 and 30 amino acid residues were found significantly more often 

than expected (a different distribution than geometric distribution) by Tusnady and Simon [29].  A 

geometric distribution is the background (neutral) amino acid distribution.  It can be represented by a 

self-looping state.  In response, they implemented the length distribution of short loops as well as 

helices.  The length of a helix is 17-25 residues and the length of a tail is 1-15 residues.  The 

prediction accuracy (the number of protein topologies predicted correctly compared with the 

annotated ones) is better than Memsat [29].  The implementation of HMMTOP is similar to TMHMM 

on helix and loop structure.   

2.2.4.3 Transmembrane HMM (TMHMM) [2, 31] 

This model contains seven different states: one for the helix core, two for caps on either side, one for 

loops on the cytoplasmic side, two for short and long loops on the non-cytoplasmic side, and one for 

‘globular domains’ in the middle of each loop.  It is postulated that seven states may be more 

sensitive to the variation of the amino acid compositions than five states [30].  For each distinct state, 

there are a number of states joined with its emission probability (Figure 12). TMHMM is a 

constrained HMM (For each state, transitions are among a limited number of states, not for all states).  

Thus, the transition matrix is a sparse matrix.  Tied states are due to the limited number of known 

topology protein sequences to train from, to avoid overfitting.  Technically, there is no difference 

between TMHMM 1.0 and TMHMM 2.0 except that TMHMM 2.0 was retrained on the same data set 

[1]. 
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Figure 12: The overall layout of TMHMM.  Each box corresponds to one or more states in the HMM.  

Parts of the model with the same text are tied, i.e. their parameters are the same.  Cyt. represents the 

cytoplasmic side of the membrane and non-cyt. stands for the exoplasmic side (reproduced from 

[31]).     

2.2.4.3.1 Length of helix cap region and helix 

Helix and loop lengths are two constraints.  Both Memsat and TMHMM embody the belief that the 

head region of the lipid bilayer contains many polar and charged residues and makes contact with the 

phosphate groups of the lipids.  Thus, they model it as two ends of helices.  However, HMMTOP 

models it as tails, which reside outside of helices. 

The length of this region is arbitrarily taken as 4 in Memsat.  Sonnhammer et al. further discovered 

that accuracy dropped significantly with caps less than 4 residues, while caps of 4-7 residues rendered 

the same result.  They picked 5 (Figure 13) and modeled the helix core region of 5-25 residues long.  

This allows the length of helices to be 15-35 residues long, whose range is the longest among the 

three models (Figure 14). 
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Figure 13: The detailed structure of the loop and helix cap models in TMHMM (reproduced from 

[31]). 

 

 

Figure 14: The detailed structure of the helix core model from TMHMM, which models lengths from 

5 to 25 residues long (reproduced from [31]).  

 

2.2.4.3.2 Loop architecture 

Sonnhammer et al. claim that the difficulty in predicting the topology seems to partly arise from the 

fact that substantial number of positively charged residues in the globular domains of non-

cytoplasmic side loops blurs the positive-inside rule.  In bacteria, positively charged residues in 

different length of loops do not show the same effect [32].  Positively charged residues in short loops 

can prevent helices from translocation across the membrane.  However, positively charged residues in 

long loops do not necessarily halt the translocation; instead they may be translocated across the 

membrane.   



 

 26 

When training the ‘short’ path on loops shorter than 100 residues and the ‘large globular domain’ 

path on longer loops on the exoplasmic side, the accuracy increased by 6-14%.  However, having two 

alternative loop paths on the cytoplasmic side reduced the accuracy by 2-11%.  The highest accuracy 

was observed at loop ladder length (the length for a loop before and after entering into the globular 

region) between 2x10 and 2x15.  Based on these observations, they used two loop paths on the non-

cytoplasmic side to model short and long loop respectively and only one on the cytoplasmic side.  

Besides, the loop ladder length is 10 amino acids long [31]. 

 

So far, the prediction accuracy is fairly low even with the current best global approaches.  In addition, 

sidedness prediction accuracy is lower than helix prediction accuracy.  Furthermore, HMMs cannot 

model helix-helix interaction.  We propose the following possible approaches for further 

improvements.    
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2.3 Potential improvements 

Evaluation of current TM protein topology prediction programs has demonstrated the need to improve 

prediction accuracy.  In an attempt to improve the current best prediction program, TMHMM, we 

propose three possible approaches:  

2.3.1 Incorporation of cytoplasmic-specific and exoplasmic-specific functional 

domains into TMHMM to improve the prediction accuracy   

This approach could be illustrated by Figure 15 and Figure 16.  TMHMM might generate a wrong 

topology for a putative TM protein (upper diagrams of Figure 15 and Figure 16).  However, if we 

know that this protein has an internal domain (which appears preferentially inside of the membrane), 

we may then boost its probability of being inside, and thus yield the correct prediction (lower 

diagrams of Figure 15 and Figure 16). 
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Figure 15: Graphical illustration to show how a sidedness error can be corrected through the external 

incorporation of functional domains into TMHMM.  
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Figure 16: Graphical illustration to show how the overall TM topology prediction (helix number + 

sidedness) can be improved through the external incorporation of functional domains into TMHMM.  

 

HMMTOP 2.0 added some preliminary experimental information (including pattern predictors) on 

top of the HMMTOP 1.0 to help improve prediction accuracy.  It allows the user to localize one or 

more sequence segments in any of the five structural regions used in HMMTOP.  For example, 

proteins in ABC (ATP Binding Cassette) protein family contain three cytoplasmic motifs, the Walker 

A, B and the ABC-signature sequence motif.  With the help of these cytoplasmic motifs, HMMTOP 

2.0 could correctly predict the topology of the MRP1 protein.  However, this information has to be 

given by the user. 
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Moller et al. also suggested using additional information such as protein domains or post-

translational modifications when the prediction from TMHMM is in doubt [1].  However, information 

on protein domains or post-translational modifications has not been explicitly implemented into any 

of the programs. 

Generally speaking, there are two ways to incorporate pattern predictors.  One is to incorporate 

them externally into the HMM, while the other is to incorporate them internally.  The former is to 

adjust the probabilities of certain topologies at the position of the predictor.  The latter is to hardcode 

the pattern information into the HMM structure, for example, the loop region of TMHMM. 

External incorporation boosts the probability of the topologies, which predict internal domains as 

internal and/or external domains as external and decreases the probability of other topologies 

accordingly.  In other words, the external incorporation is built on top of the TMHMM.  However, the 

internal incorporation has to make changes in the model (i.e. the transition probability matrix).  For 

example, we can train an HMM for each pattern or domain and add it into the loop region of 

TMHMM.  The transition probabilities between the loop and pattern or domain have to be trained 

after the addition of pattern and/or domain HMMs (Figure 17). 
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Figure 17: Illustration to show an internal incorporation of pattern and domain information into 

TMHMM. 

 

One drawback with the internal incorporation is that internal changes and training have to be made 

every time if there is a change on the functional domains.  The worst-case scenario could be state 

space explosion if transitions are made on condition of different combinations of features (i.e. pattern 

and domain information).  For example, if there are 6 patterns and domains, and transition probability 

),,,,,,|( 654321 FFFFFFxSP ( S  is the current state, x is the observation, iF  represents one of the 

pattern or domain, i = 1…6, 1F  to 6F  are the combination of 6 patterns and domains) depends on the 

combinations of the 6 patterns and domains, then there are 26 combinations of the patterns and 

domains.  One state now becomes 26 different states.  If there are more pattern and domain 

combinations, a state space explosion could result.  Thus, we used external incorporation to improve 

prediction accuracy of TMHMM.  
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2.3.2 Generation of a merged HMM from different classes of TM protein HMMs guided 

by a traffic cop 

In this method, classes of TM proteins can be differentiated by their sequences.  For example, G-

protein coupled receptors (GPCRs) or ion channels.  GPCRs generally have seven TM segments with 

an extracellular N-terminus.  Ion channels have at least four TM segments.  We can train a version of 

HMM on each of these classes separately.  Then, create a merged HMM with a traffic cop that routes 

sequences to the appropriate HMM for analysis and see if this merged HMM performs better than the 

original TMHMM (Figure 18). 

  

 

Figure 18: The merged HMM layout in which a traffic cop routes the query sequence to the 

appropriate class of HMM for analysis.  

 

Because the use of this method requires a good representative model for each class as well as a 

good traffic cop to differentiate between each class of proteins, this method is rather limited by its 

specificity and lack of generality.   
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2.3.3 Model interactions between transmembrane helices 

The insertion study of membrane proteins [10] points out that, in addition to hydrophobicity, the 

orientation of a segment towards the membrane, the presence of up- and downstream sequences, and 

the interactions between different topogenic signals also play a significant role during insertion.  

Interactions between different topogenic signals can result in the exclusion of a hydrophobic segment 

from the membrane or the insertion of a less hydrophobic sequence into the membrane.  This has not 

been modeled by any of the current prediction programs on TM proteins.  However, the nature of 

helix-helix interaction has not been totally characterized yet.   

Much experimental evidence indicates that in addition to start and stop transfer segments, other 

signals also affect the TM protein topology.  The following illustrations show how insertion depends 

on the downstream segments (Figure 19) from the studies on the anion exchanger Band 3 (A), the 

protein translocation complex subunit Sec61 (A and B) and the citrate transporter CitS (C). 

A. A moderately hydrophobic segment at the cytoplasmic side may be inserted into the membrane 

if a downstream hydrophobic segment exists and has strong stop transfer ability (the “driving” 

segment).  They can be inserted either spontaneously as helical hairpin or assisted by chaperone-like 

proteins (Figure 19A).    

B. A moderately hydrophobic periplasmic or luminal segment may be inserted if a downstream 

hydrophobic segment exists (Figure 19B).  

Example A and B show that segments with weak insertion signals might be inserted into the 

membrane if their immediate downstream segments exist. 

C. The insertion machinery does not translocate the driving segment across the membrane until the 

less hydrophobic segment is also exported (in Figure 19C segment VIII of CitS is prevented from 

insertion until segment IX is translated and translocated to the periplasm).   
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Figure 19: Hypothetical insertion intermediates.  The insertion intermediates (left), two consecutive 

TM segments have not been inserted into the membrane.  The hydrophobic segment, in grey 

rectangle, drives the insertion of its preceding (A and B) or following (C) segment into the membrane 

(right) (reproduced from [10]). 

The reason we chose to implement and assess the first approach is simply because  

1) Conceptually this requires the minimum change to HMM;  

2) Functional domain databases (e.g. PROSITE, Pfam, Smart etc.) have become comprehensive 

in recent years;  
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3) Compared to the first approach, the second approach is less general and it largely depends on 

the ability to differentiate between different classes of proteins;  

4) The third approach may be a plausible solution, but it requires a more developed model of 

TM proteins. 

Originally our attempt was to incorporate internal and external functional domains to improve 

sidedness prediction (by the method ‘fixed helix HMM’).  However, we discovered later that 

prediction on sidedness and helix position probably are not two independent issues.  Since by 

incorporating internal and external functional domains into TMHMM (which is the augmented HMM 

or AHMM), TM protein topology prediction in general is improved. 
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Chapter 3 

Experiments and Results 

The central hypothesis of this thesis is that incorporation of internal and external functional domains 

can augment prediction accuracy of TMHMM. 

3.1 Measurements 

The following subsections will introduce how we selected potential functional domain predictors, 

how we implemented them externally into TMHMM and how we tested the robustness of AHMM.  

Upon selection of potential functional domain predictors, we used precision (true hits / (true hits + 

false positives)) and recall (true hits / (true hits + false negatives)) from PROSITE as a reference for 

the functional domains.  The precision is equivalent to specificity whereas the recall is equivalent to 

sensitivity. 

We used sensitivity and specificity to compare TMHMM and AHMM upon prediction on helix and 

sidedness.  We define sensitivity as true positives / (true positives + false negatives) (the number of 

correct predictions out of the reference number) and specificity as true positives / (true positives + 

false positives) (the number of correct predictions out of the total number of predictions).  

3.2 Data sets 

Basically we used two sets of data for our experiment.  One is the 160 protein data set from the 

TMHMM training set [31] and the other is the 62 data set from Moller et al. collection.   

The160 protein data set is used for extracting internal and external functional domains.  The 160 

protein data set consists of 108 multi-spanning and 52 single-spanning proteins.  It does not contain 

proteins that had yielded different topologies from different experiments and with no justification.  
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The data set includes both eukaryotic, prokaryotic and organelle TM proteins.  They are chosen as 

training data to extract potential pattern and domain predictors for our augmented HMM (AHMM).   

  The test data is from Moller et al. collection.  However, we excluded ER, mitochondria and all 

membrane proteins that have not been completely annotated and those present in either the 160 or 831 

data set.  Thus, only 62 protein sequences were used as test data.  All these proteins are TM proteins 

with experimentally known topology.   

The prediction accuracy (the percentage of correctly predicted number of sequences out of the total 

number of sequences for prediction) of TMHMM on the160 data set is approximately 79% whereas 

on the 62 data set is approximately 52%.  That is, 33 out of 62 sequences were predicted correctly.  

 

3.3 Method 

We implemented two methods to improve TMHMM prediction accuracy.  One is our augmented 

HMM, AHMM and the other we called the “fixed helix HMM”. 

3.3.1 Reconstruction of TMHMM 1.0 

To compare our AHMM with TMHMM, we reconstructed TMHMM by using the transition and 

emission probabilities of TMHMM 1.0 since only the parameters of TMHMM 1.0 are available. 

Changes were made on certain transition probabilities (for details please see the next subsection).  

However, the prediction result was compared with both TMHMM 1.0 and TMHMM 2.0.  The 

original TMHMM used the "N- or one- best algorithm" for prediction whereas our reconstructed 

                                                      
1 The 83 data set contains 38 multi-spanning and 45 single-spanning proteins, which was originally compiled by 

Jones et al. [7] and provided by Rost et al. [27].   
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TMHMM used Viterbi algorithm instead.  Krogh claimed that "N or one best algorithm" was no 

worse than Viterbi [33].     

3.3.2 Pre-experiment test  

The transition and emission probabilities of TMHMM 1.0 cannot be used directly as initial 

parameters for training because 6 sequences from the data set of 160 proteins (surprisingly enough) 

and 5 sequences from the 62 data set could not be accepted (probability is zero).  This is due to the 

following bugs within the transition probabilities provided by TMHMM:   

1) Two initial transition probabilities from TMHMM 1.0 (from both short and long outside 

loops with length 1 to the membrane) were set up to be 0. 

2) The length of outside cap (from cap to outside loops) is 4 instead of 5, which was not 

modeled by TMHMM 1.0.           

Therefore, TMHMM 1.0 did not model: 

1) Transitions within helices (originally four transitions were 0 and were changed to 1 before 

training).  

2) Loop ladder structure for long loop and loop with length 1 into membrane (it is shown in 

Figure 11 TMHMM loop architecture, but was not implemented by the transition probability 

matrix of TMHMM 1.0).  

3) Shorter cap length. 
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3.3.3 Details of the two methods implemented to improve TMHMM 

3.3.3.1 AHMM 

We have changed the way TMHMM computes the Viterbi probability of the possible topologies of an 

input sequence by taking advantage of signature and domain predictors found in the sequence.  For 

example, we boost the probability of the topologies, which predict internal functional domains as 

internal and/or external functional domains as external to the membrane and decrease the probability 

of other topologies accordingly.   

For a signature, the probability of topologies is modified only at its start position.  For a domain, 

the probabilities of topologies are modified at both the start position and end position of the domain. 

Our augmented model uses GenomeScan [34] technique by modifying the HMM probabilities 

when a signature or domain predictor is encountered. Specifically: 
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For example, for an internal signature: 

−−H the signature is internal. 

−−)|,( HxP iπ for sequence x, the probability of topology  iπ at the position of the signature given 

that it is internal. 

−−HP the probability that the signature is internal. 

−−ΦH the set of topologies that identify the protein as internal at the position of the signature. 
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−−Φ )( HP unaugmented probability that the site is predicted to be internal at the position of the 

signature. 

−−),( xP iπ for sequence x, the probability of topology iπ , as calculated by Viterbi algorithm for 

decoding HMM sequences. 

)1(
)( H

H

H P
P

P −+
Φ

 is always greater than 1 and )1( HP− is always less than 1. 

 

For example, from position 240 to position 440 of sequence ENVZ_ECOLI, there exists a 

HIS_KIN domain. It is supposed to be internal.  Since TMHMM predicts this region as external, it 

gives the wrong prediction.  However, AHMM boosts the probability for topologies being internal at 

both position 240 and 440 by using the first part of the formula 
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


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Φ Hi Φ∈π if ).  On the other hand, it lowers the probability for 

topologies being external at the two positions by using the second part of the formula 

( ),,()1( xPP iH π•− Hi Φ∉π if ).  It gives the correct prediction (Figure 20). 
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Figure 20: Topologies of ENVZ_ECOLI predicted by TMHMM (left diagram) and AHMM (right 

diagram) respectively. 

 

3.3.3.2 Fixed helix HMM 

In addition to AHMM, we also implemented a method called fixed helix HMM.  It simply flips the 

sides of the TM protein topology when it detects an internal domain appears outside and vice versa 

after TMHMM prediction.  The principle is shown in Figure 21.   

When there are multiple domains in the protein, and as long as internal and external functional 

domains are alternating, we could still consider flip the sides of the topology.  But if they generate 

conflicting information such as the presence of internal domains adjacent to each other instead of 

alternating (as shown in Figure 22), we must decide to flip or not to flip.   
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The conflict arises because of the wrong helix number from the original TMHMM prediction 

and/or wrong functional domain information.  In addition, the more conflicts there exist, the less 

confident it is to flip.  We may consider flipping by ignoring the less confident one if the rest of the 

domains (either internal or external ones) are consistent with each other.  However, the absolute 

confidence of a functional domain, which is the probability of being internal or external to the 

membrane, is unknown most of the time.  More studies could be done regarding when to flip, 

however, it may not be worth pursuing given the better performance of AHMM.  In the case where 

conflict occurs, we decide not to flip and keep whatever TMHMM predicts.   

To summarize, fixed helix HMM only helps in correcting sidedness errors, but not helix number 

errors.   
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Figure 21: Illustration of how ‘fixed helix HMM’ in correcting sidedness error of TMHMM is based 

on functional domains. 
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Figure 22: Conflict information of functional domains. 

 

3.4 Definition of pattern and domain predictors 

PROSITE is a method of determining the function of uncharacterized proteins translated from 

genomic or cDNA sequences [35].   

A particular cluster of residue types of a sequence is known as a pattern, motif, signature, or 

fingerprint.  It represents a conserved region of proteins.  

In this paper, we use “signature” to emphasize a PROSITE specific pattern versus its consensus 

pattern.  Domains refer to functional or structural domains that cannot be detected using patterns due 

to their extreme sequence divergence.  Domains are implemented by position specific score matrix 

(PSSM, also known as profiles). 

3.5 Selection of pattern and domain predictors  

3.5.1 Biological approaches 

The following assumptions are made:  
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1) phosphorylation sites are more likely to appear on the cytoplasmic side of a TM protein; 

2) glycosylation sites are more likely to appear on the non-cytoplasmic side of a TM protein. 

3.5.1.1 Two sources for phosphorylation and glycosylation motifs: PROSITE release 17.4 

and NetOGlyc 2.0/NetPhos 2.0. 

3.5.1.1.1 PROSITE phosphorylation and glycosylation consensus patterns: 

From PROSITE release 17.4, keyword search for phosphorylation and glycosylation returned 8 

phosphorylation and 1 glycosylation consensus patterns, giving a total of 9 patterns.   

However, 4 phosphorylation patterns were eliminated since 1 had only one hit with our training 

data and the other 3 had no hit at all.  This left only 5 consensus patterns in this experiment (4 

phosphorylation and 1 glycosylation consensus patterns).  However, the prediction results for AHMM 

incorporated with them were worse than TMHMM.  There were more wrong predictions than right 

ones.  We then examined the number of times that the consensus patterns occurred inside, outside of 

the membrane or in helix and normalized them by the total number of amino acids inside, outside or 

in helix of all the proteins in the set respectively (Table 1). 
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Table 1: Examination of the frequency of each consensus pattern being inside vs. outside 

(normalized). 

for 160 for 572 consensus pattern 

 in out helix in out helix 

C1: [RK]-[RK]-x-[ST] (internal) cAMP- and cGMP-

dependent protein kinase phosphorylation site 

0.0028 0.0011 6.6 

E-5 

0.0041 0.0072 0.0012 

C2: [ST]-x-[RK] (internal) 

Protein kinase C phosphorylation site 

0.017 0.013 0.0011 0.014 0.013 7.1 

E-4 

C3: [ST]-x-x-[DE] (internal) 

Casein kinase II phosphorylation site 

0.016 0.014 9.9 

E-5 

0.015 0.016 0.0018 

C4: [RK]-x-x-[DE]-x-x-x-Y (internal) 

Tyrosine kinase phosphorylation site 

4.2 

E-4 

4.2 

E-4 

0 2.4 

E-4 

3.7 

E-4 

0 

C5: [RK]-x-x-x-[DE]-x-x-Y (internal) 

Tyrosine kinase phosphorylation site 

5.4 

E-4 

4.2 

E-4 

0 2.4 

E-4 

2.5 

E-4 

0 

C10: N-{P}-[ST]-{P} (external) 

N-glycosylation site 

0.0049 0.010 0.0011 0.0041 0.0072 0.0012 

Note:  

1. Consensus pattern C4 and C5 are both Tyrosine kinase phosphorylation site. 

2. The regular expression for PROSITE pattern is as follows: [], one of the amino acids; x, any of the 

amino acids; (), number of repeats; (x, y) from x number of repeats to y number of repeats; {}, none 

of the listed amino acids. 

Table 1 shows that phosphorylation consensus patterns C1, C3, C4 and C5 in the test set appear 

more outside than inside, which indicates that consensus patterns C1, C3, C4 and C5 are poor pattern 

                                                      
2 5 out of 62 sequences could not be trained by the reconstructed TMHMM.   
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predictors (marked in bold).  The values (in, out and helix) for each consensus pattern do not add up 

to 1 because they were normalized by the total length of sequences’ being inside, outside and in the 

helix of the membrane respectively.  Though consensus patterns C2 and C10 tend to follow the 

assumptions, they are still not specific enough for TM protein topology prediction.  Next, we 

examined NetOGlyc and NetPhos. 

3.5.1.1.2 NetOGlyc 2.0/NetPhos 2.0 

NetOGlyc [36] is a tool for the prediction of type O-glycosylation sites in mammalian proteins and 

NetPhos [37] is a tool for the prediction of serine (S), threonine (T) and tyrosine (Y) phosphorylation 

sites in eukaryotic proteins. NetOGlyc 2.0 was used with a potential greater than 0.9 on the subset of 

64 mammalian proteins and NetPhos 2.0 was used with a score greater than 0.9 on the subset of 76 

eukaryotic proteins from the 160 data set.     

However, incorportation of NetOGlyc 2.0 and NetPhos 2.0 prediction results did not generate 

desirable results either.  There are many false positives.  Study on the loop amino acid composition of 

TM protein indicates that the high content of threonine on the extracellular side is not caused by 

glycosylation only [14].  This might be one of the reasons NetOGlyc 2.0 failed.  Instead, we chose to 

use PROSITE signatures and domains to augment TMHMM.  

3.5.1.1.3 Internal and external domains 

From query against PROSITE release 17.4, we found 3 internal (including 2 phosphorylation 

signatures) and 1 external domains in our training data set.  The details are listed in Table 2.   
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Table 2: Signatures obtained non-computationally from PROSITE in the 160 data set. 

signature  specificity1 sensitivity2 

A4_INTRA (Amyloidogenic glycoprotein intracellular domain signature) (assumed internal)  

G-Y-E-N-P-T-Y-[KR] 

100.00% 100.00% 

A4_EXTRA (Amyloidogenic glycoprotein extracellular domain signature) (assumed external)  

G-[VT]-E-[FY]-V-C-C-P 

100.00% 100.00% 

PTS_EIIB_CYS PTS EIIB domains cysteine phosphorylation site signature (assumed internal)  

N-[LIVMFY]-x(5)-C-x-T-R-[LIVMF]-x-[LIVMF]-x-[LIVM]-x-[DQ] [C is phosphorylated] 

100.00% 96.67% 

PTS_EIIA_2 PTS EIIA domains phosphorylation site signature 2 (assumed internal) 

[DENQ]-x(6)-[LIVMF]-[GA]-x(2)-[LIVM]-A-[LIVM]-P-H-[GAC] 

100.00% 93.10% 

 

1specificity: value is from PROSITE. 

2sensitivity: value is from PROSITE. 

 

However, incorporation of them into AHMM did not make apparent improvement on both the 

training and test set.  Proteins in the test set do not contain any of them.  We then sought 

computational approach to see if we could make any improvement over TMHMM.   

3.5.2 Computational approach 

In order to extend the set of functional domains, we use computational approach to choose specific 

signatures and domains that are not phosphorylation and glycosylation motifs, but are located 

preferentially internal or external to the membrane. 

The selection was conducted as follows:   
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1) Run the training sequences against PROSITE database to obtain the corresponding 

signature(s) and/or domain(s) for each sequence with profile cut-off level L = 0 (trusted cut-

off for positive matches).  

2) Check for each PROSITE signature and domain contained in the training sequences to see 

where it resides, for example, inside (cytoplasmic), outside (exoplasmic) of the membrane or 

in helix and how many non-redundant sequences (incidences) correspond to it.   

3) If a signature or domain appears exclusively inside or outside of the membrane at least twice, 

it is selected for further test.   

4) Incorporate all signatures and domains selected from step 3) into Viterbi algorithm and 

exclude all the signatures and domains that cause an error during the prediction (with profile 

cut-off level L = 0, only one pattern caused an error, namely, the ATP/GTP-binding site motif 

A ATP_GTP_A.  However, with L = −1, more patterns caused errors than with L = 0).  The 

remaining signatures and domains are the potential predictors.  They are then tested on the test 

sequences.  The potential signature and domain predictors extracted from 1573 sequences are 

shown in Table 3.   

                                                      
3 There are 3 sequences in the 160 data set, which TMHMM predicted correctly whereas the reconstructed 

TMHMM predicted wrongly.  We excluded these sequences from the training set to extract potential functional 

domain predictors for the fairness of comparison.   
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Table 3: Potential signature and domain predictors extracted from 157 sequences and tested on 62 

sequences. 

for 157 for 62 signature and domain sidedness specificity1 sensitivity2 PH 
better worse better worse 

1 0 ?NEUROTR_ION_CHANNEL 
(Neurotransmitter-gated ion-
channels signature)  

external 100.00% 
 

99.43% 0.6 
appears: 12 times 
(GRA1_HUMAN) 

appears: 0 time 

1 0 PROTEIN_KINASE_ATP 
(Protein kinases ATP-binding 
region signature)  

internal 96.25% 84.94% 0.6 
appears: 4 times 
(CEK2_CHICK) 

appears: 0 time 

3 0 PROTEIN_KINASE_TYR 
(Tyrosine protein kinases 
specific active-site signature)  

internal 94.79% 98.41% 0.6 

appears: 4 times 
(CEK2_CHICK, 
EGFR_DROME, 
EGFR_HUMAN) 

appears: 0 time 

2 0 1 0 HIS_KIN (Histidine kinase 
domain) [profile]  

internal 100.00% 100.00% 0.6 
appears: 3  times 
(ENVZ_ECOLI, 
PHOR_ECOLI) 

appears: 2 
times 

(CPXA_ECOLI) 
0 0 1 0 PRO_RICH (Proline-rich region) 

[profile] 
 

internal * 0.6 
appears: 1 time appears: 2 

times 
(SCAA_RAT) 

?CONNEXINS_1 (Connexins 
signature 1)  

external 100.00% 91.80 % 0.6 appears: 3 times appears: 0 time 

?CONNEXINS_2 (Connexins 
signature 2)  

external 100.00% 100.00% 0.6 appears: 3 times appears: 0 time 

C_TYPE_LECTIN_1 (C-type 
lectin domain signature)  

external 89.05 % 70.93 % 0.6 appears: 3 times appears: 0 time 

SPASE_I_3 (Signal peptidases I 
signature 3)  

external 70.59 % 94.74 % 0.6 appears: 2 times appears: 0 time 

PROTEIN_KINASE_DOM 
(Protein kinase domain) [profile]  

internal 99.71% 99.63% 0.6 appears: 4 times appears: 0 time 

C_TYPE_LECTIN_2 (C-type 
lectin domain) [profile]  

external 98.48 % 98.48 % 0.6 appears: 4 times appears: 0 time 

?ARG_RICH (Arginine-rich 
region) [profile]  

internal * 0.6 appears: 2 times appears: 0 time 

1 0 AAA (AAA-protein family 
signature)  

internal 100.00% 96.86% 0.6 

appears: 1 time 
(FTSH_ECOLI) 

appears: 0 time 

 

* Proline-rich region can, in some cases, be ignored by a program (because it is too unspecific) 

(quoted from PROSITE). 
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1specificity: value is from PROSITE. 

2sensitivity: value is from PROSITE. 

 

PH is the probability that the signature or domain is internal or external based on the assumption.  In 

this experiment, to be conservative, we set it as 0.6 because we do not know exactly what the value is.   

Functional domains PROTEIN_KINASE_ATP (Protein kinases ATP-binding region signature), 

PROTEIN_KINASE_DOM (Protein kinase domain [profile]), and PROTEIN_KINASE_TYR 

(Tyrosine protein kinases specific active-site signature) appear at the same time in the examined 

sequences.  Functional domain CYTOCHROME_C is taken out to avoid false positives because its 

specificity is only 43.11% according to PROSITE.  Signature AAA is added because it is internal 

according to the expert’s opinion [48] and it could help in prediction of sequence FTSH_ECOLI.  

Domain PRO_RICH was obtained with profile cut-off level L = −1 (a match is potential (weak), 

especially if there are other matches in the sequence with the profile) and was confirmed by the expert 

to be internal.  Sequence names marked by green are sequences predicted wrongly by TMHMM but 

correctly by AHMM.   

Those signatures and domains without any mark in front of their names are confirmed with the 

expert’s opinion.  Those with question marks are unknown yet (needs more investigation).  

 

3.6 Comparison between TMHMM and AHMM  

AHMM incorporated with consensus patterns generates fairly poor prediction result.  However, 

AHMM incorporated with signatures and domains gives a much better result.  The AHMM here 
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refers to AHMM incorporated with PROSITE signature and domain predictors extracted from 157 

training sequences.  Comparisons can be done at two levels: amino acid level and sequence level.  

3.6.1 Amino acid level 

It is the percentage of overlap between topologies predicted by either TMHMM or AHMM and the 

reference topology for sequence with functional domain predictors in labeling (“i” stands for inside of 

the membrane; “o” stands for outside of the membrane and “M” stands for helix).   

 

3.6.2 Sequence level   

It is the correctness on both helix number and orientation between topologies predicted by either 

TMHMM or AHMM and the reference topology for sequences with functional domain predictors.  In 

detail, for each helix in the reference topology, if at least 5 amino acids in the prediction overlap with 

it, we believe at sequence level the helix prediction is correct.  If the N-terminus orientation is also 

correct, then the prediction is correct. 

For example, for sequence GRA1_HUMAN, the topology labeling from reference, TMHMM 

(predicted incorrectly) and AHMM (predicted correctly) are shown below: 

Reference (4 helices and Nout-Cout topology):  

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooMMMMMMMMMMMMMMMMMMMMMMMMMMMiiiiiiMMMMMMMMMMMMMMMM

MMooooooooooooooMMMMMMMMMMMMMMMMMMMMMMMMiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiMMMMMMMMMMMMMMMMMMoooooo

ooooo 
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TMHMM (wrong topology, 3 helices and Nin-Cout topology): 

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiiiiiiiMMMMMMMMMMMMMMMMMMMMMMMoooooooooooooooooooooooo

ooooooooooooooooMMMMMMMMMMMMMMMMMMMMMMMiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiMMMMMMMMMMMMMMMMMMMoooooo

ooooo 

 

AHMM (correct topology with the aid of Neurotransmitter-gated ion-channels signature underlined):  

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooMMMMMMMMMMMMMMMMMMMiiiiiiMMMMMMMMMMMMMMMMMMMoo

ooooooooooooooooMMMMMMMMMMMMMMMMMMMMMMMiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiMMMMMMMMMMMMMMMMMMMoooooo

ooooo 

 

3.7 Test for the robustness of AHMM 

We incorporated the potential signature and domain predictors extracted from 157 sequences into 

Viterbi algorithm and tested on the 62 sequences.  With profile cut-off level L = 0, we found one 

sequence (CPXA_ECOLI) that was predicted wrongly by TMHMM but was predicted correctly by 
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AHMM.  However, with profile cut-off level L = −1, we found two sequences (CPXA_ECOLI, 

SCAA_RAT) that were predicted wrongly by TMHMM but were predicted correctly by AHMM. 

In order to test the robustness of the method, we re-sampled and evaluated a total of 219 sequences 

(the 157 training plus 62 test sequences) twenty times at both amino acid level and sequence level .  

That is: select 157 non-redundant random samples as training data and the rest 62 sequences as test 

data.  Then, conduct the computational selection of signatures and domains and test them altogether 

on the test set.  We repeated this twenty times.  Only the test results are shown below (Table 4). 
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Table 4: Results of twenty time-re-samplings on 219 sequences.  Column TMHMM2.0 is the 

percentage of correctly predicted amino acids by TMHMM 2.0 over sequences with potential 

PROSITE functional domain predictors; similarly, column TMHMM1.0 is the percentage of correctly 

predicted amino acids by TMHMM 1.0 and column AHMM is the percentage of correctly predicted 

amino acids by AHMM. 

62 (amino acid level) 62 (sequence level) run 

TMHMM2.0 TMHMM1.0 AHMM same better1 worse2 ISD3 # of seqs 
1 0.9685 0.8020 0.9783 8 1 0 13 9 
2 0.7584 0.7910 0.9861 5 2 0 9 7 
3 0.9072 0.9173 0.9325 6 2 0 11 8 
4 0.9023 0.9257 0.9784 8 1 0 15 9 
5 0.8193 0.8490 0.9869 5 2 0 11 7 
6 0.8400 0.6904 0.8618 6 2 2 12 10 
7 0.7942 0.7959 0.9707 9 3 0 16 12 
8 0.7424 0.7764 0.9718 5 2 0 13 7 
9 0.8613 0.8951 0.9717 7 1 0 11 8 
10 0.6978 0.7019 0.9715 6 3 0 15 9 
11 0.8520 0.6708 0.9835 4 2 0 12 6 
12 0.8736 0.8719 0.9499 10 2 0 17 12 
13 0.7652 0.7843 0.9648 9 3 0 18 12 
14 0.8717 0.7696 0.9792 9 3 0 19 12 
15 0.7823 0.6172 0.9754 5 3 0 16 8 
16 0.7612 0.7907 0.9765 5 2 0 12 7 
17 0.7042 0.7318 0.9888 5 3 0 11 8 
18 0.9618 0.8012 0.9804 7 1 0 11 8 
19 0.8610 0.8615 0.9884 4 1 0 9 5 
20 0.7885 0.7870 0.9857 5 2 0 10 7 
wavg4 0.8279 0.7922 0.9675  0.2398 0.0117   

 

1better—the sequence where TMHMM predicted wrongly but AHMM predicted correctly 

2worse—the sequence where TMHMM predicted correctly but AHMM predicted wrongly 

3ISD—number of signatures and domains identified 

4wavg (weighted average) = total number of correctly predicted amino acids / total length of all 

sequences with functional domains. 
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Column “# of seqs” lists the actual number of sequences for comparison between TMHMM and 

AHMM at each run.  The actual number of sequences for comparison depends on the number of 

sequences containing functional domains.   

For each run, a weighted average for the percentage of overlap with reference labeling was 

calculated for all the sequences with functional domains.  At the end, a weighted average was 

calculated for all the twenty runs.  From Table 4, we can see that at both sequence level 4and amino 

acid level5, AHMM is better than TMHMM.  On average, AHMM is better than TMHMM by more 

than 10% at amino acid level for sequences with functional domains.  This result is also verified by a 

four time-5-fold cross-validation. 

Worse cases occurred when the signature appeared on the different side of the membrane in the test 

data than it was in the training data (i.e. ATP/GTP-binding site motif A ATP_GTP_A). 

Functional domains for the above experiment were obtained from PROSITE release 17.4 of May 

2002 with profile cut-off level L = 0. 

Statistical tests were designed to test the results for each run of resampling at amino acid level.  

The hypothesis is that there is no difference between AHMM and TMHMM.  For each amino acid of 

a TM protein, it can be predicted either correctly or incorrectly with respect to the reference labeling.  

Thus, a sequence of amino acids can be seen as a sequence of binomial trials.  Since the population of 

TM proteins might not be normally distributed, non-parametric tests, sign test and Wilcoxon 

Matched-Pairs Signed-Ranks Test were conducted at each run to compare prediction results between 

TMHMM and AHMM for sequences with functional domains.  On the other hand, since the number 

                                                      
4 For each helix in the reference topology, if at least 5 amino acids in the prediction overlap with it, we believe 

at sequence level the helix prediction is correct.  If the N-terminus orientation is also correct, then the prediction 

is correct. 
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of amino acids at each run is large enough, t-tests for Paired Samples were also conducted.  All 

statistical tests were run with SPSS release 6.1.  1-tail Ps and 1-tail significances of all the statistical 

tests between AHMM and TMHMM are less than 0.01.  This indicates that if the null hypothesis is 

true, the chance of getting such sample difference in Table 4 is P<0.01. Therefore, we should reject 

the null hypothesis and conclude that AHMM is better than both versions of TMHMM for sequences 

with functional domains. 

3.8 Sensitivity and Specificity of TMHMM and AHMM on helix and sidedness 

prediction 

In addition to the above experiments, we further tested the sensitivity and specificity of TMHMM and 

AHMM on helix and outsidedness prediction over sequences with functional domains out of 62 from 

the twenty time-resampling (Table 5). 

                                                                                                                                                                     
5 the percentage of overlap with the reference topology 
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Table 5: Comparison of sensitivity and specificity between TMHMM and AHMM on helix and 

outsidedness prediction for sequences with functional domains out of 62 from each resampling.  SEH 

is the sensitivity for helix prediction at sequence level; SPH is the specificity for helix prediction at 

sequence level; SEO is the sensitivity for outsidedness prediction at amino acid level and SPO is the 

specificity for outsidedness prediction at amino acid level. 

SEH SPH SEO SPO run 
T2.01 T1.02 AHMM T2.0 T1.0 AHMM T2.0 T1.0 AHMM T2.0 T1.0 AHMM 

1 1.0 1.0 1.0 0.9677 0.9677 1.0 0.9849 0.8396 0.9948 0.9824 0.8116 0.9847 

2 1.0 0.9333 1.0 1.0 1.0 1.0 0.8821 0.9393 0.9969 0.7757 0.7838 0.9937 
3 0.8929 0.9286 1.0 1.0 1.0 1.0 0.8756 0.8791 0.8967 0.9463 0.9653 0.9860 
4 1.0 0.96 1.0 1.0 1.0 1.0 0.9424 0.9925 0.9903 0.8908 0.8933 0.9895 
5 0.9286 0.8571 1.0 1.0 1.0 1.0 0.8498 0.9001 0.9964 0.8707 0.8753 0.9948 
6 0.8718 0.8718 0.8205 0.9189 0.9189 0.9143 0.8588 0.7129 0.8009 0.8467 0.6831 0.9687 
7 0.9211 0.9211 0.9737 0.9459 0.9459 0.9487 0.8583 0.8587 0.9834 0.7796 0.7792 0.9828 
8 1.0 0.95 1.0 0.9524 0.95 1.0 0.9281 0.9934 0.9904 0.7067 0.7196 0.9834 
9 1.0 0.9524 1.0 1.0 1.0 1.0 0.9378 0.9940 0.9914 0.8746 0.8778 0.9867 
10 0.9655 0.9655 1.0 0.9655 0.9655 1.0 0.9238 0.9258 0.9901 0.6177 0.6190 0.9780 
11 0.9412 1.0 1.0 0.8889 0.8947 1.0 0.9770 0.8078 0.9885 0.8070 0.6580 0.9960 
12 0.9286 0.9286 1.0 1.0 1.0 1.0 0.9025 0.9027 0.9458 0.9138 0.912 0.9907 
13 0.9429 0.9143 0.9714 0.9167 0.9143 0.9444 0.9389 0.9804 0.9772 0.7179 0.7252 0.9841 
14 0.9231 0.9487 1.0 0.9730 0.9737 1.0 0.9143 0.8155 0.9921 0.8629 0.7629 0.9883 
15 1.0 1.0 1.0 0.9130 0.9130 1.0 0.9232 0.7795 0.9931 0.7407 0.6064 0.9833 
16 0.9412 0.8824 0.9412 0.8421 0.8333 0.8889 0.9307 0.9836 0.9811 0.7428 0.7520 0.9904 
17 1.0 0.9375 1.0 0.9412 0.9375 1.0 0.8984 0.9459 0.9950 0.7046 0.7137 0.9950 
18 0.9545 1.0 1.0 0.9545 0.9565 1.0 0.9727 0.7972 0.9904 0.9660 0.7704 0.9856 
19 1.0 1.0 1.0 0.9333 0.9333 1.0 0.9938 0.9979 0.9979 0.7728 0.7727 0.9918 
20 0.9286 0.9286 1.0 1.0 1.0 1.0 0.8422 0.8422 0.9988 0.8705 0.8686 0.9927 
wavg 0.9502 0.9419 0.9793 0.9542 0.9538 0.9813 0.9131 0.8935 0.9737 0.8120 0.7747 0.9875 
 

1T2.0—the sensitivity or specificity of TMHMM 2.0 on helix or outsidedness prediction.   

2T1.0— the sensitivity or specificity of TMHMM 1.0 on helix or outsidedness prediction.   

SEH is the number of helices predicted correctly compared with the reference helix number and SPH 

is the number of helices predicted correctly compared with the predicted helix number.  SEO is the 

number of amino acids predicted correctly compared with the reference number of amino acids being 

outside and SPO is the number of amino acids predicted correctly compared with the predicted 
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number of amino acids being outside.  Weighted average was conducted for each run and for all 

twenty runs.     

Table 5 illustrates that AHMM is more specific and sensitive than TMHMM on helix and sidedness 

prediction for sequences with PROSITE functional domains.  AHMM is especially more specific and 

sensitive than TMHMM on sidedness prediction.  At run 6, lower sensitivity and specificity on helix 

prediction and lower sensitivity on sidedness prediction of AHMM compared with TMHMM 

corresponds to the errors occurred in run 6 of Table 5.  Nevertheless, the specificity on sidedness 

prediction of AHMM is still higher than TMHMM. 

 

3.9 Comparison between ‘fixed helix HMM’ and AHMM 

Comparison between fixed helix HMM and AHMM was conducted at sequence level.  Both methods 

used Table 3 signature and domain predictors (except Pro-rich region and AAA-protein family 

signature).  In Table 6, six sequences from 157 sequences were predicted correctly by AHMM but not 

by TMHMM and ‘fixed helix HMM’. Furthermore, there is one sequence (CPXA_ECOLI) which 

was predicted wrongly by TMHMM but was predicted correctly by both ‘fixed helix HMM’ and 

AHMM at L = 0.  At L = −1, both CPXA_ECOLI and SCAA_RAT were predicted correctly by 

AHMM, but not by ‘fixed helix HMM’. 
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Table 6: Comparison between two different implementation methods on TM protein topology 

prediction (L = 0).  

fixed helix HMM AHMM data set 

better worse better worse 

157 0 0 6 0 

62 1 0 1 0 

  

 In summary, fixed helix HMM is good in correcting sidedness errors whereas AHMM are good in 

correcting both sidedness and helix number errors.  However, they all depend on good predictors.  
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Chapter 4 

Discussions and Conclusion 

4.1 Discussions 

From our experiments (Table 4 and Table 5), we found that implementation of functional domains on 

top of TMHMM can improve TM protein prediction accuracy at both sequence level and amino acid 

levels.  Furthermore, it improves both sensitivity and specificity on helix and sidedness prediction.  

From Table 6, we could see that AHMM outperforms the ‘fixed helix HMM’, since it fixes not only 

sidedness errors, but also helix number errors.  In summary, sidedness is not decided by N-terminus 

alone.  Sidedness and helix position are not two independent issues.  Therefore, topology should be 

examined as a whole.  Following are some discussions on the GeneomeScan formula, functional 

domains, proteins, the scope of AHMM and protein structure prediction techniques. 

Two observations are obtained regarding the GenomeScan formula.  When we used NetOGlyc 2.0 

results to help to predict TM topology, we observed that the GenomeScan formula (presented in 

Section 3.3) was sensitive to NetOGlyc prediction errors.  For example, for sequence GLP_PIG, 

TMHMM predicts correctly.  However, after incorporation of NetOGlyc 2.0 prediction results 

(though 5 out of 7 are correct) into AHMM, we have the wrong topology instead of the correct 

topology.  Here is a closer examination: 

TMHMM (correct topology): 

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooMMMMMMMMMMMMM

MMMMMMMMMMiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii—P1, P3 
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AHMM (with NetOGlyc 2.0 prediction results, wrong topology): 

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiMMMMMMMMMMMMM

MMMMMMMMMMoooooooooooooooooooooooooooooooooooooooooooooooo—P2, P4 

Let P1 be the TMHMM (Viterbi) probability for the correct topology above, P2 be the TMHMM 

probability for the wrong one, P3 be the AHMM (adjusted) probability for the correct topology, P4 be 

the AHMM probability for the wrong one.   

There are 5 threonines (T) at position 1, 6, 21, 118, and 130 and 2 serines (S) at position 11 and 28.  

Threonines and serines were the predicted glycosylation sites and were assumed to appear external to 

the membrane.  Here is the analysis:   

For TMHMM, 

P1 > P2  

For AHMM, after incorporation of the prediction results of NetOGlyc 2.0, 

P3 < P4 

P3 = P1 * increased 5 times * decreased 2 times 

P4 = P2 * decreased 5 times * increased 2 times 

)( HP Φ  at position 118 dropped dramatically.  This caused the probability of being outside of the 

membrane at position 118 to increase dramatically.  Even though NetOGlyc2.0 made only two 

mistakes (position 118 and 130), we did not obtain the correct prediction.  Predictors containing 

wrong information may cause wrong prediction.  However, modification of the existing formula may 

also be needed.   
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Next, there is certain subjectivity in the choice of the value of the probability or weight HP for 

functional domains in the GenomeScan formula.  As mentioned earlier, we set 6.0=HP for all the 

functional domains incorporated into AHMM.  We might need to incorporate a more refined and 

accurate number.  Nevertheless, we also tried 9.0=HP , which made no difference compared to 0.6.  

This might suggest that the functional domains in the experiment are fairly specific. 

The following are a few observations upon selection of functional domains.  If a pattern is not 

specific enough (i.e. short), incorporation of such a pattern may cause many false positives.  

Sequences predicted correctly by TMHMM could even be predicted wrongly.  To solve this problem, 

we used specific patterns—signatures and domains of PROSITE instead.  They are typically longer 

than consensus patterns of PROSITE.  Matching with them is less likely to be random. 

We used ps_scan, a perl program to scan PROSITE locally.  There are two profile cut-off levels in 

ps_scan: L = 0 and L = −1.  With L = 0, all hits are true positives, but false negatives may be missed.  

On the other hand, with L = −1, all true positives are covered, but false positives may also be 

included.  To be conservative, we chose L = 0.  With profile cut-off level L = −1, there were more 

potential functional domain predictors than with L = 0.  However, there were more poor functional 

domain predictors as well.  It is hard to find the optimal solution.   

Another observation is that there are some amino acid-rich domains, such as PRO_RICH (proline-

rich region) and ARG_RICH (arginine-rich region).  In PROSITE, these domains were said to have 

low specificity; in our study, however, they did not cause any false positives.  In fact, using 

PRO_RICH even helped in correcting wrong topologies predicted by TMHMM. 

In addition to the analysis of functional domains in loops of TM proteins, we also examined 

functional domains in helix region.  GLYCOPHORIN_A is the only transmembrane domain found in 
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219 sequences with PROSITE release 17.4 at L = 0.  However, incorporation of GLYCOPHORIN_A 

into AHMM did not make any apparent improvement with the current data. 

With regard to data sets, two observations merit further discussion.  In our experiments, we put both 

prokaryotic and eukaryotic membrane proteins together.  This is due to 1) The number of known 

topology membrane protein sequences is limited; 2) The training data used to extract functional 

domains includes both prokaryotic and eukaryotic membrane protein sequences.   

In the future, prokaryotic and eukaryotic membrane proteins and organelle membrane proteins 

should be trained and tested separately.  They all have different lipid environment, membrane height 

and translocation machineries which impose different constraints on membrane insertion.  One 

notable example is TopredII.  It predicts eukayotic and prokaryotic membrane proteins differently. 

During the experiment, TonB protein caught our attention.  According to Swiss-Prot [49], TonB 

protein is said to be "anchored to the cytoplasmic membrane via its n-terminal signal-like sequence, 

spans the periplasm" (exact quote from Swiss-Prot).  However, recent studies suggest that TonB 

protein shuttles between the cytoplasmic membrane and outer membrane in E. coli.  The most 

interesting aspect is that its N-terminal signal anchor can detach from the cytoplasmic membrane 

during energy transduction and becomes associated solely with outer membrane [38].  This peculiar 

behavior of TonB may indicate that the insertion mechanism for TonB protein is different than that of 

other inner membrane proteins of Gram-negative bacteria.  If this hypothesis is validated, TonB 

should not be included in the test set.   

On the other hand, a proline-rich region exists and was found in TonB protein.  This proline-rich 

region can help to identify the TM segment of TONB_ECOLI.  Proline-rich region is believed to be a 

cytoplasmic domain.  However, in TonB protein, the proline-rich region is periplasmic.  Whether this 
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is due to the low specificity of proline-rich region or the uniqueness of TonB insertion mechanism 

requires more study.   

We also have an important observation on AHMM.  Patterns and domains studied in AHMM were 

from native integral membrane proteins.  Thus, AHMM is not valid for predicting artificial membrane 

proteins.  By redistributing positively charged amino acids in the loops, the topologies of artificially 

engineered membrane proteins are altered.  Functional domains reside on one side of the membrane 

could end up on the different side of the membrane.  One example of the artificial membrane proteins 

is the fusion protein LEP-LEP, which is constructed from E.coli inner membrane leader peptidase 

(LEP).   

LEP has two TM segments and a Nout-Cout toplogy.  The loop containing the PROSITE signature 

SPASE_I_3 (Signal peptidases I signature 3) of LEP is on the external side of the membrane.  

However, by introducing 3 lysines (K) to the 2nd loop of LEP-LEP, the mutant adopts “leave one out” 

topology and the loop containing signature SPASE_I_3 appears on the internal side of the membrane 

[39]. 

Upon comparing the prediction techniques between membrane protein topology prediction and 

soluble protein structure prediction, we have the following observations:  The major difference 

between membrane protein topology prediction and soluble protein structure prediction is on the 

sidedness prediction.  Membrane protein prediction must address loop sidedness whereas soluble 

protein prediction does not involve loop sidedness.  In general, there are three different techniques for 

soluble protein 3D structure prediction: namely, homology modeling, protein threading and ab initio 

folding.  Homology modeling is based on the idea that the structure of a protein is similar to its 

homologous proteins.  Protein threading is based on the idea that structures are conserved among 

certain divergent sequences.  Ab initio folding is based on the sequence only [43].       
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Currently, there are only 776
 integral membrane proteins with 3D structures according to the White 

Laboratory as of Jan. 20, 2004 [47].  So far, only two simple folds were found: the helical bundle and 

the closed beta barrel [44].  Thus, protein threading may not be suitable for membrane protein 

structure prediction since there are a very limited number of 3D structures available for templates. 

AHMM uses the following idea: if test proteins contain the same signature and/or domain 

predictors as the training proteins, then the signatures and/or domains of the test proteins will tend to 

be on the same side of the membrane as they are in the training proteins.  In other words, the 

topologies of the corresponding part of the test proteins are the same as those of the training proteins.  

PROSITE signatures are conserved regions of proteins obtained through sequence alignments 

whereas domains are derived from extremely divergent sequences by PSSM.  In this way, AHMM 

used homology modeling on signature information and protein threading on domain information for 

membrane protein topology prediction.  Homology modeling was also used by PHDhtm during 

multiple sequence alignments.  It is believed that homologous proteins have approximately equal 

secondary structures if there is 25-30% sequence similarity [26].   

On the other hand, TMHMM (or AHMM) is similar to threading in the sense that it predicts 

membrane protein topology not necessarily from the same family of proteins where it was trained.  

Only if the HMM is trained from a specific family of membrane proteins and predictions are made on 

the other member proteins from the same family, it is homology modeling.   

As far as implementation of pairwise interaction or helix-helix interaction is concerned, it might 

not be reliable to use protein threading method.  Nevertheless, we could use 3D structure prediction 

tools to verify the prediction results of 2D structure prediction tools on TM segments.    

                                                      
6 Includes proteins of same type from different species. For example, photosynthetic reaction centers from R. viridis and R. sphaeroides are 

considered unique. 
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Last but not all, it must be noted that the reference topology is for reference only.  Even the crystal 

structures of TM proteins do not elucidate the exact boundaries of the protein in the lipid bilyer.  This 

is a challenge for TM protein topology prediction. 

 

4.2 Future work 

There is still a substantial amount of sequences that are predicted wrongly.  We need to further 

improve the prediction accuracy on TM protein topology prediction.  There are three possible ways to 

improve.   

First, change the current HMM architecture to fit better with the biological features and insertion 

mechanism of membrane proteins and train a new version of HMM on more TM protein sequences 

with known topology.   

Second, use a better-developed model other than HMM to implement helix-helix interactions and 

other features and mechanisms characterized in the future.  Helix-helix interaction is among one of 

the rigorous research areas in TM proteins.  Helix-helix interaction is a definite phenomenon 

observed among helices of TM proteins.  Practically, to implement this model, we have to remember 

what have seen before over a variable length of amino acids.  Through implementation of helix-helix 

interaction, we may be able to better recognize the helix, which does not have strong topogenic 

signals and may otherwise be overlooked by current prediction methods.   

Third, train and test specific models.  For example, train and test eukaryotic, prokaryotic and 

organelle membrane proteins separately.  We could also train and test models especially for ion 

channels and GPCP proteins.  They are difficult to predict because their TM segments contain high 

proportion of polar residues [1]. 
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Currently there are many biological mechanisms that still remain unknown.  This has caused some 

major difficulties in modeling TM protein topology.  For instance, do start and stop transfer events 

really exist?  What makes them as signals?  Is it simply because of hydrophobicity or are there any 

other factors involved? 

We found more functional domains when searched against InterProScan [45].  However, none of 

them helps to make any apparent improvement.  Besides, a fair amount of domains have not been 

completely annotated by InterProScan version v3.1.   

Furthermore, only a fraction of sequences have PROSITE functional domain predictors.  As more 

and more sequences with known topology are available, we would expect more useful predictors 

(including those which were filtered out at present) could be found in the future.  We also would 

expect that as more and more signatures and domains are available, the prediction accuracy would be 

further improved with more potential predictors.  With L = 0, PROSITE release 18.9 of 4-Oct-2003 

was compared with release 17.4 of May 2002.  We found more functional domains (i.e. IG_LIKE Ig-

like domain profile) and predicted one more sequence (MYP0_HUMAN) correctly.  However, these 

expectations still need to be further proven. 

In addition, if we have more TM proteins with known topology, we would know more on the 

length distribution of loop and helix.  For example, in TMHMM, the length for a loop before and after 

entering into the globular region is 10 amino acids long.  This set-up has not been verified 

biologically.    
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Appendix A 

Glossaries 

Cleavage site:  the cleavage site of a signal peptide is recognized and cleaved by the signal peptidase 

on the luminal side of the ER or extracellular side of the plasma membrane. 

cDNA (complementary DNA): single-stranded DNA complementary to an RNA, synthesized from it 

by reverse transcription in vitro. 

Compositional distance: A protein or peptide is represented as one point in amino acid composition 

space [40].  The distance between two proteins, j and k is calculated by 2
12

20

1

])([∑
=

−=
i

ikijjk CACAd  

where 
i

i
i SD

ACA = is the normalized composition of a protein, iA is the percentage of amino acid 

type-i and iSD is the standard deviation over a large set of proteins. 

Gene fusion: the use of recombinant DNA techniques in generating hybrid or chimeric polypeptides 

in which the tested amino acid sequence is taken from one protein and fused to another. 

Integral membrane proteins: membrane proteins that extend into and sometimes completely 

through the membrane. 

Peripheral membrane proteins: membrane proteins that lie on the surface of the membrane. 

Membrane-buried helices: short hydrophobic helices, which do not span membrane lipid interior 

and form after stable membrane-spanning helices. 

Tagging: insertion of easily identified target sites, including N-glycosylation sites, Cys residues, 

iodinatable sites, antibody epitopes, and proteolytic sites by site directed mutagenesis at specific 

positions in the polypeptide. 
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TM protein assembly: the process of how protein is targeted to the destined membrane and how it is 

inserted into the membrane. 

Plasma membrane (PM) protein sorting:    

Along the exocytic pathway, we are especially interested in PM protein integration.  The mechanisms 

of protein secretion and plasma membrane protein synthesis share similarities.  Exocytosis is the 

process in which lipid-bilayer vesicles in the cytoplasm fuse with the plasma membrane to secrete 

newly synthesized proteins and lipid or insert proteins into the plasma membrane.  However, signals 

for localization of plasma membrane proteins remain unknown. Secondary sorting signals of the 

exocytic system are in mature polypeptides and do not seem to be related to or even contiguous with 

the primary signal sequence, which is responsible for the initial localization to the ER.  This is quite 

different from most of the mitochondrial and chloroplast secondary sorting signals, and perhaps 

sorting in the bacterial envelope [11].   
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Appendix B 

List of transmembrane proteins used in test set  

COAB_BPFD 

COAB_BPPF1 

FRDC_ECOLI 

FRDD_ECOLI 

1B14_HUMAN 

RCEH_RHOVI 

RCEL_RHOVI 

KCSA_STRLI 

MSCL_MYCTU 

COX4_PARDE 

PTNC_ECOLI 

PTND_ECOLI 

HLYB_ECOLI 

PUCC_RHOCA 

BOFA_BACSU 

CODB_ECOLI 

LYSP_ECOLI 

ARSB_ECOLI 

PRRB_RHOSH 

DTPT_LACLA 

TRD1_ECOLI 

CPXA_ECOLI 

RAMP1_ECOLI 

ATP6_ECOLI 

TONB_ECOLI 

TCR2_ECOLI 

VMT2_IAUDO 

HLYD_ECOLI 

VNB_INBLE 

MYPR_HUMAN 

PMA1_NEUCR 

CD7_HUMAN 

GP21_RAT 

ALKB_PSEOL 

STE6_YEAST 

FRIZ_DROME 

SYB2_HUMAN 

GEF_ECOLI 

MSCL_ECOLI 

NTG1_RAT 

GSPL_PSEAE 

LEP4_ERWCA 

FDOI_ECOLI 

FDOH_ECOLI 

SCAA_RAT 

FLO1_HUMAN 

LCND_LACLA 

CYB_RHOSH 

MNTB_SYNY3 

QACA_STAAU 

VG1_BPFD 

VRXB_LAMBD 

CNG1_BOVIN 

B3AT_HUMAN 

ARCD_PSEAE 

TOLA_ECOLI 

DCTA_RHIME 

GSPP_PSEAE 

TAL6_MOUSE 

DCRA_DESVH 

CAN1_YEAST 

DIVB_BACSU
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Appendix C 

Potential signature and domain predictors extracted from 219 

sequences 

signature and domain specificity1 sensitivity2 
NEUROTR_ION_CHANNEL (Neurotransmitter-gated ion-channels signature) 
(assumed external) 

100.00% 
 

99.43% 

PROTEIN_KINASE_ATP (Protein kinases ATP-binding region signature) (assumed 
internal) 

96.25% 84.94% 

PROTEIN_KINASE_TYR (Tyrosine protein kinases specific active-site signature) 
(assumed internal) 

94.79% 98.41% 

HIS_KIN (Histidine kinase domain) [profile] (assumed internal) 100.00% 100.00% 
PRO_RICH (Proline-rich region) [profile] (assumed internal) * 

CONNEXINS_1 (Connexins signature 1) (assumed external) 100.00% 91.80 % 
CONNEXINS_2 (Connexins signature 2) (assumed external) 100.00% 100.00% 
C_TYPE_LECTIN_1 (C-type lectin domain signature) (assumed external) 89.05 % 70.93 % 
SPASE_I_3 (Signal peptidases I signature 3) (assumed external) 70.59 % 94.74 % 
PROTEIN_KINASE_DOM (Protein kinase domain) [profile] (assumed internal) 99.71% 99.63% 
C_TYPE_LECTIN_2 (C-type lectin domain) [profile] (assumed external) 98.48 % 98.48 % 
HLYD_FAMILY (HlyD family secretion proteins signature) (assumed external) 100.00 % 76.47 % 
ARG_RICH (Arginine-rich region) [profile] (assumed internal) *  

CYS_RICH (Cysteine-rich region) [profile] (assumed external) *  

LYS_RICH (Lysine-rich region) [profile] (assumed external) *  

AAA (AAA-protein family signature) (assumed internal) 100.00% 96.86% 
A4_INTRA (Amyloidogenic glycoprotein intracellular domain signature) (assumed 
internal) 

100.00% 100.00% 

A4_EXTRA (Amyloidogenic glycoprotein extracellular domain signature) (assumed 
external) 

100.00% 100.00% 

PTS_EIIB_CYS (PTS EIIB domains cysteine phosphorylation site signature) 
 (assumed internal) 

100.00% 96.67% 

PTS_EIIA_2 (PTS EIIA domains phosphorylation site signature 2) (assumed internal) 100.00% 93.10% 
 

1specificity: value is from PROSITE. 

2sensitivity: value is from PROSITE. 
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Appendix D 

List of Abbreviations 

AHMM:  augmented hidden Markov model 

ER:   endoplamsic reticulum 

GPCR:   G-protein coupled  receptor 

HMM:   hidden Markov model 

HMMTOP: HMM for topology prediction 

MEMSAT: Membrane protein structure and topology 

PSSM:  Position specific score matrix  

PHDhtm: Profile based neural network prediction of helical transmembrane regions  

PM:   Plasma membrane 

SA:   Signal anchor 

TM:   Transmembrane 

TMHMM:  Transmembrane hidden Markov model 

TOPPRED:  TOPology PREDiction program 
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Appendix E 

Amino Acid Translation Table 

Character 

 Translation 

 A  Alanine (Ala) 

 C  Cysteine (Cys) 

 D  Aspartic Acid (Asp) 

 E  Glutamin Acid (Glu) 

 F  Phenylalanine (Phe) 

 G  Glycine (Gly) 

 H  Histidine (His) 

 I  Isoleucine (Ile) 

 K  Lysine (Lys) 

 L  Leucine (Leu) 

 M  Methionine (Met) 

 N  Asparagine (Asn) 

 P  Proline (Pro) 

 Q  Glutamine (Gln) 

 R  Arginine (Arg) 

 S  Serine (Ser) 

 T  Threonine (Thr) 

 V  Valine (Val) 

 W  Tryptophan (Trp) 

 Y  Tyrosine (Tyr) 

 B  D or N (Asn or Asp) 

 Z  E or Q (Gln or Glu) 
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